
CENTRO DE INVESTIGACIÓN Y DE ESTUDIOS AVANZADOS

DEL INSTITUTO POLITÉCNICO NACIONAL
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and Guillermo Cordourier for his friendship and inspiring conversations.

Finally, I wish to thank my family for their invaluable help and understanding. I would like

to thank my wife and sons for their love and encouraging me to overcome difficulties. I thank

to my family from Colombia, Mexico and Switzerland for their support.

vii



viii



Agradecimientos

Agradezco a Dios por la vida y todos los favores que he recibido, de darme una familia, amis-

tades y la oportunidad de vivir experiencias edificantes que me han permitido crecer personal,

emocional y espiritualmente. Conocer personas que tendré en mi memoria por el resto de mis
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Mérida. Conocer y compartir con tantas personas valiosas en estos siete años y medio de estar

en el Cinvestav-Mérida, que si los nombrara ocupaŕıa muchas páginas de esta tesis.
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Abstract

In recent years, a fruitful research topic in condensed matter combining relativity theory and

quantum electrodynamics ideas has emerged in a new class of materials called Dirac materi-

als, which constitute an important platform in the realization of effective models inspired in

the quantum field theory. These materials provide an interesting feedback between condensed

matter and fundamental physics. Whereas the introdcution of anisotropy and inhomogeneity in

such systems lead to a wide variety of phenomena and applications so far unexplored. Thus, in

this thesis the effect of anisotropy and inhomogeneity on electron dynamics in Dirac materials is

studied using a Geometrical Approach (GA), which provides a direct understanding of the elec-

tronic properties derived from an effective hamiltonian describing massless Dirac fermions. Due

to the anisotropy, some of these Dirac materials show in their low-energy electronic structure,

a distorted Dirac cone whose geometrical parameters are captured from an effective hamilto-

nian Dirac. This is a generalization of the Dirac-like hamiltonian known in pristine graphene.

This hamiltonian has a parameter set with defined geometrical meaning, introduced through a

canonical transformation of the linear momentum. The parameters can be determined fitting

of electronic band structure from ab-initio calculations, as well as from available experimental

data, or to be directly related with Tight-Binding (TB) parameters.

Within GA, we predict the modulation of the Fermi velocity in homogeneously strained

graphene, being an important parameter present in most of the electronic properties. The

modulation of Fermi velocity could be evidenced through expansion or contraction of the Lan-

dau Levels (LLs) spectra referenced to the pristine case. The last was explored with Density

Functional Theory (DFT) calculations and TB approach to nearest neighbors, finding that LLs

spectra is contracted (expanded) when graphene is stretched (shrunken) under the same mag-

netic field. In particular, we analyze the effect of uniaxial, shear, isotropic and mixed strain
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on LLs energies, observing that a dominant isotropic expansion enhances the LLs contraction.

These findings suggest that homogeneous deformations in graphene can be evaluated by mea-

suring the changes in the LLs spectra, due to the linear behaviour of the effective Fermi velocity

in the elastic regime for non pure shear strains. These results help to set the LLs spectroscopy

in strained graphene, which could be used for the determination of relevant quantities as the

anisotropic Fermi velocity, Hall resistance, Grüneisen parameters, Poisson ratio and related

electronic properties.

Likewise from GA, we found that charge carriers inciding on the interface between two

anisotropy Dirac materials obeys an unconventional Snell’s law. We show that such law allows

the develop of an electron quantum optics where collimators, total internal reflectors, valley

beam splitters, negative refraction and valley filters can be obtained. A realization for graphene

is possible by designing a system with two different homogeneously strained graphene sheets.

These features would allow to build a series of novel devices inspired by well known optical

devices, beyond of graphene.
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Resumen

En años recientes, un fruct́ıfero tema de investigación en materia condensada que combina ideas

de la teoŕıa de la relatividad y electrodinámica cuántica ha surgido en una nueva clase de ma-

teriales denominados materiales de Dirac, los cuales constituyen una plataforma importante

en el desarrollo de modelos efectivos inspirados en la teoŕıa cuántica de campos. Estos ma-

teriales establecen un puente interesante entre materia condensada y f́ısica fundamental. La

introducción de la anisotroṕıa e inhomogeneidad en tales sistemas, lleva a una gran variedad

de fenomenoloǵıas y aplicaciones hasta ahora inexploradas. Es por esto, que en esta tesis se

estudia el efecto de la anisotroṕıa e inhomogeneidad sobre la dinámica de los electrones en mate-

riales de Dirac es usando un Enfoque Geométrico (EG), el cual provee una directa comprensión

de las propiedades electrónicas derivadas desde un hamiltoniano efectivo el cual describe a los

fermiones de Dirac sin masa. Debido a la anisotroṕıa, algunos de estos materiales de Dirac

muestran en su estructura electrónica de baja enerǵıa, un cono de Dirac distorsionado cuyos

parámetros geométricos son incorporados desde un hamiltoniano de Dirac efectivo. Esta es una

generalización del hamiltoniano de Dirac conocido en el grafeno pŕıstino. Tal hamiltoniano tiene

un conjunto de parámetros con un significado geométrico definido, introducido a través de una

transformación canónica del momento lineal, y que pueden ser determinados desde la interpo-

lación de las bandas de enerǵıa obtenidas con cálculos ab-initio, a partir de datos experimentales

o relacionados directamente con los parámetros del método de enlace fuerte.

Con el EG, predecimos la modulación de la velocidad de Fermi en grafeno deformado ho-

mogéneamente, siendo un parámetro importante en la mayoŕıa de las propiedades electrónicas,

que podŕıa ser evidenciado a través de la expansión o contracción del espectro de Niveles de

Landau (NL), con respecto al caso pŕıstino. Esto último, fue explorado usando el método de

enlace fuerte a primeros vecinos, encontrando que el espectro de NL es contráıdo o expandido
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cuando el grafeno es deformado para el mismo campo magnético. En particular, analizamos el

efecto de la deformación uniaxial, cortante, isotrópica y sus combinaciones sobre las enerǵıas de

los NL, observando que con una dominante expansión isotrópica mejora la contracción de los NL.

Estos hallazgos sugieren que las deformaciones homogéneas en el grafeno pueden ser evaluadas

midiendo los cambios en el espectro de NL, debido al comportamiento lineal de la velocidad de

Fermi efectiva en el régimen de elasticidad lineal para deformaciones no cortantes puras. Estos

resultados ayudaŕıan a desarrollar las espectroscoṕıa de NL en grafeno deformado, la cual podŕıa

ser usada para la determinación de cantidades relevantes como la velocidad de Fermi efectiva,

la resistencia Hall, los parámetros de Gruneisen, la razón de Poisson y propiedades electrónicas

relacionadas.

Igualmente desde el EG, encontramos que los portadores de carga que inciden sobre la in-

terfaz de dos materiales de Dirac anisotrópicos obedecen una ley de Snell no convencional.

Mostramos que tal ley permite desarrollar una óptica cuántica de electrones obteniéndose coli-

madores, reflectores total internos, divisores de haces de valle-pseudospin, lentes convergentes

y filtros de valle de pseudospin. Una realización de esta óptica es posible diseñando un sistema

con dos diferentes láminas de grafeno tensionadas homogéneamente. Estas caracteŕısticas per-

mitiŕıan construir una serie de nuevos dispositivos inspirados en dispositivos ópticos conocidos,

más allá del grafeno.
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Introduction

Graphene is the first two-dimensional material discovered with an one atom of thick, which is

conformed by a honeycomb mesh of carbon atoms [1]. The simplest way to obtain graphene

is exfoliating highly oriented pyrolytic graphite with the micromechanical cleavage technique,

allowing to separate the graphite layers tighten with Van der Waals interactions [1]. The

monolayer graphite called graphene has been studied intensively in the last ten years due to its

exceptional and unique electronic properties. The band structure had been studied theoretically

by Wallace since 1946, considering a Tight-Binding approach of graphite, where the monolayer

presents a semimetallic phase in low energy [2]. One of the most outstanding phenomenologies

discovered is the anomalous quantum Hall effect, evidencing that charge carriers are analog

to massless Dirac fermions with a linear dispersion relation. Thus, the electrons and holes in

graphene can be described by a Dirac-like hamiltonian, showing its pseudo-relativistic behavior

at low-energy excitations [3]. Due to this feature, an intriguing issue in physics called Klein’s

paradox can be tested [4]. Klein paradox consists in that incident charge carriers with ener-

gies less than the electrostatic potential can cross a barrier without backscattering, which is

classically forbidden. The Klein paradox was tested in high-energy physics experiments several

decades ago without success [5, 6]. Not least surprising, other discovered properties in graphene

are a high thermal conductivity of about 2-4 kW·m−1K−1 [7], transparency with transmittance

of white light about of 97.7 % [8]. Also, graphene has the highest crack point under strain,

being the strongest material known with a Young’s modulus of 1 TPa and a tensile strength of

130 GPa [9], as well as a high Fermi velocity of 1 × 106ms−1 approximately [3]. Further, it is

an excellent conductor with mobility µ ≈ 200, 000 cm2V−1s−1 [10]. For these discoveries, A.K.

Geim and K.S. Novoselov were awarded with the Nobel prize in 2010.

Many of the graphene’s properties have been studied under anisotropic conditions, such
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as the application of a mechanical strain, with the aim of tailoring properties or to reach

new phases from a topological phase transition [11, 13, 14, 15, 16]. Although, graphene is

a very promising material for technological applications, its gapless semimetallic phase is an

impediment for the realization of electronic devices. The hope for a gap opening in graphene

was concentrated on the spin-orbit interaction, but the constant coupling of this interacion is

practically negligible. Thus, several alternatives have been explored to generate a gap opening,

one way is creating graphene nanostructures, known as nanoflakes [17, 18, 19]. Other options are

the implementation of patterning that consists to induce atomic defects on graphene sheet [20],

and the application of a mechanical strain [11]. The last represents a more clean way to control

the graphene properties, which is not going in detriment of the main features of graphene.

Thus, a new branch in the study of graphene was created, called the strain-engineering of

graphene. However, the gap opening through strain-enginnering has been very discussed and

until nowadays, there is not experimental evidence that confirms it in graphene.

A wide group of materials similar to graphene, whose low-energy carrier excitations be-

have as massless Dirac fermions, have been denomined as Dirac materials [12]. Frequently is

reported the prediction of new Dirac materials [25], some have already been synthesized as

MoS2 by chemical vapor deposition [41] and phosphorene by mechanical exfoliation [42] and

studied under applied strain [43, 44]. The great interest behind the study of two dimensional

Dirac materials, apart of their exotic properties which represent a very important motivation,

is manifold. One of the main reasons is due to the technological potential: to control the carrier

density by the application of a gate voltage, to sinthesize Dirac materials with high mobility,

to find a quantum Hall effect, to get a field effect transistor and to decrease the limit of mini-

turization of electronic devices are some of main goals about research on Dirac materials. The

knowledge of this technological potential offered by the Dirac materials would lead to a new

age in electronics with a probably substitution of the silicon. Others motivations arise from

the possibility to design novel devices that exploit the pseudo-relativistic behavior of the charge

carriers. For example, a condensed matters devices that mimic known effects in light optics-

case, taking advantage of the analogy between photons and massless Dirac Fermions, but with

the opportunity of using electromagnetic interactions, finding exotic effects. Likewise, Dirac

materials offer the possibilty of explore new physics and testing of effective models developed
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in high-energy physics. Further, Dirac materials establish a bridge between condensed mat-

ters and high-energy physics, cosmology, statistical mechanics, chemistry and elasticity, that

in most cases, provides a fruitful feedback on the fundamental physics. The discover of ex-

otic effects as the topological magnetoelectric effect [21] was predicted from the modification

of standard Maxwell’s equations in three-dimensional topological insulators and it is one of the

many examples of the phenomenological richness present in the arising of new Dirac materials.

Nowadays, the study of Dirac materials has an enormous increment of works reported in the

last years, mainly in graphene, with several reviews adressed to oriented specific aspects such as

electronics properties [22], transport [23], strain-engineering [15], strong magnetic fields [24] and

among others, consolidating in one of the most studied contemporary hot topics in physics. The

knowlegment of new Dirac materials as dichalcogenides [25], topological insulators [21], organic

Dirac materials [26], silicene [27], germanene [28, 29], Weyl semimetals [30], d-wave supercon-

ductors [12], phosphorene [31], molecular graphene[32], artificial graphene[16, 33], graphyne,

graphdiyne, graphone, and graphane [34] have had a significantly evolution after the discovery

of graphene.

From the theoretical point of view, different authors have established effective models to

describe the charge carrier dynamics in Dirac materials taking into account the strain. Strain

produces remarkable effects on the electronic band structure, mainly in low-energy excitations,

such as the displacement of the Dirac points with respect to the high-symmetry points in the

first Brillouin zone, the change of the transversal cross section and the tilting of the Dirac cone

with respect to the vertical symmetry axis. The proposed effective models can be classified

in two groups: the first corresponds to models considering the expression of a hamiltonian

with respect to the high symmetry points in the first Brillouin zone. In the second group, the

hamiltonian is expanded around the new Dirac points where the current configuration is the

corresponding to the strained system. The first group develops an effective Dirac-like hamilto-

nian that takes on account the Dirac material’s symmetries. The analogy of these models with

related ideas of quantum electrodynamics and general relativity has brought to the designa-

tion of Quantum Field Theory in Curved Spaces (QFTCS) [15]. The second group establishes

an effective hamiltonian around the Dirac point, whose dispersion relation captures the main

features of the band structure near to the Fermi level. Both point of views are useful in the
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understanding of the behavior of the charge carriers of the Dirac materials under strain. Some

terms that are contained in both effective hamiltonians correspond to the same physical inter-

pretation, but with different values in the coupling constants. For example, for the case under

homogeneous strain, QFTSC contents two physical quantities completely absent in the models

of the second group. Those quantities are associated to scalar and vector potentials that for

the case of inhomogeneous strain can induce pseudo-magnetic fields. For homogeneous strain

due to the spatial independence, the generatation of pseudo-electromagnetic fields is absent,

but the pseudo-scalar and vector potential are strain dependents. Thus, many authors prefer to

study theoretically the effects of strain using the pseudo-vector and scalar potentials, neglecting

the Dirac cone anisotropy. Pseudomagnetic fields generated by strain are an interesting phe-

nomenology, due to the possibility of design electromagnetic devices working without the use of

electromagnetic fields. The presence of pseudo-magnetic fields was confirmed experimentally in

graphene nanobubbles as well as in molecular and artificial graphene [32, 35, 36], with values of

pseudo-magnetic fields of 1000 T, which is a value higher than the conventional magnetic fields

obtained in the laboratory. Some authors consider that both approaches are equivalent due to

the similarities in the physical description of some phenomenologies [11, 37, 38, 39] but with

quantitative differences. However, the most popular and used theory corresponds to the first

group above mentioned, which predicts some phenomenologies on strained graphene still not

yet experimentally confirmed.

The contribution of the present thesis corresponds to the second group aforementioned,

generalizing the existing models in the literature, and extending the strain-engineering ideas to

a more general concept: anisotropic Dirac cones. That anisotropy can have different origins

such as chemical manipulation, rearranged configuration of the system or stress in the material

producing changes on the electronic band structure [11, 33, 36, 40]. Thus, the anisotropy can be

introduced in the effective Dirac-like hamiltonian either through Fermi velocity tensor, canonical

transformation on the linear momentum, or from a renormalized linear momentum and spin

rotation. The three ways of introducing anisotropy in the hamiltonian are equivalent. We show

that all the information of the anisotropy is stored in a matrix whose parameters, describing an

especific material, can be obtained from Tight-Binding (TB) calculations, ab-initio calculations

using Density Functional Theory (DFT) or experimental data. The anisotropy matrix elements
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are related with geometrical parameters of the Dirac cone. For this reason, the proposed model

is called Geometrical Approach, which provides a direct way to link and tailor electronic, optical,

and transport properties with the anisotropy of the Dirac cone through the renormalization of

the Fermi velocity. In this thesis, homogeneously strained graphene is the case study system

chosen for the implementation of two applications of the Geometrical Approach:

i) Landau Levels Spectroscopy : In a material, the charge carriers moving in a magnetic

field have a quantized energy spectrum known as Landau levels (LLs). Using the Geometrical

Approach, it was found that this spectrum can be modulated by changing the effective Fermi

velocity, resulting from the variation of the Dirac cone geometrical parameters. It was predicted

that applying homogeneous strain can be produced an expansion or contraction of the density of

states (DOS) respect to the equilibrium spectra. Thus, the value of the effective Fermi velocity

can be extracted, as well as other related properties such as Hall resistance and conductivity.

We have shown that the expansion or contraction of the LLs spectra can be used as test in the

measurement of the effective Fermi velocity, due to the discrepancies in the prediction of the

effective Fermi velocity by the proposed effective models in graphene. That result is relevant to

the development of LLs spectroscopy in Dirac materials.

ii) Electron Quantum Optics : due to the analogy between photons and massless Dirac

fermions, we found that in a p−n junction between two anisotropic Dirac materials, the incident

charge carriers are refracted in the interface following a unconventional Snell’s and reflection

law, which was derived using the Geometrical Approach. Since the two Dirac materials in a p−n

junction show different anisotropies, the refraction of the Dirac fermions is valley-dependent.

These features allow to propose a series of electron-optics devices based on Dirac materials, for

instance, such as: reflectors, collimators, valley-filters, Veselago and super divergent lenses, and

valley-beam splitters.

The two mentioned physical systems were explored in homogeneously strained graphene

using a TB description in the most of cases and DFT in specific cases. These systems repre-

sent a narrow window of the great scope of the Geometrical Approach, because many systems

presenting Dirac cones can be explored as well as other phenomenologies.
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Chapter 1

Overview on strain engineering and

effective models for graphene and

related systems

Graphene presents exceptional electronic, elastic and transport properties, becoming a material

very promising for technological applications. Nevertheless, graphene’s gapless semiconductor

nature is an impedement for the development of electronic nanodevices. This problem has

led to explore several alternatives: on the one hand, a tentative solution is the proposal of

two-dimensional materials with similar properties that graphene. Nowadays, a great list of

materials had been considered as candidates, such as the recently synthesized dichalcogenides

or phosphorene [41, 42], having a Spin-Orbit Interaction (SOI) higher than graphene as a gap

generator. On the other hand, nanoflakes and nanoribbons of graphene [17, 18] presents a band

gap energy, but the edge roughness detriments their electronic properties. Therefore, other ways

have been referred and one route to create a robust gap in graphene, without damage of their

main features, is offered by strain engineering of graphene [11, 40, 45, 46]. This topic provides

the possibility of the obtention of a gap opening through the induction of a Topological Phase

Transition (TPT) from a semi-metallic phase with two Dirac cones to a band insulator. Further,

the strain engineering opens a wide range of possibilities to modulate the electronic, optical and

transport properties, allowing the design of novel devices operating with high pseudomagnetic

fields [35, 47]. One important motivation has been the development of novel experimental
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techniques for the application of in-plane strains on graphene [48, 49], waking the interest

about the confirmation of the predictions in several proposed models. Other striking related

topic is the combination of doping and strain effects, allowing the exploration of new topological

phases [50]. Recently, the possible transition to a superconductor state in graphene through the

combination of strain and doping was inquired [51].

In this chapter is presented the development of the main ideas that had arised about this

topic: the effect of strain on electronic properties of graphene and related materials, showing how

these effects were embodied in several effective models. Thus, the dynamics of Dirac fermions

for low energy regime can be described from an effective hamiltonian, which is constructed with

the required symmetries of the system. Likewise, different perspectives of these effective models

are exposed, as well as their predictions and experimental confirmations.

1.1 Brief description of Graphene

Graphene is the first two-dimensional material and it is conformed by a hexagonal lattice of

carbon atoms with sp2 hybridization, where 2pz orbital is perpendicular to the plane. The

hexagonal lattice can be seen as built through benzene rings whose hydrogen atoms are sub-

stituted by carbon atoms. The possibility about its synthetization was initially questioned,

because a suspended two-dimensional crystal must be mechanical unstable. However, the sta-

bility of graphene is warrantied due to the mechanical similarity with soft membranes [52]. Its

synthesizing was performed through micromechanical cleavage technique since 2004 by A.K.

Geim and K.S. Novoselov [1]. They were awarded with the Nobel prize in 2010 due to the great

technological potential that possess graphene further clarify intricated concepts of fundamental

physics. The theoretical study of graphene’s electronic properties proceeded several decades

ago [2], since the graphene sheet was considered as the basic constituent of carbon allotropes

among them the graphite, the carbon nanotubes, and the fullerenes.

The graphene physical properties can be well described using the Tight-Binding (TB) ap-

proach to nearest neighbors with energies to the Fermi level [24]. The hexagonal lattice is

separated by two triangular sublattices, where the unit cell contents two carbon atoms. The

lattice vectors are denoted as ~a01 and ~a02 as shown in Fig. 1.1 (a), together the position ~δ0j with
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j = 1, 2 and 3 for the three nearest neighbors, where the superscript 0 indicates the values

corresponding to pristine graphene. With a Cartesian system whose x-axis is chosen along the

Zig-Zag (ZZ) direction, the nearest atom positions are written as ~δ01 = a(
√
3
2
,−1

2
), ~δ02 = a(0, 1)

and ~δ03 = a(−
√
3

2
,−1

2
), being a = 1.42 Å the C-C equilibrium distance. Likewise, the vectors

of the reciprocal lattice are given by ~b01 = (2π/A0
c)~a

0
2 × ẑ and ~b02 = (2π/A0

c)ẑ × ~a01, so the first

Brillouin zone is a hexagon with high symmetry points K and K ′.

The TB approach to nearest neighbors reproduces the ground electronic band structure

only considering the pz orbital, which is decoupled with σ orbital. The overalp terms in the

TB calculation are neglected because the pz wavefunction decays quickly and it is expected

to be vanish for distances bigger than 1Å. Thus, the unique parameter in the TB calculation

is the hopping parameter t, having an estimated value of 2.71 eV [22]. Therefore, when the

TB hamiltonian is diagonalized, the dispersion relation has the shape shown in Fig. 1.1 (b).

One of the most striking aspects of this dispersion relation is the appareance of energy surfaces

with cone shape. The conduction and valence bands are touched at called Dirac points, which

coincides with the high symmetry points K and K ′ of the first Brillouin zone. Such aspect

was corroborated using angle resolved photoemission spectroscopy (ARPES) [53], which was

the first experimental evidence of the electronic band structure of graphene. The presence of

Dirac cones around the high symmetry points of the first Brillouin zone can be appreciated in

Fig. 1.1 (c). This special feature of the energy bands are obtained from the diagonalization of

the TB hamiltonian, expanding it around the Dirac point to first order in the wave vector ~q,

leading to

H =
3ta

2

 0 qx − iqy
qx + iqy 0

 , (1.1)

describing the dynamic of the electrons for low-energy excitations (E << t), where the dis-

persion relation is εq = s3at
2
|~q|, with s = sgn(E). Equation (1.1) is similar to a Dirac-like

hamiltonian within continuum limit [22, 24]

H = vF~σ · ~p, (1.2)

where ~p = ~~q is the linear momentum, vF = 3ta/2~ is the Fermi velocity playing the role

of the light velocity c, whose ratio is roughly estimated to be c/vF ≈ 300 [22]. The Pauli
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(a) (b)

(c) (d)

Figure 1.1: Scheme of a honeycomb lattice of pristine graphene and its electronic band structure

around the Dirac points. (a) Hexagonal lattice is separated by two triangular sublattices A and

B where its lattice vectors ~a01 and ~a02 and the neighboring sites ~δ01, ~δ02 and ~δ03 are shown. The

red and blue circles denote the carbon atom positions for the A and B triangular sublattices,

respectively. (b) Plot of the dispersion relation obtained from TB method in graphene. (c) The

first observation of the electronic band structure around the Dirac points using ARPES. (d)

Illustration of the concepts of pseudospin sublattice and pseudospin valley. These figures were

taken from refs. [11, 24, 53].
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a) b)

Figure 1.2: Experimental evidence of an anomalous quantum Hall effect in graphene. (a)

Measurements of the magnetoresistance (red) and Hall resistance (black) showing the apparition

of an anomalous quantum Hall effect. (b) DOS presents a serie of peaks due to the Landau level

quantization of the massless Dirac fermions in presence of a uniform magnetic field, causing

plateaus on the Hall conductivity. These figures were taken from ref. [54].

matrices denoted by ~σ discriminates the contribution of the two triangular sublattices, different

of the true physical spin of the particle in relativistic scenary. One identical hamiltonian (1.2)

is obtained at other unequivalent Dirac point K ′ due to the time reversal symmetry. Hence, a

4×4 diagonal block representation of the Dirac-like hamiltonian of the form HD = vF τz⊗~σ ·~p is

reached, being τz the z-component of the Pauli matrix acting on a pseudospin valley space [24].

Thus, the two first (last) components of the four-spinor Ψq = (ψAq,+, ψ
B
q,+, ψ

B
q,−, ψ

A
q,−) represent

the lattice components of a massless Dirac fermions from the pseudospin valley K+ (K−) which

coincides with the high symmetry point K (K ′) in pristine graphene. Usually in high-energy

physics, the helicity operator is defined as ĥ = ~σ · ~p/|~p|, and for massless Dirac fermions it

commutes with the Dirac hamiltonian, being a good quantum number. The helicity eigenvalues

are η = +1 or η = −1 indicating that the spin is parallel or antiparallel along of the movement

direction, respectively. A relation among s, η and pseudospin valley ξ is given by s = ηξ showing

that electrons from different valleys have opposite chiralities, further electrons and holes always

have different quiralities for the same valley, one pictorial representation about this is shown in

Fig. 1.1 (d).
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The resemblance between electrons in graphene and relativistic particles were revealed from

experimental realization of an anomalous quantum Hall effect [3, 54]. Measurements of magne-

torresintance Rxx and Hall resistance Rxy showed some common features to the integer quantum

Hall effect (IQHE): the apparition of Shubnikov-de Haas oscillations on Rxx as a function of

the magnetic field B, and the presence of plateaus over Rxy and conductivity σxy, due to the

Landau levels quantization, as seen in Fig. 1.2 (a). However, the Hall conductivity in graphene

σxy = (4e2/h)(N + 1/2) becomes different to the conventional σxy = (4e2/h)N , where e is the

charge of electron, h the Planck’s constant, and N is an integer. Therefore, a unusual behavior

of the QHE can be observed, since the transition from lowest hole to the lowest electron is

not interrupted passing through zero, as shown in Fig. 1.2 (b). Thus, a half-integer quantum

Hall effect was observed whose explaination can be formulated from the Landau levels (LLs)

spectrum of ultrarelativistic particles [3, 54].

En = sgn(n)
~vF
lB

√
2(|n|+ 1/2± 1/2), (1.3)

where lB is the magnetic length, sgn(n) = +1 (−1) indicates the Landau level energy for

electrons (holes), and ±1/2 corresponds to a LLs spectrum for massless Dirac fermions with

pseudospin +1/2 and −1/2. From equation (1.3), we noted that levels with |n| ≥ 1 present a

double degeneracy. This is because all levels are occupied by Dirac fermions with parallel and

antiparallel pseudospins to exception of the zero-level with only a pseudospin projection. In

consequence, the zero-level is shared equally by electrons and holes, as shown in Fig. 1.2 (b).

The concept of pseudospin sublattice and the analogy between electrons and massless Dirac

fermions, were the essential elements for the proposition of graphene as the first experimental

realization of the Klein tunneling (KT) [55]. Since 1929, O. Klein predicted that a relativis-

tic particle with kinetic energy lesser than the potential barrier height can cross it without

retro-dispersion independently of its wide [5]. The experimental evidence of the KT using the

elementary particles through nuclear processes or from astro-physics have been so far impos-

sible. The phenomenon was called as Klein’s paradox due to its counterintuitive nature. A

conceptual scheme of the nowadays called KT in graphene is shown in Fig. 1.3 (a), where inci-

dent electrons are shown crossing a potential barrier whose height exceeds the electron energy.

The potential barrier can be created using local chemical doping with the aim of generate holes,
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a) b)

Figure 1.3: Scheme of the Klein tunneling in graphene. (a) Kinematical construction and

physical system that illustrate how the potential barrier becomes transparent for Dirac fermions

with normal incidence and an energy lesser than barrier height. (b) Transmission probability as

a function of incidence angle for electrons of graphene incidenting with energy E = 80 meV on

a potencial barrier of wide D = 100 nm and heights V0 = 200 (blue) and V0 = 285 meV (red).

These figures were taken from ref. [4].

producing an energy displacement of the linear dispersion relation. Thus, the electrons pass to

the same valley branch due to the conservation of pseudospin, since electrons and holes have

their pseudospins aligned along the movement direction when a normal incidence is considered.

Hence, when KT occurs the potential barrier is transpararent. The transmission probability

was derived for different incidence angles in [4]. This can be obtained solving the Dirac equation

inside and outside of the barrier, and applying the continuity conditions on the wavefunctions

in the borders, obtaining

T (φ) =
cos2 φ cos2 φR

cos2 φ cos2 φR cos2(qxD) + (1− ss′ sinφ sinφR)2 sin2(qxD)
, (1.4)

where φ and φR are the incident and refraction angle, respectively. The signs s and s′ are defined

as s = sgn(E) and s′ = sgn(E − V ), qx is the linear momentum along x and D is the barrier

wide. Equation (1.4) presents resonances when qxD = nπ doing that T (φ) = 1. For normal

incidence φ = 0, the potential barrier is completely transparent independently of the wide D,
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a) b)

Figure 1.4: Pictorial representation of the collimation and valley beam splitter in graphene. (a)

Top: valley beam splitter and collimation are obtained using a graphene p − n junction with

interface along ZZ and AC direction, respectively. The green area denotes the region doped

with holes at energies where the trigonal warping becomes relevant. Bottom: a kinematical

construction shows how the refraction of Dirac fermions is valley-dependent using an interface

along ZZ direction, caused by the trigonal warping distortion. An interface along AC direction

changes the orientation of the trigonal warping, producing an effect of collimation at K valley

together with a little dispersion at other valle. (b) Top: Potential profile of a n − p − n−

junction and kinematic scheme of electrons transmission. Bottom: a focal source located at

n-region emits electrons towards the p-region, which acts as a lens that directs the beams to the

convergence point. In the n− region, the trigonal warping produces the valley beam splitting or

the collimation above mentioned. These figures were taken from ref. [56].

which is manifestation of the KT. An illustration of the transmission probability as a function

of incidence angle is shown in Fig. 1.3 (b).

It was also demonstrated that systems conformed by p − n junction in graphene acts as a

convergent lens of massless Dirac fermions, in a similar way to the refraction of light in metama-

terials [57]. Such mechanism could be used to separate and collimate valley polarized currents
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when graphene is doped beyond its linear energy regime. The trigonal warping distortion and

the relative orientations of the p and n regions are the responsible of a valley splitting, which

could have a relevant importance in the generation valley polarized currents in electronic de-

vices. This valley degree of freedom could be used as carry information [56]. In Figs. 1.4 (a)

and (b) were illustrated the orientation of the p and n regions and their respective kinemati-

cal construction, showing how the collimation and valley beam splitter can be obtained using

trigonal warping distortion. The main disadventage of this proposal is that the use of energy

values beyond linear region could present many practical problems.

1.2 Gap opening and Fermi velocity modulation in shear

and uniaxially strained graphene

Strain does not only modify the bond lengths, also affect the electronic band structure, allowing

to serve as modulator of the electronic properties. It is known from ab-initio calculations,

that it is not neccesary to count with a constitutive equation for study the effects caused by

strain. Therefore, an instructive and complementary exercise result of the comparison between

numerical and analytical calculations that involve strain. The example is shown for strained

graphene, where the analytical route can be done using TB method and elasticity theory.

In order to observe how the strain in graphene changes the energy landscape and induce a

Topological Phase Transition (TPT) from a semimetallic to an insulator phase, it is necessary

to determine through elasticity theory, the bond lengths and the new position of the carbon

atoms on the current configuration. Thus, for uniaxial or shear strain in graphene, the bond

lengths was obtained, expanding to first order the strain tensor components [11]

δ1
a

= 1 +
3

4
uxx −

√
3

2
uxy +

1

4
uyy (1.5)

δ2
a

= 1 + uyy (1.6)

δ3
a

= 1 +
3

4
uxx +

√
3

2
uxy +

1

4
uyy, (1.7)

the modification of the position of carbon atoms lead also to a reciprocal lattice distortion and
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Figure 1.5: Topological phase transition described from the nearest hopping parameters with a

TB approach for uniaxially strained graphene. Gray and white area represent the semimetallic

and insulator phase, respectively. The black (red) curves show the hopping factors as a function

only of the tensile strain (tension angle). The blue isostrain curve has the minimal critical

tensile strain ε = 0.23 where the TPT is reached for the tension angles θ = 0, π
3
, 2π

3
. This figure

was taken from ref. [11].

a shift of the high symmetry points.

The hopping parameters of a TB approach to nearest neighbors are frequently related with

the bond lengths through an exponential decay rule [11]. Then, it is possible to find the strain

values where the TPT is reached. About this, Pereira et. al. [11] demonstrated how a gap

opening can be induced through uniaxial strain, which is illustrated in Fig. 1.5. In this plot,

the shadded rectangular area is the semi-metallic phase, where all points satisfy the triangular

inequallity |ti − tj| ≤ tl ≤ ti + tj with i 6= j 6= l between hopping factors [14, 58]. Outside this

region, the strain converts to graphene in an insulator with a gap which can be robust when the

tensile strain is increased. The red and black curves are parametrized trajectories of the tensile

strain ε and tension angle θ of the hopping parameters. Iso-strain (red) curves are function of

the angle θ, while the iso-angular (black) curves are function of the tensile strain ε. Along Arm-
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Figure 1.6: DOS as a function of shear strain ζ. (a) The gap opening is obtained at ζ = 0.16

using shear strain. (b) The combination of uniaxial and shear strain induces a band gap for a

strain value ζ = 0.12. These figures were taken from ref. [45].

Chair (AC) direction, a gap opening can not be generated since the trajectory is always within

the shadded area. In contrast, along ZZ direction a more appropiated trajectory to induce a gap

is obtained, leaving the shadded area for a critical tensile strain value of 23 % approximately.

Although, uniaxial strain guarantees the induction of a gap in graphene, the excessive value

of the tensile strain around 23 % is very near to the breaking point [9] and an experimental

observation could not be possible. However in other work, a critical tensile strain of 16 % was

predicted for shear strained graphene from a TB approach, having a lower gap threshold for

shear strain than uniaxial strain [59]. Theoretical DOS around the Fermi level as a function of

shear strain parameter, evidenced a gap opening. With the combination of uniaxial and shear

strain, the critical strain value can be less to 12 %, as shown in Fig. 1.6. Those works indicate

that the use of other strain types could obtain a gap threshold with smaller critical values. This

was already explored by Naumov and Bratkovsky through a periodic inhomogeneous strain from

ab-initio methods [46].

In other works, DFT calculations have also been performed at cases of uniaxial and homo-

geneous strain [45, 46, 60, 61, 62, 63, 64, 65, 66, 67]. There are several aspects where DFT

method and TB approach match, the most prominent is the moving of the Dirac cones toward

a merging. Indeed, the most effective way to merge the Dirac points is straining along ZZ direc-

tion. Likewise, the shifting of Dirac points with respect to high symmetry points was observed,
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but the prediction of a gap opening has been highly disputed. The anhilation of Dirac points at

merging does not lead inmediately to a gap opening, due to that the σ∗ band is pushed down

toward the Fermi level. This prevent the total opening of a gap. The last, was observed taking

into account the relaxation of the atomic positions [46, 66, 67]. Recently, Kerszberg and Surya-

narayana [62] studied homogeneous strains in graphene and found that with a stretching of 11

% along ZZ direction, and shrinking -20 % along AC direction, a gap of 1 eV can be opened.

Their calculations were done without relaxation of the atomic positions. Thus, the relaxation

of the atomic positions seems to be a key point in the understanding of the strain engineering

graphene’s bandgap.

Other treated aspect of the graphene’s strain engineering is the modulation of the electronic,

optical and transport properties. The study of the modulation of the graphene’s properties

through the strain is mainly focused in the anisotropy of the Fermi velocity. To understand the

anisotropic behavior of Fermi velocity is essential in the study of strained graphene, because it

is involved in the most of the physical observables. Thus, tuning the Fermi velocity also affects

to the observable depend on it. TB and DFT calculations [66, 67, 68] show that the Fermi

velocity decreases under uniaxial strain with an evident anisotropy along ZZ and AC directions.

The tuning on the Fermi velocity has influence on the increment of work function [66], the

optical conductivity [37, 69] and LLs spectra [67, 68], for citing some examples. Two recently

experimental reports had evidenced the inhomogeneity and anisotropy of the Fermi velocity.

The first was performed for graphene grown on a Rh foil [70], where the spatial variation of

the Fermi velocity is due to the ripples caused by the induced strain. In the second work,

graphene was grown on BN [71] obtaining that the strain varied with the height of the ripple.

Then, the Fermi velocity can be estimated through the measurements of the DOS. On the

other hand, the Fermi velocity also is modified with the doping, where the electron-electron

exchange interactions produce a Fermi velocity renormalization as well as a distortion of the

Dirac cone [50, 72, 73, 74]. Experimental works reported variations of the Fermi velocity as a

function of the electron density, observing that it is increased when electron density decreases

[73, 74]. Rostami and Azgarid theoretically studied how the Fermi velocity changes with the

use of uniaxial strain and doping, noting that the charge compressibility is tuned through the

Fermi velocity modulation [72], in agreement with previous experimental results [75].
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a) Pristine graphene b) Strained graphene

Figure 1.7: Geometrical illustration of the Dirac and high symmetry points in the first Brillouin

zone. (a) For pristine graphene these points coincide while in (b) for strained graphene, the

points do not coincide anymore. This figure was taken from ref. [22].

In summary, the three main effects caused by strain are exhibited as follow due to their

importance in the development of several known effective models [15, 24, 37, 38]:

(i) The shifting of the Dirac points. In pristine graphene, the Dirac points match with the

high symmetry points of the first Brillouin zone. For strained graphene, these points are shifted

with respect to high symmetry points of the deformed first Brillouin zone. From TB approach

to nearest neighbors of uniaxially strained graphene, and assuming that the lattice remains

undeformed, the Dirac points position were calculated exactly along ZZ and AC directions [11]

~KD =

(
± 2√

3
arccos

[
− t2

2t1

]
, 0

)
, (1.8)

where t1 and t2 are related with the strain tensor components through the Papaconstantopoulus’

rule [76]. New high symmetry points were given directly in terms of uniaxial strain parameters

~K =
4π

3
√

3

(
1− 1

2
ε(1− ν),−ε(1 + ν) sin[2θ]

)
, (1.9)

where ν is the Poisson’s ration, ε is the tensile strain and θ indicates the strain direction. The

Fig. 1.7 shows the shifting of the Dirac points with respect to the high symmetry points of the

deformed first Brillouin zone.

(ii) Deformed cross section of the Dirac cone. It was probed from TB and DFT calculations

that the transversal cross section of the Dirac cone is elliptical within low energy regime (E < 1
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Figure 1.8: Energy contours for (a) pristine graphene, (b) uniaxially strained graphene along

AC direction with a value of tensile strain ε = 0.2, and (c) along ZZ direction with ε = 0.2.

Figure took from ref. [11].

eV) for homogeneous strain with a shear strain contribution different to zero [11, 38, 66, 67].

Beyond low energy regime, it is necessary to include trigonal warping effects for the study of in-

triguing phenomenologies [24, 37]. The distortion of the Dirac cone has important consequences

in the electronic ground-state properties, such as LLs expansion/contraction, Fermi velocity

modulation [24, 68, 67], optical conductivity [37, 77], and anisotropic conductivity of strained

graphene [78]. The deformed cross section of the Dirac cone has been studied from effective

models with an expanded TB hamiltonian around Dirac point [24, 37, 38, 67]. In Fig. 1.8 is

illustrated how the transversal section changes as a function of uniaxial strain [11].

(iii) Electron-hole asymmetry: overlap and tilted Dirac cones. In an earlier report about

pristine graphene [79], it was observed an asymmetry between the valence and conduction for

π band around the Dirac points, known as electron-hole asymmetry. This asymmetry was

described with the inclusion of overlap parameters in the TB approach to nearest neighbors.

These parameters are smaller than the hopping parameters. In strained graphene, the electron-

hole asymmetry arises by the overlapping of the pz wavefunctions and when the next nearest

neighbors hoppings in the TB calculations are taken into account. In most of the cases, the

overlap parameters are neglected due to their small value. Expanding the TB hamiltonian

around Dirac point, the next nearest neighbors hopping parameters are responsible for the

tilting of the Dirac cones [68], which can have a main contribution for uniaxial strain beyond

15 % along ZZ direction [67]. Other Dirac-like systems, as the organic salt α-(BEDT-TTF)2I3
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for instance, presents a tilting of the Dirac cones greater than graphene [68]. Thus, the effect

of tilt on electronic properties as magnetophonon resonance can be evidenced [80, 81].

1.3 Effective models for strained graphene

The effects mentioned in the above section have been embodied in several effective models de-

scribing the dynamics of Dirac fermions in strained graphene. The most known is the Quantum

Field theory in Curved Spaces (QFTCS) model. Within this theory, a hamiltonian was con-

structed taking inot account the symmetries of the system, namely using group theory for high

symmetry points. Each term of the hamiltonian represents some of the effects caused by strain

[15]. One interesting result of the QFTCS was the connection of the strain tensor components

with pseudo scalar and vector potentials, as a pseudo-electromagnetic field. The QFTCS is

successful because many predictions have been experimental confirmed such as pseudo-LLs in

graphene like-systems such as molecular graphene [32] and hexagonal optical lattices [36]. This

has led to the proposition of electromagnetic devices operating without electromagnetic fields,

since the inhomogeneous strain produces pseudomagnetic fields. For instance, a quantum Hall

effect without magnetic field could be observed.

On the other hand, effective models have been developed taking into account an effective

Weyl-like hamiltonian around Dirac point. From this point of view, the description of the effects

caused by homogeneous strain can be performed without the use of pseudo scalar and vector

potentials. All the information of strain is mainly captured from the distortion of the Dirac cone,

which has been neglected in most of the works using QFTCS. Each author from this perspective

have studied different aspects of the electronic band structure with its particular assumptions.

A third proposal consists in the study of the electron dynamics through the development of an

effective hamiltonian, which is expanded around the invariant time reversal M point of the first

Brillouin zone. Further, this consideration has the advantage of describe a possible TPT from

the semimetallic phase which involves two Dirac cones, to insulator phase where the Dirac points

are merged. Herein, each effective model with its predictions and experimental confirmations

will be exhibited.
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1.3.1 Quantum field theory in curved spaces

This approach arises of the similarity of involved physical concepts among Quantum Field The-

ory, general relativity and strained graphene [47]. Since electrons in strained graphene also

behave as massless Dirac fermions, an anisotropic Dirac equation is needed. From symmetry

group analysis, it is possible to construct a hamiltonian that describes the dynamics of mass-

less Dirac fermions in strained graphene. The system presents twelve symmetries, where the

hamiltonian must commutate under these symmetry operations. Hence, a proposed hamiltonian

[15, 82, 83] that provides a direct relation with the strain tensor components for non-uniform

strain is given by

H = H0 +
6∑
i=1

giHi +
6∑
i=1

g̃iH̃i. (1.10)

The first term is the Dirac-like hamiltonian for pristine graphene. The second term, corresponds

to the sum of the contributions which are invariant to the symmetry operations for in-plane

strains. The second sum is over the six terms that are invariant under the symmetry operations

for out-plane strains. These last terms have identical form than the terms in-plane, doing the

substitution uij → ∂ih∂jh, where h is the displacement out-plane, gi and g̃i are the coupling con-

stants that can be obtained from DFT calculation, TB approach or experimental data available.

The six terms Hi will be exposed in the following with their respective physical interpretation:

(i) H1 = (uxx + uyy)I, pseudo scalar potential. It is a term that can be obtained expanding

the TB hamiltonian around the high symmetry point in the deformed first Brillouin zone. Its

effect on electronic band structure is very similar to an external electric field, but it is only

caused by strain and it can not be considered as an induction of an electric field due to the

strain. It was described for first time in the study of electron-phonon scattering in carbon

nanotubes [84]. However, ab-initio calculations for electron-phonon interactions estimated that

the coupling constant g1 can be neglected [85].

(ii) H2 = (uxx − uyy)σx − 2uxyσy, pseudo vector potential, where σx and σy are the Pauli

matrices which discriminates the pseudo-spin of A and B triangular sublattices. This term

proceeds of the shift in the momentum space of the Dirac cone and it is embodied by a pseudo

vector potential, which is very similar to the vector potential in the gauge theory of electro-

magnetic fields. Its analogy with vector potential of the magnetic field, allowed the prediction
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of a quantum Hall effect without magnetic field [40], and several analogies with the photonic

crystals [36, 86] and quantum confinement [11]. Experimental works in molecular graphene [32],

artificial graphene [36], and graphene nanobubbles [35, 87] have confirmed the observation of

pseudo LLs due to generation of fictitious magnetic fields [35].

(iii) H3 = [(uxx−uyy)qx−2uxyqy]I, Dirac cone tilt, where qx and qy are the coordinates of the

linear momentum around high symmetry point K. Its effects on the electron dynamics is almost

neglegible for strained graphene [24, 67]. However, for uniaxial strain along ZZ direction, its

effects are possible to observe on the Fermi velocity beyond 15 % of tensile strain [67]. The tilt

of the Dirac cone is responsible of the photoinduction of valley currents [88], magneto-phonon

resonance [80, 81], and other effects on the quantum transport [89]. In materials like the organic

salt α-(BEDT-TTF)2I3, an appreciable tilting of the Dirac cones was observed [26].

(iv) H4 = (uxx + uyy)(σxqx + σyqy), Isotropic Fermi velocity. This term corresponds to the

separation of the strain tensor between isotropic and shear strain contribution. It was obtained

from the expansion of the hopping parameters to first order, in the strain tensor components

when a TB approach to nearest neighbors was considered. It has been generalized for non-

uniform strain, establishing a spatial dependency of the Fermi velocity [83].

(v) H5 = uijσiqj, Anisotropic Fermi velocity. This term appears in the same process de-

scribed above for the H4 term, taking into account the shear strain contribution. Likewise that

H4, also is valid for non-uniform strain, leading to a spatial and anisotropic description of the

Fermi velocity, which is of relevant importance because it is involved in almost all the physical

observables of Dirac-like systems.

(vi) H6 = [∂y(uxx − uyy) + 2∂xuxy]σz, Gap opening term. The effect of this term is very

similar to the Zeeman coupling associated to the generation of a pseudo-magnetic field, caused

by the inhomogeneity of the strain profile. Further, it offers a new mechanism for the induction

of a gap opening in graphene [90].

From this approach, the Fermi velocity tensor can be related with strain tensor compo-

nents, deriving the terms H4 and H5 with a TB model to nearest neighbors. Then, the TB

hamiltonian is expanded around a high symmetry point of the undeformed first Brillouin zone

~K = (4π/3a
√

3, 0). Assuming that the hopping parameters change linearly with the bond
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lengths as tj ≈ t(1− β δj
a

) [83], the elements of the Fermi velocity tensor are

vij = vF [δij −
β

4
(2uij + δijukk)], (1.11)

where vF = 3ta/2~ is the Fermi velocity in pristine graphene. The value of the effective Fermi

velocity is extracted calculating the squared root of the tensor determinant (1.11)

v∗F = vF [1− β

2
(uxx + uyy)]. (1.12)

This expression is obtained for comparison with expressions calculated from other effective

models. Besides the Fermi velocity prediction, other phenomenologies such as the generation

of pseudo electromagnetic fields, zero field quantum Hall effect [40], quantum confinement and

electron collimation [69], valley beam splitter [91, 92, 93], and the Goos-Hänchen effect [91] were

studied from the present approach. They were predicted initially for strained graphene, but later

extended to other graphene-like systems as artificial graphene [36], molecular graphene [32] and

graphene nanobubbles [87]. Some of these predictions have been confirmed experimentally

[32, 36, 35, 94]. Herein, it is exposed some proposals about this model:

Pseudo electromagnetic fields by strain engineering. The terms H1 and H2 of the hamiltonian

(1.10) are related with pseudo scalar and vector potentials, respectively. For inhomogeneous

strain, these potentials

Vs(~r) = g1[uxx(~r) + uyy(~r)] (1.13)

~A(~r) = ±g2(uxx(~r)− uyy(~r),−2uxy(~r)) (1.14)

generate effective electromagnetic fields, where the sign ± indicates the pseudospin valley [15].

Since the coupling constant g1 is neglegible, only a pseudomagnetic field could be observed

[47]. Guinea et. al. proposed that applying a strain aligned along three main crystallographic

directions, a uniform and strong pseudomagnetic field is induced exceeding 10 T, as shown in

Fig. 1.9 [40]. In consequence, a Landau quantization is induced by the ficticious magnetic field

which must be evidenced with the appearence of peaks in the DOS. The required conditions were

experimentally obtained by Levy et. al. through graphene grown on Pt(111) where nanobubbles

were formed on the surface [35], LDOS measurements allowed the observation of pseudo-LLs as

well as the induction of pseudomagnetic field greater than 300 T.
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a) b) c) d)

Figure 1.9: Schematic representation of a triaxial strain for the generation of a pseudomagnetic

field in graphene. (a) Geometric distortion caused by triaxial strain (red) in comparison with

biaxial strain (blue). (b) Specific directions for application of a triaxial strain in graphene.

(c) The black arrows are the external forces that must be loaded upon a perimeter’s disc of

graphene sample and (d) shows the distortion caused for these forces. The figures were taken

from ref. [40].

Following this, the searching for pseudomagnetic fields was extended to other systems with

similar electronic features that graphene. One example is the molecular graphene, which consists

of a distorted hexagonal arrangement of CO molecules adsorbed by Cu(111), that behaves as

a nearly free two-dimensional electron system (2DES). Through chemical manipulation, the

position of CO molecules were modified for simulating a triaxial strain configuration as shown

in Fig. 1.10, where a pseudo Landau quantization can be evidenced.

In other system, a strained honeycomb photonic lattice was designed with dielectric waveg-

uides simulating a triaxially strained hexagonal lattice, see Fig. 1.11. Monochromatic light

propagates through the structure tunnelling between neighbouring sites, that are evanescently

coupled to one another site [36]. The coupling strength between the waveguides is analog to

the hopping parameter in a TB approach to nearest neighbors obeying an exponential decay

rule as a function of the separation among waveguides. Thus, solving the coupled-mode equa-

tions associated to the problem, a band structure very similar to the obtained in graphene was

found. These similarities have been used as a bridge that connects graphene physics with op-

tics [95, 96, 97], leading to the first experimental demonstration of a pseudomagnetic field in

optics, which was evidenced from DOS due to apparition of resonance peaks, attributed to the
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Figure 1.10: Sequences of a triaxial strain simulation using a modifiable arrangement of CO

molecules adsorbed by Cu(111). The emergence of pseudomagnetic field is observed in the DOS

presenting LLs quantization. Figure took from ref. [32].

generation of photonic LLs [36].

Quantum confinement, tunneling and electron quantum optics analogies. Under this ap-

proach, many reported works only incorporated the H2 term, whose effect on the band struc-

ture is the shifting of the Dirac points with respect to the high symmetry points. The other

effects of deformation like the tilting of the Dirac cone were considered as corrections. For in-

stance, Pereira and Castro Neto studied the charge carriers transmission on a uniaxially strained
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Figure 1.11: Observation of LLs quantization produced by pseudomagnetic field in a triaxially

strained honeycomb photonic lattice. This figure was taken from ref. [36].

Figure 1.12: (a) Illustration of a strained graphene barrier, the region I and III is conformed

by pristine graphene and region II by strained graphene. (b) An experimental proposal of the

system shown in (a). Figure took from ref. [69].

graphene region with the interface oriented along ZZ direction [69]. Fig. 1.12 shows a scheme

of the system with its possible experimental implementation, where the region I and III are

formed by pristine graphene and the region II by uniaxially strained graphene and a potential

barrier. Therefore, the electrons and holes satisfy the Dirac equation in the region I and III. In

the region II, the description of the charge carriers behavior must be taken into account through

the inclusion of a constant pseudo vector potential induced by the uniaxial strain, and entering

in the Dirac-like hamiltonian via minimal substitution. From this perspective, KT was shown to

be affected under uniaxial strained, having an angular shift which is caused by a finite pseudo

vector potential. It is possible to get a quantum confinement, suppressing the transmission
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Figure 1.13: Polar electron transmission curves from K (red) and K’ (blue) valley as a function

of the incidence angle for the system shown in the inset. (a) A valley beam splitter was obtained

with E = 10, Ay = 5 and D = 1 and (b) a valley filter with E = 10, Ay = 15 and D = 1. The

figure and units are taken and defined in [91].

with a strong pseudo vector potential when the tensile strain is increased. Beam collimation

can be obtained for a high potential barrier and a slight doping in the region I. Nevertheless,

the inclusion of the Dirac cone distortion has an important contribution already pointed out by

other authors [98].

Using the same system and considerations, Zhai et al. proposed the realization of optical-

like devices [91, 92]. They found that the refraction of Dirac fermions within the strained

graphene barrier is valley dependenting, the unpolarized incident beam is divided into two

valley-dependent refracted beams. Thus, the strained graphene barrier works as a valley-beam

splitter. While for other values of strain, the Dirac fermions from a certain valley are totally

reflected and from the other one are refracted, then the barrier works as a valley filter. Also, it

was predicted a lateral shift of the reflected beam, of the same way as the Goos-Hänchen effect

of the light [99, 100, ?]. Fig. 1.13 shows the electron transmision for a set of the strain values

that illustrate a valley beam splitter and a valley-filter [91].

Returning to the above discussion, the vector potential (1.14) only describes the shifting of
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Figure 1.14: Pictorial representation of the Dirac cones in pristine (dotted line) and strained

(solid line) graphene with the width of energy (green area) allowed to finite temperature in the

observation of a pseudomagnetic field. Red arrow shows as QFTCS could predict a pseudomag-

netic field outside the green observable region. This figure was taken from ref. [38].

the Dirac points, but the inclusion of the Dirac cone distortion in graphene and in other Dirac

materials with a significant tilting must have a non-negligible contribution. This is because

when the Dirac cone changes its shape, the group velocity has not the same direction that the

linear momentum. Thus, the predicted optical-like effects with Dirac Fermions for strained

graphene [69, 91, 92, 99] should be revisited taking into account the Dirac cone distortion.

Criticism about quantum field theory in curved spaces. The derivation of the H2 term of this

approach, that perfectly describes the most of the results exhibited above, was obtained by first

time expanding the TB hamiltonian around high symmetry point of the unstrained first Brillouin

zone [47, 84, 102]. All information of the strain was captured by the hopping parameters,

establishing a linear relation between hopping and strain tensor components, which is resulted

of expand the exponential scaling rule to first order. In a related work, was proved that the

exponential scaling rule can be dependent of the strain profile in graphene [60]. In almost all

the reports about the topic [11, 37, 38, 40, 72, 103], the exponential scaling rule has been used

indiscriminately as a universal rule. On the other hand, it was noted that the terms H3, H4 and

H5 and the absence of an explicit inclusion of the lattice deformations in the direction cosines in

the TB approach, could have observable effects hitherto ignored. Aware of these shortcommings,

Kitt et al. tried to solve the absence of an explicit inclusion of the lattice deformations, finding
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corrections and also a K-dependency of the pseudo-magnetic field, but considering again a

linear relation between the hopping parameters and strain tensor [90, 104, 105, 106]. The linear

relation between the hopping parameters and strain tensors components led to the effective

hamiltonian (1.10) linearly related with the strain tensor [15, 83, 106]. Hence, the previous

estimation of the coupling constants through DFT calculations, have been performed without

take into account the relaxation of atomic positions. Thus, a different proposal should allow the

estimation of coupling constants from more realistic calculations, where the relaxation of the

atomic positions could be considered [67]. The hamiltonian (1.10) indicates us that the QFTCS

model only is valid and applicable to Dirac materials within a linear regime, even knowing that

there are experimental and theoretical evidence that graphene is a material with a considerable

nonlinear elasticity range [35, 107, 108]. On this point, Crosse developed a differential geometry

method, consisting in the derivation of a strain theory for large displacements of finite lengths

terms [103]. With this proposal, a comparable pseudomagnetic field with respect to the linear

strain contribution was obtained. Other solution was given by Ramezani et al., who revisited

the QFTCS model using a TB approach to nearest neighbors, where a systematic expansion of

the exponential scaling rule in terms of the strain tensor to second order was developed. Thus,

previous results was generalized adding seven extra terms to second order in the hamiltonian

(1.10), that leads to a best description of the pseudo-magnetic field effects beyond of the linear

region [39]. However, the performing of an expansion of the hamiltonian around the high

symmetry point could not guarantee the linearity of the dispersion relation. Therefore, the

hamiltonian (1.10) must be once more modified, adding extra terms to second order in the

linear momentum, apart of the terms aforementioned by Ramezani. Other overlooked aspect

was pointed out by Oliva-Leyva and Naumis [38]: a TB hamiltonian of strained graphene

expanded around an arbitrary point, different to the Dirac point, could not explain correctly

the obtention of a pseudo-magnetic field for in-plane deformations, as pictorial represented in

Fig. 1.14. This is because at finite temperature the energy E(K0) could be out of the required

range |E(K0)− µ| ≤ kBT for its observation. These necessary modifications in the description

of the electron dynamics from the QFTCS make it requires too many terms, converting it in

a limitated effective model. Hence, a suitable explanation of the induction of pseudomagnetic

field and other related effects must be performed from an approach with an effective hamiltonian
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developed around the Dirac point.

1.3.2 Effective model for motion and merging of Dirac points in

Dirac materials

The model proposed by Montambaux et al., takes into account the motion and merging of Dirac

points in two-dimensional crystals with Dirac cones in its electronic band structure [13, 24, 109,

110]. From TB approach, an effective hamiltonian was derived for low energy regime, expanding

the hamiltonian around the M point of the first Brillouin zone and keeping the quadratic term

in qx. The so called universal hamiltonian was obtained

H(~q) =

 0 ∆ + q2x
2m∗
− icqy

∆ + q2x
2m∗
− icqy 0

 , (1.15)

where ~q is the linear momentum vector around the M point, m∗ is an effective mass along x axis,

c is an associated velocity to the y-direction, and ∆ is the parameter that drives the TPT shown

in Fig. 1.15. The physical meaning of ∆ is phase-dependent, −∆ is the energy at the M point

which corresponds to a saddle point for the conduction band within semimetallic phase, while

2∆ is the band gap value in the insulator phase. All these quantities can be related with the

hopping parameters and the atomic positions of the crystal [13]. Diagonalizing the hamiltonian

(1.15), the following dispersion relation was obtained

E(~q) = ±
√

(∆ +
q2x

2m∗
)2 + c2q2y, (1.16)

which are the energy bands shown in Fig. 1.15. Since the system is invariant under time-reversal

operation, the apparition of Dirac points occur in pairs, one located at KD point and the other

in −KD. Mathematically, the ∆ parameter moves two opposite Dirac point to merge at the

time-reversal invariant M point. Thus, when ∆ < 0 the involved Dirac points in the TPT are

separated having each one opposite Berry’s phase and the dispersion relation (1.16) displays

two insulated Dirac cones. For ∆ = 0, the Dirac points have merged in M point occurring the

TPT, where the Berry’s phases are annihilated. Hence, the two Dirac cones disappear and in

their place a hybrid surface between a Dirac cone along qy direction and a paraboloid along the
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(a) (b) (c) (d)

Figure 1.15: Merging of two Dirac cones when the parameter ∆ is increased from (a) to (d) and

changing the sign at TPT for ∆ = 0 in (c). The dispersion relation stays linear along the qy

direction [13].

other direction is obtained. Therefore, novel physical effects could be observed for merging of

Dirac points. Although, this TPT seems to be inaccessible for graphene, other systems such as

α-(BEDT-TTF)2I3 [26], cold atoms in optical lattices [16, 111] and VO2/TiO2 heterostructures

[112] offer an opportunity to appreciate this phenomenology. In the case of ∆ > 0, the Dirac

material presents an insulator phase with a parabolic dispersion relation.

Figure 1.16: Evolution of LLs spectra through the universal parameter δ(∆) for the levels

n = 0, 1, 2 and 3. Dotted red curves are obtained solving numerical differential equation derived

from effective hamiltonian (1.15), and blue curves are calculated from semi-classical quantization

rule. Dashed line indicates the value of energy in the saddle point, where a progressive lifting

of the two valley degeneracy occurs when ∆ is increased. Figure took from ref. [110].

LLs as a function of the ∆ parameter. The Landau level spectrum in presence of a magnetic
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Figure 1.17: Isoenergy contour curves and blue areas that represent the orbit area S(ε) = 2πenB

covering one valley and S(ε) = 2πe(n+ 1/2)B for both valleys, in the determination of the LLs

from semi-classical quantization rule. This figure was taken from ref. [109].

field was studied in detail under this approach [13, 109]. It was found that the dependency of

the LLs with the magnetic field changes through the TPT. Fig. 1.16 shows the evolution of

LLs as a function of the adimensional δ parameter defined as δ = ∆
(

2
m∗ω2c2

)1/3
for the levels

n = 0, 1, 2 and 3, where the red dotted curves represent the numerical solution of the differential

equation derived from the hamiltonian (1.15) with magnetic field B. The blue solid curves are

obtained from semi-classical quantization rule S(ε) = 2π(n + γ)eB, where S(ε) is the area of

the orbit of ε energy in reciprocal space shown in Fig. 1.17, and γ is a phase related with the

Maslov contribution and Berry’s phase [113]. Thus, analytical expressions can be given for LLs

spectra [13]

F− =
√

1− r

[
E

(√
2r

r − 1

)
− (r + 1)K

(√
2r

r − 1

)]
, r < −1 (1.17)

F+ =
√
|r|

∣∣∣∣∣2E
(√

r − 1

2r

)
− (r + 1)K

(√
r − 1

2r

)∣∣∣∣∣ , r > −1. (1.18)

where r = ε/∆, K(x) and E(x) are the complete elliptic integral of first and second kind,

respectively [114]. These expressions allow to get the LLs expression as a function of the

quantum number n and B. When ∆ < 0, the LLs energy is written as εn ∝ sgn(n)
√
|n|B

with n = 0,±1,±2, . . ., valid for low energy and magnetic fields. For high energies, more terms

are needed to include other effects like trigonal warping. Returning to the Fig. 1.16, the blue

dashed line indicates the energy value in the saddle point. Here, the two-fold degeneracy is

33



Figure 1.18: Sequences of the experimental setup from [33]. (a) Ultracold Fermi gas of 40K

was confined using three retro-reflected laser beams. (b) Tuning the amplitudes and frequencies

of the lasers is possible to induce topological transition phase at following two-dimensional

optical lattices: chequerboard, triangular, dimer, honeycomb, 1D chain and square. (c) A

deformed honeycomb lattice where triangular sublattices A and B are identifyed, and (d) laser

superpositions create a band structure similar to strained graphene with Dirac points and cones.

lifted due to the valley communication between Dirac cones. When ∆ = 0, the LLs change its

dependency with the magnetic field to εn ∝ sgn(n)[(|n|+ 1/2)]2/3 [115]. For ∆ > 0, the energy

of LLs has the same expression of an insulator εn ∝ sgn(n)(|n|+ 1/2)B.

Experimental confirmation of the merging Dirac points. The merging of Dirac points was

34



confirmed experimentally using a tunable and two-dimensional optical lattice with an ultra-

cold Fermi gas of 40K atoms [33]. The confinement was performed with three retro-reflected

laser beams, two of them mutually perpendicular, in the way that varying the frequencies and

amplittudes, the square, triangular, dimer and honeycomb structures can be created, as they

are shown in Fig. 1.18. With specific values of the wavelength, intensity and phase, for the

simulation of a hexagonal lattice. The superposition of the lasers potential lead to a energy-like

landscape given by

V (x, y) = −VX cos2(kx+ θ/2)− VX cos2(kx)− VY cos2(kx)− 2α
√
VXVY cos(kx) cos(ky) cos(φ)

(1.19)

where VX , VX and VY are the laser beam amplitudes, α is the visibility of the interference pattern

and k the wave vector. These parameters produce a band structure similar to an anisotropic

Dirac material with its respective formation of Dirac points, which can be moved controlling the

phase θ having the same role that the universal parameter ∆ of the model described above. The

atomic cloud presents Bloch oscillations along qx direction in the squared first Brillouin zone

caused by the magnetic field of the lasers. A fraction of this cloud had a qy that matched with

the Dirac point, observing a transference to the second energy band. The maximun transfered

fraction of the atomic cloud was obtained when the Dirac points were driven towards the corners

of the first Brilluoin zone, where a merging was reached, as shown in Fig. 1.19. Therefore, this

experiment confirmed the TPT for an ultra-cold Fermi gas in an optical lattice, which can be

theoretically explained through the approach proposed by Montambaux [13, 109].

1.3.3 Effective models from the Dirac points

Several authors have studied the electronic-ground properties of strained graphene from different

assumptions but with a same point of view, the derivation of an effective hamiltonian that

explains and describes the anisotropic dynamics of the massless Dirac fermions caused by strain,

within low energy regime around the Dirac points. Throughout this subsection, the proposals of

each author with their respective predictions will be show some of these without experimental

confirmation yet. In contrast to QFTCS, these effective models for uniform strain do not use
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Figure 1.19: Movement and merging of Dirac points in honeycomb optical lattice. (a) Dirac

points are moved modulating VX amplitude, the insets show the atomic cloud in the reciprocal

lattice, a little part of the cloud is transferred to the second band with VX = 4.5. At merging

VX = 3.4, the maximum tranference is reached producing the TPT. (b) Energy contours in the

first Brillouin zone where the movement and merging of Dirac points can be observed. Figure

took from ref. [33].

the scalar and pseudo vector potential, reducing the number of involved terms. This allow to

evidence the effect of distortion of the Dirac cone on the Fermi velocity, neglected by the most

of works using the QFTCS.

Generalized Weyl hamiltonian. Goerbig et al. proposed a model for two spinor fermions

restricted to a 2D space, with a reduced Weyl hamiltonian that reads as [68]

H = ~w0 · ~qσ0 + wxqxσ
x + wyqyσ

y (1.20)
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Figure 1.20: Quinoid-type deformation of the honeycomb lattice. Due to the symmetry, two

hopping parameters to nearest neighbors are equals and one is different, which are denoted by

t and t′. Dashed lines indicate the six next nearest neighboring sites, also presenting only the

two different hopping parameters tnnn and t′nnn. This figure was taken from ref. [68].

where qx and qy are the components of the linear momentum around the Dirac points. This

approach consists of four independent parameters given by the components of the vectors ~w =

(wx, wy) and ~w0 = (w0x, w0y) which are the 2D anisotropic and tilt velocities, respectively.

These parameters can be related with the hopping parameters in a TB approach to next nearest

neighbors for hexagonal lattices with quinoid-type deformations, where two hopping t and t′

to nearest neighbors and two hopping parameters tnnn and t′nnn to next nearest neighbors are

involved, as seen in Fig. 1.20. Such conditions are perfectly satisfied in systems as graphene

uniaxially strained along ZZ and AC direction, and 2D organic compounds as α-BEDTIFI2

[11, 26, 68, 116]. Diagonalizing the Weyl hamiltonian (1.20) yields the dispersion relation

ελ(~q) = ~w0 · ~q + λ
√
w2
xq

2
x + w2

yq
2
y (1.21)

where λ denotes the conduction band with λ = +1 and the valence band with λ = −1. Equation

(1.21) represents a tilted Dirac cone with the semi-major and semi-minor axes of the elliptical

transversal section parallel to the qx and qy axes. The wavefunctions are |Φ〉 = 1√
2
(1, λeiφq) with

tanφq = wyqy/wxqx. Since the chirality operator defined as Ĉ = (wxqx +wyqy)/
√
w2
xq

2
x + w2

yq
2
y,

conmmutes with the hamiltonian (1.20), there is a two-fold valley degeneracy. Thus, -H de-

scribes the dynamics of the Dirac fermions at the other valley.

LLs spectra was derived doing the Peierls substitution in the free-field hamiltonian (1.20),

through a second quantization treatment using the annihilation and creation operators, obtain-
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ing

εn = sgn(n)
√

2|n|v
∗
F

lB
, (1.22)

with n = 0,±1,±2, . . ., v∗F is the effective Fermi velocity which is related with the general Weyl

hamiltonian parameters as v∗F =
√
wxwy[1− (w0x/wx)

2 − (w0y/wy)
2]3/4, and lB is the magnetic

length [24]. Clearly, the LLs spacing is affected when v∗F changes with strain. Under this model,

the same authors studied the Fermi velocity modulation for quinoid-type deformed in graphene

[24, 68]. It was used a TB calculation to find ~w and ~w0 as a function of the tensile parameter

ε. The parameters t and t′ as well as tnnn and t′nnn were related with tensile strain, using

the Harrison scaling rule [117], expanded to first order in ε. Since the effective velocities were

found in terms of the hopping parameters and deformed lattice vector to be wx =
√

3ta sin θ,

wy = 3
2
t′a(1 + 2ε/3), w0x = 2

√
3(tnnna sin 2θ + t′nnna sin θ) and w0y = 0, a direct and linear

expression of the effective Fermi velocity, neglecting the tilt effect with strain, was obtained

v∗F ≈ vF (1− ε/3), (1.23)

which is expected to have an experimentally observable appreciation for a strain up to 10% [68].

Combination of an electric field E and uniaxial strain on graphene have been explored from

this point of view [80, 118]. In pristine graphene, Lukose et al. shown that LLs spacing also can

be modified by an in-plane electric field, because of the competition between the confinement

produced by the magnetic field and the tendency to open the trajectories of the particles due to

the inclusion of the electric field [119, 120]. Such effect was observed with the collapse of the LLs

spectra through gated graphene structures [121]. For systems with quinoid type deformation

and an appreciable tilting of Dirac cone [118], the presence of an electric field induces a lifting of

the two-fold valley degeneracy, and the LLs spacing become valley dependent. Therefore, some

authors have proposed a possible verification of the effects of the tilt through magnetorresistance

measurements [116] and quantum transport [89], since the Dirac cone anisotropy does not affect

the Fano factor, but the tilting has its contribution in that quantity. Recently, the possible

experimental observation of a magnetophonon resonance by the tilting of the Dirac cone has

been predicted, producing a double peak structure due to the lifting of the valley degeneracy

[80, 81].

Effective hamiltonian for uniaxially strained graphene. From TB approach to nearest neigh-

38



bors for uniaxially strained graphene, Pellegrino et al. developed a model for low energy regime

in order to study the transport properties of charge carriers crossing regions with different lev-

els of strain [98], the linear response correlation functions [122], and the effect of uniaxial on

plasmon excitacions [123]. In the TB approach, it was taken into account the observations

performed by Pereira et al. [11], about all information of uniaxial strain entries in the hopping

parameters, without consider the angular distortion of the deformed lattice vectors via direc-

tion cosines in the Bloch wavefunctions. Following the same idea to get an effective hamiltonian

directly related with the strain tensor components as in QFTCS, the Papaconstantopoulus’

scaling rule is expanded to first order on the rotated uniaxial strain tensor. Thus, expanding

TB hamiltonian around the Dirac points and conserving to first order the linear momentum

terms, the effective hamiltonian of this model is written as [98]

H = ~vFU †(θ)[σx(1− λxε)qx + σy(1− λyε)qy]U(θ), (1.24)

where ε and θ are the uniaxial strain tensor parameters, λx = 2κ0−1 with κ0 ≈ 1.6 as the value

of the logarithmic derivate of the nearest neighbor hopping in pristine graphene, λy = −λxν

being ν the Poisson’s ratio with a value estimated of 0.165 in graphite [124], and U(θ) is the

rotation operator in the sublattice AB space

U(θ) =

 1 0

0 e−iθ

 . (1.25)

The system described in Fig. 1.12 was studied by Pereira and Castro Neto using the QFTCS

[69], but also was analyzed by Pellegrino et al. under the current model [98]. They probed

that including the anisotropy of the Dirac cone on the tunneling transmission calculations, an

important difference in the prediction of resonance peaks can be evidenced when the energy

is increased. Comparing with the obtained in previous work [69] for uniaxial strain along ZZ

(θ = 0) and AC (θ = π
2
) shown in Fig. 1.21, there is an evident difference of the tunneling

transmission for uniaxial strain along ZZ and AC direction. The explanation given by Pellegrino

et al. about the asymmetric transmission for AC direction, was attributed to the absence of the

other Dirac cone. Thus, the global symmetry would be restored upon inclusion of the second

Dirac cone. This observation is true for an arbitrary strain direction distinct to ZZ and AC
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Figure 1.21: Electron transmission probability as a function of the incidence angle for uniaxial

strain in graphene along the ZZ (θ = 0) and AC (θ = π/2) directions using the energy E = 80

meV and a tensile strain ε = 0.03. The red (dash-green) curves are the transmission probability

calculated from QFTCS (current model) with a potential barrier of Ug = −20 meV. Dotted

blue curve was obtained from the current approach with Ug = 0 meV. Figure took from ref.

[98].

but, due to the traslational symmetry of the system on y direction when graphene is uniaxially

strained along AC, the tunneling transmission must be the same when the φ phase is changed

by −φ. The aparent asymmetric transmission in AC is due to an error in the calculation of the

Dirac point position [98], which was not considered by Cao et al. in their study on the effect

Goos-Hänchen for the same system [125].

In the sake of future comparisons, is instructive to extract the expression of the effective

Fermi velocity in the hamiltonian (1.24)

v∗F = vF [1− 1

2
(1− ν)λxε]. (1.26)

Anisotropic Fermi velocity was studied by Rostami and Asgari considering the current ap-

proach and including the electron-electron interaction from Hartree-Fock approximation [72].

They showed how the Fermi velocity is reduced through strain and doping, as well as how

the modulation of the Fermi velocity affects the bulk compressibility when the charge density

changes, having a good agreement with experimental observations [75].
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Effective model for uniform and non-uniform strain in graphene. Recently, Oliva-Leyva

and Naumis derived an effective model from TB approach to nearest neighbors for unifom

strain in graphene [38]. The difference with the development by Pellegrino et al., is that they

considered the deformed lattice vectors on direction cosines in the Bloch expansion. Likewise,

TB hamiltonian was expanded to first order around the Dirac points in the linear momentum.

The relation of this novel hamiltonian with the uniform strain tensor was established through

the expansion of Papaconstantopoulus’ scaling rule to first order in the uniform strain tensor,

obtaining

H = vF~σ · (I + ε− βε) · ~q, (1.27)

where I is the 2×2 identity matrix, ε is the uniform strain tensor and β is the Grüneisen

parameter with a value of 3.37 [126]. The effective Fermi velocity can be directly extracted

obtaining

v∗F = vF (1 + ε− βε), (1.28)

where ε is the tensile strain. Several effects were studied from hamiltonian (1.27) like AC

conductivity [78], generalizing previous results obtained with other approaches [37, 77]. Also,

was studied a tunable dichroism and optical absortion in graphene with uniform strain [127],

where the transparency, magnitude and direction of a uniform strained graphene sheet can be

determined using linearly polarized light under normal incidence. Other authors have studied

the Casimir interactions in strained graphene using this approach [128]. Later, this model was

extended for non-uniform strain and dislocations, leading an emergent gravitational like-field

[129, 130, 131, 132].
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Chapter 2

Methodology

We use the elasticity theory and TB method for the study of electronic properties modulations

of graphene subjected to loads. The band structure modified by strain was calculated with the

TB method, revealing a distortion and a shift of the Dirac cones. The study of the strain effects

on the electronic band structure of graphene, lead us to the construction of a novel model called

Geometrical Approach, which only considers the geometrical changes of the Dirac cone, showing

a direct way to relate physical properties with Dirac cone parameters. Thus, the Geometrical

Approach provides a versatile way for the study of other materials presenting distorted Dirac

cones.

In the present chapter, we expose the involved concepts of elasticity theory and TB method

applied to graphene, which are useful in the development of the main results in the present

thesis. Also, we underline the frequent route followed for the study of the strained graphene

and related systems. We start from the deformed bond lengths obtained with elasticity theory,

which are used in the hopping scaling rule relation necessary in a TB calculation. Later, TB

hamiltonian is expanded around special points proving that electrons are similar to massless

Dirac fermions.
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2.1 Small-strain elasticity theory in two-dimensional struc-

tures

The importance of the study of elastic behavior in materials subjected to loads arises because

a load can be applied with the goal of design a nanodevice for a specific function. Also, a load

can be accidentally applied with the manipulation of the sample when it is synthesized. These

motivations had led to the development of concepts and models for the physical understanding of

the elastic response in such systems to external forces. In particular the case of two-dimensional

structures as graphene is interesting, since offers the opportunity of tailor quantum transport

by strain-engineering.

With respect to the response of a material subject to a load, two fundamental concepts

are involved: the first of them, related with the loads, is mathematically described by the

stress. The second concept is the strain, which quantifies the deformation of the material

caused by the loads. Materials show a wide variety of behaviors under loads, and depending

of its response can be clasified as elastics, if its original state is fully restored upon unloading

or elastic-plastic, when its original state is not completely restored. Thus, the specific elastic

behavior of the material is determined for a stress-strain relationship, established trough a

constitutive equation. Such relation allows to make a clasification of the problem to treat from

four regimes [107], which are resulted of the combination of two aspects; one is refered to the

geometrical deformation of material that can be either small or large, while the other aspect,

corresponds to the linear (Hookean) or nonlinear elastic response. The most known regime

occurs for problems with small deformations and Hookean elastic response, subject studied

by the classical elasticity theory of isotropic and homogeneous materials. This fundamental

stress-strain relationship is characterized by a linear constitutive equation. Herein, the main

interest is adressed to materials with nonlinear behavior to small deformations, since several

two-dimensional structures as graphene fall within this regime, where a nonlinear stress-strain

constitutive equation is needed [108]. Further regimes and related situations with linear or

nonlinear behavior and large deformations require an explicit formulation of finite elasticity

within a Lagrangian description [133, 134].
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2.1.1 The strain tensor

Under applied forces, the material exhibites some change in the shape or (and) volume. Choosing

a coordinates system in some particular point, the vector ~r denotes the position of a point in a

body without load. Under the action of the forces, the new position of each point is located at

~r ′. Thus, all points present a displacement respect to their original position, being quantified by

~u = ~r ′−~r, where ~u is the displacement vector. Knowing ~u as a function of ~r, the deformation of

the whole material is determined and therefore, the infinitesimal distance dl′ between two points

in the deformed material can be calculated using the displacement vector. Since d~r ′ = d~r+ d~u

with d~u = ~∇~u · ~dr =
{

1
2

[
~∇~u+ (~∇~u)T

]
+ 1

2

[
~∇~u− (~∇~u)T

]}
· d~r, the first term in the brackets

is defined as the small-strain tensor and denoted in components by

uij =
1

2

(
∂ui
∂xj

+
∂uj
∂xi

)
, (2.1)

while the second term is the local rotation tensor defined as

ωij =
1

2

(
∂ui
∂xj
− ∂uj
∂xi

)
. (2.2)

Hence, the infinitesimal distance for deformed body is dl′ = dl2 + 2d~r · u · d~r where dl is

the infinitesimal distance for undeformed system. Within the regimes of small deformations

linear and nonlinear elastic behavior, the quadratic term d~r · (u + ω)T (u + ω) · d~r is always

neglected because it is expected that Tr(u) << 1 for these regimes. Notice that dl′ does

not depend of the local rotation tensor ω, since represents only a rotation without a relative

change of the distance among the points of the system. Therefore, the relevant information

about deformation falls on the strain tensor u, having three important properties: the first,

the small strain tensor is symmetric thus, the diagonalization is always possible at any given

point. Second, its eigenvectors determine the directions of the principal axes and the eigenvalues

indicate the value of the extension or the compression for each corresponding axis. Finally, a

vector ~v0, defined from the reference, can be expressed in the current configuration as ~v =

(1 + u)~v0. From these properties, some useful geometrical quantities can be derived using the

global relations as the variation of volume ∆V =
∫
V

Tr(u)dV , the variation of area ∆S =∫
S
(Tr(u)− n̂ · u)n̂, where n̂ is a unitary vector perpendicular to the surface, and the variation

of length ∆L =
∫
l
t̂ · ut̂, being t̂ the unitary vector tangent to the line l.
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2.1.2 The stress tensor

Deformation is the result of the application of forces on the material, appearing internal forces

that tend to balance the system. Such internal stress has a molecular origin with a shortened

range action among small neighbor portions. These internal stresses are considered in continuum

elasticity as near action, whereas the exerted forces by the surroundings have a large range effect,

and they act only on the contact surface [107, 135].

In order to calculate the net force ~F , the force-density ~f is integrated through a portion of

volume V , which can be expressed as ~f = ~∇ · σ where σ is the stress tensor. In this way, a

surface integral is obtained using the divergence theorem

~F =

∫
~∇ · σdV =

∫
σ · d~S. (2.3)

The stress tensor components σij are the tangential force per unit area on the plane defined

by i 6= j, while σii is the force per unit area along i direction. d~S is the area element vector

perpendicular to the surface.

2.1.3 Balance equations

General elastic properties of bodies under external forces can be obtained when the mechanical

equilibrium is guaranteed. Since the net force in a body is zero in the equilibrium, a continuity

equation is obtained

~P + ~∇ · σ = 0, (2.4)

where ~P is the external force on unit area acting on the body. Equation (2.4) is solved using

the boundary condition ~Ps = σ · n̂ where ~Ps is the force per unit area on the surface and n̂ is a

unit vector along the outward normal direction. This boundary condition must be satisfied on

the whole surface of the body. The second equation that complete the equilibrium description

of the system is given by the rotational moment of the forces ~τ

~τ =

∫
~r × ~∇ · σdV (2.5)

=

∫
~∇ · (~r × σ)dV −

∫
(σ − σT ) · IdV (2.6)

=

∮
~r × σ · d~S = 0. (2.7)
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Then, using the divergence theorem in (2.7), the important result that the stress tensor is

symmetrical σij = σji was obtained.

2.1.4 Constitutive equation

Balance equations describe the mechanical equilibrium of the system without the elastic speci-

fications of the material. Thus, a complete description of the elastic properties of a particular

material is given by the constitutive equation, which can be interpreted as the fingerprint of

the elastic behavior of a body. Constitutive equation establishes the relation between stress

and strain. In condensed matters, the internal forces are conservatives then the stress-strain

relationship can be derived from a potential energy U as

σ = ~∇uU. (2.8)

The last expression is the most important equation of the elasticity theory, indicating that

any constitutive equation can be derived from the strain energy function, where U provides a

complete information about the elastic response of the stressed material. In a nonlinear isotropic

material is convenient to expand U in a power series with respect to uij [107]

U(u) =
1

2
λijklu

ijukl +
1

6
λijklmnu

ijuklumn +O(u4), (2.9)

where λijkl and λijklmn are the elastic tensor modulus to second and third order, respectively.

For a homogeneous material with linear elastic behaviour, the first term in (2.9) leads to the

generalized Hooke’s law [135], which can be written in a tensorial form as

σij = λijklu
kl. (2.10)

This expression has validity for any crystalline symmetry, where the elastic tensor modulus

λijkl has a total of 21 independent components as consequence of the strain and stress tensor

properties. The number of independent tensor modulus components can be reduced according

to the crystal symmetries and with a suitable choice of the coordinate system [135]. Thus, the

triclinic crystal has 18 elastic independent modulus, whereas monoclinic has 12, orthorhombric
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Figure 2.1: (Side view) Uniaxial strain is generated through indentation in suspended graphene,

(top view) shows the reference system where ZZ and AC direction are specified. Figure took

from ref. [108].

9, tetragonal 6, rhombohedral 6, hexagonal 5, and cubic 3. The most simple system is a linear

and isotropic material with two elastic modulus, having a linear constitutive equation given by

σ =
Y

1 + ν
u +

νY

(1 + ν)(1− 2ν)
I Tr(u)

= 2µu + λI Tr(u), (2.11)

where Y and ν are Young modulus and Poisson’s ratio, respectively. The Hooke’s law (2.11)

can be also expressed in terms of the Lamé coefficients µ and λ and they related with the Young

modulus and Poisson ratio as µ = Y
2(1+ν)

and λ = νY
(1+ν)(1−2ν) for three-dimensional systems and

µ = Y
2(1+ν)

and λ = νY
(1−ν2) for the two-dimensional case [135].

In the case of nonlinear anisotropic two-dimensional materials, such as graphene [9, 107, 108],

a strain energy density to third order describes perfectly its nonlinear elastic behavior which
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Figure 2.2: Theoretical and experimental comparison of the stress-strain curves of graphene.

The blue region corresponds to experimental data error. This figure was taken from ref. [108].

can be written as [107]

U(u) =
λ

2
Tr(u)2 + µTr(u2) + Λ1(uxx − uyy)[(uxx − uyy)2 − 12u2xy]

+
1

2
Λ2Tr(u)[2Tr(u2)− Tr(u)2] +

1

2
Λ3Tr(u)3, (2.12)

where Λj with j = 1, 2 and 3 are nonlinear elastic modulus defined in [136]. Note that when

the linear region is only considered (Λ1 = Λ2 = Λ3 = 0), the strain energy function (2.12)

describes isotropic systems with linear elastic modulus µ and λ or their equivalents Y and ν. In

the nonlinear elastic regime, the system is fully isotropic when Λ1 = 0 in (2.12). These linear

and nonlinear elastic constants modulus have been calculated from DFT and TB calculations

for uniaxially strained graphene with the values of Y = 312 Nm−1, which has a good agreement

with the experimental value [9]. The value of ν is estimated between 0.1-0.17 and the nonlinear

modulus have the values Λ1 = −16.8, Λ2 = −250.9 and Λ3 = −278.6 in units Nm−1 [137, 138,

139]. A direct comparison between theoretical predictions and experimental data was performed

for graphene subjected to uniaxial tension along n̂ = (cos θ, sin θ) using a nanoindentation
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mechanism, shown in Fig. 2.1. The stress-strain relationship in (2.12) is simplified to [108]

σ = Y u +D(θ)u2, (2.13)

where D(θ) is the effective two-dimensional nonlinear modulus

D(θ) =
3

2
(1−ν)3Λ3+

3

2
(1−ν)(1+ν)2Λ2+3(2 cos2 θ−1)(16 cos4 θ−16 cos2 θ+1)(1+ν)3Λ1. (2.14)

Theoretical and experimental stress-strain curves are shown in Fig. 2.2 [9, 108], finding a good

agreement between them. The failure stress can be calculated from (2.13) obtaining the value

of 42.4 Nm−1 very near to the experimental value 42 ± 4 Nm−1. This represents the highest

failure stress value registered so far of a material in the nature [9].

2.2 Tight-Binding method

Tight-Binding is a method frequently used in the study of electronic band structure of molecules

and crystals whose electron energy is very near to the atomic orbital energy. This method is

based in the linear combination of atomic orbitals and in the mean-field approximation. In

crystals, the atomic orbital is expanded in according with the Bloch’s theorem for each atom

of the unitary cell. These wavefunctions are evaluated in the Schrödinger equation leading to a

secular equation. Since the interaction potencial is usually unknown, the related integrals and

the overlap terms are taken as adjustable parameters. They can be found with other numerical

methods or from experimental data available [140]. The electronic band structure is obtained

solving the secular equation. The following development shows the use of TB method in crystals

and in particular for anisotropic graphene. In general, the wavefunction of a crystal using the

Bloch theorem can be written as

|Φk〉 =
n∑

m=1

am(~k)|Φ(m)
k 〉 (2.15)

=
n∑

m=1

N∑
~Rl

am(~k)ei
~k·~Rl |m,~r + ~δm − ~Rl〉, (2.16)

where am(~k) with m = 1, . . . , n are n complex functions of the ~k wavevector corresponding to

the n atoms of the unitary cell. The second sumatory corresponds to the Bloch expansion of
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each atomic orbital |Φ(m)
k 〉 = |m,~r + ~δm − ~Rl〉 with N unitary cells in the crystal. ~Rl indicates

the sites at the Bravais lattice and ~δm is the vector that connects the sites of the underlying

Bravais lattice with the site of the m atoms, within the unitary cell.

Using the Schrödinger equation H|Φk〉 = Ek|Φk〉, we arrive to the following secular equation

det[Hk − Eλ
kSk] = 0, (2.17)

where Hk and Sk are the hamiltonian and overlap matrix whose entries are H ij
k = 〈Φ(i)

k |H|Φ
(j)
k 〉

and Sijk = 〈Φ(i)
k |Φ

(j)
k 〉, respectively and E(j) is the orbital atomic energy. The λ label denotes

the n-energy bands. The hamiltonian and overlap matrix elements can be evaluated taking into

account that the hamiltonian is separated in two terms H = Ho+U , with Ho the atomic hamil-

tonian and U the perturbative electrostatic potential considering the mean-field approximation.

Hence, with Ho|j, ~r + ~δj − ~Rl〉 = E(j)|j, ~r + ~δj − ~Rl〉, the hopping matrix has the elements

tijk =
N∑
~Rl

ei
~k·~Rl〈i, ~r|U |j, ~r + ~δij − ~Rl〉 (2.18)

and the reduced overlap matrix with the entries

sijk =
Sijk
N

=
N∑
~Rl

ei
~k·~Rl〈i, ~r|j, ~r + ~δij − ~Rl〉. (2.19)

Using (2.18) and (2.19), a more simplified version of (2.17) with det[tijk − (Eλ
k − E(j))sijk ] = 0

is obtained. In the case of identical atomic orbitals E(j) = E, the E constant can be omitted

since it only represents a shift of the energy bands. For two atomic orbitals in the unitary cell,

the energy bands can be calculated directly

Eλ(~k) =
f1(~k) + λ

√
f 2
1 (~k) + f2(~k)f3(~k)

f2(~k)
, (2.20)

where λ = 1 (−1) denotes the conduction (valence) band and the three functions fi(~k) are

defined as f1(~k) = s11(~k)t11(~k) − Re{s12(~k)t∗12(
~k)}, f2(~k) = s211(

~k) − |s12(~k)|2 and f3(~k) =

|t12(~k)|2 − t211(
~k). The expressions (2.18), (2.19) and (2.20) are useful in the description of

anisotropic graphene.
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Figure 2.3: Pictorial representation of a deformed hexagonal lattice (red) with respect to one un-

strained (blue). Open and closed circles denote the traingular sublattices A and B, respectively.

Figure took from ref. [37].

Figure 2.4: The first Brillouin zone for (a) hexagonal lattice, (b) deformed hexagonal lattice

with rhombic symmetry and (c) deformed hexagonal lattice with monoclinic symmetry. The

blue shadded areas represent the irreducible zones. Figure took from ref. [45].

2.2.1 Tight-Binding description of anisotropic graphene

The anisotropic graphene model consists in a two-dimensional graphene sheet presenting differ-

ent bond lengths, hopping and overlapping parameters among nearest carbon atoms, which can

be induced by mechanical strain. The crystal is conformed by two deformed triangular Bravais
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sublattices identified as A and B, as shown in Fig. 2.3 for the case of strained graphene. The

unitary cell has two carbon atoms where a decoupling between pz and σ orbitals can be con-

sidered due to the sp2 hybridization. The lattice vectors ~a1 and ~a2 correspond the reciprocal

lattice vectors ~b1 = (2π/Ac)~a2× ẑ and ~b2 = (2π/Ac)ẑ×~a1, where both lattices are geometrically

deformed hexagonal meshes. Thus, the first Brillouin zone is a distorted hexagon with high

symmetry points K and K ′, as shown in Fig. 2.4. In this TB of anisotropic graphene, the

underlying sublattice is A and the positions of the nearest neighbors are given by ~δ1, ~δ2 and ~δ3.

The parameters {s(0)i , t
(0)
i } and {s(1)i , t

(1)
i } with i = 1, 2 and 3 are denoted for nearest and next

nearest neighbors respectively. The quantities s
(0)
i = 〈φpz(~r)|φpz(~r − ~δi)〉 indicate the overlap

value between the pz orbital in the carbon atom of the sublattice A and its corresponding near-

est neighbor of the sublattice B located at ~δi, and t
(0)
i = 〈φpz(~r)|U |φpz(~r − ~δi)〉 are the hopping

values corresponding to the probability amplitudes that an electron passes to one of the three

nearest atoms. In this way, s
(1)
i and t

(1)
i have similar meaning and expression for next nearest

neighbors. Therefore, the sumatories tijk and sijk given by (2.18) and (2.19) are truncated until

next nearest neighbors. One obtains for the f
(j)
k with j = 1, 2 and 3 of the equation (2.20) the

following expresions

f1(~k) = (1 + hp(~k))hq(~k)− gp(~k)

f2(~k) = (1 + hp(~k))2 − gr(~k)

f3(~k) = gq(~k)− h2q(~k),

where the following quantities are defined as gη(~k) =
∑3

i,j=1 ξ
ij
η cos θij(~k) with η = p, q, r and

θij(~k) = ~k · (~δi − ~δj) being ξijp = s
(0)
i t

(0)
j , ξijq = t

(0)
i t

(0)
j and ξijr = s

(0)
i s

(0)
j . The hη(~k) functions

are expressed as hη(~k) = ξ
(1)
η cos θ12(~k) + ξ

(2)
η cos θ13(~k) + ξ

(3)
η cos θ23(~k) with ξ

(i)
p = s

(1)
i and

ξ
(i)
q = t

(1)
i . Generally, the overlap terms are always neglected because the electronic density of

the pz orbital decays quickly with the distance in graphene. For a separation among atoms

that are of the order of 1 Å roughly, the overlap is expected to be vanished. Therefore, the

initial twelve parameters in the TB calculation are reduced to six hopping parameters: three

to nearest neighbors and other three to next nearest neighbors. Hence, the dispersion relation
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(2.20) can be written as

Eλ(~k) = hq(~k) + λ

√
gq(~k), (2.21)

Figure 2.5: Energy band structure of anisotropy graphene that can be obtained from equation

(2.21). Zoom shows a Dirac cone for low energy regime. This plot was obtained for graphene

with quinoid-type deformation, in ref. [24].

the plot of this dispersion relation is shown in Fig. 2.5 for quinoid-type deformed honeycomb

lattice [24] using specific values of t
(0)
i and t

(1)
i , that throughout the text, will be denoted

as ti and t′i, respectively. Each carbon atom contributes with one electron of the pz orbital,

therefore the valence band (λ = −1) is completely filled while the conduction band (λ = +1)

is completely empty. Both bands are symmetrical in absence of the overlap terms and hopping

parameters to next nearest neighbors. It is also noted that there are contact points between

them, which are called Dirac points. Such points appear in pairs due to the time reversal

symmetry Eλ(−~k) = Eλ(~k). The Dirac points are located at the ~K points and they are

obtained when
∑3

j=1 tje
i ~K·~δj = 0. The solutions for this expression are given by

cos[ ~K.(~δi − ~δj)] =
t2l − t2i − t2j

2titj
, (2.22)

with i 6= j 6= l and having validity in the region defined by the triangle inequality

|ti − tj| ≤ tl ≤ ti + tj, (2.23)
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Figure 2.6: Topological phase transition illustrated through the low energy band structure.

Figure took from ref. [24].

which is obtained straightforwardly from Dirac points equation
∑3

j=1 tje
i ~K·~δj = 0. The inequal-

ity (2.6) establishes a topological region where there are Dirac points. Tuning the hopping

parameters is possible to annihilate a pair of opposite Dirac points, and in consequence, a gap

opening in graphene emerges due to the merging of Dirac points. The evolution of the energy

bands of this Topological Phase Transition (TPT) are shown in Fig. 2.6. Such TPT could

be obtained, modulating the hopping parameters with the modification of the bond lengths

among atoms under strain. Indeed, the bridge that connects the hopping parameters with the

bond lengths is through a scaling rule. The Papaconstantopoulus’ scaling rule [76] is the most

frequently used in graphene, which relates the hopping parameter ti with the δi bond lengths

through a exponential decay

ti = toe
−β(δi/a−1), (2.24)

where to = 2.71 eV is the value of the hopping parameter and a = 1.42 Å is the bond length for

pristine graphene [126]. The constant β known as the Grüneisen parameter has the value of β =

3.37 [126]. Other relations between hopping parameters and bond lengths have been proposed,

such as the Harrison’s scaling rule [117] establishing that the hopping is inversely proportional to

the squared of the bond length, ie ti = to(a/δi)
2. Although the value of the hopping parameter

is dependent of the bond length, its relation with strain can be established using the deformed
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bond length calculated from the elasticity theory of two-dimensional structures.
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Chapter 3

Geometrical Approach for Anisotropic

Dirac Materials

In previous chapters, we showed the most common routes for the study of strained graphene

properties which can be also applied in the study of other anisotropic Dirac materials [141].

Using TB approach and elasticity theory, the electronic band structure shows interesting aspects

that were embodied in several effective models from different assumptions [13, 15, 24, 38, 98,

130]. Whereas other authors prefered to study the electronic properties using DFT calculations

[45, 46, 60, 62, 66, 67], corroborating a qualitative physical description given by TB predictions.

However, it was also noted that there is a non-negligible quantitative difference between these

two methodologies [67], being attributable to the serie of approximations carried out in the

proposed models, reducing their validity range [15, 38, 68, 98, 130].

All mentioned effective models overlooked the nonlinear elastic behavior of graphene, which

has been evidenced both theoretical and experimentally [9, 38, 108]. Further, the indefiniteness

of the group velocity at Dirac point remains unsolved. Furthermore, the effect of deformation on

the atomic distances is only taken into account through the scaling of the hopping parameters

in the TB approach [11, 15, 47, 83, 98], with some exceptions [24, 38, 68]. Such a hopping

renormalization is commonly modeled with an exponential decay [76] or using the Harrison’s

scaling rule Vppπ ∝ 1/l2 [117]. Nevertheless, these renormalizations could fail beyond the linear

elastic regime, since the Poisson ratio changes for uniaxial strain. Indeed, they could have a

different dependence for each strain-type considered, as was probed in a comparative work on
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TB approach and DFT calculations for uniaxially strained graphene [60]. Other point that

has been overlooked is the relaxation of atomic positions, which should be present in a more

realistic calculation. Therefore, an accurate and precise way to obtain the hopping parameters

in strained graphene is to fit energy bands of a TB approach with the ones obtained from DFT

calculations or from experimental data [60].

To include the above observations imply to add a huge amount of terms in the QFTCS in

addition to the fourteen existing terms mentioned by Ramezani et al.. Since the hamiltonian

of the QFTCS was expanded around the high symmetry point, the linear dispersion relation

is not guaranteed, being necessary the inclusion of high order terms in the linear momentum.

Therefore, the QFTCS would have a hamiltonian constructed by too many terms, becoming

impractical. Thus, a better alternative is to develop a continuum model with an effective

hamiltonian expanded around the Dirac points.

On this line, some authors have proposed a generalized Weyl hamiltonian [68], whose pa-

rameters are the effective tilt and anisotropic velocities, where the velocities can be expressed

in terms of the hopping parameters. This proposal allows to describe the effect of tilt and

anisotropy of the Dirac cone on the physical properties of graphene in the low energy regime.

Nevertheless, the absence of an intrisic rotation of the Dirac cone makes that the model be-

comes only applicable to graphene and Dirac-like systems with quinoid-type deformation, such

as uniaxially strained graphene along AC and ZZ directions, where two hopping parameters are

equals and one is different. Such model is frequently applied in other systems having similar

features that graphene, but with a more notable Dirac cone tilt, as some organic compounds

[26], VO2/TiO2 heterostructures [112] and cold atoms in optical lattices [16, 33, 111]. On the

other hand, some authors enhanced and generalized previous effective models used for uniaxial

strain in graphene around the Dirac points [11, 72, 98]. They included the effect of the angular

distortion of the lattice vectors, caused by uniform strain on the Bloch expansion in the TB

method [38, 130, 131, 132]. These works fall into the comments about the lack of nonlinear

elasticity [9, 60, 108], relaxation of atomic positions effects, and the indefiniteness of group

velocity at the Dirac point. Then, the proposition of a more general and versatile approach in

order to study other anisotropic Dirac materials is needed.

Instead of a hopping scaling rule frequently used in effective models around the Dirac point,
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an alternative way is proposed in the present thesis. We propose a continuum approach for the

study of massless Dirac fermions (MDF) dynamics and physical properties of Dirac materials

which are subjected to an anisotropy induction mechanism (AIM). This allows to generalize the

strain-engineering ideas to two general concepts: anisotropy and inhomogeneity. Anisotropy

can be caused by loads upon the material [107], chemical manipulation [32], periodic potentials

[142] or a rearrangement at system configuration [33]. Inhomogeneity arises when the AIM is

position dependent. Initially, we consider the homogeneous anisotropy in the present contin-

uum model applying a canonical transformation on the linear momentum. In this way, the

indeterminacy of the group velocity at Dirac point is solved and allows to define the concept of

effective Fermi velocity. Further, the transformation matrix elements can be calculated from a

TB approach, fitting the energy bands obtained from DFT or through experimental data avail-

able. Since these matrix elements are related with the geometrical parameters of the Dirac cone,

the proposed model is called Geometrical Approach (GA), which provides a direct way to link

physical properties with Dirac cone parameters. Later, a position dependent transformation

on the linear momentum is proposed demanding the hermiticity and the symplectic condition.

Thus, complex gauge fields and effective Fermi velocity as a function of transformation matrix

elements were found. This model was used for study the effective Fermi velocity, the expan-

sion and contraction of the LLs, and the electron quantum optics in homogeneously strained

graphene. In the present chapter, we show general results of effective Fermi velocity, physical

properties and electron optics for anisotropic Dirac materials.

3.1 Anisotropy and inhomogeneity in massless Dirac

fermions

Theoretically, a homogeneous anisotropy description can be given from a 2 × 2 Fermi velocity

tensor vij, which replaces the Dirac hamiltonian H = vF~σ · ~p by a 2D generalized Weyl-like

hamiltonian HW = vijσipj [24], where vF is the Fermi velocity at initial configuration system,

and ~σ are the Pauli matrices acting on the pseudospin space. We propose a linear transformation
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on the linear momentum which maps the Dirac hamiltonian to a 2D Weyl hamiltonian

~p ′ = A~p, (3.1)

where A is a 2×2 anisotropy matrix with real entries aij. We note that the Fermi velocity tensor

is restored in terms of the elements matrix vij = vFaij. Therefore, the Weyl-like hamiltonian

HW and the mapped hamiltonian H(~p ′) = vF~σ · ~p ′ by the transformation (3.1) are the same,

as shown in appendix A1. Nevertheless, it is known that the dispersion relation of HW has an

elliptical shape in the momentum space as shown in Fig. 3.1 (a), and a group velocity calculation

at the Dirac point results undefined. Such problem is solved with a suitable change of the linear

momentum ~p ′, building a transformation for ~p which satisfies the symmplectic (anti symplectic)

group condition. In general, the transformation (3.1) does not necessarily satisfy the symplectic

MTJM = J or anti symplectic MTJM = −J condition, where M is the Jacobian matrix, MT

its transpose and J a 2× 2 matrix having elements defined as j11 = j22 = 0 and j12 = −j21 = 1.

However, we can convert any anisotropy transformation A (except the one-dimensional case,

detA = 0), in a symplectic (detA > 0) or anti symplectic (detA < 0) transformation defining

S = ξ−1A, with ξ =
√
|detA|, (see appendix A2). Thereby, the anisotropic ~p ′ and the original

~p are related with the new linear momentum

~pc = S~p = ξ−1~p ′, (3.2)

where ~pc has the same role that the conjugated linear momentum for symplectic transforma-

tions, because the commutation relations [xi, pj] with i, j = x, y, do not change whether we

transform the position operator as ~rc = (S−1)T~r, where ~r is the position operator for the initial

configuration and ~rc is the new conjugated position vector, as shown in appendix A3. Thus,

when we express the mapped hamiltonian H(~p ′) in terms of ~pc using (3.2), an effective Dirac-like

hamiltonian for anisotropic systems is restored

H(~pc) = v′F~σ · ~pc. (3.3)

In this point, we emphasize that the introduction of the canonical linear momentum ~pc, instead

of ~p, does not imply other succesive transformation in the mapped hamiltonian H(~p ′), since

we only have performed the substitution ~p ′ = ξ~pc. Hence, the hamiltonian (3.3) describes the
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same anisotropic dynamics system than H(~p ′) or HW with a constant effective Fermi velocity

v′F , which is extracted directly from the anisotropy matrix

v′F = vF
√
|detA|, (3.4)

whose value is the same for all energy surface points in the scaled pc-momentum space. There-

fore, the indefiniteness of the group velocity calculation at Dirac point is solved, being v′F its

value. Further, the expressions (3.3) and (3.4) provide a considerable reduction in the descrip-

tion of the anisotropic system. We observe that there is one parameter v′F instead of four

parameters given by the Fermi velocity tensor vij. Since most of the Dirac material properties

is encoded on the Fermi velocity, its modulation produces changes in all the vF -dependent phys-

ical quantities. Thereby, the information about the tuning of the electronic, vibrational and

transport properties of the system under an AIM are obtained through the anisotropy matrix

determinant.

Several physical properties have been studied in anisotropic Dirac materials using the 2D

Weyl hamiltonian, whose dependency with the effective Fermi velocity is identified. For instance,

Landau levels in pristine graphene have a linear dependency with vF [3, 55], being EN =

sgn(N)vF
√

2|N |/lB where N = 0,±1,±2, . . . are the Landau level indexes and lB the magnetic

length. Strained graphene, as a particular case of an anisotropic MDF, has a Landau level

spectrum written as E ′N = sgn(N)v′F
√

2|N |/lB [24, 67], which can be directly obtained with

the simple substitution vF → v′F . The substitution is fully justified by the exposed arguments

about the effective Dirac hamiltonian (3.3). Accordingly, the Landau levels spectra is tuned

linearly by the AIM through the effective Fermi velocity. Charge compressibility in pristine

[75] and strained graphene [72] was given by κ = 2/(n~vF
√
nπ) and κ′ = 2/(n~v′F

√
nπ) having

an inverse proportional dependency with v′F , where n is the electron density. Paramagnetic

spin susceptibility and Coulomb interaction ratio also depend of v−1F [50, 143], whereas the heat

capacity and diagmagnetic spin susceptibility are v−2F dependent [50]. These physical observables

are shown in Fig. 3.1 (b) as a function of v′F/vF . Nevertheless, we must consider that the AIM

could also affect other different quantities to v′F , such as lengths and areas of the system, showing

an extra modulation in some physical observables. For example, density of states (DOS) has

the form ρ(E) = 4acE/(π~v2F ), where ac is the unit cell area for the initial configuration. Now,
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Figure 3.1: Geometrical relation of physical quantities through the Fermi velocity. (a) Illustra-

tion of the anisotropy transformation (3.1), which maps a circular Dirac cone to one elliptical.

(b) With the GA can be proved that the physical observables directly depends of the effective

Fermi velocity. Thus, observables as the LLs change linearly with vF (blue), while charge com-

pressibility and heat capacity vary according to v−1F (red) and v−2F (green), respectively. (c)

Effective Fermi velocity as a function of the extremal elliptical cone angles θ1 and θ2.
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if the AIM modifies the unit cell area, the DOS becomes ρ′(E) = 4a′cE/(π~v′2F ) with a′c the unit

cell for the anisotropic Dirac system. Then, a correct experimental estimation of v′F from DOS

measurements must consider both changes; in the effective Fermi velocity and in the unit cell

area.

So far, the anisotropy matrix elements aij are seen as lacking of a direct physical and

geometrical meaning. However, these elements have an illuminating relation with geometrical

and physical quantities. It is possible to show that the anisotropy matrix A can be decomposed

in three succesive linear transformations, (see appendix A4)

A = R(−α)D(λ1, λ2)R(θR), (3.5)

where R(θR) is the 2×2 rotation matrix acting on the p-momentum space with a rotation angle

θR around the perpendicular axis to the plane (px, py). D(λ1, λ2) is a diagonal matrix which

scales the rotated axes by the amounts λ1 and λ2. R(−α) is an extra rotation matrix which

results of the rotation of ~σ by an angle α around the z-axis from the unitary transformation

~σ = U †(α)~σ0U(α), with U(α) the rotation operator. This anisotropy matrix decomposition

reveals a direct dependence of the effective Fermi velocity with the scaling parameters λ1 and

λ2 to be

v′F = vF
√
|λ1||λ2| =

√
| cot θ1 cot θ2|. (3.6)

Therefore, a homogeneous spatial distortion of the system caused by the AIM, modifies the ef-

fective Fermi velocity regardless the involved rotations. Further, when we use the decomposition

(3.5) in the calculation of p′, we obtain

p′ = p
√
λ21 cos2(θ − θR) + λ22 sin2(θ − θR), (3.7)

where px and py were expressed in terms of polar coordinates: px = p cos θ and py = p sin θ.

Thus, θR is also recognized as the rotation angle of the elliptical Dirac cone, where the dispersion

relation is written as E = svFp
′ with s = 1 (−1) denoting the conduction (valence) band.

The scale factors λ1 and λ2 are related with the extremal elliptical cone angles θ1 and θ2 as

λ1 = cot θ1 and λ2 = cot θ2. Hence, a link between the anisotropic Dirac material properties

with the Dirac cone geometry through the effective Fermi velocity v′F = vF
√
| cot θ1|| cot θ2| is

established. This velocity can be increased (decreased) when θ1 or θ2 decrease (increase), as
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shown in Fig. 3.1 (c). On the other hand, the geometrical parameters also can be related with

the hopping parameters of a Tight-Binding approach, fitting the energy bands obtained from

DFT calculations or through experimental data available.

We observe that the role of spin rotation R(−α) does not modify the dispersion relation nei-

ther the effective Fermi velocity. However, the influence of the pseudospin rotation is evidenced

in the eigenstates |Ψ(~p)〉 = 1√
2
(1, seiφ) of the Weyl-like hamiltonian, where φ = arctan(p′y/p

′
x) is

the pseudospin angle. Thereby, when we set the anisotropic transformations (3.1) with the val-

ues of α = −π/2, λ1 = λ2 = 1 and θR = 0, the isotropic Dirac hamiltonian H(~p) is mapped to a

Rashba hamiltonian HR = vF (~σ×~p) · ẑ where the spinor has a chiral angle φ = arctan(−px/py).

This hamiltonian is frequently found in the description of electron dynamics in the surface of

a 3D topological insulator and d−wave superconductors [21]. Therefore, the anisotropic Dirac

hamiltonian (3.3) also describes the MDF dynamics in those systems.

In order to extend the MDF dynamics for inhomogeneous and anistropic Dirac materials, we

generalize the anisotropy transformation (3.1) to be spatially dependent. Such transformation

must convert a Dirac hamiltonian H(~p) to one of the form H(~r, ~p ′), preserving its hermiticity.

A proposal satisfying these requirements is written as

~p ′ =
1

2
Λ(~r)~p+

1

2
(Λ(~r)~p)† (3.8)

where Λ(~r) is a 2×2 matrix with complex elements λij(~r) having an explicit spatial dependency.

Clearly, ~p ′ = ~p ′† sastisfies the hermiticity condition. Likewise, applying the transformation

(3.8) over the isotropic and homogeneous hamiltonian H(~p), the mapped hamiltonian H(~p ′)

is also hermitian, (see appendix A5). More importantly, if the matrix elements λij(~r) are

constants we recover the anisotropy homogeneous transformation (3.1) where A = ΛR = Re{Λ},

(see appendix A5). Thus, Λ(~r) is a natural generalization of the anisotropy matrix A for

inhomogeneous cases. Moreover, the transformation (3.8) has a suggestive physical meaning

when we use the commutator [λij(~r), pk] = i~∂kλij(~r) obtaining the expression

~p ′ = ΛR(~r)(~p+ ~A). (3.9)

This relation resembles the minimal substitution in the electromagnetic theory with a complex

pseudo vector potential ~A = ~AR + i ~AI = Λ−1R ~ω, where ~AR and ~AI are the real and imaginary
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gauge fields, respectively (see apppendix A6). The components of ~ω are given by ωj = − i~
2
∂kλ

∗
jk

where the habitual notation indicates sum over repeated indices. We note that, decomposing

Λ(~r) in its real ΛR(~r) and imaginary ΛI(~r) contributions in the expression of ωj, the gauge fields

~AR and ~AI are mainly determined by ΛI(~r) and ΛR(~r), respectively. Thereby, the generation of

a pseudomagnetic field can be linked to ΛI(~r) and the pseudospin precession to ΛR(~r). These

embodied effects of the Λ(~r) transformation are the consequence of the spatial inhomogeneity in

the system, the hermitian invariance and the noncommutativity of the position and the linear

momentum, regardless of the used hamiltonian. In particular, we exemplify the transformation

(3.9) on the Dirac-like hamiltonian H, and we found that the mapped hamiltonian is

H = vF~σ · ~p ′ = vF~σ · ΛR(~r)(~p+ ~A) (3.10)

having the same form that the hamiltonian proposed by other approaches [15, 78, 130], if we

write the Fermi velocity tensor as vij = vFλ
R
ij, the Dirac point shift ~KD = − ~AR, and the

pseudospin precession term ~vF~σ · ~Γ = −ivF~σ ·ΛR(~r) ~AI , with an imaginary gauge field ~Γ given

by the expression Γj = i
2vF

∂kvjk = i
2
∂kλ

R
jk, (see appendix A6). On the other hand, if we set

the Λ(~r) transformation with λ11(~r) = a(~r), λ12(~r) = −ib(~r), λ21(~r) = ia(~r) and λ22(~r) = b(~r)

as shown in appendix A7, the proposed hamiltonian and the motion equations in [67] are

obtained, being a(~r) and b(~r) the dimensionless functions which scales the linear momentum.

In the approaches [15, 78, 130], the appareance of a pseudo gauge field is attributed to the

spatial dependency of the Dirac point shift, where the imaginary gauge field Γ guarantees the

hermiticity of the hamiltonian. In the present work, we show that ΛI(~r) directly leads to the

emergence of a pseudo-vector potential ~AR, which preserves the hermiticity of the hamiltonian

as much as the gauge field ~AI .

Likewise that for the homogeneous case, the group velocity in terms of ~p remains undefined

at Dirac point. This problem is solved with the proposal of a canonical-like linear momentum

~pc, from a symplectic (detΛR > 0) or anti symplectic (detΛR < 0) transformation. The removal

of the group velocity indeterminacy at Dirac point, leads to the generalization of a spatially

dependent effective Fermi velocity. Without altering the hermiticity, the canonical-like linear

momentum ~pc is expressed as

~pc =
1

2
ξ−1(~r)Λ(~r)~p+

1

2

(
ξ−1(~r)Λ(~r)~p

)†
, (3.11)
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where the anisotropic and inhomogeneous linear momentum ~p ′ in (3.8) is related with ~pc as

~p ′ = ξ(~pc + ~ρ), being ξ(~r) =
√
|detΛR(~r)| and ~ρ(~r) = i~

2
Λ∗~∇ξ−1 with Λ∗(~r) the conjugated of

Λ(~r), (see appendix A8). Under this relation, the hamiltonian (3.10) has the form of an effective

Dirac hamiltonian

H = v′F (~r)~σ · (~pc + ~ρ), (3.12)

and the effective Fermi velocity appears depending of the position as v′F (~r) = vF
√
|detΛR(~r)|,

with a complex gauge field in terms of vF (~r) given by ~ρ(~r) = vF
2
i~Λ∗~∇v−1F (~r), which makes

hermitian the hamiltonian. Again, we have reduced the number of parameters in the anisotropy

and inhomogeneity description of MDF dynamics, with an effective Fermi velocity spatially-

dependent, instead of the Fermi velocity tensor usually found in several approaches [15, 78,

130]. The hamiltonian (3.12) describes the same dynamics that the hamiltonian (3.10) in

systems presenting inhomogeneity and anisotropy, using the generalized concept of effective

Fermi velocity vF (~r), and the complex gauge field ρ(~r).

Finally, we pointed out that using the particular case of an inhomogeneous and isotropic trans-

formation Λ(~r) = a(~r)I, where a(~r) is a real function and I is the 2 × 2 identity matrix, the

Dirac hamiltonian with a position dependent Fermi velocity position is obtained, (see appendix

A9)

HD = −i~
√
v′F (~r)~σ · ~∇[

√
v′F (~r)]. (3.13)

Where we have used the expressions v′F (~r) = vFa(~r), ~pc = ~p = −i~~∇ and ~ρ(~r) = i~
2
v′F (~r)~∇v′−1F in

(3.12). In this way, we show that the used hamiltonian for the study of the velocity-modulation

in graphene superlattices [144, 145], can be derived from a Λ(~r) transformation satisfying the

symplectic group condition.

In the next chapters, we show how the anisotropy matrix is connected with DFT calculations

for uniaxial strain along the ZZ and AC direction in graphene, and its relation with the hopping

parameters from a TB approach to nearest neighbors in homogeneously strained graphene. This

model leads to the Fermi velocity modulation, the expansion and contraction of the LLs spectra,

and the development of the electron quantum optics allowing the emergence of novel devices.
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3.2 Motion equations for inhomogeneous anisotropy and

magnetic field

We derive the motion equations for the particular Λ(~r) transformation described in appendix

A7. Thus, applying Λ(~r) in the Dirac-like hamiltonian at K valley, we obtained

H = vF

 0 pxa(x, y)− ipyb(x, y)

a(x, y)px + ib(x, y)py 0

 , (3.14)

with a wavefunction ~Ψ(x, y) = (f
(+)
A , g

(+)
B ), describing the pseudospin ({fA, gB}). For a nonuni-

form magnetic or pseudomagnetic field Bz perpendicular to the anisotropic Dirac material

[87, 103, 104], we do the minimal substitution ~p → ~π± = ~p + e ~A± in the free-field hamilto-

nian (3.14), where ~A(x, y) is a potential vector that can depend of the inhomogeneous strain

and acts different in each valley [87, 103, 104]. We focus in the K valley and, decoupling the

2× 2 equation system obtained from the Dirac equation H~Ψ = E~Ψ, we get{
(aπ+

x )2 + (bπ+
y )2 − λ1(aπ+

x + ibπ+
y ) + i[aπ+

x , bπ
+
y ]
}
f
(+)
A (x, y) =

E2

v2F
f
(+)
A (x, y),{

(aπ+
x )2 + (bπ+

y )2 − λ1(aπ+
x + ibπ+

y )− i[aπ+
x , bπ

+
y ] + λ2

}
g
(+)
B (x, y) =

E2

v2F
g
(+)
B (x, y), (3.15)

where (aπ+
x )2 = (apx)

2 + 2ea2A+2
x px + e2a2A+2

x − ie~a ∂
∂x

(aA+
x ). A similar expression is obtained

for (bπ+
y )2 doing the changes x → y and a → b. The commutator is given by [aπ+

x , bπ
+
y ] =

−i~(a ∂b
∂x

)(py + eA+
y ) + i~(b∂a

∂y
)(px + eA+

x )− i~eabB+
z with B+

z (x, y) the magnetic field generated

by ~A+, the λ1(x, y) = i~∂a
∂x

+ ~ ∂b
∂y

and λ2(x, y) = ~2{−a∂2a
∂x2
− b ∂2b

∂y2
+ i(a ∂2b

∂x∂y
− b ∂2a

∂x∂y
)}. For the

K ′ valley, the same decoupled equation system is obtained with g
(−)
B (x, y) and f

(−)
A (x, y) instead

of f
(+)
A (x, y) and g

(+)
B (x, y) respectively, with superscripts (−) in the π̂ operators and ~A vector

potential. The 2× 2 partial differential equation system (3.15) is an alternative way to describe

the electron dynamics with deformed Dirac cones, in the presence of a nonuniform magnetic field

where the anisotropic parameters have a spatial dependence. If we know the exact form of a(x, y)

and b(x, y) from the dispersion relation or the Fermi velocity, it is possible to obtain the LLs

solving the equation system (3.15). When the system shows an inhomogeneous unidirectional

anisotropic profile, these functions must depend only on x (y) due to the translational symmetry

on y (x). Assuming x dependence for the anisotropy parameters and using the Landau gauge
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~A = xBŷ, the py component of the linear momentum is conserved. Thus, the equation system

in (3.15) is reduced to

− d

dx

[
a2(x)

d

dx
f
(+)
A (x)

]
+

{(
eBx

~
+ ky

)2

b2(x)

+
d

dx

[
a(x)b(x)

(
eBx

~
+ ky

)]}
f
(+)
A (x) =

E2

~2v2F
f
(+)
A (x),

− d

dx

[
a2(x)

d

dx
g
(+)
B (x)

]
+

{(
eBx

~
+ ky

)2

b2(x)

− d

dx

[
a(x)b(x)

(
eBx

~
+ ky

)]
+R(x)

}
g
(+)
B (x) =

E2

~2v2F
g
(+)
B (x). (3.16)

where R(x) = 2b(x)
(
eBx
~ + ky

)
da
dx
− a(x) d

2a
dx2

. The equations (3.16) are a general differential

equations for the electron’s wavefunction in nonuniform unidirectional anisotropy, which can be

solved using the Sturm-Liouville theory [146] with eigenvalues λn = E2
n/~2v2F .

3.3 Optics with anisotropic massless Dirac fermions

Electron quantum optics arises from the analogy between photons and electrons. The similari-

ties of both physical entities reside in the dual nature between corpuscle and wave. This duality

has been well used in technological applications, being the electron microscope an example.

Nowadays, condensed matter and optics are ever more entangled with the rise of new Dirac

materials, which represent an important platform for the development of novel electron quan-

tum optics devices, allowing the feedback between both physics areas. In this aspect, graphene

pn-junction has been the most famous example for the implementation of the KT [4, 55]. Fur-

ther, it was found that electron beam incident on pn junction is negatively refracted, such as

a metamaterial. Thus, a version of the Veselago lens was proposed and experimentally corrob-

orated in graphene [57, 147, 148, 149]. Furthermore, collimation and valley beam splitter was

proposed in a doped n region beyond of the linear dispersion relation, where trigonal warping

distortion was pointed as the key ingredient in their tentative experimental implementation

[56]. This interesting proposal has the disadvantage that, the charge carriers with a short-

ened de Broglie’s wavelength, experience a greater dispersion caused by the atomistic detail.
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However, systems based in strained graphene allow the development of a valley splitting and

Goos-Hänchen effect in graphene without the trigonal warping [91]. Other systems offer the

possibility of supercollimate electron beams through graphene superlattices [150]. Recently, the

Hong-Ou-Mandel type interference for massless Dirac fermions in graphene and 3D topological

insulators was theoretically studied [151]. Specular and ballistic transport effects were probed

on line defects structure, local adsorption and weak potential barriers [152, 153, 154, 155]. These

optics-like devices and effects are possible because the main commmon feature between photons

and electrons in graphene is their linear dispersion relation.

Strain-engineering promises the develop of a wide variety of nanodevices through the control

of the valley degree of freedom as information carry. From QFTCS, the design of valley and

spin beam splitters [91, 92, 156, 157], electron confinement [69, 158], collimation [69, 150, 159],

and generation of valley-polarized currents has been proposed [160, 161, 162]. In all those

works, the shifted Dirac points are the main contribution caused by strain, which is embodied

through the pseudo-vector potential, neglecting the anisotropy and tilting of the Dirac cone.

In this section, we show how our effective model incorporates the shifted Dirac points and the

anisotropy of Dirac cone in the study of electron quantum optics. The homogeneous anisotropy

can be induced through other mechanisms different to strain in the Dirac material. We derive

a unconventional electron Snell law in anisotropic Dirac materials, that describes the charge

carrier beam flowing through the optics-like devices: collimators, reflectors, Veselago lenses,

valley beam splitters and filters. In particular, an implementation of electron quantum optics

for two homogeneously strained graphene media is proposed.

3.3.1 Generalization of reflection and Snell’s law in anisotropic Dirac

materials

We study the transmission of Anisotropic Massless Dirac Fermions (AMDFs) in a valley electron

quantum optics device, which can be conformed by two different anisotropic Dirac materials,

as shown in Fig. 3.2 (a). In graphene and in topological insulators for instance, the regions

I and II can be doped using two external gates V1 and V2. Whereas in artificial systems as

photonic crystals, the simulation of an external gate is obtained from the frequency shift of
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(a) Physical system (b) Kinematical construction
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Figure 3.2: Scheme of massless Dirac fermions refraction and kinematical construction in two

anisotropic Dirac materials. Controlling the anisotropy of both materials is possible to induce

transitions in the optical-like device operation. Thus, (a) unpolarized charge carrier beam from

the region I arriving to the interface can be reflected, transmitted or doubly refracted due

to the lifting of the two-fold valley degeneracy. A kinematical construction in (b), illustrates

how the shifted Dirac points and elliptical transversal section of the Dirac cone affects the

device operation. In the left (right), ellipse corresponds to the transversal section of Dirac cone

for the K valley in the region I (II). Red arrows denote the group velocity direction defining

the true incidence and refraction angles θ and θ′, respectively. Turquoise line represents the qy

conservation, establishing the relation between both angles through the unconventional electron

Snell’s law (3.18) derived from GA.

electromagnetic waves when the distance among dielectrics is shrunken [159]. The separation

between gates can be neglected if the condition kFd < 1 is satisfied, being kF the Fermi wave

vector and d the split-gate length. Thus, the potential profile V (x) can be approximated to

a sharp potential step due to the abrupt change at interface. Such assumption is considered

for avoiding the angular filter of electron beams beyond the normal incidence [163, 164, 165].

Moreover, the coherence length and the mean free path are expected to be larger than the

device’s dimensions, allowing that the system is within the ballistic transport regime. These

considerations, which are necessary for performing electron quantum optics, have been achieved
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experimentally in graphene [55, 148, 149]. In this way, controlling the anisotropy through an

inductor mechanism and the doping with external gates, the electron optics device operates

according to the particular purpose of design. Thus, when a point source injects the electronic

waves with a wide angular distribution, the device changes the direction of the electron beams

of a specific way, and an extended drain collects the output electron beams.

When incoming AMDFs arrive at interface, there is a R probability for the reflected beams,

where R is the reflection coefficient. In order to obtain R, the performation of matching con-

ditions for the wavefunctions is required. From a general point of view, the hamiltonian for

pseudospin 1/2 particles, which considers nonlinear terms and homogeneous anisotropy trans-

formation on ~p, is written asH = v0F (σxgx(~p
′))+σygy(~p

′))+V , where ~p ′ is the transformed linear

momentum in (3.1), gx(~p
′) and gy(~p

′) are general functions of ~p ′. The eigenstates of this hamil-

tonian are given by the spinors |Ψ〉 = 1√
2
(1, seiφ)ei

~k·~r, being φ = arctan(gy(~p
′)/gx(~p

′)) the pseu-

dospin angle and s = sgn(E − V ) the band index. Thus, the wavefunctions |ΨI〉 = |Ψ〉i + r|Ψ〉r
and |ΨII〉 = t|Ψ〉t for the region I and II respectively, are matched at the interface, with r (t) the

reflection (transmission) amplittude. Then, the R coefficient for propagation modes is obtained

R = |r|2 =
(s cosφ− s′ cosφ′)2 + (s sinφ− s′ sinφ′)2

(s cosφ+ s′ cosφ′)2 + (s sinφ− s′ sinφ′)2
, (3.17)

where the denoted quantities with prime, excepting ~p ′, correspond to the region II. Transmission

coefficient T is obtained in terms of R from the conservation of the probabiltiy current density,

T = 1−R. We note that the expression of R in (3.17) is the result of consider pseudospin 1/2

particles and the use of the boundary condition ΨI(~r)|x=0− = ΨII(~r)|x=0+ , regardless the specific

form of gj(~p
′) with j = x, y. Notwithstanding, the relation of φ and φ′ must be established

knowing the particular expressions of gj(~p
′), as well as through the conservation of E, py,

and probability current density jx. A nontrivial relation between φ and φ′ can be obtained

considering nonlinear terms of ~pa in the hamiltonian. However, the requirement λF > d is

better satisfied due to the increment of λF when the hamiltonian depends linearly of ~p ′. With

longer wavelengths, the scattering caused by the atomic details can be neglected. Further, the

resemblance between AMDFs and photons is more clear making gj(~p
′) = p ′j, and a dispersion

relation in shape of an elliptical cone is obtained.

In most of the Dirac materials, the electronic band structure shows two inequivalent Dirac
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cones due to the invariance of time reversal symmetry. We focus only in the K valley, since a sim-

ilar description is performed doing the change ~K → − ~K. Thus, the conservation laws of E, py

and jx can be illustrated from a kinematical construction, as shown in Fig. 3.2.(b). The ellipses

are the Dirac cone transversal section for the regions I and II satisfying the E conservation. The

size of the ellipses are tuned through the external gates V and V ′, whereas the extremal angles

θ1 and θ2, Dirac point position ~K and rotation angle θR for each ellipse can be modified using

the AIM. We define the height difference between ellipses ∆K = |K ′y−Ky| and the vertical half-

width as r and r′. With geometrical arguments, r is expressed in terms of Dirac cone paremeters

as r = |E−V |w
~vFλ1λ2

, where λi = cot θi with i = 1, 2 and w =
√
λ21 cos2 θR + λ22 sin2 θR. A horizontal

line indicates the py conservation. When the line intersects both transversal sections, the in-

coming AMDFs are transmitted to the other region through propagation modes. Otherwise, the

transmission by evanescent modes could occur for some values of py, whether a horizontal line

does not intersect the ellipse in the region II. Since the current density ~j is directed outward

(inward) of the ellipse for s = 1 (s = −1), the AMDF beams are refracted in different way

for intra and interband transmission. This explain how AMDFs from the conduction band are

negatively refracted crossing the valence band in an np-junction.

Since each electron quantum optics device has a different kinematical construction, we es-

tablish a geometrical criterion of operation which allows to classify the possible devices when r,

r′ and ∆K are tuned through the external gates and the AIM. For r << r′ and |∆K| < r′ − r,

the propagation modes is guaranteed in the whole of incidence range −r ≤ py ≤ r. Then, the

kinematical construction shows an ellipse with a vertical half-width in the region I smaller than

in the region II. Hence, the refraction range is very narrow compared with the incidence range.

Indeed, this corresponds to the operation principle of a collimator, since a wide angular distri-

bution of incoming AMDF beams are converted by the device to an aligned outcoming beams,

as seen in Fig. 3.3 (b) and (c). Such device also acts as a valley beam splitter for ∆K 6= 0,

because AMDFs from K+ valley are collimated to a different direction than these from K− val-

ley, as seen in Fig. 3.3 (e) and (f). Increasing r, collimation effect disappears. However, valley

beam splitter continues operating as long as r < r′, as shown in Fig. 3.4 (b) and (d). Tuning

∆K such as r′ − r < |∆K| < r′ + r, the incidence range for propagation modes is reduced as

long as ∆K tends to r′ + r. Thus, valley filtering effect begins to emerge. This effect consists
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of a total internal reflection for AMDFs from K+ (K−) valley and refraction for AMDFs from

K− (K+) valley, where both incoming particles have the same direction of incidence. When

r′− r < ∆K < r′, valley beam splitter and filter are mixed and the full transition to a complete

valley filter is reached if r′ < ∆K < r′+ r, as shown in Fig. 3.5 (b) and (d). The full absence of

propagated modes is obtained for ∆K > r+ r′ and the device works as a reflector, which is im-

portant for switching purposes due to the creation of a tunable transmission gap. On the other

hand, an extended collection of unconventional Veselago lenses are achieved with the focusing

condition r = r′, s = −s′ and ∆K = 0 (see Fig. 3.6 (b) and (e)) which is the generalization of

the well-known condition E = V ′/2, V = 0 and s = −s′ for Veselago lens in graphene. Further,

obtaining the geometrical criterion r = r′, s = s′ and ∆K = 0 is possible the implementation

of a novel device that we have called super divergent lens, (see Fig. 3.7).

In order to characterize these devices, we derive the reflection and Snell’s law as well as the

reflection and transmission coefficient, establishing a complete analogy with the light optics.

We use the Heisenberg equation for obtaining the velocity operator ~̂v = − i
~ [~r,H] = v0FA

T~σ.

The group velocity of incoming and outcoming AMDFs is calculated from the expected value

of ~̂v, which is written as ~v = 〈Ψ|~̂v|Ψ〉 = sv0FA
T n̂(φ), where n̂(φ) = (cosφ, sinφ) is the unitary

vector, indicating the pseudospin direction. From the definition of the pseudospin angle φ, the

linear momentum ~p can be expressed in terms of n̂(φ) as ~p = p′A−1n̂(φ). We note that the

velocity, linear momentum and pseudospin are not always paralells in elliptical Dirac cones.

Hence, φ and φ′ can not be interpreted as the angle of incidence and refraction respectively,

as is usually assumed for circular Dirac cones in pristine and strained graphene. The genuine

angles of incidence θ and refraction θ′ are defined by the components of group velocity in the

region I as ~v = v(θ)n̂(θ), where n̂(θ) = (cos θ, sin θ). In the region II, the group velocity has

the same form and its parameters are denoted with primes. Thus, using ~p in terms of θ with

~p = sp
′v(θ)
vF

(ATA)−1n̂(θ), the anisotropy matrix decomposition (3.5), and the py conservation

written as py + ~Ky = p′y + ~K ′y, we can establish the following AMDFs Snell’s law

s|E − V |
~vFλ1λ2

(λ2 sin θR cosχ+λ1 cos θR sinχ)+Ky =
s′|E − V ′|
~vFλ′1λ′2

(λ′2 sin θ′R cosχ′+λ′1 cos θ′R sinχ′)+K ′y.

(3.18)

Where χ is an auxiliar quantity related with the Dirac cone parameters and the angle of incidence
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through

n̂(χ) = (cosχ, sinχ) = v(θ)
vF

(λ−11 cos(θ − θR), λ−12 sin(θ − θR)) (3.19)

being v(θ) = vFλ1λ2[λ
2
2 cos2(θ − θR) + λ21 sin2(θ − θR)]−1/2. This Snell’s law can be reduced to

the known law of massless Dirac fermions in isotropic systems such as pristine graphene and

3D topological insulators, using λ1 = λ2 that corresponds to circular Dirac cones. We note

that in Dirac materials with two nonequivalent Dirac cones, AMDFs from K− valley obey an

similar Snell’s law doing the substitution Ky → −Ky and K ′y → −K ′y. Therefore, AMDFs from

K+ valley are transmitted with an angle of refraction different to AMDFs from K− valley as

long as, the designed device satisfies the condition Ky 6= K ′y. When ∆K = 0, the optics of

AMDFs is valley-independent and the refraction is expected to be different in comparison with

the conventional electron optics for isotropic systems. Further, if V = V ′ the angle of refraction

is independent of E and a dispersionless optics is obtained.

In contrast to the traditional optics, AMDFs obey a more general reflection law. We can see

in Fig. 3.2 (b) that, although py is conserved, the group velocity components along y for incident

and reflected particles result to be different. In this way, a relation between the reflection θ and

incidence θ angles can be derived using the py conservation and the group velocity components,

establishing the following AMDFs reflection law

tan θ = tan θ − (λ21 − λ22) sin 2θR
w2

, (3.20)

which is independent of E, V and V ′ as well as the band indexes s and s′. This reflection law

suggests that for θ = arctan [(λ21 − λ22) sin 2θR/2w
2] there is retroreflection when R 6= 0. The

expression (3.20) indicates that all the virtual beams are met in the spot (x, y) = (x0,−x0(λ21−

λ22) sin 2θR/2w
2), where (−x0, 0) is the location of the point source. Further, the virtual image

in the region II of an object in the region I is deformed and rotated. We note that for θR = 0,

the habitual reflection law θ = θ is restored.

Using the AMDFs Snell’s law, we found an analytical expresssion of the reflection coefficient.

The relation between φ and θ is given by n̂(φ) = sR(−α)n̂(χ) = sn̂(α+χ). Then, the coefficient

R in (3.17) is written as

R =
sin2

[
1
2
(α− α′ + χ− χ′)

]
cos2

[
1
2
(α + α′ + χ+ χ′)

] , (3.21)
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which is a function of θ using the definition of χ and solving (3.18) for χ′. An important remark

must be performed regarding the KT in the system shown in Fig. 3.2 (a). We have noted that

using ∆K = 0 in (3.21), transmission probability of AMDFs could be less than unity under

normal incidence. This fact contrasts with the KT in pristine graphene, where electrons tunnel

perfectly along that direction. There are two fundamental reasons for the emergence of KT: the

first, electrons have a linear dispersion, and the second is due to the conservation of pseudospin

σx along the normal direction [4, 55]. While in the current system, the condition for the KT of

AMDFs depends of the conservation of (a11σx+a21σy)/w = (a′11σx+a′21σy)/w
′ when py = p′y = 0

and which guarantees the alignment of pseudospins, namely α + χ = α′ + χ′ doing R = 0 in

(3.21). For this reason, the KT of AMDFs has a prefered direction, and it does not necessary

occur under normal incidence, due to that the group velocity and pseudospin are not always

paralells. Hence, incoming AMDFs with KT can be also refracted. The explanation of this

atypical behavior of the KT is better understood analyzing the velocity components of incoming

and outcoming AMDFs, as shown in Fig. 3.6 (b), (c) and (d). In general, vy 6= 0 for py = 0 and

the angle of incidence can be obtained as θ = arctan(vy/vx) = arctan((λ21 − λ22) sin 2θR/2w
2).

In the region II, the conservation of pseudospin makes posible the KT, but in this case v′y 6= vy

and v′x 6= vx change the direction of the KT, having the angle of refraction θ′ = arctan(v′y/v
′
x) =

arctan((λ′21 − λ′22 ) sin 2θ′R/2w
′2). We note that when θR = θ′R = 0, the habitual KT is recovered.

We can characterize the collimator device using the results (3.18) and (3.21). Collimator

can be designed setting the Dirac cone parameters to have θR = 0 and λ1 >> λ2. In the

region II, the Dirac cones have θ′R = 0 and λ′2 >> λ′1. Thus, the geometrical criterion for

collimation is satisfied. Even more, if we consider the dispersionless optics condition ∆K = 0

and V = V ′ = 0 the effect is independent of the energy E. Under these requirements, we plot

θ′ and T as a function of θ evidencing the collimation of AMDFs, in Fig. 3.3. Removing the

dispersionless optics condition with V = 0 and V ′ = V0 > 0, collimation depends of the doping

level. However, an improvement is observed for E < V0/2 due to the increment of r′. This can

be quantified calculating the angular spread ∆θ ≈ 2
λ′22 |E|

λ′1λ2|E−V0|
which goes to zero for a high step

potential E << V0. Further, effective angular spread results to be smaller than ∆θ, since the

transmission probability of grazing incidence rays is considerably decreased, as shown in Fig. 3.3

75
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Figure 3.3: Collimation of incoming AMDF beams using two media, setting the Dirac cone parameters in the

region I as θ1 = 80o, θ2 = 30o, θR = 0o, α = 0o and in the region II, θ′1 = 30o, θ′2 = 80o, θ′R = 0o, α′ = 0o.

In (a) θ′ is shown as a function of θ for ∆K = 0 nm−1 and V ′ = 0 meV (black), V ′ = 200 meV (orange),

∆K = 0.6 nm−1 and V ′ = 200 meV in K+ (blue) and K− (red) valleys. In all examples the Fermi energy is

the same, E = 40 meV. (b) Kinematical construction for the case ∆K = 0 nm−1 and V ′ = 0 meV in (a), green

sides indicate the intra band transmission. The size and direction of the red arrows show the group velocities

for incident and refracted AMDFs, which are based in analytical calculations. A collimator device is shown

in (c) corresponding to the kinematical construction in (b). From a semiclassical point of view, an electrode

injects an angular distribution of AMDFs. Each particle is represented by a red ball and an arrow denoting its

pseudospin orientation. The changes in the pseudospin orientation, the path line and the direction after crossing

the interface (blue line), correspond to the calculated values of θ′, φ′ and v′g(θ). (d) Transmission coefficient as a

function of θ for the considered cases in (a). (e) Kinematical construction when ∆K = 0.6 nm−1 and V ′ = 200

meV. (f) Collimator and valley beam splitter device: AMDFs have different θ′ for K+ and K− valley, being

approximated independent of θ. The refracted AMDFs of K+ and K− valley are represented by green and

orange balls. The intensity on the lines vary according to the transmission probability. Thus, the black path is

considered to have 50 % of both valleys. Hence, the half of intensity for the red and blue lines are shown.
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(d). Therefore, the most of the incoming rays have a negligible reflection probability because the

restriction λ1 >> λ2 makes that py ≈ 0. Thus, the KT condition is approximated guaranteed

for a wide angular distribution of incoming AMDFs which pass completely collimated to the

region II. The high efficiency of transmission can be quantified from the average of T (θ), as

〈T 〉 ≈ 1 − 4λ1/3πλ2 which is near to one. For an idealized collimator (r = 0) with isotropic

media, the expected efficiency of transmission is approximated to 〈T 〉 ≈ 0.73 evidencing the

importance of fabricate devices inducing anisotropy in both regions.

Introducing the valley dependency ∆K 6= 0 and remaining r << r′, collimation persists

for AMDFs from the same valley, as shown in Fig. 3.3 (a), (d), (e) and (f). In this way, the

collimator also operates as beam splitter, because AMDFs from K+ valley have a different angle

of refraction than these from K− valley, as seen in Fig. 3.3 (e) and (f). However, KT is removed

decreasing the efficiency of transmission. Furthermore, a singular feature in the transmission

of AMDFs for valley beam splitter and valley filter is observed, in Figs. 3.4 (c) and 3.5 (c).

It has always been thought that the complete global symmetry of T (θ) is restored by the time

reversal symmetry, when the transmission of K+ and K− electrons of strained graphene is shown

[37, 91]. Such affirmation is analyzed more carefully for valley-dependent devices designed with

anisotropy. Indeed for θR = θ′R = 0, we can see that the mirror symmetric transmission of

K+ and K− AMDFs is preserved due to T+(θ) = T−(−θ). Nevertheless, rotating Dirac cone

θR = 30o in the region I the mirror symmetric transmission breaks. Therefore, asymmetric global

transmission is observed because under the time reversal symmetry operation py → −py, the x

component of velocity is given by vx(py) = vx(−py) but the y component is vy(py) 6= −vy(−py),

making that T+(θ) 6= T−(−θ). Such fact is confirmed calculating the critical angles of the valley

filter

θνc = arctan

[
sνλ1λ2(∆K − r′)
w2
√
r2 − (∆K − r′)

+
(λ21 − λ22) sin(2θR)

2w2

]
, (3.22)

where ν indicates the pseudospin valley, with ν = 1 (ν = −1) the expression for K+ (K−)

valley is obtained. In general, the incidence ranges of K+ and K− AMDFs are different but

they have the same length when θR = 0 in (3.22). Thus, mirror symmetric transmission remains

for θR = θ′R = 0.

A device of interest in electron optics is the focusing of an electron flow through a Veselago

lens. In the optics of AMDFs, Veselago lens appears even when some AMDFs are positively
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(a) Snell’s law (b) Kinematical construction

-80
o

-60
o

-40
o

-20
o

0
o

20
o

40
o

60
o

80
o

-80
o

-60
o

-40
o

-20
o

0
o

20
o

40
o

60
o

80
o

θR = 0
o

θR = 0
o

θR = 30
o

θR = 30
o

θ
’

θ

K
+
 valley

K
-
 valley

(c) Transmission (d) Physical system

1

0.8

0.6

0.4

0.2

0

0.2

0.4

0.6

0.8

1

0
o

15
o

30
o

45
o

60
o

75
o90

o

-15
o

-30
o

-45
o

-60
o

-75
o

-90
o

T
(θ

)

1 µm

Figure 3.4: Characterization of a valley beam splitter with two media, setting the Dirac cone parameters in

the region I as θ1 = 60o, θ2 = 50o, θR = 30o, α = 0o and in the region II, θ′1 = 40o, θ′2 = 60o, θ′R = 0o, α′ = 0o.

(a) Comparison of θ′ as a function of θ when θR = 30o and θR = 0o being ∆K = 0.09 nm−1, V = 0 meV and

V ′ = 100 meV. (b) Kinematical construction of the valley beam splitter: black arrows indicate the group velocity

for incident AMDFs in green side, and reflected AMDFs in black side, showing an atypical reflection behavior.

The blue and red arrows in the region II have different directions which yield the split between valleys. (c) Global

symmetry (asymmetry) along θ = 0o is observed for the transmission probability when θR = 0o (θR = 30o). (d)

Valley beam splitter device: the pseudospin orientation, angles of refraction and group velocities are based in

analytical calculations. The path intensities indicate the probability in transmission and reflection.

refracted. The last is clarified finding a geometrical relation between θ and θ′ of a convergent

lens with asymmetric spot, (see Fig. 3.6 (a)-(c)). Thus, a divergent flow emitted at (−x0, 0) on

the region I (see Fig. 3.6 (c)) is converted to a convergent flow by the device and met again in
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Figure 3.5: Characterization of a valley filter with two media, having the same set of Dirac cone parameters

than the valley beam splitter in Fig. 3.4, where only V ′ = 60 meV is modified. (a) Comparison of θ′ as a function

of θ when θR = 30o and θR = 0o. (b) Kinematical construction of the valley filter: black arrows indicate the

group velocity for incident AMDFs in green side and reflected AMDFs in black side. Yellow arrows represent the

group velocity with opposite direction giving rise to the retroreflection in both valleys. There are incidence ranges

where total internal reflection is observed for one of the valleys. (c) As in the valley beam splitter device, global

symmetry (asymmetry) along θ = 0o is observed for the transmission probability when θR = 0o (θR = 30o). (d)

Physical system shows the filtering effect, two colectors detect the reflected and refracted AMDFs in both sides

of the device. Yellow line is the path where the retroreflection occurs.
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Figure 3.6: Characterization of symmetric and asymmetric Veselago lens. The set of Dirac cone parameters for

the asymmetric Veselago lens in the region I are: θ1 = 40o, θ2 = 30o, θR = 30o, α = 0o and region II, θ′1 = 50o,

θ′2 = 70o, θ′R = 62.6o, α′ = 0o. For the symmetric Veselago lens, the set of values in the region I and II are:

θ1 = θ′1 = 80o, θ2 = θ′2 = 30o, θR = θ′R = 0o, and α = α′ = 0o. (a) With the Fermi energies E = 50 meV and

E = 71.6 meV for the symmetric and asymmetric Veselago lens respectively, being V = 0 meV and V ′ = 100

meV, the flux convergence is reached. (b) Kinematical construction of the asymmetric Veselago lens: orange

and black arrows indicate the pseudospin direction and group velocity, respectively. Red line and arrows show

the pseudospin conservation and how the KT is deflected due to the change of direction in the group velocity.

The x red marks point out the forbidden states which do not conserve the current density, then total internal

reflection emerges. (c) Unconventional Veselago lens, the emitted AMDFs flux by the electrode source is met

again in an asymmetric spot. Green lines show the path of AMDFs with KT when θ = −20.7o. Some particles

have positive refraction doing possible the convergence of beams. (d) Transmission probability as a function of

θ: the red, black and blue curves correspond to the symmetric and asymmetric Veselago lenses, using the same

set of values that in (a). Green line indicates the direction of KT. (e) Zoom of the kinematical construction

for the symmetric Veselago lens. (f) Proposal of a symmetric Veselago lens using materials with elliptical Dirac

cones.
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the asymmetric spot at (x′0, y
′
0). The geometrical relation between θ and θ′ is given by tan θ′ =

−x0
x′0

tan θ +
y′0
x0

. Then, part of the incoming flow at incidence range 0 ≤ |θ| ≤ | arctan(y′0/x0)|

has positive refraction, as shown in Fig. 3.6 (a) and (c). Such lens can be obtained with the

general focusing condition ∆K = 0, r = r′ and s = −s′. With that criterion is possible to show

that for E = V0(1 + λ′1λ
′
2w/λ1λ2w

′)−1, AMDFs Snell’s law satisfies the geometrical relation

between θ′ and θ of an asymmetric Veselago lens, having a tunable spot as a function of Dirac

cone parameters. Satisfying the KT requirements, convergence of the outcoming beam towards

the spot is not destroyed since the KT path deflects. In a particular case, where the region

I and II have the same anisotropy further that θR = θ′R = 0, the conventional Veselago lens

with symmetric spot is recovered, (see Fig. 3.6 (a) and (d)-(e)). Once more, the efficiency of

transmission 〈T 〉 = λ2/(λ1 +λ2) is enhanced and in the limit λ1 << λ2, 〈T 〉 tends to one, which

contrasts with the value of 〈T 〉 = 0.5 for circular Dirac cones.

We have found a novel device whose operation is the counterpart of a Veselago lens, called

super divergent lens. This device converts a diverging AMDF flow, emitted by a point source

at (−x0, 0), to an outcoming divergent flow with a virtual spot located at (−x′0, y′0), as seen

in Fig. 3.7. The geometrical relation between θ and θ′ is written as tan θ′ = x0
x′0

tan θ +
y′0
x0

.

Thus, one part of the incoming AMDFs have a negative refraction within incidence range

0 ≤ |θ| ≤ | arctan(y′0/x0)|, (see Fig. 3.7 (a) and (c)). This device arises when the diverging

condition ∆K = 0, r = r′ and s = s′ is satisfied. Then, Fermi energy is given by E =

V0(1− λ′1λ′2w/λ1λ2w′)−1 and AMDFs Snell’s law has the same expression that the geometrical

relation between θ and θ′ for the outcoming divergent flow. The KT requirement encompasses

the whole of incidence range in a super divergent lens. Then, the transmission coefficient is

always one due to the conservation of pseudospin for any θ, as shown in Fig. 3.7 (b), (d) and

(e). Such effect known as super KT has been predicted for pseudospin one massless particles

[159, 166, 167]. Nevertheless, the physical explanation given here for the super KT of AMDFs,

differs substantially to the reported in pseudospin one systems.

The design of each electron optics device requires the modulation of the GA parameters,

and one way is to use two media conformed by Homogeneously strained graphene. In the next

chapter, we show how the strain-engineering can be used in the implementation of electron

quantum optics.
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Figure 3.7: Characterization of the symmetric and asymmetric super divergent lens. The set of Dirac cone

parameters for the asymmetric super divergent lens are the same that in the asymmetric Veselago lens, where

only the Fermi energy is changed to E = 165.7 meV. For the symmetric super divergent lens, the set of values

in the region I are: θ1 = 40o, θ2 = 30o, θR = 0o, α = 0o and the region II are: θ′1 = 50o, θ′2 = 70o, θ′R = 0o,

and α′ = 0o, where the Fermi energy is E = 126.6 meV. (a) With V = 0 meV and V ′ = 100 meV in both super

divergent lenses, θ′ as a function of θ are shown. (b) Kinematical construction of the asymmetric super divergent

lens: the pseudospins (orange arrows) are conserved for the whole incidence range giving rise to the emergence

of a super KT. The group velocities (black arrows) change the direction and magnitude forming a divergent flux.

(c) Asymmetric super divergent lens, the emitted divergent flux by the electrode source is diverged again at

interface causing the effect of virtual source (white fictitious electrode). Some particles have negative refraction

doing possible the divergence of beams. (d) All AMDFs have a transmission probability of one in any incident

direction. (e) Kinematical construction for the symmetric super divergent lens, the pseudospins do not change

their direction. (f) In a symmetric super divergent lens, the virtual source is found along the same axis that the

real one.
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Chapter 4

Applications of the Geometrical

Approach to strained graphene

In recent years, many works have been devoted to find practical methods to control graphene’s

properties. A possible way is to perform a deformation on the graphene sample [11, 37, 45, 46,

48, 60, 63, 66, 71, 83, 103, 108, 168, 169, 170] or bilayer graphene [171], opening a wide range of

possibilities to control the graphene extraordinary electronic and mechanical properties. Actual

studies identify three main effects of uniaxial strain on low-energy band structure in graphene

[11, 37, 66, 68, 170]. First, a slipping of the Dirac points out of the high symmetry points K

and K’. Second, a distortion in the transversal section of the Dirac cones, breaking the isotropy

of the Fermi velocity; and third, a small vertical axis tilting of Dirac cones, which could be

negligible in most of the situations.

These effects have been totally or partially embodied in several effective models describing

the dynamics of Dirac fermions [15, 38, 68, 89, 98]. As said in the overview chapter, two type

of models for the study of the electronic-ground properties of strained graphene and related

systems are frequently found in the literature [15, 39, 67, 68, 89, 98, 130]. On the one hand, the

most popular approach known as QFTCS considers a hamiltonian developed around the high

symmetry points of the first Brillouin zone [15]. Exceptional goals of this theory is the generation

of pseudo-magnetic fields caused by the shifting of the Dirac points, described by a pseudo vector

potential. On the other hand, there are approaches that included an effective hamiltonian

developed around the Dirac points and for uniform strain, the pseudo vector potential is absent
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[38, 68, 98]. Therefore, a more simple description of the Dirac fermions dynamics was obtained,

where the explicity inclusion of the anisotropy of Dirac cones played an important role on the

modulation of the electronic, vibrational and transport properties [38, 68, 98], which have been

frequently neglected in many earlier contributions about valleytronics [69, 91, 156, 160].

Some theoretical works use an anisotropic mass model to find the LLs in graphene through

topological considerations [172]. Another authors frequently analyze the properties of strained

graphene using the Tight-Binding (TB) approximation, including the effect of deformation on

the atomic distances through the scaling of the hopping parameters [11, 13, 15, 39, 68, 98]. In

this chapter, we start studying the LLs in uniaxially strained graphene along the ZZ and AC

directions, since under these directions the anisotropy matrix is diagonal. Thus, the coefficients

of the linear momentum are related with the geometrical parameters of the distorted Dirac

cone, and can be calculated from a fitting to the energy bands obtained with a DFT calculation.

Then, we apply a minimal substitution in the free-field effective Dirac-like hamiltonian to get

the LLs spectra. In particular, for uniaxial strain we found that the LLs spectra is contracted

as a function of the deformation along the ZZ and AC directions. This contraction of the LLs

spectra is due to the renormalization of the Fermi velocity with the strain, which is reduced

by the stretching along these directions. In addition, we have evaluated the contribution of the

tilting of Dirac cone axis to the contraction of the LLs in uniaxially deformed graphene.

On the other hand, we present how the geometrical approach can be related with the hop-

ping parameters, showing the versatility of our model. We set the TB approach to nearest

neighbors with three different hopping parameters, considering deformed lattice vectors on the

Bloch expansion. Anisotropic exponential scaling rule has been used with a different Grüneisen

constant in each hopping parameter, avoiding the usual expansion to first order in the strain

tensor [38]. The TB hamiltonian is expanded around the Dirac point, where the relation be-

tween anisotropy matrix with the hopping parameters is found. Thus, effective Fermi velocity

is expressed in terms of hopping parameters from the anisotropy matrix determinant in (3.4).

We show that the obtained effective Fermi velocity from GA with TB method and DFT cal-

culations, is identical to the one extracted from LLs in uniaxially strained graphene. However,

our findings about the Fermi velocity differs with other approaches [15, 38, 68, 98]. Therefore,

the prediction of the expansion and contraction of the LLs spectra could be the turning point
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of the discrepancy among models.

4.1 Landau levels in uniaxially strained graphene

To clarify our methodology, we show how to obtain the LLs in unstrained pristine graphene

from an effective Dirac-like hamiltonian in a low energy and magnetic field regime. We treat

the dynamics of an electron moving in a graphene sheet under a uniform magnetic field ~B = Bẑ

perpendicular to the direction of propagation. We consider the electrons in graphene as massless

Dirac fermions, having a linear dispersion relation (E ∝ k) [3]. With ~B = 0, the hamiltonian

H only depends on the linear momentum ~p and can be represented by a 4 × 4 block diagonal

matrix [24, 173]

H = vF

 ~σ · ~p 0

0 −~σ · ~p

 , (4.1)

where vF is the Fermi velocity and ~σ are the Pauli matrices acting on the pseudo-spin space,

which discriminate between the contribution of the two triangular sublattices present in graphene.

Each block in the hamiltonian (4.1) represents the K and K ′ valleys, coinciding with the high

symmetry points in absence of strain. For B 6= 0, we do the minimal substitution ~p→ ~p+e ~A in

the free-field hamiltonian (4.1) with the Landau gauge ~A = xBŷ [174, 175]. Due to the py con-

servation, the electron’s wavefunction in graphene can be expressed using variables separation,

having the form

~Ψ(x, y) = eikyy~v(x), (4.2)

where ~Ψ(x, y) and ~v(x) = (~φ(+)(x), ~φ(−)(x)) are four-component vector functions with ~φ(+)(x) =

(f
(+)
A (x), g

(+)
B (x)) and ~φ(−)(x) = (g

(−)
B (x), f

(−)
A (x)), describing the pseudospin ({fA(x), gB(x)})

and the valley (K or K’) states ({±}).

We focus in the K valley, substituting (4.1) and (4.2) in the Dirac equation H~Ψ(x, y) =

E~Ψ(x, y), we obtain

vF {pox − ipoy(ky)} g(+)
B (x) = Ef

(+)
A (x),

vF {pox + ipoy(ky)} f (+)
A (x) = Eg

(+)
B (x),

(4.3)

with pox = px and poy(ky) = ~ky + exB. Decoupling the equation system (4.3) and using the
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commutator [px, poy(ky)] = −i~eB, we get

v2F{p2x + (~ky + exB)2}f (+)
A (x) = {E2 − v2F~eB}f

(+)
A (x), (4.4)

being similar to the quantum harmonic oscillator equation. Therefore, for Dirac electrons in

the presence of a uniform perpendicular magnetic field, the LLs spectra is given by [175, 176]

En = sgn(n)~ωD
√
|n|, ωD = vF

√
2eB

~
, (4.5)

with n = 0, ±1, ±2, . . . and degeneracy of 4SB/(h/e), where S is the sample area and (h/e)

is the magnetic flux quantum. The four-fold degeneracy of LLs in graphene (n 6= 0) is due

to a two-fold pseudospin and a two-fold valley degeneracy. While for n = 0, there is a two-

fold degeneracy because the valley index is the same as the sublattice index. This result is

different from the LLs spectra for conventional conductors En = ~ω(n + 1
2
), where each level

has a constant separation, while in graphene the LLs separation (4.5) decreases as |n| increases.

This behaviour has been confirmed experimentally [3, 54, 176]. It is important to mention that

fitting the expression (4.5) to the experimental spectrum, the value of vF can be obtained [176].

Landau levels in strained graphene

In previous studies on uniaxially strained graphene [11, 37, 68, 69, 72, 77, 98], it was shown

that the Dirac cones have an elliptical cross section for low energy regime |E| < 1 eV. For

elliptical cross section, the functions a(x) and b(x) are constants and they are related to the

geometrical parameters of the ellipse, such as the semi-major axis (A = E/a~vF for ZZ and

A = E/b~vF for AC direction) and semi-minor axis (C = E/b~vF for ZZ and C = E/a~vF for

AC direction), or equivalently, scaling the energy axis with q = E/~vF , then a = cotα = q/kx

and b = cot β = q/ky, where α and β are the extremal elliptical cone angles. Then, for pristine

graphene we have the values α = β = π/4. With a and b independent of x, the equation (3.16)

is reduced to the quantum harmonic oscillator equation. In the present case we obtain that the

LLs spectra is given by

En = sgn(n)
√
ab~ωD

√
|n|, ωD = vF

√
2eB

~
, (4.6)

with n = 0, ±1, ±2, . . . and degeneracy of 4S ′B/(h/e), where S ′ is the deformed sample area.

From equation (4.6), we can see that the strained graphene LLs depend on the geometrical
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Figure 4.1: (a) Geometrical parameters a and b of the Dirac cone as a function of tensile strain (ε)

along the AC and ZZ directions. (b) Evolution of the ξ parameter for strained graphene as a function

of tensile strain (ε) along the AC (red line) and ZZ (blue line) directions with and without tilting of

the Dirac cone axis. The black curve correspond to the renormalized Fermi velocity obtained from a

TB approximation considering interactions up to second nearest neighbors in deformed graphene by

Goerbig et al. [68].

parameters of the deformed Dirac cone, the respective cyclotron frequency ωD and the quantum

number n. Since the expressions (4.5) and (4.6) are similar, we have defined ξ ≡
√
ab as a

parameter to measure the contraction (ξ < 1) or expansion (ξ > 1) of the LLs spectra under

the same magnetic field. It should be noted that in others works, the concept of renormalized

Fermi velocity v∗F is commonly used [68], and which is related with our parameter by v∗F = ξvF .

It is important to mention that when the cross section of the Dirac cone does not have an exact

elliptical form, it is necessary to solve the differential equation (3.16) to obtain the spectrum of

LLs. In our best knowledge, there are not experimental reports on the effect of strain on the

LLs spectra of graphene.
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4.1.1 Discussion

We found that for both strain directions (AC and ZZ), in the whole range of studied deforma-

tions, the LLs spectra is contracted (ξ < 1) with respect to the pristine case (ξ = 1) under the

same magnetic field. It is interesting to note that the value of ξ, and hence the distance be-

tween LLs, decrease as the uniaxial deformation is increased. This behaviour can be explained

in terms of the cyclotron orbit motion change induced by strain. Thus, if graphene is stretched,

the cyclotron orbit motion has a mean-radius bigger than the equilibrium case, then the value

of total energy decreases. From this perspective, the expansion case in the LLs spectra may

occur when graphene sample is contracted.

In Fig. 4.1, we show the plots of a, b and ξ for different values of deformation (ε) along

the AC and ZZ directions. From Fig. 4.1 (a) we observe that for parameters ε < 10%, a (b)

in ZZ (AC) has approximately the same values than b (a) in AC (ZZ). Thus, for a fixed value

of deformation, the fitted cones for AC and ZZ are practically the same but one rotated with

respect to the other by 90◦. Therefore, the effect of AC and ZZ uniaxial strains on LLs is

expected to be practically the same for strain up to 10%, as seen in Fig. 4.1 (b). This point can

be explained if we consider that the parameter ξ represents the ratio between the renormalized

Fermi velocity and the Fermi velocity in pristine graphene. The renormalized Fermi velocity

can be seen as an effective velocity of the anisotropic Fermi velocity in the cyclotron motion.

Considering that the cones have identical shape for AC and ZZ directions up to 10%, we expect

similar values of the renormalized Fermi and similar contractions in the LLs spectra for both

directions. Also, we observe that ξ has a nearly linear behaviour in this range of deformations,

with ξ ≈ 1− 0.7ε. This result suggests that the degree of deformation (ε) in a graphene sample

can be estimated by extracting the value of ξ from the LLs spectra.

To evaluate the contribution of Dirac cone tilt on the contraction of LLs in uniaxially de-

formed graphene, we have fitted the conduction band using the dispersion relation of the form

E/~vF = aokx+boky+
√
a2k2x + b2k2y, which is obtained diagonalizing the Weyl hamiltonian [24],

where ao and bo are Dirac cone tilt parameters. With an appropriate rotation of our system, we

can use the expression ξ =
√
ab(1−a2o/a2−b2o/b2)3/4 [68], instead of ξ =

√
ab. In all cases we ob-

tain bo ≈ 0, having a tilting only in the kx-axis, in agreement with others authors [68]. The tilt

can be neglected for strains up to 15% as seen in Fig. 4.1 (b), where the calculations of ξ with
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and without tilting are shown. For strains along the ZZ direction, the tilt could have observable

effects on the LLs spectra for deformations larger than 15%. In order to compare the present

results for ξ with previous calculations reported in the literature, in Fig. 4.1 (b) we include the

result obtained from a TB effective model reported in [68], where a Harrison’s scaling rule for

the hopping parameters was used. We can see that the TB approximation predicts a descreasing

behaviour of the renormalized Fermi velocity as a function of strain, in qualitative agreement

with the DFT calculations. Nevertheless, there is an important quantitative difference, which

can be attributed to the relaxation of carbon positions, and the Poisson ratio changes beyond

of the elastic regime included in the DFT calculations. The contraction of LLs spectra as a
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Figure 4.2: Evolution of the LLs spectra as a function of tensile strain along the (a) AC (red) and (b)

ZZ direction (blue). The label in each curve corresponds to the Landau level (n).

function of the tensile strain is shown in Fig. 4.2, for both strain directions (AC and ZZ). As

we can see, the contraction of LLs spectra for the ZZ deformation is larger than for the AC

deformation. The LLs spectra does not present lifting of the two-fold valley degeneracy since

our prediction is based in the low energy and low magnetic field regime [110, 115].

In order to show the effect of strain on the LLs Density of State (DOS) under a uniform

magnetic field, we have calculated the DOS for both strain directions with a deformation of 20%,

and comparing them with the corresponding to pristine graphene under the same magnetic field.

The DOS for strained graphene along the AC and ZZ directions are shown in Figs. 4.3 (a) and
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Figure 4.3: Calculated DOS of LLs for (a) pristine graphene (gray) and uniaxially strained along

the AC direction (red) for deformation of 20% (ξAC = 0.801) and (b) pristine graphene (gray) and

uniaxially strained along the ZZ direction (blue) for deformation of 20% (ξZZ = 0.745).

4.3 (b), respectively. In these plots, we observe that the contraction of the LLs spectrum is larger

along the ZZ than for AC direction, because ξZZ = 0.745 and ξAC = 0.801 for ε = 20%. The

DOS contraction with respect to equilibrium spectrum is a result of the LLs spacing reduction

due to the Fermi velocity modulation by strain. Thus, the present results show clearly that the

LLs spectra in graphene can be modulated via uniaxial strain.

4.2 Anisotropic massless Dirac fermions in homogeneously

strained graphene

Most of the ground-electronic properties in anisotropic Dirac materials depend somehow with

vF : DOS is inversely proportional to the square of vF , bulk compressibility is inversely dependent

and LLs spectra depends linearly of it, as shown in Fig. 3.1 (b). Thus, the changes produced

by the anisotropy on the Fermi velocity also are tailoring these physical quantities. Herein,

we show how the strain, as anisotropy inductor mechanism, lead to a robust Fermi velocity

behavior in graphene.
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4.2.1 Geometrical Approach related with TB method

The TB description of anisotropic graphene-like system consists in a deformed hexagonal lat-

tice with different bond lengths, hopping and overlapping parameters among nearest atoms.

The anisotropy could have been induced through chemical manipulation or by loads upon the

material. The lattice is conformed by two deformed triangular sublattices of Bravais identified

as A and B. Thus, homogeneously strained graphene as an example of anisotropic graphene-

like system, possesses a unit cell with two carbon atoms with decoupled pz and σ orbitals.

The lattice vectors are denoted by ~a1 and ~a2 and the reciprocal lattice vectors are given by

~b1 = (2π/Ac)~a2 × ẑ and ~b2 = (2π/Ac)ẑ × ~a1. The first Brillouin zone is a deformed hexagon

having the symmetry points K and K ′. In a TB calculation, ~δ1, ~δ2 and ~δ3 indicate the positions

of nearest neighbors on the underlying sublattice A. The set of tj TB parameters with j = 1, 2

and 3 for nearest neighbors correspond to the probability amplitude that an electron hops to

one of the three nearest atoms. Since the overlap terms and the next nearest neighbors hopping

have a negligible contribution, TB hamiltonian is reduced to

H =

 0 g∗(~k)

g(~k) 0

 , (4.7)

where g(~k) = t1e
−i~k·~δ1 +t2e

−i~k·~δ2 +t3e
−i~k·~δ3 . Solving the secular equation, we obtain the following

eigenvalues of the hamiltonian (4.7):

E± = ±
√
t21 + t22 + t23 + 2t1t2 cos θ12 + 2t1t3 cos θ13 + 2t2t3 cos θ23 (4.8)

where θij = ~k · (~δi − ~δj). The eigenstates of (4.7) are |Ψ(~k)〉 = 1√
2
(1,±eφ(

~k)) with φ =

arctan(Im{g(~k)}/Re{g(~k})). Since the hamiltonian (4.7) has time-reversal symmetry, the Dirac

points occur in pairs. Thus, the graphene band structure has Dirac points when the hopping

parameters satisfy |t1− t2| ≤ |t3| ≤ |t1 + t2|. Otherwise, band gap is opened [14, 16, 11]. Solving

g( ~K) = 0, Dirac points are located at

Kx =
a1yΛ1 − a3yΛ2

|~a1 × ~a2|
(4.9)

Ky =
−a1xΛ1 + a3xΛ2

|~a1 × ~a2|
(4.10)
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where ~a3 is defined as ~a3 = ~a1 − ~a2, Λ1 and Λ2 are functions of the hopping parameters

Λ1 = 2 arccos

−√t22 − (t1 − t3)2
4t1t3

 (4.11)

Λ2 = arccos

(
t21 − t22 − t23

2t2t3

)
. (4.12)

The expressions (4.9) and (4.10) are a more general version that in [11, 16], where the deforma-

tion in lattice vectors have been explicitly included. In the low energy regime (E << t = 2.7

eV), we perform an expansion of g(~q + ~K) around the Dirac point located at ~K, preserving

linear terms in ~q:

g(~q) ≈ ~vF ~w · ~q, (4.13)

where the complex dimensionless vector ~w is expressed as

~w = (wx, wy) =
2

3t
i

3∑
j=1

~δj
a
tje
−i ~K·~δj (4.14)

and a is the equilibrium C-C distance with a value of 1.42 Å in pristine graphene [22]. Equation

(4.14) establishes the bridge between effective three-hopping TB model with GA, since the

expansion (4.13) leads to

H = vF

 0 w∗xpx + w∗ypy

wxpx + wypy 0

 , (4.15)

where ~p = ~~q and vF = 3at
2~ is the Fermi velocity in pristine graphene. The effective TB

hamiltonian (4.15) is identical to the mapped hamiltonian by the transformation (3.1), when

the complex coefficients wx and wy are written as wx = a11 + ia21 and wy = a12 + ia22. The

present hamiltonian (4.15), useful for the study of homogeneously strained graphene properties

with arbitrary strain directions, is a generalization of the Weyl-hamiltonian used in [24], which

was developed using TB approach with two different hopping parameters to nearest neighbors.

That Weyl hamiltonian is applicable for systems with quinoid-type deformation [24]. In order to

complete the relation between the effective three-hopping TB model and the GA, the anisotropy

matrix is obtained using (4.14)

A =
2

3ta

3∑
j=1

tj

 δjx sin( ~K · ~δj) δjy sin( ~K · ~δj)

δjx cos( ~K · ~δj) δjy cos( ~K · ~δj)

 , (4.16)
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hence, the effective Fermi velocity is calculated from the anisotropy matrix (4.16) using (3.4),

(4.9) and (4.10)

ξ =
v′F
vF

=
1

3at

√
2|~a1 × ~a2|

[
(t1 + t2 + t3)(−t1 + t2 + t3)

(t1 − t2 + t3)(t1 + t2 − t3)
]1/4

, (4.17)

which is cyclic under index permutation. Thus, the changes in the physical properties of ho-

mogeneously strained graphene are governed by the two factors present in (4.17): the first is

caused by the change of the unitary cell area |~a1×~a2| when the lattice is strained. The second, is

produced by the anisotropic hopping parameters. Both factors are function of the homogeneous

strain tensor.

4.3 The bridge between hopping parameters and homo-

geneous strain

In previous chapters, we shown that the vF -dependent physical properties can be tailored

through Dirac cone parameters. In the above section, the relation of v′F as a function of TB

parameters was found. Thus, the completed relation between vF -dependent physical observable

and strain is given by the hopping scaling rule. We start studying the homogeneous deforma-

tions along an arbitrary direction θ with respect to a Cartesian system chosen with the x-axis

along the ZZ direction. In elasticity theory [135], is always possible to separate the strain tensor

in its isotropic and shear strain contribution

u = Iεi + Sεs, (4.18)

where εi = 1
2
(ε1 + ε2) and εs = 1

2
(ε1 − ε2) are the isotropic and shear strain contribution

coefficients, being ε1 and ε2 the eigenvalues of the strain tensor. I is the 2 × 2 identity matrix

and S is a matrix expressed as S = σz cos 2θ + σx sin 2θ, with σx and σz the Pauli matrices.

A vector ~v in the deformed lattice is expressed as ~v = (I + u)~vo, with ~vo a vector in the non-

deformed lattice. In this way, the nearest neighbors position in the anisotropic hexagonal lattice,

can be obtained from the initial configuration as ~δj = (I + u)~δoj . The calculation of deformed
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bond lengths leads to

δj
a

=

√[
1 + εi + εs cos

(
2θ + 2j−1

3
π
)]2

+ ε2s sin2
(
2θ + 2j−1

3
π
)
. (4.19)

Thus, the change in the bond lengths (4.19) modifies the hopping amplitudes among neighboring

sites. Such variation is modeled as an exponential decay of tj with the increase of δj [11, 76]

tj = te
−βj

(
δj
a
−1

)
, (4.20)

where βj are the Grüneisen parameters, which in principle might be different for each C-C

bond and they dependent of the strain-type considered. In pristine graphene, βj is the same

for each bond and its value is β = 3.37 [126]. From ab-initio calculations was demonstrated

that, for small uniaxial deformations along the AC and ZZ directions, the value of β remains

approximately constant [60]. In the present work, we have assumed that for homogeneous strain

βj ≈ β. The possible implications of considering βj 6= β will be discussed in the next section.

Now, if we relate the expression |~a1 × ~a2| with the homogeneous strain, we can complete the

relation between ξ and u. Then, trom the strain tensor trace, we have

|~a1 × ~a2| = 3

√
3

2
a2(1 + 2εi). (4.21)

Thus, substituting the expresions (4.20) and (4.21) in (4.17) the relation between the effective

Fermi velocity and the homogeneous strain is found.

In order to study the renormalized effective Fermi velocity as a function of uniaxial, shear

or strain combinations, we use the definitions for each considered strain. Since graphene has

a linear elastic response for small deformations, εi and εs are proportional to the tensile strain

parameter ε. Introducing p and q as the proportional constants for εi and εs respectively, we

can define (p, q) as the label which identifies the strain. For instance, using the definitions of

εi and εs in terms of strain tensor eigenvalues ε1 and ε2 in (4.18) for uniaxial strain, the label

can be written as (1
2
(1 − ν), 1

2
(1 + ν)). In a similar way, (1, 0) and (0, 1) denote the labels of

pure isotropic and pure shear strain, respectively. In general, we have chosen p and q to be

non-negatives. Hence, stretching and shrinking area is pointed out through the ε sign. We

can see from (4.21) that for ε > 0 the graphene sample is stretched. A negative value of ε

indicates that the graphene sample has been shrunken. Nevertheless, the last interpretation
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Figure 4.4: Effective Fermi velocity as a function of ε and θ for uniaxial, shear, and combinations of strains.

Solid lines with dots correspond to the calculated v′F from the fitting of hopping parameters, whereas dash lines

indicate the analytical calculation of v′F using the hopping scaling rule. (a) Scheme of strain angles in graphene.

(b) Uniaxial: ξ as a function of θ and for different values of tensile strain, ε = −12%,−6%, 0%, 6%, 12%, 18%

and 25%. (c) Pure shear: v′F as a function of θ and for different values of tensile strain, ε = 0%, 7% and 14%.

(d) and (e), uniaxial and pure shear strain: v′F as a function of ε and using the values θ = 0o, 6o, 12o, 18o, 24o

and 30o. (f) Strain combinations for v′F along the ZZ direction and in the inset the linear behavior of v′F for

small strain is shown.

has an exception for shear strain because the sample area do not change with ε. In that case,

a positive (negative) ε must be interpreted as a stretching (shrinking) at length scale along the

ZZ direction while in AC direction, the same quantity ε is shrunken (stretched).
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4.3.1 Modulation of effective Fermi velocity with homogeneous strain

The application of specific (p, q) strains in graphene leads to different modulations of vF . In or-

der to confirm the effect of strain on vF , two different methods were explored. On the one hand,

the analytical function (4.17) is completely specified using the exponential scaling rule (4.20)

and deformed bond lengths (4.19). Then, we evaluated for uniaxial, shear, isotropic and com-

binations in a tensile strain range −10% ≤ ε ≤ 20%. On the other hand, the expression (4.17)

was numerically evaluated avoiding the use of a scaling rule, using fitted hopping parameters

from DFT calculations for uniaxial and shear strain.

Both methodologies are compared in Figs. 4.4 (b), (c), (d) and (e), where analytical (line)

and numerical (dots) of effective Fermi velocity shown a good agreement. The maximum relative

error is 2.4% for ε = 20% with uniaxial strain along AC direction. For a better appreciation, Fig.

4.4 (a) shows the scheme of strain directions applied to a graphene sheet. This scheme is used

for Figs. 4.4 (b) and (c), where the shaded and white areas are delimited with a circumference

of unity radius indicating the decrease (shaded) or increase (white) of vF . For uniaxial strain

(see Fig. 4.4 (b)), we show a general behavior of vF also valid for all homogeneous strain with

p 6= 0, where vF increases (decreases) if graphene is shrunken (stretched). While shear strain

(p = 0) in graphene makes that vF always decreases, as shown in Fig. 4.4 (c). These effects of

strain on vF can be explained from geometrical arguments. A stretching (shrinking) of graphene

causes that the extremal Dirac cone angle θ1 increases (decreases) and for shear strain, it is only

increased. Then, vF behaves oppositely because vF ∝ tan−
1
2 θ1 from (3.6).

Isostrain curves with ε > 10% evidence the periodicity and anisotropy of vF . The period of

π
3

corresponds to the hexagonal lattice symmetry. Thus, non repeated information is found at

range 0 ≤ θ ≤ π
6
. For ε ≤ 10%, we found that vF is isotropic, approximately. This indicates

that vF under strain has the same elastic behavior of graphene, since the qualitative description

of vF is analog to the stress-strain relationship [108]. This behavior is more evident plotting vF

as a function of ε in Figs. 4.4 (d) and (e). Thus, we can see that vF changes between two limits

given by v−F and v+F which are the effective Fermi velocities along the ZZ and AC directions,

respectively. For any (p, q) strain, simplified expressions of v−F and v+F are obtained using the
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bond lengths (4.19), which are expanded to first order in ε along θ = 0 (ZZ) and θ = π
6

(AC):

v±F = v0F
√

1 + 2pε

(
4

3
e±3qβε − 1

3

)1/4

e−β(p±q)ε. (4.22)

Hence, Figs. 4.4 (d) and (e) shown that the most efficient way to decrease (increase) vF is

stretching (shrinking) the ZZ bond which is given by v−F in (4.22). In constrast, the least

efficient form occurs applying strain along the AC direction whose values are given by v+F .

In order to elucidate the role of p and q, we explore how vF along the ZZ direction is affected

combinating uniaxial, shear, and isotropic strain, as shown in Fig. 4.4 (f). Thus, higher values

of q makes that vF tends to zero for smaller tensile strains. There are two possibilities that

ξ(ε, θ) = 0 in (4.17): whether the ideal transition from hexagonal lattice to one-dimensional

atomic chain is achieved satisfying |~a1×~a2| = 0, or when the merging of Dirac points is reached.

The last case is the reason of the zero of vF in Fig. 4.4 (f). From (4.22) can be shown that this

zero is given by εming = 2 ln 2
3βq

, where εming is also the minimum tensile strain for a gap threshold,

being only tuned by the shear strain contribution q.

On the other hand, the effect of isotropic strain over the modulation of vF is more evident

for small strains, (see inset of Fig. 4.4 (f)). Thus, we expand the expression (4.16) to linear

terms of ε, using the deformed bond lengths (4.19) and the scaling rule (4.20)

A =

 1 + (1− β)(p+ q cos 2θ)ε (1− β)qε sin 2θ

(1− β)qε sin 2θ 1 + (1− β)(p− q cos 2θ)ε

 . (4.23)

Calculating vF from (3.4), we get

v′F
vF
≈ 1− (β − 1)pε− κ(θ)qε, (4.24)

where we define β = 1
3

∑
j βj and κ(θ) = 1

3

∑
j βj cos(2θ+ 2j−1

3
π). Since

∑
j cos(2θ+ 2j−1

3
π) = 0,

βj = β + ∆βj, and ∆βj << 1, the third term on the right side of (4.24) is negligible. The

present result (4.24) is the consequence of use the anisotropic hopping scaling rule given by

(4.20). Hence, vF depends linearly of ε and the slope is given by β and p. We note that the

decreasing (increasing) of vF for ε > 0 (ε < 0) is more pronounced with higher values of p.

Accordingly, the modulation of all the vF -dependent physical properties are enhanced using

strain profiles with a strong isotropic strain contribution. A special emphasis is placed on the
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study of the strain effects on LLs spectra due to its linear dependency with vF . Further, an

experimental observation of vF variation is factible through LLs measurements. Then, we show

the evolution of LLs for uniaxial strained graphene along the ZZ direction and combinating

uniaxial and isotropic strains in Fig. 4.5.

The expansion or contraction of LLs, which is an effect of the variation of vF , can be

explained from a physical and intuitive point of view. Strain induces the anisotropy in the

hopping parameters causing a distortion of electron’s orbits. Accordingly, the electron orbit

average radius increases when graphene is stretched, reducing the separation between energy

levels. Whereas the shrinking of graphene makes that the radius electron orbit increases and LLs

spectra is expanded. An identical situation is found in the study of LLs in graphene under an in-

plane electric field [118, 119, 120, 121]. In that system, the uniform electric field E|| contracts the

LLs spectrum. The separation between two underlaying levels decreases due to the competition

between the electric (FE) and magnetic (FB) forces. Reaching the critical value E||c, the LLs

are collapsed and for E|| > E||c or equivalently FE > FB, the LLs quantization disappears by

the opening of electron orbits. However, the LLs in homogeneously strained graphene do not

have a collapse as the LLs in graphene in presence of an electric field. Although, in Fig. 4.4 (f)

we see that Fermi velocity is vanished for some critical strains values, indicating an apparent

collapse of LLs. This absence of collapse is due to the change of dependency of LLs with B in

the merging of Dirac points [115]. Hence, a correct description of LLs near to the transition

needs to involve the K and K ′ Dirac cones [13, 24, 109, 110].

Inspired by the experimental work performed for pristine graphene [3, 176], we propose how

vF could be indirectly measured through the DOS of LLs in homogeneously strained graphene.

Since the stretching (shrinking) in graphene produces an expansion (contraction) on the LLs

spectra, the variation of vF could be evidenced from DOS experimental data. Figs. 4.5 (c) and

(d) show the DOS of LLs spectra as a function of the tensile strain ε for the cases of uniaxial

strain along the ZZ direction and the combination of uniaxial and isotropic strains. For ε = 5%,

the combination of uniaxial and isotropic strain evidence a contraction of 23 % against to 8 %

considering only uniaxial strain. Therefore, the value of v′F/vF can be more easily extracted

from DOS measurements when the combination is considered. The experimental confirmation of

linearly dependency of vF for small strains could be used in the estimation of relevant constants
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Figure 4.5: Evolution of LLs in (a) uniaxial and (b) combination with isotropic strain in graphene

along the ZZ direction as a function of tensile strain (ε > 0). Calculated DOS for (a) uniaxial ZZ strain

with ε = 7% (blue) and for (b) a combination of uniaxial and isotropic strains with ε = 7% (orange).

The DOS for pristine graphene (gray) is included for references. Each peak corresponds to a Landau

level of the series of eleven peaks shown.

in graphene and related DMs. For instance, the Grüneisen parameter can be obtained as

β = 1 − m
p

, where m is the slope of (4.24) and p = 1 + 1
2
(1 − σ) corresponds to the isotropic

strain contribution of uniaxial and isotropic combination. Also, Poisson ratio is related with m
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as σ = 3 + 2m
β−1 .
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Figure 4.6: Effective Fermi velocity as a function of uniaxial strain along the ZZ direction

obtained with the present approach and compared with the predicted by Amorim et al. [15],

Oliva-Leyva and Naumis [38], Goerbig et al. [68], and Pellegrino et al. [98].

In order to compare with other approaches, we use the expression (3.4) for extracting the

effective Fermi velocity of each reported model [15, 38, 39, 68, 98]. The comparison in Fig. 4.6,

shows v′F as a function of ε considering uniaxial strain along ZZ direction. Thus, the predicted

Fermi velocity of QFTCS [15] has a slope given by m = 1
2
β(1− ν) = 1.45 which differs with the

estimated value m ≈ 0.7 using DFT calculations. In [38], the scaling rule was expanded to first

order in ε obtaining a similar result to the expression (4.24) with a good agreement for ε ≤ 5%.

We note that the effect of nonlinear ε terms must be included for tensile strains ε > 5%. On

the other hand, in [68] was used the Harrison scaling rule tj ∝ 1
δj

, where the expansion of v′F

for small strains has the form v′F/vF ≈ 1− 0.33ε. In other model [98], the hopping scaling rule

(4.20) was expanded to first order in ε where the lattice vectors deformation were neglected,

obtaining v′F/vF ≈ 1 − 0.95ε. Accordingly, the differences of v′F evidence that even for small

strains, there are discrepancies among effective models predicting the effect of strain on physical

properties. Hence, Fermi velocity measurements are needed for the corroboration of models.

LLs spectroscopy is an option that we propose as test of these effective approaches.
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4.4 Topological validity of the Geometrical Approach for

homogeneous strain

Figure 4.7: Colour maps of the energy landscape for shear strained in graphene with ε = 10%.

Top: left to right for rotation angles θ = 0o, 30o and 45o. Bottom: left to right θ = 60o, 75o and

90o.

Using the hopping scaling rule (4.20) and the new nearest atomic positions of the current

configuration in the dispersion relation (4.8), we can observe how the strain distortes the energy

landscape, as shown in Fig. 4.7. Contour curves around Dirac point evolves from an elliptical

to a more complex shape when the energy is increased. Applying strain in a different direction

to ZZ and AC, the energy landscape has always a special direction where the merging of Dirac

points can be reached increasing the tensile parameter.

In order to examine the topological validity of the GA for homogeneously strained graphene,

we use the hopping scaling rule (4.20) and the deformed bond lenghts (4.19) looking for critical

strains values for the merging of Dirac points. Strain modulation could lead to a topological
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phase transition from a semimetallic to insulator phase [11, 14, 16]. Although, DFT calculations

have probed that such transition could not be possible. This is because the σ band pushes down

preventing the gap near the critical strains [46]. Herein, we will use the merging of Dirac points

condition |t1 − t3| = t2 = |t1 + t3| searching the strain range where εi, εs and θ indicate the

topological validity of the GA for homogeneously strained graphene. Thus, we expanded (4.19)

preserving the linear terms and we substitute the exponential decay rule on merging of Dirac

points condition t2 = t1 + t3, obtaining

εs cos 2θ = 2
3β

ln
[
2 cosh

(√
3
2
βεs sin 2θ

)]
, (4.25)

which is εi-independent. Hence from a linear dependency of the bond lenghts with strain, we

observe that the shear strain contribution εs is only responsible of a Dirac cone merging. The

others Dirac merging condition t1 = t2 + t3 and t3 = t1 + t2 lead to an identical equation (4.25)

rotated π/3 and 2π/3, and together with (4.25) are the equations of the hyperbolas, as shown

in Fig. 4.8. The hyperbolas delimit the region having Dirac points, which corresponds to the

semimetallic phase predicted by TB, while the outside region is the insulator phase. Thereby,

the topological validity of the GA for homogeneously strained graphene is represented by the

colour region in Fig. 4.8 (a). Thus, we can see that for θ = 0, the minimum strain needed to

reach the topological transition occurs with a critical value of εs ≈ 0.14. This value coincides

with the predicted for gap opening in graphene by shear strain [59]. Whereas in uniaxial strain,

the critical value is εs = 1
2
(1+ν)ε = 0.14. In the same way, the critical value of ε ≈ 0.24 matches

with the reported [11]. On the other hand, straining along the AC directions, the topological

transition seems impossible to perform. A more exact calculation considering nonlinear terms

in (4.19) is required to confirm the impossibility of transitions along AC directions.

An examination of the whole possible values within topological validity for extremal elliptical

cone angles θ1 and θ2, as well as the Dirac point location (Kx, Ky), reveals how the geometrical

parameters are modulated by homogeneous strain. Fig. 4.8 shows these quantities for the

specific case of shear strain. The Dirac point location and extremal elliptical cone angle θ1 are

delimited by the hyperbolas found with the merging of Dirac points condition (4.8). Whereas

θ2 is not affected by the TPT because this extremal angle still remains when the transition is

completed. Once more, the influence of strain-stress relationship can be also observed on the
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(a) Kx component Ky component

(c) θ1 Dirac cone parameter (d) θ2 Dirac cone parameter

Figure 4.8: GA parameters as a function of shear strain within topological validity. The hyper-

bolas obtained using the merging of Dirac points condition, delimite the colour region where GA

is valid in the semimetallic phase of graphene. Outside of them, TB predicts an insulator phase

and the transition occurs when the hyperbola is crossed with the increase of εs in a specific θ

direction. The minimum εs for a TPT is given along the ZZ direction. The colour map in (a)

and (b) correspond to the Kx and Ky components of Dirac point position values. (c) and (d)

show the whole allowed values for θ1 with topological validity of the GA, while θ2 does not have

a topological restriction.
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Dirac cone parameters. We note that with strains up to 10%, the change in the values of Kx,

Ky, θ1 and θ2 are small and approximately the same that for pristine graphene. Further, these

parameters have a linear and isotropic behavior for ε ≤ 10%. The imposed tendency by the

strain-stress relationship on the Dirac cone parameters is completed for ε > 10%, nonlinear

and anisotropic behavior appear. Therefore, a strong variation on the Dirac point location and

eccentricity of Dirac cone with respect of pristine values can be observed in proximity to the

merging of Dirac points.

The strain effect on the Dirac cone parameters can be an useful information for the designing

of devices based in strain-engineering, and modulation of physical properties. An example is

given with the implementation of AMDFs optics in homogeneously strained graphene.

4.5 Electron Quantum Optics in Homogeneously Strained

Graphene

The implementation of an electron quantum optics with AMDFs can be obtained from the

building of homogeneously strained graphene systems. Unconventional optics devices described

in the previous chapter can be designed using two different homogeneously strained graphene

regions. These devices can be developed in strained graphene due mainly to the singular effect

of strain on the electronic band structure. The use of two strained reciprocal regions allow a

relative sideshift among Dirac cones, which are caused by the different location of Dirac points.

Further, the intrinsic rotation of elliptical Dirac cone changes the habitual reflection law and

KT. These essential elements given by the strain engineering in graphene make possible the

development of an optics of AMDFs.

Indeed, a collimator as the illustrated in Fig. 3.3 (c), can be designed applying a shear

strain of ε = 15% along the θ = 0o direction in the region I. With these set of strain values,

we can see in Fig. 4.8 (c) and (d) that the corresponding Dirac cone parameters are θ1 ≈ 80o

and θ2 ≈ 36o. The region II could not be strained. Thus, collimation effect can be obtained

for energies E << V0. For the valley-dependent collimation showed in Fig. 3.3 (f), the region I

can be set with the same strain values that the previous case. While in the region II, the used

shear strain has the values of ε = 15% and θ = −30o. Then, the shifting of Dirac points is
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∆K = 0.6 nm−1 obtaining the split of AMDFs from K+ and K− valleys. On the other hand,

the design of a valley beam splitter can be performed using the set of shear strain parameters

in the region I (II) as ε = 11%(13%), θ = 60o(70o), V = V ′ = 0 mev and E = 230 meV. In

this way, valley filter is obtained with the set of values in the region I (II) as ε = 13%(13%),

θ = 45o(65o), V = V ′ = 0 mev and E = 80 meV.

The Veselago lenses showed in Fig. 3.6, can be fabricated using a fully strained graphene

sheet, where the focusing condition is given by E = V0/2. A simplified version of the asymmetric

Veselago lens is reached straining the graphene sheet along a direction θ 6= 0, π
2
. For this

device, KT shows an angular shifting. Symmetric Veselago lenses are obtained when graphene

is strained along θ = 0 or π
2

direction. The obtention of a symmetric super divergent lens (see

Fig. 3.7) requires the application of a strain along ZZ (AC) direction in the region I (II) or vice

versa. In the diverging condition E = V0(1 − λ′1λ′2w/λ1λ2w′)−1, super KT of AMDFs is also

predicted. Asymmetric super divergent lens is obtained when the strains in the region I and II

have the same Ky component for the Dirac points.

4.6 Klein tunneling in homogeneously strained graphene

In order to emphasize how the Dirac cone distortion also affects the KT, we study the transmis-

sion of Dirac fermions crossing a potential barrier in fully strained graphene, as shown in Fig.

4.9. Since the three regions are identically deformed, the Dirac cones show the same position

at reciprocal lattice. Thus, the refraction of AMDFs is valley independent. Under these con-

siderations, other approaches which only considered the strain effects through a pseudo vector

potential, predict that the KT of AMDFs does not have some difference with pristine graphene.

In contrast, the study of KT from the GA allows us to prove that the Dirac cone distortion

changes drastically the transmission of Dirac fermions. In the present case, the AMDFs Snell’s

law (3.18) in fully strained graphene is written as

λ2 sin θR cosχ+ λ1 cos θR sinχ =
ss′|E − V ′|
|E|

(λ2 sin θR cosχ′ + λ1 cos θR sinχ′). (4.26)

where χ and χ′ are related with the angles of incidence θ and refraction θ′, respectively in (3.19).

Using the matching conditions for the wavefunctions in each region, we obtain the same form
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Figure 4.9: Klein tunneling of electrons through a potential barrier in fully strained graphene.

The turquoise area denotes the region positively doped in the energy range where the dispersion

relation is lineal. The red wide arrows indicate the direction where a strain is applied to

graphene. The oriented path shows how the electron beams coming from region I are refracted

inside the barrier, and later the beams outcoming at region III.

of the transmission probability coefficient of pristine graphene

T (φ) =
cos2 φ cos2 φ′

cos2 φ cos2 φ′ cos2(qxD) + (1− ss′ sinφ sinφ′)2 sin2(qxD)
, (4.27)

where D is the potential barrier width. The wavefunction’s phases φ and φ′ are expressed in

terms of θ and θ′ using φ = α + χ(θ). In this way, the transmission probability is completely

specified as a function of θ and E. An example system is set up with a barrier width D = 100 nm

and height of V = 200 meV. In particular, we show how the strain modifies the KT and Fabry

Perot interference when graphene has an applied shear strain of 16% along ZZ, with θ = π
3
, and

AC directions. In fig 4.10 (a) is shown T (E, θ) for pristine graphene in the range of energies

50-100 meV. The extended red area indicates the values of E and θ where the potential barrier

is transparent and for normal incidence the KT occurs. While in other angles of incidence, the
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perfect transmission is reached due to the Fabry-Perot resonances qxD = nπ. When a shear

strain is applied in the fully graphene sheet, T (E, θ) has a drastic change in the KT and the

Fabry-Perot interferences, as shown in Fig. 4.10 (b), (c) and (d). These figures have the same

range of E and θ as in the nondeformed case. We can see in Fig. 4.10 (b) that the potential

barrier becomes transparent for a wide range of θ and the absence of backscattering along the

normal incidence persists. This can be explained from the kinematical construction, since the

Dirac cone transversal section has a similar shape to the shown in Fig. 3.6 (e). Thus, the narrow

range for qy makes that the KT condition can be approximately satisfied for a wide range of

incidence. Furthermore, the resonances are increased due to the widened range of qx. Stretching

along the AC direction, the complementary effect is noted in Fig. 4.10 (c). This effect occurs

because the Dirac cone transversal section rotates π
2
. Then, the range of qx (qy) is decreased

(increased) obtaining a narrowed range of θ for the transparency of potential barrier.

So far, the KT seems to be unaffected when graphene is strained. However, the application

of strain along a different direction of the aforementioned, generates the angular shifting of

KT and the asymmetry of Fabry-Perot resonances, (see Fig. 4.10 (d)). Such behavior can be

explained through the concept of pseudospin sublattice: when graphene is strained along ZZ

or AC direction, the pseudospin is aligned with the group velocity under normal incidence. In

the present case, the deformation of graphene along a different direction ZZ and AC direction

causes an intrinsic rotation of the Dirac cone. Hence, the pseudospin conservation is shifted

for θ 6= 0, and the asymmetry of Fabry-Perot interference emerges due to the breaking of the

mirror symmetry under the operation qy → −qy.
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a) b)

c) d)

Figure 4.10: Transmission probability as a function of E and θ using a potential barrier width D = 100

nm and height V = 200 meV in all studied cases: pristine graphene in (a), shear strain in graphene

where a tensile strain of 16% is applied along the ZZ (b), AC (c), and π
3 (d) direction.
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Conclusions

• We have developed a novel model called Geometrical Approach to the study of anisotropic

Dirac materials, which considers the geometry of the Dirac cones, applying a canonical

transformation of linear momentum on the Dirac-like hamiltonian. The matrix associated

with the canonical transformation, called anisotropy matrix, possesses all the relevant

physical information of the system, having a direct relation with the Fermi velocity tensor,

the rotation pseudospin operator, and the renormalization of linear momentum.

• We show that the Geometrical Approach offers a direct way to relate electronic, vibrational

and transport properties with the geometry of anisotropic Dirac cones. Further, the

parameters can be obtained using TB method, DFT calculations or experimental data,

presenting a great versatility with respect to other models and removing the group velocity

indeterminacy at Dirac point.

• We demonstrate that the effective Fermi velocity is related with the extremal angles

that define the elliptical Dirac cone. Since most of the physical quantities in anisotropic

Dirac materials are Fermi velocity dependents, they also are function of the Dirac cone

parameters. Thus, the electronic, optical and transport properties can be tuned using the

anisotropy as the induction mechanism via the effective Fermi velocity. An example was

shown with homogeneous strain in graphene, where we evidence how the modulation of

Fermi velocity induces the contraction or expansion of Landau levels spectra.

• The modulation of Landau levels spectra help to set a novel spectroscopy in Dirac ma-

terials, which could be used to measure quantities of interest as the Fermi velocity, Hall

resistance and related electronic properties, as well as solve discrepancies among models

about the prediction of Fermi velocity in strained graphene.
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• We proposed the development of electron quantum optics in anisotropic Dirac materials

based on a generalized reflection and Snell’s law for massless Dirac fermions, embodying

the negative refraction which is useful in the design of Veselago lenses, and the valley-

dependent refraction of relevance in the generation of beam splitters and filters. We

have shown that the optics of anisotropic massless Dirac fermions offers a wide variety of

phenomenologies, like super diverging particles flow, omnidirectional Klein tunneling, and

asymmetrical Veselago lenses. Using homogeneously strained graphene as an example of

an anisotropic Dirac material, we show the feasibility to improve and design novel electron

quantum optics devices.

• We evidence the importance of Dirac cone distortion on the Klein tunneling in fully

strained graphene, showing how the strain changes the resonance peaks and suppresses

the Klein tunneling when the pseudospins are rotated.
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Future work

◦ The study of Klein tunneling of massive pseudospin one particles, (in progress).

◦ The emergence of pseudo-magnetic fields in spatial inhomogeneous systems using the

Geometrical Approach.

◦ Electron dynamics of anisotropic Dirac materials with Rashba or electron-electron inter-

actions.

◦ Hong-Ou-Mandel interference of anisotropic massless Dirac fermions.

◦ Quantum Goos-Hanchen effect in anisotropic Dirac materials.

◦ The development of super divergent lenses in light optics.

◦ The study of Landau levels and electron quantum optics in other anisotropic Dirac mate-

rials.

◦ The study of superconductivity in Dirac materials.
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Appendix

Appendix A: Outstanding developments in the Geometri-

cal Approach

A1: Equivalence between the Weyl hamiltonian HW and the mapped

Dirac hamiltonian H(p̃ ′)

We can prove that the obtained hamiltonian H(~p ′) from the transformation (3.1) is the same

that the 2D generalized Weyl hamiltonian HW without the tilt velocity term [24], of the following

way

H(~p ′) = vF~σ · ~p ′

= vF~σ · A~p

= vF{σx(a11px + a12py) + σy(a21px + a22py)}

= vijσipj = HW .

Where the Fermi velocity tensor is related with the anisotropy matrix elements as vij = vFaij.

A2: Symplectic or anti symplectic group condition

We show that the defined transformation S = ξ−1A with ξ =
√
|detA| is symplectic (anti

symplectic), if detA > 0 (detA < 0). Since the Jacobian of the transformation ~pc = S~p is
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M = S, we have for the product of matrices

MTJM = ξ−2

 a11 a21

a12 a22

 0 1

−1 0

 a11 a12

a21 a22


= ξ−2

 a11 a21

a12 a22

 a21 a22

−a11 −a12


= ξ−2(a11a22 − a12a22)

 0 1

−1 0


=

detA

|detA|
J = sgn(detA)J,

where sgn(detA) = 1 indicates that S is symplectic and for sgn(detA) = −1, S is anti symplectic.

A3: Invariance of the commutation relations

We have ensured that ~pc is a conjugated linear momentum for symplectic transformations,

because the commutation relations [xi, pj] do not change if we transform the position operator

as ~rc = (S−1)T~r. Calculating [xc, pxc], we obtain

[xc, pxc] = ξ−2[a22x− a21y , a11px + a12py]

= ξ−2(a11a22[x, px]− a12a21[y, py])

= sgn(detA)i~,

for symplectic transformations, the commutator of xc and pxc remains invariant. While for anti

symplectic transformations [xc, pxc] = −i~, we obtain for [xc, pyc]

[xc, pyc] = ξ−2[a22x− a21y , a21px + a22py]

= ξ−2(a21a22[x, px]− a21a22[y, py])

= 0.

Using yc = ξ−1(−a12x+ a11y), we obtain [yc, pyc] = sgn(detA)i~ and [yc, pxc] = 0.
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A4: Anisotropy matrix decomposition

In order to obtain the decomposition A = R(−α)D(λ1, λ2)R(θR), we must note that the rotation

of ~p and the scaling of axes lead to a rotated elliptical cone in the momentum space

~̃p = D(λ1, λ2)R(θR)~p

=

 λ1 0

0 λ2

 cos θR sin θR

− sin θR cos θR

 px

py


= p

 λ1 cos(θ − θR)

λ2 sin(θ − θR)


where px and py were expressed in polar coordinates. The magnitude of ~̃p is the rotated elliptical

cone equation in (3.7). On the other hand, the unitary transformation U(α) = cos(α/2)I +

i sin(α/2)σz produces a rotation around z axis in the SU(2) space

~σr = U †(α)~σU(α) = R(α)~σ.

With these considerations, the transformation of the Dirac hamiltonian H(~p) is written as

H = vF~σr · ~̃p

= vF{R(α)~σ} ·D(λ1, λ2)R(θR)~p

= vF~σ ·RT (α)D(λ1, λ2)R(θR)~p

= vF~σ · A~p,

where A = R(−α)D(λ1, λ2)R(θR) since RT (α) = R(−α). Setting α = −π
2
, λ1 = λ2 = 1 and

θR = 0, we have A = J and the Rashba hamiltonian is obtained

HR = vF~σ · J~p

= vF (σxpy − σypx)

= vF (~σ × ~p) · ẑ.
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A5: Hermiticity of p̃ ′ and H(r̃, p̃ ′)

Using the properties of hermitian conjugated matrices, the hermiticity of ~p ′ in (3.8) and H(~r, ~p ′)

in (3.10) are proved

~p ′† =

{
1

2
Λ(~r)~p+

1

2
(Λ(~r)~p)†

}†
=

1

2
(Λ(~r)~p)† +

1

2

{
(Λ(~r)~p)†

}†
=

1

2
(Λ(~r)~p)† +

1

2
Λ(~r)~p = ~p ′.

With the above result, the mapped hamiltonian is hermitian

H† = vF{~σ · ~p ′}† = vF~p
′† · ~σ† = vF~σ · ~p ′ = H.

Likewise, we prove that the transformation (3.8) is a generalization of the homogeneous anisotropy

transformation (3.1) when λij are constants

~p ′ =
1

2
Λ~p+

1

2
(Λ~p)†

=
1

2
Λ~p+

1

2
~p †Λ†

=
1

2
Λ~p+

1

2
Λ∗~p

=
1

2
(Λ + Λ∗)~p

= ΛR~p = A~p.

A6: Complex gauge field Ã

Since λij(~r) is spatially dependent, a complex gauge field ~A has emerged as consequence of the

hermiticity of ~p ′ and the noncommutativity of ~r and ~p. The expression of ~A in terms of λij(~r)

is obtained from (3.8)

~p ′ =
1

2
Λ(~r)~p+

1

2
(Λ(~r)~p)†

=
1

2
Λ(~r)~p+

1

2
~p †Λ†(~r)

=
1

2
Λ(~r)~p+

1

2
Λ∗(~r)~p+ ~ω(~r)

= ΛR(~r)~p+ ~ω(~r)

= ΛR(~r)(~p+ ~A),
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where ~A = Λ−1R (~r)~ω, with ωj = − i~
2
∂kλ

∗
jk obtained from the commutator [λ∗ij(~r), pk] = i~∂kλ∗ij(~r).

Separating ~ω = ~ωR + i~ωI , where the compnents are ωRj = −~
2
∂kλ

I
jk and ωIj = −~

2
∂kλ

R
jk, we

have the real and imaginary gauge fields ~AR = Λ−1R (~r)~ωR and ~AI = Λ−1R (~r)~ωI , generating

pseudomagnetic fields and pseudospin precessions, respectively. Thus, the real gauge field ~AR

is given by

~AR = Λ−1R (~r)~ωR(~r)

=
1

detΛR

 λR22 −λR12
−λR21 λR11

 ωR1

ωR2


=

1

detΛR

 ωR1 λ
R
22 − λR12ωR2

−ωR1 λR21 + λR11ω
R
2

 .

Defining χ = detΛR and using the expression of ~ωR in terms of λij, the components of ~AR are

written as

ARx = − ~
2χ

{
λR22(∂xλ

I
11 + ∂yλ

I
12)− λR12(∂xλI21 + ∂yλ

I
22)
}

ARy = − ~
2χ

{
λR11(∂xλ

I
21 + ∂yλ

I
22)− λR21(∂xλI11 + ∂yλ

I
12)
}
,

which are mainly determined by ΛI because if ΛI = 0, then ~AR = 0. An identical development

for the imaginary gauge field ~AI leads to the expressions

AIx = − ~
2χ

{
λR22(∂xλ

R
11 + ∂yλ

R
12)− λR12(∂xλR21 + ∂yλ

R
22)
}

AIy = − ~
2χ

{
λR11(∂xλ

R
21 + ∂yλ

R
22)− λR21(∂xλR11 + ∂yλ

R
12)
}
.

A7: Relation with other approaches

The hamiltonian (3.10) can be reduced to the used hamiltonian with other approaches [15, 129,

130], taking into account the expressions for the Fermi velocity tensor as vij = vFλ
R
ij and the
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Dirac point shift ~KD = − ~AR, we obtain

H = vF~σ · ~p ′

= vF~σ · ΛR(~r)(~p+ ~A)

= vF~σ · ΛR(~r)(~p+ ~AR) + ivF~σ · ΛR(~r) ~AI

= vijσi(pj −KD
j ) + ivF~σ · ΛRΛ−1R ~ωI

= vijσi(pj −KD
j ) + ivFσjω

I
j

= vijσi(pj −KD
j )− ~vFσjΓj,

where Γj = − i
~ω

I
j = i

2
∂kλ

R
jk = i

2vF
∂kvjk is the imaginary gauge field generating pseudospin

precession in the approaches [15, 129]. On the other hand, setting λ11(~r) = a(~r), λ12(~r) =

−ib(~r), λ21(~r) = ia(~r) and λ22(~r) = b(~r) in the expression (3.8), we show that the components

of ~p ′ have the form

p′x =
1

2
{a(~r)px + pxa(~r)− ib(~r)py + ipyb(~r)}

p′y =
1

2
{ia(~r)px − ipxa(~r) + b(~r)py + pyb(~r)} .

substituting the expressions of p′x and p′y in the hamiltonian (3.10), we obtain

H = vF~σ · ~p ′

= vF

 0 p′x − ip′y
p′x + ip′y 0


= vF

 0 a(~r)px − ib(~r)py
pxa(~r) + ipyb(~r) 0

 ,

which is the same hamiltonian obtained in [67].
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A8: Relation between p̃c and p̃ ′

We choose a new linear momentum ~pc instead of ~p ′ for solve the indefiniteness of the group

velocity at Dirac point. The relation between ~pc and ~p ′ is found from (3.11)

~pc =
1

2
ξ−1(~r)Λ(~r)~p+

1

2

(
ξ−1(~r)Λ(~r)~p

)†
=

1

2
ξ−1(~r)Λ(~r)~p+

1

2
~p †
{
ξ−1(~r)Λ(~r)

}†
=

1

2
ξ−1(~r)Λ(~r)~p+

1

2
ξ−1(~r)Λ∗(~r)~p+ ~ω(~r)

= ξ−1(~r)ΛR(~r)~p+ ~ω(~r),

where the components of ~ω are ωj = − i~
2
∂k(ξ

−1λ∗jk) which are obtained from the commutator

[ξ−1(~r)λ∗ij(~r), pk] = i~∂k(ξ−1(~r)λ∗ij(~r). Developing ωj = − i~
2
ξ−1∂kλ

∗
jk − i~

2
λ∗jk∂kξ

−1 = ξ−1ωj − ρj
with ρj = i~

2
λ∗jk∂kξ

−1 and continuing with the calculation of ~pc, we have

~pc = ξ−1(~r)ΛR(~r)~p+ ξ−1(~r)~ω(~r)− ~ρ(~r)

= ξ−1(~r)ΛR(~r)(~p+ ~A)− ~ρ(~r)

= ξ−1(~r)~p ′ − ~ρ(~r).

With ~pc = ξ−1(~r)ΛR(~r)~p + ~ω(~r), we can see that the Jacobian of the transformation is M =

ξ−1(~r)ΛR(~r). As in the homogeneous case, MTJM = sgn(detΛR(~r))J and the transformation

is symplectic (anti symplectic) if sgn(detΛR(~r)) = 1(−1). Hence, using the relation between ~pc

and ~p ′, the effective Dirac hamiltonian for inhomogeneous and anisotropic systems is

H = vF~σ · ~p ′

= vF (~r)~σ · (~pc + ~ρ),

where vF (~r) = vF ξ(~r) and ~ρ = vF
2
i~Λ∗~∇v−1F (~r).

A9: Isotropic and inhomogeneous Dirac hamiltonian

Using the isotropic and inhomogeneous transformation Λ(~r) = a(~r)I, where a(~r) is a real func-

tion and I is the 2× 2 identity matrix, we have that ξ(~r) = a(~r) then ξ−1Λ(~r) = I. Therefore,

the linear momentum ~pc from (3.11) is ~pc = ~p = −i~~∇ and the complex gauge field is given
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by ~ρ(~r) = i~
2
a(~r)~∇a−1(~r) = i~

2
vF (~r)~∇v−1F (~r). Substituting these expressions in the hamiltonian

(3.12)

H = vF (~r)~σ · (~pc + ~ρ)

= vF (~r)~σ · (−i~~∇+ i~
2
vF (~r)~∇v−1F (~r))

= −i~~σ · (vF (~r)~∇− 1
2
v2F (~r)~∇v−1F (~r))

= −i~~σ · (vF (~r)~∇+ 1
2
~∇vF (~r))

= −i~
√
vF (~r)~σ · ~∇[

√
vF (~r)],

where we have used the property
√
f(~r)~∇[

√
f(~r)Ψ(~r)] = f(~r)~∇Ψ(~r) + 1

2
Ψ(~r)~∇f(~r) with f(~r)

a function real and positive, and Ψ(~r) an arbitrary function.
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