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Resumen

Nuevos Planteamientos Multi-Objetivo Para Resolver el
Problema de Máxima Parsimonia.

por

Daniel Rafael Torres Avalos
Unidad Cinvestav Tamaulipas

Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, 2017
Dr. Gregorio Toscano Pulido, Co-Director

Dr. Eduardo Arturo Rodríguez Tello, Co-Director

En bioinformática, el problema de construcción filogenética implica construir hipótesis evolutivas

mediante árboles, usualmente binarios, en los que las hojas representan un set de n especies conocidas

y los nodos internos son ancestros hipotéticos derivados de las mismas. El problema de Máxima

Parsimonia (MP) consiste en la búsqueda o construcción de la topología de árbol para la cual los

cambios evolutivos sean mínimos.

El problema MP está clasificado como un problema NP-Completo, es altamente combinatorio, y

el tamaño de su espacio de búsqueda crece factorialmente respecto al número de especies estudiadas.

Existen estudios que indican que la complejidad del espacio de búsqueda también incrementa con

el número de especies, añadiendo planicies y óptimos locales conforme las especies estudiadas

aumentan. La multi-objetivización del problema presenta una alternativa para permitir que un

algoritmo evolutivo encuentre soluciones competitivas con respecto a aquellas reportadas en el estado

del arte.

En este trabajo de investigación se analizaron dos paradigmas de multi-objetivización para el

problema de MP. Se presentaron seis re-formulaciones del problema basadas en la descomposición

de la función objetivo original y doce basadas en la adición de funciones objetivo suplementarias.

Después de comparación experimental extensa se seleccionaron las tres propuestas mas

prometedoras y se implementaron en el algoritmo NSGA-II, utilizando un algoritmo de cruza

topológica y cinco funciones de vecindad.

xi



Se realizó una comparación de las tres propuestas prometedoras contra un algoritmo mono-

objetivo (evaluando solo MP), y contra algoritmos del estado del arte. Se utilizaron ocho instancias

binarias reales, 14 instancias binarias sintéticas, y 19 instancias reales con caracteres multi-estado.

Los resultados obtenidos de la experimentación muestran que las propuestas de multi-

objetivización presentadas son competitivas. Contra un algoritmo mono-objetivo que evalúa MP,

la primer propuesta obtuvo resultados competitivos para el 71.4% de las instancias, la segunda

para 64.2% de las instancias, y la tercera para 57.1% de las instancias. La comparación contra

dos métodos representativos del estado del arte permite observar que la segunda propuesta iguala la

calidad de los resultados para 52.6% de las instancias de prueba, y las otras dos igualan las soluciones

de 47.3% de las instancias de prueba utilizando una fracción del tiempo requerido por los algoritmos

del estado del arte.
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Abstract

New Multi-Objective Optimization Reformulations for
Solving the Maximum Parsimony Problem.

by

Daniel Rafael Torres Avalos
Cinvestav Tamaulipas

Center for Research and Advanced Studies of the National Polytechnic Institute, 2017
Dr. Gregorio Toscano Pulido, Co-advisor

Dr. Eduardo Arturo Rodríguez Tello, Co-advisor

In bioinformatics, the filogenetic construction problem consists in construting evolutionary hypothesis

trough , usually binary, tree topologies, where the leaves represent a set of n known species and the

inner nodes represent hypothetical ancestry derived from them. The Maximum Parsimony problem

(MP) consists in the search or construction of the tree topologies for which the amount of evolutionary

changes are minimal.

The MP problem is classified as NP-Complete, it is highly combinatorial and its search space

grows at a factorial rate as the number of known species increases. Published studies indicate that

the complexity of the search space also increases with respect of the number of studied species,

presenting more locally optimal solutions and regions with low gradient. A suitable alternative to

approach this problem is the multi-objectivization.

In this research work we explored two multi-objectivization paradigms for the MP problem. First,

we proposed six reformulations of the problem by means of decomposing the original objective

function. Then, we presented twelve reformulations of the problem consisting in the adition of new

helper objectives to the problem.

After an extensive experimental comparison, we selected three reformulations of the problem and

implemented them using the NSGA-II algorithm. The implemented algorithm includes a topological

based crossover function, and five different neighborhood functions.

A comparison was conducted between the proposed reformulations of the problem, a single-

xiii



objective variation of the implemented algorithm (evaluating only MP), and two representative

algorithms from the state of the art. For this comparison we used eight real-life binary-encoded

instances, 14 synthetic binary-encoded instances, and 19 real-life multi-state character encoded

instances.

The results from the experimentation show the competitiveness of th presented proposals. Against

the single-objective variation, the first reformulation presented competitive solutions for 71.4% of

the instances, the second was competitive for 64.2% of the instances, and the third for 57.1% of

them. The comparison against the state of the art shows that the second proposal equals the results

of 52.6% of the used instances, and the remaining two for 47.3% of them, employing only a fraction

of the time required by the state of the art algorithms.
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Nomenclature

DNA Deoxyribonucleic Acid.
MOEA Multi-Objective Evolutionary Algorithm.
MP Maximum Parsimony.
Multi-objectivization Re-statement of a single-objective problem in an alternative multi-objective

formto facilitate the process of finding a solution.
Newick Format Representation of a tree topology as plain text using nested parentheses,

each pair of parenthesis represents an inner node of the tree, for which its
branches are separated by commas and terminal nodes are represented as an
identifier. The terminal symbol for a Newick formatted tree is a semi-colon.

NSGA-II Non-dominated Sorting Genetic Algorithm II.
Phylogeny Study of evolutionary relationships between organisms by means of tree-like

representations.
RNA Ribonucleic Acid.
Taxon Each of the species or sequences at the tip of a branch in a phylogenetic

tree. It is a group of one or more populations of an organism or organisms
seen by taxonomists to form a unit, Operational Taxonomic Unit (OTU).
Plural:Taxa

Transition Substitution of a purine or a pyrimidine by another purine or pyrimidine,
respectively.

Transversion Substitution of a purine by a pyrimidine or vice-versa.





1
Introduction

This chapter presents a brief introduction to bioinformatics and the MP problem, the hypothesis

about the multi-objectivization of the problem that motivates this research, and the main objective

pursued. At the end of the chapter, an outline of this document with a brief description of the

remaining chapters is presented.

1.1 Background

Bioinformatics is an interdisciplinary field that develops and applies computational and statistical

tools to solve practical and theoretical problems derived from working with information related to

biological macromolecules such as deoxyribonucleic acid (DNA), ribonucleic acid (RNA), and proteins

(Xiong, 2006). Some of the main areas of research in bioinformatics are:

• Molecular structural analysis, which includes protein and nucleic structure analysis, comparison,

classification, and prediction.

1



2 1.1. Background

• Molecular functional analysis, which includes gene expression profiling, protein interaction

prediction, metabolic pathway reconstruction, and simulation.

• Sequence analysis, which includes sequence alignment, sequence database searching, motif and

pattern discovery, and reconstruction of evolutionary relationships.

The reconstruction of evolutionary relationships, under the sequence analysis research, is the main

focus of this thesis work. Haeckel (1866), was the first to propose an evolutionary theory to explain

the origin of the first living cell, and to propose a tree-like classification to reflect the evolutionary

ancestry of a set of known organisms (also called taxa), for which he coined the term phylogeny

(Dayrat and Linder, 2003).

Phylogenetic reconstruction focuses on finding similarities among a set of known organisms,

which are assumed to have a common ancestor, in order to infer their evolutionary relationships. For

this kind of analysis there are two main approaches: Morphological comparison, which is based on

physical and measurable characteristics (e.g., anatomy, physiology, behavior) of the studied set of

species, and biochemical comparison, that studies similarities in the sequences of nucleic acids and

proteins of the known species.

Several inference methods for phylogenetic reconstruction problem have been proposed in the

literature. One of the most widely known, and used for its simplicity of evaluation, is the Maximum

Parsimony (MP) method. This method assumes that the hypothesis that presents the simplest

explanation for the evolutionary relationships of the known species has a higher probability of being

a true explanation (Occam’s razor principle) (Xiong, 2006).

The MP method attempts to maximize the evolutionary similitude among the inferred individuals

inside the proposed tree topology, which means finding the topology that requires the least number

of evolutionary changes (i.e., character state transformations) to explain the differences among the

sequences that represent the known species (Kluge and Farris, 1969).
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1.2 Motivation

There are several reasons for the study of phylogenetic trees construction. On the side of biological

sciences, they are used in the process of developing vaccines, antibacterial agents, herbicides, and

the study of microbial communities (Pace, 1997). In pharmaceutics, phylogenetic trees are used in

the smart development of new drugs. Likewise, in the field of molecular biology, phylogenetic trees

are used in the prediction and classification of protein sequences, determining the homology of a

sequence, classification of proteins, among others. (Murakami and Jones, 2006).

On the other hand, the main motivation of this research work lies within the field of computational

science. The MP problem has been proven to be NP-Complete, being equivalent to the Steiner

tree problem in the hypercube (Gusfield, 1997). It is a highly combinatorial problem whose search

space’s growth rate (the number of possible binary rooted trees constructed with n known species) is

factorial according to the expression T = (2n− 3)!/(2n−2(n− 2)!), where n represents the number

of known species (taxa) (Xiong, 2006), this is illustrated graphically in Figure 1.1. It was observed

by Kirkup and Kim (2000), that as the taxa number increases, so does the number of attraction

basins that lead to different local optimum solutions, and that different locally optimal solutions

might diverge from one another’s topology from 40% to 50%, and still only have from 0.5% to 1.0%

discrepancy in their parsimony scores. Furthermore, the existence of tree islands (collections of trees

with similar topologies and with parsimony scores that fall under an upper bound) (Maddison, 1991),

and terraces of trees (groups of trees that are at distance one and have the same parsimony score)

(Sanderson and McMahon, 2011), give a hint of high neutrality in the search space of the problem.

These characteristics make it difficult, for search algorithms, to obtain near optimal solutions in small

time frames.

A known approach to problems with difficult search spaces (i.e., multiple local optima, rugged

or neutral landscapes) is the re-formulation of the problem to incorporate more than one objective

funcion, this is the multi-objectivization.
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Figure 1.1: Number of rooted tree topologies as the number of studied taxa grows. Values on the
y-axis are in log scale.

Knowles et al. (2001) and Jensen (2003) have studied different approaches to multi-objectivizate

a single-objective problem. Knowles et al. propose the decomposition of an original objective function

in order to enhance the results of searches conducted in spaces with multiple local optima. On the

other hand, Jensen uses helper objectives to approach problems whose original function was hard to

decompose.

Because of the characteristics of its search space it is evident that finding good quality solutions

in a small time frame is a challenge as the number of taxa grows. In the state of the art there are few

multi-objective formulations of the problem, and most of them include computationally expensive

evaluations. Therefore, proposing new objective functions to re-formulate the MP problem, that are

more cost efficient is an area of opportunity.
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1.3 Hypothesis

This research attempts to verify the following hypothesis:

There is at least one multi-objective formulation of the Maximum Parsimony problem, whether

by decomposing the original evaluation function or adding helper objectives, that allows a multi-

objective evolutionary algorithm to have an easier navigation trough the search space of the problem

by modifying its fitness landscape; allowing it to find solutions that are competitive to those reported

in the state of the art of the problem, either by improving the quality of the found solutions or by

reducing the computational time required to obtain them.

1.4 Objectives

Below, we present the main objective of this research and those specific objectives that will help with

its fulfillment.

1.4.1 General objective

The main goal of this research work is to contribute to the state of the art of the MP problem, with

the proposal and validation of at least one new multi-objective reformulation of the problem. This

reformulation should allow a multi-objective evolutionary algorithm (MOEA) to find solutions better

than those found by a single-objective approach, that compete favorably with those achieved by the

existing reference methods.

1.4.2 Specific objectives

In order to fulfill the general objective of this research work the following specific objectives are

defined:
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1. To propose at least one new multi-objective reformulation for the MP problem, whether by

decomposing of the original objective function or by adding helper objective functions, that

allows to discern between solutions with the same parsimony score.

2. To efficiently implement the proposed reformulation of the problem in a MOEA, that finds

competitive solutions to those achieved by a single-objective algorithm in at least 50% of the

test cases.

3. To make a comparative analysis against the reference methods existing in the state of the

art (both single and multi-objective). To assess the practical usefulnes of the proposed

reformulation of the problem, it must find competitive solutions for at least 50% of the used

instances.

1.5 Thesis organization

The remainder of this thesis work is organized as follows:

• Chapter 2 - Background. This chapter provides the formal definition of the Maximum

Parsimony problem, its complexity and the representation used for the analyzed taxa. It also

provides an overview to the application of multi-objectivization.

• Chapter 3 - State of the art. This chapter reviews the literature of the MP problem, the works

of other authors are described and compared. Furthermore, the usual instance benchmarks for

the problem are described.

• Chapter 4 - Multi-objectivization of the problem. This chapter presents the proposal,

evaluation, and selection of new multi-objective formulations for the MP problem. It describes

the proposed objective functions and the exhaustive evaluation applied to select the most

promising ones.
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• Chapter 5 - Implementation of athe selected MOEA. This chapter describes the algorithms

implemented in order to assess the performance of the selected multi-objective formulations. It

includes the description of the genetic operators (crossover and mutation) and the components

of the NSGA-II algorithm, which was chosen to assess the performance of the proposed multi-

objectivizations of the MP problem.

• Chapter 6 - Experimentation and results. This chapter presents the results of the

experimentation conducted with the implemented MOEA and its analysis. The results are

divided in two parts: first we contrast its performance against a single-objective evolutionary

algorithm in terms of the quality of the best solutions found, then the comparison against the

state of the art algorithms in the literature is presented, Finally, the results are analyzed.

• Chapter 7 - Conclusions and future work. Contains the conclusions reached during this research

and the future work derived from it.





2
Background

This chapter presents the formal definition of the MP problem, including its computational complexity

and the growth rate of its search space; the codification of the parsimony sequences used to represent

known species; and an overview of the multi-objectivization technique.

2.1 Problem statement

A rooted phylogenetic tree for a set of n operational taxonomic units (OTUs); represented as n

aligned sequences ϑ = {S1, S2, . . . , Sn} of size k, in which each of the ki sites is a set of possible

states over an alphabet α; is defined as a binary tree T = (V,E). Here, V = {I, L} are the nodes

of the tree; where L represents the leafs that contain the information of the known OTUs (ϑ), and

I are the inner nodes that represent the hypothetical ancestry that is inferred with the information

of its descendants; and E represent the evolutionary relationships between them.

Using a Maximum Parsimony (MP) criterion to construct phylogenetic trees aims to build

hypothesis with the least number of evolutionary changes, based on the principle of Occam’s razor

9
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(Xiong, 2006): “The simplest hypothesis as an explanation is more likely to be the true one”, which

suggests that the simplest tree (i.e., with the least number of mutations or changes) has a higher

probability of being right.

The evaluation of a phylogenetic tree using MP requires that every sequence in an inner node

of the tree has an assignment of state sets inferred from the nodes connected to them. This

assignment is applied using Fitch’s algorithm (Fitch, 1971). Fitch’s algorithm is implemented as a

two step process: first, a bottom-up propagation of the known values that computes the character

state sets for every position 1 ≤ i ≤ k of the sequences in the inner nodes of the tree, which

we denote as parsimony sequences (p). The parsimony sequence pw = {z1, z2, . . . , zk} for each

inner node w ∈ I whose descendants are represented by the sequences St = {x1, x2, . . . , xk} and

Su = {y1, y2, . . . , yk}, is calculated as:

∀i, 1 ≤ i ≤ k, zi =


xi ∪ yi, if xi ∩ yi = ∅,

xi ∩ yi, otherwise.
(2.1)

The second step consists in assigning final character states to every parsimony sequence of the tree.

This is a top-down process that starts at the root of the topology, for every position 1 ≤ i ≤ k of

the sequence at the root of the tree a state is selected, then, for every inner node from the root of

the tree to the leaves’ parents, similar states are selected if they exist within the state sets of the

child node, else a random state within the child’s set is selected.

Once the character state sets for the entire topology have been selected the tree can be evaluated

under MP. For every inner node w ∈ I of the tree, whose children are represented by the sequences

Su = {x1, x2, . . . , xk} and Sv = {y1, y2, . . . , yk}, the parsimony cost is calculated as:

φ(pw) =
k∑
i=1

ci, where


ci = 1, if xi ∩ yi = ∅,

ci = 0, otherwise.
(2.2)
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Where ci represents the cost at position i of the parsimony sequence pw. And thus, the parsimony

cost for the entire tree is given by:

Φ(T ) =
∑
w∈I

φ(pw). (2.3)

Solving the MP problem implies finding the tree T ∗ where Φ(T ) is minimal (Vazquez Ortiz and

Rodriguez Tello, 2011), i.e.,

T ∗ = arg min
T∈T

{φ(T )}.

where T represents the search-space of all the possible roted trees constructed with the analyzed

taxa.

An example of the selection of character states and evaluation of the topology,for a set of four

taxa n = 4 of size k = 1, can be seen in Figure 2.1. The tree topology in Figure 2.1(a) has assigned

only the leaf nodes as the known taxa of size k, represented by a set of one possible state each. In

Figure 2.1(b) the parsimony sequences for each internal node have been calculated: for I1 the set of

states remains A because L1 ∩ L2 6= ∅ and its parsimony cost (φ(p1)) remains zero. On the other

side, for I2 the intersection of the state sets is nonexistent, therefore the states assigned to I2 are C

and G and the parsimony score of that sequence is φ(p2) = 1, same applies to the root of the tree.

In Figure 2.1(c) the selection of the final states takes place, the parsimony costs for each internal

node remain the same. In this example, the parsimony score of the entire tree is Φ(T ) = 2.

2.2 Codification of the parsimony sequences

We use the term Parsimony Sequence to refer to a sequence assigned to an inner node in a

phylogenetic tree. The length of this sequence is the same as the length of those assigned to

the node’s children, and the values at each i-th position of this sequence depend solely on the i-th

position of the children assigned to the node. A parsimony sequence p represents the information of

an inferred ancestor that depends on the known information of its successors.
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(a) An initial tree Topology. (b) First step: propagation of values.

(c) Second step: selection of final states.

Figure 2.1: Graphic example of the Fitch’s algorithm for the selection of character state sets and the
evaluation of a tree topology using MP.

The codification used for these sequences depends on the data stored in the input aligned

sequences that represent the studied taxa, usually being of two types: using binary data (for

morphological information) or using multi-state character data (for molecular data).

If the aligned sequences represent morphological information, each site of the sequence represents

a characteristic, and the value assigned to it indicates whether the studied OTU presents such

characteristic (1) or not (0).

Otherwise, if the aligned sequences represent molecular data, the possible symbols for each site

have a wider alphabet. If the aligned sequences represent proteins, each of the symbols represent a

codon (a triplet of nucleotides) as shown in Table 2.2, otherwise, the assigned values represent the

nucleic acids present in each position, so the numeric values assigned to each symbol in the alphabet

α are as shown in Table 2.1. The values for the four nucleic base symbols are the first four power

of two values (1, 2, 4, and 8), the remaining symbols are assigned the sum of the values of the

combined bases they represent, a gap (-) represents the deletion or insertion of a base, N represents
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the possible presence of all four bases, and the ? symbol represents either the presence or the absence

of any base, the parsimony cost of a site with the ? symbol is always 0. This particular assignment

of values enables the use of bitwise operators to calculate parsimony sequences and their costs.

Symbol Nucleotide Integer Value
A Adenine 1
C Cytosine 2
G Guanine 4
T (or U) Thymine (or Uracil) 8
M A or C 3
R A or G 5
S G or C 6
W A or T 9
Y C or T 10
K G or T 12
V A or C or G 7
H A or C or T 11
D A or G or T 13
B C o G o T 14
N Any base 15
- Gap 16
? Any symbol 255

Table 2.1: Numerical values assigned to every symbol in the alphabet of an aligned sequence or
parsimony sequence for nucleic acids (Liébecq, 1992; Metanomski, 1991).

The adopted encoding represents the symbols as integer values. The characteristic that each

subsequent symbol is the sum of the value of the contained base nucleotides, enables to treat each

position either as an integer value or as a set of nucleotides, which might yield relevant information

for further analysis.

2.3 Multi-objectivization

The term multi-objectivization was originally coined by Knowles et al. (2001) to name a reformulation

of a single objective problem using two or more evaluation functions. This might be achieved by
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adding complementary helper objectives (Jensen, 2005), or decomposing the original evaluation

function (Handl et al., 2008). Multi-objectivization, regardless of the reformulation method, modifies

the fitness landscape, affecting the performance of the algorithms at hand. If a reformulation is

achieved by adding complementary objectives it is said to be a multi-objective problem of the form:

f(x) = [f(x), g1(x), . . . , gh(x)]T ,

where f is the original evaluation function of the problem, and gi is the i-th complementary objective,

1 ≤ i ≤ h (Garza Fabre et al., 2015).

When the multi-objectivization is achieved by decomposition, the original function is divided into

separate components, each of them treated as a different objective function, creating a problem of

the form:

d(x) = [f1(x), f2(x), . . . , fd(x)]T ,

where the sum of the d ≥ 2 objectives equals the original function (Garza Fabre et al., 2015).

In multi-objective optimization, the most used approach to determine the quality of a solution is

based on dominance. According to the Pareto approach, a solution a dominates a solution b if a is not

worse than y in all objectives and is better in at least one of them. Solving a multi objective problem

implies finding the Pareto optimal solutions that represent a trade-off among objective functions. In

a front of Pareto optimal solutions all of them have the same importance (Cancino and Delbem,

2007).

Handl et al. (2007), proposed five different contexts in which a problem might be multi-

objectivized:

1. Standard. This category refers to problems where multiple objectives are clearly defined and

are optimizable.

2. Counterbalance for bias. An aditional objective is introduced to counterbalance an existing
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bias in the first objective.

3. Multiple source integration. This category is used to integrate multiple data-sources that

might generate noise when combined.

4. Performance approximation by proxies. This category is used when some of the variables

(needed to estimate the quality of a solution) are not available during the optimization process.

In this case, some proxy objectives are used to capture some good aspects of the obtained

solutions.

5. Multi-objectivization This category refers to the use of Multi-Objective Optimization

(MOO) solely to guide the search in a single-objective problem, this is used when:

• The problem presents great amounts of local optima in the fitness landscape, in which

case the decomposition of the original objective function might help reducing the amount

of local optima (Knowles et al., 2001).

• The search landscape presents flat regions (with no gradient), in which case the

incorporation of supplementary objectives might guide a search algorithm trough low

gradient regions (Jensen, 2003; Knowles et al., 2001)

2.4 Chapter summary

This chapter presented the formal definition for the MP problem, the codification of solutions, and

the definition and classification of multi-objectivization. According to the classification proposed by

Handl et al., the approach used in this thesis work falls within the fifth category, the MP problem

presents complex fitness landscapes and the decomposition of the original objective function, or the

addition of new supplementary objectives could be used to guide the search toward better solutions.

The following chapter reviews the relevant literature of the problem, including the state of the

art algorithms and the current multi-objective formulations of the MP problem.
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Symbol Three letter code Amino acid Possible codons

A Ala Alanine
GCA, GCC,
GCG, GCT

B Asx Aspartic acid or Asparagine
AAC, AAT,
GAC, GAT

C Cys Cysteine TGC, TGT
D Asp Aspartic acid GAC, GAT
E Glu Glutamic acid GAA, GAG
F Phe Phenylalanine TTC, TTT

G Gly Glycine
GGA, GGC,
GGG, GGT

H His Histidine CAC, CAT
I Ile Isoleucine ATA, ATC, ATT
K Lys Lysine AAA, AAG

L Leu Leucine
CTA, CTC, CTG,
CTT, TTA, TTG

M Met Methionine ATG
N Asn Asparagine AAC, AAT

P Pro Proline
CCA, CCC,
CCG, CCT

Q Gln Glutamine CAA, CAG

R Arg Arginine
AGA, AGG, CGA,
CGC, CGG, CGT

S Ser Serine
AGC, AGT, TCA,
TCC, TCG, TCT

T Thr Threonine
ACA, ACC,
ACG, ACT

U Sec Selenocysteine

V Val Valine
GTA, GTC,
GTG, GTT

W Trp Tryptophan TGG
X Xaa unknown or ’other’ NNN
Y Tyr Tyrosine TAC, TAT
Z Glx Glutamic acid or Glutamine
* *(Ter) Termination TAA, TAG, TGA

Table 2.2: Codons assigned to every symbol in the alphabet of an aligned sequence or parsimony
sequence for proteins (Liébecq, 1992; Metanomski, 1991).
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State of the art

This chapter reviews the most relevant works related to this research: First, it describes the

construction methods for phylogenetic trees, then it presents algorithms based on maximum

parsimony, and finally, it reviews the current multi-objective works in the literature referent to the

MP problem as a main objective.

3.1 Methodologies for phylogenetic trees construction

Construction of phylogenetic trees can be divided in two groups: distance-based methods and

character-based methods.

17
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3.1.1 Distance-based methods

Distance-based methodologies measure the differences between the sequences that represent the

known species as an evolution criterion. These methodologies can be classified as group methods or

optimality criterion methods.

Group methods have their main exponent in the unweighted pair group method using arithmetic

average (UPGMA) proposed by Sokal and Michener (1958). UPGMA begins with a distance matrix

that includes all the known taxa, then, it applies an iterative process, where it groups the closest pair

of nodes in the matrix; and once the nodes have been grouped, an inferred ancestor is created and

replaces the grouped nodes in the distance matrix. The process is repeated until the last two nodes

are grouped in a root node, similar to the process followed by a hierarchical agglomerative clustering

algorithm (Kaufman and Rousseeuw, 1990). UPGMA is a simple methodology that assumes that the

evolution rate of the species is constant; therefore the resulting tree might not be a true hypothesis.

On the other hand, the main exponent of the optimality methods is the Fitch-Margoliash method

(Fitch and Margoliash, 1967). This method aims to reduce the standard deviation of the distances

between species present on a constructed tree, from those in a x| matrix of the known species,

obtaining a statistically optimal tree. Even if the method is able to find an optimal tree, its calculation

is inefficient and not viable for large datasets.

3.1.2 Character-based methods

The most widely used character-based methods are maximum likelihood (ML) and maximum

parsimony (MP).

The maximum likelihood method uses evolutionary models to assess the probability that a tree

represents the true evolutionary history of the set of known species. An example of an evolutionary

model is the Jukes-Cantor model (Jukes and Cantor, 1969), in which the probability P that a

nucleotide in a DNA sequence does not mutate after a time t is P (t) = 1
4

+ 3
4e−σt

where σ is the
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substitution rate of a nucleotide, which might be empirically inferred or assigned based on a previous

analysis of the species. With this model the likelihood of a phylogenetic tree is measured as the sum

of the likelihood at every position of the sequences in every level of the tree. When every tree is

evaluated, the tree with the biggest likelihood value is the accepted one (Xiong, 2006).

Phylogenetic tree construction using MP aims to build trees with a minimum number of

evolutionary changes (tree length) (Xiong, 2006). Among the biological community there are

specialized software tools for phylogenetic tree construction based on parsimony, among these tools

the one with the best known performance is Tree analysis using New Technology (TNT1) developed

by Goloboff et al. (2008).

Knowing diverse approaches to the problem should be useful when proposing complementary

objectives, therefore we present the most relevant information we have found in the literature of the

MP problem.

3.1.3 Exact methods

Exact methods explore the search space to find the optimal solution. However, they are only plausible

for small instances of the problem.The most common exact methods are exhaustive search and branch

and bound algorithms (B&B).

Exhaustive algorithms explore every existent tree topology in the search space and returns the

one with the lowest objective function score. In practice, they are not widely used because their

utility is limited due to the factorial growth rate of the search-space of the problem.

B&B algorithms present a considerable reduction in computing time with respect to an exhaustive

search by setting upper bounds on the cost of constructing a phylogenetic tree and automatically

discarding those that break the limit. In 2006, Bader et al. proposed a parallelized B&B algorithm

that solves datasets up to 27 taxa (Bader et al., 2006).

1http://www.lillo.org.ar/phylogeny/tnt/
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Later, White and Holland (2011) published XMP (Exact Maximum Parsimony). By optimizing

the parsimony score and upper bound calculations they can solve instances of up to 35 taxa in less

than 20 minutes (or less than 1 minute running a parallelized version of the algorithm in a 256 cores

machine).

3.1.4 Approximation algorithms

When using a tree representation for the solutions of the MP problem, the main neighborhood

functions used in local search and mutation algorithms are:

• Nearest Neighbor Interchange (NNI) (Andreatta and Ribeiro, 2002; Moore et al., 1973;

Vazquez Ortiz and Rodriguez Tello, 2011; Waterman and Smith, 1978): Proposed by Moore

et al. (1973). NNI swaps inner branches of the tree that have a distance of up to 1 between

them, generating a relatively small neighborhood (2n − 6 neighbors for n taxa) (Allen and

Steel, 2001).

• Subtree Pruning and Regraft (SPR) (Andreatta and Ribeiro, 2002; Vazquez Ortiz and

Rodriguez Tello, 2011): It prunes an inner node of the tree and inserts it back in a random

position, generating up to 2(n− 3)(2n− 7) neighbors (Allen and Steel, 2001).

• Tree Bisection and Reconnection (TBR) (Swofford et al., 1996; Vazquez Ortiz and Rodriguez

Tello, 2011): It divides the tree into two subtrees and reconnects them in any of their branches,

generating up to (2n− 3)(n− 3)2 neighbors (Allen and Steel, 2001).

• Leaf Swap (LSwap) (Cotta and Moscato, 2002; Sonco Alvarez and Ayala Rincon, 2017): It

selects and swaps two random leaves in the tree, generating up to n(2n− 4) neighbors.

• Single Step (STEP) (Andreatta and Ribeiro, 2002; Sonco Alvarez and Ayala Rincon, 2017;

Waterman and Smith, 1978): A leaf is pruned from the tree and inserted in any other edge.

It generates up to n(n− 1) neighbors.
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Congdon (2001) published a genetic algorithm for the MP problem called GAPhyl, this algorithm

mixes the source code of PHYLIP2, a free phylogenetic analysis package from Washington University,

and Genesis3, a genetic algorithm support library. GAPhyl uses a crossover method that selects a

subtree from the first parent, removes the leafs of such a subtree from the second parent and then

inserts the subtree in a random inner node. This crossover operation is aimed to partially maintain

the information of the parent’s inferred ancestry. GAPhyl also uses a group of isolated populations

that “migrate” after a given number of iterations in order to avoid convergence problems. This

algorithm improved solutions reported in the literature. However, its temporal cost is relatively high.

Cotta (2006) proposed a scatter search algorithm that uses Prune-Delete-Graph (GAPhyl’s

crossover function) as a diversification and resetting operation. It also applies a Path-Relinking

algorithm to unify solutions inside the population. This algorithm provides near optimal solutions.

Temporal cost might be reduced by adjusting the maximum iterations but it has a direct impact in

the performance and the quality of the final solution.

Goëffon et al. (2006) published a memetic algorithm called Hybrid Distance Recombination

Algorithm (HYDRA). The crossover mechanism used by this algorithm adds up the distance matrices

that represent both parent solutions and then constructs the child solution with a stochastic

variant of the UPGMA algorithm. The mutation mechanism applies a descent algorithm with

progressive neighborhoods (a modification of a SPR neighborhood with variable distance that ranges

from exploring all the possible changes to a NNI neighborhood) (Goëffon et al., 2008). Hydra’s

performance was measured by comparing the obtained solutions on 28 instances (8 real instances

and 20 randomly generated ones) with the results given by the analysis tool TNT. Both methods

produced the same parsimony scores in the real instances, byt HYDRA improved the score on 19

artificially generated instances.

2http://evolution.genetics.washington.edu/phylip.html
3https://www.bioconductor.org/packages/devel/bioc/html/GENESIS.html
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Richer et al. (2013), introduced an alternative to Hydra by using a simulated annealing algorithm

called Simulated Annealing for Maximum Parsimony (SAMPARS). This algorithm uses SPR and

TBR neighborhoods with a stochastic descent algorithm. SAMPARS uses a geometrical cooling

strategy that determines the amount of visited solutions in each neighborhood. SAMPARS improved

11 of the solutions reported by Hydra while reaching the same parsimony scores for the rest of the

remaining instances with lower computational time.

3.2 Multi-objective methodologies

In the specialized literature of the problem there are some multi-objectivization proposals for the MP

problem, most of them have adapted supplementary objectives trough different existent construction

criteria (usually maximum likelihood).

Cancino and Delbem (2007) proposed PhyloMOEA, a multi-objective algorithm based on NSGA-

II that uses maximum likelihood and maximum parsimony as objectives. This method produces

a Pareto front of non-dominated solutions with the best parsimony scores found, eliminating

repeated parsimony costs using likelihood as a differentiation criteria. The approach was tested

on instances: rbcL_55, mtDNA_186, RDPII_218 and ZILLA_500, with numbers of taxa in the

range of 55 ≤ n ≤ 500 and informative sites in the range of 1314 ≤ k ≤ 4128. The long execution

time of this algorithm is a disadvantage because for some given initial solutions the convergence of

the algorithm could take several hours.

Coelho et al. (2010) implemented an adaptation of a multi-objective artificial immune system.

Such an implementation uses distance matrices to calculate the standard deviations from a current

tree to the theoretical minimum distance tree and minimizes this assessment as a secondary objective.
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Santander and Vega proposed three multi-objective adaptations for bio inspired algorithms that

improved the results obtained by PhyloMOEA

• An implementation of a multi-objective firefly algorithm (MOFA) (Santander Jiménez and

Vega Rodríguez, 2013a) that uses maximum parsimony and maximum likelihood as objectives.

This adaptation uses the progressive neighborhood proposed by Goëffon et al. (2006).

• A multi-objective artificial bee colony algorithm (MOABC) (Santander Jiménez and Vega

Rodríguez, 2013b) that uses maximum parsimony and maximum likelihood.

• An indicator based multi-objective bat algorithm (IMOBA) (Santander Jiménez, 2016) using

maximum parsimony and maximum likelihood.

Santander and Vega used the same dataset used by Cancino and Delbem (2007), additionally

there are results reported for instances HIV2_72, membracidae_81, HIV1_192, and S1482 with

72 ≤ n ≤ 192 species, and 817 ≤ k ≤ 3321 informative sites.

The most common approach for multi-objectivizing the MP problem in the literature consists

in evaluating the likelihood of a topology under different substitution models. Barry and Hartigan

(1987) proposed a method that attempted to maximize likelihood and parsimony in tree estimations

called “Most parsimonious likelihood”. They noted that this combination may produce inconsistent

estimations. Furthermore, experimentation conducted by Yang (1996) showed that, for certain cases,

using a “wrong” substitution model for a group of taxa can yield topologies closer to the true tree

than applying the “correct” model, proving inconsistency in the use of likelihood.

3.3 Chapter summary

The reviewed multi-objective algorithms of the state of the art are mainly focused in the first category

proposed by Handl et al. (2007). They use defined and measurable objectives in order to pursue a

trade-off in the Pareto front of the solutions.Table 3.1 presents a comparison between the algorithms
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enumerated in this chapter, mentioning the main innovations presented and the weaknesses observed

for each of them. For the multi-objective approaches used to multi-objectivize the MP problem,

most of them (Cancino and Delbem, 2007; Santander Jiménez, 2016; Santander Jiménez and Vega

Rodríguez, 2013a,b) use variations of the Likelyhood score of a tree as a secondary objective, and

one of them (Coelho et al., 2010) uses minimization of the mean squared error, both of them being

expensive evaluations to conduct over a tree.
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4
Multi-objectivization of the MP problem

This chapter describes the methodology followed to multi-objectivize the MP problem. It introduces

the proposal, evaluation, and selection of promising new multi-objective formulations for the problem.

4.1 Proposal of supplementary objective functions

The first step for the multi-objectivization of the MP problem is to propose new reformulations of

the problem. These reformulations must be applicable to the encoded candidate solutions in the

algorithm, and the resulting values must have information to discern good from bad solutions.

In order to multi-objectivize the MP problem two approaches are tested: the first one is the

decomposition of the original function, and the second is the proposal of helper or supplementary

objective functions to aid the evolutionary algorithm to navigate trough the search space.

27
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4.1.1 Decomposition of the original function

The decomposition of the original function can be managed by using a series of partial evaluations

over a complete phylogenetic tree. The resulting objective functions can be used either to replace

the original function, or to add a partial function as helper objective in order to differentiate similar

trees. The proposed evaluation functions resulting from breaking down the parsimony score of a tree

are the following:

1. Evaluation of the parsimony score of the inner nodes in even levels of the tree, i,e.

Φ1(T ) =
k∑
i=1


φ(wi), if H(wi) ≡ 0 (mod 2),

0, otherwise.
(4.1)

where H(Ii) is the depth H of the i-th inner node w ∈ I of the tree.

2. Evaluation of the parsimony score of only the nodes in odd levels of the tree, i,e.

Φ2(T ) =
k∑
i=1


φ(wi), if H(wi) ≡ 1 (mod 2),

0, otherwise.
(4.2)

3. Evaluation of the accumulated parsimony at the internal nodes connected directly at the root

of the tree, such as Φ3(T ) = F (v∗ → left) or Φ4(T ) = F (v∗ → right), where v∗ ∈ V

represents the root node of the tree; v∗ → left and v∗ → right represent the left and right

nodes connected to v∗, respectively; and F (v) is calculated as:

F (v) =


φ(pv) + F (v → right) + F (v → left), if v ∈ I

0, otherwise.
(4.3)

where pv is the parsimony sequence of node v.
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4. Score of the least parsimonious inner node in the tree, i,e.

Φ5(T ) = arg max
w∈I

{φ(pw)} (4.4)

5. Score of the most parsimonious inner node in the tree, i,e.

Φ6(T ) = arg min
w∈I

{φ(pw)} (4.5)

An initial experimentation was conducted in order to test the usefulness of these proposed

decompositions, whether as stand-alone multi-objective formulations, or as helper objectives derived

from a decomposition of the original function. The evaluation was conducted by comparing the

values obtained by each of the objective functions over a set of randomly generated topologies in a

test instance of 7 taxa.

It was observed that for Φ1(T ) and Φ2(T ) the favored tree topologies were those in which most

of the leaf nodes of the tree were placed in an even inner level, or odd inner level, respectively,

regardless of the overall parsimony score of the tree.

A simmilar behaviour occured with the application of Φ3(T ) and Φ4(T ), where tree topologies

were deemed better if a leaf node was directly connected at the root of the tree.

As for Φ5(T ) and Φ6(T ), the presence of a specific subtree of minimal, or maximal cost in a tree

topology, would make it indistinguishable from another containing the same subtree, regardless of

their overall parsimony score.

Under the enumerated conditions, these formulations failed to discern between topologies that had

the same overall parsimony score, and, in some cases, even failed to discern between topologies with

different parsimony scores. Therefore, further experimentation with these proposals was dismissed.
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4.1.2 Supplementary objective functions

Taking advantage of the information generated within a phylogenetic tree, in the inferred ancestors,

we propose seven helper objectives that are inspired in distance functions used for numeric vectors,

two objective functions that apply weighted versions of the parsimony score, and tree functions that

use evolution models applied for the evaluation of the likelihood of a tree.

In order to maximize the information used by these supplementary helper objectives, we propose

an evaluation of the tree topology in which Fitch’s algorithm for the propagation of state sets has

been stopped after the first step (without selecting final states for the inner nodes).

Each of the proposed objectives is presented in the form ϕ(pw), which calculates the cost of the

parsimony sequence p in an inner node w.

Therefore, the complete cost of a topology evaluated under these objectives is given by

Φ(T ) =
∑
w∈I

ϕ(pw). (4.6)

First we define the helper objectives based on distance functions:

1. D1. Inspired by the Jaccard index of dissimilarity between sample sets (Jaccard, 1901). It

is defined as the cardinality of the intersection divided by the cardinality of the union of two

sample sets. Taking advantage of the integer values encoded in the sequences of the inner

nodes, we consider that every site z of the sequence pw is a set of bits, and the cardinality #(z)

of that site is denoted by the amount of bits set to 1. The evaluation of this objective function

for an inner node w, whose descendants are represented by the sequences St = {x1, x2, . . . , xk}

and Su = {y1, y2, . . . , yk} is defined as:

ϕ(pw) =
k∑
1

#(xi ∩ yi)
#(xi ∪ yi)

(4.7)
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2. D2. Inspired by the BrayCurtis dissimilarity (Bray and Curtis, 1957). It estimates a similitude

between geographic sites based on the species of trees found in each site. This dissimilarity

index is calculated for two unidimensional arrays a and b as diss(a, b) =
∑

i
|ai−bi|
|ai+bi| . For this

evaluation we use the integer values encoded in each site of the parsimony sequence pw of an

inner node w, whose descendants are represented by the sequences St = {x1, x2, . . . , xk} and

Su = {y1, y2, . . . , yk}, and is evaluated as:

ϕ(pw) =

∑k
1 |xi − yi|∑k
1 |xi + yi|

(4.8)

It must be noted that even if the values at the denominator of the equation will never reach zero

or below values, the absolute value symbols have been mantained for respect to the original

formula.

3. D3. Inspired by the Canberra distance (Lance and Williams, 1966), applied to measure distance

between points in a vectorial space, the distance between the points a and b in anm dimensional

space is measured as dist(a, b) =
∑m

1
|ai−bi|
|ai|+|bi| . Adapted to a parsimony sequence pw of an

inner node w whose descendants are represented by the sequences St = {x1, x2, . . . , xk} and

Su = {y1, y2, . . . , yk}, we use the integer values at each site to evaluate the cost ϕ of this

objective as:

ϕ(pw) =
k∑
1

|xi − yi|
|xi|+ |yi|

(4.9)

In the denominator of the equation, the absolute value symbols have been mantained to respect

the original formula.

4. D4. Inspired by the Chebyshev distance (Bienaymé, 1867), in which the distance of two

vectors is the greatest difference along any of their dimensions. We apply this metric as the

evaluation of the greatest difference along the integer values that encode the sites of two
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sequences. For an inner node w whose whose descendants are represented by the sequences

St = {x1, x2, . . . , xk} and Su = {y1, y2, . . . , yk}, the evaluation is presented as:

ϕ(pw) = arg max
i∈k

(|xi − yi|) (4.10)

5. D5 Inspired by the Euclidean distance, in which the distance between two points in the

Euclidean space is the length of the straight line between them, calculated in an m dimensional

space as dist(a, b) =
√

(b1 − a1)2 + (b2 − a2)2 + . . .+ (bm − am)2 for the vectors a and b

(Deza and Deza, 2009). It is applied for an inner node w, whose descendants are represented

by the sequences St = {x1, x2, . . . , xk} and Su = {y1, y2, . . . , yk}, by using the integer values

at each site of its parsimony sequence as follows:

ϕ(pw) =

√√√√ k∑
1

(xi − yi)2 (4.11)

6. D6. Inspired by the Manhattan distance for unidimensional vectors (Krause, 1987), which is

the distance of the vertical and horizontal components of two vectors, defined as dist(a, b) =∑
i |ai−bi|. Which we apply to the parsimony sequence of an inner node w, whose descendants

are represented by the sequences St = {x1, x2, . . . , xk} and Su = {y1, y2, . . . , yk} as:

ϕ(pw) =
k∑
1

|xi − yi| (4.12)

7. D7. This distance function attempts to count similarities sim between sequences, for the

descendants St = {x1, x2, . . . , xk} and Su = {y1, y2, . . . , yk} of the inner node w, and divides

them by the length of the sequence.
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ϕ(pw) =

∑k
1 sim(xi, yi)

k
, where sim(x, y) =


1, if x ∩ y 6= ∅

0, otherwise
(4.13)

The proposed helper objectives based on weighted variations of the parsimony score are:

1. Generalized weighted parsimony A weighting schema that gives a different value to the

transitions (changes from purines to purines and pyrimidines to pyrimidines) and transversions

(changes from purine to pyrimidine and vice versa) (Xiong, 2006). Two different weightings

have been taken into account, for an inner node w whose descendants are represented by the

sequences St = {x1, x2, . . . , xk} and Su = {y1, y2, . . . , yk}:

(a) D8. Uses the weighting schema proposed by Swofford and Olsen (1990), that is evaluated

as:

ϕ(pw) =
k∑
1

ci, where ci =,


1, if Transition

5, if Transversion

0, otherwise

(4.14)

(b) D9. Uses the weighting schema proposed by Brown et al. (2006), that is evaluated as:

ϕ(pw) =
k∑
1

ci, where ci =,


1, if Transition

2, if Transversion

0, otherwise

(4.15)

The last supplementary objective functions, that take into account evolutionary models from the

literature to evaluate an individual, use generalizations that enable the evaluation of individual nodes

of the tree. The first one is a generalized model of the Jukes-Cantor model, and the remaining

two are generalizations of the Kimura two parameter model (K2P) as presented in two evolutionary
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analysis software tools: TreeCon (Van de Peer and De Wachter, 1994) and MEGA (Tamura et al.,

2013).

1. D10. Jukes-Cantor model (Jukes and Cantor, 1969), assumes all substitutions are independent

and equally subject to change. For an inner node w whose descendants are represented by the

sequences St = {x1, x2, . . . , xk} and Su = {y1, y2, . . . , yk}, it is calculated as:

ϕ(pw) = −3

4
ln(1− 3

4
ftu) (4.16)

where ftu is the estimated evolutionary distance between species t and u.

2. D11. Kimura two parameter model (K2P) (Kimura, 1980) as generalized in TreeCon (Van de

Peer and De Wachter, 1994).

ϕ(pw) = −1

2
ln[(1− 2R−Q) ∗

√
1− 2Q], (4.17)

where R is the proportion of transitions and Q the proportion of transversions in the sequences

St and Su that represent w’s descendants.

3. D12. K2P as generalized in MEGA (Tamura et al., 2013).

ϕ(pw) = −1

2
ln(1− 2R−Q)− 1

4
ln(1− 2Q) (4.18)

where R is the proportion of transitions and Q the proportion of transversions in the descendant

sequences of w.
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4.2 Evaluation and selection

To evaluate the usefulness of the proposed functions as supplementary objectives in a multi-objective

formulation, their correlation against the parsimony score was measured. According to Evans (1996)

the strength of a correlation can be described as: very weak (0.00 → 0.19), weak (0.20 → 0.39),

moderate (0.40 → 0.59), strong (0.60 → 0.79), and very strong (0.80 → 1.00). A very strong

correlation to the parsimony score of a tree would not be useful for differentiating trees of the same

quality, conversely, an objective function with very weak correlation would fail to introduce a trade-off

between objectives for a solution in the Pareto front obtained by an algorithm. An ideal function

would have a moderate to strong correlation, whether uphill (positive) or downhill (negative), in order

to guide the search towards better solutions and being able to differentiate solutions with similar

evaluations of the first objective function, these characteristics can be observed in Figure 4.1. To

correctly evaluate the correlation between the proposed objective functions and the parsimony score

of a candidate solution, an exhaustive evaluation of the search space was conducted for 30 instances

of 7 taxa (10395 trees each). These instances were generated using aligned sequences from larger

datasets found in the literature:

• 3 instances generated from drosophyl2, with 17 taxa of size k = 222.

• 5 instances generated from RDPll_218, with 218 taxa of size k = 4182.

• 7 instances generated from rbcL_55, with 55 taxa of size k = 1314.

• 7 instances generated from ZILLA_500 with 500 taxa of size k = 759.

• 8 instances generated from mtDNA_186, with 186 taxa of size k = 16608.

In order to evaluate the entire search space, all possible rooted tree topologies for 7 taxa were

generated in Newick format using the phylogenetic analysis tool PAUP∗ (Swofford, 2001). These
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Figure 4.1: Graphs showing the correlation between two objectives. Each mark represents a solution
in the search space of a synthetic test instance evaluated with Parsimony as first objective(x axis)
and a secondary objective (y axis).

trees were reconstructed using the information of the generated instances and evaluated with each

proposed objective function.

For every evaluated instance an individual analysis of the correlation between objective functions

was conducted. The resulting data allows us to graphically depict the interaction between evaluations.

Figure 4.2 shows a square matrix with the data obtained from the evaluations of every proposed

helper objective over the entire search-space of instance drosophyl3. The main diagonal displays the

name of the objective function alongside a histogram showing the distribution of costs among the

evaluated search-space. The lower triangular shows scatter plots of the interaction between every

pair of evaluated objective functions. The upper triangular shows the correlation between every pair



4. Multi-objectivization of the MP problem 37

of objective functions. The number ranges, shown at the start and end of every row and column,

display the range of the values obtained for every objective function in the entire search-space. Similar

graphs for all the test instances are available in Appendix A.

Figure 4.2: Example of the plot obtained from evaluating instance drosophyl3. The lower triangle

of the matrix shows scatter plots with the obtained sores from the evaluation, the upper triangle

shows the correlation between two functions, and the diagonal shows the name and the histogram

of the obtained values for every function.
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the problem
Avg. COR φ D1 D2 D3 D4 D5 D6 D7 D8 D9 D10 D11 D12

φ 1
D1 -0.6396 1
D2 0.5859 -0.8740 1
D3 0.6041 -0.8259 0.8596 1
D4 0.0303 -0.0985 0.2483 0.2378 1
D5 0.4643 -0.7039 0.9337 0.7465 0.3605 1
D6 0.5801 -0.8783 0.9939 0.8524 0.2462 0.9292 1
D7 -0.9999 0.6396 -0.5859 -0.6041 -0.0304 -0.4643 -0.5801 1
D8 0.8959 -0.5489 0.4944 0.5145 0.0171 0.3984 0.4889 -0.8959 1
D9 0.9761 -0.6079 0.5501 0.5715 0.0198 0.4363 0.5441 -0.9761 0.9682 1
D10 0.9936 -0.6387 0.5729 0.5946 0.0132 0.4481 0.5681 -0.9936 0.9009 0.9756 1
D11 -0.0316 0.0100 -0.0050 -0.0177 0.0018 0.0065 -0.0041 0.0316 -0.0353 -0.0385 -0.0351 1
D12 -0.0284 -0.0114 0.0297 0.0067 0.0150 0.0393 0.0289 0.0284 -0.0445 -0.0407 -0.0344 0.7232 1

Table 4.1: Average correlation between objective functions over 30 test instances of 7 taxa.

As shown in Table 4.1, on average there are four objective functions that fulfill the previously

stated requirement of having a strong correlation: D1, D2, D3, and D6. However, D2 and D6 have

a really strong correlation between them (0.9939), meaning that the results provided by them might

be too similar during experimentation.

Therefore, according to the average results and the behavior of the proposed objective functions

during testing, the selection of promising supplementary objectives can be narrowed to three: D1,

D2, and D3.

4.3 Effect of the selected multi-objective reformulations

in the fitness landscape of the problem

According to Verel et al. (2006), the geometry of a neutral fitness landscape derives from the neutral

neighborhoods.

For a solution T ∈ T , the neutral neighborhood of T is the set of solutions obtained by the

neighborhood function B(T ) such that neut(T ) = {T ′ ∈ B(T )|cost(T ) = cost(T ′)}, and the

neutral degree of T is the cardinality of its neutral neighborhood.

In order to assess the reduction of neutrality in the fitness landscape of the problem, through the

selected multi-objective reformulations, we analyzed different neighborhoods generated from random
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initial solutions using SPR as neighborhood function. The analysis was conducted using the instance

mtDNA2, with seven taxa and sequences of size k = 16608.

Figure 4.3 shows a histogram that represents the distribution of the different parsimony scores

present in the 56 neighbors of a random solution T . For the 57 different trees in the neighborhood

(including T , with a normalized parsimony score of norm(Φ(T )) = 0.8), there are only eight

different parsimony scores. For this particular case, the neutral degree of the initial solution T is

neutpars(T ) = 21, which represents a plateau that includes 37% of the neighborhood. Furthermore,

a second plateau can be observed, with 16 tree topologies that share the normalized parsimony cost

of norm(Φ(T )) = 0.9.
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Figure 4.3: Distribution of the parsimony scores found in the SPR neighborhood of a randomly
generated topology for instance mtDNA2.

Figure 4.4 represents the distribution of different solutions for the linear combination of the

parsimony score and D1, we can observe that the number of possible solutions increases to 34, and

the most repeated one only includes 5 solutions in the entire neighborhood. The normalized cost for

the initial solution T is norm(Φ(T )) = 1.520, giving it a neutral degree of neutD1(T ) = 3.
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Figure 4.4: Distribution of the parsimony scores found by the linear combination of parsimony and
D1 in the SPR neighborhood of a randomly generated topology for instance mtDNA2.

The application of the linear combination between the parsimony score and D2 is shown in

Figure 4.5. It depicts the existence of 56 possible evaluations for the 57 solutions in the neighborhood

of T . The neutral degree of T is neutD2(T ) = 1, being the only solution in the neighborhood with

a normalized cost of norm(Φ(T )) = 1.542.

The use of D3 combined with the parsimony score is shown in Figure 4.6. It shows that the

biggest plateaus in the neighborhood are composed of two solutions. Since the normalized cost of

T is norm(Φ(T )) = 1.518, the neutrality degree of this neighborhood is also neutD3(T ) = 1.

The behavior reported by this experiment under the SPR neighborhood is also observed under

the

Table 4.2 shows a general view of the neutrality of the fitness landscape over this particular

instance. It shows the number of different evaluations that exist for the 10395 different tree topologies

in the search space, the maximum (Max) and minimum (Min) number of topologies that share

the same score, and the average number of solutions under each different evaluation (Avg). It

can be observed that the neutrality of the search space is greatly reduced with the application of



4. Multi-objectivization of the MP problem 41

	0

	0.5

	1

	1.5

	2

0.
21

6
0.
37

9
0.
49

1
0.
50

0
0.
52

1
0.
71

8
0.
85

5
1.
05

2
1.
05

5
1.
10

7
1.
13

8
1.
17

0
1.
17

1
1.
17

9
1.
19

1
1.
22

6
1.
24

2
1.
24

9
1.
27

3
1.
32

5
1.
36

4
1.
38

6
1.
38

9
1.
41

0
1.
44

0
1.
45

5
1.
48

5
1.
49

1
1.
50

4
1.
50

6
1.
51

2
1.
52

6
1.
54

2
1.
56

8
1.
57

6
1.
57

7
1.
60

5
1.
63

4
1.
64

9
1.
66

1
1.
66

5
1.
69

6
1.
70

5
1.
70

8
1.
74

0
1.
74

1
1.
75

1
1.
78

1
1.
79

6
1.
79

7
1.
80

0
1.
82

6
1.
84

1
1.
98

4
1.
98

5
2.
00

0

Nu
m
be
r	o

f	n
ei
gh
bo
rs
	w
ith

	th
e	
sa
m
e	
sc
or
e

Normalized	cost

Repeated	cost	of	solutions	in	a	SPR	neighborhood

Figure 4.5: Distribution of the parsimony scores found by the linear combination of parsimony and
D2 in the SPR neighborhood of a randomly generated topology for instance mtDNA2.
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Figure 4.6: Distribution of the parsimony scores found by the linear combination of parsimony and
D3 in the SPR neighborhood of a randomly generated topology for instance mtDNA2.

the helper objectives selected. The increase of different evaluation scores obtained with the multi-

objectivization helps discern similar solution and break the plateaus that exist in the fitness landscape

of the problem.
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Evaluation Different Max Min Avg

Parsimony Score 12 2156 11 866.25

D1 345 171 1 30.13

D2 10282 3 1 1.01

D3 10136 4 1 1.02

Table 4.2: Cost of solutions over the search space of instance mtDNA2.

4.4 Chapter summary

In this chapter, we proposed six functions based on the decomposition of the parsimony score, and a

set of 12 additional helper objective functions. Initial experimentation allowed us to discover that the

proposed decompositions were unfit for a multi-objective formulation, and an extensive exploration

of the search space for instances of seven taxa narrowed the proposed helper objectives to only tree,

that will be tested within a MOEA implementation.

The effect of the additional helper objective functions over the fitness landscape of the problem

was tested by using the evalution of tree topologies belonging to the same SPR neighborhood,

assessing the behavior predicted by the correlation of the functions with the parsimony score.

Next chapter contains the description of the algorithms used to assess the performance of the

proposed multi-objective reformulations, including the selected MOEA, and the genetic operators

implemented.
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Design and implementation of algorithms

This chapter describes the implementation of the selected MOEA: the Nondominated Sorting Genetic

Algorithm II (NSGA-II), and the selected genetic operators (crossover and mutation). It also describes

a parallelization approach used in order to speed up the evaluation of tree topologies.

5.1 Non-dominated sorting genetic algorithm - II

In order to test the selected helper objectives, the chosen MOEA algorithm is the NSGA-II, proposed

by Deb et al. (2002). This algorithm was selected for its availability, its adaptability, and its excelent

performance over an extensive range of problems in the multi-objectivization literature.

NSGA-II is a fast, elitist algorithm that has been found to be effective in nummerous applications.

This algorithm can be easily adapted to different problems by modifying the genetic operators applied

to the problems at hand. This algorithm was implemented and modified to work with a binary tree

representation of the solutions. The complexity of the algorithm is governed by the non-dominated

43
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sorting that has a complexity of O(%(2M)2), where % is the number of objective functions and M

refers to the size of the population.

The main loop of the NSGA-II algorithm involves the creation a new generation of solutions and

the selection among these and the existing solutions (elitism). This approach prefers those solutions

that are not dominated and those that could add diversity to the population (crowding distance)

in case the main Pareto front is not enough to fill the next population. Algorithm 1 shows the

pseudocode of the NSGA-II algorithm.

Algorithm 1 NSGA-II algorithm.
Require: Set of aligned sequences.

Ensure: Pareto front of non-dominated phylogenetic trees.

Initialize ParentPop with M random solutions

Evaluate(ParentPop)

FastNonDominatedSort(ParentPop)

AssignCrowdingDistance(ParentPop)

for i← 2 to maxIter do

ChildPop←getNewPopulationFrom(ParentPop)

Mutate(ChildPop)

Evaluate(ChildPop)

MixedPop←Merge(ParentPop,ChildPop)

FastNonDominatedSort(MixedPop)

AssignCrowdingDistance(MixedPop)

ParentPop←FillWithNonDominatedFronts(MixedPop)

end for

Report pareto front in ParentPop
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5.1.1 Fast non-dominated sorting

The non-dominated sorting algorithm is separates a population into layers. Every layer includes only

solutions that are dominated by the previous layer but no other solution. This is useful for selecting

the individuals that will remain to the next generation. Once the mixed population has been sorted,

the parent population is filled by adding up layers of solutions until it is complete, the complexity of

the non-dominated sorting is O(%M2) where % is the number of objectives and M the size of the

population.

Algorithm 2 FastNonDominatedSort algorithm.
Require: Population.

Ensure: Sorted population according to rank.

for all T ∈ Population do

DT ← ∅ {Solutions dominated by T.}

NT ← 0 {Number if solutions that dominate T.}

for all T ∈ Population do

if T ≺ T then {if T dominates T}

DT = DT ∪ {T}

else if T ≺ T then {if T dominates T}

NT = nT + 1

end if

end for

if NT = 0 then

Trank ← 1

F1 ← F1 ∪ {T} {Front of rank 1}

end if

i← 1
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while Fi 6= ∅ do

Q ← ∅ {Members of next front}

for all T ∈ Fi do

for all T ∈ DT do

Nsolq ← Nsolq − 1

if NT = 0 then {T belongs to the next front}

Trank ← i+ 1

Q ← Q∪ {T}

end if

end for

end for|

i← i+ 1

Fi ← Q

end while

end for

5.1.2 Crowding distance

The crowding distance of a solution is an estimate of the distance between itself and the rest of the

solutions in the population. It is assigned to each element in every layer from the non-dominated

sorting, and is calculated from the distances between the % objective functions. The complexity of

the crowding distance calculation is O(M(2%)log(2%)).

Algorithm 3 AssignCrowdingDistance algorithm
Require: F a non-dominated set of solutions

Ensure: Crowding distance of every individual in the set

N ← |F|
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for i← 1 to N do

F [i]dist ← 0

end for

for m← 1 to % do

SORT (F ,m) {sort solutions according to the m-th evaluation function}

F [i]dist ← F [N ]dist ←∞

for i← 2 to N do

F [i]dist = F [i]dist +
(F [i+ 1] ·m−F [i− 1] ·m)

fmaxm − fminm

end for

end for

5.2 Initial Population

The individuals in the initial population are created randomly from the analyzed taxa. The

initialization employs a randomized variation of the UPGMA algorithm. Each individual starts with

a set of n nodes that include the sequences of the studied taxa. Then, at every iteration, a pair

of nodes is randomly selected and grouped into new node that then replaces them in the set. The

selection and grouping of pairs is repeated until only one node remains. The last node is selected as

root and a fully formed tree is obtained. This process can be observed in Figure 5.1.

5.3 Genetic operators

The genetic operators in evolutionary algorithms are meant to guide the search toward promising

sections of the search space. There are three kind of operators: selection, crossover, and mutation.

The adopted selection operator is the one already defined as part of the NSGA-II algorithm. The

crossover and mutation operators depend on the adopted representation, their design is discussed

below.
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Figure 5.1: Process of creation of a new random tree starting with a set of n = 4 nodes that
represent the studied taxa.

5.3.1 Crossover operator

The crossover operator is designed to combine the information of two solutions in the population

(parents) to generate new solutions (children) by mixing their information.

The selected crossover operator is based on the TBR neighborhood. It has been used in (Congdon,

2001; Lewis, 1998; Matsuda, 1995), and has a relatively low computational cost. This operator copies

the information of the first parent into a new child. Then, it selects a random sub-tree from the

second parent as a crossover point. All the leaves present in the selected sub-tree are removed

from the new child. After the elimination, any inner node with only one child node is replaced by

their direct descendant. Finally, a copy of the selected subtree is inserted in a random node of the

child. The complexity of this operator is O(nk) where n is the number of taxa and k the size of

the parsimony sequences to be copied to the new individual. A graphical example of the crossover

operator can be seen in Figures 5.2, 5.3, and 5.4.
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Figure 5.2: A parent solution (left) and a child with a copy of the other parent (right). A subtree is

selected from the parent (I3) and the leaves in said subtree are located in the child solution.

Figure 5.3: Leaves from the selected subtree are pruned from the child solution, any inner node that

would have only one child is removed.

Figure 5.4: A copy of the sub-tree is inserted in the child in order to form a valid tree.
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5.3.2 Mutation operators

In order to mutate the solutions in the children population five neighborhood functions have been

implemented as mutation operator. The high number of mutation operators helps us to prevent

getting trapped in the local optima that are inherent to each neighborhood.

• Nearest Neighbor Interchange (NNI), used by Andreatta and Ribeiro (2002); Moore et al.

(1973); Vazquez Ortiz and Rodriguez Tello (2011); Waterman and Smith (1978). NNI switches

any node from the topology (except the root node) with one of its closest neighbors (except

sibling nodes). It is exemplified in Figure 5.5.

Figure 5.5: NNI operation. Selection of the inner node I1 and swap with one of its nearest neighbors
(I2 and I3).

• Subtree Pruning and Regraft (SPR), used in Andreatta and Ribeiro (2002); Vazquez Ortiz and

Rodriguez Tello (2011). It prunes an inner node of the tree, and removes any node that would

end up with only one child. Then it inserts the pruned node in a random position of the tree.

A graphical description of this operation can be seen in Figure 5.6.
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Figure 5.6: SPR operation. Pruning of inner node I1, and insertion in L3.

• Tree Bisection and Reconnection (TBR), used in Swofford et al. (1996); Vazquez Ortiz and

Rodriguez Tello (2011). It divides the tree into two subtrees and reconnects them in a randomly

selected node. Figure 5.7 shows how TBR works.

Figure 5.7: TBR operation. Division of the tree in I1 and insertion of root2 in L1.

• Leaf Swap (LSwap), used in (Cotta and Moscato, 2002; Sonco Alvarez and Ayala Rincon,

2017). This operator selects a random leaf and swaps it with another. This approach is shown

in Figure 5.8.
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Figure 5.8: LSwap operation. Selection of L1 and swap with L4.

• Single Step (STEP), used in (Andreatta and Ribeiro, 2002; Sonco Alvarez and Ayala Rincon,

2017; Waterman and Smith, 1978): A leaf is pruned from the tree and inserted in any other

edge. This operator is depicted in Figure 5.9.

Figure 5.9: STEP operation. Pruning of L1 and insertion in I2.

5.3.3 Local search

Local search within the NSGA-II algorithm can be applied in order to enhance the solutions in the

population. This procedure is applied with a low probability during the mutation process of the

individual solutions to prevent a premature convergence of the algorithm.
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Local search can be achieved by removing the cost of a pruned or moved node and evaluating the

added cost of inserting it in each available position of the tree topology, selecting the best possible

scenario.

In order to evaluate this added cost, an auxiliary parsimony sequence is used to propagate the

values as they escalate in the topology of the tree and adding the generated cost of using that

sequence in the tree. In the worst case scenario, the complexity of an iteration of the local search

algorithm is O(nk), the overall complexity depends on the size of the used neighborhood function

and the imposed bound on the number of iterations, we apply a limit of 10, 000 evaluated topologies

per search to mantain a low computational cost.

5.3.4 Parallelization of the algorithm

In order to speed up the execution time of the algorithm, we apply parallelization using OpenMP

(Dagum and Menon, 1998).

Parallelization can be achieved by distributing the overall length of the parsimony sequence at

nodes between different cores and executing a reduction to obtain its total parsimony cost. This

parallelization approach can be applied to any of the implemented objective functions, and can be

applied in two main phases of the algorithm: the evaluation of individuals, andt he propagation of

the auxiliary values during a local search procedure.

5.4 Chapter summary

This chapter introduced the implemented MOEA and the genetic operators used to guide the search

process. The proposed local search, and paralellization of the evaluation are described. The next

chapter describes the experimentation conducted to assess the performance of the proposed multi-

objective reformulations of the MP problem, including the description of the instances used, the

experimental conditions, and the obtained results.
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Experimentation and results

This chapter presents the experimental phase of this thesis work, including the instance sets, the

parameters of the algorithms, and the experimental conditions during their execution.

This chapter also includes the comparison of the obtained results. First the results obtained

are compared with respect to solutions produced by a mono-objective version of the implemented

algorithm. Then they are compared against solutions obtained by methods in the state of the art of

the problem.

6.1 Comparison criteria

In order to assess the performance of the multi-objective formulations for the MP problem proposed

during this thesis work, we compared the obtained results to those obtained by a mono-objective

algorithm under the same circumstances. The standard metrics used in these comparisons are:

55
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• Best: Quality of the best solution found by each formulation, using parsimony score as

comparison criteria.

• Mean: Average value of the quality of the solutions found by each formulation.

• σ: Standard deviation of the quality of the solutions found.

• τ : Average time (in seconds) of the execution of the algorithm.

6.2 Test instances

Two major groups of instances were used: instances that are encoded as binary characters, and

instances that are encoded as multi-state characters. The characteristics of every test instance are

described below.

6.2.1 Instances encoded with binary characters

For these instances the binary digits represent the presence or absence of a morphological trait for

each known specie, the special symbol “?” is used for uncertainty. An example of a sequence encoded

with binary characters extracted from the instance ANGI is as follows:

austroba 0000?100100100000000000000100000000000000000?0000????????00

This group of testing instances is composed by eight real-life instances and 14 synthetic instances.

The real instances have been previously used in (Andreatta and Ribeiro, 2002; Goëffon et al., 2006;

Ribeiro and Vianna, 2005; Vazquez Ortiz and Rodriguez Tello, 2011), and are shown in Table 6.1.

The ten synthetic instances, created by Ribeiro and Vianna (2003), have been used in (Goëffon

et al., 2006; Ribeiro and Vianna, 2005; Vazquez Ortiz and Rodriguez Tello, 2011), and are shown

in Table 6.2. These tables display the name of the instances, their number of taxa n, the size of

their sequences k, the quality of the most parsimonious tree reported for each instance, and the
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algorithm that found that tree. For these instances, the best results have been reported by the

Hybrid Distance Recombination Algorithm (HYDRA) (Goëffon et al., 2006), Simulated Annealing

for Maximum Parsimony (SAMPARS) (Richer et al., 2013), and Simulated Annealing-Maximum

Parsimony (SA-MP) (Vazquez Ortiz and Rodriguez Tello, 2011).

Instances Taxa (n) Size (k) Best Algorithm

ANGI 49 59 216 HYDRA
CARP 117 110 548 HYDRA
ETHE 58 86 372 HYDRA
GOLO 77 97 496 HYDRA
GRIS 47 93 172 HYDRA
ROPA 75 82 325 HYDRA
SCHU 113 146 759 HYDRA
TENU 56 179 682 HYDRA

Table 6.1: Real-life instances with binary characters, with best parsimony scores found by algorithms
in the state of the art.

Instances Taxa (n) Size (k) Best Algorithm

tst01 45 61 545 HYDRA
tst02 47 151 1354 SA-MP
tst03 49 111 833 HYDRA
tst04 50 97 587 SAMPARS
tst05 52 75 789 HYDRA
tst06 54 65 596 HYDRA
tst07 56 143 1269 SA-MP
tst08 57 119 852 HYDRA
tst09 59 93 1141 SAMPARS
tst10 60 71 720 SA-MP
tst17 71 159 2450 SAMPARS
tst18 73 117 1521 SAMPARS
tst19 74 95 1012 SAMPARS
tst20 75 79 659 SAMPARS

Table 6.2: Synthetic instances with binary encoding, with best parsimony scores found by algorithms
in the state of the art.

6.2.2 Instances encoded with multi-state characters

This group of testing instances is composed by 16 real-life instances encoded with multi-state

character data, as shown in Table 2.1.

Table 6.3 shows the first four instances, these have been used by Santander Jiménez (2016);

Santander Jiménez and Vega Rodríguez (2013a,b) to evaluate multi-objective approaches to the MP
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problem. This table shows the name of the instances, their number of taxa n, the size of their

sequences k, the quality of the most parsimonious tree reported for each of them, and the algorithm

that found that tree. For these instances, the best results have been found using the Multi-objective

Artificial Bee Colony algorithm (MOABC) (Santander Jiménez and Vega Rodríguez, 2013b).

Instances Taxa (n) Size (k) Best Algorithm

mtDNA_186 186 16608 2431 MOABC
rbcL_55 55 1314 4874 MOABC
RDPII_218 218 4182 41488 MOABC
ZILLA_500 500 759 16218 MOABC

Table 6.3: Real-life instances with multi-state character encoding, with best parsimony scores found
by multi-objective algorithms in the state of the art.

The remaining 12 instances are shown in Table 6.4. These instances were used by Strobl and

Barker (2016) in a Simulated Annealing study over phylogeny reconstruction. The best obtained

results for these instances are not reported. For these instances a Tag name has been added, this

name will be used to reference these instances from now on, in order to maintain order in the

comparison tables.

Instance Taxa (n) Size (k) Tag

1_1399893393_Molecular_noct.phy 85 9584 Molecular
Adams_etal_Syst_Biol_unique_cytb_haplotypes.phy 277 605 Adams
Alignment_4genes.phy 52 2364 Alignment4
alldata_noout.phy 232 4703 Alldata
Alstrom5.smh.phy 41 3426 Alstrom5
angiosperm-rps11.phy 5 402 Angiosperm
Bahl.phy 525 987 Bahl
COI_CAD_SystBiol.phy 435 1434 COI_CAD
Pasach_run1.phy 27 3062 Pasach
rabosky_6genes_concatenated.phy 238 5373 Rabosky
S4.phy 31 31674 S4
sphaero-4gene.phy 28 5489 Sphaero
THOMOMYS1.phy 26 4385 Thomomys
VATI_6genes_concatenated.phy 36 3039 Vati6
VATI_ND2_Align_Final.phy 85 1041 VatiN

Table 6.4: Real-life instances with multi-state encoding with no parsimony score known.
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6.3 Experimental conditions

All the necessary algorithms were coded in C language and compiled with gcc.

The experimentation was conducted in CINVESTAV-Tamaulipas’s computer cluster Minerva,

using the processing nodes Medusa1-2 and Medusa1-3, both of them with 12 Intel Xeon(R) X5660

2.80GHz with 12 GB of RAM; and Neptuno, with ten processing nodes (Hydra1-1, Hydra1-2, . . . ,

Hydra1-10), each of them with two Intel Xeon(R) X5550 2.67GHz with four cores and 16 GB of

RAM.

Due to the stochastic nature of the genetic algorithm 31 executions of the algorithm were run

for each instance and each supplementary objective. In order to exploit the search using every

supplementary objective function, the stop criteria is set as the number of consecutive generations

without any improvement, for the experimentation process we set this limit as 50 generations.

For this experimentation, 10% of the individuals of the population of each algorithm are initialized

using a set tree topologies obtained by a greedy approach contained in the biosbl package by Jean-

Michel Richer1, and 90% of the individuals is initialized with randomized trees to mantain diversity

in the population.

6.4 Fine-Tuning of the algorithm’s parameters

The tuning process for our implementation was executed using an iterated racing procedure through

the irace package (López Ibañez et al., 2016). This package samples configurations and applies them

to an execution of the algorithm. It iterates trough new configurations and selects those with better

results, guiding the new parameter samples towards better configurations

The size of the population was set to 100 and the number of generations to run the experiment

was set to 500, this in order to prevent the tuning of the number of individuals and stop criteria to

1https://sourceforge.net/projects/biosbl
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cause a bias in the algorithm. The parameters studied as well as the ranges defined and the resulting

values are shown in Table 6.5.

The selection of the neighborhood function used in the mutation process employs a roulette wheel.

Therefore, the probability of use of the neighborhood functions are tuned under the restriction that

the sum of the resulting values should always be less or equal than one. For this tunning process we

restricted the application of each mutation function up to 40%, to prevent that the dominance of a

single operator would lead the algorithm towards local optima.

Parameter Range of values Final Value

Crossover Rate [0.60,0.95] 0.81

Mutation Rate [0.05,0.30] 0.27

NNI [0,0.4] 0.25

SPR [0,0.4] 0.33

TBR [0,0.4] 0.07

LSWAP [0,0.4] 0.29

STEP [0.0.4] 0.11

Local Search [0,0.2] 0.13

Table 6.5: Parameters of the implemented NSGA-II algorithm and their corresponding values after

the fine-tuning process.

6.5 Experimental results

This section shows a comparative analysis of the results found during our experimentation. First we

present a comparison between the most promising multi-objective formulations implemented in the

NSGA-II algorithm versus the same algorithm in its single-objective for. All experiments are executed

using the parameters obtained during the fine-tuning of the algorithm and the same stop criteria is

applied in order to conduct a fair comparison.

Secondly a comparison of the best results obtained by our formulations for the experimental multi-

state data instances against the results published by Sergio Santander with the MOABC multi-
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objective algorithm (Santander Jiménez, 2016), and for the results obtained for the binary instances

against Jean-Michel Richer’s SAMPARS algorithm (Richer et al., 2013). For those instances with

no published results we compare against the best execution obtained using SAMPARS.

6.5.1 Performance of the proposed reformulations against a

single-objective algorithm

In order to assess the performance of the proposed multi-objective reformulations, a comparison

against the same search algorithm using only one objective, the original MP function, is executed.

A summary of the results found during this experimentation is shown below. As previously stated,

for every instance used we present the most parsimonious tree found (Best), the average quality of

the solutions found (Mean), the standard deviation of the results found (σ), and the average time

employed by each one of the 31 executions of the algorithm (τ).

6.5.1.1 Results for binary character instances

Table 6.6 shows the performance of D1, D2, and D3 as helper objectives on real instances with binary

encoding. All results are from using the NSGA-II algorithm, in its single-objective and multi-objective

form, with the same parameters. For this set of instances, all but one of the results found by the

single-objective version of the algorithm were matched or improved by at least one of the proposed

multi-objective formulations of the problem.

For this experimentation the only instance that was not improved by any of the proposed multi-

objective approaches was CARP. The best performance, for this set of instances, is shown by applying

D1, that improves five of the results found by the single-objective algorithm and matches one of them.

In second place, D2 outperforms the single-objective algorithm in four of the instances and equals

two of them. Lastly, applying D3 improves three instances and matches two of them.
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Table 6.7 shows the performance of D1, D2, and D3 applied to synthetic instances. Out of the

14 instances used in the experimentation, the single-objective variation of the algorithm outperforms

the proposed reformulations in only four: tst02, tst05, tst10, and tst17.

For these instances, the best performance is displayed by the use of D1, outperforming the single-

objective version of the algorithm in eight instances and matching one of them. The use of D2 allows

the algorithm to find better solutions in six of the instances, and one aditional equal solution. Finally,

using D3 the algorithm improved five of the tested instances.

Overall, for the 22 binary instances used in this experimentation, D1 presented competitive

solutions for 68% of them. It outperforms the single objective variation in 13, and produced similar

results in two of them. D2 behaved well for 59% of the instances, outperforming the single-objective

algorithm in 10 instances and matching three. finally, D3 found competitive solutions for 45% of the

instances, with eight improvements and two matching solutions.

Even though the proposed helper objectives were formulated to take advantage of the information

of the multi-state encoded sequences, its application to binary encoded sequences seems helpful when

compared to a single-objective search.

6.5.1.2 Results for multi-state character instances

The comparison of multi-state character instances has been divided in two tables. First we present

the instances reported by Santander Jiménez (2016), and then those published by Strobl and Barker

(2016).

The results found for the instance set used by Sandander are shown in Table 6.8. For this dataset

all of the proposed formulations matched the single-objective algorithm for the quality of instance

rbcL_55, and improved the quality of the solution found for instance mtDNA_186 by 10 (D1 and

D2) and 11 (D3) points.

Table 6.9 shows the performance of the proposed multi-objective formulations against a single-

objective algorithm on the set of real instances published by Strobl and Barker (2016). For these
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instances, only three were unmatched by the multi-objective formulations proposed. For this dataset

of 15 instances, the use of D1, D2, and D3 allows the multi-objective algorithm to outperform its

single-objective version in five, four, and five of the tested instances, respectively. And allows to even

the quality of seven instances with all of the proposed reformulations.

In summary, for 19 multi-state character encoded instances D1 provided competitive solutions

for 73% of the instances, while D2 and D3 found competitive solutions for 68% of them. Five of the

instances used were not improved or matched by any of the proposed multi-objective formulations,

two of them belonging to the dataset presented by Santander Jiménez (2016), and three of them to

the dataset of Strobl and Barker (2016).

6.5.2 Performance of the proposed multi-objective reformulations

against algorithms in the state of the art

We evaluated the performance of the proposed formulations by comparing the obtained results

against those reported in the literature. The set of binary instances is compared against the results

obtained by SAMPARS (Richer et al., 2013). The first subset of multi-state character encoded

instanes is compared against MOABC (Santander Jiménez, 2016). To obtain a comparison basis

for the instances with no published results, the algorithm SAMPARS was obtined from Jean-Michel

Richer’s personal page2, and used to evaluate all test instances.

The criteria used for the following comparison involves the Best parsimony score (either reported

in the literature or obtained by the algorithm SAMPARS), the average time (τ) required by the

algorithm to reach that solution, and the difference between the best scores found ∆. A possitive

value of ∆ means the quality of the best tree found by the algorithm of the state of the art was not

matched, a zero or negative value means the best tree quality was matched or improved.

2http://www.info.univ-angers.fr/ richer/recbio_phylo_sampars.php
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6.5.2.1 Results for binary encoded instances

Table 6.10 shows the results obtained, for real-life binary coded instances, by the proposed multi-

objective formulations, compared against those obtained by using SAMPARS (Richer et al., 2013).

Table 6.11 shows a comparison for synthetic instances in the literature, the results used for

comparison were obtained with the SAMPARS algorithm and are published in (Richer et al., 2013).

Results for binary encoded instances show that multi-objective proposals only obtained

competitive solutions for two (D1, D3) and three (D2) real instances, and none of the synthetic

instances was matched. FunctionD3 shows the worst overall performance by having a higher distance

to the best solution reported in most instances.

6.5.2.2 Results for real multi-state encoded instances

Comparison for multi-state character data varies between two subsets. The first one includes results

published by Santander Jiménez (2016) using a parallelized variation of his MOABC algorithm (AN-

MOABC). We take the times reported for the algorithm using 8 cores as a base for a fair comparison,

being the same number of cores used by each processing node in our experimentation . The second

subset of instances are those used by Strobl and Barker (2016) for which there are no published

results, therefore results used in the comparison were obtained by running SAMPARS, with a time

limit of 1 day of execution if the stop criteria is not met automatically.

Table 6.12 shows the results of the comparison against AN-IMOBA and SAMPARS, for these

datasets, the use of any of the proposed reformulations outperforms both of the state of the art

algorithms for one of the instances (rbcL_55), reaching results of the same quality using only one

fourth of the time required by (AN-IMOBA) and only 3% of the time required by SAMPARS.

Regarding the remaining instances, the quality of the best solution reported by the state of the art

algorithms was not matched, but the discrepancy between the best results reported and those found



6. Experimentation and results 65

by the proposed re-formulations only goes up to 1% in the worst case scenario, and uses a fraction

of their required time.

Table 6.13 shows the comparison of the results obtained by SAMARS and thos eobtained by the

proposed approaches over the instances used by Strobl and Barker (2016). For this dataset, the

best performance is presented by the use of D2, that found competitive solutions for nine out of

14 instances. Not far behind, D1 and D3 were able to find competitive solutions for 8 of the used

instances, all of them in a fraction of the time required by SAMPARS. For the remaining instances,

the discrepancy between the best found results and those found by the proposed approaches goes

up to 2% with the instance COI_CAD using D3, followed by a 1% discrepancy for Adams using D1

and Raboski using D2, and less than 0.5% difference for the rest of them.

6.6 Discussion of results

The obtained results with the comparison against a single-objective version of NSGA-II show that the

multi-objectivization of the problem helps navigating the search-space. The increase in time when

the proposed helper objectives are evaluated, indicate that it took longer for the algorithm to be

trapped in a local optima. Furthermore, the improvement of the best found solutions, indicate that

the gradient added to the search-space when additional information is used leads the MOEA towards

better solutions.

Comparing the obtained results over binary-encoded instances against the state of the art

algorithms it is noticed that, even if the multi-objectivization with the proposed objectives helps ease

the search when implemented in a MOEA, the information obtained from the proposed objectives

is not enough to actually help the algorithm find competitive solutions. However, for multi-state

character instances, the results were good enough to be competitive against more robust algorithms

in the state of the art, finding solutions of matching quality in a fraction of the time.
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To grasp the different behavior of the proposed objective functions. We analyze the initial,

intermediate, and final population over a 500 generation period for two instances:

• CARP: A binary encoded instance, that was not improved by the multi-objectivization. Neither

by the comparison against a single-objective NSGA-II, nor against the state of the art.

• Bahl: A multi-state character encoded instance, that was competitive using multi-

objectivization. Both against a single-objective search and in comparison with the state of

the art.

The quality of the best solution in the population over the 500 evaluated generations can be seen

for both instances in Figure 6.1.
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Figure 6.1: Comparison between the best individual found per generation using the four variations
of NSGA-II used in experimentation.

To have an insight in the population during the search process, we examined the spatial

distribution of the entire population at the first, middle and last generations of the search for each of

the approaches: using the original function (MP), and applying the proposed helper objectives (D1,

D2, D3). This analysis, inspired by Lai and Hao (2016); Porumbel et al. (2010), obtains an image

of the distribution of the solutions, at a given time, in Euclidean R3 space. This analysis consists in
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two steps: First, it obtains a Zn×n distance matrix from the population. Then, it maps the elements

in the distance matrix to coordinate points in the Euclidean space R3.

To obtain the Zn×n distance matrix between solutions we employ the SPR distance function

implemented in the Phangorn R package (Schliep, 2010; Schliep et al., 2017). Then, p coordinate

points in the Euclidean space R3 can be generated by employing the cmdscale algorithm implemented

in the R language. Finally, we plot a scatter using the generated coordinate points. Figures 6.2, 6.3,

6.4, and 6.5 show the obtained graphs for binary instance CARP, and Figures 6.6, 6.7, 6.8, and 6.9

for multi-state encoded instance Bahl.
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Figure 6.2: Spatial distributions of the solutions in the initial, intermediate and final population of a
single-objective search on the binary encoded instance CARP.
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Figure 6.3: Spatial distributions of the solutions in the initial, intermediate and final population of a
multi-objective search (D1) on the binary encoded instance CARP.

For the CARP instance, we can observe that the resulting graphs are quite similar, and the

populations in the final iteration of the algorithm are really close. This might indicate that the
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(b) Intermediate population.
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Figure 6.4: Spatial distributions of the solutions in the initial, intermediate and final population of a
multi-objective search (D2) on the binary encoded instance CARP.
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(b) Intermediate population.
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Figure 6.5: Spatial distributions of the solutions in the initial, intermediate and final population of a
multi-objective search (D3) on the binary encoded instance CARP.

information obtained from the binary encoding is not enough to help the algorithm escape from the

basin attraction of the current local optima.

In contrast with the CARP instance, the results for the multi-objective variations of the NSGA-II

algorithm over the Bahl instance seem to diversify the solutions in the population as the algorithm

proceeds. It is evident that the solutions obtained in the single-objective variation of the algorithm

seem too similar among each other. In contrast, the final population of the multi-objective variations

seem to draw away from each other, allowing an exploration of a greater portion of the search space.
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(b) Intermediate population.
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Figure 6.6: Spatial distributions of the solutions in the initial, intermediate and final population of a
single-objective search on the multi-state character encoded instance Bahl.
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(b) Intermediate population.

-60

-40
-20

 0
 20

 40
 60

-40

-20

 0

 20

 40

-15

-10

-5

 0

 5

 10

 15

 20

 25

 30

Distribution of solutions for Bahl using multi-objective algorithm (D1)

Solutions in the final population

(c) Final population.

Figure 6.7: Spatial distributions of the solutions in the initial, intermediate and final population of a
multi-objective search (D1) on the multi-state character encoded instance Bahl.

6.7 Chapter summary

This chapter described the experimentation conducted with the implemented algorithms and the

proposed helper objective functions.

The obtained results show that the reduction of neutrality in the fitness landscape of the problem,

caused by the use of the selected multi-objective reformulations and the gradient they provide,

allow the NSGA-II algorithm outperform a single-objective algorithm that operates under the same

circumstances. It can be observed that even if the proposed objective functions are designed for

multi-state character datasets, binary datasets can also benefit from them to a certain degree.

By comparing the performance obtained by our proposal against algorithms in the state of the
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Figure 6.8: Spatial distributions of the solutions in the initial, intermediate and final population of a
multi-objective search (D2) on the multi-state character encoded instance Bahl.
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Figure 6.9: Spatial distributions of the solutions in the initial, intermediate and final population of a
multi-objective search (D3) on the multi-state character encoded instance Bahl.

art we see that, for a considerable percentage of the used test instances, we can obtain competitive

solutions in a fraction of the time employed by the state of the art algorithms.

The following chapter presents the conclusions obtained from this research, and a duscussion of

the future work that could derive from it.
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7
Conclusions and future work

In this thesis work we explored two multi-objectivization paradigms applied to the MP problem. We

proposed six reformulations based on the decomposition of the original objective function, and 12

helper objective functions for the problem, for a total of 18 proposals of multi-objectivization.

After extensive evaluation and analysis, the three most promising of them were selected to

be implemented in a multi-objective evolutionary algorithm. These reformulations were selected

according to their correlation with the parsimony score, a strong correlation between them increases

the capacity to discern between similar solutions, while mantaining the most parsimonious ones as

high quality solutions.

The NSGA-II algorithm (Deb et al., 2002) was implemented using a topological crossover operator

based on Tree Bisection and Reconnection (Congdon, 2001; Lewis, 1998; Matsuda, 1995), and five

mutation operators: Nearest Neighbor Interchange (Andreatta and Ribeiro, 2002; Moore et al.,

1973; Vazquez Ortiz and Rodriguez Tello, 2011; Waterman and Smith, 1978), Subtree Pruning and

Regraft (Andreatta and Ribeiro, 2002; Vazquez Ortiz and Rodriguez Tello, 2011), Tree Bisection

79
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and Reconnection (Swofford et al., 1996; Vazquez Ortiz and Rodriguez Tello, 2011), Leaf Swap

(Cotta and Moscato, 2002; Sonco Alvarez and Ayala Rincon, 2017), and Single Step (Andreatta and

Ribeiro, 2002; Sonco Alvarez and Ayala Rincon, 2017; Waterman and Smith, 1978).

A comparison was conducted, using the implemented NSGA-II algorithm applying the three

selected multi-objective reformulations, against a single-objective version of the NSGA-II using MP,

and against algorithms of the state of the art. This comparisson was conducted in terms of quality

of the solution (MP score), and time required by each algorithm, using real-life multi-state encoded

instances, synthetic, and real binary encoded instances taken from the literature.

This chapter presents the main conclusions obtained from this research, the verification of the

hypothesis presented in Section 1.3, and the future work that can be derived from this study.

7.1 Conclusions

The evaluation conducted over the proposed multi-objective reformulations of the MP problem

allowed to select three reformulations that help discern between solutions of similar quality, and that,

as shown in Section 4.3, reduce the neutrality in the fitness landscape of the problem. Therefore,

the first specific objective of this research is fullfilled.

Based on the results of the comparison against a single-objective search presented in Section

6.5, we conclude that the proposed helper objectives are a competitive approach for the multi-

objectivization of the MP problem.

For the comparison against a single-objective search in Section 6.5.1, the performance of the

NSGA-II algorithm using the selected helper objectives is as follows:

• D1 found competitive solutions for 71.43% of the test instances, improving the results found

by the single-objective algorithm for 45.2% of them.

• D2 found competitive solutions for 64.29% of the test instances, improving the results found

by the single-objective algorithm for 35.7% of them.
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• D3 found competitive solutions for 57.1% of the test instances, improving the results found

by the single-objective algorithm for 30.9% of them.

The comparison against the state of the art, using real multi-state encoded instances, in Section

6.5.2 shows that the proposed formulations match the algorithms in the state of the art in 47.3%

(D1 and D3) and 52.6% (D2) of the test instances, doing so in only a fraction of the time required

by the state of the art algorithms. Thus, completing the second and third specific objective of this

research work.

The results obtained during this research agree with the initial hypothesis. We found that the

three proposed reformulations of the MP problem successfully modify the fitness landscape of the

problem by reducing its neutrality, increasing the capacity of the NSGA-II algorithm to discern

between similar solutions and allowing it to find competitive solutions for the tested instances, doing

so in less time than the required by the algorithms in the state of the art.

7.2 Future work

Performance shown by the proposed multi-objective formulations might be improved by implementing

them in specialized algorithms, such as those found in the state of the art of the problem. The low

evaluation time required by the proposed objective functions and the competitiveness of the found

solutions hint that a specialized algorithm might be able to find matching or improving solutions in

less computational time than the reported.

The results obtained by the evaluation of binary instanes suggest that there might exist a different

formulation applicable to binary encoded instances that yield competitive solutions to the state of

the art algorithms. Therefore, the analysis of new functions designed for this kind of instance remains

an open problem.
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The evaluation of individual solutions might be accelerated by evaluating both criteria in a single

step, doing so while applying paralelization to the algorithm could reduce the computational time for

large instances.

An improvement in the crossover function used could be achieved by means of local search, a

method to evaluate the subtree bisected or the selection of the reconnection site could be evaluated,

in order to obtain a crossover that improves the search but not up to a point that rushes toward

local optima solutions.



A
Correlation Graphs

83



84

Figure A.1: Correlation between objective function evaluations for instance drosophyl1
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Figure A.2: Correlation between objective function evaluations for instance drosophyl2
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Figure A.3: Correlation between objective function evaluations for instance drosophyl3
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Figure A.4: Correlation between objective function evaluations for instance RPDII1
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Figure A.5: Correlation between objective function evaluations for instance RPDII2
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Figure A.6: Correlation between objective function evaluations for instance RPDII3
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Figure A.7: Correlation between objective function evaluations for instance RPDII4
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Figure A.8: Correlation between objective function evaluations for instance RPDII5
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Figure A.9: Correlation between objective function evaluations for instance rbcL1
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Figure A.10: Correlation between objective function evaluations for instance rbcL2
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Figure A.11: Correlation between objective function evaluations for instance rbcL3



A. Correlation Graphs 95

Figure A.12: Correlation between objective function evaluations for instance rbcL4
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Figure A.13: Correlation between objective function evaluations for instance rbcL5
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Figure A.14: Correlation between objective function evaluations for instance rbcL6
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Figure A.15: Correlation between objective function evaluations for instance rbcL7
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Figure A.16: Correlation between objective function evaluations for instance ZILLA1
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Figure A.17: Correlation between objective function evaluations for instance ZILLA2
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Figure A.18: Correlation between objective function evaluations for instance ZILLA3
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Figure A.19: Correlation between objective function evaluations for instance ZILLA4
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Figure A.20: Correlation between objective function evaluations for instance ZILLA5
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Figure A.21: Correlation between objective function evaluations for instance ZILLA6
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Figure A.22: Correlation between objective function evaluations for instance ZILLA7



106

Figure A.23: Correlation between objective function evaluations for instance mtDNA1
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Figure A.24: Correlation between objective function evaluations for instance mtDNA2
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Figure A.25: Correlation between objective function evaluations for instance mtDNA3
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Figure A.26: Correlation between objective function evaluations for instance mtDNA4
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Figure A.27: Correlation between objective function evaluations for instance mtDNA5



A. Correlation Graphs 111

Figure A.28: Correlation between objective function evaluations for instance mtDNA6



112

Figure A.29: Correlation between objective function evaluations for instance mtDNA7
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Figure A.30: Correlation between objective function evaluations for instance mtDNA8
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