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Abstract

Gradient estimation based directions and its use as a local
search operator in evolutionary algorithms

by

Jose Virgilio Treviño Avalos
Cinvestav Tamaulipas

Center for Research and Advanced Studies of the National Polytechnic Institute, 2018
Dr. Ricardo Landa Becerra, Advisor

Numerical optimization problems can be mathematically represented by a function f : Rn → R

and a value x∗ that satisfies x∗ = argminx∈Rn f(x). The objective of numerical optimization is

finding this value x∗, which is the global optimum of the function f .

Through the centuries, many techniques have been proposed to find, or at worst to approximate

x∗. Calculus inspired the creation of new methods, which use gradient and Hessian information.

However the effectiveness of these methods is limited to functions that have continuous second

derivatives.

Advances in silicon technology have exponentially incremented the computing power that

researchers have available. This power has allowed the development of methods inspired by nature,

these methods are called metaheuristics. An important class of metaheuristics are evolutionary

algorithms, which are influenced by Darwinian evolution. Bio-inspired techniques require a great

number of iterations to find good approximations, but they can operate even in non-derivable

functions.

A new class of algorithms that combines classical matemathical methods with metaheuristics

has appeared. Memetic algorithms integrate operators based on mathematical techniques into

evolutionary algorithms. This class of algorithms has an evolutionary part which finds promising

regions of the search, and use local search operators to exploit these regions. Gradient and Hessian

approximations have been used in memetic algorithms.

Developed in the fifties, the conjugate gradient method is a numerical optimization technique

ix



that uses first order information and has a convergence rate faster than the steepest descent but

slower than methods that use second order information. The convergence speed of conjugate gradient

methods is a consequence of the conjugacy of the search directions used, which means that searching

in the same direction is avoided. Conjugate gradient methods use gradients as basis vectors, this

suggests that it should be possible to construct conjugate directions using gradients computed by

an estimator. This thesis proposes the use of conjugate directions as a local search operator in

evolutionary algorithms.
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Resumen

Direcciones basadas en un estimador de gradiente y su
uso en algoritmos evolutivos

por

Jose Virgilio Treviño Avalos
Cinvestav Unidad Tamaulipas

Centro de Investigación y Estudios Avanzados del Instituto Politécnico Nacional, 2018
Dr. Ricardo Landa Becerra, Director

Los problemas de optimización númerica consisten en una función f : Rn → R para la que se

búsca un valor x∗ que satisfaga x∗ = argminx∈Rn f(x).

A lo largo de los siglos se han propuesto diversas técnicas para aproximar x∗. Algunas de estas

técnicas han encontrado inspiración en el cálculo infinitesimal. En esta clase de técnicas se encuentran

incluidos los métodos que hacen uso de informacion tanto del gradiente como de la matriz Hessiana,

el uso de estos métodos se limita a funciones que cuentan con derivadas continuas de segundo orden.

En los últimos 50 años el poder de cálculo de las computadoras ha permitido el desarrollo

de métodos bio-inspirados, que requieren un gran número de iteraciones para encontrar buenas

aproximaciones, y pueden operar incluso en funciones no derivables.

Recientemente, a los algoritmos evolutivos se les han incorporado operadores basados en técnicas

matemáticas, lo que dio origen a los algoritmos meméticos, los cuales son un tipo de algoritmo

evolutivo que usa un operador de búsqueda local para mejorar la capacidad de explotación del

algoritmo. En la literatura se han utilizado estimaciones de gradiente como direcciones de descenso

en algoritmos meméticos.

El método del gradiente conjugado es una técnica de optimización matemática con una

convergencia más rápida que la del método del descenso de gradiente. Esta mayor velocidad de

convergencia viene de las direcciones que por ser conjugadas entre sí evitan repetir búsquedas en

una misma dirección. El método del gradiente conjugado utiliza gradientes como vectores base, lo

que implica que es posible construir direcciones conjugadas utilizando un estimador de gradiente. Es
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dentro de este contexto que se ubica el trabajo de tesis, el cual propone usar direcciones conjugadas

como operador de búsqueda local en un algoritmo evolutivo.
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Nomenclature

ACO Ant Colony Optimization
BCO Bacterial Colony Optimization
DE Differential Evolution
DECLS Differential Evolution Cauchy Local Search
EA Evolutionary Algorithm
EC Evolutionary Computation
ES Evolutionary Strategy
EP Evolutionary Programming
DE Differential Evolution
GA Genetic Algorithm
GE Genetic Evolution
GSA Gradient Subspace Approximation
HC Hill Climbing
IFF If and only if
ILS Iterated Local Search
MA Memetic Algorithm
PSO Particle Swarm Optimization
RS Random Search
SA Simulated Annealing
SD Simulated Diffusion
SS Scatter Search
TS Taboo Search
VNS Variable Neighborhood Search





1
Introduction

1.1 Background

Even in the ancient times, philosophers recognized the importance of optimization in human life.

In his magnus opus, ’Elements’, Euclid proved that among isoperimetric rectangles a square is the

figure with the greatest area [2]. Nearly two thousand years later, Fermat was the first who used

the roots of a derivative to find the local optimum of a mathematical function. Derivative based

methods are good to finding local optimums but this kind of methods is not able to identify if a

solution is the global optimum [3].

A local optimum is a solution that it is the optimal in a neighborhood which corresponds to a

subset of the search space, in contrast a global optimum is a solution that not only is better than

its neighbors, in fact is the best in the entire search space.

One of the first methods devised after the discovery of calculus was the Newton-Raphson method.

This method uses second order derivatives and has a quadratic order of convergence. In 1847, Cauchy

1



2 1.1. Background

proposed the steepest descent method, which uses only first order derivatives, and is one of the

fundamental algorithms in optimization. Nonetheless this method converges slower than Newton-

Raphson, which uses information from derivatives of first and second order [4]. Both methods are

unable to identify if an optimum is a local optimum [5]. This fact limits the usage of these methods

for multi-modal functions, which are functions with multiple local optimums.

One of the greatest issues in numerical optimization is the existence of local optima. These points

constitute a strong pole of attraction that difficults the search of the global optimum. Another issue is

the existence of the ”curse of dimensionality”, which in numerical optimization means that the search

space grows exponentially with the number of variables. This turns the use of classical methods

impractical for high dimensional problems [6].

The unfeasibility of classical methods in conjunction with the increments in computing power

have motivated the development of metaheuristics, which are general purpose algorithms that are

used when it is impossible to make assumptions about a problem to solve with an ad-hoc method [7].

Many metaheuristics have clear biological inspiration, in this category coexist: genetic algorithms

(GAs), evolutionary strategies (ESs), particle swarm optimization (PSO), simulated annealing (SA),

and many other techniques.

Recently, classical mathematical optimizations method have been successfully combined with

metaheuristics, producing competitive algorithms in comparison with the state of the art. The

idea behind this hybridization is to incorporate a specifically designed local search operator in

metaheuristics to refine solutions, this operator increments the ability of the method to exploit

the search space. For example, in [8] is used the direction of the negative of the gradient as a

descent direction to improve the solutions produced by a differential evolution (DE) algorithm.

As discussed below, the conjugate gradient method has a convergence faster than the steepest

descent method [9], which suggests than a hybrid method using conjugate directions should be faster

than a method that uses the direction of the negative of the gradient as the descent direction.

It is in this context that this thesis work exists. In this thesis conjugate directions, constructed
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using a gradient estimator, are used as a local search operator within an evolutionary algorithm (EA).

1.2 Problem Statement

Numerical optimization is the process of finding a value x∗ ∈ Rn that for a function f : Rn → R

satisfies the condition x∗ = argminx∈Rn f(x).

There are mathematical techniques which find the optimum of a function. However these

techniques use derivatives and sometimes such information is not available, because the function

is non differentiable, the analytical form of the function is unknown, the derivative is hard to obtain,

or any other reason. For this kind of situation it is possible to approximate a derivative using, for

example, a method based on finite-differences [4].

The gradient vector is a generalization of the concept of derivative for multiple variables and it

is defined by the Equation 1.1.

∇f(x) =
(
∂f(x)

∂x1
,
∂f(x)

∂x2
, . . . ,

∂f(x)

∂xn

)
(1.1)

where n is the number of variables of the problem.

Recently, there have appeared some alternative methods for approximation of the gradient. Set

oriented approximations use a set of neighbor points, which objective function values are already

known. A great advantage of these type of approximations over finite-differences methods is that it

is possible to avoid additional function evaluations by using the current population of a metaheuristic

as neighbors.

However, gradient information can be used one step further: for constructing conjugate gradient

directions. Conjugate gradient is a technique that uses gradient vectors to compute conjugate

directions and using these directions is able to solve non-convex optimization problems [6].

A set of directions V = {v1,v2, . . . ,vk}, where every direction vi is an n-dimensional vector, it

is said to be conjugated if it satisfies the next equation for every i 6= j:
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vTi Avj = 0 (1.2)

where A is positive definite matrix. If equation 1.2 is satisfied vi y vj are A-conjugated.

Conjugate gradient method use gradient information to construct conjugate directions and find

an optimum in less iterations than using the the steepest descent (the direction of the negative of

the gradient) method. In theory, for quadratic problems, this method converges in n steps, where n

is the number of variables of the problem [7].

The problem of root-finding is related to numerical optimization [6]. Each optimum in the

function f1 is a root of the function f2, where the function f2 is the derivative of the function

f1. Nonetheless there are cases when an objective function is not differentiable. Also computing

a derivative may be impractical for a number of reasons. Analytical methods cannot operate

without derivatives, to handle these functions were developed methods that use approximations

of the derivative.

Classical methods have shown limitations when solving high dimensional problems, however since

the decade of 1980, and in part motivated by exponential gains in the computing power available for

researchers, general purpose optimization algorithms have become popular. This kind of algorithms

are called metaheuristics and are frequently bio-inspired. This type of algorithms are ”blind”, in the

sense that they do not know the form or characteristics of the objective function, and they can only

evaluate solutions and finding a global optimum is not guaranteed, this type of algorithms are mostly

used when analytical methods cannot be used to find an exact solution.

In this thesis is proposed a a novel approach based on the use of conjugate directions in the

context of EAs, as a local search operator in a memetic algorithm (MA).
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Figure 1.1: Methodology for constructing conjugate directions

1.3 Hypothesis

After describing the problem in the previous sections, it is pertinent to present the hypothesis that

will be verified in this research:

Conjugate directions, in conjunction with a gradient estimator based on neighborhood information

can be used to design a local search operator in a MA, producing results competitive for high

dimensional problems.

1.4 Methodology

The proposed approach consists in constructing the conjugate directions and integrate these

directions as an operator in an EA. Figure 1.1 shows the part of the methodology related to

the construction of the operator. Figure 1.2 contains the part of the methodology related to the

hybridization of the conjugate directions with the EA.
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Figure 1.2: Methodology for hybridization

The sequence of tasks mentioned in the two previous figures are as follows:

1. Selection of a gradient estimator. There are multiple gradient estimators in the literature,

one of these estimators will serve as the basis for the computing of the conjugate directions. The

gradient estimator to be selected must be independent of the functions to optimize.

2. Construction of conjugate directions. There are multiple algorithms to compute

conjugate directions using gradient vectors. One of the difficulties here is that the gradient estimator

does not compute exact gradients and this will affect the conjugate directions computed.

3. Selection of an EA. An EA will be selected and will serve as the basis of the proposed

approach.

4. Conjugate directions as a local search operator. The constructed conjugate directions

will be incorporated as a local search operator in an EA.

5. Selection of an individual for local search. The computational cost of applying the local
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search operator in each individual would be very high, this means that it is needed a criterion to

determine which individuals will be refined by the operator.

6. Determine the computational cost used in the search. The depth of the search

performed by the operator should not be excessive, in order to not turn prohibitive the computational

cost of the developed algorithm.

7. Determine the frequency of application of local search. The frequency of application

is also related to the computational cost, to avoid the waste computational resources an schedule

for the application of the operator should be determined.

1.5 General Objective

• To develop and use a local search operator based on conjugate gradient, using relatively low-

cost gradient estimations. This operator will be used in EAs and must produce competitive

results.

1.6 Specific Objectives

• To develop a procedure to generate conjugate directions based on a gradient estimator.

• To design a local search operator for EAs using conjugate gradient estimations.

1.7 Document organization

This document is comprised of 6 chapters. In Chapter 2 fundamental concepts to grasp this study

are introduced. The focus of the next chapter, Chapter 3, is on works, described in the literature that

incorporate local search strategies in metaheuristic algorithms. In Chapter 4 the approach proposed

in this thesis, to solve global optimization problems, is described. In Chapter 5 the results generated
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by the experimentation performed are discussed. Finally, Chapter 6 includes conclusions and future

work.



2
Theoretical framework

This chapter introduces basic mathematical and algorithmic concepts related to this thesis work.

Section 2.1 briefly introduces some basic concepts that are fundamental to grasp the algorithms and

techniques described in this thesis. The next sections in this chapter are focused on methods that

solve optimization problems. Section 2.2 introduces the concept of EA and its historically three main

forms, including a modern paradigm: DE, which is the EA where the local search operator proposed

in this thesis is integrated. Section 2.3 presents two methods that use gradients directions to built

descent directions.

2.1 Basic concepts

2.1.1 Optimization problems

According to the Merriam-Webster dictionary [10], optimization is defined as:

An act, process, or methodology of making something (such as a design, system,

9



10 2.1. Basic concepts

or decision) as fully perfect, functional, or effective as possible; specifically: the

mathematical procedures (such as finding the maximum of a function) involved in this.

In continuous optimization, which operates in euclidean spaces, there are two types of problems:

global optimization and constrained optimization. In global optimization the solution space spans

the entire n-dimensional space. In constrained optimization there one or more functions that delimit

the region of the n-dimensional space where every possible solution is located.

In global optimization problems the goal is to find the x∗ that satisfies x∗ = argminx∈Rn f(x)

for a multivariate function, often referred as objective function f : Rn → R, sometimes with one or

more functions delimiting the region of the search space [6].

2.1.2 Neighborhoods in Euclidean spaces

The neighborhood of x is defined as a subset of Rn which contains an open ball centered at x, this

open ball is comprised of all the points x̂ that satisfy ||x− x̂|| < ε, where ε > 0 [11].

2.1.3 Local search

The idea behind local search is that good solutions in the search space are grouped together and

neighborhoods where good solutions have been found could contain better solutions. Search steps

should not be too large, to avoid the randomization of the search process [12].

2.1.4 Gradient

The gradient vector is a multi-variate generalization of the derivative. Each entry ∂f
∂xi

in the gradient

vector is a partial derivative of the variable xi, more formally this can be stated as:

∇f = (
∂f

∂x1

,
∂f

∂x2

, . . . ,
∂f

∂xn
) (2.1)



2. Theoretical framework 11

2.1.5 Descent direction

A direction p is a descent direction at x if the inequality ∇f(x) · p < 0 is satisfied [6].

2.1.6 Deterministic methods

This type of methods use deterministic variables, and guarantee that the output will be the optimum

computed at an arbitrary precision. In this category are included methods that use derivatives and

direct search algorithms, like simplex, Nelder-Mead, Hooke and Jeeves, and Powell´s method [6].

2.1.7 Stochastic methods

This type of optimization methods generate and use random variables. The convergence proofs of

these methods state that given infinite time the global optimum will be found with a probability of

1. This category includes Markov chain Monte-Carlo algorithms, random search (RS), hill climbing

(HC), SA, taboo search (TS), EAs, and many others [13].

2.1.8 Metaheuristics

Metaheuristics are approximated stochastic methods which objective is to explore the search space

to find the best solution. In contrast to methods inspired by calculus, metaheuristics are capable of

extracting themselves from local optimums [14].

There are cases where supposing particular properties regarding a problem is not possible. To

handle this kind of issue, a general purpose algorithm can be implemented to solve the problem or

at least to quickly detect solutions. This type of techniques are referred to as metaheuristics, which

etymologically comes from Greek "search beyond", this alludes to the increased level of abstraction

used to solve the problem [7]. These type of techniques usually have biological (EA, TS), ethological

(ACO, PSO) or physical inspiration (SA).
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Metaheuristics have proliferated in recent decades powered by the advances in computational

hardware. This category includes evolutionary programming (EP), PSO, SA, and many others [15].

There are two type of metaheuristics [1]: single solution based metaheuristics and population

based metaheuristics, the former includes noise methods (NMs), SA, taboo search (TS), iterated

local search (ILS), variable neighborhood search (VNS), etc. The latter includes EA, ant colony

optimization (ACO), scatter search (SS), etc [16].

Metaheuristics most important disadvantages are that this class of methods does not guarantee to

find the best solution, adjustment of parameters is not trivial, and large computation times required

[14].

2.2 Evolutionary algorithms

After traveling, for years, across the world, British naturalist Charles Darwin was shuddered by the

seemingly perfection in nature. Nonetheless evolution does not imply perfection, evolution is an

optimization process. Living beings compete with each other and with their environment to survive

and as time passes phenotypes come as close to the optimum as possible, given initial conditions

and environment constraints. However nature is not static, and the environment is always changing

which implies that the optimum is also moving and no living being is perfectly adapted.

The classic techniques of gradient descent, deterministic hill climbing, and purely random search

were generally unsatisfactory when applied to nonlinear optimization problems. Biological evolution

provided an inspiration to solve these problems [17].

Evolutionary algorithms are a group of metaheuristics which are inspired by neo-darwinian

evolution. Like occurs in nature, evolutionary algorithms operate over populations, with individuals

being combined to create new ones, with every individual having trials to pass. Each individual is

represented by its genotype, which is formed by genes, evolutionary operators work at this level.

In numerical optimization, a genotype corresponds to a vector and a phenotype to the value of a
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objective function, this mechanism determines how fit is an individual. In this class of algorithms

two main operators are involved [7]:

Variation operators: which create the necessary diversity in the population.

Selection operator: which increment the average solution quality in the population. In contrast

to variation operators these operators reduce population diversity.

One consequence of the no-free lunch theorem is that a method that solve all optimization

problems better than others cannot exist. It has been observed that classical optimization methods

are more efficient than evolutionary algorithms while solving linear, quadratic, strongly convex,

unimodal, separable, and many other special problems. EAs shine when solving noisy, multimodal,

discontinuous, and not differentiable functions [17].

The three main forms of evolutionary algorithms were proposed in the sixties. Fogel laid the roots

of EP [18], Holland developed GAs while working at the University of Michigan [19]. In Europe,

evolution strategies (ES) were developed by a group of students, Bienert, Rechenber, and Schwefel

[20]. DE was specifically designed for numerical optimization, and is is one of the most successful

methods to solve real-valued black box problems, it was proposed in the nineties [21].

2.2.1 Evolutionary programming

Lawrence J Fogel proposed EP in 1960 [18]. He observed the limitations in the approaches used in

that era and concluded that these limitations were a byproduct of simulating human models and not

the process that created these models: evolution. Recombination is generally not used, the mutation

operators are usually powerful enough to generate similar perturbations [22]. EP appeared as an

attempt to generate machine intelligence but it has been used as an optimizer.

A basic EP starts with a population larger than one, commonly randomly initialized. Each

individual is perturbed to produce new individuals, this mutation operator can modify all variables

at the same time.

There are three variants of this paradigm [17].:



14 2.2. Evolutionary algorithms

• Original EP

• Continuous EP, where individuals are inserted at the same as they are generated.

• Self-adaptative EP, individuals incorporate one or more parameters of the optimization process.

2.2.2 Genetic algorithms

GAs were popularized by Holland and his students in the sixties [19]. In this type of EA, the main

operator for producing variations is crossover. As proposed by Holland, GAs used a representation

for the genotypes based in bitstrings, and the method of selection was proportional selection. Later

implementations of GAs have used real-valued genotypes and different methods of selection. GAs

manipulate genotype and transform these genotypes into phenotypes which are evaluated using an

objective function. Each genotype is formed by alleles which are also called genes [23]. Algorithm

1 describes a basic genetic algorithm with operators of recombination and and mutation used to

generate new genotypes each generation.

Algorithm 1 function genetic_algorithm(x0)

Initialize population

Evaluate population

while Is a stopping criterion not satisfied? do

t← t+ 1

Select parents from generation t− 1

Recombination and mutation to generate new individuals

Evaluate individuals

Select individuals to form generation t

end while

The initial population is usually randomly generated. Until a stopping criterion is satisfied a cycle
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is repeated, in this cycle parents are selected. In canonical GA, proportional selection is used and the

probability of selecting an individual is proportional to its fitness value. In Holland´s proposal two

children were produced each generation, which randomly replace individuals of old population. GAs

using proportional selection often suffer convergence problems caused by an individual that it is much

better than any other individuals in the population, this produces a strong pressure towards a local

optimal. To address the limitations in proportional selection, was proposed ranking selection which

uses the rank of the individuals in a linear function to determine the probability of selection during

the reproduction phase. GAs can have their bias on the reproduction step or during the replacement

selection [17].

2.2.3 Evolution strategies

ESs were proposed by Bienert, Rechenberg, and Schwefel in the sixties while trying to minimize the

drag of a robot in a wind tunnel [20]. The first version of evolutionary strategies, which nowadays

is called the (1+1) ES, used discrete variables with binomial distributed mutations, this version did

not include recombination. Recombination and the population principle were incorporated to more

closely mimic evolution. Rechenberg later work, popularized the real-valued version [17].

ESs work with individuals, each individual contains a set of decision variables, and a set of

endogenous parameters which is adapted in the evolution process. In the archetypic ES, to generate

a new solution an individual is mutated by adding a normal distributed random vector. If the new

solution is not worse than the old solution, then it replaces the old solution,this is (1+1)-ES.

Rechenberg extended ES and proposed multimembered ES, which is commonly denoted as

(µ+1)−ES, in this variant µ > 1 parents are used to create one children per generation. Extending

ES to more than one parent allowed the incorporation of recombination.

Parallel computers motivated the development of (λ + µ)-ES and (λ, µ)-ES. These variants are

very similar, except that the symbol + indicates that the selection of survivors includes the µ parents

and the λ offspring. In (λ, µ)-ES each individual lives only one generation, this avoids long stagnation
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caused by misadapted strategy parameters [20].

2.2.4 Differential evolution

DE is an evolutionary algorithm for continuous optimization with applications in electrical engineering

[24], [25], aeronautics [26], simulation of proteins [27], among many other applications [28].

In contrast to classical GAs [29], DE represents individuals using real valued vectors. The

population in a DE algorithm is described by Equation 2.2.

xi,G = [x1,i,G, x2,i,G . . . xn,i,G] (2.2)

where xi,G is the i-th individual of the population in the G-th generation and xk,i,G represents the

k-th variable in xi,G.

DE is named after its mutation operator, which uses scaled differences of vectors to perturb

individuals. This mutation operator gives adaptability to DE [30], which explains its success since

its introduction in the nineties [31]. As originally proposed DE uses a mutation operator referred as

rand/1 and binomial crossover to produce trial vectors, there is also a survival mechanism where a

trial vector competes against its parent. Mathematically rand/1 is defined as Equation 2.3, the name

of rand/1 comes from the criterion used to select individuals from the population which is random

and the number after the bar indicates the number of vectors of differences used.

vi,G = xr1,G + F (xr2,G − xr3,G) (2.3)

where vi,G is a donor vector, F ∈ (0, 1), r1, r2, r3 are different random integers that denote

individuals in the population.

Binomial crossover is an operator which goal is to increase diversity [31], it creates a trial vector
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Algorithm 2 function DE_algorithm(f)

Initialize random population
while Is a stopping criterion not satisfied? do

Copy previous generation to uj,i,G
for every individual i in the population do

Apply mutation operator (Equation 2.3)
Apply crossover operator with a probability of Cr (Equation 2.4)

end for
for every individual i in the population do
if f(xi,G) <= f(ui,G) then
xi,G+1 ← ui,G

else
xi,G+1 ← xi,G

end if
end for

end while

by combination of the target and the donor vector. The operator is defined as:

uj,i,G


vj,i,G if randij[0, 1] ≤ Cr or j = jrand

xj,i,G otherwise
(2.4)

where ui,G is a trial vector, vi,G a donor vector, and ui,G the target vector. randi,j are random

numbers and Cr is the crossover rate.

Algorithm 2 describes canonical DE. In contrast to GAs, DE applies mutation before crossover.

After the application of the variation operators comes the selection of a survivor. In this selection a

individual do not need to be fitter than its parent to survive, only not worse [32].

2.3 Gradient based optimization methods

The gradient vector has the property that it is the direction of steepest ascent, by symmetry is also

the direction of steepest descent. Both properties are local which makes methods using only gradient

information not very effective in most problems [6].
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2.3.1 Steepest descent method

Steepest descent is an iterative method that use the negative of gradient as a direction for

minimization. The methods starts at an initial guess x0 and uses Equation 2.5 to generate new

points.

xi+1 = xi − αi∇f(xi) (2.5)

where i is the iteration number and αi = argminα∈R xi+1

The algorithm stops when the norm of the gradient is zero or is within a tolerance margin [6].

2.3.2 Conjugate direction methods

Conjugate directions methods form a class of global optimization methods with low-memory

requirements and good convergence properties. Conjugate directions methods will optimize a

quadratic function in n steps, where n is the size of the problem. One consequence of Taylor

theorem is that a general nonlinear function can be approximated by a quadratic near to the optimum,

this allows conjugate gradient methods to operate even in nonlinear functions, despite having been

conceived for solving linear equation systems [9].

The Powell method extends the basic pattern search method and it was proposed in 1964 [33].

Conjugate directions are constructed using a set of line searches, to minimize a function f . To

find the n conjugate directions in quadratic functions, the method performs n2 line searches. For

more complicated functions, the number of computations required is higher. However the proof of

quadratic convergence of the algorithm assumes that exact minimums are found, which does not

happen in practice, this increments the number of required iterations to solve a problem. One of the

advantages of this method is that it does not require a function to be differentiable [6].

In contrast to the method of Powell, which uses canonical base unit vectors, conjugate gradient
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methods use gradient as basis vectors to compute the descent directions, which reduces the number

of line searches required from n2 to n but it requires functions to be differentiable.

Conjugate gradient methods generate a sequence of points using Equation 2.6.

xk+1 = xk + αkdk (2.6)

where αk is a scalar that minimizes f(xk + αkdk) and dk is the k-th search direction.

The set of search directions D = {d1,d2, . . . ,dk} is generated using Equation 2.7.

dk+1 = −∇f(xk+1) + βkdk (2.7)

where βk is a scalar computed using a formula that varies according to the conjugate gradient method

used.

Hestenes and Stiefel proposed the first conjugate gradient method for the solution of linear

equation systems characterized by symmetric positive definite matrices. This method solves linear

equation systems by minimizing a quadratic function. Fletcher and Reeves extended this method for

more general functions [6].

The formulas for Hestenes-Stiefel, Fletcher-Reeves and Polak-Riebiere–Polyak to calculate βk are

given [34]:

βHSk =
∇f(xk+1)

T (∇f(xk+1)−∇f(xk))
dTk (∇f(xk+1)−∇f(xk)

(2.8)

βFRk =
‖∇f(xk+1)‖2

‖∇f(xk)‖2
(2.9)

βPRPk =
∇f(xk+1)

T (∇f(xk+1)−∇f(xk))
‖∇f(xk)‖2

(2.10)

where ‖.‖ represents a vector norm.
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If f is a quadratic function each formula is equivalent with an exact line search. For non-quadratic

functions each formula leads to different performance. In particular, the Polak–Ribière–Polyak

conjugate gradient method has been well studied and is considered one of the most efficient conjugate

gradient methods [35]. The current best conjugate gradient methods are hybrid methods, which

dynamically adjust the formula for β [36].

Conjugate gradient vectors have been successfully applied to solve civil engineering problems [37],

chemistry [38], machine learning [39], and many others [40].

2.4 Chapter summary

This chapter introduced the concept of optimization, with a focus on global optimization. Definitions

for neighborhood and local search were also given, these two concepts are necessary to understand

what a local search operator does. The condition that a search direction has to satisfy to be a

direction of improvement was also stated. This chapter also introduced the historical paradigms

in EAs, and a modern paradigm created in the nineties, DE. It is in this EA that the local search

operator proposed is incorporated. The descent directions used in the local search operator are

computed using a conjugate gradient algorithm, this algorithm and its relation to gradients is also

described.
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State of the Art

In this chapter are presented concepts and works related to the solution of continuous optimization

problems using algorithms that integrate local search techniques into EA. First in Section 3.1 is

introduced the concept of MAs. Section 3.2 is about MAs that use DE as the population-based

metaheuristic. Section 3.3 is focus on MAs that use gradient directions, the underlying population-

based metaheuristic of these works is not necessarily DE.

3.1 Memetic algorithms

In 1997, the no-free lunch theorem showed that any two optimization algorithms are equivalent in

performance when averaged across every possible problem [41]. A corollary from this theorem is that

specialization, design problem specific algorithms should yield best results.

Cooperative metaheuristics are a class of stochastic global search algorithms which combine

population-based metaheuristics with problem specific solvers, where the idea is to exploit problem

specific knowledge to accelerate the finding of good solutions. Cooperative metaheuristics are

21
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classified according to the interactions of their parts:

Low/High Level

• Low level: a given function of a metaheuristic is replaced by another method.

• High level: the algorithms are self-contained

Relay/Teamwork

• Relay: set of methods that act in a pipeline fashion

• Teamwork: represents cooperative optimization methods.

MAs have been classified as LTH. According to the definition of MA described in [1], in this class

of algorithms a transformation operator, commonly the mutation operator, is replaced by an exact

search method within a subspace of the search space and it is possible that the GA part and the

exact search method are executed at the same time.

A taxonomy of cooperative metaheuristics, where MAs are classified as low level team heuristics

is presented in Figure 3.1.

Figure 3.1: Taxonomy of cooperative metaheuristics by [1]
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Moscato proposed MAs inspired by Lamarckian ideas of individual lifetime learning [7]. This

learning consists of domain-specific information to produce a better performing algorithm [42].

The most common type of MA uses heuristic local searches to improve some solutions. The

evolutionary part of this type of algorithms identifies promising regions of the search space, while

the local search mechanism explores the neighborhood of a particular solution. MAs have been used

in discrete optimization [43] [44], continuous optimization, constrained optimization [45].

There is no universal agreement on the use of the term ”memetic algorithm” due to the large

existing number of variations, some names that have been used to call MAs are hybrid GAs,

Baldwinian EAs, Lamarckian EAs, genetic local search algorithms, and many other names. One of the

more pressing concerns in MAs design is diversity maintenance while using local search mechanisms

[7].

Lamarckian algorithms have a faster convergence speed than Baldwian algorithms, but

Lamarckianism tends to suffer premature convergence, and Baldwinian learning is less likely to

produce stagnation. This different behavior is a consequence of the rule used to replace solutions.

In Lamarckian algorithms, both the fitness value and the individual change, while in Baldwinian

algorithms only the fitness value evolve.

Algorithm 3 describes a local search based MA. In this algorithm the local search operator is

applied after the application of recombination or mutation to a fixed number of individuals per

generation.

This thesis is focused in continuous optimization, so the studies discussed belong to this type of

problems.

3.2 Memetic differential evolution

DE has been one of the most competitive methods for numeric optimization, even since its

introduction [31]. MAs were originally proposed for solving combinatorial optimization problems,
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Algorithm 3 function basic_MA(par, P)

1: Initialize population
2: Evaluate fitness of the population
3: while Is a stopping criterion not satisfied? do
4: for i← 1 upto recombination number do
5: Select parents
6: Apply recombination
7: Apply local search operator
8: Insert individual
9: end for

10: for i← 1 upto mutation number do
11: Select individual
12: Apply mutation
13: Apply local search operator
14: Insert individual
15: end for
16: end while
17: return fittest individual

eventually this methodology was applicated to solve continuous optimization problems, and since DE

is a successful EA it was a natural step to introduce memetic strategies to DE. The works presented

in this section are part of this class of algorithms.

In [46] is proposed a directional mutation operator, their motivation is that the best fitness found

in DE cannot be improved in every generation. The mutation operator in DE use difference vectors,

which are used as the descent directions. The main idea is that difference vectors constructed

using trial solutions that are better than the global best have a higher probability of being good

descent directions than different vectors that are selected randomly. A pool of difference vectors is

constructed these directions, which are used instead of the randomly formed descent directions of

canonical differential evolution. One limitation of this approach is that each vector of the pool is

only used once and with no fitness improvement happening the pool is empty and the operator is

not activated.

Multiple offspring sampling (MOS) is a framework for the development of MAs based in DE

that allows the development of both HTH and HRH algorithms, it was proposed in [47]. This
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framework refers to each mechanism to generate new candidate solutions as a technique and adjust

the partition ratio of these tecniques using two main approaches: a central approach that uses

quality and participation functions and a self-adapting approach where the participation ratio is

encoded within individuals. Among these two approaches, the self-adapting approach performed

worse that the former, as it suffers premature convergence in the selection of techniques, as the

best techniques change during the execution of an evolutionary algorithm. DE is combined with the

Hookes-Jeeves method to study the Baldwin effect in [48]. A different direction was taken in [49]

where the main idea was to optimize DE scale factor F using a hill climber, this decision decoupled

the cost of the local search with the number of variables in the problems.

There are methods that rely on randomness, in [50] is proposed a MA that relies on Eager

Random Search to enhanced DE. In the paper are presented three strategies based on three probability

distributions to explore the search space of a trial solution x, the best performing strategy used was

named differential evolution Cauchy local search (DECLS), this variant used a Cauchy distribution to

have more chances to escape local optima. Compared to a normal distribution, a Cauchy distribution

has a wider distribution, which means that values distant of the mean have a higher chance and this

allows bigger moves than a normal distribution.

Chaos is a typical nonlinear phenomenon in nature which is characterized by ergodicity,

randomicity and sensitivity to its initial conditions, in [51] is proposed an algorithm that incorporates

a local search mechanism that use chaotic local search, based on logistic chaotic function, with

a non-linear shrinking strategy. The algorithm starts its execution with a relatively big population

which is reduced each generation. A more elitist strategy is pursuit in [52], in this approach the local

search strategy is based on information from the elite individuals to exploit promising regions of the

search.
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3.3 Memetic algorithms using gradients

In this section are mentioned methods that use the gradient as the descent direction, in most of

these algorithms, additional operators were incorporated to balance the tendency of falling trapped

in local optima that the steepest descent method has.

Gradient evolution (GE) [53] explores the search space using a set of vectors with three main

operators: update, jump and refresh. The main operator is the modification of a vector using the

direction of the gradient. The direction of the steepest descent tends to attract the algorithm to

local optima, the jump operator allows the algorithm to escape these optima. A refresh operator

helps the algorithm to avoid getting locked in certain regions of the space as a side effect of the elitist

search. Search directions are determined using the Newton-Raphson method. In the experimentation

performed the GE obtained better performance in term of number of iterations, compared to PSO,

and bacterial colony optimization (BCO), in the majority of the benchmark functions.

In [8] is proposed a hybrid algorithm with three levels, DE hybridized with SA and traditional

gradient optimization (DE-SA Newton) and DE with gradient optimization (DE-Newton). The

element of SA used in DE-SA Newton is in the variation of the parameter F of DE using an equation

reminiscent of the acceptation criterion of SA. DE-Newton has a balance between convergence

speed to a local optimum and the ability to find the global optimum. Searching near a optimal is

accelerated using gradients as directions of descent, which can be integrated as an additional step

in DE. The algorithm DE-Newton proposed is faster than the other variant (SA-DE-Newton) but it

might stagnate before finding the optimal solution, both algorithms are superior to canonical DE.

The direction of the steepest descent can drive populations to stagnation, to avoid this drawback,

in [54] are proposed search strategies based on the gradient and polar coordinates. This approach

combines DE with the steepest descent method and polar coordinates, which expands the search

range and avoid local optima while conserving population diversity.

Gradient subspace approximation (GSA) [55] uses neighborhood information of a point xk to
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Table 3.1: Comparison of Memetic Algorithms using gradients

Reference Hybridation type Advantages Disadvantages
Schuetze et
al. 2016
[55].

Differential
Evolution with gradient
based local search.

The descent directions
calculated are
free in term of functions
evaluations

Only feasible for
problems with a
moderate number
of variables

Kuo et al.
2015 [53].

Genetic Algorithm with
gradient based local
search

Competitive in
multimodal functions

Elitist strategy is
sensitive to
parameter
choices.

Rafajowicz
2015 [8].

Differential
Evolution with gradient
based local search.

Fast convergence speed
balanced with global
search power

Tendency to
stagnation,
compared
to other hybrid
methods

Yang et al.
2015

Differential evolution
with local search using
gradient and polar
coordinates

Good convergence
speed

In functions with
many uniformly
distributed
local optima, this
algorithm did not
performed as well

compute the direction of the maximum descent in a induced subspace. When the induced space

coincides with the complete search space, the computed vector is an approximation of the gradient

vector. The generated descent direction can be used both a standalone method or in a local search

operator in population-based metaheuristics. In the case of population-based metaheuristics the

neighborhood information is obtained for free, which is cheaper than estimators based in finite

differences.

Table 3.1 summarizes advantages and disadvantages of the methods presented in this section.



28 3.4. Chapter Summary

3.4 Chapter Summary

This chapter presented a taxonomy of cooperative metaheuristics and introduced MAs as a class

of algorithms of this category. MAs are commonly seen as an EA with some kind of local search

incorporated. In these algorithms there are two types of learning: Baldiwnian learning and Lamarkian

learning, which is the type of learning used in the algorithms presented in this chapter. Even if the

type of learning was the same, the local search mechanisms used took different forms, for example in

one of the studies mentioned, researchers hypothesized that individuals that outperform the global

best can be pooled and used to produce better search directions.

Local search can be applied to parameters, in of the studies mentioned in this chapter, a hill

climber was used to optimize the scale factor in DE. A Aggressive local search strategies often lead

to local optima, random and chaos phenomena based operators can be used to escape these optima.

In MAs, the ideal local search operator can change during the differences phases of the algorithm,

so there are MAs which incorporate more than one local search operator. MOS is a framework

specifically designed to develop MAs with multiple local search operators.

Local search operators inspired by calculus also exist. Standalone calculus methods cannot

discern whether an optimum is local or global. In this chapter were introduced methods that use the

steepest descent direction as the descent direction, this can led to stagnation, most of these methods

incorporate mechanisms to escape local optima. The strategies used are varied and included a new

coordinate system, a extra metaheuristic (SA) that modifies the parameter F , and operators of reset,

triggered when is detected stagnation.
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Proposed approach

The proposed approach consists of a local search operator based on conjugate directions, which is

integrated in an EA. The directions used are constructed with gradients computed by an estimator,

in Section 4.1 this estimator is introduced. Section 4.2 presents the conjugate gradient method.

Section 4.3 is devoted to the method of interpolation used to compute the step lengths required by

the conjugate gradient method. Finally Section 4.4 focus on the MA developed.

4.1 Gradient estimator

The estimator used to compute gradients is GSA, which was proposed in [55]. GSA is a set oriented

gradient estimator, which main advantage is that it does not need a set of coordinate aligned points.

This feature allows GSA to repurpose fitness values computed by EAs to avoid additional function

evaluations.

The idea behind this estimator is to compute the greediest descent direction in a subspace

spanned by x0 and its neighbors. The direction generated is an approximation of the gradient when

29
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the spanned space covers the entire search space. In Euclidean spaces a neighborhood is defined by a

radius ε, in the proposal the neighborhood radius selected is adjusted to include n solutions, in order

to span the entire search space and produce an estimation of the gradient vector. The search of the

greediest descent direction is formulated as an optimization problem that it is analytically solved with

the Karush–Kuhn–Tucker conditions. These conditions are used are to solve optimization problems

with inequality constraints. These conditions are necessary but not sufficient to ensure the presence

of local optima in non convex functions [6].

A gradient estimation at x0 is computed using Equation 4.1.

g = V (V TV )−1d (4.1)

where V = {vi, . . . ,vr} is a matrix with r linearly independent n-dimensional vectors, vi = xi−x0

||xi−x0|| ,

di =
f(xi)−f(x0)
||xi−x0|| and g is a gradient estimation at point x0.

This descent direction can be used in an optimization method to generate a succession of

monotonically better solutions. Even used as a standalone method, GSA was proven superior to

the Nelder-Mead method in optimization problems. This standalone GSA is roughly equivalent to

the steepest descent method and generates a sequence of points in the form given by Equation. 4.2.

xk+1 = xk − αk∇f(xk) (4.2)

where x0 is an initial solution, ∇f(xk) is the gradient at xk ,and αk is an scalar that minimizes

f(xk+1).

Algorithm 4 describes standalone GSA. Each iteration a new xk+1 is generated by linear

combination of xk, and a search direction pk with a parameter αk, which is the solution of a

smaller optimization problem αk = argminαk∈R f(xk − αkpk). The execution of this procedure

continues until |∇f(xk)| is within a tolerance margin or the number of iterations set is exhausted
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Algorithm 4 function standalone_GSA(par, P)

while Is a stopping criterion not satisfied? do
fxk ← f(xk)
pk ← gradient estimation at xk
Find an αk that minimizes f(xk − αkpk)
xk+1 ← xk − αkpk
xk ← xk+1

end while
return fittest individual, ac

[6]. In the implementation used in this thesis ∇f(xk) is computed using a gradient estimator.

4.2 Conjugate gradient

There are many conjugate gradient methods described in the literature [36], but these methods

operate using exact gradients, and the gradients computed by GSA are only approximations. This

implies that in practice the performance of these methods can differ from the results published in

the literature, which means that it is pertinent to perform experiments to select a conjugate gradient

formula. These experiments included three conjugate gradient methods: Hestenes-Stiefel (Equation

4.3), Fletcher-Reeves (Equation 4.4), and Polak-Ribiere-Polyak (Equation 4.5). The first experiment

executed involved an environment where the conjugate gradient methods were used as a standalone

optimization method in a unimodal function, this experiment used a neighborhood with radius ε and

confirmed Polak-Ribiere-Polyak as the best performing formula among the ones tested. A similar

second experiment was performed, in this experiment a multimodal function was used, and the

neighborhood consisted of the individuals of a DE algorithm. The results of this experimentation

differed from the previous one and Fletcher-Reeves was the best method. This can be attributed to

the inaccuracy in the gradients used to construct the conjugate directions, which favored the simplest

of the formulas tested, the Fletcher-Reeves formula. Algorithm 5 displays the conjugate gradient

method used as a local search operator in this thesis. In this algorithm, each conjugate direction
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Algorithm 5 function conjugate_gradient(x0)

Initialize population
xk ← x0

dk ← Estimate gradient at xk
while Is a stopping criterion not satisfied? do

Compute αk using quadratic interpolations
xk+1 ← xk − αkdk
Estimate gradient at xk+1

Compute βk using Equation 4.4
dk+1 ← −∇f(xk+1) + βkdk
k ← k + 1

end while
return xk

is a linear combination of the previous conjugate directions, and the first iteration is equivalent to

the steepest descent method. These directions are used as descent directions each iteration and the

algorithm stops when a fixed number of iterations is reached.

βHSk =
∇f(xk+1)

T (∇f(xk+1)−∇f(xk))
dTk (∇f(xk+1)−∇f(xk)

(4.3)

βFRk =
‖∇f(xk+1)‖2

‖∇f(xk)‖2
(4.4)

βPRPk =
∇f(xk+1)

T (∇f(xk+1)−∇f(xk))
‖∇f(xk)‖2

(4.5)

4.3 Step length optimization

The method of the quadratic interpolations can be used to find the step lengths required by the

local search operator. Let f be a multivariate objective function, the problem of minimization along

a direction given by an unitary vector v, is finding the λ∗ which minimizes Equation 4.6 [6].
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f(λ) = f(x0 + λv) (4.6)

where λ ∈ R, v,x0 ∈ Rn. Point x0 is the initial point in the search, λ∗ is a factor multiplying the

search direction, unitary vector v.

The three points used to interpolate the quadratic curve are obtained by evaluating the objective

function at three different points, using these points, linear system formed is described by the next

three equations:

f(x0 + λ1v) = Aλ21 +Bλ1 + C (4.7)

f(x0 + λ2v) = Aλ22 +Bλ2 + C (4.8)

f(x0 + λ3v) = Aλ23 +Bλ3 + C (4.9)

The initial points are arbitrary values for λ, in order to save one function evaluation, λ1 was set

to 0. The remaining values of λ were set to 0.5 and 1 in order to not move too far of x0. The

system formed is solved and the best point in this quadratic is found in the geometric place given by

Equation 4.10 if and only if A > 0.

λ∗ =
−B
2A

(4.10)

This λ∗ and the two best points of the previous iteration are used to fit another quadratic until

the maximum number of iterations is reached or until is not possible to generate a better point using

the same procedure.

The pseudocode of the algorithm implemented is listed in Algorithm 6. Each iteration, a new

point is generated and is tested if it is better or not, it ends when the number of iterations is spent
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Algorithm 6 function qinterpolations_algorithm()

(λ1, λ2, λ3)← (0, 0.5, 1)
(f1, f2, f3)← (f(λ1), f(λ2), f(λ3))
while Is the number of iterations already spent? do

Solve linear system to obtain A, B, C
if A > 0 then
λ∗ ← −B

2A

x∗ ← x0 + λ∗v
fn← f(λ∗)
if fn is the worst in a set that also includes f1, f2, f3 then

break
end if
Add x∗ to a pool of solutions
a← Sort [(f1, λ1), (f2, λ2), (f3, λ3), (fn, λ∗)] in ascending order
(f1, λ1)← a1
(f2, λ2)← a2
(f3, λ3)← a3

else
break

end if
end while
return (f1, λ1)

or the best point of the interpolated parabola is worst than the previously computed points. At the

end of each iteration the current solution is added to a pool of solutions that for the purposes of the

gradient estimator is temporally added to the points used in the estimator.

4.4 Development of memetic algorithm

In a MA, an EA is endowed with some kind of local search [56]. This mechanism enhances the

exploitation in the promising regions found by an EA. This exploitation should not be so aggressive

that the loss of diversity causes premature convergence. Among many others, aspects that need to

be taken into account when designing MAs are [7]:

• The frequency of the application of the local search
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• The depth of the local search

• The individuals that the operator will refine

These aspects are related to the relatively high cost of using a local search operator compared

with the evolutionary operators. As Figure 4.1 shows, in the developed approach the local search is

executed each generation after the evolutionary operators.

Figure 4.1: Local search operator in the proposed approach

The proposed approach is sketched in Algorithm 7, in the proposal the individual selected for the

application of the operator can be either the individual with the best fitness value in the population or

an individual of the first tercile with the best solutions in the population. This decision discriminates

against not promising regions of the search space. The algorithm maintains a list with a boolean

value indicating if the local search operator has been applied to an individual and the individual
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Algorithm 7 function hybrid_algorithm(par, P)

Initialize random population
ac← 0
while Is a stopping criterion not satisfied? do

Execute one generation of canonical DE
ac← ac+ 1
while ac > 0 do
if if best individual is not in taboo list then

The individual selected is the best individual
else

Select a random individual in percentile 33
while if the individual selected is in the taboo list do

Select a random individual in percentile 33
end while

end if
if a individual was selected then

Apply local search operator to selected individual
ac← ac− 1

else
break

end if
end while

end while
return fittest individual, ac

selected is avoided. The discrimination of these individuals prevents the repetition of a failed local

search. In the proposed approach the individual with the best fitness is the default choice, otherwise

an individual of the first tercile is selected. If there is not a single individual that is eligible for

the application of the operator, the schedule application of the generation accumulates for the next

generation, in average the operator is applied one time per generation.

Two variants of Algorithm 7 are proposed, in Chapter 5 these variants are compared. One of

these variants uses only a gradient estimation as the descent direction, which can be seen as a

steepest descent operator using only one iteration (DE/GSA). The second algorithms uses conjugate

directions (DE/GSA-CG) with a stopping criterion given by a percentage of improvement set to

2.5%. This percentage is computed using Equation 4.11.
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imp = 100
f(xk)− f(xk+1)

xk
(4.11)

GSA produces greedy directions that are approximations of the gradient when the number of

points in the neighborhood is n. This value is used to construct the gradients used in the Fletcher-

Reaves method. Table 4.1 lists the parameters used for the the algorithm of quadratic interpolations.

Parameter Value

Maximum iterations 10

Initial λ1 0

Initial λ2 0.5

Initial λ3 1

Table 4.1: Parameters used in the proposed approach

4.5 Chapter summary

This chapter detailed the local search operator proposed in this thesis work. This local search operator

is based on directions generated by GSA, a gradient estimator. GSA can repurpose the fitness values

stored in EAs, which means that it is free in terms of additional function evaluations.

In this thesis, the version of GSA used a neighborhood with n elements, which is a subset of

the union of the current population and the individuals generated during the current application of

the operator. These directions are used to construct conjugate directions with the Fletcher-Reeves

formula. The conjugate directions are incorporated as a local operator in a MA based on DE. In the

proposal, the local search operator is applied in average one time per generation and it is applied to

the best individual if certain condition is satisfied. Otherwise the same condition is randomly tested

in individuals ranked in the first tercile according to their fitness values. If no individual satisfies the

selection criteria the pending application is executed in the next generations.





5
Experimentation and Results

In this chapter are presented the results generated by the experimentation performed. In Section 5.1

are listed the parameters used in the experimentation. Three different algorithms and the proposed

approach were compared in these experiments. In Section 5.2 DE and the proposed approach are

compared and the superiority of the developed approach over DE is shown. The proposed algorithm

is compared in Section 5.3 with DE/GSA and DECLS.

5.1 Experimental settings

Benchmark problems retrieved from the competition of the Congress on Evolutionary Computation

2017 [57] are used to compare the four algorithms studied, descriptions of these problems have been

annexed to Appendix A.1. Table 5.1 indicates whether a function has a local optimum, which is also

the global optimum (unimodal) or the function has many local optima (multimodal).

39
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Function Modality Function Modality

f1 unimodal f2 unimodal

f3 unimodal f4 unimodal

f5 multimodal f6 multimodal

f5 multimodal f6 multimodal

f7 multimodal f8 multimodal

f9 multimodal f10 multimodal

f11 multimodal f12 multimodal

f13 multimodal f14 multimodal

f15 multimodal f16 multimodal

f17 multimodal f18 multimodal

Table 5.1: Modality of bechmark functions

The parameters used for the experiments performed are included in Table 5.2. These parameters

include population size [58], F and CR which correspond to the parameters of a DE algorithm [59].

The number of variables in the experimentation performed was also varied in order to see how well

the performance of the algorithms scale. To produce a fair comparison between the approaches

employed, the computational cost is defined in terms of the number of function evaluations, which

is the number of times the objective function is called. The performance of stochastic algorithms

is usually analyzed using non-parametric test. Nonetheless normality is still tested using a Shapiro-

Wilks test. Two tests are used to test whether the samples generated from the results have the same

distribution. Either the Friedman test or Wilcoxon sign-rank test are executed to detect whether an

algorithm A is really better than an algorithm B or the statistics generated are not meaningful [60].

The confidence level used for each test is set to 0.05, which is a commonly used value.

The number of independent runs for the experimentation performed is 25, and the settings used

are summarized in Table 5.2.
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Parameters Value
Domain xi ∈ [−100, 100]
Number of variables n = [20, 50, 100]
Function evaluations 5000n
Population size 10n
F 3

5

CR 4
5

Table 5.2: Parameters used for the evolutionary part of the algorithm

Parameters Value
F 0.9
CR 0.85
M 5
j 0.1
t 0.2

Table 5.3: Parameters used for DECLS

For the experimentation with DECLS most parameters remained the same, but the ones that

changed were adjusted to match what the authors proposed, these settings are included in Table 5.3.

.

5.2 Comparison between DE and the proposed approach

5.2.1 Results

This comparison involved canonical DE and DE/GSA-CG. For reasons of space, the results of

each experiment are included in separated tables, and this arrangement is indexed in Table 5.4.

These indexes include the number of variables, the number of function evaluations and the problems

included.
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Function DE/GSA-CG DE Wilcoxon
f1 Mean 4.288E+05 4.742E+05

Median 4.856E+05 4.853E+05
SW 3.323E-02 6.514E-01 4.926E-01

f2 Mean 3.819E+10 1.552E+10
Median 2.629E+10 1.092E+10
SW 4.410E-02 9.697E-06 9.417E-03

f3 Mean 1.120E+04 1.114E+04
Median 1.108E+04 1.103E+04
SW 2.010E-03 6.997E-01 7.164E-01

Table 5.5: Fitness values after 100000 function evaluations for functions f1-f3 with n = 20

n Function evaluations Functions Tables

20 100000 f1-f3 5.5

20 100000 f4-f18 5.6

50 250000 f1-f8 5.7

50 250000 f9-f16 5.8

50 250000 f16-18 5.9

100 500000 f1-f6 5.10

100 500000 f7-f12 5.11

100 500000 f13-18 5.12

Table 5.4: Index of tables with the generated results

The tables mentioned in Table 5.4 are composed of two columns which represent the compared

algorithms, and rows for three statistical properties: mean, median, and the p-value produced by

a Shapiro-Wilks test. An additional column contains the p-value of a Wilcoxon signed-rank test,

the level of confidence was set to 0.05 and the p-values that satisfy this condition and the test of

Shapiro-Wilks are marked in bold. Also in bold are the fitness values of the best algorithm for each

function.
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Function DE/GSA-CG DE Wilcoxon
f4 Mean 4.732E+04 2.824E+04

Median 3.912E+04 2.380E+04
SW 1.044E-03 1.308E-02 1.382E-02

f5 Mean 1.253E+02 1.323E+02
Median 1.250E+02 1.334E+02
SW 1.136E-01 4.181E-01 3.955E-02

f6 Mean 8.278E+00 8.302E+00
Median 8.327E+00 8.324E+00
SW 5.405E-02 4.496E-01 6.571E-01

f7 Mean 4.926E+01 4.672E+01
Median 5.211E+01 4.644E+01
SW 1.824E-01 2.786E-02 3.002E-01

f8 Mean 1.165E+03 1.285E+03
Median 1.226E+03 1.341E+03
SW 1.705E-05 6.272E-01 9.797E-02

f9 Mean 3.284E+03 3.727E+03
Median 3.251E+03 3.373E+03
SW 1.062E-01 1.194E-02 1.425E-01

f10 Mean 3.333E+00 4.124E+00
Median 3.354E+00 4.333E+00
SW 6.964E-01 7.794E-01 6.848E-03

f11 Mean 2.060E+01 2.064E+01
Median 2.060E+01 2.065E+01
SW 1.207E-03 3.963E-01 3.507E-03

f12 Mean 2.079E+01 2.192E+01
Median 2.100E+01 2.241E+01
SW 5.376E-01 6.935E-02 1.100E-02

f13 Mean 6.013E-01 5.959E-01
Median 5.947E-01 5.974E-01
SW 1.882E-01 6.445E-01 5.272E-01

f14 Mean 1.637E+00 1.751E+00
Median 1.658E+00 1.765E+00
SW 1.010E-02 6.362E-01 2.209E-01

f15 Mean 5.326E-01 6.205E-01
Median 5.359E-01 6.219E-01
SW 6.469E-01 6.852E-01 1.186E-03

f16 Mean 3.661E-01 3.844E-01
Median 3.659E-01 3.889E-01
SW 8.984E-01 8.420E-01 2.758E-01

f17 Mean 1.571E+07 1.359E+07
Median 1.349E+07 1.029E+07
SW 2.030E-03 1.034E-03 7.570E-01

f18 Mean 6.053E-01 8.295E-01
Median 5.994E-01 8.032E-01
SW 9.698E-01 8.582E-01 2.958E-04

Table 5.6: Fitness values after 100000 function evaluations for functions f4-f18 with n = 20
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Function DE/GSA-CG DE Wilcoxon
f1 Mean 3.803E+10 3.890E+10

Median 3.827E+10 3.839E+10
SW 1.287E-01 6.946E-01 5.272E-01

f2 Mean 5.908E+67 5.986E+67
Median 7.789E+66 1.801E+67
SW 1.000E+00 1.000E+00 8.824E-01

f3 Mean 1.143E+05 1.291E+05
Median 1.172E+05 1.305E+05
SW 7.171E-08 9.676E-01 1.721E-03

f4 Mean 1.627E+10 2.178E+10
Median 1.965E+10 2.177E+10
SW 3.692E-04 4.281E-01 1.829E-01

f5 Mean 4.492E+04 4.273E+04
Median 4.500E+04 4.329E+04
SW 2.996E-01 5.025E-01 7.800E-02

f6 Mean 2.287E+01 2.306E+01
Median 2.291E+01 2.309E+01
SW 1.949E-02 2.836E-01 1.489E-02

f7 Mean 1.934E+04 2.200E+04
Median 1.987E+04 2.263E+04
SW 1.471E-06 6.067E-02 2.466E-02

f8 Mean 7.130E+03 7.415E+03
Median 7.235E+03 7.535E+03
SW 2.944E-02 1.547E-02 4.797E-02

Table 5.7: Fitness values after 250000 function evaluations for functions f1-f8 with n = 50
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Function DE/GSA-CG DE Wilcoxon

f9 Mean 4.092E+08 4.252E+08

Median 4.161E+08 4.279E+08

SW 6.014E-01 6.272E-01 4.118E-01

f10 Mean 1.129E+05 1.310E+05

Median 1.101E+05 1.291E+05

SW 6.923E-01 1.413E-01 9.804E-04

f11 Mean 2.104E+01 2.106E+01

Median 2.105E+01 2.107E+01

SW 2.492E-01 5.805E-01 2.643E-02

f12 Mean 6.901E+01 7.006E+01

Median 6.947E+01 6.998E+01

SW 2.090E-02 7.823E-01 6.934E-02

f13 Mean 1.176E+01 1.177E+01

Median 1.190E+01 1.171E+01

SW 1.122E-01 7.796E-01 5.998E-01

f14 Mean 3.074E+00 3.216E+00

Median 3.109E+00 3.262E+00

SW 3.346E-01 2.009E-01 9.797E-02

f15 Mean 4.353E+02 4.557E+02

Median 4.369E+02 4.533E+02

SW 7.440E-01 7.729E-01 8.265E-02

f16 Mean 4.228E+04 4.202E+04

Median 4.221E+04 4.354E+04

SW 5.604E-01 5.009E-02 7.570E-01

Table 5.8: Fitness values after 250000 function evaluations for functions f9-f16 with n = 50
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Function DE/GSA-CG DE Wilcoxon

f17 Mean 3.186E+16 3.192E+16

Median 3.194E+16 3.297E+16

SW 4.541E-01 8.397E-01 9.464E-01

f18 Mean 9.329E-01 1.026E+00

Median 9.551E-01 1.044E+00

SW 1.014E-01 4.821E-02 2.259E-03

Table 5.9: Fitness values after 250000 function evaluations for functions f17-f18 with n = 50
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Function DE/GSA-CG DE Wilcoxon

f1 Mean 2.233E+11 2.106E+11

Median 2.214E+11 2.164E+11

SW 3.546E-02 5.866E-02 1.382E-02

f2 Mean 2.379E+161 5.230E+161

Median 1.514E+159 4.643E+160

SW 1.000E+00 1.000E+00 5.816E-03

f3 Mean 2.522E+05 2.611E+05

Median 2.624E+05 2.759E+05

SW 7.793E-09 8.484E-09 3.467E-02

f4 Mean 1.182E+11 1.137E+11

Median 1.195E+11 1.198E+11

SW 9.535E-02 1.316E-08 4.593E-01

f5 Mean 2.240E+05 2.278E+05

Median 2.259E+05 2.298E+05

SW 3.177E-02 2.553E-01 2.418E-01

f6 Mean 4.733E+01 4.843E+01

Median 4.736E+01 4.757E+01

SW 2.917E-01 2.253E-10 1.303E-03

Table 5.10: Fitness values after 500000 function evaluations for functions f1-f6 with n = 100
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Function DE/GSA-CG DE Wilcoxon

f7 Mean 7.290E+04 7.012E+04

Median 7.312E+04 7.290E+04

SW 1.800E-01 1.781E-07 4.432E-01

f8 Mean 1.848E+04 4.829E+09

Median 1.860E+04 1.882E+04

SW 7.496E-01 1.214E-10 1.742E-01

f9 Mean 4.573E+09 4.420E+09

Median 4.577E+09 4.640E+09

SW 6.007E-01 5.516E-08 9.893E-01

f10 Mean 2.988E+05 3.148E+05

Median 3.023E+05 3.221E+05

SW 7.228E-01 3.840E-06 2.831E-02

f11 Mean 2.039E+01 2.042E+01

Median 2.125E+01 2.128E+01

SW 1.335E-10 1.327E-10 1.382E-02

f12 Mean 1.546E+02 1.507E+02

Median 1.548E+02 1.572E+02

SW 7.285E-02 3.156E-10 2.831E-02

Table 5.11: Fitness values after 500000 function evaluations for functions f17-f12 with n = 100



5. Experimentation and Results 49

Function DE/GSA-CG DE Wilcoxon

f13 Mean 5.805E+01 5.611E+01

Median 5.791E+01 5.850E+01

SW 9.605E-01 1.976E-08 9.250E-01

f14 Mean 3.717E+00 3.905E+00

Median 3.729E+00 4.000E+00

SW 8.146E-03 1.564E-03 1.018E-02

f15 Mean 1.144E+03 1.108E+03

Median 1.168E+03 1.142E+03

SW 5.798E-02 4.203E-08 3.002E-01

f16 Mean 2.229E+05 2.179E+05

Median 2.279E+05 2.277E+05

SW 8.096E-02 5.181E-08 5.449E-01

f17 Mean 1.184E+17 1.231E+17

Median 1.240E+17 1.285E+17

SW 2.565E-02 1.798E-07 9.263E-02

f18 Mean 6.460E-01 7.105E-01

Median 6.820E-01 6.979E-01

SW 4.352E-09 3.207E-07 1.603E-02

Table 5.12: Fitness values after 500000 function evaluations for functions f13-f18 with n = 100

5.2.2 Discussion

Tables 5.5 and 5.6 show that DE is superior in functions f2 and f4, which are unimodal functions

with exponential growth and narrow valleys respectively. The different between the two algorithms

in the remaining unimodal functions is not statistically significant. DE/GSA-CG has a slight edge
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that is statistically significant in functions f5, f10, f11, f12, f15 and f18.

In the experiments with n = 50, which data is included in tables 5.7, 5.8, and 5.9, DE/GSA-CG

was better in functions f3, f6, f7, f8, f10, f11, and f18, these were the functions which exhibited

statistical significance. In the remaining functions neither algorithm achieved a significant difference.

In the experiments with n = 100, which data is included in tables 5.10, 5.11, and 5.12, DE/GSA-CG

was better in functions f2, f3, f6, f10, f11, f12, f14, f18, while DE won in function f1.

In unimodal functions, DE/GSA-CG performance improved in comparison with DE when more

dimensions were added to the problems. In multimodal functions was not repeated the same trend,

but the number of functions in which DE/GSA-CG was better remained constant. From these

studies it can be concluded that DE/GSA-CG is clearly superior to DE in multimodal problems and

also scales better for the solution of unimodal problems. This superiority of the proposal is expected,

as DE/GSA-CG enhanced the ability of its evolutionary part to exploit promising regions of the search

space, even if the generated directions are not as accurate as conjugate directions constructed with

exact gradients.

5.3 Comparison between the developed approach,

DE/GSA and DECLS

5.3.1 Results

This comparison involves the approach developed (DE/GSA-CG) and two more algorithms. For

reasons of space, the results of each experiment are included in separated tables. Table 5.13 indexes

the content of the tables included. In these tables, the rows contained statistical properties of the

data: mean and median, and the p-value obtained with a Shapiro-Wilks test. The columns in these

table are devoted to the three algorithms compared and the p-value of the Friedman test performed.

In bold font are the p-values that satisfy the level of confidence to be statistically significant. Also
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in bold are the fitness values generated by the best algorithm in the comparisons performed for each

function.

n Function evaluations Functions Table

20 100000 f1-f2 5.14

20 100000 f3-f10 5.15

20 100000 f11-f18 5.16

50 250000 f1-f5 5.17

50 250000 f6-f13 5.18

50 250000 f14-f18 5.19

100 500000 f1-f8 5.20

100 500000 f9-16 5.21

100 500000 f17-18 5.22

Table 5.13: Index of tables with the generated results

Function DE/GSA-CG DE/GSA DECLS Friedman

f1 Mean 4.288E+05 4.776E+05 6.549E+05

Median 4.856E+05 4.756E+05 6.432E+05

SW 3.323E-02 6.391E-01 3.323E-02 3.492E-04

f2 Mean 3.819E+10 2.816E+10 2.925E+10

Median 2.629E+10 1.696E+10 2.586E+10

SW 4.410E-02 5.275E-07 4.410E-02 4.317E-01

Table 5.14: Fitness values after 100000 function evaluations for functions f1-f2 with n = 20
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Function DE/GSA-CG DE/GSA DECLS Friedman

f3 Mean 1.120E+04 1.050E+04 1.098E+04

Median 1.108E+04 1.052E+04 1.113E+04

SW 2.010E-03 9.190E-01 7.543E-03 4.317E-01

f4 Mean 4.732E+04 4.666E+04 4.158E+04

Median 3.912E+04 3.968E+04 3.482E+04

SW 1.044E-03 3.676E-02 4.393E-02 7.558E-01

f5 Mean 1.253E+02 1.246E+02 1.297E+02

Median 1.250E+02 1.294E+02 1.296E+02

SW 1.136E-01 7.654E-03 1.136E-01 2.369E-01

f6 Mean 8.278E+00 8.282E+00 8.303E+00

Median 8.327E+00 8.289E+00 8.310E+00

SW 5.405E-02 1.475E-01 5.405E-02 5.945E-01

f7 Mean 4.926E+01 4.841E+01 5.141E+01

Median 5.211E+01 4.457E+01 5.085E+01

SW 1.824E-01 8.386E-02 1.824E-01 8.869E-01

f8 Mean 1.165E+03 1.229E+03 1.259E+03

Median 1.226E+03 1.253E+03 1.364E+03

SW 1.705E-05 3.648E-02 6.150E-04 1.249E-01

f9 Mean 3.284E+03 3.300E+03 5.202E+03

Median 3.251E+03 3.139E+03 5.002E+03

SW 1.062E-01 3.913E-01 1.062E-01 1.960E-05

f10 Mean 3.333E+00 3.597E+00 5.712E+00

Median 3.354E+00 3.486E+00 5.349E+00

SW 6.964E-01 7.318E-01 6.964E-01 5.903E-06

Table 5.15: Fitness values after 100000 function evaluations for functions f3-f10 with n = 20
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Function DE/GSA-CG DE/GSA DECLS Friedman

f11 Mean 2.060E+01 2.060E+01 2.063E+01

Median 2.060E+01 2.061E+01 2.066E+01

SW 1.207E-03 1.555E-03 2.244E-02 1.249E-01

f12 Mean 2.079E+01 2.123E+01 2.185E+01

Median 2.100E+01 2.129E+01 2.196E+01

SW 5.376E-01 1.005E-01 5.376E-01 6.220E-03

f13 Mean 6.013E-01 5.839E-01 5.987E-01

Median 5.947E-01 5.920E-01 6.090E-01

SW 1.882E-01 2.657E-01 1.662E-03 4.317E-01

f14 Mean 1.637E+00 1.651E+00 1.726E+00

Median 1.658E+00 1.629E+00 1.710E+00

SW 1.010E-02 6.805E-01 1.010E-02 6.977E-01

f15 Mean 5.326E-01 5.789E-01 6.151E-01

Median 5.359E-01 5.918E-01 6.304E-01

SW 6.469E-01 2.242E-01 6.469E-01 5.742E-03

f16 Mean 3.661E-01 3.823E-01 4.247E-01

Median 3.659E-01 3.768E-01 4.098E-01

SW 8.984E-01 6.887E-01 8.984E-01 8.716E-02

f17 Mean 1.571E+07 9.691E+06 2.227E+07

Median 1.349E+07 7.265E+06 1.867E+07

SW 2.030E-03 6.139E-02 3.629E-02 1.624E-02

f18 Mean 6.053E-01 6.647E-01 6.879E-01

Median 5.994E-01 7.428E-01 6.945E-01

SW 9.698E-01 4.723E-02 9.698E-01 5.945E-01

Table 5.16: Fitness values after 100000 function evaluations for functions f11-f18 with n = 20
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Function DE/GSA-CG DE/GSA DECLS Friedman

f1 Mean 3.803E+10 3.768E+10 3.809E+10

Median 3.827E+10 3.908E+10 3.831E+10

SW 1.287E-01 1.514E-07 1.287E-01 9.608E-01

f2 Mean 5.908E+67 5.160E+67 5.051E+67

Median 7.789E+66 2.844E+67 1.950E+67

SW 1.000E+00 1.000E+00 1.000E+00 2.101E-01

f3 Mean 1.143E+05 1.243E+05 1.261E+05

Median 1.172E+05 1.250E+05 1.295E+05

SW 7.171E-08 9.917E-01 4.740E-02 4.979E-02

f4 Mean 1.627E+10 2.149E+10 2.044E+10

Median 1.965E+10 2.115E+10 2.035E+10

SW 3.692E-04 1.882E-01 3.692E-04 5.273E-01

f5 Mean 4.492E+04 4.110E+04 4.347E+04

Median 4.500E+04 4.381E+04 4.317E+04

SW 2.996E-01 2.592E-06 2.996E-01 3.679E-01

Table 5.17: Fitness values after 250000 function evaluations for functions f1-f5 with n = 50
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Function DE/GSA-CG DE/GSA DECLS Friedman

f6 Mean 2.287E+01 2.291E+01 2.300E+01

Median 2.291E+01 2.291E+01 2.300E+01

SW 1.949E-02 4.216E-01 3.055E-03 1.466E-01

f7 Mean 1.934E+04 2.140E+04 2.080E+04

Median 1.987E+04 2.143E+04 2.166E+04

SW 1.471E-06 6.839E-01 7.635E-04 8.046E-02

f8 Mean 7.130E+03 7.170E+03 7.257E+03

Median 7.235E+03 7.180E+03 7.312E+03

SW 2.944E-02 7.252E-01 2.944E-02 2.894E-01

f9 Mean 4.092E+08 3.626E+08 4.316E+08

Median 4.161E+08 3.848E+08 4.442E+08

SW 6.014E-01 2.471E-06 3.032E-02 7.730E-02

f10 Mean 1.129E+05 1.155E+05 1.359E+05

Median 1.101E+05 1.144E+05 1.396E+05

SW 6.923E-01 3.673E-01 6.923E-01 1.159E-03

f11 Mean 2.104E+01 2.105E+01 2.106E+01

Median 2.105E+01 2.106E+01 2.108E+01

SW 2.492E-01 3.084E-01 3.010E-02 1.023E-01

f12 Mean 6.901E+01 6.938E+01 7.048E+01

Median 6.947E+01 6.951E+01 7.053E+01

SW 2.090E-02 2.111E-01 2.090E-02 8.716E-02

f13 Mean 1.176E+01 1.148E+01 1.152E+01

Median 1.190E+01 1.137E+01 1.198E+01

SW 1.122E-01 2.683E-02 6.979E-08 1.409E-01

Table 5.18: Fitness values after 250000 function evaluations for functions f6-f13 with n = 50
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Function DE/GSA-CG DE/GSA DECLS Friedman

f14 Mean 3.074E+00 3.132E+00 3.291E+00

Median 3.109E+00 3.179E+00 3.264E+00

SW 3.346E-01 7.161E-01 3.346E-01 8.716E-02

f15 Mean 4.353E+02 4.203E+02 4.298E+02

Median 4.369E+02 4.357E+02 4.308E+02

SW 7.440E-01 7.173E-07 7.440E-01 8.869E-01

f16 Mean 4.228E+04 4.076E+04 4.278E+04

Median 4.221E+04 4.141E+04 4.323E+04

SW 5.604E-01 2.458E-01 5.604E-01 2.894E-01

f17 Mean 3.186E+16 3.319E+16 2.780E+16

Median 3.194E+16 3.336E+16 2.772E+16

SW 4.541E-01 5.783E-01 4.541E-01 1.409E-01

f18 Mean 9.329E-01 9.792E-01 9.687E-01

Median 9.551E-01 9.792E-01 1.007E+00

SW 1.014E-01 6.829E-01 3.156E-02 4.317E-01

Table 5.19: Fitness values after 250000 function evaluations for functions f14-f18 with n = 50
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Function DE/GSA-CG DE/GSA DECLS Friedman

f1 Mean 2.233E+11 2.260E+11 2.184E+11

Median 2.214E+11 2.271E+11 2.218E+11

SW 3.546E-02 4.915E-01 3.546E-02 2.101E-01

f2 Mean 2.379E+161 9.480E+160 8.340E+161

Median 1.514E+159 3.980E+159 1.140E+161

SW 1.000E+00 1.000E+00 1.000E+00 1.873E-03

f3 Mean 2.522E+05 2.642E+05 2.611E+05

Median 2.624E+05 2.647E+05 2.742E+05

SW 7.793E-09 9.518E-01 6.512E-08 3.263E-01

f4 Mean 1.182E+11 1.189E+11 1.173E+11

Median 1.195E+11 1.200E+11 1.174E+11

SW 9.535E-02 3.526E-02 9.535E-02 2.894E-01

f5 Mean 2.240E+05 2.302E+05 2.305E+05

Median 2.259E+05 2.314E+05 2.332E+05

SW 3.177E-02 4.301E-01 3.177E-02 2.276E-01

f6 Mean 4.733E+01 4.735E+01 4.737E+01

Median 4.736E+01 4.742E+01 4.741E+01

SW 2.917E-01 3.480E-02 2.917E-01 4.677E-01

f7 Mean 7.290E+04 7.168E+04 6.999E+04

Median 7.312E+04 7.379E+04 7.054E+04

SW 1.800E-01 9.254E-04 1.800E-01 5.273E-01

f8 Mean 1.848E+04 1.859E+04 1.859E+04

Median 1.860E+04 1.876E+04 1.862E+04

SW 7.496E-01 1.974E-02 7.496E-01 8.521E-01

Table 5.20: Fitness values after 500000 function evaluations for functions f1-f8 with n = 100
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Function DE/GSA-CG DE/GSA DECLS Friedman

f9 Mean 4.573E+09 4.497E+09 4.570E+09

Median 4.577E+09 4.511E+09 4.695E+09

SW 6.007E-01 5.170E-01 6.007E-01 7.558E-01

f10 Mean 2.988E+05 2.934E+05 3.140E+05

Median 3.023E+05 2.890E+05 3.162E+05

SW 7.228E-01 3.447E-01 7.228E-01 3.474E-02

f11 Mean 2.039E+01 2.126E+01 2.127E+01

Median 2.125E+01 2.126E+01 2.128E+01

SW 1.335E-10 2.121E-01 1.335E-10 1.832E-02

f12 Mean 1.546E+02 1.553E+02 1.572E+02

Median 1.548E+02 1.557E+02 1.572E+02

SW 7.285E-02 3.409E-01 7.285E-02 9.279E-03

f13 Mean 5.805E+01 5.753E+01 5.549E+01

Median 5.791E+01 5.843E+01 5.835E+01

SW 9.605E-01 6.036E-02 7.055E-09 8.521E-01

f14 Mean 3.717E+00 3.707E+00 3.962E+00

Median 3.729E+00 3.788E+00 3.946E+00

SW 8.146E-03 2.105E-01 8.146E-03 1.950E-03

f15 Mean 1.144E+03 1.164E+03 1.126E+03

Median 1.168E+03 1.167E+03 1.149E+03

SW 5.798E-02 2.936E-04 1.443E-03 4.317E-01

f16 Mean 2.229E+05 2.236E+05 2.233E+05

Median 2.279E+05 2.293E+05 2.245E+05

SW 8.096E-02 3.101E-03 5.586E-04 8.869E-01

Table 5.21: Fitness values after 500000 function evaluations for functions f9-f16 with n = 100
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Function DE/GSA-CG DE/GSA DECLS Friedman

f17 Mean 1.184E+17 1.201E+17 1.194E+17

Median 1.240E+17 1.199E+17 1.221E+17

SW 2.565E-02 5.718E-01 2.565E-02 8.869E-01

f18 Mean 6.460E-01 6.645E-01 6.561E-01

Median 6.820E-01 6.755E-01 6.659E-01

SW 4.352E-09 9.791E-02 6.992E-03 4.317E-01

Table 5.22: Fitness values after 500000 function evaluations for functions f17-f18 with n = 100

5.3.2 Discussion

For n = 20, the statistics data show that both the proposed approach and DE/GSA were superior

to DECLS in functions f1, f9, f10, f12, f15, and f17. The same happened in the case for n = 50

in functions f3, and f10. in the experiments that used 100 variables, the statistically significant

difference in favor of DE/GSA and DE/GSA-CG expanded to include f2, f10, f11, f12, f14. It

can be seen from these results that the best performing function for DE/GSA and DE/GSA-CG was

f10, which was included in the three lists and corresponds to the Ackley function. This function

is a problem known to cause issues to hill climbers, Ackley´s function has many local optima. The

Griewank´s function also appeared to show statistical difference in the cases where n = 20 and

n = 100. The results presented suggest that both DE/GSA and DE/GSA-CG were superior to

DECLS, which could be attributed to the power of exploitation possessed by GSA and the balance

achieved by the search strategies applied in these two algorithms.

For the comparison that involves DE/GSA a Wilcoxon test was performed, in this test the

proposed approach did not achieve a statistically significant superiority over DE/GSA. These two

algorithms were very near in every problem, which can be attributed to the exit criterion used in the

local search operator, which combined with inaccuracies in the estimation of the gradients led to not
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very spotted approximations of conjugate directions. This means that there were not used enough

conjugate directions to have a statistical difference because overall these directions were not better

than the gradients estimated.



6
Conclusions and Future Work

A local search operator based on conjugate gradient is proposed in this thesis work, this operator

was integrated in a MA, which is based on DE.

One of the most frequently described hardships in the design of MAs is the balance between

exploitation and exploration. Excessive exploitation results in premature convergence while the lack

of exploratory power leads to not finding good enough solutions.

The strategy used to achieve balance was to prefer the best individual for the application of the

local search operator, but reject this individual if after applying the operator the solutions produced

do not improve. In this case the individual to be refined is selected randomly from the best tercile

of the population. By selecting the best individual, the algorithm exploits promising regions of the

search space. The application of the operator to individuals different from the best one, but in best

tercile kept the focus in the promising regions. The operator worked as expected but its application

was limited to one application per generation to keep computational time low.

The developed local search operator was tested using DE but it is possible to use it with other
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Evolutionary Algorithm. The results generated in the experimentation showed that the developed

approach produces better solutions than DE and DECLS and it is only competitive with the algorithm

that only uses gradient directions, this is explainable by considering that the gradient conjugate

method is sensible to errors in the estimated gradients which accumulate in the process of constructing

successive conjugate directions. The strategy used was to set a threeshold of improvement to limit

the number of conjugate directions spent in each application of the local search operator.

One of the insights gained while working at this thesis, is that there are parameters that are

not as important as others, for example, an amount of time was spent while trying to find a good

initial length for the quadratic interpolations. Experimentation to determine how many conjugate

directions was optimum was also performed, in this case using n proved to be inefficient, given the

approximated nature of the gradients used the error in the conjugate directions constructed was

clearly going to accumulate, and this inevitable imprecision limits the exploitation performed by the

local search operator.

Further improvements that could be made to this work, is incorporating Cooperative Evolution

strategies to handle a higher number of variables. Also QR decomposition could be used to generate

better points for the gradient estimator which might result in steeper descent directions, this comes

with a trade off, additional points require spending more functions evaluations and the computing

time required for the QR decomposition per se. It is possible to incorporate the proposed operator

in other Evolutionary Algorithms, this could be one more path that future work could abordate.



A
Appendix

A.1 Benchmark functions

These problems should be treated as black-box problems, the list below includes unimodal and

multimodal functions.

Bent Cigar Function

f1(x) = xi + 106
n∑
n=1

x2
i (A.1)

Sum of Different Power Function

f2(x) =
n∑
n=1

|xi|i+1 (A.2)

Zakharov function
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f3(x) =
n∑
n=1

x2
i + (

n∑
n=1

xi
2
)2 + (

n∑
n=1

xi
2
)4 (A.3)

Rosenbrock´s function

f4(x) =
n∑
n=1

(100(x2
i − xi+1)

2 + (xi − 1)2) (A.4)

Rastrigin´s function

f5(x) =
n∑
n=1

(x2
i − 10cos(2πxi) + 10) (A.5)

Expanded Schaffer´s F6 function

f6(x) = g(x1,x2) + g(x2,x3) + . . .+ g(xn−1,xn) + g(xn,x1) (A.6)

g(x, y) = 0.5 +
(sin2(

√
x2 + y2)− 0.5)

(1 + 0.001(x2 + y2)
(A.7)

Levy function

f7(x) = sin2(πw1) +
n−1∑
n=1

(wi − 1)2[1 + 10sin2(πwi + 1)] + (wn − 1)2[1 + sin2(2πwn)] (A.8)

Modified Schwefel’s Function

f8(x) = 418.9829n−
n∑
n=1

g(zi) (A.9)

zi = xi + 4.209687462275036e+ 002
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g(zi) =


zisin(|zi|

1
2 ) if |zi| ≤ 500

(500−mod(zi, 500))sin(
√
|500−mod(zi, 500|))− (zi−500)2

10000n
if |zi| > 500

(mod(zi, 500)− 500)sin(
√
|mod(zi, 500)− 500|)− (zi−500)2

10000n
if |zi| > 500

High Conditioned Elliptic Function

f9(x) =
n∑
n=1

(106)
i−1
n−1x2

i (A.10)

Discus Function

f10(x) = 105x2
i +

n∑
n=1

x2
i (A.11)

Ackley´s Function

f11(x) = −20exp(−0.2

√√√√ 1

n

n∑
n=1

x2
i )− exp(

1

n

n∑
n=1

cos(2πxi)) + 20 + e (A.12)

Weierstrass Function

f12(x) =
n∑
n=1

(
kmax∑
n=1

[akcos(2πbk(xi + 0.5))])− n
kmax∑
n=1

[akcos(πbk)] (A.13)

a = 0.5, b = 3, kmax = 20

Griewank´s Function

f13(x) =
n∑
n=1

x2
i

4000
−

n∏
i=1

cos(
xi√
i
) + 1 (A.14)

Katsuura Function

f14(x) =
10

n2
prodni=1(1 + i

32∑
n=1

2jxi − round(2jxi)
2j

)
10

D1.2 − 10

n2
(A.15)
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HappyCat Function

f15(x) = |
n∑
n=1

x2
i − n|

1
4 + (0.5

n∑
n=1

x2
i +

n∑
n=1

xi)/n+ 0.5 (A.16)

HGBat Function

f16(x) = |(
n∑
n=1

x2
i )

2 −
n∑
n=1

xi)
2|

1
2 + (0.5

n∑
n=1

x2
i +

n∑
n=1

xi)/n+ 0.5 (A.17)

Expanded Griewank´s plus Rosenbrock´s Function

f17(x) = f13(f4(x1,x2)) + f13(f4(x2,x3)) + . . .+ f13(f4(xn−1,xn)) + f13(f4(xn,x1)) (A.18)

Schaffer´s F7 Function

f18(x) = [
1

n− 1

n−1∑
n=1

(
√
si(sin(50s

0.2
i ) + 1]2 (A.19)

si =
√

x2
i + x2

i+1
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