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Abstract

Graphene-based nanostructures has attracted great attention because they provide the
opportunity to explore novel structural, electronic, optical, magnetic, and catalytic phe-
nomena. In this way, the study of quantum confinement, edge magnetism and chemical
doping of graphene are three of the most fundamental aspects linked by the electronic
structure and that must be addressed in order to fill the gap between fundamental science
and technological applications. Graphene is a zero bandgap semiconductor. Thus, induc-
ing a gap in graphene is of interest for electronic applications, and quantum confinement in
graphene nanostructures can be used to achieve this goal. Another phenomenom strongly
linked to electronic structure of nanographene is the edge magnetism. The possibility
that carbon materials could exhibit a novel type of s-p electron magnetism has attracted
much attention over the years. Currently, there is intense discussion about the stability
of magnetic order at the zigzag edge of graphene nanostructures. On the other hand, re-
cent studies show that metal-decorated graphene is promising candidate for H2 storage by
combining the low density of carbon materials with the catalytic properties of transition
metal atoms. In this thesis, size effects on electronic, optical, and magnetic properties of
graphene nanoflakes with zigzag edges are studied using electronic structure calculations
based on density functional theory. We found that the inclusion of spin polarization in
the calculations for larger zigzag graphene nanoflakes is needed in order to obtain the
singlet open-shell ground state. The edge magnetism of graphene nanoflakes with zigzag
edges can be stable even at room temperature and have important influence on the size
dependence of energy gap and the low-lying optical excitations. However, magnetic edge
states do not exhibit influence on the π-plasmons energy in graphene nanoflakes. Further-
more, motivated by the hydrogen storage problem, we provide a detailed study about the
adsorption of H2 on Pd clusters supported on a defective graphene. Our results, about
hydrogen adsorption, shows that the Pd clusters supported on graphene monovacancies
are able to form dihydrogen complexes, with moderate adsorption energies, within the
ideal energy range for efficient hydrogen storage. However, due to the large atomic mass
of Pd, the gravimetric content of H2 is limited to approximately 1%. Clusters of lighter
transition metal atoms such as Ni and Ti were also studied. We found that Ti4 cluster on
graphene monovacancy is a promising candidate to increase the H2 uptake in graphene-
based systems. We hope that the findings of this thesis will have important implications
in graphene-based materials design for electronics and hydrogen storage technologies.
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Resumen

Las nanoestructuras basadas en el grafeno han atráıdo la atención de la comunidad
cient́ıfica, ya que proporcionan la oportunidad de explorar nuevas propiedades estruc-
turales, electrónicas, ópticas, magnéticas y cataĺıticas. De esta manera, el estudio de
confinamiento cuántico, magnetismo borde y el grafeno dopado qúımicamente son tres
de los aspectos más fundamentales ligados a la estructura electrónica y que deben ser
abordados con el fin de llenar la brecha entre la ciencia básica y las aplicaciones tec-
nológicas. El grafeno es un semiconductor con brecha de enerǵıa prohibida igual a cero.
Por lo tanto, para considerar al grafeno para su aplicación en dispositivos electrónicos
es necesario inducir una brecha de enerǵıa, y esto se puede lograr por medio del confi-
namiento cuańtico en nanoestructuras. Otro fenómeno fuertemente ligado a la estructura
electrónica del nanografeno es el magnetismo de borde. La posibilidad de que materiales
basados en carbono presenten magnetismo tipo s-p ha ocasionado una intensa discusión
acerca de la estabilidad del orden magnético en nanoestructuras de grafeno con bordes
tipo zigzag. Por otra parte, estudios recientes demuestran que el grafeno decorado con
metales de transición es un candidato prometedor para el almacenamiento de hidrógeno
debido a que combina la baja densidad del carbono con las propiedades cataĺıticas de
los metales. Por medio de cálculos basados en la teoŕıa del funcional de la densidad
estudiamos el efecto del tamaño sobre la propiedades electrónicas, ópticas y magnéticas
de nanohojuelas de grafeno con bordes zigzag. Encontramos que el estado base para
nanohojuelas de grafeno más grandes es singulete de capa abierta por lo que es necesario
incluir la polarización de esṕın en los cálculos de estructura electrónica. El magnetismo
de borde es robusto por lo que es estable a temperatura ambiente, y tiene una fuerte
influencia sobre la brecha de enerǵıa, pero no sobre la enerǵıa de los plasmones π en el
espectro óptico. Además, motivados por el problema del almacenamiento de hidrógeno,
estudiamos la adsorción de H2 sobre cúmulos de Pd soportados en grafeno. Los resultados
sobre adsorción de hidrógeno, muestran que los cúmulos de Pd soportados sobre vacancias
de grafeno forman complejos de dihidrogeno con energias moderadas de adsorción. Sin
embargo, el contenido gravimétrico de H2 está limitado a 1% debido a la masa atómica
del Pd. Con el objetivo de incrementar el contenido gravimétrico de H2, proponemos
utilizar cúmulos de metales de transición más ligeros tales como Ti y Ni. Esperamos que
nuestros resultados tengan importantes implicaciones en el diseño de materiales basados
en grafeno para electrónica y el almacenamiento de hidrógeno.
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Introduction

After the experimental discovery in 2004 of the graphene [1]. This material has been a
topic of intense research. Its extraordinary linear dispersion relation in the vicinity of
the Fermi level allows the study of relativistic quantum mechanics in a condensed-matter
system. The gapless spectrum is beneficial in, for instance, optical applications, as the
absorption is nearly constant in the visible spectrum. In the case of transistor applications,
however, the absence of a gap leads to poor on-off ratios due to leakgate current. Thus,
inducing an energy gap in graphene is of interest for electronics. In this way quantum
confinement in graphene nanoestructures can be used to achieve this goal [2–4]. The
magnetic edge states in nanographene is other interesting issue that has motivated many
studies [7–11]. Despite of theoretical evidence, for many years the stability of the magnetic
order on real graphene edges at experimental conditions have been strongly debated.
The random orientation of the edges and the influence of the substrate hybridization
[10,11] did not allow edge magnetism in graphene to be properly characterized. However,
recently room-temperature magnetic order on well-defined zigzag edges GNRs on Au (111)
was reported [11], raising hopes for graphene-based spintronic devices operating under
ambient conditions. In similar way to quantum confinement and edge magnetism, the
enhancement of catalytic properties of metal-doped graphene for hydrogen storage must
be related with its electronic structure. The utilization of molecular hydrogen as energy
carrier requires two basic steps to be accomplished, namely hydrogen production and
hydrogen storage. The reversible hydrogen storage in appropriate materials or adsorbed
on suitable surfaces still requires many issues to be solved before becoming economically
viable for all envisioned applications. Carbon materials such as activated carbons [12]
metal organic frameworks [13], carbon nanotubes [14], graphite nanofibers [15] and other
carbon nanostructures [16, 17] are considered promising candidates in hydrogen storage
technology because they have a number of remarkable properties such as high specific
surface areas, tunable pore structure, low density, stability for large scale production, and
fast kinetics [18] have been studied extensively for hydrogen storage. The big challenge
for carbon nanoporous materials as hydrogen storage media is to find a structure with
tunable porosity and very high specific surface area, where hydrogen adsorbs strongly
enough on the surface as to form a thermodynamically stable arrangement but not too
strongly so that reversible fast loading/unloading kinetics are possible [18]. In this way
metal-functionalized graphene offers the posibility to enhance the hydrogen adsorption at
ambient temperatures.

Graphene nanostructures (nanographene) constitute a new class of chemical com-
pounds which can be used in different fields as diverse as plasmonics, optics, catalysis,
hydrogen storage, medicine and biochemistry. The atomic structure of nanographene and
its size usually determine their properties and chemical reactivity. Theoretical models
like density functional theory, together with efficient computational modelling offer the
opportunity to explore the physical and chemical properties of these interesting systems.
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Also to understand the effects of parameters such as size, shape, and composition allow-
ing one to derive some general trends. The great progress in the synthesis of metallic
and semiconductor graphene nanoflakes (GNFs) enables to obtain samples with well-
controlled size and shape for given applications. Computational modelling based on den-
sity functional theory offers a useful and complementary approach to experiments since
dealing with GNFs does not represent a problem, except for the computational resources,
which become significant for quantum mechanical calculations concerning nanostructures
in the 1-20 nm range, which are involving hundreds to thousands of atoms. Theoretically,
the structural and electronic properties of small GNFs have been previously studied [5].
However, for large GNFs with more than two hundred atoms, the theoretical studies are
limited [6].

For these reasons, the present work was focused in the study of the electronic, optical
and magnetic properties of graphene nanoflakes with zigzag edges of diferent size (1-7
nm) and shape. Furthermore, motivated by the challenge in developing hydrogen storage
materials for practical applications, we provide a detailed description of the interaction
of H2 with atomic and small Pd, Ni, and Ti clusters adsorbed on a defective graphene
surface.

In chapter 1 are presented introductory aspects about graphene-based materials, such
as synthesis methods, atomic structure, electronic structure, edge magnetism and cat-
alytic properties for hydrogen storage. Chapter 2 presents a brief introduction of the
used computational methodologies which are relevant for the calculations in this thesis.
In particular, the fundamental concepts about first principles calculations and density
functional theory are discussed. Chapter 3 highlights the main results about electronic
structure and optical properties for each of the studied nanographene systems, and gives
some background from the literature. In Chapter 4, are summarized the main results
about magnetic properties of GNFs with different size and shape in the framework of
spin-polarized density functional theory and Mulliken population analysis. The results
about hydrogen adsorption on metal-functionalized graphene are presented in the Chap-
ter 5. Finally the conclusions, and future prospects are summarized in the last part of the
thesis. Complementary information about the. resultsof the studied systems are included
three appendices (A,B and C).
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Chapter 1

Graphene-Based Materials

1.1 Graphene and its fascinating properties

Since the experimental characterization of its electronic properties in 2004, graphene
[1–4] has generated an enormous amount of interest in the condensed matter community.
Many extraordinary properties, such as its linear electronic spectrum E ∼ k [4], ballistic
electronic transport [23], high Young’s modulus [24] and excellent thermal conductivity
[25], have all been reported. Because of its remarkable properties [2,26], new applications
using graphene in a wide range of areas, including high-speed electronics [27], optical
devices [28], energy generation and storage [28, 29], and hybrid materials [30], have all
been explored. Andre Geim and Konstantin Novoselov from the University of Manchester
won the Nobel Prize in Physics 2010 for groundbreaking experiments regarding the two-
dimensional material graphene.

Graphene can be viewed as structural model of other carbon-based materials, such as
graphite, nanotubes, fullerenes polyaromatic hydrocarbons, nanoribbons, and even acti-
vated carbon. Graphite, the three-dimensional carbon allotrope with a layered structure,
has been known for centuries, and is used for a wide scale of applications at the indus-
trial level. Low-dimensional materials based on the same hexagonal carbon network were,
discovered only recently. Fullerenes, zero-dimensional spherical carbon cages, were first re-
ported in 1985 [19]. Their discovery was followed in 1991 by that of carbon nanotubes, the
quasi-one-dimensional, all-carbon cylinders [20, 21]. Polyaromatic hydrocarbons (PAHs)
has been studied by several years due to its toxicity and the ocurrence in the interstel-
lar medium, nanoribbons were studied recently due to transport properties [29], even
activated carbons present some of graphitic features in his atomic structure.

Before 2004, many experimentalists created graphene often as an unwanted byproduct
in their experiments [42–46]. However, none of studies focussed on the extraordinary
properties of graphene. Until 2001 the electronic properties and the potential applications
of graphene had not been considered. By 2003 the ideas were fully developed and backed
up with compelling scientific evidence that was finally published in 2004 [1].

Graphenes breakthrough came with the production of free-standing graphene flakes by
exfoliation from graphite crystals by Novoselov et al. [1,2]. Thus the extraordinary trans-
port properties of graphene were measured in experiment for the first time [1]. Similar
measurements to those of Novoselov and co-workers had been performed in the same year
for graphene on SiC by Berger and co-workers [47] and nearly at the same time by Zhang
and co-workers [41]. The experimental investigation of graphene as the revolutionary
strictly two-dimensional material, as it is known nowadays in the scientific community, is
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Figure 1.1: Examples of carbon-based materials with graphene-like atomic structure.

often attributed to the extraordinary experimental work of Novoselov and Geim [1,2].
One of the most interesting aspects of graphene is that its low energy excitations are

massless, chiral, Dirac fermions. In neutral graphene, the chemical potential crosses ex-
actly the Dirac point. This particular dispersion, that is only valid at low energies, mimics
the physics of quantum electrodynamics (QED) for massless fermions except by the fact
that in graphene the Dirac fermions move with a speed vF which is 300 times smaller
than the speed of light, c. Hence, many of the unusual properties of QED can show up in
graphene but at much smaller speeds. Dirac fermions behave in very unusual ways when
compared to ordinary electrons if subjected to magnetic fields, leading to new physical
phenomena [48] such as the anomalous integer quantum Hall effect (IQHE) measured
experimentally [41, 49]. Besides being qualitatively different from the IQHE observed in
Si and GaAlAs heterostructures devices, the IQHE in graphene can be observed at room
temperature because of the large cyclotron energies for pseudo relativistic electrons [4].
In fact, the anomalous IQHE is the trademark of Dirac fermion behavior. Another partic-
ularly interesting feature of Dirac fermions is their insensitivity to external electrostatic
potentials due to the so-called Klein paradox, that is, the fact that Dirac fermions can be
transmitted with probability one through a classically forbidden region [48]. In fact, Dirac
fermions behave in a very unusual way in the presence of confining potentials leading to
the phenomenon of zitterbewegung, or jittery motion of the wavefunction [50].

Graphene is made out of carbon atoms arranged in hexagonal structure as shown in
Fig. 1.2. The structure is not a Bravais lattice but can be seen as a triangular lattice
with a basis of two atoms per unit cell. The lattice vectors can be written as:

a1 =
a

2
(3,

√
3) , a2 =

a

2
(3,−

√
3) , (1.1)

where a = 1.42 Å is the carbon-carbon distance in graphene [4]. The reciprocal lattice
vectors are given by:
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Figure 1.2: Honeycomb lattice and its corresponding Brillouin zone. Left: lattice structure
of graphene, made out of two interpenetrating triangular lattices. Right: The correspond-
ing Brillouin zone. The Dirac cones are located at K and K′. Adapted from reference [4].

b1 =
2π

3a
(1,

√
3) , b2 =

2π

3a
(1,−

√
3) . (1.2)

(c)

(b)

(a)

Figure 1.3: Electronic dispersion in the honeycomb lattice. (a) Atomic structure of
graphene. (b) Energy spectrum in units of hopping parameter t. (c) Energy bands
presenting the Dirac point at the Fermi level. Adapted from reference [51].

Of particular importance to describe the graphene physics are the two points K and
K′ in the graphene Brillouin zone (BZ). These are named Dirac points. Their positions
in momentum space are given by:

5



K =

(
2π

3a
,

2π

3
√
3a

)
, K′ =

(
2π

3a
,− 2π

3
√
3a

)
. (1.3)

The three nearest neighbors vectors in real space are given by:

δ1 =
a

2
(1,

√
3) δ2 =

a

2
(1,−

√
3) δ3 = −a(1, 0) (1.4)

while the six second-nearest neighbors are located at: δ′1 = ±a1, δ
′
2 = ±a2, δ

′
3 = ±(a2 −

a1).
The tight-binding Hamiltonian for electrons in graphene considering that electrons

can hop both to nearest and next nearest neighbor atoms has the form:

H = −t
∑

〈i,j〉,σ

(
c†σicσj + cσjc

†
σi + h.c.

)
(1.5)

where ciσ (c†iσ) annihilates (creates) an electron with spin σ (σ = ↑, ↓) on site Ri at
sublattice A (an equivalent definition is used for sublattice B), and t ≈ 2.7 eV is the
nearest neighbor hopping energy.

The energy bands derived from this Hamiltonian have the form [38]:

E±(k) = ±t
√
3 + f(k) ,

f(k) = 2 cos
(√

3kya
)
+ 4 cos

(√
3

2
kya

)
cos

(
3

2
kxa

)
,

(1.6)

where the plus sign applies to the upper (π) and the minus sign the lower (π∗) band. Fig.
1.3. shows the full band structure of graphene. In the same figure we also show the band
structure around the Fermi level and close to one of the Dirac points (at the K or K′

point in the BZ). This dispersion can be obtained by expanding the full band structure,
eq.(1.6), close to the K (or K′) vector, eq.(1.3), as: k = K+ q, with |q| � |K| [38]:

E±(q) ≈ ±vF |q|+O((q/K)2) , (1.7)

where q is the momentum measured relatively to the Dirac points and vF represents
the Fermi velocity, given by vF = 3ta/2, with a value vF ' 1 × 106 m/s. The energy
dispersion (1.7) resembles the energy of ultra-relativistic particles; these particles are
quantum mechanically described by the massless Dirac equation.

1.2 Nanographene

Nanographene have great potential for a variety of applications. Specially in optoelec-
tronics and magnetic devices which differ from those of 3D and 1D counterparts [52].
Nanographene can be made by bottom-up and top-down approaches. In the bottom-up
method, small molecular units are fused to form large aromatic hydrocarbons by a large
variety of chemical reactions [53, 54] while in the top-down approach, nanographene are
directly cut from a large piece of graphene sheet. Large graphene sheets are produced
by a variety of methods, micromechanical exfoliation of a graphite single crystal [1], by
chemical unzipping of carbon nanotubes (CNTs) [55], to mention a few.
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Top-bottom Bottom-up

Figure 1.4: Ilustration of the both nanographene synthesis approches. Left: in the top-
bottom approach nanographene is prepared from large graphene samples etching. Right:
in the bottom-up approach nanographene is built from molecular precursors on different
substrates.

Cutting graphene sheets into narrow strips yields graphene nanoribbons (GNRs). For
many decades, GNRs have been of interest because of their theoretically predicted physical
properties [56]. GNRs can be thought of as planar analogues of CNTs, with band gaps
depending upon the ribbon width [56]. Thus, producing GNRs with defined widths and
edge structures constitutes a great challenge that many chemists and materials scientists
have sought to tackle. GNRs display a finite band gap when their width is less than 10
nm. In this context GNRs can be defined as a graphene strip with a width of less than
10 nm and with a large aspect ratio (generally, the length/width should be higher than
10); Nevertheless, there are a few papers reporting the fabrication of GNRs of widths
of up to 50 nm while maintaining a large aspect ratio [58]. To avoid such confusion,
those nanostructures are classified as quasi-GNRs. Also, it is very common using the
term graphene nanoflake (GNF) as a large polyaromatic hydrocarbon (PAH) having sizes
of 1-5 nm. Graphene fragments ranging from 10 to 100 nm are regarded as graphene
quantum dots (GQDs). Once the size of the hexagonal sp2 carbon network exceeds 100
nm, when can be properly regarded as graphene [54,58].

The top-down methods for nanographene synthesis seem to suffer from drawbacks such
as uncontrollable sizes and irregular edge structures. In contrast, the bottom-up organic
synthesis is a usefull tool to create structurally well-defined graphenes. Nanographenes
and GNRs of various sizes and shapes have been obtained in bulk scale, thus offering an
opportunity for the additional solution/vacuum processing and device fabrication [53,58].

The bottom-up synthesis of graphenes was initiated through the versatile organic
chemistry of PAHs. According to the definition given in the introduction, graphene
molecules with a size between 1 and 5 nm can be considered as the smallest nanographene.
By far, the largest synthesized monodisperse nanographene molecule consists of 222 car-
bon atoms with a disk diameter of 3.2 nm, while one of the smallest and most fre-
quently investigated graphene molecules, hexa-peri-hexabenzocoronene (HBC), has a size
of approximately 1.4 nm [59]. More recently the synthesis of perfect hexagonal graphene
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Graphene nanoflakes

Figure 1.5: Schematic illustration of graphene terminology defined according to their size
scale. Graphene molecules or nanoflakes are a subset of graphene with size between 1-
5 nm; GNRs are defined as graphene strips with a width < 10 nm while maintaining a
length/width ratio of> 10. GQDs are relatively regularly shaped graphene units with sizes
ranging from 10 to 100 nm. Nanographene units are graphene fragments with diameters
of < 100 nm, while graphene should exceed 100 nm in both directions. Adapted from
reference [58].
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nanoflake with well defined zigzag edges with 3.0 nm has been reported [60].

1.3 Edge states in graphene nanostructures

The surface structure of bulk crystalline semiconductors has profound consequences on
the development and manufacturing of electronic devices. Bardeen explained that the
presence of surface states results in binding of free carriers and induces the formation of
Schottky barriers at semiconductor-metal interfaces [61]. A deeper understanding of sur-
face states has enabled scientists and engineers to optimize the performance of integrated
circuits for 50 years. Analogous to the surface states that exist in bulk crystals, the edge
structure of nano-sized graphene can significantly influence their electronic structure.

Fig. 1.6(a) and 1.6(b) show respectively the STM and STS results for a uniform
armchair edge. The STS spectrum indicates that the electronic structure in the vicinity
of the Fermi level is the same as that of infinite graphene sheet with a feature of the
massless Dirac fermion [10]. In contrast, zigzag edges have features that are different
from armchair edges. Zigzag edges tend to be defective and short. They are observed
frequently to be embedded between armchair edges, as shown in Fig 1.6(c). That behavior
is a consequence of the energetically unstable structure of less-aromatic zigzag edges [10].
What is important in zigzag edges is the presence of edge states [10]. The STS spectrum
(Fig. 1.6(d)) at the zigzag edge shows a sharp peak in the density of states at Fermi level,
in addition to the linear π-bands, proving the presence of the edge state. The bright spots
observed in the zigzag edge region (see Fig. 1.6(c)) are associated to the edge state.

The first reports of transport measurements [56, 62–64] and theoretical studies [7–9]
for GNFs and GNRs elucidated their remarkable promise for future nanoelectronic ap-
plications. In spite of the first theoretical calculations that predicted a localized metallic
state for the zigzag edge [65], all transport measurements of GNFs and GNRs revealated
only semiconducting behaviour. Furthermore, the electronic properties of the graphene
nanostructures were independent of crystallographic orientation [56] in contrast to theo-
retical predictions [56,62–65]. Afterwards, theoretical studies show that transport effects
such as Coulomb blockade [66] or a mobility gap induced by edge disorder [67, 68], may
affect the accuracy of energy measured gaps under transport conditions and explain the
independence of energy gap and crystallographic orientation.

Ritter and Lyding [69] determined by STS measurements the energy gap (Eg)-size (L)
relation for GNFs with 2-20 nm lateral dimensions and correlate the Eg measurements
with the GNFs edge structure. Predominantly zigzag-edge GNFs with 7-8 nm average
dimensions are metallic and diverge from the Eg-L scaling law owing to the presence of
metallic zigzag edge states, which spatially decay into the interior with a 1.0-1.2 nm decay
length. For the GNFs exhibiting an energy gap, the experimental data were modelled
with a power law, which resulted in Eg (eV) = 1.57/L for the least-squares fit. The
experimental data are in close proximity to the predicted scaling trend Eg (eV) = 1.68/L
[2, 47] resulting from a simple quantum confinement model and the linear dispersion
of a graphene monolayer. In addition to GNFs, they studied the electronic structure
of GNRs with 23 nm widths and 20-30 nm lengths. GNRs with a higher fraction of
zigzag edges exhibited a smaller energy gap than a predominantly armchair-edge ribbon
of similar width and the magnitudes of the measured GNR energy gaps agree with previous
theoretical calculations [9].

More recently, Hämäläinen and co-workers studied by scanning tunneling microscopy
(STM) and spectroscopy (STS) the quantum confined electronic states in atomically well-
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(a) (c)

Figure 1.6: (a) Atomically resolved UHV-STM images (5.6 × 5.6 nm2) of a homogeneous
armchair edge in constant-height mode with bias voltage Vs = 0.02 V and current I =
0.7 nA. For clarity of edge structures, a model of the honeycomb lattice drawn on the
image. (b) A dI/dVs curve from STS measurements taken at the edge in (a). (c) An
atomically resolved UHV-STM image of zigzag and armchair edges (9 × 9 nm2 ) observed
in constant-height mode with bias voltage Vs = 0.02 V and current I = 0.7 nA. (d) The
dI/dVs curve from STS data at a zigzag edge. Adapted from reference [10].
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defined zigzag graphene nanostructures on the Ir(111) surface [60]. In such study the
precise atomic structure and local density of states of individual GNFs as a function
of their size is presented, however any evidence of the magnetic edge states and their
influence on the energy gap is mentioned.

The strong influence of edge orientation on the electronic structure of graphene nanorib-
bons and nanoflakes was predicted long before graphene was isolated [65]. In absence of
electron-electron interactions, these edge states localized near the Fermi level render GNRs
metallic [9]. However, such one-dimensional metallic edge states with a high local density
of states at the Fermi level become unstable upon electronelectron interactions. To lower
the energy of the system, the flat band is splitted (open a gap) by ordering the spins along
the two edges with antiferromagnetic coupling between opposite edges. Consequently, the
emergence of magnetic order is closely linked to altering the electronic structure, through
opening a energy gap. Recently, that gap opening has been observed in well-defined
GNRs on Au [11]. Ribbons with the zigzag edge structure that are narrower than 7 nm
exhibit an electronic energy gap of about 0.2-0.3 eV, which can be identified as a signa-
ture of interaction-induced spin ordering along their edges. Moreover, upon increasing the
ribbon width, a semiconductor-to-metal transition is revealed, indicating the switching
of the magnetic coupling between opposite ribbon edges from the antiferromagnetic to
the ferromagnetic configuration. That study shows that the magnetic order on graphene
edges of controlled zigzag orientation can be stable even at room temperature [11], raising
hopes of graphene-based spintronic devices operating under ambient conditions.

The nature of long-range coupling between magnetic moments at the edges is dictated
by whether the sites at the neighboring edges belong to the same or different sublattice
of graphene. For example, atoms in a particular edge of regular hexagonal nanographene
belong to the same sublattice, while atoms in the alternate edges belong to different
sublattices. Thus, the intra-edge coupling is ferromagnetic, and inter-edge coupling is an-
tiferromagnetic, which gives rise to a fully compensated ferrimagnetic solution with zero
magnetic moment [72]. This behavior is in agreement with the Lieb’s theorem [73–75].
Thus, it is worth exploring the possible ways to manipulate this intrinsic antiferromagnetic
order toward an uncompensated magnetic order with net magnetic moment, which could
be utilized in spintronics applications. Furthermore, some experimental studies shows
that magnetism in zigzag nanographene is controversial with different reports of ferro-
magnetism [71], antiferromagnetism [11], and diamagnetism [10], and their coexistence.
Therefore, the experimental situation concerning magnetism in graphene nanostructures
remains debated, and is far from being fully understood.

The great progress in the synthesis of metallic and semiconductor GNFs with con-
trolled size and shape briefly outlined above does not yet permit one to obtain isolated
and clean samples, clearly limiting our capability to understand all the occurring critical
phenomena, a necessary step towards engineering GNFs for a given application. Com-
putational modelling based on density functional theory offers a useful and complemen-
tary approach to experiments. First-principles calculation on GNFs does not represent a
problem, except for the computational resources, which become significant for quantum
mechanical calculations concerning nanostructured in the 1-20 nm range, easily involving
hundreds to thousands of atoms. In fact, the structural and electronic properties of small
GNFs up to hundreds of atoms have been studied theoretically [5, 77] In particular the
HOMO-LUMO energy gaps have been calculated [5]. However, for GNFs larger than 2
nm, theoretical studies are limited and most of these studies are based on tight-binding
model [78]. This limitation is mainly due to the lack of computational tools that can be
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used to perform large-scale first-principles calculations that involve thousand of atoms.
Nevertheless, significant progress has been made in the field regarding the electronic and
structural properties of GNFs. Recently, by means of density functional calculations, Hu
and co-workers have studied electronic properties of armchair and zigzag GNFs with up to
2000 atoms [6], for armchair GNFs they report the well known 1/L scaling rule for energy
gap. In contrast their calculations predicts that around 6-7 nm, zigzag GNFs exhibit
metallic behavior, deviating from the 1/L scaling for the energy gap. However; in such
study, the calculations were performed in absence of spin-polarization, and previously we
have mentioned that the inclusion of spin polarization is necesary for a correct description
of the magnetic order for the ground state of large zigzag GNFs.

1.4 Hydrogen storage in carbon-based materials

Design of hydrogen storage materials is one of the main challenges that must be ad-
dressed for a sustainable hydrogen-based economy [12, 13]. For that reason, the United
States Department of Energy established three main targets for efficient hydrogen storage
as (i) a gravimetric density of at least 7.5%, (ii) a minimum volumetric density of 0.07
kg H2/L, and (iii) a reversible operation at ambient temperature and moderated pres-
sures [79]. Presenting a light weight and a large surface area, carbon-based materials are
considered good candidates to achieve a substantial hydrogen content. However, hydro-
gen storage in pure carbon materials is restricted by a very low adsorption energy of less
than 0.1 eV per H2, limiting the hydrogen content at operational temperatures [14,81,82].
Thermodynamic estimations indicate that the adsorption energies that would lead to an
efficient cyclic adsorption/desorption process at room temperature and moderate pres-
sures are in the range of 0.2-0.6 eV per hydrogen molecule [15, 16, 18, 83, 84], which is a
narrow energy window that is intermediate between typical physisorption (less than 0.2
eV) and chemisorption (more than 0.6 eV). In contrast to carbon-based systems, materials
like metal hydrides and polyaromatic hydrocarbons can store large amounts of hydrogen;
however, the large hydrogen adsorption energies in these compounds avoid its reversible
desorption [83].

In search of a solution to the hydrogen uptake problem, metal-decorated graphene
species have been explored as possible candidates for hydrogen storage materials. Indeed,
recent studies on metal-functionalized graphene show good performance for hydrogen
storage by combining the low density of carbon materials with the catalytic properties of
metal nanoparticles [15]. Previous experimental studies show that hydrogen storage on
activated carbon and graphene samples can be dramatically enhanced by functionalization
with palladium nanoparticles [15, 84]. Further, doping the porous graphitic materials
with metallic atoms is viewed as a promising strategy to enhance hydrogen uptake [15,
85] because these metals have the effect of increasing the binding energies of molecular
hydrogen to the pore walls. In addition, the adsorbed metallic atoms also can bind several
hydrogen molecules [15], increasing the hydrogen capacity of the material. The binding of
molecular hydrogen to transition metals has been explained using the Kubas model as a
donation of electronic charge to the unfilled d orbital of noble metals such as Pd, followed
by back-donation from the transition metal to the antibonding orbital of H2 [86, 87].

However, there are some difficulties with the metal doping of graphitic materials.
The first one is that aggregation of the adsorbed dopant atoms may occur, given that
metal-metal bonding is usually stronger than the metal-carbon bonding [17,88]. Theoret-
ical studies based on density functional theory reported that transition metal adatoms on
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pristine graphene had binding energies from 0.2 to 1.5 eV [89], and their calculated migra-
tion barriers proved to be low, in the range of 0.2-0.8 eV, indicating that these adatoms
should be mobile even at room temperature when deposited on pristine graphene [89].
That result explain the tendency of adsorbed transition metal atoms to form clusters on
the graphene surface, leading to considerable reduction in its potential storage capacity.
Note that the effect of the dopant metal in enhancing the amount of adsorbed hydrogen
would be largest for maximum dispersion of the metal dopant, that is, when single metal
atoms or very small clusters are present [17].

Contescu and co-workers [15] reported that only 18% of the adsorbed palladium on
pristine graphene was in the form of single atoms forming Kubas complexes, Pd(H2)n,
and 82% of total Pd forming PdH0.67 species. The second problem in these systems is
that desorption of metal-hydrogen complexes often also competes with the H2 desorption.
Both problems could however be reduced by increasing the binding energy of the metal
atoms or small metal clusters to the supporting carbon substrate. This problem can
be achieved by anchoring the metal atoms and small clusters to defects in the carbon
networks of the graphitic pore walls [90]. First-principles calculations have found that
defects in graphene (such as mono- and divacancies) increase the adsorption energy of
metal atoms and small metal clusters significantly, to the point of exceeding the cohesive
energy of the metal [91]. Krasheninnikov and co-workers reported that the typical binding
energy values for transition metal atoms anchored to graphene monovacancies are around
7 eV [91]. This large binding energy value shows that transition metal atoms are strongly
anchored to graphene defects, preventing their migration.

In recent theoretical works, Lopez and co-workers. [92, 93] reported that the binding
energy of molecular hydrogen on a single Pd atom anchored on a graphene monovacancy
was only 0.21 eV. This moderate hydrogen adsorption energy contrasts with the substan-
tial adsorption energies of 0.96 eV/H2 on Pd-doped pristine graphene and of 1.12 eV for
the binding of H2 on a free Pd atom. This result also shows the strong influence of the
graphene defects on the H2 adsorption. When the Pd atom employs a substantial part of
its bonding capacity by interacting with the graphene monovacancy, as is the case of a Pd
atom supported on the vacancy, the bonding with the H2 molecule is weaker compared
to Pd on pristine graphene [93]. However, it should be considered that in order to get a
deeper understanding of the interaction between hydrogen and metal-decorated graphene
it is necessary to include the effect of the cluster stability and its interaction with more
than one hydrogen molecule.
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Chapter 2

Computational Methods

First principles methods for electronic structure calculations are a powerful tool for the
study of different properties of crystals, nanostructures, and molecular systems. The
use of these approaches are widely extended between the scientific community, for that
reason in this chapter we will give only a brief discussion about the fundamental concepts,
physical approximations, numerical techniques and limitations. Which will be useful to
understand the results of the following chapters.

2.1 The Born-Oppenheimer approximation

If we consider atomic nuclei and electrons like punctual masses and neglect relativistic
effects, then the time-independent Hamiltonian for a molecular system is given by:

Ĥ =
−h̄2

2

∑
α

1

mα

∇2
α − h̄2

2me

∑
i

∇2
i +

∑
α

∑
β>α

ZαZβe
2

rαrβ
+
∑
α

∑
i

Zαe
2

riα
+
∑
i

∑
i>j

e2

rij
, (2.1)

where α and β are the atomic nuclei, i and j indicate electrons, me is the electron mass, e
represents the electron charge, Zα and Zβ the nuclear charge. The first and second terms
in equation 2.1 denote the kinetic energies of atomic nuclei and electrons, respectively,
meanwhile the last three terms represent the nuclei-nuclei, electron-nuclei, and electron-
electron Coulomb interactions, respectively.

Even with the modern computational tools, the complete solution of the Schrödinger
eq. (2.1) is a very hard task, for that reason with the aim to simplify the problem, often
the Born-Oppenheimer approximation is used [100], which is based in the fact that the
electrons move much faster than the nuclei, which it is estimated to be around of three
orders of magnitud. In this way we can consider that the nuclei are nearly fixed with
respect to electron motion. As a consequence, the hamiltonian (2.1) can be separated
into a constant interaction and an electronic hamiltonian as is showed in eq. (2.2)

(Ĥelec − V̂NN)ψ = Eψ (2.2)

where
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V̂NN =
∑
α

∑
β>α

ZαZβe
2

rαβ
. (2.3)

The variables in the eq. (2.2) are reduced only to electronic coordinates, because
the internuclear distances rαβ are constant, in other words the wave functions depends
parametrically on the the nuclear configuration:

ψ = ψele(qi, qα) = ψele(qi)ψnuc(qα) (2.4)

where qi and qα are the electronic and nuclear coordinates, respectively.
Thus V̂NN is constant for a given nuclear configuration, neglecting of this term in the
hamiltonian does not affect the solution. Then, if we neglect V̂NN in the eq. (2.4) we
obtain:

Ĥelecψele = Eψele. (2.5)

Although the Born-Oppenheimer approximation is valid for a large number of systems
in quantum chemistry and solid state physics. In the practice, we must employ additional
approximations for electronic structure calculations.

2.2 Fundamentals on Density Functional Theory

In many-body quantum theory, the wavefunction is the fundamental variable that con-
tains all information on the state of the system, and from which the expectation values
of observables are calculated. For most interacting many-electron systems, the exact an-
alytical solution for the wavefunction from the Schrödinger equation is not available and
numerically exact solutions can be computed only for very small systems.

The main idea of density-functional theory (DFT) is that the ground-state wavefunc-
tion, which depends on the 3N spatial coordinates, can be replaced by a much simpler
object: the N -electron density n(r) that is a function of only three spatial coordinates.
This mapping was proven in 1964 by Hohenberg and Kohn [101]. The first Hohenberg-
Kohn theorem established that for electrons moving in an external potential, such as the
potential caused by the nuclei, the ground-state density is uniquely determined. This is a
one-to-one correspondence, meaning that conversely, the potential is uniquely determined
by the density. The second theorem relates the ground-state density to the ground-state
energy by stating that there is a universal energy functional E[n]. Minimizing E[n] with
respect to n gives the exact ground-state density. As the ground-state density is directly
obtained from the ground-state wavefunction, the ground-state density can be used to
describe the system instead of the wavefunction. The Hohenberg-Kohn theorems provide
the theoretical justification for using the electron density instead of the wavefunction to
describe the many-electron system. They do not, however, provide any concrete means
to actually calculate this density. DFT became practical when Kohn and Sham [102]
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formulated a mapping between the fully interacting many-body system and an effective
one-body problem in a modified external potential. This Kohn-Sham potential υKS(~r), is
obtained through the constrained minimization of the energy functional E[n] with respect
to a variation in the one-electron orbitals ψi. The potential can be divided into terms re-
sulting from the original external potential υext(~r), the Hartree potential υH(~r) describing
the electrostatic interaction between electrons, and a third term, υxc(~r), containing all the
electron-electron interaction terms not included in the Hartree potential such as electron
correlations. All in all, this gives the form:

υKS(~r) = υext(~r) + υH(~r) + υxc(~r), (2.6)

for the Kohn-Sham potential. The ground-state density is then obtained by solving
the one-electron Schrödinger equation

ĤKSψi(~r) = [−1

2
∇2 + υKS(~r, ρ)]ψi(~r)

= εiψi(~r) (2.7)

for the Kohn-Sham eigenstates and eigenenergies ψi and εi, respectively, and by con-
structing the ground-state density from the obtained orbitals,

n(~r) =
Occ∑
i=1

|ψi(~r)|2. (2.8)

Because υKS(~r) is a functional of n(~r), the problem has to be solved self-consistently.
At first, an initial guess for the electron density is assumed, which is required for the
calculation of υKS(~r), the diagonalization of the Kohn-Sham equations, and the subsequent
evaluation of n(~r), along with Etot. As long as the convergence criterion is not fulfilled, the
numerical procedure is continued with the last n(~r) instead of the initial guess. When the
criterion is satisfied, various output quantities like eigenvalues, occupancies, total energy
and forces are computed, this prodedure is known as self-consistent field [102].

2.2.1 The exchange-correlation functional

Density functional theory would be exact if the exact form for the exchange-correlation
potential υxc(~r) was known. Unfortunately, this is not the case and for all practical
applications, this term has to be approximated. Frequently, the exchange-correlation
term is composed into its exchange and correlation energy parts that are approximated
separately, Exc = Ex+Ec. The exchange-correlation potential is the functional derivative
of Exc with respect to the density n, given by δExc/δn = υxc.

In the simplest approximation to Exc, called the Local Density Approximation (LDA),
Exc is assumed to depend only locally on the electron density, and this dependence is
assumed to be that of an homogeneous electron gas [48]. This approach can easily be
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extended to treat the spin-dependent densities in magnetic systems. Allowing Exc to
depend also on the local gradients of the electron density leads to gradient-corrected
functionals (GGA), such as PBE96 [110] widely used in this thesis. A number of improved
functionals have been developed, for instance hybrid functionals mixing a portion of the
exact Hartree-Fock exchange to a LDA- or GGA-type functional, and meta-GGA also
depending on the kinetic energy density. An extensive review on the functionals that are
available is not within the scope of this thesis, and the interested reader is referred to the
literature, such as Ref. [103].

2.2.2 The band gap problem

DFT is a ground-state theory. Accordingly, the Hohenberg-Kohn theorems only state that
the exact ground-state energy can be obtained by minimizing the energy functional. No
physical meaning can be, however, given to the individual Kohn-Sham (KS) eigenvalues.
The only exception is the energy of the highest occupied Kohn-Sham state, the energy of
which is related to the first ionization potential of the system [103]. Even if the relative
values of the occupied KS eigenvalues are in rather good agreement with the experiment
for semiconductor and insulators, the band gaps are underestimated by about 50% up to
100% [103,104]. The fundamental band gap for an N -electron system is defined by:

Eg = E(N+1) + E(N−1) − 2E(N), (2.9)

i.e the difference between the electron affinity and the ionization potential. For the ficti-
tious Kohn-Sham system we have:

EKS

g = ε(N)
N+1 − ε(N)

N . (2.10)

The difference between the fundamental and the Kohn-Sham gap is given by:

Eg − EKS

g = ∆xc (2.11)

We may see that the quantity ∆xc is the difference between the energies of the (N+1)-
th orbitals of the KS systems that correspond to the neutral and ionized electron system.
The addition of an extra electron only induces an infinitesimal density change, so a dis-
continuity of order one have to be assigned to a discontinuity in the xc-potential, which
is not necessarily analytic in N , in contrast to the Hartree potential:

∆xc = υ(N+1)
xc (~r)− υ(N)

xc (~r) (2.12)

There is evidence [104] that the xc discontinuity ∆xc, is the main cause of the large
discrepancy between the experimental values and the one found in DFT for typical semi-
conductors and insulators. Thus, we can say that the band gap problem is not an intrinsic
feature nor of the LDA or GGA functionals but of the Kohn-Sham scheme. In section (3.3)
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we will see how energies of adding/removing electron to/from the system can be used to
calculate the fundamental energy gap of GNFs within the quasiparticle formalism [118].

The energy difference between the highest occupied and lowest unoccupied Kohn-Sham
state is commonly used to approximate the band gap, and it is widely known that this
approach underestimates the actual gap due to the absence of the derivative discontinuity
in the exchange-correlation potential. The Hartree-Fock approach, on the other hand,
overestimates this discontinuity, and thus hybrid functionals that mix a portion of Hartree
exchange yield larger band gaps than LDA or GGA, partly correcting the underestimation.
On the other hand, the GW approximation [105], based on a perturbative expansion
in the DFT-based Greens function G and a screened long-range Coulomb interaction
(W), was developed to access the unoccupied side of the spectrum but it has been found
to improve the predictions on the band gap magnitude. In order to access to excited-
state properties such as optical spectra, also Time Dependent density Functional Theory
(TDDFT) [106,107] and the solution to the Bethe-Salpeter equations [115], which includes
excitonic contributions arising from the interaction between an excited electron and hole,
are available.

2.3 Capabilities of the SIESTA

The SIESTA (Spanish Initiative for Electronic Simulations with Thousands of Atoms)
code is a fully selfconsistent DFT method, based on a flexible linear combination of atomic
orbitals (LCAO) basis set, with linear scaling [108]. It allows extremely fast simulations
using minimal basis sets and very accurate calculations with complete multiple-zeta and
polarized bases, depending on the required accuracy and available computational power.
Apart from that of Born and Oppenheimer, the most basic approximations concerning
the use of pseudopotentials, exchange and correlation are treated within Kohn-Sham
DFT [102]. SIESTA code allow for both the local (spin) density approximation [109]
(LDA/LSD) and the generalized gradient approximation (GGA) [110]. The code use
standard norm-conserving pseudopotentials [109, 112] in their fully nonlocal form [112].
Also is posible to include scalar-relativistic effects and the nonlinear partial-core correction
to treat exchange and correlation in the core region when is required [111].

2.3.1 Pseudopotentials

Although the use of pseudopotentials is not strictly necessary with atomic basis sets, it
is very convenient to get rid of the core electrons and, more importantly, to allow for the
expansion of a smooth (pseudo-) charge density on a uniform spatial grid. The theory and
usage of first-principles norm-conserving pseudopotentials [112] is already well established.
SIESTA reads them in semilocal form using the Troullier-Martins parametrization [112],
transforming this semilocal form into the fully nonlocal form proposed by Kleinman and
Bylander (KB) [19]. In some cases, particularly for alkaline metals, alkaline earths and
some transition metals of the first few columns, we have sometimes found it necessary
to include the semicore states together with the valence states [111]. In these cases, we
also include two independent KB projectors, one for the semicore and one for the valence
states. However, the pseudopotentials are still norm conserving rather than ultrasoft [113].
This is because, in the case of SIESTA, it is only the electron density that needs to be
accurately represented in a real-space grid, rather than each wavefunction.
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2.3.2 Basis set

Order-N methods rely heavily on the sparsity of the Hamiltonian and overlap matrices.
This sparsity requires either the neglect of matrix elements that are small enough or
the use of strictly confined basis orbitals, i.e. orbitals that are zero beyond a certain
radius [114]. In SIESTA the latter approach is adopted because it keeps the energy
strictly variational, which facilitate the test of the convergence with respect to the radius
of confinement. Within this radius, our atomic basis orbitals are products of a numerical
radial function and a spherical harmonic. For atom I , located at RI , the basis orbitals
are:

φIlnm = φIln(rI)Ylm(rI), (2.13)

where rI = r−RI . The angular momentum (labelled by l and m) may be arbitrarily large
and, in general, there will be several orbitals (labelled by index n) with the same angular
dependence, but different radial dependence, which is conventionally called a multiple-ζ
basis [114]. The radial functions are defined by a cubic spline interpolation from the
values given on a fine radial mesh. Each radial function may have a different cutoff radius
and, up to that radius, its shape is completely free and can be introduced by the user
in an input file. In practice, it is also convenient to have an automatic procedure to
generate sufficiently good basis sets. SIESTA includes several such automatic procedures,
and we shall describe one of them here for completeness, even though we stress that the
generation of the basis set, like that of the pseudopotential, is to a large extent up to the
user and independent of the SIESTA method itself [114].

In addition to the atomic valence orbitals, it is generally necessary to include po-
larization orbitals, to account for the deformation induced by bond formation, in this
case polarization orbitals are frequently used. Considerer a valence pseudoatomic orbital
φlm = φl(rI)Ylm(rI) such that there are no valence orbitals with angular momentum l+1.
To polarize this, we apply a small electric field E in the z-direction. Using first-order per-
turbation theory we can show that the selection rules imply that the resulting perturbed
orbital will only have components with l = l ± 1,m = m [114]. Thus after to integrate
over the angular variables, we obtain the radial equation:[

−1

2
r
d2

dr2
+

(l + 1)(l + 1)

2r2
+ V (ri)− El

]
ϕl+1(r) = −rφl(r), (2.14)

The polarization orbitals are then added to the basis set: φl+1,m = Nϕl+1(rI)Yl+1,m(rI)
where N is a normalization constant [114].

We have found that the previously described procedures generate reasonable minimal
SZ basis sets, appropriate for semiquantitative simulations, and double-ζ plus polarization
(DZP) basis sets that yield high-quality results for most of the systems studied. We thus
refer to DZP as the standard basis, because it usually represents a good balance between
well converged results and a reasonable computational cost. In some cases (typically alkali
and some transition metals), semicore states also need to be included for good-quality
results [111].
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2.3.3 Other features

Here we shall simply mention some of the possibilities and features of the SIESTA imple-
mentation of DFT [108].

(i) The systematic calculation of atomic forces and stress tensor allows the simultaneous
relaxation of atomic coordinates and cell shape and size, using a conjugate gradients
minimization or several other minimization/annealing algorithms.

(ii) It is possible to perform a variety of molecular dynamics simulations, at constant
energy or temperature, and at constant volume or pressure, also including Parrinello-
Rahman dynamics with variable cell shape. The geometry relaxation may be re-
stricted, to impose certain positions or coordinates, or more complex constraints.

(iii) Mulliken charges and overlap populations for each spin channel, which is useful for
magnetic systems.

(iv) The auxiliary program VIBRA processes systematically the atomic forces for sets
of displaced atomic positions, and from them computes the Hessian matrix and the
phonon spectrum. An interface to the PHONON program is also provided within
SIESTA.

(v) A linear response program (LINRES) to calculate phonon frequencies has also been
developed. The code reads the SCF solution obtained by SIESTA, and calculates the
linear response to the atomic displacements, using first-order perturbation theory.
It then calculates the dynamical matrix, from which the phonon frequencies are
obtained.

(vi) A number of auxiliary programs allows various representations of the total density,
the total and local density of states and the electrostatic or total potentials. The rep-
resentations include both two-dimensional cuts and three-dimensional views, which
may be coloured to simultaneously represent the density and potential.

(vii) Thanks to an interface with the TRANSIESTA program, it is posible to calculate
transport properties across a nanocontact, finding selfconsistently the effective po-
tential across a finite voltage drop, at a DFT level, using the Keldysh Green function
formalism.

(viii) Optical response can be studied with SIESTA using different approaches. An ap-
proximate dielectric function can be calculated from the dipolar transition matrix
elements between occupied and unoccupied single-electron eigenstates using First
Order Time Dependent Pertubation Theory. For finite systems, these are easily cal-
culated from the matrix elements of the position operator between the basis orbitals.
For infinite periodic systems, we use the matrix elements of the momentum oper-
ator. It is important to notice, however, that the use of nonlocal pseudopotentials
requires some correction terms.

In conclusion, the SIESTA method provides a very general and flexible scheme to
perform a range of calculations from very fast to very accurate, depending on the needs
and stage of the simulation, of all kinds of molecules, crystals and surfaces. It allows DFT
simulations of more than a thousand atoms as in this work.
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Chapter 3

Results: Electronic Structure and
Quantum Confinement

Quantum confinement of massless Dirac fermions in graphene nanostructures has received
special attention due to the importance of the gap opening in graphene for diverse applica-
tions [56]. In contrast to conventional semiconductors nanoestructures where the energy
of electronic levels scales as 1/L2, the quantum confinement of massless Dirac fermions
in graphene nanoestructures causes that the energy scales as 1/L [1, 2]. Ritter and Lyd-
ing [69] reported scanning tunneling spectroscopy (STS) of the (Eg)-size (L) relation for
GNFs. The measured values of energy gap lies in the range 0.8 up to 0.2 eV with a error
associated with the energy gap determination of ± 0.1 eV. The measurements of Eg were
modelled with a power law, which resulted in Eg ≈ 1.57 (eV/nm)/L. The experimental
data are in close proximity to the predicted scaling trend Eg (eV) = 1.68(eV/nm)/L [2,47]
resulting from quantum confinement of noninteracting massless Dirac fermions [1–4]. The
agreement between simple theory of confined Dirac fermions and experiment is surprising,
which suggests that this simple model holds valid in a large range of sizes.

From the theoretical side, the energy gap size dependence of large GNFs with armchair
and zigzag edges was studied first by Zhang [78] in the framework of Hückel model and
more recently by Hu and co-workers using spin-restricted Kohn-Sham calculations, for
armchair GNFs they reported the well known 1/L scaling rule for energy gap. On the
other side their calculations predicts that around 6 nm, the systems begin to exhibit
metallic behavior, deviating from the 1/L scaling, which seems in agreement with the
experiment [69]. However, a very important issue that is worth mentioning, is the direct
comparison between calculated and experimental energy gaps is very dificult by many
reasons that which was not addresed in the theoretical studies mentioned above; namely,
the energy gap opening due to edge magnetism in zigzag GNFs [11], the understimation
of energy gap by DFT Kohn-Sham method [104, 118], the gap renormalization due to
substrate polarization effects [122]. Furthermore, the samples reported in the work of
Ritter and Lyding show irregular shapes with a mixture of zigzag and armchair edges
even with the possible prescence of unpassivated edges. With these ideas in mind, it
would be interesting to address questions about the origin of metallic behavior predicted
by Hückel model and restricted Kohn-Sham calculations for hexagonal GNFs with zigzag
edges larger than 6 nm [6,78].
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3.1 Computational details

We performed ab initio calculations based on the DFT [101], carried with and without spin
polarization. For the exchange-correlation functional we used the Generalized Gradient
Approximation (GGA) in the Perdew-Burke-Ernzerhof parametrization (PBE96) [110].
We also used norm conserving pseudopotentials as implemented in SIESTA code [112]
and employed a double zeta basis function with polarized orbitals [108] and a mesh cutt-of
energy of 300 Ry for the grid integration in real space. The convergence criterion for energy
is chosen as 10−4 eV between two steps, and structural parameter were fully optimized
within a force converence criterion of 0.01 eV/Å. The total energy was determinated
optimizing the structural parameters by conjugated gradient. The vacuum separation
between the structures in the adjacent unit cell is taken at least 15 Å in order to avoid
the interactions between the structure with their images in the neighboring cells.

3.2 Size effects on HOMO-LUMO gap

Fig. 3.1 shows the evolution of single particle energy levels as function of GNF size. Small
GNFs exhibit more discrete and spacing energy levels, showing the localized character of
molecular system, we can see the band filling with the increasing size as well as the
reduction of energy level spacing and the HOMO-LUMO gap narrowing. In Fig. 3.1 n is
directly proportional to GNF size and represent the number of carbon atoms localized on
each zigzag edge and ranges from 2 up to 16.
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Figure 3.1: Evolution of Kohn-Sham energy levels with the increasing of GNF size
(C6nnH6n, n = 2, ..., 16).
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Other interesting aspects are the quantum confinement and localization of electronic
states. Thus, with the aim of gaining physical insigth in this respect in Fig. 3.2(a) we
show our calculations the occupied energy levels for hexagonal GNF n=7, and in Fig.
3.2(b) the projected density of states for different regions of GNF n=7. We can see that
the carbon atoms localized on the edge (green region) are those that contribute mainly
to degenerated HOMO and HOMO-1 states. while that HOMO-7 and HOMO-8 are
localized mainly over the core region (blue region), the middle shell region (red region)
exhibit a mixing of contribution from core and edge regions. In Fig 3.2(c) the experimental
measurement of STM for perfect hexagonal GNFs n=7 is showed. Furthermore the Fig
3.2(d) shows the STS measurement for two points over core and middle regions. We
can see the qualitative agreement between our calculated projected density of states and
the experimental STS measurements with respect to the relative position of 1S and 1P
peaks (red and blue lines in Fig 3.2(d)). Its is important to mention that the difference
between the position of calculated peaks and the experiments is related with the fact
that experimetal measurements were performed on Ir (111) surfaces meanwhile the in our
calculation the system is isolated. This results clearly shows that the substrate effect is
only the renormalization of energy levels to lower energies as result of the interaction.
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Figure 3.2: (a) Calculations for occupied levels for hexagonal GNF n=7 and (b) projected
density of states for different regions of GNF n=7. (c) and (d) Experimental STM and
STS measurements for hexagonal GNFs n=7 taken from ref. [60].

Now we address the size dependence of the HOMO-LUMO gap in hexagonal GNFs
with zigzag edges. First, with the aim to understand the origin of metallic behavoir
predicted in previous theoretical works. We have calculated the HOMO-LUMO energy
difference in framework of spin-restricted Kohn-Sham method (without spin-polalization).
Our calculations predicts a metallic behavoir for GNFs larger than 6 nm in the same way
that previous calculations [6]. However when spin-polarization is included, we found
a critical size (around 3.2 nm) where the metallic edge states become unstable upon
electron-electron interactions and opens the energy gap by rearranging the spins along the
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two edges with antiferromagnetic coupling between opposite edges, this semiconducting
behavior remains even for GNFs larger than 6 nm, showing the importance of include
spin-polarization for the correct description of the ground state of large GNFs with zigzag
borders.

It is important to mention that similar results has been elucidated for n-acenes being
considered as highly interesting building units for organic electronic materials, because of
their diradical character that increases with the size [125]. The availability of longer acenes
is, however, hampered by their increasing reactivity, with pentacene being the largest well-
characterized acene [126]. In recent years substantial progress has resulted in the synthesis
of n-acenes up to n=9 by matrix isolation techniques [126]. Nevertheless, these higher
acenes are very reactive due to the prescence of unpaired spins. In order to overcome
the kinetic stability problems, larger acenes were functionalized by adding protecting
groups which inhibit the high reactivity of the acenes [127]. In this way, the calculations
shows that larger hexagonal GNFs with zigzag edges exhibit radical character because the
presence of unpaired electrons. However, due to the antoferromagnetic coupling between
opposite edges the ground state of the system is a singlet.

For the moment we are only interested in studying the effect of magnetic edges states
over the energetic of ground states and the size dependence of HOMO-LUMO gap. In
the next chapter we give results about the spin distribution along the zigzag edges. The
Fig. 3.3 shows clearly the effect of rising of antiferromagnetic ground states with the
increasing of size. The emergence of that magnetic edge states can be attributed to a
magnetic instability as a consecuence of the energy gap narrowing for the closed-shell state
(NM). That is, as the energy gap approaches to the critical value, the near-degeneracy
at the Fermi level coupled with electron-electron interaction makes the AFM state more
stable. In other words, we can see the spin-polarization as one mechanism of the system
for escaping of an instability associated with the presence of low energy electrons. Our
calculations shows that this effect emerges for the system C384H48, (n = 8), which has a
diameter of 3.2 nm.
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Figure 3.3: (a) Size dependence of the difference between total energy for AFM and NM
states. For the smaller GNFs the ground state is non-magnetic closed shell (n = 2 − 7),
however from n =8, the AFM ground state of zigzag GNFs becomes more stable. (b)
Schematic picture about gap-opening due to magnetic instability.
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As a starting point to modelling the size dependence of energy gap of the GNFs under
study, we apply the confinement model of Dirac fermions. In this case, the GNFs are
modelled as a circular GNFs with an effective diameter d (inset in Fig. 3.4), the boundaries
impose a constraint on the motion in all directions so that the radial component of k vector
is quantized: k = mπ/d. Substituting this relation in the linear dispersion for a Dirac
fermions we obtain the energy for the m-state, εm = πh̄υFm/d. Hence the single particle
gap between m and m + 1 state is ∆E = πh̄υF/d. for a value of the Fermi velocity of
υF = 106m/s, we have ∆E ≈ 2.0(eV.nm)/d this scaling rule is similar to one deduced
by Berger [47]. In Fig. 3.4 we show the comparison between different approximations
for the energy gap of GNFs under study, the single particle gap ∆E calculated with the
effective model (solid black line) and the HOMO-LUMO gap calculated in the framework
of spin-polarized Kohn-Sham method (red circles) and without spin-polarization (blue
triangles). The Fig. 3.4 shows clearly the effect of rising of edge magnetism in the size
dependence of energy gap (around 3.2 nm).
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Figure 3.4: Comparison between different approximations for the calculated energy gap
(HOMO-LUMO gap) of GNFs (C6nnH6n, n = 2 − 16). The effective model of confined
Dirac fermions (solid black line), The Kohn-Sham gap within spin-polarized method (red
circles), and the gap without spin-polarization (blue triangles).

While the calculations without spin-polarization predicts that the metallic behaviour
for GNFs begin at 6 nm deviating from the trend predicted for the effective model, spin-
polarized calculations predicts semiconducting behavior at 6 nm with a energy gap of
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0.35 eV. This result shows clearly that the origin of metallic behavoir predicted at 6
nm in previous works is not related with the well known band gap problem of Kohn-
Sham scheme, but instead with the absence of electron-electron interactions due to spin
polarization.

It is worth to mention, that the effective model predicts values for single particle gap of
larger GNFs that are in reasonable agreement with the calculated by most sophisticated
spin-polarized Kohn-Sham method (red circles), which is wordering if we think that the
effective model actually represents a electron confined inside of a circular region with
infinite walls on extended graphene, the agreement can be explained if we consider that the
energy difference between the highest occupied and lowest unoccupied Kohn-Sham state
underestimates the actual energy gap due to the absence of the derivative discontinuity
in the exchange-correlation potential [104]. For instance, for the GNFs under study,
we can say that in the better of the cases effective model only predicts a reasonable
estimation of the single particle Kohn-Sham gap. In the next section we will see how
energies of adding/removing one electron to/from the system can be used to calculate the
fundamental energy gap of GNFs within the quasiparticle formalism [118].

We note that the observation of the gap opening alone in zigzag graphene GNFs would
not unambiguously indicate the prescence of edge magnetism, given that reconstructed
zigzag edge configurations GNFs could contain significant fractions of armchair edges lead-
ing to semiconducting but non-magnetic GNFs. In recent work, there has been observed
that GNRs of 7 nm ribbons with the zigzag-edge structure that are narrower than 7 nm
exhibit an electronic bandgap of about 0.2-0.3 eV, which can be identified as a signature
of interaction-induced spin ordering along their edges. Moreover, upon increasing the rib-
bon width, a semiconductor-to-metal transition is revealed, Theoretical models relating
the origin of this semiconductor-to-metal the switching of the magnetic coupling between
opposite ribbon edges from the antiferromagnetic to the ferromagnetic configuration. In
other words, the signature of magnetic order in graphene nanostructures is related with
the prescence of magnetic zigzag edges that can account for both gap opening and the ob-
served semiconductor-to-metal transition. In Fig. 3.5, we present the calculated density
of states for NM and AFM states of GNF C1536H96 which have a diameter of 6.8 nm.

3.3 Fundamental gap and self-energy corrections

System dimensions reduction causes the enhancement of other physical quantites that can
contribute to the energy gap magnitud. Which are not taken into account in the con-
finement model of Dirac fermions or standard Kohn-Sham calculations. Most important,
is the self-energy polarization [104, 118] which could deviate the electronic behavior of
GNFs from the confinement model of Dirac fermions. From a physical point of view the
energy gap can be expressed as Eg = εksg +Σ, where εksg is the single particle Kohn-Sham
gap. On the other side, Σ is the self-energy correction which could be calculated from
the separate electron and hole quasiparticle energies via the GW method [105]. However,
in the present study the size of the systems make the use of GW method unfeasible.
Nonetheless, for finite size systems it is possible a simpler formulation of fundamental gap
for the calculation of electron and hole quasiparticles [104,123].

The fundamental gap Eg is calulated as:

Eg = E(m+ 1) + E(m− 1)− 2E(m), (3.1)
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Figure 3.5: Total density of states for NM and AFM states of the largest GNFs under
study (d=6.8 nm, n=16).

being E(m) the total energy of the m-electron neutral system. In physical terms this
aproximation for the fundamental gap (quasiparticle gap) includes the electrostatic effect
of the charge density relaxation when an electron is added or substracted, and the cor-
responding relaxation in the exchange correlation potential, for instance it represents a
systematic improvement with respect to Kohn-Sham method to approximate a energy gap
of the system [104]. Thus, the fundamental gap calculation requires the self-consistent
solutions of three different charge configurations for each quantum dot, E(m), E(m+ 1)
and E(m− 1).

The calculated values for Kohn-Sham gap within spin-polarization and fundamental
energy gaps as a function of the GNF size are shown in Fig. 3.6. The difference is the
self-energy correction to energy gap. It is interesting to note the dramatic effect of the
self-energy correction Σ in the magnitud of the fundamental gap which is finding strongly
dependent of size. The main reason for the strong dependence of Σ on the GNF size is
the significant enhancement of electron self-energy due to confinement effects even for the
largest systems under study. The calculated values of self-energy lies in the range from
3.8 to 1.0 eV for GNFs with a effective radius from 1.0 up to 4.2 nm, respectively.

In order to characterize the size dependence of KS and fundamental gaps, we performed
numerical fitting of the calculated data for εksg (d) and Σ(d). We found that εksg (d) =
2.0/d1.1 in good agreement with confinement model. On the other hand Σ(d) = 3.03/d0.98

which show the electrostatic nature of self-energy correction [123], Eg scaling rule can be
written as:
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Figure 3.6: Calculated Kohn-Sham and fundamental energy gap as a function of effective
radius for GNFs (C6nnH6n, n = 2 − 12) . The solid lines are power-law fitting whose
parameters are mentioned in the text.
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Eg =
2.0

d1.1
+

3.03

d0.98
. (3.2)

Note that the scaling rule for both εksg (d) and Σ(d) has the same asymptotic behavior,
predicting that the energy gap vanishes when size goes to infinity as is expected for
graphene. In contrast with previous calculations [6, 78], our scaling rule for fundamental
gap predicts that even hexagonal GNFs with d = 10 nm are semiconducting with energy
gaps around 0.5 eV. The scaling rule obtained in the present work for Eg, in principle
can be useful to predict the fundamental gap for a hexagonal GNF of arbitrary size.
Because experimental samples of GNFs usually have a combination of armchair and zigzag
edges, we can expect slightly deviations from the values predicted by Eq. 2., but if the
samples show some fraction of armchair edges, we can expect larger energy gaps than
predicted [6, 78].

In summary the size dependence of energy gap in hexagonal GNFs with zigzag edges
is was studied by density functional theory calculations. While the calculations without
spin-polarization predicts that the metallic behaviour for GNFs begin at 6 nm deviating
from the trend predicted for effective model, spin-polarized calculations predicts semicon-
ducting behavior at 6 nm with an energy gap of 0.35 eV. That results show clearly that the
origin of metallic behavior predicted at 6 nm in previous works is not related with the well
known band gap problem of Kohn-Sham scheme, but instead with the absence of electron-
electron interactions due to spin polarization. The agreement between the effective model
of confined fermions and the spin-polarized calculations for HOMO-LUMO gap, can be
explained if we consider that the energy difference between the highest occupied and
lowest unoccupied Kohn-Sham states underestimates the actual energy gap due to the
absence of the derivative discontinuity in the exchange-correlation potential. For instance
the GNFs under study we can say that in the best case scenario the effective model only
predicts a reasonable estimation of the single particle Kohn-Sham gap. Furthermore, to
correct the band gap problem of Kohn-Sham Scheme, we have calculated the size depen-
dence of fundamental energy gap adding/removing an electron to/from the system within
the quasiparticle formalism. Thus, our calculations predicts that even hexagonal GNFs
of 10 nm are semiconducting with energy gaps around 0.5 eV, in contrast with previous
calculations neglecting the spin-polarization and which predict metallic behavior. We
suggests that the metallic behavior observed in the experiment for GNFs larger than 6
nm can be attributed to substrate effects like gap renormalization, the shifting of Fermi
level doping or chemical interaction between the top-most surface atoms and graphene
carbon atoms. We expect that our results encourage future theoretical and experimental
investigations with the aim of explaining the role of substrate effects on the modulation
of electronic structure and magnetic edges states of GNFs or GNRs.

3.4 Optical properties

Optical properties description involves calculations of excited states. However, the most
common approximations for density functional theory fail describing many-body effects
like excitonic interaction, because its limited to ground state properties [101]. The so-
lutions of Bethe-Salpeter equation [115] or multiple configuration of interactions meth-
ods [116] can take into account electronic correlations, necessary in the excited states
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description, however their use in large systems is unfeasible. Time Dependent Density
Functional Theory (TDDFT) [106], is an alternative to treat the problem of excited states
in an approximated way, and that exhibit a good balance between accuracy and required
computational resources, and which enables their application to systems with a few hun-
dred atoms.

3.4.1 The single-particle, fundamental and excitonic gap

Before to discussing the main results about optical properties, it is convenient clarify some
fundamental concepts related with the energy gap definition.

(b)(a) Optical absorptionPhoto-emission

Figure 3.7: Schematic picture showing the different definitions for energy gap. (a) Shows
the physical meaning of quasiparticle gap related with photoemission and inverse photoe-
mission experiment. (b) Optical absorption is related with the formation of an interecting
electron-hole pair.

In a previous section we have addresed the size dependence of HOMO-LUMO gap
in the Kohn-Sham approximation (εksg ) and the fundamental energy gap (Eg), and we
have mentioned that the relation between these quantities is Eg = εksg + Σ. Actually the
Kohn-Sham gap refers to a HOMO-LUMO energy difference for an single-particle in a
effective potential [118,123], for hence some times is refered as a single-particle gap. The
fundamental gap can be viewed as the energy difference of separate formation of hole or
electron, which in principle, can be measured by photoemission and inverse photoemission
experiments, On the other hand, the excitonic gap is related with the formation of an
interacting electron-hole pair (exciton) which is a many-body effect totally absent in
conventional DFT calculations. In fact, the relation between excitonic and fundamental
energy gap is; Eexc

g = Eg −Eb, where Eb is the exciton binding energy, Typical inorganic
semiconductors exhibit Eb values of some few meV (Wannier-like excitons),for hence the
optical gap is practically the same than fundamental gap. In contrast, organic materials
have larger Eb values of the order of 1 eV [22]. Particulary in the case of GNFs we
expect large values of exciton binding energy, for example, experimental measurements
for ionization potential and electron affinity of coronene (C24H12, n = 2), show that its
fundamental gap is 6.87 eV, however optical determination shows a strong excitonic peak
at 4.09 eV [124], showing a large excitonic binding energy of 2.78 eV.

In this thesis we have applied the TDDFT in the linear response approximation as is
implemented in Quantum-Espresso code [113,119,120] to calculate the optical absorption
spectrum of smaller GNFs (n = 2−5). In Fig. 3.8 we show the calculated values for Kohn-
Sham, fundamental and excitonic gaps for benzene and some hexagonal GNFs (n = 2−5).
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For all the systems under study, the excitonic gap values lie between the value for the
fundamental and the Kohn-Sham gap. In other words, fundamental gap is the upper limit
of excitonic gap in absence of electron-hole interaction, meanwhile Kohn-Shap gap is the
lower limit neglecting self-energy polarization and electron-hole interaction. The effect
of the exciton binding energy is the renormalization of fundamental energy gap. Also in
Fig. 3.8, we can see that the difference between Kohn-Sham and excitonic gap decreases
as the size increases. The origin of this behavior can be explain if we write the excitonic
gap in terms of Kohn-Sham gap, self-enegy and exciton binding energy,

Eexc
g = Eg − Eb = εksg + Σ− Eb, (3.3)

we can see that Σ and Eb have opposite sign. Thus a large value in the exciton binding
energy could cancel the contribution of Σ, making that Eexc

g ≈ εksg , it expected that this
cancelation effect will be significant for larger systems as has been demostred previously
in silicon quantum dots [118].
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Figure 3.8: Calculated Kohn-Sham, fundamental and excitonic gaps a function of size
for benzene and GNFs (C6nnH6n, n = 2 − 5). For benzene and coronene (n = 2) the
experimental values for excitonic gap (black triangles) were taken from references [121]
and [124], respectively. For C54H18 (n = 3) the excitonic gap was reported by Fukuda
and co-workers in ref. [124], using Symmetry-Adapted Cluster-Configuration Interaction
Method SAC-CI (black square).

Other interesting aspect presented in Fig. 3.8 is the comparison between experimen-
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tal and calculated values for GNFs excitonic gap, with the aim to evaluate the reliablity
of our TDDFT calculations we have incluided in the plot the experimental values for
the excitonic gap of benzene and coronene (black triangles in Fig. 3.5) which are taken
from references [121] and [124], respectively. Furthermore, we also included the calcu-
lated excitonic gap for C54H18 n = 3 (black square), which has been obtained by Fukuda
and co-workers [124] using Symmetry-Adapted Cluster-Configuration Interaction Method
SAC-CI. Our calculated values for excitonic gap by TDDFT method sistematically un-
derstimate the experimental values for benzene and coronene and by an amount of 0.3
eV. In the case of C54H18 (n = 3 Cir -coronene) the difference between TDDFT and
SAC-CI method is around 0.4 eV. These differences are significant and can be corrected
if we introducing long range separated corrections in the exchange-correlation kernel for
TDDFT calculations [128], since that we have used GGA (PBE96) as starting point for
the TDDFT calculations, that corrections are totally absent [107,128]. However, despite
of their limitations, we have showed that the present TDDFT calculations captures a
good portion of the excitonic effects of GNFs.

3.4.2 Optical absorption

Optical absorption of GNFs is a very interesting issue to addres due to interesting features
and potential application of GNFs in optoelectronics and plasmonics. However, as we
have mentioned before, a rigorous study about optical properties involves the use of
computational model that takes into account the electron-electron interaction for the
description of excited states (TDDFT, CI, or BSE techniques), The large sizes of the
systems under study in this work makes the application of such approaches unfeasible,
for that reason we adopt a simplified strategy to give some physical insigths about the
size effects on optical properties, for that end we have used random phase approximation
(RPA). In Fig. 3.6(a) we showed the optical spectra for smaller hexagonal GNFs (n=2-5)
obtained using the RPA, in Fig. 3.6(b) the TDDFT calculations are included for reference.
For each system we have indicated the main absorption peaks with blue lines, we can see
that the RPA spectra exhibit some slightly differences respect to calculated by TDDFT,
however the relative positions of the peaks are very similar, in fact we noted that the
effect including the electron-electron interactions (TDDFT) are not only a rigid shift of
the spectra but that it has a significant effect on the renormalization of the excitation
energies and the oscillator strengths. However, despite the differences between the two
approximations, we can see that certain peaks occur in both approaches.

For example, the first excitation peak indicated in Fig. 3.9(a) corresponds to the low-
est one-photon excitation between degenerated HOMO, HOMO-1 and LUMO, LUMO+1,
meanwhile the second excitonic peak is the two-photon allowed excitations which involves
electronic excitations between HOMO, HOMO-1 and LUMO+2 and LUMO+3 [78, 124].
On the other side, the more intense peak in TDDFT shows an energy reduction from
5.77 eV for coronene up to 4.73 eV in the case of n=5, while RPA results predicts a shift
between 5.37 to 4.50 eV. Also in Fig 3.6(b) we can see that the TDDFT calculations
predicts that the most intense peak exhibit a shoulder (blue arrows) that appears slightly
blue-shifted by 0.4-0.5 eV, meanwhile that shoulders are totally absent in the RPA calcu-
lations, the origin of this behavior is explained by the electron-electron effects which are
not included in RPA. Despite of the limitations of RPA, we conclude that RPA represent a
reasonable approximation for study and give some physical insigths about the size effects
on the optical properties of GNFs. For that reasons, larger hexagonal GNFs (n=6-10)
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Figure 3.9: Absorption spectra of hexagonal GNFs (n=2-5). (a) Calculated using the
random phase approximation (RPA) on single particle Kohn-Sham eigenvalues. (b) Cal-
culated using the TDDFT approach. The main peaks are indicated in blue lines.
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were calculated only at RPA level, the results for n=6 and n=7 are showed in the panels
(a) and (b) of Fig 3.10, respectively. We can see that with the increasing the size a red
shifting of the peaks occurs, however the most important features of the spectra remains
preserved.
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Figure 3.10: Absorption spectra calculated using the random phase approximation for (a)
C216H36 (n = 6) and (b) C294H42 (n = 7).

Other very important issue is the effect of antiferromagnetic ordering on the optical
properties of GNFs, previously we have showed that this effect occurs for n ≥ 8. In
Fig 3.11(a) we have plotted the optical absorption for medium size GNF n=10, the black
line corresponds to the absorption coefficient calculated with out spin polarization (closed-
shell system), while red line corresponds to the spin-polarized case (AFM system), we can
see that the edge magnetism affects only the low-lying portion of optical espectra (near
of absortion edge). In Fig. 3.11(b) we have plotted the ratio between the absorption
coefficient for the AFM (AAFM) case and the absorption coefficient for the NM case (ANM),
the effect of magnetic edge states is the renomarlization of absorption peaks as well as
the changes in their intensities from the absorption edge up to around 3 eV, For energies
larger than 3 eV. The AAFM/ANM ratio is equal to one indicating that the magnetic edges
states do not have significant effects on more energetic excitations. These results shows
the importance of including the spin effects in the calculations of the optical properties of
graphene nanoestructures, which can be useful for future studies with more sophisticated
methods for the correct treatment of excited states.

In Fig. 3.11(a) we can note that the positon of most intense peak at 4.23 eV is
not affected by the rising of edge magnetism, this is indicative that edge states do not
contribute to this excitation, we can question about the origin of this intense peak. In
order to understand the origin of this excitation we must remember that experimetally
this intense peak occurs at 4.5 eV for graphene monolayer [129] and many authors argued
that this intense peak is related with the presence of collective excitations called π-π
plasmons [129], Thus, we have calculated the optical espectrum for graphene monolayer
and we have obtained a value of 4.1 eV for the most intense peak. In Fig. 3.12 we
have plotted the difference between the energy of π-π plasmons in GNFs (EGNFs

π ) and our
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Figure 3.11: RPA absorption spectra for hexagonal GNFs C600H60 (n = 10). (a) Compar-
ison between absorption spectra of the nonmagnetic closed-shell system (black line) and
antiferromagnetic ground state (red line). (b) Ratio AAFM/ANM between the absorption
coefficient for the AFM and NM states.
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Figure 3.12: π-π plasmon energy difference as a function of effective radius for GNFs
(C6nnH6n, n = 2 − 10) . The solid lines are power-law fitting whose parameters are
mentioned in the text.
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calculated value for π-π plasmon in graphene monolayer (EGM
π =4.1 eV) as a function of

size. Furthermore, we have fitted the calculated values to a power-law finding a scaling
rule for the plasmon energy.

EGNFs

π − EGM

π =
0.84

d1.17
. (3.4)

The 1/d dependence that follows the plasmon energy, resembles the model of quantum
confinement of Dirac fermions in graphene.
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Chapter 4

Results: Edge Magnetism in GNFs

Graphene based magnetism recently attracts great interest due to the possibility of de-
signing novel nanostructures with potential applications in spintronics. In this chapter a
detailed study of the magnetic properties of the edge states in zigzag GNFs of different
size and shape is presented. The theoretical studies addressing the issue of magnetism
in carbon-based material have focused mainly on point deffects [70, 71], reduction of di-
mentionality [9, 72] or topological frustration in zigzag-edge GNFs [73, 74]. These works
have shown that magnetism can arise in many ways, for example, the antiferromagnetic
(AFM) order across the edges of zigzag GNRs [9], and the large net spin in zigzag-edge
triangular GNFs [73,74].

Compared to armchair-edge GNFs which usually exhibit considerable energy gap and
nonmagnetic closed-shell ground state, the electronic structure and magnetic properties
of zigzag-edge GNFs are found highly sensitive to their shapes. Triangular flakes present
ferromagnetic order due the existence of degenerated edge states at Fermi level induced
by the imbalance between the two sublattices as Lieb theorem predicts [76], while that
the ground state of hexagonal and diamond-shaped GNFs have AFM ordering between
opposite edges. That AFM coupling is induced by the spin polarization of the low-energy
states that approaches the Fermi level as the system size increases. This kind of magnetism
is characterized by a zero total spin moment and that antiferromagnetic order appears
only if the on-site interaction energy is above of positive threshold.

It is well known the one-dimentional (1D) character of AFM order on the zigzag edge
of GNRs [9, 72]. However, the eirlier studies of zigzag GNRS were based on periodic
boundary conditions: namely, infinitely long ribbons were examined [9]. Unlike of GNRs,
the zero-dimentionality of GNFs introduces the confinement along the finite edges and
depending on the size and shape the magnetic properties can be tailored. As starting
point and with the aim of gain physical insigth about the magnetism of edge states in
GNFs we have selected the family of GNFs known as circumacenes and which structure
is showed in Fig. 4.1(a),, which are a longitudinal extension of coronene molecule studied
in previous chapters. Furthermore in order to evaluate the effect of GNF width, we select
a second set of GNFs where we have numbered edges according to the number of carbon
atoms at zigzag edges, such that a (n,m) GNF has n carbon atoms in its larger zigzag
edge and m carbon atoms on its shorter zigzag edge as is shown in Fig. 4.1(b)
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Figure 4.1: (a) Atomic structure of GNFs (circumacenes) with n=1-12 and (b) Atomic
structure of GNFs (12,4) and (12,7).

4.1 Computational Details

We have performed ab initio calculations based on the DFT for GNFs (n,m) [101], which
were carried out with and without spin polarization. For the exchange-correlation func-
tional we have used the Generalized Gradient Approximation (GGA) in the Perdew-
Burke-Ernzerhof parametrization (PBE96) [110]. We also used norm conserving pseu-
dopotentials as implemented in SIESTA code [112] and employed a double zeta basis
function with polarized orbitals [114] and a mesh cut-off energy of 300 Ry for the grid
integration in real space. The convergence criterion for energy is chosen as 10−4 eV be-
tween two steps, and structural parameter were fully optimized within a force converence
criterion of 0.01 eV/Å. The total energy was determinated optimizing the structural pa-
rameters by conjugated gradient. The vacuum separation between the structures in the
adjacent unit cell was taken at least 15 Å, in order to avoid the interactions between the
structure with their images in the neighboring cells.

4.2 Antiferromagnetic ground state

In Fig. 4.2 we show the total energy differences between AFM and NM states for circum-
acenes and we can see that, for n=2 up to 6 the energy difference is practically zero, which
indicates a nonmagnetic closed-shell ground state. Also we can see that n=7 is the critical
size where the AFM order emerges. For the studied systems, the AFM and NM states
are very close in energy with a difference lower than 0.50 meV. Thus, for circumacenes
with n > 7 the AFM becomes energetically more favorable than the nonmagnetic one.

The inset in Fig. 4.2 shows that the spin polarization for the circumacene with n=7
is spread mainly on the opposite zigzag edges and the maximum value of magnetization
is localized in the middle of the largest edges. The Fig. 4.3 shows the values of the local
magnetic moment mi at the carbon atoms in zigzag edge. We found that the middle edge
carbon atom has a maximum value of local magnetic moment of 0.28 µB.

It is particulary interesting to study the evolution of the AFM order along the edges
as a function of GNF length. The Fig. 4.4 shows the local magnetization for circumacene
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Figure 4.2: Total energy difference between the AFM and NM states for circumacenes.
The AFM order emerges for circumacene with n=7. The inset shows that the spin polar-
ization (red arrows) is spread mainly on the edges.
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Figure 4.3: Local magnetic moment mi at the zigzag edge in circumacene with n=7. The
plotted magnetization correspond to one edge is plotted. Hydrogen atoms at the zigzag
edges are omited for a better visualization.
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Figure 4.4: Evolution of local magnetization in circumacenes as a function of size (n=8-
11).

with n=8 up to 11. The maximum value for mi remains practically constant (around 0.28
µB) for all the studied circumacene. As the length of zigzag edges increases the magneti-
zation at the carbon atoms in the central part of the edge becomes nearly uniform. This
resembles the spin distribution of infinitely long GNRs [9], where the ground state is char-
acterized by ferromagnetic arrangement of spins along the edges with antiferromagnetic
coupling of the spins at the opposite edges.

4.3 Collinear domain wall formation

A very interesting result is the formation of a spin-collinear domain wall (SCDW) for the
circumacene with n=12, Fig. 4.5 illustrates the distribution of the spin density at the
carbon atoms of the circumacene with n=12, we can see the domain wall located in the
center of the edge fragment. The spin populations of the outermost edge atoms is showed
in Fig. 4.6 where the domain-wall is characterized by a spin wave excitation with a node
localized in the middle of the nanostructure and a maximum value for mi of 0.30 µB.

In Fig. 4.7 we show a quantitative analysis of the polyradical character of GNFs
under study by means of the magnetization on each sublatticce, since the sublattice
magnetization is proportional to the number of unpaired electrons in the system. We
found that the sublattice magnetization exhibits a nearly linear behavior with the length
from n=7 to 11 however for n=12 a discontinuity occurs, which is clearly associated with
the formation of the collinear domain wall.

The origin of the AFM state was discussed in a previous chapter for the case of
hexagonal GNFs. We have mentioned that the onset of magnetism is associated with an
electronic instability due to the presence of low-energy states, for that reason the system
opens an energy gap with the aim of avoiding the instablity. This mechanism is ilustrated
in Fig. 4.8(a) where the single particle spectrum for NM and AFM state is schematized.
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Figure 4.5: Spin collinear domain wall formation at the circumacene with n=12. The mag-
netic moments of the atoms are showed by red arrows and the magnitude is proportional
to the arrow length
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Figure 4.6: One-dimentional representation of the local magnetic moment for the circum-
acene with n=12.
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Figure 4.7: Sublattice magnetic moment as a function of n for circumacenes with n=2-12.

The magnitud of energy gap opening (2∆) is showed in Fig. 4.8(b), where we can see
that this quantity is depending of size and shows a similar behavior to the sublatticce
magnetization ( see in Fig. 4.7).
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Figure 4.8: (a) Schematic energy shift 2∆ of HOMO and LUMO levels for circumacenes
and (b) Energy level Shift 2∆ as a function of n.

Having explored the effect of the length on the energetics and magnetism of circum-
acenes, we now turn to discuss how the AFM state depends on the width. For this purpose
we focus on a second set of GNFs, which are presented in Fig. 4.1(b). These GNFs has
been denoted according to the number of carbon atoms at the zigzag edges, such that a
(n,m) GNFs has n carbon atoms on its larger zigzag edge and m atoms on its shorter
zigzag edge. This kind of GNFs have a similar topology of the circumacenes studied
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above. In fact circumacenes are a special case of the (n,m) structures with m=2. For
this part of the study we take n = 12 and m=4,7. In Fig. 4.9(a) we showed the SCDW
for (12,4) GNF, which is practically the same for the (12,2) structure, however for the
(12,7) system the situation changes dramatically with the disappearance of the SCDW as
can be observed in Fig. 4.9(b). In Figs 4.9(c) and (d), we present the comparison of the
local spin magnetic moment at the perimeter for (12,4) and (12,7) structures. In the case
of the (12,7) system the spin moment shows two maximum values close to 0.30 µB spread
along the largest edge, and four magnetic moments with values of 0.1 µB spreading on
the shorter edges. Thus the spin polarization of (12,7) GNF resembles the result reported
previosuly for hexagonal GNFs, where the antiferromagnetic arregement of spins at the
hexagon segments are separated by the 120◦-turn of the zigzag borders.
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Figure 4.9: Atomic structures and spin magnetization for the GNFs (a) (12,4) and (b)
(12,7). One dimentional representation of spin magnetic moment along the perimeter for
the GNFs. (c) (12,4) and (d) (12,7).

In Fig. 4.10 we present the atomic structure and magnetic moment along the perimeter
of the hexagonal graphene nanoflake with zigzag edge C864H72. This GNF can be viewed
as a limit case of (n,m) GNFs with n=m=12. In this case we can see that the magnetic
spin moments are equally distribuited at the six facets of the structure exhibiting anti-
ferromagnetic coupling. Based on all these results we can conclude that the formation of
collinear domain wall in GNFs with zigzag edges is strongly dependent on the separation
distance between opposite edges in the structure. Thus the formation of collinear domain
walls is favoured in GNFs with small aspect ratio (width/length), in contrast most sym-
metrical and high aspect ratio structures prefers the antiferromagnetic couplig between
opposite edges as is the case of hexagonal GNFs.

In brief, we have found that the antiferromagnetic state is energetically more favor-
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Figure 4.10: (a) Atomic structures and spin magnetization for hexagonal GNF C864H72

(n=12) and (b) One dimentional plot of edge magnetization for GNF (n=12).

able than the nonmagnetic one for larger GNFs with small energy gap, and also that total
magnetic moment is M=0, as is predicted by Lieb theorem [73, 74, 76]. However is inter-
esting the question about the posibility of a ferromagnetic state and the relative stability
respect to the antiferromagnetic and nonmagnetic solutions. With the aim to answer this
question Fig. 4.11(a) shows the energetic differences between AFM and NM state (red
circles) and the difference between FM and NM state (blue triangles) for circumacenes
(n,2) with n=7-13. We can see that for n=7-11 the antiferromagnetic states is more favor-
able, however from n=12 we founded that the ferromagnetic states becomes the ground
state. The Fig. 4.11(b) shows the calculated magnetic spin distribution for (12,2) GNF,
maximum magnetic moment is 0.28 µB and the total magnetic moment M=4 µB, which
indicates a polyradical system with four unpaired electrons. This result is very surprising,
considering that until now ferromagnetic ground states with M6=0 has been predicted only
for graphene nanoflakes with topological frustration, where the total magnetic moment is
given for the nullity of the graph associated to the molecular structure [73, 74]. However
the structures studied in this thesis are symmetrical and their nullity is zero, so there not
topological frustration involved in the ferromagnetic ground state, the only explanation
for the results discussed above is the magnetic correlations resulting from of the electron-
electron interactions. A detailed analysis of energetic and spin distribution shows that the
ground state of larger circumacene (n=13) is the ferromagnetic one with a total magnetic
moment M=4 µB, the energetic difference between FM and AFM state is only of 15 meV
for 12-circumacene. This energetic difference can be tuned up to 47 meV increasing the
width of nanoestructure as in the case of (12,4) GNF, which may enables the utilization
of these nanoestructures as spin logic devices at room temperature.
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Chapter 5

Results: Metal-functionalized
Graphene for Hydrogen Storage

Hydrogen is one of the most promising energy carriers, particularly since its only combus-
tion waste product is water [12,13,79]. Its practical exploitation, however, is hindered by
several technical problems. Among these one of the most challenging is storage [12, 79].
In this respect, graphene recently attracted attention as a storage material owing to its
chemical stability, low weight, and favorable physical-chemical properties for hydrogen
adsorption [15, 18]. The main requirements for the success of these storing materials to
utilize hydrogen as alternative energy are a gravimetric density of 7 wt % and that hydro-
gen should interact with the material between weak physisorption and strong chemisorp-
tion interaction. Thus, the desirable binding energy This is within an energy window of
0.2-0.6 eV/ H2. One way to obtain this kind of interaction is by the so-called, Kubas
interaction [15, 94]. Obviously, metal functionalized graphitic surfaces, flat or incurved,
are natural and interesting candidates for the H2 activation and H2 adsorption/desorption
processes. Especially since the synthesis of isolated single graphene [1], a peculiar inter-
est in the potential applications of functionalized graphenelike materials is growing [83].
However, one of the major drawbacks in the use of metal-functionalized graphene ma-
terials for hydrogen storage is the thermodynamic tendency of transition metals (TMs)
to clusterize on the surface carbon nanostructures because of the high cohesive energy of
the TMs. The second problem in that kind of systems is that the desorption of metal-
hydrogen complexes often also competes with the H2 desorption. Both problems could
however be reduced by increasing the binding energy of the metal atoms or small metal
clusters to the supporting carbon substrate. This can be achieved by anchoring the metal
atoms and small clusters to defects in the carbon networks of the graphene structure [91].

5.1 Computational details

We carried out first-principles calculations on the basis of density functional theory (DFT).
[101, 102] within the generalized gradient approximation (GGA) using the exchange-
correlation functional proposed by Perdew, Burke, and Ernzerhof [110] To speed up
the calculations, we used norm-conserving pseudopotentials [112] as implemented in the
SIESTA code [108] The Gamma point is used for the Brillouin zone sampling, and we
employed a double-ζ basis function set with polarized orbitals [108], and a mesh cutoff
energy of 300 Ry for the grid integration in real space. semicore states in the pseudopo-
tential and basis set were included for titanium atoms [98]. The convergence criterion
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for energy is chosen to be 10−4. The structural parameters were fully optimized within
a force convergence criterion of 0.01 eV/Å. Frequency calculations were carried out, in
order to ensuring that the optimized structures were minima. These calculations were
restricted to the small- and medium-size systems because the calculation of frequencies
for the systems with more than 200 atoms demanded large computational resources. For
hydrogen adsorption energies, additional calculations were undertaken by the DFT-D
method, which is included [95]. A negligible contribution of less than 0.06 eV was found,
and the dispersion effects were not included in most of our reported results.

5.2 Graphene monovacancy

The supporting defective graphene layer with the monovacancy was simulated as a peri-
odically repeated unit cell consisting of 199 carbon atoms in the xy plane (Figure 5.1a).

a)

2.10 Å

5-9 reconstruction

b)

Figure 5.1: Atomic structure for a) top and b) side views of optimized graphene monova-
cancy. Yellow circles represent carbon atoms.

The panels (a) and (b) in Fig. 5.1 shows the atomic structure of the optimized
graphene monovacancy. We did not observe a significant change in the structure beyond
the defect site after one carbon atom was removed from the graphene sheet; however, in
the vicinity of the vacancy there occurs a structural distortion that breaks the symmetry
as a result of local bonding rearrangement. This reconstruction is known to generate a
5-9 isomer of the graphene surface [96], which presents an elongated bridge that causes
the formation of two rings, with 5 and 9 atoms, respectively. Further, no significant out
of the plane atomic displacements were observed in the relaxed structure. Our calculated
vacancy formation energy of 7.6 eV is in good agreement with the experimental value [80]
of 7.0 ± 0.5 eV and with previous calculations which give values of 7.7-7.8 eV [97] We
obtain a magnetic moment of 1.26 µB/cell localized in the vacancy region. Earlier study
have shown that the spin moment varies from 1.1 to 1.3 µB/cell, depending in the size of
the supercell and converging toward 1.0 µB/cell as the supercell’s size increases [97]. These
results highlight the importance of using large supercells to correctly describe the ground
state of the graphene monovacancies. For the large supercell size used in our calculations,
our value of 1.26 µB/cell is in reasonable agreement with the magnetic moment reported
by Palacios and Yndurain [97] for similar supercell sizes.
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5.3 Pdn clusters on graphene monovacancy

Next, we studied the bonding of Pd species to the graphence monovacancy. Fig. 5.2(a)
presents the optimized structure of a single Pd atom on the defective graphene. We found
that Pd forms covalent bonds with the undercoordinated C atoms at the vacancy by
breaking a weak C-C bond (bond length = 2.08 Å) of one pentagon in the reconstructed
vacancy. Because the Pd atomic radius is larger than that of the carbon atom, the Pd
atom is displaced outward from the graphene surface, with an elevation of 1.85 Å. The
three C atoms around the vacancy also move out of the graphene plane by about 0.6 Å.
The interatomic distance between the Pd atom and three surrounding C atoms at the
vacancy is 1.98 Å. The binding energy of a Pd atom or a Pdn cluster to the graphene
monovacancy was calculated using,

∆E(Pdn/GM) = E(Pdn/GM)− E(GM)− E(Pdn) (5.1)

where n = 1 for the case of a Pd atom, GM represents the supporting graphene mono-
vacancy, and E indicates total energies. The calculated binding energy for a Pd atom
on the graphene monovacancy is 7.5 eV, in good agreement with previous calculations
of other transition metal atoms on graphene vacancies [91]. This large value of binding
energy suggests that the monovacancy prevents the migration of palladium atoms on the
graphene surface.

Pd

c)

b)a)

d)

Pd2

Pd3 Pd4

Figure 5.2: Side and top views of the relaxed structures of Pdn (n = 1-4) clusters adsorbed
on the graphene monovacancy. Yellow and purple circles represent carbon and palladium
atoms, respectively.

Also shown in Figure 5.2(b)-(d) are the relaxed structures for the Pdn (n = 2-4)
clusters anchored to the monovacancy. As in the case of a single palladium atom, the
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Pd clusters move out of the graphene plane in the region around the vacancy, and it is
observed that the extension of the distortion is more pronounced for larger clusters. The
vacancy-supported Pd2 results by the binding of a second Pd atom on top of one of the C
atoms around the vacancy and binding the first Pd atom. The calculated binding energy
of Pd2 to the vacancy is 8.6 eV. Pd3 forms a triangle with a plane nearly parallel to the
graphene layer with a binding energy of 8.30 eV. The lowest energy configuration, of the
Pd4 cluster attached to the vacancy, is a tetrahedral structure, similar to that of a free
gas-phase Pd4 cluster. The tetrahedron lies on a triangular face with one Pd atom at
the center of the vacancy. The binding energy of Pd4 to the vacancy is 7.92 eV. It is
well-known that free Pdn clusters have a magnetic moment of 2.0 µB [92]; however, upon
chemisorption of the Pdn clusters on the graphene vacancies, the magnetic moment is
quenched because of their strong interaction with the graphene monovacancy [91].

Determining of the strength of interaction between Pdn clusters and graphene support
clusters is very important for two main reasons: First, the strength of this interaction is
directly related with the mobility of the Pdn species on the graphene surface. Given
the large binding energy found, we conclude that Pdn remains attached to the vacancy
and will not diffuse on the surface, avoiding the possibility of encountering another Pdn
species and forming larger aggregates that diminish the hydrogen storage capacity thus
explaining the role that defects play in the dramatic enhancement of hydrogen storage in
metal-decorated graphene samples.

Second, it is well-known that the interaction strength between Pd nanoparticles and
graphene support influences the adsorption and dissociation of hydrogen molecules. For
example, Bhagavathi and co-workers [84] observed a dramatic increase in the hydrogen
adsorption for Pd nanoparticles supported on graphene samples containing functional
groups with oxygen atoms that act as bridges and increase the interaction with the Pd
nanoparticles [84]. In this sense, we can ask about that ability of graphene monovacancies
to mimic the effect of these functional groups. The relative stability of Pdn cluster was
quantified by means of the cluster cohesive energies, that is, the energy required to frag-
ment a species into its atomic units. We calculate the cohesive energies for both gas-phase
and supported clusters by:

Ec = [E(Pdn)− nE(Pd)]/n (5.2)

and

Ec/GM = [E(Pdn/GM)− E(GM)− nE(Pd)]/n. (5.3)

Here, Ec is the cohesive energy per atom of the gas-phase clusters [98], and Ec/GM
contains information about the cohesive energy of the clusters in the presence of the
graphene support [99]. The results are summarized in Table 5.1. The calculated values for
Ec/GM were found to be significantly larger than those of Ec , indicating that the strong

chemical interaction between Pdn cluster and the graphene monovacancy stabilizes the
supported clusters with respect to the gas-phase species; this stabilization is also in good
agreement with the observed quenching of the spin magnetic moment as a consequence of
the strong hybridization between Pd species and the monovacancy. Even for the clusters
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Table 5.1: Calculated values of Ec and Ec/GM in eV for the Pdn. clusters

n Ec Ec/GM
2 -0.64 -5.11
3 -1.26 -4.54
4 -1.67 -4.02

Bulk Pd -3.66 —

under study we can see that Ec/GM is larger than the cohesive energy of bulk Pd (see

Table 5.1).

5.4 Hydrogen adsorption on the graphene-Pd species

Following our study, we investigated the effect of anchoring the Pd clusters on its capacity
to adsorb H2 molecules. The Fig. 5.3 shows the relaxed structures and adsorption energies
for a single H2 as a function of the Pd cluster size. The adsorption energy for a single
H2 on a Pd atom deposited on a pristine graphene is also given. The energy ranges for
chemical and physical H2 adsorption are marked.

The adsorption energy Ead of x hydrogen molecules on the Pdn-graphene system is
given by:

Ead(xH2) = [E(xH2/Pdn/GM)− E(Pdn/GM)− E(xH2)]/x (5.4)

where GM represent the graphene monovacancy, x is the number of adsorbed H2

molecules, and E(xH2/Pdn/GM) is the total energy of the system formed by x hydrogen
molecules adsorbed on Pdn/GM. Our calculations show that the adsorption energy of a
single H2 on a Pd atom anchored to a graphene vacancy is 0.15 eV/H2

This result is promising for achieving reversible adsorption/desorption of hydrogen in
this system, given that as discussed before the ideal range for the absorption energy is
in the range of 0.2-0.6 eV per hydrogen molecule. Note that this moderate adsorption
energy of 0.15 eV contrasts with our calculated large adsorption energy of 1.25 eV on
Pd-doped pristine graphene. As seen in Figure 5.3b, the adsorption energy of a single
H2 increases when increasing the Pd cluster size, up to a value of around 1.2 eV for Pd4.
This high absorption energy for Pd4 is already in the range of chemisorption above of
the optimal energetic window for hydrogen storage. The calculated bond length for the
adsorbed H2 ranges from 0.76 Å in the case of adsorption on single Pd up to 0.96 Å when
supported on Pd4; these bond lengths are typical of the Kubas-type complex indicating
that the interaction between clusters and graphene monovacancy favors activation of
hydrogen molecules in contrast with the adsorption of H2 on Pdn/pristine graphene where
a complete dissociation of H2 occurs causing the formation of hydrides.

Despite the fact that the large binding energies found so far can be daunting for
practical purposes, we considered that there are two additional questions that must be
addressed in the theoretical modeling of nanomaterials for hydrogen storage. The first
one is related to the fact that metal clusters can attach hydrogen molecules in different
sites and thus present different adsorption energies. Therefore, the energy cost to remove
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Figure 5.3: a) Relaxed structures and b) variation of the adsorption energies for a single
H2 on the graphene supported Pdn (n = 1-4) clusters as a function of cluster size. Yellow,
purple and light brown circles represent carbon, palladium and hydrogen atoms, respec-
tively. The optimum energy range for reversible H2 absorption/desorption is marked in a
green rectangle.

hydrogen from the cluster may be different depending in the position where it attaches
to the metal cluster. The second factor to take into account is the possibility of the
absorption of multiple H2 in a given Pd cluster. Two important questions rise in this
case: (i) What is the maximum number of H2 that can bind to a given Pd cluster? and
(ii) How is the absorption energy affected by the attaching of multiple hydrogen molecules?
We expect that the number of adsorbed H2 increases with increasing the size of the cluster
and at the same time that the binding strength decreases with the grade of H2 saturation
of the active site. Furthermore, if the binding energy decreases with the number of H2

molecules, then the question arises whether we can have a system that presents both a
large H intake and a binding energy that lies in the ideal range for an efficient cyclic
adsorption/desorption process at room temperature and moderate pressures.

5.5 Adsorption sites on the supported clusters

In Fig. 5.4, we present the site dependence of the hydrogen average adsorption energy for
the larger cluster under study (Pd4). For this cluster we found four possible adsorption
sites, which were labeled as edge 1-3 and apical, illustrated in Fig. 5.4. The edge 1 and
2 sites were found to be the lowest energetic configurations with the same adsorption
energy of 1.17 eV/H2, the edge 3 site resulted in the highest energy configuration with a
computed energy difference of 0.5 eV with respect to edge 1 and 2 isomers, and the apical
site is only 0.2 eV above the lowest energy configuration. Similar searches were repeated
for smaller clusters. Thus, all the configurations presented in Figure 3 correspond to the
lowest energy structures for each case after a full geometry optimization.

The Figure 5.4 shows that the H2 binds to supported Pd4 cluster preferently as kubas-
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Figure 5.5: Calculated vibrational frequencies and intensities for Pd4(H2)/C53 H18 cluster
model. The lowest calculated frequency is 20.30 cm−1. The positive values for the 3N-6
vibrational modes indicates that the structure is an energy minimum.

55



type complex independently of the adsorption site. In strict sense, calculations of vibra-
tional frequencies are needed in order to show that the lowest-enery structure in Figure
5.4 is a true energy minimum. however the calculation of vibrational frequencies for an
system of more than 200 atoms is computationally expensive, For that reason we per-
formed geometry optimization and frequency calculations for a smaller Pd4(H2) on C53

H18 graphene nanoflake with a vacancy. From Figure 5.5 we can see that the formation
of the kubas-type complex is favored on graphene nanoflake as in the case of Pd4(H2)
on 10×10 graphene supercell with a vacancy. Furthermore, in Figure 5.5 we present the
calculated vibrational frequencies and intensities for Pd4(H2)/C53 H18 cluster model. The
lowest calculated frequency is 20.30 cm−1. The positive values for 3N-6 vibrational modes
indicates that the structure is a energy minimum.

5.6 Hydrogen saturation of gas-phase and supported

clusters

Understanding the key factors that determine the adsorption of a single H2 on Pdn clusters
allows us to gain insight for such interactions. However, for a more realistic modeling, the
role of the catalyst (Pd particles in our case), the hydrogen saturation, and the variation
in the H2 binding energy should be addressed. Saturation of the catalyst plays a central
role in the study of adsorption of molecular species. With this aim, we analyzed the
variation in the H2 absorption sequential energies, ∆Ex, defined as:

∆Ex = E(xH2/Pdn/GM)− E((x− 1)H2/Pdn/GM)− E(H2) (5.5)

We note that ∆Ex differs from the definition given for Ead, which represents an average
adsorption energy, because it is generally compared with the thermodynamic estimations
of adsorption energies [92, 93]. However, ∆Ex can be a good descriptor for the grade of
saturation on the basis of the definition of eq. 5.4; a value for ∆Ex > 0 indicates that the
adsorption of H2 is energetically unfavorable.

To investigate the effect of the vacancy on the successive H2 absorption on the Pd
clusters, we first studied the successive addition of H2 molecules to free gas-phase Pdn

(n= 1-4) species. Thus, to this end, a H2 molecule was approached to the metal parti-
cle from several initial configurations, and a full geometry optimization was carried out.
The hydride structure was found to be more stable by 0.09 eV than the Kubas on the
isolated Pd, and the vibrational frequencies presented in Table B1 in appendix B shows
both structures are minima. The process was successively repeated on the most stable ge-
ometries found by approaching additional H2 molecules to Pd atom followed by geometry
optimizations. Fig. A1 in appendix A show the relaxed structures for gas-phase Pd(H2)x
with x = 1-4 clusters. Furthermore, vibrational frequencies for are presented in Table B1
in appendix B, showing that the calculated structures fro Pd(H2)x are energy minima. In
Table 5.2 we can see the calculated values of ∆Ex for Pd(H2)x clusters in gas phase and
for supported Pd atom on graphene monovancy being evident tha dramatic effect of the
graphene monovacancy on the hydrogen uptake of single Pd atom.

The Table 5.3 shows the calculated values for of ∆Ex for Pd2(H2)x clusters in gas
phase and supported on graphene monovacancy Fig. A2 in appendix A show the relaxed
structures for gas-phase Pd(H2)x with x = 1-4 and supported Pd(H2)x with x = 2-3
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Table 5.2: Calculated values of the H2 sequential energy ∆Ex (eV) for the gas phase
and graphene anchored Pd(H2)x clusters as a function of the number of H2. Relaxed
estructures are showed in Fig. A1 in appendix A. Calculated vibrational frequencies are
presented in Table B1 in appendix B.

n Gas-phase Supported
1 -1.1 -0.15
2 -0.92 —
3 -0.67 —
4 -0.40 —

cluster. Furthermore, vibrational frequencies for Pd(H2)x with x = 1-3 in gas phase are
presented in Table B2 in appendix B, showing the stability of the mentioned Pd-H species.

Table 5.3: Calculated values of the in the H2 sequential energy ∆Ex (eV) for the gas phase
and graphene anchored Pd2(H2)x clusters as a function of the number of H2 molecules. Re-
laxed estructures are showed in Fig. A2 in appendix A. Calculated vibrational frequencies
for selected clusters in gas phase are presented in Table B2 in appendix B.

n Gas-phase Supported
1 -2.2 -0.75
2 -1.15 -0.63
3 -0.95 -0.20
4 -0.30 —

The Table 5.4 shows the results for of ∆Ex for Pd3(H2)x clusters in gas phase and
supported on graphene monovacancy Fig. A3 in appendix A show the relaxed structures
for gas-phase Pd(H3)x with x = 2-3 and supported Pd(H2)x with x = 2-3 cluster. Fur-
thermore, vibrational frequencies for Pd(H2)x with x = 1-3 in gas phase are presented
in Table B3 in appendix B, showing the stability of the mentioned Pd-H species. The
hydrogen sequential energies (∆Ex) were then calculated using eq 5.5 and are reported
in Tables 5.2-5.4. As expected, the number of adsorbed H2 increased with the particles
size, whereas ∆Ex for hydrogen molecules decreases with the number of H2 attached to
the Pd species.

Motivated by these results, we focused our study on the Pd4 cluster. The gas-phase
cluster was found to dissociate an initial H2 molecule without an energy barrier. Addi-
tional molecules were further attached without dissociation until achieving saturation of
the first shell around Pd after 8 H2 molecules as presented in Figure 5.6. Furthermore,
calculated vibrational frequencies for selected clusters Pd4H2, Pd4(H2)2, Pd4(H2)3 and
Pd4(H2)7 in gas phase are presented in Table B4 in appendix B. We then analyzed the
successive addition of H2 molecules to the Pd4 graphene-anchored cluster. Figure 5.7
presents the relaxed structures from two to seven adsorbed H2 molecules on Pd4. It is
found that when the H2 molecules interact with the deposited Pd4 cluster, most of them
bind in molecular form, although the interaction strength between Pd4 and H2 depends
on the number of adsorbed molecules. The hydrogenation process continued until achiev-
ing saturation. We found that in the case of the Pd4 cluster anchored on the graphene
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Table 5.4: Calculated values of the H2 sequential energy ∆Ex (eV) for the gas phase and
graphene anchored Pd3(H2)x clusters as a function of the number of H2 molecules. Relaxed
estructures are showed in Fig. A3 in appendix A. Calculated vibrational frequencies for
selected clusters in gas phase are presented in Table B3 in appendix B.

n Gas-phase Supported
1 -1.6 -0.96
2 -1.32 -0.68
3 -0.63 -0.17
4 -0.61 —
5 -0.54 —
6 -0.32 —

Pd4(H2)3Pd4(H2)2Pd4H2

Pd4(H2)4 Pd4(H2)5 Pd4(H2)6

Pd4(H2)9Pd4(H2)8Pd4(H2)7

Figure 5.6: Relaxed structures for the H2 adsorption at the Pd4 cluster in the gas-phase,
Pd4(H2)x with x = 1-9. Calculated vibrational frequencies for selected clusters Pd4H2,
Pd4(H2)2, Pd4(H2)3, and Pd4(H2)7 in gas phase are presented in Table B4 in appendix B.
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monovacancy, saturation occurs after adsorbing only four H2 molecules because the fifth
and further H2 molecules do not directly bind to the Pd cluster and remained practically
unaltered with respect to isolated H2. These unattached H2 molecules form a second shell
around the Pd4 that lies more than 2.5 Å away from the metallic atoms of the saturated
cluster.

Pd4(H2)7Pd4(H2)6Pd4(H2)5

Pd4(H2)4Pd4(H2)3Pd4(H2)2

Figure 5.7: Relaxed structures for the H2 adsorption on the supported Pd4 cluster,
Pd4(H2)x with x = 1-7.

Despite the fact that adsorption of multiple H2 does not distort the tetrahedral geom-
etry of the Pd4 cluster in a noticeable way, a strong influence on it was again found on
the hydrogen-metal interaction, caused by the hybridization between the carbon surface
and the Pd atoms. Figure 5.8a presents the changes in the adsorption energies for both
the gas-phase and the graphene-anchored Pd4. It is found that for both cases the first
H2 dissociates on the Pd4 cluster forming a hydride with a larger binding energy of 1.4
and 1.2 eV for the gas-phase and deposited cluster, respectively. This large energy shows
a strong chemisorptive interaction. The second molecule is adsorbed with an energy of
0.9 and 0.6 eV for the free and deposited cluster, respectively. Notably, although a value
of ∆Ex for the free Pd4 in the range of 0.7 to 0.30 eV is found from the third until
the ninth hydrogen molecule, in the case of the vacancy-deposited cluster, the fourth H2

already shows a moderate energy of only 0.37 eV. Furthermore, from the fifth H2 on-
ward, H2 molecules show lower adsorption energies nearer to the range of physisorption,
for example, the seventh adsorbed molecule shows a value of ∆Ex = -0.085 eV, in this
case dispersion van der Waals corrections were taken in to account with a contribution of
around 0.06 eV respect to calculation without dispersion effects.

Despite the low value for ∆Ex, the adsorption of hydrogen molecules is still ∆Ex <
0. These results attest to the important role of the graphene vacancy on modulating the
adsorption energies. Figure 5.8b presents the optimized Pd4(H2)7 cluster.
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Figure 5.8: a) Evolution of the sequential energy for the gas-phase and graphene-anchored
Pd4(H2)x clusters as a function of the number of H2 molecules. A value for ∆Eb > 0
indicates that adsorption is energetically unfavorable. b) Relaxed atomic structure for
supported Pd4(H2)7

5.7 Average adsorption energies

In the previous section, we have shown that the supported Pd4 cluster can covalently bind
a total of four H2 molecules, or one H2 per Pd atom, and that the remaining hydrogen
molecules are weakly physisorbed with energies around 0.1 eV. Now we are interested in
evaluating and analyzing the average binding energy with respect to multiple hydrogen
adsorption. The average H2 binding energy is defined in eq 5.4 and is a good descriptor
of the interaction strength of the clusters with the adsorbed molecules; for this reason,
it is directly compared with thermodynamics estimations for an ideal adsorption energy
range [93]. However, we should caution the reader about this concept, namely, that this
quantity cannot be used for situations where two adsorption regimes are present, as in our
case. For example, the calculated average binding energy of a supported Pd4(H7) cluster
is 0.40 eV/H2, which seems reasonable for the first four molecules, but it is hard to believe
that this is a realistic estimate for the adsorption energy of weakly adsorbed H2, especially
considering that these H2 molecules form a second shell around the supported Pd4 that
lies more than 2.5 Å away. In other words, when chemisorbed and physisorbed species
coexist in the system, eq 5.4 causes the overestimation of the adsorption energy for the
weakly adsorbed species. Furthermore, it is desirable to analyze the opposite case. As
mentioned earlier, the binding energy of a single H2 adsorbed on a supported Pd4 cluster
is 1.20 eV/H2; if a second H2 is adsorbed, then we can question how the adsorption of
the second molecule influences the binding energy of the first one. The large value for
∆Ex = 0.6 eV for the second is related to the reduction of the system stability upon
the adsorption of the second molecule, so we can assume that the binding energy of the
first molecule is not more 1.2 eV. Thus, in this case the average adsorption energy is a
good descriptor of the interaction strength between adsorbed molecules and the catalyst.
Similar arguments can be provided for the adsorption of the third and fourth molecules
because the calculated values for ∆Ex are relatively large; however, for weak interacting
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molecules we cannot expect a strong influence on the adsorption energy of the previous
one. In consequence, the average binding energy is not a meaningful stability descriptor.
For these reasons, in Table 5.5 we summarized the calculated values of Eb for Pd2, Pd3,
and Pd4, excluding the calculated values for physisorbed species (∆Ex < 0.2 eV).

Table 5.5: Calculated values of Eb (in eV/H2) for supported Pd2, Pd3, and Pd4 clusters.

n Pd2 Pd3 Pd4

1 -0.75 -0.96 -1.20
2 -0.70 -0.68 -0.65
3 — — -0.57
4 — — -0.50

The calculated values for Pd2 and Pd3 show that these species interact strongly with
two H2; however, the adsorption energy is still far away from the optimal range for hy-
drogen storage. In contrast, supported Pd4 is able to attach up to four H2 molecules with
an adsorption energy of 0.50 eV/H2, which is in the optimal energy range for an efficient
cyclic adsorption/ desorption process at room temperature and moderate pressures. The
adsorption energy of hydrogen on Pd-doped graphene samples has been measured in the
range of 7-12.5 kJ/mol (0.26-0.54 eV) [84] for samples with a H2 gravimetric content of
0.20-0.70 wt % at moderate pressures.

5.8 Hydrogen adsorption on supported Ni4 and Ti4
clusters

A question of vital importance and which is rarely mentioned is the effect of the nature
of the transition metal on the hydrogen gravimetric content. In previous sections we have
showed that a Pd4 cluster supported on a graphene monovacancy is able to adsorb up
to four H2 with moderate binding energies such that the ratio between the number of
adsorbed hydrogen molecules and Pd atoms on the clusters surface is 1 [130]. This result
has been further corroborated by Granja and co-workers for the case of Pd6 supported on
a graphene monovacancy [131]. Although these results are encouraging, our estimations,
based on first-principles calculations, determined a maximum gravimetric content for the
Pd4/graphene system of only 0.65 wt % which is in reasonable agreement with experiments
[15,84] but it is still far from the ideal gravimetric content of 7.5 wt %.

Experimental and theoretical studies have suggested that the main limitation of Pdn-
graphene systems for hydrogen storage is not the H2 adsorption energy per se, but the
metals atomic weight and the number of hydrogen molecules that it can adsorb up to
saturation. In this sense, it is reasonable to think about using lighter transition metal
clusters as an alternative to solve the problem. Nickel is a promising candidate; it weighs
about half as much as Pd and is well-known for its catalytic properties. Unfortunately,
previous experiments on graphene decorated with monodispersed Ni nanoparticles showed
a hydrogen content of only 0.5 wt % at moderate pressures [132], a value that is similar to
the one measured in Pd-decorated graphene. This result supports the idea that large metal
nanoparticles are not good candidates for maximum hydrogen uptake, and that the effect
of the metal dopant enhancing the hydrogen adsorption would be largest for maximum
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dispersion, that is, when single metal atoms or very small clusters are present [15,17].
Another potential candidate is Ti. Recently, an interesting result has been reported

by Mashoff and co-workers where the formation of titanium-islands on graphene as a
function of defect density was investigated [133]. When depositing titanium on pristine
graphene, titanium forms islands with an average diameter of about 10 nm and an average
height of a few atomic layers. In contrast, if defects are introduced in the graphene by ion
bombardment, the mobility of the deposited titanium atoms is reduced, and the average
diameter of the islands decreases to only 5 nm. Furthermore, these islands present a
single layer monatomic height that increases the titanium surface available per unit of
graphene area and have a gravimetric density between 0.75 and 2.5 wt % depending on
the surface coverage. These results show how the lattice engineering in graphene surfaces
is a promising route to enhance their catalytic properties by maximizing the dispersion of
metal dopants, and hence the surface coverage. Based on these reports we consider that
studying the adsorption of hydrogen on small graphene supported 3d transition metal
clusters is of great relevance toward the design of novel graphene based materials with
tailored properties.

Motivated by the recent experiments of the H2 adsorption on Ti and Ni graphene
supported nanoparticles [132,133], in this section we provide a detailed description of the
interaction of H2 with atomic and Ti4- and Ni4-doped defective graphene.

b)

a)

Figure 5.9: Relaxed structures for the H2 adsorption on the supported a) Ti4 and b) Ni4
clusters.

The Figure 5.9 shows the relaxed structures and adsorption energies for a single H2.
The adsorption energy (∆Ead) of x hydrogen molecules on the M4-graphene system is
given by:

∆Ex = E(xH2/Pdn/GM)− E((x− 1)H2/Pdn/GM)− E(H2) (5.6)

Here M could be Ti or Ni, GM represents the graphene monovacancy, x is the number
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of adsorbed H2 molecules, and E(xH2/M4/GM is the total energy of the system formed
by The x hydrogen molecules adsorbed on M4/GM. The H2 adsorption on supported
clusters is far stronger with calculated energies ranging from 1.0 and 1.6 eV for Ni4 and
Ti4, respectively. It is interesting to note that the difference in binding energies between
Ti4 and Ni4 is reflected in the way in which the H2 adsorbs on the cluster; for Ti4 the
complete dissociation of H2 is favored, while Ni4 prefers the formation of Kubas-type
complexes, and this result is similar to the one previously found for supported Pd4 cluster
in which case we found a H2 adsorption energy of 1.2 eV [130]. This high absorption
energy for Ti4 and Ni4 is already in the range of chemisorption above of the optimal
energetic window for hydrogen storage of 0.2 to 0.6 eV per H2 molecule. The calculated
bond length for the adsorbed H2 ranges from 0.85 Å in the case of adsorption on Ni4,
a bond length that is typical of Kubas-type complexes [87], to 2.5 Å for the case of H2

adsorbed and dissociated on Ti4, thus indicating that interaction between Ti4 cluster
and the graphene monovacancy favors hydride formation. The formation of hydrides in
titanium clusters is very interesting as this is known to be the first step for the hydrogen
spillover mechanism that only occurs with the complete dissociation of H2 molecules on
catalysts surface [131].

To investigate the rational for the difference on the H2 absorption of Ti4/GM, i.e.,
complete dissociation, versus Ni4/ GM, where Kubas-type complexes are present, we
calculated the partial density of states for H2/Ti4/GM and H2/Ni4/GM. As shown in
Figure 5.10 the Ti 3d states are located below and above the Fermi level and exhibits a
strong interaction with the hydrogen 1s levels which leads to the hydrogen dissociation
upon absorption. On the other hand, the Ni 3d levels are located below the Fermi level and
the hydrogen 1s levels only interact with the Ni 4s levels, thus explaining the formation
of the Kubas-type complexes.
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Figure 5.10: Partial density of states for a) H2/Ti4/GM and b) H2/Ni4/GM.

Understanding the key factors that determine the adsorption of a single H2 on metal
clusters allows gaining insight of such interactions. However, for a more realistic modeling
the role of the active sites (Ti4 and Ni4 clusters in our case), the hydrogen saturation, and
the variation in the H2 binding energy should be addressed. Saturation of the catalyst
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plays a central role in the study of adsorption of molecular species. With this aim we
analyzed the variation in the sequential H2 absorption energies ∆Ex as defined in eq 5.6.
As we have noted in section 5.6, a value for ∆Ex > 0 indicates that the adsorption of H2

is energetically unfavorable.
We then analyzed the successive addition of H2 molecules to the Ti4 anchored cluster.

Figure 5.11 presents the relaxed structures for three, six, and eight adsorbed H2 molecules
on Ti4 . It is found that when the first three H2 molecules interact with the deposited Ti4
cluster most of them bind in dissociative form (see Figure 5.11a), although the interaction
strength between Ti4 and the first three H2 molecules slightly depends on the number of
adsorbed molecules, resulting that ∆Ex with x = 1 to 3, ranges from 1.6 to 1.2 eV. The
adsorption of another three molecules is favored by the formation of Kubas complexes as
seen in Figure 5.11b, with ∆Ex energies between 0.50 and 0.25 eV and H-H bond lengths
of 0.8 Å. It is found that Ti4 achieves saturation with 6 adsorbed molecules, as after
adding two more H2 molecules a weakly physisorption is observed with ∆Ex energies of
less that 0.2 eV, and in which the additional H2 molecules lay more than 2.5 Å away from
the Ti4 cluster (Figure 5.11c).

Ti4 (H2)6 + 2H2

0.75 Å
 

c)
 

b)
 

a)
 

0.80 Å
 

0.80 Å
 

0.80 Å
 

Ti4 (H2)6Ti4 (H2)3

Figure 5.11: Relaxed structures for the hydrogen saturation of supported Ti4/GM. a)
Geometry after the adsorption of three H2 molecules, b) after the adsorption of six H2

molecules, and c) after the adsorption of eight H2 molecules.

In contrast to the case of the supported Ti4 cluster, in the case of Ni4 anchored on
the graphene monovacancy saturation occurs after adsorbing only three H2 molecules and
with the forming of Kubas type complexes. The fourth H2 molecule does not directly bind
to the Ni4 cluster and remains practically unaltered with respect to isolated H2 (Figure
5.12). This unattached H2 situates more than 3.0 Å away from the supported cluster
atoms. In general, the adsorption of multiple H2 does distort neither the planar nor the
tetrahedral geometries of the Ti4 and Ni4 in a noticeable way. However, a strong influence
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was again found on the hydrogen-metal interaction caused by the hybridization between
the carbon surface and the metal atoms.

Ni4(H2)3 + H2
Ni4(H2)3

Ni4(H2)2

Figure 5.12: Relaxed structures for the saturation of graphene supported Ni4/GM.

Figure 5.13a presents the calculated ∆Ex as a function of the number of adsorbed H2

for the supported Ti4 and Ni4 clusters. We have also included the results discussed above
for the supported Pd4 cluster. Since Pd and Ni belong to the same group of the periodic
table, it is interesting to compare the H2 saturation of Pd4 and Ni4 clusters to evaluate
the effect of the atomic radius on the hydrogen adsorption. We can see in Figure 5.13a
that the values of ∆Ex for Ni4 are slightly smaller than those calculated for Pd4. This
result can explain why Pd4 reaches saturation with four H2 molecules while Ni4 only can
attach up to three molecules before saturation. On the other hand, the values of ∆Ex for
H2 on Ti4 vary from 1.6 eV for a single H2 up to 0.1 eV for the eighth adsorbed molecule.
From the calculated values for ∆Ex and the atomic structure seen in Figure 11b, we can
conclude that Ti4 is able to attach up to 6 molecules before the saturation. Figure 5.13b
shows the average H2 adsorption energy at the saturation point. Our results predicts that
Ti4, and Pd4 exhibit similar average adsorption energies 0.53 and 0.56 eV/H2, respectively,
while Ni4 have slightly smaller value of 0.42 eV/H2. Importantly, all atomic clusters under
study, i.e., Ti4 , Pd4 , and Ni4 , are able to attach H2 molecules with an average adsorption
energy between 0.2 and 0.6 eV/H2, which is in the optimal energy range for an efficient
cyclic adsorption/desorption process at room temperature and moderate pressures.

5.9 Hydrogen gravimetric content

We have showed that the interaction between the graphene monovacancy and the transition-
metal clusters under study lead to H2 adsorption energies within the ideal range for prac-
tical hydrogen storage; however, it is also important to analyze the hydrogen gravimetric
content (wt %). For the estimation of wt % we have used the method recently proposed
by Mashoff and co-workers [133], that method is convenient as it involves parameters that
can be determined from the optimized geometries. These include the maximum number
of loaded hydrogen molecules per metal atom in the cluster, the surface particle density,
which can be evaluated from the clusters interatomic distances, the fraction of metal
atoms in the clusters surface, and the exposed metal-surface to total graphene to surface
ratio. All these quantities can be evaluated directly from our first-principle calculations.
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Figure 5.13: a) Calculated values for the sequential H2 adsorption energy for graphene
anchored Ti4(H2)x/GM, Ni4(H2)x/GM and Pd4(H2)x/GM clusters as a function of the
number of H2 molecules. Values of ∆Ex > 0 indicate that adsorption is energetically unfa-
vorable. b) Average adsorption energy of H2 molecules at the saturation for Ti4(H2)6/GM,
Ni4(H2)3/GM and Pd4(H2)4/GM.

The detailed description of the estimation of the wt % for the Ti4-, Ni4-, and Pd4-doped
defective graphene is given in the Appendix C. Figure 5.14 summarizes the calculated
hydrogen gravimetric content for the systems under study, and includes a comparison
with experimental reports of graphene-decorated samples. Palladium decorated graphene
is by far the most studied system for hydrogen storage, in in previous experimental works
the measured gravimetric content at moderated pressures and room temperatures was
estimated to be 0.30% by Contescu and co-workers [15] and 0.75 wt % as reported by
Vinayan and co-workers [84]. It is important to mention that in Contescus experiments
the graphene samples were decorated with well dispersed palladium atoms, in fact, they
reported that 18% of the adsorbed palladium was in the form of single atoms, and the
rest in the form of PdH0.6 species, which could be explained by the adsorption of H2 on
small Pd clusters. On the other hand, in Vinayan’s experiments [84] the formation of Pd
nanoparticles, which may indeed favor the H2 absorption, was reported. In this case the
hydrogen gravimetric content was twice as large as in the experiments with well-dispersed
atoms. Our calculated value of 0.64% for Pd4-doped graphene cluster is in good agree-
ment with the experimental report [15, 84]. Furthermore, our results suggest that the
gravimetric content is mainly determinate by the ratio between the surface clusters atoms
and the maximum number of adsorbed H2 molecules, which is 1:1 for the case of Pd4(H2)4
on defective graphene. Actually, this ratio is predicted to be independent of the metal
clusters size, a conclusion supported by the recent work of Granja and co-workers [131].
In the case of the Ni4-doped graphene our predicted value of 0.30 wt% is slightly smaller
than the one reported by Gaboardi of 0.40 wt% for Ni nanoparticles on graphene [132].
It is interesting to note that, despite the fact that Ni is a lighter element than Pd, both
the experimental and theoretical values predicts similar values of wt%. Our calculations
show that the reason of this low hydrogen gravimetric content is the lower ratio between
the maximum number of adsorbed H2 to the number of metal atoms, which is only 0.75:1
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in the case of Ni4(H2)3 defective-graphene, that is, smaller than the one found for the
case of Pd. On the other hand, Ti4-doped graphene shows a most interesting behavior.
Ti4 reaches saturation after adsorbing six hydrogen molecules leading to a H2:Ti ratio of
1.5:1 [134].
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Figure 5.14: Comparison of calculated and experimental values for the hydrogen gravi-
metric content of Ti-, Ni-, and Pd-doped graphene.

Notably, we calculated a gravimetric content of 3.4 wt % for the graphene supported
Ti4, which is larger than the 2.4 wt % value estimated by Mashoff and co-workers for Ti
nanoislands assuming a 1:1 H2:Ti ratio and an almost complete Ti coverage of the graphene
sheet with small metal islands [133]. The considerably higher gravimetric content found
for Ti4-doped graphene (3.4 wt %) compared to the ones for Ni4-doped graphene (0.30 wt
%) and Pd4-doped graphene (0.64 wt %) can be explained by the fact that Ti is lighter
than Ni and Pd, and it absorbs a larger amount H2 per atom, and because the planar
geometry which makes that all clusters atoms participate in the adsorption and increases
the graphene sheet coverage.
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Summary and Conclusions

In summary, the goal of this work is the study by means of density functional calculations
the size dependence of the electronic, optical, and magnetic properties of GNFs with
zigzag borders. Furthermore, motivated by the challenge to develop hydrogen storage
materials for practical applications, we provide a detailed description of the interaction
of H2 with atomic and small Pd, Ni, and Ti clusters adsorbed on a defective graphene
surface.

Thus, in the first part the geometrical and electronic properties of GNFs with zigz-
gag edges were studied in detail with the aim to identify the key factors determinating
the energy gap and the spin density deistribution of the GNFs. Different graphene na-
noestructures ranging from 1.0 to 7.0 nm were constructed and analyzed in detail. In
particular the evolution of the Kohn-Sham energy gap, the sel-energy correction, the edge
magnetism and the optical absorption as a fuction of size. In the second part large-scale
periodic DFT calculations are performed to examine systematically the energetics and
the hydrogen adsorption of Pd, Ni, and Ti clusters on graphene monovacancies.

This thesis has presented a number of new findings, as follows:

(i) Smaller hexagonal GNFs with zigzag borders have a nonmagnetic closed-shell ground
state, however with the increasing of size (around 3 nm) the open-shell antiferro-
magnetic ground state emerges.

(ii) We have found that the origin of metallic behavoir predicted for zigzag GNFs at
6 nm in previous works is not related with the well known band gap problem of
Kohn-Sham scheme, but with the absence electron-electron interactions due to spin
polarization.

(iii) The size dependence of fundamental energy gap obtained within the quasiparticle
formalism, predicts that even hexagonal GNFs of 10 nm are semiconducting with
energy gaps around 0.5 eV, in contrast with previous calculations.

(iv) Based on the present results, we proposed that the metallic behavoir observed in
the experiment for GNFs larger than 6 nm can be attributed to substrate effects like
gap renormalization, the shifting of Fermi level self-doping or chemical interaction
between the top-most surface atoms and graphene carbon atoms.

(v) Magnetic edge states do not exhibit influence on the π-plasmon energy in GNFs.

(vi) We found result is the formation of a spin-collinear domain wall (SCDW) for the
12-circumacene (n=12).

(vii) A detailed analysis of the results for larger circumacenes (n=12,13) shows that the
ground state of larger circumacenes is the ferromagnetic one with a total magnetic
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moment M=4 µB, But the energetic difference between FM and AFM state is only
of 15 meV. This energetic difference can be tuned up to 47 meV increasing the
width of nanoestructure, which may enables the utilization of these nanoestructures
as spin logic devices at room temperature.

(viii) The results about hydrogen adsorption, shows that the Pd clusters supported on
graphene monovacancies are able to attach up H2 molecules covalently, forming
dihydrogen complexes, most importantly with moderate binding energies, within
the ideal energy range for efficient cyclic adsorption/desorption at room temperature
and moderate pressures (0.2-0.6 eV/H2).

(ix) Because to the large atomic mass of Pd, the gravimetric content of H2 is limited
to approximately 0.7%, atomic clusters of lighter elements such as Ni or Ti were
proposed to resolve this issue. The maximum theoretical gravimetric content of H2

for Ni4(H2)3/defective graphene has been estimated to be 0.30 wt %, while that for
Ti4 on defective graphene was 3.4 wt %, which is significantly larger than the one
predicted for Ni4 and Pd4 clusters. The better performance of Ti4 clusters is related
to the fact that Ti is a ligther transition metal and absorbs a larger amount of H2

per metal atom.

(x) The present results indicates that controlled introduction of defects in graphene
together within the anchoring of small transition-metal clusters is a feasible way to
enhanced the hydrogen gravimetric content in graphene systems.
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Prospects and future work

The study of graphene nanoestructures is a relatively new area of research that continually
evolves. A sinergy between theory and experiments is necesary to narrow he gap between
fundamental science and applicattions. Computational modelling and density functional
theory are a valuable tools to understand and give physical insigth about general trends.
However, we are aware that there is still much work to do in this field. In this way, the
analysis in this thesis can be extended to the study of the electronic structure of:

(i) Graphene nanoflakes with defective terminations.

(ii) Graphene nanoflakes with oxygen-containing functional groups like carbonyl, hy-
droxyl and epoxides, which are commonly synthesized.

(iii) Graphene nanoflakes supported on metallic surfaces.

By other side, in the case of hydrogen adsorption on graphene nanoestructures we can
extend the study to:

(i) Interactions between hydrogen and supported atomic clusters of ligther metal atoms.

(ii) Thermal effects on the hydrogen adsorption/desorption process.

(iii) Hydrogen spillover mechanism.

(iv) Finally, hope that our study motivates future theoretical and experimental studies
because it provides a descriptor (or template) toward the computational discovery
and design of families of novel hydrogen storage materials.
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Appendix A

Relaxed Structures for Gas Phase
and Supported Pdn Clusters

Figure A.1: Relaxed structures for the H2 adsorption at the Pd atom in the gas phase,
Pd(H2)x with x=1-4 cluster.
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Figure A.2: a) Relaxed structures for the H2 adsorption at Pd2 cluster in the gas phase,
Pd2 (H2)x with x=1-4 cluster, and for b) graphene anchored Pd2 (H2)x with x=2-3 cluster.
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Figure A.3: a) Relaxed structures for the H2 adsorption at the Pd3 cluster in the gas
phase, Pd3 (H2)x with x=1-6 cluster, and for b) graphene anchored Pd3 (H2)x with x=2-3
cluster.
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Appendix B

Calculated Vibrational Frequencies
for Selected Clusters.

Table B.1: Frequencies of the 3N-6 normal modes in cm−1 for the Pd(H2)x clusters in gas
phase.

Pd(H2) Pd(H2)2 Pd(H2)3 Pd(H2)4
Kubas 251.466 345.123 112.12
767.60 252.09 346.409 116.99
1658.86 680.97 386.49 175.69
2214.86 849.41 399.50 337.08

1122.54 400.67 338.64
Hydride 1446.44 475.02 376.17
669.19 1446.68 843.70 376.67
2116.09 2846.47 844.44 396.81
2187.65 2874.24 1008.90 397.82

1302.11 398.64
1408.62 465.28
1409.79 831.59
2870.99 832.73
2872.06 994.82
2911.23 1274.64

1379.78
1380.55
2892.21
2892.61
2930.41
3976.14
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Table B.2: Frequencies of the 3N-6 normal modes in cm−1 for the Pd2(H2)x (x=1-3)
clusters in gas phase.

Pd2(H2) Pd2(H2)2 Pd2(H2)3
72.48 187.72 114.73
206.33 199.91 154.91
1221.73 223.60 168.81
1332.06 236.49 189.69
1401.37 453.37 205.92
1523.77 884.07 206.46

1129.91 434.42
1314.68 523.64
1325.74 812.85
1397.72 880.58
1552.64 1252.12
3054.00 1281.60

1288.36
1387.88
1491.45
3183.64
3186.29

Table B.3: Frequencies of the 3N-6 normal modes in cm−1 for the Pd3(H2)x (x=1-3)
clusters in gas phase.

Pd3(H2) Pd3(H2)2 Pd3(H2)3
101.58 40.48 59.94
140.83 131.71 101.70
192.76 135.92 122.44
255.85 151.27 134.73
462.95 225.99 166.17
1229.18 242.12 181.92
1296.87 445.67 188.04
1373.69 632.29 254.94
1410.06 677.52 284.28

865.59 364.98
909.36 580.17
1187.84 798.99
1277.86 824.88
1451.84 1153.98
2982.53 1204.68

1253.71
1320.86
1582.43
1651.18
3058.28
3187.37
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Table B.4: Frequencies of the 3N-6 normal modes in cm−1 for the Pd4(H2), Pd4(H2)2,
Pd4(H2)3 and Pd4(H2)7 clusters in gas phase.

Pd4(H2) Pd4(H2)2 Pd4(H2)3 Pd4(H2)7
100.45 60.70 58.00 61.26 640.06
102.59 98.88 99.62 65.99 724.52
138.45 107.24 109.92 99.59 772.81
142.73 126.56 143.05 110.07 783.42
160.66 148.63 148.45 111.29 796.69
211.19 158.57 162.00 136.23 807.43
228.44 161.12 191.43 144.37 845.92
415.90 207.91 207.23 155.03 941.79
1192.46 246.69 225.38 163.83 970.68
1221.04 289.69 241.77 182.25 1064.59
1425.97 470.03 306.07 191.43 1087.96
1520.09 860.09 337.67 203.21 1146.20

1118.61 372.37 217.03 1176.53
1177.25 379.44 228.07 1186.52
1372.35 537.04 240.94 1215.18
1454.06 840.23 262.62 1230.50
1552.19 861.58 273.63 1237.05
2745.20 881.31 279.07 1287.11

1363.51 292.94 2584.09
1559.45 310.76 2907.87
1619.37 334.48 3117.60
1951.85 437.26 3165.70
1977.09 442.59 3213.54
2844.39 474.85
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Appendix C

Gravimetric Density Calculation
Details

The general formula for gravimetric density of hydrogen is given in ref. [133].

GD =
nH2mH2rTM−G

mTM(rTM−G/r) +mC(σG/σTM) + nH2mH2rTM−G

× 100, (C.1)

where the parameters are defined in the following manner:
mH2 : Molecular mass of hydrogen.
mC : Atomic mass of carbon.
mTM : Atomic mass of transition metal atoms (Ti, Ni or Pd).
nH2 : The average number of adsorbed hydrogen molecules per transition metal atoms

in the cluster (0.75 for Ni4, 1 for Pd4 and 1.5 for Ti4).
r: The fraction of TM atoms in contact with graphene surface (0.75 for Ni4 and Pd4

and 1 for Ti4).
rTM−G: The fraction of cluster-surface in contact with graphene-surface (0.25 for Ni4

and Pd4 and 1 for Ti4).
σG: The surface atom density of graphene (around 38 atoms/nm2).
σTM : The surface atom density of transition metal clusters, can be evaluated from the

size and interatomic distances of supported clusters (around 3 clusters/nm2).
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[54] L. Zhi and K. Müllen, A Bottom-Up Approach from Molecular Nanographenes to
Unconventional Carbon Materials. J. Mat. Chem. 18, 1472-1484 (2008).

[55] M. Terrones, Nanotubes Unzipped. Nature 458, 845-846 (2009).

[56] M. Han, B. Ozyilmaz, Y. Zhang, and P. Kim, Energy Band Gap Engineering of
Graphene Nanoribbons. Phys. Rev. Lett. 98, 206805-206809 (2007).

[57] S. Stankovich, D.A. Dikin, G.H. Dommett, K.M. Kohlhaas, E.J. Zimney, E.A. Stach,
R.D. Piner, S.T. Nguyen, and R.S. Ruoff, Graphene-based Composite Materials
Nature 442, 282-286 (2006).

[58] L. Chen, Y. Hernandez, X. Feng, and K. Müllen, From Nanographene and Graphene
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