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Unidad Mérida

Departamento de F́ısica Aplicada

Spontaneous rotation in vibrated disk packings

Tesis que presenta

Gonzalo Gaudencio Peraza Mues

para obtener el Grado de

Doctor en Ciencias

en la Especialidad de

F́ısica Teórica
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Abstract

Under specific conditions, gently vibrated packings of frictional elastic disks self-organize

onto a rotationally persistent state. In this state, most disks display a statistical tendency

to rotate in a direction determined by the local contact network of each disk inside the

packing.

In the present thesis, this rotational state is characterized in great detail experimentally,

numerically, and analytically. Data collected from extensive numerical simulations and

laboratory experiments were used to study the statistical properties of rotation in disk

packings.

Additionally, by analyzing the simplest setup, consisting of a single disk supported by

two contacts under gravity, we are able to show in which way the randomness in the

orientation of contacts is responsible for the tendency to rotate in large packings. We also

distinguish two different rotation regimes with different dynamics: (1) a regime where the

disk never looses contact with the supports, and (2) a regime where the disk bounces of

the supports.

Analytic predictions are obtained for the rotational velocity of one disk in both regimes,

and these are successfully compared against numerical results.

Resumen

Reportamos que, en determinadas condiciones de vibración suave, un empaque de discos

elásticos con fricción presenta un estado rotacional auto-organizado, en el cual los discos

rotan sistemáticamente en una dirección determinada por la configuración de contactos

local de cada disco dentro del empaque.

En esta tesis se caracteriza experimental, numérica y anaĺıticamente este fenómeno

de manera detallada. Utilizando datos recolectados de un gran número de simulaciones

númericas y experimentos de laboratorio, hemos estudiado las propiedades estad́ısticas de

la rotación en empaques de discos.

Adicionalmente, analizando la configuración más simple, que consta de un disco sostenido

contra la gravedad por dos contactos, es posible entender de qué manera la tendencia es-

tad́ıstica a rotar en un dado sentido se deriva del desorden en la orientación de los contactos



en un empaque. Se distinguen, también, dos reǵımenes de rotación con caracteŕısticas muy

distintas: (1) un regimen donde el disco nunca pierde contacto con los soportes, y (2) un

regimen donde el disco se encuentra rebotando sobre los soportes.

Se obtienen predicciones anaĺıticas para la velocidad promedio de rotación de un disco

como función de diversos parámetros f́ısicos para ambos reǵımenes. Estas predicciones son

comparadas satisfactoriamente con resultados numéricos.
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1 Introduction

Materials composed of discrete interacting elements that are not subject to thermal fluc-

tuations are called granular materials. Each element is called a grain. Each grain is big

enough so that the energy involved in its displacement is several orders of magnitude that

of its thermal energy. Examples of granular materials are sand, nuts, gravel, intergalactic

dust clouds, etc.

Another distinct feature of granular materials is that interactions between grains dissi-

pate energy, in contrast to molecular gases or liquids, where interactions are elastic. Energy

is transferred to internal degrees of freedom every time grains collide or move against each

other. Since thermal energy is unable to affect the motion of the grains, energy is lost

at each interaction, from the dynamical point of view. This means that, to maintain a

granular system in motion, energy needs to be constantly injected into the system, at a

rate that compensates the rate of dissipation. As soon as the energy input is turned off,

the system relaxes to a meta-stable state until the next perturbation shifts the system to

a new configuration. Dissipation also introduces correlations between colliding particles,

that lead to violation of the assumption of molecular chaos. It can happen, then, that these

correlations trigger the appearance of ordered structures and patters. Granular materials

are, thus, systems out of equilibrium and, as such, exhibit rich dynamical behavior.

One way to provide the necessary energy to keep grains in motion is to vibrate a container

filled with such grains. Vibrated granular matter displays a range of self-organizing phe-

nomena such as clustering, pattern formation, segregation and convection. Some of these

phenomena are qualitatively described in the next section. We refer the reader to reviews

by Aranson and Tsimring [1], Kudrolli [2], and references therein, for a more exhaustive

treatment.
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1 Introduction

1.1 Self organization in vibrated granular media

Figure 1.1 shows a vertically vibrating monolayer of grains. Vibration leads to a phase

separation in which a solid cluster of static grains coexists with a gas like phase of rapid

moving particles [3]. This clustering resembles that of a freely cooling gas of inelastic

particles first described by Goldhirsch and Zanetti [4], the difference being that in the

vibrated monolayer, energy is constantly being provided into the system, so we are dealing

with a steady-state stable pattern.

In both a freely cooling granular gas and a vibrated monolayer, clustering is caused by

dissipation from inelastic collisions. While energy dissipation considerations are enough to

understand clustering in a cooling gas, to maintain the phase separation in the vibrated

layer, where energy is being constantly renewed, additional mechanisms are needed. In

a vibrated layer, transfer of momentum from the plate to the horizontal motion of the

particles is inhibited in both the cluster and the dilute gas. In the cluster, the particles

are restricted to move in the horizontal direction by their neighbors, while in the gas, the

low frequency of collision also restricts the transfer of momentum.

Figure 1.1: Top view of a vibrated monolayer of monodisperse granular layer of 1 mm steel
balls. A dense cluster of immobile particles surrounded by a gas of moving
particles. From Olafsen and Urbach [3].

Depending on the intensity of the vibrations, vibrated granular matter can behave sim-

ilarly to liquids and gases. Vibrated granular matter that behaves fluid-like is said to be

vibro-fluidized, and may display a range of collective behavior that is typically associated

with fluids, like convection, shear flow, and surface waves. The specific dynamics depend

2



1.1 Self organization in vibrated granular media

on the nature and intensity of the vibration, the shape of the container, and the mechanical

properties of the constituent grains.

Vibrofluidized multilayers of 10 to 30 particle diameters can display many different pat-

terns due to surface waves (Figure 1.2). The pattern that appears depends on the amplitude

and frequency of vibration, shapes and sizes of the grains, shape of the container, number

of layers, etc. [5, 6] Event-Driven simulations are able to reproduce most of the patterns

observed experimentally, but only when friction is taken into account [7, 8].

Figure 1.2: Different patterns that can appear due to surface waves in vibrated granular
layers.

The last square of Figure 1.2 shows the appearance of oscillons, localized oscillations in

a granular bed. Oscillons can interact with each other and appear only for specific values

of the coefficient of restitution [9]. A single oscillon is depicted in Figure 1.3.

So far we have discussed granular matter composed of identical grains. As soon as one

can differentiate between two or more species of grains, one of the most striking phenomena

in vibrated granular matter can occur: segregation. If grain species differ in size, roughness,

density, etc, species tend to segregate instead of mixing.

Size segregation occurs when species of grains of different sizes separate, as shown in

Figure 1.4 (a). Rosato et al [11] proposed a geometric mechanism for size segregation in

vibrated granular media in which voids, left by large particles when moving upwards, get

filled by smaller particles. They employed a Monte Carlo simulations to show that a void

filling mechanism leads to larger particles being on top. This type of segregation is called

3



1 Introduction

Figure 1.3: Oscillon, a localized vibration in vibrated granular matter. From Umbanhowat
et al [9].

Figure 1.4: (a) 8 mm glass beads on top of 15 mm polypropylene, which show the classical
Brazil nut effect (b) 10 mm bronze spheres on 4 mm glass beads showing the
reverse Brazil nut effect. From Breu et al. [10]
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1.1 Self organization in vibrated granular media

Figure 1.5: The Brazil-nut effect. Image from Wikipedia.

the Brazil-nut effect, and is often demonstrated by having a single large particle rise to the

top in a container filled with smaller ones (see Figure 1.5).

A reverse segregation, where large particles sink to the bottom, has also been identified,

and deemed the reverse Brazil-nut effect [10, 12] (Figure 1.4 (b)). If the diameter ratio is

smaller than the inverse of the density ratio, the particle mixture should show the Brazil-

nut effect, but if the diameter ratio is larger than the inverse of the density ratio, the

particle mixtures should show the reverse Brazil nut effect.

Convection is also a segregation mechanism in granular media. When vibrated, the

interaction of the grains with the side walls can induce convection currents whose direction

depends on the shape of the container [13], see Figure 1.6. Grossman [14] found that the

direction of the convective roll depended on when the peak in density occurred in relation

to the velocity of the side walls, which in turn was influenced by the angle of inclination of

the side walls. When particles are more compressed, the friction from the contact with the

side walls increases, while it decreases when the particle density lowers. In a cylindrical

container, when the container moves up, particles compress and the ones near the wall

stick to it while the center particles keep moving upward, this creates a void in the bottom

of the container that is subsequently filled by the side particles. Knight et al. [15] found

that convection of the grains influences the motion of the large particle in the Brazil-nut

effect and reverse Brazil-nut effect.

Shinbrot argues that many features of pattern formation in granular matter can be

understood by considering only two mechanisms; chaotic scattering due the convex surface

5



1 Introduction

Figure 1.6: Granular convection in vibrated granular matter. A cylindrical container (left)
induces a type of convection where grains move upward through the center
and downward at the sides. A conic container (right) reverses the convection
current. Image from Wikipedia.

of the grains, and energy dissipation due to inelastic collisions [16]. Let’s see how a stripe

pattern can appear in a vibrated granular monolayer. In Figure 1.7 (a) at t = 0 grains

are arranged in stripes. A strike from the bottom plate will make them scatter in random

directions. Collision in the direction parallel to the stripes will quickly dissipate gained

momentum and the particles will move mainly in a perpendicular direction. At about half

distance they will collide with particles from neighboring stripes, dissipate their kinetic

energy and form new stripes. This process then repeats periodically. A similar argument

holds for square patterns as those in Figure 1.7 (b).

1.2 Simulation techniques for vibrated granular media

Simulation techniques have proven an invaluable tool in the study of granular matter, for

which a comprehensive analytic theory does not yet exist. By setting up numerical ex-

periments in the computer, which reproduce experimental findings, one can isolate and

identify the importance of the different parameters that influence the outcome. In this

thesis we have used two different numerical algorithms to study 2D granular packings:

6



1.2 Simulation techniques for vibrated granular media

Figure 1.7: Illustration of the fact that combining chaotic scattering with inelastic collisions
can lead to pattern formation. (a) Initially parallel lines of particles (t = 0;
particles aligned with solid red lines) struck from below so that they chaotically
scatter outward will collide inellastically with one another to produce new lines
(t = 1: particles now aligned with broken red lines). If they then are again
struck from below, the cycle will repeat to reinforce the parallel line state. (b)
Similarly, square arrays of particles that scatter outward (t = 0: square centers
at x’s, vertices at o’s) will collide to produce a new array (t = 1: centers and
vertices have changed places). From Shinbrot [16].
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1 Introduction

Molecular Dynamics algorithms (MD), also called the Discrete Element Method (DEM)

and Event-Driven (ED) algorithms. We will briefly review each of these methods in this

section. A good introduction and review to the numerical simulation techniques for gran-

ular materials can be found in the book by Pöschel and Schwager [17]. There exist other

methods, such as Monte Carlo simulations [11], cellular automaton algorithms [18] and the

Contact-Dynamics method. These will not be discussed here [19].

1.2.1 Molecular Dynamics

Molecular Dynamics methods where originally developed to study interacting systems of

many atoms or molecules. The dynamics of the system are determined by numerically

solving Newton’s equations of motion with forces between particles calculated from inter-

particle potentials. Forces due to external potentials like gravity can also be included in

the simulations. The methods where extended to deal with the particularities of granular

matter, such as dissipative contact forces. MD simulations have helped to gain useful

insight about the properties and mechanisms behind the behavior of static packings and

dense granular flows, where contact forces cannot be modeled by instantaneous collisions.

In MD algorithms, grains are non-deformable, but are allowed to overlap. Contact forces

are then determined from the overlap, this is, from the relative positions (and velocities)

of particles in contact. Several force models have been proposed for the calculation of

contact forces (see [20] for a review). One force model that yields accurate results despite

its simplicity [21] is the linear-dashpot model. Here the interaction is modeled using a

linear spring and a viscous dashpot, which reproduces an inelastic collision. The tangential

interaction is additionally limited by the Coulomb friction force. The first ones to introduce

this model for tangential forces in the context of granular matter simulations where Cundall

and Strack [22]. The details of the implementation of the contact force model used in this

thesis can be found in Chapter 4.

In MD methods, one must ensure that the collision is simulated accurately. This requires

that the discretization time-step δt be much smaller than that typical duration of a collision.

The linear-dashpot model predicts a collision time of approximately half the period of

oscillation of the normal spring. This period decreases with particle stiffness. Realistic

values of stiffness require time-steps δt shorter than ∼ 10−6 s [21]. This makes computation

8



1.3 Rotation in disk packings

CPU expensive unless softer particles are used, but reducing particle stiffness sometimes

alters the dynamical behavior of the system [23].

1.2.2 Event-Driven simulations

Event-Driven simulations are efficient in the dilute gas regime. In this regime the grains

are agitated, collisions are infrequent and of short duration in comparison with the mean

flight time of a grain. Each collision can then be approximated as instantaneous [24]. The

positions and velocities before the collision are mapped to new values after the collision

following a set of rules. Collision rules depend on the coefficients of normal and tangen-

tial restitution (see Chapter 6). Between collisions, the trajectory of each grain can be

calculated analytically, a calculation that is computationally fast.

The central idea behind this technique is to build a list of possible collisions calculating

the times at which particle trajectories will intersect. One then chooses the collision (event)

that will happen earlier, and advances all positions and velocities in the simulation to that

point. New positions and velocities are calculated for the colliding pair of particles following

the collision rules and the method is iterated again.

Computation times of simulations using Event-Driven algorithms can be several orders

of magnitude shorter than those using the MD approach if the particle density, and thus

the rate of collisions, is low. As the particle density increases, and the time between

collisions shortens, the efficiency of the method is greatly reduced. For small values of the

normal coefficient of restitution, dissipation can lead to clustering and an infinite number

of collisions in finite time [25] effectively halting the simulation.

1.3 Rotation in disk packings

In this thesis we describe the observation of sustained rotations in vibrated two dimensional

packings of disks. Disks in vibrated polydisperse packings will spontaneously start to rotate

systematically, each in a given direction. This rotation was first observed numerically using

Molecular Dynamics simulations of disks under gravity, with a careful implementation of

tangential forces. An example of such packing is found in Figure 1.8. In the figure, each

9
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disk is colored according to its direction of rotation: red for clockwise rotation and blue

for anti-clockwise rotation. The packing is composed of 60 disks, 20 disks with a 3 cm

diameter, 20 with a 4 cm diameter and 20 with a 5 cm diameter. A corresponding plot of

the angular path each disk takes over time is found in the same figure. Each disk i rotates

in a random direction with a random mean rotational velocity ω̄i. The rotational velocity

ω̄ depends on the local configuration of contacts of each disk, and changes if the packing

structure changes. The same packings are also simulated using Event-Driven algorithms

(Figure 1.9).

The bottom of the container is vibrated sinusoidally with a defined amplitude Ab and

frequency ωb. Perturbations are then propagated throughout the packing via contact forces

between disks. Vibration must be strong enough to allow contacts between disks to over-

come tangential friction forces and slide, and/or to allow contacts to open and close re-

peatedly. At the same time, vibration must not be so strong as to lead to excessive

reorganization of the packing, since such reorganization will change the local arrangements

of contacts of each disk. Since the rotational velocity depends strongly on this contact

network, an unstable packing will lead to fluctuating velocities of near zero mean.

A careful analysis of the MD simulations showed a transition between two dynamical

regimes as the amplitude of the vibration Ab increases. This transition is reflected in

the functional dependence of the mean squared rotational velocity 〈ω̄2〉 on the amplitude

of vibration, 〈ω̄2〉 being the average of individual disk velocities ω̄2 over an ensemble of

simulated packings. Over a certain amplitude threshold, 〈ω̄2〉 transitions from growing

proportionally A4
b to a linear growth in Ab. It is shown in Chapter 3 that, at this transition,

the system goes from a state dominated by persistent contacts, to a state dominated by

disk collisions. ED simulations are well suited in the regime of frequent collisions, and,

since they avoid step by step integration, display better performance than MD simulations.

Given that they exclude the possibility of lasting contacts, they allow the study of the

contribution of collisions to rotation without the influence of permanent contacts among

disks. Details of the implementation of MD and ED simulations are given in Chapter 2.

To be sure that this self-organized rotational response is real, and not just an artifact

of the simulations, we performed several laboratory experiments with real packings. The

phenomenon of sustained rotation was observed for disks of different materials and sizes.

10
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Figure 1.8: Top: A typical two dimensional packing of disks under gravity inside a rect-
angular container. This packing was studied using time driven Molecular Dy-
namics simulations. Upon vibration of the bottom wall, spontaneous rotations
of the disks are observed. Blue disks are rotating counter-clockwise, red disks
are rotating clockwise. Bottom: Angular paths described by the disks of the
packing.
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Figure 1.9: Top: The same aggregate as in Figure 1.8 studied using Event-Driven simula-
tions. The difference in packing structure is due to reorganization of contacts
during the simulation. Blue disks are rotating counter-clockwise, red disks
are rotating clockwise. Bottom: Angular paths described by the disks of the
packing.
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1.3 Rotation in disk packings

Figure 1.10: Three simple experiments that show sustained rotation under vibration. Left:
A minimal 3 disk packing of thin aluminum disks tilted in order to introduce
asymmetry. Middle: A minimal 3 disk packing of 1 cm thick steel disks, also
tilted. Right: A small packing of plastic buttons. In all three setups disks of
the bottom row are fixed.

Figure 1.10 shows three different small packings made with 1) thin disks of aluminum, 2)

thick disks of steel, and 3) plastic buttons. In all three cases the packing was encased

between two sheets of acrylic and attached to a loudspeaker that supplied the vibration.

In these 3-disk systems, tilting the setup introduces the required asymmetry for rotation,

as discussed later in this section. The button packings are already asymmetric for zero tilt

since top buttons have a single neighbor on the top layer.

A much better crafted set of experiments was made for packings with the same radii

distribution used in numerical simulations. 60 disks made from 3 mm acrylic sheets where

encased between two sheets of tempered glass. Special markings were made on each disk

to track rotations using a camera. The bottom wall of the container is able to move, and

is attached to a loudspeaker that drives the wall in a piston-like manner. A snapshot from

one of these experiments is shown in Figure 1.11 top. The angular paths of each disk are

plotted in the same figure, bottom. We can appreciate that the qualitative behavior is

similar to the packings simulated using both MD and ED algorithms. A detailed analysis

of numerical and experimental results is presented in Chapter 3, while a description of the

experimental setup is given in Chapter 2.

The fact that these rotations have never been reported in the literature, despite numeri-

cal and experimental studies with vibrated granular being common, may be due the narrow

limit of excitation intensity required for stable dense packings, coupled to the computa-

tional cost of a careful implementation of the frictional forces in numerical simulations.
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Figure 1.11: Top: Snapshot of an experiment of a 2D packing under similar conditions as
the simulated packing from Figure 1.8. Bottom: Angular paths described by
the disks of the packing.
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1.3 Rotation in disk packings

Friction forces in simulations are usually taken into account at most approximately. Most

such programs are usually oriented towards following the collisional dynamics of particles

that only come into contact sporadically, or else because these are in a regime of complete

repose, where friction forces are constant. In the regime we are analyzing, disks are most

of the time in contact with each other, but the total kinetic energy is large enough to allow

for the systematic breaking of frictional constraints. Therefore, a careful implementation

of friction is important to accurately reproduce the rotational response of the packing.

A sinusoidally vibrating bottom is implemented numerically because such setup is the

simplest to reproduce experimentally in the laboratory. This allows for a better comparison

between numerical and experimental results. Although most of the results presented in

this thesis were obtained using a sinusoidally vibrating bottom, the onset of rotation is

not restricted to this type of excitation. In fact, many different types of vibration were

also implemented in numerical simulations. For example, a layer of bottom disks are set to

vibrate randomly around their equilibrium positions, their center restricted to move inside

a circle of radius ε. Rotation under this type of excitation was qualitatively similar to that

of the case of a sinusoidally driven bottom. We can say, then, that, in general, a noisy

input is being rectified. The system is self organizing in a way that it responds to random

vibrational motion by generating a persistent rotation for each disk.

Clearly, a necessary ingredient for the appearance of sustained rotation is the breakdown

of reflection symmetry. While the statistical properties of the whole packing must neces-

sarily be symmetric under reflections, those of a single disk need not be. In a disordered

packing the local configuration of contacts for each disk is random. This disordered contact

network, that is persistent over long timescales, allows for rotation. Because of the statis-

tical reflection symmetry of the packing, the distribution of rotational velocities over all

disks must necessarily be symmetric and of zero mean, something that was experimentally

and numerically verified.

As a first step towards understanding the possible microscopic origins of the rotational

organization described above, we also performed numerical and analytic analysis on a

simpler arrangement, or toy model, for which some mechanisms for rotation can be readily

determined. The minimal setup to study spontaneous rotation consists of three disks of

the same radius R, as shown in Figure 1.10, left and center. The setup consists of one
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upper disk supported against gravity by two vibrating “supporting” disks.

This simple arrangement is described in detail in Chapter 4 and studied experimentally

and numerically in Chapters 5 and 6. It is found that, when subjecting the supporting

disks to vibration, the upper disk rotates steadily if the whole system is tilted, i.e. if

the left-right symmetry is broken. We can distinguish the same two states observed in

large packings in the 3 disk packing. For mild vibration, contacts between disks are never

broken, but the upper disk rotates steadily without ever loosing contacts with its supports,

because frictional forces saturate and sliding occurs. This regime is studied in detail in

Chapter 5. The high vibration intensity regime, where the upper disk is bouncing on top of

the supports, is dominated by binary collisions, and is studied in Chapter 6. The analysis

of a 3-disk packing in the bouncing regime was also discussed in [26].
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We have performed numerical simulation using tree different algorithms, namely: (1) Time

Driven Molecular Dynamics (also called the Discrete Element Method in the context of

granular media simulations), (2) Event-Driven Dynamics, and (3) a Discrete Map. The

first two algorithms were used to simulate packings of disks, while the map was developed

to simulate a disk on a wedge, a simple system that also displays rotation. The map is

equivalent to an Event-Driven simulation, where the equations describing the change of

variables between collisions can be calculated analytically.

In the following sections we describe the implementation of each algorithm, justify its

usage, and explain within which approximations each algorithm is applicable. We also

describe the experimental procedure and apparatus used in the experiments with real

packings.

2.1 Packing initialization

A problem in all simulations of dense granular media is that of generating a suitable starting

condition for the simulation. A simple approach is to place particles one by one at random

positions. When a newly inserted particle overlaps one or more previously placed particles,

the placement is rejected and a new attempt is made with a new random position. The

simulation is then allowed to evolve to a stable configuration before starting to record data.

While simple to implement, this approach has several disadvantages. If an attempt is

made to generate a dense packing, the rejection rate will be very high, greatly increasing

the time required to generate a packing. If the size of the available space is increased

in order to decrease density, it may take the simulation a lot of time to reach a stable

configuration.
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2 Methods and Tools

Figure 2.1: This figure illustrates the advancing front algorithm to construct disk packings.
On the left, the current front is colored in gray. On the middle, a new disk
is placed (dark) and the front is updated. On the right, a complete 60 disks
packing is shown.

To avoid such problems, we have implemented the advancing front algorithm described

in [27] to fill a rectangular container with disks. In this algorithm, the advancing front

is defined to be the top layer of disks plus the walls. The packing is built incrementally,

by placing a new disk such that it touches exactly two elements of the front without

overlapping any other previously placed disk. The front is then updated to include the

new disk and to remove disks no longer in the top layer. This process is iterated until all

disks have been placed. The front is advancing in the sense that it moves towards the top

as the container is filled with disks. A disk placement step is illustrated in figure 2.1.

2.1.1 Advancing front packing construction

To place a new disk i on top of two disks, a and b, on the front, the following constraints

must hold for the (x, y) coordinates of disks’ centers.

(xi − xa)2 + (yi − ya)2 = R2
ia, (2.1)

(xi − xb)2 + (yi − yb)2 = R2
ib. (2.2)

Where Rij is the sum of the radii of disks i and j, Rij = Ri +Rj.

This system of equations has two solutions for the coordinates (xi, yi) of the new disk.
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2.2 Molecular Dynamics Simulations

One solution places the disk in the bulk of the packing, the other, places the disk at the

top. We are only interested in the later, the solution being

xi − xa =
1

2L2

[
(L2 +R2

ia −R2
ib)(xb − xa)−√[

L2 − (Ria −Rib)
2] [(Ria +Rib)

2 − L2
]
(yb − ya)

]
,

(2.3)

yi − ya =
1

2L2

[
(L2 +R2

ia −R2
ib)(yb − ya)+√[

L2 − (Ria −Rib)
2] [(Ria +Rib)

2 − L2
]
(xb − xa)

]
,

(2.4)

where L =
√

(xa − xb)2 + (ya − yb)2 is the distance between the centers of disks a and b.

If the portion of the front where we are trying to place disk i contains a wall w and a

disk d, then the solution becomes

xi − xd =(nx∆x+ ny∆y +Ri)nx ∓
√
R2
id − (Ri + nx∆x+ ny∆y)2ny, (2.5)

yi − yd =(nx∆x+ ny∆y +Ri)ny ±
√
R2
id − (Ri + nx∆x+ ny∆y)2nx, (2.6)

where ∆x = xw − xd and ∆y = yw − yd. nx and ny are the components of the normal

versor to the wall. Since the container walls are either vertical or horizontal, nx and ny

cannot be non zero at the same time. For the bottom wall, ny = 1 and nx = 0. For the

left wall, ny = 0 and nx = 1. For right wall, ny = 0 and nx = −1.

Once built, the packing is used as the initial condition for the MD and ED algorithms

described next.

2.2 Molecular Dynamics Simulations

Also called the Discrete Element Method, a Molecular Dynamics (MD) simulation considers

each particle as a discrete entity, and integrates the equations of motion of the system using

small time steps δt.

Each particle is affected by external forces imposed on the system, such as gravity, and
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by the forces exerted on it by its interaction with other particles, and walls, if present.

In our MD simulations, the entire packing rests under gravity inside a rectangular con-

tainer. The walls of the container are treated as special particles. Walls can be fixed or

can be made to move in a certain way, independently of the forces exerted on them.

Whenever two disks are in contact, i.e. whenever their inter-center distance is smaller

than the sum of their radii, inter-particle forces may appear at the contact point: a repulsive

normal force along the line that joins their centers, and a tangential force perpendicular

to it. Normal forces are always repulsive, and they are assumed to depend linearly on the

amount of overlap. In other words, we assume a linear elastic interaction among disks in

the normal direction.

Tangential forces are implemented by assuming that each disk has a linear-elastic “skin”

that deforms whenever two disks in contact rotate relative to each other [22]. The ensuing

tangential force is assumed to be proportional to the deformation of the skin and to a

tangential stiffness kt. In other words, we assume linear elasticity for tangential interactions

as well. Tangential friction forces are limited by normal forces in the same contact via a

friction coefficient µ and through Amonton’s condition. Amonton’s condition states that

the magnitude of the tangential force cannot exceed µ times the normal force at the contact.

When this limit is reached, tangential forces remain constant at the value given by it, even

if the disks continue to rotate. This amounts to a “slip” of the elastic skin. Inter particle

forces, and their implementations, are further discussed in grater detail in Chapter 4.

In addition to normal and tangential elastic forces, disks in contact are also subject to

viscous forces. Viscous forces serve the purpose of representing, in a simplified manner,

several dissipative processes occurring in real systems. A force proportional to the relative

velocity of the disks in contact accounts for the energy lost in deformation of real colliding

disks. Bulk viscosity, whereby a force acts on the center of a moving particle, proportional

to its absolute velocity, accounts for viscous drag caused by the surrounding fluid, typically

air. The details of these forces follow standard practices in molecular simulations [28], and

will not be discussed here.

A fifth-order predictor-corrector algorithm [29] integrates Newton’s equations of motion

in discrete time steps δt. The time-step for integration was set to δt = 10−6 s. Run times

were usually of t = 103 s, i.e., 109 integration steps. For the normal force stiffness kn, and

20



2.3 Event-Driven Simulations

the skin stiffness kt, we explored values ranging from 104 to 106. Bulk viscosity was set to

zero since tests showed that its effect on the dynamics was negligible. Deformation viscosity

was set to γc = 10. Gravity was set to the standard value g = 9.8 m/s2. Parameter values

where chosen to try to approximate the mechanical behavior of the acrylic disks used in

the experiments.

Large values of the stiffness constants cause disks in the packing to experience fast os-

cillations. For dense packings, depending on the strength of excitation, disks may oscillate

while maintaining contact with their neighbors, or rattle in place, colliding with near disks.

For the integration algorithm to be able accurately approximate the dynamics, the value of

the time-step δt must be much smaller than the typical period the oscillations disks expe-

rience. The relevant timescale can be approximated using the normal modes of oscillation

of a single disk on top of two others. This timescale is also applicable to binary collisions,

since, under the linear-dashpot model, the duration of a collision is approximately half the

period of a normal oscillation of this type. The time-step was set to be at least smaller

than one hundredth of this period, hence the value δt = 10−6 s.

Energy flows constantly into the packing through the motion of the bottom wall of the

container. The bottom wall is imposed to move vertically following a sine function with

frequency fb and amplitude Ab. The frequency was set to fb = 80 Hz to match the frequency

used in the experiments with real packings. The control parameter for the vibration is the

dimensionless acceleration of the bottom wall Γ = Ab(2πfb)
2/g, which measures the ratio

of the peak acceleration of the bottom wall Ab(2πfb)
2 to the gravitational acceleration g.

2.3 Event-Driven Simulations

An algorithm is said to be Event-Driven (ED) when the time in the system advances from

one collision event to the next, instead of advancing in fixed time increments. Between

events, the solution to the equations of motion for all particles can be given analytically,

such as free linear motion or parabolic flight in a gravitational field. At an event, the

velocities and positions of the particles change discontinuously, and have to be calculated

from a set of rules that depend on the state of the system at the moment at which the event

takes place. Events are idealized processes, taken to be instantaneous, such as collisions

21



2 Methods and Tools

between particles.

Event-Driven simulations are justified in the regime where the duration of a collision is

much shorter than the mean flight-time of a particle. Under such conditions, collisions can

be approximated as instantaneous events. The state of the system is given by the values

of all positions and velocities for the disks in the packing. For a particular state, the time

until the next collision is analytically calculated from the equations of motion for a particle

in a constant gravitational field. Positions and velocities are then updated up to this time

using the solutions to this same equations of motion. The velocities of the colliding pair

of particles are then changed according to the collision rule derived in Section 2.3.1. The

time for the next collision is again calculated and the process is repeated.

It is important to remember that, in ED simulations, interactions among particles are

always through instantaneous collisions between pairs of disks. Only one such collision can

take place at any given time. Collisions that involve more than two disks are impossible,

as are persistent contacts. This makes ED simulations unsuited to study static packings,

or packings experiencing quasi static deformation.

We have implemented most of the ED algorithm for disk packings following standard

practices [17]. The important details of our implementation are: the derivation of the

collision rules (Section 2.3.1), the calculation of collision times (Section 2.3.2), and the

implementation of an energy exchange mechanism with the oscillating bottom wall (Sec-

tion 2.3.3). Details of the implementation of an ED simulation, as well as the discussion

of several techniques to improve simulation time, can be obtained in [17] and references

therein.

2.3.1 Collision rules

A collision rule specifies how velocities change as a result of a collision. It can be derived

analytically by integrating the equations of motion during a collision. By employing a

collision rule, there is no need to simulate the dynamics during a collision, instead we just

calculate the velocities after the collision from the velocities of the disks at the beginning

of the collision.

To obtain the collision rule, we have assumed that normal forces act independently of

tangential forces, changes in the normal velocities of colliding disks do not depend on
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the tangential velocities. Independence of the dynamics in the normal direction is also a

property of the linear-dashpot model employed in the MD simulations. Furthermore, we

also assume that the displacement of disks during a collision is negligible, thus the vector

that joins the centers of colliding disks is taken to be constant. One last assumption is

that gravitational forces are much smaller in magnitude than the contact forces involved

in a collision, and gravity can be safely ignored. All these assumptions were tested by

comparing collisions in packings simulated by both MD and ED algorithms. We found

that collision rules reproduce post-collision velocities obtained in MD simulations when

the maximum dimensionless acceleration of the vibrating bottom Γ is larger than 1.

Collision rules are written in terms of the normal and tangential coefficients of restitution

en and et. These coefficients are defined as the ratio of the post-collision velocities to the

pre-collision velocities. During the derivation of the collision rules in this section we assume

that en are et are known quantities. Employing the coefficients en and et allows us to

obtain expressions for the collision rules that are independent of the force model employed

in the simulations. The details of the force model are encoded into the expressions for

calculating en and et. Coefficients of restitution are obtained for the linear-dashpot model

in Section 4.5. Let un and ut be the normal and tangential relative velocities at the point

of contact before a collision, and let the primed variables u′n and u′t be the post-collision

relative velocities. We write the coefficients of restitution as

en =− u′n
un
, (2.7)

et =
u′t
ut
. (2.8)

The normal coefficient of restitution takes values between en = 0 and en = 1. The value

en = 0 corresponds to a completely inelastic collision, while the value en = 1 corresponds to

an elastic collision. The tangential coefficient of restitution takes values between et = −1

and et = 1. The value et = 1 corresponds to a frictionless collision, while the value et = −1

corresponds to a complete reversal of the relative tangential velocity. If et = 0, disks end

the collision with zero relative tangential velocity.

The collision rule for the normal velocities vn of colliding disks i and j can be obtained
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from equation (2.7) and conservation of momentum as

v′
n
i = vni −

meff

mi

(1 + en)un, (2.9)

v′
n
j = vnj +

meff

mj

(1 + en)un, (2.10)

where meff is the effective mass, and the absolute normal velocity of disks i (vni ) and j

(vnj ) is related to the relative normal velocity though un = vni − vnj .

If a disk i collides with a massive wall j with constant normal wall velocity vnb , we can

take the limit mj → ∞. In this limit meff = mi and v′nj = vnj = vnb . The collision rule

takes the form

v′
n
i = −envni + (1 + en)vnb . (2.11)

Note that this collision rule does not conserve momentum.

The relative tangential velocity ut is measured at the contact point of colliding disks. It

includes contributions from both the velocity of the center of mass vt, and from each disk’s

rotational velocity ω,

ut = vti − vtj +Riωi +Rjωj, (2.12)

where Ri is the radius of disk i.

The following quantities can be derived from conservation of angular momentum around

the point of contact:

miRi

(
v′
t
i − vti

)
=Ii (ω

′
i − ωi) , (2.13)

mjRj

(
v′
t
j − vtj

)
=− Ij

(
ω′j − ωj

)
, (2.14)

where Ii is the moment inertia of disk i.

The collision rules for tangential and rotational velocities can be obtained from equa-
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tions (2.13), (2.14) and (2.8) as

v′
t
i = vti −

meff

mi

(1− et)ut
1 +meff

(
R2
i

Ii
+

R2
j

Ij

) , (2.15)

v′
t
j = vtj +

meff

mj

(1− et)ut
1 +meff

(
R2
i

Ii
+

R2
j

Ij

) , (2.16)

and

w′i =wi −
Rimeff

Ii

(1− et)ut
1 +meff

(
R2
i

Ii
+

R2
j

Ij

) , (2.17)

w′j =wj −
Rjmeff

Ij

(1− et)ut
1 +meff

(
R2
i

Ii
+

R2
j

Ij

) . (2.18)

Plugging the moment of inertia for disks, I = mR2/2, into equations (2.15) through (2.18),

the collision rules for tangential and rotational velocities become

v′
t
i =vti −

meff

mi

(1− et)ut
3

, (2.19)

v′
t
j =vtj +

meff

mj

(1− et)ut
3

, (2.20)

w′i =wi −
2meff

Rimi

(1− et)ut
3

, (2.21)

w′j =wj −
2meff

Rjmj

(1− et)ut
3

. (2.22)

If the collision is between a disk i and a massive wall j, moving with constant tangential

wall velocity vtb = v′tj = vtj, and with zero wall rotational velocity ωj = 0, the following

collision rules can be derived for the velocities of disk i

v′
t
i =vti −

(1− et)ut
3

, (2.23)

w′i =wi −
2(1− et)ut

3Ri

. (2.24)
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The collision rules derived in this section do not depend on the force model employed

in the simulations. They are generally applicable, provided we specify how to calculate

the coefficients of restitution en and et. One advantage of doing things this way, is that

we can try different force models, using the same ED algorithm, by changing only the

functions that calculate the coefficients of restitution. In Section 4.5, we give details for

the calculation of the coefficients of restitution using the linear-dashpot model, which is

the model we implemented in our simulations for disk packings. We purposely delay the

derivation of the coefficients of restitution to Chapter 4, after the detailed discussion of

the force model given in that chapter.

2.3.2 Detection of events

An integral part of the ED algorithm is the calculation of collision times required for event

scheduling [17]. Scheduling requires knowledge about which collision, out of all possible

future collisions, will occur next.

Given a state of the system at time t, the time ∆t until the next collision of a pair of

disks i and j can be solved from the equation

rij(t+ ∆t) = Rij, (2.25)

where rij(t) is the distance between disk centers at time t, and Rij = Ri + Rj is the sum

of their radii. Equation (2.25) is just the condition that, at time t+ ∆t, disks are touching

without overlapping.

We can rewrite equation (2.25) with the aid of the equation of motion for the center of

a disk in a constant gravitational field, namely

~ri(t+ ∆t) = ~ri(t) + ~vi(t)∆t+
~g∆t2

2
, (2.26)

where ~ri(t) is the position vector of the center of disk i at time t, ~vi(t) is the velocity vector,

and ~g is the constant gravitational acceleration vector, of magnitude g, that always points

down.

The relative position vector of disk i with respect to disk j, ~rij = ~ri−~rj, at time t+ ∆t,
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can be written, from equation (2.26), as

~rij(t+ ∆t) = ~rij(t) + ~vij(t)∆t, (2.27)

where ~vij = ~vi − ~vj is the relative velocity vector. The magnitude squared of the vector

~rij(t+ ∆t) is

r2
ij(t+ ∆t) = v2

ij(t)∆t
2 + 2~rij(t) · ~vij(t)∆t+ r2

ij(t). (2.28)

Using equation (2.28), equation (2.25) becomes a quadratic equation for ∆t

0 = v2
ij(t)∆t

2 + 2~rij(t) · ~vij(t)∆t+ r2
ij(t)−R2

ij. (2.29)

For equation (2.29) to have positive solutions for ∆t, it is required that disks are approach-

ing each other, i.e., ~rij(t) · ~vij(t) < 0.

Out of the two possible solutions to equation (2.29), we are interested in the smallest

value ∆t > 0 that leads to a collision. This solution is

∆t =
r2
ij −R2

ij

−~rij · ~vij +
√

(~rij · ~vij)2 − v2
ij(r

2
ij −R2

ij)
. (2.30)

We have written equation (2.30) in a form that avoids catastrophic cancellation (see [30])

to avoid numerical issues in the simulation.

When the collision involves a disk and a wall, we first define the distance from the wall

to disk i as

ri,wall(t+ ∆t) =~rij(t+ ∆t) · n̂, (2.31)

where ~rij is a vector from a reference point j on the wall to the center of the disk, and n̂

is a normal versor to the wall that always points towards the inside of the container. We

can rewrite equation (2.31), using equation (2.26), as

ri,wall(t+ ∆t) =~rij(t) · n̂+ (~vij(t) · n̂) ∆t− gny
2

∆t2, (2.32)
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where ny is the y-component of the versor n̂.

Using equation (2.32), we write the condition for a collision with a wall, ri,wall(t+ ∆t) =

Ri, as

(~rij(t) · n̂−Ri) + (~vij(t) · n̂) ∆t− gny
2

∆t2 = 0. (2.33)

The solutions to equation (2.33) are (again written as to avoiding catastrophic cancellation)

∆t1 =


~vij(t)·n̂−

√
(~vij(t)·n̂)2+2gny(~rij ·n̂−Ri)

gny
~vij(t) · n̂ < 0,

−2(~rij ·n̂−Ri)
~vij(t)·n̂+

√
(~vij(t)·n̂)2+2gny(~rij ·n̂−Ri)

~vij(t) · n̂ > 0,
(2.34)

∆t2 =


2(~rij ·n̂−Ri)

−~vij(t)·n̂+
√

(~vij(t)·n̂)2+2gny(~rij ·n̂−Ri)
~vij(t) · n̂ < 0,

~vij(t)·n̂+
√

(~vij(t)·n̂)2+2gny(~rij ·n̂−Ri)
gny

~vij(t) · n̂ > 0.
(2.35)

Of these two solutions, the relevant one, corresponding to the smallest ∆t > 0, is ∆t2.

Dropping the sub-index, we write the time ∆t until the next collision with a wall as

∆t =


2(~rij ·n̂−Ri)

−~vij(t)·n̂+
√

(~vij(t)·n̂)2+2gny(~rij ·n̂−Ri)
~vij(t) · n̂ < 0

~vij(t)·n̂+
√

(~vij(t)·n̂)2+2gny(~rij ·n̂−Ri)
gny

~vij(t) · n̂ > 0 and ny > 0

∞ (otherwise)

(2.36)

2.3.3 Fixed-bottom, random-phase approximation

In MD simulations, energy is injected into the system by sinusoidal vibrations of the

bottom wall. In ED simulations, moving walls complicate the calculation of the collision

time between disks and walls, since this calculation would require numerically solving a

transcendental equation. To avoid CPU expensive numerical computations, we, instead,

keep the position of the wall fixed. For each collision, a random velocity is sampled from

a suitable distribution and assigned to the wall, without actually moving it. We call this

the fixed-bottom, random-phase approximation. This approximation is valid in the limit

of large frequency and small amplitude of vibration. Since the amplitude is assumed small,
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the spatial location of a collision, and, therefore, the collision time tcol itself, are practically

unaffected by the motion of the bottom. The maximum the bottom velocity is vb = Aωb.

-π/2  0 π/2 π 3π/2

phase of bottom vibration

ta

tb

tc

B

A

t
c

Figure 2.2: Schematic showing how the limiting points A and B are defined. The thin
line is the vertical position of the bottom yb. The dashed lines represent the
y coordinate of the incoming disk, with slope vn. The dot-dashed line depicts
a random incoming trajectory, and tc is the resulting collision phase. The
collision may only occur in the region between B and A marked with a thick
line.

To calculate the bottom velocity at the collision, we choose to use a “random phase”

approximation, i.e. the assumption that the collision occurs at a random time. The result-

ing distribution of bottom velocities, nevertheless, turns out to depend on the downwards

normal velocity vn of the disk, as illustrated by Fig. 2.2, which displays the position of the

vibrating bottom (full line) and of the disk (dashed line) versus the phase of the bottom

vibration, ωbt. There is an “allowed region”, delimited by points A and B (thick sinusoidal

line), where the collision may happen. When the incoming velocity of the disk is large,

points A and B merge, so the collision can happen anywhere, but the distribution of re-

sulting collision phases still depends on the ratio vn/vb. We correctly take into account

this dependence by generating a random incoming line with the appropriate slope vn (dot-

dashed line in Fig. 2.2) and calculating its intersection phase tc with the sinusoidal line

representing the movement of the bottom. Since the collision is inelastic, there is a set of
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bottom velocities for which the collision does not cause the disk to bounce back. In these

cases, the disk would continue to move downwards, past the wall and outside the container.

When such a case is detected, the sampled bottom velocity is rejected, and a new velocity

is sampled from the distribution until it does not present this problem. Rejection events

are unusual in the regime where the validity of ED simulation holds. We call this sampling

method the fixed-bottom, random-phase approximation, and we will refer to it as FBRPA

from now on.

We tested a few other forms for the distribution of the bottom velocity at the time

of the collision, and found that none of the results are modified qualitatively, as long as

the typical bottom velocity vb is the same. In particular, we tried a sawtooth profile for

the bottom motion (instead of sinusoidal), which implies that the bottom always moves

upwards with velocity vb at any collision, no matter what the incoming velocity vn of the

disk is. For the simplified system of a disk bouncing in a wedge (Chapter 6), this case gave

results that, after discounting for a constant factor, were equivalent to those obtained with

sinusoidal excitation. This suggests that the observed spontaneous rotation is robust to

some extent. The important parameter is the typical bottom velocity vb, that determines

the amount of energy injected into the system by one collision. The actual distribution

of bottom velocities appears to be irrelevant. This universality with respect to the type

of excitation could be perhaps understood by analogy with thermal physics. Within the

FBRPA, wedge walls play the role of a heat bath. Every time the disk hits the wall, a

wall velocity is sampled from a distribution whose typical value is vb = Aωb, the details of

which appear to be unimportant.

For the system described in Chapter 6, despite the simplifying assumptions involved in

the FBRPA, we find that numerical results (e.g. rotational velocities of the upper disk)

obtained from ED simulations within the FBRPA agree with those from MD simulations

(no approximation) quite well. See Section 6.3.3.

Although not required to employ the FBRPA, we now give a derivation of the distribution

of bottom velocities and calculate its first two moments. This results may prove useful in

a future analytic treatment of rotation in disk packings.
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2.3 Event-Driven Simulations

The position and velocity of the bottom plate follow are given by

yb = A sin(ωbt) (2.37)

vb = Aωb cos(ωbt) (2.38)

The probability density function (pdf) of the bottom velocity vb, without taking into

account the incoming disk velocity vn, is the pdf of a sine function. The pdf is proportional

to the time spent around vb, i. e., P (vb)dvb ∝ dt(vb), and is calculated as

P (vb) =
1

wπ
√
A2ω2

b − v2
b

(2.39)

When sampling vb for a collision, the pdf given by equation (2.39) applies only in the

limit of a very large disk velocity, vn → ∞. A finite vn causes a shadowing effect that

makes some bottom velocities inaccessible, making it more likely that the collision occurs

for positive values for vb (see Figure 2.2).

Let P (vb|vn) be the probability that a disk, arriving with velocity vn, encounters a

bottom velocity of vb. To find P (vb|vn), we build a piece-wise function for the bottom

velocity that is non-zero only inside the valid region. This region is delimited by points

A and B of Figure 2.2. We can find the time tA, of point A, using the fact that, at this

point, the slope of yb becomes equal to the disk velocity vn. The time tB, of point B,

must be found numerically or approximated somehow. We need to take into account that

some velocities need to be counted twice, due to the periodicity of the sine function. Also,

there is a contribution from the width x of a bundle of ray trajectories as a function of an

infinitesimal time interval, dx/dt. Up to a normalization factor, we have:

P (vb|vn) =


0, if vb < vb(tA) = vn or (vb > vb(tB) and tB > 0)

2 dt
dvb

dx
dt

= 2 vn−vb√
A2ω2

b−vb2
, if vb > vb(tB) and tB < 0

dt
dvb

dx
dt

= vn−vb√
A2ω2

b−vb2
. otherwise

(2.40)

To obtain tB we need to solve the equation yb(tB) = v(tB − tA) +A sin(ωtA). Assuming
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2 Methods and Tools

a linear relationship, we can fit the following linear equation for tB

tB =

 3π
2Aω2

b
vn + π

2ωb
, |v| < Aωb

− π
ωb
, |v| > Aωb

(2.41)

This gives

vb(tB) =

−Aωb sin(3π
2

vn
Aωb

), |v| < Aωb

−Aωb, |v| > Aωb.
(2.42)

Integrating using the appropriate limits, we can now write expressions for the expected

values 〈vb〉 and 〈v2
b 〉

〈vb〉 =Aω f
( v

Aω

)
(2.43)〈

v2
b

〉
=A2ω2 g

( v

Aω

)
, (2.44)

where the functions f and g depend only on the dimensionless parameter vn/Aωb. In the

limit of high normal velocities, β = |vn|/Aωb > 1, f = 1/2β and g = 0.5.

〈vb〉 =− A2ω2
b

2v
(2.45)〈

v2
b

〉
=
A2ω2

b

2
. (2.46)

In this limit, the entire sinusoidal profile is sampled, while in the opposite limit, of zero

normal velocity, the disk will always collide with a bottom moving at its maximum bottom

velocity vb.

2.4 Description of the experimental procedure

2.4.1 The experimental setup

We performed a set of experiments on disk packings designed so that comparison between

numerical and experimental results is possible. This means that conditions in both experi-
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2.4 Description of the experimental procedure

ments and simulations should be similar, such as using the same number of disks, with the

same size distribution and subject to a comparable vibrational excitation. A photograph

of the experimental apparatus is shown in Figure 2.3.

Sixty disks were cut from a 3 mm acrylic sheet, and a lathe was used to smooth the

edges. In order to avoid spontaneous crystallization of the packing, disks were machined

with three different radii: twenty disks with a 1.5 cm radius, twenty with a 2.0 cm radius

and twenty with a 2.5 cm radius. Each disk is marked with a centered rectangle made from

black tape (labeled M in Figure 2.4), this mark is used to track rotations, as described

below. White translucent acrylic was chosen as the base material, as it lets through and

diffuses light from an LED backlight, which enhances contrast in the images.

Disks are held in a container made of two panes of 6 mm thick tempered glass. The back

pane is 50×50 cm and is translucent white in order to diffuse the backlight. The front pane

measures 50×44 cm and is completely transparent. Both panes are bolted to a steel frame

using six 1/4 inch bolts, four of which are labeled B in Figure 2.4. The fixed steel frame is

in turn bolted to the laboratory floor. Between panes, at the left and right borders, two

stripes of 4 mm acrylic (S in Figure 2.4) are used to provide the required spacing for disks

to rotate freely. Figure 2.4 shows a packing inside the container with the backlight on.

The top and bottom of the container are left open. Disks can be introduced into the

container from the top. Through the bottom opening, an aluminum profile, machined

down to 3 mm thickness, acts as a mobile bottom wall (labeled P in Figures 2.3 and 2.4).

This aluminum profile is restricted to move vertically by a two-rail system, as shown in

Figure 2.5. Two steel rods (R in Figure 2.5), 20 cm apart from each other and 12 mm in

diameter, are attached to a fixed steel frame below the glass container. On each rod, a

linear bearing (B in Figures 2.3 and 2.5) is free to slide. Rigidly attached to both bearings

is a rectangular aluminum profile (A in Figures 2.3 and 2.5) of 2×4 inches cross-section

and 40 cm long. On top of the aluminum profile A the L-shaped profile P is attached so

that it may enter the glass container from the bottom. A threaded 1/4 inch rod is bolted

to the rectangular profile B centered at its bottom face. This rod connects the profile B to

a loudspeaker L, where is bolted to an acrylic pane glued to the speaker. The loudspeaker

vibrates and moves the bottom wall of the container P. The speaker is driven by a 1500

W signal amplifier, that is in turn connected to a computer using a standard 3.5 mm TRS
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2 Methods and Tools

Figure 2.3: The experimental apparatus used to study rotation in disk packings. Disks are
held between two glass sheets. Labels are as follows. B: Linear ball bearings.
A: Square aluminum profile. P: Vibrating L-shape profile. L: Loudspeaker.
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M

�
�

S

S

P

Figure 2.4: Snapshot of an experimental 60 disk packing with the backlight on. Twenty
disks have 1.5 cm radius, twenty a 2.0 cm radius, and twenty a 2.5 cm radius.
Labels are as follows. M: special mark to track rotations. B: 1/4 inch bolts. S:
Acrylic stripes as spacers between glass panes. P: Vibrating bottom.
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B B

R

P

�

L

Figure 2.5: The rail system restricting the movement of the L-shape aluminum profile P.
Profile P acts as a mobile bottom wall for the glass container. Labels are as
follows. R: Steel rods. B: Linear ball bearings. A: Square aluminum profile.
P: Vibrating L-shape profile. L: Loudspeaker.

minijack cable. The computer generates a sinusoidal waveform using a custom Python

script.

2.4.2 Running an experiment

The process to run a single experiment is as follows. We start with an empty box, disks are

poured into the container through the top without any particular order, the intention is to

obtain a different packing for each run. After the packing is ready, a custom Python script

running in a laboratory computer takes care of both the data acquisition and of generating

the signal fed to the amplifier. After the script finishes, execution data is copied to an

external drive for further analysis, and the container is emptied leaving it ready to start a

new experiment with a different packing.

The signal amplitude A is set in the script with a number between 0 and 1. The script
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2.4 Description of the experimental procedure

starts by setting the amplitude to its maximum value A = 1 during 5 minutes, to allow the

packing to settle in a stable configuration. At 20 minute intervals, the signal amplitude is

decreased by 0.05 down to A = 0.2, afterwards it is decreased by 0.01 down to A = 0.050.

No data is recorded during the first 5 minutes of each 20 minute interval. This time is

used to let the packing stabilize under the new conditions of vibration. After the 5 minute

period of relaxation, data acquisition starts. A webcam connected to the computer and

controlled by the script takes photos at every second during the remaining 15 minutes of

each 20 minute interval. The photos are used to track rotations during the data analysis

step. Since the wave amplitude A of the speaker input does not give information regarding

the actual amplitude of the vibrating speaker, two adxl345 acceleremoter sensors are placed

in each bearing of the rail setup of Figure 2.5. These sensors measure acceleration data

at a 200Hz data rate. Sensors send data to two Arduino Duemilanove prototyping boards

that in turn relay the data to the computer. The script receives the data and stores in text

files for further analysis.

2.4.3 Processing experimental data

After an experiment concerning a single packing is done, we are left with two sets of data

to analyze: a set of snapshots containing the information of the system response, this is,

rotational velocity of each disk; and acceleration data containing the information about

the intensity of the vibrational excitation.

Visual data

Visual data are analyzed using the Fiji software [31]. Fiji is a collection of computer

vision algorithms running under the ImageJ platform. A predefined macro (collection of

automatized steps) applies the following procedure to each image of a set: First the image

is converted to 8-bit gray-scale. An automatic threshold is then applied. A threshold

converts a gray-scale image into a binary black and white image by taking all pixels with

brightness over the threshold and making them white, while making all pixels under the

threshold black. This process filters most of the image and leaves only the special markings

(M) on each disk due to the sharp contrast between the markings and the rest of the image
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(see Figure 2.4). The “analyze particles” feature of the Fiji software is then applied.

The algorithm identifies each black rectangle (marking), fits an ellipse to it and applies a

numerical label to identify each marking (1, 2, 3, etc). The fitted parameters of the ellipses

contain the location of the center of mass and the angle of the major axis each ellipse

makes with the x axis of the image. These fitted parameters are saved to a single text file

to represent a time series with position and angular information of each disk at 1-second

intervals.

Angles returned by the “analyze particles” algorithm can only take values between 0

and 180 degrees. Furthermore, the algorithm doesn’t try to identify corresponding disks

between images, so labels may not correspond to the same disk. A custom python script

applies a last processing step. To identify a disk in the next frame, we find the disk closest

to it, and assume it is the same disk, displaced a small distance. This last step works

because disks maintain their position within the packing. When a packing reorganization

occurs (a rare event, see 1.3) disks move slowly enough for the tracking to still work. Once

disks are properly labeled, a continuous time series is built for the angles by applying the

following transformation to the data. With θ[i] the angle at the second i, we find the

difference ∆θ = θ[i]− θ[i− 1] between two consecutive frames. The series for the angle θ

is supposed be continuous. This means |∆θ| cannot be too large. Due to the fact that the

software only assigns values between 0 and 180 degrees, a value of ∆θ > 90 is taken to be

caused by rotation near the value of 180 (or 0) degrees. To correct for this, we shift all

angles in the series up to time i − 1 by subtracting 180 degrees from all of them, making

∆θ < 90. If ∆θ < −90 we apply a similar correction by adding 180 degrees to the series.

After running through all frames, we end up with a continuous time series for θ. The
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2.4 Description of the experimental procedure

pseudo code for this algorithm is given below:

for all i beginning with i = 1 do

∆θ ← θ[i]− θ[i− 1]

if ∆θ > 90 then

for all j < i do

θ[j]← θ[j]− 180

else if ∆θ < −90 then

for all j < i do

θ[j]← θ[j] + 180

done

Acceleration data

Two acceleration time series, one for each accelerometer, are stored in a text file each.

Each point of the series gives the instant acceleration of the bottom, as measured by the

sensor. These sensors measure acceleration within a range of ±16 g with a precision of

0.01 g. Two components of noise affect the measurements: the intrinsic error of the sensor

and the impacts of the disks with the bottom of the container. Noise from both sources

makes it impossible to determine the amplitude of the oscillation by visual inspection of a

sensor data plot. Simply taking the maximum and minimum value as the amplitude also

fails since there exists large random deviations from the mean.

The approach we took is simple. The loudspeaker is driven by a sine wave of known

frequency, so we may assume that acceleration data can be modeled as a sine wave with the

same frequency subject to noise. To reduce this noise, we calculate the spectral density of

the acceleration signal. We then take the sum of the density in a 10 Hz frequency window

centered at the known frequency of the driving signal. One can think of this procedure as

applying a band pass filter, and keeping only the contributions to the variance around the

desired frequency.

For a pure sine of amplitude A, the standard deviation is SD = A/
√

2. We take the

square root of our filtered variance as an estimate of the corresponding standard deviation

39



2 Methods and Tools

of the input signal. Then the amplitude ag can be estimated as

ag =
√

2 · SDfiltered. (2.47)

The mean from the estimations of the two sensors is taken as the value of the acceleration

amplitude. For each individual sensor, the acceleration time series always averaged to

〈ab〉 = −g±0.01 g, the value of the gravitational acceleration, as it should for a noise term

of zero mean.
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3 Rotation in disk packings

In this Chapter we discuss the phenomenon of sustained rotation in vibrated disk packings.

We start with a quantitative description of results from experiments with real packings.

Next, we compare the statistical behavior of the rotational velocity in experimental and

simulated packings. Finally, we analyze simulation data in detail and explore how different

parameters influence the rotational velocity observed in the packings.

3.1 Laboratory experimental observations

Experiments described in this Section were performed with packings of 60 acrylic disks

subject to gravity. Disk were placed inside a glass container with a movable bottom wall,

as described in Section 2.4.1. The radii distribution was as follows: 20 disks with a 1.5 cm

radius, 20 disks with a 2 cm radius, and 20 disks with a 2.5 cm radius. The experimental

procedure described in Section 2.4.2 was applied to 25 different packings. One of such

packings is shown in Figure 2.4. A vibrating loudspeaker, coupled to the bottom wall of

the container, was used to inject energy into the packing. The speaker received a sinusoidal

signal with frequency of fb = 80 Hz. The amplitude of the vibration was varied in fixed

steps during a single experiment. Data from each packing were recorded and processed

according to the method described in Section 2.4.3. Both the acceleration of the bottom

wall and the angle of each disk were recorded. Acceleration of the wall is reported using the

dimensionless parameter Γ, defined in Section 2.4.3 as the ratio of the peak wall acceleration

to gravity.

As discussed in Section 1.3, a disk’s rotational velocity is presumably determined by the

contact configuration with its neighbors. This configuration is part of the contact network

of a packing. For disordered packings (as is the case in this study), the network can be
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3 Rotation in disk packings

considered as a random realization of possible configurations. Consequently, the rotational

velocity of a disk is also random in this sense.

Figure 3.1 shows plots of the angular path θ for each of the disks belonging to one of

the 25 experimental packings. Velocities are symmetrically distributed around zero, as

expected due to left-right symmetry. For Γ = 0.24, rotation accumulates for each disk,

but angular paths are not linear in the time-scale under consideration. As the intensity of

the vibration increases, the relative amplitude of the noise in each path decreases, making

paths appear more linear. For Γ = 2.09 and larger, the maximum rotational velocity seems

to saturate, but the typical velocity of the packing, estimated using the root mean square

of the velocities (see below), grows with Γ. From the figure, this growth can be appreciated

from the increased spanning of lines as Γ increases.

The mean rotational velocity ω̄ of each disk is calculated as the total angular excursion

over time. For a disk rotating with constant angular velocity, the angular path is a line

with slope ω̄. Most of the disks in Figure 3.1 follow approximately straight paths, which

means their rotational velocity fluctuates slightly around the mean value ω̄. For Γ = 0.91,

some angular paths change slope near time t = 450 s. This change implies that the

value of ω̄ is different for the time intervals before and after the change in slope, i.e.,

the mean velocity of the disk is changing. The slope differences are caused by a partial

reorganization of the packing. Packing reorganization is typically triggered by a change

in some excitation parameter, for example, when changing Γ during the experiments, but

spontaneous reorganization, without varying any parameter, does occur, as is the case for

Γ = 0.91 in Figure 3.1. Spontaneous reorganizations is not frequent, but can still cause

a change in velocities during a experiment. Vibrated granular matter are systems out of

equilibrium, and as such, they are able to explore different states in configuration space.

A few of this states will be locally stable. Transitions between stable states are possible

if they lie close in configuration space. These reorganizations change the contact network

of the packing in turn changing the mean rotational velocity of the disks. All observed

reorganizations were limited to a small fraction of the packing, typically involving less than

10 disks. We, thus, ignore this events, and always average the rotational velocity along the

full angular path of the disk.

The root of the mean squared rotational velocity 〈ω̄2〉 can be used to estimate the
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Figure 3.1: Angular paths for each of the disks of a packing studied in the laboratory. Each
plot corresponds to a different bottom excitation Γ. The velocity change near
t = 450 s for Γ = 0.91 is caused by a reorganization of the packing contact
network.
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magnitude of the absolute rotational velocity in disk packings. There are two different types

of averaging that can be made, the mean over a packing and the mean over all packings.

The mean over a single packing is easily calculated as the sum of the squared mean velocities

of all disks divided by the total number of disks. For a single packing, a packing mean is

calculated for each different value of vibration amplitude Γ. To obtain the mean over all

packings, 〈ω̄2〉, the straightforward way would have been to average packing mean values

obtained for the same value of Γ. The problem was that recorded Γ values were different for

different packings, even if the vibrating speaker was driven with the same sinusoidal signal.

The different in Γ values can be attributed to the response different packing configurations

have to vibration, as well as to the effect of noise in the acceleration sensors. Different

packings have a different mass distribution and a different contact network. When vibrated,

there exist an energy feedback into the speaker from the collisions with the disks in the

packing. This feedback is different for each packing configuration. Since the speaker is not

massive enough to neglect feedback effects, feedback can have a measurable influence in

the effective acceleration of the bottom wall. To circumvent this problem, we employed a

local regression algorithm that averages in both ω̄ and Γ. We have chosen to employ a K-

Nearest-Neighbors (KNN) algorithm, as it is one of the simplest non-parametric regression

methods available [32]. KNN is unbiased in the sense that it does not make any assumption

of of the form of the function being fitted.

To obtain the mean squared rotational velocity 〈ω̄2〉 among all packings, a KNN algo-

rithm is applied to the data set of the previously calculated means for each packing. The

number of neighbors K is set to K = 25, the number of different packings used in the

experiments. Note that this averaging process is equivalent to applying a KNN algorithm,

with K = 1500, to the data set of all (Γ, ω̄) data points taken from all disks, indepen-

dently of the packing they belong to. The number of neighbors, K = 1500, is calculated as

(# of disks in a packings)× (# of packings) = 60× 25. Using this last alternative we can

skip the step of averaging over single packings. Each of the 25 packings was vibrated with

37 different amplitudes for a total of 55500 data points, each representing the behavior of

a single disk over a 15-minute period.

Figure 3.2, top, shows a KNN regression of 〈ω̄2〉 on the bottom acceleration Γ for disks

from all experimental packings. The same regression is shown in Figure 3.2, bottom, on
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log-log scale. Linear regions in the log-log graph suggest a power law scaling, of the form

〈v2〉 ∝ Γk, for each region. Least-squares was used to fit a line to both regions, these

lines are shown in the log-log plot of Figure 3.2. For Γ < 1, least-squares fits an exponent

k ≈ 4 (actual fitted value of 3.94), resulting in the scaling 〈ω̄2〉 ∝ Γ4. For 1.6 < Γ < 4.5,

least-squares fits an exponent k = 1.00, resulting in the scaling 〈ω̄2〉 ∝ Γ.

The scaling transition, from k = 4 to k = 1, is located at Γ ≈ 1.6, close to the relevant

threshold, for vibrated granular matter, of Γ = 1 (see Chapter 1 and reference [33]).

Resembling what happens to a bouncing ball (see [34]), at Γ = 1, a packing of rigid

grains will stop behaving as a solid block, and grains will start bouncing on the oscillating

plate. For viscoelastic particles, the position of this threshold may shift from Γ = 1.

The magnitude and direction of the shift depends on the stiffness and viscosity of the

material [35]. This shift may explain why we observe a scaling transition at Γ = 1.6

instead of at exactly Γ = 1.

Returning to Figure 3.1, some randomness in the angular paths can be detected by visual

inspection. We quantify the linearity of the path using two quantities. The first one is the

squared correlation coefficient ρ2
θ,t, that measures the correlation between the angle θ and

time. The second one is the adjusted standard deviation σa, defined as

σa =
σω̄

|ω̄|+ σω̄
, (3.1)

where σω̄ is the standard deviation of the velocity measurements. Standard deviation σω̄

is calculated from the angle time series, where angle values were recorded at 1-second

intervals. For each 1-second interval, a mean rotational velocity is calculated as the angle

difference, resulting in a new time series for the disk velocity. The standard deviation of

these mean velocities is σω̄.

The coefficient ρ2
θ,t is equivalent to the R2 coefficient of a least-squares linear regression

of angle vs time. This coefficient takes the value of ρ2
θ,t = 1 when the path is perfectly

linear, and the value of ρ2
θ,t = 0 for a random walk without drift (zero mean). Values in

between correspond to paths with a finite mean velocity, i.e., with a fitted slope larger than

zero. The variance with respect to the least-squares fitted line is quantified by ρ2
θ,t.

The adjusted standard deviation σa can take values between 0 and 1. When the velocity
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Figure 3.2: KNN regression of the mean squared rotational velocity 〈ω̄2〉 on Γ. Top: Linear
scale plot. Bottom: log-log plot. Straight lines come from least square fits on
the log-log graph. The dashed line has slope 3.94 and the dot-dashed line has
slope 1.00. Velocity is measured in revolutions per minute RPM.
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is nearly constant and fluctuates slightly around ω̄, σω̄ � ω̄, and σa approaches 0. On the

other limit, when fluctuations dominate, σω̄ � ω̄, and σa approaches 1.

Quantities
〈
ρ2
θt

〉
and 〈σa〉, averaged over all packings, are shown in Figure 3.3 plotted

against the bottom acceleration Γ. Initially, 〈ρ2〉θ,t grows and 〈σa〉 decreases with vibration

amplitude. After Γ ≈ 1.6, both quantities stabilize. The correlation coefficient stabilizes

at around
〈
ρ2
θt

〉
≈ 0.95, and the adjusted deviation at around σa ≈ 0.4. The saturation

threshold is the same at which the scaling of 〈ω̄2〉 changes (see Figure 3.2), supporting the

hypothesis of a regime transition near Γ = 1. The evolution of ρ2
θ,t and σa tells us that,

initially, paths become, in average, increasingly linear with increasing vibration amplitude

Γ. After, Γ = 1.6, this increase in linearity stops, and fluctuations and velocities increase

proportionally, as to keep the mean values of ρ2
θ,t and σa nearly constant.

Near the transition threshold, Γ = 1.6,
〈
ρ2
θ,t

〉
and σa display fluctuations larger than

those far from the threshold. Remember that the Γ values are estimated from a rough

statistical analysis on the acceleration data from the experiments (see Section 2.4.3). The

uncertainty in the measured values of Γ may cause a mixture of regimes near the threshold,

resulting in large fluctuations. In Section 3.2, we analyze simulated packings, where the

uncertainty in Γ does not exist. These simulations display a cleaner transition for averaged

quantities.

For the time scale under consideration, it is difficult to determine if disks with low ρ2
θ,t

(or high σa) are actually rotating systematically, albeit really slowly, or if θ behaves like

a random walk, and the estimated velocity comes from the fact that we are sampling θ

when the angle is away from the mean (but will eventually return to zero). We argue that

the later case is more likely, and disks with low ρ2
θ,t are not really rotating. If this is the

case, an increase in
〈
ρ2
θ,t

〉
(or a decrease in 〈σa〉) means that the fraction of rotating disks

within the packing is increasing. At Γ = 1.6, all disks that can rotate have begun to do

so, and
〈
ρ2
θ,t

〉
stabilizes at a value close to 1.

The bimodal character of the distribution of ρ2
θ,t indicates that we can classify disks in

a packing as rotating or non-rotating, differentiating them by their ρ2
θ,t value. Figure 3.4

shows two probability density histograms for the ρ2
θ,t value of disks from 25 experimental

packings closest to a particular value of Γ (the nearest neighbors). The one with Γ = 0.3

is characteristic of all acceleration values below the threshold Γ = 1.6. It shows that most
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Figure 3.3: The mean correlation coefficient
〈
ρ2
θ,t

〉
in black, and the adjusted standard

deviation σa in gray, averaged from all experimental packings using k-nearest
neighbors regression. The increase (decrease) of

〈
ρ2
θ,t

〉
(σa) are interpreted

as increased fluctuations in the rotational velocities of the disks within the
packing. The saturation of both quantities at Γ ≈ 1.6 support the hypothesis
of a region transition around this value.
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3.1 Laboratory experimental observations

of the disks have either a ρ2
θ,t value close to zero, or an ρ2

θ,t value close to 1. The ρ2
θ,t

zero values correspond to non-rotating disks, while the high ρ2
θ,t values correspond to disks

rotating with near constant velocity. The histogram for Γ = 4.0 is typical of acceleration

values above the threshold Γ = 1.6. It shows most disks have a value of ρ2
θ,t near one, and

are, thus, rotating with near constant velocities.
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Figure 3.4: Probability density histograms of the mean correlation coefficient ρ2
θ,t for the

25 experimental packings with Γ values closest to Γ = 0.3 (top) and Γ = 4.0
(bottom). The histogram for Γ = 0.3 shows a concentration of disks with highly
noisy angular paths corresponding to values of ρ2

θ,t near zero, and another
concentration of disks with linear angular paths corresponding to values of
ρ2
θ,t near one. For Γ = 4.0 practically all disks have values of ρ2

θ,t near 1,

corresponding to almost linear angular paths.
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3 Rotation in disk packings

3.2 Molecular Dynamics Simulations

In the Introduction (Chapter 1), we mentioned that rotations in disk packings were first

observed in Molecular Dynamics simulations. In this Section, we present results from

these simulations and show that they are consistent with the experimental results from

Section 3.1. These simulations were performed with the same number of disks, the same

radii distributions, and the same vibration frequency as in the experiments with real pack-

ings. A total of 100 different packings were simulated for each value of dimensionless

acceleration Γ. The bottom acceleration ranges from Γ = 0.1 to Γ = 29, much larger

than the experiments. Parameters for these simulations are: normal stiffness kn = 104,

stiffness ratio kr = 0.77, normal viscous coefficient γn = 0.1, friction coefficient µ = 0.1,

and material surface density ρ = 3.57 kg/m2.

Figure 3.5 shows plots of the angular path θ for each of the disks belonging to one of

the 100 simulated packings. Paths for Γ < 1 seem more linear (less noisy) than paths from

the experimental packing of Figure 3.1. Otherwise, the behavior is remarkably similar,

sustained rotation is present and angular excursions are of the same order of magnitude.

In numerical simulations the acceleration Γ of the bottom is perfectly defined. This

means the uncertainty around Γ values present in the experiments does not exist in the

simulations. The straightforward approach of averaging velocities for the same value of Γ

can be used.

Figure 3.6, top, shows the mean squared rotational velocity 〈ω̄2〉, averaged from all

packings, versus the bottom acceleration Γ. The same average is shown in Figure 3.6,

bottom, on log-log scale. The behavior of 〈ω̄2〉 in the log-log plot can be separated in three

distinct regions, two regions with power law scaling, and a last region where 〈ω̄2〉 decreases

towards zero. For the first region, within 0 < Γ < 0.8, least-squares fits a line with slope

of k = 3.85, suggesting the same scaling 〈ω̄2〉 ∝ Γ4 as in the first region in the regression

for the experiments (see Figure 3.2).

For the second region, within 1 < Γ < 10, the scaling is assumed to take the form

(〈ω̄2〉 − ωc) ∝ (Γ− Γc)
k, where Γc = 1 is the critical acceleration at which the first regime

transition takes place, and ωc is the mean rotational velocity at Γc. Regressing (〈ω̄2〉−ωc)
against (Γ− Γc), using least squares, fits a line with slope k = 0.99, suggesting the scaling
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Figure 3.5: Angular paths for each of the disks of a packing simulated with MD. Each plot
corresponds to a different bottom excitation Γ.
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Figure 3.6: Mean squared rotational velocity 〈ω̄2〉, averaged from all MD simulated pack-
ings, versus the bottom acceleration Γ. Top: Linear scale plot. Bottom: log-log
plot. The dashed line is a least-squares regression line with slope 3.85. The
dot-dashed is the result of the least-squares regression of (〈ω̄2〉 − ωc) against
(Γ−Γc), with Γc = 1. It has a slope of 0.99. Velocity is measured in revolutions
per minute RPM. The insert of the bottom plot shows a restricted interval from
Γ = 1 to 10 where the linear fit is shown in the correct variables (〈ω̄2〉 − ωc)
against (Γ− Γc).
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3.2 Molecular Dynamics Simulations

〈ω̄2 ∝ Γ〉. Again, this is the same scaling as that of the second region in the regression

for the experiments. The same scaling transition is observed in numerical simulations, a

remarkable result that gives confidence that the mechanism that causes rotation in real

packings is reproduced in numerical simulations.

At Γ ≈ 10, 〈ω̄2〉 starts to decrease. This third region is not observed in the experiments

with real packings, since the experimental apparatus is unable to reach a large enough bot-

tom acceleration. When vibration becomes large (Γ > 10), the packing network geometry

starts to fluctuate. This increases the probability of packing rearrangements. If the rate

of rearrangements is high, disks may start to diffuse throughout the packing. The local

contact configuration of each disk is no longer constant, causing larger velocity fluctuations

and, in turn, causing the magnitude of the mean rotational velocity ω̄ of each disk to de-

crease. If we would continue to increase Γ further, we would enter the regime of granular

gases. For a granular gas, there is no local left-right asymmetry due to packing structure,

and we expect ω̄ to vanish for all disks.

The mean correlation coefficient
〈
ρ2
θt

〉
and the mean adjusted deviation 〈σa〉, averaged

over all simulated packings, are shown in Figure 3.7 plotted against the bottom acceleration

Γ. Similarly to what happens for the experimental packings, for low bottom acceleration

values,
〈
ρ2
θ,t

〉
increases and 〈σa〉 decreases. At Γ ≈ 1, the correlation coefficient reaches

a maximum of
〈
ρ2
θ,t

〉
≈ 1, while the mean deviation reaches a minimum of 〈σa〉 ≈ 0.2.

Note that the bottom acceleration Γ, at which both quantities reach an extremum, is the

critical acceleration Γc = 1, at which the scaling transition for 〈ω̄2〉 occurs (see Figure 3.6).

The appearance of the extrema indicates, again, a regime transition near Γc = 1. For

Γ > 1,
〈
ρ2
θ,t

〉
monotonically decreases, while 〈σa〉 monotonically increases. The increase

(decrease) of
〈
ρ2
θ,t

〉
(〈σa〉) signals an decrease in the linearity of angular paths, i.e., an

increase of velocity fluctuations.

The same three regions that we identified when discussing the behavior of 〈ω̄2〉 (Fig-

ure 3.6) can be distinguished from the behavior of
〈
ρ2
θ,t

〉
in the log-log plot of Figure 3.7

(bottom): A first region, between 0 < Γ < 1, where
〈
ρ2
θ,t

〉
increases, and disks in the

packing pass gradually from non-rotating to rotating as Γ increases. The region between

1 < Γ < 10, where
〈
ρ2
θ,t

〉
decreases linearly in the log-log plot. In this middle region, most

disks are rotating and the packing structure is stable. Finally, the third region, for Γ > 10,
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Figure 3.7: The mean correlation coefficient
〈
ρ2
θ,t

〉
(circles), and the adjusted standard

deviation σa (squares), averaged from all MD simulated packings. Top: Linear
scale plot. Bottom: Logarithmic scale plot. The increase (decrease) of

〈
ρ2
θ,t

〉
(σa) are interpreted as increased fluctuations in the rotational velocities of the
disks within the packing. Both quantities display scaling transitions at Γ ≈ 1
and Γ ≈ 10, delimiting regions at which the packing is in distinct states. The
first state is dominated by persistent contacts. The second state is dominated
by collisions, but the packing structure is stable. In the last region the packing
has become fluidized.
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3.2 Molecular Dynamics Simulations

marked by an abrupt decline of
〈
ρ2
θ,t

〉
in the log-log graph. In this final region, the packing

structure is becoming increasingly unstable due to large amplitudes of vibration. In this

third region the packing is becoming fluidized, in the sense that disks start to diffuse.

Disk transport is actually possible even in the other two regions, where sub-diffusion is

promoted by spontaneous packing rearrangements. Even if spontaneous rearrangements

occur rarely, as long as the probability of rearrangement is not zero, it is possible that

sub-diffusion may be observed at large time scales. However, for the time scales considered

in this work, this is not the case.

Probability density histograms of ρ2
θ,t for four values of Γ are shown in Figure 3.8. For

Γ = 0.3, we can again distinguish between a group of non-rotating disks (low ρ2
θ,t) and

a group of rotating disks (high ρ2
θ,t). An example of the distribution in the region where

most disks are rotating (1 < Γ < 10) is given in the histogram for Γ = 4, where all

disks have large values of ρ2
θ,t. For the region with Γ > 10, where the packing becomes

unstable, a group of non-rotating disks appears again (high bar near 0 for the histograms

with Γ = 20 and Γ = 29). In this final region, the separation between groups of rotating

and non-rotating disks is less clear, likely due to increased velocity fluctuations caused by

the packing instability. An important number of disks now have ρ2
θ,t values in between 0

and 1. For Γ = 29, no disk seems to be rotating, because there is no peak near one. For

vibration amplitudes this large, velocity fluctuations start to dominate, disks are diffusing,

and the mean rotational velocity is expected to vanish.

To explore the effect of the normal stiffness on the mean squared velocity 〈ω̄2〉, we

performed additional simulations with stiffness values of kn = 1e5 and kn = 1e6. Curves

for 〈ω̄2〉 for the original simulations and simulations with the new stiffness values are shown

in Figure 3.9, in both linear scale (top) and logarithmic scale (bottom). Generally, the

mean rotational velocity decreases with increasing kn, the difference being of several order

of magnitude in the region with Γ < 1. The exception being a small vibration interval,

just before Γ = 1, where disks with kn = 1e5 rotate faster than the others. It is likely that

this is a numerical error, since the MD integration algorithm we use fails at high stiffness

values [36]. The stiffer the disks, the sooner they start bouncing against each other with

increasing Γ. For very stiff particles, we expect this to happen very close to Γ = 1, where

the bulk of the packing starts to loose contact with the vibrating bottom. As we increase
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Figure 3.8: Probability density histograms of the correlation coefficient ρ2
θ,t from 100 MD

simulated packings with the same value of Γ. Histograms for Γ = 0.3, Γ =
4, Γ = 20, and Γ = 29 are shown. The histogram for Γ = 0.3 shows a
concentration of disks with highly noisy angular paths corresponding to values
of ρ2

θ,t near zero, and another concentration of disks with linear angular paths
corresponding to values of ρ2

θ,t near one. For Γ = 4.0 practically all disks have
values of ρ2

θ,t near 1, corresponding to almost linear angular paths. For Γ = 20
disks with noisy paths appear again. Finally, for Γ = 29, there are practically
no disks with ρ2

θ,t close to 1, there is more homogeneous distribution among

intermediate values of ρ2
θ,t, with a large concentration near ρ2

θ,t = 0.
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Figure 3.9: Mean squared rotational velocity 〈ω̄2〉 versus Γ, averaged from MD simulated
packings. Three curves for three different values of normal stiffness kn are
shown. Stiffness values are: kn = 104 (circles), kn = 105 (squares), and kn = 106

(triangles). Other parameters are: stiffness ratio kr = 0.77, normal viscous
coefficient γn = 0.1, friction coefficient µ = 0.1 and material surface density
ρ = 3.57 kg/m2.
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3 Rotation in disk packings

Γ beyond 1, particles spend very little time in contact, and interactions between them are

mainly due to binary collisions. This regime is further explored in the next section using

Event-Driven simulations.

3.3 Event Driven Simulations

Event-driven simulations are only used to simulate packings vibrated with Γ ≥ 2. As

described in Section 2.3, in ED simulations, collisions are instantaneous, and lasting con-

tacts between disks are impossible. It would not make sense to use ED algorithms to

simulate gently vibrated packings, where we expect disks to remain in contact for long

times. Furthermore, for Γ < 2, particle density increases. In dense packings, the mean

time between collisions becomes smaller, increasing the number of collisions that need to be

simulated. This causes CPU time to become prohibitively large. Also, for dense packings,

the probability of numerical artifacts (inelastic collapse, for example) appearing during the

simulation becomes important.

For Γ ≥ 2, ED simulations are a powerful technique to numerically study rotations in

disk packings. As Γ increases, and the collision rate decreases, CPU time required for

the simulation sharply decreases as compared to MD. For high values of Γ, a reduction

of several orders of magnitude is achieved. However, since lasting contacts are impossible

in ED simulations, these methods will only yield useful results when the system is in a

regime where the contribution to rotation from lasting contacts is negligible. To be sure

that effects from lasting contacts can be ignored, ED simulations must be validated against

MD simulations. All numerical results in this section are obtained from simulations with

the following parameters: stiffness ratio kr = 0.77, normal viscous coefficient γn = 0.1,

friction coefficient µ = 0.1 and material surface density ρ = 3.57 kg/m2.

Figure 3.5 shows plots of the angular path θ for each of the disks belonging to one

ED simulated packing subject to different vibration amplitudes Γ. For all Γ, velocity

fluctuations are not appreciable at this scale and all paths look linear. All disks rotate

with near constant velocity, similarly to disks in MD simulated packings (see Figure 3.5).

Partial packing reorganization occurs for values of Γ = 2 and Γ = 8, leading to a velocity

change for some disks.
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Figure 3.10: Angular paths for each of the disks of a packing studied by ED simulations.
Each plot corresponds to a different bottom excitation Γ.

59



3 Rotation in disk packings

5 10 15 20 25 30
Γ

0

20

40

60

80

100

120

140

⟨ω̄
2 ⟩

2 10 30
Γ

101

102

⟨ω̄
2 ⟩

Figure 3.11: Mean squared rotational velocity 〈ω̄2〉, as a function of Γ, averaged from 100
different packings. Top: Linear scale. Bottom: log-log scale. Full lines cor-
respond to MD simulations and dashed lines to ED simulations. Different
symbols correspond to different values of the normal stiffness kn: Circles for
kn = 104, triangles for kn = 105, and squares for kn = 106. The coincidence
between MD and ED gets better for increasing stiffness, as is expected, since
at large stiffness values the duration of collisions decreases.
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The mean squared rotational velocity 〈ω̄2〉, averaged over 100 different packings, is plot-

ted against Γ in Figure 3.11, both using a linear scale (top) and a logarithmic scale (bot-

tom). Both MD and ED numerical simulations for different values of kn are plotted to

allow a direct comparison from both methods. Full lines correspond to MD simulations

and dashed lines to ED simulations. Different symbols correspond to different values of the

normal stiffness kn: Circles for kn = 104, triangles for kn = 105, and squares for kn = 106.

There is a good degree of coincidence between the results from these two methods in the

region of parameters in which both can be used (Γ > 2). The fact that rotations in disk

packings can be reproduced using ED simulations means that, for Γ ' 2, it is enough

to consider instantaneous collisions when studying the origin of rotation. We will take

advantage of this in Chapter 6, when studying rotations in a simplified system.
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4 A minimal packing to study rotations:

The 3-disk setup

In Chapter 3, we have reported the appearance of sustained rotation in packings with a

large number of disks. To develop a better understanding of the origin of rotation, it is

convenient to study a simpler system, with the minimum number of disks that still display

rotation. In a reduced system, it is easier to isolate interactions among disks, and analyze

their effects on the rotational velocity.

The minimal setup to study spontaneous rotation consists of a single disk supported

against gravity by two contacts. This setup may consist of three disks of the same radius

R, or of a disk on a wedge. The 3-disk setup relates more closely to disk packings, while the

wedge has the advantage that contact angles are always constant, simplifying the analysis

under certain conditions. The supporting element (wedge or disk) vibrates around its

equilibrium position, engaging in energy and momentum transfer with the upper disk.

This setup may be regarded as the simplest granular packing that can be studied [37]. In

this chapter, we introduce this minimal packing, together with a model of inter-particle

forces. Results from this section are used in Chapter 5 to study rotation under the condition

of persistent contacts between disks, and in Chapter 6 to study rotation when the upper

disk bounces off the supporting element.

4.1 Notation

The relevant notation for a system of three disks is shown in Figure 4.1 (left). Contacts are

labeled i = 1 (left disk) and i = 2 (right disk). The angle between contacts is α12 = 2θ0.

If all radii are equal, and all disks are touching, θ0 = π/6. The angle between gravity and
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Figure 4.1: The 3-disk setup showing the definition of angles and the direction of normal
n and tangential τ forces (left). A disk on a wedge showing the same angles
αi, the tilt angle θT , the wedge aperture θw and the distance l from the disk
center to the wedge bisector (right).

contact i is called αi. When gravity makes an angle θT with the bisector of the contacts, one

has that α1 = θ0−θT and α2 = θ0 +θT , these angles are, therefore, not equal. The notation

for the wedge is shown in Figure 4.1 (right). Angles αi are the same as for the 3-disk setup

and θw defines the wedge aperture. Upon excitation (e.g. vibration of the supporting disks)

the upper disk is seen to rotate spontaneously, in a direction that depends on the tilting

angle θT , as well as on other parameters, such as the amplitude of excitation.

Direction of normal n and tangential τ forces are also shown in Figure 4.1. The details

of the force model are discussed in the following section.

4.2 Forces between disks

A wide variety of proposals have been put forward [20–22, 38–40] to describe frictional

forces between elastic bodies. Tangential forces τ are typically dependent upon normal

forces n, mainly through the Amonton condition, which limits frictional forces so that

|τ | ≤ µn, where µ is the friction coefficient.

Several previous studies of gravitational billiards used heavily simplified tangential force

models. This was justified because rotational motion was not investigated in detail in those
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4.2 Forces between disks

works, but introduced mainly as a source of energy dissipation. Gorski and Srokowski [41]

simply apply the same coefficient of restitution to both the normal and tangential com-

ponents of the relative velocity. Hart et al. [42] employed a simplified tangential force

model considering two cases: the no-slip case, which gives rise to rolling motion, and the

sliding case, where the tangential force is assumed to always lie at the limit value given

by Amonoton’s condition. Kurggel-Emden et al. [40] reviewed a variety of linear and non-

linear tangential-force models and compared numerical simulations of binary collisions to

experimental results. In a similar study, Di Renzo and Maio [38] concluded that, regarding

the value of post-collision velocities, there is no significant improvement by considering

non-linear models over linear ones.

Rotation in disk packings originates from tangential forces between disks. To observe this

rotation in simulations, we require a force model that reproduces key aspects of tangential

forces in real systems, but are simple enough to allow for analytic treatment. When

not limited by the Amonton condition, we have chosen to implement forces that depend

linearly on the relative position of the disks in contact. Our choice, linear elastic forces,

implemented as described in this section, is able to reproduce the statistical properties of

rotation in large experimental packings (see Chapter 3).

4.2.1 Normal forces

We assume linear elasticity for the normal force ~n between two disks with centers at ~ra

and ~rb with radii Ra and Rb. Defining δ = (Ra +Rb)− |~rb − ~ra|, one has

~n = n̂ab (knδ − γnun) , (4.1)

where n̂ab is the normal versor, kn is the compressive elastic constant, γn is a viscous

constant, and un is the normal relative velocity (any sign) between disks. Notice that (4.1)

can become negative for two disks that are still closer than the sum of their radii, if they are

moving appart from each other fast enough, because in this case the contribution from the

viscosity term is negative. Not correcting for this would be unphysical, since, by definition,

normal forces can only be compressive. In a correct implementation of visco-elastic forces,
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4 A minimal packing to study rotations: The 3-disk setup

one thus replaces (4.1) with

~n = n̂ab max (knδ − γnun, 0) . (4.2)

The physical meaning of this “cutoff” is easy to explain. When two visco-elastic disks

that are compressed toghether start to move apart, it takes a certain time for them to

expand and regain their original shape. Therefore, if their (negative) relative velocity is

large enough, they can become detached from each other (their normal force becomes zero)

even before the distance between their centers becomes larger than the sum of their radii.

4.2.2 Tangential forces

θ
a

θ
b

ab
β

Figure 4.2: Two disks in contact showing the definition of angles used to calculate the
relative tangential displacement (λab).

Our model for tangential forces derives from one originally proposed by Cundall and

Strack [22,43]. An “elastic skin” with tangential stiffness kt accounts for tangential forces

at each closed contact. The tangential force is

~τ = −ktδtt̂ab, (4.3)
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4.2 Forces between disks

where ~tab is the tangential versor, δt is the accumulated tangential relative displacement

between disks, in the direction of the tangential versor. This is defined as the time integral

of the relative tangential velocity of the surfaces in contact

δt =

∫ t

t0

utdt, (4.4)

where t0 is the time at which the contact is first establised. The total tangential force is

limited by the Amonton condition |τ | ≤ µn. If the Amonton condition would be violated,

δt is modified in order to keep the total tangential force right at the frictional limit. This

modification represents the dissipative loss of elastic energy stored in the “elastic skin”,

i.e. the particle’s skin “slips” whenever Amonton’s limit is reached.

Direct calculation of δt

A naive numerical implementation of (4.4), e.g. in molecular dynamics, requires one to

integrate the tangential velocity step-wise in time. In situations such as ours, in which

there may be oscilatory tangential motion over long times, this procedure is markedly

error-prone due to roundoff accumulation when δt oscilates back and forth through zero.

Additionally, there is some small amount of unavoidable error implied by the fact that the

tangential velocity is approximated by a series of steps.

We have therefore implemented the an alternative, less error-prone, procedure. It allows

one to calculate δt exactly, directly from the knowledge of particle coordinates at time t,

plus one (for disks, two for spheres, etc.) additional quantity that is determined at the

time when the particles first make contact.

Let θa be the angular coordinate of a disk a. Upon general rotations and displacements

of their centers, the relative tangential displacement λab of two disks a and b in contact

(See Fig. 4.2) is given by

λab = Raθa +Rbθb − βab(Ra +Rb), (4.5)

where R is the radius of a disk and βab is the angle made by the line that joins the centers

of the disks in contact with the x-axis. Notice that λ is constant for two disks that roll on
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4 A minimal packing to study rotations: The 3-disk setup

each other rigidly (without deformation of the skin) and without slippage.

Assume that, when two disks are put in contact, their relative tangential coordinate

equals λ∗. If these disks are now moved slightly with respect to each other, producing a

change in λ (without slip), tangential forces will develop. Tangential forces in our model

were already defined to depend linearly on the deformation of the skin [22], that is:

τ = kt(λ− λ∗), (4.6)

where we have assumed that no skin “slippage” has occurred as a consequence of the

tangential deformation. Therefore λ∗ still has the value that was defined at first contact.

When the tangential force is large enough so as to violate Amonton’s condition, the skin

“slides” or “slips”. This is represented, in our implementation, by a change in λ∗ for that

contact, so as to maintain |τ | at its maximum possible value, which is given by µn.

By way of example, assume that the Amonton condition is violated, resulting in −µn >
kt(λ − λ∗). In this case, one redefines λ∗ = λ + µn/kt, such that the equality −µn =

kt(λ − λ∗) is restored. If, on the other hand, the violation of the Amonton condition is

such that kt(λ− λ∗) > µn, one redefines λ∗ = λ− µn/kt so as to have kt(λ− λ∗) = µn.

When a disk belonging to a packing touches the walls of the container, or when consid-

ering the system of a disk in a wedge (Chapter 6), the contact is between a disk (a) and

a wall (w), instead of between two disks. In this case, we calculate the relative tangential

displacement as

λaw = Ra (θa − βaw) + daw, (4.7)

where βaw is the angle of the line perpendicular to the wall that passes through the center

of the disk, and daw is the distance from a reference point in the wall to the contact point.

When considering the wedge, it is convenient to choose its vertex as the reference point.
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4.2 Forces between disks

Auxiliary coordinates δθ and Θ

Consider now a disk 0 with radius R0, supported against gravity by two contacts 1 and 2,

as shown in Figures 4.1. Tangential forces on disk 0 are written:

τ01 =− kt (λ01 − λ∗01)
def
== −ktR0

(
θ − θ̂01

)
(4.8)

τ02 =− kt (λ02 − λ∗02)
def
== −ktR0

(
θ − θ̂02

)
. (4.9)

When the contact is with a disk, we define

θ̂0i = θ∗0 −
Ri

R0

(θi − θ∗i ) +
R0 +Ri

R0

(β0i − β∗0i). (4.10)

Alternatively, when contact is with a wall, the definition of θ̂0i is

θ̂0i = θ∗0 + (β0i − β∗0i)−
d0i − d∗0i
R0

. (4.11)

In (4.10) and (4.11), quantities superscripted with an ∗ are measured when the contact is

closed for the first time, and are modified by slips during the time evolution of the system.

The torque acting on the disk is:

T = R0 (τ01 + τ02)
def
== −2R2

0kt(θ − θeq), (4.12)

where we have used equations (4.8) and (4.9), and defined the static equilibrium angle as

θeq =
θ̂01 + θ̂02

2
. (4.13)

We further define the skin “stretch” Θ as

Θ =
θ̂02 − θ̂01

2
, (4.14)

which measures how much the “elastic skin” is stretched in equilibrium, and the departure
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4 A minimal packing to study rotations: The 3-disk setup

from equilibrium δθ as

δθ = θ − θeq. (4.15)

In terms of Θ and θeq one can now write{
τ01 = −ktR0(Θ + δθ)

τ02 = ktR0(Θ− δθ)
(4.16){

Θ = (τ02 − τ01)/2ktR0

δθ = −(τ02 + τ01)/2ktR0

(4.17)

Notice that the total torque T (4.12) depends on δθ but not on Θ.

T = R0 (τ01 + τ02) = −2R2
0ktδθ (4.18)

The stretch Θ, on the other hand, does not depend on θ as long as there are no slippages,

it is determined by the movement of the supports. Θ determines the residual tangential

forces, obtained when δθ = 0. If Θ > 0, according to (4.16), −τ01 + τ02 > 0 and this means

that the residual forces “pull” on the disk slightly upwards (their vertical component is

directed upwards). A negative stretch, on the other hand, means that the residual forces

“push” the disk downwards.

4.3 Equations of motion

In the following we use the notation (Refer to Fig. 4.1):

si = sin(αi), (4.19)

ci = cos(αi), (4.20)

s12 = sin (α1 + α2) = sin(2θ0), (4.21)

c12 = cos (α1 + α2) = cos(2θ0), (4.22)
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4.4 Amonton’s condition

If ẍ and ÿ are the linear accelerations of the upper disk, m its mass and g the acceleration

due to gravity, Newton’s equations for the x and y directions read

n01s1 − n02s2 + τ01c1 + τ02c2 = mẍ (4.23)

n01c1 + n02c2 − τ01s1 + τ02s2 = mg +mÿ, (4.24)

from which one can get the normal forces as:

n01 =
mẍc2 + (mg +mÿ)s2

s12

− τ01
c12

s12

− τ02
1

s12

(4.25)

n02 =
−mẍc1 + (mg +mÿ)s1

s12

+ τ01
1

s12

+ τ02
c12

s12

. (4.26)

Defining:

w1 = W1R0kt = mẍc2 + (mg +mÿ) s2 (4.27)

w2 = W2R0kt = −mẍc1 + (mg +mÿ) s1, (4.28)

we rewrite

s12n10 = w1 − τ01c12 − τ02 (4.29)

s12n20 = w2 + τ01 + τ02c12. (4.30)

4.4 Amonton’s condition

Tangential forces τ cannot exceed the limit provided by Amonton’s condition:

|τ | ≤ µn. (4.31)

When this condition is violated at a contact, a slippage occurs. This means that one of

the θ̂0 values changes (the skin slips) so that the corresponding tangential force is kept

at the limit given by (4.31). Here we have assumed that the static and dynamic friction

coefficients are the same. If this were not the case, the value of the tangential force would
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4 A minimal packing to study rotations: The 3-disk setup

need to be adjusted after slipping starts to account for µstatic → µdynamic in (4.31) [20].

Using (4.29) and (4.30), we write Amonton’s conditions for contacts 1 and 2 as:
s12
µ
|τ01| ≤ w1 − τ01c12 − τ02

s12
µ
|τ02| ≤ w2 + τ01 + τ02c12,

form which we can extract the four equations

−B−τ01 + τ02 ≤ w1 (a) (4.32)

B+τ01 + τ02 ≤ w1 (b) (4.33)

B−τ02 − τ01 ≤ w2 (c) (4.34)

−B+τ02 − τ01 ≤ w2 (d), (4.35)

where we have defined B± = ( s12
µ
± c12). The physical meaning of these inequalities is as

follows:

(a) If (4.32) is violated, θ∗01 starts to grow, thus increasing τ01. The skin at contact 1

slides counterclockwise (	).

(b) If (4.33) is violated, θ∗01 starts to decrease, thus decreasing τ01. The skin at contact

1 slides clockwise (�).

(c) If (4.34) is violated, θ∗02 starts to decrease, thus decreasing τ02. The skin at contact

2 slides clockwise (�).

(d) If (4.35) is violated, θ∗02 starts to grow, thus increasing τ02. The skin at contact 2

slides counterclockwise (	).

It is useful to rewrite inequalities (4.32-4.35) in terms of δθ and Θ. Replacing (4.16) into
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4.4 Amonton’s condition

(4.32-4.35) and defining C±± = s12
µ
± c12 ± 1, we have

+C−−δθ + C−+Θ ≤ W1 (a) (4.36)

−C++δθ − C+−Θ ≤ W1 (b) (4.37)

−C−−δθ + C−+Θ ≤ W2 (c) (4.38)

+C++δθ − C+−Θ ≤ W2 (d). (4.39)

Let the point where (b) and (c) simultaneously hold as equalities be S1. Its location is

given by {
τ01 = (B−w1 − w2)/(1 +B+B−)

τ02 = (w1 +B+w2)/(1 +B+B−),
(4.40)

or, 

δθS1
def
==

(W1−W2)(c12−1)−(W1+W2)
s12
µ

2s212(1+1/µ2)

= − µmg
2ktR(1+µ2) cos θ0

((
1 + µẍ

g
+ ÿ

g

)
cos θT +

(
µ− ẍ

g
+ µÿ

g

)
sin θT

)
ΘS1

def
==

−(W1−W2)
s12
µ

+(W1+W2)(1+c12)

2s212(1+1/µ2)

= − µmg
2ktR(1+µ2) sin θ0

((
1 + µẍ

g
+ ÿ

g

)
sin θT −

(
µ− ẍ

g
+ µÿ

g

)
cos θT

)
.

(4.41)

Equivalently, the point S2 where (a) and (d) intersect each other is located at{
τ01 = −(B+w1 + w2)/(1 +B+B−)

τ02 = (w1 −B−w2)/(1 +B+B−),
(4.42)

or, 

δθS2
def
==

(W1−W2)(c12−1)+(W1+W2)
s12
µ

2s212(1+1/µ2)

= µmg
2ktR(1+µ2) cos θ0

((
1− µẍ

g
+ ÿ

g

)
cos θT −

(
µ+ ẍ

g
+ µÿ

g

)
sin θT

)
ΘS2

def
==

(W1−W2)
s12
µ

+(W1+W2)(1+c12)

2s212(1+1/µ2)

= µmg
2ktR(1+µ2) sin θ0

((
1− µẍ

g
+ ÿ

g

)
sin θT +

(
µ+ ẍ

g
+ µÿ

g

)
cos θT

)
.

(4.43)

Inequalities (a) and (b) on the other hand hold simultaneously as equalities at D1 located
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4 A minimal packing to study rotations: The 3-disk setup

at {
τ01 = 0

τ02 = w1

or,

{
δθD1

def
== −W1

2

ΘD1
def
== W1

2
,

(4.44)

while (c) and (d) hold as equalities at D2, located at{
τ01 = −w2

τ02 = 0
or,

{
δθD2

def
== W2

2

ΘD2
def
== W2

2
.

(4.45)

The point where (a) and (c) hold as equalities is T1{
τ01 = (w2 −B−w1)/(B−

2 − 1)

τ02 = (B−w2 − w1)/(B−
2 − 1),

(4.46)

or, 

δθT1
def
== W1−W2

2(s12/µ−c12−1)

= µmg
2ktR(sin θ0−µ cos θ0)

(
ẍ
g

cos θT + (1 + ÿ
g
) sin θT

)
ΘT1 def

== W1+W2

2(s12/µ−c12+1)

= µmg
2ktR(cos θ0+µ sin θ0)

(
(1 + ÿ

g
) cos θT − ẍ

g
sin θT

)
,

(4.47)

and, finally, (b) and (d) hold as equalities at T2, located at{
τ01 = (B+w1 + w2)/(B+2 − 1)

τ02 = −(w1 +B+w2)/(B+2 − 1),
(4.48)

or, 

δθT2
def
== − W1−W2

2(s12/µ+c12+1)

= − µmg
2ktR(sin θ0+µ cos θ0)

(
ẍ
g

cos θT + (1 + ÿ
g
) sin θT

)
ΘT2 def

== − W1+W2

2(s12/µ+c12−1)

= − µmg
2ktR(cos θ0−µ sin θ0)

(
(1 + ÿ

g
) cos θT − ẍ

g
sin θT

)
.

(4.49)

Points Di, Si and Ti delimit the admissible region of solutions to (4.36-4.39) in {δθ,Θ}
space. The physical relevance of these points is explained as follows. When the system is

at point Di, the normal force ni and the tangential force τ0i become zero, thus indicating
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4.4 Amonton’s condition

the detachment of contact i.

When at point Si, on the other hand, the disk rotates rigidly with both contacts sliding

simultaneously in the same direction (clockwise if at point S1 and counterclockwise if at

S2). When on Si the system is said to be on a Sliding Phase.

When at point Ti both contacts slide simultaneously in opposite directions. When at T1,

Θ > 0 while at T2, Θ < 0.

The position of S1 relative to D1, and that of S2 relative to D2 determine the shape

of the admissible space, and also the physical behavior of the disk upon forced rotation.

This region of solutions is not fixed, the acceleration of the disk center of mass is contained

in the terms W1 and W2 of equations (4.41), (4.43), (4.44), (4.45), (4.47) and (4.49).

When ẍ and ÿ change the points defining the region in {δθ,Θ} space move and the region

changes. If the supports vibrate softly enough as to never break contact with the upper

disk, the shape of this region determines the velocity of rotation of the upper disk, as will

be discussed in Chapter 5.

To keep contacts closed, points D1 and D2 must remain inaccessible. This means having

δθS1 > δθD1 and δθS2 < δθD2 . These conditions are met when (from equations (4.41)

and (4.43))

µ <
−ẍ cos(θ0 − θT ) + (g + ÿ) sin(θ0 − θT )

ẍ sin(θ0 − θT ) + (g + ÿ) cos(θ0 − θT )
. (4.50)

If both accelerations are much smaller than gravity, we can approximate condition (4.50)

by

µ . tan(θ0 − θT ). (4.51)

For small friction, thus, points D1 and D2 are not relevant, and the solution region is

bounded by the quadrilateral with vertices at S1, S2, T1 and T2.

Figure 4.3 shows two possible shapes for the bounding quadrilateral in {δθ,Θ} space.

Dashed lines correspond to the case of vanishing accelerations ẍ = ÿ = 0, referred to

as the quasi-static case. This case can be observed, for example, when the disk rotates

under the effect of an external torque that oscillates very slowly. The quasi-static region is
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4 A minimal packing to study rotations: The 3-disk setup

asymmetric if θT 6= 0. Dotted lines correspond to a solution with constant normal forces at

each contact. The Amonton’s friction limit is also constant for each contact and the region

takes the form of a parallelogram rotated 45◦. Since normal forces do not change, contacts

cannot open, and points D1 and D2 go to infinity. This parallelogram is symmetric upon

reflection through the origin, and becomes a square if both normal forces are equal.

D1

D2

S1

S2

T+

T-

��

�

Figure 4.3: Admissible region of possible solutions for the tangential forces in {δθ,Θ}
space. Dotted lines delimit a symmetric region corresponding to constant
normal forces. Dashed lines delimit the admissible region under quasistatic
displacements, this region is asymmetric.

In Chapter 5 we apply the framework derived here to the simple case of a harmonic

external torque applied to the upper disk.
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4.5 Coefficients of restitution for the linear-dashpot model

4.5 Coefficients of restitution for the linear-dashpot

model

While the previous discussion is useful to describe the 3-disk system with closed contacts,

as soon as a contact opens, normal and tangential forces vanish. Without contact, the

admissible region in {δθ,Θ} space shrinks to a point, and the geometric framework of

Section 4.4 is useless.

In a regime where contacts are short lived, and the disk is found bouncing off the

supports, it is more useful to define a set of coefficients that account for the dynamics

during a collision. In this section, we use the force model to integrate the dynamics

during a collision, under the assumption that the time disks spend in contact is negligible

compared to the time they spend apart, i.e, collision may be approximated as instantaneous

events. From these calculations, we obtain a pair of coefficients that map velocities before

a collision to velocities after a collision. These coefficients are called the normal coefficient

of restitution en and the tangential coefficient of restitution et.

The coefficients en and et are used in the Event-Driven simulations for disk packings, as

discussed in Section 2.3.1, and also in the discrete map developed in Chapter 6 to study

the 3-disk system when the upper disks in bouncing on top of the supporting disks.

4.5.1 The normal coefficient of restitution

In the linear-dashpot model, the normal coefficient of restitution en turns out to be inde-

pendent of the velocities of the colliding disks. The detailed derivation of en can be found

in [44]. Here we reproduce some key aspects of the calculations, since some intermediate

equations will be useful later on.

Let un and ut be the relative normal and tangential velocities of a pair of disks a and b,

with position vectors ~ra and ~rb, and radii Ra and Rb. The distance between their centers

is rab = |~ra − ~rb| and n̂ab is a versor parallel to ~ra − ~rb.
For instantaneous collisions, the normal versor n̂ab is constant. The time derivatives of

the overlap, defined as δ = Ra + Rb − rab, are, thus, independent of the tangential forces

and velocities. If the rate of change of the normal versor, given by ˙̂nab, is not negligible, a
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4 A minimal packing to study rotations: The 3-disk setup

collision cannot be approximated as instantaneous. Normal and tangential forces are then

coupled through the term ˙̂nab = u2
t/rab, and the calculations of this section are not valid.

Assuming a constant normal versor n̂, we can use Newton’s equations of motion to obtain

the acceleration of the overlap as

δ̈ = −( ~̈ra − ~̈rb) · n̂ab = − n

meff

, (4.52)

wheremeff is the effective mass and n is the magnitude of the normal force. Given un = −δ̇,
we can rewrite n from equation (4.1) as

n = knδ + γnδ̇. (4.53)

Equation (4.52)is that of a damped harmonic oscillator. Taking into account the bound-

ary conditions, δ(0) = 0 and δ̇(0) = un, the solution for δ(t) is

δ(t) =


−un
ωn
e−βt sin(ωnt), β < ω0

−un
ωn
e−βt sinh(ωnt), β > ω0,

(4.54)

where ω2
0 = kn/meff , β = γn/2meff and w2

n = |ω2
0 − β2|.

We can use equation (4.54) to find the duration of the collision tc from the condition that

the overlap must be zero at the end of the collision. For under-damped oscillations, solving

for tc from the condition δ(tc) = 0 yields tc = π/ωn, the over-damped case has no solution.

The normal coefficient of restitution can be evaluated as en = −δ̇(tc)/un = exp(−βtc). A

problem with this solution is that it allows for negative normal forces near the end of the

collision. Negative normal forces are unrealistic, since we only consider repulsive forces in

the linear-dashpot model.

A better way of deriving en is to end the collision as soon as the normal force vanishes

for the first time. This can be expressed as the condition δ̈(tc) = 0. Differentiating
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equation (4.54) twice, and solving for tc, yields the solution

tc =



1

ωn

(
π − arctan

2βωn
ω2
n − β2

)
, β <

ω0√
2

− 1

ωn

(
arctan

2βωn
ω2
n − β2

)
, β ∈

[
ω0√

2
, ω0

]
1

ωn
ln
β + ωn
β − ωn

, β > ω0,

(4.55)

whereby a solution for the over-damped case is now possible.

We calculate the coefficient of normal restitution as

en = e−βtc =



exp

[
− c√

1− c2

(
π − arctan

2c
√

1− c2

1− 2c2

)]
, c <

1√
2

exp

[
c√

1− c2

(
arctan

2c
√

1− c2

1− 2c2

)]
, c ∈

[
1√
2
, 1

]
exp

[
− c√

c2 − 1
ln
c+
√
c2 − 1

c−
√
c2 − 1

]
, c > 1.

(4.56)

Note that en depends only on the dimensionless damping ratio c, defined by the relation

β = ω0c.

In the under-damped case (c < 1), the normal force during the collision is given by the

equation

n(t) = −e
− γn

2meff
t
un

ωn

[
γnωn cos(ωnt) + (kn −

γ2
n

2meff

) sin(ωnt)

]
. (4.57)

The normal force changes discontinuously from zero to −γnun at the beginning of the

collision, at t = 0. Care needs to be taken when discontinuous forces are implemented in

MD simulations, a further discussion on this topic can be found in [36].

4.5.2 The tangential coefficient of restitution

The dynamics in the tangential direction can be separated in two regimes: a sticking

regime, where the tangential force is proportional to the relative tangential displacement

δt, and a slipping regime, where the tangential force is saturated, and its value is given by
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4 A minimal packing to study rotations: The 3-disk setup

the Coulomb friction force as τ = µn, where µ is the friction coefficient.

Tangential dynamics may switch regimes several times during the duration of a collision.

This makes obtaining a closed analytic expression for the tangential force and coefficient

of restitution difficult. We can, however, solve each in regime and stitch the solutions

numerically. Also, in the limit of high impact velocities, the slipping regime will last almost

for the full collision, making it possible to obtain an approximate analytic expression for et.

Other limiting cases are also considered in this section. A nice discussion of the tangential

coefficient of restitution within the linear-dashpot model can be found in [45].

F
o
rc
e

time

�n

=0.1

1

10

100

kappa

Figure 4.4: Forces during a collision between disks under the linear-dashpot model. The
purple line represents the scaled normal force µn. Tangential forces for different
stiffness ratios κ = kt/kn oscillate, limited by the normal force.

A typical behavior of the forces during a collision is shown in Figure 4.4. The tangential

force is given by

τ =

{
− sgn (δt) kt|δt|, |δt| < µn (stick),

− sgn (δt)µn, |δt| ≥ µn/kt (slip).
(4.58)
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A general equation of motion can be derived from Newton’s second law and the definitions

for the relative velocity at the contact point ~u = (~va − ~vb)− (Ra~ωa +Rb~ωb)× n̂ab, and the

relative tangential velocity ~ut = −n̂ab × (n̂ab × ~u). It can be shown [45] that

dut(t)

dt
=
τ

α
, (4.59)

with

α =

[
1

meff

+
R2
a

Ia
+
R2
b

Ib

]−1

=
meff

3
. (4.60)

The last equality is true for disks with moment of inertia I = mR2/2.

In the sticking regime, τ = −ktδt, and the equation of motion (4.59) becomes

δ̈t(t) = −kt
α
δt(t) = −ω2

t δt(t), (4.61)

where ω2
t = kt/α, and we have used the fact that ut(t) = δ̇t(t). The set of solutions,

integrating from an arbitrary time t0, up to time t, are

δt
st = δt(t0) cos [ωt(t− t0)] +

ut(t0)

ωt
sin [ωt(t− t0)] , (4.62)

ustt (t) = −ωtδt(t0) sin [ωt(t− t0)] + ut(t0) cos [ωt(t− t0)] , (4.63)

τ st(t) = −ktδt(t0) cos [ωt(t− t0)]− ktut(t0)

ωt
sin [ωt(t− t0)] . (4.64)

In the sliding regime, the skin is stretched at its maximum, and τ = − sgn (δt)µn.

Equation (4.59) takes the form

u̇t(t) = − sgn (δt(t0))
µ

α
n(t), (4.65)
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with the solutions

uslt (t) =ut(t0)− 3 sgn (δt(t0))µune
−βt0×{

e−β(t−t0)

[
cos(wnt)−

β

ωn
sin(ωnt)

]
−[

cos(wnt0)− β

ωn
sin(ωnt0)

]}
,

(4.66)

τ sl = sgn (δt(t0))
e−βtµun
ωn

[γnωn cos(ωnt) + (kn − βγn) sin(ωnt)] . (4.67)

Now that we have solutions for each regime, we need to stitch them. As long as there is

dissipation, the normal force at t = 0 will be positive, and a finite Coulomb limit will exist

at the beginning of the collision. There is no initial sliding phase for γn > 0. At the end of

the collision, the normal force n goes to zero, as does the Coulomb limit for the tangential

force. There is always a sliding phase at the end of the collision. This means there is at

least one switch of regime during the collision, from sticking to sliding.

Let the time at which the switch occurs be ts. The transition from sticking to sliding

occurs when the skin is at its maximum elongation, this is

|δt(ts)| =
µ

kt
n(ts). (4.68)

For a transition from sliding to sticking, we need to obtain the value of the tangential

force in the sticking regime after an infinitesimal time δt. We then need to compare this

value to the saturated force given by the Coulomb limit. The transition will take place the

moment both forces are equal, i. e., the moment the tangential force no longer exceeds the

Coulomb limit. This can be expressed as

−ktδt(ts + δt) = − sgn (δt0)µn(ts + δt). (4.69)

Expanding equation (4.69) to first order in δt, we obtain

δt(ts) + ut(ts)δt = sgn (δt0)
µ

kt
(n(ts) + ṅ(ts)δt) . (4.70)
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Finally, from the fact that, at the transition, ktδt(ts) = sgn (δt0)µn(ts), we obtain the

condition for switching, from sliding to sticking, at ts as

ut(ts) = sgn (δt0)
µ

kt
ṅ(ts). (4.71)

The derivative of the normal force involved in equation (4.71) is

ṅ(t) = −une
−βt

ωn
[(kn − 2βγn)ωn cos(ωnt)−

(knβ + (ω2
n − β2)γn) sin(ωnt)

]
.

(4.72)

Equations (4.68) and (4.71) can only be solved numerically, except for the case γn = 0,

for which an analytic solution for equation (4.71) can be obtained. Once all switching times

ts are found, equations for different regimes need to be stitched together up to time tc, at

which the collision ends. Remember that tc is given by equation (4.55). The coefficient et,

calculated as et = ut(tc)/ut(0), is plotted in Figure 4.5 as a function of the ratio |ut/un|
for different values of the stiffness ratio κ. It can be shown that, in the limit of elastic

collisions, et only depends on the ratio |ut/un|. From Figure 4.5, it is clear that, for large

values of |ut/un|, all curves are well approximated by et in the full-sliding limit (thin solid

line).

We now obtain the expression for et in the limit of full sliding. The impulse equations

for the relative velocities are ∫ tc

0

ndt = −(1 + en)meffun, (4.73)

u′t − ut =
1

α

∫ tc

0

τdt = − sgn (ut)
µ

α

∫ tc

0

ndt = 3 sgn (ut)µ(1 + en). (4.74)

Using the definition of the tangential coefficient of restitution, et = ut(tc)/ut(0), and

equation (4.74), we get

et = 1− 3µ(1 + en)

∣∣∣∣unut
∣∣∣∣ . (4.75)
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Figure 4.5: The tangential coefficient of restitution et, numerically calculated for different
values of stiffness ratio κ. For comparison, et for the full sliding approximation
(Eq. (4.75)) is also plotted (thin solid line). Values of κ used are: κ = 0.01
(thick line), κ = 0.10 (dashed line), κ = 1.00 (dotted line) and κ = 10.00 (dot-
dashed line). Other simulation parameters are: kn = 4.5e6N/m, R = 0.02m,
γ = 9.84kg/s, µ = 0.1, m = 4.5g.
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4.5 Coefficients of restitution for the linear-dashpot model

It has been reported in [45] that the coefficient of tangential restitution cannot be less

than zero for full sliding. This is not true. If the Coulomb limit recedes faster than

the tangential spring, the system can keep on sliding, even if the tangential velocity has

changed sign. We have taken this into account in the numerical implementation of the

coefficients.

We already know that for, γn 6= 0, the system always starts in the sticking regime, but

we still need to treat the case for γn = 0. If there is no dissipation, and the initial tan-

gential relative velocity is large, the system may start in the sliding regime. To determine

the regime at the beginning of the collision, we start by analyzing the forces after an in-

finitesimal displacement at t = 0. From equation (4.71), the condition for sliding at the

beginning is ∣∣∣∣ utun
∣∣∣∣ > µkn

kt
. (4.76)

To recover the full sliding case, we need that γn = 0, the validity of condition (4.76),

and that the solution for the first transition time ts1 be greater than the duration of the

collision tc. Solving (4.71), with t0 = 0, for ts1, we find

ts1 =
1

ωn
cos−1

∣∣∣ utun ∣∣∣− 3µ

µkn
kt
− 3µ

. (4.77)

The system remains sliding throughout the collision if ts1 > tc = π/ωn. A condition for

this to happen is that ts1 must be real, this requires that∣∣∣∣ utun
∣∣∣∣ > 6µ− µkn

kt
. (4.78)

Al last, in the limit of small tangential velocities, we can ignore the slip at the end of

the collision, and use equation (4.63) alone, to obtain

lim
ut→0

ut(tc) = ut cos(ωttc). (4.79)

The results of this section are used to evaluate et in ED simulations as follows. At the
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4 A minimal packing to study rotations: The 3-disk setup

beginning of the collision, the ratio
∣∣∣ utun ∣∣∣ is calculated. If

∣∣∣ utun ∣∣∣ = 0, we set et = 1. If∣∣∣ utun ∣∣∣ > 0, we check if equation (4.76) is satisfied. If it is, the tangential velocity is large

enough to approximate et using equation (4.75). Finally, if equation (4.76) is not satisfied,

we numerically evaluate et by stitching the solutions for ut across switching times ts.
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5 The 3-disk model with lasting

contacts

In Chapter 4 we introduced a toy model to study rotations for a system of one disk

supported by two contacts against gravity. In this chapter we present numerical results

for rotation of the upper disk, in this model, for two types of excitation: vibration of

the supporting contacts and a slowly oscillating external torque acting on the upper disk.

We discuss these results using the previously mentioned one-disk model, and develop a

one-dimensional model that captures the behavior of these systems in the limit of frequent

sliding, (e.g. when µ is small).

For a disk that never loses contacts with the supports, the only way to accumulate

rotation is to change the value of the equilibrium angle θeq, given by equation (4.13).

This angle can change only during sliding of the contacts, i.e., on the boundary of the

quadrilateral of Figure 4.3. Furthermore, the amount of sliding at each contact, given by

the changes in θ̂01 and θ̂02, must satisfy the constrains for the skin stretch Θ = (θ̂02− θ̂01)/2.

This means a large slide at one contact must be accompanied by a slide at the other contact

in order to keep the value of Θ inside the bounded region. If contacts slide more often in a

given direction, then the change in θeq is biased, and rotation accumulates. For an unbiased

excitation of the upper disk, the bias in sliding preference originates in the asymmetry of

the Amonton inequalities (4.36) through (4.39). This asymmetry is reflected in the shape

of the bounding quadrilateral. It is easier to reach some boundaries than others. It is

easy to verify that for zero tilt (θT = 0) the quadrilateral becomes symmetric. In this case

rotation cannot accumulate. If normal forces are held constant, even if the system is tilted,

the bounded region in (δθ,Θ) is always symmetric, as illustrated by the dotted polygon of

Figure 4.3. Under this condition of constant normal forces, the upper disk does not rotate.
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5 The 3-disk model with lasting contacts

This means that it is not sufficient that normal forces at each contact be different, they

also must be allowed to fluctuate as part of the dynamics of the system in order to observe

rotation.

5.1 Simulation details

In order to study the 3-disk system, we used the molecular dynamics simulation program

described in Section 2.2. We performed a numerical exploration of the effects of various

excitation amplitudes and system tilts on the rotational velocity.

Our simulations consider a disk interacting via elastic, viscous, and frictional forces

with two supporting disks, as described in Chapter 4. Contact forces are described by

equations (4.2) and (4.3), with parameter values kn = 103, kt = 106, γ = 10, and friction

coefficient µ = 0.1. Stiffness values where chosen to make the disk tangentially stiff, while

being relatively soft in the normal direction. This allows us to explore a wider range of

excitation amplitudes, without the disk loosing contact with the support disks. Viscous

dissipation is chosen to keep normal oscillations in the underdamped regime.

Besides contact forces from the supporting disks, the top disk experiences a downward

gravitational acceleration of magnitude g = 10. The disk has radius R = 1 and mass

m = 0.1, which gives a gravitational force of mg = 1. Units are arbitrary, and the

parameter values where chosen to simplify the analysis of the results. No attempt to relate

the simulated system to a physical one is made in this study.

The time-step ∆t for the integration of the equations of motion (a fifth-order predictor-

corrector algorithm is used) is set to 10−6 s, which is at least smaller than one hundredth

of the natural frequency of tangential oscillations, and much smaller than that of normal

oscillations.

We implemented two types of excitation: 1) An external torque acting directly on the top

disk, of amplitude Ae, and angular frequency ωe. 2) A random vibration of the supporting

disks. The external torque excitation is discussed first, since it lends itself to being studied

using the theoretical framework of Chapter 4. Discussing the external torque case first will

allow us to familiarize ourselves with the system, before approaching the more relevant

case of random vibration of the supports.
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5.2 Direct Excitation: Harmonic Torque

As mentioned in Section 4.4, if the 3-disk system is excited gently enough as to maintain

the accelerations ẍ = ÿ = 0, the shape of the admissible region in {δθ,Θ} space is constant

in time and is that of the asymmetric polygon of Figure 4.3. One way to accomplish this

gentle excitation is by imposing a slowly oscillating external torque on the upper disk. The

frequency ωe of the torque must be much smaller than the largest natural frequency of

oscillation at the contacts. This means ωe �
√
k/m, with k = max(kn, kt). The torque is

given by the equation

Te = Ae sin(ωet), (5.1)

where Ae is the torque amplitude.

In this quasi-static regime, as long as at least one contact does not slide, tangential

forces at the contacts will adjust to match the external torque. This prevents the disk from

accelerating, and maintains its rotational and translational velocities at zero. If the external

torque grows beyond the combined Amonton’s limits of both contacts, both contacts start

to slide simultaneously in the same direction, and the disk experiences angular acceleration.

Once contacts are saturated, any increase in torque will only influence the angular degree

of freedom, maintaining the disk in translational equilibrium during sliding.

The disk will continue to accelerate and accumulate rotation until the torque decreases

again below the Amonton’s limit. At this point friction forces will decelerate the disk

until it stops and torque equilibrium is restored. This process then repeats in the opposite

direction. We have shown, in Section 4.4 that, if the system is tilted, clockwise sliding

contacts saturate at a different Amonton’s limit than counter-clockwise sliding contacts,

i.e., δθS1 6= δθS2. This means that the angular acceleration of the disk when sliding

clockwise, as well as the time spent sliding, are different than those when sliding counter-

clockwise. The net rotation is then non-zero, and angular drift accumulates. The mean

rotational velocity of the upper disk ω̄ can be calculated as the net rotation over a period
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of oscillation of the torque

ω̄ =
∆θ1 + ∆θ2

2π/ωe
, (5.2)

where ∆θ1 is the angle rotated when sliding clockwise at S1, and ∆θ2 is the angle rotated

when sliding counter-clockwise at S2.

To reach S2 and slide counter-clockwise, the external torque must surpass the Amonton’s

limit at S2. Using equations (4.18) and (4.43) we can write this limit as

AS2 = A0(cos θT − µ sin θT ), (5.3)

with A0 given by

A0 =
gmµR

cos θ0(1 + µ2)
. (5.4)

In the same way, to reach S1, and slide clockwise, the external torque must surpass the

Amonton’s limit at S1, which, by equations (4.18) and (4.41), can be written as

AS1 = A0(cos θT + µ sin θT ). (5.5)

Notice that, for positive tilt, AS2 < AS1; it is easier to reach the sliding point S2 than

it is to reach S1. This means that the system spends more time sliding counter-clockwise,

with the result that the rotational velocity is always positive. When the system is excited

differently, the sense of rotation may differ from the one observed for external torque

forcing. In particular (Section 5.3), when the supports are vibrated randomly, the velocity

is always opposite in sign to the one observed here.

The behavior of the critical amplitudes AS1 and AS2 can be understood qualitatively as

follows. When the system is tilted with θT > 0, contact 1 is forced to carry a larger portion

of the upper disk’s weight. This it makes it easier to slide at contact 2 than at contact 1.

Upon external forcing, contact 2 always slides first. Once contact 2 is sliding, any excess

torque must be compensated by the tangential force at 1 alone, which is accomplished with

relatively little excess torque. Since it is easier to saturate contact 2 with a positive torque
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than with a negative one, the disk always rotates counter-clockwise. The reason contact 2

saturates faster for counter-clockwise rotation can be understood from the influence that

each tangential force at each contact has in the Amonton’s limit of the opposite contact.

When the external torque is positive, tangential forces are negative and point opposite

to the arrows of Figure 4.1. The tangential force at contact 1 pulls the disk away from

contact 2, decreasing the Amonton’s limit at 2. At the same time, tangential force at 2

pushes the disk onto the support 1, increasing the Amonton’s limit at 1. This means that

an increasing positive torque favors sliding at a contact 2, already weakened by the system

tilt. This explains why AS2 grows monotonically with θT .

On the other hand, when the external torque is negative, tangential forces are positive,

and the opposite happens. The tangential force at contact 1 increases the limit at contact

2, while tangential force at contact 2 decreases the limit at 1. As the torque continues to

decrease it becomes harder to slide at contact 2, in opposition to the weakening effect of

the tilt. For low tilt, this strengthening effect dominates, and AS1 grows with θT . As tilt

increases, tangential force at contact 1 cannot compensate the weakening due to tilt, and

AS1 starts decreasing. This explains the appearance of a maximum for AS1.

5.2.1 Sliding regimes

Depending on the value of Ae relative to AS1 and AS2, different sliding regimes can be

identified. For Ae < AS2 the contacts never slide and the disk does not rotate. For AS2 <

Ae < AS1, the upper disk only slides counter-clockwise at S2, we call this unidirectional

sliding. For Ae > AS1, the system slides both counter-clockwise, at S2, and clockwise, at

S1. We call this bidirectional sliding. A diagram delimiting sliding regimes in (θT , Ae/A0)

space is shown in Figure 5.1. This diagram has tilt values ranging from θT = 0 to a

maximum value θDT . The tilt value θDT is defined as the tilt at which it becomes possible

for contacts to open, this is, the detaching points Di described in Section 4.4 become first

accessible. The tilt θDT can be obtained from equation (4.51) as θDT = θ0 − arctanµ.

From Figure 5.1 it is clear that, for a fixed tilt, as the amplitude Ae increases, the

system always transitions from no-sliding to unidirectional, and finally to bidirectional

sliding. The situation is not so simple when tilting the system at fixed amplitudes (this

amounts to tracing horizontal lines in the phase diagram). If Ae < AS2(θDT ) the systems
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Figure 5.1: Sliding phase diagram for the 3-disk system forced by an external harmonic
torque. θT is the tilt and θDT the detachment limit.

never leaves the no-sliding regime. If AS2(θDT ) < Ae < AS1(θDT ), the system goes from no-

sliding to unidirectional sliding, but contacts detach before reaching bidirectional sliding.

If AS1(θDT ) < Ae < A0 the system goes from no-sliding to unidirectional sliding, and

can proceed to bidirectional sliding. For Ae > A0 the system starts at the bidirectional

sliding regime. If, in addition to Ae > A0, Ae is below the maximum for AS1 (Amax
S1 =

AS1(arctanµ)), as θT increases the systems transitions to unidirectional sliding, then goes

back to bidirectional sliding, thus displaying reentrant behavior. If Ae > Amax
S1 the system

always stays at bidirectional sliding until detachment.

5.2.2 Numerical Simulations

Figures 5.2 and 5.3 show the rotational velocity ω̄ of the upper disk as a function of

Ae, obtained from numerical simulations of the 3-disk system under quasistatic torque.

Different lines correspond to different tilt values θT . Figure 5.2 shows ω̄ vs Ae in linear

scale. For θT = 0 (circles) the disk never rotates, the Amonton’s limits at the contacts
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are symmetric. For the other lines, the transition from no-sliding to unidirectional sliding

comes earlier for increasing values of θT . This is expected since AS2 decreases with θT as

described by equation (5.3).

Figure 5.3 shows ω̄ vs (Ae − AS2) in log-log scale. For low amplitudes, the system

is in unidirectional sliding and the velocity scales as (Ae − AS2)2. For large amplitudes,

Ae > AS1, and the system transition to bidirectional sliding, the velocity scales linearly in

(Ae − AS2).

0.100 0.105 0.110 0.115
Ae

0.00

0.01

0.02

0.03

0.04

ω̄

Figure 5.2: Numerical simulation results for the mean rotational velocity ω̄ of the upper
disk vs the amplitude of the applied external torque Ae in linear scale. Differ-
ent lines correspond to different values of system tilt with respect to gravity,
θT = 0π (circles), θT = 0.03π (triangles pointing down), θT = 0.06π (triangles
pointing up), θT = 0.09π (squares), θT = 0.12π (diamonds).

Figures 5.4 and 5.5 show plots of the rotational velocity ω̄ vs system tilt θT , obtained from

numerical simulations, for different values of torque amplitude Ae. Figure 5.4 shows ω̄ vs

θT in linear scale. For Ae = 0.100 < AS2(θDT ) (circles), the disk never rotates. For values of

Ae = 0.105 (triangles pointing down), Ae = 0.110 (triangles pointing up), and Ae = 0.113

(squares) there is a transition to unidirectional sliding at a critical tilt value θT = θS2. The

critical value θS2 can be found numerically by solving the equation Ae = AS2(θS2). For
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Figure 5.3: Numerical simulation results for the mean rotational velocity ω̄ of the upper
disk vs the amplitude of the applied external torque Ae in log-log scale. Dif-
ferent lines correspond to different values of system tilt with respect to gravity,
θT = 0.03π (triangles pointing down), θT = 0.06π (triangles pointing up),
θT = 0.09π (squares), θT = 0.12π (diamonds). Rotational velocity ω̄ displays
the power law scaling in Ae − AS2, where AS2 is the critical amplitude given
by equation (5.3). All curves collapse under the scaling displayed on the axes.
AS1 is the amplitude at which the systems enters bidirectional scaling. The
dotted line has slope 1 and the dashed line slope 2.

Ae = 0.115 (diamonds), the systems experiences bidirectional sliding for all tilts.

Figure 5.5 shows ω̄ vs (θT − θS2) in log-log scale. In this plot we appreciate an almost

quadratic scaling of the velocity in the unidirectional sliding regime. For the bidirectional

sliding regime (Ae = 0.115, diamonds), the scaling becomes quadratic only for large tilts.

5.2.3 The hysteresis cycle

Paths traced in (δθ, Θ) space, obtained from numerical simulations, for two different torque

amplitudes, Ae = 0.100 and Ae = 0.113, at tilt θT = 0.1π, are shown in Figure 5.6. The

quadrilateral determining the admissible space, together with the points S1, S2, T1, and

T2, are plotted, as given by equations (4.41), (4.43), (4.47), and (4.49), under the condition
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Figure 5.4: Numerical simulation results for the mean rotational velocity ω̄ of the upper
disk vs the system tilt θT in linear scale. Different lines correspond to different
values of amplitude Ae of the applied external torque, Ae = 0.100 (circles),
Ae = 0.105 (triangles pointing down), Ae = 0.110 (triangles pointing up),
Ae = 0.113 (squares), Ae = 0.115 (diamonds).

that ẍ = ÿ = 0. For Ae = 0.100 we have Ae < AS2 and the system never reaches the sliding

points, so the disk does not rotate. For Ae = 0.113, we have Ae > AS1 and the system is

in the bidirectional sliding regime. Both S1 and S2 are reached and the disk rotates.

As shown in Figure 5.6, when in bidirectional sliding, the system executes the following

sequence: Start at S1, just when the disk has stopped rotating. Then let θ change under

the effect of the external torque. When the external torque increases, the disk rotates

counter-clockwise, and δθ grows. Since no contact has slipped so far, Θ remains constant.

The system, then, moves horizontally towards the line T2S2, defined by inequality (4.39).

Upon reaching T2S2, contact 2 starts sliding, and both δθ and Θ grow along this line

towards S2. After some time at S2, the torque Te decreases below AS2, and friction forces

start to decelerate the disk. When the disk stops, the system leaves S2 and moves along

the horizontal line Θ = ΘS2 towards the line T1S1 defined by inequality (4.38). Upon

reaching T1S1, contact 1 starts sliding, and both δθ and Θ decrease along this line, towards
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Figure 5.5: Numerical simulation results for the mean rotational velocity ω̄ of the upper
disk vs the system tilt θT in log-log scale. Different lines correspond to different
values of amplitude Ae of the applied external torque, Ae = 0.105 (triangles
pointing down), Ae = 0.110 (triangles pointing up), Ae = 0.113 (squares),
Ae = 0.115 (diamonds). The velocity ω̄ scales quadratically in θT − θS2, where
θS2 is the critical tilt obtained by solving the equation Ae = AS2. The dashed
line has slope 2.

S1. After some time at S1, Te increases above −AS1, and friction forces start to decelerate

the disk. When the disk stops, the system leaves S1 along the horizontal line Θ = ΘS1

towards the line T2S2, repeating the cycle.

5.2.4 Obtaining an exact expression for ω̄

It is possible to obtain an expression for the mean angular velocity from the angular

differential equation

Iθ̈ = Ae sin(ωet+ φi)− ASi, (5.6)

which is valid during sliding. In equation (5.6), I = mR2/2 is the moment of inertia of

the disk, and i = 1 if sliding at S1, or i = 2 if sliding at S2. We have introduced the
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Figure 5.6: Paths traced in (δθ,Θ) space traced during two numerical simulations under
external torque excitation. Dotted lines and points delimit the admissible re-
gion in this space as defined in Section 4.4. The gray line corresponds to a
simulation with Ae = 0.100 < AS2 in the no-sliding regime. The black line
corresponds to a simulation with Ae = 0.113 > AS1 in the bidirectional sliding
regime.

phase φi = arcsin(ASi/Ae) to set the time at which both contacts start sliding to t = 0.

Integrating equation (5.6) we find the angular velocity of the disk

Iω = −Ae
ωe

cos(ωet+ φi)− ASit+
Ae
ωe

cosφi. (5.7)

Integrating again we can find the equation of motion for the angle θ, while sliding at Si, as

Iθ = −Ae
ω2
e

sin(ωet+ φi)−
ASit

2

2
+
Ae
ωe

cosφit+
Ae
ω2
e

sinφi. (5.8)

After some time sliding, the torque decreases below the Amonton’s limit, and friction forces

eventually stop the disk. The time at which the disk stops, tsi, can be obtained by equating

equation (5.7) to zero and solving for t. Unfortunately, this can only be done numerically.

Once we have found tsi, we can obtain the net angular displacement ∆θi = θ(tsi) from
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equation (5.7). Finally, the mean angular velocity can be obtained from equation (5.2) as

ω̄ =


1

2πmR2ωeAS2
(AS2 − Te(ts2))2 (unidirectional sliding)

1
2πmR2ωe

[
(AS2−Te(ts2))2

AS2
− (AS1+Te(ts1))2

AS1

]
(bidirectional sliding)

(5.9)

where Te(t) is the external torque at time t.

A numerical evaluation of equation (5.9) agrees very well with numerical simulations of

the 3-disk system. Figure 5.7 is a reproduction of Figure 5.2, with the lines connecting the

data points replaced by equation (5.9).
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Figure 5.7: Numerical simulation results for the mean rotational velocity ω̄ of the upper
disk (data points) compared with predictions from equation (5.9) (lines). Dif-
ferent lines correspond to different values of system tilt with respect to gravity,
θT = 0π (circles), θT = 0.03π (triangles pointing down), θT = 0.06π (triangles
pointing up), θT = 0.09π (squares), θT = 0.12π (diamonds). Simulations agree
very well with numerical evaluations of equation (5.9)
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5.3 Random Vibrational Excitation

We now discuss the more realistic situation in which the supporting disks vibrate randomly.

For this type of excitation the assumption of quasistaticity is no longer valid, and a different

analysis is required. Furthermore, as will be discussed, when the supports are vibrated,

the upper disk rotates in the a direction opposite to the one observed when applying an

external torque to the system. We end the section with the introduction of a simplified

model that gives some insight on the origin of this sign difference.

5.3.1 Implementation Details of the Vibration

Random vibration is numerically implemented as follows: The center and angular position

of each of the two support disks are simulated as a white-noise-forced harmonic oscillator.

Each of the support disk coordinates, xb, yb, and θb, follow the same stochastic differential

equation. For xb this equation reads

ẍb(t) + 2cωbẋb(t) + ω2
bxb(t) = ξ(t), (5.10)

where c is the damping ratio, ωb is the natural frequency of oscillation, and ξ(t) is the ac-

celeration due to the random forcing with mean 〈ξ(t)〉 = 0 and correlation 〈ξ(t+ τ)ξ(t)〉 =

Dδ(τ). The parameters ωb, c, and D are related to the mean square displacement 〈x2
b〉 and

mean square velocity
〈
ẋb

2
〉

by the equations [46]

〈
x2
b

〉
=

D

4cω3
b

(5.11)〈
ẋb

2
〉

=
D

4cωb
=
〈
x2
b

〉
ω2
b . (5.12)

The length and time scales of the oscillations are given by
√
〈x2

b〉 and ωb, which, in turn,

determine the typical velocity
√〈

ẋb
2
〉
. This amounts to fixing two of the three parameters

of equation (5.10). The third parameter determines the correlation time tc = 1/cωb. The

correlation time tc determines the rate of exponential decay of correlations in the movement
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5 The 3-disk model with lasting contacts

of the supports, for example, in the xx correlation function [46]

〈xb(t)xb(t+ τ)〉 =
〈
x2
b

〉
exp

(
−|τ |
tc

)
(

cos(
√

1− cωb|τ |) +
c√

1− c
sin(
√

1− cωb|τ |)
)
.

(5.13)

In the simulation, the vibration is specified by the value of the RMS displacement Ab =√
〈x2

b〉 =
√
〈y2
b 〉 = R

√
〈θ2
b 〉, the natural frequency ωb, and the damping ratio c. Chosen

values for the damping ratio and the frequency are c = 0.5 and ωb = 20π. Different values

of Ab and tilt θT were explored.

5.3.2 Numerical Simulations

Figure 5.8 shows the upper disk mean angular velocity ω̄ vs the amplitude Ab, for several

values of system tilt θT . For θT = 0, the disk does not rotate, since conditions at both

contacts are symmetric. Rotation does appear for other values of θT . An important

difference with respect to the quasistatic excitation is the sign of the rotational velocity.

Under random vibration, angular velocity is opposite in sign to the case of an applied

harmonic torque (Section 5.2).

In contrast to the quasistatic excitation of Section 5.2, large vibrating amplitudes may

cause contacts between to disks to open. Since in this chapter we are only concerned with

the situation of lasting contacts, data points for which contacts open during the simulation

are not plotted in the figures. A discussion of rotation in the regime of a bouncing disk

can be found in Chapter 6 and in [26]. From Figure 5.8, we can see that increasing θT

decreases the value Ab of the last data point. Tilting the system makes it easier for contact

2 to open, we have not plotted points for which this happens.

Figure 5.9 shows the upper disk mean angular velocity ω̄ vs the system tilt θT for several

values of amplitude Ab. Data points where contacts opened during the simulation are

omitted. Since the angle at which disk detaches decreases as Ab increases, contacts start

breaking earlier with increasing Ab.

While the evolution of the velocity with amplitude is monotonic until detachment (see

Figure 5.8), this is not the case when tilting the system. As θT increases from zero, the
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Figure 5.8: Numerical simulation results for the mean rotational velocity ω̄ of the upper
disk vs the RMS amplitude Ab of the vibrating support disks. Different lines
correspond to different values of system tilt with respect to gravity, θT = 0π
(circles), θT = 0.02π (triangles pointing down), θT = 0.04π (triangles pointing
up), θT = 0.06π (squares), θT = 0.08π (diamonds).

velocity first decreases, it reaches a minimum, and then starts increasing again towards

zero.

5.3.3 A general mechanism for rotation

Numerical results from Sections 5.2.2 and 5.3.2 serve as two particular examples of how dif-

ferent methods of exciting the system cause rotation in opposite directions. In Section 5.2,

we explained the mechanism by which an external torque imposes a positive mean ro-

tational velocity on the upper disk. There, we showed that the asymmetry required to

accumulate rotation comes from the fact that the magnitude of the friction force, acting

on the upper disk when the disk is sliding counterclockwise, is different from the magnitude

of the friction force when the disk is sliding clockwise.

When the support disks are randomly vibrated, numerical results from Section 5.3.2 show

that the upper disk rotates clockwise, meaning that the direction of rotation is reversed
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5 The 3-disk model with lasting contacts
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Figure 5.9: Numerical simulation results for the mean rotational velocity ω̄ of the upper
disk vs the system tilt θT . Different lines correspond to different values of
amplitude RMS Ab of the support vibrations, Ab = 2 × 10−5 (circles), Ab =
4 × 10−5 (triangles pointing down), Ab = 6 × 10−5 (triangles pointing up),
Ab = 8× 10−5 (squares), Ab = 1× 10−4 (diamonds).

with respect to case of an externally applied torque. In this Section, we argue that the

cause of this direction reversal comes from the fact that randomly displacing the support

disks allows the system to access the complete set {S1, S2, T1, T2} of sliding configurations

of the two contacts. This is, while under the effect of the external torque the system was

only allowed to reach the points S1 and S2 of the bounding quadrilateral of Figure 4.3, for

random vibration of the supports, the points T1 and T2 are also accessible. At S1 and S2

both tangential forces are of the same sign, positive for S1, and negative for S2. At T1, the

tangential force at contact 1 is negative (τ1 < 0) and the tangential force at contact 2 is

positive (τ2 > 0). At T2 the opposite is true, τ1 > 0 and τ2 < 0.

The reason T1 and T2 are now accessible is that the support disks are able to move

independently. If the relative position of the supports was fixed, for example, if they were

joined by a rigid bar, the tangential displacements between each support and the upper

disk would always be the same. This joint rigid displacement of the supports cannot cause
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5.3 Random Vibrational Excitation

tangential forces of opposite sign. This is equivalent to the situation of exciting the disk

with an external torque, with the difference that under the influence of the torque, it

is the upper disk that moves and the supports remain fixed. On the other hand, when

the movement of the supports is independent and uncorrelated, tangential displacements

between the supports and the upper disks can be opposite. Under these conditions, cases

of contacts sliding in opposite directions occur frequently.

The stochastic nature of the vibration makes it impossible to solve the dynamics in a

similar manner to that employed in Section 5.2 to explain the rotation under the influence of

an external torque. Instead we aim to obtain a qualitative understanding of the mechanism

that causes rotation. To do this, we first need to make a some approximations. We

first assume that contacts are always sliding. To justify this assumption we perform the

following analysis: From Figure 5.8, we can approximate the value of Ab, at which the disk

starts to rotate, at around Ab ≈ 1 × 10−5. Given that normal forces are of order ∼ mg,

the relative displacement needed to reach the Amonton’s limit, L, is of order L ∼ µmg/kt.

For our simulation parameters, L ∼ 1 × 10−7. This makes the typical amplitude of the

vibration Ab at least two orders of magnitude larger than the displacement needed to

initiate sliding at a contact. These relative large displacements of the supports occur

during a mean time given by the correlation time tc of order tc ∼ 1/cωb ≈ 3× 10−2. This

correlation time is much larger than the natural period of the elastic oscillations of the

upper disk, of order ∼
√
m/kt ≈ 3× 10−4. For a contact that has just finished sliding and

is entering the elastic regime, it will likely stay in the elastic phase for about half a period

of oscillation before starting to slide in the opposite direction. Sliding is maintained until

the tangential velocity of the upper disk and the support, at the point of contact, become

equal again. This typically occurs when the support starts to reverse its tangential motion.

Since the correlated motion of the support is maintained in average during an time interval

of length tc, this makes the sliding phase much longer than the elastic phase. Under these

circumstances we can safely ignore the duration of the elastic phase.

Ignoring the duration of elastic oscillations at the contacts, the dynamics of the system

can be approximated as a random series of intervals at which the disk slides alternately at

points S1, S2, T1 and T2. During each of these intervals, there is a torque acting on the

upper disk. This torque is not constant, normal forces are constantly changing due to the

103



5 The 3-disk model with lasting contacts

vibration of the supports, but if we call T̄i the mean torque acting during interval i, we

can obtain the mean torque acting on the upper disk during a total of N different sliding

intervals as

T̄ =
1

tT

N∑
i=1

T̄iti, (5.14)

where ti is the duration of the sliding interval i and tT =
∑N

i=1 ti.

Calculating each torque T̄i is not easy, but we can find some suitable approximation.

The torque acting on the disk during each of this sliding intervals is given by the sum of

both tangential forces. Since we are assuming contacts are always sliding, tangential forces

are saturated at the Amonton’s limit, and the total torque is given by T = µ(sgn (τ1)n1 +

sgn (τ2)n2). Normal forces are constantly changing due to the vibration of the supports,

but fluctuations are not completely random. The normal force at a contact is determined by

the normal relative distance between the upper disk and the support (see equation (4.2)).

This distance changes whenever either of the disks move. Thus, we can distinguish two

causes for the fluctuations of the normal forces, one caused by the movement of the support,

and other caused by the movement of the upper disk. We will ignore the fluctuations on the

normal force caused by the random vibration of the support disk. The normal displacement

of the support disk is assumed random and uncorrelated with the contact status (sliding

or not-sliding), and thus is not expected to be the source of drift. The main purpose of the

vibration is to facilitate sliding, mainly through the tangential motion of the supports.

The displacement of the upper disk couples forces from both contacts in the 3-disk

system in the sense that forces on contact 1 influence forces at contact 2 and vice-versa.

This introduces correlations in the fluctuations of contact forces. During each sliding

interval, contact forces try to bring the system to translational equilibrium, although this

equilibrium is actually never achieved. Random vibration and the continuous switching of

sliding configurations keeps the system in a dynamical state out of equilibrium. But, as

an approximation, we can use the equilibrium values of contact forces at each sliding point

to estimate a the value of the mean torque during each respective interval. We can obtain

the equilibrium torque values from equation (4.18) using the value of δθ for each sliding

point from equations (4.41), (4.43), (4.47) and (4.49), and setting ẍ = ÿ = 0:
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T̄ S1 =
mgRµ(cos θT + µ sin θT )

(1 + µ2) cos θh
, (5.15)

T̄ S2 =− mgRµ(cos θT − µ sin θT )

(1 + µ2) cos θh
, (5.16)

T̄ T1 =
mgRµ sin θT

sin θh + µ cos θh
, (5.17)

T̄ T2 =− mgRµ sin θT
sin θh − µ cos θh

. (5.18)

Since the torques defined in equations (5.15) through (5.18) are constant, equation (5.14)

for the mean torque becomes

T̄ =
1

tT

T̄ S1

NS1∑
i=1

ti + T̄ S2

NS2∑
i=1

ti + T̄ T1
NT1∑
i=1

ti + T̄ T2
NT2∑
i=1

ti


=

1

tT

(
NS1 T̄ S1 t̄S1 +NS2 T̄ S2 t̄S2 +NT1 T̄ T1 t̄T1 +NT2 T̄ T2 t̄T2

)
,

(5.19)

where N j is the number of intervals the system spends at the sliding point j, and t̄j is the

mean time of interval j, defined as t̄j = 1
Nj

∑Nj

i=1 ti. For a unbiased random vibration it is

reasonable to assume N j = N/4 for all four sliding configurations, which further simplifies

equation (5.19) to

T̄ =
1

4t̄

(
T̄ S1 t̄S1 + T̄ S2 t̄S2 + T̄ T1 t̄T1 + T̄ T2 t̄T2

)
, (5.20)

where t̄ = tT/N is the mean time of a sliding interval averaged over all intervals, indepen-

dently of their sliding configuration.

In numerical simulations it is observed that the upper disk has a well defined and sta-

tionary mean rotational velocity. This condition requires that the mean torque on the

upper disk be zero, T̄ = 0. For a particular tilt θT , the torques T j in equation (5.20) are

constant, thus, to balance the torque, the mean duration t̄j of each sliding interval must

be such that they satisfy T̄ = 0. This means tilting the system modifies the duration of

the siding intervals, in turn modifying the mean rotational velocity.
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5 The 3-disk model with lasting contacts

When the tilt angle θT = 0, T̄ S1 = −T̄ S2 and T̄ T1 = T̄ T2 = 0, as calculated from

equations (5.15) trough (5.18). In this situation, symmetry requires that all t̄j are equal.

The mean total torque is zero, and the mean rotational velocity is also zero. As we slightly

tilt the system, initially, all times t̄j will remain equal. The total torque mean on the

system is just the average of all torques T̄ j in equations (5.15) trough (5.18), but now

evaluated at θT 6= 0. This mean torque is

T̄ ∗ =
mgRµ2(µ2 + (1 + µ2) cos 2θh) sec3 θh sin θT

2(1 + µ2)(µ2 − tan2 θh)
. (5.21)

The torque T̄ ∗ is always negative for the parameter values used in our simulations. This

means, upon tilting, a negative mean torque will act on the upper disk. The mean rotational

velocity will decrease until the changes in the times t̄j balance out the mean torque to zero

again. This explains why the rotational velocity is negative when the supports are vibrated

randomly. If the sliding points T1 and T2 where not accessible, the torque upon tilting T̄ ∗

would be the average of T̄ S1 and T̄ S2 alone. This restricted average is positive, leading to

a positive rotational velocity of the upper disk upon tilting.
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6 A bouncing disk on a wedge

In this Chapter we present experimental and numerical results regarding the one disk model

in the regime of moderate excitation, or “gas phase”. The study is that of a viscoelastic

frictional disk bouncing on a wedge billiard that is vibrated vertically. Unlike the analysis

of Chapter 5, in this regime contacts are frequently broken and the disk spends most of

the time detached from the supporting surface. Both supports are assumed to undergo a

prespecified harmonic vibrational motion, while the position and angle of the upper disk

constitute dynamical degrees of freedom. The contents of this Chapter have been published

in reference [26].

If the supports consist of two disks, this toy packing only makes sense for rather weak

vibration intensities of the bottom, since the upper disk is not confined and can escape.

Whenever the bottom excitation is sufficiently weak, the upper disk will barely move from

its lowest potential energy position, and therefore the curvature of the supporting disks

will not be relevant. A further simplification of this model, that is appropriate for the case

of moderate excitation, consists in replacing the two supporting disks by two straight lines,

thus forming a wedge with aperture angle θW = 2π/3 (see Figure 4.1).

Although billiards on a wedge under gravity have been considered in the past [41, 42,

47–50], their rotational behavior was never studied before. Conservative point-like grav-

itational billiards on a wedge, with variable aperture θW and zero tilt θT = 0, were first

studied by Lehtihet and Miller [47]. For narrow wedges, where θW < π/2, the phase space

space exhibits stable periodic orbits surrounded by chaos, with the chaotic orbits passing

arbitrarily close to the wedge vertex. For wide wedges, θW > π/2, the system is always

ergodic. In fact, these authors found that the case of θW = 2π/3, corresponding to our

three-disk toy-system (see later), displays the strongest stochasticity. This conservative

wedge billiard was further studied by Richter et al [48], who found that there is breathing
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chaos as θW varies. The Lyapunov exponent attains minima at a sequence of discrete values

of θW . An experimental realization of this system was obtained by Milner et al. [49] in an

optical billiard with ultracold atoms. Good agreement was found between experiment [49]

and previous numerical simulations [47,48].

A dissipative version of these billiards was studied experimentally in a work by Feldt and

Olafsen [50], where a steel ball bounces on a horizontally driven aluminum surface with

parabolic, wedge or hyperbolic shape. None of the these works considered rotation. A first

attempt at an analytic description of these systems is done by Gorski and Srokowski [41].

The authors considered a horizontally oscillating billiard, and derived a map for velocities

and positions at each collision. This map is then used to simulate the dynamics. Their

model assumes a velocity-dependent normal restitution coefficient and ignores friction,

thus, ignoring rotation altogether.

A more recent numerical study of the inelastic gravitational billiard was done by Hartl

et al. [42]. The authors studied inelastic gravitational billiards with parabolic, wedge and

hyperbolic walls. A comparison with the experimental results by Feldt and Olafsen [50] is

made. Their model includes friction and air drag. However, a study of rotational behavior

is not reported by those authors.

We briefly report experimental results obtained with a setup of three metallic disks,

with the main purpose of demonstrating that the phenomenon of spontaneous rotation in

a wedge billiard is observed in reality, and is not an artifact of our numerical simulations.

We then focus on the description of numerical results obtained by two different algorithms:

molecular dynamics (MD) of frictional elasto-plastic disks, and event-driven (ED) simula-

tion. The good quantitative coincidence between these two methods, plus the qualitative

similarity to our laboratory results, supports the notion that our numerical description is

sound and able to capture the essential mechanisms underlying spontaneous rotation.

Section 6.1 describes our experimental setup and presents a brief account of rotational

observations using three-disks in the laboratory. Section 6.2 presents the details of our

Molecular Dynamics (MD) simulations, and describes some results for the average rota-

tional velocity versus the wedge tilt. In Section 6.3, the assumptions and methodology

behind our Event Driven (ED) simulations are introduced. Section 6.3.2 discusses the fact

that the mapping behind ED can be seen to be explicitely scale invariant, and Section 6.3.2
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demonstrates explicitely that the rotational velocity of the disk scales as the typical ve-

locity vb of the vibrating bottom. Section 6.3.3 shows that MD and ED methods produce

equivalent results. Section 6.3.4 presents numerical results from ED simulations, discussing

the effect of several system parameters on rotational velocity.

6.1 Experimental results

The simple three-disk setup used in our experiments is depicted in Fig. 6.1. Three identi-

cal, 2.5cm in diameter, 1cm thick, stainless-steel disks (A,B,C) are used to demonstrate

rotational drift in a laboratory realization of our toy model. All three disks have sand-

blasted contact surfaces, and they all have a 0.8 cm diameter hole drilled through their

center. Two supporting disks (A,B) touch each other and are fixed in place between two

clear acrylic plates of 3mm thickness and of size 6x4.5cm each. Washers (W1,W2) are used

to provide a slight amount of extra spacing between the disks and the acrylic plates. The

third, free to move, disk (C) rests on top of disks A,B. The whole setup is attached to

an L-shaped aluminum profile (P ) with bolts (B1, B2) that pierce through the centers of

the supporting disks (A,B). The L-shaped profile P is in turn bolted (B3) to a similar

profile (Q) that is attached to a Taika TK-W102D 300W-10inch diameter loudspeaker.

The three-disk setup can be tilted by loosening B3 and then retightening it. The tilt angle

θT is measured using a protractor (S). The third disk C is masked with a white paper

sticker and has a black rectangular mark (M) on its camera-facing side, allowing us to track

rotations with image-processing software. Because the washers provide a small amount of

extra space between the acrylic sheets, the top disk C is free to rotate and move on the

plane of the sheets.

The speaker is driven by a sinusoidal wave provided by an Agilent 33220A waveform

generator, amplified through a Mitzu MPA2100 amplifier. We explored several frequency

ranges and intensities for the driving, but the illustrative results reported in this Chapter

were obtained with a 200 Hz signal. The signal strength is set strong enough to keep

the upper disk slightly bouncing on its contacts when the tilt θT is zero. In a typical

measurement run, a webcam takes pictures at one-second intervals during five minutes. To

extract rotation data, the pictures are later processed using the “analyze particles” feature
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Figure 6.1: Photography of the experimental setup used to verify spontaneous rotation in
the three-disk setup. Disk C rotates due to repetitive bounces off disks A and
B. The aluminum profile Q is attached to a sinusoidally vibrating loudspeaker
which provides the driving.
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Figure 6.2: Evolution of the angular variable θ of the upper disk, recorded during five
minutes, for three different tilt angles: θT = 8 (solid line), θT = 12 (dashed
line) and θT = 16 (dotted line). Images are taken at one-second intervals and
later processed using image-recognition software.
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from the Fiji software [31]. The image sequence is fed through the software, which in turn

processes the images, identifies the black rectangular mark of the upper disk C, and fits an

ellipse to it. The fitted parameters that define the spatial location of the ellipse are then

saved to a file and processed to obtain the time series for the rotation angle θ(t) for disk

C.

Measured rotation angles vs time, from experimental runs with wedge-tilts θT of 8, 12 and

16 degrees are plotted in Figure 6.2. For zero tilt, our setup is symmetric and no rotation is

expected. We verified that the overall rotation is very small in this case, and the rotational

behavior is essentially random (not ballistic), for zero tilts. Our experimental results show

that sustained rotation is real and can be reproducibly realized in the laboratory. For

nonzero tilts, the disk is seen to rotate with an average velocity ω̄ that depends on tilt and

on the intensity of the driving. We study the details of this phenomenon numerically in

the following sections.

6.2 Molecular dynamics simulations

As a first numerical investigation of wedge billiards, we implemented Molecular Dynamics

(MD) simulations [28] for a disk in a vertically vibrated wedge and for a disk supported by

two vibrating disks. These two cases were found to differ only for high intensity excitation,

because in that case the upper disk starts to “feel” the curvature of its supporting disks,

eventually falling out of place if the excitation is too large. We concentrate here on the

description of the wedge results alone. This setup has the property (see Section 6.3.2) of

being scale invariant.

Our simulations consider a disk interacting via elastic, viscous and frictional forces with

two straight lines forming a wedge, as shown in Figure 4.1 (right). Forces are defined as

discussed in Section 4.2. Besides contact forces from the wedge walls, the disk experiences

a downward gravitational acceleration of magnitude g = 9.81m/s2. In collisions against

the wedge, the normal coefficient of restitution en [44] is a material constant that depends

on kn, γ and m. In our simulations we often use en = 0.9, and κ = kt/kn = 0.773. The

time step ∆t for MD integration (a fifth-order predictor-corrector algorithm is used) is

set to a hundredth of the “collision time” [44] tcol = −2m ln en/γn. This ensures that
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Figure 6.3: Molecular simulations numerical results for the mean rotational velocity of a
disk bouncing in a wedge for different values of the dimensionless acceleration
of the wedge Γ. Values shown are Γ = 0.9 (plusses), Γ = 1.0 (crosses), Γ = 1.2
(asterisks), Γ = 1.5 (empty squares), Γ = 2.0 (filled squares), Γ = 3.0 (circles).
Other simulation parameters are kn = 4.5e6N/m, κ = 0.773, R = 0.02m,
γ = 9.84kg/s, µ = 0.1, m = 4.5g. The wedge is vibrating at 80Hz.
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collisions are described with enough numerical accuracy. Relevant system parameters are:

the wedge aperture angle θW , the gravitational acceleration g, the typical wedge velocity

vb, the mass m of the disk, the normal coefficient of restitution en, the frictional coefficient

µ, the normal elastic coefficient kn, and the tangential elastic coefficient kt.

A sinusoidal vertical motion, with angular frequency ωb and amplitude A, is imposed

on the wedge. The maximum dimensionless acceleration is then Γ = Aω2
b/g, and the

maximum bottom velocity is vb = Aωb. The average rotational velocity ω̄ of the disk

is then measured numerically over a time-window of 300 seconds. The mean rotational

velocity ω̄ is plotted against tilt θT for different values of Γ in Fig. 6.3. For Γ ≤ 1, the disk

remains in contact with the wedge most of the time, and the rotation is too small to be

measurable on this time scale. For Γ > 1, a regime appears where ω̄ scales linearly with

vb. In this regime, the disk is bouncing on the wedge, experiencing mainly binary collisions

of negligible duration compared to the mean flight time t̄flight. This is the regime we set

to describe in this Chapter. The case of Γ < 1, where the disks remains in contact with

the wedge, also gives rise to rotation, but with a much smaller velocity. That case admits

an approximate analytic description, and was described in Chapter 5. In this Chapter, we

concentrate on the description of spontaneous rotation in the Γ > 1 phase. Fig. 6.3 shows

that, in this phase, the mean rotational velocity ω̄ of the disk is not a monotonic function

of tilt θT , and may change direction as the tilt is increased. Notice that the actual shape

of the function ω̄(θT ) depends strongly on system parameters, particularly so on the value

of the friction coefficient µ (See Fig. 6.6).

6.3 Event-driven simulations

For the case of Γ > 1, we also implemented event-driven (ED) simulations of the gravita-

tional wedge billiard. The applicability of ED algorithms is limited to the description of

dynamical systems dominated by binary collisions of negligible duration in time. These al-

gorithms have, however, the advantage of greatly speeding up simulations in certain cases.

For a discussion of ED simulations in the context of granular materials, see for example

the book by Pöschel and Schwager [17].

We choose to implement our algorithm as an iterative map that is similar to those used

114



6.3 Event-driven simulations

by Lehtihet and Miller [47] and Richter et al. [48] in their studies of Hamiltonian wedge

billiards. Unlike their case, our map considers inelastic collisions and Coulomb friction.

The algorithm we use maps the values for positions and velocities of the disk before a

collision i to the values before the next collision i + 1. In particular, we chose to build

a four-coordinate mapping for the following four variables of the disk: 1) its pre-collision

normal velocity vn, 2) its pre-collision tangential velocity vt, 3) its angular velocity ω, and

4) the distance l from the disk center to the wedge bisector.

There are actually two sets of mapping equations; one assuming collision i+1 to happen

at the same wall as collision i, the other considering a collision with the other wall. In

order to choose the correct mapping, the time between collisions tiflight is calculated for

both cases, and the earliest one is chosen. Since ω is constant between collisions, the mean

rotational velocity is calculated as

ω̄ =

∑
i ωit

i
flight∑

i t
i
flight

, (6.1)

where tiflight is the time of flight between collisions i− 1 and i.

In the MD simulations described in Section 6.2, the wedge moves sinusoidally with

frequency ωb and amplitude A, therefore the maximum bottom velocity is vb = Aωb.

In ED simulations, in order to calculate the time tcol, at which the next collision with

the bottom will happen, one must in principle find the intersection of a parabola with

a harmonic function of time (the bottom position). This can only be done numerically,

which is relatively time-consuming. In order to further speed up simulations, we first tested,

and later employed, the fixed-bottom random-phse approximation (FBRPA) described in

Section 2.3.3. The FBRPA is valid in the limit of large frequency and small amplitude

of excitation: Since the amplitude is assumed small, the spatial location of a collision,

and, therefore, the collision time tcol itself, are practically unaffected by the motion of

the bottom. Hence, within the FBRPA, we assume the bottom to be fixed, and calculate

the intersection of the parabolic motion of the disk under gravity with the straight line

describing the fixed bottom. This calculation can be easily done analytically.
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6 A bouncing disk on a wedge

6.3.1 Derivation of the mapping equations

In this section we give the details of the deviation of the mapping equations. We start

by defining a set of three coordinate systems, a standard Cartesian reference frame, with

origin at the wedge vertex, and two local reference frames at each wall, with axes in the

normal and tangential directions to the wall. Quantities in the Cartesian coordinate system

are super-scripted x for the component along the x-axis, and y for the component along

the y-axis. Quantities in the local reference frame are super-scripted n for quantities in

the normal direction, and t for quantities in the tangential direction. We can transform

the disk velocity v, from a local reference frame to the Cartesian reference frame, via the

set of equations

vx = − sin θvn + cos θvt (6.2)

vy = + cos θvn + sin θvt, (6.3)

where θ is the angle the wall makes with the x-axis. The inverse transformation, from the

Cartesian frame to the local frame, is given by equations

vn = − sin θvx + cos θvy (6.4)

vt = + cos θvx + sin θvy. (6.5)

In the Cartesian reference frame, the walls of the wedge are described by the equation

y = tan θx, (6.6)

where θ = θL for the left wall, and θ = θR for the right wall. The angles θL and θR can

take values from −Π
2

to Π
2
.

We want to map quantities from a collision k to the next collision k + 1. Between

collisions, during free flight, the disk experiences gravitational acceleration. We can write

equations for quantities at the beginning of collision k+1 from the equations for a parabolic
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6.3 Event-driven simulations

path as

xk+1 = xk + v′xk tf (6.7)

yk+1 = yk + v′yk tf −
gt2f
2

(6.8)

vxk+1 = v′xk (6.9)

vyk+1 = v′yk − gtf , (6.10)

where primed quantities refer to velocities at the end of a collision, un-primed quantities

refer to velocities at the beginning of a collision, and tf is the time of flight. The subscript

indicates the collision at which the quantity is measured, either collision k or k + 1.

Now, we transform equations (6.7) through (6.10) to the local reference frame. Applying

the transformations (6.2) and (6.3)

xk+1 = xk + (− sin θiv
′n
k + cos θiv

′t
k )tf (6.11)

yk+1 = yk + (+ cos θiv
′n
k + sin θiv

′t
k )tf −

gt2f
2

(6.12)

vnk+1 = cos(θf − θi)v′nk − sin(θf − θi)v′tk − gtf cos θf (6.13)

vtk+1 = sin(θf − θi)v′nk + cos(θf − θi)v′tk − gtf sin θf , (6.14)

where θi is the angle corresponding to of the wall the path is starting on (either θL or

θR), and θf is the angle corresponding to the wall the disk is arriving at.

To find tf we need the time at which the parabolic path intersects the wall of the

wedge. We can find the intersection by solving the system of equations composed of

equations (6.6), (6.11) through (6.14), and the energy equation

E =
m

2

(
(vn)2 + (vt)2

)
+
mR2

4
ω2 +mgy. (6.15)

From this system of equations, we are only interested in the solutions with tf > 0. The
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6 A bouncing disk on a wedge

relevant solution for tf is

tf =
1

g cos θf

[
cos(θi − θf )v′nk + sin(θi − θf )v′tk

+

√
[cos(θi − θf )v′nk + sin(θi − θf )v′tk ]2 + 2g

cos θf
sin θi

sin(θi − θf )yk

]
.

(6.16)

Equations (6.12), (6.13) and (6.14), together with the fact that during flight the rota-

tional velocity does not change, define the map equations

vnk+1 = −
√

(cifv′nk + sifv′tk )2 + 2g
cf
si
sifyk (6.17)

vtk+1 =
−siv′nk + civ

′t
k

cf
+ tan θfv

n
k+1 (6.18)

ωk+1 = ω′k (6.19)

yk+1 = yk +
(
civ
′n
k + siv

′t
k

)
tf −

gt2f
2
, (6.20)

where we have used equation (6.16), and the abbreviations ci = cos θi, si = sin θi, cij =

cos(θi − θj), and sij = sin(θi − θj).

The four different combinations of θi and θf give four different sets of mapping equations,

depending on the identity of the initial and final wall (left or right). For the two cases for

which the particles bounces twice on the same wall, θi = θf = θ, the mapping simplifies to

vnk+1 = −v′nk (6.21)

vtk+1 = v′tk − 2 tan θv′nk (6.22)

ωk+1 = ω′k (6.23)

yk+1 = yk −
2 tan θv′nk

g

(
tan θv′nk − v′tk

)
(6.24)

tf =
2v′nk
g cos θ

. (6.25)

Finally, to write the mapping equations in a form involving only pre-collision quantities,
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we use the collision rules given by equations (2.11), (2.23), and (2.24) to obtain

vnk+1 = −

√(
cif
(
−envnk + (1 + en)vnb,k

)
+ sif

(
vtk −

1− et
3

utk

))2

+ 2g
cf
si
sifyk (6.26)

vtk+1 =
−si

(
−envnk + (1 + en)vnb,k

)
+ ci

(
vtk − 1−et

3
utk
)

cf
+ tan θfv

n
k+1 (6.27)

ωk+1 = ωk −
2(1− et)

3R
utk (6.28)

yk+1 = yk +

[
ci
(
−envnk + (1 + en)vnb,k

)
+ si

(
vtk −

1− et
3

utk

)]
tf −

gt2f
2

(6.29)

tf =
cif
(
−envnk + (1 + en)vnb,k

)
+ sif

(
vtk − 1−et

3
utk
)
− vnk+1

gcf
, (6.30)

where u is the relative velocity between the disk and the wall, and vb is the velocity of the

wall at the moment of the collision. Coefficients of restitution en and et are calculated as

described in Section 4.5.

6.3.2 A-dimensionalization of the map and scaling

Two relevant parameters in this system are the maximum bottom velocity vmaxb = Aωb,

and the gravitational acceleration g, which together define a length-scale `0 = (vmaxb )2/g,

and a time-scale t0 = vmaxb /g. All dependences from A, ωb, and g in the system can be

written in terms of these two scales alone. These two scales can be clearly associated,

respectively, with the typical height and time-duration of parabolic trayectories described

by the disk as it bounces on the wedge. If now all distances are divided by `0, all times by

t0, and all velocities by `0/t0 = vmaxb , the mapping becomes dimensionless. In other words,

the two above-mentioned scales disappear entirely from the formulation. Using these new

adimensional variables, the system dynamics for the wedge is formulated in terms that are

independent of A, ωb and g. To get, for example, the actual velocities, we would only need

to multiply the results obtained from this adimensional system by Aωb. This scaling is

illustrated in Section 6.3.2 numerically.

The bottom velocity vb is a stochastic variable drawn from a distribution with prob-

abilities that depend only on scaled velocities (see Section 2.3.3). This probability is
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6 A bouncing disk on a wedge

independent of the actual velocity Aωb and the scaling works with this type of random

sampling. Also, en is a constant and et depends on a ratio of velocities, the coefficients of

restitution, being dimensionless quantities, are not affected by the scaling.

The dimensionless mapping equations are then

vnk+1 =−

√(
cif
(
−envnk + (1 + en)vnb,k

)
+ sif

(
vtk −

1− et
3

utk

))2

+ 2
cf
si
sifyk (6.31)

vtk+1 =
−si

(
−envnk + (1 + en)vnb,k

)
+ ci

(
vtk − 1−et

3
utk
)

cf

+ tan θfv
n
k+1

(6.32)

ωk+1 =ωk −
2(1− et)

3R
utk (6.33)

yk+1 =yk −
t2f
2

+

[
ci
(
−envnk + (1 + en)vnb,k

)
+ si

(
vtk −

1− et
3

utk

)]
tf

(6.34)

tf =
cif
(
−envnk + (1 + en)vnb,k

)
+ sif

(
vtk − 1−et

3
utk
)
− vnk+1

cf
(6.35)

The simplified dimensionless map for collisions upon the same wall is

vnk+1 = env
n
k − (1 + en)vnb,k (6.36)

vtk+1 =

(
vtk −

1− et
3

utk

)
+ 2 tan θi

(
env

n
k − (1 + en)vnb,k

)
(6.37)

ωk+1 = ωk −
2(1− et)

3R
utk (6.38)

yk+1 = yk − 2 tan θi
(
env

n
k − (1 + en)vnb,k

)(
tan θi

(
env

n
k − (1 + en)vnb,k

)
+

(
vtk −

1− et
3

utk

)) (6.39)

tf = 2
(1 + en)vnb,k − envnk

ci
(6.40)
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Figure 6.4: Event-driven numerical results for the rotational velocity of a disk bouncing
in a wedge. The figure shows how curves with different values of Γ and ωb
collapse for the scaled variable Rω̄/Aωb, where R is the radius of the disk.
We have used the nine possible combinations of the values Γ = 1, 10, 100 and
ωb = 1, 10, 100. Results are undistinguishable from each other, because the
ED mapping is explicitely scale-invariant. Other simulation parameters are
µ = 0.1, en = 0.9, θW = 2π/3, κ = kt/kn = 0.773.
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6 A bouncing disk on a wedge

Scaling with bottom velocity

Figure 6.4 shows how the rescaled rotational velocity ω̄/Aωb, obtained with ED simulations,

depends on the tilt θT , for a combination of different sets of amplitudes of vibration A

and vibration frequencies ωb. What we actually did was to run simulations for several

combinations of dimensionless acceleration Γ = Aω2
b/g = 1, 10, 100 and ωb = 1, 10, 100 1/s.

The gravitational acceleration was in all cases g = 9.81m/s2.

Clearly, the rotational velocity of the disk scales linearly with the maximum velocity of

the bottom Aωb, as argued in Section 6.3.2. This scaling depends on the fact that the

wedge geometry is scale free, i.e. it does not change under rescaling of the coordinates.

This would not be true for a three-disk setup, as the curvature of the supporting disks

is not scale-invariant. In this case, dynamical properties would only be expected to scale

with vb in the limit of small intensity excitation, when only the neighborhood of vertex of

lowest potential energy is explored by the bouncing disk.

6.3.3 Equivalence of molecular dynamics and event driven simulation

results.

By integrating the equations of motion of the system, Molecular Dynamics (MD) simu-

lations attempt to follow the dynamical behavior of a physical system as closely as the

available force model allows. In Event-Driven (ED) simulations, collisions are assumed

instantaneous, and their effect is described by collision rules that map velocities before a

collision to their values after the collision. Positions are assumed constant during a colli-

sion, and gravity is assumed to be negligible compared to inter-particle forces.

Our isolation of two relevant scales in Section 6.3.2 is clearly a simplification that only

holds in the limit in which event driven simulations are valid: when the contact-time tcol,

which measures the typical duration of a collision, is negligible with respect to the typical

time tflight between collisions. It is expected that, in this limit, the assumptions behind

the ED method are valid, and ED simulation results coincide with those from MD. In

Figure 6.5 we show the rotational velocity of the frictional disk on the wedge, for different

parameters for both MD and ED simulations. We can see that, when the adimensional

acceleration Γ > 1, these two methods produce results that scale with vmaxb = Aωb, and
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Figure 6.5: Scaled rotational velocity from MD and ED simulations compared. It can be
seen that both simulation schemes agree very well. Only one curve for ED is
shown (thick line, open circles) since all ED simulations are scale invariant by
construction (see Section 6.3.2 and Fig. 6.4). MD curves are plotted for Γ = 1.2
(plusses), Γ = 1.5 (crosses), Γ = 2.0 (filled squares), Γ = 3.0 (empty squares).
Simulation parameters are θW = 2π/3, kn = 4.5e6N/m, κ = kt/kn = 0.773,
R = 0.02m, en = 0.9, µ = 0.1, m = 4.5g.
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6 A bouncing disk on a wedge

are indistinguishable from each other within numerical error. While MD simulations are

very time-consuming for these rotational billiards (because the time-step for integration

has to be a small fraction of the, already small, collision time) ED has the advantage of

speeding up simulations by orders of magnitude. Therefore, in the remaining sections, we

only discuss results obtained with ED simulation.

6.3.4 Numerical results from event-driven simulations

Influence of the friction coefficient µ
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Figure 6.6: Numerical results from event-driven simulations for the scaled rotational ve-
locity of the disk for different values of the friction coefficient µ. Values shown
are µ = 0.001 (pluses), µ = 0.005 (crosses), µ = 0.01 (asterisks), µ = 0.03
(empty squares), µ = 0.05 (filled squares), µ = 0.1 (empty circles), µ = 0.15
(filled circles), µ = 0.30 (empty triangles) and µ = 1.0 (filled triangles). Other
simulation parameters are θW = 120, en = 0.9, κ = kt/kn = 0.773

The friction coefficient µ determines how the tangential coefficient of restitution et be-

haves, and, through it, directly influences the rotational dynamics of the billiard. For very

small values of µ, the disk slides during the entire contact, and the tangential coefficient

of restitution et (See the full-sliding approximation (4.75)) only depends on µ and not on

the elastic stiffness kt. For moderate values of µ, the disk alternates between stick and slip
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6.3 Event-driven simulations

several times during the collision. In this regime, et depends on both µ and other material

properties such as the normal and tangential stiffnesses, and can only be evaluated numer-

ically.

Figure 6.6 plots the scaled tangential velocity Rω̄/Aωb (R is disk radius) against tilt, for

different values of µ. As µ increases, the point where ω̄ crosses zero moves to the left,

up to µ = 0.1, then we enter the regime when sliding no longer dominates the collision

and ω̄ stays positive for all tilts. The limit of small frictional coefficient µ is somewhat

surprising, as there is an increase in rotational velocity when the tilt approaches the critical

tilt (when one of the walls becomes horizontal – 30 degrees in this case). The observable

peak in angular velocity vs tilt θt moves towards the critical tilt when µ→ 0. The height

of this peak saturates to a parameter-dependent value, but the very existence of this peak

indicates that there is a regime of large rotational velocity for small friction and when one

of the walls of the wedge lies almost flat. We do not at present have a clear understanding

of the reason for this behavior.

Effect of the wedge aperture θW

Figure 6.7 shows Rω̄/Aωb versus relative tilt angle θT/θ0, for several values of the wedge

aperture θW . As expected, there is no rotation for a flat wedge (See the case of θW = 179

degrees). Rotation seems to be strongly suppressed for wedge angles in the neighborhood

of θW = 90 degrees.

Effect of viscous dissipation

The normal restitution coefficient en < 1 quantifies the importance of viscous dissipation

in collisions. Appart from viscosity, these billiards also dissipate energy through Coulomb

friction. Therefore, viscous friction is an additional dissipation mechanism on top of fric-

tion. Figure 6.8 shows the scaled rotational velocity for different values of the restitution

coefficient en, which depends directly on the amount of viscous dissipation. As expected,

smaller values of en (larger viscosity of the disk) give rise to lower rotational velocities. We

attempted to scale these results using a simple power of the restitution coefficient en but

found that this procedure did not produce an acceptable scaling. This suggests that, when
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Figure 6.7: Numerical results from ED simulations for the scaled rotational velocity of
the disk for different values of the wedge aperture θW versus the relative tilt
θT/θ0, where θ0 is the critical tilt (such that one of the wedge walls becomes
horizontal). Shown are θW = 90 (plusses), θW = 91 (crosses), θW = 100
(asterisks), θW = 120 (empty squares), θW = 140 (triangles), θW = 160 (open
circles) and θW = 179 (closed circles). Other simulation parameters are µ = 0.1,
en = 0.9, κ = kt/kn = 0.773
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Figure 6.8: Numerical results from event-driven simulations for the scaled rotational ve-
locity of the disk for different values of the normal coefficient of restitution en.
Values shown are en = 0.5 (plusses), en = 0.7 (crosses), en = 0.9 (asterisks)
and en = 1.0 (empty squares). Other simulation parameters are θW = 120,
µ = 0.1, κ = kt/kn = 0.773.

the tilt is varied, the relative importance of viscous versus fritctional dissipation changes,

at least for the parameter set used in these simulations.

Effect of the elastic ratio κ

The elastic ratio κ = kt/kn does not appear in the ED mapping equations as a parameter,

but its influence is important nevertheless, since it determines the functional form of the

tangential restitution coefficient et(ut/un). Figure 4.5 shows how et(ut/un) behaves, for

different values of κ. For small κ, i.e. when the skin is “soft”, tangential forces during

collisions remain weak. The tangential velocity is practically unaffected during a collision

in this case, therefore et is close to one (thick solid line, κ = 0.01 in Fig. 4.5) for all incoming

velocities. As κ is increased (dashed, dotted, then dot-dashed lines in Fig. 4.5), sliding

starts to appear at large tangential velocities, and et follows the full-sliding approximation

(4.75) closely for large ut/un (thin solid line in Fig. 4.5). At smaller values of ut/un,

however, et shows increasingly rapid oscillatory behavior around zero as κ increases. This
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Figure 6.9: Scaled rotational velocity of the disk for different values of the stiffness ratio
κ = kt/kn. Shown are κ = 0.01 (full triangles), κ = 0.1 (rhombuses), κ = 1
(empty squares), κ = 10 (full squares) and κ = 100 (circles). Results obtained

by using the approximation et = max(0, 1−3µ(1+en)
∣∣∣unut ∣∣∣), which is valid in the

κ → ∞ limit, are shown using empty triangles. Other simulation parameters
are θW = 120, µ = 0.1, en = 0.9.
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depends on the fact that the rotational dynamics becomes complex, with many periods

of slipping and sticking, therefore the outgoing tangential velocity can have any sign, and

is much smaller than the incoming velocity, because of strong dissipation. In the limit

κ → ∞, the oscillatory behavior in the region of small ut/un averages to zero. In this

limit, the restitution coefficient can be well approximated by (4.75) whenever this gives a

positive result, and zero otherwise, i.e et = max(0, 1− 3µ(1 + en)
∣∣∣unut ∣∣∣).

Fig. 6.9 shows the scaled average rotation velocity of the disk in a wedge, for several values

of κ. No simple tendency is observable in those data as a function of κ, again suggesting

that the relative roles of viscous and frictional dissipation may vary strongly as a function

of tilt θT . The above mentioned approximation for the case of large κ (empty triangles),

is seen to be almost indistinguishable from results with κ = 100 (circles).
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7 Conclusions

We study a novel self-organized rotational state in gently vibrated frictional disk-packings.

Our investigations are experimental, numerical and analytic. We are able to extract mean-

ingful predictions from our models, which are subsequently verified by numerical simula-

tion.

The core result of this thesis is the experimental characterization of spontaneous rotation

in disk packings done in Section 3.1. Via repeated experimentation, we have been able to

carry a significant statistical analysis of the amount of rotation in a packing, measured

using the mean squared rotational velocity 〈ω̄2〉. We have found that the evolution of 〈ω̄2〉
with vibration intensity (measured by Γ) follows two power laws, each valid in a different

range of vibration amplitudes Γ. For low vibration amplitudes (Γ / 1), the scaling is of the

form 〈ω̄2〉 ∝ Γ4. For Γ > 1, the scaling becomes linear. The threshold Γ = 1 is significant,

since at this amplitude the bottom wall overcomes the gravitational acceleration and the

disks at the bottom of the packing start to bounce.

We also measured the velocity fluctuations in a packing using two related but indepen-

dently calculated quantities, the correlation coefficient ρ2
θ,t and the adjusted deviation σa.

When fluctuations dominate and the disks do not rotate, these quantities take the values

ρ2
θ,t = 0 and σa = 1. On the other hand, when fluctuations vanish and disks rotate with

constant velocity, they take values ρ2
θ,t = 1 and σa = 0. From a statistical analysis on ρ2

θ,t

an σ, we were able to determine that not all disks are rotating for vibration amplitudes

Γ < 1. As Γ increases from zero to one, the fraction of rotating disks in the packing

increases, reaching a maximum at Γ = 1. Beyond Γ = 1, the majority of the disks in

the packing keeps rotating, but velocity fluctuations increase with Γ. This difference in

the fraction of rotating disks is likely the origin of the scaling transition at Γ = 1. All

observations reported for experimental packings were successfully reproduced numerically,
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validating simulations as a powerful alternative to study rotation in packings in a controlled

computational environment.

We have implemented two different algorithms to simulate disk packings: Molecular Dy-

namics and Event Driven Simulations. Our molecular dynamics code, which is otherwise

standard code for simulating elastic objects, implements a physically realistic representa-

tion of frictional forces. This, we believe, is at the core of our ability to successfully describe

this phenomenon numerically. Our code assumes that each disk has an elastic skin, the

deformations of which are responsible for tangential forces. Although the elastic skin idea

has been already used in previous work, our approach further builds on it by calculating

skin deformations directly from the disks’ angular and translational coordinates, instead

as from integration of tangential displacements, as done previously. The event-driven code

assumes instantaneous collisions, but takes care to calculate how the tangential velocities

change during a collision by solving an analytic model that takes into account the elastic

skin. A key element in the implementation of the event-driven algorithm is the development

of what we called the Fixed-Bottom-Random-Phase-Approximation (FBRPA) described in

Section 2.3.3. The FBRPA allows the event-driven simulations to take place with fixed

walls, while still preserving the correct velocity distribution for collisions. We believe that

the FBRPA can find applications outside the scope of this work, for example, in the study

of bouncing ball dynamics.

In an attempt to simplify the analysis, we also studied a basic-unit setup which consists

of three disks, or, alternatively, of one disk on a wedge. The upper disk is supported by

two contacts with the two lower ones, which are in turn subject to vibration. Motivated

by the scaling transition for rotation in disk packings, we studied this simple setup in two

regimes: in a regime of low amplitude of vibration, and in a regime of high amplitude of

vibration. In both regimes, the rotational phenomenon is clearly observed whenever the

whole set is tilted, so that the symmetry between contacts around the direction of gravity

is broken.

An analytically description of this simple 3-disk setup is proposed in Chapter 4. Under

certain simplifying assumptions, and under the condition that contacts between disks never

break, the dynamics of the upper disk can be understood in terms of only two variables: its

angular departure δθ from equilibrium, and the loading state of the elastic skin, measured
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by its “stretch” Θ. The two-dimensional phase-space defined by these two variables is

depicted in Figure 4.3, where the polyhedral figure indicates the location of the limits

dictated by the Amonton condition on tangential forces. This figure delimits the non-

sliding, or elastic, part of the phase space. If the linear accelerations of the disk’s center

of mass are neglected, this figure is fixed in time, and the model is analytically solvable.

Therefore, by envisaging the main effect of external forcing as subjecting the disk’s

angular variable δθ to a very slow oscillating torque, we were able to develop an exact ex-

pression that predicts the mean rotational velocity ω̄ as a function of the torque amplitude

Te (equation (5.9)). The basic idea is that the disk accumulates angular drift whenever its

variables {δθ,Θ} are located at the points indicated as S1 and S2 in Figure 4.3. For positive

(counter-clockwise) tilt, the magnitude of the saturated friction force, given by Amonton’s

condition is smaller at S2 than at S1. Thus, less torque is required to reach point S2 than

to reach S1. According to this picture, depending on the excitation intensity, the system

may slide only at S2, a regime we call unidirectional sliding, or at both S2 and S1, a regime

called bidirectional sliding. The sliding regime is perfectly determined by the tilt θT and

the torque amplitude Ae, a phase diagram is given in Figure 5.1. Independently of the

sliding regime, time spent sliding at S2 is always larger than time spent at S1. This simple

picture, in which linear accelerations are neglected, predicts a monotonically increasing

dependence of the average rotational velocity ω̄ on the excitation amplitude Te.

There is a large degree of similarity between the case of external forcing in the 3-disk

system and the elastic-perfectly plastic oscillator (EPO) [51–54]. As in the 3-disk system,

the EPO’s displacement is constrained by frictional Amonton limits and the force is directly

applied to the oscillating element. The EPO can be considered as a simplified version of the

3-disk system under external forcing, where there is only a single sliding contact (instead

of two) and sliding limits are constant. Even after this simplification, the direction of the

drift is predicted in the same way in both systems. The drift is always towards the friction

limit that is easier to reach, i.e., the one with smaller magnitude.

Once the case of externally forced 3-disk system was understood, we directed our efforts

to the more physically relevant case of randomly vibrating the supporting disks. In disk

packings, the only external force disks experience is gravity. A disk rotation is caused by

its interaction with other disks in the packing. In this sense, exciting the upper disk by
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7 Conclusions

randomly vibrating its supports, instead of imposing an external torque, is closer to what

actually happens inside a packing.

For the 3-disk system with vibrating supports, the assumption that the linear accel-

erations of the disk are negligible is incorrect. This hypothesis can be tested through

numerical simulations and, in fact, it turns out that the system is always out of equilib-

rium and experiences very fast oscillations involving all degrees of freedom. When the

linear accelerations of the disk are not negligible, the geometrical figure (Figure 4.3) that

delimits the non-sliding part of the phase space, that remained fixed in the case of external

forcing, changes size and shape in time. Developing a model based on this randomly fluc-

tuating region proved to be too difficult. However, building on the understanding gained

from the analysis of the 3-disk system under external forcing, we were able to develop a

simplified model that captures the behavior of the system under random vibration.

Results of numerical simulations for the 3-disk system with vibrating supports, which

we present in Section 5.3.2, show that the rotational velocity of one disk decreases mono-

tonically with increasing external excitation, and changes non-monotonically with tilt. A

qualitative understanding of the mechanism behind rotation was obtained in Section 5.3.3.

A key insight gained from the discussion is that the rotational velocity of the upper disk

depends strongly on the particular characteristics of the way the system is excited, in

particular depending on how the phase space of allowed contact forces is explored by the

system. We have observed disks rotating without breaking contacts in disk packings ex-

cited with vibration amplitudes Γ < 1. These disks seem to behave similarly to the upper

disk of the 3-disk system with lasting contacts, but these observations need to be further

validated in a future work.

The analytic description based on the variables δθ and Θ is unsuitable to perform the

analysis when the restriction of non-breaking contacts is lifted. Whenever a contact is

broken, the polygon delimiting the elastic region in Figure 4.3 collapses to a single point

and all memory of the deformation of the elastic skin is lost. Furthermore, the disk can

accumulate rotation while detached from the supports. We can, however, take the limit of

high vibration amplitudes. In this limit the time disks remain in contact is negligible, and

all rotation is accumulated during flight.

In Chapter 6, we apply this limit to the case of a single disk bouncing repeatedly of
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a wedge. With the help of the expression for the coefficients of restitution, derived in

Section 4.5, we constructed a dynamical map that calculates the position and the velocities

of the disk at the beginning of a collision from the values of the position and the velocities

at the previous collision. By re-scaling the mapping, we showed that the rotational velocity

scales linearly with the amplitude of vibration, a result that is validated using MD and

ED simulations. The coincidence between MD results and ED results (within a random

phase approximation for the bottom vibration) for different kinds of wedge motion, strongly

suggests that this phenomenon is largely independent from the type of bottom excitation

used, depending only, instead, on the mean relative velocity at the collision. In other

words, the spontaneous rotation observed does not depend on a synchronization between

the bottom and the bouncing disk, but occurs even for a randomly shaken wedge. Detailed

numerical simulation using MD and ED algorithms allowed us to quantify the rotational

behavior of the bouncing disk under various circumstances, revealing very rich dynamics as

the parameters are varied. We expect that the behavior of disks in a packing, for amplitudes

of vibration Γ > 1, falls within the approximation of instantaneous collisions. In a future

work we intend to adapt the mapping equations to the case of a random polygonal billiard.

The idea is that the walls of the billiard would act as the neighbors of a disk in a packing.

We hope that by studying this map we can understand why the mean squared rotational

velocity scales linearly in disk packings when Γ > 1.

In this thesis we have reported and characterized the appearance of rotation in disk

packings. We have also shown that a simple mechanism is indeed responsible for spon-

taneous rotation. The lack of right-left asymmetry in the contacts that support a given

disk, is enough to induce rotations under certain conditions. Furthermore, we were able to

obtain analytic predictions for a set of simple cases, and validate these predictions against

numerical simulations. Alternatively, this can be seen as a double-sided validation, since

in this process it becomes clear that the rotational effect observed for large packings is not

an artifact of the simulation algorithm. We have also stated possible directions for future

work to further the understanding of this phenomenon.
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restitution for the linear dashpot model. Physical Review E, 77(1):011304, January

2008.

[46] S. Chandrasekhar. Stochastic Problems in Physics and Astronomy. Reviews of Modern

Physics, 15(1):1–89, January 1943.

[47] H. E. Lehtihet and B. N. Miller. Numerical study of a billiard in a gravitational field.

Physica D: Nonlinear Phenomena, 21(1):93–104, August 1986.

[48] P. H. Richter, H.-J. Scholz, and A. Wittek. A breathing chaos. Nonlinearity, 3(1):45,

1990.

[49] V. Milner, J. L. Hanssen, W. C. Campbell, and M. G. Raizen. Optical Billiards for

Atoms. Physical Review Letters, 86(8):1514–1517, February 2001.

[50] S. Feldt and J. S. Olafsen. Inelastic Gravitational Billiards. Physical Review Letters,

94(22):224102, June 2005.

141



Bibliography

[51] Dean Karnopp and Terry D. Scharton. Plastic Deformation in Random Vibration.

The Journal of the Acoustical Society of America, 39(6):1154–1161, June 1966.

[52] R. L. Grossmayer. Elastic-plastic oscillators under random excitation. Journal of

Sound and Vibration, 65(3):353–379, August 1979.
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