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Resumen

Esta tesis presenta trabajo original concerniente a dos ramas de la teoŕıa de redes:
El Caṕıtulo 2 de la Parte I, fue motivado por la necesidad de modelar la dis-

tribución de grado exponencial reportada en tres escuelas secundarias en Yucatán
México por Huerta-Quintanilla et al. [13]. La redes con distribución de grado
exponencial no son comunes. Como resultado, desarrollamos un modelo de crec-
imiento de redes que permite el ajuste fino de los parámetros de distribución en
redes exponenciales y libres de escala. Los parámetros ajustables en el proceso de
crecimiento son la regla de conexión y el grado inicial de los nodos nuevos.

El Caṕıtulo 8 de la Parte II fue motivado por las limitaciones en nuestro
entendimiento sobre el proceso de extinción en enfermedades recurrentes. Em-
pleamos un modelo SIRS espacial con periodo refractario fijo para estudiar el
efecto del embebido espacial en d dimensiones y la distribución de longitudes de
enlace en forma de ley de potencia con exponente de decaimiento α. Como resul-
tado
1) Identificamos tres etapas dinámicas con respecto a la coherencia de fases. La
primera etapa es Stage 1, un corto periodo transitorio de coherencia creciente.
La segunda etapa es Stage 2, caracterizada por valores sostenidos de coherencia
promedio. Una tercera etapa, Stage 3, es visible cuando el sistema es observado
desde el tiempo de extinción. Todas las extinciones muestran una distribución
unimodal de fluctuaciones de fase.
2) Proveemos un relación cerrada para la distribución de tiempos de extinción,
basado en un mapeo de la extinción como un problema de primer paso (First-
Passage Time problem), donde la frontera dinámica , la fracción “infectible”, es
considerada como un caminante aleatorio con una trampa en el origen. La relación
resultante es notablemente exacta en el campo medio, de otro modo solo es una
aproximación. La calidad de la aproximación se reduce con el tamaño del sistema.
3) Encontramos una relación de escala para el tiempo de vida medio que nos per-
mite colapsar múltiples series de datos. Esta relación depende del tamaño del
sistema N y el exponente de decaimiento α.
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Abstract

This thesis present original work touching two branches of network theory.
Part I, Chapter 2 was motivated by the need to model the exponential degree

distributions of Enmity Networks documented in three elementary schools in Yu-
catan Mexico by Huerta-Quintanilla et al. [13]. Exponential degree distributions
are not common in real world networks. This results in the depelopment of a
parametric model of network growth that allows to fine tune parameters of the
final degree distribution. The adjustable parameters of the growth process are
the attachment rule and the initial degree of newly added nodes.

Part II, Chapter 8 was motivated by the gap in our understanding of extinction
times in recurrent epidemics. We analyzed the effects of i) spatial embedding and a
ii) power-law link-length distribution (with decay exponent α) on the SIRS model
with fixed refractory period. Dynamics is developed over small-world networks
with nodes on a d-dimensional lattice. We were able to
1) Identify three dynamic stages with respect to phase coherence. The first stage is
Stage 1, a short transient of increasing coherence from a very low initial value. The
second stage is Stage 2 (the longest stage) characterized by sustained coherence. A
third stage is only visible on averages measured from extinction time, this is Stage
3, a short transient of increasing synchronization. This hyper-synchronization
leads to extinction. All extinctions display an unimodal distribution of phase
fluctuations.
2) Provide a closed relation for the distribution of extinction times, based on the
mapping of extinction to a First-Passage Time problem, where the size of the
dynamical frontier, the “infectible” fraction, is considered as a random walker
with a trap at zero. The approach is strikingly accurate in the mean field, an
approximation otherwise. The quality of the approximation decreases with the
system size.
3) Find a scaling relation for the mean lifetime to collapse multiple data sets.
This relation is dependent on the system size N and the decay exponent α.
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Introduction

“Many objects of interest in the physical, biological, and social sciences can be
thought of as networks and, thinking of them in this way can often lead to new
and useful insights.” from Mark Newman, one of the most renowned authors in
the field of complex networks, may be conceived as a paraphrase to the cliché “the
whole is more than the sum of its parts”.

A quick look around will reveal a plethora of interacting entities. Outside,
we see people building communities at different scales, power grids conveying the
electricity that moves our daily lives, supply chains feeding productive actors of
the economic system, information networks keeping us up-to-date with the news,
trophic networks maintaining our ecosystem, etc.

Inside, we are aware of the physiological orchestration that maintains life:
cell sending and receiving an innumerable quantity of chemical messages, organs
depending on precise chemical concentrations to be able to function, neurons firing
electrical and chemical signal to convey information.

Deep inside the previous examples is the fact that what we are from a physical
stand point, and what we are capable of doing, depend somehow on an infras-
tructure. An scheme to organize interactions, this is what we call a network. A
network is tagged as complex when the scheme of interaction is non trivially de-
scribed by a simple rule, such as ‘all elements interact with one another’ or ‘all
elements interact through a regular lattice’. The adjective complex also refers
to networks where the number of entities is large and the coordination numbers
uneven.

Basic network theory deals with network as pure infrastructure that is either
static or evolves. However, the consensus that the outcome of a networked sys-
tem depends both on its constituents and the way they interact sets a greater
concern: relate structure to function, opening the possibility to make predictions
and excerpt control.

This thesis present original work touching two branches of network theory.

Part I, Chapter 2 was motivated by the need to model the exponential degree
distributions of Enmity Networks documented in three elementary schools in Yu-
catan Mexico by Huerta-Quintanilla et al. [13]. Exponential degree distributions
are not common in real world networks. Most real networks present fat tail in the
form of power-law or exponentially truncated power-laws [14, 15, 16].

The result of this chapter is a parametric model of network growth that allows
to fine tune parameters of the final degree distribution. The adjustable parameters
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of the growth process are the attachment rule and the initial degree of newly added
nodes.

Part II, Chapter 8 was motivated by the gap in our understanding of extinction
times in recurrent epidemics, so as the effect of spatial embedding and long-range
interactions over them.

We analyzed the effects of i) spatial embedding and a ii) power-law link-length
distribution (with decay exponent α) on the SIRS model with fixed refractory
period. Dynamics is developed over small-world networks with nodes on a d-
dimensional lattice.

The results of this chapter are:

- The identification of three dynamic stages with respect to phase coherence.
The first stage is Stage 1, a short transient of increasing coherence from a very
low initial value. The second stage is Stage 2 (the longest stage) characterized
by sustained coherence. A third stage is only visible on averages measured from
extinction time, this is Stage 3, a short transient of increasing synchronization.
This hyper-synchronization leads to extinction. All extinctions display an uni-
modal distribution of phase fluctuations.

- A closed relation for the distribution of extinction times, based on the map-
ping of extinction to a First-Passage Time problem, where the size of the dynami-
cal frontier, the “infectible” fraction, is considered as a random walker with a trap
at zero. The approach is strikingly accurate in the mean field, an approximation
otherwise. The quality of the approximation decreases with the system size.

- A scaling relation for the mean lifetime to collapse multiple data sets. This
relation is dependent on the system size N and the decay exponent α.



Organization

This work is divided into two parts
Part I focuses on the structural analysis of complex networks:

• Chapter 1 is aimed at introducing the reader to the basics of Network Theory.

• In Chapter 2 we develop a parametric model of network growth, which allows
us to obtain networks with fine tuned degree distributions.

Part II focuses on dynamical processes over complex networks:

• Chapter 4 deals with resilience, to describe what happens when some parts
of a network are effectively removed. It also addresses the effects of different
removing strategies.

• Chapter 5 is aimed to introduce reader to synchronization as a mean to
study the behavior of interacting oscillatory units.

• Chapter 6 is aimed to introduce reader to paradigmatic epidemiological
models.

• Chapter 7 is aimed at introducing the reader to a special class of dynamical
systems called excitable media.

• In Chapter 8 we take into account the spatial dimension where a network is
embedded, then analyze the extinctions of a SIRS spatial model with long-
range interactions following a power-law decay.

The last chapter in each part includes a “Conclusions and Discussion” sec-
tion because these chapters constitute the publishable results of the thesis work.
Chapter 2 in Part I was published under the supervision of Dr. Rodrigo Huerta-
Quintanilla in the Journal of Complex Networks. Chapter 8 in Part II is in process
of manuscript writing before submission to a publisher, under the supervision of
Dr. Cristian F. Moukarzel.
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Part I

Network Structure

27





Chapter 1

Network Theory basics

“Network” is today a pervasive word in our jargon, perhaps we automatically
think in social networks or even computer networks when we heard it. In few
words a network is a diagrammatic representation of the underlying structure of
relations among the elements of a system.

For small networks a graph drawn on paper is an effective way for repre-
sentation and visual analysis, however, for complex networks, which maps the
interactions of a large number of individuals, we use the mathematical framework
of Network Theory. In the big picture Network Theory could be divided into
to areas, network structure which deals with the morphological measures of net-
works (size, order, paths, etc.) and network dynamics which deals with network
evolution (i.e. morphological changes of a network over time) and dynamical pro-
cesses happening on top of a network (i.e. processes on the system encoded by a
network).

These areas are not two pieces apart, the structure and dynamics of and on
networks are interrelated: network evolution is driven by a set of dynamical rules
for attachment and growth which in the end influence morphological character-
istics such as degree distribution, assortativity, clustering coefficient, path length
distribution, average path length, etc.; morphological characteristics of a network
play a key role over dynamical processes over it, such as search, information dif-
fusion, epidemic spreading, etc. [17, 18, 19, 20, 6, 3].

1.1 Network measures

Mathematically, a network is represented by a graph. A graph G is a pair of sets,
G = {V,E}, where V is a set of N elements called vertices/nodes (labeled from 1
to N); E is a set of M ordered pairs of the form {(i, j)|i, j ∈ V } called edges/links.
There could be links of different kind in a graph:

• Directed link: a link is a directed link if the existence of (i, j) does not
implies the existence of (j, i). Graphs which contain directed links are called
digraphs.
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• Non-directed link: a link is a non-directed link if the existence of (i, j)
implies the existence of (j, i). Graphs which contain only non directed links
are called simple graphs.

• Reflexive link: a reflexible link is a link of the form (i, i), connecting a node
with itself. This kind of link is also called a loop or self-link.

• Multiple link: a link (i, j) is a multiple link if it is present more than once
in a graph.

Graphs with loops and/or multiple links are collectively called pseudographs.
In this work we deal with simple graphs only, or graphs for short. The terms
couples network -graph, vertice-node, edge-link will be used interchangeably.

Figure 1.1: Graph with 8 nodes and 10 links. The set of nodes is V = { 1, 2,
3, 4, 5, 6, 7, 8 }. The set of links is E = { (1,1), (1,2), (1,3), (2,3), (3,4), (4,5),
(4,6), (6,8), (5,8), (7,6) }. Among E (7, 6) is a directed link, (1, 1) is a reflexive
link or loop, and all other links are non-directed.

1.1.1 Degree distribution

The set of nodes connected to node i is, v(i), denoted as the neighborhood of node
i. The cardinality of this set, ki, is the degree of node i. Unlike lattices, nodes
in a complex network display a variety of degree values. Indeed, node degree is
distributed accordingly to a degree distribution pk

pk =
nk

N
, (1.1)

where nk is the number of nodes having degree k in a network of size N . pk
encodes the probability that a randomly chosen node has degree k. Two well
know examples of degree distributions are the Poisson distribution of Random
networks, and the power-law (fat-tail) distribution of Scale-Free newtorks. 1

1Detailed discussion about the construction of such networks will be given in Chapter 2.
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Given pk we are able to calculate some statistical measures of a network, such
as the average degree 〈k〉

〈k〉 =
∑

k

kpk, (1.2)

although it only depends on N and M 2

〈k〉 = 2M

N
, (1.3)

i.e. this global average give us information about the links to nodes ratio in
a network. Equation 1.3 is valid for any network, independently of its degree
distribution.

1.1.2 Mixing patterns and degree correlations

For a given network, not all the information about node organization is encoded by
its degree distribution; empirical evidence from ecology, epidemiology, and social
science suggests that a node does not connect to other node irrespective of their
properties. There exists mixing patterns [21]

1. Assortative mixing : if nodes tend to connect to other nodes with similar
properties, and

2. Dissortative mixing : if nodes tend to connect to other nodes with dissimilar
properties.

When the property of interest is node degree, the conditional probability pk′|k,
i.e. the probability that a node of degree k is connected to a node of degree k′,
encodes degree correlations. For practical reasons pk′|k is generally estimated in
terms of the nearest neighbors degree. For node i it is

knn,i =
1

ki

∑

j∈v(i)

kj, (1.4)

where v(i) stands for the neighborhood of node i. Thus, the average nearest
neighbors degree of nodes with degree k [22, 23] is

knn(k) =
1

Nk

∑

i/ki=k

knn,i =
∑

k′

k′pk′|k. (1.5)

In the absence of degree correlations pk′|k does not depends on k

Pk′|k =
k′pk′

〈k〉 ,

then

2This fact is know as the “Hand-shaking Lemma”
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knn(k) =
〈k2〉
〈k〉 = κ (1.6)

is a constant determined by the two first moments of the degree distribution.
This constant is called heterogeneity parameter, a measure of the degree hetero-
geneity on uncorrelated networks.

When degree correlations are present networks can be classified into one of
two classes:

• If knn(k) is an increasing function of k, then nodes with high degree have a
larger probability of being connected with other large degree nodes. This is
an assortative network, i.e, with assortative mixing.

• If knn(k) is a decreasing function of k, then high degree nodes have a majority
of neighbors with low degree, while the opposite holds for low degree nodes.
This is an disassortative network ,i.e.,with diassortative mixing.

Assortative 

Mixing
Disassortative 

Mixing

Uncorrelated

Mixing

Figure 1.2: Mixing patterns in networks. An assortative network presents a
increasing behavior of knn(k). An disassortative network presents a decreasing
behavior of knn(k). Uncorrelated networks presents a constant knn(k) = κ.

In general, networks with different mixing patterns presents qualitative dif-
ferent dynamical behaviors in processes such as synchronization and epidemic
spreading. Mixing patterns even affects network resilience under attack (targeted
node deleting) [3].

1.1.3 Geodesic distances and paths

In complex networks, it is possible to define some analogous to distance in terms of
links, which exists in between nodes and connect them. This distance is denoted
as geodesic distance.
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The geodesic distance d(i, j) between nodes i and j is the length of the shortest
path between i and j if this path exists, else it is infinite. There exists a path of
length k between nodes i and j if node j could be reached from node i by following
a sequence of k links.

In term of geodesic distances we can define some topological metrics of the
network such as the diameter D, i.e. the longest geodesic distance in a network,
and the average path length l, i.e. the average geodesic distance between all node
pairs in a network.

There is one reason why paths are of invaluable importance: in order to reach
node i from node j a path must exists between them. This is relevant in any
search or diffusion process within a network. Without a path among two nodes,
they cannot interact neither directly nor indirectly.

1.1.4 Clustering coefficient

If node i has ki neighbors, these neighbors could share among them at most
ki(ki − 1)/2 edges, but only a fraction Ci of those links exists. The (average)
clustering coefficient of the network, C, is the average over these fractions

C =
1

N

∑

i

Ci, (1.7)

with 0 ≤ C ≤ 1. C is the probability that two neighbors of a node are also
neighbors of each other.

Figure 1.3: Graphic definition of clustering coefficient. In the image v(i) =
{1, 2, 3}. The possible links among the nodes is v(i) are { (1, 2), (2, 3), (1, 3) },
just (1, 2) and (2, 3) (marked with dashed lines). In this example Ci = 2/3.

This quantity is a global measure of local link density, that refers to the ten-
dency to form triangles in the network. A more informative quantities is the
explicit dependence of the clustering coefficient on the degree, C(k), defined as
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C(k) =
1

nk

∑

i/ki=k

Ci. (1.8)

A functional C(k) is indicative for the presence of a complex structure in
the three-vertex correlation pattern. In some cases C(k) encodes the hierarchical
structure of a network [23, 24].

As will see later, many real world network display high values of clustering,
and this fact has motivated the development of specific network models [25, 26].

1.1.5 Components

A network could be made of a set of sub-networks or components, with no paths
of any order among the nodes in different components.

Figure 1.4: Examples of network components; (Upper row, from left to right)
cycles of order 3, 5 and 7. (Central row, from left to right) cliques of order 5, 6
and 7. (Bottom row, from left to right) trees of order 10, 30 and 50.

The most simple kinds of components are

• cycles : a k-th order cycle is a network with k nodes and k edges forming a
single closed path.

• cliques : a k-th order clique is a network with k nodes and k(k−1)/2 edges. A
clique is also called a “complete network” because every node i is connected
to the rest of nodes.
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• trees : a k-th order tree is a network with k nodes and k − 1 edges, without
closed paths.

The components of a network can be as complex as the network where they
belong. A network with only one component (i.e. the network itself) is said to be
a connected network.

Not only separated components are important for the structural characteriza-
tion of a network, other subsets of a network are relevant too. At the local level
the identification of communities has promoted a large amount of work in the field
[27, 28, 29]. Basically, communities are subsets of nodes that are highly connected
among themselves and poorly connected to nodes from the outside, this clearly
indicates the need for criteria to specify what “highly” and “poorly” connected
are.

The existence of communities raises another characteristic of a network, mod-
ularity. In terms of modularity, networks are classified as

• non-hierarchical if its communities are disjoint, and

• hierarchical if their communities are nested ones inside one another.

Clearly, these are sharp cases, because another possibility is to get a network
with an overlapping community structure.

1.2 Types of networks

1.2.1 Random Networks

Random networks were perhaps the first attempt for describe real world networks
[30, 31]. Random network models assume an absolute lack of knowledge about
the principles that guide the creation of links between nodes.

Start with a network of N isolated nodes, if any link out of the N(N − 1)/2
possible links exists with wiring probability p we get a random network denoted
as GN,p. Alternatively, we can randomly distribute M links among node pairs to
obtain a random network denoted as GN,M . The number of graphs with N nodes
and exactly M links equals the number of ways of picking the positions of the
links from the

(

N
2

)

possible pairs of nodes. In the model GN,p, the probability of
obtaining a single network with M links is

P (G) = pM(1− p)(
N
2
)−M . (1.9)

Then the total probability to obtain any GN,M is

P (GN,M) =

(
(

N
2

)

M

)

pM(1− p)(
N
2
)−M , (1.10)

which is a Binomial distribution, in which the mean number of links is
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〈M〉 =
(

N

2

)

p. (1.11)

Similarly, the probability P (k) of creating a node of degree k is equal to
the probability that it is connected to k other nodes and not connected to the
remaining (N − 1)− k nodes

P (k) =

(

N − 1

k

)

pk(1− p)(N−1)−k, (1.12)

which is a Binomial distribution, with mean value k

〈k〉 = (N − 1) p. (1.13)

i.e. for a given node i the average degree is just the number of possible neigh-
bors, the other N − 1 nodes, multiplied by the probability p that a link exists
between i and any other node j.
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Figure 1.5: Degree distribution of a Random network G1000,0.05.

In the limit N → ∞ both models yield networks with Poisson degree distri-
bution (figure 1.5)

pk = e−z z
k

k!
, (1.14)

where z = 〈k〉.
In a random network the probability that any two nodes are neighbors is

p =
〈k〉

N − 1
, (1.15)
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this means that the probability of two neighbors of a node to be connected is
p, thus, for a random network the clustering coefficient is

C = p =
〈k〉

N − 1
, (1.16)

it decreases as N−1 for fixed average degree and approaches zero as N → ∞.
This implies a lack of local cohesiveness in the model.

The average path length of a random network can be estimated as follows:
when the presence of cycles is negligible (i.e. C ∼ 0, with the conditions described
above) the average number of nodes at distance d = 1 from a node (its neighbors)
is 〈k〉; the average numbers of neighbors at distance d = 2 is 〈k〉2, and so on. If
at distance d = rG we get 〈k〉rG ∼ N then

l ∼ rG =
lnN

ln 〈k〉 (1.17)

is an approximation to the average path length. The scale of l with lnN is
the signature of the small-world effect: for example, a connected network with as
many as N = 106 nodes could have average path length of order 6, or less.

While a fixed wiring probability p controls the average degree, clustering coeffi-
cient and average path length of a network, a varying p induces structural changes
on it:

• When p < 1/N the network is composed of many component of negligible
size. See left side of figure 1.6.

• When p > 1/N the network has a giant component connecting a non-
negligible fraction of the nodes, χ0. See right side of figure 1.6.

Figure 1.6: On the left, a Random network G100,0.005. On the right a Random
network G100,0.015. The presence of a giant component is evident for the G100,0.015,
because p = 1.5N−1 > N−1.
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The fraction χ0 presents a phase transition equivalent to a percolation transi-
tion in infinite dimension 3 at p = 1/N , figure 1.7.

Figure 1.7: Phase transition in the size of the giant component χ0 in the model
GN,p with N = 1000 and varying p. For convenience the horizontal axis is the
average degree. The transition point at 〈k〉c = 1 is rounded due to finite size
effects.

Figure 1.8: Evolution of the average path length l in the model GN,p with
N = 1000 and varying p. Observe the discontinuity at the critical average degree
〈k〉c = 1.

The average path length behavior presents a discontinuously at 〈k〉c = 1: as
〈k〉 increases from 0 to 1 l also increases due to the nucleation and growth of
even larger clusters, mainly trees-like clusters; at 〈k〉 = 〈k〉c the giant component
appears; as 〈k〉 increases from 1 l decreases because each new node added to the
giant component contributes with an average of 〈k〉 > 1 links, this generates more
new paths as the link density increases. See figure 1.8.

3More details about this will be given in Chapter 4
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Most real world networks shows structural and dynamical properties which
differ from that of a random network with the same number of nodes and links.
Then, new and more elaborate network models are needed in order to capture the
properties of real networks.

1.2.2 Generalized random networks

The random network model of the previous subsection can be extended to allow
the construction of random graph of predefined degree distribution, not just Pois-
son distributions. The process consist in giving a fixed degree sequence {ki}Ni=1 to
assign a degree ki to node i. Then randomly distribute M links among nodes so
that every node ends the process with its predefined degree [32, 33]. Clearly the
degree sequence sum must be an even number

∑

i

ki = 2M, (1.18)

because each link is shared by exactly two nodes. The resulting network has
a degree distribution pk predefined by the degree sequence. The average cluster
coefficient is given by [34, chapter 2]

C =
1

N

(〈k2〉 − 〈k〉)2

〈k〉3
, (1.19)

which approaches zero as N → ∞, such as in a Poisson Random network. On
the other hand, the average path length is

l ≈ 1 +
ln (N/ 〈k〉)

ln ((〈k2〉 − 〈k〉) / 〈k〉) . (1.20)

Equations 1.19 and 1.20 confirm that a generalized Random network with
degree pk displays small-world properties, and such properties are consequence of
the randomness of the construction process.

1.2.3 Small-world networks

In many real-world complex networks it has been observed that the average path
length is relatively small in comparison with the size of the network, while the
clustering coefficient is large in comparison to a random network of the same size
and order; the difference in clustering coefficient values is often several orders of
magnitude [35, Table I]. The neural network of the worm Caenorhabditis elegans,
the power grid of the western United States, the collaboration graph of film actors
[25], friendship networks [26] and the network of world airports [15] are just a few
examples of such kind of networks, generally referred to as small-world networks.
Small-world is a term coined by Watts and Strogatz in the 90’s [25], whom were
the first to developed a network model yielding networks with small average path
length and high clustering coefficient.
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To construct a small-world network in accordance to the model of Watts and
Strogatz [25] we start with a regular network where each node is connected to
its 2r nearest neighbors. With probability p one end from each link is freed and
attached to a randomly chosen node in the network. The process permit the
establishment of long range link called shortcut connecting distant nodes. In
a small world network both C and l shows a characteristic decreasing behavior
(figure 1.10) while interpolates between a regular network at p = 0 and a random
network at p = 1 (see figure 1.9).

Figure 1.9: Evolution of a regular network with 20 nodes and average degree 4
to a small world network with p = 0.7.

Figure 1.10: Relative clustering coefficient and relative average path length as
a function of p for a small world network with 1000 nodes and average degree 10.
Values relative to that at p = 0.

The dependence of the clustering coefficient with p is [36]

C(p) =
3(r − 1)

2(2m− 1)
(1− p)3. (1.21)
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Alternatively to the model of Watts and Strogatz, a small-world network could
be constructed by adding shortcuts between randomly chosen pairs of nodes.
These shortcuts are added with probability φ per link in the underlying network,
from a total of N 〈k〉 /2 connections, this is the so called Newman-Watts model
[26]. In this model the dependence the average path length is

l =
N

r
f(Nrφ), (1.22)

where the scaling function is

f(x) =
1

2
√
x2 + 2x

tanh−1

√

x

x+ 2
. (1.23)

In general, it is accepted that a network displays the small-world effect if

l ∼ ln(N). (1.24)

For an arbitrary network, the average path length is bounded by

1 ≤ l ≤ N + 1

3
,

where l = 1 is obtained for a complete graph or clique, and l = N+1
3

is obtained
by a path of order N [17].

1.2.4 Scale-Free networks

The development of random networks and small world network models were aimed
to build networks which replicate the properties of real world networks, particu-
larly small average path lengths and high clustering coefficients. However, these
model does not account for networks with fat tail degree distributions such as
power laws, shifted power laws, exponentially truncated power laws, or even ex-
ponential distributions. Power law degree distributions has been observed in the
World Wide Web (WWW), the collaboration graph of movie actors, the electrical
power grid of the western United States [14], the interaction network of proteins
in the metabolism of the yeast S. cerevisiae [37] among many other social, bio-
logical, technological and model systems, see refs [38, Table 1] and [35, Table II].
The scientific collaboration networks [39], the WWW in-degree network [16] and
the network of movie actors [15] present degree distributions in the form of ex-
ponentially truncated power laws. The electric power grid of Southern California
displays an exponential degree distribution [15].

The fat tail in the degree distribution of a network implies the existence of
nodes with abnormally high degree, these nodes are called hubs. As we will see in
Chapter 4 they are particularly important in maintaining connectivity in scale-free
networks.

Barabási and Albert [14] proposed the first network model that allows to
build networks with degree distribution tails scaling as a power law. Their model
includes two key facts
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• networks grow in time, i.e. the number of nodes and links increases.

• nodes are connected to each other according to an attachment rule Π(ki, t).

In the Barabási and Albert dynamics the initial condition is a network with
m isolated nodes. A new node is added at each time step. The new node attaches
to m previously existing nodes. Each new link from the new node is set with
probability Π(ki, t).

They show that, if the attachment rule is egalitarian, such that

Π(k, t) =
1

N(t)
(1.25)

then, the resulting network has an exponential degree distribution

pk ∝ e−k/k0 (1.26)

and we call this network an Exponential network.
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Figure 1.11: Degree distribution of a Scale-Free network from the Barabasi-
Albert model with N = 1000 and m = 1.

On the other hand, if the attachment rule gives preference to highly connected
nodes, such that

Π(k, t) =
k

M(t)
(1.27)

then, the resulting network has a power law degree distribution

pk ∝ k−γ (1.28)
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and we call this network a Scale-Free network, see figure 1.11.
The (average) clustering coefficient in this case is [40]

C(N,m) =
m

8

(ln(N))2

N
, (1.29)

which decays as N−1, as in the case of random networks. Barabási et al. [41]
developed a deterministic model to obtain scale-free networks with non-negligible
clustering coefficient at large size. The iterative construction procedure, easily get
from figure 1.12, resembles the construction of a fractal and generates networks
with hierarchical structure.

Figure 1.12: Construction of a deterministic scale-free network. The number
n indicates the iteration step, N is the number of nodes of the network. In this
iterative process N increases with n. Taken from [1, chapter 4]

Hierarchical structures appears in metabolic network [24] [42, chapter 7] and
the internet [1, chapter 4] [23]. Remarkably, in both cases the clustering coefficient
as a function of degree has the form

C(k) ∼ k−β, (1.30)

with β ≈ 1. This fact has motivated the use of the functional form of C(k) as
a prove to detect hierarchical structure in networks.

The average path length scales as [34, chapter 1]

l ∼ ln(N)

ln ln(N)
. (1.31)

Scale-Free networks in the real world have a variety of γ values. Several models
have been devoted to fine tune γ in order to reproduce such values, see the review
of Albert and Barabási for a resume of them [35, Table III].
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Chapter 2

Growing networks

A real world network can change its topology over time by birth and death of
nodes and links as a consequence of any processes allowed to has this effect over
the network. The dynamical rules which drive these changes have influences over
structural characteristics of a network, allowing us to stear changes in the persuit
of specific structural features.

A wide variety of network growth models are now available that mimic struc-
tural and dynamical features of real world networks. These have been built on
complex network research done over the past half century, beginning with the
early work of Erdös and Rényi [30, 31]. Degree distribution is a particularly rele-
vant structural feature since it is the first basis for networks classification: Most
networks are right-skewed, and are known as Scale-Free Networks when their de-
gree distribution follows a power-law [14]. This power-law can be truncated by
an exponential factor [15, 16]. Far less common are Exponential networks (with
an exponential distribution) and Poisson networks (with a Poisson distribution).

Several mechanisms have been proposed to explain network formation and
evolution: preferential attachment [14]; relinking [43]; node aging and linking
cost [15]; information filtering [16]; and popularity vs. similarity competition [44],
among many others (see [35] and [45] for a literature review of complex networks).

2.1 Problem definition

We have detected a general limitation on available network growth models: most
of them assume that, in a given time step, all new edges are either attached to
the new node (i.e., all new nodes enter the network with degree k = m, for an
integer m > 0) [14, 46, 43, 47, 48, 16, 49, 12], or attached to non-specified nodes
(i.e., all new nodes enter the network with degree k = 0) [50, 51]. In other words,
the initial degree of new nodes is set to a constant value without considering the
possible diversity of its values or its influence on the long-run network degree
distribution.

We illustrate the effects of the initial degree of new nodes using a series of
examples. For the sake of simplicity, we consider exponential network growth:

45
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starting with n0 nodes and m0 edges at t = 0. An exponential network grows
by adding one node and m ≥ 1 edges in a single time step for t ≥ 1. Edges
are set between node pairs with no biases or preferences, meaning any node is
equally likely to be connected to any other node in the network. There will be
N(t) = no+t nodes andM(t) = mo+mt edges at time t. In the long-run (t → ∞)
the average degree 〈k〉(t) = 2M(t)/N(t) approaches the value 〈k〉 = 2m.

Let E0 and E1 be two exponential networks with the same set of parameter
values (n0 = 1, m0 = 0, m = 1), connected in slightly different ways. E0 will grow
by adding a new node of degree kini = 0 and a new edge between a randomly
selected node pair at each time step, while E1 will grow by adding a new node of
degree kini = 1 which attaches to a randomly-selected pre-existing node at each
time step. In the long-run both networks have a degree distribution that takes
the form

pk ∝ e−k/ko k ≥ kmin, (2.1)

with a different set of parameters ko and kmin despite having grown under
almost equal conditions to the same number of nodes (N = 104) and edges.
We estimate ko using the least square fitting of equation (2.1) for each degree
distribution with the appropriate kmin: kmin = 0 and k̂o = 2.46 for E0; kmin = 1
and k̂o = 1.44 for E1. From this point on we denote fitted values with a hat. In
all of the parameter estimations we used a least square fitting in gnuplot.

The exact degree distribution for networks E0 and E1 has been solved an-
alytically: for E0 Callaway et al. [51] calculated (for δ = 1 on their model)
ko = [ln(3/2)]−1 ≃ 2.46; for E1 Dorogovtsev & Mendes [20, section 8] calculated
ko = [ln 2]−1 ≃ 1.44 (see also [18, section 2.5]). Fitted values agree with these
calculations.

The only difference in the growth process for E0 and E1 is the initial degree
of new nodes, which clearly affects the final degree distribution. In solving for pk,
and hence ko, both Callaway et al. [51] and Dorogovtsev & Mendes [20, section 8]
rely on master equations, assuming a constant initial degree, kini = 0 and kini = 1,
respectively. However, the master equation approach is unclear, if applicable at
all, for a general case of exponential network growth with nodes of random initial
degree that preserves the relative edges-to-nodes growth rate m/n. For example if
a third exponential network E1/2 is grown, using the same growth parameters as
in E0 and E1, any new node would have the initial degree kini = 1 with probability
1/2, or initial degree kini = 0 with probability 1 − 1/2 = 1/2; nodes with initial
degree kini = 0 and kini = 1 are randomly distributed over time. The master
equation approach does not account for this kind of grown network.

The examples above demonstrate that new node initial degree is relevant to
the long-run degree distribution of a growing network. This is a subtle topic
within network growth research and has not received close attention in previous
models. The present study aim was to fill this gap in understanding the effects of
initial degree on network growth by

• setting the general relation satisfied by the parameters set in a network’s
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degree distribution, and

• identifying the role of new node initial degree on the degree distribution of
Exponential and Scale-Free growing networks

2.2 Network growth modelation

An alternative to Master Equations is needed if a random initial degree is to be
included in a network growth model. We opt for a general treatment which deals
with a posteriori information, and then relates degree distribution to initial degree
in a network growth process.

2.2.1 Degree distribution tail behavior

A network R(N,M) is defined as a set of N nodes connected in pairs by a set of
M edges. The number of edges that node i shares with other nodes is called the
degree of node i, denoted as ki. There are nk nodes with degree k = 0, 1, . . . , N−1
and these numbers satisfy

∑

k

nk = N, (2.2)

∑

k

k nk = 2M. (2.3)

For large networks (i.e. those with thousands, millions or even billions of nodes
and edges) the degree distribution is a reliable large-scale statistical property [45].
The degree distribution pk is the probability that a randomly selected node has
degree k, and it relates to nk as

pk =
nk

N
, (2.4)

therefore equations (2.2) and (2.3) become

∑

k

pk = 1, (2.5)

∑

k

k pk = 〈k〉. (2.6)

Complex networks of real world interest are called Poisson, Exponential or
Scale-Free Networks in response to their distributions’ tail behavior, i.e. the
behavior of their degree distributions for degrees equal to or greater than some
minimum degree, kmin. We approximate general tail behavior by

pk = Cf(k;P) + ǫk k ≥ kmin, (2.7)
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where f(k;P) is a known function with parameters set P; C is an appropriate
constant; and ǫk is the approximation error. Aiming for simplicity in our analysis
we will not include any possible functional or irregular behavior of pk for k < kmin

but their numerical values.

Assuming a set P∗ such that

∑

k≥kmin

ǫk → 0,

equations (2.5) and (2.6) can be rewritten in a single expression as

g(kmin;P
∗) = 〈k〉+∆, (2.8)

where

g(kmin;P
∗) =

∑

k≥kmin
kf(k;P∗)

∑

k≥kmin
f(k;P∗)

, (2.9)

is a function of kmin and the parameters set P∗, and

∆ =

∑

k<kmin
(〈k〉 − k) pk

1−
∑

k<kmin
pk

, (2.10)

is a numerical factor. The parameters relation expressed in equation (2.8) holds
for any network, independent of how it has grown. Its use requires knowing i) the
numerical values of the degree distribution for k < kmin, and ii) the functional
form f(k;P).

Many authors have stressed the utility of using parameter relations to express
the general behavior of network growth models [43, 49] or to compare numerical
results with empirical data [16]. We will use equation (2.8) to infer relations
between a network’s degree distribution parameters set and the initial degree of
new nodes.

2.2.2 Erdös-Rényi Networks

An Erdös-Rényi Network has a Poisson degree distribution for k ≥ 0, so

pk = e−z z
k

k!
k ≥ 0. (2.11)

Using equation (2.8) with f(k; z) = e−z zk

k!
and kmin = 0 directly produces the

classic result

z = 〈k〉. (2.12)

i.e. the degree distribution’s parameter z of an Erdös-Rényi Network is equal
to the average degree [35, III D].
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2.2.3 Exponential Networks

According to equation (2.1), the degree distribution tail for an Exponential Net-
work behaves as pk ∝ e−k/ko . Using equation (2.8) with f(k; ko) = e−k/ko then

g(k;P) =
1

e1/ko − 1
+ kmin = 〈k〉+∆,

allowing us to solve for ko

ko =

[

ln

(〈k〉+∆− kmin + 1

〈k〉+∆− kmin

)]−1

. (2.13)

We can now estimate ko for networks E0 and E1 using equation (2.13) and
simulation data; as kmin is not specified in equation (2.13) we decided, as an
initial creterion, assign to kmin the value m.

For E0 : 〈k〉 ≈ 2, kmin = 0, ∆ = 0 and

ko ≃
[

ln

(

2 + 0− 0 + 1

2 + 0− 0

)]−1

=

[

ln

(

3

2

)]−1

.

For E1 : 〈k〉 ≈ 2, kmin = 1, ∆ = 0 and

ko ≃
[

ln

(

2 + 0− 1 + 1

2 + 0− 1

)]−1

= [ln 2]−1 .

These results agree with those of Callaway et al. [51], and Dorogovtsev &
Mendes [20, section 8] for networks E0 and E1 respectively.

For E1/2 : 〈k〉 ≈ 2, kmin = 1. In this case ∆ 6= 0 and can be calculated with
equation (2.10)

∆ =
〈k〉p0
1− p0

≃ 2(0.2)

1− 0.2
= 0.5,

so

ko ≃
[

ln

(

2 + 0.5− 1 + 1

2 + 0.5− 1

)]−1

=

[

ln

(

5

3

)]−1

≃ 1.95(76),

which agrees with k̂o = 1.95(55) using kmin ≥ 1 for network E1/2. As we can
see in Figure 2.3, for exponential networks kmin is not uniquely determined but it
can be chosen within a wide range of values above m without changing the value
of (2.13).

To determine the dependence of ko on initial degree, we simulate eleven Expo-
nential Networks, Ei/10 (i = 0, 1, . . . , 10) using the parameter values n0 = 5, m0 =
0, m = 5. With probability a = i/10 a new edge is attached to the new node.
Any new edge-end not attached to the new node attaches to a randomly selected
node, including the new node. The final number of nodes was N = 104 and self
loops were avoided.
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The factor ∆− kmin, a numerical value which depends on the non-tail portion
of the degree distribution, is the only difference between networks Ei/10 when ko
is calculated from equation (2.13), while the average initial degree 〈kini〉 = ma is
the only difference in the growth process. We used Figure 2.1 as a comparative
plot to search for a trend between these terms.

Figure 2.1: Comparative plot of degree distribution parameters in Ex-
ponential Networks. A) Open circles: calculated vs. fitted values for the
parameter ko in simulated Exponential Networks. The line corresponds to the
identity ko = k̂o ; B) Open circles: numerical values of average initial degree ma
vs. kmin −∆, the line corresponds to the identity ma = kmin −∆ line.

Figure 2.1 A shows the relation between ko and k̂o (open circles) very close to
the identity k̂o = ko. Figure 2.1 B shows the relation between ma and kmin −∆
(open circles) very close to the identity kmin − ∆ = ma. With these results we
can set the observational relation

ma ≃ kmin −∆, (2.14)

and use it to write an approximation to equation (2.13) as

ko ≃
[

ln

(〈k〉 − 〈kini〉+ 1

〈k〉 − 〈kini〉

)]−1

. (2.15)

Equation (2.15) states a direct relation between average initial degree 〈kini〉
and the degree distribution parameters set of Exponential Networks. In the spe-
cific case 〈kini〉 = 0 equation (2.15) reduces to the general result of Callaway et
al. for 0 ≤ 〈k〉 ≤ 2 [51], although our analysis assumed a binomial distribution of
initial degrees instead of a Kronecker delta distribution; it seems that if a initial
degree distribution preserves the average then equation (2.15) remains the same.
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To better understand these results we will draw a simple analytical model.
Consider a network starting with n0 nodes and m0 edges at t = 0. It grows by
adding a new node and m new edges in a single time step; as kini ≤ m edge-
ends are initially attached to the new node then there are 2m − kini edge-ends
to be allocated in accordance to a given set of attachment probabilities. We are
interested in the long-run degree distribution pk.

For exponential networks the attachment probability is

Π =
1

N(t)
. (2.16)

The number of nodes with degree kini at time t, nkini
(t), will increase by one

at each time step, and decrease if one of them is attached to an edge-end. Thus

nkini
(t+ 1) = nkini

(t) + 1− (2m− kini)nkini
(t) Π. (2.17)

In contrast, for each k > kini the number of nodes with degree k at time t,
nk(t), increases if a node of degree k − 1 is attached to an edge-end or decreases
if a node of degree k is attached to an edge-end.

nk(t + 1) = nk(t) + (2m− kini)nk−1(t) Π− (2m− kini)nk(t) Π. (2.18)

In the long-run, these equations have the solution

nk(t) = tpk k ≥ kini. (2.19)

We substitute eqs. (2.16) and (2.19) into eqs. (2.17) and (2.18) and solve
recursively

pk =
1

2m− kini + 1
exp

(

−k

[

ln

(

2m− kini + 1

2m− kini

)])

k ≥ kini, (2.20)

then

ko =

[

ln

(〈k〉 − kini + 1

〈k〉 − kini

)]−1

. (2.21)

Notice that equation (2.15) has the same form as equation (2.21) but the former
takes into account an averaged initial degree of new nodes rather than discrete
values. Based on this result and those displayed in Figure 2.1, we consider that
equation (2.15) is a generalization of equation (2.21): when initial degree is a
constant value, i.e. a Kronecker delta, we recover equation (2.21) from (2.15).



52 CHAPTER 2. GROWING NETWORKS

2.2.4 Scale-Free Networks

A Scale-Free Network has a shifted power-law degree distribution tail represented
by [43]

pk ∝ (k + κ)−γ k ≥ kmin. (2.22)

Using equation (2.8) with f(k; κ, γ) = (k + κ)−γ the sum g(kmin;P) can not
be expanded in a straightforward way. We can write [52, equation B.12]

∫ ∞

kmin−1/2

(x+ κ)−γdx =

∞
∑

k=kmin

(k + κ)−γ +
1

24

∞
∑

k=kmin

d2

dk2
(k + κ)−γ + . . . ,

∫ ∞

kmin−1/2

x(x+ κ)−γdx =

∞
∑

k=kmin

k(k + κ)−γ +
1

24

∞
∑

k=kmin

d2

dk2
k(k + κ)−γ + . . . .

Assuming a negligible contribution of derivatives and setting aside terms that
depend explicitly on kmin and ∆. Then equation (2.8) yields

(γ − 2)〈k〉 − κ

γ − 1
≃ kmin −

1

2
−
(

γ − 2

γ − 1

)

∆. (2.23)

We simulate eleven Scale-Free networks, Si/10 (i = 0, 1, . . . , 10) using the values
n0 = 5, m0 = 0, m = 5. The growth procedure is the same as for exponential
networks, with the addition of preferential attachment: the second end of an edge
is attached to node i with probability

Πi =
ki + 1

∑

j(kj + 1)
,

where ki is the degree of node i. The term +1 is called initial attractiveness,
A ≥ 0 [50], and allows young/isolated nodes to acquire new links. The final
number of nodes was N = 104 and self loops were avoided.

Equation (2.22) was fitted to the degree distributions of network Si/10 for k ≥ 0
and the values (γ̂, κ̂) substituted on the left side of equation (2.23); for all these
cases we set kmin = 0 in order to get ∆ = 0 and then simplify our analysis. Figure
2.2 A shows the relation between parameters (γ̂, κ̂) and ma (circles) to be very
close to line

(γ − 2)〈k〉 − κ

γ − 1
≃ ma− 1

2
. (2.24)

This is our first approximation for a relation between the degree distribution
parameters set and initial degree in Scale-Free Networks. In conjunction with
equation (2.23), equation (2.24) allow us to write the observational relation

ma ≃ kmin −
(

γ − 2

γ − 1

)

∆. (2.25)
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Figure 2.2: Parameter relation in Scale-Free Networks. A) Open circles:
(γ̂−2)〈k〉−κ̂

γ̂−1
vs ma for simulated Scale-Free Networks. Line: (γ−2)〈k〉−κ

γ−1
= ma − 1

2

line; B) individual behavior of parameters γ̂ and κ̂ with average initial degree.

Figure 2.2 B shows the parameters set behavior of network Si/10; γ̂ is constant
while κ̂ decreases linearly with ma for a constant 〈k〉. As can be read in reference
[52] fitting power-law data is not trivial, and a distribution like that in equation
(2.22) does not has a well-defined kmin. We also estimated γ and κ for 0 ≤ kmin ≤
20: the numeric value of left side in equation (2.23) converges to ma− 1

2
as soon

as kmin ≥ 5. This is the same behavior as in figure 2 A), independently of kmin.

To better understand these results we will draw a simple analytical model
(similar to that developed for Exponential networks) which includes a combination
of preferential attachment (PA) and random attachment (RA). This combination
has been addressed by a number of authors [53, 54, 55] and [56, section 5.3]. We
will use a slightly different approach for our analysis. We begin with a network
starting with n0 nodes and m0 edges at t = 0. This grows by adding a new node
and m new edges in a single time step; kini edge-ends are initially attached to the
new node. From the 2m − kini available edge-ends, KRA will be allocated with
an attachment probability given by equation (2.16), and the others KPA will be
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allocated with the attachment probability

Πi =
ki + A

∑

j kj + A
. (2.26)

Using a continuous mean-field approach like that proposed by Barabási et al.
[46], we can solve the equation of temporal change in node i’s degree

∂ki
∂t

= 〈KPA〉Πi + 〈KRA〉Π, (2.27)

to obtain the degree distribution pk for t ≫ m0. Clearly

〈kini〉+ 〈KPA〉+ 〈KRA〉 = 〈k〉 = 2m. (2.28)

The solution for pk has the form given by equation (2.22) with

γ = 1 +
〈k〉+ A

〈KPA〉
, (2.29)

κ = A +
〈KRA〉
〈KPA〉

(〈k〉+ A). (2.30)

Substituting equations (2.29) and (2.30) into equation (2.28) and solving for
〈kini〉 produces

(γ − 2)〈k〉 − κ

γ − 1
= 〈kini〉, (2.31)

which equals equation (2.24) if

〈kini〉 = ma− 1

2
. (2.32)

i.e. as a consequence of discarding fluctuations in kini within the mean-field
approach the average initial degree has a correction term −1/2.

2.2.5 Scale-Free – Exponential Roll-Off

Consider the previous mean-field results, if we define 〈kini〉 = ma − 1
2
, 〈KPA〉 =

b(2m − 〈kini〉) and 〈KRA〉 = (1 − b)(2m − 〈kini〉) with a, b ∈ [0, 1] then equation
(2.29) yields

γ = 1 +
2m+ A

b(2m−ma + 1
2
)
= 1 +

2 + A
m

b(2− a+ 1
2m

)
, (2.33)

diverging as b → 0. In that case 〈KPA〉 = 0 and there is no preferential
attachment. Then we obtain a network with exponential degree distribution as
given by equation (2.1).

According to equation (2.33), as b → 0
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γ − 2

γ − 1
= 1− b(2 − a + 1

2m
)

2 + A
m

→ 1, (2.34)

the observational relations (2.14) and (2.25) become the same (see figure 2.3),
indicating an Scale-Free to Exponential roll-off.

Figure 2.3: kmin −
(

γ−2
γ−1

)

∆ for Exponential and Scale-Free (b 6= 0.00)

Networks. We used equations (2.10), (2.25), (2.34) and degree distribution data
from simulated networks with different parameters (a, b,m = 5) to appreciate the
influence of kmin. This expression is almost constant over a wide range of kmin

while shows a maximum as a → 0 and b → 1. This maximum is emphasized

in Scale-Free Networks (b > 0) with a ≃ 0. kmin −
(

γ−2
γ−1

)

∆ fluctuates about

〈kini〉 = ma in Exponential Networks (b = 0.00) as well as in Scale-Free Networks
when a ≃ 1.

This roll-off takes place when γ become large, the degree distribution decays
fast, so a first order Taylor Series expansion of equation (2.22) about k = 0 is
representative for (the most probable) low k values:

(k + κ)−γ ≃ κ−γe−γk/κ k ∼ 0, (2.35)

as γ → ∞ the degree distribution at small k is exponential with parameter

ko ≃
κ

γ
. (2.36)

Using equations (2.29) and (2.30) we can write

κ

γ
=

Ab(2− a+ 1
2m

) + (1− b)(2 − a + 1
2m

)(2m+ A)

b(2− a+ 1
2m

) + 2 + A
m

= k∗. (2.37)

Figure 2.4 shows that equation (2.36) is valid for b ∼ 0; as b → 0 equation
(2.37) converges to (2.15).

In the limit case of a → 1, b → 0 and A → 0
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Figure 2.4: Parameters relation in the exponential approximation for
the degree distribution of Scale-Free networks with b ≃ 0. According
to equation (2.37) as b → 0 the ratio κ/γ converges to ko for every value of a,
indicating a Scale-Free – Exponential roll-off.

k∗ = m+
1

2
, (2.38)

this value is similar to the mean-field solution of the Model A proposed by
Barabási, Albert and Jeong [46]; from equation (2.15) we expected

k∗ = ko(a = 1.00) =

[

ln

(

m+ 1

m

)]−1

, (2.39)

both solutions converge for m ≫ 1.

2.3 Results

2.3.1 Simulation algorithm

We used Exponential and Scale-Free degree distributions in equation (2.8), as
well as a series of network growth simulations, to obtain equations (2.15) and
(2.24). These parameters set relations are consistent with those obtained by
means of master equations and the mean-field approach (equations (2.21) and
(2.31), respectively).

Equations (2.15) and (2.24) allow us to define an effective minimum degree
in terms of average degree and the parameters in the degree distribution tail of
a network, independent of how it has grown. We can use this effective minimum
degree as an average initial degree to simulate a growing network with the same
degree distribution of a real world network with average degree 〈k〉 whose degree
distribution matches equations (2.1) or (2.22).

The algorithm requires a set of input parameters: number of nodes N , average
degree 〈k〉, initial attractiveness A , Intitial attachment probability a, and Pref-
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erential attachment probability b. Parameters (N, 〈k〉 , A, a, b) are required for
simulating Scale-Free Networks; setting b = 0 we simulate Exponential Networks

Let

n0 = ⌈〈k〉
2

⌉,

m =
〈k〉
2

,

and r, s, u be random numbers borrowed from a uniform distribution U(0, 1).

1. Start with n0 isolated nodes.

2. Add one new node and L new edges, where

L =







n0 − 1 if r ≤ n0 −m,

n0 if r > n0 −m,

This ensures that in the long-run the average degree is 〈k〉 ≃ 2m, which
could be a non-integer quantity.

3. If s < a attach one edge-end of a new edge to the new node. Do this with
every new edge. This allows new nodes to have an initial degree in the range
[0, L] with average initial degree 〈kini〉 = ma.

4. With probability

Πi =







ki+A∑
j(kj+A)

if u ≤ b,

1
N(t)

if u > b,

attach every available edge-end to a randomly selected node i. Self loops
are avoided.

Repeat steps 2 to 4 N − n0 times.

Parameters a and b can be estimated as follows by first fitting equations (2.1)
or (2.22) to the real network degree distribution and then:

• using k̂o as well as 〈k〉 in equation (2.15), or (γ̂,κ̂) as well as 〈k〉 in equation
(2.24), and solving for a.

• using 〈k〉 and κ̂ as well as an arbitrary A ≤ κ̂ in the relation

b =
〈k〉+ A

〈k〉 + κ̂
. (2.40)
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Our model does not proposes any new linking mechanism but a change in the
initial degree (with the parameter a) and a mixture of random and preferential
attachment (with the parameter b). It offers an alternative to others models. Our
model, such as that in reference [43], allow us to simulate exponential and scale-
free networks, but in our case the roll-off is explicitly tracked by equations (2.36)
and (2.37) when b goes to zero (see figure 4). For specific (a, b) values our model
is equivalent to previous models:
- The model in [14] considers preferential attachment with constant initial degree
equal to m. In our model this is equivalent to set (a, b) = (1, 1).
- The model A in [46] considers random attachment with constant initial degree
equal to m. In our model this is equivalent to set (a, b) = (1, 0)

We have demonstrated the usability of our model’s algorithm by simulating
Exponential and Scale-Free networks which reproduce the degree distribution of
real world networks.

In the first example, we simulate the collaboration graph of movie actors
(MAN ), this is a Scale-Free network with N r = 212250 nodes (actors), M =
3045787 edges, average degree 〈k〉r = 28.69, γr = 3.07 and κr = 31.68 [43]. Us-
ing these values in equations (2.24) and (2.40) results in the parameter values
a = 0.002 and b = 0.49 (A = 1, arbitrarily chosen): new nodes will have initial
degree kini ≈ 0 and about a half of the total edge-ends will be allocated using
preferential attachment. The parameters set resulting from this simulation closely
agrees with that of the real collaboration graph of movie actors (Table 2.1).

Table 2.1: Real and simulated parameters for the collaboration graph of
movie actors (MAN). Parameter values with superscript r were used as input
for our algorithm to simulate the collaboration graph of movie actors. Parameter
values with superscript s were the result of our simulation over 20 runs.

N r 〈k〉r γr κr 〈k〉s γ̂s κ̂s

212250 28.69 3.07 31.68 28.69 3.23 35.06

Although a majority of real world networks often exhibit fat-tail degree dis-
tributions there are real world networks with exponential degree distribution; for
example, the North America Power Grid Network, NAPGN, [57]; the Email Net-
work of the University Rovira i Virgili in Spain, ENURV, [58]; the Worldwide
Marine Transportation Network, WMTN, [59]; and the Enmity Networks (En-
mity2 and Enmity3 ) documented in three elementary schools in Yucatan Mexico
[13]. We simulated these Exponential Networks, the resulting parameters set is
summarized in Table 2.2, and these resulting values closely agree with their real
counterparts.

2.4 Conclusions and Discussion

From the perspective of complex networks, use of parameters for relaxing the
restriction of constant initial degree to allow randomness, as well as the combina-
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Table 2.2: Real and simulated parameters for real world Exponential
Networks. Parameter values with superscript r were used as input for our al-
gorithm to simulate Exponential Networks. Parameter values with superscript s
were the average results of our simulations over 100 runs. Values in column 5
were calculated using the values in columns 3 and 4 in equation (2.15). *Data
from [12].

Network N r 〈k〉r kr
o a 〈k〉s k̂s

o

Enmity2 226 2.24 2.10 0.53 2.22 2.15
Enmity3 419 2.86 2.55 0.54 2.85 2.58
NAPGN 14099 2.79 2.00 0.89 2.77 2.00
ENURV 1133 9.62* 9.20 0.19 9.57 9.34
WMTN 676 7.60* 7.20* 0.23 7.55 7.35

tion of preferential and random attachment, make our network growth algorithm
flexible and applicable to a broad range of growth conditions. Parameter a iden-
tifies average initial degree and average degree as key factors in specifying the
parameters set in the degree distribution of a growing network: most previous
models implicitly rely on changing the average degree while keeping a constant
initial degree.

The meaning of parameters a and b in our model could provide insight into
network growth: parameter b represents the probability of setting an edge-end
with preferential attachment; and parameter a arises from the need to allow a
random initial degree within the network growth simulation. The latter parameter
is susceptible to interpretation since it could be

• a measure of a new node efficiency to attach itself to the pre-existing net-
work; no real process is 100 % efficient. This is a kind of new node fitness.

For example, if a person is exposed to a new social network of friendship
relationships, s/he could meet many people within the network but not
necessarily establish a friendship relationship with all of them. In the most
general case s/he only establishes a fraction a of all the possible links.

• a measure of network efficiency for the attachment of new nodes.

The characteristic represented by parameter a and the analysis of degree dis-
tribution behavior yields a fundamental innovation: the use of the full degree
distribution. We demonstrate the relation between the tail’s functional behavior
f(k,P) and the information from the non-tail portion, as represented by factors
∆ and kmin in equation (2.8).

From a dynamical point of view, equations (2.15) and (2.24) state that the tail
behavior in the degree distribution of a growing network depends both on average
degree and average initial degree. In conjunction with equation (2.12), equations
(2.15) and (2.24) offer valuable information about how these two averages directly
influence the parameters set of a network in a growth process. Formation of a
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Poisson network is caused by growth in the number of edges with a constant num-
ber of nodes over time, there is no average initial degree to take into account and
the average degree is the only way to change parameter z. Equation (2.12) illus-
trates this dependence relation. An average initial degree exists as Exponential
and Scale-Free Networks grow in number of nodes and edges, and it is needed
to specify the degree distribution’s parameters set. Equation (2.15) shows that
average degree and average initial degree have an equal effect in changing the pa-
rameter ko in the Exponential Network degree distribution. In contrast, average
degree and average initial degree play different roles in changing parameters γ and
κ in the Scale-Free Network.

Our results as expressed in equations (2.15) and (2.24) can be used to drive
a growing non-static Exponential or Scale-Free network to a degree distribution
with a particular parameters set. The resulting network’s properties can be com-
pared to those of real world networks of interest. This contrasts with the default
procedure of using the Molloy-Reed algorithm [32] to produce a static random net-
work with a given degree distribution. Our approach acknowledges the growing
character of a network.
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Chapter 3

Dynamical aspects

We study networks in order to better understand the systems they represent.
The structural characterization of such networks is the first step toward this goal.
However, the knowledge about how structure affects or influences the dynamics
happening on networked systems is the next step. This knowledge would allow
us to make predictions about the future behavior of a system, or even drive its
dynamics.

Unfortunately, progress in this area has been slow. The whole idea of using
networks is to bring back more realism to the over-simplified models we used in
the attempt to describe systems in our world. This might mean adding an extra
amount of difficulty to the problem at hand.

In Chapter 1, we deal with networks composed of nodes and links in an abstract
sense. It is time to remember that nodes represent the elements or entities of a
system, and the links represent the interactions among such elements.

3.1 Master equation

For the study of network dynamics we often use basic techniques, such as the
Master Equation approach. However, a complete analytic solution using a Mas-
ter Equation is not always achievable, even for very simple dynamical processes.
Other techniques such as mean-field and continuous deterministic approximations
often provide viable approaches to understand at least the basic features of the
process under study [3].

The Master Equation consists of the evolution equation for the probability
P (σ, t) of finding the system at time t in a given configuration σ. This probability
has to be normalized

∑

σ

P (σ, t) = 1.

In the continuous time approximation the master equation is

∂P (σ, t)

∂t
=
∑

σ′

[P (σ′, t)W (σ′ → σ)− P (σ, t)W (σ → σ′)] . (3.1)
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The two terms in the right side represent, respectively, the gain and loss con-
tributions for the probability distribution of the system in a given configuration σ.
P (σ, t) in principle allows us to calculate average values at time t for any function
of the system’s state A(σ)

〈A(t)〉 =
∑

σ

A(σ)P (σ, t).

As the complete solution of the Master Equation is rarely achievable, we rely
on approximation schemes such as projections over specific quantities of interest.
For example

Nx(t) =
∑

σ

∑

i

δσi,xP (σ, t), (3.2)

represents the average number of nodes in state x at time t (δi,j is the Kroneker
delta function). This equation is deterministic and does not include fluctuations.

In conjunction with the mean field (MF) approach we can write a set of equa-
tions

∂Nx(t)

∂t
= Fx(N1, N2, . . . , Nx), (3.3)

where x = 1, 2, . . . , e indexes the available states of a node, and the functional
form of Fx depends on the specific interactions among nodes.

This approach was used by us in two specific applications:

• We used recurrence relations over projections for the calculation of the gen-
eral degree distribution pk of grown networks with random attachment and
variable initial degree in section 2.2.3, and

• we used mean field for the description of known relations for the epidemio-
logical SI, SIS, SIR and SIRS models in Chapter 6.

3.2 Network embedding

Networked systems are either tangible such as the internet, or intangible such as
the Word Wide Web. Evidently, tangible networks are embedded into a physical
space. This embedding imposes physical constrains to either structure and dy-
namics of a network. Thus, spatial dimension plays an important role in both
network evolution and network dynamics.

Let us take an example from the study of urban street networks, where links
are streets and nodes are street intersections. In this case, it is known that street
networks are planar structures, i.e. its graph can be drawn on a plane without any
link crossing. Other planar networks are: power grid networks, the US Natural
Gas Pipeline Compressor Stations, and the neighboring countries networks from
a map [17].
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Biological systems also show consequences of the physical embedding. The
neural network of the worm C. elegans, where nodes are neurons and links are
synaptic connections between neurons, is constrained by the small volume of its
anatomy. When thinking of this network as a signal processing circuit, to avoid
signal interference due to link crossing, a multilayer structure composed of planar
sub-networks could be a suitable evolving strategy. This non-planar multilayer
structure is present in the C. elegans neural network, and in the neocortex of
mammals brains, with neurons distributed among 6 layers labelled from I to VI
[60, Chapter 3 and references there in].

Another kind of physical restrictions exists in the brain: neurons and brain
regions physically close have higher probability to be connected while connections
between remote components are less likely. This because long axonal projections
are expensive in terms on building materials and energy cost, so it is common for
neuronal networks to optimize wiring via the small-world topology, or to show
complex networks features such as highly connected hubs and modularity [61].
Anatomical studies of cortical connectivity, performed by Staiger on 58 pyramidal
cells of the mouse cortex, report exponential distributions of the lengths of axon
collaterals and projections [62, chapter 17], however, a re-display of his data in
log-log scale shows power-law distribution of distances, pl ∝ l−α, with a decay
exponent α = 2.2 [63, chapter 3].
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Chapter 4

Network Resilience

Networked systems are networked for a purpose. The interactions of their elements
allow the realization of some process: the network is functional. One of the
fundamental issues is to know the structural conditions of a functional network.
In other words, we can ask which structural conditions break the functionality of
a network. In the first place, the occurrence of some processes over a network
requires the existence of a connected structure. It is evident that these processes
cannot occur without connectivity. But we still don’t known what happens in a
partially connected structure.

Problems as the previous occurs all the time in a network that is part of the
world’s daily life, the internet: At any moment a fraction as high as 3 % of all
internet routers are non-functional, however we are still able to use it. On the
other hand, the failure of some specific routers may cause large areas to become
disconnected. It is desirable for us to known why this is so, and how to avoid it.

Another possibility is to be able to use failure to stop unwanted processes
in a network such as diseases propagation: the knowledge about which structural
damages would stop the diffusion of a disease potentially allows health authorities
to design efficient vaccination strategies, i.e. the vaccination can be directed to
individuals with specific characteristics in order to cause the largest possible delay
of the diffusion process.

Suppose that our initial network G = {V,E} has N nodes and M links, and
it is functional. If some subset of V and/or E fails or are removed, we still have
a network structure. However we don’t know if the network is still functional.

This chapter is devoted to analyzing this problem from a purely structural
perspective first, and then including qualitative features of the removed elements
of G. As the situation we just described is a damaging process, this can be
analyzed (at least) using the framework of percolation.

4.1 Percolation

The percolation problem can be simple stated as follows: in a connected network
of arbitrary topology, each node is either present and functional with probability

67



68 CHAPTER 4. NETWORK RESILIENCE

p, or absent and non-functional with probability f = 1 − p. p is the ocupation
probability, and f is the failure probability. Two nodes are connected if they are
neighbors in the underlying network and are both occupied.

At p = 0 there are no nodes in the network. Increasing p from zero induces
the nucleation and growth of small sub-graphs called clusters of increasing size.
These clusters are mostly tree-like when p < pc. At some value of the occupation
probability, pc, denoted as the percolation threshold a giant cluster appears. As p
increases from pc the giant cluster coalesces with other clusters until it encloses
the whole network at p = 1, figure 4.1. The creation or dilution of the giant cluster
is a percolation transition. A network with a giant cluster is said to percolate.

Figure 4.1: Graphical representation of a percolation process. Open circles are
absent nodes, and gray links are removed links associated to absent nodes.

4.1.1 Percolation in arbitrary topologies

For simplicity we assume that the original network has degree distribution pk, was
created with the configuration model and is uncorrelated. Let u be the probability
that a node is not connected to the giant cluster via a particular neighbor. For a
node of degree k, the total probability of not belonging to the giant cluster is uk.
The probability of a random node to not belong to the giant cluster is

g0(u) =
∑

k

pku
k. (4.1)

The fraction of nodes that are in the giant cluster S is equal to the fraction p
that have not been removed times the probability of being in the giant cluster

S = p (1− g0(u)) (4.2)
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The probability u has two contributions: i) the neighbor in the giant compo-
nent has been removed, with probability 1 − p, and ii) and the probability that
none of the neighbors is present but not connects to the giant cluster, puk. Then
the total probability that we are not connected to the giant cluster via a given
neighbor is (1− p) + puk.

As a neighbor is reached following a link, degree is distributed according to
the excess degree distribution

qk =
(k + 1)pk+1

〈k〉 , (4.3)

and u is defined by the self consistence equation

u =
∑

k

(1− p+ puk)qk = 1− p+ p
∑

k

ukqk = 1− p+ pg1(u). (4.4)

The form of g1(u) depends of the form on pk. However, we know that g1(u) is
a polynomial with non-negative coefficients (because they are probabilities). All
its derivatives of are non-negative for u ≥ 0. Then, g1(u) is an increasing function
of u and concave upward on the interval u ∈ [0, 1]. On the other hand, u is an
increasing function of u for any value of u.

Equation (4.4) has a trivial solution in u = 1 because g1(1) = 1 (if qk is
correctly normalized). The other non-trivial solution occurs when u and 1− p+
pg1(u) meet tangently or intersect at some u < 1.

The percolation threshold reads

d

du
(1− p+ pg1(u))

∣

∣

∣

∣

u=1

= 0, (4.5)

yielding

pc =
1

g′1(1)
. (4.6)

Knowing the definition of qk

g′1(1) =
1

〈k〉
∑

k

k(k + 1)pk+1 =
1

〈k〉
∑

k

k(k − 1)pk =
〈k2〉 − 〈k〉

〈k〉 , (4.7)

then, the percolation threshold is

pc =
〈k〉

〈k2〉 − 〈k〉 =
1

κ− 1
. (4.8)

4.1.2 Average component size

In percolation, the order parameter is the probability that an occupied node be-
longs to the giant cluster, S = NG/N , where NG is the size of the giant clus-
ter. Small clusters are characterized by the cluster number distribution ns(p) =
Ns(p)/N .
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As the probability for any node to belong to a cluster of size s is sns(p), the
occupation probability can be written as the sum of these probabilities. For p < pc

p =
∑

s

sns(p). (4.9)

Above the percolation threshold the giant clusters appears and any node has
a probability S to belong to it, then

p = S +
∑

s

′

sns(p). (4.10)

where the primed summation excludes the giant cluster.
The cluster number distribution allows to write the conditional probability

that an occupied node belongs to a cluster of size s, sns(p)/
∑

s

′

sns(p).
As we increase the occupation probability (below pc) 〈s〉 increases until one

of the clusters becomes the giant cluster at the percolation threshold pc. Fur-
ther increases in p will cause 〈s〉 to decrease, because the giant cluster grows by
coalescence with the larger small clusters. In fact 〈s〉 is singular at pc and this
singularity is the fingerprint of a critical phase transition: at pc the system lacks
a characteristic cluster size, giving rise to the scaling

ns(p) =







s−τf+

(

s
sc

)

, if p ≥ pc

s−τf−

(

s
sc

)

, if p ≤ pc
,with sc = |pc − p|−1/σ (4.11)

where the scaling functions f± are continuous, equal at 0, and have a fast
decay. Exponents τ and σ depend on the dimensionality and other properties of
the system. sc plays the role of size cut-off.

From the scaling of ns(p) we obtain

〈s〉 ∼ |pc − p|−γ (4.12)

S ∼ (p− pc)
β (4.13)

where the exponents are γ = (3 − τ)/σ and β = (τ − 2)/σ. Only two critical
indices are independent in percolation.

4.2 Percolation in Complex Networks

Percolation is generally considered on topologies which are regular lattices em-
bedded in a D-dimensional space. However, in a random network with N nodes
there is no embedding space: any node can (in principle) be connected to any of
the other N−1 nodes. Thus, in the limit N → ∞ percolation in complex network
is infinite-dimensional.

At this point we are in position to define the problem of network tolerance to
“failure” or network resilience, which we described at the beginning of the present
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chapter. It is inverse percolation, because we are interested in the characteristics
of the system as a function of the failure probability f = 1 − p, i.e. we want to
see how the network is diluted rater than built.

One final distinction can be made: nodes and edges can be removed at random
or in a deterministic way.

4.2.1 Failure Tolerance

Random deletion of nodes (and its incident edges) corresponds to classical site
percolation, analyzed in section 4.1. This kind of percolation will be an approxi-
mation to describe networks’ failure tolerance, i.e. how resilient networks are to
random errors (non-deterministic failures). We specifically focus in two paradig-
matic types of networks: random networks and scale-free networks.

A random network with Poisson degree distribution has κ = 〈k〉+ 1, then

f rn
c = 1− 1

〈k〉 , (4.14)

which means that in a random network with finite average degree there always
exists a finite percolation threshold. See the left side of figure 4.2 .

Figure 4.2: Networks under error and targeted removal of nodes. The parameter
registered are the size of the giant component S (open symbols) and the average
cluster size (filled symbols) as a function of the removed fraction f . In the left
side we observe the case of a random network with N = 10, 000 and 〈k〉 = 4. In
the right side the response of a scale-free network with N = 10000 and 〈k〉 = 4.
The value of γ is not available. Taken from [2].

A scale-free network with pk ∼ k−γ , k = m,m+ 1, . . . , kc(N) has [64]

κ =
2− γ

3− γ

kc(N)3−γ −m3−γ

kc(N)2−γ −m2−γ
, (4.15)

where kc(N) is the maximum degree observed in a network of size N
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kc(N) = mN1/(γ−1). (4.16)

The percolation threshold of a scale-free network varies in accordance to the
values of γ

• if γ < 3, κ diverges as N → ∞: κ ∼ N (3−γ)/(γ−1) if 2 < γ < 3, and
κ ∼ N1/(γ−1) if γ < 2. The percolation threshold becomes closer to 1 as N
increases.

• if γ > 3, κ is finite (∼ m(γ − 2)/(γ − 3)). The percolation threshold is less
than 1.

In the range 2 < γ < 3, where many real world scale-free networks lie

f sf
c ≈ 1− 3− γ

2− γ
m2−γkc(N)γ−3, (4.17)

close to 1, even for small networks: for m = 1, N = 1000, γ = 2.5 one obtains
f sf
c ≈ 0.9. In other words, a scale-free network in the range 2 < γ < 3 will
show large sizes of the giant cluster even when a large number of nodes has been
(randomly) removed. Se the right side of figure 4.2 [2].

4.2.2 Targeted removal tolerance

Nodes in a network may fail naturally by error. However, other alternative is an
intentional (deterministic) removal of nodes, i.e. an attack. Such attack could
be guided by a centrality measure to select target nodes. The simplest centrality
measure is node degree, i.e, the most connected node(s) will be removed first,
then the second one(s), and so on.

This situation is not so different from that in section 4.1. One simple obser-
vation allows us to follow a similar approach.

The initial degree distribution of the network is pk. After removing a fraction
f of the highest degree nodes, the highest degree node remaining has degree kc(f)
implicitly defined by

f =
∞
∑

kc(f)+1

pk. (4.18)

The probability that one neighbor of any node is removed, r(f), equal the
probability that such neighbor has degree larger than kc(f)

r(f) =

∞
∑

kc(f)+1

kpk
〈k〉 (4.19)

The result is a (damaged) network with maximum degree kc(f), where the
neighbor of any node was removed with probability r(f). The degree distribution
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of this network in the range kmin ≤ k ≤ kc(f) is just pk scaled by the factor
1/(1− f). Thus, the giant cluster disappears when [64]

r(fc) = 1− 1

κ(fc)− 1
, (4.20)

where

κ(fc) =

∑kc(fc)
k k2pk

∑kc(fc)
k kpk

. (4.21)

Using the continuous degree approximation one obtains a value for the het-
erogeneity parameter κ(fc) similar in form to equation 4.15, so that [64]

f (2−γ)/(1−γ) = 2 +
2− γ

3− γ
m(f (2−γ)/(1−γ) − 1). (4.22)

Figure 4.3: Percolation threshold vs. γ for scale-free networks in the continuous
approximation. The inset show the same data, from an exact discrete approach.
Taken from [3, section 6.5].

The behavior of the removed fraction fc as a function of γ is show in figure 4.3
[65]. The inset of figure 4.3 show the same data obtained from an exact discrete
approach which reveals a qualitatively similar but down scaled behavior of fc [65].
This result is of great relevance: scale-free (or fat-tail degree distributed networks)
appear to be highly fragile to targeted removal of its highest degree nodes, or hubs.
Such behavior is notably opposed to that of random removal of nodes in this type
of networks. This facts has motivated the assertion that scale-free networks are
robust against random failure yet fragile to attack targeted at their highest degree
nodes.
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It is worth noting that robustness against random failure does not mean “in-
vulnerability” to random failure: although the giant cluster of a scale-free network
decreases continuously as the removed fraction increases, through the process the
network is still being segmented into an increasing number of small clusters. It is
not clear, however, when the functionality will be lost.



Chapter 5

Synchronization

When functional, the components of a networked system are performing collec-
tively. If we take connectedness for granted it is clear that the elements are not
isolated, they should be able to communicate with one another in some way.
Under special circumstances, a subset of the elements follow common dynamical
patterns, and a synchronized state emerges.

Synchronization is an ubiquitous phenomena in biological, ecological, climato-
logical, sociological, technological and network systems: a large number of elec-
trons march in lockstep in a superconductor allowing a current flow with zero
resistance; in the tidal river’s mangroves of Malaysia thousands of fireflies flash in
unison without any leader. Synchronization is pervasive in nature at every scale
[66, 67].

It is part of our every day life, even if we cannot perceive its role: the laser in
a today simple cd/dvd/BluRay player is the result of trillions of atoms emitting
light waves in synchrony. The same is true for every laser technology such as laser
pointers, laser surgery devices, laser levers, lidars, laser sensors, high accuracy
optical instrumentation, optic mice, laser scanners, and a very large etcetera.

Synchronization is also importance for our health at the individuals and pop-
ulation level, this because the presence of waves in excitable media requires some
level of synchronization

• in cardiac tissue, abnormal patterns of excitation/wave behavior are believed
to be caused by pathological conditions such as tachycardia (abnormally fast
heart beat) and fibrillation (irregular heart contractions unable to properly
pump the blood stream). Without early intervention both conditions are
highly lethal.

• in the human brain, synchronization plays an important role in both func-
tioning and dysfunctioning; in the case of human epileptic brain networks,
epileptic seizures are usually characterized by an abnormal synchronized
firing of neurons related to the epileptic focus[68].

• in the field of epidemiology, synchronization is relevant to describe/forecast
the strength of epidemics outbreaks associated with recurrent infectious dis-
eases showing oscillatory behavior [8] such as measles, typhus and cholera

75
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[69]. In this scenario, higher level of synchronization leads to higher-amplitude
oscillations in the number of infected individuals.

Clearly, synchronization depends on the nature of the individual oscillators,
on the form they interact and the structural pattern of such interaction. The last
factor is the one in which we are interested in this thesis.

5.1 General Framework

Fireflies, pacemaker cells, neurons and individuals exposed to a recurrent disease
(among many other instances) can be considered as oscillators: all of them dis-
play a cyclic behavior, repeating processes over and over again at (more or less)
regular time intervals. This is one reason why the study of synchronization in
largely devoted to coupled oscillators, a collection of oscillators that can influence
one another in some physical or chemical way. The central issue in the study
of coupled oscillators concerns the emergence of coherent collective behavior, in
which the oscillators follow the same dynamical patterns, this is what we call
synchronization.

Let consider N interacting oscillators. Each oscillator is described by an inter-
nal degree of freedom φi(t). This degree of freedom evolves due to i) the internal
dynamics of the oscillator and ii) the coupling with other oscillators:

dφi

dt
= fi({φi}). (5.1)

When isolated, at large times, each oscillator reach either a stable fixed point,
a limit cycle or a strange attractor. Two oscillators i and j are coupled through a
direct link from j to i, if the evolution equation of i depends on φj. This definition
of coupling leads to a directed coupling network, however, we will review some
result of non directed (symmetric) coupling networks.

Various types of synchronization are possible:

• Complete synchronization: occurs when all internal variables are equal, i.e.
φi(t) = s(t) ∀i.

• Phase synchronization: consists in the phase locking of oscillators described
by a phase and an amplitude.

• Generalized synchronization: two oscillators are in general synchronization
if the output of one is equal to certain function of the others’ output.

More complex situations such as a sequence of synchronized and non-synchronized
behaviors are also possible.
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5.2 Identical and linearly coupled oscillators

For a system of linearly coupled oscillators, each unit interacts with its neighbors
through a linear superposition of their outputs

dφi

dt
= F (φi) + σ

N
∑

j=1

CijH(φj), (5.2)

where the functions F and H are the same for all oscillators, σ is the interaction
strength, and Cij is the coupling matrix. If the coupling between two oscillators
depends only on the difference of their outputs

dφi

dt
= F (φi) + σ

∑

j∈v(i)

[H(φi)−H(φj)] , (5.3)

which corresponds to the coupling Cij = Lij , where L is the Laplacian matrix of
the interaction network.

Let s(t) be the solution of the uncoupled system (σ = 0). This is also a
solution in the case σ 6= 0 1, and its stability is studied with the master stability
function approach: close to the synchronized state φi = s + ξi, with ξi ≪ s. The
synchronized state is stable if the perturbations decrease, otherwise it is unstable.
Expanding F (φi) ≈ F (s)+F ′(s)ξi and H(φi) ≈ H(s)+H ′(s)ξi, where the primes
indicate derivatives w.r.t. s. The evolution of s is given by

dξi
dt

= F ′(s)ξi + σ
∑

j

LijH(s)ξj. (5.4)

As L is symmetric and has zero-sum columns, it has N real non-negative
eigenvalues and one is zero, they are (in ascending order) 0 = λ1 ≤ λ2 ≤ · · · ≤
λmax. Using the eigenvalues ζi we can decouple 5.4

dζi
dt

= [F ′(s) + σλiH
′(s)] ζj. (5.5)

At short times, and assuming that s have negligible variations one obtains

ζi(t) = ζ0i exp ([F
′(s) + σλiH

′(s)] t) , (5.6)

where ζ0i is the initial perturbation. Then, perturbations will either decrease or
increase exponentially depending on the sign of Λi(α) = F ′(s) + αH ′(s) with
α = σλi. The null eigenvalue λi = 0 yields Λ1 = F ′(s), and is related to the
evolution of an isolated oscillator. The state s is stable only if all the other
perturbations decay, i.e. all other Λi are negative. Barahona and Pecora [70]
showed that for a large class of functions F and H the master stability equation
Λ(α) = max

s
(F ′(s)+αH ′(s)) is negative within a range of α, [α1, α2], as shown in

1Any element in the summation of the right side will cancel when counted with swapped

indexes, as in
∑

i

[

dφi

dt
− F (φi)

]

=
∑

i

[

σ
∑

j∈v(i) [H(φi)−H(φj)]
]

.
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figure 5.1. In these cases the coupling strength should be larger than a minimum,
but not arbitrarily high. Otherwise, synchronized states loose stability (we got
Λ(α) > 0). The condition for stable synchronization is then

λmax

λ2
<

α2

α1
, (5.7)

i.e. networks exhibits better synchronizability if the eigenratio λmax/λ2 is as
small as possible. Notably, the left hand side of the inequality 5.7 depends only
on structural values, while the right hand side depends on F and H , which are
properties of the oscillators.

Figure 5.1: Sketch of a typical master stability equation. The synchronized state
is stable if for all λi, σλi ∈ [α1, α2]. Taken from [3, section 7.2].

5.2.1 Structurally enhanced synchronization

The small-world network model of Watts and Strogatz [25] (seen in subsection
1.2.3) was motivated by something more that obtaining networks with small av-
erage path length and high clustering coefficient per se: they were interested in
ways to enhance synchronization of oscillators by changing the coupling struc-
ture. Their model phenomenologically associates small-world networks to a “bet-
ter” propensity to synchronization than lattice couplings. As we have seen, much
work was then aimed at analytically describing the properties of small-world net-
works, from the perspective of structural characterization.

Barahona and Pecora [70] were the first to analytically investigate how the
structural properties of small-world networks influences synchronization. Figure
5.1 and inequality 5.7 allow to formulate a very general conclusion: coupling
networks with smaller eigenratios λmax/λ2 will enhance synchronization, indepen-
dently of the nature of the oscillators they couple.

Barahona and Pecora [70] used a modified small-world model to investigate
how the eigenratio behaves. The initial network is a (deterministic) ring of N
nodes, each coupled to its 2m nearest neighbors. Then they add new randomly
wired edges. This way, the connectance of the network, D = 2E/(N(N − 1)),
increases.
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Figure 5.2: Evolution of the eigenratio λmax/λ2 as a function of the connectance
D in small-world networks with N = 100 and several values of m. Filled cir-
cles correspond to deterministic rings, the dashed line corresponds to random
networks. Taken from [3, section 7.2].

From figure 5.2 we see that increasing connectace improves synchronization by
lowering the eigenratio value. Small-worlds shown better synchronization propen-
sity than deterministic rings (or lattices). Such evidence sets a firm ground to
assert that the small-world topology is a viable route to enhance synchronization.

It is tempting to generalize that small average path lengths promotes better
communication than larger ones, improving synchronization. Such picture would
agree with data in figure 5.2: both, small-world networks and random networks
possess the small-world property (i.e. small average path length).

Nishikawa et al. [71] showed that this generalization is not possible. Small
average path lengths can also be obtained by growing scale-free networks with
degree distribution pk ∼ k−γ and small values of γ. Their work pointed out that as
γ decreases the eigenratio raises, making synchronization more difficult. Further
analysis reveals that this behavior is not characteristic of scale-free networks, it
is observed in any network with hubs : the eigenratio increases as the number of
hubs (which concentrates the same number of edges) is lowered. They concluded
that as a network becomes more heterogeneous, it also becomes less synchronizable
yet a small-world, a fact denoted as the heterogeneity paradox [72].

One intuitive explanation for the heterogeneity paradox is the overload of
hubs, whose inputs may cancel out when having different phases or frequencies.
Motter et al. [72] showed that this paradox can be overcame if a modified coupling
strength is used

σ → σ

ki
, (5.8)

which is (in some sense) a coupling homogenization: the more inputs an oscillator
has, the weaker they are.

Another work indicates that the eigenratio evolution closely resembles that of
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betweeness centrality [73] (betweeness centrality is defined as the proportion of
information that passes through a given node in communicating other pairs in
the network [17, Section 7.4]) and that synchronization is more difficult as the
clustering coefficient increases [74], a characteristic trait of small-world networks.

5.3 Integrate-and-fire oscillators

Many systems of biological oscillators present interactions that can be described
as episodic or pulse-like: each oscillator accumulates pulsatil perturbations from
other oscillators. When a threshold is reached, it fires a pulse which perturbs
its neighbors. Then, their perturbation accumulating property is reset, and the
process is repeated. An oscillator following this pattern of behavior is dubbed as
an integrate-and-fire oscillator.

The paradigmatic example of integrate-and-fire systems are neural networks:
neurons communicate to each other by firing sudden impulses called spikes. In
this sense, the system is pulse-coupled.

A simple yet general integrate-and-fire model was developed by Mirollo and
Strogatz [75]. Each oscillator i is characterized by a state variable xi = U(φi),
where, xi ∈ [0, 1] and φi is the oscillator’s phase. The Phase Response Function
U is a monotonically-increasing concave function which satisfies U(0) = 0 and
U(1) = 1. When oscillator i reaches the firing threshold at ti it fires and its state
variable is reseted, i.e. xi(t

+
i ) → 0. The state variables of the other oscillators are

updated as
xj(t

+
i ) = min(1, xj(ti) + ǫji) j 6= i, (5.9)

where ǫji is the coupling strength between i and j. The interaction is excitatory
if ǫji > 0, or inhibitory if ǫji < 0, see figure 5.3.

Figure 5.3: Phase dynamics of an integrate and fire oscillator. The situation
corresponds to the response of an oscillator j when another oscillator i fires. In
the left panel the coupling is excitatory ǫij > 0. In the right panel the coupling is
inhibitory ǫij < 0. Taken from [3, section 7.3].

In terms of the phase variable the update rule is

φi(ti) = 1 =⇒
{

φj(t
+
i ) = 0 if j = i

φj(t
+
i ) = min(1, U−1(U(φj(ti)) + ǫji)) if j 6= i.

(5.10)
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In the absence of delay a system of all-to-all connected oscillators, starting in
arbitrary initial condition, will reaches a synchronized state with all oscillators
firing at synchrony. To assess the transient to synchronization Guardiola et al.
[76] defined the quantity

S =
1

N

∑

i

(

1− φi(t
+
j )
)

, (5.11)

measured just after oscillator j has fired. The index j is an arbitrary reference and
the election of time t+j ensures that φj = 0 in all measures. S allow to measure the
synchronization time T , defined as the time needed to reach S = 1. Guardiola
et al. [76] found that oscillators coupled in regular lattices synchronize faster
than those coupled in random networks with the same average degree, and this
behavior becomes stronger as 〈k〉 decreases (without going below the percolation
threshold of random networks). In small world-networks the synchronization time
is an increasing function of the rewiring probability. The conclusion of Guardiola
et al. [76] was that an increasing randomness makes synchronization more difficult
to reach. They showed that changing the coupling to

ǫji →
ǫji
ki

(5.12)

removes the synchronization delay due to random induced heterogeneities (a pro-
cedure similar in essence to the solution for the heterogeneity paradox [72]).

5.4 The Kuramoto Model

Consider a collection of N nearly identical and weakly coupled limit-cycle 2 os-
cillators. The system has two timescales. In a short time scale each oscillator
converges to its limit cycle at frequency ωi, so it can be defined solely by a phase
θi. In a large time scale the phases evolve due to the coupling among oscillators
[78].

In order to simplify the analysis suppose each oscillator satisfies:

θ̇i = ωi +

N
∑

j=1

Γij(θj − θi) i = 1, . . . , N (5.13)

where Γij is an interaction term. Two key aspects demand further simplification:
i) the interaction term could have many Fourier harmonics, and ii) the connection
topology is unspecified. With the assumption of a zero mean, unimodal and
symmetric frequency distribution g(ω), and an all-to-all interaction function of
the form

Γij(θj − θi) =
K

N
sin(θj − θi), (5.14)

2A limit cycle is an isolated periodic solution of the system’s dynamics [77].
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where K ≥ 0 is a coupling strength, Kuramoto addressed both problems at the
same time [79, Pages 420–422].

The phase dynamics is easier to understand if we consider each oscillator as
a point running around the unit circle in the complex plane (see figure 5.4, left).
Let define

zeiΘ =
1

N

N
∑

j=1

eiθj . (5.15)

Figure 5.4: Mean-field parameters in the Kuramoto model: Geometric repre-
sentation of oscillators dynamics, the arrow is reiΘ (Left). Qualitative evolution
of coherence z(t) as a function of the coupling strength K (Center). Maximum
coherence as a function of the coupling strength K for a Cauchy distribution of
oscillator frequencies (Right).

Multiply both sides by e−iθi

zei(Θ−θi) =
1

N

N
∑

j=1

ei(θj−θi),

now equating imaginary parts

z sin(Θ− θi) =
1

N

N
∑

j=1

sin(θj − θi).

Using the previous results for the interaction term, equation (5.13) takes the form
known as the Kuramoto model

θ̇i = ωi +Kz sin(Θ− θi) i = 1, . . . , N (5.16)

Oscillators interact through the mean-field quantities z and Θ, know as coher-
ence and mean phase, respectively. The effective coupling strength is Kz: as z
increases more oscillators get into synch. There exists a critical coupling strength
Kc such that (see figure 5.4, center)

• If K < Kc, starting from any initial condition, the phases become uniformly
distributed around the unit circle. The coherence z(t) decays to an O(N−1/2)
value, as expected for a random set of N points on a circle.
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• If K > Kc, z(t) grows exponentially, due to nucleation and growth of a small
cluster of oscillators, and saturates at some value z∞ < 1, with O(N−1/2)
fluctuations.

Kuramoto demonstrated that for a Cauchy distribution of oscillation frequen-
cies

g(ω) =
γ

π(ω2 + γ2)
, (5.17)

the super-critical behavior of z∞ is given by (see figure 5.4, right)

z∞ =

√

1− Kc

K
. (5.18)

5.5 Kuramoto Model with long range interac-

tions

The spatial dependence of the coupling in a system of coupled oscillators is a
relevant topic. The limiting cases of interaction are i) the mean-field (all-to-all)
interactions of the original Kuramoto model [78], where a super-critical coupling
strength allows for a partial synchronization, and ii) the nearest-neighbors inter-
actions in a lattice, where a phase-lock is less probable as the system size increases
[80]. In real systems, the interaction signal decays as a function of the distance.
For example, the intensity of light and sound decays as a power law of the distance
from the source (with exponent 2 in three dimensions).

When the interactions decays as a power law such that the equations for a
system of Kuramoto oscillators is

θ̇i = ωi +
K

η

∑

j 6=i

1

rαi,j
sin(θj − θi) i = 1, . . . , N (5.19)

where

- η is a normalization coefficient, and

- α is the decaying exponent

then one can interpolate between the mean-field coupling case, with α = 0, and
the lattice coupling, with α → ∞ [81]. In most real systems the coupling does not
depends on global information, but only on the phases and the distance between
oscillators, then is customary to use η = 1 in such cases.

Using numerical simulations of equation (5.19) in one-dimensional (d = 1)
lattices Maródi et al. [82] reported perfect phase order (z = 1) for α < d, decaying
of coherence in the range d ≤ α ≤ 3

2
d, until z reaches a minimal value z∞ ≪ 1 for

α > 3
2
d. This behavior was clearer as the number of oscillators increased [82, 81].

In a similar system, Chowdhury and Cross [81] defined the concept of entrain-
ment



84 CHAPTER 5. SYNCHRONIZATION

|∆ij(t0 + T )−∆ij(t0)| < 2π, (5.20)

where ∆ij = θi − θj and T is an arbitrarily long time, and the phase correlation
function

Cij = 〈cos(∆ij)〉 , (5.21)

such that

z =

√

√

√

√

1

N2

N
∑

i,j=1

Cij. (5.22)

The spin-wave analysis they performed found perfect phase ordering for α ≤ d,
entrainment with long range phase ordering for α < 3

2
d, and exponential decay of

correlations for α > 3
2
d.

5.6 The Kuramoto model on complex networks

While the all-to-all interactions in the Kuramoto leads to a simplified analysis,
it is unrealistic. Interactions tend to be local, defining a network of interaction.
The inclusion of this feature in conjunction with random intrinsic frequencies ωi

into the Kuramoto model defines the Sakaguchi-Kuramoto model [83] as

θ̇i = ωi +K
∑

j∈v(i)

sin(θj − θi) i = 1, . . . , N (5.23)

where v(i) denotes the neighborhood of node i.

5.6.1 Small-world effects

When oscillators in the Sakaguchi-Kuramoto model are distributed in a lattice
network, synchronization is less probable as N increases [80]. However, even a
small amount of shortcuts (via rewiring, as in the original small-world model of
Watts and Strogatz [25]) leads to a drop in the average path length, allowing
the existence of synchronized states [84]. Hong et al. [4] numerically studied the
Sakaguchi-Kuramoto model in a small-world network with coupling

K → K

〈k〉 , (5.24)

showing that the coherence (averaged over time and realizations of the frequencies
ωi) obeys the scaling

z(N,K) = N−β/νF
(

(K −Kc)N
1/ν
)

. (5.25)

From this scaling relation they obtain that:

• the critical coupling strength, Kc, is a decreasing function of the rewiring
probability p (see the left side of figure 5.5),
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• Kc diverges as p → 0, and

• the time needed to achieve synchronization, T , is a decreasing function of
the rewiring probability p (see the right side of figure 5.5).

Their results indicates the existence of a disorder-synchronization phase tran-
sition at pc = 0.

Synchronized

Unsynchronized

Synchronized

Unsynchronized

Figure 5.5: Critical coupling strength Kc (left panel) and synchronization time
T (right panel) as a function of the rewiring probability p. Adapted from [4].

5.6.2 Degree distribution effects

As we have seen, degree fluctuations in the coupling network can influence syn-
chronization. Ichinomiya [85] analytically studied frequency synchronization in
the Sakaguchi-Kuramoto with order parameter

z∗ =

∑

i ki exp(iθi)
∑

i ki
, (5.26)

showing that for oscillators coupled in uncorrelated random networks with arbi-
trary degree distribution the critical coupling strength Kc is given by

Kc =
2

πg(0)

1

κ
, (5.27)

making an explicit separation between dynamical and topological factors: 2
πg(0)

only depends on the frequency distribution g(ω), while κ =
〈k2〉
〈k〉

is a measure
of the heterogeneity level of the degree distribution pk.

If degree fluctuations are bounded, then κ is finite for large networks as N →
∞, and thus Kc is finite too. For fat-tail distributions (power-laws, shifted power-
laws, exponentially truncated power-laws, etc.) when γ < 2 then κ → 0 and
Kc → 0 for large networks as N → ∞. They also found that high-degree nodes
synchronize faster than low-degree nodes, an effect due to the degree dependence
of the order parameter.

Restrepo et al. [86] also obtained equation 5.27 for the Sakaguchi-Kuramoto.
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5.6.3 Modularity effects

In general terms, we can see the phase synchronization of N oscillators as an
aggregation process in the phase space of phases θ [87]: starting from a random
distribution of phases θi, the system is partitioned into (at most) N singletons.
Pairs, triplets and other higher order clusters appear as oscillators synchronize. In
a complex network the process of cluster formation is affected by the community
hierarchy of interaction among oscillators [88, 5]. This is relevant because complex
networks such as metabolic networks, protein interaction networks, the internet,
scientific collaboration networks and food webs [24, 89, 90, 91], among many other,
have a nontrivial connectivity hierarchy of modules and/or communities. Even
the identification of these structures has promoted the development of several
definitions and methodologies [27, 28, 29].

Oh et al. [88] used a modified Sakaguchi-Kuramoto model

θ̇i = ωi +
K

ki

∑

j∈〈i〉

sin(θj − θi), (5.28)

with a global order parameter

M = lim
t→∞

〈z(t)〉 , (5.29)

where ki is the degree of node i, and 〈. . . 〉 is the ensemble average over different
configurations, to show that non-modular networks synchronize more easily than
modular networks, i.e. the former reach specific values of M with smaller values
of the coupling strength K, and also, the monotonically increasing curve M(K)
becomes steeper as the modularity of the network is decreased by random link
swapping.

Arenas et. al [5] used Kuramoto oscillars in modular networks to show that,
as synchronization occurs at different time scales, the transient towards synchro-
nization will reveal different topological structures/communities at different scales.
They studied the time evolution of oscillator pairs with the (local) order parameter

ρij(t) = 〈cos [θi(t)− θj(t)]〉 , (5.30)

where 〈. . . 〉 stand for the average over initial random phases, focusing on the
evolution of the dynamic connectivity matrix, defined as

Dt(T )ij =

{

1 if ρij(t) > T,

0 if ρij(t) < T
, (5.31)

given some threshold value T . When T is large enough, Dt(T ) represents a set of
disconnected synchronized communities/components. As soon as T is decreased,
a hierarchical structure of communities begins to emerge.

They noted that the number of disconnected synchronized components, d.s.c.
(i.e. the number of null eigenvalues in the spectrum of Dt(T ),[92, 93]) is a de-
creasing function of time. Such behavior is qualitatively similar to that of i versus
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Figure 5.6: Kuramoto oscillators in a modular network G. Network G has
N = 256 nodes, grouped in 16 compartments for the first level of community.
The second level of community groups the first level in four compartments. The
internal degree of nodes at the first level is kin1

. The internal degree of nodes at
the second level is kin2

. The number of links with any community of the network
is kout. For the present data, total degree k = kin1

+ kin2
+ kout is fixed to 18.

Networks are labeled as kin1
−kin2

. Time evolution of the number of disconnected
synchronized components of the dynamic connectivity matrix (top). Rank index
i versus the inverse of the correponding – ascending ordered – eigenvalue in the
Laplacian spectrum of the dynamic connectivity matrix (bottom). Taken from
[5].

1/λi, where λi are the eigenvalues of the Laplacian matrix of Dt(T ), ranked in
ascending order 0 = λ1 ≤ λ2 ≤ · · · ≤ λN , see figure 5.6.
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Chapter 6

Epidemiological models and
complex networks

Epidemiologists, computer scientists, and social scientists share a common interest
in understanding and predicting the propagation of entities such as human and
animal diseases, computer viruses, knowledge, innovation, etc. These processes of
propagation are based on the concepts of spreading and diffusion; epidemiological
models are a common framework for them.

Epidemiological models deal with the temporal evolution and location of in-
fected individuals within a population. They aim at understanding disease spread-
ing in equilibrium (long time steady state); the existence of a non-zero density of
infected individuals; the conditions to observe populations size disease outbreaks,
and the emergence of recurrent patterns, among other topics. The understand-
ing of such features provides a reference for the development of health policies to
effectively stop epidemic outbreaks.

6.1 Deterministic homogeneous models

The simplest epidemic models assumes a population divided into classes or com-
partments, each corresponding to one stage of the disease. Common labels are

• Susceptible compartment, denoted as S, contains individuals who can con-
tract the disease,

• Infectious/Infected, denoted as I, contains individuals who have contracted
the disease and are contagious,

• Recovered/Removed/Refractarious, denoted as R, contains individuals who
have recovered from the disease, either temporarily or permanently.

Other compartments could be used to model a more detailed disease evolution,
however we will use just the set {S, I, R}.

89
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The fully mixed model, or mass-action approximation, assumes that within
each compartment individuals are identical and have equal chance, per unit time,
of coming into contact with each other, meeting completely at random.

Given a population of N individuals, it is possible to obtain the time evolution
of the number of individuals in the compartment m at time t, X [m](t), such that

N =
∑

m

X [m](t). (6.1)

The numbers X [m](t) change as individuals transit from one compartment to
another, and the transition rates depend on the disease etiology. In compartment
models there are two kind of transition rules:

• Unary transitions : the spontaneous transition of one individual from com-
partment m to compartment h. Examples of this kind of transition are

– the Infectious to Recovered transition I → R, and

– the Recovered to Susceptible transition R → S.

The variation in X [m] is
∑

h

νm
h ahX

[h] (6.2)

where ah is the transition rate from class h and νm
h = 1, 0, or − 1 is the

change in X [m] due to the spontaneous transition from or to the compart-
ment h.

• Binary transitions : transitions due to binary interactions among individuals
in different compartments. An example of this kind of transition is the
contagion of a susceptible individual in contact with an infectious one: the
Susceptible to Infectious transition S + I → 2I.

The variation in X [m] is
∑

h,g

νm
h,gah,gN

−1X [h]X [g] (6.3)

where ah is the transition rate of the interaction, νm
h,g = 1, 0, or − 1 is the

change in X [m] due to the interaction, and N−1X [g] is the probability for
each individual of the class h to interact with an individual of the class g.

Different models are characterized by a disease state set and the related tran-
sition rule set, but the general deterministic reaction rate equations for X [m] have
the form

d

dt
X [m] =

∑

h

νm
h ahX

[h] +
∑

h,g

νm
h,gah,gN

−1X [h]X [g], (6.4)

where X [m] are continuous variables representing the average number of individ-
uals in compartment m.

Paradigmatic epidemiological models worth noting include the SI, SIS, SIR
and SIRS models, all sketched in figure 6.1.
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Figure 6.1: Schematic representation of epidemiological models. SI model (top
left), SIS model (bottom left), SIR model (top right) and SIRS model (bottom
right). These models vary in the number of allowed states from {S, I, R}, and the
number of (constant rate) transitions. β is a binary transition rate, while γ and
δ are unary transition rates.

6.1.1 SI model

Consider a population of N individuals. Each one is either infected or susceptible
to be infected. Infected individual are said to be in the state I, meanwhile sus-
ceptible individuals are said to be in the state S. We refer to i(t) and s(t) as the
fractions of individuals in states I or S at time t, respectively.

The disease is transmitted only when an infected individual comes into contact
with a susceptible one, and occurs at spreading rate β (each individual has, on
average, βi contacts per unit time with randomly chosen infected individuals)
such that the differential equation for every fraction is

ds(t)

dt
=− βi(t)s(t)

di(t)

dt
=βi(t)s(t),

, (6.5)

where i(t) + s(t) = 1, so we can combine (6.5) into a single equation

di

dt
= β(1− i)i. (6.6)

This is the logistic growth equation, with solution

i(t) =
i0e

βt

1− i0 + i0eβt
, (6.7)

being i0 = i(0) the initial infected fraction. From this solution we note that the
entire population will get infected, it is just a matter of time. The long time result
is always the same, a system-size epidemic outbreak.
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6.1.2 SIS model

In the SIS model, there are just two states, susceptible and infected. Infected
individuals move back into the susceptible at some constant average rate γ. The
differential equations for this model are

ds(t)

dt
=− βi(t)s(t) + γi(t)

di(t)

dt
=βi(t)s(t)− γi(t),

(6.8)

where i(t) + s(t) = 1, so we can combine (6.8) into a single equation

di

dt
= (β − γ − βi)i, (6.9)

with solution

i(t) =

(

1− β

γ

)

Ce(β−γ)t

1 + Ce(β−γ)t
, (6.10)

being

C =
βi0

β − γ − βi0
.

In the limit of large populations and small initial infected fractions, the solution
is simplified to

i(t) = i0
(β − γ)e(β−γ)t

β − γ + βi0e(β−γ)t
, (6.11)

in this scenario, we are interested in the long time solution for the infected fraction
, i.e.

i∞ =
β − γ

β
. (6.12)

Then, there is no system wide epidemic outbreak. The system reaches an en-
demic disease state with a fraction of i∞ < 1 infected individuals. The endemic
fraction goes to zero as β approaches γ, and if β < γ then i(t) will decay expo-
nentially. The point β = γ marks the point of an epidemic transition between a
state in which the disease spreads and one in which it dies.

The epidemic transition defines a key parameter in epidemiology, the basic
reproductive number

R0 =
β

γ
, (6.13)

which counts the number of secondary infections generated by a primary infected
individual.
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• if β ≤ γ infected individuals recover faster than susceptible individuals
become infected: the infected fraction goes down and the disease dies.

• if β > γ susceptible individuals become infected faster than infected indi-
viduals recover: the infected fraction goes up and the disease spreads.

For its behavior, the SIS model is mainly used for the study of diseases lead-
ing to an endemic state, with the prevalence of a constant number of infected
individuals.

6.1.3 SIR model

For many real diseases, individuals recover from the infection after a certain time
because their immune system fights off the agent causing the disease. The SIR
model accounts for this situation.

In the SIR model, there are three states: susceptible S, infected I, and recov-
ered R. Infected individuals move permanently into the recovered state at some
constant average rate γ. The differential equations for this model are

ds(t)

dt
=− βi(t)s(t)

di(t)

dt
=βi(t)s(t)− γi(t)

dr(t)

dt
=γi(t),

(6.14)

where i(t) + s(t) + r(t) = 1. We can rewrite

ds(t)

dt
=− βi(t)s(t)

dr(t)

dt
=γi(t),

(6.15)

as a single equation
1

s

ds

dt
= −β

γ

dr

dt
, (6.16)

with solution
s = s0e

−β
γ
r, (6.17)

where s0 = s(0) and we have chosen r0 = r(0) = 0. Now use i(t) = 1− r(t)− s(t)
to write

dr(t)

dt
= γi(t) = γ (1− r − s) = γ

(

1− r − s0e
−β

γ
r
)

. (6.18)

A measure of the epidemic outbreak size is given by the fraction of recovered
individuals at large times, r∞, when all infected individuals have healed such that
ṙ = 0. For initial condition s0 ≈ 1, i0 ≪ 1 and r0 = 0 this condition is

r∞ = 1− e−
β
γ
r∞ , (6.19)
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which implicitly determines r∞, and indicates that

• as β
γ
> 1 approaches one from above r∞ goes continuously to zero, and

• for β
γ
< 1 we have r∞ = 0.

The SIR model (6.14) has no closed analytic solution. Numerical simulations
show that:

Figure 6.2: Time evolution of a SIR model with parameters β = 1, γ = 0.4, s0 =
0.99, i0 = 0.01 and r0 = 0. Taken from [6, section 17.3].

• s(t) decreases monotonically as susceptible individuals are infected,

• r(t) increases monotonically as infected individual get recovered, and

• i(t) goes up at first as susceptible individual get infected, then down again
as they recover, and eventually goes to zero as t → ∞.

This behavior is clear from figure 6.2.

6.1.4 SIRS model

The SIRS model extends the SIR model by considering that individuals can get
reinfected after recovering. In the SIRS model, there are three states: susceptible
S, infected I, and recovered R. Infected individuals move temporarily into the
recovered state at some contact average rate γ, then lose immunity at a constant
average rate δ. The differential equations for this model are
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ds(t)

dt
=− βi(t)s(t) + δr(t)

di(t)

dt
=βi(t)s(t)− γi(t)

dr(t)

dt
=γi(t)− δr(t),

(6.20)

where i(t) + s(t) + r(t) = 1.
System (6.20) cannot be solved analytically. Numerical solutions show that

the SIRS model has a rich palette of behaviors, depending on the values of the its
parameters, including:

• disease persistence in an endemic state,

• disease extinction, and

• oscillations between outbreaks and periods of remission. [6, 69]

The equilibrium of the constant-rate SIRS model (6.20) is

s∗ =
1

βτi
, i∗ =

βτi − 1

βτ0
, r∗ = 1− i∗ − s∗, (6.21)

where

γ =
1

τi
, δ =

1

τr
, τ0 = τr − τi. (6.22)

This fixed point is stable and corresponds to an endemic state, reached through
damped oscillations [94, 6, 69].

6.1.5 SIRS model with fixed refractory time

Anderson and May [95] noted that treating the duration of a infection, τi, as a
constant rate, 1/γ, is rarely realistic. It is more common to see recovery from
infection to take place after a well defined time. Something similar happens with
the recovered to susceptible transition.

These facts motivated the analysis of a SIRS model with fixed infectious and
refractory periods, τi and τr = τ0 − τi respectively. This model is perhaps the
simplest mathematical model which captures a wide range of behaviors similar to
that of real recurrent diseases such as oscillations and spatial waves. It is modeled
by the system

di(t)

dt
=βs(t)i(t)− βs(t− τi)i(t− τi)

ds(t)

dt
=− βs(t)i(t) + βs(t− τ0)i(t− τ0).

(6.23)

It has the same equilibrium as the constant-rate SIRS model [69]. Thirty years
ago Hethcote et al. [94] showed that the SIRS model with fixed refractory period
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presents a stable limit cycle for certain parameter values. In the parameter space
(τr/τi, βτi) a Hopf bifurcation separates solutions into two classes: stable fixed
points and stable limit cycles [69].

The SIRS model with fixed refractory period can also be classified as a simple
model of excitable media, because it describes a medium that displays the joint
properties of wave propagation and refractoriness. There are many systems in
which a wave of some sort can pass through a medium, after which the medium
cannot support another wave until a suitable length of time, called the refractory
time, has passed. Forest fires, the Belousov-Zhabotinsky reaction, neural tissue
and cardiac tissue are examples of excitable media [9, chapter 2].

6.2 Epidemics in homogeneous networks

The fully mixed models of epidemiology avoids discussing contact networks at
all, however, to understand and predict epidemic outbreaks requires a detailed
knowledge of the interactions between individuals. For example, people have
contact with only a small fraction of the population (such as family, friends,
coworkers, etc), and that fraction is not chosen at random. In this sense, the
network of contacts plays a key role in the spread of a disease.

In this section, we outline some fundamental changes introduced by a network
of contacts into epidemiological models.

6.2.1 Net infection rate

Each infected individual infects a susceptible neighbor with probability βdt, thus,
the total probability of infection for a susceptible individual with n infected neigh-
bors is

1− (1− βdt)n.

Neglecting fluctuations, the average number of infected neighbors for a node of
degree k is n = ki, then

1− (1− βdt)n = 1− (1− βdt)ki.

At leading order in βdt ≪ 1 we obtain

1− (1− βdt)ki ≈ βkidt,

so the spreading has changed
β → βk. (6.24)

This net spreading rate is explicitly dependent on the individual’s contact
number (i.e. node degree).

In a homogeneous network with ki = 〈k〉 ∀i the spreading rate is

β 〈k〉 . (6.25)

Te deterministic equations for the SI, SIS and SIR model maintain their forms,
with the substitution β → β 〈k〉.
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6.2.2 Epidemic outbreak size

As we have already seen, different mixed models set different upper bounds for the
size of an epidemic outbreak. This also happens on networks, with the addition
of a direct limitation: the largest outbreak size is restricted by the size of the
component where the disease starts. So, in a multicomponent network, outbreak
size is limited in accordance to the components size-distribution.

6.3 Epidemics on networks and percolation

As we have seen, the long time behavior of the deterministic SI model is a system-
wide epidemic outbreak. On the other hand, the SIS and SIR models present an
endemic or epidemic threshold, respectively. The outbreak size in a network is
limited by the size of the component where disease starts.

Let us consider the SIR model in a network with arbitrary topology. Infectious
individuals remain infected for a constant finite average time

τi =
1

γ
, (6.26)

then they recover. The probability that a susceptible individual catches the in-
fection from one of their infected neighbors is

p = 1− e−β/τi = 1− e−β/γ , (6.27)

or a total probability
ptotal = 1− (1− p)ki ≥ p, (6.28)

if it has ki infected neighbors.
Clearly, disease transmission requires the existence of links with a susceptible

node in one edge-end and one infected node in the other. Disease only can spread
across such links. If we occupy each link with probability p, or not with probability
1−p, the process is called bond percolation. The basic mathematical description of
bond percolation is almost the same as that of site percolation (seen in subsection
4.1.1). The only difference resides on the equation to obtain the relative size of
the giant cluster

S = 1− g0(u). (6.29)

The location of the percolation threshold is the same, namely

pc =
〈k〉

〈k2〉 − 〈k〉 =
1

κ− 1
. (6.30)

Above pc the giant cluster appears and an epidemic outbreak of size S becomes
possible, however, disease can propagate to any node in a connected cluster where
one infected node lies. In the particular case of a random network with Poisson
degree distribution the size of the giant cluster is

S = 1− exp(−p 〈k〉S), (6.31)
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where 〈k〉 is the average degree of the network when p = 1, then p 〈k〉 is the
average degree at any p. Equation 6.31 has the same form as the outbreak size r∞
of the deterministic SIR model (equation 6.19). Barbor and Mollison [96, chapter
7] demonstrated that the fully mixed (deterministic) SIR model corresponds to
the same model on random networks.

For models with reinfection, such as the SIS and SIRS models, the equivalence
between epidemic model and bond percolation does not hold. Then, we need to
rely on the analysis of the spreading dynamics.

6.4 Epidemics in heterogeneous uncorrelated net-

works

Relevant networks in epidemiological terms are heterogeneous in their degree dis-
tribution pk, so the homogeneous assumption is no longer valid. A conventional
approach to analyze such a case is to consider the block degree approximation, i.e.
assuming that all nodes with the same degree k are statistically equivalent. Then,
nodes are grouped into degree classes, each one having its own density

ik =
Ik
Nk

, sk =
Sk

Nk
, rk =

Rk

Nk

with global averages related to pk

i =
∑

k

pkik, s =
∑

k

pksk, r =
∑

k

pkrk

6.4.1 SI Model

The evolution equation for the infected fraction in the SI model is given by [7]

dik(t)

dt
= β(1− ik(t))kΘk(t) (6.32)

where

- β is the spreading rate,

- 1− ik(t) is the probability that a node with degree k is not infected,

- k is the degree of nodes in class k, and

- Θk(t) is the density of infected neighbors for nodes of degree k, i.e. the
average probability that any given neighbor of a node of degree k is infected.
In the fully-mixed approach Θk(t) = i(t) is degree independent.

At least one link of each infected node points to another infected node from
which it catched the infection. Then, for uncorrelated networks,

Θk(t) = Θ(t) =
1

〈k〉
∑

k′

(k′ − 1)pk′ik′(t), (6.33)
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is independent of k.
In the initial stage of propagation ik(t) is small enough to neglect terms of

order O(i2k), equation 6.32 reads as

dik(t)

dt
= βkΘ(t), (6.34)

then

dΘ(t)

dt
=

1

〈k〉
∑

k′

(k′ − 1)pk′k
′βΘ(t) = β

(〈k2〉 − 〈k〉
〈k〉

)

Θ(t) =
1

τ
Θ(t), (6.35)

where

τ =
1

β

〈k〉
〈k2〉 − 〈k〉 =

1

β

1

κ− 1
, (6.36)

so Θ(t) is
Θ(t) = Θ0e

t/τ . (6.37)

The initial stage 6.34 can be solved using i0(0) = Θ0 = i0, yielding,

ik(t) = i0

[

1 +
k

κ− 1
(et/τ − 1)

]

, (6.38)

where we observe that ik(t) increases exponentially fast and higher degree classes
contribute more to the total infected fraction,

∑

k pkik, which is

i(t) = i0

[

1 +
〈k〉
κ− 1

(et/τ − 1)

]

. (6.39)

It is remarkable that the growth time scale τ is a function of two separate
factors: β−1, which only depends on the dynamics through the transition rate S →
I; and (κ− 1)−1, which only depends on the structure, through the heterogeneity
parameter κ. Some direct conclusions on the form of τ are:

• for random networks with Poisson degree distribution, κ = 〈k〉+ 1 so

τrn =
1

β 〈k〉
this value coincides with the growth time scale expected for the SI model in
homogeneous networks.

• for scale-free networks with degree distribution pk ∼ k−γ̄ with 2 ≤ γ̄ ≤ 3 we
have κ → ∞ so

τsf → 0

this value indicates that, on scale-free networks, infection rises almost in-
stantaneously among the population. This happens as a cascade effect ; the
disease first reaches hubs, from where it can spread vary fast to nodes of
lower degree [7, 97], as shown in figure 6.3.

In the long time, t ≫ τ , the result is always the same: all individuals within
the sub-graph where the infection started will be infected.
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Figure 6.3: Average degree of the newly infected nodes for SI model as a function
of re-scaled time by t/τ . Reference lines are drawn at κ for t/τ ≪ 1 and m for
t/τ ≫ 1. Simulation where performed on scale-free networks in the Barábasi-
Albert model with N = 104 and m = 4(bottom), 14(top). Taken from [7].

6.4.2 SIS Model

The evolution equation of the infected fraction in the SIS model is given by

dik(t)

dt
= β(1− ik(t))kΘk(t)− γik(t) (6.40)

where

- β is the spreading rate,

- γ is the recovery rate,

- 1− ik(t) is the probability that a node with degree k is not infected,

- k is the degree of nodes in class k, and

- Θk(t) is the density of infected neighbors for nodes of degree k, i.e. the
average probability that any given neighbor of a node of degree k is infected.
In the fully-mixed approach Θk(t) = i(t) is degree independent.

An infected node does not have to point to another infected node since the
node from which it received the infection can spontaneously become susceptible
again.

Θk(t) = Θ(t) =
1

〈k〉
∑

k′

k′pk′ik′(t), (6.41)

is independent of k.
In the initial stage of propagation ik(t) is small enough to neglect terms of

order O(i2k), the equation 6.40 reads as

dik(t)

dt
= βkΘ(t)− γik(t), (6.42)
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then

dΘ(t)

dt
=

1

〈k〉
∑

k′

k′pk′k
′βΘ(t)− γΘ(t) = β

〈k2〉
〈k〉 Θ(t)− γΘ(t) =

1

τ
Θ(t), (6.43)

where

τ =
〈k〉

β 〈k2〉 − γ 〈k〉 =
1

βκ− γ
, (6.44)

so Θ(t) is

Θ(t) = Θ0e
t/τ . (6.45)

The initial stage 6.34 can be solved using i0(0) = Θ0 = i0 yielding

ik(t) = i0

[

1 +
βk

βκ− γ
(et/τ − 1)

]

, (6.46)

where we observe (as in the SI model) that ik(t) increases exponentially fast and
higher degree classes contributes more to the total infected fraction,

∑

k pkik,
which is

i(t) = i0

[

1 +
β 〈k〉
βκ− γ

(et/τ − 1)

]

. (6.47)

In this case, the growth time scale is an intertwined function of the transition
rates β and γ, and the heterogeneity parameter κ. In order to ensure the existence
of an epidemic outbreak with finite threshold we need τ > 0. Such condition reads

β

γ
≥ 1

κ
, (6.48)

and implies that heavy-tailed degree distribution networks with diverging second
moment (κ → ∞) in the limit N → ∞ has epidemic threshold equal to zero.
Wether or not a finite epidemic threshold exists depends on the contact structure
through κ, while the current dynamical regime (sub-threshold or super-threshold)
is still an interplay between transition rates β/γ, as in the deterministic homoge-
neous SIS model.

The endemic state associated with the SIS model can be obtained by imposing
the stationary condition dik(t)/dt = 0,

ik =
βkΘ

γ + βkΘ
, (6.49)

which makes equation 6.41 yield

Θ =
1

〈k〉
∑

k

kpk
βkΘ

γ + βkΘ
, (6.50)

a self consistent equation whose solution depends only on the transition rates β
and γ. Equation 6.50 has solution if its left hand side y1(Θ) = Θ intersects the
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right hand side y2(Θ) at Θ∗ 6= 0. This happens only if the slope of y2(Θ) at Θ = 0
is larger than or equal to 1, i.e.

d

dΘ

[

1

〈k〉
∑

k

kpk
βkΘ

γ + βkΘ

]

Θ=0

=
β

γ
κ ≥ 1, (6.51)

which is the same condition obtained in the early-time approximation, equation
6.48.

Using the continuous degree approximation, it is possible to compute the en-
demic infected fraction i∞ for scale-free networks with normalized degree distri-
bution [98, 99]

pk = (γ̄ − 1)mγ̄−1k−γ̄ , (6.52)

having average degree (γ̄−1)m/(γ̄−2) and minimum degree m. We need to solve
equation 6.50 close to the epidemic threshold

β

γ
=

1

κ
=

{ γ̄−3
m(γ̄−2)

if γ̄ > 3

0 if γ̄ ≤ 3
. (6.53)

• For 2 < γ̄ < 3

i∞ ∼
(

β

γ

)1/(3−γ̄)

, (6.54)

there is no epidemic threshold, and i∞ is non-zero for all values of β
γ
.

• For γ̄ = 3

i∞ ∼ exp

(

γ

mβ

)

, (6.55)

there is no epidemic threshold.

• For 3 < γ̄ < 4

i∞ ∼
(

β

γ
− γ̄ − 3

m(γ̄ − 2)

)1/(3−γ̄)

, (6.56)

the epidemic threshold is given by 6.53 and i∞ presents a smooth power law
behavior.

• For γ̄ > 4

i∞ ∼ β

γ
− γ̄ − 3

m(γ̄ − 2)
, (6.57)

i∞ follows the expected behavior for homogeneous networks [98].
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6.4.3 SIR Model

The evolution equation of the infected fraction in the SIR model is given by

dik(t)

dt
= β(1− ik(t)− rk(t))kΘk(t)− γik(t) (6.58)

where

- β is the spreading rate,

- γ is the recovery rate,

- 1−ik(t)−rk(t) is the probability that a node with degree k is neither infected
nor recovered,

- k is the degree of nodes in class k,

- Θk(t) is the density of infected neighbors for nodes of degree k, i.e. the
average probability that any given neighbor of a node of degree k is infected.
In the fully-mixed approach Θk(t) = i(t) is degree independent, and

Θk(t) = Θ(t) =
1

〈k〉
∑

k′

(k′ − 1)pk′ik′(t), (6.59)

is independent of k.

In the initial stage of propagation ik(t) is small enough to neglect terms of
order O(i2k) and rk(t) ∼ 0, the equation 6.58 reads as

dik(t)

dt
= βkΘ(t)− γik(t), (6.60)

then

dΘ(t)

dt
=

1

〈k〉
∑

k′

(k′ − 1)pk′k
′βΘ(t)− γΘ(t) = β

〈k2〉 − 〈k〉
〈k〉 Θ(t)− γΘ(t) =

1

τ
Θ(t),

(6.61)
where

τ =
〈k〉

β (〈k2〉 − 〈k〉)− γ 〈k〉 =
1

β(κ− 1)− γ
, (6.62)

so Θ(t) is

Θ(t) = Θ0e
t/τ . (6.63)

The initial stage 6.34 can be solved using i0(0) = Θ0 = i0 yielding

ik(t) = i0

[

1 +
βk

β(κ− 1)− γ
(et/τ − 1)

]

, (6.64)
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where we observe (as in the SI and SIS models) that ik(t) increases exponen-
tially fast and higher-degree classes contribute more to the total infected fraction,
∑

k pkik, which is given by

i(t) = i0

[

1 +
β 〈k〉

β(κ− 1)− γ
(et/τ − 1)

]

. (6.65)

In this case, the growth time-scale is an intertwined function of the transition
rates β and γ, and the heterogeneity parameter κ. In order to ensure the existence
of an epidemic outbreak with finite threshold we need τ > 0, one must have

β

γ
≥ 1

κ− 1
. (6.66)

This implies that heavy-tailed degree distribution networks with diverging second
moment (κ → ∞) in the limit N → ∞ have epidemic threshold zero. Wether or
not a finite epidemic threshold exists depends on the contact structure through κ,
while the current dynamical regime (sub-threshold or super-threshold) is still an
interplay between transition rates β/γ, as in the deterministic homogeneous SIR
model.

To obtain the asymptotic number of infected individuals r∞ = limt→∞

∑

k pkrk(t)
we take the rate equation for rk(t)

drk(t)

dt
= γik(t), (6.67)

which is directly integrable to give

rk(t) = γ

∫ t

0

ik(t
′)dt′. (6.68)

And the rate equation for sk(t)

dsk(t)

dt
= −βksk(t)Θk(t), (6.69)

which is integrable as follows

ln
(

sk(t)
sk(0)

)

=
∫ sk(t)

sk(0)

ds′
k
(t)

s′
k
(t)

= −βk
(

∫ t

0
Θ(t′)dt′

)

= −βk
(

1
〈k〉

∑

k(k − 1)pk
∫ t

0
ik(t

′)dt′
)

= −βk
(

1
γ〈k〉

∑

k(k − 1)pkrk(t)
)

= −βkφ(t),

with sk(0) ≃ 1, then
sk(t) = exp (−βkφ(t)) . (6.70)
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The time evolution equation for φ is

φ̇(t) = Θ(t)
= 1

〈k〉

∑

k(k − 1)pkik(t)

= 1
〈k〉

∑

k(k − 1)pk [1− rk(t)− sk(t)]

=
(

1− 1
〈k〉

)

− γφ(t)− 1
〈k〉

∑

k(k − 1)pk exp (−βkφ(t)) .

(6.71)

Now r∞ can be written as

r∞ =
∑

k

pkrk(∞) =
∑

k

pk [1− ik(∞)− sk(∞)] =
∑

k

pk [1− exp (−βkφ(∞))] ,

(6.72)
because in the limit t → ∞, all infected nodes have healed. In such conditions,
φ(t) will stop to change, so that limt→∞ φ̇(t) = 0. From equation 6.71 one obtains
the self consistence equation

φ(∞) =
1

γ

(

1− 1

〈k〉

)

− 1

γ 〈k〉
∑

k

(k − 1)pk exp (−βkφ(∞)) . (6.73)

Equation 6.73 has a solution if its left hand side y1(φ(∞)) = φ(∞) intersects
the right hand side y2(φ(∞)) at φ(∞)∗ 6= 0. This happens only if the slope of
y2(φ(∞)) at φ(∞) = 0 is larger than or equal to 1, i.e.

d

dφ(∞)

[

1

γ

(

1− 1

〈k〉

)

− 1

γ 〈k〉
∑

k

(k − 1)pk exp (−βkφ(∞))

]

φ(∞)=0

≥ 1, (6.74)

which is equivalent to

β

γ 〈k〉
∑

k

(k − 1)kpk =
β

γ

〈k2〉 − 〈k〉
〈k〉 ≥ 1, (6.75)

and leads to the same epidemic threshold condition as equation 6.66, namely

β

γ
=

1

κ− 1
. (6.76)

Below the threshold r∞ = 0; above the threshold r∞ takes a finite value.
Using the continuous degree approximation, it is possible to compute r∞ for

scale-free networks with normalized degree distribution pk = (γ̄−1)mγ̄−1k−γ̄. The
behavior of r∞(β/γ) is the same as i∞(β/γ) for the SIS model on the same kind
of networks [100, 101].

6.4.4 SIRS model in Small-World networks

In previous Chapters from the current Part we have presented the effects of small-
world networks over dynamical processes, this chapter will not be an exception.
Kuperman & Abramson [8] were the first to study the effects of small-world net-
works over epidemiological model, specifically, the SIRS model. Their approach
was formulated as follows:
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• Individuals are located at the nodes of a small-world network built using the
Watt-Strogatz model [25], with average degree 2K and disorder parameter
p ∈ [0, 1].

• Susceptible nodes can get the disease through contagion by infected neigh-
bors, with probability

pinf =
kinf
k

, (6.77)

where kinf is the number of infected neighbors of node i.

• Infected nodes remain infectious during a period τI , after that time they
recover.

• Recovered nodes remain recovered during a period τR, after that time they
become susceptible again.

• A counter

τi(t) = 0, 1, . . . , τ0,

where τ0 = τI + τR, records the location of node i in the cycle of the disease.
The state of node i is determined from this counter

– i ∈ S if τi(t) = 0,

– i ∈ I if τi(t) ∈ (1, τI),

– i ∈ R if τi(t) ∈ (τI + 1, τ0).

• The state of node i in the next step depends on i) its current state and ii)
the state of its neighbors. The counter evolves following the rules

– τi(t+ 1) = 0 if τi(t) = 0 and r > pinf (no infection occurs),

– τi(t+ 1) = 1 if τi(t) = 0 and r ≤ pinf (infection occurs),

– τi(t+ 1) = τi(t) + 1 if 1 ≤ τi(t) < τ0 (infectious + recovered period),

– τi(t+ 1) = 0 if τi(t) = τ0 (healing).

where r ∈ [0, 1] is a random number from a uniform distribution.

• The synchronization behavior was decribed by the order parameter

σ =

∣

∣

∣

∣

∣

1

N

N
∑

i=1

exp(iθi)

∣

∣

∣

∣

∣

(6.78)

where θi = 2π(τi − 1)/τ0 is the geometrical phase of node i. Only positive
phases are counted into the sum, i.e. the sum is over the deterministic part
of the disease cycle.
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Figure 6.4: Time evolution of the infection fraction ninf(t) for different val-
ues of disorder parameter (shown in legends). Simulations were performed with
parameters τI = 4, τR = 9, K = 3, N = 104 and ninf(t) = 0.1. Taken from [8].

Their results shows that: at low values of p (p = 0.01 top of figure 6.4)
the infection is endemic, the infected fraction is low, and present fluctuations;
at high values of p (p = 0.9 bottom figure 6.4) the infected fraction presents
large-amplitude quasi-periodic oscillations, with small fluctuations in amplitude;
at some intermediate value of p (p = 0.2 middle of figure 6.4) a transition between
an endemic and an oscillatory state takes place, oscillatory lapses are intertwined
with periods of large fluctuation in ninf .

The transition becomes sharper as system size increases (see figure 6.5) and it
moves to lower p as the average degree (2K) increases (see figure 6.6).

They also defined an alternative contagion probability

pinf = (1− (1− q)kinf ) (6.79)

where q ∈ [0, 1] is the infectivity, and obtained similar results for the range q < 0.3.
Particularly, Kuperman & Abramson [8] noted that high values of disorder

(p ≥ 0.5) lead to a situation where large amplitude oscillations arise and the
disease dies out. They pointed out that a configuration with σ = 1 (perfect phase
synchronization) naturally leads to disease extinction. This situation is clear: all
nodes are either infected or recovered simultaneously and there are no susceptible-
infected interactions. In the Chapter 8 we will explore the conditions of extinction
in a spatial variation of the model of Kuperman & Abramson.
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Figure 6.5: Order parameter as a function of the disorder for different network
sizes (shown in legends). Each point is a time average over 2000 time steps.
Simulations were performed with parameters τI = 4, τR = 9, K = 3 and ninf (t) =
0.1. Taken from [8].

Figure 6.6: Order parameter as a function of the disorder parameter for different
average degrees (shown in legends). Simulations were performed with parameters
τI = 4, τR = 9, N = 104 and ninf(t) = 0.1. Taken from [8].
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6.5 Epidemics in heterogeneous correlated net-

works

6.5.1 Pair (State) correlations

In the SI model let us define (to avoid confusion with indices) si(t) and xi(t) as the
average probabilities that node i is susceptible or infectious at time t. In terms
of the adjacency matrix A, with entries Aij, xi(t) obeys the set of N coupled
differential equations

dxi

dt
= βsi

∑

j

Aijxj = β(1− xi)
∑

j

Aijxj , (6.80)

si(t) obeys similar equations

dsi
dt

= −βsi
∑

j

Aijxj = −βsi
∑

j

Aij(1− sj), (6.81)

such that si(t) + xi(t) = 1. At early times xi(t) ≪ 1 so we can work with the
linearized versions of equations 6.80

dxi

dt
= β

∑

j

Aijxj , (6.82)

in matrix form
dx

dt
= βAx. (6.83)

The vector x (of elements xi) can be written as a linear combination of the
eigenvectors of A

x(t) =
∑

r

ar(t)vr, (6.84)

where the eigenvector vr has eigenvalue λr. Combining equations 6.83 and 6.84

dx

dt
=
∑

r

dar
dt

vr = βA
∑

r

arvr = β
∑

r

arλrvr, (6.85)

and comparing terms, we obtain

dar
dt

= βλrar, (6.86)

with solution
ar(t) = ar(0) exp(βλrt). (6.87)

Then we have
x(t) =

∑

r

ar(0) exp(βλrt)vr, (6.88)
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an expression dominated by the term with the largest eigenvalue, λN , i.e.

x(t) ∼ exp(βλNt)vN . (6.89)

As in the fully mixed SI model, the number of infected individuals increases
exponentially, with nodes of higher eigenvector centrality becoming infected earlier
than those with lower centrality. This “first order” approximation is qualitatively
what we expected, but it is not correct: equations 6.80 and 6.81 implicitly assume
that the product of the average probabilities si(t) and xj(t) is equal to the average
of the probabilities product si(t)xj(t), which in general is not true. If i and
j are neighbors (what is needed for transmission) then si(t) and xj(t) are not
independent, but correlated.

Let 〈si〉 and 〈xj〉 be the average probabilities that node i is susceptible or
infected, respectively. In this notation, 〈sixj〉 is the average probability that node
i is susceptible and node j is infected, simultaneously. Equation 6.81 is written
as

d 〈si〉
dt

= −β
∑

j

Aij 〈sixj〉 , (6.90)

an equation that cannot be solved due to the unknown term 〈sixj〉. To obtain i
susceptible and j infected we need to start with both susceptibles, then j becomes
infected. Note that j must catch the infection from a third (infected) node k,
because i is susceptible. This situation is represented by the probability 〈sisjxk〉.
The total rate as which j becomes infected increases as

β
∑

k 6=i

Ajk 〈sisjxk〉 ,

and decreases if either

- i is infected by j (also infected), with probability

β 〈sixj〉 ,

- or i is infected by l 6= j (also infected), with total probability

β
∑

l 6=j

Ail 〈xlsixj〉 .

The rate equation for 〈sixj〉 is thus

d 〈sixj〉
dt

= β
∑

k 6=i

Ajk 〈sisjxk〉 − β
∑

l 6=j

Ail 〈xlsixj〉 − β 〈sixj〉 . (6.91)

Equation 6.91 presents the same problema as equation 6.90. The addition of new
higher order terms, in this case, three-variable averages. We can continue with
our approach, but the succession of equations will never end, it does not close. At
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Figure 6.7: Graphical representation of pair correlations. Note that i and j are
first order neighbors, also j and k. i and k are second order neighbors, and we
assume they are not correlated.

this point, the moment closure method is helpful to approximate three-variable
averages with (appropriate) combinations of one and two-variable averages.

Using the Bayes Theorem for probabilities

〈sisjxk〉 = P (i, j ∈ S, k ∈ I) = P (i, j ∈ S)P (k ∈ I|i, j ∈ S). (6.92)

Nodes i and j are first order neighbors, also j and k, However, node i and k
are second order neighbors, and we assume they are not correlated, then

P (k ∈ I|i, j ∈ S) = P (k ∈ I|j ∈ S) =
P (j ∈ S, k ∈ I)

P (j ∈ S)
=

〈sjxk〉
〈sj〉

. (6.93)

Combining equations 6.92 and 6.93 we obtain

〈sisjxk〉 =
〈sisj〉 〈sjxk〉

〈sj〉
, (6.94)

and similarly

〈xlsixj〉 =
〈xlsi〉 〈sixj〉

〈si〉
. (6.95)

Equation 6.91 is approximated by

d 〈sixj〉
dt

= β
〈sisj〉
〈sj〉

∑

k 6=i

Ajk 〈sjxk〉 − β
〈sixj〉
〈si〉

∑

l 6=j

Ail 〈sixl〉 − β 〈sixj〉 ,

being 〈sisj〉 = 〈si(1− xj)〉 = 〈si〉 − 〈sixj〉 we obtain

d 〈sixj〉
dt

= β
〈si〉 − 〈sixj〉

〈sj〉
∑

k 6=i

Ajk 〈sjxk〉−β
〈sixj〉
〈si〉

∑

l 6=j

Ail 〈sixl〉−β 〈sixj〉 . (6.96)

Let define the conditional probability that node j is infected given that i is
susceptible, as

pij =
〈sixj〉
〈si〉

, (6.97)
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the time evolution of this quantity is

dpij
dt

= d
dt

(

〈sixj〉

〈si〉

)

= 1
〈si〉

d〈sixj〉

dt
− 〈sixj〉

〈si〉
2

d〈si〉
dt

= 1
〈si〉

[

β
〈si〉−〈sixj〉

〈sj〉

∑

k 6=iAjk 〈sjxk〉 − β
〈sixj〉

〈si〉

∑

l 6=j Ail 〈sixl〉 − β 〈sixj〉
]

− 〈sixj〉

〈si〉
2

[

−β
∑

j Aij 〈sixj〉
]

= β
(

1− 〈sixj〉

〈si〉

)

∑

k 6=j Ajk
〈sjxk〉

〈sj〉
− β

〈sixj〉

〈si〉

∑

l 6=j Ail
〈sixj〉

〈si〉
− β

〈sixj〉

〈si〉
+ β

〈sixj〉

〈si〉

∑

l Ail
〈sixl〉
〈si〉

= β(1− pij)
∑

k 6=iAjkpjk − βpij
∑

l 6=j Ailpil − βpij + βpij
∑

l Ailpil,

then
dpij
dt

= β(1− pij)

[

−pij +
∑

k 6=i

Ajkpjk

]

. (6.98)

Using this result, equation 6.90 can be rewritten as

d 〈si〉
dt

= −β 〈si〉
∑

j

Aijpij , (6.99)

with solution

〈si(t)〉 = 〈si(0)〉 exp
(

−β
∑

j

Aij

∫ t

0

pij(t
′)dt′

)

. (6.100)

Together, equations 6.98 and 6.100 provides a “second order” approximation
to the SI model on networks. Note that pij is not symmetric in i and j, so we
need to consider two equations of the form 6.98.

In figure 6.8 we see a comparison of the first- and second-order approximations
for the SI model against simulation data in networks (a) with low transitivity
(i.e. low cluster coefficient) and (b) with high transitivity. A network with low
transitivity is mostly tree-like. The second-order approach is exact because i) the
only path between i and k is through j, or ii) there exists another path (through
a long cycle) which dilutes any correlation between i and k to the point that it
can be neglected. The first-order approach shows good agreement with simulation
data, is it just one order below the exact order of correlations, which is length
two.

For networks with high transitivity the situation depicted in figure 6.7 does
not holds in general: it becomes possible for k to be directly connected to i (if i, j
and k form a cycle of length three) an they become correlated. On the other hand,
short cycles of order 4, 5, . . . also become possible and the correlations through
them may not be diluted to the point of being negligible, so correlation length
higher than two may arise. In this case the second-order approach is a relatively
good approximation, while the first-order approach shows a poor agreement with
the simulation data.
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Figure 6.8: First- and second-order approaches in comparison with direct sim-
ulations for the SI model. The first- and second-order approaches give similar
results in tree-like networks with low clustering coefficient, or transitivity. For
networks with high transitivity the first-order approach shows a bad agreement
with simulation data (dots). Taken from [6, section 17.10].
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Chapter 7

Excitable media

Many time evolving systems can be thought of as a dynamical system, with the
connotation of a force or perturbation producing a change of state from a resting
state to an excited state. If the perturbation needs to be strong enough to produce
an excitation, and a given amount of time is needed to restore the system to its
resting state, we are dealing with a special class of systems called excitable media.

7.1 Characteristics of excitable media

In general terms, any excitable medium shares three qualities:

• In absence of external perturbations, the system possesses a globally at-
tracting equilibrium point, called the resting state.

• The phase space if partitioned by a threshold into two domains: sub thresh-
old and supra-threshold. A system in the supra-threshold domain is said to
be excited.

• The transition from the resting state to a excited state, i.e. excitation,
only takes place when an external perturbation is greater than the thresh-
old. After a small perturbation, that leaves the system in the sub-threshold
domains, the system quickly move back to the resting state. After a large
perturbation, that leaves the system in the supra-threshold domain, the
system performs a large excursion before returning to the resting state.

• It possesses a refractory period, i.e. the time needed before the system can
be re-excited after a relaxation from the excited state. Before this period, a
re-excitation it not possible, even for supra-threshold perturbations.

These are the qualities of a single excitable unit, however, real excitable sys-
tems are typically composed of many spatially extended units that display collec-
tive dynamics, such as pattern formation and spatiotemporal chaos. One charac-
teristic trait of excitable media dynamics is that two traveling waves of excitation
cannot pass through each other. Instead, they annihilate each other. This hap-
pens because each excitation front leaves a refractory region behind it, so the
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system cannot be re-excited immediately. Clearly, excitable systems composed of
a single excitable unit do not display this kind of phenomena.

Spatially extended excitable media are a sub-class of the reaction-diffussion
systems framework. This framework is a natural description of chemical systems.
The language of chemistry is useful to explain the generalities of its coarse-grained
mathematical model.The partial differential equation describing their evolution is

∂

∂t
q(x, t) = D∇2q(x, t) +R(q), (7.1)

where

- q is the system state vector,

- D is the diffusion matrix, and

- R(q) are the non-linear reaction terms.

The first term in the right hand side of equation (7.1) accounts for the components
transport, while the second term contains details about the local dynamics of the
components; i.e. the reactants are reacting with each other and the products are
being transported via diffusion.

Some of the patterns of an extended excitable media can be explained ana-
lytically (through equation (7.1) for example) while many others require the use
of numerical techniques. The process implies a discretization of the space into a
lattice to obtain a (large) system of ordinary differential equations from the sys-
tem (7.1). In these ODEs, diffusion is implemented by coupling lattice variables
to those of its nearest neighbors.

7.2 Examples of excitable media

Excitable media are ubiquitous. Even something as trivial as a toilet flush is an
excitable system; it requires a minimum force to be exerted on the lever (threshold)
to start the water flow (excitation), and the toilet flush is useless until the cistern
is refilled (refractory period).

Excitable media span a broad spectrum of scales, from waves of calcium con-
centration at the intracellular scale, to plankton growth of up to hundreds of
kilometers in the oceans.

7.2.1 Calcium waves in the cell

At the intracellular level, calcium ions (Ca2+) are vital as physiological regula-
tors in the living cell. They signal muscular contractions in the heart and uterus,
and act as universal signal messengers. Calcium concentration should be care-
fully controlled. An excess can induce apoptosis, i.e. the process of cellular self
killing. Calcium concentration changes when Ca2+ ions form complexes, limiting
the amount of free Ca2+ ions, and developing calcium waves which often form
spatial pattern such as spiral waves.
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7.2.2 Waves in the Belousov–Zhabotinsky reaction

The chemical reaction known as the Belousov–Zhabotinsky reaction (B-Z reaction)
is perhaps the simplest experimental setup to study a nonlinear system displaying
excitations and oscillations, i.e. an excitable system; it has been a convenient sys-
tem to explore the mechanism for pattern transitions, to prove techniques of spiral
waves control, and to explore the dynamics of spiral and scrolls in heterogeneous
and anisotropic excitable media [10, Chapter 4].

Figure 7.1: Spiral wave patterns in the Belousov–Zhabotinsky reaction. Taken
from [9, section 2.5].

The preparation of the B-Z reaction does not requires any sophisticated equip-
ment nor expertise, and the recipe only contains a couple of reactants [9, Section
2.5]

First Mix

• 67 ml of water

• 2 ml of concentrated sulfuric acid

• 5 gm of sodium bromate

Then, in a glass vessel put

• 6 ml of the previously prepared mix.

• 1 ml of malonic acid solution (1 g in 10 ml)

• 0.5 ml of sodium bromide solution (1 g in 10 ml)
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• wait until bromide color to vanish.

• 1 ml of 25 mM of phenanthroline.

Pour the final solution into a covered Petri dish, and once the reaction starts
a pattern and spiral waves appears in the surface of the solution. These patterns
correspond to spatially varying concentrations.

7.2.3 Waves of electrical activity in the heart

The understanding of pattern formation in excitable media helps in dealing with
heart conditions such as cardiac arrythmias and fibrillation.

The heart is an excitable organ; it behaves as a pump by sending deoxygenated
blood to the lungs and oxygenated blood to the rest of the body. The pressure of
the pump is due to contraction and relaxation of electrically excitable cells in the
heart wall. Then waves of excitation propagates along the heart wall.

Under normal conditions the heart beat is set by the sinus node, whose cells
are spontaneously activated at a given frequency. This excitation propagates
throughout the atria, and to the ventricles after reaching the atrio-ventriular node,
so there is a time delay between activation of the atria and the ventricles.

The presence of physical obstacles such as inexcitable scar tissue or transiently
inexcitable regions (refractory regions) allows the formation of reentrant pathways,
i.e. an excitation loop around a core region, when the excitation goes around
the obstacle. The typical pattern of reentrant pathways are spiral waves, which
persists even after the original refractory region is recovered. The excitation
frequency of these spiral waves is likely to be higher than that of the sinus node,
thus dominating the heart beat, setting an abnormally high frequency. High
frequencies make spiral waves unstable, increasing the probability of wave break
up, then forming more spirals until the system reach a state of spatiotemporal
chaos. This scenario is know as ventricular fibrillation.

Many people suffering from arrhythmias uses implanted defibrillators to pre-
vent fibrillation, however, the high current that it uses to reset the heart to it
resting state can cause scars which in turn promote the development of future
arrhythmias. So understanding the dynamics of pattern formation in excitable
media can help in the development of safe and effective low current defibrillators.

7.2.4 Waves of spreading depression and persistent activ-
ity in the brain

Brain tissue behaves as an excitable medium. i) In the human brain the migraine
aura (a flickering sensation that can drastically reduce the field of vision) has been
associated with Spreading Depression, a diffusive wave of depolarization resulting
from a temporary breakdown of the trans-membrane potential as there occurs a
large-scale movement of ions across the membrane. Spreading depression typically
lasts for a couple of minutes before recovery to the original electrophysiological
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state. ii) Patterns of excitation also appear in neocortical slices of the mammalian
brain.

It has been speculated that spiral waves make possible the persistence of cor-
tical oscillations. If such spatial patterns emerge spontaneously from arbitrary
initial conditions, then they should be an outcome of the system’s internal struc-
ture alone.

The brain displays a complex topology. Neurons in the brain have processes
that can span large distances (compared to the cell body) and a single neuron
can form several thousand connections with other neurons. A majority of the
neuron connections may be with neurons at short inter-body distances. However,
connections with farther neurons are not rare. Also, neurons are embedded in
a matrix of regular topology made from glial cells. As calcium waves mediates
glial-glial and glial-neuron communications, the aggregate system of glial cells and
neuron forms a network with “small-world” topology 1.

7.2.5 Waves of infection in a population

Mankind has been exposed to infectious diseases since its origin. In the 14th
century the Black Death killed millions when waves of infection spread across
Europe for years. In the 19th century the spread of bubonic plague waves killed
millions in India and China. In the period 1918-1919 the spanish flu traveled the
world in three waves and killed about 500 million people. In 2009 the influenza
strain AH1N1v started spreading around the world, killing about 18000 people in
214 countries. Another recent example of disease wave propagation is the spatial
pattern of malaria spreading in India reported by Jesan in 2013, see figure 7.2.
These are just a few examples of how diseases can display waves and spatial
pattern and then be related to excitable media.

In general terms, epidemic spreading implies the propagation of a disease
among a population. Such disease often involves the passage of individuals through
a finite set of discrete disease states. An individual gets infected by direct inter-
action/contact with its infected neighbors. If a disease does not confer perma-
nent immunity to the healed individuals, an epidemy could be recurrent. These
characteristics, in conjunction with an refractory disease state, define a cellular
automaton version for modeling an excitable media.

The SIRS epidemic model is akin to this version, and it is suitable for modeling
non-fatal instances of malaria and influenza; an excited cell returns to the initial
susceptible (excitable) state passing through other discrete states until recover.
Also, the excitation (infection) of any cell depends on its current state and the
number of excited (infected) neighbors.

Waves of infection observed in the SIRS model resemble the excitation wave
fronts. Understanding the spatial pattern of disease spreading will help in devel-
oping better methods of controlling disease propagation.

1as seen in Chapter 1
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Figure 7.2: Spreading pattern of malaria in northern Bengal, India. Lighter re-
gions mark places or earlier disease activity reported from January 206 to February
2009. Gray scale encodes the mean relative phase angle, i.e. the average phase
angle of a given location relative to the spatial average over all regions. Taken
from [10, section 4.7].

7.2.6 Waves in Lotka-Volerra model

When species of predators and preys interact they can produce spatiotemporal
patterns [10],oscillating population cycles [102], and even chaos [103]. In the
simplest case two populations are coupled, then changes in one population affects
the other. The most famous model capturing such situation is the Lotka-Volterra
model. However, the Lotka Volterra model is generalizable to the case of S species
interacting through a complex graph of dominance relations [104].

Dobrinevski and Frey pointed out that i) deterministic rate equations of the
general Lotka-Volterra model possess fixed extinction points (i.e. just one species
survive) and coexistence points (all species survive), and ii) as stochasticity is
introduced into the model, extinctions always occur on a time scale Text dependent
on the system size N and the stability of the fixed points.

One could expect [105]

• Stable coexistence with Text ∝ eN if the deterministic dynamics has a stable
attractor in the coexistence region.

• Unstable coexistence with Text ∝ log(N) if the deterministic dynamics ap-
proaches the extinction hyper planes for large times, and weak fluctuations
are sufficient to make one species go extinct.
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• Neutrally stable coexistence with Text ∝ Nγ if the deterministic dynamics
possesses a family of neutrally stable, closed orbits, corresponding to the
existence of a conservation law.

In particular, the three species cyclic Lotka-Volterra model [106, 107] (also
known as the rock-paper-scissors game) and the SIRS model presents some simi-
larities; both have cyclic dynamics through a set of species or disease states.

7.3 The Hodgkin-Huxley model

The work of Alan Hodgkin, Andrew Huxley and Bernard Katz was pioneering
to understand the electrical activity of the cell. They described the mechanism
for the initiation of the action potential in the squid giant axon, and proposed a
theoretical model which captures its profile through a RC circuit.

Figure 7.3: Schematic representation of the cell membrane potential as an elec-
trical circuit. The lipid bilayer is represented by a capacitor Cm that maintains
the potential Vm = V across the cell membrane. Ion-channels act as voltage
dependent rheostats for controlling the inward Na+ and outward K+ currents.
Taken from [10, section 2.2].

The trans-membrane voltage follow the differential equation

Cm
d

dt
V = Iext − Iion, (7.2)
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where Iext is the external current that depolarizes the cell membrane, and Iion is
the sum of ionic currents

Iion =
∑

i

Ii, (7.3)

each one given as
Ii = gi(V −Ei), (7.4)

where Ei is the equilibrium/reversal membrane potential for Ii (the equilibrium
potential is reached when there is no net flow of charges across the membrane).
The conductance gi are voltage gated, that can be in ON or OFF state, with a
probability modeled as

d

dt
pi = αi(V )(1− pi)− βi(V )pi, (7.5)

where αi(V )/βi(V ) is the voltage dependent rate for the OFF → ON/ON → OFF
transition of gate i (this values needs to be determined experimentally). The
macroscopic conductance of the ion channel Gic is the product of the individual
gate probabilities

Gic = ḡic
∏

pi, (7.6)

where ḡic is the maximum conductance of the ion channel (when all its gates are
ON).

Calling the probabilities of the individual gates m,n and h, the total ionic
current is

Iion = ḡNam
3h(V − ENa) + ḡKn

4(V − EK) + ḡL(V − EL) (7.7)
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Figure 7.4: Dynamics of the Hodgkin-Huxley model variables. Time evolution
of voltage V (top) and gate probabilities (bottom) as a response to Iext = 4µA
applied for 5 ms. Taken from [10, section 2.2].

7.3.1 Integrate-And-Fire neurons in small-world networks

Roxin et al. [11] used integrate-and-fire neurons, with membrane potential

τm
d

dt
Vi = −Vi + Iext + gsyn

∑

j,m

Ai,jδ(t− t
(m)
j − τD). (7.8)

Neuron i fires when its voltage exceeds 1, then it is reset to 0. If Ai,j is nonzero,
then neuron i receives a pulse stimulus of amplitude gsyn, delayed by τD after

neuron j fired its m-th spike (at time t
(m)
j ). The synaptic conductance gsyn is

chosen to satisfy Iext+ gsyn > 1, then, a single input suffices to induce firing. The
coupling topology A is a small-world network constructed using the Newman-
Watts model [26], in a ring. The long-range links added are directed, in order to
account for the nonreciprocal character of synaptic connections.

The directed nature of the long-range links allows to overcome extinctions due
to wave annihilation: activity is re-injected into already recovered regions. The
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probability of survival/failure of the sustained activity is modified by the density
of long-range links.

For small values of τD (i.e. fast excitation waves) the probability of fail-
ure (extinction of the dynamics) is an increasing function of p, with increasing
steepness as the system size increases. For larger values of τD, F (t) becomes a
non-monotonic function of p, making it possible to observe long lived activities.

Figure 7.5: Failure (extinction of the dynamics) rates as a function of p, nor-
malized by pc(N). The inset shows the failure rate as a function of p. Several
system sizes are shown. Taken from [11].

Figure 7.6: Failure (extinction of the dynamics) rates as a function of p for
system of size N = 1000 and τD = 0 : 6, 0.8, 1.0, 1.2, 1.4, 1.6, 1.8 (from left to
right). Taken from [11].
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7.4 The FitzHugh-Nagumo model

One paradigmatic model of excitable unit is the FitzHugh-Nagumo model

du

dt
= F (u, v) = u(u− uc)(1− u)− v, (7.9)

dv

dt
= G(u, v) = ǫ(ku− v) (7.10)

where k ≥ 0, and ǫ ≪ 1. The parameter ǫ controls how slow the time evolu-
tion of v is in comparison to u. The variable u (which corresponds to V in the
Hodgkin–Huxley model) is the excitation variable, it represents the rapid depo-
larization of the cell after a supra-threshold perturbation. The variable v is the
recovery variable, it represents the recovery of the cell to the resting state. The
FitzHugh-Nagumo model was aimed at understanding the electrical signal propa-
gation along a nerve with a two-variable model. In the context of biological cells,
this model describes a profile called the action potential, originally proposed by
Hodgkin-Huxley with a four -variable model.

Figure 7.7: Time evolution of variables u and v in the FitzHugh-Nagumo model
(left) and the corresponding trajectory in the (u, v) plane (right). Parameter
values were uc = 0.25, k = 1, ǫ = 0.1, and the initial condition were (0,−0.2).
Taken from [10, section 1.2].

In equation (7.9) the cubic term sets the system’s available fixed points. There
are two stable fixed points at u = 0 and u = 1, and one unstable fixed point at
u = uc. The second term is a variable that controls a saddle-node bifurcation in
the bistable system that makes unstable one fixed point, at u = 0 or u = 1, so
the system can return to the remaining stable fixed point (resting state).
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Figure 7.7 shows both the time evolution and the phase space trajectory of vari-
ables u and v in the FitzHugh-Nagumo model. We can observe a large-amplitude
departure of u and v from the initial condition at (0,−0.2) before it returns to
the resting state at (0, 0). This qualitative behavior is the blueprint of the action
potential.

Figure 7.8: Dynamic behaviors of the FitzHugh-Nagumo model. Excitable dy-
namics (top) and oscillatory dynamics (bottom). Taken from [10, section 2.3].

Depending on the u- and v-nullclines 2 intersection, the system presents qual-
itatively different behaviors

• If the intersection is located at the left of the u-nullcline minima, then, the
dynamics is excitable, see figure 7.8 on top.

2The nullcline of a dynamic variable x is defined as ẋ = 0. �̇ stand for “derivative with
respect to time”.
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• If the intersection is located in between the u-nullcline minima and maxima,
then, the intersection corresponds to a “limit cycle”, and the dynamics is
oscillatory, see figure 7.8 on bottom.

7.5 The Chialvo Model

The need for discretization has motivated the development of discrete models of
excitability, such as the one proposed by Dante R. Chialvo [108], a two-variable
map which evolves in discrete time intervals

xt+1 = f(xt, yt) = x2
t e

yt−xt + k, (7.11)

yt+1 = g(xt, yt) = ayt − bxt + c, (7.12)

where x is a fast activation/potential variable, y is a slow recovery variable

- k is the external stimulus applied to the system,

- a < 1 is a time constant for the recovery dynamics,

- b < 1 is the constant for the activation-dependence of the recovery, and

- c is an offset.

Without any external stimulus (k = 0), the stable equilibrium of the system
is

x∗ = 0, y∗ =
c

1− a
,

otherwise x increases fast, followed by a slow change in y until the system returns
to the resting state.

The dynamics of the Chialvo model is clear after a phase plane analysis. Let
us define the first difference of the state variables

∆x = xt+1 − xt, (7.13)

∆y = yt+1 − yt. (7.14)

The x-nullcline is the set of values for which ∆x = 0:

x2 exp(y − x) + k = x (7.15)

i.e.
y = ln(x− k)− 2 ln(x) + k. (7.16)

The y-nullcline is the set of values for which ∆y = 0:

ay − bx + c = y (7.17)

i.e.

y =
bx− c

a− 1
. (7.18)
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Figure 7.9: Nullclines of the Chialvo model. In dependence of the parameter
values, one (top) or three (bottom) intersections are possible.

Depending on the parameter values, the nullclines intersect at one or three
points, see figure 7.9. When there is only one intersection, the intersection point
is stable. When there are three intersections: the left one is stable, the middle
one is a saddle, and the right one is unstable. Focusing on the case of a single
intersection, we can distinguish two types of dynamics

1. Excitable dynamics: if the intersection point lies at the left of the x-nullcline
maxima the fixed point is globally attracting. A supra-threshold perturba-
tion to the system results in an action potential. This generally happens at
low values of k.

2. Oscillatory dynamics: if the intersection point lies to the right of the x-
nullcline maxima, the fixed point loses stability, it bifurcates into a stable
fixed point and a stable limit cycle. The limit cycle resembles and envelope
for the x-nullcline. Trajectories initiated outside the limit cycle converge to
it. Trajectories initiated close to the fixed point spirals toward it.

If more than one intersections exists, the Chialvo model allows for bursting and
chaotic solutions.

When dealing with extended excitable media, it is useful to think of this model
as a model of forest-fire propagation (one with large time and space scale): in
such case, the variable x represents the “local temperature” of a given tree, while
variable y represents its “local height”. In a full grown forest, a tree burns if its
temperature is raised above a certain threshold and will increase the temperature
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of its neighbors by diffusion. Fire propagates if heat-transference conditions are
adecuate.

7.5.1 Chialvo model in small-world networks

To simulate extended excitable media consider a two-dimensional array of N ×N
Chialvo maps with parameters a = 0.89, b = 0.6, c = 0.28, k = 0.02, coupled
diffusively as [108]

xi,j
t+1 = (1−D)f(xi,j

t , yi,jt ) +
D

4

∑

q=1,−1

f(xi+q,j+q
t , yi+q,j+q

t ),

where D = 0.2 is the diffusion coefficient 3. The array is located at the vertices
of a small-world network constructed with the Newman-Watts model [26]. As
the shortcut probability p increases, three dynamical regimes are observable [10,
chapter 8]

• 0 < p < plc: after a transient period (characterized by multiple circular
waves), the state of the system is completely covered by one or more self-
sustained spiral waves, see figure 7.10. Defining activity as the fraction of
maps with x > 0.9, the transient shows oscillatory activity, which settles to
a stable value when spiral waves emerge.

The probability per unit time for spiral waves to be created increases with
the system size N and the shortcut probability p, see figure 7.11.

• p = plc : a large fraction of the system simultaneously oscillates between
excited and refractory.

• p > puc (N) : self-sustained activity ceases and the system is absorbed into
xi,j = 0, ∀i, j, ans the dynamics get extincted, see figure 7.13.

Here plc is a lower critical probability, and puc (N) is a system-size dependent upper
critical probability.

3Only the excitation like variable x is diffusively coupled. Consider a forest-fire propagation
model; the idea of “temperature” diffusion is natural, however, it would be weird to talk about
“height” diffusion.
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Figure 7.10: Regime 0 < p < plc of the Chialvo model in small-world networks.
a) circular waves in the transient. b) self-sustained spiral waves. c) Time behavior
of activity. Taken from [10, section 8.3].

Figure 7.11: Fraction of system with spiral waves, FS as a function of a) N for
p = 0.05 and b) p with N = 300× 300. Taken from [10, section 8.3].

7.6 Effects of complex topologies

Complex topologies constitute a source of heterogeneity in excitable media, and
play a role in the collective dynamics. The small-world topology is of special
interest in this aspect. As the fraction of long range links is increased in a small
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Figure 7.12: Fraction of system with spiral waves, FS as a function of (p−plc)N .
The inset shows the dependence of plc with the diffusion coefficient D. Taken from
[10, section 8.3].

Figure 7.13: Dependence of puc with the system size N . Te inset shows the
traction of ceased systems after a time t = 20, 000, FC as a function of (p− puc ).
Taken from [10, section 8.3].

world topology, the following is observed

• a transition between different epidemic patterns in a one-dimensional SIRS
model [8],

The topology of an excitable media can also shed light onto our understanding
of several diseases related to the brain.

• In order to observe similar patterns to that of epileptic seizures and bursts
in a neuronal model of excitable media, it is necessary to take into account
a small world topology of connections via glia surrounding [109].

• It has been found that the brains of patients with schizophrenia, depression,
or bipolarity have lower glia to neuron ratios when compared to normal
subjects. Under normal conditions the glia to neuron ratio is approximately
10:1 [110].
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This evidence supports the hypothesis that the topology of connections in
the units of an excitable media influences its dynamical behavior and determines
which dynamical patterns may be observed. Changing the internal structure al-
lows transitions between different dynamical regimes and then different excitation
patterns.



Chapter 8

SIRS model on a network with
long-range interactions

Mankind has been exposed to infectious diseases from its dawn. In the middle
of an epidemic outbreak questions such as when will this be over? or how long
will this last? may be common. Today, disease spreading is reinforced by the
increasing mobility of people around the world, via terrestrial, maritimal and
aerial transportation. This mobility represents effective long range interactions
between people in the origin and the destination of a moving individual. As
a result, diseases could persist due to the existence of several locations for the
dynamics.

For a recurrent disease, the time needed for it to become extinct is a random
variable of great interest. This information is encoded by the survival probability
or persistence, F (t), i.e. the fraction of active systems at time t in a large number
of realizations of the dynamics [111].

Several works have been aimed to analytically derive expressions for the extinc-
tion time on SI, SIS and SIR models, either by birth-death or branching processes
[111, 112, 113, 114]. These studies rely on the fully mixed assumption. In epi-
demiology, the fully mixed assumption gave way to the more realistic contact
network. The SI, SIS and SIR models over complex (contact) networks have
been largely studied in order to determine structural influences on the existence
of an epidemic threshold [7, 97, 98, 99, 100, 101] , and the effects of fluctuations
[112].

Not much work has been aimed at investigating extinction times on recurrent
models such the SIR model with removal and renewal [115] or the SIRS model
[116]. Notable is the work of van Herwaarden & Grasman [115] who have proposed
a size dependent scaling relation for the expected extinction time in stochastic
recurrent epidemics. However, it is unclear what is the effect of spatial embedding
and long-range interactions over such scaling.

This chapter contains the second part of the original research presented in
this thesis, which is devoted to the study of extinction times of recurrent diseases
with the implementation of a SIRS model. To build a realistic model of recurrent
diseases, we keep in mind that: systems of interacting units possess an underlying

133
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topology of interactions, i.e. a network; in real world networks, both node degree
and link lengths can be distributed accordingly to physical restrictions; the small-
world topology in a network has direct influence on its dynamics; the SIRS model
with fixed refractory period is a simple instance of excitable media, and; due to
pattern formation, synchronization is relevant for understanding the dynamics of
excitable media.

We will account for these facts in the analysis of the SIRS model with fixed
refractory period developed over small-world networks embedded on a d dimen-
sional lattice with long-range connections following a power-law decay. The focus
of our analysis will be synchronization measures and their relation to extinction
times of the disease dynamics. We will also explore how the extinction time is
influenced by the link-length distribution, p(l), and the system size, N = Ld.

The main results of this chapter can be summarized as follows:

1. Extinctions are always preceded by a transient of hyper-synchronization:
Stage 3.

The functional relation of the squared coherence z2 and phase variance σ2 is
common at extinction time: z2 = exp(−σ2). This relation suggests that, at
extinction time, phase fluctuation is a random variable with approximately
Gaussian distribution (subsection 8.3.2).

This Gaussian (unimodal) distribution of phase fluctuation is always reached
through a short transient of hyper-synchronization before extinction (Stage
3, in sub-subsection 8.3.3.2). Such hyper-synchronization transient is only
visible in time measured from extinction, time-to-extinction.

2. The mean lifetime distribution F (t) may be obtained by mapping
the extinction to a First-Passage Time Problem, where the minima
of the dynamics frontier size is considered as a random walker
biased toward zero.

This approach reproduces very well our data in the mean field domain, i.e.
α < d (subsection 8.3.5). Agreement with data is striking for small systems.
For large systems and α > d the mean lifetime distribution becomes even
broader than in the mean field, then differences between data and predictions
becomes evident.

3. A network with power-law link-length distribution has an effective
size Λ ≡ L/ 〈l〉 1 and mean lifetime t1/2(L, α). The logarithm of
the mean lifetime amplification with respect to α = 0, ln(y) ≡
ln(t1/2(L, α)/t1/2(L, 0)), is a function of the form ln(y) = A Λβ, with
β ≃ 3.5.

This allows us to collapse multiple data into a single curve, and to esti-
mate expected mean lifetimes for systems that would be computationally
expensive to simulate (subsection 8.3.7).

1L is the linear-length of the system, and 〈l〉 its average links length
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Additionally, we observe that for a system of size N = Ld, the mean lifetime of
the dynamics scales asymptotically as ln(t1/2N

1/2) = QN , where Q is a constant
that depends on dynamical parameters. This result is consistent with the results of
van Herwaarden & Grasman [115] for the SIR model with removal and renewal.
The asymptotic slope of ln(t1/2N

1/2) increases with α (subsection 8.3.6). The
system reported by van Herwaarden & Grasman is similar to the model we used,
in the case α = 0, i.e. in the mean field domain.

8.1 Model definition

8.1.1 Building networks with power law length distribu-

tion

The first step is to assign nodes/sites to the vertices of a hyper-cubic d-dimensional
lattice with helicoidal boundary conditions. We want to build a network such that
the probability for a pair (i, j) to be connected decays as pi,j ∝ r−α

ij , where rij is the
distance between the pair (i, j). To achieve this, we need to generate long-range
links with length distribution

p(l) = Al−α+d−1 lmin ≤ l ≤ lmax. (8.1)

This probability is the product of the quantity of sites at distance l from a reference
ld−1, times the probability that two sites at distance rij = l be connected, l−α.
Each link is generated from a radius l, with distribution p(l), by inversion [52]
(see Appendix A).

Then, select a random site i and connect it to other site j at a distance l. We
repeat this procedure until we have assigned links per site ·N links.

8.1.2 SIRS model specification

In order to initialize the SIRS system, we start by assigning a uniformly dis-
tributed last-infection time ti ∈ [0, τ0 = τi + τr] to every node i, and set the
simulation time t = τ0.

The state of node i is determined by the simulation time t and its last infection
time ti, as follows

• i is infected and infectious if 0 ≤ t− ti < τi,

• i is refractory if τi ≤ t− ti < τ0,

• i is susceptible if t− ti ≥ τ0 ,

where τi, τr and τ0 are the infected period, refractory period and active period,
respectively.

The SIRS dynamics is defined by the transitions
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• S → I : a susceptible individual with ki infectious neighbors get infected
with probability

pinf = 1− (1− p0)
ki

where p0 ∈ [0, 1] is the link infectivity.

• I → R : infection lasts τi time steps. After that time an infectious individual
becomes refractory.

• R → S : refractory individuals stay so for τr time step. After that time a
refractory individual becomes susceptible again.

Instead of going over the entire system at each time step, we set up a list con-
taining the labels of all infectible nodes. This list is the union of: a) susceptible
nodes having at least one infected neighbor, plus b) refractory nodes with at least
one infected neighbor, which were themselves infected at an early enough time to
become susceptible before their infected neighbor heals. For each infected node i,
all its neighbors j having

ti − tj > τr, (8.2)

are infectible (see figure 8.1). Infectible nodes constitute the surface where the
non-deterministic part of the dynamics takes place (S → I). Simulation ends
when the list of infectibles is empty.

Infectious-Susceptible

          interaction

Infectious-Refractory

        interaction

Figure 8.1: Graphical definition of infectible nodes. Consider two neighboring
nodes i and j, such that i is infectious. j may be refractory or susceptible. A
S → I transition is possible only if the gray time band if non-zero, i.e. ti + τi −
(tj + τi + τr) = ti − tj − τr > 0, this leads to the relation ti − tj > τr, as given by
equation 8.2. In such case we say that node j is infectible. Note that node j will
become susceptible before node i heals.

A queue contains infectible sites. We consider them in turn and, if they do not
get infected, resend them to the queue. If all their infected neighbors have already
healed, we remove them from the list. Otherwise if infected at this time, we send
their infectible neighbors to the queue. One sweep through the list constitutes a
time-step.
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8.1.3 Definitions and notation

Our primary interest is to know the conditions of extinction, i.e. a system config-
uration which avoids disease spreading and turns off the dynamics. Empirically,
extinction means an empty list of infectibles, and it happens at extinction time,
text. We are particularly interested in how the decay exponent α affects text.

For a disease, the extinction time is distributed according to the survival prob-
ability or persistence, F (t), defined as the fraction of active systems at time t
in a large number of realizations of the dynamics [111]. In practice, we measured
persistence at time t as the fraction of measurements done at time t with respect
to the number of simulation runs performed. Any system that become extinct
before t will not contribute to the measurements count.

Persistence allows to implicitly define another time value of interest, themean
lifetime t1/2, as

F (t1/2) =
1

2
. (8.3)

Unlike extinction time, mean lifetime is not a per simulation measure. It is defined
within a set of simulations performed under the same conditions. Its interpretation
is probabilistic: at t1/2 one half ot the dynamics will be extincted. For any t > t1/2
the probability of extinction, 1− F , will be greater than 1/2.

Mean lifetime increases fast with the system size N and the decay exponent
α. We decided to measure at time t if it is in the “quasi”-geometric sequence
[τ0, ⌊aτ0⌋, ⌊a⌊aτ0⌋⌋, . . . ], with a = 1.1. This policy saves memory, but also reduces
time-resolution as the number of measurements increases.

High time-resolution is particularly necessary close to extinction time. A sec-
ond measurement policy was to maintain a circular array to save the last 104 time
steps, and save it to disk at extinction time. This allows us to observe behav-
ior backward from extinction time. We denote time measured backwards from
extinction as time-to-extinction, and it is defined as

t′ = text − t. (8.4)

Forward-time measurements has “geometric” step 2 with low time-resolution,
while measures in time-to-extinction has unitary step, the highest possible reso-
lution in our setup.

At each measurement time, we register simulation time t and calculate: the
fraction of infected nodes i, the fraction of susceptible nodes s, the fraction of
refractory nodes r, the fraction of infectible nodes x, the squared coherence z2,
the phase variance σ2, and the mean phase Θ.

Calculated measures were saved for each simulation run. Then, they were av-
eraged over 1000 simulation runs under the same conditions, i.e, using the same
set of values for the settable parameters in our algorithm. We used one start-
ing configuration per network for each set of parameters. All our measurements

2steps are taken at increasingly separated intervals, such as 1,2,4,8,. . .
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were averaged over networks at running time. Simulations with multiple starting
configuration per network yield similar results.

Link infectivity p0 is fixed to 0.75, a large enough value to ensure extinctions.
Other parameters we maintain fixed are the infectible period τi = 4, and the
refractory period τi = 8.

8.1.4 Acceleration of the dynamics

We set a maximum simulation time of 108 times steps. Many simulations did
not finish in this time and were orders of magnitude longer. Simulation series
in α for systems of moderate size as N = 40 × 40 required weeks of cpu time;
larger systems required months without even completing the same range in α.
Simulations in one and two dimensions yield similar results.

Long extinction times motivated us to implement annealing within our model.
We fix an annealing probability pann such that, at each time step, a total of pann×
links per site links will be reallocated (both edge-ends), with the same length
distribution used to build the original network. By using annealing we were able
to reduce the mean lifetime, see figure 8.19. Dynamics over annealed networks
present the same qualitative behavior than static networks. Just the times scales
are reduced, such that, in a fixed amount of wall time, we can simulate larger
systems as the annealing probability increases.

8.1.5 Normal distribution over a circle

0
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.1

0
.2

0
.3
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34.1% 34.1%

13.6%
2.1%

13.6% 0.1%0.1%
2.1%

Figure 8.2: Normal distribution N(Θ, σ2) folded over a circle.

If a variable θ is normally distributed with mean Θ and standard deviation σ,
99.73 % of their probability is within three standard deviations from the mean.
Denote this length as τ0 = 6σ, and bend it as a circle (see figure 8.2). Then, we
define the constant

σc =
τ0
6

=
π

3
≃ 1.047 rad. (8.5)

σ2
c will be useful as a phase variance reference when dealing with coherence mea-

sures in the next sections.
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8.2 Dynamic Analogies

8.2.1 SIRS nodes as oscillators

For the purpose of analysis, every node in the system will be considered as an
oscillator running in discrete time through the Susceptible state (S), the Infectious
state (I), and the Refractory state (R). As stated before, the Infectious state
and the Refractory state possess fixed periods, τi and τr, respectively. There is
no fixed susceptible period; the time a node stays in the Susceptible state is a
random variable (τs ≥ 1), because the S → I transition is a probabilistic process.
This means that our nodes are non-identical oscillators, they oscillate at different
frequencies ωi. Non-identical oscillators are generally analyzed in the framework
of the Kuramoto model [78].

Figure 8.3: Active period circle. The black dot marks the actual location of
t − ti in the active period. Gray dots mark possible locations for t − ti. The
red-and-blue dot marks the position where the oscillator enters (red) and leaves
(blue) the active period. ti is the last infection time of oscillator i. The red region
represents the Infectious state, while the blue region represents the Refractory
state.

We focus on the active period τ0 = τi + τr, to define a phase θ, i.e. only count
active nodes (those in either the Infectious state or the Refractory state). Figure
8.3 shows a graphical representation of the transition of oscillators through the
active period circle, which depicts the definition of the phase of node i

θi =
t− ti
τ0

, (8.6)

used to define an order parameter as done by Kuperman & Abramson [8]

zeiΘ =
1

Na

Na
∑

j=1

eiθj =
M

Na
, (8.7)
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where z is the coherence, Na is the number of active sites, and

M =
Na
∑

j=1

eiθj =
Na
∑

j=1

(cos θj + i sin θj) .

Therefore,

M2 = MM∗ =

Na
∑

i,j=1

(cos θj + i sin θj) (cos θj − i sin θj) = Na+2

Na
∑

i>j

(cos θi cos θj + sin θi sin θj) .

8.2.2 SIRS and SIR model with removal and renewal as
models for recurrent epidemics

van Herwaarden & Grasman [115] used the WKB approximation on the SIR model
with removal and renewal close to the deterministic stable equilibrium, to show
that the asymptotic expected extinction time is

ln
(

t1/2N
1/2
)

= QN. (8.8)

Where Q is a positive constant dependent of dynamic parameters.
The model used by van Herwaarden & Grasman [115] is similar to our model

in the case α = 0.

8.3 Analysis of simulation results

8.3.1 Types of extinctions

Generically, a disease stops spreading if there are no interactions between suscep-
tible and infected individuals. Let denote the phase space’s vertices as

I ≡ (s = 0, i = 1, r = 0), S ≡ (s = 1, i = 0, r = 0), R ≡ (s = 0, i = 0, r = 1).
(8.9)

We can distinguish three extinction cases:

a) Extinctions with high coherence: there are susceptible sites but the density
of infected individuals is zero. This case is composed by all states in the
border line S ↔ R (s ≥ 0, i = 0, r = 1− s). See figures 8.4 and 8.5.

Coherence is high because all active nodes, if any, aggregate into the refrac-
tory range within the active period circle.

b) Extinctions with low coherence: there are infectious sites but the density of
susceptible individuals is zero. This case is composed by all states in the
border line I ↔ R (s = 0, i ≥ 0, r = 1− i).

Coherence is low because all active nodes may be dispersed in the full active
period circle.
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c) Extinctions by isolation: the density of susceptibles and infectious are non
zero (s 6= 0, i 6= 0, r 6= 0), but they are disconnected from each other, by
means of a refractory barrier. This type of extinction does not happen at
the any border of the phase space of densities. It is not clear what levels of
coherence to expect in this case.

Previous works has reported both extinctions with high levels of coherence
[8, 117] and extinctions by isolation [117] in the stochastic SIRS model. We have
no report of extinctions with low levels of coherence so far.
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Figure 8.4: Extinction states in phase space for 1000 networks in dimension
d = 2 with L = 20 and pann = 0. Two values of α/d are shown; α/d = 0 (A) and
α/d = 1.25 (B). For non-zero annealing Case c) extinctions are absent, and Case
a) extinctions ore more uniformly distributed over the S ↔ R border.

In figure 8.4 our simulations shows only extinctions with high coherence (Case
a)) and extinctions by chance (Case c)). None of the extinctions recorded lies
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in the border line I ↔ R (Case b)), i.e. we do not observe extinctions with
low coherence. Also, most extinction happens near the vertex R, indicating that
extinctions present high levels of refractoriness.

For non-zero annealing Case c) extinctions are absent, and Case a) extinctions
ore more uniformly distributed over the S ↔ R border. In this sense, rewiring
through annealing allows the infection to overcome refractory barriers.
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Figure 8.5: Extinction states in phase space for 1000 networks in dimension
d = 2 with L = 40 and pann = 0. Two values of α/d are shown; α/d = 0 (A) and
α/d = 1.25 (B). For non-zero annealing Case c) extinctions are absent, and Case
a) extinctions ore more uniformly distributed over the S ↔ R border.

We can summarize these results, saying that, in the context of extinctions

- at high values of infectivity, only extinctions with high coherence (Case a))
and extinctions by chance (Case c)) are possible,
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- the border line S ↔ I is repulsive,

- the border line R ↔ S is absorbing, and

- the border line I ↔ R is forbidden,

- as the system size increases, extinctions concentrates more closely to the
vertex R.

In accordance with the description of the three possible extinction cases we
can differentiate them in the phase space (see figure 8.4). However, we don’t know
if extinctions follow some pattern(s), regardless of the case. The following sections
will address this topic.

8.3.2 Phase dispersion distribution at extinction time

When infectious activity dies, δθ = θ−Θ approach a normal distribution P (δθ) =
N(Θ, σ2). For the sake of simplicity (and without loss of generality) we can assume
zero mean, and arbitrary standard deviation σ

P (δθ) =
1√
2πσ2

exp

(

− δθ2

2σ2

)

. (8.10)

From equation 8.7, the average value of M2 is

〈

M2
〉

= Na + 2

Na
∑

i>j

∫ ∞

−∞

cos(δθi) cos(δθj)√
2πσ2

exp

(

− δθ2

2σ2

)

dδθ,

∫ ∞

−∞

cos(δθ)√
2πσ2

exp

(

− δθ2

2σ2

)

dθ =

∫ ∞

−∞

cosσu√
2π

e−u2/2du

=

∫ ∞

−∞

1√
2π

e−u2/2

(

eiσu + e−iσu

2

)

du

= e−σ2/2,

〈

M2
〉

= Na + 2

Na
∑

i>j

e−σ2

= Na +Na(Na − 1)e−σ2

,

z2 =
〈M2〉
N2

a

,

so at extinction we get

z2 =
1 + (Na − 1)e−σ2

Na
∼ e−σ2

Na ≫ 1. (8.11)
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From the stochastic nature of our model we don’t expect neither perfect syn-
chronization nor stability [118, 119].

In order to test the validity of equation 8.11 we need to measure σ for a zero
mean δθ distribution, as follows: being δθi ∈ [−π, π] we measured the actual mean
Θ to define a new unsigned phase fluctuation

δθ̂i = min (|θi −Θ|, π − |θi −Θ|) , (8.12)

then we measured the variance as

σ2 =
1

Na

Na
∑

i=1

(δθ̂i)
2. (8.13)

z2 where calculated from the module of the right hand side in equation 8.7.
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Figure 8.6: z2 vs. σ2 corresponding to 1000 extinctions for networks in dimension
d = 2 with L = 20 an pann = 0. Two values of α/d are shown; α/d = 0 (A) and
α/d = 1.25 (B). Vertical lines indicates the location of σ2

c (solid line) and σ2
c/4

(dashed line). Most extinctions happens to the left of σ2
c . Some outliers extinctions

appears to the right of σ2
c only for small system sizes and large values of α.
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(dashed line). In this series of simulations all extinctions happens to the left of
σ2
c .

Figures 8.6 and 8.7 shows the measured behavior of z2 = f(σ2), averaged over
realizations of the dynamics, against the prediction of equation 8.11. The cor-
respondence suggests that active nodes have decorrelated phase fluctuations at
extinction, i.e. their phase fluctuations are closely described by a normal distri-
bution over the active period circle. Extensive simulations yield similar results
for all values of α, L and pann we used for networks in dimension d = 1, 2. These
results validates the hypothesis of phase fluctuations decorrelation at extinction.

From figures 8.6 and 8.7 we specifically note that, in the plane σ2 – z2

- the centroid of the extinction distribution lies on the curve z2 = e−σ2

,

- the tails of the extinction distribution lie above the curve z2 = e−σ2

,

- all extinctions, independently of their types, are contained inside the region
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3,

σ2 ≤ σ2
c ∧ z2 ≥ e−σ2

, (8.14)
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Figure 8.8: Susceptible fraction s vs. z2 and σ2 corresponding to 1000 extinc-
tions for networks in dimension d = 2 with L = 40 and pann = 0. Two values of
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Figure 8.8 plots the susceptible fraction s = s(z2, σ2). This view allows to
identify types of extinctions. Case a) extinctions lie above and to the left of the
curve z2 = e−σ2

, with s varying in a wide range of values. Case c) extinctions

3Some outlier extinctions appears to the right of σc for large values of α and small system
sizes
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lie on the curve z2 = e−σ2

, with s varying in a narrow range of small values.
Extinctions come closer to the curve z2 = e−σ2

as the system size increases.

8.3.3 Dynamic behavior before extinction

8.3.3.1 Densities in phase space
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Figure 8.9: Densities (i, s, r) in phase space corresponding to 1000 networks in
dimension d = 2 with L = 40, pann = 0 and α/d = 0. Forward time averages (A)
and time-to-extinction averages (B).
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Figure 8.10: Densities (i, s, r) in phase space corresponding to 1000 networks in
dimension d = 2 with L = 40, pann = 0 and α/d = 1.25. Forward time averages
(A) and time-to-extinction averages (B).

Figures 8.9 and 8.10 show the phase space of fractions (i, s, r) inter-simulation
averaged in (forward) time (with geometric step, i.e. the new measurement time
is approximately 1.1 times the previous measurement time) A) and in time-to-
extinction (with unitary step) B).

In forward time, (i, s, r) starts at a random location (�), and ends close to the
borders (•). The latter observation is dubious: forward-time measures becomes
less representative of the simulations population as we get closer to the last forward
measure (at the last measurement we may get only one alive system, but it is
possible to get more than one). To avoid this problem we need to observe all
simulations at the same time before they get extincted. This is exactly why we
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take time-to-extinction measures.
In time-to-extinction, the point (i, s, r) is characterized by oscillations of con-

tinuously decreasing amplitude from extinction (�). The oscillation path is more
densely cluttered close to the border I ↔ R than to the border S ↔ R. The
average extinction (�) does not happen on any border, but close to the vertex
R. At large time-to-extinction oscillations disappear and we just observe a static
point with fluctuations (•).

8.3.3.2 Coherence and phase variance

Figures 8.11 and 8.12 present the inter-simulation averages of phase variance σ2,
squared coherence z2, and persistence F for 1000 networks in dimension d = 2
with α/d = 0, 1.25.

We observed three stages in the synchronization dynamics for large system
sizes over realizations (see figure 8.12):

Stage 1 Synchronization: at the start of a simulation (t = τ0) z2 has a low value,
because phases are uniformly distributed over the active period circle (see
figure 8.3). Coherence then increases during a transient period (of approx-
imately 103 time steps for the parameters we used), due to a continuous
aggregation of oscillators [87] in the active period circle.

Stage 2 Sustained coherence: coherence reaches a sustained average value with small
fluctuations. This value is maintained until shortly before extinction time.

Stage 3 Hyper-synchronization: average coherence increases many cycles be-
fore extinction time. This second transient, similar in duration
to the first transient, was always present independently of the
parameters used in the simulations. Stage 3 is only visible for
measurements averaged vs. time-to-extinction. Therefore all ex-
tinctions are by hyper-synchronization.

For small system sizes the behavior differs:

• for α/d < 1 Stage 2 is absent, while

• for α/d > 1 Stage 2 is short in comparison to Stage 2 for large systems.

As general patterns from figures 8.11 and 8.12 we observe that

i Persistence starts to decrease at the beginning of Stage 2. This means
that extinctions are more likely (persistence is lower) as soon as coherence
stabilizes.

ii Systems with lower levels of sustained coherence have longer activity. At
fixed N , those systems correspond to networks with high α/d values.
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Figure 8.11: Time behavior of z2, σ2 and persistence for networks in dimension
d = 2, with L = 40, α = 0.00, and pann = 0. In forward time (A) and in time-
to-extinction (B). In (B) the y axis is logarithmic to better appreciate variations
with respect to t′. Horizontal doted lines indicate the location of σ2

c (upper) and
exp(−σ2

c ) (lower) on each plot.



8.3. ANALYSIS OF SIMULATION RESULTS 151

0

0.5

1

1.5

2

2.5

10 100 1000 10000 100000 1x10
6

1x10
7

1x10
8

z
2
, 

σ
2

t

2D/0p/L40/alpha002.500

σ
2

z
2

F

A

0.1

1

1 10 100 1000 10000

z
2
, 

σ
2

t’

2D/0p/L40/alpha002.500

σ
2

z
2

B
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On large systems, large values of α display the same behavior shown in figure
8.12, with larger time scales, up to 108.

For large system sizes, in addition to z2 and σ2, three quantities remain con-
stant (up to small fluctuations) in the first half of Stage 2: the active fraction
i+ r, the susceptible fraction s, and the infectible fraction x. These averages and
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their fluctuations vary with α. See figure 8.13.
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Figure 8.13: Time averages of active fraction (A), susceptible fraction (B) and
infectible fraction (C) vs. α for networks in dimension d = 2, with L = 40 and
pann = 0. These quantities are almost constant for α ≤ 2, while change slowly for
α > 2.

8.3.4 Characteristics of Stage 2

For large systems, Stage 2 spans almost all the dynamics lifetime. This stage
corresponds to the “stable” part of the dynamics, contained in between two tran-
sients, Stage 1 and Stage 3.
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We take the time averages of constant quantities4 in the persistence range
1 > F > 0.5 for L = 20, 40 and α = 0.00, 2.00, 2.25, 2.50, 2.75. This persistence
range corresponds to the first half of Stage 2, when the probability to survive (F )
is larger than the probability of extinction (1 − F ). This range was arbitrarily
selected so as to involve Stage 2 mostly.

8.3.4.1 Coherence and phase variance

Figure 8.14 presents the time averages of z2 vs. σ2. It shows that these averages
came close to the line where most extinctions lied, z2 = e−σ2

. At all levels of σ2,
z2 is larger than e−σ2

. In fact, the quantity z2 − e−σ2

presents small amplitude-
varying oscillations around a small mean value.
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Figure 8.14: z2 vs. σ2 corresponding to self-sustained oscillations for networks
in dimension d = 2 with pann = 0. Values of α are shown for every data point;
L = 20 (A) and L = 40 (B). Vertical lines indicate the location of σ2

c (solid line)
and σ2

c/4 (dashed line).

In general we note that:

4Up to small fluctuations
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- larger values of α are associated with lower sustained coherence,

- at larger values of α, the time average of σ2 presents smaller fluctuations,
and

- larger system sizes allow for stable coherence in a wider range of σ2.

A visual analysis of phase-fluctuations distributions over the active period
shows the patterns depicted in figure 8.15: an alternance between unimodal and
bimodal distributions of phase-fluctuations.

Figure 8.15: Density distribution of nodes over the active period circle. States
are color coded; S = yellow, I = red, R = blue. The yellow circle and band
indicates the extremes of the phase range that exists in an equivalent linear dis-
tribution.

8.3.5 Modeling the distribution of extinction times

In figure 8.16 we present the average infectible fraction. The temporal behavior of
this average allows to distinguish the same three stages discussed in the previous
section, with another interpretation: In Stage 1, the average infectible fraction
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shows large fluctuations. In Stage 2, it is constant up to small fluctuations. In
Stage 3 (in time-to-extinction), the oscillation minima decay exponentially.

In order to survive, the infection needs to travel from one infected node to
a susceptible neighbor. The infection moves through the network, with shape
and size deformations. Infectible fraction is a measure of the dynamic’s surface,
i.e. it accounts for those nodes that can become active (infectious) at the next
simulation step. In this scenario we can rethink the dynamic stages as

Stage 1: Surface size stabilization.

Stage 2: Surface size maintenance.

Stage 3: Surface size destabilization and extinction.
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Figure 8.16: Time evolution of the infectible fraction for 1000 networks in di-
mension d = 2 with L = 40, pann = 0, and α = 0 in forward time t (A), and in
time-to-extinction t′ (B). The three stages discussed in the previous section are
distinguishable here. It worth noting that, in Stage 3, the mean oscillation minima
departs from zero exponentially. Increasing the infectible fraction is equivalent to
increasing the dynamics surface. Larger surfaces provides more “reactive” nodes
to the dynamics. Disease spread is enhanced with large infection fluctuations.
This condition leads to faster extinctions.

In figure 8.17 we observe the behavior of infectible fraction minima xmin. Data
were taken from the same time-to-extinction data on figure 8.16. From the analysis
of xmin we observe that these values decay exponentially with t′ as

xmin = xmin,∞

(

1− e−at′
)

. (8.15)

Figure 8.17 shows this model applied to two sequences of infectible fraction min-
ima. The correspondence is notable, and consistent in L and α.
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Figure 8.17: (A) Temporal behavior of the minima xmin of infectible fraction
for 1000 networks in dimension d = 2 with L = 40 and pann = 0. Two values
of α are shown: α = 0 and α = 2.5. Infectible fraction minima behave as
xmin = xmin,∞

(

1− e−at′
)

. In (B) we plot xmin,∞/(xmin,∞ − xmin) to make clearer
the exponential behavior of minima. Parameters xmin,∞ and a vary with L and
α.

It is worth noting that the infectible fractions we observe in figures 8.16 and
8.17 are inter-simulation averages. In forward time they are measured at the
same simulation time, in time-to-extinction they are measured at the same time
before extinction. The infectible fraction minima recorded in a single simulation
is permanently varying in time, not as smooth as shown in figure 8.17. These
minima will follow a noisy path toward zero.

If we think about this noisy path as a random walk, persistence F (t) is obtained
by mapping the extinction dynamics to a First-Passage-Time problem as follows:
the system is considered as a random walker with initial position x = x0 =
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xmin,∞ > 0. It performs a random walk with non-zero drift µ < 0 toward lower
positions until it is absorbed at the origin x = 0 (i.e. extinction).

Let W (x, t) be the probability of the random walker to be in position x at
time t, W (x, t) is solution of the Fokker-Plank equation

∂W (x, t)

∂t
= −µ

∂W (x, t)

∂x
+

σ2
0

2

∂2W (x, t)

∂x2
. (8.16)

As the random walker is absorbed at x = 0, W (x, t) is subject to the boundary
condition

W (0, t) = 0 ∀ t. (8.17)

Solving (8.16) and (8.17) by the method of images yields [120, 121]

W (x, t) =
1

√

2σ2
0t

[

exp

(

−(x+ µt+ x0)
2

2σ2
0t

)

− exp

(

−(x+ µt− x0)
2

2σ2
0t

)

exp

(

−2µx0

σ2
0

)]

,

(8.18)
from which F (t) is derived as

F (t) =

∫ ∞

0

W (x, t)dx, (8.19)

F (t) =
1

2

[

1 + erf

(

t+ t0√
2K2t

)]

− 1

2

[

1 + erf

(

t− t0√
2K2t

)]

exp

(

−2t0
K2

)

, (8.20)

where
t0 =

x0

µ
, K =

σ0

µ
,

are related to the average and variance of the extinction probability P (t) given
by

P (t) = − ∂

∂t
F (t) =

σ2
0

2

∂

∂x
W (x, t)

∣

∣

∣

∣

x=0

, (8.21)

as

〈t〉 = t0, σ2
text =

〈

t2
〉

− 〈t〉2 = 1

2
t0K

2. (8.22)

We now test this model by comparison with numerical results. Figure 8.18
presents the fits of equation (8.20) to persistence data corresponding to 1000
networks with L = 20 and α/d = 0.00, 1.00, 1.25, for both static networks and
annealed networks with pann = 0.05, in dimensions d = 2. The correspondence
of equation (8.20) to simulation data is clear in the cases shown. However, from
extensive simulations, we observed that equation (8.20) stops being a good ap-
proximation for persistence data α/d > 1. Such behavior is accentuated in large
systems.

The limited validity of equation (8.20) arises from the fact that survival proba-
bility becomes broader due to the scaling of mean lifetime with α and N increases
(see next section). Then, our 1000 simulations per parameter-set results insuffi-
cient to construct a numerical approximation of F (t). For small system sizes and
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small values of α Stage 2 is comparable in length to Stage 1 and Stage 3 (these are
approximately equal in length). In other cases this is not true; Stage 2 becomes
by far the longest stage. The scaling length of Stage 2 alone is not analyzed in
depth in this thesis.
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Figure 8.18: Persistence fits for data of networks with L = 20 in dimension
d = 2. Three values of α/d are shown in each sub-figure; α/d = 0.00, 1.00, 1.25.
Static case with pann = 0.00 (A), and annealed networks with pann = 0.05 (B).
Symbols represent simulation data, while dotted lines of the same color
are their respective best fits of equation (8.20). The correspondence is
striking. Data fits in d = 1 yield similar results.

8.3.6 Mean lifetime scaling with system size N = Ld

The mean lifetime t1/2 is implicitly defined by

F (t1/2) =
1

2
.
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Mean lifetimes were interpolated using the best fits of equation 8.20 to survival
data. Remember, all our measurements happen in a “geometric” time-sequence.

To forecast how the mean lifetime t1/2 increases with the system size we need
to identify the kind of stability of the deterministic SIRS model underlying our
model [115, 104]. As we used a SIRS model with fixed refractory period, whose
attractors are either a stable fixed point or a stable limit cycle [94, 69], we expect
ln
(

t1/2N
1/2
)

to scale exponentially with the system size [115].
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Figure 8.19: ln
(

t1/2N
1/2
)

as a function of the system size N for networks in
d = 2 (A) and d = 1 (B). Several values of α/d are shown in each sub-figure,
from left to right; α/d = 2.0, 1.5, 1.0, 05, 0.0. Different levels of annealing were
considered. ln

(

t1/2N
1/2
)

is asymptotically linear with N . Annealing reduces the

asymptotic slope of ln
(

t1/2N
1/2
)

.

Figure 8.19 shows approximately this behavior for different values of α and
L. The behavior of ln

(

t1/2N
1/2
)

shows higher slopes for higher values of α/d.
This results make clear that, as N or α/d increases we need more simulation runs
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in order to get reliable persistence statistics, because F (t) becomes broader. It
also offers an explanation to why we were able to simulate just small systems:
ln
(

t1/2N
1/2
)

is asymptotically linear in N . Simulation series in α for systems of
moderate size as N = 40×40 required weeks of cpu time; larger systems required
months without even completing the same range in α. Simulations in d = 1 yield
similar results.
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Figure 8.20: ln
(

t1/2N
1/2
)

as a function of the system size α for networks in
d = 2. Two levels of annealing were considered; pann = 0.00 (A), and pann = 0.05
(B). ln

(

t1/2N
1/2
)

increases with α, and this is enhanced by the system size N .

Annealing reduces growth of ln
(

t1/2N
1/2
)

. Simulations in d = 1 yield similar
results.

As the system size increases, the range of α values we were able to simulated
becomes narrower. Figure 8.20 allows to see why this is so: ln

(

t1/2N
1/2
)

increases
with α, and this growth is enhanced by the system size N . Annealing reduces
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growth of ln
(

t1/2N
1/2
)

.

As previously stated, large mean life times motivated us to implement anneal-
ing within our model to reduce mean lifetime, see figure 8.19. Dynamics over
annealed networks present the same qualitative behavior than static networks.
Table 8.1 presents a resume of the parameters we used in our simulation. In all of
them the infectible period is τi = 4, the refractory period is τi = 8, and the link
infectivity is p0 = 0.75.

pann = 0.00 pann = 0.01 pann = 0.05

d = 1,∆α = 0.25

L α cpu time α cpu time α cpu time

100 0.00–3.00 0:44:50.69 0.00–3.00 0:33:41.75 0.00–3.00 0:31:34.18
141 0.00–3.00 0:48:49.30 0.00–3.00 0:35:18.89 0.00–3.00 0:32:12.76
200 0.00–3.00 0:56:15.82 0.00–3.00 0:36:43.52 0.00–3.00 0:33:25.19
283 0.00–3.00 1:45:59 0.00–3.00 0:40:01.99 0.00–3.00 0:35:36.79
400 0.00–3.00 8:40:28 0.00–3.00 0:45:48.87 0.00–3.00 0:40:20.41
566 0.00–3.00 162:01:0 0.00–3.00 1:33:10 0.00–3.00 1:11:34
800 0.00–1.50 – 0.00–3.00 9:54:39 0.00–3.00 7:16:04
1131 0.00–1.25 – 0.00–3.00 313:38:02 0.00–3.00 195:52:42
1600 0.00–1.25 – 0.00–1.50 – 0.00–1.75 –
2263 0.00–0.75 – 0.00–1.25 – 0.00–1.50 –
3200 – – 0.00–1.25 – 0.00–1.25 –
4525 – – 0.00–1.00 – 0.00–1.25 –

d = 2,∆α = 0.25

L α cpu time α cpu time α cpu time

10 0.00–4.00 1:00:04 0.00–4.00 0:55:02.75 0.00–4.00 0:35:57.25
12 0.00–4.00 0:46:27.42 0.00–4.00 0:39:18.36 0.00–4.00 —
14 0.00–4.00 1:13:56 0.00–4.00 0:58:05.17 0.00–3.25 0:37:06.33
17 0.00–4.00 2:00:15 0.00–4.00 1:01:58 0.00–4.00 0:38:37.49
20 0.00–4.00 6:25:48 0.00–4.00 1:01:58 0.00–4.00 0:43:12.81
24 0.00–4.00 131:00:42 0.00–4.00 1:27:20 0.00–4.00 0:49:09.06
28 0.00–3.25 – 0.00–4.00 3:50:08 0.00–4.00 1:15:39
34 0.00–3.00 – 0.00–4.00 74:55:33 0.00–4.00 4:58:13
40 0.00–2.75 – 0.00–3.75 – 0.00–4.00 95:22:57
48 0.00–1.25 – 0.00–3.25 – 0.00–3.50 –
57 – – 0.00–2.75 – 0.00–3.25 –
67 – – 0.00–2.50 – 0.00–3.00 –

Table 8.1: Completed simulations in d = 1 (top) and d = 2 (bottom), with cpu
time usage per series.
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8.3.7 Mean lifetime collapse

From the figures in the previous section (i.e. 8.19 and 8.20) it is clear that
ln
(

t1/2N
1/2
)

depends on N , α and pann. A general scaling relation is desirable.
Such relation is the aim of this subsection.

When α is varied, with L fixed, the average link-length varies as

〈l〉 = d− α

d+ 1− α

(

(

⌊L
2
⌋+ 1

)d+1−α − 1
(

⌊L
2
⌋+ 1

)d−α − 1

)

. (8.23)

The result is that we have changed the effective geodesic size of the system
i.e., the ratio of the system length to the average link length

Λ =
L

〈l〉 =
1

λ
. (8.24)

Asymptotically in L we get

Λ ∝







L0 if α ≤ d,
Lα−d if d < α ≤ d+ 1,

L1 if α > d+ 1.
(8.25)

Λ is the infection-chain length the disease needs to traverse the linear dimen-
sion of the system. A system with small Λ requires a short correlation length
to establish a system-wide synchronized cluster, making extinctions more likely.
As a result, disease is active on a shorter time, when compared to a system with
larger Λ.

For a fixed L, increasing α from zero results in an increase of ln
(

t1/2N
1/2
)

(see figure 8.20). Let t1/2 = t1/2(L, α), the mean lifetime’s amplification factor is
defined as

y ≡ t1/2 (L, α)

t1/2 (L, 0)
. (8.26)

Figure 8.21 show a data collapse of ln(y) vs. Λ: ln(y) is an increasing function
of Λ. Such behavior is consistent in dimension d = 2 for different values of size
lengths L, decay exponent α, and annealing probabilities pann.

The amplification of t1/2 with Λ

t1/2 (L, α) = t1/2 (L, 0) exp(AΛ
β) β ≃ 3.5, (8.27)

is notable because Λ = Λ(L, α) is a purely geometrical quantity (d = 2), mean-
while t1/2 is supposed to depend on dynamic parameters too [115]. Moreover,
annealing appear to only affects the factor A, reducing it.
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Figure 8.21: log(y) vs. Λ for networks with pann = 0.00 (A) and pann = 0.05 (B).
Values of log(y) for different values of L collapse into a common behavior when
plotted against Λ. The common behavior resembles a power-law log(y) = AΛβ

with exponent β ≃ 3.5. The power-law scaling is clearer for annealed dynamics
data (B). Annealing appears to only affect the factor A, reducing it.

The scaling in equation 8.27 is important for two reasons: i) It incorporates the
effect of the system length L, the decay exponent α and the annealing probability
pann over the mean lifetime t1/2 in a single functional relation. To our knowledge,
this relation does not exist in the current literature yet. ii) It allows us to estimate
mean lifetimes for networks with parameters (L, α) by measuring mean lifetimes
in networks with (L, 0). This is a desirable situation, because ln

(

t1/2N
1/2
)

is
asymptotically linear in N , and the slope of such behavior is higher for larger
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values of α.

8.4 Conclusions and Discussion

We analyzed a SIRS model with fixed infectious and refractory period over net-
works with power-law link-length distribution

pij ∝ r−α
ij .

When focus on extinctions of the disease dynamics, we found that

1. At extinction time, squared coherence z2 and phase variance σ2 satisfy the
relation z2 = e−σ2

, which means that phase fluctuations are unimodal, and
are represented by a Gaussian distribution, approximately.

2. In time-to-extinction, the unimodal distribution of phase fluctu-
ations is reached after a short period of hyper-synchronization
preceding extinction, Stage 3. This behavior was consistent in all
the parameters sets we used. The time length of this transient presented
little sensitivity to parameter changes.

3. The prior to hyper-synchronization behavior of Stage 2 is notable close to
the curve z2 = e−σ2

(see figures 8.9 and 8.10). In two dimensions, this
behavior is enhanced by large system sizes, and stabilized for α/d > 1 (see
figure 8.13). Then, for the SIRS spatial model with long-range interactions,
large and locally-connected contact networks 5 promote long lasting disease
activity.

The long lasting activity in Stage 2 may result from the coexistence of two
synchronized populations whose phase lag is stable up to fluctuations. This
stable phase lag prevents hyper-synchronization extinction by maintaining
the system in a state of partial synchronization. Further studies are nec-
essary in order to determine which mechanism drives the inter-population
coalescence leading to extinction.

In general, disease’s lifetime is dominated by the time length of Stage 2,
which is a random variable that needs to be analyzed separately.

4. Infectible fraction x represents the dynamic frontier of the disease. In time-
to-extinction this frontier oscillates. The minima of this oscillation, xmin,
vanish at extinction time. The approach to zero is exponential, xmin =
xmin,∞(1− e−at′).

Conceiving the extinction of the disease dynamics as a First-
Passage Time problem for a random walker (associated with in-
fectible fractions minima) with starting position x0 and drift ve-
locity µ < 0, the survival probability F (t) for α/d ≤ 1 is closely

5not necessarily lattice networks
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described by

F (t) =
1

2

[

1 + erf

(

t+ t0√
2K2t

)]

− 1

2

[

1 + erf

(

t− t0√
2K2t

)]

exp

(

−2t0
K2

)

,

where t0 = x0

µ
, K = σ0

µ
, and σ0 is the diffusion term in the Fokker-

Planck equation.

This approach is highly accurate in the range α < d. In such
conditions the average link length is comparable to the system
length L, i.e. this is the mean field domain. For α > d this approach is
only an approximation. In very small systems this is a good approximation.
Disagreement between data and predictions becomes more evident when the
systems size increases.

5. The asymptotic scaling of ln
(

t1/2N
1/2
)

is linear with the system size N for
the parameters we used. This suggests that, the qualitative relation between
the mean lifetime scaling and the stability of the deterministic SIR model
with removal and renewal [115] also applies to the SIRS model.

The role played by attractor stability of the underlying deterministic model
requires a deeper analysis from the context of nonlinear dynamics, a subject
that is beyond the scope of this work.

6. We can estimate the mean lifetime of a system in dimension d = 2
with parameters (L, α) by measuring the less expensive case (L, 0)
as

t1/2 (L, α) = t1/2 (L, 0) exp(AΛ
β) β ≃ 3.5,

where A is a factor that depends on the annealing.

Λ = Λ(L, α) is a purely geometrical quantity (d = 2), meanwhile
t1/2 is supposed to depend on dynamic parameters [115]. Anneal-
ing appear to only affects the factor A, which decreases with the
annealing probability.

This scaling relation is important for two reason: i) It incorporates
the effect of the system length L, the decay exponent α and the
annealing probability pann over the mean lifetime t1/2 in a single
functional relation. To our knowledge, this relation does not exist
in the current literature yet. ii) It allows us to estimate mean
lifetimes for networks with parameters (L, α) by measuring mean
lifetimes in networks with (L, 0). This is a desirable situation, because
ln
(

t1/2N
1/2
)

is asymptotically linear in N , and the slope of such behavior
is higher for larger values of α.

For the SIRS spatial model with long-range interactions, mean lifetimes does
not scales directly with the linear size of the system. It does scales (in a
non-linear way) with the system length relative to the average link length.
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This shows that, more than absolutes, what matters is how big a system is
for the average interaction length.

Long-lasting activity allows to remark some similarities with other instances
of excitable media. In the context of epidemiology, short lived disease activity is
desired. However, in other circumstances, sustained activity of spatially extended
excitable media is of fundamental importance. In ecology, considering the S, I
and R states of the SIRS model as species in the three species Lotka-Volterra
model, sustained activity is synonymous of ecological diversity, i.e. coexistence
of species [104, 105, 106]. Extinction is something to fight against, with excep-
tions such as plague eradication. Reichenbach et al. [107] shown that moderate
mobility promotes diversity; to much mobility leads to extinction. This is simi-
lar to our results that short-ranged “quenched” interactions on locally connected
networks (α/d > 1, pann = 0) promotes sustained activity, while long-ranged “an-
nealed” interactions on globally connected networks (α/d < 1, pann > 0) leads to
extinctions.

Notably, the stochastic three species Lotka-Volterra model presents mean ex-
tinctions times that scale as eN when the deterministic underlying dynamics has
a stable attractor in the coexistence region [104, 105].

It is still required to explore how τi, τr and 〈k〉 affects the results we had
observed. By the large amount of simulations already done, we expect only quan-
titative changes for the behaviors previously shown.



Appendices

167





Appendix A

Generating power-law distributed
radius

1 = A

∫ lmax

lmin

p(l)dl = A

∫ lmax

lmin

l−α+d−1dl = A
1

d− α
ld−α

∣

∣

∣

∣

lmax

lmin

= A
ld−α
max − ld−α

min

d− α
,

A =
d− α

ld−α
max − ld−α

min

.

Let s ∈ [0, 1] be a uniform random variable, then

1− s =

∫ lmax

l

p(l′)dl′ = A
1

d− α
l′d−α

∣

∣

∣

∣

lmax

l

= A
ld−α
max − ld−α

d− α
=

ld−α
max − ld−α

ld−α
max − ld−α

min

,

(1− s)
(

ld−α
max − ld−α

min

)

= ld−α
max − ld−α,

s
(

ld−α
max − ld−α

min

)

+ ld−α
min = ld−α,

l =
(

s
(

ld−α
max − ld−α

min

)

+ ld−α
min

)
1

d−α ,

Let us define lmax = ⌊L
2
⌋ + 1, lmin = 1,

konstant =

{
(

⌊L
2
⌋+ 1

)d−α − 1 if α 6= d
⌊L
2
⌋ + 1 if α = d,

(A.1)

dexponent =

{

1
d−α

if α 6= d

0 if α = d,
(A.2)

then

l =

{

(s · konstant + 1)dexponent if α 6= d
konstants if α = d.

(A.3)
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Appendix B

Average link-length

The networks with power-law link-length distribution we build have average link
length

〈l〉 = d− α

d+ 1− α

(

(

⌊L
2
⌋+ 1

)d+1−α − 1
(

⌊L
2
⌋+ 1

)d−α − 1

)

. (B.1)

We can define the quantity

λ =
〈l〉
L

(B.2)

as a global measure of the average single link coverage on a medium of length
L.
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Figure B.1: λ vs. α/d for different values of L in d = 2. As stated by equation
B.3, for α ≤ d we observe that λ varies little. In the range d < α ≤ d + 1 it is
clear that λ decays with α. For α > d we can observe a “saturation” of λ, i.e it
becomes independent of α.
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For finite systems λ decreases continuously from a maximum bounded by d
2(d+1)

at α/d = 0. The limit case α = 0 corresponds to a network in which nodes
are connected to each other irrespective of their distance of separation, i.e. the
network is a small-world network. In the limit of large L

λ ∝







d−α
d+1−α

L0 if α ≤ d,
α−d

d+1−α
Ld−α if d < α ≤ d+ 1,

α−d
α−(d+1)

L−1 if α > d+ 1.
(B.3)

In this limit, λ is a finite fraction of L if α ≤ d+ 1. For α > d+ 1, λ decay with
the system size. See figure B.1.
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Directories and datafiles

d = dimension
a = annealing probability (percent) DONE=(0,1,5)
L = Linear Length of system DONE=( 2D: 12,14,17,20,24,28,34,40,48,57,67,80.
1D: 100,141,200,283,400,566,800,1131,1600,2263,3200,4525)

./dD/ap/LL/state.vs.time* contents:

Column 1 2 3 4 5 6 7 8 9 10 11
Value sim time I S R infectible fraction z2 - - F (t) σ2 Θ

./dD/ap/LL/state.vs.time.reverse* contents:

Column 1 2 3 4 5 6 7 8 9 10 11
Value reverse time I S R infectible fraction z2 - - F (t) σ2 Θ

./dD/ap/LL/extinction.state* contents:

Column 1 2 3 4 5 6 7 8
Value extinction time I S R infectible fraction z2 σ2 -

./dD/ap/persistence.parameters.dD.ap.LL.out contents:

Column 1 2 3 4 5 6
Value α L to K t1/2 tmp

./constant.averages.dD.ap.LL.out contents:

Column 1 2 3 4 5 6 7 8 9 10
Value α 〈s〉 σs 〈i+ r〉 σi+r 〈x〉 σx 〈z2〉 σz2 〈σ2〉
Column 11 12 13 14 15 16 17 18 19 20
Value σσ2 〈Θ〉 σΘ t1/2 Na ln(y)meas ln(y)pred λ σλ θ0

where
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• x ≡ infectible fraction

• Na =
1−exp(−σ2)
z2−exp(−σ2)

• z2 = cos2 θ0

cos2
√

θ2
0
−σ2
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[7] Marc Barthélemy, Alain Barrat, Romualdo Pastor-Satorras, and Alessandro
Vespignani. Dynamical patterns of epidemic outbreaks in complex hetero-
geneous networks. Journal of Theoretical Biology, 235(2):275–288, 2005.

[8] Marcelo Kuperman and Guillermo Abhramson. Small world effects in an
epidemiological model. Physical Review Letters, 86(13):2909(4), 2001.

[9] Daniel Kaplan and Leon Glass. Understanding Nonlinear Dynamics.
Springer-Verlag New York, 1995.

[10] Sitabhra Sinha and S. Srighar. Patterns in excitable media: Genesis, Dy-
namics and Control. CRC Press Taylor & Francis Group, 2015.

[11] Alex Roxin, Hermann Riecke, and S. A. Solla. Self-sustained activity
in a small-world network of excitable neurons. Physical Review Letters,
92(19):198101(4), 2004.

[12] W. Deng, W. Li, X. Cai, and Q. A. Wang. The exponential degree dis-
tribution in complex networks: Non-equilibrium network theory, numerical
simulation and empirical data. Physica A, 390:1481–1485, 2011.

175



176 BIBLIOGRAPHY

[13] Rodrigo Huerta-Quintanilla, Efrain Canto-Lugo, and Dolores Viga-de Alva.
Modeling social network topologies in elementary schools. Plos One,
8(2):e55371, 2013.
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Amaral. Truncation of power law behavior in ”scale-free” network mod-
els due to information filtering. Physical Review Letters, 88(13):138701(4),
2002.

[17] Estrada Ernesto. The Structure of Complex Networks - Theory and Apply-
cations. Oxford University Press, first edition, 2011.

[18] Fernando Vega-Redondo. Complex Social Networks. Cambridge University
Press, 2007.

[19] S.N. Dorogovtsev and J.F.F. Mendes. Evolution of Networks From Biological
Nets to the Internet and WWW. Oxford University Press, 2003.

[20] S.N. Dorogovtsev and J.F.F. Mendes. Evolution of networks. Advances in
Physics, 51(4):1079–1187, 2002.

[21] M. E. J. Newman. Assortative mixing in networks. Physical Review Letters,
89:208701(4), 2002.

[22] Romualdo Pastor-Satorras, Alexei Vázquez, and Alessandro Vespignani.
Dynamical and correlation properties of the internet. Physical Review Let-
ters, 87(25):258701, 2001.

[23] Alexei Vázquez, Romualdo Pastor-Satorras, and Alessandro Vespignani.
Large-scale topological and dynamical properties of the internet. Physical
Review E, 65(6):066130(12), 2002.

[24] E. Ravasz, A. L. Somera, D. A. Mongru, Z. N. Olvai, and A.-L. Barabási.
Hierarchical organization of modularity in metabolic networks. Science,
297:1551–1555, 2002.

[25] Duncan J. Watts and Steven H. Strogatz. Collective dynamics of small-world
networks. Nature, 393:440–442, 1998.

[26] M.E.J. Newman, C. Moore, and D.J. Watts. Mean-field solution of the
small-world network model. Physical Review Letters, 84(14):3201–3204,
2000.



BIBLIOGRAPHY 177

[27] M. E. J. Newman and M. Girvan. Finding and evaluating community struc-
ture in networks. Physical Review E, 69:026113(15), 2004.

[28] M. E. J. Newman. Detecting community structure in networks. Eur. Phys.
J. B, 38:321–330, 2004.

[29] Leon Danon, Albert Dı́az-Guilera, Jordi Duch, and Alex Arenas. Compar-
ing community structure identification. Journal of Statistical Mechanics:
Theory and Experiment, 2005(09):P09008(10), 2005.
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