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Resumen 

En este trabajo se discuten las propiedades mecánicas de dos monocapas recientemente 

propuestas, α-BeH2 y β-BeH2. Los estados fundamentales de α-BeH2 y β-BeH2 se analizaron 

a un nivel GGA-PBE, ambas monocapas son similares en energía, siendo α-BeH2 ligeramente 

favorecida. La estabilidad de las monocapas como estructuras independientes se evaluó al 

estimar sus energías de cohesión y calcular las energías de interacción intercapa en distintas 

configuraciones de apilamiento de bicapas. La estructura electrónica se analizó determinando 

las estructuras de bandas a lo largo de los puntos de alta simetría y se calcularon las 

densidades de estados (DOS), obteniendo brechas de energía prohibida cercanas a los 5 eV 

en ambos compuestos. La interacción entre orbitales se analizó mediante la DOS proyectada 

(pDOS) y con el esquema de población cristalino proyectado por las superposiciones del 

hamiltoniano (pCOHP), determinando los distintos pares de contactos con interacciones 

enlazantes y se calcularon las fuerzas de enlace, para que, en conjunto con las diferencias de 

densidades de carga, se obtiene un panorama más claro sobre la naturaleza del enlace en estos 

cristales. La respuesta elástica lineal se evaluó calculando las constantes elásticas de segundo 

orden (SOEC) y las propiedades elásticas dependientes de la dirección también se 

consideraron. La red periódica cristalina de α-BeH2 es cuadrada y ésta tiene un coeficiente 

de Poisson negativo (NPR, por sus siglas en inglés); su anisotropía revela un coeficiente de 

Poisson positivo (PPR) grande a ángulos de 45° y el módulo de elasticidad en esta orientación 

es mucho más bajo qué el obtenido para la orientación con NPR. En la búsqueda por 

encontrar las inestabilidades mecánicas para las direcciones de tensión uniaxiales y biaxiales, 

primero se calcularon los esfuerzos de tensión ideal para después, adoptando una súper celda, 

estimar las transiciones de fase. Existen transiciones de fase para todas las direcciones 

evaluadas mucho antes de llegar a las deformaciones críticas. Los resultados son 

contrastantes, debido a que mientras α-BeH2 exhibe una elasticidad superior a la mayoría de 

los materiales 2D conocidos, β-BeH2 se vuelve inestable a valores de deformación muy 

pequeños. En un esfuerzo por comprender las marcadas diferencias entre las elasticidades de 

ambas monocapas, se estudiaron los cambios elásticos estructurales. Además, se elucidó el 

mecanismo que produce al NPR de α-BeH2 al determinar los cambios estructurales en los 
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componentes de la red cristalina. Este cristal bidimensional se presenta así mismo como un 

caso de estudio interesante, ya que provee una ventana excepcional para cuantificar y 

distinguir como un compuesto con dos fases estables puede, desde la microestructura, ofrecer 

respuestas mecánicas y comportamientos ante la deformación muy variados. 
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Abstract 

Herein, the mechanical properties of two recently predicted monolayers, α-BeH2 and β-BeH2, 

are presented. The ground-states of α-BeH2 and β-BeH2 are predicted at the GGA-PBE level 

of theory, both monolayers are energetically similar, with α-BeH2 being the more 

energetically favored. A study on the stability of the monolayers as free-standing structures 

was performed by estimating their cohesive energies and by calculating the interlayer binding 

energies in bilayers of several stacking orders. The electronic structure was analyzed by 

determining the band structures along the high-symmetry points and the density of states 

(DOS), obtaining large forbidden energy band gaps of ~5 eV for both compounds. Orbital 

interactions were analyzed via projected DOS (pDOS) and through the projected Crystal 

Overlap Hamiltonian Population (pCOHP) scheme, several pairwise bonding contacts were 

detected and their bond strengths were also computed, so that, together with density of 

charges differences, a clearer perspective on the bonding nature of the materials can be 

reached. The linear-elastic response was evaluated by determining the second order elastic 

constants (SOEC) and the direction-dependent elastic properties accounted for. The periodic 

α-BeH2 crystal has a square lattice with a negative Poisson’s ratio (NPR). Its anisotropy 

reveals a large positive Poisson’s ratio at angles of 45° and the elastic modulus at this 

direction is much lower than in the direction with an NPR. The ideal tensile strengths for 

uniaxial and biaxial tensile directions of strain are then pursued, first by computing the ideal 

tensile strengths, and then, using a supercell approach, computing the phase transitions. 

Mechanical instabilities begin to occur for all tested directions much before reaching the 

critical strains. The computed results are intriguing, while α-BeH2 reveals appealing high 

elasticity, β-BeH2 fails at very low strains. The elastic structural changes were studied in 

order to understand why the marked differences in elasticity for both polymorphs, is 

achieved. Moreover, the mechanism that produces the NPR in α-BeH2 has been elucidated 

from measuring the structural changes in the components of the lattice. This polymorphic 2D 

crystal presents itself as an interesting case study, as it provides an exceptional window to 

quantify and distinguish how a compound with two stable phases, will have a varied 

mechanical response and behavior against strains from the microstructure.  
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Introduction 

When a solid is subjected to an external load, its volume and shape change. This knowledge 

has allowed us, throughout millennia, to voluntarily modify many materials into products of 

“load-bearing” applications. The understanding of the behavior of materials against external 

forces has been of core importance to the development of human civilization. Today, as 

materials research continues to expand and develop novel compounds, a large emphasis is 

held on studying their mechanical properties. Even when the primary function may be other 

than mechanical, the resistance to deformations plays a crucial role in the success of the 

desired application. 

The macroscopic approach to assess the mechanical properties of solid materials is 

heavily influenced by the defects present in the system, undermining their usable strength.1 

Over time, the techniques used to evaluate these properties have progressed consistently, to 

the point where these can be measured at the nanoscale, giving insightful information on the 

chemical bonding of materials.2 Together with the development of novel technologies has 

impacted positively on the growth of more powerful computational resources, and together 

with the enhancement of simulation tools to describe theoretical models, it is possible to 

accurately predict the mechanical properties of crystals within a small range of error to the 

observed values. 

Furthermore, computational models allow us to predict features not easily available 

in real world conditions. Properties like the elastic constants, which contain essential 

information on the response of solids against external forces at small deformations; or the 

ideal strength, which sets the upper boundary of strength a perfect material can have against 

a uniform load, can be estimated from computations. Such achievements have given 

scientists worldwide the tools to study not only bulk solids, but also, to tap into systems of 

lower dimensions. 

The concept of two-dimensional (2D) materials became more than a textbook 

exercise by the turn of the XXI century, as graphene was isolated and characterized by 

Novoselov et al.3-4 Graphene is a carbon allotrope that consists of a single layer of atoms 



 

2 

 

disposed over a hexagonal  array. Soon enough, many reports began to appear regarding the 

novel electronic properties offered by this material,5 seen for the very first time in solid-state 

systems. Exceptional mechanical properties were also revealed,6-7 which catapulted graphene 

as the lightest, strongest material known. The area of opportunities brought about with the 

introduction of graphene convinced the materials community that there is plenty of space  at 

the 2D scale.  

Several of the 2D materials first isolated with graphene, like hexagonal boron nitride 

(h-BN) or molybdenum disulfide (MoS2), have hexagonal lattices.8 This infers that inside a 

range of small deformations (infinitesimal strains), the output given by these materials is 

invariant of the direction of measure. However, 2D materials are not limited to this lattice 

symmetry and, in turn, exhibit an interesting array of exotic and anomalous properties rarely 

detected in isotropic solids.9 These anisotropic materials exhibit properties that are dependent 

on the direction whence they are measured. One such direction-dependent property is the 

Poisson’s ratio (ν), a measure of the structural changes in a solid produced at the dimensions 

perpendicular to the applied load. 

When a material is distorted in a given direction, a change of size at the perpendicular 

dimensions will occur, this is the Poisson effect and its unit of measure is the Poisson’s ratio, 

𝜐 = −𝜀⊥ 𝜀∥⁄ , where ν is the negative of the quotient between the perpendicular strain (𝜀⊥) 

and the parallel strain (𝜀∥).10 Most materials’ response against tension is to contract in the 

directions traverse to the applied load, yielding a positive Poisson’s ratio (PPR). 

Nevertheless, some few known materials go against intuition and, for particular directions, 

exhibit a negative Poisson’s ratio (NPR).11 NPR materials (also called auxetics) were 

popularized after the re-entrant metallic foam produced by Lakes in 1987.12 Phosphorene 

became the first documented evidence of an NPR in 2D materials,13-14 the mechanism of its 

NPR holds much resemblance to the hinged microstructure of Lakes. Auxetic materials are 

very alluring due to their observed improved resistance against indentation, fracture 

toughness, and vibration damping.15 Naturally occurring auxetic materials are scarce in the 

bulk, however, a small but growing group of 2D materials have been predicted to display this 
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phenomenon.16 Auxeticity in 2D can either be displayed out-of-plane, in-plane, or 

bidirectionally (both in-plane and out-of-plane).17-18 

Under large deformations (finite strains), visible changes in the shape or volume in a 

solid body are produced. From here, the resistance of solids against a loading condition (the 

type and direction of the induced deformation), can be calculated into the stress-strain curves, 

the most reliable and complete source for the evaluation of mechanical properties of 

materials. A material becomes mechanically unstable when a maximum value in the stress-

strain curve has been reached, at this region, any subsequent perturbation will provoke a 

collapse in the integrity of the structure, leading into a structural phase transition or failure.19 

Anisotropy plays an important role in evaluating a solid at finite strains, as the mechanical 

instabilities are sensitive to the direction of the applied load,20 even for hexagonal lattices.6 

2D materials introduce excellent mechanical properties not seen in the bulk state,21 their 

virtual atomic thickness, high in-plane cohesiveness, light mass and high crystallinity,22 

render them as promising candidates for strain-bearing applications.23 

With the aid of powerful exploration algorithms and high-throughput computational 

methods, significant efforts have been put into predicting 2D phases from naturally occurring 

bulk structures,24-25 to be then experimentally isolated and characterized. As well into 

designing many novel monolayered components with no known parent structure to be further 

synthesized.26-28 In the second group it is possible to find BeH2, a polymorphic monolayered 

crystal of exciting elastic properties. 

Planar ultra-thin layered systems of BeH2 were first conceptualized in 1989 by Seel 

et al.29 Recently, Li et al.,30 through a particle-swarm optimization (PSO) method,31 predicted 

two thermodynamically stable phases of square and hexagonal lattices, labeled α-BeH2 and 

β-BeH2, respectively. The main difference between the predicted monolayers of Li et al., and 

Seel et al., is found in the out-of-plane distortions of the more recent individual layers, which 

reduces the lattice parameters and, do not display imaginary vibrational modes, which the 

flat layer does.32 

In the work of Li et al., the structural, thermal, and dynamic stabilities of the ground-

state for the α-BeH2 and β-BeH2 monolayers were first assessed. A large electronic band gap 
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of ~5 eV and multicentered bonds were predicted in both polymorphs, emphasizing on the 

structural stability of the monolayers. The linear elastic properties were also addressed, the 

monolayers exhibited stiffness values comparable to other 2D materials like germanene or 

Cu2Si. Another relevant feature was an in-plane auxeticity predicted for α-BeH2, with clear 

promise for mechanical applications.  

The structural stability of the BeH2 monolayers was discussed. The treatment of the 

infinitesimal strain response was given for an isotropic medium. These conditions are enough 

to describe the response to deformation in the hexagonal lattice of β-BeH2, but they do not 

give a complete picture of the elastic response for the square lattice of α-BeH2. Seen from 

the perspective of the unusual mechanical properties, the anisotropy of α-BeH2 and its NPR 

are attractive features that have yet to be explored in detail. This polymorphic 2D crystal 

presents itself as an interesting case study, as it provides an exceptional window to quantify 

and distinguish how, from the choice of lattice, the crystal structure will tailor the mechanical 

response and the modes of failure of a compound with two different stable phases. 

The general objective of this dissertation is to study, by means of first-principles 

computations, the mechanical response of the BeH2 monolayers under the infinitesimal- and 

finite-strains regimes, and to determine their mechanical instabilities. Starting from the 

characterization of the monolayers' ground-state, analyzing their electronic structure and 

chemical bonding, estimating the interactions between layers produced at different bilayer 

stacking orders, and measuring the mechanical response in the infinitesimal-strains regime 

considering direction-dependent properties. As well as in the finite strains regime, estimating 

the response under uniaxial and biaxial tensile stress of the BeH2 monolayers, calculating the 

ideal strengths in the stress-strain curves and localizing the phase transitions for each of the 

computed directions. The polymorphism of the selected material is of great interest, as each 

phase will behave differently when mechanically evaluated, this conduct will aid in 

understanding the microscopic origin for the auxeticity of α-BeH2.  

Therefore, this work is outlined as follows. The first Chapter presents a background 

on the characteristics that define a 2D material and cover the concepts of the mechanical 

properties in 2D materials; introducing an exotic elastic property, the negative Poisson’s 
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ratio. The Chapter also includes a brief summary on the current state of research for 2D BeH2. 

The second Chapter is a preamble to the results, and it includes important information on the 

theory and methods behind the calculation of the linear-elastic and finite-strain properties of 

materials from first-principles computations. Chapter 3 presents the results on the atomic 

structure, the binding energies for several bilayered stacking orders, and the analysis of the 

electronic structure for the individual layers. The linear-elastic regime of the monolayers is 

also evaluated, with results on the direction-dependent elastic properties of the monolayers. 

The fourth Chapter presents the predicted finite-strains response of the BeH2 single layers at 

biaxial and uniaxial tensile strains, calculating the ideal strengths, as well as their mechanical 

instabilities. The changes with strain in the structural parameters of the monolayers are also 

explored, aiming to understand the mechanism of the auxeticity in the α-BeH2 phase. Finally, 

a brief Summary of the results is given followed by the Perspectives of this work.  
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1. Elasticity in 2D Materials: Background 

1.1. Introduction 

The existence of two-dimensional (2D) crystalline structures had been theorized decades ago 

and were deemed to be thermodynamically unstable for any temperature above absolute 

zero.33-34 The works of Novoselov et al.,3, 8 would radically change such a paradigm. 

Graphene, a carbon allotrope that consists of a single layer of atoms disposed over a 

hexagonal array, revealed impressive feats unseen before in the solid-state: such as a quantum 

Hall effect,35 quantum confinement,36 ultrahigh stiffness,6-7 extremely high mobility37 and a 

large specific surface area,38 making it desirable for nanomechanical, environmental, and 

electronic applications, to mention a few. Graphene attracted enormous attention both in 

academia and industry. A revolution in materials research had begun, it was the dawn of 2D 

materials science. 

 Compounds of many shapes and chemical formulae started populating the flatland,39-

41 many of which trace back from bulk 3D predecessors and can be cleaved into few- and 

single-layered structures with relative ease. Some, however, would not be able to be isolated 

as effortlessly, as their interlayer interactions are of more significant magnitudes, limiting 

them to the best of cases, as substrate supported single-layers.42-43 

 Due to their atomic thickness, 2D materials come as natural candidates to exhibit 

remarkable mechanical properties.21 With time, more techniques focused on synthesizing 2D 

materials began to appear, substantially increasing the number of experimentally available 

2D solids. Unfortunately, experiments centered on analyzing the mechanical properties of 

2D materials still present technical challenges to be overcome, but computational simulations 

have helped in predicting behaviors not yet accessible in situ.   

With the aid of powerful exploration algorithms and high-throughput computational 

methods, significant efforts have been put into predicting 2D phases from naturally occurring 

bulk structures to be exfoliated from,24-25 or into designing novel monolayered components 
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with no known parent structure which await synthesis.26-28 Materials scientists now have the 

tools to computationally explore a wide variety of 2D systems, among which is BeH2; a 

polymorphic 2D material with exciting elastic properties, of interest for this work. The 

exploration of the mechanical properties of 2D crystals serves a dual purpose, as these hold 

the baseline for the design of flexible, transparent, and composite devices,23, 44 but also aid in 

the understanding of fundamental mechanics. 

1.2. Layered and Non-layered 2D Materials 

The isolation of graphene, a flat sheet of carbon atoms arranged in a hexagonal lattice (Fig. 

1.1a) obtained from the exfoliated flakes of highly oriented pyrolytic graphite, cleverly loops 

around postulates held on the impossibility of obtaining 2D crystals at room conditions; as it 

is of finite size and displays out-of-plane fluctuations like a tethered membrane.45-47 

Therefore, although graphene may not be entirely two-dimensional, it is an atom-thick 

monolayer embedded in a higher-dimensional space, becoming the first layered 2D material. 

The first wave of 2D materials also introduced some of the more representatives, with 

hexagonal boron nitride (h-BN) and MoS2.
8 h-BN (Fig 1.1b) is a planar honeycomb lattice 

isostructural to graphene, very similar in lattice parameter as well, and it is thought of as an 

ideal partner for graphene electronics.48 MoS2 is pertinent to the family of the transition metal 

dichalcogenides (TMDs), a varied group of binary compounds of general formula MX2; of 

these, the group-16 TMDs (M= Cr, Mo, W and X=S, Se, Te) are stable at room conditions.49-

50 TMDs crystalize in two polytypes (stacking orders), with the metallic center either having 

a trigonal prismatic (H=hexagonal) (Fig. 1.1c) or octahedral (T=trigonal antiprismatic) (Fig. 

1.1d) environment. Most of the known 2D materials are of hexagonal symmetry,51 their 

characteristic honeycomb backbone is patterned by two chiral directions, the armchair 

(nearest-neighbor) and zigzag (second-nearest neighbor) directions. 
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Figure 1.1 Atomically thin 2D materials. a) Graphene, b) hexagonal boron nitride (h-BN), c) hexagonal molybdenum 

disulfide (H-MoS2), and d) (trigonal antiprismatic) T-MoS2. The axes signal their chiral directions. Adapted from Ref. 50. 

Graphene, h-BN, and MoS2 are of the several layered 2D materials that can be cleaved 

from parent bulk structures (Fig. 1.2a). These layered 2D materials are known for their strong 

in-plane cohesiveness and slight out-of-plane crumpling, resulting in intrinsically stable 

structures.46-47 In all, the properties procured by the layered 2D materials are far different and 

more enticing than those of their 3D counterparts. 

Others, however, lack a 3D structure to be extracted from. The heavier group-14 

allotropes of graphene, silicene, germanene, and stanene, fall in this category. Initially 

thought of as a logical choice for the development of nano-electronics, isolated 2D silicon 

and germanium become extremely volatile and unstable at room conditions.42, 52 The ground-

state of the heavier group-14 2D crystals (X-enes) deviates from the planar sp2 hybridized 

structure of graphene and instead consists of a low-buckled honeycomb configuration,53 

given to the presence of a mixture of sp2 and sp3 hybridized states. This electronic disposition 

holds a significant role as silicene,54-55 germanene,56 and stanene57 have shown evidence of 

growth atop metallic substrates (Fig. 1.2b). Where the contact produced between the X-ene 

layers and the metallic substrate is a strong bonding interaction that also influences the 
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properties of the monolayers; hence, earning the nickname of non-layered 2D materials. A 

workaround to reduce the effect of external factors in synthetic X-enes and increase their 

stability is to consider bilayered structures.58 Yaokawa et al.,59 passivated patches of bilayer 

silicene sandwiched in between CaF2 layers, where sp3 hybridized Si-Si tetrahedral bonds 

helped to stabilize the system. 

 The influence of stacking monolayers is also regarded for layered 2D materials. The 

dispersion van der Waals (vdW) forces responsible for allowing the mechanical exfoliation 

of 2D systems, also influence on the interaction produced between layered configurations. 

Layer stacking emerged as a new degree of freedom for the tuning and design of complex 

multi-layered heterostructures, as the hypothetical vdW array shown in Fig. 1.2c.60 The 

resulting stacked bi- and multi-layers are brought together by a binding energy, the parameter 

that defines the strength of the interaction between monolayers. Several studies have been 

dedicated to the effects that different stacking orders will have on the binding energies of 

bilayered 2D materials,61-63 finding that stronger binding energies will have repercussions on 

the interlayer distance and affect the intrinsic properties of the monolayers. On that note, 

binding energies of lower magnitudes will allow the monolayers to slide easily from one 

another, a much desired property for lubricative applications.64 

 

Figure 1.2. a) 3D layered graphite; b) (upper panel) Atomic structure of silicene on an Ag (111) substrate, (center) simulated 

and (lower) experimental STM images; c) hypothetical vdW heterostructure built from different 2D slabs. Adapted from 

Refs. 46, 52, 60. 
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1.3. 2D Materials Under Infinitesimal Deformations 

The internal resistance against deformation in a material is known as the Young’s modulus, 

or elastic modulus (E), it is a measure of the stiffness of solids. The produced deformation 

will affect in the perpendicular directions of the solid, which in turn can be measured by the 

Poisson’s ratio (𝜐). These properties are essential to describe the response of 2D materials 

against external forces, and they can be obtained from inducing small distortions 

(infinitesimal strains) to the solid; the produced deformations are so small that the volume of 

the solid remains unchanged. In this region of small distortions, the behavior of most solids 

is linearly proportional, this is the linear-elastic limit. Within this limit, the elastic constants, 

fundamental units that determine the inherent response of a solid when stressed, can be 

obtained. In Fig. 1.3, a hexagonal 2D lattice is being pulled at one axis, a uniaxial loading 

condition; the response given by the material is measured by both the deformation parallel to 

(ε║) and the deformation perpendicular to (ε⊥) the applied load. From these, the elastic 

modulus and Poisson’s ratio can be estimated.  

 

Figure 1.3. A uniaxial load is applied on a 2D hexagonal lattice. The original backbone is shaded in grey behind the blue 

structure deformed in the directions of the orange arrows. The changes produced in the geometry of the lattice can be 

characterized by the parallel (ε║) and perpendicular (ε⊥) strains. 
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At an early stage of 2D materials research, graphene became the stiffest material 

known,6-7 with a Young’s modulus greater than 1.0 TPa. Interest from the scientific 

community on the elastic response of other 2D materials was quick to rise, as these became 

the object of study for applications in novel strain-resistant technologies and flexible 

electronics.23, 44 

Anisotropy is another key feature of 2D materials, the rate of deformation and the 

elastic response will depend mainly on the lattice symmetry  and the direction of the incoming 

load.51 Assuming an isotropic medium is helpful to predict certain characteristics of a 

material, but it will not display a complete picture.9 A good example of an anisotropic 2D 

material is single-layer black phosphorus,65 here referred to as phosphorene (Fig. 1.4a). 

Phosphorene is composed by a honeycomb lattice, similarly to graphene or h-BN, but 

in a peculiar puckering. The phosphorus atom in phosphorene adopts an sp3 hybridization,66 

bonding with three adjacent phosphorus atoms taking up the three valence electrons of the 

atom. Direction-dependent electronic and elastic properties in phosphorene have been 

predicted.67 The elastic response of phosphorene is heavily influenced by direction, as 

Young’s modulus is closely at a 4:1 proportion (166 to 37 GPa) from zigzag to armchair 

directions (Fig. 1.4b).20 Likewise, its Poisson’s ratio is very sensitive to direction, with ν 

ranging from ~0.40 in the armchair, to ~0.93 in the zigzag direction, revealing this material 

has high traverse contractions.  

 

Figure 1.4. Atomic structure of phosphorene, a) top and side views of the armchair and zigzag directions; b) in-plane 

anisotropy of elastic modulus. Figure adapted from Ref. 20. 
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Generally, when a material is stretched, a contraction in the perpendicular plane will 

occur. While NPRs are not theoretically prohibited,68 it was not until recently that this type 

of material was recognized. No structures with an NPR were verified until 1987,12 when 

Lakes produced a metallic foam from a low-density open-cell polymer foam as a precursor. 

The ribs of each cell permanently protrude inwards (Fig 1.5a), resulting in a re-entrant 

structure. When the system is under mechanical tension, one of the hinges opens along the 

tensile axis, whereas the other hinge expands in the lateral direction, producing the NPR 

effect in the out-of-plane direction.  

 Evans et al.,69 proposed a flat molecular network that could exhibit an NPR when 

stretched (Fig 1.5b). They would also coin the term auxetic, from the Greek auxetos: “that 

may be increased”, for materials with transverse expansions. Thereon, a limited but varied 

group of materials like cubic metals,70 lipidic membranes, and blood cell cytoskeletons71 

have been reported to express auxeticity in some form. Among the attributed properties of 

auxetics are improved indentation resistance,72 fracture toughness,73 and wave attenuation 

and steering.74  

Auxeticity in 2D materials can be revealed in-plane, out-of-plane, or it can even 

appear in both directions (bidirectional). Phosphorene’s puckered lattice effectively mimics 

the re-entrant mechanism proposed by Lakes, revealing an out-of-plane NPR of ν = -0.027 

(Fig. 1.5c). The auxetic behavior in phosphorene can be described by the interaction of two 

orthogonal hinges produced from the angle θ546 of atoms 4, 5 and 6, and the angle θ214 (or 

θ314) from atoms 1, 2 (or 3) and 4. On applying tension in the zigzag (x) direction (Fig. 1.5c.i) 

the hinge θ546  is opened, which makes θ214 to close in the armchair (y) direction (Fig. 1.5c.ii), 

reducing the angle tilt and increasing the monolayer height.13 This phenomenon was later 

experimentally confirmed,14 becoming the first evidence of auxeticity in a 2D material. 

Soon, more out-of-plane auxetic 2D materials were reported. Black phosphorus’ 

allotrope, δ-phosphorene (Fig. 1.5d), revealed in-plane auxeticity.75 Heavier Group 15 2D 

materials of the same backbone as black phosphorus, also exhibited out-of-plane NPRs.76-77 

Graphene has been predicted to display a transition into auxeticity on stretching in the 

armchair direction for strains larger than 6% (Fig. 1.5e),78-79 and its hydrogenated allotrope, 
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B-graphane, is expected to exhibit small in-plane auxeticity.80 An increasing number of 

highly anisotropic 2D materials began to emerge and populate the auxetic realm,16, 18, 81 with 

some even being designed to reproduce the 2D re-entrant honeycomb structure (Fig 1.5f).82 

Table 1.1 presents data on some recently predicted auxetic 2D materials with the direction 

and magnitude of their NPRs.  

 

Figure 1.5. NPR materials. a) Idealized 3D re-entrant structure of the auxetic metallic foam; b) 2D re-entrant honeycomb 

lattice i) at rest, ii) when an axial load is applied to it; c) local environment of phosphorene i) at rest, ii) when a load is 

applied in the x direction, the orthogonal hinges come closer, reducing the tilt of angle θ124 and producing the out-of-plane 

NPR; d) atomic structure of δ-phosphorene, the black phosphorus allotrope with an in-plane NPR f) B4N atomic structure, 

mimicking the re-entrant honeycomb lattice. Figures adapted from Refs. 12, 13, 69 75, 78 and 82.  
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Table 1.1. 2D materials of predicted NPR, their direction, and magnitudes. Directions given are parallel to the applied strain. 

2D crystal Direction Magnitude 

Phosphorene13-14 Out-of-plane Zigzag: -0.03 

Arsenene81 Out-of-plane Zigzag: -0.12 

B4N
82 In-plane Armchair: -0.02, Zigzag: -0.03 

B-Graphane80 In-plane Armchair: -0.007, Zigzag: -0.006 

δ-Phosphorene75 In-plane Armchair: -0.16, Zigzag: -0.27 

Graphene78-79 In-plane Armchair: -0.03 

Ag2S
17 Bidirectional In: -0.12, Out: -0.52 

GaPS4
18 Bidirectional In: -0.03, Out: -0.62 

1.4. 2D Materials Under Finite Deformations 

Deformations that produce visible changes in the shape or volume in a solid body are 

inside the large deformations (or finite-strains) regime. The finite-strains regime measures 

the response of solids against an applied load until a state of failure is induced and can be 

projected into the stress-strain curves (Fig. 1.6), the most reliable and complete source for 

the evaluation of mechanical properties of materials. 

The stress-strain curve is an important graphical tool that allows to measure and 

compare a material’s resistance at a loading condition. In the early-strains portion of the 

curve, the elastic modulus of materials can be approximated. On entering the finite-strains 

regime, the ideal strength of materials can be calculated. 

The ideal strength of a crystalline solid is the maximum strength of its perfect crystal 

configuration.83 Certain conditions must be met to assess the ideal strength of a material, the 

system must be a perfect single crystal (void of defects and impurities) at its fundamental 



 

15 

 

state, at a uniform loading direction (axial, biaxial, multiaxial) and type (shear strain or tensile 

strain).  

 

Figure 1.6. The stress-strain curve for a perfect crystal. The regions of importance are indicated by the arrows. 

The ideal strength sets the upper boundary on the possible resistance any crystal can 

achieve, providing information on the stability and chemical bonding of materials.84 The 

value of strain at which the ideal strength is located is called the critical strain. However, the 

ideal strengths for particular directions in some materials would not be determined by their 

critical strains, as some reports suggest, on phase transitions or failure modes becoming 

active before these values are reached.85-86 Hence, limiting the ideal strength. 

The structural deformations (change of buckling height, bond stretching, bond 

rotation, etc.) are reversible and the 2D crystal will return to its original configuration, as 

long as a state of meta-stability or mechanical instability is not exceeded.19 In this region, 

any subtle perturbation will yield permanent changes on the configuration of the solid, and 

the accumulated strain energy is released in the form of dislocations or bond breaking in a 

process known as plastic deformation.  

Experimentally, the mechanic properties of 2D materials are generally obtained in a 

process called nanoindentation, where the tip of an AFM cantilever will induce a condition 

of biaxial strain (equivalent deformation of the two in-plane axes) at a small region of the 

crystal, ultimately driving the membrane into failure.87-88 At this point, the breaking strength 
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and strain are measured. A sample of smooth surface and a low density of defects can 

approach pristine conditions, and let the measured parameters be much in the vicinity to the 

values of their ideal tensile strengths. Unfortunately, experiments that analyze the elastic 

properties of 2D materials are still few, and computational simulations have helped in closing 

the gap by predicting behaviors not accessible in situ. 

The elasticity of graphene was first addressed by Liu et al.,6 predicting a large in-

plane Young’s modulus of 1.0 TPa, uniaxial strengths in the zigzag and armchair directions 

respectively, of 110 GPa and 121 GPa, and mechanical instabilities at deformations of ~0.20 

and ~0.27 as seen in the stress–strain curves of Fig. 1.7, firmly placing graphene as one of 

the strongest materials known.  

 

Figure 1.7. Stress-strain curves for the computational uniaxial tensile test of graphene. In blue the response of the solid in 

the armchair direction, in black, the resistance in the zigzag direction. The Poisson’s ratios as functions of strain are also 

plotted, these being the descending slopes conserving the color scheme of the strengths. In red, the critical strains. Adapted 

from Ref. 6. 

The experiments of Lee et al.,7 were in line with earlier predictions, as breaking 

strengths of 130 GPa and fracture deformations of ~25% were reported for biaxially loaded 

graphene. Marianetti et al.,89 computationally elucidated the failure mechanism in biaxially 

strained graphene; their results predicted that the instabilities occurring in the structure are 

due to the presence of imaginary frequencies at around 15% deformation, diverging from the 

reported breaking strain of 25%. A possible reason behind such disagreement is attributed to 

the chemical reaction between the graphene sheet and the AFM tip. 
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Naturally, focus on the elasticity of other 2D crystals was quick to arise. h-BN 

revealed a breaking strength of 70.5±5.5 GPa, and a Young’s modulus of 0.865±0.073 TPa, 

much similar to the measured values of graphene.90-91 Bertolazzi et al.,92 and later Cooper et 

al.,93 found that MoS2 has a Young’s Modulus of 270±100 GPa similar to alloy steel, 

breaking strengths of 22±4 GPa, and breaking strains of 6~11%, placing it as a suitable option 

for flexible electronics. Isaacs and Marianetti,94 would find imaginary frequencies as the 

driving failure mechanism of both biaxially strained MoS2 and h-BN. Thus, best practices 

call for the evaluation not only of the ideal tensile strengths, but also, of the instabilities and 

phase transitions that might occur when studying materials far from equilibrium.  

Phosphorene has an ideal strength in the zigzag direction of 15~18 GPa, much higher 

than in the armchair direction, 6~8 GPa.20, 95 The critical strain values would not be clear, 

though. While Jiang and Park96 predicted ideal strains of 48% and 11% in the zigzag and 

armchair directions respectively, in another approach, Wei and Peng20, computed them at 

30% and 27%, for the zigzag and armchair directions. More recently, nanoindentation 

experiments on few-layered suspended phosphorene films,97 yielded breaking strains ranging 

from 8~17%, closer in agreement to the computed maximum strains of 21% (armchair) and 

15% (zigzag) by Tian, et al.95 With no current experimental reports on the finite-strains 

response of monolayer phosphorene, it is relevant to consider, as Falin et al.,90 noticed, that 

the mechanical response of 2D materials can be sensitive to the interlayer interactions of 

stacked systems. 

 In Table 1.2, the experimental elastic properties for the 2D materials above 

mentioned are summarized and paired with the values of known bulk materials of sturdy 

nature. The exploration of the mechanical properties of 2D materials serves a dual purpose, 

as these hold the baseline for the design of flexible, transparent electronics and composite 

devices, but also aid in the understanding of fundamental mechanics. 

  



 

18 

 

Table 1.2. Experimental values for the mechanic properties of materials in N dimensions (N=2,3). 

ND Material Name 
Young’s Modulus 

(GPa) 

Breaking Strength 

(GPa) 

Breaking Strain      

(%) 

3D 
Stainless Steel 

(ASTM-A514)98 
205 0.83 15 

2D MoS2
92 270±100 22±4 8±3 

3D Tungsten carbide99 550 0.035 <1 

2D h-BN90 865±73 70.5±5.5 12.5±3.0 

3D Diamond (C)100 1050 ~100 <1 

2D Graphene (C)7 1000±100 130 ~25 

1.5. The Case of Crystalline Beryllium Hydride 

There is no knowledge of naturally occurring bulk beryllium hydride (or of any 

alkaline earth hydride for that matter). Thus, synthetic beryllium hydride (BeH2) became into 

fruition in the 1950s;101-103 the obtained metallic hydride was classified as a linear polymeric 

chain (1D) (Fig. 1.6a).104 Some years later, BeH2 attracted attention when the search for 

rocket fuels was on,105 its elevated hydrogen storage percentage, low base metal density, and 

high heat of formation made it a considerable option as fuel propellants and hydrogen storage 

devices.106-107 However, several factors made the earned interest to be dropped almost 

immediately, as there was not yet a proper way to synthesize BeH2 of high purity, its cost 

was too elevated and most importantly, a severe risk of intoxication (berylliosis) was ever-

present. The possibility of producing high-temperature superconductivity from hydrogen-

dominant metallic compounds,108 renewed interest in studying metallic hydrides at high 

pressures.109-111 
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A crystalline structure for BeH2 appeared in 1988, when Smith et al.,112 described for 

the first time the ground-state configuration of bulk BeH2. This was a body-centered 

orthorhombic unit-cell containing 12 BeH2 molecules; the crystal is arranged in a framework 

of corner-sharing BeH4 tetrahedra arranged in an orthorhombic Ibam space group, No. 72 

(Fig. 1.5b). No known analog among the tetrahedral network formers (BeF2, SiO2, GeO2) 

displays this type of structure. Vajeeston et al.,113 later predicted this variant as the least 

energetic compared to several proposed polymorphs and a stability up to hydrostatic 

pressures of ~7 GPa. Their computations also found this phase to have a large band gap of 

5.5 eV at the generalized gradient approximation (GGA), and covalent interactions from wide 

valence mixture of Be s, p and H occupied states.114 A more recent work discussed that the 

main reason behind the 3D ground-state remaining evasive for so long was due to the 

cohesive energies of polymerized and orthorhombic BeH2 being so similar to one another.115 

The 1D and 3D phases of BeH2 have been theoretically and experimentally evaluated, 

the mandatory question would be: is there a 2D phase for BeH2? Given the earlier stated, 

naturally-occurring phases of bulk BeH2 are non-existent, and the only known crystalline 3D 

phase is not a reliable candidate to exfoliate thin layers from, as it is covalently bonded in all 

three Cartesian dimensions. 

 Early works on a BeH2 monolayer (Fig. 1.5c) started with Seel et al.,29, 116 and Wu et 

al.,117 drawing inspiration from a flat slab of cubic perovskite LiBeH3. This system became 

the topic of discussion, as the stability and electronic nature (metallic or insulating) were 

debated. Interest re-emerged in 2017 with the work of Yang et al.,32 and their tight-binding 

(TB) model which predicted this monolayer as a semimetal of topological relevance; they 

would find out that this flat sheet revealed imaginary frequencies, thus, it was not a stable 

system. 
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Figure 1.8. a) 1D polymeric linear chain of BeH2; b) 3D crystal structure of BeH2; c) 2D square flat lattice of BeH2. With 

information from Refs. 28, 117 and 118. 

 In 2018, Li et al.,30 ventured into the prediction and design of monolayered phases of 

BeH2. Aiding from massive search algorithms that use the particle swarm optimization (PSO) 

method,31 they proposed two thermodynamically stable polymorphs. These two phases 

exhibited square and hexagonal lattices (of D2d and D3d point group symmetries) and were 

respectively labeled as α-BeH2 and β-BeH2, where the α- prefix was assigned to the more 

energetically favored of the two.  Li et al., structurally characterized both BeH2 monolayers, 

they predicted that the ground-state was not the flat slab earlier theorized by Seel et al., but 

rather atomic layers with out-of-plane distortions. Their kinetic and thermodynamic 

stabilities were computed, no imaginary frequencies were found and thermal reversibility up 

to 500 K was revealed. Both BeH2 monolayers have large band gaps of ~5 eV at the GGA 

approach, cohesive energies of 2.76 eV/atom, and the bonding nature of these electron 

deficient crystals was addressed via the solid-state adaptative natural density partitioning 

(SSAdNDP)120 technique, predicting the existence of a 3c-2e (3 center, 2 electron) and 4c-2e 

multicentered bonds for α-BeH2 and β-BeH2, respectively.  

The linear-elastic properties in isotropic conditions were also calculated, elastic moduli 

of 60 Nm-1 and 85 Nm-1 were revealed for the α-BeH2 and β-BeH2 polymorphs, rendering 

them stiffer than silicene (71 Nm-1) or germanene (42 Nm-1). Also, a negative c12 elastic 
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constant was obtained for α-BeH2, resulting in an in-plane NPR of -0.19, endorsing it as a 

compelling candidate for its potential applications in mechanics.  

1.6. Open Problems 

Two thermodynamically stable phases for single-layered BeH2 have been computationally 

predicted. This 2D crystal presents itself as an interesting case study, as it is an excellent 

opportunity to understand how the morphology of the microstructure shapes the predicted 

properties of a compound with two different stable phases. 

● Li et al.,30 treated the linear-elastic properties in an isotropic medium, conditions that 

satisfy the hexagonal lattice of β-BeH2, but the α-BeH2 phase exhibits unusual 

mechanical properties which are inviting to be explored from many directions.  

● The influence of strong interactions between layers can affect the structure and properties 

of individual layers. The results of Zhou et al.,28 hold promise on the potential of 

obtaining free-standing monolayered metallic hydrides. Therefore, an estimation of the 

binding energies for several bilayered stacking orders can help predict if standalone 

individual layers of BeH2 are within reach.  

● The nature of the chemical bond also holds relevance. It is possible to gain insights from 

the superposition of occupied states and, from the atomic-pair interactions, compute an 

approximate value of their bond strengths. 

● Accompanying the work on the infinitesimal-strains regime, it is suitable to cover the 

finite-strains regime as well. The ideal tensile strength is of interest, as it can provide 

information on the mechanical stability and instabilities of the BeH2 monolayers. It is 

also possible for instabilities to become active before reaching the critical strain, 

therefore, it is important to address these situations as well. 

● The α-BeH2 phase exhibits auxeticity, while in β-BeH2 it has not been registered. The 

mechanism on how the NPR is produced and how it modifies the structure of the 

monolayer has yet to be addressed. 
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2. Deforming Materials by Computations: Theory 

and Methods 

2.1. Introduction 

First-principles computations can reliably determine the number of basic material properties,  

like the elasticity of solid bodies. This is a crucial advantage, as it allows to estimate the 

mechanical stability and strength not only of known solids but also, of materials that have 

yet to be experimentally produced. 

 Elasticity is the property of materials to resist a distorting load and return to their 

original shape once said force is released. The intensity or degree of deformation a body is 

subjected to is known as strain, and the internal opposition of the body against deformation 

is known as stress. For a wide majority of materials, within a limit of small distortions, both 

stress and strain are linearly proportionally related by Hooke’s law. 

Hooke’s law allows to calculate the elastic constants in a material, the fundamental 

units that determine the inherent response of a solid when stressed; all elastic constants can 

be extracted from ground-state total energy methods. The number of independent elastic 

constants is related to the symmetry of the lattice, and for most orders of symmetry, properties 

are direction-dependent. As loading conditions drift from the proportionality of Hooke’s law, 

more properties of the material can be determined. 

The stress-strain curve is the most reliable and complete source for the evaluation of 

mechanical properties of materials. The stress-strain curves help in understanding the elastic 

strength of a material, they show the resistance to deformation a material has against external 

forces and also reveal the difficulty of producing failure in the structure. A property of 

interest found only in stress-strain curves is the ideal strength, the maximum resistance of a 

pristine material at its ground-state. The focus of this Chapter is to introduce the mechanics 

background and the methodology used in this dissertation. The contents in the following 

sections draw from the texts in Refs. 51, 67-68, 99 and 121-122, for further consultation. 
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2.2. Strain and stress 

The strain (ε) is a ratio that represents the displacement between particles in a solid body 

relative to a reference frame. In a state of equilibrium without the influence of an external 

field, an unstrained system is described by a set of vectors orthonormal to one another, x̂, ŷ, 

ẑ. After a slight, uniform distortion of the solid, the new vectors, x’, y’, z’, have undergone a 

modification in both their direction and magnitudes. These changes can be embodied in a 

system of equations of the form, 

 
 

(2.1) 

 
 

(2.2) 

 
 

(2.3) 

where εij (i,j,=1,2,3) quantify the deformation of a body in three dimensions, giving form to 

the strain tensor, 

 

 

(2.4) 

Stress (σ) is the internal resistance of a solid body against an acting force measured 

on an element of the area. In a three-dimensional continuum, stress can be calculated in terms 

of nine quantities, three per plane, on three mutually perpendicular planes at a point. Herein, 

the Cauchy stress tensor, the response of the solid given at the current state of deformation, 

is reported,  

 

 

(2.5) 



 

24 

 

By considering a cubic element (Fig 2.1), which volume corresponds to an 

infinitesimal portion of an arbitrary solid in a state of unrest, the stress in the infinitesimally 

small system can be characterized by nine stress components acting on each jth face at every 

ith Cartesian direction. 

 

Figure 2.1. Geometrical representation of the Cauchy stress tensor, σij. The σij components represent the applied force on 

the jth face of the volume along the ith directions. Image adapted from Ref. 123. 

2.3. Elastic Energy 

In a state of thermodynamic equilibrium, the free energy of a system is a minimum. The 

energy of the system is also a function of the strain tensor, E(εij). Then, a function of strain 

energy density per unit volume can be defined by,  

 

 

(2.6) 

The strain energy density function contains the complete information of the elastic 

response of a given material. In the limit of small deformations, the energy of the system can 

be expanded into a power series for the components of εij, 
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(2.7) 

where U0 is the energy density of the unstrained lattice, is U(1) is the linear term of the 

expansion that accounts for the residual stresses in a system, U(2) is the second-order 

expansion coefficient and O(εij
3) indicates that the neglected polynomial terms in the 

expansion are of order three and above.120 Inside of U(2) is contained fundamental information 

on the behavior of the solid body when deformed, it can be expressed as, 

 

 

(2.8) 

where Cijkl is the fourth-rank stiffness tensor. Thus, the stiffness tensor can be obtained from 

the second derivative of the strain energy density. And so, the strain energy density function 

for a deformed solid is given by,  

 

 

(2.9) 

2.4. The Generalized Hooke’s Law 

Within the linear-elastic limit and through infinitesimal strains, both the stress and strain (for 

most materials) are proportionally related by Hooke’s law,68 

 
 

(2.10) 

The constitutive equation that binds these parameters is given by, 
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(2.11) 

So that, for a solid body, free of residual stresses and within linear-elastic conditions, the 

generalized Hooke’s law is, 

 
 

(2.12) 

Both the stress and strain tensors are second-rank, having nine coefficients each. The 

stiffness tensor, then, would have 81 different components. The latter is true; luckily, the 

non-diagonal elements of the stress and strain tensors are related by symmetry: aij = aji, 

reducing to six independent coefficients in each tensor. There are now 36 values in the 6×6 

stiffness tensor, that can be further reduced as,  

 
 

(2.13) 

bringing the number down to 21 unique coefficients, the most any 3D anisotropic crystalline 

material can have,  

 

 

(2.14) 

These stiffness coefficients are called the Second Order Elastic Constants (SOEC), 

and they are the fundamental units that determine the inherent response of a solid when 

stressed. First-principles computations that use periodic boundary conditions (PBC) assume 

the existence of a single crystal. Thus, all elastic constants can be extracted from ground-

state total energy methods.  
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The tensorial notation is characteristic of crystalline symmetry, as it is very helpful 

in modeling the elastic response of solids in a Cartesian plane. The Voigt (engineering) 

notation is a method that aims to simplify the stress and strain tensors into 6×1 column 

vectors and the stiffness tensor into a square 6×6 matrix. By the combination of the pairs of 

indices as, 

 
 

(2.15) 

This matrix notation is widely used across materials’ science, as it also will be used in this 

text.  

2.5. Symmetry of 2D materials 

There are five distinct types of 2D lattices, Fig. 2.2 summarizes the main characteristics that 

differentiate one lattice-type from another; n-fold rotational symmetry means that rotation by 

360°/n will not change the structure or properties of the lattice. The number of elastic 

constants decreases with increasing order of symmetry. 

 

Figure 2.2. The different 2D lattices. The unit cell appears in the light-colored shade, along with the lattice parameters and 

bond angles. The second panel groups two types of lattices, the simple rectangular and the body-centered rectangular. In 

growing order of symmetry, the number of independent elastic constants reduces. Adapted from Ref. 51. 

The 2×2 infinitesimal in-plane strain tensor is given by,   
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(2.16) 

and in column vector form, 

 

 

(2.17) 

In a 2D crystal, the most anisotropic lattice consists of 6 independent elastic constants, 

 

 

(2.18) 

Notably, the stiffness tensor is discarded from any components in a third dimension, 

this is known as a state of plane-stress.99 The third-dimension components of stress vanish at 

the surface due to the lack of external forces acting in that direction to balance them, more 

so if the specimen is very thin in this direction for stress to build up to an appreciable amount. 

This does not mean that the strain is unaccounted for, as there will be deformation in the 

thickness of the structure. 

The next sections will deal with the cases of the square and hexagonal lattices, as 

these hold interest for the development of this work. The unit cell vectors for the square 

lattice are, 

 
 

(2.19) 

where a0 is the lattice parameter. The primitive cell vectors for the hexagonal lattice are,  

 

 

(2.20) 
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2.6. Infinitesimally Strained 2D materials 

As seen in Section 2.3, the strain energy density function, U(ε), contains the necessary 

information to estimate the physical value of the independent elastic constants in a solid body. 

For a 2D material, a set of small, uniform in-plane deformations of the lattice are performed 

to describe the strain energy function. The applied loading conditions can be seen in Fig. 2.3. 

A biaxial strain (also known as in-plane hydrostatic) produces a change of area in the crystal; 

this deformation occurs in equal parts to both in-plane axial components of the 2D lattice. In 

uniaxial strain, the applied deformation is parallel to an in-plane axis, breaking the initial 

symmetry, and producing the Poisson effect. In shear strain, a volume conserving 

deformation takes place, with the lattice components being strained equally but at opposing 

directions. 

 

Figure 2.3. Infinitesimal strains approach to calculate the elastic constants of 2D lattices.  
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Thus, the infinitesimal in-plane strains on the square and hexagonal lattices are, 

Biaxial 

strain 

 

(2.21) 

square 

lattice 
 

(2.22) 

hexagonal 

lattice 

 

(2.23) 

Uniaxial 

strain 

 

(2.24) 

square 

lattice 
 

(2.25) 

hexagonal 

lattice 

 

(2.26) 

Shear 

strain 

 

(2.27) 

square 

lattice 

 

(2.28) 

hexagonal 

lattice 

 

(2.29) 
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where ξ is the magnitude of the strain. 

In a defined range of infinitesimal strains, the computed curves of deformation allow 

obtaining the strain energy density difference function, ΔU(ε), of Equation 2.9. Plugging in 

for the infinitesimal deformations performed, the corresponding ΔU(ε) are, 

Biaxial 
 

 

(2.30) 

Uniaxial 

 

(2.31) 

Shear 
 

(2.32) 

From the second derivatives of the ΔU(ε) functions, it is possible to isolate and solve 

for the values of the elastic constants. The 3×3 stiffness matrix has been generated, 

 

 

(2.33) 

the conditions of elastic stability for these lattices must meet the following criteria: 

 
 

(2.34) 

 
 

(2.35) 

There is also the Cauchy relation for isotropic solids,124 the expression (c11-c12)=c66 holds 

truth in 2D crystals. As seen in Fig. 2.2, hexagonal lattices have only two independent elastic 
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constants. It is relevant to mention that the elastic constants of 2D materials are measured in 

units of Nm-1, from dividing values of energy over area. These can be converted into 

conventional units of Pascals (Pa), on considering that a component in the third dimension 

(the interlayer spacing) is missing. 

Hooke’s law (Eq. 2.12) states that the proportionality between stress and strain is 

linear under infinitesimal deformations. Therefore, for strain to be a function of stress, 

 
 

(2.36) 

where the inverse of Cij is the compliance tensor, Sij. Which, in terms of the SOECs is, 

 

 

(2.37) 

with Δ= c11
2-c12

2. The relevance of the compliance tensor is that it can also be represented by 

the elastic modulus and the Poisson’s ratio, which are easier to calculate through experiments. 

2.7. Direction-dependent Properties 

The reaction of solid bodies against external forces is dependent, for most symmetries, on 

the direction on which it is measured. The algebraic method to calculate the anisotropic 

response of 2D materials extracts from the doctoral thesis of Cadelano, E.,122 and from the 

Supporting Information outlined in Wang et al.67  

A uniaxial tension, σ, is applied to an arbitrary 2D lattice in the n̂= êx1cos(θ)+ êx2sin(θ) 

direction, where êx1 and êx2 are the orthonormal vectors along the x1 and x2 axis (Fig. 2.4). 

The unit stress tensor along θ is, 

 
 

(2.38) 
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(2.39) 

A traverse vector to n̂ would be in the form of t̂= -êx1sin(θ)+ êx2cos(θ), so that n̂ · t̂ =0. 

 

Figure 2.4. A uniaxial tension is applied at an arbitrary angle (θ) in a 2D lattice. The elastic response of the material is then 

defined by the variation of the components of strain in the compliance tensor, Sij. 

The strain components parallel to (ε||) and perpendicular to (ε⟂) can be described 

accordingly by, 

  

 

(2.40) 

 

 

(2.41) 

 

 

(2.42) 

 

 

(2.43) 
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 From the above equations (2.41) and (2.43) the direction-dependent elastic properties 

for 2D square and hexagonal lattices can be described. The relation for the elastic modulus 

is then given by, 

 

 

(2.44) 

and for the Poisson’s ratio, 

 

 

(2.45) 

where E(θ) is estimated by the ratio of the stress and the produced deformation parallel to the 

incoming force, and ν(θ) is obtained by the negative of the ratio between the traverse and the 

parallel distortions of the solid. In isotropic conditions, the elastic modulus is simplified to, 

 

 

(2.46) 

Similarly, the Poisson’s ratio in isotropic conditions is given by, 

 

 

(2.47) 

2.8. Finite Strains Regime 

Hooke’s law vanishes as the driving force strays from the proportional limit and enters the 

finite-strains regime. In first-principles computations, the ideal tensile strength is estimated 

by deforming the primitive cell in a series of incremental strains while simultaneously 
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relaxing the stress components perpendicular to the in-plane loading conditions. In this work, 

the ideal tensile strength for uniaxial and biaxial directions for the two phases of BeH2 are 

computed.  

The finite-strain vectors of the biaxially deformed 2D lattices are, 

 

 

(2.48) 

where ε is the unitary applied strain. Similarly, at uniaxial loading, the finite-strain vectors 

are, 

 

 

(2.49) 

In Eq. 2.49 strain has been applied in the x1 axis, the same is possible for the x2 axis, 

by switching the location of ε to the lower element of the diagonal. The Poisson effect is 

notable when stretching uniaxially; therefore, it is also necessary to perform several small 

distortions in the direction perpendicular to the applied strain, so that a minimum energy 

configuration for that value of strain can be found. The Poisson’s ratios for uniaxial loading 

conditions can be calculated by, 

 

 

(2.50) 

where εj is the strain in the perpendicular axis, and εi is the strain parallel to the axis of the 

applied loading condition. 

The critical strain will be defined by the maximum value of the stress-strain curve. 

However, instead of only using primitive cells when calculating stress-strain curves, it is 

more convenient to employ supercells. The larger number of components found in supercells 

allow for the sampling of distinct possible structures that are far from the reach of unit cells, 
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due to the large symmetric constraints of the latter. An example of this is the response of 

graphene at equi-biaxial strains. 

The work of Marianetti et al.,89 dealt with the failure mechanism of strained graphene, 

and noticed that a supercell was able to reveal a phase transition before reaching the value of 

the ideal strength. Shown in Fig 2.5, the blue curve projects the strength of the primitive cell 

of graphene, while the red curve displays the response of the larger supercell with the phase 

transition becoming active before reaching its critical strain.  

 

Figure 2.5. Stress–strain curve for the equi-biaxial strain test of graphene. In blue, the values for the primitive cell, and in 

red, the values for a supercell. The inset reveals the values of strain at which the supercell begins to separate, owing to 

instabilities that cannot be registered by the primitive cell. Adapted from Ref. 89. 

2.9. Computational Details  

The Density Functional Theory (DFT) computations reported in this work are based on the 

generalized gradient approximation of Perdew, Burke, and Ernzerhof (GGA-PBE),125 as 

implemented in the Vienna ab initio Package (VASP).126-127 The ion-electron interactions 

were treated using the projected augmented wave (PAW) method128-129 that included  semi-

core states for the Be atom (Be_sv). A converged plane-wave cutoff of 600 eV was adopted 

for all computations.  

For the ground-state and the infinitesimal-strain regime, the self-consistent cycle 

(SCF) would stop once the structure reached the energy convergence criterion of 10-8 eV/cell, 
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enough for optimization of lattice parameters and more precise estimation of the elastic 

constants, and the threshold for interatomic forces convergence during relaxation was set to 

10-6 eV/Å. The sampling of the reciprocal space was first treated as a function of the second 

order elastic constants. The Γ-centered 20×20×1 and 18×18×1 k-mesh grids for the α-BeH2 

and β-BeH2 phases, respectively, were adopted once convergence of the k-point–SOEC 

curves was considered optimal. 

The simulation uses periodic boundary conditions for the two in-plane directions as 

well as the out-of-plane direction. Therefore, the computation will assume an infinite number 

of  individual layers. Thus, a space in the out-of-plane axis of 15 Å was adopted, much larger 

than any other interlayer-spacing known, so that single layers and bilayers can be treated as 

isolated. To account for the weak interaction between layers, Grimme’s DFT-D2130 semi 

empirical correction method was implemented, opted due to the slight systematic 

overestimation of dispersion forces it gives. 

The treatment of local bonding interactions was performed by adopting the projected 

Crystal Overlap Hamiltonian Population (pCOHP) technique as implemented in the Local 

Orbital Basis Suite Towards Electronic-Structure Reconstruction (LOBSTER)131-134 

software. The pCOHP scheme allows to project PAW functions onto localized orbitals and 

apply bond-analytic tools even though the system was brought to self-consistency in a plane 

wave basis, and analyze bonding, anti-bonding, and non-bonding interactions among pairs 

of atoms in the solid-state. Brought forward by Dronskowski and coworkers, COHP is a 

successor to Hughbanks and Hoffmann’s Crystal Orbital Overlap Population (COOP)135 

approach. To perform the analysis, additional 2p basis functions for Be are involved, so that 

absolute charge spilling (that is, the percentage of electronic charge lost during projection) is 

in the 1~2% range. The integrated pCOHP (IpCOHP) value can be considered a measure of 

the bond strength, it is not an exact expression for the bond energy, but a good approximation. 

For the finite-strain regime computations, the SCF cycles of the unit cells stopped at 

the 10-6 eV/cell convergence criterion, their atomic components were relaxed to 10-4 eV/Å, 

and the traverse stress tensor components relaxed to 10-3 GPa. The reciprocal space was 

sampled by Γ-centered 20×20×1 and 18×18×1 k-point meshes for α-BeH2 and β-BeH2, 
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respectively. The fully relaxed DFT unit-cell was then dilated in 1% increments to different 

levels of the applied loading conditions. After the application of each strain increment, the 

deformed structure was relaxed to a minimum energy configuration, while holding cell 

dimensions fixed. Stresses were computed in terms of force per unit area (Nm-1) at the cross-

sectional edges of the simulation cell and represent the true (Cauchy) stress components. 

The energy convergence criterion for the 12 atom 2×2 supercells was set to 10-4 

eV/cell, the interatomic forces were converged down to 10-2 eV/Å, and internal stress tensor 

components to 10-2 GPa. This time the Γ-centered reciprocal grids were accordingly sampled 

by 10×10×1 and 9×9×1 k-point meshes for α-BeH2 and β-BeH2. The mechanical instabilities 

in the 2×2 supercells were predicted by a method similar to that of Isaacs and Marianetti,94 

whereby introducing low randomized displacements (δ≤|4|%) to the atoms composing the 

lattice and breaking the initial symmetry, the structure is left to relax. 

The 27 atom 3×3 supercells were also evaluated. Luckily, every stress-strain curve 

and mechanical instabilities matched with the smaller 2×2 systems, thus, it is unambiguous 

that the mechanical properties of the BeH2 monolayers have been treated with success. 
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3. Ground-state and Linear-elasticity of 2D BeH2  

3.1. Introduction 

Herein, an assessment of the structural parameters and in-plane cohesiveness of both α-BeH2 

and β-BeH2 is first performed. Grimme’s D2130 dispersion correction was used to describe 

the structural stability of the free-standing monolayers for several dimerized configurations. 

Very low interlayer interactions were computed, thus promoting both BeH2 single-layers as 

stable standalone structures. 

The electronic structure of the crystals is also addressed, the computed band-

structures and density of states (DOS) reveal bandgaps of magnitudes in line to previous 

predictions. As well, an inspection on the chemical bond is performed, the projected Crystal 

Overlap Hamiltonian Population (pCOHP)131-134 scheme is adopted to reveal the different 

pairwise bonding interactions of the crystals. The bonding strengths are also computed and, 

together with charge density difference plots, delocalized covalent bonds of high polarity are 

predicted. 

The last segment of this Chapter covers the linear-elastic properties. The stiffness 

tensor of the BeH2 monolayers is determined, and so are their direction-dependent elastic 

modulus and Poisson’s ratio. Evaluating the anisotropy of α-BeH2 to gain insights into the 

conditions of the lattice where auxeticity is displayed. 

3.2. Atomic Structure 

The primitive cell vectors of α-BeH2 and β-BeH2 are respectively, 

 
 

(3.1) 

 

 

(3.2) 
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The internal coordinates of their components are, 

α-BeH2, 

 

 

 

(3.3) 

β-BeH2, 

 

 

 

(3.4) 

The lattice parameter, a0, of α-BeH2 is 2.41Å and of β-BeH2, 2.32Å. Fig 3.1 shows 

the crystal structures of both BeH2 monolayers. Note that the square lattice of α-BeH2 has a 

D2d point group (P-4m2) symmetry arranged in a network of Be centered tetrahedral units 

with H atoms at each extreme, with bond angles, θH-Be-H, of 109.5°; while β-BeH2 has a D3d 

point group (P-3m1) symmetry, with six H first neighbors set in an octahedral (trigonal 

antiprismatic) environment at θH-Be-H = 90.0°±3.15°. 

The predicted bond lengths (r) of the BeH2 monolayers are longer than the theoretical 

values (r = 1.34 Å) of molecular136 and polymeric104 BeH2. The bond length of -BeH2 is 

slightly larger than both values of r for the bulk crystalline phase112 (r = 1.43 Å), and the 

theoretical 2D flat slab116 (r = 1.46 Å), at r = 1.47 Å. -BeH2 has the largest known Be-H 

bond length to date (r = 1.60 Å).30  The monolayers here discussed are not planar, as those 

first proposed by Seel,116 rather, they display out-of-plane distortions of  Δz= 1.68Å and Δz= 
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1.74Å, for the α-BeH2 and β-BeH2 phase, respectively. The computed structural parameters 

of both -BeH2 and -BeH2 are compared with the results by Li et al.,30 in Table 3.1. 

 

Figure 3.1. Crystal structures of a) α-BeH2  and b) β-BeH2. Δz is the out-of-plane distortion (buckling). 

The square lattice is slightly more energetically favored than its hexagonal 

counterpart, with the former being lower in energy by ΔE=35 meV/unit cell. The in-plane 

cohesive energies (Ecoh) were estimated by, 

 

 

(3.5) 

where nx (x = H, Be) is the number of atoms for each element inside the single crystal and Ex 

(x=H, Be) are the energies for the atoms, and Elayer, the energy of each monolayer. The 

predicted values of Ecoh are 2.69 eV/atom and 2.68 eV/atom for α-BeH2 and β-BeH2, 

respectively. The estimated values of Ecoh are in accordance with the reported values of 2.76 

eV/atom by Li et al.,30 these are also discussed in Table 1, where the slight differences arise 

from the exclusion of dispersion correction methods. These values of bond strength are found 

slightly below the theoretical Ecoh of planar hexacoordinate Cu2Si137 (3.46 eV/atom), and of 

black- and blue-phosphorene at 3.30 eV/atom and 3.38 eV/atom each,138 but far from the Ecoh 

of better known 2D materials like graphene (7.91 eV/atom)139 and h-BN (7.07 eV/atom).140       
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Table 3.1. Structural parameters of the BeH2 monolayers. Lattice parameters (a), H-Be bond length (r), out-of-plane 

distortions (Δz), H-Be-H bond angle (θ), energy difference (ΔE), and cohesive energies (Ecoh). 

System Name a (Å) r (Å) Δz (Å) θ (°) 
ΔE 

(meV/cell) 

Ecoh 

(eV/atom) 

α-BeH2  Ref. 29 2.38 1.46 1.68 109.4 14 2.76 

This work 2.41 1.47 1.67 109.5 34 2.69 

β-BeH2  Ref. 29 2.30 1.59 1.75 90.0 - 2.76 

This work 2.32 1.60 1.74 90.0 - 2.68 

3.3. A Free-standing Monolayer 

In this work, the interlayer binding energies of several bilayered BeH2 stacking orders are 

reported for the first time and depicted in Fig. 3.2. The proposed stacking orders for the 

bilayers follow the AA and AB configurations. AA stacking is produced where both layers 

are aligned so that a superimposed image is created, AB stacking has one of the layers shifted 

in-plane by half (one third) a unit cell for α-BeH2  (β-BeH2). Another variant is the mirroring 

image of the stacked bilayers, therefore, the AA’ and AB’ stacking orders are also evaluated. 

In summary, eight bilayered schemes are considered, their binding energies (Ebind) were 

determined using the following equation, 

 
 

(3.6) 

where E2L is the energy of the bilayer, E1L the energy of the free-standing monolayer, and N 

is the total number of atoms contained in the unit cell. A negative Ebind is an indicator of an 

attractive interaction. 
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Figure 3.2. Top views for AA and AB stacking orders of a) α-BeH2 and b) β-BeH2 bilayers, respectively. Lateral views for 

AA and AB stackings of c) α-BeH2 and d) β-BeH2; mirror plane stackings AA’ and AB’ for e) α-BeH2 and f) β-BeH2. In 

dotted red lines, the vertically superposed atoms, the interplanar distance (d0), and the Be-Be atomic distance (rBe-Be). 

The estimated binding energies are shown in Table 3.2. The DFT-D2 computations 

predict that both interlayer (d0) and Be-Be atomic distances (rBe-Be) are shortest in the AA 

stacking order. Hence, the strongest measured interactions for both polymorphs are found in 

the AA configuration, at Ebind 6.36 meV/atom and 8.11 eV/atom for α-BeH2 and β-BeH2, 

respectively. On comparing the obtained Ebind with previous reports on the interlayer 

interactions of graphite at several stacking orders using the same level, PBE/DFT-D2, 

graphene in its least energetically stable stacking order (AA), has an exfoliation energy of 41 

meV/atom.141 
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The obtained binding energies are also in close agreement to the findings of Zhou et 

al.,28 where 110 metallic hydrides ranging across the periodic table were proposed as stable 

2D phases with potential for exfoliation from a bulk precursor. In such work, binding 

energies lower than Ebind < 25 meV/Å2 (calculating the binding energies according to the in-

plane area of the 2D crystal) were reported for the two BeH2 polymorphs, in this convention, 

the binding energies for the BeH2 bilayers here presented are Ebind < 10 meV/Å2; the main 

difference being the choice of dispersion correction method, since the results of Zhou et al., 

adopted the optB88-vdW functional. 

The low energetic interactions between BeH2 layers may promote them as desirable 

materials for tribological applications.64 Besides, the out-of-plane distortions and lattice 

parameters are virtually unchanged from the monolayer configurations. Also, both d0 and rBe-

Be are far from one another to generate any significant interaction. Therefore, it can be 

expected that both polymorphs of BeH2 to be free-standing stable monolayers. 

 

Table 3.2. Structural parameters for the considered BeH2 bilayers. Lattice parameter (a0), buckling (Δz), Be-Be atomic 

distance (rBe-Be), interlayer space (d0) and binding energies (Ebind). 

Stacking 

Order 

α-BeH2 β-BeH2 

a0 

(Å) 

Δz 

(Å) 

rBe-Be 

(Å) 

d0 

(Å) 

Ebind 

(meV/atom) 

a0 

(Å) 

Δz 

(Å) 

rBe-Be 

(Å) 

d0 

(Å) 

Ebind 

(meV/atom) 

Monolayer 2.30 1.69 - - - 2.32 1.75 - - - 

AA “ “ 3.87 2.18 -6.36 “ “ 3.99 2.24 -8.11 

AA’ “ “ 4.50 2.81 -4.04 “ 1.74 4.25 2.51 -6.21 

AB “ “ 4.00 2.31 -4.21 “ 1.75 4.00 2.25 -7.84 

AB’ “ “ 4.39 2.70 -4.22 “ “ 4.25 2.50 -6.26 
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3.4. Electronic Structure and Chemical Bonding  

Earlier works113-114 on the electronic properties of the bulk BeH2 ground-state computed 

forbidden energy gaps of 5.5 eV at the GGA-PBE level, with Be and H electrons mixing in 

the occupied states, signaling covalent bonding. Li et al.,30 after relaxation at the GGA-D2 

approach, also predicted large band gaps of 4.68 eV and 4.88 eV for α-BeH2 and β-BeH2, 

respectively. The BeH2 monolayers do not follow classical chemical bond rules, rather, these 

electron-deficient systems are bonded together by multicentered bonds. The 3c-2e (3 center 

2 electron) bonds in α-BeH2 and 4c-2e bonds in β-BeH2 were considered by Li et al., as 

responsible for the high structural stability of the individual layers.  

 Here, the electronic properties and chemical bonding of the BeH2 monolayers are also 

given interpretation. The computed electronic bandgaps at the GGA-PBE ground-state for α-

BeH2 and β-BeH2 are 4.58 eV and 4.84 eV, respectively; these values are in close agreement 

to earlier predictions. The respective band-structure and density of states (DOS) are presented 

in Figs. 3.3a and 3.4a. The valence band maxima (VBM) and conductance band minima 

(CBM) in α-BeH2 are shown to be along the M→Γ and Γ→X paths, respectively. The VBM 

and CBM of β-BeH2 occur at the Γ→K and M→Γ lines. The large forbidden energy gaps 

may also account for the stability of single layers against strong interactions from other 

layers.  

Bulk BeH2, as discussed by Vajeeston et al.,113 has degenerate Be 2-s and H 1-s states 

in the occupied states energy range with a finite electron distribution between the Be and H 

atoms, reflecting covalent interaction contrary to the heavier ionic alkaline-earth hydrides. 

Moreover, a substantial hybridization of Be p states has also been reported for this 

structure.110 The former is partly attributed to the atomic radii of Be and H being more related 

one another than to the heavier group 2 metals, but also because the outer electronic shells of 

Be and H are closer in energy, allowing for hybridized states. The DOSs of α-BeH2 and β-

BeH2 are also integrated by a wide valence band (Fig. 3.3a and 3.4a), and the electron count 

in the outer shells sums to four, discarding any involvement of the innermost shell. The atom-

projected DOS (pDOS) displays the internal mixing of H and Be states, shown as diffuse 
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curves intertwined for most of the occupied energy levels. The individual contributions of 

the atomic orbitals in α-BeH2 and β-BeH2 are shown respectively in Figs. 3.3c and 3.4c. The 

lower levels of the pDOS diagrams depict the presence mostly of s states of beryllium, and 

to a lower degree, of H and the in-plane p states. As a side note to the reader, the px and py 

states have been merged and renamed as in-plane p states (pip), for ease of interpretation and 

because the information provided individually is the only variant on rotation of the interacting 

contact. On approaching the Fermi level, EF, jagged peaks of Be p and H s states can be 

found. 

However, to get a clearer image of the bonding interactions within the monolayers, 

the projected Crystal Overlap Hamiltonian Population (pCOHP)131-134 technique was 

adopted. Whereas the pDOS provides insight into the probability of finding an electron in an 

atomic orbital as a function of energy, pCOHP enables to evaluate whether the electron is at 

bonding, non-bonding, or anti-bonding state in a given atomic pair. The bonding interactions 

lower the energy of the system, as a convention a negative sign is attached to pCOHP 

functions, so that bonding states remain in the positive values of the plot and anti-bonding 

states on the negative side; non-bonding contributions are valued zero. The integrated curves 

of pCOHP, IpCOHP, up to EF are a measure of the bond strength. The delocalized electrons 

in the valence states of α-BeH2 and β-BeH2 involve multiple overlaps for the Be-H contacts, 

and in lower measure, for neighboring Be-Be pairs as well. 

The -pCOHP scheme finds a total of eight pairwise interactions for a Be atom in α-

BeH2 (Fig. 3.3b), distributed along the four bonding directions of the lattice. The computed 

interactions of the Be-Be and Be-H contacts are shown in Fig. 3.3d and Fig. 3.3e, 

respectively. At the lower energetic levels, Be s states are binding to Be s, pip, and H states. 

On nearing -2 eV, bonding pz states briefly emerge, together with pip contacts to other p and 

H states. The VBM is filled almost completely by in-plane p and H bonding states. 
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Figure 3.3. Electronic structure of 𝛼-BeH2 a) Band structure and DOS with Fermi level assigned at 0 eV, b) Top view of 

the β-BeH2 lattice with the eight interacting contacts of a centered Be atom encircled, lengths (r) for the Be-Be and Be-H 

contacts; c) pDOS, d) and e) -pCOHP of Be-Be and Be-H interactions. 

In β-BeH2, a Be atom has twelve contacts, six of each in alternating order (Fig. 3.4b). 

The bonding character is similar to α-BeH2 in the lower occupied states (Figs. 3.4d and 3.4e), 

Be s states binding to Be s, pip, and H states. Close to the -5 eV level, sharp p bonding states 

arise for both Be-Be and Be-H contacts. The VBM reveals small Be-Be antibonding 

interactions, and also, Be-H bonding peaks involving all available Be s and p states. 
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Figure 3.4. Electronic structure of β-BeH2 a) Band structure and DOS with Fermi level assigned at 0 eV, b) Top view of 

the β-BeH2 lattice with the twelve interacting contacts of a centered Be atom encircled, lengths (r) for the Be-Be and Be-H 

contacts; c) pDOS, d) and e) -pCOHP of Be-Be and Be-H interactions. 

Most of the involved bonding contacts shown in the -pCOHP curves for α-BeH2 and 

β-BeH2 are found in the energy interval from -2 eV to EF. At that same energy range, bonding 

Be-Be interactions vanish, and Be-H contacts reach bonding maxima. The computed 

IpCOHP up to the highest occupied band reveals bond strengths in α-BeH2 of 1.33 eV for the 

Be-Be pairs, and of 2.70 eV for the Be-H bonds, a value similar to the calculated Ecoh of 2.69 

eV/atom in Section 3.2. The computed bond strengths in β-BeH2 are 1.46 eV and 1.80 eV for 

the Be-Be and Be-H pairs, respectively. The IpCOHP values imply that the Be-H bond in α-
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BeH2 is stronger than in β-BeH2. By inspecting Figs. 3.3e and 3.4e, it can be seen that the 

pCOHP curves in α-BeH2 have a larger density of bonding states than those of β-BeH2, 

translating into a greater bond strength when integrated. The shorter Be-H bond lengths in  

α-BeH2 (r = 1.47Å) may be playing an important part in the bond strength, with the longer 

Be-H bonds of β-BeH2 (r = 1.60Å), limiting its bond strength. 

Although the pCOHP technique can only provide measurements for pairwise 

interactions and not many-particle contacts, one can intuitively elaborate a bonding scheme 

by considering the overall bonding states in place; no H-H interacting contacts are registered, 

therefore, H can serve as a starting point. According to the -pCOHP curves of Figs. 3.3 and 

3.4, all pairs of similar natures share the same bonding scheme. Hence, in α-BeH2, the charge 

is split in equal parts for an H atom with two neighboring Be atoms, and for each Be atom 

paired to 4 H atoms, its charge also splits uniformly. The result is a tri-atomic cloud with an 

electron density of 2e. For β-BeH2, H has three Be neighbors, and these have a total of six H 

contacts. The binding enclosure forms a tetra-atomic region with an electron population of 

2e. 

The charge density difference technique allows visualizing how the electrons in a 

compound move with respect to a starting position. From the overlapping free atomic (o.f.a.) 

orbitals to the charge densities in a constituted solid, it is possible to gain insight on the 

chemical bond occurring in the material. The charge density difference, Δρ, can be extracted 

from,  

 
 

(3.7) 

where ρcomp is the charge density of the compound once the SCF cycle has converged.  

The charge density difference maps of Fig. 3.5 reveal the electronic concentration in 

α-BeH2 and β-BeH2. The minimum values of the scale in white reveal the zones depleted of 

charge (Figs. 3.5a and 3.5b) belonging to the Be atoms. The darkened areas have a higher 

charge density (Figs. 3.5c and 3.5d) and show that the electronic charge is concentrated 

mainly around the H nuclei, but also, that the produced covalent interactions do not follow 
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the 2c-2e convention. As Li et al.,30 have proposed, the chemical bond of the BeH2  

monolayers is described by the formation of multicentered bonds. From Figs. 3.5c and 3.5d, 

and gathering from the above IpCOHP analysis, a 3 center 2 electron (3c-2e) “banana bond”, 

with two Be atoms and one H atom, is generated in -BeH2; as for -BeH2, a 4c-2e bond 

with one H atom and three Be atoms leasing most of their electron density, is best described. 

 

Figure 3.5. Charge density difference in the (100) plane at Δz=0 Å for  a) α-BeH2, and b) β-BeH2 ; and at Δz=0.84 Å for c) 

-BeH2, and Δz=0.87 Å for d) -BeH2. The areas in lighter shade mark the zones depleted of charge, while the darker zones 

reflect the parts where the charge is most concentrated. 

3.5. Linear-elasticity 

After validation of the individual stability of the BeH2 monolayers, their response at small 

strains is revised. The stiffness tensor is estimated by deforming the lattice at small steps of 

ε=0.002, within a linear-elastic limit of εij ≤  ±0.02. The number of elastic constants is defined 



 

51 

 

by the symmetry of the 2D lattice, for that matter, there are three independent elastic 

constants for α-BeH2 and two for β-BeH2. In Fig. 3.4, the small strain curves for the applied 

deformations in both monolayers are plotted. 

 

Figure 3.6. Small strain curves for a) α-BeH2 and b) β-BeH2 with a least-squares polynomial fit to obtain the strain energy 

density difference functions. 

Least-squares polynomial fitting is performed to draw a curve that will become the 

strain energy density difference function, ΔU(ε). The stiffness matrix of α-BeH2 and β-BeH2 

can now be generated as seen in Section 2.6. The values of the calculated SOECs together 

with the isotropic elastic modulus and Poisson’s ratios can be found in Table 3.3, where these 

are compared to previous reports.  

Table 3.3. Elastic properties of the BeH2 monolayers. The SOEC and elastic moduli together with the values in the literature. 

System Name 
c11 

(Nm-1) 

c12 

(Nm-1) 

c66 

(Nm-1) 

E 

(Nm-1) 
𝜐 

α-BeH2  Ref. 30 62.24 -11.84 8.21 59.98 -0.19 

This work 61.06 -10.29 10.45 59.33 -0.17 

β-BeH2  Ref. 30 84.97 13.98 35.50 82.67 0.16 

This work 81.38 15.19 33.09 78.54 0.19 
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The elastic stability criteria from Section 2.6 have been met, 

α-BeH2, 61.062 + (-10.29)2 > 0,    8.21 > 0, (3.7) 

β-BeH2, 81.382 + 15.192 > 0,    33.09 > 0. (3.8) 

In this work, a limit of 2% was set as the defining linear-elastic limit; however, the 

infinitesimal-strains regime was computed up to 5% deformation, since the reported elastic 

constants in the literature,30 have no mention of the percentage to which these were estimated. 

Second- to fifth-order polynomial fitting was addressed, assessing the error margin between 

each term of the fitted curve, cautious to avoid overfitting. The literature, also, mentions the 

use of dispersion correction methods in their computations, reducing the lattice parameter 

and increasing cohesiveness, as seen in Section 3.2.  

The careful computations for the values of the elastic constants in this work were 

done until convergence with the values of cutoff energy and k-points grid was definite. The 

adaptation of semi-core pseudopotentials which involve the 1s electron shell of Be was also 

considered, no change in the total energies with respect to the pseudopotential with a frozen 

core was seen, in turn, the calculated values of the elastic constants show no variation. The 

adoption of dispersion forces was also addressed, nevertheless, while most elastic constants 

did match to a low percent of error, ca. ~1%, the error margin for c66 in α-BeH2, compared 

to the literature, was always overestimated by at least ~10%. 

The values of the elastic modulus for both BeH2 single layers fall short compared to 

better known 2D crystals like graphene (340 Nm-1), h-BN (278 Nm-1) or MoS2 (120 Nm-1), 

but can be more relatable to more compliant materials like phosphorene20 (89 Nm-1 zigzag, 

25 Nm-1 armchair). A negative value for c12 in α-BeH2 yields a negative in-plane Poisson’s 

ratio in isotropic conditions, it is not yet known if the auxetic behavior is valid at every 

direction. Therefore, to have a clearer grasp on the conditions that will allow α-BeH2 to 

exhibit auxeticity, its anisotropic response must be evaluated. 
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The resulting direction-dependent properties are projected in polar plot form (Fig. 

3.6), and the calculated values are resumed in Table 3.4. β-BeH2, in its hexagonal lattice, 

confirms its status as an isotropic material, its mechanical properties are invariant to the 

direction they are measured. On the other hand, the square lattice of α-BeH2 reveals an 

interesting anisotropy. 

 

Figure 3.7. Be-centered monolayer perspectives and polar plots of the direction-dependent mechanical properties for α-

BeH2 and β-BeH2. The NPR in α-BeH2 is expressed only in the directions parallel to the Be-H bonds. The Be-H bonds of 

β-BeH2 are invariant to the direction which they are infinitesimally stretched. 

Table 3.4. Direction-dependent mechanical properties of α-BeH2 and β-BeH2. 

System Name E (Nm-1) 𝜐 

α-BeH2 at 0° (45°) 59.33 (29.62) -0.17 (0.42) 

β-BeH2  78.54 0.19 

Due to the 4-fold symmetry of α-BeH2, the pattern will repeat at every quadrant of 

the plot. The Poisson’s ratio is a very specific property, as it will be negative only in narrow 
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strips parallel to the directions of the Be-H bonds. For all other regions, the Poisson’s ratio 

is a large positive value, with a maximum at the diagonal of the lattice (45°). In all, the 

Poisson’s ratios of α-BeH2 arrive at a wonderful petal flower figure.  

Likewise, the elastic modulus is also affected by direction. A minimum E is predicted 

in the diagonals, this is important due to the elevated contraction rate and low resistance of 

the monolayer in these directions. Since E has a maximum value in the directions parallel to 

where ν is negative, a stiffer response of the crystal is expected. These remarks are in line 

with the theory on auxetic solids that emphasize enhancement of stiffness in the directions 

where negative Poisson’s ratios are found.10-11 Other 2D materials that have also expressed 

in-plane auxeticity and documented this behavior are δ-phosphorene,75 B-graphane,80 B4N,82 

and Be5C2.
141 
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4. 2D BeH2 under Large Deformations 

4.1. Introduction 

No current precedent is known of studies that consider the BeH2 monolayers under 

large deformations. In this Chapter, the structural behavior, and the mechanical response of 

2D BeH2 under tensile strains are reported for the first time. Therefore, the finite-strains 

regime is explored by inducing  biaxial and uniaxial tensile strains. Having in α-BeH2, as 

seen in its polar plots, two main uniaxial paths of interest, along the axis and the 45° diagonal 

directions. Whereas the chiral directions of β-BeH2, zigzag and armchair, are also evaluated.  

By performing small progressive strains to the unit cells, it is possible to compute the 

ideal tensile strengths. However, before rushing into conclusions, one must also make certain 

that mechanical instabilities are also considered, as the lattice may very well fall into a plastic 

deformation that will cause a phase transition or failure of the structure before the critical 

strain is reached. Since unit cells are constrained to a reduced space, few degrees of freedom 

are allowed for their components to relax properly at extreme conditions. For that, the 

straining process is repeated, but this time involving a larger structure with more components 

in the lattice, a 2x2 supercell is adopted.  

The stress-strain curves have calculated the mechanical response of the BeH2  

monolayers under large deformation, they have predicted them as soft 2D crystals, with the 

α-BeH2 phase as a material of superior elasticity, for every loading condition evaluated; while 

β-BeH2 has revealed to fail at short strains. α-BeH2 is also interesting due to its negative 

Poisson’s ratio, a more in-depth analysis to the structural changes that occur with deformation 

of the structure have given light into describing the behavior that produces this phenomenon. 

In all, the BeH2  polymorphs are exciting materials for their use in mechanical applications. 
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4.2. Structural Analysis 

The bond lengths (rBe-H) and bond angles (θH-Be-H) of α-BeH2 and β-BeH2 at the ground-state 

do not change with respect to the direction they are measured. Nonetheless, when straining 

the lattice at specific directions, the parameters will behave accordingly to the conditions of 

the load exerted on them. Here, two bond lengths, r1 and r2, are contemplated for α-BeH2 

(Fig. 4.1a) and for β-BeH2 (Fig. 4.1b).  

In α-BeH2, the r1 bonds are parallel to the x1 axis, and the r2 bonds are found parallel 

to the x2 axis. There are four bond angles considered in α-BeH2, the θ1 and θ2 bond angles 

are each colinear to the r1 and r2 bonds, generating hinges parallel to the x1 and x2 axes, 

respectively. The θ3 and θ4 bond angles sit at the meeting points of r1 and r2 bonds, completing 

the coordination tetrahedra of α-BeH2.  

In β-BeH2, the r2 bonds will be taken as parallel to the x2 axis (the armchair direction), 

while r1 bonds are found along the zigzag directions of the lattice. Three bond angles were 

considered in β-BeH2, the θ1 bond angle binds together two r1 bonds running through the 

zigzag direction. The θ2 and θ3 angles are found at the sitting points of r1 and r2 bonds, with 

θ2 merging an r2 bond and a first-neighbor r1 bond, while θ3 groups together an r2 bond with 

a second-neighbor r1 bond. 

 

Figure 4.1 The ground-state structures of a) α-BeH2 and b) β-BeH2. The bond lengths (r) and bond angles (θ) are shown. 
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4.3. BeH2 Under Biaxial Tensile Strain 

The biaxial tensile strain, as mentioned in Chapter 2, is an isotropic in-plane 

deformation of the lattice. From loading a crystal in this condition, it is possible to gain 

insight into the mechanical properties that the solid will reveal, while keeping a number of 

variables controlled (like perpendicular strain).  

Under large deformations, Eq. 2.48 determines the deformed lattice vectors to 

evaluate this loading condition. In Fig. 4.2, the changes in structural parameters like the out-

of-plane resultant strain, bond lengths and the bond angles of the in-plane biaxially strained 

BeH2 monolayers are addressed. These values measure until a state of mechanical instability 

in the lattice is reached.  

The out-of-plane resultant strain measures the changes produced in the thickness of 

the lattice. Of note, the scale at which these deformations occur, in α-BeH2 the resultant strain 

is about eight times that of β-BeH2, this drastic reduction in the thickness of α-BeH2 can be 

regarded as a flattening of the layer (Figs. 4.2a and 4.2b). The biaxial strain affects both bond 

lengths at the same rate, since the load is applied at  all directions of the plane, thus obtaining 

the overlapped curves of Figs. 4.2c and 4.2d; all four curves of bond lengths reach a value 

close to 1.68 Å. The bond angles of interest for α-BeH2 (Fig. 4.2e) and β-BeH2 (Fig. 4.2f) are 

also shown. In α-BeH2, the angles θ1 and θ2 are indistinguishable from each other, as also 

happens with θ3 and θ4. In β-BeH2, this also happens for θ1 and θ2. Thus, for both monolayers, 

only θ1 and θ3 are needed. 

The applied tension on α-BeH2 creates a stretch of the bonds, r1 and r2, opening the 

bond angles parallel to the deformation, θ1, and θ2. In consequence, the bond angles found 

perpendicular to the strain, θ3 and θ4, are reduced. The overall effect is a flattening of the 

layer, as seen in the resultant strain Figures 4.2a and 4.2b. Biaxial tension in β-BeH2 delivers 

a similar picture, a stretch of the bond lengths r1 and r2 opens the θ3 bond angle; the effect of 

said opening will force the angles θ1 and θ2 to become narrower.  
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Figure 4.2. Structural deformations (out-of-plane resultant strain, ε⊥; bond length, r; change in bond angles, Δθ) of α-BeH2 

and β-BeH2 under biaxial tensile strain until phase transition (εt). 

The resistance against biaxial strains for α-BeH2 and β-BeH2 was computed, and their 

respective stress-strain curves have been calculated into Fig. 4.3, and Fig. 4.4, respectively. 

The elastic modulus of α-BeH2 is E= 46.70 Nm-1, the stiffness in this direction is slightly 

lower than the value predicted for the infinitesimally strained lattice. The computed ideal 

strength under biaxial strain is of 6.30 Nm-1, at a critical strain of 0.47. To validate the values 

for the primitive cell, supercells were adopted. A phase transition is predicted to occur at a 
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maximum strain of 0.33, with a strength of 5.99 Nm-1. The values of strain that this phase 

can bear suggest mechanical flexibility superior to most 2D materials. 

 

Figure 4.3. Stress-strain curves for α-BeH2 under biaxial tensile strain and plastically deformed structure. E is the 

infinitesimal elastic modulus, the blue curve is the calculated curve with a primitive cell, and in red, the calculated curve of 

a supercell. 

The elastic modulus of biaxially strained β-BeH2 is 88.47 Nm-1, a stiffer response 

than when infinitesimally strained. The computed ideal strength is of 10.57 Nm-1, at a critical 

strain of 0.35, revealing greater resistance to load than the ideal strength of biaxially strained 

α-BeH2. However, phase transitions were predicted to occur at strains of 0.08 and strengths 

of 5.71 Nm-1. These results show a drastic deviation from the computed values for critical 

strains, limiting the potential flexibility of the structure. The calculated values from the stress-

strain curves of α-BeH2 and β-BeH2, together with the out-of-plane distortion and bond 

lengths before undergoing phase transitions, can be found in Table 4.1. 
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Figure 4.4. Stress-strain curves for β-BeH2 under biaxial tensile strain and plastically deformed structure. E is the 

infinitesimal elastic modulus, the blue curve is the calculated curve with a primitive cell, and in red, the calculated curve of 

a supercell. 

Table 4.1. α-BeH2 and β-BeH2 under biaxial strain. The elastic modulus (E), the critical strains (εc) and the ideal strength 

(σc); together with the maximum strains (εt) and strengths (σt), out-of-plane distortions (Δz), and bond length (r) before phase 

transitions 

System name E (N/m) εc σc (N/m) σt (N/m) εt Δz (Å) r(Å) 

α-BeH2 46.70 0.47 6.30 5.99 0.33 0.93 1.68 

β-BeH2 88.47 0.35 10.57 5.71 0.08 1.68 1.68 

4.4. 2D BeH2 Under Uniaxial Tensile Strain 

The anisotropy of α-BeH2, as seen by the polar plots of Section 3.5, highlights two paths of 

interest for uniaxial tension to be applied. Here, tension parallel to the x1 axis  will be labeled 

as axial, while at an angle of 45°, it will be named as the diagonal direction. The lattice 

vectors to apply a uniaxial tensile strain (Eq. 2.49) in diagonal α-BeH2 are given by, 

 

 

(4.1) 
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Similarly, the chirality of β-BeH2 distinguishes two principal orientations, the zigzag and 

armchair directions, both taken into consideration. 

The deformation in the lattice parameters with respect to the applied uniaxial strain 

of α-BeH2 and β-BeH2 is shown in Fig. 4.5. The expected behavior is for these to decrease 

virtually monotonically as strain progresses, as a sign of traverse contraction; as happens 

with the rate of change for the uniaxial distortions of β-BeH2 (Figs. 4.5b and 4.5c). However, 

axial α-BeH2 does not follow this logic (Fig. 4.5a), an increment of the in-plane transverse 

direction is registered, an indicator of auxeticity. In this direction, a maximum expansion of 

4% is predicted, preserving its auxetic behavior until the point of instability. Strained 

diagonal α-BeH2, (Fig. 4.5c), denotes a reversal of behavior in the thickness of the monolayer 

mid-strain, transitioning into out-of-plane auxeticity and recovering most of the original 

buckling before failure. Diagonal α-BeH2 also undergoes an in-plane traverse compression 

of 13%, indicating a substantial contraction in the direction perpendicular to the applied 

strain, in line to its calculated infinitesimal in-plane Poisson’s ratio. 

From the traverse strains for the uniaxially loaded BeH2 monolayers, the Poisson’s 

ratios are calculated from Eq. 2.50 and shown in Fig. 4.6. The Poisson’s ratios as functions 

of the applied strain for the in-plane axial and out-of-plane diagonal directions of α-BeH2 are 

shown in Fig. 4.6a. In diagonal α-BeH2, the calculated Poisson’s ratios range from 0.32< 𝜐 

<-0.27, at an almost constant decrement. The transition into auxeticity is computed close to 

0.75 of the normalized strain, and the Poisson’s ratio continues to drop until reaching failure. 

Strain in the axial α-BeH2 does reveal auxeticity, the slope of the curve progressively 

decreases until stagnation in the rate of change is computed halfway into the applied strain.  

 



 

62 

 

 

Figure 4.5. Resultant strains until phase transition (εt) for the uniaxial distortions of α-BeH2 in the a) axial and c) diagonal 

directions, and for β-BeH2 in the b) zigzag and d) armchair directions. 

Figure 4.6b depicts the in-plane Poisson’s ratios for the zigzag and armchair 

directions of uniaxially strained β-BeH2. The calculated traverse deformations reveal a 

marked difference in the response of the directions in the solid when strained; hence, when 

measured individually, the anisotropy ensues. Straining in the armchair direction exhibits a 

greater opposition to deformation than in strain in the zigzag direction. This markedly 

different response gradually heightens as loading progresses. The Poisson’s ratio in the 

zigzag direction increases with applied strain, so does the armchair direction for a short 

period of strain. After a sharp increase in its Poisson’s ratio, the following steps reveal a 

steady decline in the rate of traverse contraction. The anisotropy of β-BeH2 exhibits a 

compliant direction (zigzag) and a stiffer one (armchair). Albeit these conditions might be 

too specific, they are helpful in understanding the overall mechanical behavior displayed by 

this polymorph. 
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Figure 4.6. Poisson’s ratios until phase transition (εt) for a) α-BeH2 in the out-of-plane diagonal (yellow) and in-plane axial 

(blue) directions, and of b) β-BeH2 in the in-plane zigzag (green) and in-plane armchair (red) directions. 

A change in the magnitude of the cell inevitably alters its internal structure. The 

elastic bond lengths (Fig. 4.7), reveal that the equivalence of r1 and r2 does not hold for 

applied tension in a single axis, save for the diagonal α-BeH2 direction of (Fig. 4.7c). For 

loads at 45° in α-BeH2, the applied strain is equivalent in the two in-plane axes, therefore, r1 

and r2 are distorted at equal rates. Figs. 4.7a, 4.7b and 4.7d display an increase in the bond 

length parallel to the direction of the applied strain, and while the perpendicular component 

is minimized in zigzag BeH2 (Fig. 4.7b), Figures 4.7a and 4.7d show no significant change 

in their magnitudes throughout deformation. 
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Figure 4.7. Bond lengths until phase transitions for the uniaxial distortions of α-BeH2 in the a) axial and c) diagonal 

directions, and for β-BeH2 in the b) zigzag and d) armchair directions. 

Previously, in Section 4.2, a maximum bond length was estimated for both biaxially 

strained α-BeH2 and β-BeH2 before reaching phase transitions, at r=1.68 Å. The predicted 

bond lengths at the mechanical instabilities for most of the computed uniaxial deformations 

approach the same value of rpt ≈1.68Å. Arguably, it can be inferred that this is a critical value 

for bond lengths before the material undergoes an instability. The newly defined value of rpt 

is closer to the values of r for β-BeH2 than it is for the bond length of α-BeH2. Therefore, the 

initial difference in bond lengths in both unstrained α-BeH2 and β-BeH2 can be linked directly 

to the magnitude of strain that these crystals can ultimately withstand. 

There is another unclear issue, and that is to find the reason for the unchanged bond 

lengths in r2 in both strained axial α-BeH2 and armchair β-BeH2. The answer might be hidden 

within another parameter of the crystals, Fig. 4.8 shows the change in the bond angles with 
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respect to uniaxial tensile strain. In axial α-BeH2, three bond angles are independent, these 

being the angles collinear with the axes, θ1 and θ2, and a third more in θ3 (equal to θ4). For 

diagonal α-BeH2, three angles are also independent, but these are θ3, θ4 and θ1 (equal to θ2). 

In β-BeH2, all three considered angles are independent of each other. 

 

Figure 4.8. Bond angle changes until phase transition for the uniaxial distortions of α-BeH2 in the a) axial and c) diagonal 

directions, and for β-BeH2 in the b) zigzag and d) armchair directions. 

Strain in zigzag β-BeH2 is easy to understand, as r1 is stretched, θ1 is narrowed, the 

other bond angles are seemingly unaffected, as r2 contracts it compensates for the change in 

r1. In armchair β-BeH2, however, tension stretches r2, narrowing θ2, but the effect is countered 

by widening of θ3, leaving θ1, and ultimately r1, unaltered.  

In diagonal α-BeH2, the applied strain stretches r1 and r2 at an equal rate, hence, θ1 

and θ2 also change in the same proportion (Fig. 4.8c); the increase of θ1 is associated with 
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the flattening of the layer when strained. The angle θ4 is found parallel to the direction of the 

strain, thus it will contract as the stretch increases, and θ3 will expand as it is found at the 

opposing end. 

Fig. 4.9 depicts three stages of strain for diagonal α-BeH2, where strain is applied 

horizontally, parallel to the projected images of the BeH2 systems. As the applied strain 

continues to distort the structure, bond lengths gradually increase, separating the atoms 

equidistantly, the initial stretch will produce a thinning of the buckling, slightly flattening the 

monolayer. At a stage where θ3 starts to diverge from θ1, the out-of-plane distortion stops 

reducing its thickness. θ3 acts as the opening hinge mechanism, and as it widens and the bond 

lengths increase, the out-of-plane NPR phenomenon is produced. A known case of transition 

into auxeticity is graphene,78-79 in which transition occurs at a ε≈0.06 for the armchair 

direction; in diagonal α-BeH2, this transition has been calculated at ε≈0.18. The failure stage 

does not have a bond length similar to the estimated value of rpt. Instead, its mechanical 

instability can be linked to the value of θ4, as this angle decreases until measuring 90.6º, 

generating much stress in the stability of the tetrahedral unit.  

 

Figure 4.9. The out-of-plane NPR transition in diagonal α-BeH2. a) At equilibrium; b) at the thinnest predicted out-of-plane 

distortion; c) at the maximum value of strain before phase transition occurs. 

For axial α-BeH2, the tension parallel to x1 increases r1, opening the θ1 angle; the 

effect produced by stretch lowers the buckling height, seen by a negative out-of-plane 

deformation and narrowing of θ3, effectively flattening the layer. However, the direction 

perpendicular to the strain expands while r2 remains virtually unaffected through all the 
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deformation process; this is tempered by a widening of θ2, arriving at the predicted NPR 

effect. 

Fig. 4.10, depicts the evolution of auxeticity for axial α-BeH2, the ground-state is 

presented in the Figures to the left and the state before mechanical instability is shown to the 

right. At the initial setup, the bond lengths (rng, n=1,2) and bond angles (θng, n=1,2,3,4) are 

equivalent. As strain is applied in a direction parallel to the bonds, the bond lengths (r1t) and 

the bond angles (θ1t), will increase and expand the lattice. At conditions approaching failure, 

the traverse bond lengths (r2t) are virtually unaffected, however, the bond angles 

perpendicular to the applied load (θ2t) will increase, reducing the out-of-plane distortion 

(Δzt), and effectively flattening the monolayer; expanding this side of the monolayer as well. 

The NPR phenomenon here reported is reminiscent of the observed cases for the re-entrant 

foam of Lakes12 as well of phosphorene,13-14 where orthogonal hinges will expand at applied 

tension. Very likely, the NPR is intrinsic to this type of symmetry, which may soon enrich 

the number of viable auxetic materials. 

 

Figure 4.10. α-BeH2 at (left) the ground-state, and (right) before inducing the phase transition in the axial direction. The 

bond angles traverse to the applied strain (θ2t) will expand, opening the orthogonal hinges and flattening the monolayer, 

triggering the auxetic response. 
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The computed elastic modulus and in-plane Poisson’s ratios for axial α-BeH2 are 

55.58 Nm-1 and -0.17, while for diagonal α-BeH2 these are 30.12 Nm-1 and 0.42, in line with 

the calculated values of Chapter 3. The stress-strain curves of axial α-BeH2 are presented in 

Fig. 4.11, the predicted ideal tensile strength in this direction is of 9.94 Nm-1 at a critical 

strain of 0.57. Phase transitions are expected to occur at strains of 0.31 and strengths of 8.60 

Nm-1, undermining the critical strain almost by half. 

 

Figure 4.11. Stress-strain curves for α-BeH2 under tensile strain in the axial direction and plastically deformed structure. E 

is the infinitesimal elastic modulus, the blue curve is the calculated curve with a primitive cell, and in red, the calculated 

curve of a supercell. 

The stress-strain curve for the diagonal direction of α-BeH2 is shown in Fig. 4.12, the 

ideal strength is of 15.83 Nm-1 and the critical strain, 0.52. However, the mechanical 

instabilities are expected to occur at values of 0.29 and 10.14 Nm-1, for the strain and stress, 

respectively. The more compliant direction also resulted as the more resistant to stresses, 

perhaps this can be attributable to the out-of-plane NPR transition at ε≈0.18, which sees the 

Poisson’s ratio decrease until a mechanical instability is reached. 
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Figure 4.12. Stress-strain curves for α-BeH2 under tensile strain in the diagonal direction. E is the infinitesimal elastic 

modulus, the blue curve is the calculated curve with a primitive cell, and in red, the calculated curve of a supercell. 

Table 4.2 puts together these computed properties, together with the traverse strains, 

the out-of-plane distortions and bond lengths at the mechanical instabilities. The structure 

remains stable until deformations close to 30%, these calculated values of deformation are 

slightly higher than the critical strains of graphene6 in the armchair (27%) and MoS2
93 zigzag 

(23%) directions. Overall, this is a very interesting crystal, as its flexibility is superior to most 

known 2D materials,44 together with its bidirectional auxeticity make it a desirable candidate 

for strain involving applications. 

Table 4.2. α-BeH2 under strain in the axial and diagonal directions. The elastic modulus (E), critical strains (εc) and ideal 

tensile strengths (σc); together with the maximum strains (εt) and strengths (σt), the in-plane traverse strains (ε⊥ ip), out-of-plane 

distortions (Δz), and bond lengths (r) before phase transitions. 

α-BeH2, 

direction 
E (N/m) εc σc (N/m) εt σt (N/m) ε⊥ip 

Δz 

(Å) 
r (Å) 

axial 55.58 0.57 9.94 0.31 8.60 0.04 1.33 1.67 

diagonal 30.12 0.52 15.83 0.29 10.14 -0.13 1.65 1.57 
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In turn, the elastic modulus and Poisson’s ratio for β-BeH2 in the zigzag direction are 

of 72.41 Nm-1 and 0.18, while in the armchair direction, these are 73.68 Nm-1 and 0.12. 

Where the armchair direction is slightly stiffer than the zigzag direction, with a higher elastic 

modulus but a lower Poisson’s ratio. The calculated stress-strain curve for zigzag β-BeH2 is 

shown in Fig, 4.13, the ideal tensile strength is 7.12Nm-1, at a critical strain of 0.24. But 

mechanical instabilities are expected to occur on exceeding strains of 0.09, and strengths of 

4.97 Nm-1. This trend repeats when straining in the armchair direction as well, the strain-

stress curve of Fig. 4.14, reveals an ideal tensile strength of 7.43 Nm-1, and a critical strain 

of 0.22. These would be undermined by phase transitions occurring at strains of 0.09, and 

strengths of 5.21 Nm-1. The anisotropy in β-BeH2 is not as heightened when the crystal 

reaches its mechanical instabilities. The failure strains of each chiral direction are found at 

9%, in close proximity with the biaxial strain, and the failure strengths reveal the armchair 

direction to be the more resistant, only by a slight margin. 

 

Figure 4.13. Stress-strain curves for β-BeH2 under tensile strain in the zigzag direction and plastically deformed structure. 

E is the infinitesimal elastic modulus, the blue curve is the calculated curve with a primitive cell, and in red, the calculated 

curve of a supercell. 
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Figure 4.14. Stress-strain curves for β-BeH2 under tensile strain in the armchair direction and plastically deformed structure. 

E is the infinitesimal elastic modulus, the blue curve is the calculated curve with a primitive cell, and in red, the calculated 

curve of a supercell. 

These parameters are condensed in Table 4.3, together with the traverse strains, the 

out-of-plane distortions and bond lengths at the mechanical instabilities. The larger initial 

bond lengths in β-BeH2, together with the computed bond strengths (Sect. 3.4) that revealed 

weaker Be-H contacts in β-BeH2 (1.80 eV/atom) than in α-BeH2 (2.70 eV/atom), could be 

indicators of the predicted failure at short strains for this solid. Not many 2D materials are 

known with low failure strains, which may open a new niche of applications. 

 

Table 4.3. β-BeH2 under strain in the zigzag and armchair directions. The elastic modulus (E),  the critical strains (εc) and 

ideal tensile strengths (σc); together with the maximum strains (εt) and strengths (σt), the in-plane traverse strains (ε⊥ip), out-of-

plane distortions (Δz), and bond lengths (r) before phase transitions. 

β-BeH2, 

direction 
E (N/m) εc σc (N/m) εt σt (N/m) ε⊥ ip 

Δz 

(Å) 
r (Å) 

zigzag 72.41 0.24 7.12 0.09 4.97 -0.02 1.71 1.71 

armchair 73.68 0.22 7.43 0.09 5.21 -0.01 1.70 1.67 
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With graphene setting the gold standard in terms of strength (42 Nm-1) and stiffness 

(340 Nm-1) for 2D materials. The maximum strength output for any of the tested directions 

of the BeH2 monolayer is only a mere fraction of the breaking strength of graphene. The α-

BeH2 polymorph has been predicted to be more resistant to forces than β-BeH2, with biaxial 

loading as the most resistant direction in β-BeH2 (5.71 Nm-1), not as strong as the softer 

direction of α-BeH2 (5.99 Nm-1), also, biaxial loading. Other 2D materials of relatable 

strengths are black-phosphorus95 with a tensile strength in the zigzag direction of 8.88 Nm-1, 

and blue-phosphorus,142 with predicted strengths of 7.06 Nm-1 (zigzag) and 6.72 Nm-1 

(armchair). 

Heavier group 14 and 15 allotropes reveal lower strengths, reasonably due to 

weakening of their bonds as the atomic radii and, in consequence, their bond lengths grow 

larger. The group 14 2D monochalcogenides,76 also have strengths akin to the BeH2 

monolayers, the stronger of them, GeS, displays an ideal strength of 5.12 Nm-1 in the zigzag 

direction, much like the armchair direction of β-BeH2. These puckered lattices reveal out-of-

plane auxeticity and are very flexible monolayers, with SnSe owning a critical strain of 63% 

when strained in the armchair direction. Albeit, these computations are performed on unit 

cells, therefore, they do not account for the mechanical instabilities. 
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Summary 

Herein, the computational results of the stability and mechanical properties of the 2D BeH2 

monolayers are presented. The ground-state and the linear elastic properties have been 

validated with the reports in the literature. On pairing bilayers at several stacking orders and 

calculating their interlayer interactions, the stability of the monolayers was assessed. Weak 

binding energies and large interlayer distances were computed, promoting these 2D crystals 

as stable free-standing monolayers of prospective lubricity.  

The electronic properties have been estimated, predicting large band gaps that 

corresponded to the values in the literature. The chemical bond was also examined, the pDOS 

and pCOHP approaches signal the existence of delocalized bonding states throughout the 

valence bands, which translate to bonding contacts of both Be-Be and Be-H pairs. The 

computed bond strength for the Be-H contacts is greater in α-BeH2. These interactions 

produce strong multicentered bonds, which develop surrounding the H atoms, as the literature 

reports. 

After determination of the stiffness tensors, the direction-dependent elastic properties 

were computed. The anisotropy of α-BeH2 delivered interesting results, as regions of large 

positive Poisson’s ratios (PPR) were predicted. In accordance with the theory on auxetic 

solids, an NPR provides reinforcement to the elastic modulus.  

The mechanical instabilities for uniaxial and biaxial strain directions were computed, 

the results give insight into the high flexibility of the crystals. The supercell method was 

adopted to predict the phase transitions in the same directions that computed the ideal tensile 

strengths. The newfound maximum strains reveal that α-BeH2 has superior flexibility in 

comparison to most 2D materials. On the other hand, β-BeH2, reveals phase transition at low 

strains, which might have in itself interesting applications.  

The maximum strengths in both monolayers are of similar magnitudes, not as large 

as graphene or h-BN, but similar to black-phosphorus or silicene. The changes in the 

parameters of the monolayers against tension were also assessed.  
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A critical value for the bond length was estimated, as well as an interpretation of why 

one polymorph is more flexible than the other. The bidirectional auxetic behavior of the α-

BeH2 phase has been elucidated. 

An out-of-plane transition into auxeticity has been revealed for the first time in α-

BeH2 strained in the diagonal direction. An opening hinge mechanism in the angle that binds 

atoms at opposing ends, together with equivalently increasing bond lengths begin to 

dominate and produce the out-of-plane NPR effect. 

The in-plane auxeticity can be explained by an opening of the bond angle that is 

perpendicular to the direction of the applied strain, while keeping the traverse bond lengths 

virtually unchanged, thus flattening the layer, and producing the in-plane NPR effect.  

Other 2D materials with this symmetry are very likely also to exhibit an in-plane 

NPR, and if conditions allow it, an out-of-plane NPR transition as well. In all, BeH2 possesses 

very interesting properties that can be exploited in the realm of flexible and non-flexible 

applications. 
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Perspectives and Future Work 

This work is not conclusive. Phonon instabilities are a proper way to complement on the 

predicted ideal tensile strengths, as they will also provide insight into the corresponding 

failure modes for each type of instability here presented. 

 The effect of multi-layered stacking on the mechanical properties is also to be 

addressed. A first inspection with the bilayered configurations revealed minimal to no change 

on the mechanical properties from single layers. However, it is also desirable to evaluate on 

systems of various layers and register their mechanical response. 

A more in depth analysis of the bond strength in -BeH2 is in order, as to find a 

chemical reason on the evolution of the NPR, and if such behavior is exclusive of the BeH2 

system or if it is an intrinsic property of the lattice. 

The heavier 2D alkaline-earth hydrides that share lattice with -BeH2, might tend to 

be less covalently bonded like their bulk counterparts, and result in less flexible structures. 
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