

UNIDAD ZACATENCO

DEPARTAMENTO DE FISIOLOGIA, BIOFISICA Y NEUROCIENCIAS

Regulación transcripcional de Gas1 por NeuroD1

TESIS

Que presenta

M. en C. Marco Antonio Quezada Ramírez

Para obtener el grado de

DOCTOR EN CIENCIAS

EN LA ESPECIALIDAD DE NEUROBIOLOGIA CELULAR Y MOLECULAR

Director de la Tesis: Dr. José Segovia Vila

Ciudad de México

Febrero, 2018

Durante mi doctorado recibí el apoyo del Consejo Nacional de Ciencia y Tecnología (CONACYT) número 219168 Durante mi doctorado recibí el apoyo de la Dirección de Investigación Científica y Formación de Recursos Humanos del Consejo Mexiquense de Ciencia y Tecnología (COMECYT) número 15BEPD0009-II A la memoria de mi padre

Julio Quezada Canales 🕆

A mi madre

Leonarda Ramírez Niño Por tu apoyo siempre incondicional

INDICE

Abreviaturas	I
Resumen	.11
Abstract	111
1. Introducción	.1
A. Growth arrest specific 1 (Gas1)	2
B. Gas1 y Sonic hedgehog regulan la proliferación de células progenitoras neurales durante el desarrollo del sistema nervioso central	.4
C. Regulación de la expresión de <i>Gas1</i>	.6
D. Factores de transcripción proneurales de la familia bHLH	7
2. Planteamiento del problema1	10
3. Hipótesis1	0
1. Objetivo General1	0
5. Objetivos específicos1	.1
5. Materiales y Métodos1	2
A. Bioinformática1	2
B. Inmunofluorescencia1	.2
C. Cultivo celular y transfección1	.3
D. Extracción de RNA, PCR semicuantitativo y PCR en tiempo real1	.3
E. Western blot1	.3
F. Construcción de plásmidos1	.4
G. Mutagénesis sitio dirigida1	L4
H. Ensayo de luciferasa	15
I. Inmunoprecipitación de la Cromatina (ChIP)	16

J. Análisis estadístico17				
7. Resultados				
A. Regiones conservadas en el promotor <i>Gas1</i> lo relacionan con factores proneurales				
B. NeuroD1 activa la expresión endógena de Gas120				
C. Clonación del promotor <i>Gas1</i> 21				
D. El factor NeuroD1 activa transcripcionalmente a Gas1				
E. Elementos distales en el promotor Gas1 median su respuesta a NeuroD124				
8. Discusión				
9. Conclusión y perspectivas				
10. Referencias				
Anexo 140				
Anexo 241				
Anexo 342				

Abreviaturas

- Atoh1, Atonal homolog 1 (factor de transcripción)
- Boc, Brother of Cdo (co-receptor de Shh)
- Cdo, Cell adhesion molecule-related/down-regulated by oncogenes (co-receptor de Shh)
- ChIP, Chromatin Immunoprecipitation
- c-Myc, Myelocitomatosis viral oncogen homolog (factor de transcripción)
- DMEM, Dulbecco's Modified Eagle Medium
- E2A, Immunoglobulin enhancer-binding factors E12/E47 (gen codificante de E12/E47)
- Gas1, Growth arrest specific 1
- GDNF, Glial cell line-derived neurotrophic factor (neurotrofina)
- GFR α s, GDNF family receptors α (receptor de neurotrofinas GDNF)
- Mash1, Achaete-scute homolog 1 (factor de transcripción proneural)
- NeuroD, Neurogenic differentiation factor (factor de transcripción proneural)
- Ngn2, Neurogenin 2 (factor de transcripción proneural)
- PCR, Polymerase chain reaction
- Ptch1, Patched 1 (receptor de Shh)
- RET, rearranged during transfection (receptor transmembrana de neurotrofinas GDNF)
- Shh, Sonic hedgehog (morfógeno del desarrollo)

Resumen

Gas1 (Growth arrest specific 1) es un mediador del desarrollo del sistema nervioso central que funciona como co-receptor de Sonic Hedgehog (Shh) para inducir la proliferación de progenitores neurales durante la especificación dorso-ventral del tubo neural y de los precursores granulares del cerebelo. Datos recientes de nuestro grupo han confirmado que Gas1 está presente en los progenitores neurales de la corteza y del giro dentado del hipocampo. La expresión de Gas1 en células progenitoras indica que una de sus funciones principales es el mantenimiento de estas poblaciones celulares. Sin embargo, las señales que dirigen su expresión en estas etapas del desarrollo son desconocidas, un aspecto que es clave para entender sus funciones en la neurogénesis. En este trabajo buscamos los mecanismos de regulación transcripcional de Gas1 y a través de genómica comparativa encontramos dos cajas E altamente conservadas en su secuencia no codificante, las cuales median su regulación por el factor de transcripción NeuroD1. Asimismo, detectamos la co-expresión de Gas1 y NeuroD1 en poblaciones celulares del giro dentado del hipocampo y precursores de células granulares del cerebelo, un hecho previamente desapercibido. Estos hallazgos indican, por primera vez, que Gas1 es un blanco directo de NeuroD1 como parte de las señales tempranas de diferenciación neuronal.

Abstract

Growth arrest specific 1 (Gas1) is an important signaling mediator of the central nervous system development that works as a coreceptor for sonic hedgehog (Shh) to induce the amplification of neural progenitor cells during the patterning of the mammalian neural tube and establishing of granular cells in the cerebellum. Recently we have confirmed that Gas1 is also expressed by neural progenitors of the developing cortex and dentate gyrus of the hippocampus. The presence of Gas1 in progenitor stages indicates that one of its principal roles is the maintenance of these cell populations during neurogenic events. However, the signals responsible for the expression of Gas1 in neural progenitor cells are unknown, an aspect that is important to understand its functions in neurogenesis. In this report we focused on elucidating the mechanisms of transcriptional regulation of Gas1 and using comparative genomic methods we found two highly conserved E-boxes in the Gas1 promoter which mediate its up-regulation by NeuroD1. Additionally, we found that Gas1 and NeuroD1 colocalize in the developing dentate gyrus of the hippocampus and external granular layer of the cerebellum, suggesting a previously unsuspected regulatory relationship. Together our data indicate that Gas1 is a direct target of NeuroD1 during the induction of the neurogenic program

Ш

1. Introducción

Gas1 (Growth arrest specific 1) se descubrió como un gen que inhibe la proliferación tanto de células normales como transformadas, característica que lo ha convertido en un gen con potencial terapéutico en el tratamiento de los gliomas y otros tipos de cáncer ¹⁻⁴. Al mismo tiempo se ha demostrado que la expresión de Gas1 es clave para la neurogénesis que ocurre durante el desarrollo del sistema nervioso central, en donde promueve la proliferación y la supervivencia de progenitores neurales de varias regiones del encéfalo ^{5,6}. La participación de Gas1 en dos procesos celulares tan opuestos (arresto e inducción de la proliferación celular) reside en el hecho de que esta proteína forma parte de dos sistemas de transducción de señales. Por un lado, Gas1 inhibe la proliferación celular al bloquear la vía de transducción de la neurotrofina GDNF (Glial cell line-derived neurotrophic factor). Siendo Gas1 una proteína anclada a la membrana celular tiene la capacidad de bloquear la autofosforilación y activación del receptor RET cinasa ⁷. Por el otro, Gas1 induce la proliferación celular pues funciona también como uno de los co-receptores del morfógeno Sonic hedgehog (Shh), favoreciendo la activación de su vía de señalización con la consecuente proliferación celular⁸. Esta propiedad ha llevado a considerar que la función de Gas1 dependerá, o bien de sus niveles de expresión o simplemente del contexto celular en el que se encuentra implicada.

En esta tesis abordamos el problema de la regulación de la expresión de *Gas1* dentro del contexto de la neurogénesis. Aunque varias publicaciones han aportado datos sobre los mecanismos que regulan su expresión, muy pocos trabajos han estudiado su regulación en las células progenitoras neurales, lo cual es un punto clave para comprender las funciones de Gas1 en la neurogénesis. A lo largo de este trabajo describiremos cómo, a través de un análisis de la secuencia no codificante de *Gas1*, logramos identificar que este gen es un blanco directo del factor de transcripción NeuroD1, un importante regulador de la neurogénesis. En las primeras secciones haremos una descripción actualizada sobre Gas1, su papel en el desarrollo del sistema nervioso central y el estado del conocimiento actual sobre los mecanismos que regulan su expresión. Enseguida, expondremos los resultados obtenidos de esta investigación, y finalizaremos con una discusión sobre las repercusiones y el alcance de los mismos.

A. Growth arrest specific 1 (Gas1)

Gas1 (*Growth arrest specific 1*) es un gen supresor tumoral que bloquea la proliferación celular cuando es sobreexpresado ya sea de manera endógena o ectópica ^{3,4,9,10}. Este gen codifica para una glicoproteína de 37 kDa que se ancla a la membrana celular por un grupo glicosilfosfatidilinositol (GPI) y que muestra alta homología con los receptores para las neurotrofinas de la familia GDNF (GFR α s, *GDNF family receptors*) ^{11,12}. En cada uno de sus dos dominios repetidos cuenta con 10 puentes disulfuro, lo que la vuelve una proteína muy estable en solución (Figura 1A y B). De hecho, investigaciones recientes demuestran que puede liberarse de la membrana celular y ser detectada en fluidos como la sangre y el líquido cefalorraquídeo ^{13,14}. La fuente del Gas1 soluble pueden ser las neuronas ¹⁵.

Debido a su similitud estructural con los GFRαs, se ha demostrado que Gas1 interfiere con la vía de señalización PI3K/Akt en células que dependen de la neurotrofina GDNF. Al unirse al receptor RET cinasa ¹², Gas1 impide la fosforilación del residuo intracelular Y1062, bloqueando así las señales de proliferación y supervivencia inducidas por el GNDF (Figura 2) ^{7,16}. Investigaciones más recientes de nuestro grupo, indican que el mecanismo de Gas1 para lograr el arresto del ciclo celular también esta mediado por un aumento de la cinasa Dyrk1B y de las anexinas A1 y A2 ¹⁷.

De manera consistente con su función de gen supresor tumoral, *Gas1* es uno de los genes comúnmente regulado a la baja en varios tipos de cáncer (incluyendo colorrectal ¹⁸, gástrico ¹⁹, de próstata ²⁰ y leucemias mieloides ^{21,22}) pudiendo usarse esto como una señal para el diagnóstico y el pronóstico de algunas neoplasias ¹⁸. La sobreexpresión de *Gas1*, por el contrario, ha demostrado bloquear la proliferación de células de glioblastoma multiforme (tumor del sistema nervioso central) en ensayos experimentales de terapia génica ^{3,4,23}.

B. Gas1 y Sonic hedgehog regulan la proliferación de células progenitoras neurales durante el desarrollo del sistema nervioso central

Además de su función como supresor del ciclo celular, Gas1 es un importante mediador del desarrollo del sistema nervioso central, pero con un rol diametralmente opuesto. Se ha demostrado que Gas1 es un co-receptor para el morfógeno Sonic hedgehog (Shh), que junto con las proteínas Boc y Cdo, ayuda a establecer los progenitores neurales del tubo neural y permite la proliferación de las células precursoras granulares del cerebelo ^{5,6}. Sin embargo, mantiene efectos inhibidores de la proliferación en retina ²⁴ y tejido interdigital ²⁵.

La señalización por Shh requiere la interacción de este morfógeno con el receptor de membrana Patched1 (Ptch1) ²⁶. Esta interacción es facilitada por tres co-receptores para Shh: Boc, Cdo y Gas1 ⁸ (Figura 3). En ausencia de Shh, Ptch1 inhibe a la proteína Smothened (Smo); pero luego de su unión a Shh, Smo es liberada de la represión ²⁷ y activa dos vías de señalización intracelular, $G\alpha_{i/o}$ ²⁸ y PI3K/Akt ²⁹. Ambas rutas detienen la degradación de Gli2 y Gli3 para que estas, a su vez, puedan inducir la transcripción del efector *Gli1*, cuyos blancos finalmente incluyen genes que promueven el ciclo celular, como *ciclina D*. Por su parte, el complejo Shh-Ptch1 es internalizado y degradado por lisosomas ⁸. En vertebrados, tanto Ptch1 como los co-receptores de Shh se concentran en cilios de la membrana celular ⁸ (Figura 3).

El análisis de ratones mutantes *Gas1-/-*, *Boc-/-* y *Cdo-/-* ha demostrado que sus respectivas proteínas muestran funciones parcialmente redundantes durante el desarrollo del sistema nervioso; es decir, la ausencia de cualquiera de ellas es suplida en parte por las demás, evitando de esta manera que la vía de Shh se vea comprometida ^{5,6}.

A pesar de que Gas1 se une a Shh de manera independiente a Boc y Cdo (con una K_d = 6.1 nM) ninguna de las tres proteínas muestra relación estructural entre sí, por lo que se piensa que evolucionaron de manera convergente ³⁰. De hecho, se ha encontrado que los residuos N116 y Y81 de Shh maduro son imprescindibles para su correcta unión con Gas1, pero no para su unión con Ptch1 o Cdo ³¹. Interesantemente, la participación del calcio en las uniones Shhreceptor también parece mantenerse en la interacción de Shh con Gas1 ³².

La importancia de Gas1 para el desarrollo del sistema nervioso central ha sido demostrada con la generación de ratones mutantes *Gas1-/-*. La ausencia del gen *Gas1* en estos ratones ocasiona un aumento en la dorsalización del tubo neural, al mismo tiempo que un pobre desarrollo de los progenitores ventrales ^{33,34}. Interesantemente, estos animales mueren rápidamente después de su nacimiento, indicando que *Gas1* cumple funciones importantes en varias de las etapas del desarrollo y también en varias regiones fuera del sistema nervioso

central ²⁵. El fenotipo alterado del tubo neural es todavía más evidente en los ratones *Gas1-/-*;*Shh-/+*,es decir, ratones en los que además de la ausencia del gen *Gas1* existe solamente un alelo funcional de *Shh* (el ligando de Gas1) ^{5,33,34}. Por otro lado, la disminución del número de precursores granulares del cerebelo es otra característica típica del mutante *Gas1-/-*, un fenómeno que se ha asociado directamente a una proliferación celular disminuida y un aumento de la apoptosis en las células precursoras granulares ^{6,35}.

Nuestro grupo demostró que *Gas1* también es expresado fuertemente por células neurales de la neocorteza y del giro dentado del hipocampo durante el desarrollo embrionario y el cerebro adulto^{36,37}. Recientemente se ha incluido a la región dorsal del mesencéfalo ³⁸. Esto indica que Gas1 cumple una función en el establecimiento y mantenimiento de estas poblaciones celulares, las cuales también dependen de Shh. La presencia de Gas1 en progenitores aislados de cerebros humanos fetales podría implicar que esta misma función se conserva en humanos ³⁹.

Todos estos datos sugieren que Gas1 es un importante regulador de la proliferación y supervivencia de células progenitoras durante el desarrollo del sistema nervioso central, y muy probablemente de células progenitoras de otros tejidos donde su expresión ha sido confirmada, como las células progenitoras de la nefrona ⁴⁰, del folículo piloso⁴¹, progenitores de células musculares ⁴², nicho de células troncales gástricas ⁴³, células precursoras de neuronas entéricas⁴⁴ y neuroblastos del oído interno ⁴⁵.

C. Regulación de la expresión de Gas1

El gen *Gas1* en el ratón consiste de un solo exón con una caja TATA ubicada entre -25 y -30 respecto del sitio de inicio de la transcripción (TSS) ⁴⁶. En el humano su estructura es similar, excepto por algunas diferencias en la longitud de los extremos 5´-UTR y 3´-UTR (*untranslated region* o región no traducida) de su RNA mensajero ⁴⁷ (ver también ensembl.org). No obstante, tanto en el ratón como en el humano la vida media del transcrito es de aproximadamente 2 horas ^{48,49}. Aunque varios reportes en la literatura han abordado los mecanismos que dirigen su expresión bajo diferentes condiciones fisiológicas, lo cierto es que aún se desconocen las principales vías de su regulación. Únicamente la regulación de *Gas1* a través del factor de

transcripción c-Myc ha recibido especial atención, haciendo de éste factor el mejor documentado.

Desde su descubrimiento por Schneider et al. (1988) ⁹ varios reportes han demostrado que *Gas1* es un blanco importante de la represión ejercida por c-Myc, tanto *in vitro* como *in vivo* ^{10,46,50–52}. Esto tiene sentido, considerando que las funciones de c-Myc son las de promover la proliferación celular mientras que Gas1 la inhibe. Aunque los mecanismos utilizados por c-Myc para ejercer la represión génica todavía no han sido esclarecidos, se sabe que emplea un importante proceso de desacetilación de histonas y metilación del DNA sobre sus genes blanco ⁵³. A través de técnicas de mutación ha sido posible comprobar que c-Myc requiere la integridad de su caja MBII en su extremo N-terminal y de un cierre de leucinas (zipper de leucinas) en su extremo C-terminal para poder ejercer la represión sobre *Gas1* ⁵¹. A favor de esta evidencia se tiene que aún c-MycS (una versión fisiológicamente más pequeña de c-Myc) mantiene esta misma capacidad represora sobre *Gas1* ⁵².

Reportes más recientes demuestran que *Gas1* también está sujeto a la represión por los miR-34a ^{54,55} y miR-184 ⁵⁵ en células mesangiales de riñón, y es también un blanco de directo de factores de transcripción como Sp1 en hígado ⁵⁶, FOXM1 en células de cáncer colorrectal HCT116 y RKO ⁵⁷, WT1 en progenitores de nefronas ⁴⁰, C/EBPs en epitelio mamario y ovocitos de ratón ^{58–60}, Atoh1 en precursores de células granulares del cerebelo ⁶¹ y una versión mutada de p53 en la línea celular de glioblastoma U251 ⁴⁹. Sin embargo, a excepción del reporte que indica que *Gas1* puede ser un blanco directo de Atoh1 en cerebelo, muy poca investigación se ha hecho sobre los mecanismos de regulación de la expresión de *Gas1* en progenitores neurales.

D. Factores de transcripción proneurales de la familia bHLH

Los factores proneurales son una amplia familia de activadores transcripcionales pertenecientes al grupo de proteínas con dominio hélice lazo hélice básico (bHLH, *basic hélix loop helix*), el cual es responsable de su dimerización y unión al DNA (Figura 4). Entre sus miembros se incluyen proteínas como Mash (1 y 2), Neurogenina (1/2/3), NeuroD (1/2/4/6) y Math (1/3/5/6), todas ellas asociadas a diferentes etapas de la neurogénesis ^{62,63}.

Para ejercer su función requieren su dimerización con las proteínas E12 o E47 (isoformas de splicing del gen *E2A*) ^{64,65}, ya que solo de esta forma logran unirse al motivo de DNA conocido como caja E, cuya secuencia consenso se ha determinado como CANNTG ⁶⁶ (Figura 4). Aunque todos estos transactivadores se unen a la caja E, las diferencias en los nucleótidos centrales de este motivo determinan la identidad del factor proneural que será unido ^{67–69}.

Los genes que codifican a estos factores de transcripción se encuentran altamente conservados a través de la evolución, habiéndose descubierto inicialmente en *Drosophila*, y hoy se sabe que dirigen varias etapas de la neurogénesis, desde la especificación de células precursoras hasta la adquisición de características pan-neuronales ⁶³ y el establecimiento de subtipos neuronales en el sistema nervioso central ⁶². Como muestra de esta función se ha demostrado que Mash1 y NeuroD1 son factores imprescindibles para la reprogramación de fibroblastos en células neuronales ^{69,70}.

Los factores proneurales tienen patrones de expresión muy específicos durante el desarrollo del sistema nervioso central. Por ejemplo, los factores Ngn2 y NeuroD, que determinan el establecimiento de neuronas glutamatérgicas, son expresados fundamentalmente en la parte dorsal del telencéfalo; mientras que Mash1, encargado de especificar neuronas GABAérgicas, se expresa en la parte ventral del telencéfalo durante el desarrollo⁷¹. Como ya ha sido mencionado en esta tesis, recientemente nuestro grupo demostró que Gas1 se expresa fuertemente en progenitores neurales del telencéfalo dorsal, sugiriendo que forma parte de las señales para el establecimiento de poblaciones neuronales en esta región ³⁶. Sin embargo, hasta ahora no se había estudiado una relación entre *Gas1* y los factores proneurales presentes en este dominio (Ngn2, NeuroD1 y NeuroD2).

Interesantemente, los ratones mutantes *Gas1-/-* y *NeuroD1-/-* comparten un fenotipo muy similar: desarrollan cerebelos pequeños a causa de una proliferación disminuida de las células precursoras granulares del cerebelo, las cuales además muestran un aumento de la apoptosis ^{6,35,72,73}. De manera notable, ninguno de estos modelos muestra alteraciones en otras poblaciones celulares dentro del propio cerebelo. Por otro lado, en los ratones *NeuroD1-*

/- las células precursoras granulares del giro dentado del hipocampo también disminuyen dramáticamente ⁷², y aunque esta estructura en particular no ha sido analizada todavía en el ratón *Gas1-/-* nosotros hemos demostrado que Gas1 está fuertemente expresado por éstas células progenitoras durante toda su morfogénesis ^{36,37}. Inmediatamente, estos datos nos llevaron a considerar la posibilidad de que *Gas1* sea un blanco directo del factor de transcripción NeuroD1 durante la inducción del programa neuronal, y que esta relación regulatoria haya pasado previamente desapercibida debido a un fenómeno de redundancia que existe entre Gas1 y los otros co-receptores de Shh ^{5,6}, por un lado; y la redundancia de NeuroD1 con otros miembros de la familia NeuroD, como NeuroD2 ^{72,74} y NeuroD6 ^{72,75,76}. Adicionalmente, se ha reportado que en células troncales embrionarias de ratón (mESC), inducidas a expresar de manera ectópica el factor *NeuroD1*, hay una importante elevación del mRNA de *Gas1* ⁷⁷.

2. Planteamiento del problema

Gas1 interviene en el desarrollo de sistema nervioso central permitiendo el establecimiento y proliferación de células progenitoras del tubo neural, neocorteza, hipocampo y cerebelo. Sin embargo, aún es poco lo que conocemos sobre los mecanismos que dirigen su expresión en estas poblaciones celulares. Aunque se han propuesto varios factores de transcripción, los cuales pueden regular la expresión de *Gas1*, muy pocos estudios a la fecha han estudiado esto en células progenitoras neurales, lo cual es necesario para comprender más a fondo las funciones de Gas1 en la neurogénesis. Por otro lado, el patrón de expresión de Gas1 durante el desarrollo del telencéfalo es muy similar al de los factores de transcripción Neurogenina y NeuroD. Aunado a esto, los ratones mutantes *Gas1-/- y NeuroD1-/-* comparten un fenotipo similar. Estos datos sugieren una relación funcional entre ambas moléculas previamente insospechada. A través de un análisis de la secuencia de *Gas1* nosotros pretendemos demostrar que *Gas1* es un blanco directo de NeuroD1.

3. Hipótesis

Gas1 es un blanco directo de regulación por el factor de transcripción NeuroD1.

4. Objetivo General

Demostrar que Gas1 es un blanco directo del factor de transcripción NeuroD1

5. Objetivos específicos

- Analizar mediante bioinformática el promotor de *Gas1*, en búsqueda de sitios de unión a factores de transcripción proneurales (cajas E) que regulen la expresión de *Gas1*
- 2. Analizar por inmunofluorescencia el patrón de expresión de Gas1 y NeuroD1 durante el desarrollo del sistema nervioso central
- 3. Clonar un fragmento adecuado del promotor *Gas1* e insertarlo en un sistema de expresión con gen reportero para su estudio.
- 4. Evaluar la actividad del promotor Gas1 en presencia de NeuroD1 en un modelo in vitro
- 5. Mediante deleciones y mutagénesis de los sitios de unión encontrados demostrar que *Gas1* es regulado por NeuroD1
- 6. Mediante inmunoprecipitación de la cromatina (ChIP) demostrar la unión de NeuroD1 al promotor de *Gas1*

6. Materiales y Métodos

A. Bioinformática

Las secuencias genómicas de diferentes ortólogos de *Gas1* se obtuvieron de la base de datos RSAT (Regulatory Sequence Analysis Tools, rsat.ulb.ac.be/). Las secuencias se alinearon en busca de sitios conservados con el programa mVISTA (genome.lbl.gov/vista/index.shtml) y los sitios de unión a factores de transcripción se determinaron con MatInspector (genomatix.de/). Las gráficas logo se ensamblaron en WebLogo (weblogo.berkeley.edu/) utilizando cajas E análogas detectadas en promotores *Gas1* de ocho especies diferentes.

B. Inmunofluorescencia

El uso de animales siguió la *Guía para el cuidado y uso de animales de laboratorio* de los Institutos Nacionales de Salud de los Estados Unidos, la Regulación mexicana de cuidado y mantenimiento de animales (NOM-062-ZOO-1999, 2001) y las regulaciones internas del CINVESTAV. Brevemente, ratones hembra preñadas de 14.5 de gestación de la cepa CD1 fueron anestesiadas con pentobarbital y posteriormente sometidas a perfusión cardíaca con solución salina al 0.9 % seguida de paraformaldehído al 4 % (PFA) en solución amortiguada de fosfatos (PBS) 0.1 M y pH 7.4. Los embriones fueron disecados del útero para extraer los cerebros. En el caso de los ratones neonatos PO éstos fueron anestesiados sobre hielo y posteriormente decapitados. Los cerebros E14.5 y PO fueron post-fijados o fijados, respectivamente, en PFA 4 % a 4°C. Los cortes de 30 µm fueron realizados con un vibratomo (Thermo Scientific, HM650V).

La expresión de NeuroD1 y Gas1 se determinó por inmunofluorescencia. Se incubaron secciones de 30 µm a temperatura ambiente durante 30 min en PBS 1x/Triton X-100 0,2%. A continuación, los cortes se incubaron durante 1 hora en PBS 1x/BSA 1%, luego con los anticuerpos NeuroD1 (1: 200, Abcam) y Gas1 (1: 100, sistemas de I + D) toda la noche. El anticuerpo secundario (FITC anti- Conejo IgG y Alexa Fluor 647 anti-cabra) se incubo durante 2 horas. Las secciones se analizaron con un microscopio confocal (Leica TCS-SPE) equipado con

objetivo de inmersión. Las imágenes fueron obtenidas con el software LEICA LAS AF lite (Leica Microsystems, Wetzlar, Alemania).

C. Cultivo celular y transfección

Las líneas celulares NIH/3T3 y HEK-293FT (ATCC) fueron cultivadas en DMEM HG suplementado con 10% SFB, L-glutamina 2 mM y penicilina/estreptomicina (GIBCO). Para las células N1E-115 se utilizó DMEM sin piruvato, suplementado también con 10% SFB, L-glutamina 2 mM y penicilina/estreptomicina (GIBCO). La transfección de las células cultivadas se realizó con Lipofectamina 3000 (Life Technologies).

D. Extracción de RNA, PCR semicuantitativo y PCR en tiempo real

El RNA total de células o tejidos se extrajo con el método del Trizol y 2 µg de muestra fueron tratados con DNAsa I (New England Biolabs) antes de realizar la síntesis del cDNA con la transcriptasa reversa MMLV (Invitrogen). Las PCRs fueron realizados para *Gas1, Ngn2, NeuroD1, NeuroD2, E2A* y *actina* β con los oligonucleótidos indicados en el Anexo 1. Los productos fueron obtenidos con 25-30 ciclos de reacción y temperaturas de alineamiento de 50-65°C. EL PCR de tiempo real se realizó con la mezcla de KAPA (KAPA, KR0389) en un termociclador Eco (Ilumina). Los valores Cq obtenidos de los experimentos de ChIP se analizaron con el método del porcentaje del *input*.

E. Western blot

Las células se lisaron con buffer RIPA suplementado con inhibidores de proteasas (Roche). Las proteínas se almacenaron a -20°C hasta su uso. Brevemente, 20 μg de muestra se resolvieron en geles SDS-PAGE (Bio-Rad) y las proteínas se transfirieron a membranas de nitrocelulosa (Bio-Rad) para ser incubadas con anticuerpos contra Gas1 de ratón (1: 500, R & D AF2644) NeuroD1 (1: 200, Abcam ab16508), GAS1 humano (1: 200, ProScience, Poway, CA) y anti-β-actina (1: 5000, Garcia-Tovar casero y otros, 2001). Se usaron anticuerpos secundarios conjugados con HRP (1: 5000, Jackson ImmunoResearch) para visualizar proteínas mediante quimioluminiscencia con reactivos Western Lighting Plus ECL (Perkin-Elmer Inc).

F. Construcción de plásmidos

El promotor *Gas1* de ratón se clonó por PCR a partir de la clona BAC RP23-288F17 de Invitrogen (Figura 5A). Un par de oligonucleótidos fueron utilizados (Anexo 1) para amplificar un fragmento de 3 kb, el cual fue posteriormente insertado en un vector PGL3 (Promega) que codifica par la enzima reportera luciferasa. El constructo llamado p3.0 fue validado por restricción y secuenciación automática (Figura 5B y Anexo 2). Las versiones más pequeñas del promotor se generaron por restricción. La secuencia codificante del factor de transcripción Neurogenina 2 fue subclonada a partir del plásmido Ngn2 (Addgene #34999), restringiendo con *Bam*HI y generando extremos romos con el fragmento de Klenow. Una segunda restricción hecha con *Sal*I generó un fragmento que fue insertado en el vector pCMV-EGFP para crear el plásmido pCMV-EGFPiresNgn2. Los plásmidos que contiene los cDNAs que codifican para NeuroD1 y NeuroD2 (Addgene #45026 y #45025, respectivamente) fueron adquiridos en Addgene.

G. Mutagénesis sitio dirigida

Se utilizó un oligonucleótido mutagénico por cada mutación generada en el promotor *Gas1*. La secuencia de cada caja E analizada en esta tesis fue cambiada por un sitio de restricción, como se indica en las figuras correspondientes (Figuras 6 y 7). Para cada caso se sintetizó un megaprimer utilizando los oligonucleótidos correspondientes del Anexo 1 y DNA polimerasa de alta fidelidad (Platinum Taq DNA pol, Invitrogen). Cada megaprimer fue después utilizado en una segunda reacción de PCR con el oligonucleótido reverso correspondiente (Anexo 1). El producto generado en cada reacción, con la mutación ya fijada en él, fue luego insertado en el vector p3.0 que contenía el promotor *Gas1*. Cada construcción fue entonces validada por restricción y secuenciación.

H. Ensayo de luciferasa

Las células N1E-115 y NIH/3T3 fueron transfectadas con los plásmidos correspondientes a cada experimento utilizando Lipofectamina 3000. Un plásmido con *Renilla* luciferasa (pRL-CMV, Promega) fue utilizado como control interno de transfección en cada caso. Después de 24 h de transfección las celulas fueron lisadas y analizadas para su actividad de luciferasa de luciérnaga (p3.0) y Renilla luciferasa (control interno) con el kit de ensayo para reporteros Dual Glo (Promega). Las medidas relativas de luminiscencia fueron obtenidas en un luminometro (Turner BioSystems, Madison, WI). Los datos fueron normalizados con el control interno de transfección ⁷⁸. Todos los experimentos fueron realizados en días diferentes.

I. Inmunoprecipitación de la Cromatina (ChIP)

Células N1E-115 se transfectaron con el plásmido para NeuroD1. Después de 24 h se incubaron con formaldehído fresco al 1% durante 10 min a temperatura ambiente, se detuvo la reacción con glicina 125 mM y se lavaron las células dos veces con PBS frio. Las muestras se cosecharon y centrifugaron a 700 x g por 5 min. Las células fueron resuspendidas en buffer SDS con inhibidores de proteasas (de tal manera que hubiese 10⁷ equivalentes celulares/ml) y se sonicaron con un equipo Sonics Vibra Cell. Las muestras con fragmentos de 200 a 1000 bp (Figura 8) se incubaron toda la noche con anti-NeuroD1 (Abcam, ab16508) a 4° con agitación constante, se precipitaron con perlas de proteína G-agarosa y se purificaron por columnas de sílica (EZ-ChIP Millipore 17-371). Se recuperó el DNA y se procesó para PCR en tiempo real con los oligonucleotidos señalados en el Anexo 1.

J. Análisis estadístico

Los análisis estadísticos se realizaron en el software Sigma Plot 12 con al menos cuatro experimentos independientes realizados en días diferentes. El test de Shapiro-Wilk se usó para evaluar la normalidad de los datos. Las pruebas estadísticas y post hoc se indican en el pie de cada figura. Las figuras se generaron con Excel y GraphPad Prism 5.

7. Resultados

A. Regiones conservadas en el promotor Gas1 lo relacionan con factores proneurales

La presencia de secuencias conservadas en las regiones no codificantes del DNA (i.e. intrones y regiones intergénicas) es un indicio de la presencia de elementos reguladores de la expresión génica ^{79,80}. Con esto en mente, alineamos las secuencias promotoras de los genes *Gas1* de humano, rata y ratón. El alineamiento con el software mVISTA demostró la presencia de al menos dos regiones altamente conservadas entre las especies, dentro de un segmento de tres kilobases de promotor (Figura 9A).

Este resultado nos llevó a realizar un análisis más profundo de las regiones conservadas. Utilizando el programa MatInspector logramos determinar la presencia de múltiples sitios de unión a factores de transcripción, interesándonos por aquellos en los que se ha demostrado un papel en la neurogénesis. De este modo descubrimos que entre los sitios predichos se encontraban tres cajas E asociadas a factores proneurales como Neurogenina y NeuroD (CAGATG y CATCTG, a -1947 y -1704 respectivamente, desde el sitio +1 del gen de ratón) y Mash1 (CAGATG a -468). Para determinar el grado de conservación de estos elementos en particular, analizamos las secuencias promotoras de *Gas1* de las siguientes especies: chimpancé, conejo, vaca, perro, pollo y sapo. A través de este análisis, se pudo encontrar que existe una caja E análoga en las secuencias correspondientes a estas especies (Figura 9B). Este resultado junto con la evidencia del patrón de expresión dorsal de Gas1 ³⁶ (Figura 10A) y la similitud en el fenotipo de los ratones mutantes *Gas1-/-* y *NeuroD1-/-* que previamente se describió en esta tesis ^{6,35,72,73} nos llevó a realizar un inmunomarcaje de las dos proteínas.

A través de inmunofluorescencia descubrimos que Gas1 y NeuroD1 colocalizan en células de la neocorteza, el giro dentado del hipocampo y la capa de precursores granulares del cerebelo en ratones neonatos P0 (Figura 10C). Este dato es consistente con el patrón de expresión previamente reportado de estas proteínas y las etapas del desarrollo en las cuales se detectan ^{36,81,82}. De hecho, los genes muestran una cinética de expresión similar, pues sus

transcritos se encuentran presentes en etapas similares del desarrollo cerebral cuando las evaluamos por RT-PCR (Figura 10B).

B. NeuroD1 activa la expresión endógena de Gas1

Aunque tratamos de implementar un modelo de neurogénesis *in vitro*, desafortunadamente no logramos encontrar un modelo que replicara en cultivo el patrón de expresión de Gas1 reportado *in vivo*, i. e. a nivel de células progenitoras durante el proceso de neurogénesis. Y es que al ser Gas1 una molécula cuya expresión se regula por la presencia de suero en cultivo es difícil regular *in vitro* su expresión ^{7,9,38} (como en el cultivo de células granulares del cerebelo y de células SHSY-5Y). Por otro lado, muchas líneas celulares de origen tumoral como las líneas de neuroblastoma muestran un nivel elevado de c-Myc, el cual muchas veces es parte del fenómeno que llevo a la transformación de las células. Las células de neuroblastoma N1E-115, por ejemplo, tienen hasta cuatro copias de *c-Myc* en su genoma, ocasionando la desregulación de su expresión ^{83,84}. Como señalamos previamente en esta tesis c-Myc es el principal represor a nivel transcripcional de *Gas1* ^{46,50–52}.

Por este motivo recurrimos a líneas celulares que se sabe pueden expresar endógenamente *Gas1* sin los efectos negativos de c-Myc. En nuestro caso escogimos una línea celular murina (células NIH/3T3) y una línea celular humana (HEK-293FT) para este experimento. Como primer paso se realizó un RT-PCR para determinar la expresión del gen *E2A* que codifica para las proteínas E12/47 las cuales son requeridas para formar heterodímeros con los factores proneurales para su unión a la caja E (Figura 11A y B)^{62,64}. Una vez hecho esto las células fueron transfectadas con un plásmido de expresión para *NeuroD1*. Doce horas después de la transfección de NIH/3T3 y 24 h después de la transfección de HEK-293FT se observó la inducción de Gas1 en ambas líneas celulares, en comparación a las mismas líneas celulares transfectadas con vector vacío determinado por western blot(Figura 11A y B). Estos datos demuestran que NeuroD1 puede inducir la expresión endógena de Gas1.

C. Clonación del promotor Gas1

Para investigar si *Gas1* es efectivamente un blanco de NeuroD1 decidimos clonar un fragmento del promotor *Gas1* de ratón, correspondiente a la región analizada por bioinformática. Mediante PCR y oligonucleótidos específicos clonamos 3 kb del promotor *Gas1* de ratón a partir de la clona BAC RP23-288F17 (Figura 12A). Este fragmento fue insertado en un vector de expresión rio arriba de un gen reportero para luciferasa. La validación de esta construcción se realizó mediante restricción y secuenciación automática del plásmido (Anexo 2), el cual será nombrado p3.0 en las siguientes secciones de esta tesis.

Para probar la funcionalidad de este constructo utilizamos células de ratón NIH/3T3. Estas células tienen la propiedad de expresar *Gas1* de manera endógena cuando son cultivadas en condiciones de bajo suero o confluencia celular ^{9,10} (Figura 12B y C). La actividad del promotor fue evaluada a través de la enzima reportera luciferasa y los resultados reportados como el cambio relativo respecto a la condición control. La transfección de esta línea celular con p3.0 indicó que el promotor se clonó correctamente y con suficientes elementos regulatorios, pues se activó justamente en bajo suero y confluencia celular siguiendo un patrón de expresión dependiente del tiempo de acuerdo a reportes previos ^{10,48,85} y observaciones propias de nuestro grupo ¹⁴ (Figura 12D). Así los siguientes experimentos fueron realizados con p3.0.

D. El factor NeuroD1 activa transcripcionalmente a Gas1

Enseguida probamos si *Gas1* es efectivamente un blanco transcripcional de NeuroD1, para ello utilizamos la línea de neuroblastoma de ratón N1E-115. Como primer paso evaluamos mediante RT-PCR si esta línea celular expresa el gen *E2A* que codifica para la proteína E12/E47 que dimeriza con los factores proneurales para unirse a la caja E ^{64,65} (Figura 13A y B). Una vez confirmada su expresión proseguimos con la co-transfección de p3.0 y *NeuroD1* (Figura 13C y D). Veinticuatro horas después evaluamos la actividad del promotor por el ensayo luciferasa. Los factores Ngn2 y NeuroD2 también fueron incluidos en este experimento debido a que comparten la misma afinidad por la caja E que NeuroD1 ⁶⁷. En presencia de Ngn2 el constructo p3.0 mostró una débil respuesta, sugiriendo que este factor no es un inductor importante de *Gas1* y por ello no fue incluido en los siguientes experimentos (Figura 13D). En contraste, en

presencia de NeuroD1 el promotor mostró una fuerte inducción respecto al grupo control cotransfectado con EGFP (Figura 13D). La presencia de NeuroD2 también logro inducir al promotor con una intensidad similar a la de NeuroD1, consistente con el comportamiento redundante que se ha observado entre estos miembros de la familia NeuroD durante el desarrollo de la neocorteza, el giro dentado del hipocampo y los precursores de células granulares del cerebelo ^{72–76} (Figura 13D). El hecho de que *Gas1* responda con una actividad similar a ambos miembros de la familia NeuroD, sugiere que estos factores proneurales pueden también mostrar redundancia sobre la activación de *Gas1*.

E. Elementos distales en el promotor *Gas1* median su respuesta a NeuroD1

Para saber que regiones del promotor son responsables de la respuesta a NeuroD1 eliminamos diferentes regiones de su secuencia mediante restricción (Figura 13E y F). La eliminación de 1 kb en el extremo 5' (constructo 2.0) abolió la respuesta del promotor a NeuroD1 y NeuroD2. El mismo fenómeno se encontró con p1.0 al que se le eliminaron 2 kb de promotor (Figura 13E y F). Estos datos indican que la región más distal contiene los elementos de respuesta a proteínas NeuroD. Inesperadamente, una deleción interna de la secuencia del promotor afectó su respuesta a proteínas NeuroD a pesar de que no se eliminaron los elementos distales que potencialmente median la respuesta de *Gas1* (Figura 13E y F). En su caso, la secuencia eliminada contiene un repetido GAGA de 172 bp de largo. Interesantemente, este elemento se ha asociado con una conformación especial de la cromatina que favorece la transcripción en células animales ⁸⁶ (Discusión).

Para ahondar estos resultados se realizó la mutación de las cajas E distales. Cada caja fue cambiada por un sitio de restricción el cual nos sirvió para la validación de los mutantes además de su secuenciación automática (Figura 14A y B). Posteriormente la actividad de cada mutante fue comparada con la del promotor silvestre (wt, wild type). La mutación de la caja E más distal (a -1947) disminuyó su actividad en respuesta a NeuroD1 y NeuroD2 en un 50% (Figura 14C). Un efecto similar se observó cuando la segunda caja E (a -1704) fue eliminada, sin embargo, en esta ocasión la disminución en la respuesta a NeuroD1 resulto más afectada, > 83%, sugiriendo que este es el principal motivo usado por este factor proneural (Figura 14C).

Finalmente, estos datos fueron confirmados por inmunoprecipitación de la cromatina (ChIP) en células N1E-115 transfectadas con *NeuroD1*. Utilizando un anticuerpo dirigido contra NeuroD1 y oligonucleótidos específicos contra el promotor *Gas1* detectamos unión de NeuroD1 a las dos cajas E distales determinadas por bioinformática (Figura 14D y E). Aunque detectamos unión de NeuroD1 en ambas cajas E la señal más intensa de la caja -1704 sugiere que ésta es el principal sitio de unión de NeuroD1 en el promotor de *Gas1*, consistente con los resultados de la mutación de este sitio (Figuras 14 D y E). En resumen, los datos indican que *Gas1* es un blanco directo de NeuroD1 durante la inducción del programa neurogénico promovido por este factor proneural.

8. Discusión

Aunque inicialmente Gas1 fue descubierto como un supresor tumoral capaz de inhibir el crecimiento de células transformadas ^{3,4}, posteriormente se demostró también su papel como co-receptor de Shh para favorecer la proliferación celular durante el desarrollo del sistema nervioso ³³.

Ambas funciones de Gas1 están ligadas a vías de transducción diferentes. Por un lado al interferir con la vía de la neurotrofina GDNF (la vía PI3K/Akt) GAS1 inhibe el crecimiento y la viabilidad celular ^{3,4,7,16}. Por el otro, al formar parte de la vía de Shh, Gas1 promueve la proliferación celular ^{6,34,87}. Al participar en dos sistemas de transducción de señales diferentes es posible que los niveles de expresión de Gas1 determinen el tipo de respuesta que las células muestran. Ciertamente, la sobreexpresión de Gas1 es interpretada por algunas células como una señal de arresto del crecimiento ^{1,9,10} y en ocasiones muerte celular ^{3,87,88}. En contraste, la presencia de Gas1 en células progenitoras de la corteza cerebral, del giro dentado del hipocampo ³⁶, del tubo neural ^{5,34}, de la capa granular del cerebelo ⁶, de la nefrona ⁴⁰ y del folículo piloso ⁸⁹ (en niveles más "fisiológicos") está asociada a la proliferación de dichas poblaciones celulares. Comprobar este fenómeno, sin embargo, requerirá de un abordaje experimental con un sistema que, primero, cuente con las dos vías de señalización, y segundo, cuyos niveles de expresión de Gas1 puedan ser regulados. Asimismo, a este escenario habría

que agregar si las funciones de Gas1 dependen de su forma anclada a la membrana o cuando se la encuentra soluble ^{13,14}.

Sea cual fuere el futuro de estas investigaciones lo cierto es que Gas1 ha sobresalido como una molécula esencial para la fisiología de las células progenitoras neuronales. Su regulación en este tipo de células precursoras fue explorada en esta tesis. Los datos acumulados al día de hoy indican que Gas1 es importante para la generación de neuronas justamente porque se encarga del mantenimiento de las poblaciones de células progenitoras (i.e. de su amplificación y supervivencia). Esta idea es consistente con la presencia de Gas1 en células progenitoras de tejidos no neuronales como del folículo piloso ⁸⁹ y precursores de la nefrona ⁴⁰ donde también cumple un papel a favor de la proliferación.

Utilizando genómica comparativa encontramos un segmento de secuencia conservada en el promotor de *Gas1* (Figura 9A). La conservación es uno de los primeros criterios para deducir la presencia de elementos de regulación ^{79,80,90,91}. En el alineamiento comparamos las secuencias de humano, rata y ratón ya que estas especies son las que se han utilizado con mayor frecuencia en la investigación de *Gas1*. Sin embargo, al contar con los genomas secuenciados de muchos organismos no necesariamente utilizados como modelos de investigación decidimos analizar sus correspondientes secuencias de *Gas1*. Este enfoque evidenció la presencia de cajas E asociadas a los factores de transcripción Ngn, NeuroD y Mash1 (Figura 9B), los cuales participan activamente en la neurogenesis ⁶². De forma interesante todos estos genes fueron expresados en etapas similares del desarrollo del cerebro (Figura 10B).

Las cajas E más distales halladas en el promotor se relacionan con las proteínas Neurogenina y NeuroDs, mientras que la caja más proximal se relaciona con Mash1. Debido a que previamente demostramos que Gas1 se expresa fundamentalmente en el telencéfalo dorsal durante el desarrollo ³⁶ (Figura 10A), justamente el domino de expresión de Ngn2, NeuroD1 y NeuroD2 ^{71,62}, decidimos estudiar funcionalidad de las cajas E distales. Por su parte, el factor de transcripción Mash1 se expresa principalmente en el telencéfalo ventral ⁷¹, una

región en la cual nosotros no encontramos expresión de Gas1³⁶ y por ello no se incluyó en el estudio.

Buscando en la literatura algún antecedente que pudiera relacionar a *Gas1* con estos factores proneurales encontramos que de manera interesante los ratones *Gas1-/-* y *NeuroD1-/-* comparten una importante característica: nacen con cerebelos pequeños a causa de una disminución en la población de células progenitoras granulares ^{35,72,73}. Consistente con esto, nuestros experimentos de inmunomarcaje demostraron que existen poblaciones de células NeuroD1+ que expresan también Gas1 en neocorteza, giro dentado y precursores granulares de cerebelo (Figura 10B). Esta es la primera vez que NeuroD1 y Gas1 son encontrados juntos en la neocorteza indicando que algunas poblaciones de NeuroD1+ dependen de Gas1 para su mantenimiento ^{36,92}. De igual manera, la co-localizacion de ambas moléculas en el giro dentado sugiere un rol similar, además este dato es congruente con el patrón de expresión previamente reportado de estas moléculas. Se ha visto que la ausencia de NeuroD1 en el ratón mutante *NeuroD1-/-* ocasiona una dramática reducción de las células precursoras del giro dentado ⁷², y aunque esta estructura no ha sido analizado en el ratón Gas1-/- todavía, aquí demostramos que Gas1 está presente durante toda su morfogénesis ³⁶ en etapas que son consistentes con el patrón de expresión de NeuroD1 ⁸¹.

La co-expresion de Gas1 y NeuroD1 en las células precursoras granulares del cerebelo (Figura 10C) es consistente con el fenotipo presentado por los ratones *Gas1-/-* y *NeuroD1-/-* donde existe una disminución en la proliferación de esta población celular al mismo tiempo que un aumento de la apoptosis ^{35,72,73}. Aunque se ha observado que los ratones *NeuroD1-/-* tienen un fenotipo antero-posterior que el modelo Gas1-/- no tiene, propiamente la presencia de un 5% de supervivencia de neuronas granulares en el lóbulo anterior, lo cierto es que este fenómeno parece el resultado de mecanismos de supervivencia aun no descritos en esta región ⁷³. En el caso del ratón *Gas1-/-* la disminución en el número de células granulares ocurre de manera más homogénea, aunque estos animales no se han analizado por largos periodos como los *NeuroD1-/-*. Es necesario considerar, sin embargo, que NeuroD1 no es el único factor que puede estar regulando a *Gas1*. Atoh1, por ejemplo, es otro factor proneural que dirige la proliferación de precursores granulares del cerebelo ^{93,94}. De manera interesante los genes

blanco de Atoh1 determinados en estas células precursoras incluyen *Gas1*⁶¹. Asimismo, es notable que el mutante *Atoh1-/-* muestre una disminución en el número de células granulares de cerebelo pero sin aumento de la apoptosis ^{61,94}. Sin embargo, *Atoh1* solo es expresado en cerebelo pero no en telencéfalo dorsal como si lo hace *Gas1*⁹⁴. Estos datos sugieren que la expresión de *Gas1* se logra a través de varios mecanismos en diferentes poblaciones de células progenitoras del cerebelo (y del cerebro) con el fin de asegurar su proliferación y supervivencia en varias etapas de la neurogénesis. Interesantemente, las células pilosas del oído interno de ratones neonatos parecen co-expresar *Atoh1* y *Gas1*⁴⁵.

Para demostrar que los sitios predichos efectivamente median la regulación de *Gas1*, clonamos con éxito un fragmento con elementos suficientes del promotor *Gas1* de ratón. Aunque los sistemas de expresión heterólogos en los que genes humanos son trasferidos a células de ratón, o viceversa, son válidos y se han reportado en multitud de trabajos, nosotros decidimos hacer homogéneos nuestros experimentos en la medida de lo posible utilizando el ratón como modelo de estudio (salvo la transfección de células humanas HEK-293FT con NeuroD1 de ratón). La conservación evolutiva de genes y proteínas justifica muchas veces esta práctica y permite la extrapolación de los datos, pero no necesariamente es válido en todos los escenarios. Datos previos de nuestro grupo indican, por ejemplo, que el promotor *GAS1* de humano no muestra la misma actividad cuando se transfiere a células de ratón.

Nuestros datos de transfección en células HEK-293FT y NIH/3T3 con NeuroD1 apoyan la capacidad de este factor para inducir la expresión de *Gas1* no solo en células murinas sino también humanas (Figura 11). Para probar si las cajas E distales halladas en el promotor son responsables de esta respuesta a NeuroD1 realizamos diferentes ensayos de co-transfección. La co-transfección de p3.0 con *Ngn2, NeuroD1* y *NeuroD2* demostró que el promotor responde fuertemente a estos dos últimos factores de transcripción (Figura 13). Quizá la similitud de la respuesta observada entre NeuroD1 y NeuroD2 se deba a la redundancia de funciones que existe entre estas proteínas de la familia NeuroD ^{72,73,75,76}. Por otro lado, la poca actividad de p3.0 en presencia de Ngn2 (comparada a la mostrada en presencia de los factores NeuroD) sugiere que Ngn2 no es un fuerte inductor de *Gas1* por lo que fue descartado del estudio.

La deleción del extremo 5[°] en los constructos p2.0 y p1.0 es consistente con la idea de que elementos distales en la secuencia son responsables de la regulación por NeuroD (Figura 13E y F). Por su parte, la deleción interna en el constructo pAE mostró poca actividad a pesar de que las cajas E distales en el promotor se encontraban intactas. Sin embargo, es interesante que la región eliminada contiene un repetido GAGA de 172 bp de largo. Este motivo se ha asociado en D. melanogaster a una conformación de la cromatina carente de histonas la cual es esencial para favorecer la expresión de genes homeóticos y Hsp70^{86,95}. La misma función se le ha asociado en genes de mamífero, donde los repetidos GAGA se presentan en las regiones intergénicas de los genes Hox ^{96,97}. Los repetidos GAGA se unen al factor de unión a GAGA (GAF) cuya función parece estar conservada en la evolución ⁹⁶. Si el promotor *Gas1* utiliza un mecanismo de regulación transcripcional dependiente del repetido GAGA tendrá que ser demostrado en experimentos futuros, pero la evidencia presentada en esta investigación es consistente con esta hipótesis. Vasanthi et al. (2010) ⁹⁶ describieron una secuencia de repetidos GAGA en el complejo HoxD del genoma del ratón, la cual cumple la función de separar los dominios de expresión espacial y temporal de *Evx2* y *Hoxd13*. Cuando transfirieron esta secuencia a células de Drosophila observaron que se mantenía esta función, es decir, seguía estableciendo límites de cromatina en un mecanismo también dependiente del factor GAGA ⁹⁶. Este enfogue resulta interesante y podría ser aplicado con la secuencia de repetidos GAGA que hayamos en el promotor Gas1, para evaluar su papel como mediadora de la activación de la transcripción ⁹⁵. Es importante resaltar que tal repetido se encontró únicamente en el promotor *Gas1* de ratón, ninguna de las otras especies analizadas en este trabajo mostró la presencia de un motivo semejante (datos no mostrados), así que estaríamos frente a un mecanismo regulatorio de *Gas1* específico de especie.

Las mutaciones y el análisis ChIP confirmaron que las dos cajas E distales (E1 y E2) se unen a NeuroD1 (Figura 14). Aunque es evidente que ambas cajas pueden mediar la activación del promotor frente a NeuroD1 como a NeuroD2 nosotros creemos que este fenómeno puede deberse a un caso de redundancia entre estos factores proneurales. Para empezar, los dos factores de trascripción comparten una afinidad similar por la misma caja ^{67,68}. Si este fenómeno de redundancia se mantiene en la regulación de *Gas1* tendrá que analizarse

posteriormente. La literatura por lo pronto indica que los ratones *NeuroD2-/-* también muestran alteraciones cerebelares similares a los *NeuroD1-/-*⁷⁴.

De esta manera, aunque NeuroD1 puede unirse a las dos cajas E nuestros experimentos de mutagénesis sugieren que existe una preferencia significativa por la caja E2 (a -1704) ya que la disminución en la respuesta del promotor *Gas1* a NeuroD1 se vio más afectada cuando esta caja en particular fue mutada. Estos datos son consistentes con los resultados del análisis ChIP. El par de oligonucleótidos nombrados como PCR4 originaron una señal ligeramente más intensa de acuerdo al ChIP lo cual sugiere, considerando que el amplicón correspondiente incluye la caja E2, que este segundo motivo es el preferido por NeuroD1 para inducir la expresión de *Gas1*.

Con base en estos experimentos proponemos que *Gas1* es uno de los múltiples blancos que utiliza NeuroD1 durante la inducción del programa neurogénico ⁷⁷. Utilizando las cajas E distales, NeuroD1 induce la expresión de *Gas1* posiblemente como una ruta para propiciar la amplificación de las poblaciones de células progenitoras comprometidas a un destino neuronal. Como hemos mencionado previamente, Gas1 se ajusta a esta función debido a su papel como co-receptor de Shh ^{5,6}.

Sin embargo, no podemos descartar que esta relación entre *Gas1* y NeuroD1 pueda tratarse de un proceso específico del tipo celular. En el desarrollo de la retina, por ejemplo, *Gas1* se expresa en el epitelio pigmentado ²⁴ mientras que *NeuroD1* se expresa en el epitelio neural ^{98,99}. En este caso Gas1 funciona como supresor del ciclo celular de las células pigmentadas. Interesantemente, el epitelio pigmentado puede transdiferenciarse a epitelio neural bajo múltiples estímulos ^{24,100} (se cree que es una fuente de células troncales retinianas) pero aún no sabemos si durante este proceso de transdifereciación Gas1 y NeuroD1 llegan a interactuar de forma regulatoria.

9. Conclusiones y perspectivas

Proponemos que *Gas1* es un blanco directo de NeuroD1 durante la inducción del programa neurogénico inducido por este factor de transcripción. Gas1 proporcionaría una vía para mediar la amplificación de progenitores neurales a través de Shh. No obstante, esta relación regulatoria entre *Gas1* y NeuroD1 debe ser confirmada a través de métodos genéticos más completos como la generación de un modelo doble mutante *Gas1-/-;NeuroD1-/-*, cuyo análisis debe tomar en cuenta los fenómenos de redundancia de Gas1 con las proteínas Boc y Cdo y de NeuroD1 con otras proteínas de la familia NeuroD. Asimismo, estos datos pueden ser complementados con ChIP-sequencing de células progenitoras neurales NeuroD1 positivas aisladas de cerebro embrionario.

10. Referencias

- 1. Evdokiou, A. & Cowled, P. A. Tumor-suppressive activity of the growth arrest-specific gene GAS1 in human tumor cell lines. *Int. J. Cancer* **75**, 568–577 (1998).
- 2. Sacilotto, N. *et al.* Growth arrest specific 1 (Gas1) gene overexpression in liver reduces the in vivo progression of murine hepatocellular carcinoma and partially restores gene expression levels. *PLoS One* **10**, 1–18 (2015).
- López-Ornelas, A., Vergara, P. & Segovia, J. Neural stem cells producing an inducible and soluble form of Gas1 target and inhibit intracranial glioma growth. *Cytotherapy* 16, 1011–1023 (2014).
- 4. Jiménez, A. *et al.* A soluble form of GAS1 inhibits tumor growth and angiogenesis in a triple negative breast cancer model. *Exp. Cell Res.* **327**, 307–317 (2014).
- 5. Allen, B. L. *et al.* Overlapping roles and collective requirement for the coreceptors GAS1, CDO, and BOC in SHH pathway function. *Dev. Cell* **20**, 775–787 (2011).
- 6. Izzi, L. *et al.* Boc and gas1 each form distinct shh receptor complexes with ptch1 and are required for shh-mediated cell proliferation. *Dev. Cell* **20**, 788–801 (2011).
- López-Ramírez, M. A., Domínguez-Monzón, G., Vergara, P. & Segovia, J. Gas1 reduces Ret tyrosine 1062 phosphorylation and alters GDNF-mediated intracellular signaling. *Int. J. Dev. Neurosci.* 26, 497–503 (2008).
- 8. De Luca, A. et al. Sonic hedgehog patterning during cerebellar development. Cellular

and Molecular Life Sciences 73, 291–303 (2016).

- 9. Schneider, C., King, R. M. & Philipson, L. Genes specifically expressed at growth arrest of mammalian cells. *Cell* **54**, 787–793 (1988).
- 10. Del Sal, G., Ruaro, M. E., Philipson, L. & Schneider, C. The growth arrest-specific gene, gas1, is involved in growth suppression. *Cell* **70**, 595–607 (1992).
- 11. Schueler-Furman, O., Glick, E., Segovia, J. & Linial, M. Is GAS1 a co-receptor for the GDNF family of ligands? *Trends Pharmacol. Sci.* **27**, 72–77 (2006).
- 12. Cabrera, J. R. *et al.* Gas1 is related to the glial cell-derived neurotrophic factor family receptors α and regulates Ret signaling. *J. Biol. Chem.* **281**, 14330–14339 (2006).
- 13. van Roeyen, C. R. C. *et al.* Growth arrest-specific protein 1 is a novel endogenous inhibitor of glomerular cell activation and proliferation. *Kidney Int.* **83**, 251–63 (2013).
- 14. Ayala-Sarmiento, A. E. *et al.* GAS1 is present in the cerebrospinal fluid and is expressed in the choroid plexus of the adult rat. *Histochem. Cell Biol.* **146**, 325–336 (2016).
- Bautista, E., Zarco, E., Aguirre-Pineda, N. & Lara-Lozano, M. Expression of Gas1 in Mouse Brain: Release and Role in Neuronal Differentiation. *Cell Mol Neurobiol* doi: 10.10, (2017).
- 16. Zarco, N., González-Ramírez, R., González, R. O. & Segovia, J. GAS1 induces cell death through an intrinsic apoptotic pathway. *Apoptosis* **17**, 627–635 (2012).
- 17. Pérez-Sánchez, G. *et al.* Annexin A1, Annexin A2, and Dyrk 1B are upregulated during GAS1-induced cell cycle arrest. *J Cell Physiol* **doi: 10.10**, (2017).
- 18. Jiang, Z., Xu, Y. & Cai, S. Down-regulated GAS1 expression correlates with recurrence in stage II and III colorectal cancer. *Hum. Pathol.* **42**, 361–368 (2011).
- 19. Wang, H. *et al.* Growth arrest-specific gene 1 is downregulated and inhibits tumor growth in gastric cancer. *FEBS J.* **279**, 3652–3664 (2012).
- 20. Rizzi, F. *et al.* A novel gene signature for molecular diagnosis of human prostate cancer by RT-qPCR. *PLoS One* **3**, (2008).
- 21. Evdokiou, A. *et al.* Localization of the human growth arrest-specific gene (GAS1) to chromosome bands 9q21.3-q22, a region frequently deleted in myeloid malignancies. *Genomics* **18**, 731–733 (1993).
- Sreekantaiah, C., Baer, M. R., Preisler, H. D. & Sandberg, A. A. Involvement of bands 9q21-q22 in five cases of acute nonlymphocytic leukemia. *Cancer Genet. Cytogenet.* 39, 55–64 (1989).
- 23. Dominguez-Monzon, G., Benitez, J. A., Vergara, P., Lorenzana, R. & Segovia, J. Gas1 inhibits cell proliferation and induces apoptosis of human primary gliomas in the absence of Shh. *Int J Dev Neurosci* **27**, 305–313 (2009).

- 24. Lee, C. S., May, N. R. & Fan, C. M. Transdifferentiation of the ventral retinal pigmented epithelium to neural retina in the growth arrest specific gene 1 mutant. *Dev Biol* **236**, 17–29 (2001).
- 25. Lee, K. K. H. *et al.* Functions of the Growth Arrest Specific 1 Gene in the Development of the Mouse Embryo. *Dev. Biol.* **234**, 188–203 (2001).
- 26. Ogden, S. K. *et al.* G protein Gαi functions immediately downstream of Smoothened in Hedgehog signalling. *Nature* **456**, 967–970 (2008).
- 27. Xavier, G. M. *et al.* Hedgehog receptor function during craniofacial development. *Developmental Biology* **415**, 198–215 (2016).
- 28. Barzi, M., Kostrz, D., Menendez, A. & Pons, S. Sonic hedgehog-induced proliferation requires specific gα inhibitory proteins. *J. Biol. Chem.* **286**, 8067–8074 (2011).
- 29. Riobó, N. A., Lu, K., Ai, X., Haines, G. M. & Emerson, C. P. Phosphoinositide 3-kinase and Akt are essential for Sonic Hedgehog signaling. *Proc. Natl. Acad. Sci. U. S. A.* **103**, 4505–10 (2006).
- 30. Lee, C. S., Buttitta, L. & Fan, C. M. Evidence that the WNT-inducible growth arrestspecific gene 1 encodes an antagonist of sonic hedgehog signaling in the somite. *Proc Natl Acad Sci U S A* **98**, 11347–11352 (2001).
- 31. Martinelli, D. C. & Fan, C. M. A sonic hedgehog missense mutation associated with holoprosencephaly causes defective binding to GAS1. *J. Biol. Chem.* **284**, 19169–19172 (2009).
- 32. McLellan, J. S. *et al.* The mode of Hedgehog binding to Ihog homologues is not conserved across different phyla. *Nature* **455**, 979–983 (2008).
- 33. Martinelli, D. C. & Fan, C. M. Gas1 extends the range of Hedgehog action by facilitating its signaling. *Genes Dev.* **21**, 1231–1243 (2007).
- Allen, B. L., Tenzen, T. & McMahon, A. P. The Hedgehog-binding proteins Gas1 and Cdo cooperate to positively regulate Shh signaling during mouse development. *Genes Dev.* 21, 1244–1257 (2007).
- 35. Liu, Y., May, N. R. & Fan, C.-M. Growth Arrest Specific Gene 1 Is a Positive Growth Regulator for the Cerebellum. *Dev. Biol.* **236**, 30–45 (2001).
- Estudillo, E., Zavala, P., P??rez-S??nchez, G., Ayala-Sarmiento, A. E. & Segovia, J. Gas1 is present in germinal niches of developing dentate gyrus and cortex. *Cell Tissue Res.* 364, 369–384 (2016).
- 37. Zarco, N. *et al.* Growth Arrest Specific 1 (GAS1) Is Abundantly Expressed in the Adult Mouse Central Nervous System. *J. Histochem. Cytochem.* **61**, 731–748 (2013).
- 38. Feuerstein, M. *et al.* Expression patterns of key Sonic Hedgehog signaling pathway components in the developing and adult mouse midbrain and in the MN9D cell line.

Cell Tissue Res. **370,** 211–225 (2017).

- 39. Obayashi, S., Tabunoki, H., Kim, S. U. & Satoh, J. Gene expression profiling of human neural progenitor cells following the serum-induced astrocyte differentiation. *Cell Mol Neurobiol* **29**, 423–438 (2009).
- 40. Kann, M. *et al.* WT1 targets Gas1 to maintain nephron progenitor cells by modulating FGF signals. *Development* **142**, 1254–1266 (2015).
- 41. Hsu, Y.-C., Li, L. & Fuchs, E. Transit-amplifying cells orchestrate stem cell activity and tissue regeneration. *Cell* **157**, 935–49 (2014).
- 42. Leem, Y. E. *et al.* Gas1 cooperates with Cdo and promotes myogenic differentiation via activation of p38MAPK. *Cell. Signal.* **23**, 2021–2029 (2011).
- 43. Katano, T. *et al.* Gastric mesenchymal myofibroblasts maintain stem cell activity and proliferation of murine gastric epithelium in vitro. *Am. J. Pathol.* **185**, 798–807 (2015).
- 44. Jin, S., Martinelli, D. C., Zheng, X., Tessier-Lavigne, M. & Fan, C.-M. Gas1 is a receptor for sonic hedgehog to repel enteric axons. *Proc. Natl. Acad. Sci.* **112**, E73–E80 (2015).
- 45. Shin, J.-O. *et al.* Temporal and spatial expression patterns of Hedgehog receptors in the developing inner and middle ear. *Int. J. Dev. Biol.* **61**, 557–563 (2017).
- 46. De Martin, R. *et al.* Structure and regulation of the growth arrest-specific (gas-1) promoter. *J. Biol. Chem.* **268**, 22788–22793 (1993).
- 47. Del Sal, G. *et al.* Structure, function, and chromosome mapping of the growth-suppressing human homologue of the murine gas1 gene. *Proc. Natl. Acad. Sci. U. S. A.*91, 1848–52 (1994).
- 48. Ciccarelli, C., Philipson, L. & Sorrentino, V. Regulation of expression of growth arrestspecific genes in mouse fibroblasts. *Mol. Cell. Biol.* **10**, 1525–1529 (1990).
- 49. Quante, T. *et al.* Mutant p53 is a transcriptional co-factor that binds to G-rich regulatory regions of active genes and generates transcriptional plasticity. *Cell Cycle* 11, 3290–3303 (2012).
- 50. Marina Ferrero and Gaetano Cairo. Estrogen-regulated expression of a growth arrest specific gene (gas-1) in rat uterus. *CELL Biol. Int.* **17**, 857–862 (1993).
- 51. Lee, T. C., Li, L., Philipson, L. & Ziff, E. B. Myc represses transcription of the growth arrest gene gas1. *Proc. Natl. Acad. Sci. U. S. A.* **94**, 12886–12891 (1997).
- 52. Xiao, Q. *et al.* Transactivation-defective c-MycS retains the ability to regulate proliferation and apoptosis. *Genes Dev.* **12**, 3803–3808 (1998).
- 53. Herkert, B. & Eilers, M. Transcriptional repression: the dark side of myc. *Genes Cancer* **1**, 580–6 (2010).
- 54. Ma, Y., Qin, H. & Cui, Y. MiR-34a targets GAS1 to promote cell proliferation and inhibit

apoptosis in papillary thyroid carcinoma via PI3K/Akt/Bad pathway. *Biochem. Biophys. Res. Commun.* **441,** 958–963 (2013).

- 55. Li, W. *et al.* MiR-184 regulates proliferation in nucleus pulposus cells by targeting GAS1. *World Neurosurg.* (2016). doi:10.1016/j.wneu.2016.01.024
- 56. Sacilotto, N., Espert, A., Castillo, J., Franco, L. & López-Rodas, G. Epigenetic transcriptional regulation of the growth arrest-specific gene 1 (Gas1) in hepatic cell proliferation at mononucleosomal resolution. *PLoS One* **6**, (2011).
- 57. Li, Q. *et al.* Gas1 Inhibits Metastatic and Metabolic Phenotypes in Colorectal Carcinoma. *Mol. Cancer Res.* **14**, 830–840 (2016).
- 58. Ren, Y. A., Liu, Z., Mullany, L. K., Fan, C.-M. & Richards, J. S. Growth Arrest Specific-1 (GAS1) Is a C/EBP Target Gene That Functions in Ovulation and Corpus Luteum Formation in Mice. *Biol. Reprod.* **94**, 44–44 (2016).
- 59. Thangaraju, M. C/EBP is a crucial regulator of pro-apoptotic gene expression during mammary gland involution. *Development* **132**, 4675–4685 (2005).
- 60. O'Rourke, J., Yuan, R. & DeWille, J. CCAAT/Enhancer-binding Protein- (C/EBP-) Is Induced in Growth-arrested Mouse Mammary Epithelial Cells. *J. Biol. Chem.* **272**, 6291–6296 (1997).
- 61. Klisch, T. J. *et al.* In vivo Atoh1 targetome reveals how a proneural transcription factor regulates cerebellar development. *Proc. Natl. Acad. Sci.* **108**, 3288–3293 (2011).
- 62. Imayoshi, I. & Kageyama, R. bHLH factors in self-renewal, multipotency, and fate choice of neural progenitor cells. *Neuron* **82**, 9–23 (2014).
- 63. Kempermann, G. in Adult Neurogenesis 2: stem cells and neuronal development in the adult brain 107–147 (Oxford University Press, 2011).
- 64. Longo, A., Guanga, G. P. & Rose, R. B. Crystal structure of E47-NeuroD1/Beta2 bHLH domain-DNA complex: Heterodimer selectivity and DNA recognition. *Biochemistry* **47**, 218–229 (2008).
- 65. Geoffroy, C. G. *et al.* Engineering of dominant active basic helix-loop-helix proteins that are resistant to negative regulation by postnatal central nervous system antineurogenic cues. *Stem Cells* **27**, 847–856 (2009).
- 66. Bertrand, N., Castro, D. S. & Guillemot, F. Proneural genes and the specification of neural cell types. *Nat. Rev. Neurosci.* **3**, 517–530 (2002).
- 67. Seo, S., Lim, J.-W., Yellajoshyula, D., Chang, L.-W. & Kroll, K. L. Neurogenin and NeuroD direct transcriptional targets and their regulatory enhancers. *EMBO J.* **26**, 5093–5108 (2007).
- 68. Fong, A. P. *et al.* Conversion of MyoD to a neurogenic factor: Binding site specificity determines lineage. *Cell Rep.* **10**, 1938–1947 (2015).

- 69. Wapinski, O. L. *et al.* XHierarchical mechanisms for direct reprogramming of fibroblasts to neurons. *Cell* **155**, 621–635 (2013).
- 70. Pang, Z. P. *et al.* Induction of human neuronal cells by defined transcription factors. *Nature* 3–7 (2011). doi:10.1038/nature10202
- 71. Roybon, L. *et al.* GABAergic differentiation induced by mash1 is compromised by the bHLH proteins neurogenin2, neurod1, and neuroD2. *Cereb. Cortex* **20**, 1234–1244 (2010).
- 72. Miyata, T., Maeda, T. & Lee, J. E. NeuroD is required for differentiation of the granule cells in the cerebellum and hippocampus. *Genes Dev.* **13**, 1647–1652 (1999).
- 73. Cho, J. H. & Tsai, M. J. Preferential posterior cerebellum defect in BETA2/NeuroD1 knockout mice is the result of differential expression of BETA2/NeuroD1 along anterior-posterior axis. *Dev. Biol.* **290**, 125–138 (2006).
- 74. Olson, J. M. *et al.* NeuroD2 Is Necessary for Development and Survival of Central Nervous System Neurons. *Dev. Biol.* **234**, 174–187 (2001).
- Schwab, M. H. *et al.* Neuronal basic helix-loop-helix proteins (NEX and BETA2/Neuro D) regulate terminal granule cell differentiation in the hippocampus. *J. Neurosci.* 20, 3714–3724 (2000).
- Bormuth, I. *et al.* Neuronal Basic Helix-Loop-Helix Proteins Neurod2/6 Regulate Cortical Commissure Formation before Midline Interactions. *J. Neurosci.* 33, 641–651 (2013).
- 77. Pataskar, A. *et al.* NeuroD1 reprograms chromatin and transcription factor landscapes to induce the neuronal program. *EMBO J.* **35**, 24–45 (2016).
- Schagat, T., Paguio, A. & Kopish, K. Normalizing Genetic Reporter Assays : Approaches and Considerations for Increasing Consistency and Statistical Significance. *Cell Notes* 9–12 (2007).
- 79. Visel, A. *et al.* Functional autonomy of distant-acting human enhancers. *Genomics* **93**, 509–513 (2009).
- 80. Dickel, D. E., Visel, A. & Pennacchio, L. A. Functional anatomy of distant-acting mammalian enhancers. *Philos. Trans. R. Soc. B Biol. Sci.* **368**, 20120359–20120359 (2013).
- 81. Nicola, Z., Fabel, K. & Kempermann, G. Development of the adult neurogenic niche in the hippocampus of mice. *Front. Neuroanat.* **9**, (2015).
- 82. Hevner, R. F., Hodge, R. D., Daza, R. A. M. & Englund, C. Transcription factors in glutamatergic neurogenesis: Conserved programs in neocortex, cerebellum, and adult hippocampus. *Neuroscience Research* **55**, 223–233 (2006).
- 83. Larcher, J. C., Vayssiere, J. L., Lossouarn, L., Gros, F. & Croizat, B. Regulation of c- and

N-myc expression during induced differentiation of murine neuroblastoma cells. *Oncogene* **6**, 633–638 (1991).

- 84. Larcher, J. C. *et al.* Growth inhibition of N1E-115 mouse neuroblastoma cells by C-myc or N-myc antisense oligodeoxynucleotides causes limited differentiation but is not coupled to neurite formation. *Biochem. Biophys. Res. Commun.* **185**, 915–924 (1992).
- 85. Evdokiou, A. & Cowled, P. A. Growth-regulatory activity of the growth arrest-specific gene, GAS1, in NIH3T3 fibroblasts. *Exp Cell Res* **240**, 359–367 (1998).
- 86. Lehmann, M. Anything else but GAGA: A nonhistone protein complex reshapes chromatin structure. *Trends Genet.* **20**, 15–22 (2004).
- 87. Zhou, M. *et al.* LncRNA-Hh Strengthen Cancer Stem Cells Generation in Twist-Positive Breast Cancer via Activation of Hedgehog Signaling Pathway. *Stem Cells* **34**, 55–66 (2016).
- 88. Mellström, B. *et al.* Gas1 Is Induced during and Participates in Excitotoxic Neuronal Death. *Mol. Cell. Neurosci.* **19**, 417–429 (2002).
- 89. Hsu, Y.-C., Li, L. & Fuchs, E. Transit-Amplifying Cells Orchestrate Stem Cell Activity and Tissue Regeneration. *Cell* **157**, 935–949 (2014).
- 90. Visel, A., Bristow, J. & Pennacchio, L. A. Enhancer identification through comparative genomics. *Seminars in Cell and Developmental Biology* **18**, 140–152 (2007).
- 91. Poulin, F. *et al.* In vivo characterization of a vertebrate ultraconserved enhancer. *Genomics* **85**, 774–781 (2005).
- 92. Britz, O. *et al.* A role for proneural genes in the maturation of cortical progenitor cells. *Cereb. Cortex* **16**, (2006).
- 93. Leto, K. *et al.* Consensus Paper: Cerebellar Development. *Cerebellum* 789–828 (2015). doi:10.1007/s12311-015-0724-2
- 94. Flora, A., Klisch, T. J., Schuster, G. & Zoghbi, H. Y. Deletion of Atoh1 Disrupts Sonic Hedgehog Signaling in the Developing Cerebellum and Prevents Medulloblastoma. *Science (80-.).* **326,** 1424–1427 (2009).
- 95. Astakhova, L. N. *et al.* Activity of heat shock genes' promoters in thermally contrasting animal species. *PLoS One* **10**, (2015).
- 96. Vasanthi, D., Anant, M., Srivastava, S. & Mishra, R. K. A functionally conserved boundary element from the mouse HoxD locus requires GAGA factor in Drosophila. *Development* **137**, 4239–4247 (2010).
- 97. Srivastava, S., Puri, D., Garapati, H. S., Dhawan, J. & Mishra, R. K. Vertebrate GAGA factor associated insulator elements demarcate homeotic genes in the HOX clusters. *Epigenetics Chromatin* **6**, 8 (2013).
- 98. Rowan, S. Transdifferentiation of the retina into pigmented cells in ocular retardation

mice defines a new function of the homeodomain gene Chx10. *Development* **131**, 5139–5152 (2004).

- 99. Mao, C.-A. *et al.* Reprogramming amacrine and photoreceptor progenitors into retinal ganglion cells by replacing Neurod1 with Atoh7. *Development* **140**, 541–551 (2013).
- 100. Cicero, S. A. *et al.* Cells previously identified as retinal stem cells are pigmented ciliary epithelial cells. *Proc. Natl. Acad. Sci.* **106**, 6685–6690 (2009).

Oligonucleótidos para clonar el promotor <i>Gas1</i>				
F (Mlu1)	GACGAT(ACGCG	T)ACATGGTGTCCTTAAAGAGTGAAAG		
R (Xho1)	ATCCTA(CTCGAG)CTGGTAAAGGCGGGTGTTC			
Oligonucleótidos mutación				
F (E1)	GAACACAAGGTCTCGCTAGCATTCTCC			
F (E2)	GCTGTACCATCTAGAGCTAGTTTTTAAG			
R 1	TTTGGGAAAAGCTGGCTG			
R 2	CCCCAGTGCAAGTGCAGGTGCC			
Oligos ChIP-qPCR				
F (PCR1)	TTTGAAAGAGGGGAATGCAC			
R (PCR1)	TAAGGGAGGTCACGAGTGCT			
F (PCR2)	CCCTCCAGGGTTTTAGCTGT			
R (PCR2)	GGATGCATCTTCTGGCTTCT			
F (PCR3)	GGGCTGGCTTTCTTCTTAGG			
R (PCR3)	CTGAGAGCTCCAGGCCACT			
F (PCR4)	GCTTCTGCCTGGGATAAACA			
R (PCR4)	ACCGTGCTCCTACCCTAACC			
F (PCR5)	TCCACTTTCTGAACGCACTG			
R (PCR5)	AAACTGGCTCCTTCCTCC			
F (NeuroD1)	TCACCCCTCCCCAGAACTTTCCT			
R (NeuroD1)	AATAGGCAGGTCACGTGGTTCCC			
Oligos RT-PCR				
F (Gas1)	ACGCAGTCGTTGAGCAGCGCC			
R (Gas1)	CTGTGCCTGATGGCGCTGCTGC			
F (E2A)	GATCTACTCCCCGGATCAC			
R (E2A)	TGACATGGGGCCGGTGAA			
F (Ngn2)	CGAGCGCAACCGCATGCAC			
R (Ngn2)	ATAAAGTGCAGCTGTATGGG			
F (NeuroD1)	CGAGCGCAACCGCATGCAC			
R (NeuroD1)	CAGGCAGCCGGCGACCAAAT			
F (NeuroD2)	CGAGCGCAACCGCATGCAC			
R (NeuroD2)	TCTCCGAGAGAGCCCAGATGTA			
F (actina)	TCACGCACGATTTCCCTCTCAG			
R (actina)	ATTTGGCACCACACTTTCTACA			
Construcciones de <i>Gas1</i>				
Plásmido	Tamaño (bp)	Enzimas de restricción (uso)		
p3.0	7761	Mlul/Xhol (clonación)		
p2.0	6753	Mlul/Avrll (deleción)		
p1.0	5875	Mlul/EcoRl (deleción)		
pAE	6887	AvrII/EcoRI (deleción)		

ANEXO 1. Oligonucleótidos y enzimas utilizadas en esta investigación

ANEXO 2. Resultado de la secuenciación del promotor *Gas1* de ratón. El sitio de inicio de la transcripción (TSS) se marca en rojo. La caja TATA y las cajas E distales que unen a NeuroD1 se resaltan en amarillo. La región de repetidos GAGA se marca en azul.

1 GGTACCGAGC TCTTACGCGT ACATGGTGTC CTTAAAGAGT GAAAGCCCAG 51 GACCCAGGAA AGCCTATATT TGAAAGAGGG GAATGCACAC AGCCTGCTGT 101 GGCTGCCTGT TCCTCTGGCC TTCCACGTCA AGGCCATGAG TCTGTAAAGA 151 TGTCTTCAGG ATGAGCACTC GTGACCTCCC TTAGCTCCCA CTGAGACCTG 201 AATCAAGGCT AAGATGGATT CATGTGACCA GCAAAGGTGA ACTATTTGTA 251 ACCTTTAGAA CAAACACAGT CAGAACATTC CCCCAGTAAG CAGCTCTGAA 301 GCATCAGTAA CACTGCACGC ACGCGCGCAT ACACACACA ACACACACAC 401 GCACACGCAC ACGCGCACGC ACGCACATGC ACACACGC ACACGCACAC 501 ACACACACAC ACACACACA ACACACACAC CGCCTTAAAT CTTGTTGGAA 551 ATGCAGACTT TCAGGCCCTC CAGGGTTTTA GCTGTCAGAG ATTCAAAGAG 601 TTAGGAATCC AGATATGAAC ACAAGGTCTC CAGATGATTC TCCTGCAGGG 651 TGTCTTGAGA GCTCTCTAAA GAAGCCAGAA GATGCATCCC AGGGCTGGCT 701 TTCTTCTTAG GAGCTCAGGA TCACAGATTG TTAAGGATAA AAAAGGACCT 751 TAGCAAGTGA GCAATCTGAC CTCAAAGCAA GTGGCCTGGA GCTCTCAGGA 801 TCTAACTAGC TGTCCTTAAA CTTGCAGCGA TCCTCCCGCT TCTGCCTGGG 851 ATAAACAGGC TTGCTGTACC ACATCTGGCT AGTTTTTAAG GATAGATTTG 901 CGTTTGTTTT CTATTACTAA ATTCATGGTC CTAACCATGA ATTAGGGTTA 951 GGGTAGGAGC ACGGTGGCTT CACACAGCTC AGTCTGCCTC TCTCATCCTG 1001 TGAGGTTTCA GAGACAGCTT CCTCAGCCTA GGCAGCCAGC TTTTCCCAAA 1051 AGCCAGGTTA ATCCGTCAGG CCCTCACTCT CGCCCTTTCA AACTCTTTAA 1101 CTCTTTGGAG AGGTGGACAG TCCACTTTCT GAACGCACTG CAGCTGGGGC 1151 TTCCTTTGCT TCAGCAGCGA TTTAGCCTTA AATTTTGTGA CAGACTGAGT 1201 TGATAGTCTC ACCATGGAAA GGGGAGAGGA AGGAGCCAGT TTTTGACAGG 1251 CCACAGACTC GCGGTGCCTC TAGTGGCCAA AAGCTGCATT GCGCCACAGT 1301 TAAGGTCGCT TGAGAGAGTC CTGCTCTGAC TGCAAAGCCC GCTCTGCTGG 1351 TGGCTTTTGC TTTAAACACA GCGAGGAACT GAAACGTGCA GTTTAAAGCA 1401 CGTAGCGGGT CAATTTACCC TCGTCCTCTG TGCTGTAACT GCAGCCAGGT 1451 GGTAGCGCTC AGCATTCCCA GGGTTTTTAA TGCTAAGATT TGTCATTGCC 1501 GTTCGTATTT AAAAAAAAA ATCGTGAGTA AAGAAATAGT TTCAGTTCTT 1551 TGGATTTCTT AGTTTGAAAA CGATGTCCAG TGCGAGGGCC TTACCTGCCG 1601 GAAAGGGGGA CTGAAAGCTG GTGGAAAGTG TCCTTCTTGT GGTGGTGGTA 1651 GAGGTCGTGG TTGTGATGGT GGCTCGGTGT GTGTGTGTGT GTGTGAGAGA 1701 GAGAGAGAGA GAGAGAGAGA GAGAGAGAGA GAGAGAGAGA GAGAGAGAGAGA 1851 ACCCGTGTGT GCCCGCGCGC GCAATCTGTG TCTAAGTTTT TAAAGTCTTA 1901 CAATGAATTC TCAAAACTCC CTGCCTTCGC TATACCCCCC GAGGTGATCA 1951 GAACTCAGAG ATGAGGAGCC TGAAAATTAA AGTGACTTTC GAACTTTCTC 2001 GGATGCAAAG ATGGGGGGATC AGTAAGAATT AATAAAAGTG TCCCCCACC 2051 CAAACAAAAA GGGGGCGGAG GAAGGGAACA AAAAGGCCGG TGGCTGAGCC 2101 GGATGCAGGC AGCTGGCCCT AAGCCCTGCC CGCTGGCTCT GTGCGCGAGC 2151 TGGGGTTCGG TATCCCAGCC TCCTGAAGAG TGGGAGGAGC TGGGCCTGTG 2201 TCAGGCTCCC TAAGCCGTTC CTTTCAAGCC CTGAATGCCT GAATGTGAGC 2251 TGCCCACCGC CCTCCCCAC TCTGCAGCCC CACTCCAGCG GCTCGGAAAA 2301 AAAAAAAAA GTTTCAACAA CAACAGGCTG GACCAATAGC AGCTCGCAAA 2351 GCCGGGGAAG GGGGCCGAGC AAAGGGCGCC GGAGAGTGGA GAAAGGAGAA 2401 AGCGGGCAAG CCTGGAGCGC GCGGGGCCAG GGCTCGGCGA GCCGGAGGAG 2451 CGTTGCTAAT GTTTTGTTT GTTTGCTTTT CTATGCATGC ATAATGAGGG 2501 GGCGCCGCGG CACCACACGG GGGCTCCCGG CCCACTTTTG TATTTAAAGC 2551 CTCGCGGCGA GCTAGTCCGC AGCCGGGCTC CGCGGATCCG CTCCCCAAGC 2601 TCCGGGTCTC GGAGCAGAGA AACGCTCCGA GTTTCGGGGT CCTCCCTGCG 2651 CCTGGCGCCC AGAACTTCCC GGAGCGCGGC CCAGACCGGG GTAGAGGGGG 2701 AGGGGACCAA GCGTCCTGGC CGCGGGAAGG CGGGATGCCA GAGCTGCGAA 2751 GTGCTACGCG CCGCTGAGCC GGGAACCGAG GAGCCGCCGG CCGCACGACT 2801 GTCTGCAGGC GCCTAGCACC ATGCACCCCC GGCGCCGCGC GCTCCTGCAG 2851 CTTCGCCGCG TCCCCCGGA ACGGCACTGA GCGCCTCCAA CCGTCTACCG 2901 GACCCGGACC TGCGTCGCCG CGCTTCTCAG GGAGCCCCGG CCGCGGTGCC 2951 GGAGCGAACA CCCGCCTTTA CCAGC

ANEXO 3

Este trabajo lo presenté en el congreso:

46th Annual Meeting of the Society for Neuroscience 2016, San Diego, CA, USA.
"The expression of Gas1 is regulated by proneural factors Neurogenin (Ngn2) and NeuroD via distal E-boxes". Control/Tracking Number: 2016S5542SfN

AUTHOR BLOCK: *M. A. QUEZADA, J. SEGOVIA;

Physiol., CINVESTAV, Mexico, Mexico

Y fue publicado en:

• Quezada-Ramírez MA et al. The *Growth arrest specific 1* (*Gas1*) gene is transcriptionally regulated by NeuroD1 via two distal E-boxes, *Exp. Cell Res.*, XXX (2018) XXX-XXX. Accepted January 24. (In Press)

A la par de mi investigación doctoral también participe como coautor de los siguientes trabajos:

- Pérez-Sánchez G, Jiménez A, **Quezada-Ramírez MA**, et al. Annexin A1, Annexin A2, and Dyrk 1B are upregulated during GAS1-induced cell cycle arrest. *J Cell Physiol.* (2018) May;233(5):4166-4182.
- Curcumine and narigenin revert the liver damage in a cirrhosis model (con el Departamento de Farmacología, CINVESTAV). <u>Artículo en preparación</u>
- GAS1 inhibits the growth of glioma cells in an *in vivo* murine model evaluated by bioluminiscent method. <u>Artículo en preparación</u>

Al mismo tiempo me desempeñe como:

Profesor de asignatura en el Departamento de Bioquímica de la Escuela Nacional de Ciencias Biológicas (ENCB), del Instituto Politécnico Nacional, participando en los laboratorios de docencia de *Bioquímica* y *Métodos de Análisis* (para las licenciaturas de QBP, QFI, IBQ y Biología), y en el curso teórico de *Bioquímica Fundamental* (para ISA). Periodo de 2011-2015. También fui profesor de asignatura en la Universidad del Valle de México (*Bioquímica*) y en la Universidad Justo Sierra (*Genética*) durante 2017.