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Abstract

Resistin is a protein of biological interest due to its connection with several diseases
of worldwide concern. The first part of this work aims to design a series of cyclic
peptides as potential ligands to resistin. To this end, we propose an approach
based on a peptide design algorithm plus a two-stage selection which accounts for
selectivity. Following this approach, we are able to establish a methodological route
for the development of strong candidates to target resistin.

Moving into higher molecular complexity, we study the Chloride Channel family
proteins (ClCs), which function as either anion channels or anion/proton exchangers.
The ClC exchangers have diverse abilities to transport anions. Specifically, in case of
nitrate, such diverse ability has been related to the presence of a conserved serine
(Ser) or proline (Pro) in the so-called “selectivity filter” motif, but the molecular
basis for this fact is unknown. In the second part of this work, we used Molecular
Dynamics (MD) classical simulations and Metadynamics (MTD) to evaluate the
effect of replacement of serine by proline and chloride (Cl≠) by nitrate (NO≠

3 ) in the
selectivity filter motif of the bacterial ClCec-1 homolog.
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Resumen

La resistina es una proteína de interés biológico debido a su conexión con varias
enfermedades de importancia mundial. El objetivo de la primera parte de este
trabajo es diseñar una serie de péptidos cíclicos como potenciales moléculas de
reconocimiento para la resistina. Para este fin, proponemos un enfoque basado en
un algoritmo de diseño de péptidos, más una selección post-diseño de dos etapas,
que toma en cuenta la selectividad. Siguiendo este enfoque, establecemos una ruta
metodológica para el desarrollo de candidatos fuertes para el diseño de ligandos de
la resistina.

Incrementando la complejidad molecular, estudiamos las proteínas de la familia del
Canal de Cloruro (ClC), que funcionan como canales de aniones o intercambiadores
de aniones/protones. Los intercambiadores de ClC tienen diversas habilidades para
transportar aniones. Específicamente en el caso del nitrato, dicha capacidad diversa
se ha relacionado con la presencia de una serina o prolina conservada en el llamado
“filtro de selectividad”. Dado que se desconocen las bases moleculares de este hecho,
en la segunda parte de este trabajo, utilizamos simulaciones clásicas de Dinámica
Molecular (MD) y Metadynamica (MTD) para evaluar el efecto de la sustitución de
serina por prolina y cloruro por nitrato en el filtro selectivo del homólogo bacteriano
ClCec-1.
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Introduction 1

„Everything that living things do can be

understood in terms of the jigglings and

wigglings of atoms

— Richard Feynman, 1963

Biomolecular modeling is a fertile and growing area, with exciting opportunities
and multiple promising applications. Nowadays, giant amounts of data are being
provided by genomics, proteomics, glycomics and structural biology. The challenge
for biomolecular modeling is to assist in efforts to draw on these diverse data to
develop new drugs, therapies, catalysts, biologically based nanotechnology and to
shed light into the never ending source of surprises that represents the biological
world. Increasingly, computer simulations of biological macromolecules are helping
to meet this challenge. In particular, molecular simulations are being employed more
and more to investigate features not directly accessible to experiments. Whereas
it is indeed possible to take "snapshots" of crystal structures and probe features of
the motion of molecules through single crystal X-ray diffraction (SC-XRD), nuclear
magnetic resonance (NMR) and cryo-electron microscopy (Cryo-EM), no current
experimental technique allows access to all the time scales of motion with atomic
resolution. Simulations based on fundamental physics offer the potential of filling-in
these crucial "gaps", modeling how proteins and other biomolecules move, fluctuate,
interact, react and function [1, 2]. Applications include studies of protein folding
and conformational changes, association of proteins with small molecules or other
proteins, structure-based drug design, computation of binding free energies for
ligands, modeling the dynamics of ion channels and transport across membranes.
Molecular recognition, which is the process of biological macromolecules interacting
with each other or various small molecules (peptide, ion, etc.) with high specificity
and affinity to form a specific complex, constitutes the basis of all processes in living
organisms. Here we address two of those central topics: peptide design to target a
biomarker and ion transport and selectivity.
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Peptide design to target

resistin

2

2.1 Introduction

Peptide design is essential in drug and biosensor design approaches. However,
experimental procedures involved in their design and screening are extremely
expensive and time-consuming taking into account the number of possibilities when
varying the 20 natural amino acids in “De novo” design. Thus, in silico approaches
are commonly used in the early stages of the design in order to save time and
money. Laio et al. [3] were able to design short peptides with high affinity for
organic molecules by combining Molecular Dynamics (MD), Monte Carlo (MC), and
Molecular Docking methods. In this approach, the peptide sequences and structures
were optimized to maximize the binding affinity to a target molecule by sampling
simultaneously in conformation and sequence spaces, taking fully into account the
flexibility of the peptide during the sequence optimization. Their designed cyclic
peptides were capable to bind the anticancer drug irinotecan with experimental
validation [4]. Ebrahimi et al. designed peptides with high affinity to Epidermal
Growth Factor Receptor which plays an essential role in anticancer therapy [5].
Similar algorithms have been used to design linear and cyclic peptides for well-
known model systems: maltose binding protein [6] and beta-2-microglobulin [7],
reaching experimentally the low micromolar affinity in both cases. We now extend
the reach of the method to design cyclic peptides with high affinity for a system of
medical interest related to diabetes mellitus type 2 (DMT2). In this work (alredy
published [8]), we present a protocol to design cyclic peptides of 12 amino acid
residues with high affinity to the hormone resistin in trimer form. The algorithm
is based on a combination of Replica Exchange Molecular Dynamics (RE-MD) and
Replica Exchange Monte Carlo (RE-MC). Since this protocol has already been tested
experimentally in several systems [3, 5, 6, 7, 9], we are confident that it might serve
in identifying good “lead compounds” for further molecular investigations. After
the design algorithm, we follow a selection procedure wich accounts for selectivity
against albumin and includes a more rigorous calculation of binding energy based
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on the Alchemical Absolute Binding Free Energy (AABFE) method. Finally, we added
an interaction analysis of the best designed peptides.

Due to the fact that during drug or peptide design, ligands need to be ranked by
their binding affinity to a target protein, different computational methods have been
developed to assess it. Molecular docking calculations can quickly predict the most
favorable pose of one ligand in a complex and assess the binding affinity using a scor-
ing function; these calculations have proved to be good enough for the search stage
of the design, although they could be inaccurate when compared with experiments
[10]. More accurate estimations can be obtained through newer endpoint methods
like Molecular Mechanics Poisson-Boltzmann Surface Area (MMPBSA) which are
based on the post-processing in an implicit solvent of a number of frames extracted
from a MD simulation in water. Both, docking and MMPBSA calculations, are good
options if one is primarily interested in a relative ranking of affinities [11]. We
emphasize that during the design process, we decided to use a scoring function
since it allows us to make the repeated estimation of the peptide-protein affinity
more efficient. Alchemical Absolute Binding Free Energy (AABFE) calculations are
at the highest level of theoretical rigor but they have a high computational cost.
AABFE calculations are based on a nonphysical thermodynamic cycle, where the
binding free energy (BFE) is computed as the sum of multiple steps during which
the ligand is “inserted” or “removed” from different environments, such as a bound
or an unbound state [12]. Unlike relative free energy calculations where the binding
of related ligands to a receptor are made, absolute free energy measures the free
energy of binding of a single ligand to a single receptor. AABFE has been applied in a
standard way to the affinity study of different systems, being the engineered binding
pocket of T4 lysozyme one of the most studied macromolecular systems [13]. In this
work, rigorous AABFE calculations were performed on two of the peptides selected
after the design process.

The Resistin-Like Molecules (RELMs) are proteins rich in cysteine that are secreted
in mammals. Resistin and RELM— members of this family are highly conserved,
especially in the cysteine rich C terminus [14]. The RELMs have been related to a
wide variety of biological processes like breast cancer, liver diseases, lung diseases,
atherosclerotic plaques, inflamed joints, kidney diseases, cardiovascular diseases,
autoimmune diseases, malignancy, asthma, bowel diseases and DMT2, among others
[15, 16]. The relationship of the RELMs with this great variety of pathological
environments highlights the important physiological role they play. One of the first
results that attracted attention towards the RELMs was the suggestion of resistin as
a potential link between obesity and insulin resistance, both related to DMT2. This
result was supported by the following facts in rodents: i) Resistin level is increased in

4 Chapter 2 Peptide design to target resistin



genetic and diet-induced obesity, ii) The inhibition or genetic suppression of resistin,
produced an increase in insulin sensitivity and glucose homeostasis and iii) Inverse
administration of exogenous or transgenic resistin, promoted insulin resistance [17].
In contrast to the role of resistin in rodents, the main function of this hormone
in relation to obesity and insulin resistance in DMT2 is controversial in humans.
Some studies have confirmed the association [18, 19], but others have challenged
this link [20, 21]. The importance of starting in silico studies on resistin and its
potential ligands is warranted by the necessity of standardizing and improving
methods for measuring resistin concentration and eventually solve the controversy
surrounding resistin molecular mechanism and its association to DMT2 in humans,
the eventual search of therapeutic procedures to modulate resistin’s levels, the poor
knowledge about resistin’s receptors and the high costs for obtaining and working
on this protein. Summarizing, our principal purpose is the design of peptides to be
potentially used in the detection of resistin as a biomarker of many diseases like
DMT2.

2.2 Background and state of the art

2.2.1 Molecular Docking

Docking is a method which predicts the preferred orientation of one molecule
(ligand) with respect to a second (protein) when forming a stable complex. As
docking is typically used to screen extensive small-molecule chemical libraries, the
pose generation and the pose quality evaluation must be carried out by fast methods
i.e., the computational cost should be low. To fulfill this, several simplifications are
needed in the overall docking process. The first simplification in docking is related
to water, as this solvent is neglected by most docking programs. The second is that
this method generally assumes the receptor rigid, the covalent lengths and angles
constant, while considering a chosen set of covalent bonds freely rotatable in the
ligand [22].

There are two independent stages in the docking process: the search algorithm and
the scoring function. The first refers to the methods which are used to create different
ligand and protein conformations and the aligning of different ligand conformations
within the binding site of the protein. The latter, the scoring, is required for a
quantitative estimation of the pose quality. The scoring function can be seen as an
attempt to approximate the binding free energy of the system. The optimization
algorithm attempts to find the conformation corresponding to the global minimum

2.2 Background and state of the art 5



of this scoring function and other low-scoring conformations, which are then ranked.
In particular, the Autodock Vina program uses the Iterated Local Search global
optimizer as a global optimization algorithm where a succession of steps consisting
of a mutation and a local optimization (Broyden-Fletcher-Goldfarb-Shanno method)
are taken, with each step being accepted according to the Metropolis criterion. The
empirically-weighted scoring function used by Autodock Vina takes into account
parameters like Van der Waals interactions, hydrogen bonds and torsion penalty and
the predicted free energy of binding is calculated from the intermolecular part of
the lowest-scoring conformation[23, 24].

2.2.2 Replica Exchange

The general idea of parallel tempering is to simulate several replicas of the original
system of interest, each replica at a different temperature. The high temperature
systems are generally able to sample large volumes of phase space, whereas low
temperature systems, whilst having precise sampling in a local region of phase space,
may become trapped in local energy minima during the timescale of a typical com-
puter simulation. Parallel tempering achieves good sampling by allowing the systems
at different (but close) temperatures to exchange complete configurations. Thus, the
inclusion of higher temperature systems ensures that the lower temperature systems
can access a representative set of low-temperature regions of phase space[25].

The general idea of parallel tempering is not limited to exchanges or swaps be-
tween systems at different temperatures. Investigators have developed a number of
methods based on swapping alternative parameters in order to minimize barriers
that inhibit correct sampling. Fukunishi et al. developed a Hamiltonian parallel
tempering method that they applied to biomolecular systems; in their approach,
only part of the interaction energy between particles is scaled between the different
replicas[25].

2.2.3 RELMs

There exist four types of Resistin-Like Molecules (RELMs): i) resistin, ii) RELM–,
iii) RELM— and iv) RELM“. The RELMs share a similar primary sequence, even
between species share ≥60% of sequence identity. But, meanwhile in mice and
rats, there have been found the four types of RELMs, only resistin and RELM—

have been found in humans [26]. The RELMs primary structure contains three
domains: i) an N-terminal signal sequence, ii) a variable middle portion, and iii)

6 Chapter 2 Peptide design to target resistin



Resistin
RELM⍺
RELMβ

a)

b) c)

Fig. 2.1. – Structure of mouse RELMs. a) Primary sequence alignement of different RELMs
(orange box represents the signal peptide, green box the conserved cysteines,
green lines represents disulfide bonds and amino acids are represented with
standard one letter code), b) folding topology (the yellow arrows represent
beta-sheet secondary structures, red cilinders represent helical structures and
green lines represents disulfide bonds) and c) tertiary structure.

a highly conserved C-terminal signature sequence (Cys-X11-Cys-X8-Cys-X-Cys-X3-
Cys-X10-Cys-X-Cys-X-Cys-X9-Cys-Cys-X3≠6), where X states for any other amino acid
different from cysteine (Cys) and the subindices represent the number of amino
acids between cysteines [14], this is displayed in Figure 2.1. This signature sequence
has been proposed to be critical for disulfide bond formation and protein folding.
The crystal structures of mouse resistin and RELM— have been solved, revealing that
they form trimers linked together via disulfide bonds to form hexameric assemblies.
Dimerization of RELM— and resistin was dependent on a cysteine in the N-terminal.
This cysteine is lacking in RELM– and RELM“, suggesting that they may exist as
monomers, however their crystal structure has not been solved.

Regarding the RELMs receptors, tyrosine-protein kinase transmembrane receptor
(ROR-1) [27] and decorin [28] are suggested receptors to mouse resistin. Toll-like
receptor 4 (TLR4) [29], adenylyl cyclase-associated protein 1 (CAP1) [30] and
human decorin [31] are suggested receptors to human resistin. In contrast with
RELM— that has identified receptor neither in humans nor in rodents [26]. Then, the
information about binding domains in RELMs is poor as well. A study suggest that
tryptophan amino acid in 82-position of chain A (Trp82A), Trp82C, serine amino acid

2.2 Background and state of the art 7



in 64 position of chain A (Ser64A) and Ser60C are key residues in the interaction
between human resistin trimer and CAP1 SH3 domain model [30]. Another study
agrees that TL4 receptor binds to resistin at the globular domain [29]. Therefore,
a better understanding of the RELMs structure and their preferred interactions
with other molecules may provide important information for identification of new
receptors.

2.3 Objective

We aimed to design a series of cyclic peptides as potential ligands to resistin.

2.4 Methods

2.4.1 Peptide design

Binding sites

As a starting point, we chose a cyclic polyalanine as ligand, formed of ten continuous
Alanines (Ala) and two Cys amino acids making a disulfide bridge between them.
We chose two resistin putative binding sites, one located in the globular and highly
conserved zone of the protein, Head (H) site, and the other in the helical part of
the protein, Tail (T) site, both are shown in Figure 2.2. The H site was chosen using
Raptor X [32], a protein structure prediction server, which predicts the binding
sites of a protein given its sequence. Additionally, we found that the binding site
predicted by Raptor X contained three of the major conserved amino acids among 6
species of resistin aligned (Appendix, section A.1) by CLUSTALW [33] tool. The T
site was chosen because it was reported as a potential bioactive site in resistins which
form hexamers through disulfide intertrimer bonds at the coiled-coil helical domain.
Patel et al [34] found that a resistin mutant, lacking the intertrimer disulfide bonds,
has more potent effects on hepatic insulin sensitivity than wild-type resistin. They
suggest that a possible receptor binding geometry in which the coiled-coil tails are
free, might be involved in receptor interactions - these tails are occluded in the
hexamer form and free in the trimer form. Thus, it would be interesting to study a
peptide that could inhibit this bioactivity.

8 Chapter 2 Peptide design to target resistin



Resistin-Polyalanine complex

H site

T site

Fig. 2.2. – Polyalanine configuration in two resistin trimer binding sites: H site and T site.

Once the binding site has been selected, the optimization of the peptide sequence
and configuration is the following step. This optimization procedure is based on
Laio’s et al algorithm [3, 7] that was adapted to resistin. The algorithm consists of
several steps schematized in Figure 2.3, which are described below.

Preparation

In order to choose the best binding mode of the polyalanine ligand towards the
protein binding site, a molecular docking is performed, using Autodock Vina [35].
The binding energy, Vina energy, is obtained using the scoring function of Autodock
Vina and the mode of union corresponding to the lowest energy is always the chosen
one.

The initial geometry obtained with docking was subjected to a conformation search
(CS) process, which consists of: a relaxation by an MD energy minimization (Emin,1)
in vacuum, followed by a replica exchange MD simulation in vacuum (RE-MD1)
for 8 different temperatures during 1 ns. Next, the replica’s trajectories are put
together and clustered by similar conformations (Clust1). Then, a comparative
process (Vina scoring) between peptide configurations according to its affinity to
resistin is performed, in order to choose the configuration with the lowest energy as
a starting point to begin the iterative process.

The design iterative process includes two stages: mutation and replica exchange.
Mutation stage consists of: mutation, conformation search (CS) and mutation
acceptance decision according to the Metropolis criterion (steps 3, 4 and 5 in
Figure 2.3). The mutation stage is carried out simultaneously for three operating

2.4 Methods 9



1. Binding site selection

2. Preparation

Not exchangeExchange

5. Mutation 
acceptance

decision

7. RE-MC 
acceptance

decision

6. RE-MC 
attempt

T1
T2 T3

Replicas

Ac
ce

pt
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ce

pt

R
ej

ec
t

SEQnew

Confnew

R
ej

ec
t

SEQold

Confold

4. CS

Iterative process

3. Mutation

Fig. 2.3. – Steps of the peptide design process: 1) Binding site selection. 2) Preparation,
that consists of molecular docking, Emin,1, RE-MD1, Clust1 and Vina scoring.
Mutation stage: 3) Mutation step which consists of random amino acid selec-
tion replaced by another randomly chosen amino acid; 4) Conformation search
(Emin,2, RE-MD2, Clust2, Vina scoring) and 5) Mutation acceptance decision.
Replica exchange stage: 6) RE-MC attempt between the two simultaneous repli-
cas randomly selected from replicas at Tf

1 , Tf
2 and Tf

3 and 7) RE-MC acceptance
decision.

temperatures. Replica exchange stage consists of: replica exchange attempt and
replica exchange acceptance decision according to the Metropolis criterion (steps 6
and 7 in Figure 2.3).

Mutation

The mutation goal is to generate a new sequence of amino acids. For that, we
randomly select one amino acid from the peptide (the cysteine amino acids of the
peptide do not enter in the mutation process) and replace it with another one, also
randomly selected from the 20 natural amino acids. It is important to point out
that some hydrophilic amino acids ((Lysine, Lys), (Arginine, Arg), (Aspartic acid,
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Asp), (Glutamic acid, Glu)) are assigned with high probability (0.11), to enhance
the possibility of designing water-soluble peptides, other amino acids are assigned
with a lower probability of 0.03.

Conformation search

The mutation step is followed by a conformation search (CS) process: Emin,2, RE-
MD2, Clust2, Vina scoring and selection of the structure with the lowest energy. In
this case, Emin,2 consists of:

i. Energy minimization including only the side chain of the mutated residue.

ii. Energy minimization including the mutated amino acid and nearest neighbor-
ing residues.

iii. Global energy minimization.

Mutation acceptance decision

The new peptide sequence, SEQnew, is accepted or rejected according to the Metropo-
lis criterion, with a probability of min(1, exp[(Eold≠Enew)/Tf ]); where Tf is a ficti-
tious “temperature” parameter that controls the probability of acceptance for the
new configuration; Enew and Eold are the Vina energies of the new structure and
the old one, respectively. The process continues, using the new structure in case of
acceptance of the mutation, or the old one in case of rejection.

RE-MC attempt

To enhance the exploration of the sequence and conformation spaces, three indepen-
dent calculations at Tf = 0.3, 0.6 and 0.9 kcal/mol are performed simultaneously
during steps 3, 4 and 5 of the process. At the end of each mutation process, an
attempt to swap sequences from two replicas randomly selected is performed. This
exchange helps the process to move out of local minima.

2.4 Methods 11



Human serum albumin

Site II

Fig. 2.4. – Albumin binding site II.

RE-MC acceptance decision

A swap between replica i at Tf
i , SEQi, Ei and replica j at Tf

j , SEQj , Ej are accepted
with probability min(1, exp[(Ei≠Ej)(1/Tf

i ≠ 1/Tf
j )]).

In case of acceptance, the structure (sequence and configuration) of replica j and i
are exchanged, in case of rejection, the structures remain the same. Regardless of
whether the exchange of replicas is done, the iterative process begins again.

The entire design process was performed independently for the two binding sites
selected. We report the results of 5 independent runs for each site, with 500
mutations per run. Performing more than 500 mutations does not appear to give
better results because the system usually converges to a local minimum of energy.

2.4.2 Post-design peptide selection

By following the process described above, we designed a large number of peptides
with very good affinities to resistin, the next step was to select those peptides that
were also soluble and stable in water and selective to resistin when other proteins,
such as albumin, were present. Albumin is the protein present in the blood in the
highest concentration [36], it has binding sites in subdomains IIA and IIIA [37]; we
chose site II to test peptide-albumin affinity as shown in Figure 2.4.

Peptide selection was made in two steps:

12 Chapter 2 Peptide design to target resistin



1. Selection of 20 peptides from each run containing the mutations with the highest
affinity to resistin. A total of 200 peptides were chosen to be tested for the estimation
of solubility in water and affinity to albumin. Vina energy of the peptide-albumin
system was estimated after a molecular docking and a CS of the system, using a
standard MD without replicas.

2. Selection of 2 peptides with good water solubility and low Vina affinity to albumin
from each design run. We got 10 peptides for each binding site. From this set of
20 peptides (Appendix, section A.2), 4 were arbitrarily chosen to assess stability in
water through a long MD simulation (150 ns) of the peptide-resistin systems.

During the long MD simulation in water, we analyzed the distance between the
peptide and the resistin binding site (Dpep≠res), the number of hydrogen bonds (N
HBs) between the two molecules, the potential energy of peptide-resistin systems,
Vina average energy over the last 100 ns of the simulation, gyration radius of
the peptide (Rg,pep) or protein (Rg,res) in complexed state, the Root-Mean-Square
Deviations (RMSD) of the peptide backbone atoms (in the complex state), the
RMSD of the protein backbone atoms (in the complex) and the Root-Mean-Square
Deviations of the interface atoms (IRMSD) between resistin and peptides. Based on
the stability of the complexes in water according to the above criteria, two peptide-
resistin systems were selected. The peptide-resistin affinity energy of the selected
systems was estimated according to the following methods.

2.4.3 Binding a�nity estimation: AABFE method

With the geometry of peptide-resistin obtained from the design algorithm, we
performed an initialization process (IP) in water for each complex which consists
of an MD energy minimization (EM), followed by a standard MD simulation in
a canonical ensemble (MDNV T ), a standard isobaric-isothermic MD simulation
(MDNP T ), a 2 ns unrestrained MD production run (MDprod) and a clustering by
conformations. A representative structure of the larger cluster was taken as the
initial conformation for AABFE calculations.

AABFE calculations were performed using the thermodynamic cycle illustrated in
Figure 2.5 [38, 39]. The initial state A represents the physical bound state while
state F represents the physical unbound state. The free energy difference between
the two states is what we consider as the binding free energy (BFE, �Gbind) of the
complex. The direct calculation of �Gbind requires a simulation that starts in state F
and then follows the binding process to state A. We can overcome the difficulties
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with a suitably thermodynamic cycle of an alternative path that goes from state A
through states B, C, D, E and finally to state F. Going from A to B means that an
harmonic distance restraint between peptide and resistin is imposed in order to
avoid the problem of the ligand leaving the binding pocket when protein-peptide
interactions are being turned off in the next steps, giving �Grestron. From B to C, we
turn off the electrostatic and Van der Waals (VdW) interactions between the peptide
and its environment (water and resistin), giving �Gcomelec+V dW . States C and D are
equivalent, i.e., resistin and peptide do not interact, giving �G= 0, but differ in the
position of the ligand (inside or outside the binding site, respectively). Going from D
to E means removing the ligand restraint imposed, giving �Grestroff . Moving from
state E to F represents turning on again the electrostatic and VdW interactions of
the ligand with its environment (water), in order to obtain �Gsolvelec+V dW .

To calculate �Gbind, we sum all the free energy contributions, i.e.,

≠(�Gbind) = �Grestron + �Gcomelec+V dW + �Grestroff + �Gsolvelec+V dW

Two types of simulations were carried out, some involving the complex, i.e., peptide-
resistin (states A-C) and others only the ligand (E-F). To estimate �Grestron and
�Gcomplexelec+V dW we performed complex simulations, to estimate �Grestroff we
performed an analytical calculation with the expression described by Shirts [40],
and for �Gsolvelec+V dW we performed ligand simulations.

In order to have sufficient overlap in phase space between the physical states
described previously, nonphysical or alchemical intermediate states were needed.
As usual, each intermediate state is associated with a transition parameter [41]
called ⁄. Each ⁄ state consists of a unique set of ⁄ values which control the different
interaction types: electrostatic (⁄coul), Van der Waals (⁄V dW ) and distance restraint
(⁄restr). From A to B, 10 independently simulations were performed (States=0-9 in
Table 2.1). From B to C, 20 independently simulations were carried out (States=10-
29). From E to F, we used 20 separate simulations (States=10-29 in Table 2.1,
without using ⁄restr values). Lambda states and lambda values used are presented
in Table 2.1.

For each simulation window or ⁄ state, an IP was performed with 5 ns unrestrained
production run for data collection with Hamiltonian Replica Exchange attempts
between lambda states every 1000 steps [42]. From the simulations we got the
potential energy difference �Ui,j between states. In order to analyze the results
we used Alchemical-Analysis.py script [41]. Through the variety of methods that
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Fig. 2.5. – Thermodynamic cycle for BFE estimation in AABFE method. A) Bound state. B)
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Tab. 2.1. – Lambda states (columns, numbered from 0 to 29) with their corresponding
lambda values used during simulations. In ⁄restr, 0 means non-restrained
and 1 fully restrained. In ⁄coul and ⁄V dW , 0 means fully interacting and 1
non-interacting.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14
⁄restr 0.0 0.01 0.025 0.05 0.075 0.1 0.2 0.35 0.5 0.75 1.0 1.00 1.00 1.00 1.0
⁄coul 0.0 0.00 0.000 0.00 0.000 0.0 0.0 0.00 0.0 0.00 0.0 0.25 0.50 0.75 1.0
⁄V dW 0.0 0.00 0.000 0.00 0.000 0.0 0.0 0.00 0.0 0.00 0.0 0.00 0.00 0.00 0.0

15 16 17 18 19 20 21 22 23 24 25 26 27 28 29
⁄restr 1.00 1.0 1.0 1.0 1.0 1.0 1.0 1.00 1.0 1.00 1.0 1.00 1.0 1.00 1.0
⁄coul 1.00 1.0 1.0 1.0 1.0 1.0 1.0 1.00 1.0 1.00 1.0 1.00 1.0 1.00 1.0
⁄V dW 0.05 0.1 0.2 0.3 0.4 0.5 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1.0

Alchemical-Analysis.py script offers, we estimated free energy by Multistate Bennett
Acceptance Ratio (MBAR) method using the last 2 ns of data. MBAR estimates �G
by using the Zwanzing relationship [43], i.e.,

�Gij = ≠(1/—) lnÈexp(≠—�Uij)Íi

where �Gij is the free energy between two adjacent states, — is the reciprocal
of the temperature times Boltzmann constant, ÈÍi is an ensemble average over i.
This considers that a free energy difference between two states can be computed
via an appropriate exponential average of energy differences over an ensemble of
configurations [41]. To avoid biased free energy estimates, Bennett Acceptance
Ratio (BAR) method includes both forward �Uij and reverse �Uji potential energy
differences between two adjacent states in the analysis, whereas the improved MBAR
finds the best estimate of free energy changes between all states simultaneously by
optimizing the matrix of the �G variances[41].

The uncertainty on �G was calculated as the root square of the square-sum of the
uncertainty of the individual contributions, divided by the root square of the number
of samples.

2.4.4 Per aminoacid contribution to the binding energy: MMPBSA
estimation

Although AABFE estimations were found to be overall superior in obtaining cor-
relation with experimental affinities for some systems [11], we used this method
because it allowed us to insight about the amino acids contributions to the binding
energy that are cumbersome to obtain with perturbation method, aditionally they
are computationally cheaper and we already had the trajectories obtained in AABFE
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calculations. Energy calculations with MMPBSA method were performed using g-
mmpbsa package [44], a GROMACS tool for high-throughput MMPBSA calculations.
MMPBSA calculations were performed using results from protein-ligand complex
simulations in a single–trajectory (one-average) setup. Protein-ligand conformations
were extracted from the MD simulations of the AABFE calculations in ⁄ state = 0;
the last 2 ns were used.

An extensive explanation of the terms involved in MMPBSA calculations can be
found in Reference [44]. Briefly, MMPBSA approach considers three energetic terms
for the free energy of binding estimation: �Gbind = Gcomplex ≠ (Gprotein + Gligand),
where Gcomplex is the protein-ligand free energy in solvent, Gprotein and Gligand are
the free energy of the isolated protein and ligand in solvent. Each of the three
terms can be given by, Gx = ÈEMMÍ ≠ TS + ÈGsolvationÍ, where, ÈEMMÍ is the average
molecular mechanic potential energy in the vacuum. TS is the entropic contribution
in the vacuum and ÈGsolvationÍ is the free energy of solvation. In this work, the
entropy contribution was not included in the binding energy. EMM is estimated
based on molecular mechanics force field parameters, EMM = Ebonded + Enonbonded.
In single trajectory approach, the conformation of protein and ligand in the bound
and unbound forms are assumed to be identical, then �Ebonded is taken as zero. The
solvation free energy is taken to be: �Gsolvation = Gpolar + Gnonpolar; where Gpolar and
Gnonpolar are the electrostatic and non-electrostatic contributions to the solvation
free energy, respectively. Gpolar is estimated by solving the Poisson-Boltzmann (PB)
equation. Gnonpolar includes repulsive and attractive forces between solute and
solvent that are generated by cavity formation and van der Waals interactions and
can be estimated using a variety of methods. SASA-SAV Non-polar Model used in
this work, can be expressed as, �Gnonpolar = “A+pV, where “ is a coefficient related
to surface tension of the solvent, A is the solvent accessible surface area (SASA) and
V is the solvent accessible volume (SAV). In this method, the contributions due to
the attractive solute-solvent interactions are not considered.

2.4.5 Computational details

The initial structure of the resistin was one trimer of the 1RH7 structure from PDB
data base. Missing atoms in the crystal were modeled with Swiss PdbViewer and all
molecules that were not in the protein were removed.

During molecular docking, we chose the coordinates of one of the atoms in the
binding site as a center of a cubic docking grid.
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All calculations: EM, MDNV T , MDNP T and MDprod were performed using GROMACS
with GPU support [45]. We used the Amber99SB-ILDN [46] force field for the protein
and the ligand in all cases.

When simulations were in explicit solvent, we used TIP3P model for water molecules.
The molecules were solvated in a box, with periodic boundary conditions and a
minimum distance between the solute and the box of 1 nm, and sodium and chloride
ions were added to neutralize the system.

EM steps were carried out using the steepest descent algorithm. In NVT ensemble
simulations, harmonic position restraints were applied to the solute heavy atoms
with a force constant of 1000 kJ mol≠1nm≠2. The MD production runs were carried
out using a time step of 2 fs. Pressure coupling uses Berendesen [47] at 1 bar. The
temperature was controlled by Langevin dynamics at 300K. Standard xyz periodic
boundary conditions were adopted. A cut-off distance of 1.0 nm for Coulomb and
Van der Waals neighbor list was updated according to the Verlet cut-off scheme. The
long-range part of the Coulomb interactions was evaluated using PME [48] method
with a relative tolerance of 10≠5, order 6 and Fourier spacing of 0.1. All bonds were
constrained using LINCS [49], while SETTLE [50] was used for constraining the
water molecules.

During RE-MD, the temperature values used were found through a tool called
temperature generator for REMD simulations and they were 375, 382, 389, 396,
403, 410, 417 and 425 K [51]. In clustering, we used a cut-off in root-mean-square
deviations (RMSD) range of 0.18 nm and the gromos method [52]. The Vina energy
of the representative structure of each cluster with more than 10 elements was
estimated. We considered the Vina error of 2.75 kcal/mol as reported in reference
[35] and during the peptide design we use it only to score the relative quality
of different ligands. We also performed the average of the Vina energy in long
MD simulations using 25 frames extracted every 4 ns over the last 100 ns of the
simulation.

During the mutation processes, we used Amber tools and tleap [53] for reconstruc-
tion of the mutated residue.

For the analysis of the distance between the peptide and the resistin binding site
(Dpep≠res) in the long MD simulations, we used the distance between one atom of
the binding site and one atom of the peptide for complexes 453 and 203 (site H). In
complexes 496 and 297 (site T), we used the distance between the center of mass
of the three helices of the protein and the center of mass of the peptide. All the
RMSD calculations where performed with respect of the first structure unless another
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structure is specified. The IRMSD was calculated aligning firstly the trajectory to the
backbone of the protein. The surface between resistin biding site and peptides was
found using the InterfaceResidues.py script [54].

To reveal possible key residues contributing to binding free energy of peptide-resistin
complexes, a free energy contribution per residue by using MMPBSA method was
obtained. Energy calculations with MMPBSA method were performed using g-
mmpbsa package [44], a GROMACS tool for high-throughput MMPBSA calculations.
Protein-ligand conformations were extracted from the MD simulations of the AABFE
calculations in ⁄ state = 0; the last 2 ns were used. An extensive explanation of the
terms involved in MMPBSA calculations can be found in the work of Kumari et al.
[44].

In order to predict peptide solubility, we used “INNOVAGEN peptide solubility calcula-
tor” [55]. This web tool assigning each amino acid a numerical value (hydrophilicity
value) based on experimental data [56].

2.5 Results

2.5.1 Peptide design

In general, the Vina energy of starting systems was estimated to be around ≠8 kcal/mol.
During the design process, systems were built whose Vina energy reached ≠30 kcal/mol;
this fact shows the power of the algorithm capable of achieving energy improvements
of up to 22 kcal/mol compared to the initial system. Three of the optimizations runs
for each binding site are shown in Figure 2.6, where the evolution of the Vina energy
of the complex is presented. Vina energy of the systems changes a lot during the
first 180 mutations, less drastic changes are observed afterward. When Vina energy
does not change significantly, we consider that the algorithm has reached a local
minimum in energy. Average Vina energy over the last 320 steps was calculated to
be ≠24.12 ± 3.25, ≠24.00 ± 1.84 and ≠24.25 ± 4.51 kcal/mol, respectively for: all
10 runs, 5 of site H, and 5 of site T. The low values of Vina energy reached could
imply that the binding sites were rightly chosen, given that the design procedure
is strongly affected by the starting configuration according to Gladich’s et al work
[4].

The structure of the peptide-resistin systems with the maximum affinity after the
design runs in H and T sites are presented in Figure 2.7a and Figure 2.7c, respec-
tively. We can see an important N HBs presented in the structures, Figure 2.7b and
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a)

c) d)

b)

Fig. 2.7. – Complexes peptide-resistin. a) Structure of the peptide with the highest affinity
to resistin in site H. b) Details of the HBs between the peptide and resistin in
site H (complex 434). c) Structure of the peptide with the highest affinity to
resistin in site T. d) Details of the HBs between the peptide and resistin in site T
(complex 345).

Figure 2.7d. The peptide corresponding to the mutation 434 of one run on site H
contains a hydrophobic phenylalanine highly buried inside the resistin globular core,
Figure 2.7a and Figure 2.7b. The peptide corresponding to the mutation 345 in site
T shows a conformation change in the helical tail of resistin, probably to expose less
surface area to the solvent and stabilize the system, Figure 2.7c.

2.5.2 Post-design peptide selection

As a first selection phase, the only factor taken into account was the peptide affinity
to resistin. We selected 100 peptides with high affinity to resistin for each binding
site. In these sets of peptides, a multiple alignment of the sequences was performed.
In site H, we obtained a consensus sequence of Cys-X-X-X-Arg-X-X-X-X-X-X-Cys in the
54% of the sequences. While in site T, we got a consensus sequence of Cys-Arg-X-X-
Arg-X-X-X-X-X-X-Cys in the 48% of the sequences, where X states for any other amino
acid different from cysteine (Cys) and arginine (Arg) amino acid. These patterns
could be relevant to the new design of drugs or ligands for resistin.

In a second selection stage, we selected peptides with good water solubility, low
affinity to albumin and not very similar sequences between them. We present an
example set of 10 peptides from that selection in Table 2.2. As we can see, peptides
from mutations 434 and 345 were the best binders in each binding site but also had
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a very high affinity to albumin, so they were not considered further. Peptides from
mutations 238 and 329 were discarded due to their poor water solubility. Only four
of the 200 peptides had poor water solubility as expected due to the probabilities
we set for amino acid selection in mutation process. When very similar sequences
were found, such as the peptides of mutations 434 and 453, the one with the best
other characteristics was selected; in this case, the low affinity to albumin was the
discriminating factor.

Tab. 2.2. – Set of 10 peptides selected in the first phase. Epep≠res is the Vina energy for
peptide-resistin complexes in the design. Epep≠alb is the Vina energy of peptide-
albumin complexes after docking and MD simulation. All the Vina energy values
are given in kcal/mol. WS is the water solubility.

Mutation Site Sequence Epep≠res Epep≠alb WS
434 H CRYDYPFRPRHC -30.26 -28.04 good
453 H CRGDYPFRPRHC -30.22 -20.74 good
203 H CQEWEPHFPWEC -26.71 -15.78 good
492 H CRRNREDEHRYC -25.26 -19.58 good
238 H CQKWNPQFPWEC -24.66 -25.73 poor
345 T CWTRKRRHPWYC -33.42 -33.14 good
329 T CWTRYRRHGWYC -32.69 -33.94 poor
297 T CSERWRRHGWYC -31.11 -20.12 good
496 T CMEKFKRKKEDC -27.42 -16.43 good
456 T CRRSRFHRWWRC -26.72 -26.88 good

The final selection of four peptides is shown in Table 2.3: Vina energy of the peptides
bound to resistin differs in at least 10 units from the Vina energy of the peptides
bound to albumin. We selected sequences that did not share more than two amino
acids in order to have variability.

Tab. 2.3. – Final selection of 4 peptides and their characteristics. Epep≠res,vac is the Vina
energy for peptide-resistin complexes in the design (vacuum). Epep≠alb,vac is the
Vina energy of peptide-albumin complexes after a docking and MD in vacuum.
Epep≠res,sol is the average Vina energy of the complexes from 150 ns of MD
simulations in water. All the Vina energy values are given in kcal/mol.

Mutation Sequence Epep≠res,vac Epep≠alb,vac Epep≠res,sol site
453 CRGDYPFRPRHC -30.22 -20.74 -17.40 ± 2.1 H
203 CQEWEPHFPWEC -26.71 -15.78 -17.80 ± 1.4 H
496 CMEKFKRKKEDC -27.42 -16.43 -8.19 ± 1.3 T
297 CSERWRRHGWYC -31.11 -20.12 -14.65 ± 3.1 T

For each of the four peptides selected, we performed a long MD simulation of
complexes in water (150 ns), in order to select the two most stably bound peptides
to perform free energy calculations. Through this long MD simulation, we analyzed
a series of parameters: RMSD, Dpep≠res, N HBs, Rg,pep, Rg,res, potential energy and
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Vina average energy of peptide-resistin systems (as mentioned at the end of section
2.4.2).

The Dpep≠res becomes quite stable during the long MD simulation, as showed in
Figure 2.8a. These results suggest that complexes remain bound up 150 ns of
simulation. Complex 453 had the lowest fluctuation throughout the simulation,
with Dpep≠res of about 0.9 nm. In contrast, complex 496 had the highest fluctuation
in Dpep≠res, showing a significant Dpep≠res change in the first 25 ns, after that it
stabilizes around 1.8 nm. Complexes 297 and 203 showed little fluctuation around
0.5 and 1.2 nm, respectively. Peptide 453 was the one closest to the binding site
compared to the other peptides. Peptides designed for H site showed the shortest
Dpep≠res value.

Formation of inter-molecular hydrogen bonds is closely coupled to binding/unbind-
ing events. In Figure 2.8b we present the variation of the N HBs during the long
MD simulation. The N HBs oscillates between 8 and 20 at the beginning of the
simulation and they reach stabilization after about 75 ns of MD. In complex 496, the
N HBs decreases to 5 during the initial change in Dpep≠res observed in Figure 2.8-a.
Peptides 203 and 453 designed for the site H, exhibited the least fluctuation in the
N HBs formed with the resistin, while complex 297 maintains the highest N HBs
during the simulation. These results were consistent with the Dpep≠res analysis.

To characterize the compactness of protein and ligands in all the complexes, the
radius of gyration (Rg) of each system was calculated and the results are shown in
Figure 2.8c and Figure 2.8d for protein and ligands, respectively. From Figure 2.8c,
the fluctuations of resistin in the different systems are quite small around 2.2 nm,
which means that the global protein structure in the complexes is well preserved
and stable during simulations. From Figure 2.8d, the fluctuations of peptides in
the complex are quite small around 0.6 nm, being the 496 and 203 peptides the
ones that fluctuate the most. We selected systems containing peptides 453 and 297
although they were not the structures with the smallest value of Rg.

The plot of potential energy of the complexes through long MD simulation showed
stabilization since the beginning of the simulation with small relative energy fluc-
tuation, Figure 2.9a. This result makes us conclude that the structure is stable.
Complexes 453 and 297 showed the lowest potential energy.

Protein backbone RMSD values were estimated with respect to a reference structure
in the equilibrated stage of the simulation (frame at 40 ns). It can be seen in
Figure 2.9b that proteins in the complexed state remain relatively stable in the last
100 ns with RMSD around 0.6 nm. In Figure 2.9c we can see that the RMSD of
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Fig. 2.10. – Frames extracted from the long MD simulation of complex 496. Chain A is
presented in red, Chain B in blue and Chain C in green.

ligands remains around 0.2 nm, being the 453 complex the one that fluctuates the
least. In Figure 2.9d we can see that the IRMSD between protein and ligand in
complex 453 remain around 0.15 nm and fluctuates the least. Complex 496 had the
biggest IRMSD and it fluctuates the most. This shows that the 453 complex has a
very stable interaction surface.

Due to the fact that the peptides were designed in vacuum, we had to assess their
affinity while solvated. The average Vina energy of the solvated complex during
the last 100 ns of MD in water was estimated and compared with the Vina energy
of the complex in vacuum (Table 2.3). There was a significant difference in the
solvated complexes and the complexes in vacuum. This difference was more evident
in system 496.

Peptide 496 seems to have the worst characteristics but we have found that during
the simulation it moves from one of the helices to the other as showed in Figure 2.10
which is a very interesting behavior that should be explored in future work.

Based on all the previous analysis of the simulation, we selected complexes 453 (site
H) and 297 (site T) for further studies.

2.5.3 Binding a�nity estimation

Having selected complexes 453 and 297, we proceeded to calculate the binding free
energy (BFE). We performed 5 ns of simulations but used only the last 2 ns for data
collection. The convergence behavior of the BFE is shown in Figure 2.11, where
�Gbind is calculated according to equation 2.4.3 and averaged over 3 independent
AABFE calculating simulations; plotted every 100 ps for each complex. It can be seen
in Figure 2.11 that 5 ns of simulations yield good convergence of AABFE calculations,
however, this estimation can be improved using longer sampling and more lambdas.
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The AABFE calculations confirm that peptide 453 has good affinity to resistin, while
peptide 297 does not seem to be a good option. The �Gbind values obtained for
complexes 297 and 453 were -6.26 ± 2.3 and -16.21 ± 3.03 kcal/mol, respectively.
These results show that AABFE calculations could be important discriminators to
select and confirm peptides for further study.

To compare the RMSD histogram distributions of the protein for the bound (com-
plexed) and unbound (isolated) conformation ensembles visited during 50 ns of
simulations in water, we present Figure 2.12. The RMSD distribution for isolated
protein and proteins in complexed state spans from 0.3 to 0.9 nm with two peaks in
the distribution, one between 0.5 and 0.6 nm and the other between 0.6 and 0.7 nm.
The distributions overlap significantly during the 50 ns of simulation. These results
confirmed the structural stability of the protein and give confidence in the results
of AABFE calculations. In order to understand the interactions between receptor
and ligands, we built distance matrices consisting of the smallest distance between
residue pairs over the 5 ns simulations of AABFE calculations. Then, we linked
such contact maps images to the residues by using the program PyMOL[57] to see
how peptides keep in close contact with several residues of protein. Residues 1-243
belong to protein and residues 244-255 belong to the peptides. In complex 453, we
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Fig. 2.12. – Histograms of the backbone RMSD of the Resistin conformation obtained from
50 ns of MD simulations of the protein in isolated and in complexed states for
the systems 297 and 453.

found the closest average contacts between residues Thr29-Phe250, Asp71-Pro252,
Trp136-Arg251, Ala47-Phe250 and Arg139-Asp247, showed in Figure 2.13a. In com-
plex 297, the closest average contacts were found between residues Cys82-Trp253,
Pro101-Tyr254, Gln18-Tyr253 and Cys176-Tyr254, showed in Figure 2.13b.

To reveal key residues contributing to binding free energy of peptide-resistin com-
plexes, a free energy contribution per residue can be calculated by means of the
MMPBSA method. Total MMPBSA BFE values, -35 ± 4.2 and -4 ± 0.16 kcal/mol
for complex 453 and 297 respectively, agree with results from AABFE at confirming
that peptide 453 has good affinity to resistin while peptide 297 does not seem to be
a good option. Figure 2.14 shows that for complex 297, residues Ala243, Trp253,
Tyr254 and Cys255 contribute favorably with more than 15 kcal/mol to the total
binding free energy of complex 297, and residues Cys82 and Arg179 are unfavorable
to the binding. The polar Cys82 shows a significant polar solvation energy (results
not shown), which is unfavorable to ligand binding according to Reference [58].
For complex 453, residues Asp137, Arg139, Phe250 and Cys255 contribute more
than 15 kcal/mol to the total binding free energy of complex 453, and residues
Cys244, Arg253 and His254 contribute unfavorably to the binding. A comparison
of the contribution per each amino acid to the BFE shows that more protein amino
acids contribute stronger in complex 453 than in complex 297 (Appendix, section
A.3). This could imply that the binding site is more favorable for complex 453
than for complex 297. We also analyzed the different types of interaction that
contribute to total binding energy (Appendix, section A.3), and found that polar
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a) b)

Fig. 2.13. – a) close contacts in complex 453, b) close contacts in complex 297. (protein
in cartoon, the peptide in sticks, relevant residues for the association are
represented in CPK representation and residues are presented in one-letter
code).

solvation contributes unfavorably to binding and more strongly affects complex 297
(Appendix, section A.3).

A 2D interaction map of the average structure of the peptide-resistin complexes over
the 5 ns of the MD trajectory was performed by using the program MOE [59]. In
complex 297, Cys82 shows a reduction of solvent exposure induced by the ligand
as we can see in Figure 2.15. Glu181- Cys244, Glu181-Arg247, Leu177-Ser245,
Cys82-Cys255 and Gln18-Tyr254 form H-bonds. In complex 453, Arg114-Cys255,
Gln147-Cys255, Asn140-Gly246, Arg76-Gly246, Ser74-Phe250, Asp71-Pro249 form
H-bonds. Tyr50-Arg253 presents interaction between aromatic ring of Tyr and
cations of Arg as we can see in Figure 2.15. We also counted the number and type
of interactions (HBs, the cation-arene interactions and the number of amino acids
with reduced solvent exposure due to the ligand presence; SI, Table 7) and found
more of them in complex 453.

According to the distance map, the per residue free energy contribution and 2D
interaction maps: Tyr 254, Gln18 and Cys 255 are key residues in the binding
of complex 297; Arg139, Phe250 and Cys255 are key residues in the binding of
complex 453.
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Fig. 2.15. – 2D diagram of interactions between resistin and peptides. a) Complex 297 and
b) complex 453.
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2.6 Conclusion

In this work, we were able to design cyclic dodecapeptides with high affinity to
resistin in two binding sites, whose Vina energy reached up to -30 kcal/mol. We
identified consensus sequences in peptides in at least 48% of the total sequences
with high affinity to resistin. In site H, we obtained a consensus sequence of
Cys-x-x-x-Arg-x-x-x-x-x-x-Cys, while in site T, we got a consensus sequence of Cys-
Arg-x-x-Arg-x-x-x-x-x-x-Cys. This pattern could be relevant for the new design of
drugs or ligands to resistin. However, peptides with this pattern were not further
studied in this work because others peptides fulfilled better the demands imposed
after the design.

We selected a subset of 4 peptides with good water solubility, low peptide-albumin
affinity, good water stability over 150 ns of MD simulations and average binding
energy in water up to -14 kcal/mol, excepting the peptide 496 that showed less
average energy, but presented an interesting behavior that merits a special study: it
moves from one of the helices to other during a long MD simulation. This behavior
could affect the receptor binding geometry that promotes the resistin bioactivity, so
it could be important to look for peptides with this kind of behavior and further
study them.

The number of possible mutations when using 20 essential amino acids to design
relatively small peptides is enormous. The design algorithm used in this work
offers a rational pathway that shortens the number of possible options to explore
experimentally. Furthermore, the set of ligands designed can be refined taking into
account their water solubility and stability, their low selectivity for molecules like
albumin and their affinity for resistin when solvated in water.

During the design process the affinity was assessed with Vina. In order to confirm
the good affinity in the systems, binding affinity with AABFE method was estimated
in complex 453 and complex 297. Ligand 453 showed good affinity while ligand
297 showed just a modest affinity. Due to the fact that AABFE is considered one of
the methods with the highest level of theoretical rigor, it could give us more reliable
information to select the best candidates among those obtained from the algorithm;
thus, peptide 297 does not seem to be as good as peptide 453. It is important to
explore with BFE calculations other candidates in order to have a good collection
of peptides with good affinity, i.e., similar to that of peptide 453. Regarding the
interactions, Arg139, Phe250 and Cys255 were key residues in the binding of peptide
453 to resistin.
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We were able to establish a methodological route for the development of strong
candidates as peptide 453 for the design of potential ligands to resistin. We suggest
that peptide 453 should be further evaluated using suitable in vitro and/or in vivo
assays. This study depicts a rational design of probable leads that can be used for
other target molecules.
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transporter and its (SæP)
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3

3.1 Introduction

The Chloride Channel family proteins (ClCs) are found in all domains of life from
bacteria to humans and either function as anion/proton exchangers (active transport)
or as chloride channels (passive transport). ClC channels form part of plasma
membranes of cells, playing a role determining the membrane potential in muscle
fibers, balancing salt transport in kidney, inner ear, and other epithelial tissues [60].
ClC exchangers are localized in membranes of cellular compartments (endosomes,
lysosomes, plant vacuoles, and synaptic vesicles), playing a key role in acidification
[60], facilitating endocytosis [61] and lysosomal function [62]. When chloride
transport fails due to mutations in ClCs genes, diverse disorders arise, including
osteopetrosis, neurodegeneration, leukodystrophy, deafness, blindness, myotonia,
hyperaldosteronism, renal salt loss, proteinuria, kidney stones, male infertility, and
mental epilepsy [63]. This great variety of disorders highlights the physiological
importance of this kind of proteins.

Transporters dissipate the electrochemical gradient of one substrate (anion/proton)
to accumulate the other with substrate binding or dissociation being the primary
driving force for turnover [64]. Secondary active transporters are called antiporters
when anion/proton cotransport is in different directions. Actually, some intracellular
mammalian ClCs (ClC-3 to ClC-7), one plant (AtClCa) and one bacterial homologue
(ClC-ec1) are antiporters [63]. ClC-ec1 (Cl-/H+ exchanger from E. coli) is the most
studied prototypical ClC transporter [65]. The ClC proteins like ClC-ec1 have a
homodimeric structure and each monomer unit is able to carry out Cl-/H+ exchange
independently from the other subunit [66]. ClC monomer contains three Cl≠ binding
sites (Figure 3.1): internal, central and external binding sites (Sin, Scen and Sex).
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Cl-

H+

Gluin

Gluext Sext

Scen

Sint

Fig. 3.1. – ClC-ec1 dimer. Anion/proton permeation pathways (left) and the ion binding
sites formed by four conserved motifs (right): GIFAP (355-359), GSGIP (106-
110) and GREGP (146-150), where amino acids are showed in standard one
letter nomenclature and numbering is according ClC-ec1 PDB structure.

One exciting topic into the study of ion channels and transporters is ion selectivity
[67]. Ion selectivity can have different meanings, depending on the molecular system
that is being considered (ion channel or a transporter) and on the experimental
conditions that are used to probe the system (equilibrium binding or nonequilibrium
flux and ionic current measurements). In the case of a transporter, it is reasonable
to expect that ion binding selectivity will be primarily governed thermodynamically
by equilibrium binding, because the lifetime of the various conformational states
of the protein is extremely long. In the case of ion channels, selectivity can mean
different things, although ultimately it is understood that the wrong kind of ions
should encounter more difficulty than the right kind of ions to permeate. Then,
could be instructive to carry out two kind of studies, classical MD in order to study
the equilibrium behaviour of the systems and metadynamics simulations (MTD),
one computational technique that is sensitive for barriers and wells on the free
energy landscape. The MTD technique involves enhanced sampling over collective
variables using a biased potential to force the system to leave local minima and thus
sample low-probability states in complex systems [68]. MTD was already used to
estimate the conductance of different ion channels [69] [70] and the results were in
satisfactory agreement with experimental observations. It has been applied to study
the gating mechanism in the ClC Chloride Channel (salmonella homolog) [71] but
no to study selectivity in ClCs.
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The ClCs channels and the bacterial antiporter ClC-ec1 share an ion selectivity
sequence of SCN≠

> Cl≠ > Br≠
> NO≠

3 > F≠
> I≠ [72]. Hence, most ClC members

transport chloride ions (Cl-) that is one of the most abundant anions in extracellular
and intracellular fluids [73]. An exception is the AtClCa plant protein that displays
a preference for exchanging nitrate over chloride with a selectivity sequence of
NO≠

3 ≥ I≠ > Br≠
> Cl≠ > SO2≠

4 > glutamate≠. Indeed, nitrate (NO≠
3 ) is one of the

main available forms of nitrogen for plants since they can not use nitrogen directly
from the air. This is a fundamental step for plant biology; understanding molecular
mechanisms implicated in nitrate transport is also a key step in improving nitrogen
efficiency for sustainable agriculture [74].

Intriguingly, only one substitution (S107P) in the bacterial protein ClC-ec1 is able
to change the protein from Cl-/H+ to a NO≠

3 /H+ exchanger [64]. This mutation
is located at the central ion-binding Scen site. An elegant molecular dynamics
simulation study [75] has shown that, for the wild-type protein, nitrate displays two
distinct binding coordinations at the Scen site and is hydrated in a different manner
compared to chloride, i.e., nitrate forms pseudo-water-wires instead of continuous
water wires needed to support the connection of the two proton transfer sites. This
results provide important structural details of nitrate binding in ClC-ec1.

However, the molecular basis of the effect of the SæP substitution on selectivity has
not been given. Here we addressed more details related with this substitution by
comparing between wild-type (WT) ClC-ec1 protein and mutated (S107P) ClC-ec1
protein with both ions (Cl≠ and NO≠

3 ). Hereinafter we call the four systems WT-Cl≠,
S107P-Cl≠, WT-NO≠

3 and S107P-NO≠
3 for WT ClC-ec1 with Cl≠, (S107P) ClC-ec1

mutant with Cl≠, WT ClC-ec1 with NO≠
3 and (S107P) mutant ClC-ec1 with NO≠

3 ),
respectively.

3.2 Background and State of the art

3.2.1 Selectivity

One of the first theories of ionic selectivity was provided by Eisenman [76]. Se-
lectivity was explained as originating from the difference between the hydration
free energy of the ion and the energy of the interaction between the ion and a
charged/polar binding site within the channel. This theory predicted the existence of
11 selectivity sequences. Unfortunately, it has not been posible to identify charged or
polar group responsible for the selectivity of Na+ and K+ monovalent cations. Later,
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Laio and coworkers [77] showed that the selectivity properties of such monovalent
cation channels can originate from geometrical properties of the inner core of the
channel without any critical contribution from electrostatic interactions between the
permeating ions and charged of polar groups. These cases make it clear that the
study of selectivity in ionic channels or even transporters is still in its infancy but
looking at the electrostatic or geometrical aspects could be a good starting point.

There are some general rules about selectivity in channels: a) the height of the
energy barrier an ion needs to overcome will determine the ease for an ion to get
into a channel, b) the energy barriers determine the selectivity sequences as one
ion is subsituted by another with higher barriers for the least permeant ion, c) the
stronger the attraction to the binding site, the deeper the well, the deeper the well,
the slower are the rate constants for leaving it, and the slower the overall permeation
process. Nevertheless there could be some paradoxical behaviours [78].

Experimentally, the selectivity of transport proteins can be measured by different
methods like comparing the current amplitude in different ionic conditions or
from comparing permeability ratios. Permeability ratio is taken from the reversal
potential (zero net current) under bi-ionic conditions. Computational studies are
able to simulate this situation and explain the origin of the reversal potential in an
asymmetric ionic concentration with near-quantitative accuracy for OmpF porin and
hemolysin. However, measurements of reversal potentials become impractical for
highly selective channels such as the K+ channels. In this case, alternate methods
such as Ba2+ blockade relief or Na+ punchthrough were preferred. Ba2+ block is
more sensitive to the depth of the free energy minima of the binding sites (i.e.,
equilibrium binding), whereas Na+ punchthrough is more sensitive to the height
of free energy barriers (i.e., nonequilibrium rates) [67]. Fortunately, as mentioned
before, MTD is a computational technique that is sensitive for barriers and wells on
the free energy landscape.

3.2.2 Cl≠ transport pathway

The Cl≠ binding region exists in three different conformations which differ in the
position of Gluext. In ClC-ec1 protein (wild type, WT), Gluext occupies Sext (middle
position) occluding the ion conduction pathway towards the outside (Figure 3.2).
The E148Q mutant of ClC-ec1 (presumably equivalent to the protonated E148)
represents the open state of the channel where Gluext moves out of the pathway
(up position). A third state is only found in the structure of cmClC (algae homolog),
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Glu148
(down alt.)

a) b) c) d)WT ClC-ec1 E148Q ClC-ec1 WT cmClC

Fig. 3.2. – Glu148 positions. Views of the conformations of the ion binding region of a)
WT ClC-ec1 (middle), b) E148Q ClC-ec1 (up), c)WT cmClC (down) and d) WT
ClC-ec1 extracted from PMF calculation (down alt.). Slightly adapted from [72]
and [79].

where the Gluext is in Scen (down position) [79]. Recently, structural studies pro-
vide evidence that shows Gluext in a structural intermediate position (middle down
position) [80]. Also, a combined molecular dynamics with biochemical and electro-
physiological measurements suggested that Gluext does not move through the pore
(down alternative position) [79, 81].

The ClC monomer contains three Cl≠ binding sites (Figure 3.1): internal, central
and external binding sites (Sin, Scen and Sex). Sext is defined by the backbone
nitrogen atoms of residues Phe357, Ala358, Arg147, Glu148, and Gly149. Scen

is identified by the backbone nitrogen atoms of Ile356 and Phe357 and by the
side-chain oxygen atoms of Ser107 and Tyr445. Sint is defined by the backbone
nitrogen atoms of Ser107 and Glu108. Such residues are relatively well conserved,
for example, Ssercen (S107) and Gluex (E148) are found in 42% and 88% of the ClC
sequences, respectively [72].

3.2.3 H+Cl- coupling

Different models of the transport coupling in ClC exchangers has been proposed.
A first model (Figure 3.3, Model I) was suggested by Feng and MacKinnon [82].
This model consists of the following phases: an intracellular proton reaches the
negatively charged side chain of Gluex, which is placed at Scen (I–II); Gluex moves
and the Cl- at Sext leaves its binding site towards the outside (II–III); two Cl- enter
from the extracellular side (III–IV); Gluex is deprotonated (IV–V); the side chain
of Gluex moves from Sext to Scen, pushing the Cl- bound in Scen to Sint and the ion
bound in Sint into the cytoplasm (V-VI) and an extracellular Cl- rapidly binds into
Sext (VI–I). Steps V and VI correspond to the crystal structures of EcClC-1 E148Q
mutant of EcClC-1 and Wild Type EcClC-1, respectively. This model also called the
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Model 1 Model 2

Fig. 3.3. – Models for the transport cycle of the ClC exchangers. Taken from [72]

kinetic gate, incorporates only the external gating glutamate as a gating element
and does not involve conformational changes associated with transport.

A second model was suggested by Basilio et al [83] (Figure 3.3, Model II). It consists
of the following phases: the protein in an occluded state opens the inner gate in-
volving conformational changes of helix O (I–II); two Cl- enter from the intracellular
side displacing Gluex outside (II–III); Gluex is protonated from the outside and the
inner gate closes (III–IV); protonated Gluex re-enters to the ion transport pathway
(IV–V); the proton is transferred from Gluex to the intracellular solution via the
internal glutamate (Glu203 in ClC-ec1) (V–VI) and transporter returns to its initial
configuration (VI–I). This second model also called steric gates model, has been
proposed to account for the finding that Tyrcen act as the intracellular gate of the ClC
exchangers and that a conformational change of helix O is required for transport.

Khantwal et al. [84] proposed an alternative mechanism (Figure 3.4) that highlights
the relevance of global structural changes in ClC function. This mechanism is in
agreement with the second model, except in steps IV-VI, which involve protein
conformational changes. After protonation of Gluex, the helices N and P rearrange
(IV) to open the extracellular vestibule and to allow the exit of the bound chloride
anions (IV-V). Then, once the protonated Gluex occupies Scen (state V), helices N
and P rearrange again, closing the extracellular vestibule so that the proton transfer
between Gluex and Gluin is not exposed to either the extracellular or the intracellular
media.

A modified version of the first model has been proposed too [63]. This version
eliminates the modulatory Cl- binding/unbinding step (II-III) by introducing a
hypothetical transition during which the protonated side chain of Gluex and the Cl-

bound in Sext swap their position and the side chain of the gating glutamate moves
further out. This model partially remediates the inconsistency in the first model that
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Fig. 3.4. – Helices names in ClCs (left) and Khantwal et al. mechanism for Cl ion transport
(right). Taken from [84]

predicts an uncoupling of chloride proton exchange at acidic pH values. It states
that the nonconductive state II is more highly populated at acidic pH. However,
the proposed swap of the protonated glutamate side chain with a Cl- is purely
hypothetical and requires experimental verification.

Implicitly, it is assumed that the phenomenon of ion permeation and selectivity
through an open conductive pore can be discussed independently from gating and
inactivation. In reality, the situation is more complicated. For instance, the filter of
some K+ channels is unable to remain in a conductive conformation when exposed
to an ionic solution with little or no K+ ions. In case of ClCec1 protein, it has been
suggested that gating and simultaneous occupancy of binding sites regulate affinity
but not selectivity [64].

3.2.4 What we know about NO≠
3 coupling and transport on ClCs

There are different behaviors against nitrate transport across the domains of life.
The nitrate transport mechanism of the bacterial antiporter ClC-ec1 is partially
uncoupled to protons. The human chloride transporter ClC-5 is more conductive for
nitrate than for Cl- but its nitrate transport mechanism is uncoupled to protons. In
plants, AtClCa is able to transport nitrate more efficiently than Cl- and to catalyze
nitrate transport coupled to protons. AtClCa protein is localized at the tonoplast and
functions as an antiporter, transporting 2NO≠

3 versus 1H+ [85].

Although the molecular mechanism of nitrate exchange remains unknown, computa-
tional studies on bacterial ClC-ec1 transporter revealed that nitrate in the central
anion-binding site Scen, crucial for the chloride-coupled H+ transport, has two bind-
ing modes (Modes I and II) in comparison with the single binding mode for Cl-
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Fig. 3.5. – Anion binding modes. Two binding modes for nitrate (left) and one for chloride
(right) Taken from [75]

[75] (Figure 3.5). In Mode I, nitrate is fitted into Scen with one of its oxygen atoms
coordinated by the backbone nitrogen atoms of I356 and F357, and the other two
oxygen atoms coordinated by the side chain hydroxyl groups of S107 and Y445,
respectively. Mode I is relatively more populated and is observed in both subunits.
In Mode II, nitrate moves upward to a position between Scen and E148. This binding
mode involves hydrogen bond interactions between the oxygen atoms of NO≠

3 and
the backbone nitrogen atom of G149, instead of direct interaction with S107 and
Y445 hydroxyl groups. However, binding Mode II only occurs in subunit I during
150 ns, before NO≠

3 moves back to the original, Scen binding site.

An interesting behavior has been observed in water that surrounds the ions [75]
(Figure 3.6). In the case of Cl≠ bound to Scen, it stabilizes the formation of a wire
of water molecules between Gluext and Gluin after or without a conformational
change of Gluin. Nitrate, in the same site, leads instead to the formation of pseudo-
water-wires odifferent from those formed with Cl≠ anions. These different water
rearrangements could potentially play a key role for the experimentally observed
selective coupling between chloride/nitrate and protons.

On the other hand, it has been proposed that ClC selectivity is primarily determined
by interactions of side chains in a well conserved filter motif (Figure 3.7) with the
permeating ions. Specifically, a serine residue Scen which participates in the central
Cl- binding site was shown to control the Cl-/NO≠

3 selectivity of ClC channels and
transporters. In its conserved filter motif, AtClCa contains a proline (P160), while
human ClC-5 and bacterial ClC-ec1 contain a serine (S168 and S107, respectively).

42 Chapter 3 Firsts insights into the NO≠
3 over Cl≠ selectivity in ClC-ec1 trans-

porter and its (SæP) mutant



Cl-
NO3

-

Fig. 3.6. – Effect of anion bound at Scen on formation of water wires. Taken from [75]

Fig. 3.7. – Sequence alignment of several ClC proteins in the region of the GXGIPE filter
motif. Taken from [86]

Recent studies show that human ClC-5 mutant (SæP) enables coupling nitrate and
proton transport, a (SæP) substitution confers NO≠

3 selectivity upon the Cl- specific
ClC-ec1 transporter and ClC-0 channel [64], while, AtClCa mutant (PæS) loses
nitrate selectivity.

Another important experimental result has shown that stronger binders (Cl-) support
tight proton coupling while weaker binders (NO≠

3 ) degrade coupling. It was also
found that the binding selectivity of the E148A mutant is the same as WT, showing
that E148 regulate affinity but not selectivity[64].

Recent studies in ClC-0 and ClC-K channels [87] suggests that the pore-lining
backbone amides are the general determinants of inter-anion selectivity in ClCs and
that side chains (Sercen) contribute to selectivity in only a subset of ClCs. All the
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previous information highlights the necessity of studies to understand the mechanism
of nitrate transport in ClCs and its mechanism of selectivity.

3.2.5 Metadynamics

The well known problem of time scale in MD simulations has given rise to the
development of a group of methods known as “enhancing sampling methods”.
Enhanced sampling methods aim to accelerate sampling in simulations, allowing
to explore processes that will otherwise not be tractable in reasonable computer
times [88]. There is a subgroup of enhanced sampling methods where sampling
is facilitated by the introduction of an aditional bias potential (or force) that acts
on a selected number of degrees of freedom or collective variables (CVs), often
referred to as “collective variables-based methods” [89]. They include the widely
used umbrella sampling [90] and metadynamics [68]. In both methods, besides
enhancing sampling, it is also possible to reconstruct the free energy surface (FES)
as a function of the chosen CVs. But, at variance with umbrella sampling, in
metadynamics no a priori knowledge of the landscape is required.

In metadynamics, an external history-dependent bias potential Vbias, which is a
function of the CVs, is added to the Hamiltonian of the system H, i.e.,

H(x) = K(x) + V (x) + Vbias(x, t)

where x are configurational variables or the so called CVs, t is the time, K is the
kinetic energy, V the potential energy and d the dimensionality or the number
of collective variables. The bias potential can be written as a sum of gaussians
deposited along the system trajectory in the CVs’ space to discourage the system
from revisiting configurations that have already been sampled, i.e.,

Vbias(x, t) =
⁄ t

0
w exp(≠

dÿ

i=1

(xi(t) ≠ xi(tÕ))2

2‡
2
i

)dt
Õ

where w is the gaussian height and ‡i is the width of the gaussian for the ith CV.
After a transient time, the accumulated bias potential provides an unbiased estimate
of the underlying free energy F (x), i.e.,

F (x) ≥ ≠ Vbias(x, t æ Œ)
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The general process is ilustrated in Figure 3.8.

Metadynamics presents two major drawbacks: i) in a single run, the bias potential
does not converge to a static function that shows oscillations. This results in a
possible overfilling of the underlying FES, and gives rise to the non trivial dilemma
of when to stop a simulation; and ii) identifying a set of CVs appropriate for
describing complex processes is far from trivial. The first issue has been overcome
by developing well-tempered metadynamics, where the bias converges to its limiting
value in a single run, thus avoiding overfilling, and it is possible to control the region
of the FES that are physically meaningful to explore. [91]. Another improvement
has been done by deriving a time-independent and locally convergent free energy
estimator for metadynamics [92]. In case of the CVs choice, there is no a priori recipe
for finding a suitable set of CVs, and in many cases it is necesary to proceed by trial
and error, attempting several metadynamics simulations with different combinations
of variables. Ideally the CVs should satisfy three properties: i) they should clearly
distinguish between the initial state, the final state and the intermediates, ii) they
should describe all the slow events that are relevant to the process of interest and iii)
their number should not be too large, otherwise it will take a very long time to fill
the free energy surface. Examples of CVs are distances, dihedral angles, coordination
numbers, potential energy and box shape, between others [93].

The time interval between the addition of two gaussian functions, as well as the
gaussian height and gaussian width, are tuned to optimize the ratio between accuracy
and computational cost. By simply changing the size of the gaussian, metadynamics
can be fitted to yield very quickly a rough map of the energy landscape by using
large gaussians, or can be used to get a finer grained description by using smaller
gaussians. Usually, the well-tempered metadynamics is used to change the gaussian
size adaptively [91], i.e., the height of the gaussian is decreased with simulation
time according to:

w = w0 exp(≠ Vbias

kB�T
)

where w0 is an initial gaussian height, �T an input parameter with the dimension of
a temperature, and kB the Boltzmann constant. With this rescaling of the gaussian
height, the bias potential smoothly converges in the long time limit, but it does not
fully compensate the underlying free energy:

F (x) = ≠ T + �T

�T
Vbias(x, t æ Œ) + C
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Fig. 3.8. – Representation of the metadynamics process. First the system evolves according
to a normal dynamics, then a gaussian potential is deposited (solid gray line).
This lifts the system and modifies the free energy landscape (dashed gray line)
in which the system evolves. After a while the sum of Gaussian potentials fills
up the first metastable state and the system moves into the second metastable
basin. After this the second metastable basin is filled, the system evolves in a flat
landscape. The summation of the deposited bias (solid gray profile) provides
a first rough negative estimate of the free energy profile. Credits for the figure
[94].

where T is the temperature of the system. In the long time limit, the CVs thus
sample an ensemble at a temperature T + �T which is higher than the system
temperature T . The parameter �T can be chosen to regulate the extent of free-
energy exploration: �T = 0 corresponds to standard molecular dynamics, �T æ Œ
to standard metadynamics. In well-tempered metadynamics, the term “bias factor” is
the ratio between the temperature of the CVs (T + �T ) and the system temperature
(T ), i.e.,

“ = T + �T

T

The bias factor should thus be carefully chosen in order for the relevant free-energy
barriers to be crossed efficiently in the time scale of the simulation.
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3.3 Objective

• To provide insight on how ClC-ec1 protein and (SæP) mutant can manage to
transport highly diverse anions such as Cl- and nitrate.

3.4 Methods

The first part of our work is devoted to the Classical Molecular dynamics simulations
of four systems: WT-Cl≠, WT-NO≠

3 , S107P-Cl≠, and S107P-NO≠
3 ; corresponding to

WT ClC-ec1 with Cl≠, (S107P) ClC-ec1 mutant with Cl≠, WT ClC-ec1 with NO≠
3 ,

and (S107P) mutant ClC-ec1 with NO≠
3 systems, respectively.

During the 800 ns MD simulation, we analyzed the radius of the pore, the distance
between the ion’s center of mass and selectivity filter’s center of mass, the Root-
Mean-Square Deviations (RMSD) of the protein backbone/SF and Gluext position
and time-evolution of the rotameric state ‰1 of Phe357 residue.

The second part is dedicated to the construction of free energy surface (FES) of ion
permeation events in order to quantify energetic barriers by running metadynamics
simulations.

3.4.1 Metadynamics

We first tested our system using a spherical restraint to limit the volume in the
solvated state and applying the bias in three collective variables (r, „ and ◊),
accordingly to the recently developed Volume-based metadynamics approach [95].
This approach has the advantage of permit an exhaustive exploration of all the
binding pathways. Due to the lack of convergence of the simulation after 800ns, we
decided to develop a cylindrical variant of the Volume-based metadynamics method,
which is also based on the well-tempered metadynamics approach. In our variant,
we took advantage of the fact that the flexibility of proteins (like ClC-ec1) embedded
in a membrane is limited and thus its center of mass can be defined once and used
for the rest of the simulation. Centered around this position we consider a cylinder
of finite radius fls, larger than the radius of the pore as ilustrated in Figure 3.9. Ion’s
positions are described in cylindrical coordinates (fl, „, z), and z coordinate is used
as the CV, putting a MTD bias on it. A repulsive potential is added at the border
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Fig. 3.9. – Representation of the cylindrical restraining potential added to the system.

of the cylinder, increasing the probability of a subsequent recrossing event. The
restraining potential is in the form:

Us(fl(t), z(t)) =

Y
__]

__[

1
2k(fl(t) ≠ fls)2 if fl(t) > fls
1
2k(|z(t)| ≠ zs)2 if |z(t)| > zs

0 otherwise

where k has to be large enough to prevent the ligand escaping from the confining
volume, fl(t) is the xy projection distance of the ion from the center of mass of the
target protein, fls is the radius of the cylinder, z(t) is the value of the z coordinate
from the center of mass of the target protein and zs is half of the cylinder’s height.

3.5 Computational details

Simulations were performed on the well-know ClC-ec1 bacterial model (PDB ID:
1OTS, resolution: 2.5 Å), taken from OPM database [96]. The protein (WT and
mutant)/membrane systems were built using the CHARMM-GUI web tool [97].
PROPKA [98] was used to predict the pKa of protein residues and determine the
protonation states at pH = 3 (physiologycal pH for this transporter [99]). Results
of the pka prediction suggested to keep residue Gluint (E203) deprotonated, while
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GLUext (E148) protonated. We also implemented E148 unprotonated due to its
importance in the gating mechanism of the channel and in the proton coupling
necessary for transport (at least for chloride).

Protein was embedded in 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC)
lipid bilayer (100 lipid molecules for the monomer and 400 for the dinmer) and
solvated with TIP3P[100] water with 150 mM NaCl salt concentration. Proteins and
lipids were modeled with CHARMM36m[101] and LIPID17 force fields, respectively.
Parameters for nitrate were taken from [102], while parameters for Cl≠1 were the
default given by CHARMM-GUI program [97]. The homodimer simulation box
contains a total of ( 168,000) atoms, including crystalographic waters, with box
length of 130 Åx 130 Åx 98 Å. All the simulations were performed using GROMACS-
2018.3 [45] source code patched with PLUMED version 2.5.2 [103, 104] for the
well-tempered metadynamics simulations. Besides simulations with the dimeric
form of ClC-ec1, simulations with a single monomer were also performed.

Long range electrostatic interactions were evaluated using particle-mesh Ewald
(PME) summations [48] and Lennard-Jones interactions were truncated at 12 Åwith
an atom based force switching function which is effective at 10 Å. After energy
minimization, each system was equilibrated in NVT ensemble for 500 ps and 6 ns
in NPT ensemble. Equilibration was diveden into 6 steps (2 for NVT and 4 for NPT
equilibrations) as suggested by CHARMM-GUI, harmonic position restraints were
applied to the solute heavy atoms with a decreasing force constant between 4000
and 50 kJ mol≠1 nm≠2. After equilibration we continued the production run for
800 ns in NPT ensemble. The integration time step is set at 2 fs and the simulation
is performed at 310 K and 1.0 atm pressure. Nosé-Hoover chain thermostat with
time constant 1.0 ps was used to control the temperature. Semiisotropic Parrinello-
Rahman barostat with reference pressure 1 atm, time constant 5.0 ps and isothermal
compressibility of 4.5 x 10≠5 bar≠1 were used to maintain the pressure of the
system.

In volume based metadynamics, 1 CV (Z axis) with cilindrical restraint was used. We
used gaussian width = 0.1 nm, pi/16 rad, pi/8 rad, gaussian height =1.3 kJ/mol,
deposition time between gaussians = 500 MD time steps, BIASFACTOR=20 and
TEMP=310 K. Sigma values were chosen based on the fluctuations of the three
coordinates during the classical MD. Bias factor was chosen based on the expected
barrier heights. Convergence was assumed as suggested in [92] by monitoring c(t)
behaviour and difusion of the collective variable.

3.5 Computational details 49



Extracellular Intracellular

Ser107F357

Extracellular Intracellular

Ser107F357

WT-Cl- (XRD)
WT-Cl-

WT-NO3
-

S107P-NO3
-

S107P-Cl-

Extracellular Intracellular

Ser107F357

Extracellular Intracellular

Ser107F357

Phe357 Ser107Cl- Cl- Phe357 Ser107Cl- Cl-

WT-Cl- (XRD)
WT-Cl-

WT-NO3
-

S107P-NO3
-

S107P-Cl-

Extracellular Intracellular

Ser107F357

Extracellular Intracellular

Ser107F357Fig. 3.10. – Comparision of pore radius profiles of the crystal structure and those of the
MD simulation (average) with both anions (Cl- and NO≠

3 ) bound at Scen and
both proteins (WT and S107P). The center of the bound anion at t=0, which
correspond to the Cl- position in the crystal structure, is set as the origin. Green
circles represent the positions of the Cl≠ ions in the crystal structure. Phe357
(F357) and Ser107/Pro107 (S107/P107) distance from the central Cl≠ in the
crystal structure are also indicated.

Energy calculations with MMPBSA method were performed using g-mmpbsa package
[44], as in section 2.4.4. MMPBSA calculations were performed using results from
MD clasical simulations in a single–trajectory (one-average) setup.

3.6 Results

During the 800 ns MD simulation, we analyzed the radius of the pore, the distance
between the ion’s center of mass and selectivity filter’s center of mass, the Root-
Mean-Square Deviations (RMSD) of the protein backbone/SF and Gluext position
and time-evolution of the rotameric state ‰1 of Phe357 residue.

The average pore radius profile of the anion conduction pathway follows the trend
observed for the crystal structure (Figure 3.10). The two main bottlenecks, cor-
responding to the constriction regions that occlude the anion from the aqueous
solutions, are clearly preserved (around -5 and 3 Å), although the extracellular
bottleneck shows a moderate expansion relative to the crystal structure in all the
simulated systems other than S107P-Cl≠ in subunit I. In general, the overall structure
of the protein does not appear to be largerly affected by the chemical nature of
the bound anion or the mutated aminoacid. Upon initial inspection, the selectivity
properties of these anion transporters do not seem to arise simply from geometrical
properties.
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WT S107P mutant

Anion Cl- NO-3 Cl- NO-3

Permeability Less permeant than Cl-
in WT a [64]

Slightly more permeant 
than Cl- c [64]

Conductivity Less conductive than Cl-
in WTa, [64]

Current Barely above the
backgroundd [105], e [64]

Increase of outward
currentd [105]

Ion-H+ Coupling Weakb,d [105] Cl-/H+ exchange is 
slowed ~8 foldb [64]

Stronger compared 
with WT d [105]

Binding Not bindb [64] Binding is enhaced ~4 
foldb [64]

Affinity
(kcal/mol)

N*=1, -4.3[64]

N=2,  -4.4[64]
N=1, -2.6 [64] No heatb [64] N=1, -3.3[64]

Stoiquiometry 
Anion : Proton

2:1 7-10:1b

Fig. 3.12. – Summary of the main experimental features related to Cl≠/NO≠
3 selectivity,

binding and coupling through the ClC family (a.ClC-0 channel, b. ClCec1
transporter, c. ClC-0 and S123P/E166A, d.ClC-5 transporter, e. ClC-0 S123P
channel, N means the number of sites considered for the measurement.

The average interaction energies between anions at Scen and individual residues
through the protein selectivity filter, presented in Figure 3.11 indicate that the
anion binding is mainly supported by residues coordinating Cl≠ at Scen in the
crystal structure, being Ser107 and Tyr445 the residues with the most favourable
contributions and Glu148 the most unfavourable contribution for WT-Cl≠ and WT-
NO≠

3 systems. S107P-Cl≠ system shows a similar trend but the average interaction
energy of residue Pro at position 107 decreases its value, showing that this residue
could be partly responsably for the lack of experimental affinity for Cl- at this position
in the mutant [64] (Figure 3.12).

In Figure 3.13a, Backbone RMSD subunit I converge to a value around 0.2 nm for
systems S107P-Cl≠, WT-NO≠

3 and S107P-NO≠
3 , but for WT-Cl≠, it takes a higher

value around 0.3 nm. In Figure 3.13b, Selectivity Filter RMSD subunit I converge
to a value around 0.1 nm for systems S107P-Cl≠, WT-NO≠

3 , but for S107P-Cl≠ and
S107P-NO≠

3 , it takes higher values around 0.2 nm and 0.3 nm, respectively. In
Figure 3.13c, Backbone RMSD subunit II converges to a value of around 0.18 nm for
all the systems. In Figure 3.13d, Selectivity Filter RMSD subunit II converges to a
value of around 0.15 nm for systems S107P-Cl≠, WT-NO≠

3 and S107P-NO≠
3 but for

S107P-NO≠
3 , it takes a higher value around 0.25 nm. In order to know what are the

residues responsible for the major changes in RMSD, we evaluated de Root Mean
Square Fluctuations (RMSF) in the selectivity filter of WT-Cl≠ chain I and S107P-
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Fig. 3.14. – RMSF of a) SCL chain I; b) S107P-NO≠
3 of chain I; and c) PNO3 chain II.

NO≠
3 in both subunits (Figure 3.14). Results show that the most flexible residues are

Ser107/Tyr445, Ile109/Pro110/Tyr445 and Ser107/Glu148/Phe357; for WT-Cl≠

subunit I, S107P-NO≠
3 subunit I and S107P-NO≠

3 subunit II, respectively.

It can be observed in Figure 3.15a that the central ion distance in subunit I has major
changes for WT-Cl≠, S107P-NO≠

3 and S107P-Cl≠. In Figure 3.15b, the central ion
distance in subunit II has major changes for S107P-NO≠

3 system. After verification
of trajectories, it was found that Cl≠ in WT-Cl≠ subunit I leaves the pore through
the cytoplasmatic side, NO≠

3 moves towards Sext in S107P-NO≠
3 subunit I and Cl≠

moves towards Sext in S107P-Cl≠ subunit I. This results could suggest that the lower
barriers are when translocating from Scen to Sint for WT-Cl≠ system, from Scen to
Sext for S107P-NO≠

3 and S107P-Cl≠ systems, as also sugested by other computational
studies [75]. In Figure 3.15c-d we present the distance between Gluext from Scen.
In S107P-NO≠

3 system subunit I and WT-NO≠
3 subunit II, Gluext changes from the

“Up” to the “alternative down” position (Figure 3.16) that facilitates the formation
of water wires. All the other systems remain with Gluext in the “Up” position. It is
important to mention that this “alternative Down” position outside the ion pathway
has been only recently reported for the WT with Cl≠[79, 81]. This result is important
because it could suggest that the mutant with NO≠

3 could share similar (compared
to the WT ClC-ec1 with Cl≠) mechanisms for ion/proton coupling, anion transport
and affinity, something that has not been reported so far. Unfortunately, we can
not make many conclusions related to selectivity because according to experimental
results [64], Gluext and simultaneous occupancy of Scen and Sext regulate affinity
but not selectivity.

The behavior of Phecen was also followed during the simulation. This residue forms
part of the Cl≠ permeation pathway in ClCs by coordinating ions in Scen and Sext

with its backbone amide in WT-Cl≠ system. It was recently found that in WT-Cl≠

system, Phe357 side chain exists in equilibrium between two rotameric states with
angles of ≠160° “up” and ≠70° “down” and that the transition between this rotamers
is critical for ion permeation [79]. We found the same equilibrium between the two
states in all the four systems; this observation supports the idea that this rotameric
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Fig. 3.16. – Gluext position and presence of water wires observed in a) WT-NO≠
3 and b)

S107P-NO≠
3 systems.

transition could play a role in WT-NO≠
3 and S107P-NO≠

3 systems. However, for
WT-Cl≠, S107P-NO≠

3 and WT-NO≠
3 , the prefered state is the “up” state, while for

S107P-Cl≠ is the down state (Figure 3.17). Wheter this different preferred state
(“up”) in the mutant system (S107P-Cl≠)(compared with the WT-Cl≠ system) is
related to the following facts (summarized in Figure 3.12): i) in S168P ClC-5 mutant
Cl≠ current magnitud is barely above the background and ii) Cl≠ does not bind to
the S107P ClC-ec1 mutant at the Scen position, needs further investigation.

Due to the fact that the only system where the ion leaves the pore is the WT-
Cl≠, we investigated a little bit more the details of the ion unbinding. We found
a rearrangement in Ser107, that is unstabilizing Clcen and lately leading to Cl≠

movement towards the cytoplasmatic solvent. The Ser107 movement is accompanied
by the movement of the coil segment (residues 99 to 110) stabilized by the formation
of hydrogen bond between the amide backbone of Ser107 and Glu111 side chain;
the latter is initially forming salt bridge with Arg120 (Figure 3.18). It is important to
mention that this rearrangement of the inner-gate backbone along residues Ser168-
Gly169-Ile170 (equivalent to Ser107-Glu108-Ile109) has been recently reported in
ClC-2 channel and is strikingly similar to that observed in the cryo-EM structure of
the bovine ClC-K channel [105], paving the way for newer ClC-ec1 gating models.

The converged FES for the WT-Cl≠ is shown in Figure 3.19 as obtained with the
well-temperature metadynamics simulations explained above. In Figure 3.19a we
present the behavior of the CV, which is diffusing over the allowed phase space. In
Figure 3.19b we can observe the logarithmic behavior for the c(t) values which,
together with the diffusivity of the CV, gives us an idea of the convergence of the
system [92]. In Figure 3.20a-b, we could identify the main binding sites reported in
the literature (Sint, Scen, Sext and Sout). Free energy barriers for Cl≠ translocation
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Fig. 3.18. – a) Ser107 rearrangement, b) an initial configuration (red) c) compared with
an older configuration (blue). This rearrangement occured around 150 ns of
the simulation.
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Fig. 3.20. – a) estimate of the free energy as a function of Z coordinate and b) estimate
of the free energy as a function of Z coordinate and rho cilindrical coordinate,
using 1 CV (Z coordinate).

are in agreement with those reported in the literature, between 3 and 8 kcal/mol
[71, 106]. The lower internal barrier is in agreement with our classical non biased
MD where the ion leaves the central binding site towards the internal one. Once
validated the WT system, our next step is to reach convergence in the nitrate and
mutant system to compare the energy barriers and minima between systems.

3.7 Conclusions

According to our classical simulations, the selectivity properties of ClC-ec1 WT and
mutant do not seem to arise from geometrical properties.

58 Chapter 3 Firsts insights into the NO≠
3 over Cl≠ selectivity in ClC-ec1 trans-

porter and its (SæP) mutant



Interaction energies in S107P-Cl≠ system shows that the favourable energetic contri-
bution of Pro at position 107 decreases its value compared to WT, showing that this
residue could be partly responsably for the lack of experimental affinity for Cl≠ at
this position in the mutant.

We could identify, in S107P-NO≠
3 system subunit I and WT-NO≠

3 subunit II, that
Gluext changes from the “Up” to the “alternative down” position which shows that
the uncoupling of WT-NO≠

3 system is not necessarily caused by the pseudo water
wires as proposed in reference [75], because formal water wires can appear with this
GLUext configuration without affecting the NO≠

3 binding or the other way around.

For WT-Cl≠, S107P-NO≠
3 and WT-NO≠

3 , the preferred Gluext configuration is the “up”
state while for S107P-Cl≠ is the “down” state. This different behaviour in S107P-Cl≠

system could be related to the fact that this is less permeant and with no affinity at
the Scen position for Cl≠.

We have been able to identify the main binding sites (Sint, Scen, Sext and Sout). Our
results for the free energy barriers for Cl≠ translocation are in agreement with the
reported in the literature, which are between 3 and 8 kcal/mol [71, 106].
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Glossary

amino acid is an organic compound that contain amine (–NH2) and carboxyl
(–COOH) functional groups, along with a side chain (R group) specific to
each different amino acid. There are 20 amino acids found in proteins. In
addition, pyrrolysine, used in the biosynthesis of proteins in some archaea and
bacteria but not present in humans, and selenocysteine, a cysteine analogue
only found in some lineages. The charged ones are: Arginine (Arg, R), Lysine
(Lys, K), Aspartic acid (Asp, D) and Glutamic acid (Glu, E). The polar ones
(form hydrogen bonds as proton donors or acceptors) are: Glutamine (Gln,
Q), Asparagine (Asn, N), Histidine (His, H), Serine (Ser, S), Threonine (Thr,
T), Tyrosine (Tyr, Y) and Cysteine (Cys, C). The amphipathic (often found at
the surface of proteins or lipid membranes, sometimes also classified as polar)
are: Tryptophan (Trp, W), Tyrosine (Tyr, Y) and Methionine (Met, M). The
hydrophobic (normally buried inside the protein core) are: Alanine (Ala, A),
Isoleucine (Ile, I), Leucine (Leu, L), Methionine (Met, M), Phenylalanine (Phe,
F), Valine (Val, V), Proline (Pro, P) and Glycine (Gly, G). . 3, 7, 8, 10, 11, 21,
79

arene These compounds are hydrocarbons that contain a benzene ring as a struc-
tural unit. In addition to benzene, other examples include toluene and naph-
thalene. They contains delocalized pi electrons between carbon atoms forming
a circle.. 31

bi-ionic conditions two different salts with a common anion on each side of the
channel. 38

C-terminal is the end of an amino acid chain (protein or polypeptide), terminated
by a free carboxyl group (-COOH). 6

CAP1 is a protein involved in species-specific signalling pathways.. 7

cyclic peptides Cyclic peptides are polypeptide chains taking cyclic ring structure.
The ring structure can be formed by linking one end of the peptide and the
other with an amide bond, or other chemically stable bonds such as lactone,
ether, thioether, disulfide, and so on. Peptide cyclization is a frequently
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used strategy for the development of peptides with enhanced conformational
stability (compared to their linear analogs).. iii

decorin is a proteoglycan associated with collagen and represents a common com-
ponent of connective tissue and extracellular matrix. 7

gyration radius is defined as the root mean square distance from each atom of the
protein to their centroid.. 13, 24

in silico is an expression meaning “performed on computer or via computer simu-
lation” in reference to biological experiments.. 3

lead compounds are structures which serves as a starting point for chemical mod-
ifications in order to improve potency, selectivity, or pharmacokinetic parame-
ters.. 3

Metropolis criterion consists in first determine the change in the energy of the
trial state compared to the previous state, namely �E = E(qtrial) - E(qj) and
ii) If �E Æ 0, accept the trial state, that is, qj+1 = qtrial). If �E > 0, then
accept the trial state with probability e

≠—�E . This is accomplished by using a
call to the pseudorandom number generator. If rand() < e

≠—�E , then accept
the trial state. Otherwise the trial state is rejected and then set the new state
of the system equal to the previous state qj+1 = qj).. 9–11

N-terminal is the start of a protein or polypeptide referring to the free amine group
(-NH2) located at the end of a polypeptide. 6, 7

peptide is a short chain of amino acids (between 2 and 50 amino acids), linked by
peptide bonds.. 3, 4, 7–11, 13–15, 18, 19, 21–24, 26–33

protein is a large biomolecule, consisting of one or more long chains of amino acid
residues.. 3–5, 7–9, 12, 13, 17–19, 23–25, 27–29

RMSD is the measure of the average distance between the atoms (usually the
backbone atoms) of superimposed proteins or conformations. RMSD =Ò

1
N

qN
i=1 ”

2
i , where ”i is the distance between atom i and either a refer-

ence structure or the mean position of the N equivalent atoms.. 13, 18, 22, 23,
25–28
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ROR-1 is a membrane protein and belongs to the ROR subfamily of cell surface
receptors, currently under investigation for its role in the metastasis of cancer
cells. 7

SCN Thiocyanate (also known as rhodanide) is the anion SCN≠. It is the conjugate
base of thiocyanic acid. Common derivatives include the colourless salts potas-
sium thiocyanate and sodium thiocyanate. Organic compounds containing the
functional group SCN are also called thiocyanates. . 37

selectivity filter forms the most constricted part of the conduction pathway in a
channel or transporter. iii

SH3 SRC Homology 3 Domain is a small protein domain of about 60 amino acid
residues which is involved in the regulation of important cellular pathways,
such as cell proliferation, migration and cytoskeletal modifications.. 8

TLR4 is a transmembrane protein, its activation leads to an intracellular signal-
ing pathway and inflammatory cytokine production which is responsible for
activating the innate immune system.. 7
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Appendix A

A.1 Sequence alignement and binding site

CSFESLVDQRIKEALSRQEPKTISCTSVTSSGRLASCPAGMVVTGCACGYGCGSWDIRNGNTCHCQCSVMDWASARCCRMA

Pocket Binding	Residues Size	(SA)

Site	H A39	G40 M41	V42 V43	
T44	G45	I57	N59	G60	

N61	R76

270.4

a)

b)

c) d)

Fig. A.1. – Sequence alignement of resistin in diferent species and binding pocket prediction
results. a) Primary sequence alignement of different RELMs. RestH (homo
sapiens), RestMM (mus musculus), RestT (tupaia belangeri), restF (felis catus),
restO (oryctolagus cuniculus), RestM (macata mulata) and likebetaMM (mus
musculus, RELM—). b) Sequence of the protein used during the simulation, red
amino acids are the most conserved between all the species and brown amino
acids are the predicted by RaptorX as part of the H binding site (in the globular
area of the protein). c) List of all the amino acids predicted by Raptor X for
H binding site. d) polyalanine-resistin starting structure where amino acids
in “VDW” format correspond to the amino acid residues that coincide with the
amino acids of the H binding site predicted and those mostly conserved between
different species. Amino acids are represented with standard one letter code).
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A.2 Post-design peptide selection

Fig. A.2. – Final set of peptides selected.
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A.3 Protein-peptide interaction analysis

Fig. A.3. – Relative amino acids contributions to the BFE (kJ/mol). Energy for each amino
acid was compared (453 – 297), a negative value implies a more favorable
contribution of this amino acid for the system 453. If we consider only the
relative binding energies with absolute values greater than 10 kJ/mol, there are
31 amino acids favorable to 453 and 15 unfavorable (most of the amino acids
more favorable to 453 belong to the protein).

Fig. A.4. – Number and type of interactions between protein-peptide for systems 453 and
297, according to MOE results. Hydrogen bonds (HBs) and amino acids (AA)
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Fig. A.5. – MMPBSA contributions to the BFE. Solvent Accessible Surface Area (SASA) and
Solvent Accessible Volume (SAV).
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