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The scientist does not study nature because it is useful;
he studies it because he delights in it,

and he delights in it because it is beautiful.

If nature were not beautiful,
it would not be worth knowing,

and if nature were not worth knowing,
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"
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Control robusto por modos deslizantes

de un sistema ABS

Resumen

Se proponen un controlador basado en control por bloques con modos deslizantes y un

controlador basado en modos deslizantes integrales anidados para un sistema antibloquéo
de frenos (ABS). El problema de control es lograr seguimiento de referencia para de la tasa

de deslizamiento de la llanta. De esta forma, la fricción entre el neumático y la calzada es

suficiente para controlar el coche. Además, se propone el diseño de un regulador basado

en control por bloques para asegurar asintóticamente seguimiento de la referencia y la

estabilización de la dinámica residual, que consiste en la velocidad lineal del vehículo.

Adicionalmente se acopla una suspensión activa con el freno con el objetivo de garantizar
la mejora de la calidad de marcha y la comodidad de los pasajeros. Para la suspensión

activa, se propone un controlador basado modos deslizantes. Para el diseño de la superficie
de deslizante se propone el uso de la forma regular y de métodos geométricos de control lineal

con el fin de asegurar el seguimiento de la referencia y el rechazo de perturbaciones.

Todos estos controladores maximizan la fuerza de fricción en la rueda y evitan el bloqueo
del freno y dan robustez ante perturbaciones matched y unmatched. Se consideran los casos de

deformación y no deformación de los neumáticos También se muestran análisis detallados de

estabilidad y robustez. El sistema de lazo cerrado es robusto en presencia de perturbaciones
e incertidumbre. Para mostrar el desempeño de la estrategia de control propuesta, se lleva a

cabo un estudio de simulación
,
donde los resultados muestran un buen comportamiento del

ABS en las variaciones en la fricción de la carretera.
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Robust Sliding Mode Control of

Antilock Brake System

Abstract

A sUding mode block control and sliding mode based on the technique of integral nested

sliding controllers are proposed to control an Antilock Brake System (ABS). The control

problem is to achieve reference tracking for the slip rate, such that, the friction between tyre
and road surface is good enough to control the car. Moreover, the design of a sliding mode

block control regulator to ensure asymptotically output tracking with the stabilization of the

residual dynamic consisting of the vehicle velocity for the brake system.

In addition, an active suspensión is coupled with the brake with objective to guarantee the

improvement of the ride quality and comfort for the passengers. For the active suspensión,
a controller based on the regular form, sliding mode control and geometric linear control

methods for the sliding surface design is proposed in order to ensure output tracking.

All these controllers maximize the friction forcé in the wheel and avoids brake locking and

provide robustness to matched, and unmatched perturbations. The cases of no deformation

on the tire and with deformation are considered. Detailed stability and robustness analysis
are presented. The closed-loop system is robust in presence of matched and unmatched

perturbations. To show the performance of the proposed control strategy, a simulation study
is carried on, where results show good behaviour of the ABS under variations of the road

friction.
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Chapter 1

Introduction

1.1 Preliminaries

The anti-lock brake systems (ABS) were originally developed to prevent wheels from locking

up during hard braking [1], [2], [3]. Modern ABS systems not only try to prevent wheels

from locking but also try to maximize the breaking forces generated by the tires to prevent

that the longitudinal slip ratio exceeds an optimal valué [4], [5].

First, note that locking of the wheels reduces the braking forces generated by the tires

and causes the vehicle takes a longer time to stop. Further, locking of the front wheels

prevents the driver from being able to steer the vehicles while it is coming to a stop. If

the driver presses hard on the brakes, the wheels will slow down considerable faster than

the vehicle slows down, resulting in a big slip ratio valué. However, as described above, slip
ratios higher than an optimal valué actually result in reduced breaking forces. The vehicle

would take longer to a stop if the slip ratio exceeds the optimal valué. Then, the ABS goal
is to prevent excessive brake torque from being applied on the wheels, so that the slip ratio

does not exceed the optimal valué. This fact would also prevent or delay the wheels from

locking up and increase steerability of the vehicle during braking.

The ABS control problem consists in imposing a desired vehicle motion and as a

consequence, providing adequate vehicle stability. On the other hand, active suspensión
are designed with the objective to improve the ride quality and comfort for the passengers.

The main difficulties arising in the ABS design and control are due to its high non-linearities

and uncertainties presented in the mathematical model. For the active suspensión control

design is necessary to cope with the disturbance due to road friction, which is unknown.

Therefore, the ABS and active suspensión have become two attractive examples for research

in área of robust control.

There are several works reported in the literature in order to solve the problem of

1



2 1. Introduction

automotive modelling, simulation, control, parameter identification and state observation.

A good introduction to automotive modelling is presented in [4], [5] and [6]. A research

based in bond graph approach incorporating sensors, actuators, and vehicle dynamics is

given in [7] and for modelling and estimation for tire-road system [8], this approach also

allows the developing of controllers for vehicle safety. References [9], [10] present energy
based techniques to obtain models of vehicle with tire-road interaction and for brake system.

In [11] a further study in tire and vehicle dynamics is found. Reference [12] discusses an object
oriented modelling and simulation of a pneumatic brake system with ABS. The modelling of

ABS solenoid valves is also studied in [13].

For the case of braking system design, important challenges are associated with the

estimation of the velocity and vehicle parameters. The friction coefficient estimation based

on an extended Kalman filter is given in [14]; reference [15] presents the use of observers

for tire/road contact friction using only wheel angular velocity information, and real-time

identification of tire/road friction conditions and máximum tire/road friction coefficient are

presented in [16] and [17], respectively. The use of longitudinal and lateral tire/road friction

for vehicle motion control is presented in [18]. Triangular observers for road profiles inputs

estimation [19], virtual sensors design in vehicle sideslip angle and velocity of the centre of

gravity estimation [20] and the nonlinear estimation of longitudinal tire stiffness and effective

radius [21] has been also studied; its principal applications are: adaptive emergency braking
control with underestimation of friction coefficient [22] ,

PI controllers for longitudinal slip
control [23] and nonlinear adaptive tracking for ground vehicles [24].

So many solutions have been proposed as solutions for the design of control algorithms
for antilock brake system (ABS) in order to obtain minimum time braking and increase

steerability of the vehicle [25], [26]. Examples are based on the well known PID [27]; robust

controllers [28], [29], [30] and approaches based on LMI [31]; optimal control based algorithms

[32]; self-tuning control strategies [33]; minimum energy control laws [34]; control logics

[35]. Besides, due to presence of high nonlinearities, solutions based in fuzzy and neural

modelling and control are widely spread; neuro-adaptive control methods for ABS [36], [37],
[38], [39]; fuzzy control [40], [41], [42], [43], [44], [45]; fuzzy PI controller [46]; neural network

control [47], [48], [49], [50]; feedback linearization control using neural networks [51], [52]
and [53]. Another important issue in design of braking systems and, particularly, ABS, is

the development of control algorithms which maximize the tire/road friction; reference [54]
presents an extremum seeking control strategy for ABS system and the paper [55] considers a

time delay; a non-gradient extremum seeking control of feedback linearizable systems is given
in [56] and a numerical optimization-based extremum seeking control is presented in [57]; [58]
presents an ABS with a continuous wheel slip control to maximize the braking performance

and, finally a dynamic method to forecast the wheel slip for ABS and its Experimental

evaluation is presented in [59].
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Sliding mode techniques arise as an attractive approach to deal with automotive problems
due to its robustness and simplicity in design, examples of sliding mode controllers for vehicle

traction control is presented in [60]; the use of high-order sliding control for mechanical

systems is shown in [61] and observers in automotive systems is given in [62]. Particularly,

süding mode observers [63] have been illustrated to give very good results for observation

and identification of mechanical systems [64], [65]; the papers [66], [67] present sliding mode
observers for the estimation of velocities, wheel slip, radius, stiffness vehicle parameters,

forces and states of the center of gravity; in [68] the use of second order sliding modes

for observation and estimation of dynamics performance of heavy vehicle is shown and an

experimental evaluation of a sliding mode observer for tire-road forces and an extended

Kalman filter for vehicle sideslip angle is presented in [69]. Finally, a further research in

sliding mode based analysis and identification of vehicle dynamics is given in [70].

The ABS design have also been dealt using the sliding mode technique; the wheel-slip

süding mode control with ABS [71], [72], [73]; direct measurement feedback sliding mode

control [74], [75], [76], [77], [78]; sliding mode controller design with usage of sluggish actuators

[79]; ABS control using optimum search via sliding modes [80] and optimal braking and

estimation of tyre friction in automotive vehicles using sliding modes [81] are weü-known

proposed approaches. Other solutions are based on adaptive sliding mode control [82]; sliding
mode-Üke fuzzy logic control considering uncertainties and disturbances [83]; sliding mode

control with disturbance observer [84]; a sliding surface design to improve the performance of

süding mode controller [85] ; a hybrid electric brake system with a sliding mode controller [86]
and ABS sliding mode control for electric vehicles; sliding-mode PWM control of hydraulic
ABS [87] and the use of second order sliding mode wheel slip control [88]. Finally, there are

approaches that includes the joint analysis of the braking system and active suspensión in

order to improve vehicle performance [89]; for this problem a proportional integral sliding
mode control is designed for an active suspensión system in [90] and for the whole active

suspensión and brake system a fuzzy neural controllers for uncertain active suspensión system
with ABS is presented in [91] and a nonlinear control design based on backstepping for an

ABS with assistance of active suspensión is given in [92].

The majority of the mentioned above works does not consider real situations, as:

• For most of cases, the control input can take only two valúes
"

0" or
"

1" depending on

the corresponding valve to be open or closed.

• For the joint case of analysis for the braking system and the active suspensión, the road

disturbances are assumed know in order to propose the control law.

• No further stability and robustness, specially for unmatched perturbations, is done.

• The actuator dynamics, the brake valve, it is not considered.
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1.2 Objective

The main objective of this thesis is design of controüers on the basis of the block control

approach and sliding mode for antilock brake system, providing a detailed analysis of stability

and robustness.

The related tasks to accomplish this objective are:

• The design of a controller on the basis of the block control principie, sliding mode and

the technique of integral nested sliding mode to ensure asymptotically tracking of the

relative slip.

• The design of a sliding mode block control regulator to ensure asymptotically output

tracking with the stabilization of the residual dynamic consisting of the vehicle velocity

for the brake system.

• In addition, an active suspensión is coupled with the brake to improve ride quality and

comfort for the passengers. For the active suspensión, a controller based on the regular

form, sliding mode control and geometric linear control methods for the sliding surface

design is proposed in order to achieve and ensure output tracking.

All these controllers must maximize the friction forcé in the wheel and avoid brake

locking and provide robustness to matched, and unmatched perturbations. The cases of

no deformation on the tire and with deformation are considered. Moreover, stability and

robustness analysis are presented.

Throughout the development of the controller, we assume that all the state variables are

available for measurement.

1.3 Contributions

This thesis presents the following contributions:

1. For the case of no tire deformation and the control input can taking only two valúes

"0" or "1" for the valve being open or closed, as a first approach for the ABS problem,
the joint application of sliding mode control and block control principie is proposed.

The block control technique is used to design the sliding surface and to provide linear

dynamics on the sliding nonlinear manifold.
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Again, for the case of no tire deformation, we consider two situations. Firstly, it is

supposed that the control input can only take only the valúes "0" and
"

1" for the two

valve positions. Subsequently, the use of integral nested sliding mode is considered. The

integral nested sliding mode control can guarantee robustness of the system throughout
the entire response starting from the initial time instance, and reduces the sliding
functions gains in comparison with standard sliding mode.

For the case of tire deformation, and assuming that the control input can only take

only the valúes "0" and "1", for the two valve positions. The use of integral nested

süding mode is considered. The integral nested sliding mode control can guarantee the

robustness of the system throughout the entire response starting from the initial time

instance and reduce the sliding functions gains in comparison with standard sliding
mode.

For the case of no tire deformation and the control input can take only two valúes

"0" or "1" for the two valve positions, a sliding mode block control regulator for the

asymptotically tracking of the relative slip to a desired trajectory is designed. To solve

this problem, we propose to use the block control technique combined with the SM

control .algorithm to achieve robustness for perturbations, and to ensure asymptotic

output tracking along with the stabilization of the residual dynamic consisting of the

vehicle velocity. In order to accomplish such tasks, we follow:

• first, the block control is used to linearize and asymptotically stabilize the output
error dynamics, and derive a standard sliding variable,

• second, it is defined the velocity error as a difference between real vehicle velocity
and an auxiliary integral variable which estimates the vehicle velocity steady state

valué on the central manifold; finally,

• following this procedure a sliding manifold is formed as a linear combination of the

standard sliding variable and the velocity error and the SM control is implemented
to ensure this manifold to be attractive.

As a result, the vehicle dynamic, i.e., the vehicle velocity, on the designed SM manifold

becomes asymptotically stable, ensuring an stable tracking error.

Finally, brake control with active suspensión is presented. An ABS control based on

integral nested sliding mode is designed in order to impose a desired vehicle motion

and as a consequence, provides adequate vehicle stability. In the other hand, active

suspensión are designed with the objective to guarantee the improvement of the ride

quality and comfort for the passengers. For the active suspensión, another new

controller based on the regular form, sliding mode control and geometric linear control

methods for the sliding surface design is proposed in order to achieve robustness to
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matched, and unmatched perturbations and ensure output tracking. As a result the

vehicle dynamic, i.e., the vehicle velocity and horizontal position, on the designed

SM manifolds becomes asymptotically stable with disturbance attenuation, ensuring

an stable tracking error. The deformation on the tire is not considered and for both

subsystems a Super-Twisting control is used.

1.4 Thesis structure

This thesis is organized as follows: The mathematical model for the longitudinal movement

of a vehicle, including the brake system and the active suspensión is presented in Chapter

2. In Chapter 3 a revisión of the control methods to be applied is presented in detail. The

proposed controllers with their stability and robustness analysis are presented in Chapter 4.

Simulation results are presented in Chapter 5 to verify the robustness and performance of

the proposed control strategy. Finally, conclusions and recommendations are presented in

Chapter 6.



Chapter 2

Mathematical models

In this chapter, three dynamic models of a vehicle are discussed. The first one is presented
in the section 2.1. We use a model which only regards one wheel, the so-called quarter of
vehicle model; this model includes considers the pneumatic brake system dynamics, the wheel

motion dynamics and the vehicle motion dynamics. In the section 2.2, the second model is

presented; here, we use a quarter of vehicle model, this model considers the pneumatic brake

system, the wheel motion, tire deformation and the vehicle motion. Finally, the third model is

presented in section 2.3; this model considers the pneumatic brake system, the wheel motion,
the vehicle motion and the dynamics of an active suspensión.

2.1 Pneumatic brake system equations without tire

deformation

In this section a model for pneumatic brake system, which does not consider tire deformation,
is presented. The equations for the valve, the wheel and the vehicle motion are obtained from

Newton mechanics.

2.1.1 Pneumatic brake system equations

The specific configuration of this system considers brake disks, which stop the wheels, as a

result of the increment of the air pressure in the brake cylinder (Figure 2.1). The entrance of
the air trough the pipes, from the central reservoir and the expulsión from the brake cylinder
to the atmosphere is regulated by a common valve. This valve allows only one pipe to be

open, when pipe 1 is open, pipe 2 is closed and vice versa. The time response of the valve

is considered small, compared with the time constant of the pneumatic system. Let consider

the Figure 2.1; we assume that the brake torque T_ is proportional to the pressure Pb inside

7



8 2. Mathematical models

the brake cylinder

Figure 2.1: Pneumatic brake scheme

Tb = kbPb (2.1.1)

with kb > 0. For the brake system we use an approximated model, it considers pressure

changes in the brake cylinder due to the opening of the valve with a first order relation [93];
this relation can be represented as

rPb + Pb = Pcu (2.1.2)

where r is the time constant of the pipelines, Pc is the pressure inside the central reservoir,

u is the valve input signal. We consider two cases:

• When the control valve position is a continuous variable, the parameter r of the equation

(2.1.2) is constant.

• When the control input can take only two valúes
"

0" or
"

1"
,
the opening and closing

of the valve is momentary and the parameter r of the equation (2.1.2) are given by the

following rules:

- If the pipe 1 is opened and 2 is closed, then u = 1 and r = r¿„

- If the pipe 2 is opened and 1 is closed, then u = 0 and r = r^t

For both cases, the atmospheric pressure Pa is considered equal to zero.
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2.1.2 Wheel motion equations

To describe the wheels motion, we will use a partial mathematical model of the dynamic

system as is done in [94], [95], [96] and [97].

Consider Figure 2.2, the dynamics of the angular momentum change relative to the

rotation axis are given by

Jú = rf(s)-Bbu-Tb (2.1.3)

where u is the wheel angular velocity, J is the wheel inertia moment, r is the wheel radius,

Bb is a viscous friction due to bearings coefficient and / (s) is the wheel contact forcé

Nm =

mg

+f(s) = pNm<p(s)

Figure 2.2: Wheel forces and torques

The expression for the contact forcé longitudinal component in the motion plañe is

f(s) = pNm<P(s) (2.1A)

where p is the nominal friction coefficient between the wheel and the road, Nm is the normal

reaction forcé in the wheel

Nm =

mg (2.1.5)

with m equal to the mass supported by the wheel and g the gravity acceleration. Function

(p(s) represents a friction/slip characteristic relation between the tire and road surface. Here,
we use the Pacejka model [98] ,

defined as follows:

<p(s) — D sin (C arctan (Bs
—

E(Bs
- arctan (Ss)))) (2.1.6)

With the following parameters B = 10, C = 1.9, D = 1 and E — 0.97 that function represents

the friction relation under a dry surface condition. A plot of this function is shown in Figure
2.3. In general, this model produces a good approximation of the tire/road friction interface.
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Figure 2.3: Characteristic function <p (s)

The slip rate s is defined as

v
—

ru

(2.1.7)

where v is the longitudinal velocity ofthe wheel mass center. The equations (2.1.3)-(2.1.6)
characterize the wheel motion.

2.1.3 The vehicle motion equation

The vehicle longitudinal dynamics without lateral motion considered is represented as

Mv = -F(s)-Fa(v) (2.1.8)

where M is the vehicle mass; Fa (v) is the aerodynamic drag forcé, which is proportional to

the square of relative to wind vehicle velocity and is defined as:

Fa (v) = 2pCdAf & + v-)2

where p is the air density, Cd is the aerodynamic coefficient, A¡ is the frontal área of vehicle,
v_ is the wind velocity; the contact forcé of the vehicle F is modelled as:

F(s) = pd>(s)NM

where

NM = Mg

is the normal reaction forcé of the vehicle, with M equal to the vehicle mass.

(2.1.9)

(2.1.10)
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2.1.4 State space model

The dynamic equations of the whole system (2.1.1)-(2.1.8) can be rewritten using the state

variables

x = [xi,x2, x3]T = [u, Pb, vf

with initial conditions xo = x(0) results as:

¿i = —

OqXi + aif (s)
—

a2X_

x_
= —

a_x2 + bu (2.1.11)

x3
= -a4F(s) -

f_(x3)

y
= s = h(x) = 1 —

r—

Where a0
= Bb/J, ai

= r/J, a2 — kb/J, a_
= 1/r, a_

= 1/M, b = Pc/t and

fw(x3) = 2]b (pCdAf) (x3 + vw)2

2.2 Pneumatic brake system equations with tire

deformation

In this section, a model for pneumatic brake system considering tire deformation, is presented.
The equations for the valve, the wheel and the vehicle motion are the same that the presented
ones in the last section in equations (2.1.2), (2.1.3) and (2.1.8), respectively. To introduce the

dynamics of the tire deformation, we will use a partial mathematical model of the dynamic

system as is done in [94], [95], [96] and [97].

2.2.1 Tire deformation equations

Let consider Figure 2.4, the motion equation ofthe contact element with mass Mc is described

by the tire longitudinal deformation. The interaction between this element and the rigid part
of the wheel can be described by the following visco-elastic forces model

M4t(v-ru+í)=ns)-c4¿-kJ (2-2j)

and the slip rate is

v
~

rw
~ f

s =
■*■*■

(2.2.2)
v
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where cx and kx are the longitudinal constants of viscous and elastic behaviour of tire model,

respectively.

Figure 2.4: Deformation in the tire scheme

The dynamic equations of the whole system (2.1.2), (2.1.3), (2.1.8) and (2.2.1) can be

rewritten in a more useful form as:

rPb + Pb = Pcu

Jú = rf(s)-Bbu-Tb (2.2.3)

Mv = -F(s)-Fa(v)

%,d?£ di, ,

. (Mcr2 \
,, , M_rm McBbr A/Crn. . 1

„ t ,

with the slip defined in (2.2.2).
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2.2.2 State space model

The system (2.2.3) is represented using the state variables x = [x-.,X2,X3,X4,X5] =

u>, Pb, £, ^ ,
v with initial conditions xq

= x(0) as:

¿i —ci (rf (s) - Bbxi -

kbx_)

x_ =
—

C2X2 + bu

¿3 =x4

X_ =
—

041X1
—

042X2
—

043X3
—

O44X4 + f_(li, X4)

¿5 = - C3F (s)
- fw(x_)

(2.2.4)

with output

ur \ 1
Xl l4

y
— s — h{x) = 1 —

r

x5 x5

where 6 = c2kbPc, cx
= 1/J, c2

= 1/r, c3
= 1/M, 041 = (Bbr)/J, ai2

= (rkb)/J,

a43
= kx/Mc, 044

= cx/Mc, f.(xi,x_) = (y + j^J f (s) + j¡F(s) + j¡^Fa(t>) and

/«■(Z5) = 2AÍ (X5 + Vwind)

2.3 Active suspensión model

In this section, the dynamic model of a vehicle active suspensión and ABS subsystems is

discussed. Here we consider a quarter of vehicle model, this model includes the active

suspensión, the pneumatic brake system, the wheel motion and the vehicle motion.The

equation for the active suspensión are obtained in the following subsection.

2.3.1 Suspensión

The quarter-car active suspensión is a 2-D0F mechanical system shown in Figure 2.5.
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r+cw

T

Jl c-hA—'

\ Kr X^-C™ J_ \¿r

Figure 2.5: Pneumatic brake scheme

This system connects the car body and the wheel masses and is modelled as a linear

viscous damper and a spring elements, whereas the tire is represented as a linear spring and

damping elements. The motion equations for this system are govemed by

mcZc
= -ftcu* \ZC Zw) C*ctu \%c Zw) ' Jha

mwzw = !<„_■ (zc — zw) + Ccu, (¿c — iw) (2.3.1)

rx-wr \2-w Zt) ^wr \Zw %r) Jha

where mc and mw are the mass of the car an the wheel, respectively, zc is the car vertical

displacement, zw is the wheel vertical displacement, K__ and Kwr axe the spring coefficients,

Cc_, and C_~ are the damping coefficients, zT is the disturbance due to road and /-,<, is the

forcé of the hydraulic actuator.

The equations for the valve, the wheel and the vehicle motion are similar to the presented
in equations (2.1.2), (2.1.3) and (2.1.8), respectively. But, instead ofthe definition of normal

reaction forces Nm and 7VM given in (2.1.5) and (2.1.10), respectively, and considering the

equation (2.3.1) we have that the normal reaction of the wheel is defined by:

Nm =

™.g
- Kwr (zw - zr) - CWT (zw

-

zr)

and the normal reaction forcé of the vehicle is defined by:

Nm = Mg
- KWT (zw

-

zr)
- Cwr (zw

-

zT)
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2.3.2 State space equations

The dynamic equations of the whole system (2.1.2), (2.1.3), (2.1.8) and (2.3.1), can be

rewritten using the state variables x = [xi,X2,x3,X4,xs,X6,x7] = [zc,zc,zw,zw,u,Pb,v]
as:

¿i = x2

¿2 = —

Oi (Xi
—

X3)
—

02 (X2 — X4) + biUs

¿3 =
X4

x4
=

o3 (xi
-

x3) + o4 (x2 - x4) -

a_ (x3
—

Zr)
-

a_ (x_ -

zJ)
— b2us

¿5 =
-07X5 + ag/ (s)

—

O9X6

¿6 =

-O10X6 + í>3"6

x7
= -anF(s) -fw(x7)

with the outputs

3/1
=
xi and y_

=
x5

where ai
= K^/mc, a2

= Cc_/mc, a3
= Kcwlmw, a_

= Ccwjm^, a5
= Kwr/m_,

a.6
= CWT/mw, a7

— bb/J, a_
— r/J, a_

— kb/J, a10
= 1/r, On = 1/M, 61 = l/mc,

62 = l/mw, 63 = 1/r, us
= fha, ub = Pc and fw(x7) = ^ (pCdAf) (x7 + vjf

2.4 Conclusions

In this chapter we have presented three models for the wheel-brake system with their state

space representations, the last one including an active suspensión. It is worth to noticing

that the first two models represent the same situation, the difference is that the second one

is a detailed versión of the first and includes equations of the tire deformation. All these

models will be used in the design and simulation of the control algorithms proposed in the

following chapters.

(2.3.2)

(2.3.3)



Chapter 3

Control methods

The sliding mode control (SMC) technique is known as a suitable control method for handling
nonlinear systems with uncertain dynamics and disturbances [99], [100], [101]. Control design
for nonünear multivariable systems has been widely studied, while the design procedure of

high order nonlinear control systems can be complicated and varies from case to case. [102]
suggest a decomposition design approach transforming the original plant into the so-called

regular form, which facilitates the controller design. The SMC of the regular form has been

weU estabÜshed for a class of linear systems. For a high order linear system, the block control

approach [103], [104] can be incorporated into the design of the SMC.

Several approaches based on block control have been proposed. Here, we empathize on

the so-caUed Integral Sliding Modes with Block Control; this technique is based on integral

SlidingMode (SM) [101] in combination with nested SM [105] and allows to achieve robustness

to matched, and unmatched perturbations, and to ensure output tracking. Theoretically, this

integral nested SM control can guarantee the robustness of the system throughout the entire

response starting from the initial time instance and reduce the sliding functions gains in

comparison with standard SM.

The Regular Form is presented in Section 3.1. It provides a convenient interpretation of

the reduced order dynamics given by sliding mode control, decoupling the system into two

subsystems of lower dimensions. In Section 3.2 Block Control is introduced as a method for

decomposition and design robust controllers for dynamical systems. In Section 3.3, Integral

Sliding Mode with Block Control is presented. Finally, chapter conclusions are given in

Section 3.4.

17
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3.1 The regular form

In this section a particular canonical for, the so-called regular form is presented to obtain a

convenient interpretation of the reduced order dynamics provided by sliding mode control,

decoupling the system into two subsystems of lower dimensions.

3.1.1 The regular form representation of a class of dynamical

systems

Consider an affine system,

x = f(x)+B(x)u (3.1.1)

where xeR", u ¡E Rm, B € Rnxm, and rank (B) = m < n. Following the regular

form design approach, a nonlinear transformation should be found such that the system is

decoupled into two subsystems of lower dimensions (n
—

m) and m:

{
Xi— fi(xi,x2)

(3 12)
x2= f2 (xi, x2) + B2(xi, xa) u

where xx € Rn_m, x2 G Rm, u € Rm and det(B2) 7*- 0. The system (3.1.2), where the

dimensión of the lower equation coincides with that of the control input u and the upper

equation does not depend on the real control, is referred to as a regular form [102].

The idea of transformation is formulated in the following way: Let yT = [yf , y2] be a

vector of new state variables defined by the nonlinear transformation

yi
= 0(x), 3/2

= x3, (3.1.3)

where the vector function <f> (x) is continuous and continuously differentiable with respect to

x. The equations with respect to y_¡

*. = ^/(x) + ^B(x)u, (3.1.4)

will be independent of the control if the vector function (¡> (x) is a solution to the matrix

partial differential equation

^B(x) = 0. (3.1.5)

Necessary and sufficient conditions for solving the equation (3.1.5) may be found based

on the theory of Pfaffian's form in the text book of Rashevskii [106]. It should be noticed

that partial differential equations of this type need strong solvability conditions. In [102]
authors have investigated this problem and proposed a design regularization algorithm. It
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has been established that the regularization problem is solvable only for one class of systems

which fulfills the Frobenius' theorem conditions. The reader is referred to [99] for a complete
overview of this approach applied to both single-input and múltiple- input.

According to system (3.1.2), the sliding mode control approach assumes that u is a

discontinuous control enforcing sliding mode in the manifold S(x) = 0 with m selected

switching surfaces denoted by the vector S (x) = [si (x) , s2 (x) ,
. . .

, sm (x)]T After sliding
mode occurs on S(x) = 0, m components of the state vector are function of the remaining

(n
— m) ones: X2 = 5o (xt). As a result, the sliding mode equation along the manifold

5(x)=X2-5o(X!) = 0ÍS

xi = fi(xi,50(xi)). (3.1.6)

In other words, the evolution ofthe upper subsystem in (3.1.2) is determined by equation

(3.1.6). The desired dynamics of sliding mode can be designed by a proper choice of the

function 5o (x-J which takes part of the reduced order system dynamics(3.1.6).

To confine the state trajectory to the preselected manifold 5 (x), the discontinuous control

u =
—

Msign (5 (x)) can be directly employed. If the existence condition of sliding mode [101]
is satisfied by proper selection of the input gain matrix M, the state trajectory is driven to

reach the manifold 5 (x) in finite time. Accordingly, sliding mode takes place in the switching
manifold and follows the desired system dynamics. It can be seen that the order of the system
is reduced from n to (n

—

m). In addition, due to the equal dimensión of the control inputs
and state vectors, the controller design for the lower subsystem is very simple. Therefore,
the original problem is decomposed into two independent sub-problems of lower dimensión,
and both of them can be solved individually.

Repeating the above control design procedure to the upper subsystem of (3.1.2), and

decoupling it into subsystems of lower dimensions is the core idea of the block control

approach [107]; details will be discussed in the following section.

3.1.2 The regular form representation of linear system

The consideration is given to control in the multidimensional linear system, as a particular
case of the system (3.1.1)

x = Ax + Bu, (3.1.7)

with x£E",u£ Rm and without loss of generality it is assumed that the rank ofmatrix B or

control space dimensionality coincides with the control dimensionality, namely rankB = m.

Indeed, if the column vectors of matrix B are linearly dependent, then

Bu = B1Au = B1u1, Ui=Au, ut G Rmi
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where Bi is (n x mi)-dimensional matrix, m- < m, consisting control space base vectors,
A

is constant (mi x m)-dimensional matrix whose column elements are the coefficients of the

matrix columns expansión B with respect to base vectors. As the result, there is a system

with a new control ut having lower dimensionality coincides with that of the control space.

From the condition

rankB =mt

follows that

rankA =m_.

The original control u can be determined after designing the control u/

Thus,

rankB = m. (3.1.8)

The control vector components have discontinuities on some planes Si (x) = 0, i =

1, . . .

, m, which should be chosen such that sliding mode motion on their intersection

s = Cx = 0, sT = (si(x),...,sm(x)) (3.1.9)

have a equation with dynamics given by the allocation of characteristic equation roots.

This problem will be solved in the space of new variables related to the original ones by
a non-singular linear transformation

x' = Mx, x' G W1 (3.1.10)

such that

MB = ( B°2 ) (3.1.11)

where B2 is quadratic (m x m) -dimensional matrix.

In order to satisfy condition (3.1.11), the first (n
—

m) rows of matrix M should be

composed of the base of (n —

m)-dimensional subspace orthogonal to the control subspace.
The remaining m rows are chosen so that rankM =n and the B2 is non-singular. For example,
BT can be taken as these rows, then

B2 = BTB and det B2 ^ 0

The behaviour of (3.1.7) in the space x/ is described by

x = M_1AMx +MBu
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or

xi
= Auxi + Ai2x2 (3.1.12)

x2 = A21X1 + A22X2 + B2u (3.1.13)

where Xi and x2 are vectors consisting of (n
— m) and m components of vector x/ and

M~1AM = f ^u ^12 )
\ A2i A22 /

The equation of the manifold s = 0 with respect to the new variables, correspondingly,
has the form

s = C1X1 -I- C2x2

where CM-1 = (Ci,C2), Cx G Rmxn and C2 G Rmxm Below, consideration will be given

only for discontinuity surfaces for which

det CB t¿ 0

i.e. the sliding equation can be written unambiguously.

Since CB = C2B2 this requirement amounts to the condition

det C2t¿ 0

Without loss of generality, one can confine oneself to the case of

C2 = Im

which is due to the invariance property to linear transformation of the vector s.

3.2 Block control

The problem of decomposition and design robust controllers for dynamical systems is one

of interesting problem in the control theory. A fruitful and relatively simple approach to

solve this problem, especially when dealing with multivariable nonlinear uncertain ones, is

based on the use of Variable Structure Control approach with sliding mode, Utkin [108].
This approach enables high accuracy and robustness to disturbances and system parameter

variations to be obtained. Second, the control design problem is conveniently divided into

two sub-problems: (a) the design of nonlinear sliding surfaces enforcing motion according
to the specified closed-loop performance, and (b) determination of a control law providing
stable motion in the sub-state space of the surface.
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In order to illustrate the decomposition potential with the use of the above technique,

consider the following system subject to uncertainty:

x = f(x,í) + B(x,t)u + g(x,t) (3*2.1)

where x G X C R" is the state vector, u G U C Rm is the control vector to be bounded by

Kl < M with M > 0, u = (ui, . . .

, umf (3*2.2)

The unknown mapping g(x, t) characterizes external disturbances and parameter

variations which should not affect the feedback systems. It is assumed the vector fields

f (x, t) and g (x, t), and the columns of B (x, t) are smooth and bounded mappings of class

Cp,vop f CM) = °* and rank(B(x,í)) = m for all x G X and t > 0. The standard sliding

mode design procedure comprises two sub-problems.

s(x) = 0, s = (si,...,sm)T (3-2.3)

must to selected such that the matrix GB (G = ds/dx) has full rank for x G X and t > 0,

and the sliding mode (SM) equation

x = fs(x,í) + gs(x,t), g(x) = 0 (3.2.4)

where f, = (l„
- B (GB)-1 G) f and gs

= (ln
- B (GB)"1 G) g, has the desired properties,

including stability. Secondly, a discontinuous control

ui(x,í)=íUl-íX'!| 'íSiH>0n i"1'""'m
(3.2.5)^ v '

{Ui (x,t) if sí (x) < 0,
K '

is introduced to guarantees convergence of the closed-loop system projection motion in the

subspace s, described by
s = Gf + GBu + Gg

where u+ (x, í) and u¡~ (x, t), are smooth functions to be selected. If g (x, i) satisfies the so

called matching condition, [109] , g (x, t) G spanB (x, t) ,
i.e. there exists vector p, (x, t) such

that

g (x, t) = B (x, í) n (x, í) Vx G X and t > 0 (3.2.6)

then gs (x, í) = (In
- B (GB)-1 G) B/z = 0. In this case, SM equation (3.2.4) reduces to:

x = f.(x,t), s(x) = 0 (3.2.7)

Note this equation has the reduced order (n-m); however, it is still nonlinear and non-

autonomous. One possible approach to ensuring stability of the nominal system (3.2.7),
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is connected with the input-output linearization technique, [110]. Another approach is the

Backstepping that is based on the use step by step of Lyapunov functions, [111].

Here, the universal decomposition block control method is adopted to design a nonlinear

time-varying sliding manifold (3.2.3) which stabilizes the perturbed SM equation (3.2.4).
Another important goal is to provide robustness of the sliding mode motion with respect to

non vanishing perturbation, g (x, í) in cases where it does not satisfy the matching condition

(3.2.6). A solution for the control of nonlinear, time-varying plants with both matched and

unmatched uncertainties is offered here. A solution is achieved by a combination of three

techniques:

First, the block control method is applied to decompose the control law synthesis problem
into a number of sub-problems of lower order which can be solved independently of one

another. A special state representation of the system must be used, this representation

is referred as Block Controllable form (BC-form). This is achieved either by múltiple

decomposition of the original system under structural conditions on unmatched uncertainties,

employing the integral method, [102]. After the first step of the transformation procedure
described above, the original system is represented as two blocks

x2
= f2(x2,xi,í) (3.2.8)

xi
= fi(x2,x1,t) + Bl(x2,xí,t)u, (3.2.9)

with an additional tie

u = B+v. (3.2.10)

For the case where ni
= m and the inverse matrix Bj"1 exists, the tie (3.2.10) can

be omitted, and an additional transformation x2
=

x2; Xi — /QXl B^1 (x2,7, í) <¿7, can be

introduced instead, such that the control matrix in the block (3.2.9) is transformed to the

identity matrix Xi
= fi (x2, Xi, í) + u.

Next, we will consider the class of nonlinear systems for which the map f2 (x2,X!,í) in
the block (3.2.8) is linear with respect to x-. ,

that is,

f2(x2,x1,í) = f2(x2,í) + B2(x2,f)xii (3.2.H)

where B2 is a matrix of dimensión (n
—

n{) x m. Note that the map

f_(x2,t) = f2(x_,t) + B2(x_,t)(i>(xi). 4>eRni- rank |^i 1^0,
where tj> (xi) is a vector-function, can also be transformed to the form (3.2.11). The following
cases are possible:

1. B2 (x2, t) = 0, Vx; t > 0. This means that the subsystem (3.2.8), and henee the original
system (3.2.1) are not controllable;
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2. rankB2 (x2, í) = n —

ni, Vx; í > 0. In this case, the system

x2
= f2(x2,í)+B2(x2,0xi,,

Xi = fi(x2,Xi,í) + Bi(x2,xi,í)w,

(3.2.12)

(3.2.13)

is the block-controlled form for the original system (3.2.1), and the transformation

procedure is over;

3. rankB2 (x2, t) = n2 < n
-

nx, Vx; t > 0. In this case, we pass to the second step, where

the vector xx in the subsystem (3.2.12) is taken as a dummy control. This subsystem

is split as

x2 =

x3

x2
f2(x3,X2,í) =

f3(x3,X2,í)

f2(x3,x2,£)

B2(x3,x2,í) =
B3(x3,x2,í)

B2(x3,x2,í)

( n —

ni
—

n2 \

\ ri2 )

in order to fulfill the condition rankB2 = rankB2 = n2, Vx, t > 0.

Next, similar to (3.2.10), a constraint on the quasicontrol Xi is imposed in the block

(3.2.12): xi = B%v2, B¡ = B^ (b^Y1 2 G R"2

The corresponding Pfaff system [106] of order (n —

ni— n2) is written:

dx3 + A2 (x3, x2, t) dx2 = 0, A2 = -B3B+. (3.2.14)

Under the condition of complete integrability of the Pfaff system (3.2.14), we find its

integral manifold <p (x3, x2, t) = c, (p = col (<fii,..., ifin-rn-m), c = col (£i, . . .

, cn_„,_n2) and
introduce the change of coordinates

x3
= f3(x3,x2,í),

x2 = f2(x3,x2,í) + B2(x3,x2,í)-

xi
= fi(Xa1x2,xi,í) + Bi(3c3,X2,x1,í)«)

where rankB2 = n2 and rankBi = ni, Vx, t > 0.

If the linearity condition f3 (x3, x2, t) holds with respect to x2,

Í3 (X3, x2, í) = f3 (x3, t) + B3 (x3, t) Sa,

and the matrix B3 of dimensión (n
—

ni
—

n_) x n2 is of full rank, that is,

rankB3 = n
—

ni
—

n2, Vx, í > 0,

(3.2.15)

(3.2.16)

(3.2.17)
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then system (3.2.15) under conditions (3.2.16), (3.2.17) represents the block-controlled form;

otherwise one has to pass to the third step and continué analogous transformations till the

block-controlled form is obtained.

Thus, the conditions of existence of the block-controlled form for system (3.2.1) can be

summarized in the following theorem.

Theorem 3.1. Suppose the following conditions hold:

1. System (3.2.1) is controllable;

2. the Pfaff system is completely integrable;

3. In the system

x'q = f'q(x!q,xq-i,t),
Xj = Ij \Xq, Xq—i, . . .

, Xj, tf + Bj [Xq, Xg_i, . . .

, Xj, ÍJ Xj_i, % = q 1, . . .

, ¿,

Xi = fi (x'q,xq-i, . . . ,xi,í) + Bx (x^,x9_i, . . . ,Xi,í) u,
(3.2.18)

x = coZ(x^,x9_i, . . . ,xi) , x'q G X'q C Rn¿, j = 1, ...,q
—

1, óxmXj = rankBj —

nj,Vx, t>0,j = l,...,q
—

l,n'q — n
—

Yll^i ni; which is constructed on the (q
—

l)-th
step of the transformation procedure, we have

(a) the map i'q is linear with respect to x9_i:

f;(x'9,xg_i,í)=f;(x;,í)+B;(x;,<)xq_1, q
= 2,...,r; (3.2.19)

(b) there exists a minor Bq(xq+i,xq,t) of dimensión nq x nq-i of matrix B' such

that rankBq(xq+i,xq,t) = rankB'q(xq+i,xq,t) =

nq < n'q, Vx, í > 0; and the

corresponding Pfaff system

dxq+i + Aq (xq+i,xq, t) dxq - 0,

where Aq = -B,+1B+, B+ = B^ (B9B^)_1 x^ = col(xq+i,xq), xq G Xq C 1"«,
<7 /_ 9

B9+i (xg+i,xg,í)

B, (x9+i,xg, í)
, n'q —

nq + nq+i,xq+i G Xq+X C Rn^,Bq(xq+i,xq,t) =

q
=

x, . . .

,
r

— 1, is completely integrable;

(c) rankB'q (x'q, t) — n'q,\/x, t > 0 for q = r. Then system (3.2.1) can be represented
in the block form.

Secondly, the sliding mode technique is used to compénsate the matched uncertainty.
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Finally, a high gain approach is used to obtain hierarchical fast motions on the sliding

manifold, the goals being to achieve stabilization of the sliding the mode equation and

compensation of the unmatched uncertainty.

Usually, the block indexes are reordered in an increasing way leading to the classical block

controllable form.

The block control approach has, in fact, successfully been employed for control of

linear systems, [112], including linear systems with delay, [113], [114]; for stabiUzation and

regulation of nonlinear (including mechanical) systems, [115], [116], [117], [118], [119]; for

automotive control [120]; for electric motors and power systems control [121], [122], [123]

[124], [125], [126] and with real-time application [127]; for finite time unmatched perturbation

rejection [128], [129]. Here the possibility of applying the same method for obtaining upper

estimations and bounds of uncertain nonlinear system solutions, is investigated.

3.2.1 Block control for linear systems

For a high order linear system, the block control principie can be adopted if the system can

be transformed into the so-called block control form [103], [104] represented by

i,. = Aixi + Bix2 (3.2.20)

x2
= A2 [ xf xl ] + B2x3

X-—1
= Ar_i [ Xj X2

* * *

Xr_! J -f Br_iXr

xr
= Ar [ xf xf • • • xj_-, xj ] + Bru

r

where dimensión di = rank (B¿) = dim (x¿); i = 1, 2, . . .

,
r and Y_di = n.

i=l

It can be seen, each equation (or subsystem) of the control form (3.2.20) is called a block.

The state of each block can be treated as a virtual control input to the preceding upper

block. The state dimensión of each block is equal to the dimensión of its corresponding
control inputs. Any linear controllable system can be reduced to the block control form

[107].

A hierarchical design procedure based on the block control form is summarized as follows:

Let A,, i = 1,2, . . . ,r; A¿ = {Xíj}, j = 1, 2, . . .

, d¡, be the desired spectra.

Step 1: Starting from the top of the block form (3.2.20), the desired dynamical behaviour

can be obtained if the virtual control, x2, can be assigned as

x2
= B^ (-AiXr 4- AiXi)
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where Bj1" is the pseudoinverse of Bi. Then,

xi = A^i

Step 2: Denote the deviation of virtual control from the desired one as

s2 = x2
- B^ (-AiXi + AiXi) (3.2.21)

Differentiating equation (3.2.21) yields

s2 = Á2S2 + B2x3 (3.2.22)

where Sf = [sf,s2]; Si = Xi, and A2 can be found after differentiation. The desired

dynamical behaviour of the block 2,

s2 = A2s2,

can be obtained if the virtual control, xr-2, is selected as

x3
= B.} f -Á2S2 + A2s2) (3.2.23)

where B2 is the pseudoinverse of B2.

Step 3, 4, ■■•* r-l'. Consider the succeeding lower blocks. Since the matrices

Bj (i = 3, 4, . . .

, r) ,
have pseudoinverse matrices B+ (i = 3, 4, . . .

, r), there exists a sequence
of desired virtual controls which are obtained in a similar fashion as for the block 2,

Xj+i
= B+ (-ÁjSj + AjSj) (3.2.24)

and the deviations,

Sj = x¿
- B+i (-Áj_iS¿_i + A¿_iSj_i) (3.2.25)

where Sf = [sf ,sf ,. . .,sf] for i = 2,3,...,r- 2.

Step r: For the lowest block, since

Sr — Xr
—

BT_X í —Ar_iSr-l + Ar-lSr_l J ,

the time derivative of sr is found as a function of the real control

Sr
= Ar_-.Sr-l + Bru.

The whole system is written as

Si = Axsi + s2

áj = AjSj + Sj+i (3.2.26)

Sr = Ar_iD*r_i -f" Jt>rU.

with i = 2, . . . ,r
— 1.
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Linear feedback, discontinuous and Super-Twisting controllers

Based on the above hierarchical design approach, it is obvious that sr = 0 is the desired

manifold for stabilization of the control system. As a first altemative, to obtain zero deviation

of the function sr — 0, a linear feedback control

u = B+ (*-ÁrSr + Arsr)

can be applied for stabilizing the linear system (3.2.26), yielding the closed-loop system

si
= AiSi + s2

Sj = AjSj + si+i (3.2.27)

with i = 2, . . . ,r
— 1. The stability of (3.2.27) depends on the correct choice of the spectra

provided by Ai, . . .

, Ar.

Another altemative is the use of a sliding mode controller, the most distinguishing features

of the SMC methodology are its finite time convergence to the sliding manifold and an

inherent insensitivity to parameter variations and external disturbances once in sliding mode.

In order to genérate sliding mode motion in the desired manifold, the foUowing control

u - -6+ fi. (3.2.28)

is assigned.

On the one hand, the discontinuous control strategy

ü = Msign (sr) . (3.2.29)

can be employed by selecting M based on the design methodology of the SMC, where ArSr

is considered as a bounded external perturbation.

On the other hand, the second order sliding mode algorithm so-called Super-Twisting

Algorithm [100, Ch. 3] [130] is proposed:

ü = üi + ü2 (3.2.30)

with üi = Qi|sr|1/2sign(Sr) and u2 — a2sign(sr), where ai > 0 and a2 > 0 are the control

parameters.

Resulting the following equation

sr = ^ + u (3.2.31)
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where xp
— ÁrSr is considered as a bounded external perturbation. In addition, it is supposed

tp is differentiable and \<p\ < N, Vi > 0 with AT a known constant.

The sliding motion condition for the system (3.2.31) in closed-loop by (3.2.30) can be

obtained via the transformation

y (t) = xp
-

a2 / sign (t) dr

reducing the system to

s"r = y
— ai|sr|1//2sign (sr) (3.2.32)

y
=

ip- a2sign (sr) .

In this form, with the Lyapunov function proposed in [131], if the parameters ai and a2 are

chosen as a2 > 5N and 32AT < a2 < 8 (a2 —

N), it is provided finite time convergence of

the system (3.2.32) to the origin (0, 0). An altemative approach for the stability is given in

[132].

In sliding motion the closed-loop dynamics is given by the so-called sliding mode equation

¿i = AiSi + s2

Sj
= AjSj + Sj+i (3.2.33)

with i = 2, . . . ,r
— 1. The stability of the sliding mode equation (3.2.33) depends on the

correct choice of the spectra provided by Ai, . . .

, Ar-i-

3.2.2 Robust block control for a class of nonlinear systems

The essential feature of the proposed method is the conversión of the system (3.2.1) to the

BC-form consisting of r blocks:

x*.
= ^ (xi, í) + Bi (xi, í) x2 + gi (xut) (3.2.34)

x¡ = f¿ (xj, í) + Bi (x¡, í) x¿+1 + g¿ (xj, í) (3.2.35)

X*
= fr (Xr, t) + BT (xr, t) U + gr (X*, t) (3.2.36)

with i = 2, . . .

,
r

—

1, where the vector x is decomposed as x = (xi , x2, . . .

, xr, xr+i) ,

Xj
= (xi ,x2, . . . ,Xj) ,

i = 2, . . .

, r, Xj is a n¿ x 1 vector, and the Índices (ni,n2,...nr)
define the structure of the system and satisfy the following relation:

r

ni <n2 <
. . .

< nT <m and /Jn¿ -= n (3.2.37)
¿=i
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The matrix Bj, before the fictitious xi+i in each ith block of (3.2.34)-(3.2.36), has full

rank, that is

rank (B¿) = n{ Vx G X C Rn and t € [0, oo) ,
i = l,...,r. (3.2.38)

The procedure of reducing the system (3.2.1) to the BC-form (3.2.34)-(3.2.35) based on

the integral transformation method [102], as well as conditions of the BC-form existence [133]

The relation (3.2.37) means ríi —

rii+i or n¿ < rij+i Let us first consider the plant with

the structure

ni < n2 <
■ ■ ■

<nr < m (3.2.39)

Block Recursive Transformation

The following assumptions of the bounds on the unknown terms in (3.2.34)-(3.2.36) are

stated: (Hl) There exist positive constants qitj and dj such that

l|gi(xi,í)ll < 9n||xi||+di

||g2 (x2, í)|| < 92i ||xi|| + q22 ||x2|| + d2
i

Hft (Xi,t) II < X^9ü 11x^11+ ¿i
¿=1

with i = 3, . . . ,r
— 1.

Taking into account the structure (3.2.39), the following recursive transformation is

introduced

Zl = Xi := $1 (xi, £) (3.2.40)

z2
= B2(xi,í)x2 +

"

fi(xi,£) + A:i$i(xi,í)
'

0
:=<Mx2,í) (3.2.41)

Zj+1
= Bj+1 (xj,í)xj+i +

fj(Xj,í) + fcj$j(Xj,í
0

)

'

:=í>j+i(x¿+i,í) (3.2.42)

with i = 3, . . .,r
— 1, where Zj is a nt x 1 new variables vector, ki > 0, Bj+i

Ej,2 = [ 0 In,+.-n- ] G RK+i-"i)*ni. Ini+i_ni is the identity matrix.

Bj

Ej,2

The transformation (3.2.40)-(3.2.42) reduces the system (3.2.34)-(3.2.36) to the following
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desired form:

¿i = *-A.1Zi + EuZ2 + gi(z1,í) (3.2.43)

¿j = -A,jZj + Ej,iZj+1 + g¿(zj,í) (3.2.44)

Zr
= fr(z,í) + Br(z,í)u*fgr(Zr,í) (3.2.45)

with i = 2,. . . ,r
—

1, where z = (zi, . . .

, zr) fr (z, t) is a bounded function, rankBr = ni,

Br -= Br_iBr.

Discontinuous and Super-Twisting controllers

In order to genérate sliding mode motion in (3.2.43)-(3.2.45), a natural choice of the sliding
manifold using transformation (3.2.40)-(3.2.42), is

Zr =0, Zr
= $r (Xr, t) . (3.2.46)

and the control strategy, is proposed:

u = -B^ü. (3.2.47)

On the one hand, taking into account the bound (3.2.2), the following discontinuous

control strategy, is proposed:
ü = Msign (zr) . (3.2.48)

The control law (3.2.48) guaranties the convergence of the closed-loop system motion to

manifold zr = 0 (3.2.46) in a finite time, [133], defined as

ía<ío + -||zr(í0)||2> n>0. (3.2.49)
V

On the other hand, the second order sliding mode algorithm so-called Super-Twisting

Algorithm [100, Ch. 3] [130] is proposed:

ü = üi+ü2 (3.2.50)

with üi — ai|zr|1/2sign(zr) and u2
= a2sign(zr), where ax > 0 and a2 > 0 are the control

parameters.

From equation (3.2.45) results the following equation

zr = <f + u (3.2.51)

where ip
— %. (z, £) -I- gr (zr, í) is considered as a bounded external perturbation. In addition,

it is supposed that tp (t) is differentiable and \¡p\ < N, Vi > 0 with N a known constant.
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The stability condition for the system (3.2.51) in closed-loop by (3.2.50) can be obtained

via the transformation
t

y(t) = (p-a2 / sign (r) dr

o

reducing the system to

zr = y-ai|zr|1/2sign(zí.) (3.2.52)

y
=
<p~ a2sign (zr) .

In this form, with the Lyapunov function proposed in [131], if the parameters ai and a2

are chosen as a2 > 5N and 32N < a\ < 8 (a2
—

N), it is provided finite time convergence of

the system (3.2.52) to the origin (0,0). An altemative approach for the stability is given in

[132].

Robustness to Unmatched Uncertainty

For the system constrained to the sliding surface zr = 0 the system (3.2.43)-(3.2.45) reduces

to

¿i = *-fciZi + EuZ2 + gi(zi,í) (3.2.53)

¿j = -¿¿Zj + Ej^Zj+i + g¿ (z¿, t) ,
¿ = 2,....,r-l (3.2.54)

¿r-l —

~ krZr-l +gr (zr_l,í) (3.2.55)

Thus now, the original stability analysis problem is reduced to the analysis of robustness

property of a reduced-order sliding mode dynamics (3.2.53)-(3.2.55) which can be considered

as linear system with nonlinear perturbation. Note that this perturbation is unmatched with

respect to the control u in (3.2.34)-(3.2.36). It will be shown that the convergence rate of the

linear part of (3.2.53)-(3.2.55) is defined by valúes of coefficients feí, . . .

, kr-i- For, the bounds

from the physical constraints on the original system (3.2.34)-(3.2.36) (see -Assumption Hl)
can be rewritten by using the change or variables (3.2.40)-(3.2.42) as (H2) There exist positive
constants qij and dj, such that

■TuKII+di (3.2.56)

<722||z2||+A.i<72i||zi||+d2 (3.2.57)

?33 ||z3|| + k2q32 ||z2|| + k2q2i \\z_\\ + d3 (3.2.58)
i-1

9i,j 11*11 + Y_ ¿í-^ INI + di, i = 4, * * ■

,
r

- 1. (3.2.59)
j=i

l|gi(zi,0ll <

llB2(3M)ll <

Illa (%, í) II <

Ui&,t)\\ <



3.2. Block control 33

To achieve the robustness property with respect to unknown but bounded uncertainty,

the controller gains fci, . . .

, kr-i have to be chosen hierarchically high. Thus, since gi does

not depend on fe**., the valué of the coefficient fci can be chosen so high that the term fciZi

in (3.2.53) dominates the term gi. By block linearization procedure, the term g2 depends

on ki but not on k2, . . .

, fcr_i [133]. Then for fixed fci, the appropriate choice of valué of k2

provides the dominations of term k2z2 in the second block of (3.2.54), and so on.

In order to establish property of the sliding mode motion on the surface zr = 0, the

following hierarchy of the control gains fci, . . .

, kr-i with respect to the given bounds on the

unknown terms of (3.2.53)-(3.2.55), is proposed:

fel > qn (3.2.60)

fe2 > «722 + fcl<72lC*12, 0*12
= (feí

- qu)'1 (3.2.61)

fe3 > g33 + fe2*732Q!23 + feíftiau, "23 = (fe2 -

922
-

hq2iai2)~ , <*i3 = ai2a-*&3.2.62)
'_1

. . / i~2

._.
\_1

k > qi,i + ^2 k(j~3)qijotjt, Oj-i,»
= I fej_i -

(_í-i,í-i
-

^2 ky3'qi-i,jOcjti-i 1
,

¿=i V j=i I

ajti
=

ax-iOi-u i = 4, . . .

,
r
- 1. (3.2.63)

Let the Assumption H2 holds, and the valúes of positive scalars feí, . , .

, fer-i satisfy the

inequaüties (3.2.60)-(3.2.63). Then there exist positive scalars 7^ and hi, i = 1, . . .

, r—l,j =

i, . . .

,
r

— 1 such that the solutions of system (3.2.53)-(3.2.55) are estimated by

|zr-i(í)ll < 7r-i,r-iexp

|zr-2(í)ll < 7r-2,r-2exp

--¿(Xr-l (t
~

ío)

~2ar-2 (t ~ h)

+ hr-i

+7r_2,r-l exp

r-l

1

«r-l (t
~

t0) + K-

1
,

.

-aj (t
-

í0) + 1%,||zj(í)|| < ^7í,jexp

and these solutions are uniformly ultimately bounded, i.e

lim sup ||zj (í)|| < hi, i=l,.

i = l,

1.
t-HX>

(3.2.64)

(3.2.65)

,r-3 (3.2.66)

(3.2.67)

This result establishes property of the sliding mode motion on the surface zr
= 0, and

provides the required valúes of the controller gains feí, ...,fer_i is derived in [133]. It is

interesting to note that with increasing the valúes of fe**., . .. ,fer-i the valúes of bounds /i¿

becomes arbitrary small. But in this case the domain of sliding mode stability [133], can be

decreased since function fr depends as well on gains fc**., . . .

, fer_i.
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3.3 Integral sliding mode with block control

In this section the Integral Sliding Modes with Block Control (ISM) [134], [135], [136], [137]

technique on the basis of integral Sliding Mode (SM) [101] in combination with nested SM

[105] is presented. This technique allows to achieve robustness to matched, and unmatched

perturbations, and ensure output tracking. Theoretically, this integral nested SM control

can guarantee the robustness of the system throughout the entire response starting from

the initial time instance and reduce the sliding functions gains in comparison with standard

SM. The description of the ISM is presented in generic terms to show the generality of the

approach.

3.3.1 Problem statement

The class of nonlinear systems presented in the NBC (nonlinear block controllable) form is

studied, this class of system can be seem as an extensión of the system presented in equation

(3.2.20). The NBC form consist of r blocks [115]

Xj - fj(xj) + Bj(xj)xj+i+gj(í,x) (3.3.1)

X* = fr(x)+Br(x) + gr(í,x), ¿ = l,...,r-l,

y
= xi

where, x = [xi • • ■ xr]T G R™ is the state vector, Xj G Rni - Xj = [xi • • ■ Xj] ; u G Rm is the

control vector. Moreover, f(-) and the columns of B(-) are smooth vector fields, g¡(*)is a

bounded unknown perturbation term due to parameter variations and external disturbances,

and rank [Bj (xi, • • •

, x¿)] = rij, Vx.

The integers m, . . .

, TV define the dimensión of the ith block (system structure) and satisfy

r

ni < n2 <
■ ■ ■ < nT

=

m, VJ rij = n.

i=l

The control objective is to design a controller such that the output y in (3.3.1) tracks a desired

reference xre/ (í) with bounded derivatives, in spite of unknown but bounded perturbations.

To induce quasi sliding mode in the ith block of the system (3.3.1), the continuously

differentiable sigmoid function sigm(£;x), where we use the result that the sign function

can be approximated by the sigmoid function in the form üme_>ooSÍgm (e; x) = sign (x). The

figure 3.1 shows the approximation for various valúes ofthe sigmoid function slope. The used

sigmoid function in the hyperbolic tangent, sigm (e; x) = tanh (ex)
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Figure 3.1: Sigmoid function for various valúes of the parameter e

3.3.2 Control design

According to the block control technique [115], [133], the state xi+i, i = 1, ...,r
— 1 is

considered as a virtual control vector in the ¿th block of the system (3.3.1). The design

procedure is described in r steps.

Step 1. The control error in the first block ofthe system (3.3.1) is defined as

Zi= Xi-Xre/:= *l (Xi)

then

¿i= fi (xi) + Bi (xi) x2 4* gi (í, x)

With ga (Í,X) = gi (Í,X) -

Xref.

And the virtual control x2 in (3.3.2) is redefined of the form

X2 = X2 n + X2i

(3.3.2)

(3.3.3)

where the nominal part, x2i0 is selected to elimínate the oíd dynamics in (3.3.2) and introduce

the new desired ones, feíZi, feí > 0 i. e.

x2,o
= -Bf (xj (f: (xj + fcizi -

Eiz2) , fci > 0 (3.3.4)

where z2 G Rn2 is a new variables vector, E-. = [ ln, 0 ] G R^**1* and Bj" is the right

pseudoinverse of Bi, defined as Bf = Bf (BiBf)-
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In order to reject the perturbation term gi (í,x) in (3.3.2), the second part ofthe virtual

control (3.3.3), x2ji is designed by using the integral sliding mode technique [101]. The

pseudo-sliding manifold Si is chosen as

Sl
=

xi + ox
= 0 Si, oi e Rnl (3-3.5)

Then, from (3.3.2)-(3.3.5) it follows

si = -fciZi + Eiz2 + Bi(xi)x2>i-|-gi(í,x)+cri. (3.3.6)

Choosing the dynamics for the integral variable o\ of the form

ái = fcizi - Eiz2, ai (0) = -zi (0) (3.3.7)

the equation (3.3.6) becomes

s1 = Bi(xi)x2,i + gi(í,x). (3.3.8)

The control input x2ii in (3.3.8) is selected as follows:

x2,i
=
-pi (xi) Bfsigm (si; e_) (3.3.9)

where sigm (s^ £i) = [sigm (s^i; £_),..., sigm (siini; £i)]T Substituting (3.3.3), (3.3.4) .and

(3.3.9) in (3.3.2) results in

¿i = -fciZi + EiZ2-pi(xi)sigm(si;£i) + gi(í,x). (3.3.10)

If the matrix Mi (xx) G R(n*-_ni)xn2 ¡s chosen such that the square matrix B2 (xi) =

[ Bi (xi) Mi (xi) ] has full rank, the new variables vector Z2 can be obtained from

equations (3.3.3), (3.3.4) and (3.3.9) as

z2
= B2x2 +

fi (xi) - fci*i (xj)
-

pi (x1)sigm(si;e1)
0

:= *2 (x2) (3.3.11)

where x2
= [ X! x2 ] The procedure described above can be achieved in the ith block of

(3.3.1) as follows.

Step i. At this step, the dynamics of the transformed ith block of the system (3.3.1) are

given by

z¿ = l (xj) + Bj (xj) x¿+1 + g¿ (í, x) (3.3.12)

where z¡ G Rni is a new variables vector, g¡ (í, x) = g¿_i (í, x)-¡| \fii-i (xj_i) sigm (sj_i; £-¿_i)],

Zj = *¿ (xj) and B¿ = B¿B¿. The virtual control xi+i in (3.3.12) is redefined as

Xj+i
=

x¿+i,o + x¿+i,i. (3.3.13)
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Taking into account the procedure achieved in step 1, Xj+^o and Xj+1,1 are selected,

respectively, of the form

Xj+1>0
= -Bt (xj) (fj (xj) + fcjZj - EjZj+i) , fcj > 0 (3.3.14)

Xj+i,!
=

-pi (x¿) Bf sigm (s¿; e_) , pi > 0 (3.3.15)

where zi+i G R"^1 is a new variables vector, E¿ = [ lnj 0 ] G Rn«xn*+-* and Bf =

Bf (BjBf) The proposed pseudo-sliding manifold and its derived dynamics, respectively,vx'1'
■

are

Sj = z¿ + Oi
= 0, Sj,C7jGRni

Sj = -fcjZj + EjZj+i + B¡ (xj) Xj+i,i + g¿ (í, x) + oí. (3.3.16)

lf Oí satisfies

bi = fcjZj -

EjZj+i, oí (0) = -Zi (0) (3.3.17)

the equation (3.3.16) can be rewritten as

Sj = -Pi (Xj) sigm (s¿; e¿) + g¿ (í, x) , p¿ (x¿) > 0.

The substitution of (3.3.14) and (3.3.15) in the block (3.3.12) yields

¿j = -fcjZj + EjZj+i
-

pi (x¿) sigm (sj; £j) + gj (í, x) .

Again, choosing a (rij+i
—

n¿) x ni+i matrix M¿ (z¿) such that the square matrix

+i(xj)=[Bj(xj) Mj(xj)]Th
from equations (3.3.12)-(3.3.15) as
Bj+i (xj) = [ Bj (xj) Mj (x¡) ] has full rank, the new variables vector zi+i can be obtained

Zj+i
— Bj+iXj+i +

: = *i+1 (5tj+1) .

fi (x¿)
- fcj'í'j (xj) -

pt (x¿) sigm (s¿; e^
0

¿ = 2,...,r-l,

Step r. At the l^t step, the transformed complete system can be presented in the new

variables z\, ■ ■ ■ ,z< as

ii = -fcjZj + EjZj+i -/9j(xi)sigm(s¿;cj)-(-gi(í,x) (3.3.18)

s¿
= -pj(5cj)sigm(s¿;e¿)-|-gj(í,x)

Zr
= fr(x) + Br(x)u + gr(í,x), 1 = 1,...,T-l

where Br (•) = Br_i (•) Br (■) has full rank since nr = m. Design the control input u in

(3.3.18) as
u = u0 + ui (3.3.19)
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and define a sliding variable sr G R"r of the form

sr = zr + oT, or G RUr (3.3.20)

Then

Sr = fr (X) + Br (x) U0 + Br (x) UX + gr (í, x) + br (3.3.21)

Choosing

ár = -fr (x)
- Br (x) Uo, Or (0) = ~Zr (0)

simplifies the equation (3.3.21) to

sr = Br(x)ui + gr(í,x) (3.3.22)

The second part of the control input (3.3.19) is selected as

ui = -pr (x) B^sign (sr) , pr (x) > 0. (3.3.23)

Under the condition pr (x) > HB"1 (x) gr (í,x)|| sliding mode occurs on the manifold

sr = 0 (3.3.20) in a finite time. Solving (3.3.22) for Ur_i, formally setting sr = 0, shows

Uie9
= B~l (x) gr (í, X)

where Uieg (í, x) is the equivalent control [101]. Therefore, the integral control (3.3.23) rejects
the perturbation term gr (í,x) in the last block of (3.3.18):

Zr = fr (x) + Br (x) U0 + Br (x) Uleq + gr (í, x)

and we have

Zr = fr (x) + Br (x) U0.

Now, choosing

U0
= -B"1 (x) [fr (x) + fcrZr] fcr > 0

the sliding mode dynamics are described by

¿j = -fcjZj + EjZj+i -

pi (xj) sigm (s¿; £j) + gj (t, x) (3.3.24)

Sj = -pj(x¡)sigm(Sj;£j) + gj(í,x)

Zf n'.f-Z-r-, % ^=

Xj, * . . « V J. .

Now, it is possible to establish the following result:
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Theorem 3.2. //

Hl) the unmatched gi (•),-•■ , gr-i (•) and matched gr (•) perturbations are bounded, i.e.,

there exists a known scalar function Pi (x) such that

||gj(í,x)||</3j(x). i = l,...,r

then, there exist constants hi,...,hr-i such that the states of the system (3.3.24), are

uniformly bounded, i. e.

||zí(í)||</ij, i = l,..., r-l.

Moreover the perturbed system (3.3.24) reaches to a neighbourhood of the output y = xx

in finite time and remains in this neighbourhood.

Proof. The proof is constructive and consists of r steps, begin with the step r.

Step r. First, the stability of the sliding variable sr is analyzed. Considering the Lyapunov
function Vr = sjTsr, it follows:

Vr = sj [-pT (x) sign (sr) + gr (í, x)] . (3.3.25)

Under the assumption Hl, the equation (3.3.25) can be written as

Vr = s?[-pr (x) sign (8*.) + &(X)] (3.3.26)

< ||sr||[-pr(x) + ||/3r(X)||]

From (3.3.26) it is easy to see that under the condition

Pt(x)>\\Pt(X)\\

the derivative Vr is definite negative and the equivalent control ur)ie9 (t, x) satisfies

Ur.le-;
=

~gr (t, x)

rejecting the perturbation term gr (í,x) in the last block of (3.3.24). Now, it is necessary to

analyze the stability of the last block. Using the Lyapunov function Vr = |z^zr, leads to

Thus, the trajectories of the last variables vector zr are asymptotically stable.

Step r-l. Proceeding in a similar way as in previous step, the Lyapunov function

Vr_i = s^_1sr_1 is proposed, then

Vr_l = SjLi [-/V-l (Xr-l) Sigm (Sr-l) + gr-1 (í, x)] (3.3.27)
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In the región ||sr-i|| > £r-i the equation (3.3.27) becomes

Vr-l = S^_1[-)Or-l(Xr-l)sÍgn(Sr-l) + gr-l(í,x)] (3.3.28)

< ||Sr_l||[-pr-l(Xr-l) + l|gr-l(í,x)||]

Moreover, under the condition pr-i (xr_i) > ||gr-i (í,x)|| , ||sr_i|| will be decreasing until

it reaches the set {||sr_i|| < £r-i} in a finite time and it remains inside. The upper bound of

this reaching time can be calculated by using the comparison lemma [138] as follows:

ír-l<||Sr-l(0)||-£r_l.

Furthermore the equivalent control Xr_i,ieg fulfills

Sr-1 = Xr-l,leg + gr-l (í, x) = £r-l7r-l (3.3.29)

where £r-i7*»-i is the error introduced by using the control law (3.3.15). To analyze the

stability of the r - 1 block of the system (3.3.24), the Lyapunov function Vr_i = -¿z^Zr-i
is considered and its time derivative is given by

Vr_i = ZTT_X [-fcr_iZr-i + Er_iZr -

pr-l (Xr-l) Sigm (sr_X; £r-i) + gr-l (í, z)]
< -fcr-1 ||zr_l f + ||zr_l || [||zr ||

-

pT-l \%-l) sigm (sr_i; £r-l) + gr-l (í, z)] .

In the región ||sr_i|| > £r-i, the derivative Vr_i becomes

Vr-i < -fer-l||Zr_i||2 + ||Zr_i||[||Zr|| -

pr-l (Xr-i) SÍgm (sr_i; £r-l) + gr-l (t, z)]
< fcr_l||Zr-l||2 + ||zr_i||[||Zr||+Sr_l]

and considering (3.3.29), it can be rewritten as

Vr-1 < -fcr-1 ||zr-l||2 + ||zr_i|| [||zr|| + £r-l7r-l] • (3.3.30)

Suppose that £r_i7r-i satisfies the following bound:

£r-l7r-l < "r-l ||*r-l|| + Pr-l, «r-l, Pr-l G R.

Then it is possible to present the equation (3.3.30) of the form

Vr-l < fcr-l ||Zr-l||2 + ||zr-l|| [||zr|| + Qr-l ||zr-l|| + Pr-l]

< -

l|Zr-l|| [(fcr-1
~

«r-l) ||zr-l||
~

||zr||
- Pr-l]

which is negative in the región

||zr_i|| > <ír_i||zr|| + Ar_i (3.3.31)
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where (5r_i = _

—- and Ar_i = .

ft"1
—

. Moreover ¿r-i and Ar_i are positive for
*r-l—Or-l

' **

fcr_l-ar_l
** ** r

fcr-i > ar_i. Thus the trajectories of the vector state enter ultimately in the región defined

by

K-1 1| <<5r-lK||+Ar_l.

Step i. The step r-l can be generalized for the block i, with i = r —

1, r
— 2, . . .

,
1.

In the región ||s¿|| > £j the derivative of the Lyapunov function Vj = sfSj is calculated

as

Vj = sf[-pj(Xj)sign(sj) + g¿(í,x)] (3.3.32)
< ||Sj||[-pj(Xj) + ||gj(í,x)||].

Again, under the condition —

pj (x¿) > ||g¿ (í,x)||, s¿ enter in the región {||sj|| < £j} in a

finite time given by

í¿<||Sj(0)||-£j.

The equivalent control Xj^, satisfies

Si = Xj,ie, + gj (í, x) = £j7j. (3.3.33)

Considering the function V¿ = |zfz¿ inside the subspace ||sj|| < £j, it follows

Vj < -fcj||zj||2-|- ||zj|| [||zi+i|| -pj(xj)sigm(s¿;£j)+gj(í,z)]
< -fcj||Zj||2 + ||Zj||[||Zj+i||+Sj]

and with (3.3.33), V¿ becomes

Vj<-fcj||Zj||2 + ||Zj||[||Zj+i||+£j7j]

Supposing that £j7j fulfills

Siji < ai K|| + Pi, a¡,/3jeR

then

Vj<-||Zj||[(fcj-aj)||zj||-||Zj+1||-A]

which is negative in the región

K|| > <5íK+i|| +Aj

where ¿¿ = t*-**— and A¿ = ttz~, which are positive for fc, > a¿. Therefore a solution for z¿ is

ultimately bounded by

||zj|| < Si ||zi+1|| + Aj.
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Then with the bound

£¿7i <a.i K|| + Pi, i = l,2,...,r-l

the convergence región is defined by:

K-i || > ¿r-l Kl| + Ar-i := hr-i

\\zr-2\\ > Sr-2 ||zr_i|| + Ar-2 := K-2

||zi|| > ói\\z2\\+\i:=hi

D

3.4 Conclusions

In this chapter control methods are introduced; the Regular Form is presented, giving
convenient interpretation of the reduced order dynamics provided by sliding mode control;

the Block Control Principie, as a generalization of the Regular form, and the Integral Sliding
Modes with Block Control are presented in detail for the design of sliding surfaces for robust

sliding mode controllers.



Chapter 4

Brake system control

In this chapter we propose controllers based on the block control principie and sliding mode

for the brake system. These controllers maximize the friction forcé in the wheel and avoids

brake locking. Different cases are presented; it includes problems as tire deformation and the

addition of an active suspensión. This work considers the real situation: the control input
can take only two valúes "0" or "1", depending on the corresponding valve being open or

closed.

In section 4.1 the joint application of sliding mode control and block control principie
is proposed, [115], [133]. The block control principie is used to design the sliding surface

and provide linear dynamics in the sliding manifold. In this case tire deformation is not

considered.

Subsequently, the use of integral nested sliding mode [135], [134] for the cases of no

tire deformation and tire deformation are considered in sections 4.2 and 4.3, respectively.

Theoretically, the integral nested sliding mode control can guarantee the robustness of the

system throughout the entire response starting from the initial time and reduce the sliding
functions gains in comparison with standard sliding mode. In addition, as example, the use

of a continuous pneumatic valve is studied and a Super Twisting control is used [100, Ch. 2].

The section 4.4 presents a sliding mode block control regulator for the asymptotically

tracking of the relative slip to a desired trajectory. To solve this problem we propose to use

the block control technique combined with the SM control algorithm to achieve robustness

to perturbations, and to ensure asymptotic output tracking along with the stabilization of

the residual dynamic consisting of the vehicle velocity.

Finally in section 4.5 the control of a brake with active suspensión is presented. An ABS

control based on integral nested sliding mode is designed in order to impose a desired vehicle

motion and as a consequence, to provide adequate vehicle stability. On the other hand,

active suspensión are designed with the objective to guarantee the improvement of the ride

quality and comfort for the passengers. For the active suspensión, another new controller

43
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based on the regular form [102], sliding mode control and geometric linear control
methods

[139] for the sliding surface design is proposed in order to achieve robustness to matched,
and

unmatched perturbations and ensure output tracking. In both subsystems a Super-Twisting

control is used [100, Ch. 2].

Throughout the development of the controller, we will assume that all the state variables

are available for measurement.

4.1 Sliding mode block control for brake with no tire

deformation

In this section, the joint application of sliding mode control and block control principie is

proposed. The block control principie is used to design the sliding surface and provide linear

dynamics in the sliding manifold. In this case the deformation on the tire is not considered.

Based on system (2.1.11) the problem is to design an Sliding Mode Block controller that

obtains reference tracking in despite of the perturbations in the system. Define s* as the

desired trajectory of the relative slip, which must maximize the friction function (j>(s). The

system model is presented again

¿i = —

a0xi +aif (s) —

a2x2

x2
= —

a3x2 + bu (4-1.1)

¿3 = -aiF(s) - fw(x3)

with output y = s = h(x) = 1 —

r^, where ao = Bb/J, ai = r/J, a2
— kb/J, a3 = 1/t,

a4 = 1/M, b = Pc/t and fw(x_) = _\g (pCdA¡) (x3 + vw)2

4.1.1 Control design

Let s* (t) be a twice differentiable function, but with unknown derivatives, now we define the

output tracking error as ei = s
— s* then its derivative is

éi = ci(-r) + c2(x)-r2 + fy(x)
- s* (4.1-2)

where

,.a / Xi ai ,
, . Xl_..\

ci(x) = ci
= r -ao h* —/ (s) + a4-2 F (s)

\ a-3 %3 2-3 /

c2(x) = c2
= r

X3

fy(x)±fy = -r^fw(x3) + A(p)
£3
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fy(x) will be considered as an unmatched and bounded perturbation term

\fy(x,t)\ </3<oo

and the term A (p) contains the variations of the friction parameter p.

Considering the variable x2 as virtual control in (4.1.2) we propose the desired dynamics

éi = — fc0eo — fciei by means of

X2ref
= [Cl + fcoe0 + fc^l] (4.1.3)

c2

where fco > 0, fci > 0 and e0 is the integral of the tracking error ei that is

é0 = ci. (4.1.4)

The variable x2re/ is used to put the desired dynamic for ei and obtain the control aim.

Now we define a new error variable e2
= a2(x, t) in the form

e2 = x2ref
-

x2. (4.1.5)

Using (4.1.1) and (4.1.3), straightforward calculations reveal

é2 = -a3e2
- bu + f2e (x) (4.1.6)

where

. . da2 (x, t) . da2 (x, t) .

J2e{x) -

a3x2ref H 5 xi H x3.
dxi ox3

To induce sliding mode on the sliding manifold e2
= 0 we choose the control signal as

1
■ / v

1
,

ii = -sign(e2) + -. (4.1.7)

4.1.2 Stability analysis

Using the new variables eo, ei and e2 the extended closed loop system (4.1.2), (4.1.4), (4.1.6)
and (4.1.7) is presented as:

é0 = ex (4.1.8)

éi = -fc0e0 - fciei + c2e2 + g_(x, t) (4.1.9)

é2 = -a3e2 + f_e(x) -

-sign (e_) b--b (4.1.10)
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with gx(x, t) ~ fv(x)
- s*

The stability of (4.1.8) (4.1.10) can be is studied step by step:

A) SM stability ofthe projection motion (4.1.10);

B) SM stabiüty ofthe projection motion (4.1.8)-(4.1.9);

We use the following assumptions:

\gi(x,t)\^ai\ei\ + Pi (4.1.11)

and

|/2e(x)|^a2|e2| + /32 (4.1.12)

with ai > 0, a2 > 0, Pi > 0, p2 > 0, a3 > a2 and b > |/2e(x)|.

A) The system (4.1.10) can be presented as follows:

Case 1, e2 < 0, then

é2 = -a3e2 + f2e (x) (4.1.13)

Case 2, e2 > 0, then

é2 = -a3e2 + f2e (x) - b (4.1.14)

we use the Lyapunov candidate function V2 = \e2 to analyze the stability conditions. The

derivative of V2 with respect to time in Case 1 is

l/2 = e2(-a3e2 + /2e(x)) (4.1.15)

under condition (4.1.12 ) we have

V_< |e2|(-a3|e2| + a2|e2|+/02)

In this case, the solution of (4.1.10) is ultimately bounded [138] by

|e2(í)|<áo, S0 = —^—
(4.1.16)

a3
—

a2

that is similar in CASE 2.

B) To analyze stability of the sliding mode equations (4.1.8)-(4.1.9) in a vecinity of e2 = 0,

that system can be regarded as a linear system with non-vanishing perturbation in the form:

$ =M + D(S) (4.1.17)

where

£= [ei e2]T;A =

0

-fco -fci
;D =

0

9i(t)
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Now we use the following Lyapunov candidate function:

Vi = l-ePÍ (4-1.18)

with P positive definite. With the correct selection of the elements fco and fci the matrix A

is Hurwitz, there exists one unique solution (P > 0) to the Lyapunov equation

ATP + PA = -Q

where Q = QT Q > 0.

Lyapunov equation satisfies:

Amin(p) \z\i < ?ps < Amax(P) ieii (4.i.i9)

^A(_ = -?QS<-\min(Q)\í\22

.and the perturbation term is bounded by \D(g)\ < ai |f |2 + fa.

Teiking derivative of (4.1.18) we obtain

Vi = -£TQ£ - 2?PD(0 (4.1.20)

substituting the bounds (4.1.19) in (4.1.20), we have

Vi = -?Qt - 2?PD(Z)

< -Amin(Q) líg + 2Amax(P) |f |a (ai |í|a + Pi)

< (-KUQ) + 2aiAmax(P)) Ida + 2AAmax(P) l£l2
= -a(i-eml-ae\i\22 + p\i\2

where a = \min(Q)
-

2ai\max(P) and /? = 2pi\max(P), then

Vi<-a(l-9)\i\22 (4.1.21)

forV|£|2>^ = ¿.

Thus, the nominal system £ = j4f has an exponentially stable equilibrium point £ = 0,

the solution £(í) of (4.1.17) is ultimately bounded and the ultimate bound is given by

|f|a < ^HS" (4.1.22)
\J *mm\r)

Finally, considering the absolute valué ofthe wind speed in (4.1.1), the remaining dynamics

x3 is locally stable.
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4.2 Integral nested sliding mode control for brake in

absence of tire deformation

This section presents the use of integral nested sliding mode for the cases of no deformation.

Theoretically, the integral nested sliding mode control can guarantee the robustness of the

system throughout the entire response starting from the initial time instance and reduce

the sliding functions gains in comparison with standard sliding mode presented in the above

section. In addition, as example, the use of a continuous pneumatic valve is studied and a

Super Twisting control is shown. Given sr (t) as the desired trajectory of the relative slip

s, which must be cióse to maximize the function 4>(s), the considered problem is to design a

controller that obtains reference tracking in despite of the perturbations in the system. As a

solution, we propose an Integral Nested Sliding Mode Control [136] based on Sliding Mode

Block controller [115], [133], Nested Sliding Mode Control [105] and Integral Sliding Mode

Control [101], for system (2.1.11). The system equations are presented again:

¿i = —

aoXi + ai/ (s) —

a2x2

x2
= —

a3x2 + bu (4-2.1)

¿3 = -a_F(s)
-

fw(x3)

with output y = s = h(x) — 1 —

r-f-, where ao
= Bb/J, ai — r/J, a2 — kb/J, a3

= 1/t,

a4 = 1/M, b = Pc/t and fw(x3) = -^ (pCdA¡) (x3 + vw)2

4.2.1 Integral sliding manifold design

Let s* (t) be a twice differentiable function. We define the output tracking error as

ei
= s

- s* (4.2.2)

then, from (4.2.1) and (4.2.2) the derivative of ei is

éi = /i (xi, x3) + h (xi,x3) x2 + Ai (4.2.3)

where fi (x1;x3) = -r [ai/^^a°J1 + | (a_F(s) + f_(x_)j\ and b_ (xx,x3) = r|.

The term Ai contains the reference derivative s* the variations of the friction parameter

//, the wind speed vw and it will be considered as an unmatched and bounded perturbation

term.

Considering the variable x2 as virtual control in (4.2.3) we determínate its desired valué

x_s as

x25 = x2¿,0 + x2í,i (4.2.4)
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where x2¿i0 is the nominal part of the nominal control and x2í,i will be designed using the

SM technique to reject the perturbation in (4.2.3) [101].

In this way, we propose the desired dynamics éi = -fcoeo — fciei, which are introduced by
means of

^24,o
=

-r~¡ r [fi (xi,x3) + fc0e0 + kie_] (4.2.5)
bi{xi,x3)

where fc0 > 0, fci > 0 and eo is defined by

é0 = ei, eo(0) = 0. (4.2.6)

Now, in order to attenuate the perturbation term Ai in (4.2.3), we define the surface

01 = ei + z (4.2.7)

where z is an SM integral variable and will be defined later.

From (4.2.3)-(4.2.7) the derivative of 01 is given by

bi = -fcoe0 - fciei + x2í,i + Ax + i. (4.2.8)

Selecting
z = fc0e0 -I- fciei (4.2.9)

with z (0) = —

ci (0), the equation (4.2.8) reduces to

bi = x2á>i + Ai. (4.2.10)

To enforce sliding motion in (4.2.10) the term X2$,i in (4.2.8) is chosen as

x2¿,i
= -fc^sigm (e, o_)

where we use the result that the sign function can be approximated by the sigmoid function

in the form

lim sigm (e; x) = sign (x) .

e—)*oo

The used sigmoid function in the hyperboüc tangent, sigm (e; x) = tanh (£x)

Now, we define a new error variable e2 as

e2
=

X2¿-x2. (4.2.11)

Using (4.2.1) and (4.2.11), straightforward calculations reveal

é2 = -a3e2
- 6u + A2 (4.2.12)
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where the term A2 = a3x2$ + l^xi + 7^X3 is considered as a perturbation.

Using the new variables eo, ei, e2 and 01 the extended closed loop system (4.2.3), (4.2.6),

(4.2.12) and (4.2.10) is presented as

é0 = ei (4.2.13)

éi = -fcoeo -

fciei + e2
-

fc^sigm (e, o_) + Ai (4.2.14)

bi = -fc^sigm (£, 01) + Ai (4.2.15)

é2 = -a3e2
- bu + A2 (4.2.16)

x3
= -a_F(s)-fw(x3) (4.2.17)

4.2.2 Sliding mode control for two position valves

Taking into account the case of a two position valve, open or closed, to induce sliding mode

on the sliding manifold e2 = 0 we choose the control signal as

u = ±sign(e2) + ± (4.2.18)

Now, the stability of (4.2.13) (4.2.17) closed-loop by (4.2.18) is outlined in a step by

step procedure:

Step A) Reaching phase of the projection motion (4.2.16);

Step B) SM stability of the projection motion (4.2.15);

Step C) SM stability of (4.2.13)-(4.2.14) in the vicinity of the manifold e2
= 0 and

01 =0.

We use the assumptions |Ai| < ai \oi\ + fa,

|A2| < qí2 |e2| + /32 (4.2.19)

and

Ai <a0|ái| (4.2.20)

with a0 > 0, ai > 0, a2 > 0, pi > 0, P2 > 0, a3 > a2, and b > |A2|.

Step A) The system (4.2.16) can be presented as follows:

Case 1, e2 < 0, then u = 0 and

é2 = -a3e2 + A2 (4.2.21)

CASE 2, e2 > 0, then u = 1 and

é2 = -a3e2 + A2 - b (4.2.22)
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We use the Lyapunov function candidate V2 = \e\ to analyse the stability conditions.

The derivative of V2 with respect to time in Case 1 is

V2 = e2 (-a3e2 + A2)

under condition (4.2.19) we have

V2 < |e2| (-a3 |e-2 1 + a2 |e2| + fa)

In this case, the solution of (4.2.16) is ultimately bounded by [138]

|e2(í)|<*5o- So = -^— (4.2.23)
a3

—

a2

that is similar in Case 2.

Step B) To analyse the stability of the projection motion (4.2.15) we assume that the

sign function can be approximated by the sigmoid function in the form sigm (e; x) -> sign (x)
when £ -t oo, then we can establish the equality sign(x)

—

sigm(£;x) = A3(£;x). It is

evident that As (x) is bounded, that is, for a given e there is a positive constant 0 < 7 < 1

such that ||As (£; x)|| = 7.

Taking the Lyapunov candidate Vi = \o2 and taking its derivative

Vi =
ox [-fc^sigm (£, oi) + Ai]

< -|ai|[fcffI(l-7)-a1|a1|-/Si]

1„(___r\
when kai > f±- then ox converges to a vicinity of zero, \oi\ < é, with ■d = 2J

'

and, with

(4.2.20), bi converges to zero in finite time [134].

Step C) To analyse the SM stability of (4.2.13)-(4.2.14) in the vicinity of the manifold

e2
= 0 and 01

= 0, we define the Lyapunov function V2 — \ (el + e2) and taking its derivative

V_ —

ex [(1
-

fc0) |e0|
- fciex + e2]

< -|ei| [(fc0
-

l)|e0| +fci|ei| -¿0]

therefore, if fco > 1 then, ei converges to an arbitrary small vicinity of zero, |ei| < ¿o/fci-

4.2.3 Sliding mode control for continuous position valves

We now consider the types of valve that can vary its position in a continuous range. To

induce sliding mode on the sliding manifold e2 = 0, the super-twisting control algorithm is
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applied [100, Ch. 2]

u =

y|e2|2Sign(e2)-ui (4.2.24)

«i = -A2sign (e2) .

Equation (4.2.16) closed-loop by control (4.2.24) results in the following dynamic system:

é2 = -Ai |e2|5 sign (e2) + ux + ip2

úi =

-A2sign(e2) (4.2.25)

where i¡j2 = -a3e2 + A2. By using (4.2.16) and (4.2.19) one can write

/ , <9x2(5 . dx2x ^

V'2 = a3x2 +
—-

xi + —J±x3 < p2.
oxi dx3

Proposing the following candidate Lyapunov function [132]:

V = 2A2|e2| + l-u2 + ^(A1|e2|1/2sign(e2) - ux)2

= ?Pti

where £T = [hl^signfo) Uj] and p = i_ í^2 + Af -AA

Its time derivative along the solution of (4.2.25) results as follows:

where

* -

-r^t«+rM«

Q=>±(W -A,) ,r=(2A2 + iA?i _,Ai)

Moreover, one can easily see that

with

Jjl_aTf< fh
Tn

\e2\^q^-\^m^ Q¿

«_(».;* «^
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then, the derivative of the Lyapunov function can be simplified to the following form:

2\e_\^
™

where

ñ - fX^ + ¿A? + (2A2 + ¿Ai)& -Ai \
W
A "Ai 1-lW

In this case the controller gains can easily be chosen such that Q > 0, implying that the

derivative of the Lyapunov function is negative definite. Finally the analysis can be continued

as in Step B of the above subsection.

4.3 Integral nested sliding mode control for brake in

presence of tire deformation

In a similar way to the last section, in this section the use of integral nested sliding mode for

the brake with deformation on the tire is considered. The introduction of the deformation

increases the complexity of the system and represents a more realistic case. However, the

design of the controller is almost the same to the no deformation case. Given s* (t) as the

desired trajectory of the relative slip s, which must be cióse to maximize the function (¡)(s),
the considered problem is to design a controller that obtains reference tracking in despite
of the perturbations in the system. As a solution, we propose an Integral Nested Sliding
Mode Control [136] based on Sliding Mode Block controller [115], [133], Nested Sliding
Mode Control [105] and Integral Sliding Mode Control [101], for system (2.2.4). The system

equations are presented again:

¿i =ci (rf (s)
- Bbxi - kbx2)

x2
= —

c2x2 + bu

x3 =x4 (4.3.1)

¿4 = -

a41xi
-

a42x2
-

a43x3
-

a«x4 + /4(xi, x4)

x5
= -c3F(s)

-

fw(x5)

with output
Xi x4

y
= s = h(x) = 1 —

r

x5 x5

where b = c2kbPc, Ci = 1/J, c2 = 1/r, c3 = 1/M, a41 = (Bbr) ¡J, a42 = (rkb)/J, ai3 = kx/Mc,

au
= cx/Mc, /4(xi, x_) = (y + jw¡) / (s) + mF (s) + -mm¡F° and fn,(x_) = ^ (x_ + tWd)2
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4.3.1 Control formulation

To calcúlate the control law, we obtain the output dynamics

y = ai(xi,x5) 4- a2(x5)x2 + /i(x4,x5)

where ai(xi,x5) = ax = -^ [xx (c3F (s) + fw (x5)) + cix5 (rf(s)
- BbXi)], a2(x5)

= a2
=

^ and /i(x4,x5) = -ft f§±) + A(/x). The term A(p) contains variations of the friction

parameter p.

The control objective is to design an Integral Nested Sliding Mode controller to obtain

output trajectory tracking in despite of the system perturbations. Define yref (t) as the

desired trajectory of the relative slip. Let yTe¡ (t) be a twice differentiable function, but with

unknown derivatives, now define the output tracking error as ei
=

y (t)
—

yref (t) = ai(x, t)
then its derivative is

éi = ai + a2x2 +5i(x, í) (4.3.2)

where ai (x, í) is the unmatched perturbation term defined by

gi(x, t) = fx(x) -

yref. (4.3.3)

Considering X2 as virtual control in (4.3.2), we propose

X2ref
=

Z2,0 + ^2,1 (4.3.4)

where x2;o is the nominal part of the virtual control and X2,i is the part which wiU be designed
to reject the perturbation in (4.3.2) [101].

Now, we define a new error variable e2 as

e2
=

x2
-

x2re¡
= a2(x, í) (4.3.5)

and two auxiliary variables Oi and o2 of the form

oi
=
ei + wi (4.3.6)

o2
=

e2 + w2 (4.3.7)

where x2re/ is the desired valué of x2 to obtain the control aim, iui and w2 are integred
variables used to reduce the control gain, Oi and o2 are pseudo-sliding functions proposed to

attenuate the perturbation terms. All the variables will be designed later. Using equations

(4.3.1)-(4.3.7) we obtain

x2
=

o2 + x2fi + x2,i -w2. (4.3.8)
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Taking the derivative of Oi results in

bi = ai+a2x2 + ibi+gi(t). (4.3.9)

Substituting (4.3.8) in (4.3.9) yields

ffi
= Oi + a2 (o2 + x2i0 + x2,i

-

w2) + wi + gi(t)

or

bi = ai + a2 (e2 + x2,0 + x2>i) + ti>i + gi(t). (4.3.10)

Choosing the dynamics of the integral variable wx as

ii>i = -ai -

a2 (e2 + x2>0) (4.3.11)

with u;i(0) = —

ei(0), the nominal part x2>0 is designed to eüminate the oíd known dynamics
in (4.3.2) and assign the desired dynamics e'i = — fcioei, fcio > 0

x2,o
= (ai + fcioei) ■ (4.3.12)

a2

Substituting (4.3.11) and (4.3.12) in (4.3.10) yields

bi = 02X2,1 + gi (t). (4.3.13)

To attenuate the perturbation term 51 (x, í) in (4.3.13) using the integral SM technique
and to enforce a sliding motion on Oi

= 0 the virtual control x2)i is chosen as

»2,i
= -fcnsigm (eicri)

with fcn > 0.

Using (4.3.1) and (4.3.5), straightforward calculations reveal

é2 = -c2e2 + bu + f2e (x) (4.3.14)

where /2e(x) = -c2X2re/ +^¿i + ^x3 + *£&* + *£&__.
To induce sliding mode in (4.3.14) we choose the control signal as

1 1
* , X

U=2_2Slgn(e2)' (4'3'15)
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4.3.2 Stability analysis

Using the new variables ei, e2 and Oi the extended closed loop system (4.3.2), (4.3.10) and

(4.3.15) is presented as

éi = -fcioei -

a2fciisigm(£i-7i) + gx(x, í) (4.3.16)

bi = -fciisigm(£i0i) + ai(x, í) (4.3.17)

é2 = -c2e2 + /2e(x)
-

-feign (e2) + -b (4.3.18)

x3
= x4

x4
=
-a4ix3

-

a42x4
-

a43x2
- /4(xi, x4) (4.3.19)

¿5 = -c3 (F + /5(x5)) ■

The stability of (4.3.16) (4.3.19) can be studied step by step:

A) SM stability of the projection motion (4.3.18);

B) SM stability of the projection motion (4.3.17);

C) SM dynamics (4.3.16) stability in the neighbourhood of SM manifold e2
= 0 and

oi = 0.

We use the following assumptions:

|/2e(x)Ka2|e2|+/?2 (4.3.20)

\gi(x,t)\^ai\oi\ + pi (4.3.21)

(4.3.22)
|¿i(x,f)| 5$ a0\o2\ + P0

<; = bx

with a0 > 0, ai > 0, a2 > 0, /?0 > 0, Pi > 0, p2 > 0, c2 > a2 and 6 > \f2e(x)\

A) The system (4.3.18) can be presented as follows:

Case 1, e2 > 0, then

é2 = -C2e2 + /2e(x). (4.3.23)
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In this case, under condition (4.3.20) the solution of (4.3.18) is ultimately bounded by

([138])

|e2(í)| ^ 60, S0 = —^—
(4.3.24)

c2 -a2

Case 2, e2 < 0, then

é2 = -c2e2 + /2e(x) + b. (4.3.25)

In this case é2 > 0, therefore, there is a time íx such that

e2(íi) = 0.

B) To analyze stability of (4.3.17) we use Vi = (l/2)cr2. Using (4.3.17) we have

Vi = oi (-fcnsigmÍE^i) + gi(x, t)) . (4.3.26)

Now we establish the following equality:

sigm(£-.<7i) = sign (oi) - A (ei, ox) (4.3.27)

where A (ei,o_) is the difference between the sign and sigmoid functions. It is evident that

A(ci,<7i) is bounded. That is, there is a constant 0 < 71 < 1 such that |A(£i,<ti)| < 71.

Then using (4.3.27) the derivative (4.3.26) becomes

Vi^-\oi\(kn(l-\A(ei ,ai)|)-|«7i(x,í)|)

<-N(fcn(l-7i)-/3i)-aiN)*
[ ' ' '

Under the condition fci (1
—

71) > Pi we have Vi < 0, and henee 01 (t) converges to the

región given by

IkiWIK*, 6l =
kllil-Jl)-Pl)

(4.3.29)
Oil

Now, consider the derivative <; — bt (4.3.17) described by

<; = -k2q + gi(x,t), fc2 = fcn£1(l-tanh2(£i(T1(l)) (4.3.30)

and V_ = (1/2)?2 Then using (4.3.30) and (4.3.22) the straightforward calculations give

V2 = ? (-k2c + gi(x, t)) ^
-

\c\ ((fc2 -

a0) \<;\
-

pi) (4.3.31)

Under the condition fc2 > a0, the derivative q = b\ is ultimately bounded by

k(í)K*52, ¿2 = 7-^—. (4.3.32)
k2-a0
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C) Stability of the equation (4.3.16) in the neighbourhood of the sliding manifold e2
= 0

and oi
= 0 is studied by V0 = (l/2)e?. Using (4.3.24) and (4.3.31) we have

Vi = ei[-fci0ei
-

a2fcnsigm(£1ai) + Qi(x, í)] ,^ 3 ^\

<-\ei\(kio\ei\-S0-S2)

If fcio > 0, then the control error ei (í) converges to an arbitrary small neighbourhood

of the equilibrium point, defined by |et (í)| < S, S = (S0 + S2) /kw. Moreover it is possible

to show that an equilibrium point of the residual dynamics (4.3.19) is exponentially stable,

therefore the control objectives are fulfilled, and the desired performance of the closed-loop

system is obtained.

4.4 Sliding mode regulator

In the above approaches, the stability of the residual dynamics is assumed. This section deals

with the problem of the asymptotically tracking of the relative slip to a desired trajectory.

To solve this problem we propose to use the block control technique combined with the SM

control algorithm to achieve robustness to perturbations, and ensure asymptotically output

tracking along with the stabilization of the residual dynamic consisting of the vehicle velocity.

Given s* (i) as the desired trajectory of the relative slip s, which must be cióse to maximize

the friction function <j)(s), the considered problem is to design a controUer that obtains

reference tracking in despite of the perturbations in the system. As a solution, we propose

a Sliding Mode Block Control regulator based in [115] for system. In addition, we introduce

an estimation term for the steady state vehicle velocity in order to stabilize these dynamics.
The system model is presented again

¿i = —

a0xi + ai/ (s)
—

a2x2

X2 — -a3x2 + bu (4-4.1)

x3
= -a4F(s)

-

fw(x3)

with output y — s = h(x) = 1 —

r^1, where ao = Bb/J, ax
= r/J, a2

= kb/J, a3
= 1/r,

a4 = 1/M, b = Pc/t and fw(x3) = ^ (pCdAf) (x3 + vw)2

4.4.1 Control design

Let z be an estimate of the steady state of vehicle velocity residual dynamics x3 and s* (t)

be a twice differentiable function. Taking into account the direct action of the pressure Pb in
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1-s-
ei = Xi 5

r

the estimation error

63 —

X3
-

Z

and the manifold

Si = t\ + k3e3.

the brake cylinder over the wheels motion, we define the output tracking error as

-a-3, (4.4.2)

(4.4.3)

(4.4.4)

Henee, from (4.4.1) and (4.4.4) the derivative of si is

h = fi (xi, x3) + 6i (xi, x3) x2
- fc3¿ + Ai (4.4.5)

where /x (xi,x3) = fcjr+r1~8' [a4F(s) -

fw(x3)]
-

a0xx + aj(s) and bi (xi,x3) = -a2. The

term Ai contains the reference derivative s*, the variations of the friction parameter p, the

wind speed vwin_ and will be considered as an unmatched and bounded perturbation term.

Considering the variable x2 as virtual control in (4.4.5) we determínate its desired valué

x2¿ as

x2s
=

x2íi0 + x2á,i (4.4.6)

where x^.o is the nominal part of the nominal control and x2¿,i will be designed using the

SM technique to attenuate the perturbation Ai in (4.4.5)

In this way, we propose the desired dynamics éi = -fcoSo — fciSi, which are introduced by
means of

x2í,o
=

-7—7 T (A (zi, £3) + k0so + fci-si + fc3¿] (4-4.7)
bi(xi,x3)1

where fco > 0, fci > 0 and sq is defined by

so = si, so (0) = 0 (4.4.8)

Now, in order to attenuate the perturbation term Ai in (4.4.5), we define the surface

01 = si + C (4.4.9)

where £ is an SM integral variable and will be defined later. From (4.4.5), (4.4.7), (4.4.6)
and (4.4.9) the derivative of 01 is given by

bi = -fc0s0 - fcisi + x^i + Ax + C (4.4.10)

Selecting C — fco-so + fciSi with C, (0) = -sx (0), the equation (4.4.10) reduces to

bi = x2S,i+Ai (4.4.11)
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To enforce quasi-sliding motion in (4.4.11) the term x2á,i in (4.4.10) is chosen as

x2*,i
= -fc^sigm (£, oi)

where we use the result that the sign function can be approximated by the sigmoid function

in the form sigm (e; x) —, sign (x) as e
—

, oo.

Now we define a new error variable e2 in the form

e2 = x2S
-

x2 (4.4.12)

Using (4.4.1) and (4.4.12), straightforward calculations reveal

é2 = A2 + bu (4.4.13)

where the term A2 = a3x2 + 7^X1 + j^x3 is considered as a matched perturbation.

Defining s2
=

e2, to induce sliding mode on the manifold s2
= 0 we choose the control

signal as

u = --sign(s2)-- (4.4.14)

4.4.2 Stability analysis

Using the new variables so, Si, s2 and 01 the extended closed loop system (4.4.5), (4.4.8),

(4.4.11) and (4.4.13) is presented as

¿o = si (4.4.15)

¿1 = -fcoso - fciSi + s2
-

fc^sigm (£, 01) + Ai (4.4.16)

bi = -fc^sigm (£, 01) + Ai (4.4.17)

s2 = A2 + bu (4 .4.18)

x3
= -a_F(s)-fw(x3) (4.4.19)

The stability of (4.4.15) (4.4.19) closed loop by (4.4.14) is outüned in a step by step

procedure:

Step A) Reaching phase of the projection motion (4.4.18);

Step B) SM stability ofthe projection motion (4.4.17)

Step C) SM Stability of (4.4.15)-(4.4.16);.

Step D) Stability of residual dynamics (4.4.19).
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We use the following assumptions:

Ai < «íM + ft

Ai < "okil

A2 < fa

(4.4.20)

(4.4.21)

(4.4.22)

and

a0 > 0, ai > 0, fa > 0, p2 > 0, a3 > a2, b > fa. (4.4.23)

With i = 1,2, the terms at\si\ and ao|ái| are used to represent the parametric variations

and uncertain, and the terms fa represent external disturbances.

Step A) For the system (4.5.25) we use the Lyapunov function candidate V2

analyze the stabiüty conditions. The derivative of V_ with respect to time is
H t0

(A2-&Qsign(S2)4))
under condition (4.4.22) we have

V2<-\e2\(b-P_)

Using (4.4.23), the system (4.4.18) is finite time stable.

Step B) To analyze the stability of the projection motion (4.4.17) we assume that the

signum function can be approximated by the sigmoid function in the form sigm(£i;x) —>■

sign(x) as £i
—

. oo, then, we can establish the following equality

sign (x)
-

sigm (ex; x) = A3 (d; x) (4.4.24)

It is evident that As (x) is bounded, that is, for a given ei there is a positive constant

0 < 7 < 1 such that ||AS (£i;x)|| = 7. Now, taking the Lyapunov candidate Vi = \o\ and
taking its derivative, with (4.4.21) results

Vi =
01 [-fc^sigm (£X; 01) + Aj]

< -|<7i|[fc<7i (1-7) -«íkil -

Pi]

therefore, if kai > ^- then ox converges to a vicinity of zero, |o"i| < í?i, with

A
2ei

and, with (4.4.21), bi converges to zero in finite time [134].
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Step C) To analyze the SM motion on the manifold s2
= 0, and in the vecinity of

cti
= 0 described by (4.4.15)-(4.4.16) ,

that system can be regarded as a linear system with

nonvanishing perturbation in the form:

77
= Ar] + D (77) (4.4.25)

where

r¡
= [so si] ; A =

0 1

-fco -fci
\D(r¡)

0

Ai

and the perturbation term is bounded by \\D (r])\\ < ai \si\ + px. Now we use the following

Lyapunov candidate function:

Vv = \vTPv (4-4*26)

with P positive definite. With the correct selection of the elements fco and fci the matrix A

is Hurwitz, there exists one unique solution (P > 0) to the Lyapunov equation

ATP + PA = -Q

where Q — QT Q > 0. Taking derivative of (4.4.26) we obtain

Vr, = ~VTQV ~ IrfPD (rf) (4.4.27)

which is bounded by

Vr, = -r]TQr)-2r)TPD(r])

< -Amin(Q) h||2 + 2Amax(P) |M|2 (ai \\V\\2 + Pi)

< (-Amin(Q) + 2aiAmax(P)) \\n ||2 + 2piXm_x(P) \\r¡\\2
= -a(l-e)\\r)\\22-ae\\T1\\22 + P\\rl\\2

where a = Amin(<2)
-

2aiAmax(P) and P = 2/3iAmax(P), then

Vi<-a(l-e)\\r}\\22 (4.4.28)

forV^: \\r,\\2>± = Sr,.

Thus, the solution r¡(t) of (4.4.25) is ultimately bounded and the ultímate bound is given

by

NI» * ^^== (4-4-29)

Step D) For the residual dynamics x3 we have

x3
= -aiF(s)-fw(x3) (4.4.30)
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then, defining

g = -a_F(s)- fw(x3)

dg

dx3

as

(4.4.31)
x_=0,a=s'

13=0,3=8*

yields

x3
=

axi + Xs + tp (4.4.32)

where xp contains the nonlinear terms. Henee, the dynamics for e3 result in

é3 = ae3 + az + Xs + <p
- i (4.4.33)

Finally, defining the sigmoid function sigm (£2; x) = tanh (£2x), and taking

i = az + Xs -

ex + fc4sigm (e2; e3) (4.4.34)

results

é3 = ae3 + ei
— fc4sigm (£2; e3) + A3 (4.4.35)

where A3 = tp wiU be considered £is a nonvanishing perturbation term

|A3| < a3 \e3\ + fa

In süding motion we have si — 0, that gives

é3 = (a
-

k3) e3
- fc4sigm (e3; £2) + A3 (4.4.36)

Now, assuming that the sign function can be approximated by the sigmoid function in the

form

lim sigm (£2; x) = sign (x)
£2—><»

we can establish the following equality

sign (x)
-

sigm (£2; x) = As (e2; x) (4.4.37)

It is evident that As (x) is bounded, that is, for a given £2 there is a positive constant

0 < S < 1 such that

||As(£2;x)||=¿

Taking the Lyapunov candidate V3 — \e2 and taking its derivative

V3 =
e3 [(a

- fc3) e3 -

fc4sigm (£2; e3) + A3]
< -e3 (fc3

-

a
-

a3)
-

|e3| [fc4 (1
-

S)
-

fa]

if fc3 > a + a3 and fc4 > P3/ (1
-

<5) then e3 converges to a vicinity of zero, |e3| < i92, with

d2 = ^
' and from (4.4.4), ei converges to a vicinity of zero, \e_\ < i?2/fc3.
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4.5 Sliding mode control of a ABS with active

suspensión

Alternatively to the presented controllers, this section presents the control of a brake
with

active suspensión. The brake control is designed using integral nested sliding mode. For the

active suspensión, a controller based on the regular form, sliding mode control and geometric

linear control methods for the sliding surface design is proposed. In both subsystems a

Super-Twisting control is used. The structure of the whole system permits to design both

controllers in independent way. The system model is presented again

¿i =
x2

¿2 = -^ (xi - x3)
-

a2 (x2
-

x4) + bius

x3
=

x4

x4
=

a3 (xi
-

x3) + a4 (x2
-

x4)
-

a5 (x3 - zT)
-

a6 (x4
-

ir)
- b_us

¿5 =
-a7x5 + a8/ (s)

-

a9x6 (4.5.1)

x6
= —

aioX6 + b3ub

x7 = -anF (5)
- /„, (x7)

with the outputs

yi
= xi and y2

= x5

where ai = K^/nic, a2
= Ccw/m.c, a3

— K^/my,, a4
= Ccw/mw, a_

= Kwr/mw,

a.6
= CWT/mw, a7

= bb/J, a8
= r/J, a9

= kb/J, ai0
= 1/r, au = 1/M, 61 = l/mc,

b2 = l/m_, b3 = 1/t, us
= fh_, ub = Pc and fw(x7) = _\¡ (pCdAs) (x7 + v_)

4.5.1 Suspensión control

Define x3 = [xi,x2,x3,x4] and p
= [ zT zr ] then the subsystem is represented of the

form

xs
= Ásxs + bsus + Dp (4.5.2)

where

0 l

—ai
—

a2

0 0

ai

0

a2

l

a3 o4
—

a3
—

a_
—

a4
—

a^

b., =

0
'

0 0
"

bi

0
; D =

0 0

0 0

-b2
_

a5 ae
_
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with the output yi = Xi- Now, defining the new variables xri = Xi, xr2
=

x2 + |1x4, xr3 = x3

and xr4 = x4 the system (4.5.2) is transformed into regular form [102]

Xri = AnXPi + A12XT2 + Dip

xr2
= A2ixri + A22Xr2 + D2p + b2us

(4.5.3)

(4.5.4)

which consists of the two blocks: (4.5.3) with jtvi = [ xri xr2 xr3 ]T and

0 1 0

(4.5.4) with xr2 = [x4], where An =

Ai2 =

.h.
í>2

o3^-ai a4j£-a2 ai
-

^ (a3 + o5)
0 0 0

a2
-

£ (o4 + a_
-

a_)
-

a_ (|) »-2l
= [a3 a_ -a3

—

a_ ] , A22 =

[ -04(^ + 1) -afi],b2= [-b_], Di =
0 0

0 0

and D2 = [ a_ a_ ]. Then for

the first block (4.5.3), the output can be regarded as yi
=

cxri, with c = [ 1 0 0 ] The

vector Xr2 is handled as a control in the first block and it is designed as a linear function of

Xn

xr2 = -Cixri + £ (4.5.5)

where Ci are the feedback gains. Under the assumption that the matrix (Au
—

Ai2Ci) is

Hurwitz, the term £ is chosen as £ =H¿1yid with Hk = c (Ai2Ci —

An)- AJ2, yielding a

constant stable response yid. Using (4.5.5), a sliding variable ip is formulated as

lp = Xt2 + CiXr*. -

£

and the dynamics of (4.5.6) are govemed by

ip = (C1Aii + A2i)xri + (CiAi2-fA22)xr2

+ (CiD1 + D2)p + b2us.

(4.5.6)

(4.5.7)

To induce sliding mode on ip = 0, the super-twisting control algorithm [100, Ch. 2] is applied

(4.5.8)us
= -b2

x

u3_

-AíX |V-|2 sign (?/■) + u52

(CiAn + A2i) xri
-

(C-.Ax2 + A22) xr2]

Assign (ip) (4.5.9)

where Asi > 0, As2 > 0 are control parameters. The stability condition for the closed-loop

system (4.5.7) and (4.5.8) can be obtained via the transformation qs
— (C1D1 + D2) p

-
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As2 /0ísign(V') dt to

V> = -A,i |V|' sign (iP)-qs (4.5.10)

4s = -As2sign (ip) + (CiDi + D2) p.

If |(CiDi + D2) p| < L < oo and choosing As2 > 5L and 32L < X2sl < 8 (As2
- L) then the

system (4.5.10) is finite time globally stable [131], i.e, its solution converges in finite time to

the origin (ip,qa) — (0,0). The sliding motion on ip = 0 is given by (4.5.3) and (4.5.5), in

this way the SM equation is

Xn
= (An

-

Ai2Ci) Xn + Ai2f + DiP. (4.5.11)

At this point, to reject the unmatched unknown perturbation p in the SM equation

(4.5.11), we apply the well known geometrical approach [139]. The disturbance p can be

rejected preserving SM equation stability if and only if the image of the matrix associated to

the disturbance, ImDi, belongs to V*, the so-called maximal (An, Ai2)-invariant subspace

contained in the kernel of the output yi = xri = [ 1 0 0 ] Xri It can be seen that this

problem is solvable, since clearly ImDi =span*JDi > belongs to V* =span< Yg ,Vj >

with Di = [ 0 1 0 ]T, V^(1) = [ 0 1 0 ]T and V*g{2) = [ 0 0 1 ]T Then, using the

virtual control xr2 (4.5.5), which produces V* to be SM equation (4.5.11) invariant, the

output yi = xri is not affected at all by the signal p, i.e, this control rejects the disturbance

p in the SM equation. Notice that this control renders the system (4.5.11) maximally non-

observable by cancelling out the zeros associated to the transfer function between p and

2/i
=
xri with closed-loop poles. The closed-loop system (4.5.11) is stable, because these

zeros are stable, and the remaining pole is located in a suitable stable position.

4.5.2 Brake control

Let xb = [x5, X6, x7] and taking into account the direct action of the pressure Pb in the brake

cylinder over the wheels motion, we define the output tracking error as

ei 4 x5
- —

-x7, (4.5.12)
r

Then, from (2.3.2), (2.3.3) and (4.5.12) the derivative of ex is

éi = /i (x_, x7) + h (x_, x7) x6 + Ai (4.5.13)

where fx (x5,x7) =^ [anp,NMip (s)
-

fw(x7)]
-

a7x5 + a_pNmip (s) and bx (x5,x7) = -a9.

The term Ai contains the reference derivative i*, the variations of the friction parameter p,
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the wind speed vw, the influence of zT, zr on F (s) and will be considered as an unmatched

and bounded perturbation term.

Considering the variable x6 as virtual control in (4.5.13) we determínate its desired valué

x6¿ as

^6*5
=

x6i>0 + x6íji (4.5.14)

where x2í,o is the nominal part of the nominal control and x6í,i will be designed using the

SM technique to reject the perturbation in (4.5.13). In this way, we propose the desired

dynamics éi = — fc0eo — fciei, which are introduced by means of

xeí.o
=

--_—, r LA (#5* x7) + k0e0 + kie_] (4.5.15)
&i(x5,x7)

where fco > 0, fci > 0 and eo is defined by

é0 = ei, e0(0) = 0 (4.5.16)

Now, in order to attenuate the perturbation term Ai in (4.5.13), we define the surface

<Ti
=
ei + z (4.5.17)

where z is an SM integral variable and will be defined later. From (4.5.13), (4.5.15), (4.5.14)
and (4.5.17) the derivative of Oi is given by

bi = -k0e0 - fciei + x6S,i + Ai + i (4.5.18)

Selecting i = fcoeo + fcieiwith z (0) =
—

ei (0), the equation (4.5.18) reduces to

bi = x6S,i + Ax (4.5.19)

To enforce quasi-sliding motion in (4.5.19) the term X6¿,i in (4.5.18) is chosen as

x6¿,i
- -k<Tlsigai(e,oi)

where we use the result that the sign function can be approximated by the sigmoid function

in the form sigm (£; x)
—

, sign (x) as e
—

, oo. Now, we define a new error variable e2 as

e2
=

x_g
-

x_. (4.5.20)

Using (4.5.1) and (4.5.20), straightforward calculations reveal

é2 = A2 - b3ub (4.5.21)
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dx_ dxs
where the term A2 = a3x6 + -§^x_ + -§^x7 is considered as a perturbation.

Using the new variables e0, ei, e2 and oi the extended closed loop system (4.5.13), (4.5.16),

(4.5.21) and (4.5.19) is presented as

é0 = e_ (4.5.22)

(4.5.23)

(4.5.24)

(4.5.25)

(4.5.26)

éi = -fc0e0 - fciei + e2
-

fcfflsigm (£, o_) + Ai

bi = -fcfflsigm (e, o_) + Ai

é2 = A2 - b3ub

x7
= -anP - /„, (x7)

We now consider the types of valve that can vary its position in a continuous range. To

induce sliding mode on the sliding manifold e2
= 0, the super-twisting control algorithm is

applied [100, Ch. 2] to (4.5.25)

ub
=

7- [uw + ub2] (4.5.27)
03

with uw = -A&1 |e2|5sign(e2), ub2
— -A62sign(e2), where Aw > 0, A¡,2 > 0 are control

parameters. Now, the stability of (4.5.22) (4.5.25) closed loop by (4.5.27) is outüned in a

step by step procedure:

Step A) Reaching phase of the projection motion (4.5.25);

Step B) SM stability of the projection motion (4.5.24);

Step C) SM stability of (4.5.22)-(4.5.23) on the manifold e2 = 0 and in the vicinity of

£7i
= 0.

We use the assumptions

Ai

Ai

A2

< OLX\oi\+Pi

< Oí0\bi\

< fa

(4.5.28)

(4.5.29)

(4.5.30)

with a0 > 0, ai > 0, a2 > 0, fa > 0, fa > 0.

Step A) For (4.5.25) in closed loop with (4.5.27) we use the transformation qb
=

A2 — Xb2 /0sign(e2) dt, then, we have

(4.5.31)¿2 = -AM | e2 12 sign (e_) -

qb

•76
= -A62sign (e_) + A2

and under the assumption (4.5.30), then choosing Xb2 > 5/?2 and 32/32 < Aft < 8 (A¿,2 —

p2),
the system (4.5.31) is finite time globally stable [131], i.e, its solution converges in finite time

to the origin (e2, qb) = (0, 0).
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Step B) To analyze the stability of the projection motion (4.5.24) we assume that the

signum function can be approximated by the sigmoid function in the form sigm(£;x) *->

sign(x) as £ -, oo, then, we can establish the following equality

sign (x)
-

sigm (£; x) = A8 (e; x) (4.5.32)

It is evident that As (x) is bounded, that is, for a given e there is a positive constant

0 < 7 < 1 such that ||AS (£;x)|| = 7. Now, taking the Lyapunov candidate Vi = \o\ and

taking its derivative, with (4.5.28) results

Vi =
ox [-fcfflsigm (e, cti) + A_]

< -Wi\[kai(l-j)-ai\oi\-P_]

therefore, if kai > f^- then cti converges to a vicinity of zero, |cti| < $, with

2£

and, with (4.5.29), cti converges to zero in finite time [134],

Step C) To analyse the SM stability of (4.5.22)-(4.5.23) on the manifold e2 = 0 and

in the vicinity of Cti
= 0 we define the Lyapunov function V2 = \ (e2, + e2) and taking its

derivative,

V2 - ei [(1
-

fc0) |e0|
-

fciei]
< -|ei| [(fco

-

1) |e0| + fci|ei|]

therefore, when fc0 > 1 and fci > 0 then, ei converges asymptotically to zero.

4.6 Conclusions

In this chapter different controllers are presented, for their design problems as tire deformation

and the addition of an active suspensión are considered. For each case, stability and

robustness analysis, in presence of both the matched and unmatched perturbations, are

presented in detail. Therefore, the ABS can cope very well with the sliding mode control, as

can be applied in a straight fashion without concerning the nature of the actuator (continuous
or discontinuous), showing in that way a clear advantage over another control techniques,

where the presence of discontinuous elements can not be treated in a natural way.



Chapter 5

Simulation results

In this chapter, simulation result are presented. In the section 5.1, the simulation results

of a sliding mode block control for the plant in absence or tire deformation are presented.
In the sections 5.2 and 5.2, the integral nested sliding mode control simulations in absence

and in presence of tire deformation are respectively shown. The section 5.4 presents the

simulations results of a sliding mode block control regulator for ABS. Finally, in section 5.5,

the simulation for a controller of a brake with active suspensión is presented.

5.1 Sliding mode block control for the plant in absence

or tire deformation

To show the effectiveness of the proposed control law, simulations have been carried out on

one wheel model design example, the system (4.1.1) parameters used are listed in Table 1.

TABLE 1

Valúes of Parameters

Parameter Valué Parameter Valué

A. 6.6 vw -6

Pc 8 V 0.5

M 1800 B 10

J 18.9 C 1.9

r 0.535 D 1

m 450 E 0.97

P 1.225 9 9.81

cd 0.65 Pa 0

71
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In order to maximize the friction forcé, we suppose that slip tracks a constant signal

during the simulations

\Vref 0.203

which produces a valué cióse to the máximum of the function <p(s). The parameters used in

the control law are fc0 = 700 and fci = 120.

On the other hand, to show robustness property of the control algorithm in presence

of parametric variations we introduce a change of the friction coefficient p which produces

different contact forces, namely F and /. Then, p = 0.5 for t < 1 s, p
= 0.52 for í € [1, 2.5) s,

and /i
= 0.5 for t > 2.5 s. It is worth mentioning that just the nominal valúes were considered

in the control design.

In Figure 5.1 the slip performance trough the simulation is shown,

0 1
?[S] 3 4

Figure 5.1: Slip, s, performance in the braking process

Figure 5.2 shows the friction function behaviour <p(s) during the braking process,
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1.1

1.05

0.95

0 9
0 1

í[s] 3 4

Figure 5.2: Performance of <p in the braking process

while Figure 5.3 and Figure 5.4 summarize the behaviour of the error variables ei and e2

respectively.

Figure 5.3: Tracking error et
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900
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300

50
o
0 1 %[B] 3 4

Figure 5.4: Sliding surface error e2

In Figure 5.5 the longitudinal speed v and the linear wheel speed ru are shown; it is

worth noting that the slip controller should be turn off when the longitudinal speed v is cióse

to zero.

0 1
¡Us] 3 4

Figure 5.5: Longitudinal speed v (solid) and linear wheel speed ru (dashed)

In Figure 5.6 the nominal F, and the F contact forcé are shown.
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9200

Figure 5.6: Nominal F (solid) and F (dashed) contact forces

Finally, in Figure 5.7 the control action is shown.

1.5

"0 1 ?[s] 3 4

Figure 5.7: Control input u

The simulation results show good performance and robustness of the closed-loop system
in presence of both the matched and unmatched perturbations, namely, parametric variations

and neglected dynamics.

5.2 Integral nested sliding mode control for the plant

in absence of tire deformation

To show the effectiveness of the proposed control law, simulations have been carried out on

the wheel model design example, the system (4.2.1) parameters used are listed in Table 2.
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TABLE 2

Valúes of Parameters (MKS Units)

Parameter Valué Parameter Valué

Af 6.6 vw -6

Pc 8 V 0.5

M 1800 B 10

J 18.9 C 1.9

R 0.535 D 1

m 450 E 0.97

P 1.225 9 9.81

c_ 0.65 Pa 0

ln order to maximize the friction forcé, we suppose that slip tracks a constant signal

during the simulations

s* = 0.203

which produces a valué cióse to the máximum of the function <p(s) . The parameters used in

the control law are fc0 = 700, fcx = 120, fc3 = 2, fc4 = 100, fcai = 10, Ai = 1, A2 = 2 and

£ = 100.

On the other hand, to show robustness property of the control algorithm in presence

of parametric variations we introduce a change of the friction coefficient p which produces
different contact forces, namely F and F. Then, p = 0.5 for t < 1 s, p

— 0.52 for í € [1,2.5)
s, and p

= 0.5 for t > 2.5 s. It is worth mentioning that just the nominal valúes were

considered in the control design.

5.2.1 Sliding mode control for two position valves

In the Figure 5.8 and Figure 5.9 are shown, respectively, the slip and the friction function <p

in the braking process
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Figure 5.8: Slip, 5, performance in the braking process
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i i :

■

0 0.5 1 1.5 2 2.5 3 3.5

Figure 5.9: Performance of <j> in the braking process

while Figure 5.10 and Figure 5.11 summarize the behaviour of the error variables ei and

e2 respectively.
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0 0.5 1 1.5 2 2.5 3 3.5

Figure 5.10: Tracking error ei

Figure 5.11: Sliding surface error e2

In Figure 5.12 the longitudinal speed v and the linear wheel speed ru are shown; it is

worth noting that the slip controller should be turn off when the longitudinal speed v is cióse

to zero.



5.2. Integral nested sliding mode control for the plant in absence of tire

>,- 30

Figure 5.12: Longitudinal speed v (solid) and linear wheel speed ru (dashed)

In Figure 5.13 the nominal F, and the F contact forcé are shown

9500

9000

8500

8000

Li.

i 7500
Li.

7000

6500

6000 ■

5500

( 0.5 1.5 2

1

2 5 3 3. 5

Figure 5.13: Nominal F (solid) and F (dashed) contact forces

Finally, in Figure 5.14 the control action is shown.
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0 0.5 1 1.5 2 2.5 3 3.5

Figure 5.14: Control input u

5.2.2 Sliding mode control for continuous position valves

In Figure 5.15 and Figure 5.16 are shown, respectively, the slip and the friction function

in the braking process

Figure 5.15: Slip, s, performance in the braking process
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Figure 5.16: Performance of <p in the braking process

while Figure 5.17 and Figure 5.18 summarize the behaviour of the error variables ei and

e2 respectively.
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Figure 5.17: Tracking error ei
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Figure 5.18: Sliding surface error e2

In Figure 5.19 the longitudinal speed v and the linear wheel speed ru are shown; it is

worth noting that the slip controller should be turn off when the longitudinal speed v is cióse

to zero.

Figure 5.19: Longitudinal speed v (solid) and linear wheel speed ru (dashed)

In Figure 5.20 the nominal F, and the F contact forcé are shown
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Figure 5.20: Nominal F (solid) and F (dashed) contact forces

Finally, in Figure 5.21 the control action is shown.

Figure 5.21: Control input u

The simulation results show good performance and robustness of the closed-loop system

in presence of both the matched and unmatched perturbations, namely, parametric variations

and neglected dynamics.
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5.3 Integral nested sliding mode control for the plant

in presence or tire deformation

To show the effectiveness of the proposed control law, simulations have been carried out on

one wheel model design example, the system (4.3.1) parameters used are listed in Table 3.

In order to maximize the friction forcé, in the simulations we suppose that slip tracks a

constant signal.

yref
= 0.205

which produces a valué cióse to the máximum of the function <p(s). The parameters used in

the control law are fci0 = 8700, fcn = 1000 and £i
= 100.

TABLE 3

Valúes of Parameters (MKS)

Parameter Valué Parameter Valué

cx 10 vw -5

Kx 9000 p 0.8

M 2396 B 10

J 18.9 C 1.9

r 0.535 D 1

Kb 1000 E 0.97

P 1.225 N 23504.76

c_ 0.65 Pa 0

Af 6.6 Pc 8

On other hand, to show robustness property of the control algorithm in presence of

parametric variations we introduce a change of the friction coefficient p which produces a

different contact forcé, namely F Then, p = 0.5 for t < 1 s, p = 0.52 for t 6 [1,2) s, and

p
— 0.5 for í > 2 s. It is worth mentioning that just the nominal valúes were considered in

the control design.

In Figure 5.22 and Figure 5.23 are shown, respectively, the slip and the friction function

(p in the braking process
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Figure 5.22: Slip, s, performance in the braking process

1 1

106

1.06

104

102

094

0.92

0 05 1 1.5 2 2.5 3 3.5 4 4.5

Figure 5.23: Performance of <p in the braking process

while Figure 5.24 and Figure 5.25 summarize the behaviour of the error variables ei and

e2 respectively.
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0 0.5 1 1.5 2 2 5 3 3.5 4 4 5

Figure 5.24: Tracking error ei

, i ¡ i i i i_
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I

Figure 5.25: Sliding surface error e2

In Figure 5.26 the longitudinal speed v and the linear wheel speed ru are shown; it is

worth noting that the slip controller should be turn off when the longitudinal speed v is cióse

to zero.
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Figure 5.26: Longitudinal speed v (solid) and linear wheel speed ru (dashed)

In Figure 5.27 the nominal F, and the F contact forcé are shown.
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Figure 5.27: Nominal F (solid) and F (dashed) contact forces

Finally, in Figure 5.28 the control action is shown.



5. Simulation results

Figure 5.28: Control input u

The simulation results show good performance and robustness of the closed-loop system

in presence of both the matched and unmatched perturbations, namely, parametric variations

and neglected dynamics.

5.4 Sliding mode regulator

To show the effectiveness of the proposed control law, simulations have been carried out on

one wheel model design example, the system (4.4.1) parameters used are listed in Table 4.

TABLE 4

Valúes of Parameters (MKS Units)

Parameter Valué Parameter Valué

Af 6.6 vw -6

Pc 8 V 0.5

M 1800 B 10

J 18.9 C 1.9

R 0.535 D 1

m 450 E 0.97

P 1.225 9 9.81

cd 0.65 Bb 0.08

In order to maximize the friction forcé, we suppose that slip tracks a constant signal

during the simulations

yref
= 0.203
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which produces a valué cióse to the máximum of the function <j>(s). The parameters used in

the control law are fco = 700, fci = 120, k3 = 2, fc4 = 100 and £i = £2 = 100.

On the other hand, to show robustness property of the control algorithm in presence

of parametric variations we introduce a change of the friction coefficient p which produces
different contact forces, namely F and F. Then, p = 0.5 for t < 1 s, p

— 0.52 for t € [1, 2.5)
s, and p

= 0.5 for t > 2.5 s. It is worth mentioning that just the nominal valúes were

considered in the control design.

In Figure 5.29 the slip performance trough the simulation is shown, Figure 5.30 shows

the friction function behaviour <p(s) during the braking process

Us] 3 4

Figure 5.29: Slip, s, performance in the braking process

Figure 5.30: Performance of (p in the braking process
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while Figure 5.31 and Figure 5.32 summarize the behaviour ofthe error variables ei and

e2 respectively.

0 1 ?[S] 3 4

Figure 5.31: Tracking error ei

Figure 5.32: Sliding surface error e2

In Figure 5.33 the longitudinal speed v and the linear wheel speed ru are shown; it is

worth noting that the slip controller should be turn off when the longitudinal speed v is cióse

to zero.
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0 i
Us] 3 4

Figure 5.33: Longitudinal speed v (solid) and linear wheel speed ru (dashed)

In Figure 5.34 the nominal F, and the F contact forcé are shown.

9200

1 Us] 3

Figure 5.34: Nominal F (solid) and F (dashed) contact forces

Finally, in Figure 5.35 the control action is shown.
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Figure 5.35: Control input u

The simulation results show good performance and robustness of the closed-loop system

in presence of both the matched and unmatched perturbations, namely, parametric variations

and neglected dynamics.

5.5 Sliding mode control of a ABS with active

suspensión

To show the effectiveness of the proposed control law, simulations have been carried out on

the wheel model design example, the system (4.5.1) parameters used are listed in Table 5.

TABLE 5

Valúes of Parameters (MKS Units)

Parameter Valué Parameter Valué Parameter Valué

mc 1800 J 18.9 E 0.97

mw 50 kb 100 ^ 6.6

41
Ct**

1050 bb 0.08 cd 0.65

t^wr 175500 r 0.535 P 1.225

^cw 19960 B 10 vw -6

n
^-'wr 1500 C 1.9 9 9.81

T 0.0043 D 1 v 0.5

During the breaking process we want to maximize the friction forcé, for that reason

throughout simulations we suppose that slip tracks a constant signal s" = 0.203, which in
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this case produces a valué cióse to the máximum of the function cp(s). The reference for

suspensión is yu
= -0.2. The road perturbation is considered as zr

= O.lcos(lOí). The

parameters used in the control law are Xsi = 10, As2 = 15, Ci = [ —175 —35 0 ]
fco = 700, fc! = 120, kax = 10, Xb2 = 1, Xb2 = 2 and e = 10.

On the other hand, to show robustness property of the control algorithm in presence

of parametric variations we introduce a change of the friction coefficient p which produces
different contact forces, namely F and F. Then, p = 0.5 for t < 1 s, p

= 0.52 for í G [1,2.5)
s, and p

= 0.5 for t > 2.5 s. It is worth mentioning that just the nominal valúes were

considered in the control design.

Longitudinal speed v and the linear wheel speed ru are shown in Fig. 5.36, the ABS

controller should be turned off when the longitudinal speed is cióse to zero.

Figure 5.36: Longitudinal speed v (dashed) and the linear wheel speed ru (solid)

Figure 5.37 shows the slip ratio during the breaking process, we can see the fast

convergence to the reference valué s*

Figure 5.37: Slip performance in the braking process
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and Figure 5.38 presents the friction/slip characteristic relation <p(s) obtained during the

breaking process under control actions.

•-''Tí-

2 3 S .

Figure 5.38: Performance of <p(s) in the braking process

Figure 5.39 shows the vertical vehicle position during the breaking process. We could see

the position is lowered 0.2 m under zero position and that is kept constant until the car is

almost stopped,

s s

Figure 5.39: Vehicle position xi

until Figure 5.40 presents the suspensión position of the vehicle, we note that moves

constantly trying to counteract the changes on the road and wheel.
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Figure 5.40: Suspensión position x3

The control action us for the suspensión is shown in Figure 5.41. Note that the valve can

put or extract fluid into the reservoir to obtain the necessary forces.

Figure 5.41: Control signal for suspensión us

The sliding variable ip is presented in Figure 5.42.
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Figure 5.42: Sliding surface for suspensión control ip

The control signal ub for the ABS system is presented in Figure 5.43.

"Ji^iniIIiIIíhhHIiIiIiijiILHIi

rwwtiw
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Figure 5.43: Control signal for ABS ub

The sliding variable o is presented in Figure 5.44,
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Figure 5.44: Sliding surface for ABS control e2

while Figure 5.45 summarize the behaviour of the tracking error variable ei

2 1 t •

Figure 5.45: Tracking error ei

Finally, in Figure 5.46 the nominal F, and the F contact forces are shown
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Figure 5.46: Nominal contact forcé F (dashed) and real forcé F (solid)

The simulation results show good performance and robustness of the closed-loop system

in presence of both the matched and unmatched perturbations, namely, parametric variations

and neglected dynamics.



Chapter 6

Conclusions and future work

General conclusions

In this work, different controllers for the ABS on the basis the block control principie and

sUding mode, the related technique of integral nested sliding mode and a sliding mode block
control regulator are presented as follows:

• A controller designed on the basis of the block control principie and sliding mode to

ensure asymptotically output tracking consisting of the relative slip.

• A controller designed on the basis of the technique of integral nested sliding mode to

ensure asymptotically output tracking consisting of the relative slip.

• A sliding mode block control regulator to ensure asymptotically output tracking along
with the stabilization of the residual dynamic consisting of the vehicle velocity for the

brake system.

• In addition, controllers for active suspensión coupled with the brake with objective to

guarantee the improvement of the ride quality and comfort for the passengers. For

the active suspensión, a controller based on the regular form, sliding mode control and

geometric linear control methods for the sliding surface design is proposed in order to

achieve and ensure output tracking.

Each one of these controllers ensures asymptotically output tracking, in addition the

sliding mode block control regulator also guarantees the stabilization of the residual dynamic

consisting of the vehicle velocity for the brake system. These controllers maximize the friction

forcé in the wheel and avoid brake locking and provide robustness to matched, and unmatched

perturbations. The cases of no deformation on the tire and with deformation are considered.

99
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Detailed stability and robustness analysis is presented, for the cases of discontinuous

and continuous valve action; simulation results show good performance and robustness of

the closed-loop system in presence of both, matched and unmatched perturbations, namely,

parametric variations and neglected dynamics.

Therefore, the ABS can cope very well with the SM mode control, as it can be appüed in a

straight fashion without concerning the nature of the actuator (continuous or discontinuous),

showing in that way a clear advantage over another control techniques, where the presence of

discontinuous elements can not be treated in a natural way giving an important application

of the sliding modes control theory in the automotive problems. Therefore, the ABS and

active suspensions can cope very well with the sliding mode control.

Future work

Almost all the results presented in this thesis can be improved. It means that the results here

presented can be extended to a more realistic mathematical model and can be implemented

jointly with additional control methods.

Suggestions for future work are:

• The used models are taken from the references and we can not guarantee their validation

trough experimental test. Therefore, a first step in order to improve the current work

is the use of more realistic and detailed models.

• Secondly, it is proposed the use of another control techniques as quasi-continuous high
order sliding modes, %__ methods for sliding surface design, finite time disturbance

rejection methods, zero average dynamics (ZAD) controllers, etc.

• The optimal slip valué and the state variable were assumed to be known. Therefore, the

design of the extremun seeking controllers to find the optimal slip valué is proposed.
In addition, the development of fixed parameters and adaptive state observers and

parameter estimators based on sliding mode is suggested.
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