
Centro de Investigación y de Estudios Avanzados
del Instituto Politécnico Nacional

Unidad Cinvestav Tamaulipas

Construcción de covering arrays
en el dominio de grafos

Tesis que presenta:

José Carlos Pérez Torres

Para obtener el grado de:

Maestro en Ciencias
en Ingeniería y Tecnologías

Computacionales

Director de la Tesis:
Dr. José Torres Jiménez

Cd. Victoria, Tamaulipas, México. Octubre, 2017

Center for Research and Advanced Studies
of the National Polytechnic Institute

Cinvestav Tamaulipas

Covering arrays construction in
the graph domain

Thesis by:

José Carlos Pérez Torres

as the fulfillment of the
requirement for the degree of:

Master of Science
in Engineering and Computing

Technologies

Thesis Director:
Dr. José Torres Jiménez

Cd. Victoria, Tamaulipas, México. October, 2017

© Copyright by
José Carlos Pérez Torres

2017

The thesis of José Carlos Pérez Torres is approved by:

__

Dr. Hector Hugo Avilés Arriaga

Dr. Ricardo Landa Becerra

Dr. José Torres Jiménez, Committe Chair

Cd. Victoria, Tamaulipas, México., October 6 2017

A mis padres, por todo el apoyo brindado.

Acknowledgements

• Special thanks to Samantha and my friends Gildardo, Daniel, Rebeca, Edi, Carlos, Raul, Oscar,
Jordy, Vago, Hugo, and Melesio for the cheering and support.

• I also thank the administrative personnel at CINVESTAV Tamaulipas for their help during my
stay.

• I thank CONACyT for the provided economic support which allowed me to concentrate in my
studies and CINVESTAV-Tamaulipas for the opportunity to pursue graduate studies.

• I thank to my advisor Dr. José Torres-Jimenez, his patience and help in the development of
this work.

• I also acknowledge “Xiuhcoatl”-CGSTIC of CINVESTAV and ABACUS-CINVESTAV,
CONACYT grant EDOMEX-2011-COI-165873, for providing access to high-performance
computing.

• This research was partially funded by the project CONACyT238469 - Métodos Exactos para
Construir Covering Arrays.

Contents

Contents i

List of Figures v

List of Tables vii

List of Algorithms ix

Publications xi

Resumen xiii

Abstract xv

Nomenclature xvii

Definitions xix

1 Introduction 1
1.1 An introduction to covering arrays . 1
1.2 Background . 4
1.3 Justification . 5
1.4 Impact . 5
1.5 Thesis problem . 6

1.5.1 Problem statement . 6
1.5.2 Hypothesis . 6
1.5.3 Main objective . 6
1.5.4 Specific objectives . 6

1.6 Thesis contents . 7
1.7 Summary . 8

2 State of the art of the construction of covering arrays 9
2.1 Exact methods to construct CAs . 11

2.1.1 Integer programming . 11
2.1.2 The automatic generator EXACT . 11
2.1.3 Constraint programming . 12
2.1.4 SAT encodings . 12
2.1.5 Backtracking algorithm for binary CAs . 13
2.1.6 Non-isomorphic CAs . 13

2.2 Greedy methods to construct CAs . 13

i

2.2.1 The AETG system . 13
2.2.2 Deterministic density algorithm . 14
2.2.3 In-Parameter-Order algorithm . 15
2.2.4 Intersection residual pair set strategy . 15
2.2.5 Coverage inheritance . 16

2.3 Metaheuristic methods to construct CAs . 17
2.3.1 Genetic algorithms . 17
2.3.2 Tabu search . 18
2.3.3 Simulated annealing . 18
2.3.4 Particle swarm optimization . 19

2.4 Algebraic methods to construct CAs . 19
2.4.1 Orthogonal arrays . 20
2.4.2 Case t = 2 and v = 2 . 21
2.4.3 Constant weight vectors . 22
2.4.4 Roux-type constructions . 22
2.4.5 Power of a covering array . 23
2.4.6 Product of covering arrays of stregth two 23
2.4.7 Cyclotomy . 24
2.4.8 Construction using groups . 25
2.4.9 Permutation vectors . 26
2.4.10 Towers of covering arrays . 27
2.4.11 Binomial coefficients . 28
2.4.12 Trinomial coefficients . 28

2.5 Post-optimization methods to reduce the number of rows of CAs 29
2.6 CA related problems mapped to a graph representation 30

2.6.1 Minimization of constant rows in covering arrays 30
2.6.2 Covering arrays completion by the vertex coloring problem of a graph 30

2.7 Summary . 30

3 A graph representation for covering arrays 33
3.1 Coverage in nodes . 34

3.1.1 Representing a mixed covering array with the coverage in nodes representation 40
3.1.2 Handling constraints on the coverage in nodes representation 42

3.2 Flexible positions using the coverage in nodes representation 45
3.3 Summary . 47

4 Methodology to solve the CACP in the graph domain 49
4.1 Methodology overview . 50
4.2 Utility algorithms . 50

4.2.1 List all maximum cliques of a graph . 50
4.2.2 Greedy vertex coloring of a graph . 52

4.3 Exact algorithm for minimum clique covering . 53
4.4 Greedy algorithm for minimum clique covering . 55

ii

4.5 Metaheuristic algorithm for minimum clique covering 59
4.5.1 Neighborhood function 1: random coloring 60
4.5.2 Neighborhood function 2: greedy coloring 60
4.5.3 Neighborhood function 3: disrupt a clique 61
4.5.4 Neighborhood function 4: fill a clique . 61
4.5.5 Fine tuning for Simulated Annealing . 62

4.6 Graph Based Post-Optimization (GBPO) . 63
4.6.1 MAPPER process . 63
4.6.2 MAX process . 64
4.6.3 HANDLER process . 66

4.7 Summary . 69

5 Experimentation and results 71
5.1 Results with the exact algorithm . 72
5.2 Results with the greedy algorithms . 72
5.3 Results with the metaheuristic algorithm SACC . 76
5.4 Results with the GBPO algorithm . 77
5.5 Summary . 86

6 Conclusions and future works 87
6.1 Main contributions . 87
6.2 Future works . 88

iii

List of Figures

1.1 The covering array CA(11; 2, 5, 3). 2

2.1 Summary of construction methods for covering arrays. 10
2.2 OA produced by the Bush construction for v = 3 and t = 2. 21
2.3 The CA(6; 2, 10, 2) produced by the Katona, Spencer and Kleitman construction for

k = 10. 21
2.4 The CA(9; 2, 9, 2) produced by the cyclotomic construction. 24

3.1 The graph generated for parameters t = 2, k = 3, and v = 2 by the coverage in nodes
representation. 36

3.2 Original graph, solved graph, and the CA constructed for the instance with parameters
t = 2, k = 3 and v = 2. 37

3.3 A step by step solution of the clique covering problem for the covering array instance
CA(2, 3, 2). Part 1 of 2. 38

3.4 A step by step solution of the clique covering problem for the covering array instance
CA(2, 3, 2). Part 2 of 2. 39

3.5 The graph generated for parameters t = 2, k = 3 and v = 2 by the representation
CN with constraints. 44

3.6 The covering array CA(6; 2, 523). 46
3.7 The graph generated for parameters t = 2, k = 5, and v = 2 by the coverage in

nodes representation. 46
3.8 A clique cover for graph generated for the instance CA(2, 5, 2) by the coverage in

nodes representation. 47

4.1 The decision tree to solve in an exact way the minimum clique covering. 54
4.2 Graph generated in the MAX process of the post-optimization algorithm. 66
4.3 Flow diagram of the HANDLER process of the post-optimization algorithm. 68

5.1 Results obtained of the experimentation for the GBPO algorithm with instances of
t = 2. 83

5.2 Results obtained of the experimentation for the GBPO algorithm with instances of
t = 3. 84

5.3 Results obtained of the experimentation for the GBPO algorithm with instances of
t = 4. 84

5.4 Results obtained of the experimentation for the GBPO algorithm with instances of
t = 5. 85

5.5 Results obtained of the experimentation for the GBPO algorithm with instances of
t = 6. 85

v

List of Tables

1.1 Possible values for the parameters to be taken into account for a real application
testing. 3

1.2 A set of test cases built from the covering array CA(11; 2, 5, 3). 4

3.1 A set of constraints for a CA with parameters t = 2, k = 4, and v = 2. 44

5.1 Results obtained for the experimentation conducted for the exact algorithm. 72
5.2 Results obtained of the experimentation conducted for the first three versions of the

greedy algorithm. 73
5.3 Results obtained of the experimentation conducted for the last version of the greedy

algorithm. Part 1 of 2 . 74
5.4 Results obtained of the experimentation conducted for the last version of the greedy

algorithm. Part 2 of 2 . 75
5.5 Results of the experimentation conducted for the SACC algorithm. 76
5.6 Results obtained of the experimentation conducted for the GBPO algorithm with

instances of strength t = 2. 78
5.7 Results obtained of the experimentation conducted for the GBPO algorithm with

instances of strength t = 3. 79
5.8 Results obtained of the experimentation conducted for the GBPO algorithm with

instances of strength t = 4. 80
5.9 Results obtained of the experimentation conducted for the GBPO algorithm with

instances of strength t = 5. 81
5.10 Results obtained of the experimentation conducted for the GBPO algorithm with

instances of strength t = 6. 82
5.11 Comparative of results between Li et al. [36] and our GBPO algorithm for instances

of strength t = 2. 83

vii

List of Algorithms

1 An exact algorithm to obtain all the maximum cliques of a graph generated by the
CN representation. 51

2 A greedy algorithm for the vertex coloring of a graph. 53
3 Pseudocode for the fixing heuristic. 57
4 A greedy algorithm for the minimum clique covering. 58

ix

Publications

• Perez-Torres Jose Carlos, Torres-Jimenez Jose. A graph based post-optimization approach for
covering arrays. At the journal Quality and Reliability Engineering International 2017;0:1-9.
Available at: https://doi.org/10.1002/qre.2176. Impact Factor: 1.366

xi

Resumen

Construcción de covering arrays en el dominio de grafos

por

José Carlos Pérez Torres
Unidad Cinvestav Tamaulipas

Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, 2017
Dr. José Torres Jiménez, Director

Los covering arrays (CAs) son objetos combinatorios con amplias aplicaciones prácticas, como la

calibración de parámetros en experimentos, las pruebas de software y hardware y en la implementación

de códigos surjectivos. Un covering array CA(N ; t, k, v) es denotado por la tupla de cuatro enteros N, t, k,

y v con t ≤ k y representado por una matriz de N×k elementos en la cual cada subarreglo de tamaño N× t

contiene todas las t-tuplas formadas con v símbolos al menos una vez, donde N representa la cantidad de

filas del CA, k la cantidad de columnas del CA y t representa la fuerza de cobertura del CA.

Este documento presenta un nuevo paradigma para la construcción de CAs a través de la transformación

de ellos al dominio de grafos. Se propone la representación cobertura en nodos que embebe la cobertura

provista por un CA en los nodos de un grafo. Esta representación ofrece la posibilidad de construir CAs con

el mínimo número de filas a través de la solución del problema NP-duro de encontrar la cobertura con cliques

de todos los nodos de un grafo con el mínimo número de cliques. Se muestran tres enfoques distintos para

resolver este problema: a) un algoritmo exacto, b) un algoritmo avaro, y c) un algoritmo metaheurístico.

Además se presenta un algoritmo de post-optimización de CAs basado en grafos (GBPO) para reducir el

numero de filas de un covering array o el número de interacciones que faltan en un covering array parcial.

Los resultados muestran que el algoritmo exacto construye CAs óptimos que igualan las mejores cotas

conocidas para 7 de 7 instancias probadas, el algoritmo avaro iguala 18 instancias y mejora 77 instancias

de las 95 probadas respecto a una version del algoritmo avaro In-parameter-order (IPOG-F), el algoritmo

metaheurístico construye 17 instancias que igualan a las mejores cotas conocidas y 4 instancias que son

mejoradas del total de 33 instancias, y finalmente el algoritmo GBPO mejora 560 de 560 CAs del repositorio

de instancias generado por el algoritmo IPOG-F.

xiii

Abstract

Covering arrays construction in the graph domain

by

José Carlos Pérez Torres
Cinvestav Tamaulipas

Center for Research and Advanced Studies of the National Polytechnic Institute, 2017
Dr. José Torres Jiménez, Advisor

Covering arrays (CAs) are combinatorial objects that have wide practical applications such as the

hardware and software testing, the parameter tuning for experimental design, and the implementation

of surjective codes. A covering array is denoted as CA(N ; t, k, v), with a 4-tuple of integers N, t, k, and

v and represented by an N × k array such that every N × t sub-array contains all t-tuples from v symbols

at least once, where N denotes the number of rows of the CA, k denotes the number of columns of the CA

and t represents the strength of the CA.

This document presents a novel paradigm to construct CAs through a mapping to the graph domain.

We propose the coverage in nodes representation that embeds the coverage provided by a CA in the nodes

of a graph. This representation allows to construct CAs with the minimal number of rows through the

solution of the minimum clique covering problem (MCCP) classified as an NP-hard problem. We present

three approaches for solving of MCCP: a) an exact algorithm, b) a greedy algorithm, and c) a metaheuristic

algorithm. Furthermore, a graph-based post-optimization (GBPO) for CAs is presented. GBPO reduces the

number of rows of a CA or the number of missing interactions of a partial CA.

Results show that for the experimentation: of 7 CAs for the exact algorithm, 7 CAs matched the best-

known upper bounds for CAs; of 95 CAs for the greedy algorithm: i) 18 CAs matched versus a state of the

art greedy algorithm, and ii) 77 instances improved the upper bounds of the In-parameter-order (IPOG-F)

algorithm; of 77 CAs for the metaheuristic algorithm: i) 17 CAs matched the best-known upper bounds and,

ii) 4 CAs of the best-known upper bounds; and for the experimentation of 560 CAs for the GBPO algorithm:

560 CAs were improved of the IPOG-F instances repository.

xv

Nomenclature

CA Covering array
CAs Covering arrays
CAN Covering array number
CAK Covering array column
CACP Covering array construction problem
CN Coverage in nodes
MCA Mixed covering array
MCAN Mixed covering array number
MCP Maximum clique problem
MCCP Minimum clique covering problem

Definitions

Definition 1 (Covering array (CA))

Given the positive integers N, t, k and v a covering array CA(N ; t, k, v) is a matrix A of
size N · k, where A = (ai,j) for 0 ≤ i ≤ N − 1 and 0 ≤ j ≤ k − 1 with values
over the set Zv = {0, . . . , v − 1} stands the property that for each t distinct columns
0 ≤ c0 < . . . < ct−1 ≤ k − 1 and each t-tuple (x0, . . . , xt−1) ∈ Ztv at least one row
exist such that xi = ar,ci for 0 ≤ i ≤ t− 1.

Definition 2 (Covering array number (CAN))

Given t, k and v parameters the covering array number CAN(t, k, v) is the CA(N ; t, k, v)
such that N is the minimum possible.

CAN(t, k, v) = min(N){N | ∃ CA(N ; t, k, v)}

Definition 3 (Covering array column (CAK))

Given t, N and v parameters the covering array column CAK(t, N, v) is the CA(N ; t, k, v)
such that k is the maximum possible.

CAK(t, N, v) = max(k){k | ∃ CA(N ; t, k, v)}

Definition 4 (Mixed covering array (MCA))

Given t, k and (v0, . . . , vk−1) parameters, the MCA(N ; t, k, (v0, . . . , vk−1) is a matrix of size
N · k, where the values for column i are over the set Zvi = {0, . . . , vi − 1} and for each
t distinct columns i0, . . . , it−1 every t-tuple in

∏t−1
j=0 {0, . . . , vij − 1} appear at least in one

row.

Definition 5 (Mixed covering array number (MCAN))

Given t, k and (v0, . . . , vk−1) parameters the mixed covering array number
MCAN(t, k, (v0, . . . , vk−1)) is the MCA(N ; t, k, (v0, . . . , vk−1)) such that N is the minimum
possible.

MCAN(t, k, (v0, . . . , vk−1)) = min(N){N | ∃ MCA(N ; t, k, (v0, . . . , vk−1))}

Definition 6 (Isomorphic CAs)

A CA is isomorphic of A if its possible to turn it into A by a combination of a row
permutation, a column permutation and a symbol permutation of a subset of columns
(defined in [58]).

Definition 7 (Clique)

Given a graph G = (V , E), a clique is a set C ⊆ V such that, for every distinct nodes
u, v ∈ C the edge (u, v) exists in E . A clique is a complete subgraph of G.

Definition 8 (Maximal clique)

Given a graph G = (V , E), a maximal clique is a clique that cannot be extended with
another vertex of V .

Definition 9 (Maximum clique)

Given a graph G = (V , E), a maximum clique is the clique with the largest amount of
vertices. Therefore a maximum clique is maximal but, not all maximal cliques are maximum.

Definition 10 (Maximum clique problem (MCP))

Given a graph G = (V , E) find the largest complete subgraph C of G. MCP is a problem
NP-complete, probed by mapping to satisfiability problem (demonstration in [54]).

xx

1
Introduction

This chapter presents the thesis problem, main objective and specific objectives of the thesis. Section

1.1 presents an introduction to covering arrays. Section 1.2 describes the practical applications of

covering arrays. Section 1.3 presents the advantages of solving the covering array construction

problem (CACP) in the graph domain. Section 1.4 shows a study that illustrate the impact of

inadequate software testing in US and how the strength of a CA is related with the detection rate

of software faults. In Section 1.5 the thesis problem is stated, followed by the research hypothesis,

the main objective, and the particular objectives of the thesis.

1.1 An introduction to covering arrays

A covering array CA(N ; t, k, v), denoted with a 4-tuple of integers, is used to construct a set of test

cases to verify components of software or hardware. Each one of the N rows of the CA represents

a test case and is composed by k values that represent every factor that integrate the component.

These factors have values over the set Zv = {0, . . . , v − 1}. The strength parameter represented

1

2 1.1. An introduction to covering arrays

as t indicates that all combinations of t factors occurs at least once in the CA. The covering array

ensures that each of the vt interactions of each one of the
(
k
t

)
possible t-subsets is covered in, at

least, one row.

Formally, a covering array is denoted as CA(N ; t, k, v), where N represents the number of rows of

the CA, k represents the number of columns, v is the number of symbols of the alphabet or vocabulary

for the CA and it delimits the possible values for the cells of the CA to the set Zv = {0, . . . , v− 1},

and t represents the strength of the CA.

For example, the Figure 1.1 shows the covering array CA(11; 2, 5, 3). This covering array has

N = 11 rows and k = 5 columns, its alphabet is v = 3, and its strength is t = 2. Each one of the(
5
2

)
= 10 subarrays of two distinct columns covers every member of the Z2

3 at least once. Set Z2
3 is

equal to

Z2
3 = {0, 1, 2}2 = {0, 1, 2} × {0, 1, 2}

= {(0, 0), (0, 1), (0, 2), (1, 0), (1, 1), (1, 2), (2, 0), (2, 1), (2, 2)}.

↓ ↓
1 1 0 2 0
2 2 1 1 0
0 1 2 1 2
2 0 0 0 2
0 0 0 1 1
2 1 1 2 1
0 2 0 2 2
1 0 1 1 2
0 1 1 0 0
2 0 2 2 0
1 2 2 0 1

Figure 1.1: The covering array CA(11; 2, 5, 3). In the columns marked down with an arrow the first

occurrence of each tuple of the set {0, 1, 2}2 is colored in red.

1. Introduction 3

Consider the following real application: A Webmaster wants to validate the successful access to

his new web service, taking into account the next information about the requesting user: operating

system, web browser, broadband speed, time at which a request was sent, and the location from

where the user sent it. Considering that each of those parameters has three possible values (shown in

Table 1.1). The total number of test cases of an exhaustive test that should be executed in order to

assess the behavior of the web service would be 243, which means testing every single combination

of the possible parameters (35).

Operating System Web browser Broadband speed Time of request Location

Windows Firefox 512 Kbps 2 AM China

OS X Opera 1 Mbps 10 AM Russia

Linux Chrome 10 Mbps 6 PM USA

Table 1.1: Possible values for the parameters to be taken into account for a real application testing.

In a small example such as this, the number of total test cases might not be impactful, but if

the number of parameters taken into account or the range of values for each parameter increase, the

number of test cases to assess a correct behavior would grow exponentially. For small test cases,

such as testing the success or failure of a request, that can be evaluated in short time the cost of

executing every single case might not be meaningful, but when testing cases are expensive, reducing

the amount of tests needed to assure a correct behavior or detect failures greatly reduces the costs

associated to the test, both monetary and time wise.

For example, for the previously mentioned application, using combinatorial testing we can

construct a CA(11; 2, 5, 3) with 11 test cases that validates every interaction between two parameters

or a CA(33; 3, 5, 3) with 33 test cases that validates every interaction between three parameters. The

CA with t = 2 represents < 5% of the test cases needed by the exhaustive test. Meanwhile, the CA

with t = 3 represents < 15% of the test cases needed by the exhaustive test. Studies shown that

4 1.2. Background

validating interactions between two parameters detect > 70% of the software failures and validating

interactions between three parameters detect > 90% of those failures. In the Table 1.2 are shown

the test cases needed to validate every interaction between two parameters.

No. Operating System Web browser Broadband speed Time of request Location

1 OS X Opera 512 Kbps 6 PM China

2 Linux Chrome 1 Mbps 10 AM China

3 Windows Opera 10 Mbps 10 AM USA

4 Linux Firefox 512 Kbps 2 AM USA

5 Windows Firefox 512 Kbps 10 AM Russia

6 Linux Opera 1 Mbps 6 PM Russia

7 Windows Chrome 512 Kbps 6 PM USA

8 OS X Firefox 1 Mbps 10 AM USA

9 Windows Opera 1 Mbps 2 AM China

10 Linux Firefox 10 Mbps 6 PM China

11 OS X Chrome 10 Mbps 2 AM Russia

Table 1.2: A set of test cases built from the covering array CA(11; 2, 5, 3).

1.2 Background

CAs are combinatorial objects effective in the processes of: software testing [18], hardware testing

[4, 56], experimental designs [20], detection of trojans in hardware [27], and in the implementation

of surjective codes [47].

Nowadays, several approaches have been proposed to solve the CACP, such as: exact, greedy,

algebraic, and metaheuristic algorithms, see [57].

1. Introduction 5

1.3 Justification

Despite the diversity in the proposed approaches to solve CACP, there is not, to our best knowledge,

any method that solves CACP in the graph domain. The proposed approaches have used as

representation a matrix of integers [15] or a vector of integers [11] but not a graph representation.

Despite a graph could be implemented as a matrix through an adjacency matrix, the proposed

approaches that use a matrix of integers do not have the same purpose.

The solution of CACP in the graph domain allows us to take advantage of the state-of-the-art

algorithms that are related to graph problems such as the maximum clique.

Using a graph representation to solve CACP also allows us to save time spent in process of

validation of the coverage of a CA, due to the fact that the solution to the problem mapped to the

graph domain keeps tracking of the interactions that are already covered.

1.4 Impact

In 2003, the National Institute of Standards and Technology (NIST) published that inadequate

software testing costs to the US economy $59.5 billion per year, even though that 50 to 80% of the

cost of the total software development is for software testing process [30]. Software testing based

on combinatorial objects implies that most failures in the software are caused by interaction between

few parameters.

In 2009 Kuhn et al. [49] showed the relation among the detection of software faults and the

strength of the CA used to do the tests, which is the number of parameters involved in an interaction.

Others studies in [31, 32, 33] pointed out that when the strength of the CA is from 4 to 6, the fault

detection rate reaches 100%.

6 1.5. Thesis problem

1.5 Thesis problem

1.5.1 Problem statement

Given the parameters t, k, and v; the CACP consists in the construction of a CA(N ; t, k, v) where

the number of rows N is minimal. The proposed representation of the CA characteristics has its

own problem statement and is discussed in the Chapter 3.

1.5.2 Hypothesis

It is possible to construct CAs of strength t = 2 in the graph domain that match or reduce the

number of rows of the best reported CAs.

1.5.3 Main objective

Constructing CAs of strength (t = 2) in the graph domain one row at a time with equal or lesser

number of rows than those reported by the state-of-the-art algorithms.

1.5.4 Specific objectives

Three specific objectives are stated in order to fulfill the main objective.

1 Development of an algorithm to map a CA to the graph domain and to transform the obtained

solution in the graph domain to a CA.

2 Development of algorithms to solve the CACP in the graph domain.

3 Development of a post-optimization algorithm to improve the quality of previously constructed

solutions.

1. Introduction 7

1.6 Thesis contents

The thesis document is organized in six chapters; the following is a brief summary of each chapter

content:

• Chapter 1: Introduction. The first chapter describes practical applications of the covering

arrays, the benefits of using combinatorial testing and the problem statement of this thesis.

• Chapter 2: State of the art of the construction of covering arrays. This chapter presents

several methods already developed to solve CACP. These methods are classified in: exact,

greedy, metaheuristic, and algebraic. It also presents algorithms to post-optimize covering

arrays.

• Chapter 3: A graph representation for covering arrays. This chapter describes the mapping

of a covering array instance to a graph, so the equivalent problem can be solved in the graph

domain.

• Chapter 4: Methodology to solve the CACP in the graph domain. This chapter presents the

methodology followed to solve the graph-based problem to construct a covering array and the

algorithms developed to perform the methodology.

• Chapter 5: Experimentation and results. This chapter describes the computational

experimentation done and the relevant results obtained from the developed approaches of

solution.

• Chapter 6: Conclusions and future works. The last chapter presents a summary of the

contributions of this thesis and some topics for future works.

8 1.7. Summary

1.7 Summary

This chapter introduced the thesis generals and the definition of a covering array, described the

practical applications of covering arrays in the hardware and software testing and the benefits of

using a graph representation for the construction of covering arrays. Also is presented an study that

analyzes the impact of testing inside the complete software development process. The next chapter

will present the state-of-the-art of methods that construct covering arrays.

2
State of the art of the construction of covering

arrays

In this chapter we present distinct state-of-the-art approaches to solve the CACP. These approaches

are grouped by the construction process used: exact methods (Section 2.1), greedy algorithms

(Section 2.2), metaheuristic algorithms (Section 2.3), algebraic methods (Section 2.4), and post-

optimization methods (Section 2.5). The last subsection reviews problems related to CAs that are

confronted using some graph representation.

In the Figure 2.1, we provide a brief summary of the construction methods, the following sections

will explain in detail examples of construction of the methods that are presented in these figure.

9

10

Figure 2.1: Summary of construction methods for covering arrays.

2. State of the art of the construction of covering arrays 11

2.1 Exact methods to construct CAs

Exact methods have the characteristic that given the values t, k, and v they construct a CA(N ; t, k, v)

where the number of rows N is minimal. Despite the use of strategies to speed up the construction

process, they result practical only for constructing small covering arrays, the cases where v ≤ 6,

k ≤ 10, and t = 2 are the only ones that result practical [29].

2.1.1 Integer programming

In 2002, Williams and Probert [65] presented a formulation of CACP using {0,1} integer

programming. A vector x represents the set of all possible rows or configurations, which are |x| = vk;

a vector y represents all the interactions required, which are |y| =
(
k
t

)
vt; and a matrix A = aij of

size |y|× |x| to identify which rows cover each one of all interactions, aij = 1 when the interaction i

is covered by the row j, otherwise ai,j = 0. The coverage is mapped into a set of |y| constraints of

the form
∑|x|

j=1 ai,jxj ≥ 1 for 1 ≤ i ≤ |y|. xj = 1 when the row j is taken for the solution, otherwise

xj = 0. So, the complete formulation consists in: minimize
∑|x|

j=1 xj subject to the constraints∑|x|
j=1 ai,jxj ≥ 1 for 1 ≤ i ≤ |y|. This formulation allows a linear programming solver to construct

optimal covering arrays but only works for small cases of t, k, and v, where the number of variables

is less than 100.

2.1.2 The automatic generator EXACT

In 2006, Yan and Zhang [67] introduced the exhaustive search of combinatorial test suites generator

(EXACT). This generator assigns values to elements of a CA whenever it is possible and backtracks

when is detected that it is not possible to fulfill the CA avoiding the exploration of isomorphic

solutions by considering only the arrays lexicographically sorted in rows and columns.

12 2.1. Exact methods to construct CAs

2.1.3 Constraint programming

Later on, Hnich et al. [3] proposed 4 matrix models of constraint programming to solve CACP:

naive matrix model, alternative matrix model, integrated matrix model, and weakened matrix

model. The naive matrix model consists of a matrix X of dimensions N × k with entries

xr,i, 1 ≤ r ≤ N, 1 ≤ i ≤ k such that xr,i = m if the value of parameter i in test vector r is

m. The alternative matrix model of size N ×
(
k
t

)
of compounds variables yr,j where each variable

represents a tuple (xr,l1 , xr,l2 , . . . , xr,lt) of the naive matrix model. The integrated matrix model links

the previous models by channeling constraints that associate compounds variables of the alternative

matrix model with their t corresponding variables in the naive matrix model. The weakened matrix

model is a satisfiability (SAT) encoding with several constraints omitted.

2.1.4 SAT encodings

For t = 2, Lopez-Escogido et al. [38] proposed a codification for SAT problem to map CACP to

this domain and take advantage of existing SAT local search methods. For each element mi,j of

matrix M associated with an instance, v variables are introduced mi,j,x, 0 ≤ x < v. The model

of transformation uses two sets of clauses in conjunction (z1 and z2) to ensure that each element

in M takes exactly one value of the set {0, 1, . . . , v − 1} and uses another set of clauses (z3)

non-conjunctives to ensure that interactions of strength 2 are fulfilled.

z1 =
N−1∧
i=0

(∨
∀j,x|0≤j<k,0≤x<v

mijx

)
(2.1)

z2 =
N−1∧
i=0

(∨
∀j,x,y|0≤j<k,0≤x<y<v

(mi,j,x ∨mi,j,y)
)

(2.2)

z2 =
N−1∧
i=0

(∧
∀j,l|0≤j<l<k

(∨
∀i|0≤i<N

(mi,j,x ∨mi,l,y)
))

(2.3)

2. State of the art of the construction of covering arrays 13

2.1.5 Backtracking algorithm for binary CAs

Later on, Bracho-Rios et al. [5] introduced a branch and bound algorithm to construct binary covering

arrays of variable strength. This algorithm constructs one column at a time using all possible columns

with bN
2
c zeros. If the new column forms a partial CA and is bigger than the previous column then

it is inserted, otherwise, it tries the next element. Whenever it is no longer possible to insert a new

column the algorithm backtracks to a previous step. They also provide two techniques for improving

the search efficiency: symmetry breaking and partial verification.

2.1.6 Non-isomorphic CAs

In 2016, Torres-Jimenez et al. [58] developed the construction of all the non-isomorphic CAs for

values N, t, k, and v. A CA B is considered isomorphic to a CA A if it is constructed by a combination

of row permutation, a column permutation, and a symbol permutation of a subset of columns of A.

This construction extends a subarray from 0 to k columns, one column at a time, validating that the

new column is a CA with minimum lexicographical order with the previous columns. Whenever the

process reaches k columns it reports a new non-isomorphic CA that is optimal.

2.2 Greedy methods to construct CAs

Where combinations of values t, k, v are impractical for exact methods, CACP could be solved by a

greedy method producing a reasonable solution in short time.

2.2.1 The AETG system

In 1994, Cohen et al. [14] presented a test case generator with variables defined by the user known

as automatic efficient test generator (AETG). This method starts with an empty test case and

generates one test at a time until all interactions of size t are covered. A test case is generated

14 2.2. Greedy methods to construct CAs

through probabilistic method, building a row that has a higher probability to cover the largest amount

of missing tuples taking into account the current covered tuples. The authors say that this method

can construct CA and MCA but only for strength t = 2, 3.

2.2.2 Deterministic density algorithm

In 2007, Bryce and Colbourn [6] introduced deterministic density algorithm (DDA), a test case

generator for strength (t = 2) that builds one row at a time. Values of a row are dynamically fixed

one at a time in an order based on density. New rows are continually added until all interactions

have been covered. DDA fixes one value for each factor and updates the densities for those factors

to construct a test case.

The factor to be fixed is the one with the largest density among the non-fixed factors. The

density δi,j for factors i and j is computed as follows: a) if both factors have more than one level

δi,j = (ri,j/l
2
max)

2, where lmax is the largest cardinality of the two factors, and ri,j is the number of

missing interactions among factors i and j; b) if only one factor has one level left δi,j = (ri,j/lmax)
2;

c) if both factors have exactly one level and a new pair is covered δi,j = 1.0; d) If both factors have

exactly one level and no new pair is covered δi,j = 0. The density of the factor i is the summation

of the local densities over each factor j 6= i. After the selection of a factor, DDA assigns a level to

it; this level is the one with the higher level density. These level densities are computed for a specific

level vi to an individual factor kj as follows: a) if kj has more than one level involved in uncovered

pairs with vi, δ = (ri,j/lmax); b) if kj has only one level involved in uncovered pairs and a new pair is

covered, δ = 1.0; c) if kj has only one level involved in uncovered pairs an no new pairs are covered,

δ = 0. If there exists a tie in fixing factors or levels the most simple tie-breaking rule is to choose

the smaller factor or level in lexicographic order.

2. State of the art of the construction of covering arrays 15

2.2.3 In-Parameter-Order algorithm

From 2006 to 2008, Lei and Tai [35] developed In-Parameter-Order (IPO) algorithm to construct

all the interactions of size t of the k available factors. The main feature of this construction is that

the CA performs two types of expansion: expansion in rows; and expansion in columns, until the CA

reaches the number of desired columns. Two variants of IPO algorithm were developed: in 2007 Lei

et al. [34] proposed IPOG, a version with a generalization for higher strengths; and Forbes et al.

[15] proposed an improvement for IPO. This three algorithms share the strategy of using a CA of

k − 1 factors to build a CA with k factors. This recursion starts with the listing of t-tuples of the

set {0, . . . , v − 1} for k = t and keep adding one column at a time. To add factors, two types of

growth exist:

• Horizontal growth. An additional column is added corresponding to the new factor. The cells

of the new column are filled in a way that new tuples of the expanded CA are covered.

• Vertical growth. New rows are added to the matrix to cover the missing tuples after the

horizontal growth.

In the horizontal growth the values for the new column are filled bottom-up and the value chosen

for every cell is the one that covers the largest amount of missing tuples. The vertical growth

performs the insertion of missing interactions in existent rows, if it is not possible to add a missing

interaction in an existent row, a new row is inserted with the current missing interaction.

2.2.4 Intersection residual pair set strategy

In 2008, Younis et al. [68] presented the Intersection Residual Pair Set Strategy (IRPS), a greedy

algorithm to generate MCAs and CAs of strength t = 2. For a test set with k factors, a PI list

contains k − 1 linked lists, where the i-th linked list contains nodes equal to the number of values

defined for the i factor and for each of them an array of linked lists that represents the interactions

16 2.2. Greedy methods to construct CAs

among the i factor with the i < j < k remaining factors combined with the number of values defined

for each one of the j factors. The last factor does not have linked lists.To generate a test case the

authors define the weight as the interactions covered by a test case and wmax as the maximum

interactions covered by a test case (wmax = k(k − 1)/2 at the beginning of the test generation).

The algorithm searches for a test case that cover wmax interactions, if this case does not exist

wmax is decremented. To perform the searching of such that case, IRPS begin the search in the

nodes of the first factor that still has nodes and computes the interactions covered by a recursive

intersection of the available elements of it linked list down to the k− 1 factor that only have nodes.

This process is repeated until the PI list is empty.

2.2.5 Coverage inheritance

In 2011, Calvagna and Gargantini [8] presented a greedy algorithm to generate MCAs of any strength.

This algorithm adds one new column at a time until all needed columns are covered, and it is based on

coverage inheritance. When t < k, the algorithm starts with an MCA of strength t for t parameters

by listing all the combinations of the first t parameters (parameters must be in descending order). If

vi is the alphabet for parameter i, then vi ≥ vj for all i ≤ j. To append the missing k− t parameters

a column of the CA is copied, and all the elements that are not in range for the alphabet of the new

columns are settled to null to indicate that they can be reassigned with another value. Since the new

column denoted as j is a copy of a previous one i, all the interactions of size t are covered except

the ones where i and j are involved, this coverage guarantee is known as coverage inheritance. The

null elements are used to cover the missing interactions. New rows are added to fulfill the coverage

when the fixing of values for the null elements are not enough to cover the missing interactions.

2. State of the art of the construction of covering arrays 17

2.3 Metaheuristic methods to construct CAs

Metaheuristic methods cannot guarantee to find the minimum number of rows for a CA construction,

but the obtained results through these methods have been very competitive. As the parameters t, k, v

grow, the greedy methods begin to fall off in their solution’s quality and the exact algorithms requires

an endlessly amount of time to construct an optimal solution. That gives the opportunity to the

metaheuristic algorithms to fill this gap.

2.3.1 Genetic algorithms

One of the first techniques used were the genetic algorithms (GA) [19], proposed by Holland in

1975, GA simulates the biological evolution of a population through mutations, recombination and

individual selection.

In 2001, Stardom [55] presented a GA for CACP. He uses a matrix representation where the

recombination is performed selecting a set ε of coordinates of the father and the remaining of the

second father. The coordinates in the set ε are constituted by the first i rows, the first j columns or

a block of the union of i and j. Mutation is applied after recombination and consists in the change

of an element of the matrix randomly.

In 2004 Shiba et al. [53] proposed a GA that is a modification of AETG [14]. In this algorithm,

every chromosome represents a test case and is evaluated according to the new tuples that provide

missing interactions. An initial population of m individuals is randomly generated and use a

tournament selection. The mutation replaces one element of the chromosome for a random value of

the alphabet.

18 2.3. Metaheuristic methods to construct CAs

2.3.2 Tabu search

Tabu search (TS) is a technique proposed by Glover [16]. TS uses a list of last changes to avoid

returning to neighborhoods recently explored, which prevents the search from being trapped in local

optima.

In 2004, Nurmela [45] used TS to construct CAs. TS starts with a random matrix and using

missing tuples it forms a valid CA as the objective function. TS selects missing tuples and puts them

in one row that needs just one modification to generate the tuple. The selected row to perform the

action is the row that produces the less cost; otherwise, it is randomly selected.

2.3.3 Simulated annealing

Simulated Annealing (SA) algorithms simulate the slow cooling process of metals [26]. The

implementation of SA requires at least three parameters: initial temperature T0, final temperature

Tf and the cooling rate α (0 < α < 1).

In 2008, Covarrubias-Flores [13] proposed in her Ms thesis an SA to construct CAs of several

strengths and v = 2. An initial solution M is generated randomly balancing a number of 0s and 1s.

The evaluation function is the number of missing tuples of matrix M .

Later on, in 2010 Martinez-Pena et al. [42], presented an SA for CAs construction with v = 3

using trinomial coefficients (TC). The initial solution A is built selecting t+ k trinomial coefficients.

In 2010, Torres-Jimenez et al. [63] presented a SA to construct binary covering arrays of variable

strength. The algorithm incorporates a heuristic to generate good quality initial solutions and a

compound neighborhood that combines two neighborhood functions. This algorithm improves 22

upper bounds.

Afterwards, Avila-George et al. [1, 2] presented several parallel implementations of SA

denominated independent search, semi-independent search and cooperative search. Independent

search performs multiple executions of an SA using the same initial solution and selecting the best

2. State of the art of the construction of covering arrays 19

solution of all the executions. Semi-independent search divides the Markov chains in a balanced way,

the processors interchange intermediate solutions and perform the search separately. Cooperative

search keeps a best so far solution that is updated whenever a processor ends its own Markov chain,

every processor continue without waiting updates of the best so far, so when the process continues

after an ending Markov chain, the processors could start with different initial solutions and avoid

local optima.

2.3.4 Particle swarm optimization

Another technique used is the particle swarm optimization (PSO) proposed by Kennedy and Eberhart

[24] which simulates the movement of a bird flock (swarm) with two vectors that represent velocity

and position of each particle of the swarm.

In 2015, Wu et al. [66] presented several extended (PSO) algorithms to construct CAs, a set-

based PSO and a discrete PSO (DPSO). Two auxiliary strategies to enhance the performance of PSO

were presented: additional evaluation of the global best and a particle reinitialization. A comparative

of PSO variants is also presented showing the strengths and weaknesses of the proposed variants of

PSO.

Also in 2015, Mahmoud et al. [40] presented a fuzzy self-adaptive PSO that integrates a

Mamdani-type fuzzy inference system (FIS) to adapt the controllers of the PSO performance. Three

different FISs are built to monitor PSO performance and adjust the parameters for improving the

efficiency of the algorithm.

2.4 Algebraic methods to construct CAs

The algebraic methods have the characteristic that during the construction several formulas,

mathematical operations, and mathematical objects (such as vectors, finite fields, or CAs) are used

to construct CAs.

20 2.4. Algebraic methods to construct CAs

2.4.1 Orthogonal arrays

In 1952, Bush [7] introduced a construction method for orthogonal arrays. An orthogonal array is

denoted by OA(vt; t, v + 1, v), and exists when v is a prime power number where α denotes the

power. This construction uses the elements of the Galois fields GF (vα). If we denote each element

in GF (vα) as ei for 0 ≤ i ≤ v − 1, the Bush construction performs in this way:

1. Generate a matrix M with (vα)t rows and (vα) + 1 columns.

2. Label the first v columns of M with the elements ei ∈ GF (vα).

3. Label each row of M with a polynomial yj(x).

4. Each value of a cell mji ∈M where 0 ≤ j ≤ (vα)t− 1 and 0 ≤ i ≤ (vα)− 1 is the polynomial

evaluation of yj(ei) using the Galois field GF (vα).

5. Each value of a cell mji ∈M where 0 ≤ j ≤ (vα)t−1 and i = (vα) is the coefficient of higher

degree of the polynomial yj(x), in other words the term at−1 of yj(x).

For the evaluation of polynomials in Galois fields, Torres-Jimenez et al. [61] proposed a method to

multiply polynomials using additions and subtractions of the logarithm and antilogarithm discrete

tables of GF (v). The multiplication is reduced to an access to a table and a simple addition.

For example, for v = 31 and t = 2 the Bush construction allow us to build the OA(9; 2, 4, 3), the

field GF (31) is formed by the elements 0, 1, and 2, which are the 31 different polynomials of t = 2

and degree t − 1, and will be denoted as e0, e1, and e2 respectively. The polynomials yi labels the

rows and since t = 2, they are of the form yi = a1x+ a0, where a1, a0 ∈ GF (31). The labeling for

the rows, the labeling for the columns and the OA itself are shown in Figure 2.2.

2. State of the art of the construction of covering arrays 21

e0 e1 e2 ∞
y0(x) = e0x+ e0 0 0 0 0
y1(x) = e0x+ e1 1 1 1 0
y2(x) = e0x+ e2 2 2 2 0
y3(x) = e1x+ e0 0 1 2 1
y4(x) = e1x+ e1 1 2 0 1
y5(x) = e1x+ e2 2 0 1 1
y6(x) = e2x+ e0 0 2 1 2
y7(x) = e2x+ e1 1 0 2 2
y8(x) = e2x+ e2 2 1 0 2

Figure 2.2: OA produced by the Bush construction for v = 3 and t = 2.

2.4.2 Case t = 2 and v = 2

For CAs with parameters t = v = 2, it exists an algorithm that given a number of rows N constructs

a CA(N ; 2, k, 2) for a maximum possible value of k in polynomial time. This algorithm was proposed

by Renyi for a pair number N , and generalized by Katona [23] and Spencer and Kleitman [28] for

any N . Optimal number of columns is

k =

(
N − 1

dN/2e

)

To construct the CA a matrix N ×k is needed where the first row is filled with 0s and the remaining

N − 1 rows with
(
N−1
dN/2e

)
combinations of dN/2e 1s and N − 1− dN/2e 0s. Figure 2.3 shows a CA

developed by this construction where the optimal k for N = 6 is 10.

1 1 1 1 1 1 0 0 0 0
1 1 1 0 0 0 1 1 1 0
1 0 0 1 1 0 1 1 0 1
0 1 0 1 0 1 1 0 1 1
0 0 1 0 1 1 0 1 1 1
0 0 0 0 0 0 0 0 0 0

Figure 2.3: The CA(6; 2, 10, 2) produced by the Katona, Spencer and Kleitman construction for
k = 10.

22 2.4. Algebraic methods to construct CAs

2.4.3 Constant weight vectors

In 1983, Tang and Woo [56] presented a method of construction based in constant weight vectors.

The weight of a vector s = (s1, s2, . . . , sk) is defined as the summation of its inputs w =
∑k

i=1 si.

This method constructs a CA, concatenating a set of vectors with the same weight. For a binary

case the construction is defined as: given k and t with k > t, a set of T binary vectors covers all the

interactions of size t if T contains all the binary vectors of size w such that w ≡ c (mod k− t+ 1)

for a constant c ∈ {0, 1, . . . , k − t}.

2.4.4 Roux-type constructions

In the PhD thesis of Roux [50] is introduced the Roux type construction derived of the expression

CAN(3, 2k, 2) ≤ CAN(3, k, 2) + CAN(2, k, 2)

that indicates that a CA could be extended doubling the number of columns using two CAs A

and B. Given A = CA(N3; 3, k, 2) and B = CA(N2; 3, 2k, 2). They are used to form a CA

C = CA(N3 +N2; 3, 2k, 2), using the complement of B as follows:

C =

A A

B B



Later on, Chateauneuf et al. [9], proposed three generalizations of Roux’s type construction. The

first two constructions require a combinatorial object called ordered design, denoted as OD(t, k, v)

that represents a matrix of dimensions
(
v
t

)
t!× k with v symbols where every t distinct columns has

each t-tuple exactly once. Three constructions could be summarized in these expressions:

2. State of the art of the construction of covering arrays 23

• For v ≥ 3, CAN(2, 3k, v) ≤ CAN(2, k, v) + v(v − 1).

• If an OD(2,m, u) exists, then for each v ≤ u and 2 ≤ k ≤ m, stands that

CAN(2,m(m− 1)k, v) ≤ CAN(2, k, v) + 2u(u− 1).

• CAN(3, 2k, v) ≤ CAN(2, k, v) + (v − 1)CAN(2, k, v).

2.4.5 Power of a covering array

In 2004, Hartman [18] proposed the power of a CA, this construction consists in squaring the

number of columns k of a CA A = CA(N ; t, k, v). To complete the powering, an OA B =

OA(k2; 2, T (v, t) + 1, k) is required. The alphabet of the OA is k because its elements will be

used as an index for the columns of A. T (v, t) denotes the Turán number that is the maximum

number of edges in a v-partite graph with t nodes. The powering consists in creating the matrix of

blocks C of k2 columns and T (v, t) + 1 rows. Each element of C contains one column of A. Let

be B[i, j] the entry (i, j) of B, and let be Ai the i-th column of A. Cell (i, j) of C is the column

B[i, j] of A. The result is C = CA(N(T (v, t) + 1); t, k2, v).

2.4.6 Product of covering arrays of stregth two

In 2006, Colbourn et al. [12] presented the product of CAs of strength two, let A be a matrix

representing a CA(N ; 2, k, v) and let B be a second matrix representing a CA(M ; 2, l, v). The

product of A and B is the matrix C = (ci,j) of dimensions (N +M)× kl such tat:

• ci,(f−1)k+g = ai,g for 1 ≤ i ≤ N, 1 ≤ f ≤ l, 1 ≤ g ≤ k.

• cN+i,(f−1)k+g = ai,g for 1 ≤ i ≤M, 1 ≤ f ≤ l, 1 ≤ g ≤ k.

24 2.4. Algebraic methods to construct CAs

The construction is shown in the following matrix:

a11 a12 · · · a1k a11 a12 · · · a1k · · · a11 a12 · · · a1k

a21 a22 · · · a2k a21 a22 · · · a2k · · · a21 a22 · · · a2k

N rows
...

... · · · ...
aN1 aN2 · · · aNk aN1 aN2 · · · aNk · · · aN1 aN2 · · · aNk

b11 b11 · · · b11 b12 b12 · · · b12 · · · b1l b1l · · · b1l

b21 b21 · · · b21 b22 b22 · · · b22 · · · b2l b2l · · · b2l

M rows
...

... · · · ...
bM1 bM1 · · · bM1 bM2 bM2 · · · b22 · · · bMl bMl · · · bMl

2.4.7 Cyclotomy

In 2009, Colbourn [11] presented the cyclotomic construction derived from the analysis of cyclotomic

matrices. Let ω be a primitive element of GF (q) with q ≡ 1 (mod v), the prime power selected

for a finite field must have remainder 1 when divided by v. For any q and ω is possible to form a

cyclotomic vector xq,d,w = (xi : i ∈ GF (q)) ∈ GF (q)q. Let x0 = 0 and xi = j(mod v) where

i = ωj for i ∈ GF (q)q. The value of index i is given by the primitive element raised to the jth

power using GF (q). For example using the discrete logarithm table of GF (9) {8, 4, 1, 2, 7, 5, 3, 6},

and using the remainder for v = 2 we get the vector x9,2 = (000101110), and rotating the vector

we obtain a matrix of 9× 9 which is a CA(9; 2, 9, 2) shown in Figure 2.4.

0 0 0 1 0 1 1 1 0
0 0 1 0 1 1 1 0 0
0 1 0 1 1 1 0 0 0
1 0 1 1 1 0 0 0 0
0 1 1 1 0 0 0 0 1
1 1 1 0 0 0 0 1 0
1 1 0 0 0 0 1 0 1
1 0 0 0 0 1 0 1 1
0 0 0 0 1 0 1 1 1

Figure 2.4: The CA(9; 2, 9, 2) produced by the cyclotomic construction.

2. State of the art of the construction of covering arrays 25

2.4.8 Construction using groups

The construction using groups were introduced by Chateauneuf et al. [9] for strength three And

adapted by Meagher and Stevens [43] for strength. Meagher et al. produce a CA(k(v−1)+1; 2, k, v)

by means of a group G < Symv and a starter vector s ∈ Zkv . Given the group G find a starter

vector s ∈ Zkv where d1, d2, . . . , dk−1 defined as di = {(sj, sj+1)|j = 0, 1, . . . , k − 1} with indices

j modulo k, have at least one element from every orbit of the group action of G on pairs of

Zv = {0, 1, . . . , v− 1}. The starter vector s is used to form a matrix M of size k×k by juxtaposing

vertically the rotations of s. After that, the group action G over M produce v−1 matrices of k×k;

these matrices and a constant vector of 0s form the CA. This two methods use a group of symbols

of order v − 1 where v is the alphabet and use one fixed symbol.

Later on, Lobb et al. [37] included fixing more than one symbol, the amount of fixed symbols

is denoted by f ∈ {0, 1, 2} and allows that the group of symbols be of order v − f . Let C

be a finite group of size k and Γ = (C,�) also a finite group, for each c ∈ C let invΓ (c) be

the inverse of c. Let Γ have identity element eΓ . Let C0, . . . , Cf−1 satisfy Ci
⋂
Cj = ∅ for

0 ≤ i < j < f . Let C = C \ {C0

⋃
. . .
⋃
Cf−1}. Then (C0, . . . , Cf−1) is a (k, f)-pattern for Γ if

{invΓ (a)�b : a ∈ Ci, v ∈ C} = C \ {er} for each 0 ≤ i < f .

Suppose that (C0, . . . , Cf−1) is a (k, f)-pattern for Γ with C = C \ {C0

⋃
. . .
⋃
Cf−1}. Let

Λ = (V,⊗) be a finite group of order v − f . A (v-f)-lift of a (k, f)-pattern is a relationship φ

C 7→ V , so for each γ ∈ C − eΓ , invΛ(φ(a))⊗ φ(b) : a, b ∈ C, invΓ (a)�b = γ = V .

When a set of fixed columns(C0, . . . , Cf−1) is a (k, f)-pattern for Γ = (C,�) having a (v− f)-

lift mapped by φ C 7→ V over Λ = (V,⊗),then ((C0, . . . , Cf−1), φ) is a (k, v, f)-starter vector of

(Γ,Λ).

Lobb et al. derived a lemma that say if a (k, v, f)-starter vector exists, then a matrix of k(v−f)×k

on v symbols exist. V
⋃
{∞0, . . . ,∞f−1} so that for every two distinct columns c and c′ and every

two elements a, b ∈ V
⋃
{∞0, . . . ,∞f−1} there exists a row r in which the entry in cell (r, c) is a

26 2.4. Algebraic methods to construct CAs

and in the cell (r, c′) is b, unless a and b ∈ {∞0, . . . ,∞f−1}.

Another case of interest is the (k, v, w, f)-relative cover starter, let µ = 0 when w = 0 and

µ = v−f
w

when w > 0, if this vector exists:

1. CAN(2, k, v) ≤ k(v − f) + µCAN(2, k, w) + CAN(2, k, f)

For this case concatenating a CA of alphabet f plus the cyclic construction using the starter

vector creates a valid CA when w = 0, but when w > 0 is necessary to add µ copies of a CA

with alphabet w.

2. If the relative cover starter is distinct,

(a) MCAN(2, (v)k(v − f + α)) ≤ k(v − f) + µ MCAN(2, wka1) for 0 ≤ a ≤ f .

(b) If w ≤ f = 1, CAN(2, k + 1, v) ≤ (k + 1)(c− 1) + 1 particular case of previous

incise when a = 1.

2.4.9 Permutation vectors

In 2006, Sherwood et al. [52] introduced permutation vectors, a compact representation of a

CA based in one vector. When v is prime power, a covering perfect hash family is denoted by

CPHF(n; k, vt−1, t) and is a matrix of n× k of vt−1 symbols in which every n× t matrix contains at

least one row that is covering. The vt−1 symbols in a CPHF could be seen as a (t − 1)-tuple of v

symbols, this tuple represents a permutation vector of length vt over the finite fields GF (v). Given

the (t − 1)-tuple (h1, h2, . . . , ht−1) with hj ∈ {0, 1, . . . , v − 1} for 1 ≤ j ≤ t − 1, a permutation

vector (
−−−−−−−−−−→
h1, h2, . . . , ht−1) of length vt have the symbol (ht−1 ·β(i)

t−1)+ . . .+(h2 ·β(i)
2)+(h1 ·β(i)

1)+β
(i)
1

on position i where i is represented in base v as i =
∑(i)

k vk · β(i)
k .

To determine if a set of permutation vectors are covering, consider the next t permutation vectors:

((h
(1)
1 , h

(1)
2 , . . . , h

(1)
t−1), (h

(2)
1 , h

(2)
2 , . . . , h

(2)
t−1), . . . , (h

(t)
1 , h

(t)
2 , . . . , h

(t)
t−1))

2. State of the art of the construction of covering arrays 27

This set is covering if the expansion to a matrix of size vt × t is an OA(t, t, v). To verify this

condition is necessary that the matrix contains at least one of the t-tuples is repeated. Then a set

of permutation vectors is not covering iff exist i, j ∈ {0, 1, . . . , vt − 1} i 6= j such that:

β
(i)
0 + (h

(1)
1 · β

(i)
1) + . . .+ (h

(1)
t−1 · β

(i)
t−1) = β

(j)
0 + (h

(1)
1 · β

(j)
1) + . . .+ (h

(1)
t−1 · β

(j)
t−1)

β
(i)
0 + (h

(2)
1 · β

(i)
1) + . . .+ (h

(2)
t−1 · β

(i)
t−1) = β

(j)
0 + (h

(2)
1 · β

(j)
1) + . . .+ (h

(2)
t−1 · β

(j)
t−1)

...

β
(i)
0 + (h

(t)
1 · β

(i)
1) + . . .+ (h

(t)
t−1 · β

(i)
t−1) = β

(j)
0 + (h

(t)
1 · β

(j)
1) + . . .+ (h

(t)
t−1 · β

(j)
t−1)

If we define αr = β
(i)
r − β(j)

r for 0 ≤ r ≤ t − 1 for certain values of i and j, equations could be

rearranged to:

α0 + (h
(1)
1 · α1) + (h

(1)
2 · α2) + . . .+ (h

(1)
t−1 · αt−1) = 0

α0 + (h
(2)
1 · α1) + (h

(2)
2 · α2) + . . .+ (h

(2)
t−1 · αt−1) = 0

...

α0 + (h
(t)
1 · α1) + (h

(t)
2 · α2) + . . .+ (h

(t)
t−1 · αt−1) = 0

The approach used for constructing permutation vectors by Sherwood was exhaustive for t = 3, 4.

Later on, Walker and Colbourn [64] used a tabu search algorithm, achieving solution for strengths

3, 4, 5, 6, 7.

2.4.10 Towers of covering arrays

In 2013, Torres-Jimenez et al. [60] presented a method for construction of CAs denominated Towers

of Covering Arrays (TCA). Defining the height h of a CA as a succession of h+ 1 CAs c0, c1, . . . , ch

where c0 is the base CA and 1 < i < h, ci represents a CA with a strength superior in one unit

of ci−1. This methodology starts wit a covering array CA(N ; t, k, v) denoted as A to generate a

CA(Nv, t+ 1, k+ 1, v) by juxtaposing v vertical copies of A and translating the j-th column of the

28 2.4. Algebraic methods to construct CAs

i-th copy adding a value c and applying modulo v to every value of the column. The column k+ 1 is

constructed by adding N 0s then N 1s, and so on until adding N (v − 1)s. The obtained CA could

be used as a base for a TCA of higher height.

2.4.11 Binomial coefficients

In 2015, Torres Jimenez et al. [59] presented the construction of covering arrays with v = 2 using

binomial coefficients. A binomial coefficient with parameters k and r represents the set of all the

k-tuples from {0, 1} that have r ones and k− r zeroes. A branch and bound algorithm is presented

to find the set of binomial coefficients that, when juxtaposed, provide a covering array CA(N ; t, k, 2)

with the minimum possible number of rows. This construction finds optimal covering arrays for

k = t+ 1 and k = t+ 2.

2.4.12 Trinomial coefficients

In 2010, Martínez-Pena et al. [41] [42] proposed the construction of CAs with v = 3 based in a set

of rows represented as trinomial coefficients. To calculate a trinomial coefficient let a, b, c, k integers

such that 0 ≤ a, b, c ≤ k and k = a+ b+ c.

(
k

a, b, c

)
=

(a+ b+ c)!

a!b!c!

. That coefficient represents the set of different rows of k elements that can be created with a

number of 0s, b number of 1s and c number of 2s. For any strength t ≤ k a CA of k columns could

be constructed by vertically juxtaposing the subset of rows represented by the trinomial coefficients.

For example, with this construction for t = 2 and k = 4 the CA with minimal rows is created with

the coefficients:
(

4
3,0,1

)
,
(

4
0,1,3

)
,
(

4
1,3,0

)
which form a CA with 12 rows CA(12; 2, 4, 3).

2. State of the art of the construction of covering arrays 29

2.5 Post-optimization methods to reduce the number of

rows of CAs

Post-optimization methods improve the previously constructed CAs. Post-optimization methods

receive a CA and try to reduce the number rows by exploiting that some interactions are covered

more than once.

In 2013, Nayeri et al. [44] presented a randomized post-optimization algorithm. This algorithm

uses flexible positions in the CA, a flexible position or wildcard is the one that has the possibility to

be changed arbitrarily or omitted in the determination of the coverage, but the CA still fulfill all the

interactions. When there are two or more flexible positions, the use of a flexible position may make

other positions no longer flexible so, the flexibility of positions is extended to a flexible set. This

strategy chooses a flexible set F and places different symbols in each position of F ; forming a new

CA with a possibly different collection of flexible positions. In some cases, a flexible set contains an

entire row which can be deleted and, therefore, a CA is improved by the deletion of a row.

Later on, in 2014 Li et al. [36] proposed a modification of Nayeri’s algorithm, using a deterministic

selection of the row to delete instead of doing the search among all the rows, avoiding the permutation

of rows because the nominated row to be deleted is independent of the order. They also provide an

estimator to predict the extent of when a CA can be improved.

30 2.6. CA related problems mapped to a graph representation

2.6 CA related problems mapped to a graph

representation

2.6.1 Minimization of constant rows in covering arrays

Quiz-Ramos in [48] used a graph representation to maximize the amount of constants rows in a CA,

in this case each node represents a row of the CA and an edge exists between two nodes if the rows

of the CA are compatible. Two rows R,R′ are compatible if Ri 6= R′i, 0 ≤ i ≤ k − 1. Maximization

of constant rows is transformed into the problem of finding the maximum clique [39] of the graph

generated. When a maximum clique is obtained the rows involved of the CA are replaced by constant

rows of the alphabet values involved.

2.6.2 Covering arrays completion by the vertex coloring problem of a

graph

Recently, in Sarkar’s PhD dissertation [51] is shown a mapping of the missing interactions of a PCA

to the graph domain that represent the incompatibility between interactions. The nodes of that graph

represent each missing interaction and an edge exists between two nodes if their interactions cannot

be covered in the same row. The problem to be solved in the graph domain is the vertex coloring

problem, that is NP-complete [21] and is solved using a greedy approach. The better approximation

of the chromatic number lowers the number of rows added to fulfill the coverage.

2.7 Summary

In this chapter we presented several relevant methods to construct covering arrays using the following

representations: a matrix of integers, integer programming, constraint programming, a set of linked

2. State of the art of the construction of covering arrays 31

lists, a set of binomial coefficients, a set of trinomial coefficients, a cyclotomic vector, a vector of

integers, and permutation vectors; but none of them use a graph representation to directly solve

CACP.

The presented approaches were classified in five categories: exact, greedy, metaheuristic,

algebraic, and post-optimization. The exact methods produce optimal covering arrays, but they

are practical only to construct covering arrays of small size given that the search space grows

exponentially, and to ensure optimal results all the search space is explored. The greedy methods

generate covering arrays of greater size than the exact methods in less time, these results are not

optimal but offer competitive results in short time. Metaheuristic methods also do not guarantee

to find optimal covering arrays, but provide better solutions than the greedy ones. Algebraic

methods produce very good results, but in the process of constructing a covering array they involve

formulas and operations with mathematical objects that in some cases are only available for a special

combination of values for the parameters t, k, and v. The post-optimization methods attempt to

reduce the number of rows of a covering array by exploiting the positions that can be changed

arbitrarily, until all the positions of a row are disposable which means that this row can be deleted.

In the next chapter a graph representation to mapping the characteristics of a covering array will

be presented. It also will be shown how the CACP is mapped to the graph domain.

3
A graph representation for covering arrays

This chapter presents a novel representation that embeds the characteristics of a covering array into

a graph. The mapping of a CA may vary according on how the graph embeds the characteristic of

the CAs.

The following sections describe the representation denominated Covering in Nodes (CN), explain

in detail the way the characteristics of a CA are mapped to a graph, and the equivalent problem in

the graph domain of the CACP.

The proposed representation allows us to construct a CA with the minimum number of rows

for some values of factors (k) and alphabet (v). It is remarkable that the proposed representation

enables to construct a CA one row at a time.

33

34 3.1. Coverage in nodes

3.1 Coverage in nodes

The proposed approach for CAN determination is denominated as Coverage in Nodes (CN)

representation, this representation embeds in the nodes of a simple graph each interaction that

must be present in a CA. Let G = (V , E) be a graph where V is the set of nodes and E the set

of edges representing relationships between nodes. To embed the characteristics of a CA, each

node represents a selection of t of the k factors with a value for each factor selected over the

Zv = {0, 1, . . . , v − 1}, in other words, an interaction.

The number of nodes of the corresponding graph is given in Theorem 1 and the set of nodes

is described in Equation (3.1). The edge set E establishes the compatibility between nodes. Two

nodes are compatible if there are no factors in common or if the values assigned for the factors in

common are the same, this is shown in Definition 11. In other words, if there is a subset of columns

represented in both nodes the values assigned for each column must be the same, and this operator

of compatibility is denoted by the symbol Λ in Equation (3.3). Theorem 2 shows the degree of each

node and is the basis for the Theorem 3 that shows the number of elements in the set of edges of

the graph G and the Equation (3.2) describes this edge set.

V ={(α0β0 . . . αiβi . . . αt−1βt−1) | (∀i, j ∈ {0, . . . , k − 1} ∧ i < j)(αi < αj)

∧ αi ∈ {0, . . . , k − 1} ∧ βi ∈ {0, . . . , v − 1}} (3.1)

E ={(α0β0 . . . αiβi . . . αt−1βt−1), (γ0δ0 . . . γiδi . . . γt−1δt−1) | αi, γi ∈ {0, . . . , k − 1}

∧ βi, δi ∈ {0, . . . , v − 1} ∧ Λ((α0β0 . . . αiβi . . . αt−1βt−1), (γ0δ0 . . . γiδi . . . γt−1δt−1)) = true}

(3.2)

3. A graph representation for covering arrays 35

Theorem 1
Given t, k, and v, a graph G = (V , E) generated by the representation CN of this parameters,

stands that |V| = vt
(
k
t

)
.

Proof. Since a node is the encoding of t factors with its respective value over the set

Zv = {0, . . . , v − 1}, there are
(
k
t

)
ways to choose factors, and for every possible choice

of factors there exists vt ways to fix their values, then |V| = vt
(
k
t

)
.

Definition 11 (Compatibility)

Given t, k, and v, in the graph G = (V , E) generated by the representation CN of this

parameters, two nodes (α0β0 . . . αiβi . . . αt−1βt−1) and (γ0δ0 . . . γiδi . . . γt−1δt−1) are

compatible iff

∀p, q | (αp = γq) =⇒ (βp = δq) ∨ ∀p, q | (αp 6= γq) for 0 < p, q < t − 1, this operation is

denoted by letter Λ in Equation (3.3).

Theorem 2
Given t, k, and v, a graph G = (V , E) generated by the representation CN with this parameters,

stands that deg(ψ ∈ V) =
∑min(t,k−t)

i=1

(
t
i

)(
k−t
i

)
vi.

Proof. Using Definition 11 it is possible to determine the number of edges that involve a

particular node. A node has subsets S where |S| ∈ {1, . . . , t} representing the |S| factors

selected that can be replaced with another of the k − t remaining factors. A set S has
(
t
|S|

)
different ways to be formed by using the t factors of the node. Each set could be replaced in(
k−t
|S|

)
distinct ways and each replacement has v|S| possible configurations of values taken from

the alphabet. In some cases where k < 2t the amount of columns available to replace the |S|

selected are not enough, so it is only possible to replace min(t, k − t) columns. Then a node

has deg(ψ ∈ V) =
∑min(t,k−t)

i=1

(
t
i

)(
k−t
i

)
vi.

36 3.1. Coverage in nodes

Theorem 3
Given t, k, and v, a graph G = (V , E) generated by representation CN with this parameters, stands

that |E| = 1
2
vt
(
k
t

)∑min(t,k−t)
i=1

(
t
i

)(
k−t
i

)
vi.

Proof. Each node in the graph G has the same degree, using Theorem 2 and the identity

2|E| =
∑
∀v∈V deg(v). Then |E| = 1

2
vt
(
k
t

)∑min(t,k−t)
i=1

(
t
i

)(
k−t
i

)
vi.

Λ((α0β0 . . . αiβi . . . αt−1βt−1), (γ0δ0 . . . γiδi . . . γt−1δt−1)) =



true if ∀p, q|(αp = γq) =⇒ (βp = δq)

∨ ∀p, q|(αp 6= γq)

for 0 < p, q < t− 1

false otherwise

(3.3)

There is an example of how a CA is mapped to the graph domain in Figure 3.1, corresponding

graph for a CA with k = 3, t = 2 and v = 2, it shows that the graph has 12 nodes and 24 edges.

Figure 3.1: The graph generated for parameters t = 2, k = 3, and v = 2 by the coverage in nodes

representation.

3. A graph representation for covering arrays 37

Since the nodes are equivalent to the interactions provided by a covering array and the set of

edges represent the coverage compatibilities, every complete subgraph of G represents a set of nodes

that are pairwise compatible, this means that a set of factors with their respective fixed value of the

alphabet have no collision to build a row of the covering array. If we manage to obtain the maximum

subgraph of graph G, the row generated would provide a maximum coverage of missing interactions.

The problem of determining the largest complete subgraph is known as the maximum clique problem,

and determining the set of cliques that covers all the nodes of a graph is the minimum clique covering

problem.

The solution process of the corresponding graph for a CA with k = 3, t = 2 and v = 2 is shown

in the Figure 3.2. It can be seen that the constructed maximum cliques are: {a0b0, a0c0, b0c0};

{a1b1, a1c0, b1c0}; {a1b0, a1c1, b0c1}; {a0b1, a0c1, b1c1}, corresponding to the rows: 000; 110;

101; 011, respectively.


0 0 0
1 1 0
1 0 1
0 1 1


CA(4; 2, 3, 2)

Figure 3.2: Original graph, solved graph, and the CA constructed for the instance with parameters
t = 2, k = 3 and v = 2.

A detailed example of the step by step solution of a covering array instance is depicted in

Figure 3.3, the clique selected to be added to the clique cover is colored in red, the images in the

left columns show the clique that is selected, and the images in the right columns show the edges

that are deleted of the graph after fixing the clique selected.

38 3.1. Coverage in nodes

(a) The clique {a0b0, a0c0, b0c0} is chosen, this clique
forms the row 0, 0, 0.

(b) All incident edges to the clique {a0b0, a0c0, b0c0} are
deleted.

(c) The clique {a0b1, a0c1, b1c1} is chosen, this clique
forms the row 0, 1, 1.

(d) All incident edges to the clique {a0b1, a0c1, b1c1} are
deleted.

Figure 3.3: A step by step solution of the clique covering problem for the covering array instance
CA(2, 3, 2). Part 1 of 2.

3. A graph representation for covering arrays 39

(e) The clique {a1b1, a1c0, b1c0} is chosen, this clique
forms the row 1, 1, 0.

(f) All incident edges to the clique {a1b1, a1c0, b1c0} are
deleted.

(g) The clique {a1b0, a1c1, b0c1} is chosen, this clique
forms the row 1, 0, 1.

(h) The obtained clique cover with 4 cliques.

Figure 3.4: A step by step solution of the clique covering problem for the covering array instance
CA(2, 3, 2). Part 2 of 2.

40 3.1. Coverage in nodes

3.1.1 Representing a mixed covering array with the coverage in

nodes representation

It is also possible to map the characteristics of an MCA to a graph with the representation CN, but

now each factor has its own alphabet, the set of factors C = {0, . . . , k − 1} has the set of values

V = {v0, . . . , vk−1}, derived from Theorem 1 the actual number of nodes for a MCA is shown in

Theorem 4 and is described in Equation (3.4). To obtain the number of edges of a node it is necessary

to know the factors that are not involved in the node and to replace subsets of size {1, . . . , t} in

every possible way, the number of edges is shown in Theorem 5 and the edge set is described in

Equation (3.5).

V ={(α0β0 . . . αiβi . . . αt−1βt−1) | (∀i, j ∈ {0, . . . , k − 1} ∧ i < j)(αi < αj)

∧ αi ∈ {0, . . . , k − 1} ∧ βi ∈ {0, . . . , vαi
− 1}} (3.4)

E ={(α0β0 . . . αiβi . . . αt−1βt−1), (γ0δ0 . . . γiδi . . . γt−1δt−1) | αi, γi ∈ C ∧ βi ∈ {0, . . . , vαi
− 1}

∧ δi ∈ {0, . . . , vγi − 1} ∧ Λ((α0β0 . . . αiβi . . . αt−1βt−1), (γ0δ0 . . . γiδi . . . γt−1δt−1)) = true}

(3.5)

3. A graph representation for covering arrays 41

Theorem 4
Given t, k and a set (v0, . . . , vk−1) of available alphabet for each distinct factor a graph G = (V , E)

generated by the representation CN with this parameters, stands that

|V| =
∑

∀(a0,...,at−1) 6=∈C

t−1∏
i=0

vai

.

Proof. Since the set of nodes is a concatenation formed by a column of the set C =

{0, . . . , k − 1} and its respective alphabet of the set V = {v0, . . . , vk−1} the number of

nodes depends on which factor is selected in the node and its own possible values. The

possible values for (a0, . . . , at−1)6= ∈ C is
∏t−1

i=0 vai then |V| =
∑
∀(a0,...,at−1)6=∈C

∏t−1
i=0 vai

Theorem 5
Given t, k and a set (v0, . . . , vk−1) of values for each distinct factor a graph G = (V , E) generated

by the representation CN with this parameters, stands that

|E| = 1

2

∑
∀(a0,...,at−1)6=∈C

(
t−1∏
j=0

vaj

min(t,k−t)∑
i=1

(
t

i

) ∑
∀(b0,...,bi−1)6=∈C\{a0,...,at−1}

i−1∏
j=0

vbj

)

.

Proof. The set of edges represent compatible nodes, using Definition 11 and overriding the

number of values available for each member of the subset used as substitute of the actual

factors in the node, because now each factor has its own alphabet. Then a node with columns

(a0, . . . , at−1)6= ∈ C has

min(t,k−t)∑
i=1

(
t

i

) ∑
∀(b0,...,bi−1)6=∈C\{a0,...,at−1}

i−1∏
j=0

vbj

42 3.1. Coverage in nodes

compatible nodes, then

|E| = 1

2

∑
∀(a0,...,at−1)6=∈C

(
t−1∏
j=0

vaj

min(t,k−t)∑
i=1

(
t

i

) ∑
∀(b0,...,bi−1) 6=∈C\{a0,...,at−1}

i−1∏
j=0

vbj

)

.

3.1.2 Handling constraints on the coverage in nodes representation

For this mapping, constraints of size ≤ 2 can be fully handled as it is shown in Theorem 6 but, for

greater sizes the constraint handling is not granted for t > 2 as it is demonstrated in Theorem 7,

then the validation of constraints has to be performed when the graph problem is solved. However,

reducing the amount of nodes and edges even if the constraint is not completely handled is worth

because it represents a reduction in the running time of a solution algorithm. Predicting how the

parameters would be reduced is a difficult problem, starting on a graph without constraints and

adding the first constraint of size ζ the edges reduced are given by:

|Er| =
(
|V| − a
t− a

)(
|V| − ζ
t− b

)
(3.6)

where a, b represent all possible solutions for the diophantine equation a + b = ζ for a, b > 0 and

a ≤ b.

Predicting the next constraints becomes an inclusion-exclusion problem (see [22] for examples),

because edges that are already deleted would be taking into account in another constraint. So, for

an accurate prediction of the number of edges deleted it is necessary to evaluate the intersection

of the edges deleted by the current constraint in process with the edges that are already deleted by

another constraint.

3. A graph representation for covering arrays 43

Theorem 6
Given t, k, and v a graph G = (V , E) generated by the representation CN with this parameters, it

is possible to handle constraints of size ≤ 2.

Proof. Since a node is a concatenation of t columns and values, a constraint of size 1 (a), (x)

is handled by deleting all the nodes where the column a is concatenated with the value x and

all edges involving between these nodes.

A constraint (a, b), (x, y) where a, b ∈ {0, . . . , k− 1} and x, y ∈ {0, . . . , v− 1} is handled by

deleting the edges where the union of both nodes includes the columns a, b with the respective

values x, y.

Theorem 7
Given t > 2, k, and v a graph G = (V , E) generated by the representation CN with this parameters,

it is not possible to handle constraints of size > 2.

Proof. A constraint (a, b, c, . . .)(x, y, z, . . .) where a, b, c, . . . ∈ {0, . . . , k−1} and x, y, z, . . . ∈

{0, . . . , v − 1} could be rearranged as an ordered pair of (column, value) as (a, x), (b, y), . . .,

since the solution is given in terms of nodes involved in a clique, there could be a set of m

nodes where:

{(a, x), (b, y), (c, z), . . .} ⊆
m⋃
i=0

{(α0,i, β0,i), . . . , (αt−1,i, βt−1,i)}

which results in a constraint violation even if all the edges where the constraints are involved

are deleted when m is large enough the union could partially construct the factors fixed with

the values that are involved in the set of constraints.

44 3.1. Coverage in nodes

Set of columns Set of values

1 (a, b) (0, 0)

2 (b, d) (1, 0)

3 (a, c) (0, 0)

4 (a, c) (1, 0)

5 (c, d) (1, 1)

6 (b, c) (0, 1)

Table 3.1: A set of constraints for a CA with parameters t = 2, k = 4, and v = 2.

Figure 3.5 shows an instance with parameters t = 2, k = 4, and v = 2 using constraints in Table

3.1. This instance without constraints has 24 nodes and 144 edges and constraint version has 18

nodes and 32 edges.

Figure 3.5: The graph generated for parameters t = 2, k = 3 and v = 2 by the representation CN

with constraints.

3. A graph representation for covering arrays 45

3.2 Flexible positions using the coverage in nodes

representation

Flexible positions, also known as wildcard positions, are elements of a CA that can be modified

without decreasing its coverage provided. Using a vector or matrix of integers to represent a

CA(N ; t, k, v), the flexible positions are identified by a value v, this flexible positions are studied

in the state of the art (see [17, 25]) and have been used to post-optimize CAs in [44, 36, 62].

With the representation CN, the detection of flexible positions is performed in the mapping of the

graph-based solution to the matrix integer domain. In the previous sections we described that the

equivalent problem of the CACP in the graph domain is the minimum clique covering problem, where

each clique represents a row of the CA. Since every node in the clique may fix values to a set of t

factors, it is possible that some factors in a row are not fixed due to the number of nodes in the

clique. If a factor is not fixed then this factor is a flexible position.

For example, Figure 3.7 presents a graph instance for the CA(2, 5, 2), and Figure 3.8 shows a

clique cover for the instance. To map this solution each clique is depicted to a row of the CA:

• The clique {a1b0, a1c0, a1d1, a1e1, b0c0, b0d1, b0e1, c0d1, c0e1, d1e1} fixes values for factors

a, b, c, d, e.

• The clique {a0b0, a0c1, a0d0, a0e0, b0c1, b0d0, b0e0, c1d0, c1e0, d0e0} fixes values for factors

a, b, c, d, e.

• The clique {a1b1, a1d0, a1e0, b1c0, b1d0, b1e0, c0d0, c0e0} fixes values for factors a, b, c, d, e.

• The clique {a0b1, a0d1, a0e1, b1c1, b1d1, b1e1, c1d1, c1e1} fixes values for factors a, b, c, d, e.

• The clique {a1c1, d1e0} fixes values for factors a, c, d, e.

• The clique {a0c0, d0e1} fixes values for factors a, c, d, e.

The cliques 1, 2, 3, 4 fix values for all the parameters of the CA, the cliques 5 and 6 do not fix a

46 3.2. Flexible positions using the coverage in nodes representation

value to the b factor, so, the value for the factor b in the rows 5 and 6 is a flexible position, and its

shown in Figure 3.6.

1 0 0 1 1
0 0 1 0 0
0 1 1 1 1
1 1 0 0 0
0 2 0 0 1
1 2 1 1 0

Figure 3.6: The covering array CA(6; 2, 5, 6) with two flexible positions for the second factor in rows

5 and 6.

Figure 3.7: The graph generated for parameters t = 2, k = 5, and v = 2 by the coverage in nodes

representation.

3. A graph representation for covering arrays 47

Figure 3.8: A clique cover for graph generated for the instance CA(2, 5, 2) by the coverage in nodes

representation.

3.3 Summary

This chapter presented the proposed representation of the characteristics of a covering array in a

graph, is analyzed and described the general characteristics of the graph generated through the

representation denoted as coverage in nodes (CN) of a covering array instance.

48 3.3. Summary

Furthermore, it is described the mapping of mixed covering arrays to the graph domain using the

proposed representation and the way that constraints are handled. The representation CN allows

to map the CACP to an equivalent problem in the graph domain, which is the minimum clique

covering problem that is explained in the following chapter. The next chapter will describe the

methodology applied to solve this equivalent problem with three distinct approaches: exact, greedy,

and metaheuristic.

4
Methodology to solve the CACP in the graph

domain

This chapter describes the methodology to solve CACP in the graph domain using the representation

CN. This representation requires finding the minimum clique cover, which is an NP-hard problem and

its decision version is NP-complete [21]. Each clique in the clique cover represents a row of a CA,

therefore, the lesser cliques involved in the clique cover the better CA that is constructed. Section

4.1 presents an overview of the proposed methodology. Section 4.2 presents algorithms that are

used by proposed exact, greedy, and metaheuristic implementations. Section 4.3 describes an exact

algorithm to solve the clique cover problem. In Section 4.4 four greedy algorithms for the clique

cover problem are explained. Section 4.5 shows a metaheuristic implementation to solve the clique

cover problem. Finally, Section 4.6 shows a post-optimization algorithm using a graph representation

to reduce the number of rows of CAs.

49

50 4.1. Methodology overview

4.1 Methodology overview

Based on the specific objectives described in the Section 1.5, the proposed methodology consists

in: a) the development of an algorithm to map a CA(t, k, v) instance to their respective graph, b)

the development of exact, greedy and metaheuristic algorithms to solve the minimum clique cover

problem according to the size of the instance, c) the development of an algorithm to map the clique

cover into a CA and, d) the development of an algorithm to post-optimize CAs in the graph domain

previously constructed by any method.

4.2 Utility algorithms

The exact algorithm and two versions of the greedy algorithm (to be discussed in the following

sections) rely in knowing the list of all maximal cliques of the graph instance. To obtain the list,

two algorithms are developed: a) an algorithm to list all the maximum cliques of a graph, and b) a

greedy version for vertex coloring of a graph.

An instance of a CA without constraints using the representation CN stands that all maximal

cliques of the graph are maximum. The algorithm to list all maximum cliques uses the greedy vertex

coloring as a pruning method.

4.2.1 List all maximum cliques of a graph

This algorithm builds a clique in a recursive way, using a lexicographically order to avoid listing

isomorphic cliques. Starting with each possible node of the graph, for example node v, then obtain

the neighborhood of v (Nv) and call to a inner level of recursion. After that, the nodes available

to append to the clique are the included in Nv, attach a node u ∈ Nv to the clique, compute the

new neighborhood as the intersection of Nv and Nu, and call to an inner level of recursion. Every

element of a current neighborhood must be lexicographically greater than the current clique.

4. Methodology to solve the CACP in the graph domain 51

The current clique is included in the list when it reaches the size of the cliques already included,

and if the current clique exceeds the size of the cliques in the list, all the elements of the list are

deleted and the new maximum clique is added to the list. Algorithm 1 provides the pseudocode for

this algorithm.

Algorithm 1 An exact algorithm to obtain all the maximum cliques of a graph generated by the

CN representation.
Input: Graph G = (V,E).

Output: A set of maximum cliques S.

1: S ← ∅, max← 0

2: function getmaximumcliques(graph G, current clique C, neighborhood of C NC)

3: if C is empty then

4: for all v ∈ V (G) do

5: C ← C ∪ v

6: GETMAXIMUMCLIQUES(G,C,Nv)

7: C ← C\v

8: end for

9: else

10: if |C| > max then S ← C, max← |C|

11: else

12: if C = max then S ← S ∪ C

13: end if

14: end if

15: for all v ∈ NC do

16: C ← C ∪ v

17: V (Gnew)← {u|u ∈ NC\v}

18: E(Gnew)← {(i, j)|i, j ∈ V (Gnew) ∧ (i, j) ∈ E(G)}

52 4.2. Utility algorithms

19: if coloring(Gnew) + |C| ≤ max then getmaximumcliques(G,C,NC ∩Nv)

20: end if

21: C ← C\v

22: end for

23: end if

24: end function

4.2.2 Greedy vertex coloring of a graph

The greedy vertex coloring of a graph can be used as a pruning criterion for the tentative expansion

of a clique. The chromatic number χ offers an upper-bound of growing for the clique expansion but

the problem of determining the chromatic number of a graph is NP-complete [21] so the version

implemented is a greedy one.

The strategy consists in coloring the vertices with higher degree first.

1. Sort in descending order the vertices of the graph according to their degree.

2. Color the first vertex of the list.

3. Color all the vertices not connected to the previously colored vertex with the same color if they

do not have conflict coloring.

4. Repeat the process until every vertex is colored.

Algorithm 2 provides the pseudocode for the greedy vertex coloring algorithm.

4. Methodology to solve the CACP in the graph domain 53

Algorithm 2 A greedy algorithm for the vertex coloring of a graph.
Input: Graph G = (V,E).

Output: Approximation of chromatic number.

1: function coloring(G)

2: Sort V in degree ascending order.

3: current_color ← 0

4: for all u ∈ V do

5: if u is_not_colored then

6: ucolor ← current_color

7: for all v ∈ V | (u, v) 6∈ E do

8: if ∀w | (w ∈ V ∧ (v, w) ∈ E) (wcolor 6= current_color) then

9: vcolor ← current_color

10: end if

11: end for

12: current_color ← current_color + 1

13: end if

14: end for

15: return color

16: end function

4.3 Exact algorithm for minimum clique covering

Exact algorithm for the minimum clique covering (ECC) requires the list of all cliques of the graph.

With that, ECC obtains, in an optimal way, the set of cliques that include at least once each node

of the graph. ECC models the problem as a decision of whether or not to include a clique in the

set of the clique cover. Fixing cliques inside the cover may reduce the unique nodes provided by

54 4.3. Exact algorithm for minimum clique covering

others cliques but as they conserve at least one unique node they must be taken into account in the

decision process.

The inclusion-exclusion of a clique in the solution can be represented as a decision tree shown in

Figure 4.1.

− do not include in the clique.

+ include in the clique.

Figure 4.1: The decision tree to solve in an exact way the minimum clique covering.

A solution is achieved when the set of cliques included in the cover have at least one time each

node of the graph. This solution could be used as a pruning criterion of the tree decision process.

An strategy for parallelization of this algorithm consists in unwrapping the top of the decision tree

to generate 2n leaves, where n is the amount of fixed positions in the decision sequence.

For example, the string "−−−" could be mapped as a sequence where the initial three elements

are not included in the clique cover. Having p processors, an approximate of fixed cliques in a

sequence is log(p). Furthermore, solutions of size n that include only one clique to the cover are

isomorphical, because the graph generated after the deletion of the nodes involved in the clique have

the same characteristics no matter what clique is selected.

4. Methodology to solve the CACP in the graph domain 55

4.4 Greedy algorithm for minimum clique covering

Distinct approaches were tested as a greedy heuristic and four greedy versions were developed. The

first and second versions require to list all the maximum cliques. The first version of the greedy

algorithm evaluates the characteristics of the graph generated after the deletion of a desired clique.

Every clique available in the list is tested, to determine what clique is going to be fixed, an objective

function is maximized. This function consists in the summation of the square degree of the nodes

that will remain available and the size of the clique that will be deleted, allowing to give priority to

the deletion of cliques that would generate a graph with high probability to be covered with fewer

cliques.

This criterion tries to avoid graphs with small degree nodes, a node with small degree may cause

a clique with fewer nodes included that will be mapped to a row that covers a small number of t-way

interactions.

Since the size of the list with all the maximum cliques grows exponentially, the second version of

the greedy algorithm adds new criteria to fix a clique without exploring the whole list, these criteria

fix a clique iff: a) the size of the clique is the largest coverage that a row provide, or b) the size

of the clique is above the average of the previously added cliques to the clique cover. These new

criteria in most instances may increase the number of cliques in the clique cover but the running

time is decreased.

Despite the improvement in running time, iterating over the list with all the maximum cliques

makes the overall process slower. The third version of the greedy algorithm does not use this list at

all, it builds a maximum clique that only takes into account the neighborhood of a desired node. This

algorithm Iteratively selects a base node v with a desired criteria, build a maximum clique including

only the nodes Nv = {u|{u, v} ∈ E} until all the nodes are included in a clique. The criteria for

the selection of a node v could be the minimum or maximum of the summation of the degrees

of the neighbors of node v, in practice better results are achieved when the base node minimizes

56 4.4. Greedy algorithm for minimum clique covering

∑
u∈Nv

deg(u). This algorithm provides a better running time but it a trade-off with the number of

cliques generated, bigger number of cliques but in less time.

The last approach for the greedy algorithm tries to combine the ideas of the previous versions.

This algorithm creates an induced graph G′ with nodes randomly chosen of the ones that are not

included in any clique yet. Select the maximum clique C of G′ through a greedy heuristic, and

perform the expansion of C using all the nodes of the original graph. This process can be repeated

many times in order to obtain a set of tentative cliques to fix and determine which is the one that

minimizes the fixing heuristic. The fixing heuristic combines the size of the clique and the degree of

the nodes that are not included in any clique to calculate a representative value for the quality of

the constructed clique. If the set of tentative cliques is large the constructed clique cover is better,

but it is also slows the process of creation of the clique cover.

Since two processes are required to obtain a maximal clique it is not necessary to compute the

maximum clique of the induced graph (line 9 of Algorithm 4) in an exact way. This heuristic construct

a clique by iteratively appending the node that has the highest degree in the actual induced graph,

recalculate the induced graph using the neighbors of the node selected and so on until there are no

nodes to incorporate to the clique.

After the creation of a clique with the highest degree criterion, the algorithm performs an

expansion of the clique using all the nodes available of the graph G (line 10 of Algorithm 4),

the expansion computes all the possible ways of incorporate nodes of the set CAND of candidates

to the current clique in order to maximize the number of nodes in the clique. The set CAND is

calculated as the intersection of the neighborhood of each node in the clique.

This last greedy algorithm makes a trade-off between the running time invested to find a solution

and the solution quality. It is possible to adjust this trade-off by increasing (for better quality)

or decreasing (for faster execution) the value of loop (in line 6 of Algorithm 4). This is not a

deterministic algorithm despite the selected value for loop several runs may not achieve the same

result.

4. Methodology to solve the CACP in the graph domain 57

Algorithm 3 Pseudocode for the fixing heuristic.
1: function fixing_heuristic(C, G)

Input: A clique set C to fix and the graph G.

Output: Value for the fixing heuristic.

2: Put nodes C of G as unavailable.

3: max← 0, min←∞, valids← 0, average← 0

4: for all v ∈ G do

5: if v is available then

6: if deg(v) < min then min← deg(v)

7: end if

8: if deg(v) > max then max← deg(v)

9: end if

10: valids← valids+ 1

11: average← average+ deg(v)

12: end if

13: end for

14: Put nodes C of G as available.

15: return |C| + (average/valids)/(max+ 1)

16: end function

58 4.4. Greedy algorithm for minimum clique covering

Algorithm 4 A greedy algorithm for the minimum clique covering.
1: function Greedy(G, loop)

Input: A graph G = (V,E).

Output: A clique cover CC.

2: missing ← |V |

3: while missing > 0 do

4: l← 0

5: best← 0, bestC = ∅

6: while l < loop do

7: Randomly select min(missing,
(
k
t

)
) vertices of V to build V ′

8: G′ = (V ′, E ′ ← {{u, v}|{u, v} ∈ E ∧ u, v ∈ V ′})

9: C ← greedyMaxClique(G′)

10: C ← expand(C,G)

11: if best < fixing_heuristic(C,G) then

12: best← fixing_heuristic(C,G), bestC ← C

13: end if

14: end while

15: CC ← CC ∪ C

16: Put nodes C as unavailable.

17: missing ← missing − |C|

18: end while

19: return CC

20: end function

4. Methodology to solve the CACP in the graph domain 59

4.5 Metaheuristic algorithm for minimum clique covering

To build clique covers with better quality, we proposed a simulated annealing algorithm for minimum

clique covering (SACC). SACC receives a clique cover and perform operations to explore from the

current solution to new ones in the search space in order to reduce the number of cliques needed to

cover all the nodes of the graph.

To perform the exploration of the search space, it is necessary to develop neighborhood functions.

These functions changes the composition of some cliques of the current solution to create a new

solution that is evaluated to judge its quality, SA incorporates some criteria to allow the acceptance

of solutions with lower quality depending on the current temperature of the system, at higher

temperatures it accepts with higher probability a bad quality solution. The system is cooled down

with the pass of iterations, forcing the acceptance of solutions that only makes improvement in their

quality with regard to the current solution.

The quality of a clique cover is given by the following function:

f_obj(CC) = |CC|+
(

1−
∑

c∈CC |c|
2

|CC| ·
(
k
t

)2

)

This functions is composed by an integer part, which evaluates the number of cliques of the

clique cover and a decimal part in the range [0, 1) that allows us to tear apart solutions with the

same number of cliques but with different distribution of the sizes of each clique. The decimal part

qualifies with a smaller number the clique covers that have cliques with small number of nodes that,

in practice, are more suitable to be absorbed by another clique in the clique cover. Four neighborhood

functions were developed to explore the search space that are described in the next subsections.

60 4.5. Metaheuristic algorithm for minimum clique covering

4.5.1 Neighborhood function 1: random coloring

This function gives randomness to the SACC, random coloring most of the time builds a larger

number of cliques than the original but allows us to redistribute the nodes involved in some cliques

in a different way. This function randomly selects 3 cliques O,P,Q that are in CC. The nodes

included in that cliques forms the set of missing that are used to generate a new set of cliques to

substitute O,P,Q in the cover.

To re-include that nodes in cliques we take advantage of the equivalent problem of the clique

cover, the vertex coloring. Using the graph complement, we randomly sort the set of missing to

perform the vertex coloring of the nodes using a fast heuristic.

The coloring process uses a vector to keep tracking the available colors for each node, to coloring

each node the algorithm verifies the previous colored nodes and marks as unavailable the colors that

are used previously and are neighbors of the current node. If all the colors are unavailable a new

color is assigned to the node.

To recreate the set of cliques, the nodes that are assigned to the same color form a clique to add

to the cover, so the number of cliques added is equals to the greedy chromatic number.

4.5.2 Neighborhood function 2: greedy coloring

This function performs a quick coloring to perturb the current solution, that in most of the time

generates a new solution with lesser number of cliques than the original or the same number but

hardly generates a worst solution, it provides a slight change to the current solution.

This function randomly selects 5 cliques A,B,C,D,E that are in CC. The nodes included in

that cliques forms the set of missing that are used to generate a new set of cliques to substitute

O,P,Q in the cover.

To re-include that nodes in cliques we take advantage of the equivalent problem of the clique

cover, the vertex coloring. Using the graph complement, we perform the vertex coloring of the nodes

4. Methodology to solve the CACP in the graph domain 61

using the heuristic of highest degree first.

The coloring process consists in: a) Sort in descending order the vertices of the induced graph

formed with the set of missing according to their degree, b) Color the first vertex of the list, c) Color

all the vertices not connected to the previously colored vertex with the same color if they do not

have conflict coloring, d) Repeat the process until every vertex is colored.

To recreate the set of cliques, the nodes that are assigned to the same color form a clique to add

to the cover, so the number of cliques added is the greedy chromatic number.

4.5.3 Neighborhood function 3: disrupt a clique

This function attempts to redistribute all the nodes of one clique to a subset of cliques in the clique

cover and provides a quick way to delete a clique that may fit partially in another clique in the clique

cover.

This function randomly selects |CC|
2

cliques of the current cover to form the set Z.

A random clique of the set Z is selected as a pivot. The nodes included in the pivot clique may

fit in the remaining cliques of the set Z. The goal for this function is to decompose the pivot clique

to decrement its size. To do this, each node in the pivot clique tries to fit in one clique in Z, if the

node fits, it is deleted from the pivot clique and added to the clique it fitted.

The new node configuration replaces the original set taken from CC.

4.5.4 Neighborhood function 4: fill a clique

This function redistributes the number of nodes of a subset of cliques in the clique cover. It tries

to append the nodes included in this subset to only one clique, which performs a reduction in the

number of nodes of some cliques but increases the number of nodes of only one clique.

This function randomly selects |CC|
4

cliques of the current cover to form the set Y .

A random clique of the set Y is selected as a fixed clique. If the fixed clique is not full (has
(
k
t

)

62 4.5. Metaheuristic algorithm for minimum clique covering

nodes), it may accept some nodes that are included in the remaining cliques in Y . To do this, each

node in each clique of the set Y is tested, if the node can expand the fixed clique, it is translated

from its original clique to the fixed clique.

The new node configuration replaces the original set Y taken from CC.

4.5.5 Fine tuning for Simulated Annealing

Simulated annealing incorporate some parameters that have to be selected in the best possible way,

such as the probability usage of the neighborhoods presented in the previous subsections, the cooling

rate, and the number of iterations that the neighborhoods are tried for every temperature.

In order to tune the probabilities of usage of each neighborhood, we propose a tuning using the

linear Diophantine equation:

F1 + F2 + F3 + F4 = 10

.

Where variables F1, F2, F3, and F4 represent the usage probability for each neighborhood with

a granularity of 5.

For example, the values F1 = 2, F2 = 2, F3 = 2, F4 = 4 indicate that the function F1 has

20% of probability of being chosen, F2 has 20%, F3 has 20%, and F3 has 40%.

This tuning is done by selecting 3 representative instances, and testing 31 times each of the 286

different solutions of the above equation.

The proposed fine tuning leads to establish the probabilities for the usage of the neighborhood

functions as: F1 = 10, F2 = 10, F3 = 40, and F4 = 40.

4. Methodology to solve the CACP in the graph domain 63

4.6 Graph Based Post-Optimization (GBPO)

Our graph-based post-optimization (GBPO) approach deletes, in an exhaustive way, a set of several

rows of a CA or partial CA (PCA), maps the missing t-way interactions to a graph that represents

the pairwise compatibility between them, and rebuilds a set of rows (with the same or less size than

the deleted set) to provide a greater or equal coverage than the original CA (or PCA). The use of a

graph provides an easy way to remember sets of t-way interactions that can be added in the same

row of a CA.

This subsection describes GBPO approach, it is based on three processes: a) MAPPER process,

that moves the problem to the graph domain; b) MAX process, that finds complete subgraphs with

the maximal number of nodes, i.e. maximal cliques; c) HANDLER process, that orchestrates the

post-optimization in the graph domain and provides the final result in the CA domain.

4.6.1 MAPPER process

Any covering array CA(N ; t, k, v) provides a total of vt
(
k
t

)
distinct t-way interactions. Every row

provides at most
(
k
t

)
t-way interactions, so a CA provides N ·

(
k
t

)
interactions, a trivial case of

optimality exists when N = vt (an orthogonal array of index unity). When N > vt, some interactions

could be covered in more than one rows, meanwhile some others could be covered only once. It is

possible that regardless of the value of some cells the coverage still stands, those cells are known as

wildcard or flexible positions. A PCA is a covering array with missing interactions.

The MAPPER process generates a graph G = {V,E} where |V | is the number of missing

interactions in a PCA, and |E| is the number of pairs of missing interactions that are compatible

(see Definition 11). An edge between two nodes exists iff the corresponding missing interactions are

compatible. This way the process of mapping a PCA to the graph domain is very easy to implement.

64 4.6. Graph Based Post-Optimization (GBPO)

4.6.2 MAX process

The main work of this process involves the determination of a complete subgraph of maximal size

(a complete subgraph between a set of nodes requires the existence of an edge for each pair of

nodes belonging to the complete subgraph). A maximal complete subgraph is called a maximal

clique. A maximal clique represents in the CA domain a row that covers all the missing interactions

corresponding to its nodes. The MAX process receives as input parameters: a PCA; ι that indicates

the number of input rows; φ that defines the number of output rows; and ε for the number of

excluded rows.

At high level the operation of this process deletes from the input CA ι rows (excluding the first

ε rows), and adds to the input CA φ new rows, so if the input is a CA(N ; t, k, v) the output will

be a CA(N + φ − ι; t, k, v) with less or same missing interactions than the input CA. This process

requires the generation of a graph that covers the missing interactions in a CA(N − ι; t, k, v), the

determination of φ maximal cliques in the graph and the construction of φ rows (corresponding to

the φ maximal cliques) giving finally a CA(N + φ− ι; t, k, v). As an important note, the reason to

avoid searching the maximum clique is that getting the largest amount of missing interactions in one

row naturally attempts to recreate the same rows that were previously deleted.

Given a PCA(N ; t, k, v) and ι, φ, and ε parameters, the MAX process does:

1. Find the missing interactions in the first PCA and construct the list O with them.

2. Let Ω be a set with every possible set of ι different rows of the PCA excluding the first ε rows.

3. For each element of ω ∈ Ω.

(a) Analyze the interactions of each of the rows in ω to construct the list M with the

interactions provided uniquely by the rows in ω.

(b) With both lists M and O build a graph G where V is each element in both lists, and the

set of edges is generated by checking the compatibility of the set of nodes.

4. Methodology to solve the CACP in the graph domain 65

(c) Generate the φ maximal cliques and construct φ rows

(d) Calculate ξ as the interactions that are not in any clique.

4. Choose the option that minimizes ξ (the number of missing interactions).

It is possible to improve the quality1 of a CA by applying this process iteratively, with stop criterion

such as the number of iterations without improvement.

For example, given the parameters ι = 1, φ = 1, ε = 0 and the next PCA with parameters t = 2,

k = 4, and v = 2

0 1 0 0
1 1 1 0
0 0 1 0
1 0 0 0
1 0 1 1

if the number of columns is denoted by the alphabet a, b, c, . . ., there are three missing tuples: a0d1,

b1d1, and c0d1.

Because ι = 1 the process will try the
(
N
1

)
ways to delete one row. Starting with the deletion of

the first row, the t-way interactions provided uniquely by this row are a0b1, a0c0, and b1c0. Using

the definition of compatibility it is possible to construct the edges and nodes of a graph using the

original missing interactions plus the ones provided uniquely by the first row. Figure 4.2 shows the

graph generated where the number of columns is represented with letters a, b, and c.

1Output CA with less or equal number of rows than input CA, and missing interactions equal or reduced.

66 4.6. Graph Based Post-Optimization (GBPO)

a0d1b1d1

c0d1 a0b1

a0c0 b1c0

Figure 4.2: Graph generated in the MAX process of the post-optimization algorithm.

Since φ = 1, just one maximal clique needs to be obtained. So, no matter what interaction

was randomly selected the resulting maximal clique is {a0b1, a0c0, a0d1, b1c0, b1d1, c0d1}, leaving

a remaining of zero missing interactions. The row generated with that maximal clique is 0, 1, 0, 1,

and forms the next valid CA

0 1 0 1
1 1 1 0
0 0 1 0
1 0 0 0
1 0 1 1

the process stops whenever it reaches zero missing interactions, after that, the HANDLER process

(described in the next subsection) would try to delete another row, but the remaining 4 rows would

reach the stop criterion without finding a CA(4; 2, 4, 2), which does not exist.

4.6.3 HANDLER process

The HANDLER process orchestrates the CA post-optimization. This process defines the parameters

used for calling the MAX process, and uses the obtained results for further calls. the flow chart in

Figure 4.3 show the overall operation of the HANDLER process. The process receives a CA or PCA,

the initial count of missing t-way interactions ξ, the number of iterations allowed in the external loop

of the graph solver process tol, and the number of maximum iterations without improvement max

4. Methodology to solve the CACP in the graph domain 67

used as a stop criterion. The number of rows for ι and φ parameter values was fixed as f = {1, 2, 3}.

Since the outer loop of the HANDLER process could take too much time to execute, a mechanism

to control its execution time is needed. This mechanism uses the parameter tol to calculate the

number ε of rows excluded from evaluation. For a specific value of rows involved f , ε is computed

as follows:

1. Calculate the number of iterations of the external loop num_ops =
(
N
f

)
.

(a) if num_ops ≤ tol, ε = 0.

(b) if num_ops > tol, ε =
(
N − N

(num_ops/tol)1/f

)
.

This process has two variants: when there are no missing t-way interactions (ξ = 0) after updating

the partial CA through the MAX process, the HANDLER immediately calls the MAX process to delete

ι = 2 rows and build φ = 1 rows which generates a new PCA; and when ξ > 0 the HANDLER calls

the MAX process trying to decrease the amount of missing interactions until the stop criterion is

met.

68 4.6. Graph Based Post-Optimization (GBPO)

Begin

tol,max, ξ, partialCA(N ; t, k, v)

sc = 0

sc < maxCA(N + 1, t, k, v)

ξ 6= 0

f = 1

f ≤ 3

num_ops =
(
N
f

)

num_ops ≤ tol

εnew = 0

ξnew =MAX(partialCA, f, f, εnew)

ξnew ≤ ξ

ξ = ξnew

sc = 0

update partialCA

f = f + 1

εnew = N − N
(num_ops/tol)1/f

ξ =MAX(partialCA, 2, 1, 0)

update partialCA

N = N − 1

sc = sc + 1

End yes

no

yes

no

yes

no

yes

no

yes

no

Figure 4.3: Flow diagram of the HANDLER process of the post-optimization algorithm.

4. Methodology to solve the CACP in the graph domain 69

4.7 Summary

This chapter presented the methodology used to solve the mapped problem of the CACP to the

graph domain, three distinct approaches were developed: a) an exact algorithm to find optimal

results for small graph instances; b) a set of four greedy algorithms to solve bigger graph instances

in short time; c) a metaheuristic algorithm that improve in terms of quality the results obtained for

the greedy algorithm. These approaches solve the minimum clique covering problem which is the

equivalent problem to the CACP in the graph domain using the Coverage in Nodes representation,

and consists in including every node into a clique where the number of cliques is minimal.

Also a graph-based post-optimization algorithm is presented to reduce the number of rows of a

CA whenever its possible. In the next chapter we present the experimentation done for each algorithm

proposed in this methodology and is analyzed the results obtained by our solution methods.

5
Experimentation and results

This chapter presents the experimentation done and results obtained with the proposed algorithms for

the minimum clique covering, the proposed experimentation consists of: a) a set of 7 graph instances

where |V | =
(
k
t

)
vt ≤ 90 for the exact algorithm, to prove that our exact approach construct optimal

CAs, where we select small graph instances due to the fact that running time for this algorithm

grows exponentially, b) a set of 95 medium size graph instances for the greedy algorithm, to show

the performance of our greedy approach versus a greedy approach of the state-of-the-art, c) a set

of 33 medium size graph instances for the metaheuristic algorithm, to show that our metaheuristic

approach build clique covers with better quality than our greedy approach, and d) a set of 560 CAs

previously constructed, to show that our post-optimization algorithm reduces the number of rows of

the CAs. Results obtained are presented grouped by the algorithm used, and each approach applied

is compared to a respective algorithm of the state-of-the-art.

71

72 5.1. Results with the exact algorithm

5.1 Results with the exact algorithm

Experimentation for the exact algorithm was conducted for a small set of 7 instances of CAs of

strength t = 2 where the amount of nodes |V | =
(
k
t

)
vt ≤ 90, results are shown in Table 5.1. The

exact algorithm construct 7 CAs that matched the best-known upper bounds and these results are

optimal.

Instance |V| |E| Density ECC BUP1 [10]

CA(2,3,2) 12 24 0.36363 4 4
CA(2,4,2) 24 144 0.52173 5 5
CA(2,5,2) 40 480 0.61538 6 6
CA(2,6,2) 60 1200 0.67796 6 6
CA(2,3,3) 27 81 0.23076 9 9
CA(2,4,3) 54 567 0.39622 9 9
CA(2,5,3) 90 2025 0.50561 11 11

Table 5.1: Results obtained for the experimentation conducted for the exact algorithm.

5.2 Results with the greedy algorithms

Experimentation for the first three greedy algorithms was conducted with a set of instances of CAs of

strength t = 2 where the number of nodes is ≤ 540. Table 5.2 shows results for the four approaches.

Despite the difference between the third approach in its two variants with the first and second

approaches in terms of quality, the running time is substantially lower. G and Gv2 are competitive

versus the state-of-the-art algorithms for v = 2 and for v > 2 outperforms IPOG-F [15] in most of

the instances.

The last version of the greedy algorithm allows us to build solutions for larger instances, Tables

5.3 and 5.4 show the obtained results for 95 instances, where 18 instances matched the upper bounds

of a state of the art greedy algorithm and 77 instances improved the upper bounds of the IPOG-F

algorithm. As the strength and vocabulary grow, our greedy approach outperforms IPOG-F [15].

5. Experimentation and results 73

Results that match the best-known upper bounds are shown in bold.

v2t2 v5t2

k |V| |E| Density G Gv2 Gv3-Min Gv3-Max IPOG-F [15] k |V| |E| Density G Gv2 Gv3-Min Gv3-Max IPOG-F [15]

4 24 144 0.52173 6 6 6 6 6 3 75 375 0.13513 25 26 39 36 26

5 40 480 0.61538 6 7 7 8 6 4 150 3375 0.30201 29 30 34 47 30

6 60 1200 0.67796 6 8 6 8 6 5 250 13125 0.42168 31 31 34 43 33

7 84 2520 0.72289 6 8 8 8 6 6 375 35625 0.50802 35 34 39 40 38

8 112 4704 0.75675 8 8 7 12 6 7 525 78750 0.57251 39 36 41 44 41

9 144 8064 0.78321 8 9 7 10 6 v6t2

10 180 12960 0.80446 8 9 9 10 8 k |V| |E| Density G Gv2 Gv3-Min Gv3-Max IPOG-F [15]

11 220 19800 0.82191 9 10 8 12 8 3 108 648 0.11214 38 38 57 51 38

12 264 29040 0.83650 9 9 9 10 8 4 216 6480 0.27906 44 43 49 69 43

13 312 41184 0.84887 10 9 10 12 8 5 360 25920 0.40111 48 46 50 60 46

14 364 56784 0.85950 8 9 10 10 8 6 540 71280 0.48979 49 49 58 57 52

15 420 76440 0.86873 9 10 11 11 8

v3t2

k |V| |E| Density G Gv2 Gv3-Min Gv3-Max IPOG-F [15]

3 27 81 0.23076 10 9 13 9 10

4 54 567 0.39622 12 12 13 17 12

5 90 2025 0.50561 15 13 13 18 13

6 135 5265 0.58208 14 15 15 19 15

7 189 11340 0.63829 15 16 14 15 15

8 252 2154 0.68108 17 17 17 21 15

9 324 37422 0.71517 16 17 20 23 17

10 405 60750 0.74257 19 18 18 23 19

v4t2

k |V| |E| Density G Gv2 Gv3-Min Gv3-Max IPOG-F [15]

3 48 192 0.17021 17 16 25 23 17

4 96 1536 0.33684 20 20 23 30 20

5 160 5760 0.45283 22 16 24 29 22

6 240 15360 0.53556 23 28 23 29 24

7 336 33600 0.59701 26 25 25 28 27

8 448 64512 0.64429 27 28 29 31 27

Table 5.2: Results obtained of the experimentation conducted for the first three versions of the

greedy algorithm.

74 5.2. Results with the greedy algorithms

v3t2 v5t2

k |V| |E| Density Gv4 IPOG-F [15] Delta k |V| |E| Density Gv4 IPOG-F [15] Delta

3 27 81 0.23077 9 10 1 3 75 375 0.135135 26 26 0

4 54 567 0.39623 9 12 3 4 150 3375 0.302013 29 30 1

5 90 2025 0.50562 12 13 1 5 250 13125 0.421687 31 33 2

6 135 5265 0.58209 14 15 1 6 375 35625 0.508021 34 38 4

7 189 11340 0.63830 15 15 0 7 525 78750 0.572519 38 41 3

8 252 21546 0.68127 15 15 0 8 700 152250 0.622318 40 41 1

9 324 37422 0.71517 16 17 1 9 900 267750 0.661846 42 44 2

10 405 60750 0.74257 16 19 3 10 1125 438750 0.693950 44 45 1

11 495 93555 0.76518 18 19 1 11 1375 680625 0.720524 46 46 0

12 594 138105 0.78415 18 20 2 12 1650 1010625 0.742874 48 48 0

13 702 196911 0.80029 18 20 2 v6t2

14 819 272727 0.81418 19 20 1 k |V| |E| Density Gv4 IPOG-F [15] Delta

15 945 368550 0.82627 19 20 1 3 108 648 0.112150 37 38 1

16 1080 487620 0.83689 20 20 0 4 216 6480 0.279070 42 43 1

17 1224 633420 0.84628 20 20 0 5 360 25920 0.401114 45 46 1

18 1377 809676 0.85465 20 20 0 6 540 71280 0.489796 50 52 2

19 1539 1020357 0.86216 21 21 0 7 756 158760 0.556291 52 54 2

20 1710 1269675 0.86893 21 21 0 8 1008 308448 0.607746 56 57 1

v4t2 9 1296 544320 0.648649 59 59 0

k |V| |E| Density Gv4 IPOG-F [15] Delta 10 1620 894240 0.681902 62 63 1

3 48 192 0.170213 16 17 1 v2t3

4 96 1536 0.336842 16 20 4 k |V| |E| Density Gv4 IPOG-F [15] Delta

5 160 5760 0.452830 17 22 5 4 32 96 0.193548 8 9 1

6 240 15360 0.535565 23 24 1 5 80 960 0.303797 11 11 0

7 336 33600 0.597015 25 27 2 6 160 4960 0.389937 12 14 2

8 448 64512 0.644295 26 27 1 7 280 17920 0.458781 12 16 4

9 576 112896 0.681739 28 29 1 8 448 51520 0.514541 14 17 3

10 720 184320 0.712100 28 29 1 9 672 126336 0.560358 16 17 1

11 880 285120 0.737201 31 31 0 10 960 275520 0.598540 16 18 2

12 1056 422400 0.758294 31 31 0 11 1320 549120 0.630781 18 18 0

13 1248 604032 0.776263 33 33 0 12 1760 1019040 0.658329 18 19 1

14 1456 838656 0.791753 33 33 0

15 1680 1135680 0.805241 34 34 0

Table 5.3: Results obtained of the experimentation conducted for the last version of the greedy

algorithm. Part 1 of 2

5. Experimentation and results 75

v3t3 v3t4

k |V| |E| Density Gv4 IPOG-F [15] Delta k |V| |E| Density Gv4 IPOG-F [15] Delta

4 108 486 0.08411 29 34 5 7 2835 433755 0.10797 156 164 8

5 270 6075 0.16729 39 42 3 v4t4

6 540 36450 0.25046 45 49 4 k |V| |E| Density Gv4 IPOG-F [15] Delta

7 945 144585 0.32415 49 52 3 5 1280 10240 0.01251 292 323 31

8 1512 442260 0.38716 54 56 2 6 3840 245760 0.03334 415 442 27

9 2268 1132866 0.44067 58 62 4 7 8960 2652160 0.06608 491 530 39

v4t3 v5t4

k |V| |E| Density Gv4 IPOG-F [15] Delta k |V| |E| Density Gv4 IPOG-F [15] Delta

4 256 1536 0.04706 67 76 9 5 3125 31250 0.00640 742 793 51

5 640 23040 0.11268 86 94 8 6 9375 890625 0.02027 974 1059 85

6 1280 156160 0.19077 103 109 6 v6t4

7 2240 663040 0.26440 118 124 6 k |V| |E| Density Gv4 IPOG-F [15] Delta

v5t3 5 6480 77760 0.00370 1548 1628 80

k |V| |E| Density Gv4 IPOG-F [15] Delta v2t5

4 500 3750 0.03006 138 148 10 k |V| |E| Density Gv4 IPOG-F [15] Delta

5 1250 65625 0.08407 173 181 8 6 192 960 0.05236 32 42 10

6 2500 493750 0.15806 202 209 7 7 672 20160 0.08942 52 57 5

v6t3 8 1792 206080 0.12842 63 68 5

k |V| |E| Density Gv4 IPOG-F [15] Delta 9 4032 1370880 0.16869 76 77 1

4 864 7776 0.02086 238 259 21 v3t5

5 2160 155520 0.06670 296 310 14 k |V| |E| Density Gv4 IPOG-F [15] Delta

6 4320 1283040 0.13753 343 361 18 6 1458 10935 0.01030 273 318 45

v2t4 7 5103 306180 0.02352 438 467 29

k |V| |E| Density Gv4 IPOG-F [15] Delta v4t5

5 80 320 0.10127 16 22 6 k |V| |E| Density Gv4 IPOG-F [15] Delta

6 240 4800 0.16736 25 26 1 6 6144 61440 0.00326 1283 1377 94

7 560 35840 0.22898 29 32 3 v2t6

8 1120 179200 0.28597 32 34 2 k |V| |E| Density Gv4 IPOG-F [15] Delta

9 2016 685440 0.33747 34 37 3 7 448 2688 0.02685 65 79 14

v3t4 8 1792 75264 0.04690 115 118 3

k |V| |E| Density Gv4 IPOG-F [15] Delta v3t6

5 405 2430 0.02970 87 98 11 k |V| |E| Density Gv4 IPOG-F [15] Delta

6 1215 47385 0.06425 133 140 7 7 5103 45927 0.00353 895 990 95

7 2835 433755 0.10797 156 164 8

Table 5.4: Results obtained of the experimentation conducted for the last version of the greedy

algorithm. Part 2 of 2

76 5.3. Results with the metaheuristic algorithm SACC

5.3 Results with the metaheuristic algorithm SACC

To conduct the experimentations for the SACC algorithm, 33 CA instances of t = 2 and

v = {3, 4, 5, 6} were selected. The parameters for usage probability of each function were settled

as: F1 = 10%, F1 = 10%, F3 = 40%, F4 = 40%, and the cooling rate factor to α = 0.9.

Table 5.5 show that 17 of the 33 instances matched the best-known upper bounds and 4 instances

are improved. Results that matched or improved the best-known bounds are shown in bold.

v3t2 v5t2

k |V| |E| Density SACC Best-known [10] Delta k |V| |E| Density SACC Best-known [10] Delta

3 27 81 0.23077 9 9 0 3 75 375 0.13514 25 25 0

4 54 567 0.39623 9 9 0 4 150 3375 0.30201 25 25 0

5 90 2025 0.50562 11 11 0 5 250 13125 0.42169 25 25 0

6 135 5265 0.58209 11 11 0 6 375 35625 0.50802 25 25 0

7 189 11340 0.63830 12 12 0 7 525 78750 0.57252 33 29 -4

8 252 21546 0.68127 14 12 -2 8 700 152250 0.62232 36 33 -3

9 324 37422 0.71517 15 13 -2 9 900 267750 0.66185 39 35 -4

10 405 60750 0.74257 15 14 -1 10 1125 438750 0.69395 40 36 -4

11 495 93555 0.76518 15 15 0 11 1375 680625 0.72052 43 37 -6

v4t2 v6t2

k |V| |E| Density SACC Best-known [10] Delta k |V| |E| Density SACC Best-known [10] Delta

3 48 192 0.17021 16 16 0 3 108 648 0.11215 36 36 0

4 96 1536 0.33684 16 16 0 10 1620 894240 0.68190 48 48 0

5 160 5760 0.45283 16 16 0 11 1980 1389960 0.70945 50 51 1

6 240 15360 0.53556 19 19 0 12 2376 2067120 0.73263 52 53 1

7 336 33600 0.59701 22 21 -1 13 2808 2965248 0.75240 54 55 1

8 448 64512 0.64430 23 21 -2 14 3276 4127760 0.76947 56 57 1

9 576 112896 0.68174 25 22 -3 18 5508 12426048 0.81932 57 57 0

10 720 184320 0.71210 26 22 -4

Table 5.5: Results of the experimentation conducted for the SACC algorithm.

5. Experimentation and results 77

5.4 Results with the GBPO algorithm

To conduct the experimentation for the GBPO algorithm we selected a set of 30 CAs with number of

columns in the range of 3 ≤ k ≤ 32 for the alphabets 2 ≤ v ≤ 6 of strength t = 2, a set of 30 CAs

with number of columns in the range of 4 ≤ k ≤ 33 for the alphabets 2 ≤ v ≤ 6 of strength t = 3,

a set of 20 CAs with number of columns in the range of 5 ≤ k ≤ 24 for the alphabets 2 ≤ v ≤ 6

of strength t = 4, a set of 20 CAs with number of columns in the range of 6 ≤ k ≤ 25 for the

alphabets 2 ≤ v ≤ 6 of strength t = 5, and a set of 15 CAs with number of columns in the range

of 7 ≤ k ≤ 16 for the alphabets 2 ≤ v ≤ 5 of strength t = 6, for a total of 560 CAs generated by

the algorithm IPOG-F developed by Forbes et al. [15] . In Tables 5.6 to 5.10 the obtained results of

our graph based post-optimization approach (GBPO) are shown, results that match the best-known

bounds results registered in Colbourn tables [10] are shown in bold. Compared to the IPOG-F, every

tested instance is improved.

Additionally, a set of 32 instances of strength t = 2 were selected to perform a comparison with

the results obtained by the algorithm proposed by Li et al. [36]. Table 5.11 shows that every result

is matched and 16 results are improved. The parameters selected for both experimentations were,

tol = 200000, f = 3, max = 200. Since in some cases the parameter tol limits the number of

rows immerse in the graph solving process, the performing of a random selection of the rows that

constitute part of the process of elimination-addition of rows pays off with better results.

The Figures 5.1 to 5.5 shows the behavior of the obtained results by the GBPO of CAs with

strength 2 ≤ t ≤ 6, the y-axis represents the number of rows in logarithmic scale, and the x-axis

represents the number of columns of the CAs.

78 5.4. Results with the GBPO algorithm

t = 2

v = 2 v = 3 v = 4 v = 5 v = 6

k IPOG-F GBPO ∆ IPOG-F GBPO ∆ IPOG-F GBPO ∆ IPOG-F GBPO ∆ IPOG-F GBPO ∆

3 4 4 0 10 9 1 17 16 1 26 25 1 38 36 2

4 6 5 1 12 9 3 20 16 4 30 25 5 43 38 5

5 6 6 0 13 11 2 22 16 6 33 25 8 46 43 3

6 6 6 0 15 12 3 24 20 4 38 25 13 52 45 7

7 6 6 0 15 12 3 27 22 5 41 34 7 54 48 6

8 6 6 0 15 13 2 27 23 4 41 35 6 57 51 6

9 6 6 0 17 13 4 29 24 5 44 37 7 59 53 6

10 8 6 2 19 15 4 29 25 4 45 38 7 63 56 7

11 8 7 1 19 15 4 31 26 5 46 41 5 64 56 8

12 8 7 1 20 15 5 31 27 4 48 41 7 67 59 8

13 8 7 1 20 15 5 33 27 6 49 43 6 68 62 6

14 8 7 1 20 16 4 33 28 5 50 44 6 68 63 5

15 8 7 1 20 16 4 34 29 5 51 45 6 73 65 8

16 8 8 0 20 16 4 35 29 6 51 47 4 75 66 9

17 10 8 2 20 17 3 36 30 6 54 47 7 75 68 7

18 10 8 2 20 17 3 36 30 6 54 48 6 75 68 7

19 10 8 2 21 18 3 37 31 6 54 49 5 75 70 5

20 10 8 2 21 18 3 37 32 5 56 49 7 79 71 8

21 10 8 2 21 18 3 37 32 5 56 51 5 79 72 7

22 10 8 2 21 18 3 38 33 5 57 52 5 80 73 7

23 10 8 2 21 19 2 40 33 7 59 52 7 83 75 8

24 10 8 2 21 19 2 40 34 6 59 53 6 83 75 8

25 10 8 2 21 19 2 40 34 6 59 54 5 83 76 7

26 10 8 2 23 19 4 41 35 6 59 54 5 85 78 7

27 10 8 2 23 19 4 41 35 6 62 54 8 85 78 7

28 10 8 2 23 20 3 41 35 6 62 56 6 85 79 6

29 10 8 2 23 20 3 41 36 5 62 56 6 85 80 5

30 11 8 3 23 20 3 41 36 5 63 57 6 86 80 6

31 11 8 3 23 21 2 41 36 5 63 57 6 89 82 7

32 11 8 3 23 21 2 41 37 4 63 58 5 90 83 7

Table 5.6: Results obtained of the experimentation conducted for the GBPO algorithm with instances

of strength t = 2.

5. Experimentation and results 79

t = 3

v = 2 v = 3 v = 4 v = 5 v = 6

k IPOG-F GBPO ∆ IPOG-F GBPO ∆ IPOG-F GBPO ∆ IPOG-F GBPO ∆ IPOG-F GBPO ∆

4 9 8 1 34 27 7 76 68 8 148 133 15 259 243 16

5 11 10 1 42 33 9 94 86 8 181 165 16 310 291 19

6 14 12 2 49 35 14 109 100 9 209 192 17 361 340 21

7 16 12 4 52 44 8 124 110 14 236 219 17 400 384 16

8 17 12 5 56 50 6 135 121 14 257 239 18 437 419 18

9 17 12 5 62 53 9 146 132 14 276 255 21 476 457 19

10 18 12 6 66 56 10 155 139 16 299 279 20 507 485 22

11 18 12 6 68 59 9 163 150 13 312 295 17 537 511 26

12 19 15 4 71 63 8 170 156 14 329 315 14 564 545 19

13 20 17 3 76 66 10 177 163 14 344 329 15 589 567 22

14 21 18 3 77 69 8 183 169 14 355 341 14 613 593 20

15 21 18 3 80 71 9 188 175 13 367 354 13 633 613 20

16 22 18 4 82 73 9 194 182 12 380 361 19 652 630 22

17 24 19 5 85 75 10 199 187 12 393 377 16 670 650 20

18 24 20 4 88 77 11 202 193 9 401 389 12 689 677 12

19 24 20 4 91 79 12 211 197 14 412 396 16 707 692 15

20 25 21 4 92 81 11 215 203 12 420 406 14 724 704 20

21 25 22 3 93 85 8 218 206 12 426 417 9 739 720 19

22 26 22 4 93 85 8 223 209 14 435 424 11 756 737 19

23 26 23 3 94 86 8 227 217 10 444 431 13 769 750 19

24 26 24 2 98 87 11 232 218 14 454 440 14 785 765 20

25 27 24 3 98 90 8 236 223 13 461 449 12 798 777 21

26 27 25 2 99 91 8 239 228 11 468 456 12 812 797 15

27 28 25 3 100 93 7 243 231 12 480 463 17 825 804 21

28 28 25 3 101 94 7 247 235 12 482 467 15 840 823 17

29 28 26 2 103 95 8 252 238 14 486 477 9 848 832 16

30 28 26 2 106 96 10 255 244 11 495 482 13 859 839 20

31 29 27 2 106 97 9 259 245 14 505 489 16 870 856 14

32 31 27 4 107 98 9 259 248 11 511 492 19 882 865 17

33 31 27 4 108 99 9 262 253 9 516 498 18 891 878 13

Table 5.7: Results obtained of the experimentation conducted for the GBPO algorithm with instances

of strength t = 3.

80 5.4. Results with the GBPO algorithm

t = 4

v = 2 v = 3 v = 4 v = 5 v = 6

k IPOG-F GBPO ∆ IPOG-F GBPO ∆ IPOG-F GBPO ∆ IPOG-F GBPO ∆ IPOG-F GBPO ∆

5 22 16 6 98 86 12 323 301 22 793 739 54 1628 1604 24

6 26 21 5 140 124 16 442 408 34 1059 1012 47 2165 2124 41

7 32 24 8 164 148 16 530 500 30 1280 1222 58 2628 2564 64

8 34 24 10 188 168 20 599 566 33 1460 1430 30 3007 2974 33

9 37 24 13 211 189 22 669 646 23 1638 1611 27 3374 3330 44

10 41 24 17 228 210 18 725 702 23 1791 1755 36 3713 3676 37

11 43 38 5 248 226 22 784 755 29 1941 1909 32 4011 3955 56

12 47 40 7 262 244 18 835 819 16 2068 2031 37 4295 4249 46

13 49 42 7 277 256 21 893 870 23 2193 2168 25 4553 4506 47

14 52 44 8 288 276 12 933 914 19 2321 2276 45 4800 4757 43

15 53 47 6 302 286 16 976 962 14 2424 2398 26 5024 4991 33

16 56 48 8 316 300 16 1018 1004 14 2528 2486 42 5248 5199 49

17 57 51 6 328 311 17 1060 1045 15 2627 2590 37 5449 5396 53

18 60 53 7 336 325 11 1098 1077 21 2725 2697 28 5650 5603 47

19 62 55 7 347 336 11 1131 1110 21 2805 2793 12 5841 5800 41

20 64 58 6 358 346 12 1165 1149 16 2892 2870 22 6015 5972 43

21 68 59 9 369 354 15 1201 1183 18 2982 2964 18 6186 6144 42

22 69 60 9 380 364 16 1234 1218 16 3066 3025 41 6352 6320 32

23 70 62 8 388 376 12 1266 1250 16 3133 3122 11 6508 6474 34

24 71 64 7 396 383 13 1298 1281 17 3203 3165 38 6662 6623 39

Table 5.8: Results obtained of the experimentation conducted for the GBPO algorithm with instances

of strength t = 4.

5. Experimentation and results 81

t = 5

v = 2 v = 3 v = 4 v = 5 v = 6

k IPOG-F GBPO ∆ IPOG-F GBPO ∆ IPOG-F GBPO ∆ IPOG-F GBPO ∆ IPOG-F GBPO ∆

6 42 32 10 318 266 52 1377 1276 101 4195 4018 177 10407 10112 295

7 57 42 15 467 432 35 1966 1890 76 5942 5718 224 14712 14025 687

8 68 52 16 557 513 44 2406 2334 72 7349 7135 214 18266 17571 695

9 77 65 12 652 607 45 2795 2723 72 8629 8383 246 21474 20894 580

10 87 74 13 738 689 49 3181 3117 64 9796 9645 151 24394 23911 483

11 95 83 12 815 771 44 3521 3471 50 10862 10712 150 27151 26682 469

12 105 91 14 885 850 35 3854 3787 67 11889 11775 114 29645 29340 305

13 111 101 10 957 931 26 4158 4094 64 12851 12739 112 32076 31806 270

14 119 104 15 1021 993 28 4454 4384 70 13748 13593 155 34309 34102 207

15 127 104 23 1080 1049 31 4718 4673 45 14578 14457 121 36429 36216 213

16 134 104 30 1140 1106 34 4970 4925 45 15379 15223 156 38408 38248 160

17 140 130 10 1190 1170 20 5214 5176 38 16128 15997 131 40334 40207 127

18 144 134 10 1241 1214 27 5458 5408 50 16843 16738 105 42102 42019 83

19 148 137 11 1293 1259 34 5679 5621 58 17516 17420 96 43833 43763 70

20 155 142 13 1342 1306 36 5884 5828 56 18171 18039 132 45425 45376 49

21 160 147 13 1386 1359 27 6085 6032 53 18779 18720 59 46970 46933 37

22 163 152 11 1432 1407 25 6273 6226 47 19387 19265 122 48479 48462 17

23 168 158 10 1475 1450 25 6443 6406 37 19941 19841 100 49924 49908 16

24 175 165 10 1513 1490 23 6629 6600 29 20482 20385 97 51287 51280 7

25 181 168 13 1547 1530 17 6805 6759 46 21004 20902 102 52604 52580 24

Table 5.9: Results obtained of the experimentation conducted for the GBPO algorithm with instances

of strength t = 5.

82 5.4. Results with the GBPO algorithm

t = 6

v = 2 v = 3 v = 4 v = 5

k IPOG-F GBPO ∆ IPOG-F GBPO ∆ IPOG-F GBPO ∆ IPOG-F GBPO ∆

7 79 64 15 990 861 129 5761 5472 289 22100 21299 801

8 118 85 33 1490 1432 58 8579 8060 519 32822 31282 1540

9 142 122 20 1847 1774 73 10724 10239 485 41210 40447 763

10 165 148 17 2190 2130 60 12713 12350 363 49111 48505 606

11 192 170 22 2512 2448 64 14661 14232 429 56615 56164 451

12 215 195 20 2815 2765 50 16446 16106 340 63620 63245 375

13 237 214 23 3106 3048 58 18136 17865 271 70190 69855 335

14 256 234 22 3358 3310 48 19739 19485 254 76390 76113 277

15 276 256 20 3623 3553 70 21215 21029 186 82139 81944 195

16 292 275 17 3863 3824 39 22608 22432 176 87559 87338 221

17 309 291 18 4095 4048 47 23947 23736 211 92701 92543 158

18 327 309 18 4310 4254 56 25212 25095 117 97605 97473 132

19 343 323 20 4509 4469 40 26392 26264 128 102208 101970 238

20 363 346 17 4701 4658 43 27534 27374 160 110842 106558 4284

21 375 356 19 4890 4866 24 28625 28521 104 114775 110703 4072

Table 5.10: Results obtained of the experimentation conducted for the GBPO algorithm with

instances of strength t = 6.

5. Experimentation and results 83

t = 2

v = 3 v = 4 v = 5 v = 6

k Li et al.[36] GBPO ∆ k Li et al.[36] GBPO ∆ k Li et al.[36] GBPO ∆ k Li et al.[36] GBPO ∆

10 16 15 1 15 30 29 1 9 39 37 2 8 53 51 2

20 19 18 1 27 36 35 1 17 49 47 2 23 75 75 0

33 21 21 0 35 39 38 1 38 62 60 2 42 90 88 2

48 23 23 0 57 44 43 1 43 63 63 0 56 97 95 2

92 26 26 0 66 45 45 0 54 67 67 0 65 100 100 0

101 27 27 0 72 46 46 0 77 74 73 1 82 107 105 2

122 28 28 0 83 47 47 0 96 77 77 0 104 113 111 2

146 29 29 0 139 54 54 0 111 80 80 0 124 118 117 1

Table 5.11: Comparative of results between Li et al. [36] and our GBPO algorithm for instances of

strength t = 2.

3 5 7 9 11 13 15 17 19 21 23 25 27 29 31

22

23

24

25

26

number of factors (k)

lo
g 2
(N

)

v = 6
v = 5
v = 4
v = 3
v = 2

Figure 5.1: Results obtained of the experimentation for the GBPO algorithm with instances of t = 2.

84 5.4. Results with the GBPO algorithm

4 6 8 10 12 14 16 18 20 22 24 26 28 30 32

23

25

27

29

number of factors (k)

lo
g 2
(N

)

v = 6
v = 5
v = 4
v = 3
v = 2

Figure 5.2: Results obtained of the experimentation for the GBPO algorithm with instances of t = 3.

5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

24

26

28

210

212

number of factors (k)

lo
g 2
(N

)

v = 6
v = 5
v = 4
v = 3
v = 2

Figure 5.3: Results obtained of the experimentation for the GBPO algorithm with instances of t = 4.

5. Experimentation and results 85

6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
24

27

210

213

216

number of factors (k)

lo
g 2
(N

)
v = 6
v = 5
v = 4
v = 3
v = 2

Figure 5.4: Results obtained of the experimentation for the GBPO algorithm with instances of t = 5.

7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
22

25

28

211

214

number of factors (k)

lo
g 2
(N

)

v = 5
v = 4
v = 3
v = 2

Figure 5.5: Results obtained of the experimentation for the GBPO algorithm with instances of t = 6.

86 5.5. Summary

5.5 Summary

This chapter presented the results obtained for the experimentation of each one of the proposed

algorithms to solve the CACP in the graph domain. The exact algorithm construct 7 CAs that

matched the best-known upper bounds and results are optimal. The last version for the greedy

algorithm generated 18 instances that matched the results obtained by a greedy algorithm of the

state-of-the-art and improved 77 instances versus the same algorithm. The metaheuristic algorithm

matched 17 instances of the current best-known upper bounds and improves 4 instances that will be

now the best-known upper bounds. The GBPO algorithm improves 560 CAs of the IPOG-F instances

repository.

In the next chapter the main contributions of the thesis will be summarized and we will provide

directions for further research in the solution of CACP in the graph domain.

6
Conclusions and future works

This chapter finalizes the thesis document. Section 6.1 summarizes the main contributions of the

thesis; Section 6.2 gives directions for further research in the CACP in the graph domain.

6.1 Main contributions

A novel and original graph representation for CAs was presented that maps the covering array

construction problem to the minimum clique covering problem in the graph domain.

We have presented three types of algorithms to solve CACP in the graph domain, an exact

algorithm (ECC), a greedy algorithm (GCC), and a metaheuristic algorithm (SACC) to find the

minimum clique cover. And a post-optimization approach to improve previously constructed CAs by

mapping them to the graph domain.

The proposed representation allowed us to build CAs one row at a time.

The exact algorithm constructed small optimal results (where
(
k
t

)
vt ≤ 90) that matched the

best-known upper bounds for 7 CAs.

87

88 6.2. Future works

The first three greedy versions provided competitive results versus the IPOG-F algorithm but takes

too much time to process bigger instances. The fourth version of the greedy algorithm improved the

size of every instance versus the IPOG-F algorithm.

The metaheuristic algorithm provided competitive results versus the best-known bounds, and

improved 4 of the best-known upper bounds by a row.

We have presented GBPO a novel post-optimization approach that takes advantages of moving

the missing interactions in a CA to the graph domain. In the graph domain, the coverage of missing

interactions is equivalent to finding a set of maximal cliques, and each maximal clique is equivalent

to a row in the CA domain. In order to show the validity and advantages of our approach two sets of

CAs were used: a) the first set consists of 560 CAs of strength 2 ≤ t ≤ 6, alphabet 2 ≤ v ≤ 6, and

parameters 3 ≤ k ≤ 32, generated by IPOG-F, GBPO improved all CAs and 37 cases matched the

best-known upper bounds [10]; and b) the second set consists of 32 CAs of strength t = 2, alphabet

3 ≤ v ≤ 6, and number of parameters 8 ≤ k ≤ 146 to compare with a state-of-art, in this set 16

cases were improved and 16 cases were matched [36]. This work were published in [46].

The improvement of the best-known upper bounds for CAs reduces the number of test cases

required to validate hardware and software components, which is translated into saving time and

money aimed at the hardware and software testing. Moreover, the development of methods that

are capable of construct one row at a time, like our greedy approach, allow us to perform testing

on-the-fly, which also is translated into saving time by starting the testing progress when the test

suite is not complete.

6.2 Future works

Despite the running time reduction in the last version of the greedy algorithm, it is possible to

parallelize it to improve its current running time, by unwrapping the search of the candidate clique

to be added to the cover. Also, it is possible to incorporate some vocabulary knowledge to the

6. Conclusions and future works 89

algorithm, allowing it to fix v cliques at a time instead of one by one.

SACC algorithm is deeply dependent of the neighborhood functions, and the running time of each

neighborhood is highly dependent of the instance that is processed, it is possible to add a controller

to auto-adapt the probabilities of using each neighborhood on the fly, and to vary the size of the

cliques set used in each neighborhood.

GBPO also is suitable to be parallelized to process larger CAs, by decomposing the exhaustive

work done in the MAPPER process.

In this thesis is explored a representation to map the characteristics of a CA. It is possible to

explore additional graph mappings that generates a distinct problem to solve in the graph domain.

Bibliography

[1] Avila-George, H., Torres-Jimenez, J., and Hernández, V. (2012a). New bounds for ternary

covering arrays using a parallel simulated annealing. Mathematical Problems in Engineering,

2012:1–19.

[2] Avila-George, H., Torres-Jimenez, J., and Hernández, V. (2012b). Parallel simulated annealing

for the covering arrays construction problem. In Proceedings of the International Conference on

Parallel and Distributed Processing Techniques and Applications (PDPTA), page 1. The Steering

Committee of The World Congress in Computer Science, Computer Engineering and Applied

Computing (WorldComp).

[3] B. Hnich, S. D. Prestwich, E. S. and Smith, B. M. (2006). Constraint models for the covering

test problem. Constraints, 11(2):199–219.

[4] Becci, G., Dhadyalla, G., Mouzakitis, A., Marco, J., and Moore, A. D. (2013). Robustness

testing of real-time automotive systems using sequence covering arrays. SAE Int. J. Passeng. Cars

– Electron. Electr. Syst., 6(1):287–293.

[5] Bracho-Rios, J., Torres-Jimenez, J., and Rodriguez-Tello, E. (2009). A new backtracking

algorithm for constructing binary covering arrays of variable strength. In MICAI 2009: Advances in

Artificial Intelligence. 8th Mexican International Conference on Artificial Intelligence, Guanajuato,

México, November 9-13, 2009 Proceedings, pages 397–407. Springer Berlin Heidelberg.

[6] Bryce, R. C. and Colbourn, C. J. (2007). The density algorithm for pairwise interaction testing.

Software Testing, Verification and Reliability, 17(3):159–182.

[7] Bush, K. A. (1952). Orthogonal arrays of index unity. Ann. Math. Statist., 23(3):426–434.

91

92 BIBLIOGRAPHY

[8] Calvagna, A. and Gargantini, A. (2011). T-wise combinatorial interaction test suites construction

based on coverage inheritance. Software Testing, Verification and Reliability, 22(7):507–526.

[9] Chateauneuf, M. A., Colbourn, C. J., and Kreher, D. L. (1999). Covering arrays of strength

three. Designs, Codes and Cryptography, 16(3):235–242.

[10] Colbourn, C. (2017). Covering arrays tables. http://www.public.asu.edu/~ccolbou/src/

tabby/catable.html. Accesed on: 24-Apr-2017.

[11] Colbourn, C. J. (2009). Covering arrays from cyclotomy. Designs, Codes and Cryptography,

55(2-3):201–219.

[12] Colbourn, C. J., Martirosyan, S. S., Mullen, G. L., Shasha, D., Sherwood, G. B., and Yucas,

J. L. (2006). Products of mixed covering arrays of strength two. Journal of Combinatorial Designs,

14(2):124–138.

[13] Covarrubias-Flores, E. (2008). Cálculo de covering arrays binarios de fuerza variable, usando un

algoritmo de recocido simulado. Master’s thesis, CINVESTAV-TAMAULIPAS.

[14] D.M. Cohen, S.R. Dalal, A. K. and Patton, G. (1994). The automatic efficient test generator

(AETG) system. In 5th International Symposium on Software Reliability Engineering, ISSRE 1994,

Monterey, CA, USA, November 6-9, 1994. Institute of Electrical & Electronics Engineers (IEEE).

[15] Forbes, M., Lawrence, J., Lei, Y., Kacker, R., and Kuhn, D. (2008). Refining the in-parameter-

order strategy for constructing covering arrays. Journal of Research of the National Institute of

Standards and Technology, 113(5):287.

[16] Glover, F. (1989). Tabu search-part I. ORSA Journal on computing, 1(3):190–206.

[17] Gonzalez-Hernandez, L., Torres-Jiménez, J., and Rangel-Valdez, N. (2011). An exact approach

to maximize the number of wild cards in a covering array. In MICAI 2011: Advances in Artificial

http://www.public.asu.edu/~ccolbou/src/tabby/catable.html
http://www.public.asu.edu/~ccolbou/src/tabby/catable.html

BIBLIOGRAPHY 93

Intelligence. 10th Mexican International Conference on Artificial Intelligence, Puebla, Mexico,

November 26 - December 4, 2011, Proceedings, Part I, pages 210–221. Springer Berlin Heidelberg.

[18] Hartman, A. (2004). Software and hardware testing using combinatorial covering suites. In

Graph Theory, Combinatorics and Algorithms, pages 237–266. Springer Science + Business Media.

[19] Holland, J. H. (1973). Genetic algorithms and the optimal allocation of trials. SIAM J. Comput.,

2(2):88–105.

[20] Kacker, R. N., Kuhn, D. R., Lei, Y., and Lawrence, J. F. (2013). Combinatorial testing for

software: An adaptation of design of experiments. Measurement, 46(9):3745 – 3752.

[21] Karp, R. M. (1972). Reducibility among Combinatorial Problems, pages 85–103. Springer US,

Boston, MA.

[22] Karp, R. M. (1982). Dynamic programming meets the principle of inclusion and exclusion.

Operations Research Letters, 1(2):49–51.

[23] Katona, G. O. H. (1973). Two applications (for search theory and truth functions) of sperner

type theorems. Periodica Mathematica Hungarica, 3(1):19–26.

[24] Kennedy, J. and Eberhart, R. (1995). Particle swarm optimization. In Proceedings of ICNN95

- International Conference on Neural Networks. Institute of Electrical and Electronics Engineers

(IEEE).

[25] Kim, Y., Jang, D.-H., and Anderson-Cook, C. M. (2017). Selecting the best wild card entries

in a covering array. Quality and Reliability Engineering International.

[26] Kirkpatrick, S., Gelatt, C. D., Vecchi, M., et al. (1983). Optimization by simmulated annealing.

science, 220(4598):671–680.

94 BIBLIOGRAPHY

[27] Kitsos, P., Simon, D. E., Torres-Jimenez, J., and Voyiatzis, A. G. (2015). Exciting FPGA

cryptographic trojans using combinatorial testing. In 26th IEEE International Symposium on

Software Reliability Engineering, ISSRE 2015, Gaithersbury, MD, USA, November 2-5, 2015,

pages 69–76.

[28] Kleitman, D. J. and Spencer, J. (1973). Families of k-independent sets. Discrete Mathematics,

6(3):255–262.

[29] Kokkala, J. I. (2017). Computational methods for classification of codes; laskennallisia

mentelmiä koodien luokitteluun.

[30] Kuhn, D., Kacker, R., and Lei, Y. (2010). Practical combinatorial testing. Technical report,

National Institute of Standards and Technology.

[31] Kuhn, D. and Okum, V. (2006). Pseudo-exhaustive testing for software. In 30th Annual IEEE /

NASA Software Engineering Workshop (SEW-30 2006), 25-28 April 2006, Loyola College Graduate

Center, Columbia, MD, USA. IEEE.

[32] Kuhn, D. and Reilly, M. (2002). An investigation of the applicability of design of experiments

to software testing. In 27th Annual NASA Goddard/IEEE Software Engineering Workshop, 5-6

December 2002, Greenbelt, MD, USA. IEEE Comput. Soc.

[33] Kuhn, D., Wallace, D., and Gallo, A. (2004). Software fault interactions and implications for

software testing. IEEE Transactions on Software Engineering, 30(6):418–421.

[34] Lei, Y., Kacker, R., Kuhn, D. R., Okun, V., and Lawrence, J. F. (2007). IPOG: A general

strategy for t-way software testing. In 14th Annual IEEE International Conference and Workshops

on the Engineering of Computer-Based Systems (ECBS2007). Institute of Electrical & Electronics

Engineers (IEEE).

BIBLIOGRAPHY 95

[35] Lei, Y. and Tai, K. (2005). In-parameter-order: a test generation strategy for pairwise testing.

In Proceedings Third IEEE International High-Assurance Systems Engineering Symposium (HASE

2005), 12-14 October 2005, Heidelberg, Germany. Institute of Electrical & Electronics Engineers

(IEEE).

[36] Li, X., Dong, Z., Wu, H., Nie, C., and Cai, K.-Y. (2014). Refining a randomized post-

optimization method for covering arrays. In 2014 IEEE Seventh International Conference on

Software Testing, Verification and Validation Workshops. Institute of Electrical and Electronics

Engineers (IEEE).

[37] Lobb, J. R., Colbourn, C. J., Danziger, P., Stevens, B., and Torres-Jimenez, J. (2012). Cover

starters for covering arrays of strength two. Discrete Mathematics, 312(5):943–956.

[38] Lopez-Escogido, D., Torres-Jimenez, J., Rodriguez-Tello, E., and Rangel-Valdez, N. (2008).

Strength Two Covering Arrays Construction Using a SAT Representation, pages 44–53. Springer

Berlin Heidelberg, Berlin, Heidelberg.

[39] Luce, R. D. and Perry, A. D. (1949). A method of matrix analysis of group structure.

Psychometrika, 14(2):95–116.

[40] Mahmoud, T. and Ahmed, B. S. (2015). An efficient strategy for covering array construction

with fuzzy logic-based adaptive swarm optimization for software testing use. Expert Systems with

Applications, 42(22):8753–8765.

[41] Martinez-Pena, J. and Torres-Jimenez, J. (2010). A branch and bound algorithm for ternary

covering arrays construction using trinomial coefficients. Res. Comput. Sci, 49:61–71.

[42] Martinez-Pena, J., Torres-Jimenez, J., Rangel-Valdez, N., and Avila-George, H. (2010). A

heuristic approach for constructing ternary covering arrays using trinomial coefficients. In Advances

96 BIBLIOGRAPHY

in Artificial Intelligence – IBERAMIA 2010 12th Ibero-American Conference on AI, Bahía Blanca,

Argentina, November 1-5, 2010. Proceedings, pages 572–581. Springer Science Business Media.

[43] Meagher, K. and Stevens, B. (2004). Group construction of covering arrays. Journal of

Combinatorial Designs, 13(1):70–77.

[44] Nayeri, P., Colbourn, C. J., and Konjevod, G. (2013). Randomized post-optimization of covering

arrays. European Journal of Combinatorics, 34(1):91–103.

[45] Nurmela, K. J. (2004). Upper bounds for covering arrays by tabu search. Discrete Applied

Mathematics, 138(1–2):143 – 152. Optimal Discrete Structures and Algorithms.

[46] Perez-Torres, J. C. and Torres-Jimenez, J. (2017). A graph-based postoptimization approach

for covering arrays. Quality and Reliability Engineering International.

[47] Quistorff, J. and Schlage-Puchta, J. (2011). On generalized surjective codes. Studia Scientiarum

Mathematicarum Hungarica, 48(1):75–92.

[48] Quiz-Ramos, P. (2010). Maximización de renglones constantes para covering arrays. Master’s

thesis, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional.

[49] R. Kuhn, D. R. Kacker, Y. L. and Hunter, J. (2009). Combinatorial software testing. Computer,

42(7):94–96.

[50] Roux, G. (1987). K-proprietes dans des tableaux de n colonnes : cas particulier de la k-

surjectivite et de la k-permutivite. PhD thesis, University of Paris. Thèse de doctorat dirigée par

Cohen, Gerard Mathématiques pures. Combinatoire Paris 6 1987.

[51] Sarkar, K. (2016). Covering Arrays: Algorithms and Asymptotics. PhD thesis, Arizona State

University. Phd dissertation.

BIBLIOGRAPHY 97

[52] Sherwood, G. B., Martirosyan, S. S., and Colbourn, C. J. (2006). Covering arrays of higher

strength from permutation vectors. Journal of Combinatorial Designs, 14(3):202–213.

[53] Shiba, T., Tsuchiya, T., and Kikuno, T. (2004). Using artificial life techniques to generate

test cases for combinatorial testing. In 28th International Computer Software and Applications

Conference (COMPSAC 2004), Design and Assessment of Trustworthy Software-Based Systems,

27-30 September 2004, Hong Kong, China, Proceedings, pages 72–77 vol.1.

[54] Skiena, S. S. (1998). The algorithm design manual: Text, volume 1. Springer Science &

Business Media.

[55] Stardom, J. (2001). Metaheuristics and the search for covering and packing arrays. PhD thesis,

Simon Fraser University.

[56] Tang, D. and Woo, L. S. (1983). Exhaustive test pattern generation with constant weight

vectors. IEEE Transactions on Computers, C-32(12):1145–1150.

[57] Torres-Jimenez, J. and Izquierdo-Marquez, I. (2013). Survey of covering arrays. In 15th

International Symposium on Symbolic and Numeric Algorithms for Scientific Computing, SYNASC

2013, Timisoara, Romania, September 23-26, 2013, pages 20–27.

[58] Torres-Jimenez, J. and Izquierdo-Marquez, I. (2016). Construction of non-isomorphic covering

arrays. Discrete Math. Algorithm. Appl., 08(02):1650033.

[59] Torres-Jimenez, J., Izquierdo-Marquez, I., Gonzalez-Gomez, A., and Avila-George, H. (2015a).

A branch & bound algorithm to derive a direct construction for binary covering arrays. In Advances

in Artificial Intelligence and Soft Computing. 14th Mexican International Conference on Artificial

Intelligence, MICAI 2015, Cuernavaca, Morelos, Mexico, October 25-31, 2015, Proceedings, Part

I, pages 158–177. Springer International Publishing.

98 BIBLIOGRAPHY

[60] Torres-Jimenez, J., Izquierdo-Marquez, I., Kacker, R., and Kuhn, D. (2015b). Tower of covering

arrays. Discrete Applied Mathematics, 190–191:141 – 146.

[61] Torres-Jimenez, J., Rangel-Valdez, N., Gonzalez-Hernandez, L., and Avila-George, H. (2011).

Construction of logarithm tables for galois fields. International Journal of Mathematical Education

in Science and Technology, 42(1):91–102.

[62] Torres-Jimenez, J. and Rodriguez-Cristerna, A. (2017). Metaheuristic post-optimization of the

NIST repository of covering arrays. CAAI Transactions on Intelligence Technology, 2(1):31–38.

[63] Torres-Jimenez, J. and Rodriguez-Tello, E. (2010). Simulated annealing for constructing binary

covering arrays of variable strength. In IEEE Congress on Evolutionary Computation. IEEE.

[64] Walker, R. A. and Colbourn, C. J. (2009). Tabu search for covering arrays using permutation

vectors. Journal of Statistical Planning and Inference, 139(1):69–80.

[65] Williams, A. W. and Probert, R. L. (2002). Formulation of the interaction test coverage

problem as an integer program. In Testing of Communicating Systems XIV, Applications to

Internet Technologies and Services, Proceedings of the IFIP 14th International Conference on

Testing Communicating Systems - TestCom 2002, Berlin, Germany, March 19-22, 2002, TestCom

’02, pages 283–, Deventer, The Netherlands, The Netherlands. Kluwer, B.V.

[66] Wu, H., Nie, C., Kuo, F., Leung, H., and Colbourn, C. J. (2015). A discrete particle swarm

optimization for covering array generation. IEEE Transactions on Evolutionary Computation,

19(4):575–591.

[67] Yan, J. and Zhang, J. (2006). Backtracking algorithms and search heuristics to generate test

suites for combinatorial testing. In 30th Annual International Computer Software and Applications

Conference, COMPSAC 2006, Chicago, Illinois, USA, September 17-21, 2006. Volume 1. Institute

of Electrical & Electronics Engineers (IEEE).

BIBLIOGRAPHY 99

[68] Younis, M., Zamli, K., and Mat Isa, N. (2008). IRPS – an efficient test data generation strategy

for pairwise testing. In Knowledge-Based Intelligent Information and Engineering Systems, pages

493–500. Springer.

	Contents
	List of Figures
	List of Tables
	List of Algorithms
	Publications
	Resumen
	Abstract
	Nomenclature
	Definitions
	Introduction
	An introduction to covering arrays
	Background
	Justification
	Impact
	Thesis problem
	Problem statement
	Hypothesis
	Main objective
	Specific objectives

	Thesis contents
	Summary

	State of the art of the construction of covering arrays
	Exact methods to construct CAs
	Integer programming
	The automatic generator EXACT
	Constraint programming
	SAT encodings
	Backtracking algorithm for binary CAs
	Non-isomorphic CAs

	Greedy methods to construct CAs
	The AETG system
	Deterministic density algorithm
	In-Parameter-Order algorithm
	Intersection residual pair set strategy
	Coverage inheritance

	Metaheuristic methods to construct CAs
	Genetic algorithms
	Tabu search
	Simulated annealing
	Particle swarm optimization

	Algebraic methods to construct CAs
	Orthogonal arrays
	Case t=2 and v=2
	Constant weight vectors
	Roux-type constructions
	Power of a covering array
	Product of covering arrays of stregth two
	Cyclotomy
	Construction using groups
	Permutation vectors
	Towers of covering arrays
	Binomial coefficients
	Trinomial coefficients

	Post-optimization methods to reduce the number of rows of CAs
	CA related problems mapped to a graph representation
	Minimization of constant rows in covering arrays
	Covering arrays completion by the vertex coloring problem of a graph

	Summary

	 A graph representation for covering arrays
	Coverage in nodes
	Representing a mixed covering array with the coverage in nodes representation
	Handling constraints on the coverage in nodes representation

	Flexible positions using the coverage in nodes representation
	Summary

	Methodology to solve the CACP in the graph domain
	Methodology overview
	Utility algorithms
	List all maximum cliques of a graph
	Greedy vertex coloring of a graph

	Exact algorithm for minimum clique covering
	Greedy algorithm for minimum clique covering
	Metaheuristic algorithm for minimum clique covering
	Neighborhood function 1: random coloring
	Neighborhood function 2: greedy coloring
	Neighborhood function 3: disrupt a clique
	Neighborhood function 4: fill a clique
	Fine tuning for Simulated Annealing

	Graph Based Post-Optimization (GBPO)
	MAPPER process
	MAX process
	HANDLER process

	Summary

	Experimentation and results
	Results with the exact algorithm
	Results with the greedy algorithms
	Results with the metaheuristic algorithm SACC
	Results with the GBPO algorithm
	Summary

	Conclusions and future works
	Main contributions
	Future works

