

Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional

UNIDAD ZACATENCO

Departamento de Fisiología, Biofísica y Neurociencias

Generación y expresión en células CHO-K1 de la isoforma de 453 aminoácidos del receptor a histamina H₃ humano

TESIS

Que presenta

Biol. Jesús Ernesto Hernández Ramírez

Para el obtener el grado de

MAESTRO EN CIENCIAS

EN LA ESPECIALIDAD DE

NEUROBIOLOGIA CELULAR Y MOLECULAR

Directores de la Tesis

Dr. José Antonio Gilberto Arias Montaño Dr. Juan Manuel Arias Montaño

Ciudad de México

Diciembre, 2017

Abreviaturas

ADNc	Ácido desoxirribonucleico complementario
ARNm	Ácido ribonucleico mensajero
aa	Amino ácido
GABA	Ácido γ-aminobutírico
GPCRs	Receptores acoplados a proteínas G
H₃R	Receptor a histamina H ₃
hH₃R	Receptor a histamina H ₃ humano
NMHA	N-α-metilhistamina
NTM	Núcleo tuberomamilar del hipotálamo
PCR	Reacción en cadena de la polimerasa
SFB	Suero fetal bovino
SNC	Sistema Nervioso Central
RAMH	(R)-α-metilhistamina

Índice

Abreviaturas1
Índice
Resumen4
Abstract5
Introducción
El sistema histaminérgico del Sistema Nervioso Central (SNC)6
El receptor a histamina H ₃ (H ₃ R)7
Características estructurales y funcionales del dominio C terminal en los GPCRs 10
Implicaciones del dominio C terminal en los receptores a histamina13
Justificación
Hipotésis16
Objetivo general16
Objetivos particulares16
Protocolos experimentales17
Análisis de motivos de palmitoilación en las isoformas hH3R445 y hH3R45317
Generación de la isoforma hH $_3$ R $_{453}$ y de las mutaciones C443A y C428A de la isoforma hH $_3$ R $_{445}$
Cultivo celular y transfección
Unión de [³ H]-N-α-metil-histamina ([³ H]-NMHA) en membranas totales21
Unión de [³ H]-NMHA en células intactas
Inhibición de la formación de AMPc22
Resultados
Análisis de los motivos de palmitoilación24
Electroforesis de las amplificaciones
Tamizaje de colonias por análisis de restricción26
Electroforesis de los plásmidos pCI-Neo-hH3R445 y pCI-Neo-hH3R45327
Secuenciación y alineamiento de la secuencia de aa de las isoformas hH ₃ R ₄₄₅ y hH ₃ R ₄₅₃ y de las mutantes C428A y C443A de la isoforma hH ₃ R ₄₄₅
Expresión transitoria de las isoformas hH3R445 y hH3R453 en células CHO-K1

Unión de [³ H]-NMHA a membranas de células transfectadas con las isoformas hH ₃ R ₄₄₅ y hH ₃ R ₄₅₃	31
Unión de [³ H]-NMHA en células intactas transfectadas con las isoformas hH ₃ R ₄₄₅ y hH ₃ R ₄₅₃	/ 33
Inhibición de la formación de AMPc	33
Discusión	36
Consideración final	41
Perspectivas	42
Bibliografía	43

Resumen

La histamina ejerce diferentes funciones en el cuerpo humano mediante la activación de cuatro receptores metabotrópicos (H₁, H₂, H₃ y H₄). En las neuronas, el receptor H₃ (H₃R) se expresa como autorreceptor y heteroreceptor, lo que permite modular el sistema histaminérgico y otros sistemas de neurotransmisores. El ARN mensajero del H₃R presenta procesamiento alternativo, lo que da a lugar a una variedad isoformas. La isoforma de 453 aa del H₃R humano, que presenta un agregado de ocho amino ácidos (KMKKKTCL) en el carboxilo terminal, no ha sido caracterizada en relación a su expresión, farmacología y funcionalidad. En el carboxilo terminal de la isoforma se encuentran residuos de Cisteína (Cys⁴²⁸, Cys⁴³³ y Cys⁴⁵²) que reúnen las características para ser palmitoiladas, y pueden generar al menos un asa intracelular adicional (i4) a las tres asas ya presentes. En este trabajo se generó esta isoforma y se expresó en células CHO-K1. Los resultados obtenidos indican que las isoformas de 445 y 453 aa se expresan de manera diferencial en la membrana plasmática, pero que tienen similar afinidad por ligandos selectivos y funcionalidad.

Abstract

Histamine exerts its physiologic functions in the human body through the activation of four metabotropic receptors (H₁, H₂, H₃, and H₄). The H₃ receptor is expressed in neurons as autoreceptor and heteroreceptor, permitting thus the modulation of the histaminergic system and of other neurotransmitter systems. The H₃R mRNA experiences alternative splicing, generating a variety of isoforms. The isoform of 453 amino acids was cloned from the human genome, but its expression, pharmacology and function, have not yet been characterized. This isoform possesses extra eight amino acids (KMKKKTCL) in the carboxyl terminal. This additional sequence includes cysteine residues (Cys⁴²⁸, Cys⁴³³ y Cys⁴⁵²) that meet the requirements for palmitoylation, and can therefore form at least an additional intracellular loop. In this work the isoform of 453 amino acids was generated and expressed in CHO-K1 cells. We show that the 445 and 453 isoforms are expressed differentially in the plasma membrane, but exhibit similar affinity for selective ligands and functionality.

Introducción

El sistema histaminérgico del Sistema Nervioso Central (SNC)

La histamina es una sustancia que participa en diversas funciones del cuerpo humano como la secreción gástrica, la respuesta inmune y la modulación de la transmisión sináptica. Es sintetizada a partir del amino ácido (aa) L-histidina por la enzima descarboxilasa de histidina, evolutivamente conservada desde moluscos hasta humanos. La tasa de síntesis de la histamina está determinada por la disponibilidad de su precursor, el cual se captura del líquido cefalorraquídeo por los transportadores de amino ácidos (Haas et al., 2008). Una vez sintetizada, la histamina es introducida a las vesículas sinápticas por el transportador de monoaminas vesicular 2 (VMAT-2), y después de ser liberada al espacio sináptico por exocitosis es inactivada por metilación debida a la enzima *N*-metiltransferasa de histamina (Jurič et al., 2016).

Desde mediados del siglo XX se conoce que la histamina se encuentra presente en el SNC, identificándose un grupo de neuronas histaminérgicas localizadas en el núcleo tuberomamilar (NTM) del hipotálamo, a partir del cual envían proyecciones a diversas regiones del cerebro, cerebelo y médula espinal (Figura 1). En el cerebro adulto, las neuronas del NTM proyectan principalmente a la corteza cerebral, los ganglios basales, el tálamo, el hipotálamo y el hipocampo. El sistema histaminérgico humano está compuesto de ~64,000 neuronas y algunas sub-poblaciones de estas células expresan también GAD-65/67, galanina, encefalinas, hormona liberadora de tirotropina y sustancia P (Haas et al., 2008; Panula et al., 2015).

La histamina está involucrada en procesos como la actividad motora, el ciclo sueñovigilia, la ingesta de agua y alimentos, la nocicepción, la memoria y el aprendizaje, y en ciertas patologías del SNC (Hancock et al., 2003; Cacabelos et al., 2016; García-Gálvez y Arias-Montaño, 2016). Los efectos de la histamina se ejercen mediante la activación de cuatro receptores acoplados a proteínas G (GPCRs), H₁, H₂, H₃ y H₄ (Leurs et al., 2005; Panula y Nuutinen, 2013; Panula et al., 2015). Los receptores H₁, H₂ y H₃ se expresan en el SNC, y el receptor H₃ se expresa predominantemente en las neuronas del SNC y del sistema nervioso periférico, y en menor densidad en las células gliales (Haas et al., 2008; Panula y Nuutinen, 2013; García-Gálvez y Arias-Montaño, 2016).

Figura 1. Sistema histaminérgico humano. Las flechas muestran la inervación del sistema hitaminérgico que parte del núcleo tuberomamilar a diversas regiones del SNC. Modificado de Haas et al., 2008.

El receptor a histamina H₃ (H₃R)

El H₃R de la rata fue identificado farmacológicamente por Arrang et al. en 1983, y el receptor humano fue clonado por Lovenberg et al. en 1999. El H₃R tiene baja homología en la secuencia de aa con los receptores H₁ y H₂ (22 % y 20 %, respectivamente; Leurs et al., 2000) y 40 % con el receptor H₄ (Nakamura et al., 2000). El H₃R inicialmente clonado (49 kDa) consta de 445 aa y se caracterizó inicialmente como un autorreceptor que inhibía la síntesis y la liberación de la histamina. Posteriormente se estableció que también modula como heterorreceptor la liberación de noradrenalina, serotonina, dopamina, ácido glutámico, ácido γ -aminobutírico (GABA), acetilcolina y sustancia P (Nieto-Alamilla et al., 2016).

El H₃R pertenece a la clase A de los GPCRs y como tal es una proteína de membrana con siete regiones transmembranales (TM), formando tres asas extracelulares y tres intracelulares de distinta longitud (Figura 2), con los dominios amino (N) y carboxilo (C) terminales fuera y dentro de la célula, respectivamente. La tercera asa intracelular (i3) y la región C terminal son importantes para el acople del receptor a proteínas G y la consecuente señalización intracelular. De manera canónica el H₃R está acoplado a

proteínas $G\alpha_{i/o}$ (sensibles a la toxina de *Bordetella pertussis*) e inhibe a las adenilil ciclasas (ACs). Además inhibe la apertura de los canales de calcio activados por voltaje tipo N y P/Q, y activa las vías de señalización de la fosfolipasa C (PLC), de la fosfolipasa A₂, Akt/GSK3 y de las cinasas activadas por mitógenos, MAPKs (Leurs et al., 2005; Nieto-Alamilla et al., 2016).

Figura 2. Secuencia de amino ácidos del receptor a histamina H₃ humano (hH₃R₄₄₅). Tomado de Nieto-Alamilla et al., 2016.

La secuencia genómica que codifica al H₃R humano (hH₃R) está localizada en el cromosoma 20q13.33, y posee dos o tres intrones (y en consecuencia tres o cuatro exones), lo que permite la existencia de diversas variantes de procesamiento alternativo o *splicing* (Cogé et al., 2001; Wiedemann et al., 2002; Hancock et al., 2003; Bongers et al., 2007; Panula et al., 2015; García-Gálvez y Arias-Montaño 2016; Nieto-Alamilla et., 2016). Se han identificado 20 isoformas del hH₃R; sin embargo, sólo ocho de ellas (hH₃R₄₄₅, hH₃R₄₅₃, hH₃R₃₆₅, hH₃R₄₁₃, hH₃R₄₀₉, hH₃R₄₁₅, hH₃R₃₇₃ y hH₃R₃₂₉) muestran unión de ligando al ser expresadas en sistemas heterólogos (Bongers et al., 2007; García-Gálvez y Arias-Montaño, 2016; Nieto-Alamilla et al., 2007;

homólogas en sus regiones TMs, y difieren en las regiones N y C terminales y/o en el asa i3, siendo ésta última la región más variable.

El H₃R se expresa en abundancia en el hipotálamo, la corteza cerebral y los ganglios basales, y el ARNm de las diferentes isoformas se expresa en distintos niveles en el SNC. Las isoformas H₃R₃₆₅ y H₃R₄₁₅ se encuentran en altos niveles en el tálamo, el núcleo caudado y el cerebelo, mientras que las isoformas H₃R₃₂₆ y H₃R₃₂₉ muestran baja expresión en dicha área. Las isoformas H₃R₃₂₆ y H₃R₃₂₉ muestran alta expresión en la amígdala, la sustancia negra, la corteza cerebral y el hipotálamo (García-Gálvez y Arias-Montaño, 2016).

La isoforma hH₃R₄₅₃ fue reportada por Nakamura et al. en el año 2000, posee ocho aa adicionales (KMKKKTCL) en el extremo carboxilo con respecto al hH₃R₄₄₅ (Figura 3), y es generada por la presencia de un sitio donador en la secuencia del codón de paro y de un sitio aceptor localizado en la región no codificante del extremo 3´ de dicha secuencia, lo que genera un cuarto exón (Wiedemann et al., 2002).

Figura 3. Región carboxilo terminal de las isoformas hH_3R_{445} y hH_3R_{453} . Se muestra la probable asociación a la membrana de los residuos de cisteína que forman asas intracelulares para las isoformas hH_3R_{445} (izquierda) y hH_3R_{453} (derecha).

Aunque no se ha reportado en qué regiones del SNC u órganos se expresa esta isoforma, ni las funciones específicas en las que está implicada, su estudio en sistemas heterólogos ha demostrado funcionalidad ya que su expresión en células COS-7 mostró unión de los agonistas (R)- α -metilhistamina (RAMH) y N- α -metilhistamina (NAMH), y en células HEK-293 se observó inhibición en la formación de AMPc al activar al receptor

(Nakamura et al., 2000). Un aspecto interesante de esta isoforma es la presencia de un residuo adicional de cisteína (Cys) en la posición 452 (Cys⁴⁵²), que podría ser sujeto de palmitoilación y promover así la formación de un asa intracelular adicional en relación a la isoforma nativa hH₃R₄₄₅ (Figura 3).

Características estructurales y funcionales del dominio C terminal en los GPCRs

Para un grupo numeroso de GPCRs, incluyendo a los receptores de histamina, se han descrito diversas interacciones estructurales y funcionales con proteínas accesorias, particularmente gracias a construcciones de doble híbrido en levaduras y a estudios de proteómica (Bockaert et al., 2003). Estas interacciones están involucradas en diversos fenómenos como el agrupamiento, la localización y tráfico subcelular, la internalización, el reciclaje y la desensibilización, así como la regulación fina de la señalización. Las interacciones ocurren en distintos sitios del receptor, y una de las regiones que se ha estudiado de manera reciente es el dominio C terminal, con distintas regiones participantes, en particular los dominios PDZ (Kuramasu et al., 2006; Figura 4).

Debido a que la señalización sostenida y no regulada es lesiva para las células, existen mecanismos que desensibilizan a los GPCRs. La unión del agonista al receptor induce cambios en su conformación que promueven la fosforilación por cinasas de los GPCRs (GRKs) en residuos de Serina (Ser) o Treonina (Thr) localizados en la tercera asa intracelular y en la región C terminal del receptor, con la subsecuente unión de las proteínas β -arrestinas, proteínas de señalización, participes en la internalización y de proteínas que poseen dominios PDZ.

Las β -arrestinas desensibilizan de manera directa a receptores activados al prevenir la re-asociación de las proteínas G, y participan en la formación de complejos de endocitosis mediada por clatrina, en la señalización diferencial e incluso en la unión de proteínas involucradas en la ubiquitinación (Magalhaes et al., 2012; Park et al., 2016; Thomsen et al., 2016) (Figura 5). Las β -arrestinas 1 y 2 poseen un 70% de homología entre sí, y las estructuras cristalizadas presentan mayoritariamente una estructura en hojas β antiparalelas (Srivastava et al., 2015). Aunque las regiones de interacción de las

β-arrestinas con los GPCRs activados están conservadas, la conformación estructural de los receptores puede ser esencial para determinar la especificidad y afinidad por estas proteínas (Park et al., 2016).

Figura 4. Interacción de proteínas con el dominio C terminal de los GPCRs. Se representa la interacción de diversas proteínas en distintos sitios del C terminal de los GPCRs, además de la hélice 8 y la unión a la membrana plasmática por modificación postraduccional lípidica. Tomado de Kuramasu et al., 2006.

Un ejemplo del cambio estructural de los GPCRs es el estudio de Granier et al. (2007), en el que construcciones del adrenoceptor β_2 acopladas a sensores fluorescentes mostraron una conformación diferencial, evaluada por FRET, en la posición de la región C terminal con relación al TM6 del receptor en respuesta a la unión de diferentes agonistas y antagonistas, indicando que el dominio C terminal se encuentra en una conformación extendida, flexible y posiblemente no ordenada. La conformación se ve modificada por la unión de agonistas y antagonistas, lo que permite la unión de diversas proteínas (GRKs y β -arrestinas, entre otras), por lo que el estado conformacional del C terminal del receptor puede estar relacionado con los diferentes estados de activación de los receptores y la capacidad de señalización de los mismos. Dichos eventos podrían ser alterados por modificaciones estructurales anormales como mutaciones o la pérdida o adición de elementos en la secuencia nativa, en este caso en la región C terminal.

Figura 5. Funciones de las β-arrestinas en la regulación y señalización de los GPCRs. Tomado de Srivastava et al., 2015.

El transporte de los GPCRs a la membrana plasmática depende de diversos factores. En el caso de la región C terminal se ha determinado que muchos GPCRs poseen al menos un motivo de direccionamiento a la membrana, por ejemplo, el motivo FX₆LL (Duvernay et al., 2004) presente en 25% de los GPCRs pertenecientes a la familia A. En su defecto, el direccionamiento de los GPCRs está determinado por la estructura proteica, siendo esencial la participación de una estructura de hélice α próxima a la región TM7 (Spomer et al., 2014).

En el dominio C terminal de los GPCRs se pueden presentar también modificaciones covalentes por la adición de ácido palmítico (palmitoilación). Este proceso requiere un grupo tiol y un grupo amida libre, y en general de la presencia de aa cargados positivamente y de aa hidrofóbicos cercanos a los residuos de cisteína (Qanbar y Bouvier, 2003). Las proteínas palmitoiladas tienen una unión permanente o transitoria a compartimentos membranales. La palmitoilación es una modificación post-traduccional y en algunos casos es dinámica, ya que una proteína puede experimentar ciclos de palmitoilación y des-palmitoilación, lo que ha llevado a plantear que, a semejanza de la fosforilación, es un mecanismo regulador en la célula (Qanbar y Bouvier, 2003; Zuckerman et al., 2011). La palmitoilación regula la expresión y funcionalidad de los receptores, y Zhang y Kim (2016) mostraron que en el receptor a dopamina D₄ la palmitoilación ocurre en el C terminal (residuo Cys⁴⁶⁷), y que la mutación de este residuo a Gly o Ala, o la inhibición de la palmitoilación por el fármaco 2-bromopalmitato, disminuyen la expresión del receptor en la membrana plasmática, la señalización intracelular (disminución en la inhibición de la formación de AMPc) y la endocitosis del receptor. Además, la palmitoilación en la región C terminal puede ocurrir en distintos compartimentos sub-celulares.

en dos regiones del C terminal, con dos de las cisteínas muy cercanas a la hélice 8, y una más distal, siendo las primeras modificaciones estables mientras que la tercera muestra una tasa de recambio dinámica relacionada con la internalización del receptor (Zuckerman et al., 2011). La ausencia de palmitoilación por mutación de los residuos de cisteína en el С terminal puede disminuir el reclutamiento de las β -arrestinas por los receptores a vasopresina V₂ y afectar la vía de señalización de las MAPKs, pero no la activación de las adenilil ciclasas por estos receptores.

Implicaciones del dominio C terminal en los receptores a histamina

En el caso de los receptores a histamina no existen reportes de una interacción directa del dominio C terminal con proteínas accesorias; sin embargo, algunos estudios destacan la importancia de esta región en la internalización inducida por agonistas (Fukushima et al., 1997). El receptor H₁ humano posee una Ser en la última posición de

su secuencia (Ser⁴⁸⁷), y su remoción previene la internalización inducida por histamina, aunque la mutación S487A no afecta el proceso de internalización (Hishinuma et al., 2016).

Para el receptor H₂ canino expresado en células COS-7 se comparó la funcionalidad de los receptores nativos y receptores que fueron acortados en distintos segmentos del C terminal, y el resultado indica que la internalización del receptor depende de la presencia de la secuencia contenida entre los residuos Glu³¹⁴ y Asn³²⁰ (ETSLRSN) o el residuo Thr³¹⁵, no así para la desensibilización, ya que este fenómeno ocurre sin internalización del receptor, mientras que en una construcción donde se remueve completamente el C terminal se pierde la unión al ligando tiotidina y de la misma manera se pierde la internalización. Este mismo grupo de trabajo reportó una disminución en la densidad de receptores presentes en la membrana plasmática cuando el receptor carece de la modificación por palmitoilación en la Cys³⁰⁵ en el C terminal (Fukushima et al., 1997, 2001). En este sentido, se ha reportado que para los receptores a histamina humanos existen sitios en el C terminal que por su secuencia son susceptibles a palmitoilación, no obstante solo ha sido comprobado para los receptores H2 mediante la incorporación de ácido palmítico marcado (Fukushima et al., 2001, 2006). Dado que este fenómeno se ha relacionado con el direccionamiento del receptor a la membrana citoplasmática (Zhang v Kim, 2016), podría repercutir en la funcionalidad del receptor.

Justificación

En el SNC la histamina participa en la regulación de diversas funciones; sin embargo, no es claro cómo el sistema histaminérgico ejerce estas acciones. Se ha postulado que la especificidad deriva de la presencia de los distintos receptores, y en el caso del receptor H₃, de las isoformas que se expresan, así como de la señalización diferencial que podrían generar y de cómo se regule la funcionalidad de las mismas.

La isoforma hH₃R₄₅₃ no se ha estudiado extensivamente como otras (en particular las isoformas hH₃R₄₄₅ y hH₃R₃₆₅), posee ocho aa adicionales (KMKKKTCL) en el dominio C terminal, y en dicha región se encuentran residuos de cisteína (Cys⁴²⁸, Cys⁴³³ y Cys⁴⁵²) que podrían experimentar palmitoilación. Para la formación del grupo tioéster con el ácido palmítico, los residuos de cisteína funcionan como donadores de un grupo tiol (SH) y requieren estar en proximidad de aa con carga positiva (histidina, arginina o lisina) y de aa hidrofóbicos, características que se presentan en los ocho aa adicionales de la isoforma hH₃R₄₅₃.

Por lo anterior, la palmitoilación permitiría que se generase al menos un asa intracelular adicional, i4 (Figura 3), que podría ser relevante en la funcionalidad del receptor (expresión, estado de activación del receptor *per se* o activación diferencial de proteínas G y la subsecuente señalización intracelular). Además, la presencia de un asa adicional permitiría la interacción con proteínas como las β -arrestinas o con proteínas accesorias de unión al dominio C terminal, y consecuentemente activar vías de señalización mediadas por β -arrestinas (señalización independiente de proteínas G). En este contexto, la mutación de los residuos de cisteína podría dar información relevante sobre la participación del C terminal del hH₃R en los procesos antes descritos.

Con base en lo antes expuesto, este proyecto plantea analizar si existen diferencias en la expresión y funcionalidad de las isoformas de 445 y 453 aa del H₃R humano. Para la presente tesis, se abordó la primera parte del proyecto que consiste en generar la isoforma de 453 aa y comparar su expresión con la isoforma de 445 aa en células CHO-K1.

Hipotésis

La señalización y la desensibilización de la isoforma de 453 amino ácidos del receptor H₃ humano difieren de las presentadas por el receptor de 445 aminoácidos.

Objetivo general

Generar la isoforma de 453 aa del hH₃R, expresarla en células CHO-K1 y comparar su expresión con la isoforma de 445 aa.

Objetivos particulares

- 1. Generar la isoforma de 453 aa del hH₃R.
- 2. Determinar si existen diferencias en la expresión de las isoformas hH₃R₄₄₅ y hH₃R₄₅₃.
- 3. Generar las mutantes C428A y C433A en el hH₃R₄₄₅.
- 4. Determinar si la isoforma hH₃R₄₅₃ es funcional.

Protocolos experimentales

Análisis de motivos de palmitoilación en las isoformas hH₃R₄₄₅ y hH₃R₄₅₃

El análisis de las secuencias de aa obtenidas de la base de datos UNIPROT (http://www.uniprot.org/) de las isoformas hH₃R₄₄₅ (ID: Q9Y5N1) y hH₃R₄₅₃ (ID: Q9Y5N1-2) se realizó con el programa disponible en línea MEME suite (http://memesuite.org/tools/meme) (Bailey y Elkan, 1994). Este software analiza un grupo de secuencias de proteína y muestra los motivos con mayor significancia estadística, representados con la posición de la letra (aa) dependiente de las matrices de probabilidad; es decir, describe la probabilidad de cada aa en cada posición del patrón. Los parámetros para el análisis fueron: modalidad no discriminativa, sin restricción de repetidos del motivo en la secuencia, longitud mínima del motivo de 6 aa, y búsqueda de los tres motivos estadísticamente más significativos.

Adicionalmente, se realizó un análisis de las secuencias de aa descritas anteriormente con la finalidad de obtener los sitios con mayor probabilidad de ser modificados exclusivamente por palmitoilación con el software GPS Lipid (Xie et al., 2016), cuyo análisis se realizó con la rigurosidad alta y media que provee el programa.

Generación de la isoforma hH₃R₄₅₃ y de las mutaciones C443A y C428A de la isoforma hH₃R₄₄₅

Para generar las construcciones de la isoforma hH_3R_{453} y para obtener la mutación puntual C443A se usó como ADN molde la construcción pCINeo- hH_3R_{445} , obtenida en el laboratorio (Flores-Clemente et al., 2013). La amplificación del ADN por la PCR (reacción en cadena de la polimerasa, por sus siglas en inglés) se realizó en un volumen final de 25 µl con 0.8 mM de dNTPs, 0.4 µM de oligonucleótidos, 0.5 U de ADN polimerasa Q5, regulador Q5 con MgCl₂ (2 mM) y 200 ng de ADN molde. La reacción se realizó con el protocolo indicado en la Tabla 1. Los oligonucleótidos utilizados se muestran en la Tabla 2. Tabla 1. Protocolo de PCR.

Paso	А	В	С	D	Е
Temperatura (°C)	95	95	55	72	72
Tiempo (min)	2	0.5	0.5	0.75	5

Se utilizaron 20 ciclos del paso B al D. Para la mutación C428A, el tiempo del paso D fue de 1 min.

Tabla 2. Oligonucleótidos utilizados para generar la isoforma hH₃R₄₅₃ y las mutaciones C428A y C443A.

Isoforma / Mutación	Dirección	Secuencia	
hH ₃ R ₄₅₃	Sentido	tgtgcacctcctctgccttc	
	Antisentido	gcggccgctcacagacatgttttcttcttcatcttcttccagcagtgctccagg	
C443A	Sentido	tgtgcacctcctctgccttc	
	Antisentido	gcggccgctcacttccaggcgtgctccagg	
C428A*	Sentido (A)	tgtgcacctcctctgccttc	
	Antisentido (B)	tttgagcttctgggggggggggggggggggggggggggg	
C428A*	Sentido (C)	cttcaccaagctgctcgcccccagaagctcaaa	
	Antisentido (D)	gcggccgctcacttccagcagtgctccagg	
C428A	Sentido	tgtgcacctcctctgccttc	
	Antisentido	gcggccgctcacttccagcagtgctccagg	

*Usados en el protocolo de extensión por sobreposición.

Los fragmentos amplificados (amplicones) se visualizaron en geles de agarosa (0.8%) teñidos con bromuro de etidio (restricciones y PCR) o SYBR[®] Gold (purificación), y se purificaron por columnas de silica con el *kit* GeneJetExtraction (ThermoScientific), para ser insertados en el vector de clonación pJet1.2/blunt (CloneJet PCR cloning), el cual se utilizó para transformar por choque térmico bacterias competentes de la cepa *E. coli* DH5 α . Las bacterias se sembraron en placas de agar LB con ampicilina para su selección, y las colonias seleccionadas se inocularon en medio LB con ampicilina

(100 µg/ml) para la expansión del plásmido, tamizaje de colonias y purificación de los plásmidos.

Posteriormente se realizó la subclonación en el vector de expresión pCI-Neo-hH₃R₄₄₅ (Figura 6), mediante la obtención del amplicón por restricción en el sitio BstEII (ubicado en la posición 405 relativa al codón de inicio, correspondiente al aa 135 del hH₃R₄₄₅) y el sitio NotI (ubicado al final del sitio múltiple de clonación). Se procedió a expandir, tamizar colonias y purificar el plásmido como se describe antes.

Figura 6. Mapa circular del vector de expresión pCI-Neo y del plásmido pCI-Neo-hH₃R₄₄₅. La figura de la izquierda muestra el vector vacío y la figura de la derecha el plásmido pCI-Neo-hH₃R₄₄₅ en el que se indican los sitios de restricción utilizados para la subclonación de la isoforma hH₃R₄₅₃ y las mutantes C428A y C443A.

Para obtener la mutación C428A se utilizó un protocolo distinto, mutagénesis dirigida por extensión por sobreposición (Figura 7; Horton et al., 1993), la cual consiste en amplificaciones independientes de dos fragmentos de la secuencia de interés, que al final contengan en uno de los extremos una secuencia idéntica en común. Para la primera amplificación se usaron los oligonucleótidos A y B, y para la segunda los oligonucleótidos C y D. Se realizó una tercera amplificación con los productos purificados de las dos amplificaciones anteriores, cuyo propósito es sobreponer la región donde se encuentra la mutación y extender la síntesis del ADN hasta complementarse y formar el

ADN mutante de doble cadena. La última amplificación se obtiene utilizando la mutante de doble cadena anterior y los oligonucleótidos de los extremos más distantes A y D.

Las electroforesis de los amplicones y de los productos de restricción fueron visualizadas en geles de agarosa al 0.8% con bromuro de etidio (EtBr), y las imágenes fueron obtenidas con el foto-documentador Gel Doc[™] Ez (Bio-Rad) con una exposición de 0.2-0.5 s.

La inserción de los ocho aa de la isoforma hH₃R₄₅₃ y las mutantes C428A y C443A se verificaron mediante la secuenciación de los fragmentos en las instalaciones de la Facultad de Estudios Superiores Iztacala, UNAM, y el alineamiento de su secuencia de aa en la plataforma online <u>http://www.ebi.ac.uk/Tools/msa/clustalo/</u> con el algoritmo Clustal Omega.

Cultivo celular y transfección

Se utilizaron células CHO-K1, cultivadas en medio DMEM/F-12 (Gibco) suplementado con 10% de suero fetal bovino (SFB) y 1% de antibiótico/antimicótico en cajas Petri (100 mm de diámetro) o en cajas de 24 pozos, a 37 °C en un ambiente con 95% de aire y 5% de CO₂.

Para la transfección transitoria, las células se cultivaron en cajas Petri con medio DMEM/F-12 con SFB hasta alcanzar el 75-80% de confluencia (ensayo de radioligando en membranas totales). Para los ensayos de unión de radioligando en célula intacta se sembraron 2.5×10^5 células/pozo en cajas de 24 pozos.

En 1.5 ml de medio sin suero se mezclaron 20 μ l de polietilenimina (PEI, 1 mg/ml) y 4 μ g de ADN (relación ADN:PEI; 1:5). Esta mezcla se incubó por 30 min a temperatura ambiente y posteriormente se agregó a las células en un volumen final de 3.5 ml de medio sin suero para las cajas Petri y 260 μ l/ pozo para las cajas de 24 pozos. Se incubó por 4 h a 37 °C en un ambiente con 95% de aire y 5% de CO₂. Al terminar este periodo, se retira el medio y se adiciona medio DMEM/F-12 con SFB 10%. Las células se utilizaron 24 o 48 h después de la transfección.

Unión de [³H]-N-α-metil-histamina ([³H]-NMHA) en membranas totales

Las células CHO-K1 transfectadas durante 24 o 48 h fueron lisadas con una solución hipotónica (Tris-HCI 10 mM, EGTA 1 mM, pH 7.4, 4 °C) y la suspensión se centrifugó a 32,000xg por 20 min a 4 °C. La pastilla (membranas celulares) se resuspendió en solución de incubación (Tris-HCI 50 mM, MgCl₂ 5 mM, pH 7.4). Alícuotas de la suspensión se incubaron en un volumen de 100 μ l con [³H]-NMHA (1 nM para ensayos de un solo punto ó 0.1-8 nM para ensayos de saturación) durante 1 h a 30 °C. Las muestran se filtraron a través de filtros de fibras de vidrio (GF/B, Whatman) prehumedecidos por 2 h en 0.3% de polietilinimina, se lavaron tres veces con 1 ml de solución de lavado fría (Tris-HCl 25 mM, pH 7.4), y la radiactividad retenida se determinó por centelleometría. La unión no específica se determinó en presencia de histamina (10 μ M) y se sustrajo de la unión total. La cantidad de proteína se cuantificó con un ensayo colorimétrico con ácido bicinconínico (BCA, Pierce) usando como estándar albúmina

bovina sérica. Para el ensayo de saturación, las membranas se obtuvieron a las 24 h post-transfección.

Unión de [3H]-NMHA en células intactas

Las células CHO-K1, sembradas en cajas de 24 pozos y transfectadas por 24 h, fueron lavadas una vez e incubadas (5 h, 4 °C) en solución salina amortiguada con fosfatos (PBS) conteniendo CaCl₂ (1 mM), MgCl₂ (1 mM) y [³H]-NMHA (~2 nM). La unión no específica se determinó en presencia de clobenpropit (10 µM). Posteriormente se realizaron tres lavados con PBS frío y se agregaron 300 µl de solución salina ácida (NaCl 150 mM, ácido acético 50 mM, pH 2.9 a 37 °C) con la finalidad de disociar el radioligando del receptor. Se colectó el volumen total y se lavó una vez más con solución PBS (400 µl), se colectó el volumen total y se agregó al vial correspondiente para determinar la radiactividad presente por centelleometría. Se agregaron 300 µl de NaOH (0.1 M) a cada uno de los pozos o tripsina (0.05%) a 4 pozos control, para la cuantificación de proteína (BCA) o del número de células, respectivamente. El conteo celular se realizó con un equipo automatizado (Countess[™], Thermo Scientific).

Inhibición de la formación de AMPc

Las células se cultivaron en cajas de 24 pozos y se transfectaron como se describió antes. El día del ensayo se aspiró el medio de cultivo, se agregaron 230 µl de solución Krebs-Hepes-Ringer conteniendo un inhibidor de fosfodiesterasas (isobutil-metil-xantina, IBMX, 1 mM) y se incubó a 37 °C. Después de 15 min a cada pozo se le agregaron 11 µl de agua (basal) o de una solución de forskolina (75 µM, para una concentración final de 10 µM). Cuando se requirió, la R- α -metil-histamina (RAMH, agonista selectivo del H₃R) se agregó en un volumen de 11 µl 5 min antes de la adición de la forskolina. Después de 30 min a 37 °C, la incubación se detuvo aspirando el medio y agregando 250 µl de HCl (01 M) frío, manteniendo las cajas sobre hielo durante 15 min. Los extractos se neutralizaron con 25 µl de NaOH (1 M) y 100 µl de solución amortiguadora Tris-HCl (1 M, pH 7.2 a 4°C).

Para determinar el AMPc formado, en tubos de plástico se colocaron 50 μ l de una solución de [³H]-AMPc (25 nM, para una concentración final de 10 nM) en solución de

incubación (Tris-HCI 50 mM, NaCI 100 mM, EDTA 5 mM, 5 mg/ml de albúmina sérica bovina; pH 7.2), 25 μl solución de incubación conteniendo a la subunidad reguladora de la PKA (~0.5 Ul/muestra) y alícuotas de 50 μl de los extractos celulares. En tubos en paralelo se determinó la unión total e inespecífica de [³H]-AMPc en ausencia y presencia de AMPc no marcado (10 μM), respectivamente. Después de incubar por 2.5 h a 2 °C, las muestras se filtraron a través de filtros de fibra de vidrio (Whatman GF/B, expuestos a polietilenimina, 3%, por 2 h previas) utilizando un colector automático Brandel. Los filtros se lavaron tres veces con 1 ml de agua desionizada a 4 °C, y se colocaron en viales conteniendo 3 ml de líquido de centelleo. Después de al menos 2 h de incubación a temperatura ambiente, se cuantificó la radioactividad presente por centelleometría.

La composición de la solución Krebs-Hepes-Ringer fue (mM): NaCl 127, NaHCO₃ 25, KCl 3.73, MgSO₄ 1.2, KH₂PO₄ 1.2, CaCl₂ 1.8, Hepes 20, glucosa 11. El pH se ajustó a 7.35 con NaOH (0.1 M).

Resultados

Análisis de los motivos de palmitoilación

El análisis con la herramienta bioinformática MEME suite (http://memesuite.org/tools/meme) de la secuencia de aa de la región C terminal de los receptores hH_3R_{445} y hH_3R_{453} mostró un motivo de palmitoilación en el hH_3R_{445} (aa 428-433) y dos en el hH_3R_{453} (aa 428-433 y 443-448; Figura 8).

Figura 8. Motivos de palmitoilación (flechas) en la región C terminal de los receptores hH₃R₄₄₅ (A, A.1) y hH₃R₄₅₃ (B, B.1).

La Tabla 3 muestra los motivos de palmitoilación posibles obtenidos con el análisis con el programa *GPS lipid* con alta y mediana astringencia.

Tabla 3. Motivos de palmitoilación posibles obtenidos con el análisis del software GPS lipid con alta (A) y mediana astringencia (B).

Receptor	Posición del aa	Péptido	Puntaje	Corte	Tipo de modificación	
Alta astringencia						
$hH_{3}R_{445}$	370	IVSIFGLCWAPYTLL	3.254	3.076	S-Palmitoilación: Grupo B	
hH ₃ R ₄₄₅	443	PHSSLEHCWK*****	4.663	1.983	S-Palmitoilación: Grupo A	
$hH_{3}R_{453}$	370	IVSIFGLCWAPYTLL	3.254	3.076	S-Palmitoilación: Grupo B	
hH ₃ R ₄₅₃	452	KKMKKKTCL*****	3.311	3.076	S-Palmitoilación: Grupo B	
Mediana ast	tringencia					
$hR_{3}H_{445}$	258	SPPPPPGCWGCWQK G	1.138	1.072	S-Palmitoilación: Grupo C	
hR ₃ H ₄₄₅	370	IVSIFGLCWAPYTLL	3.254	2.293	S-Palmitoilación: Grupo B	
hR ₃ H ₄₄₅	443	PHSSLEHCWK****	4.663	1.079	S-Palmitoilación: Grupo A	
hR ₃ H ₄₅₃	258	SPPPPPGCWGCWQK G	1.138	1.072	S-Palmitoilación: Grupo C	
hR ₃ H ₄₅₃	370	IVSIFGLCWAPYTLL	3.254	2.293	S-Palmitoilación: Grupo B	
hR ₃ H ₄₅₃	443	PHSSLEHCWKKMKKK	1.208	1.079	S-Palmitoilación: Grupo A	
hR ₃ H ₄₅₃	452	KKMKKKTCL*****	3.311	2.293	S-Palmitoilación: Grupo B	

Electroforesis de las amplificaciones

La Figura 9A muestra la amplificación resultante para la mutación C443A y la isoforma hH₃R₄₅₃; el peso molecular esperado por análisis virtual es de 997 y 1021 pb, respectivamente, los cuales concuerdan con los obtenidos. Se ilustra también la amplificación de la mutación C428A (Figura 9B), con un producto virtual esperado de 997 pb.

Figura 9. Electroforesis de las amplificaciones para la mutación C443A y la isoforma hH₃R₄₅₃. A. mutación C443A e isoforma hH₃R₄₅₃. B. Mutación C428A.

Tamizaje de colonias por análisis de restricción

Las colonias obtenidas con el vector de expresión pCI-Neo conteniendo las construcciones de la isoforma hH₃R₄₅₃ y las mutaciones C428A y C443A en la isoforma hH₃R₄₄₅ se analizaron por restricción con la enzima XhoI, para seleccionar las colonias de bacterias transformantes con el plásmido conteniendo la inserción del fragmento amplificado. La Figura 10 muestra la electroforesis con las bandas esperadas de 196, 223, 521 y 5842 pb.

Figura 10. Tamizaje de colonias por análisis de restricción de la isoforma hH₃R₄₅₃ (A) y las mutaciones C433A (A) y C428A (B) de la isoforma hH₃R₄₄₅.

Electroforesis de los plásmidos pCI-Neo-hH₃R₄₄₅ y pCI-Neo-hH₃R₄₅₃

Para evaluar la adición de los ocho aa en la isoforma hH₃R₄₅₃, se realizó la digestión enzimática de los plásmidos pCI-Neo-hH₃R₄₄₅ y pCI-Neo-hH₃R₄₅₃ con las enzimas Xhol y Notl, esperando obtener fragmentos con una diferencia en tamaño de 24 pb (223 pb y 247 pb, respectivamente). La electroforesis mostró un mayor tamaño del fragmento proveniente de la isoforma hH₃R₄₅₃ (Figura 11).

Figura 11. Electroforesis para la discriminación de las isoformas hH₃R₄₄₅ y hH₃R₄₅₃.

Secuenciación y alineamiento de la secuencia de aa de las isoformas hH_3R_{445} y hH_3R_{453} y de las mutantes C428A y C443A de la isoforma hH_3R_{445} .

La Figura 12 muestra el alineamiento de las isoforma hH₃R₄₄₅ en comparación con la secuencia hH₃R₄₅₃ con base en la traducción en aa de la secuencia de nucleótidos obtenida por secuenciación. En el recuadro rojo se indica la adición de los 8 aa (KMKKKTCL) que conforman el extremo distal del C terminal de la isoforma hH₃R₄₅₃.

CLUSTAL O(1.2.4) multiple sequence alignment

hH3R ₄₄₅ hH3R ₄₅₃	MERAPPDGPLNASGALAGEAAAAGGARGFSAAWTAVLAALMALLIVATVLGNALVMLAFV MERAPPDGPLNASGALAGEAAAAGGARGFSAAWTAVLAALMALLIVATVLGNALVMLAFV ************************************
hH3R ₄₄₅ hH3R ₄₅₃	ADSSLRTQNNFFLLNLAISDFLVGAFCIPLYVPYVLTGRWTFGRGLCKLWLVVDYLLCTS ADSSLRTQNNFFLLNLAISDFLVGAFCIPLYVPYVLTGRWTFGRGLCKLWLVVDYLLCTS ************************************
hH3R ₄₄₅ hH3R ₄₅₃	SAFNIVLISYDRFLSVTRAVSYRAQQGDTRRAVRKMLLVWVLAFLLYGPAILSWEYLSGG SAFNIVLISYDRFLSVTRAVSYRAQQGDTRRAVRKMLLVWVLAFLLYGPAILSWEYLSGG ***********************************
hH3R ₄₄₅ hH3R ₄₅₃	SSIPEGHCYAEFFYNWYFLITASTLEFFTPFLSVTFFNLSIYLNIQRRTRLRLDGAREAA SSIPEGHCYAEFFYNWYFLITASTLEFFTPFLSVTFFNLSIYLNIQRRTRLRLDGAREAA *****
hH3R ₄₄₅ hH3R ₄₅₃	GPEPPPEAQPSPPPPPGCWGCWQKGHGEAMPLHRYGVGEAAVGAEAGEATLGGGGGGGGSV GPEPPPEAQPSPPPPGCWGCWQKGHGEAMPLHRYGVGEAAVGAEAGEATLGGGGGGGGSV *****************************
hH3R ₄₄₅ hH3R ₄₅₃	ASPTSSSGSSSRGTERPRSLKRGSKPSASSASLEKRMKMVSQSFTQRFRLSRDRKVAKSL ASPTSSSGSSSRGTERPRSLKRGSKPSASSASLEKRMKMVSQSFTQRFRLSRDRKVAKSL ************************************
hH3R ₄₄₅ hH3R ₄₅₃	AVIVSIFGLCWAPYTLLMIIRAACHGHCVPDYWYETSFWLLWANSAVNPVLYPLCHHSFR AVIVSIFGLCWAPYTLLMIIRAACHGHCVPDYWYETSFWLLWANSAVNPVLYPLCHHSFR ************************************
hH3R ₄₄₅ hH3R ₄₅₃	RAFTKLLCPQKLKIQPHSSLEHCWK RAFTKLLCPQKLKIQPHSSLEHCWK <mark>KMKKKTCL</mark> ******************

Figura 12. Alineamiento de las secuencias obtenidas de la isoforma hH₃R₄₅₃ y comparación con la isoforma hH₃R₄₄₅.

La Figura 13 compara la isoforma hH₃R₄₄₅ nativa y las mutaciones puntuales C443A y C428A de la misma isoforma, implicadas posiblemente en experimentar palmitoilación. Las posiciones involucradas se indican con recuadros en rojo.

CLUSTAL O(1.2.4) multiple sequence alignment

C443A hH3R ₄₄₅	MERAPPDGPLNASGALAGEAAAAGGARGFSAAWTAVLAALMALLIVATVLGNALVMLAFV MERAPPDGPLNASGALAGEAAAAGGARGFSAAWTAVLAALMALLIVATVLGNALVMLAFV
C420A	MERAPPDGPLNASGALAGEAAAAGGARGFSAAWIAVLAALMALLIVAIVLGNALVMLAFV ************************************
C443A	ADSSLRTQNNFFLLNLAISDFLVGAFCIPLYVPYVLTGRWTFGRGLCKLWLVVDYLLCTS
hH3R445	ADSSLRTQNNFFLLNLAISDFLVGAFCIPLYVPYVLTGRWTFGRGLCKLWLVVDYLLCTS
C428A	ADSSLRTQNNFFLLNLAISDFLVGAFCIPLYVPYVLTGRWTFGRGLCKLWLVVDYLLCTS ************************************
C443A	SAFNIVLISYDRFLSVTRAVSYRAQQGDTRRAVRKMLLVWVLAFLLYGPAILSWEYLSGG
hH3R445	SAFNIVLISYDRFLSVTRAVSYRAQQGDTRRAVRKMLLVWVLAFLLYGPAILSWEYLSGG
C428A	SAFNIVLISYDRFLSVTRAVSYRAQQGDTRRAVRKMLLVWVLAFLLYGPAILSWEYLSGG ***********************************
C443A	SSIPEGHCYAEFFYNWYFLITASTLEFFTPFLSVTFFNLSIYLNIQRRTRLRLDGAREAA
hH3R ₄₄₅	SSIPEGHCYAEFFYNWYFLITASTLEFFTPFLSVTFFNLSIYLNIQRRTRLRLDGAREAA
C428A	SSIPEGHCYAEFFYNWYFLITASTLEFFTPFLSVTFFNLSIYLNIQRRTRLRLDGAREAA

C443A	GPEPPPEAQPSPPPPGCWGCWQKGHGEAMPLHRYGVGEAAVGAEAGEATLGGGGGGGSV
hH3R445	${\tt GPEPPPEAQPSPPPPGCWGCWQKGHGEAMPLHRYGVGEAAVGAEAGEATLGGGGGGGGSV}$
C428A	GPEPPPEAQPSPPPPGCWGCWQKGHGEAMPLHRYGVGEAAVGAEAGEATLGGGGGGGGSV

C443A	ASPTSSSGSSSRGTERPRSLKRGSKPSASSASLEKRMKMVSQSFTQRFRLSRDRKVAKSL
hH3R445	ASPTSSSGSSSRGTERPRSLKRGSKPSASSASLEKRMKMVSQSFTQRFRLSRDRKVAKSL
C428A	ASPTSSSGSSSRGTERPRSLKRGSKPSASSASLEKRMKMVSQSFTQRFRLSRDRKVAKSL

C443A	AVIVSIFGLCWAPYTLLMIIRAACHGHCVPDYWYETSFWLLWANSAVNPVLYPLCHHSFR
hH3R445	AVIVSIFGLCWAPYTLLMIIRAACHGHCVPDYWYETSFWLLWANSAVNPVLYPLCHHSFR
C428A	AVIVSIFGLCWAPYTLLMIIRAACHGHCVPDYWYETSFWLLWANSAVNPVLYPLCHHSFR

C443A	RAFTKLLCPQKLKIQPHSSLEHAWK
hH3R445	RAFTKLLCPQKLKIQPHSSLEHCWK
C428A	RAFTKLL <mark>A</mark> PQKLKIQPHSSLEH <mark>C</mark> WK

Figura 13. Alineamiento de las secuencias de la isoforma hH₃R₄₄₅ y las mutantes C443A y C428A.

Expresión transitoria de las isoformas hH₃R₄₄₅ y hH₃R₄₅₃ en células CHO-K1

Unión de [³H]-NMHA a membranas de células transfectadas con las isoformas hH₃R₄₄₅ y hH₃R₄₅₃

El ensayo de unión de [³H]-NMHA permite determinar el nivel de expresión del hH₃R en las células transfectadas. La Figura 15 muestra los resultados del ensayo de unión de [³H]-NMHA 1 nM a membranas de células CHO-K1 transfectadas con las isoformas hH₃R₄₄₅ o hH₃R₄₅₃ durante 24 o 48 h.

Figura 14. Unión específica de [³H]-NMHA a membranas de células transfectadas transitoriamente (24 o 48 h) con los receptores hH₃R₄₄₅ o hH₃R₄₅₃. Las membranas fueron incubadas con 1 nM de [³H]-NMHA en ausencia y presencia de histamina (10 μ M, unión inespecífica). Los valores son el promedio ± SEM de 6-7 experimentos. *ns*, no significativo. El análisis estadístico se realizó con análisis de varianza (ANOVA) de una vía y la prueba de Tukey.

La unión específica de [³H]-NMHA a las 24 h de transfección correspondió a 150.7 \pm 17.9 y 290.9 \pm 39.4 fmol/mg proteína para las isoformas hH₃R₄₄₅ y hH₃R₄₅₃, respectivamente, mientras que a las 48 h fue 140.8 \pm 15.8 y 358.9 \pm 44.2 fmol/mg proteína. Estos resultados indican una mayor expresión de la isoforma hH₃R₄₅₃ para ambos tiempos de transfección.

Los ensayos de saturación con membranas de células transfectadas por 24 h, confirmaron una mayor densidad (Bmax) de la isoforma hH₃R₄₅₃, sin diferencia significativa en la afinidad por el radioligando (Figura 16 y Tabla 3.)

Figura 15. Saturación de la unión específica de [³H]-NMHA a membranas de células transfectadas (24 h) con las isoformas hH_3R_{445} y hH_3R_{453} . Las membranas fueron incubadas en presencia de las concentraciones indicadas de [³H]-NMHA. Los valores son el promedio ± rango de duplicados en un experimento representativo, repetido cuatro veces con resultados similares. Los resultados de los cuatro experimentos se comparan en la Tabla 3.

Tabla 3. Unión máxima y constante de disociación (Kd) de la unión específica de [³H]-NMHA a membranas de células transfectadas transitoriamente con las isoformas hH₃R₄₄₅ o hH₃R₄₅₃.

	hH_3R_{445}	hH_3R_{453}	p
Bmax fmol / mg proteína	292 ± 43	703 ± 54	0.001
Kd (nM)	0.83	1.01	
pKd	9.10 ± 0.07	9.00 ± 0.04	0.2707

Los valores corresponden al promedio \pm SEM de cuatro experimentos. El análisis estadístico se realizó con la prueba t de Student.

Unión de [³H]-NMHA en células intactas transfectadas con las isoformas hH₃R₄₄₅ y hH₃R₄₅₃

La figura 16 muestra la comparación de la unión específica del radioligando, que indica que la expresión en la membrana plasmática es mayor para la isoforma hH₃R₄₅₃.

Inhibición de la formación de AMPc

La Figura 17 muestra que la activación de ambas isoformas inhibió la formación de AMPc inducida por forskolina. La inhibición máxima inducida por RAMH fue 44 ± 12 y 86 ± 23 % en las células CHO-KI-H₃R₄₄₅ y CHO-KI-H₃R₄₅₃, respectivamente, sin diferencia significativa (Tabla 4). Los valores de pIC₅₀ tampoco mostraron diferencia significativa.

Figura 16. Unión específica de [³H]-NMHA a membrana plasmática de células transfectadas transitoriamente con los receptores hH_3R_{445} o hH_3R_{453} . Las membranas fueron incubadas con 2 nM de [³H]-NMHA en ausencia y presencia de clobenpropit (10 μ M, unión inespecífica). A) Valores individuales de cada determinación en 5 experimentos. B) Análisis de 5 experimentos (prueba t de Student).

Figura 177. Inhibición de la formación de AMPc inducida por forskolina por activación de las isoformas hH_3R445 y hH_3R453 . Las células fueron transfectadas con las isoforma correspondiente e incubadas por 5 min con las concentraciones indicadas del agonista RAMH antes de la adición de forskolina (10 mM). Los valores son el promedio ± SEM de 5-6 experimentos.

Tabla 4. Unión máxima y constante de disociación (Kd) de la unión específica de [3 H]-NMHA a membranas de células transfectadas transitoriamente con las isoformas hH₃R₄₄₅ o hH₃R₄₅₃.

	hH_3R_{445}	hH_3R_{453}	р
IC ₅₀ (nM)	1.32	1.89	-
pIC ₅₀	8.77 ± 0.27	8.86 ± 0.16	0.779
Inhibición máxima (%)	60.5 ± 3.8	64.8 ± 4.7	0.501

Los valores corresponden al promedio \pm SEM de 5-6 experimentos. El análisis estadístico se realizó con la prueba t de Student.

Discusión

A diferencia de la isoforma hH₃R₄₄₅, el receptor hH₃R₄₅₃ es producto del procesamiento alternativo del ARNm correspondiente, con un exón adicional que agrega 24 pb que se traducen en ocho aa (secuencia KMKKKTCL) en la región C terminal. La mayoría de las isoformas del H₃R humano descritas presenta una región muy variable de procesamiento en el asa i3. La presencia de un exón adicional que codifica parte del C terminal en la proteína se observa también para las isoformas hH₃R₃₇₃ y hH₃R₃₀₉, de las cuales sólo la segunda muestra funcionalidad (Bongers et al., 2007), por lo cual no se conoce si esta región adicional modifica el comportamiento del receptor. Para otros GPCRS se ha descrito que los residuos de cisteína presentes en el C terminal pueden experimentar palmitoilación y las isoformas hH₃R₄₄₅ y hH₃R₄₅₃ contienen dos y tres cisteínas, respectivamente, que podrían experimentar esta modificación lipídica.

No existe una secuencia consenso para identificar un motivo de palmitoilación. Sin embargo, y como primera aproximación, el programa MEME suite identifica motivos que por la longitud de aa y por la posición de cada uno en la secuencia muestra patrones repetidos que no sean aleatorios, sugiriendo así la presencia de motivos en las secuencias de los receptores. El análisis realizado con este programa mostró uno y dos motivos en el extremo C terminal de las isoformas hH₃R₄₄₅ y hH₃R₄₅₃, respectivamente, que cumplen los criterios descritos por Qanbar y Bouvier (2003) para palmitoliación: 1) residuos de cisteína con un grupo SH libre; 2) residuos cargados positivamente en la proximidad de los residuos de cisteína, con al menos dos lisinas (K) y un triptófano (W); y 3) residuos hidrofóbicos en la proximidad de los residuos de cisteína, con una metionina (M) y una leucina (L) (Figura 8). En este análisis los motivos identificados por el programa contienen a los residuos Cys⁴²⁸ y Cys⁴⁴³ para la isoforma hH₃R₄₄₅ y a los residuos Cys⁴⁴³ y Cys⁴⁵² para la isoforma hH₃R₄₅₃.

Para apoyar que los residuos identificados por el software MEME fueran susceptibles de palmitoilación, se utilizó el programa *GPS Lipid*, dirigido a la búsqueda específica de modificaciones postraduccionales lipídicas, identificándose que las cisteínas que tienen mayor probabilidad de ser palmitoiladas en el análisis con una alta astringencia son Cys⁴⁴³ para la isoforma hH₃R₄₄₅ y Cys⁴⁵² para la isoforma hH₃R₄₅₃, mientras que con una

astringencia media se identifican a la Cys⁴⁴³ para la isoforma hH₃R₄₄₅, y los residuos Cys⁴⁴³ y Cys⁴⁵² para la isoforma hH₃R₄₅₃.

Con este mismo programa se identificó que las mismas cisteínas pueden ser modificadas por miristoilación, farnesilación y geranilación (datos no mostrados), por lo que la probabilidad de que estos residuos de cisteína sean modificadas por la adición de lípidos es muy alta. A reserva de un análisis más detallado (mutaciones), esta información sugiere la formación de una cuarta asa intracelular (i4) en la isoforma hH₃R₄₄₅ e incluso de una quinta asa en la isoforma hH₃R₄₅. Esto marca la pauta para el análisis diferencial en los fenómenos de señalización o desensibilización asociados al dominio C terminal de las isoformas mencionadas.

Por otra parte, además de generarse la isoforma hH₃R₄₅₃, se generaron las mutaciones puntuales C428A y C443A en la isoforma hH₃R₄₄₅, lo que permitirá analizar la posible función de estos residuos de Cisteína en la expresión y señalización del receptor, análisis que se extenderá a la isoforma con 8 aa adicionales, para la cual se generará también la mutación C452A.

Los ensayos de unión de radioligando realizado en membranas totales (Figuras 15 y 16) mostraron que los niveles de expresión en las células CHO-KI de las isoformas del hH₃R son similares para la misma isoforma a las 24 h y a las 48 h; sin embargo, la densidad fue mayor en el caso de la isoforma hH₃R₄₅₃, 192 ± 32% y 255 ± 43% con respecto a la isoforma hH₃R₄₄₅ a las 24 y 48 h, respectivamente. Dado que el ensayo detecta receptores presentes en membranas plasmática e intracelulares, y que la respuesta funcional involucra sólo a los receptores expresados en la membrana plasmática, se realizaron ensayos de unión en células intactas transfectadas durante 24 h (Figura 17). Si bien estos ensayos indicaron también una mayor densidad de receptores en la membrana plasmática para la isoforma hH₃R₄₅₃, la diferencia fue menor (137 ± 7%).

La mayor expresión de la isoforma hH₃R₄₅₃ con respecto la isoforma hH₃R₄₄₅ en la membrana plasmática puede deberse a cambios en el tráfico subcelular relacionados con una diferente estructura del receptor en su C terminal, ya que ambas isoformas contienen de manera íntegra el motivo de direccionamiento a la membrana plasmática (FX₆LL) (Duvernay et al., 2004), así como la hélice 8, cercana al TM7, estructura

secundaria que presentan algunos GPCRs y que ha sido implicada en el tráfico a la membrana (Spomer et al., 2014) y su tránsito a los lisosomas después de ser internalizados (Manfra et al., 2015). La estructura de la hélice 8 influye también en la actividad del H₃R, ya que las mutaciones de los residuos Fenilalanina y Serina disminuyen la respuesta del receptor a agonistas inversos (Kuramasu et al., 2011). En este sentido, cambios en las modificaciones postraduccionales (glicosilación, palmitoilación y presencia de puentes disulfuro) permiten distintos grados de funcionalidad en los receptores, explicados por sus niveles de expresión, estados de activación y desensibilización. En el ámbito de la palmitoilación se ha determinado que ésta es esencial para algunos receptores tanto para su distribución intracelular, como para su funcionalidad, y que las modificaciones lipídicas favorecen la asociación a las balsas lipídicas y a los compartimentos intracelulares, la efectividad en la respuesta funcional y la estabilidad (Qanbar y Bouvier, 2003; Chini y Parenti, 2009; Aicart-Ramos et al., 2011).

Por otra parte, el ensayo de saturación de la unión de radioligando no mostró diferencias en la afinidad de las isoformas hH₃R₄₅₃ y hH₃R₄₄₅ por el radioligando (pKd 9.10 ± 0.07 y 9.00 ± 0.04, respectivamente; Tabla 3), lo que sugiere que la presencia de 8 aa adicionales en el C terminal de la isoforma hH₃R₄₅₃ no afecta la afinidad por ligandos. Sin embargo, este análisis debe extenderse a una serie de agonistas y antagonistas selectivos (experimentos en curso).

En este trabajo la activación de ambas isoformas inhibió de manera significativa la formación de AMPc inducida por forskolina, indicando la funcionalidad de ambos receptores. Por otra parte, no se observaron diferencias en la inhibición máxima o en la potencia. Los valores de pIC₅₀ fueron similares a los reportados anteriormente por nuestro grupo de trabajo (Flores-Clemente et al., 2013) para la isoforma hH3R445, mientras que para la isorma hH₃R₄₅₃ expresada en células HEK-293 Nakamura et al. reportaron una inhibición de ~50% con una IC₅₀ de 0.71 nM con el mismo agonista.

El asa i3 del receptor y las regiones de los TMs 5 y 6 adyacentes permiten el acople de la proteína G y en consecuencia su activación, lo que se relaciona directamente con la capacidad de inhibir la formación de AMPc. En este sentido, ambas isoformas no presentan diferencias en la secuencia de aa en estas regiones, lo que explicaría la similar

capacidad de activación de proteínas Gα_{i/o} y en consecuencia la inhibición de las adenilil ciclasas.

Sin embargo, para algunas isoformas del H₃R de la rata y del humano se han reportado diferencias funcionales al ser expresadas en sistemas heterólogos. Para las isoformas de la rata de 445, 413 y 397 aa (H₃A, H₃B, H₃C, respectivamente) se ha descrito que las isoformas más cortas son más eficaces para inhibir la formación de AMPc, pero que la isoforma H₃A es más eficaz para activar la vía de las MAPKs. Además, estas isoformas presentan expresión diferencial en diversas regiones del SNC y algunas de ellas presentan diferencias menores en sus características farmacológicas (Drutel et al., 2001). Cabe destacar que con base en su perfil farmacológico se ha propuesto que la isoforma hH₃R₄₁₃ ejerce la función de autorreceptor en la rata (Gbahou et al., 2012).

En relación a las isoformas humanas del H₃R, las mayormente expresadas son las isoformas hH₃R₄₄₅ y hH₃R₃₆₅, cuyo ARNm se expresa de manera diferencial en varias regiones del SNC (mayormente en el caudado, cuerpo calloso y médula espinal) (Bongers et al., 2007).

La respuesta farmacológica que exhiben las isoformas hH₃R₄₄₅ y hH₃R₃₆₅ expresadas transitoriamente en células NIH-3T3 son diferenciales. La isoforma hH₃R₃₆₅ muestra mayor potencia para los agonistas RAMH, NAMH (16-23 veces), immepip e imetit (3-5 veces), mientras que la respuesta a antagonistas (clobenpropit y tioperamida) es 5 veces menor. Además, la expresión total de los receptores fue 2.7 veces mayor para la isoforma hH₃R₄₄₅ (Wellendorph et al., 2002).

Utilizando células C6 de glioma de rata, Bongers et al. (2007) realizaron una comparación detallada de las características farmacológicas y funcionales de las isoformas hH₃R₄₄₅ y hH₃R₃₆₅ humanas. El análisis de la inhibición por ligando de la unión de [³H]-NMHA mostró una mayor afinidad del hH₃R₃₆₅ (en promedio 3.4 veces) por agonistas como la propia histamina, el immepip y el imetit. Esta diferencia fue todavía mayor (en promedio 55 veces) al utilizar un segundo radioligando, [¹²⁵I]-yodofenpropit. En contraste, la isoforma hH₃R₄₄₅ mostró mayor afinidad por los antagonistas/agonistas inversos del H₃R, como el ciproxifán, el clobenpropit y el A-331440. En ese mismo trabajo, el análisis de la inhibición de la formación de AMPc mostró que los agonistas fueron más potentes (35

veces en promedio) con la isoforma hH₃R₃₆₅, pero más eficaces con la isoforma hH₃R₄₄₅ (inhibición de 80% comparada con 44% de la isoforma hH₃R₃₆₅). De manera opuesta, los agonistas inversos fueron más potentes (14 veces) con la isoforma hH₃R₄₄₅, pero la eficacia fue mayor con la isoforma hH₃R₃₆₅, lo que sugiere una mayor actividad constitutiva de la isoforma más corta.

Un fenómeno interesante en la función de los GPCRs es el agonismo sesgado, definido como la activación diferencial de vías de señalización por diferentes agonistas. En el trabajo de Riddy et al. (2016) se determinó que las respuestas de las isoformas hH₃R₃₆₅ y hH₃R₄₄₅ a cinco agonistas (RAMH, NAMH, imetiti, yodoproxifan y proxifan) muestran un perfil característico. Por ejemplo, para los agonistas imetit, yodoproxifan y proxifan se favorece la señalización por fosfolipasa C para la isoforma hH₃R₃₆₅. En contraste, para la isoforma hH₃R₄₄₅ activada con iodoproxifan y proxifan se favorece la activación de la vía GSK3β. Por otra parte, ambas isoformas desencadenan de manera similar las vías de señalización de las MAPKs, inhibición de adenilil ciclasas y fosfolipasa A₂.

Como se describió en párrafos anteriores, cambios en la secuencia de aa debidos a procesamiento alternativo y modificaciones en el C terminal de los receptores a histamina se encuentran involucrados en la expresión en la membrana plasmática, el acople a proteínas G, la unión de las proteínas β -arrestinas y en la internalización mediada por clatrina, así como su en funcionalidad (Bongers et al., 2007; Drutel et al., 2001; Esbenshade et al., 2006; Fukushima et al., 1997; Yasushi Fukushima et al., 2001; Hishinuma et al., 2016; Kuramasu et al., 2011). Por lo anterior, es importante analizar a la isoforma hH₃R₄₅₃ en cuanto a la señalización intracelular y los procesos de desensibilización e internalización.

Consideración final

En los últimos años se ha dado amplia importancia a las diferencias funcionales de las isoformas de los receptores acoplados a proteínas G para explicar diversos procesos fisiológicos. La isoforma de 453 aa del H₃R clonada a partir del genoma humano no ha sido caracterizada en relación a su expresión, farmacología y funcionalidad. En este trabajo se generó esta isoforma y se expresó en células CHO-K1. Los resultados obtenidos indican que las isoformas de 445 y 453 aa se expresan de manera diferencial en la membrana plasmática, pero que su funcionalidad es similar.

El análisis bioinformático sugiere un patrón diferencial de palmitoilación o incluso más general de acilación entre las isoformas de 445 y 453 aa del H₃R. Lo anterior podría resultar en mecanismos diferenciales de señalización y de regulación. Estos aspectos serán estudiados como continuación de este proyecto.

Perspectivas

1. Establecer si existen diferencias entre las isoformas hH₃R₄₄₅ y hH₃R₄₅₃ en:

La señalización mediada por proteínas $G\alpha_{i/o}$ mediante ensayos de activación de proteínas G (unión de [³⁵S]-GTP_γS).

La señalización dependiente de β-arrestinas como la activación de Src y la vía JAK/STAT, mediante inmunodetección de las proteínas fosforiladas.

La desensibilización homóloga mediante ensayos de unión de radioligando y funcionales.

- 2. Generar la mutación C428A, C443A y C452A en la isoforma hH₃R₄₅₃.
- Determinar el efecto de las mutaciones puntuales C428A, C443A y C452A en la señalización y desensibilización de las isoformas hH₃R₄₄₅ y hH₃R₄₅₃.

Bibliografía

- Aicart-Ramos, C., Valero, R. A., Rodriguez-Crespo, I. (2011). Protein palmitoylation and subcellular trafficking. *Biochimica et Biophysica Acta*, *1808*(12), 2981–2994. doi:10.1016/j.bbamem.2011.07.009
- Arrang, J. M., Garbarg, M., Schwartz, J. C. (1983). Auto-inhibition of brain histamine release mediated by a novel class (H3) of histamine receptor. *Nature*, 302(5911), 832–837. doi: 10.1038/302832a0
- Bailey, T. L., Elkan, C. (1994). Fitting a mixture model by expectation maximization to discover motifs in biopolymers. Proc Int Conf Intell Syst Mol Biol. 1994;2:28-36. doi: 10.1093/nar/gkp335
- Bakker, R. A. (2004). Histamine H₃-receptor isoforms. *Inflammation Research*, *53*(10), 509–516. doi:10.1007/s00011-004-1286-9
- Bockaert, J., Marin, P., Dumuis, A., Fagni, L. (2003). The "magic tail" of G protein-coupled receptors: an anchorage for functional protein networks. *FEBS Letters*, 546(1), 65– 72. doi:10.1016/S0014-5793(03)00453-8
- Bongers, G., Bakker, R. A., Leurs, R. (2007). Molecular aspects of the histamine H₃ receptor. *Biochemical Pharmacology*, 73(8), 1195–1204. doi:10.1016/j.bcp.2007.01.008
- Bongers, G., Krueger, K. M., Miller, T. R., Baranowski, J. L., Estvander, B. R., Witte, D. G., Leurs, R. (2007). An 80-amino acid deletion in the third intracellular loop of a naturally occurring human histamine H3 isoform confers pharmacological differences and constitutive activity. *The Journal of Pharmacology and Experimental Therapeutics*, 323(3), 888–898. doi:10.1124/jpet.107.127639
- Cacabelos, R., Torrellas, C., Fernández-Novoa, L., López-Muñoz, F. (2016). Histamine and immune biomarkers in CNS disorders. *Mediators of Inflammation*, 2016, 1924603. doi:10.1155/2016/1924603
- Chini, B., Parenti, M. (2009). G-protein-coupled receptors, cholesterol and palmitoylation: facts about fats. *Journal of Molecular Endocrinology*, *42*(5), 371–379. doi:10.1677/JME-08-0114
- Cogé, F., Guénin, S. P., Audinot, V., Renouard-Try, A., Beauverger, P., Macia, C. Galizzi, J. P. (2001). Genomic organization and characterization of splice variants of the human histamine H₃ receptor. *The Biochemical Journal*, *355*(Pt 2), 279–288. 10.1042/bj3550279

- Drutel, G., Peitsaro, N., Karlstedt, K., Wieland, K., Smit, M. J., Timmerman, H., Leurs, R. (2001). Identification of rat H₃ receptor isoforms with different brain expression and signaling properties. *Molecular Pharmacology*, *59*(1), 1–8. doi:10.1124/mol.59.1.1
- Duvernay, M. T., Zhou, F., Wu, G. (2004). A conserved motif for the transport of G proteincoupled receptors from the endoplasmic reticulum to the cell surface. *The Journal of Biological Chemistry*, 279(29), 30741–30750. doi:10.1074/jbc.M313881200
- Esbenshade, T. A., Strakhova, M. I., Carr, T. L., Sharma, R., Witte, D. G., Yao, B. Hancock, A. A. (2006). Differential CNS expression and functional activity of multiple human H(3) receptor isoforms. *Inflammation Research*, *55 Suppl 1*, S38–9. doi:10.1007/s00011-005-0032-2
- Flores-Clemente, C., Osorio-Espinoza, A., Escamilla-Sánchez, J., Leurs, R., Arias, J.-M., Arias-Montaño, J.-A. (2013). A single-point mutation (Ala280Val) in the third intracellular loop alters the signalling properties of the human histamine H₃ receptor stably expressed in CHO-K1 cells. *British Journal of Pharmacology*, 170(1), 127– 135. doi:10.1111/bph.12257
- Fukushima, Y, Asano, T., Takata, K., Funaki, M., Ogihara, T., Anai, Sugano, K. (1997). Role of the C terminus in histamine H2 receptor signaling, desensitization, and agonist-induced internalization. *The Journal of Biological Chemistry*, 272(31), 19464–19470. doi: 10.1074/jbc.272.31.19464
- Fukushima, Y., Saitoh, T., Anai, M., Ogihara, T., Inukai, K., Funaki, M. Asano, T. (2001). Palmitoylation of the canine histamine H2 receptor occurs at Cys305 and is important for cell surface targeting. *Biochimica et Biophysica Acta - Molecular Cell Research*, 1539(3), 181–191. doi:10.1016/S0167-4889(01)00104-5
- García-Gálvez, A. M., Arias-Montaño, J. A. (2016). Isoformas del receptor a histamina H₃ humano: Generación, expresión en el sistema nervioso central e implicaciones funcionales. *Gaceta Medica de Mexico*, *152*(1), 94–102. PMID:26927649.
- Gbahou, F., Rouleau, A., Arrang, J.-M. (2012). The histamine autoreceptor is a short isoform of the H₃ receptor. *British Journal of Pharmacology*, *166*(6), 1860–1871. doi:10.1111/j.1476-5381.2012.01913.x
- Granier, S., Kim, S., Shafer, A. M., Ratnala, V. R. P., Fung, J. J., Zare, R. N., Kobilka, B. (2007). Structure and conformational changes in the C-terminal domain of the beta2-adrenoceptor: insights from fluorescence resonance energy transfer studies. *The Journal of Biological Chemistry*, 282(18), 13895–13905. doi:10.1074/jbc.M611904200
- Haas, H. L., Sergeeva, O. A., Selbach, O. (2008). Histamine in the nervous system. *Physiological Reviews*, *88*(3), 1183–1241. doi:10.1152/physrev.00043.2007 doi: 10.1152/physrev.00043.2007
- Hancock, A. A., Esbenshade, T. A., Krueger, K. M., Yao, B. B. (2003). Genetic and pharmacological aspects of histamine H₃ receptor heterogeneity. *Life Sciences*, 73(24), 3043–3072. doi:10.1016/j.tips.2007.05.002

- Hishinuma, S., Nozawa, H., Akatsu, C., Shoji, M. (2016). C-terminal of human histamine H₁ receptors regulates their agonist-induced clathrin-mediated internalization and G-protein signaling. *Journal of Neurochemistry*, *139*(4), 552–565. doi:10.1111/jnc.13834
- Horton, R. M., Ho, S. N., Pullen, J. K., Hunt, H. D., Cai, Z., & Pease, L. R. (1993). Gene splicing by overlap extension. *Methods in Enzymology*, 217, 270–279.
- Jurič, D. M., Kržan, M., Lipnik-Stangelj, M. (2016). Histamine and astrocyte function. *Pharmacological Research*, *111*, 774–783. doi:10.1016/j.phrs.2016.07.035
- Kuramasu, A., Sukegawa, J., Sato, T., Sakurai, E., Watanabe, T., Yanagisawa, T., Yanai, K. (2011). The hydrophobic amino acids in putative helix 8 in carboxy-terminus of histamine H(3) receptor are involved in receptor-G-protein coupling. *Cellular Signalling*, 23(11), 1843–1849. doi:10.1016/j.cellsig.2011.06.021
- Kuramasu, A., Sukegawa, J., Yanagisawa, T., Yanai, K. (2006). Recent advances in molecular pharmacology of the histamine systems: roles of C-terminal tails of histamine receptors. *Journal of Pharmacological Sciences*, 101(1), 7–11. doi:10.1254/jphs.FMJ06001X3
- Leurs, R., Bakker, R. A., Timmerman, H., De Esch, I. J. P. (2005). The histamine H₃ receptor: from gene cloning to H₃ receptor drugs. *Nature Reviews. Drug Discovery*, *4*(2), 107–120. doi:10.1038/nrd1631
- Leurs, R., Hoffmann, M., Wieland, K., Timmerman, H. (2000). H₃ receptor gene is cloned at last. *Trends in Pharmacological Sciences*, *21*(1), 11–12. doi:10.1016/S0165-6147(99)01411-X
- Lovenberg, T. W., Roland, B. L., Wilson, S. J., Jiang, X., Pyati, J., Huvar, A., Erlander, M.
 G. (1999). Cloning and functional expression of the human histamine H3 receptor. *Molecular Pharmacology*, *55*(6), 1101–1107. doi:10.1124/mol.55.6.1101
- Magalhaes, A. C., Dunn, H., Ferguson, S. S. G. (2012). Regulation of GPCR activity, trafficking and localization by GPCR-interacting proteins. *British Journal of Pharmacology*, *165*(6), 1717–1736. doi:10.1111/j.1476-5381.2011.01552.x
- Manfra, O., Van Craenenbroeck, K., Skieterska, K., Frimurer, T., Schwartz, T. W., Levy, F. O., Andressen, K. W. (2015). Downregulation of 5-HT7 serotonin receptors by the atypical antipsychotics clozapine and olanzapine. Role of motifs in the C-Terminal Domain and interaction with GASP-1. ACS Chemical Neuroscience, 6(7), 1206–1218. doi:10.1021/cn500339p
- Nakamura, T., Itadani, H., Hidaka, Y., Ohta, M., Tanaka, K. (2000). Molecular cloning and characterization of a new human histamine receptor, HH4R. *Biochemical and Biophysical Research Communications*, 279(2), 615–620. doi:10.1006/bbrc.2000.4008
- Nieto-Alamilla, G., Márquez-Gómez, R., García-Gálvez, A.-M., Morales-Figueroa, G.-E., Arias-Montaño, J.-A. (2016).The dHistamine H₃ Receptor: Structure,

Pharmacology, and Function. *Molecular Pharmacology*, *90*(5), 649–673. doi:10.1124/mol.116.104752

- Panula, P., Nuutinen, S. (2013). The histaminergic network in the brain: basic organization and role in disease. *Nature Reviews. Neuroscience*, 14(7), 472–487. doi:10.1038/nrn3526
- Park, J. Y., Lee, S. Y., Kim, H. R., Seo, M.-D., Chung, K. Y. (2016). Structural mechanism of GPCR-arrestin interaction: recent breakthroughs. *Archives of Pharmacal Research*, 39(3), 293–301. doi:10.1007/s12272-016-0712-1
- Qanbar, R., Bouvier, M. (2003). Role of palmitoylation/depalmitoylation reactions in Gprotein-coupled receptor function. *Pharmacology and Therapeutics*, 97(1), 1–33. doi:10.1016/S0163-7258(02)00300-5
- Riddy, D. M., Cook, A. E., Diepenhorst, N. A., Bosnyak, S., Brady, R., Mannoury la Cour, Langmead, C. J. (2017). Isoform-specific biased agonism of Histamine H₃ receptor agonists. *Molecular Pharmacology*, *91*(2), 87–99. doi:10.1124/mol.116.106153
- Spomer, L., Gertzen, C. G. W., Schmitz, B., Häussinger, D., Gohlke, H., Keitel, V. (2014). A membrane-proximal, C-terminal α-helix is required for plasma membrane localization and function of the G Protein-coupled receptor (GPCR) TGR5. *The Journal of Biological Chemistry*, 289(6), 3689–3702. doi:10.1074/jbc.M113.502344
- Srivastava, A., Gupta, B., Gupta, C., Shukla, A. K. (2015). Emerging Functional Divergence of β-Arrestin Isoforms in GPCR Function. *Trends in Endocrinology and Metabolism*, *26*(11), 628–642. doi:10.1016/j.tem.2015.09.001
- Thomsen, A. R. B., Plouffe, B., Cahill, T. J., Shukla, A. K., Tarrasch, J. T., Dosey, A. M., Lefkowitz, R. J. (2016). GPCR-G Protein-β-Arrestin Super-Complex Mediates Sustained G Protein Signaling. *Cell*, 166(4), 907–919. doi:10.1016/j.cell.2016.07.004
- Wiedemann, P., Bönisch, H., Oerters, F., y Brüss, M. (2002). Structure of the human histamine H3 receptor gene (HRH₃) and identification of naturally occurring variations. *Journal of Neural Transmission*, 109(4), 443–453. doi:10.1007/s007020200036
- Xie, Y., Zheng, Y., Li, H., Luo, X., He, Z., Cao, S., Ren, J. (2016). GPS-Lipid: a robust tool for the prediction of multiple lipid modification sites. *Scientific Reports*, *6*, 28249. doi:10.1038/srep28249
- Zhang, X., Kim, K.-M. (2016). Palmitoylation of the carboxyl-terminal tail of dopamine D4 receptor is required for surface expression, endocytosis, and signaling. *Biochemical* and *Biophysical Research Communications*, 479(2), 398–403. doi:10.1016/j.bbrc.2016.09.094
- Zuckerman, D. M., Hicks, S. W., Charron, G., Hang, H. C., Machamer, C. E. (2011). Differential regulation of two palmitoylation sites in the cytoplasmic tail of the beta1-

adrenergic receptor. *The Journal of Biological Chemistry*, 286(21), 19014–19023. doi:10.1074/jbc.M110.189977.