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Dra. Patrizia Calaminici
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Dr. Patrizia Calaminici

Mexico City March, 2020



The present work was developed in the multidisciplinary Nanoscience and Nanotecnology

PhD program of the Center for Research and Advanced Studies, Cinvestav, under the advi-
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Resumen

Con el fin de alcanzar calculos de primeros principios a escala nanométrica en esta tesis se

presentan la derivación e implementación de la aproximación del ajuste local de la densidad

para el potencial de Fock de largo alcance, aśı como, su uso para realizar cálculos usando

funcionales hibŕıdos de rango-separado en en marco de la teoŕıa del funcional de la densidad

auxiliar de densidad ajustada (DF-DFT por sus siglas en inglés) y la teoŕıa del funcional de

la densidad auxiliar (ADFT). En particular, las metodoloǵıas desarrollada en este trabajo

permiten el cálculo del funcional de la densidad de forma rápida y eficiente con una notoria

aceleración comparado con las implementaciones de la teoŕıa del funcional de la densidad

(DFT) estandar, esto debido a que las expresiones matemáticas obtenidas de la enerǵıa y los

gradientes estan libre de las integrales de la repulsión electrónica de cuatro-centros, aśı como,

de la integración númerica del producto de funciones. La exactitud y el desempeño de algunos

funcionales h́ıbridos de rango-separado, ya sea en cálculos serial o paralelo, son validados,

evaluados y discutidos. También se presenta la extensión de la teoŕıa de perturbación de

la densidad auxiliar (ADPT) para funcionales h́ıbridos globales y de rango-separado. Las

contribuciones alcanzadas en esta tesis abren las puertas para cálculos de grandes sistemas

moleculares usando los funcionales hibrido de rango-separado en un tiempo razonable. Más

aún, estos permiten cálculos rápidos de las propiedades moleculares de sistemas nanométricos.

Algunas aplicaciones de problemas actuales son seleccionadas para mostrar el potencial de

la metodoloǵıa presentada en esta tesis.

XIV



Abstract

To facilitate first principle nanoscale calculations, this thesis presents the derivation and

implementation of the local density fitting long-range Fock exchange approach that can be

used for the computation of range-separated hybrid functionals within density-fitted density

functional theory (DF-DFT) and auxiliary density functional theory (ADFT). In particu-

lar, the latter methodology permits fast and efficient density functional calculations with

remarkable speed-ups compared to standard density functional implementations because the

obtained energy and gradient expressions are free of four-center integrals and the numerical

integration of product functions. The accuracy and performance, either serial or parallel, of

selected range-separated hybrid functionals are validated, benchmarked and discussed. The

extension of auxiliary density perturbation theory (ADPT) to global and range-separated hy-

brid functionals is also presented. The contributions achieved in this thesis open an avenue

for large-scale all-electron calculations with range-separated hybrid functionals in reasonable

time. Moreover, they enable the fast computation of molecular properties of nanosystems.

Selected applications to state-of-the-art problems exhibit the potential of the here presented

methodology.

XV



Introduction and Objectives

Nanotechnology, in which matter is studied and manipulated at the nanometric length scale,

is currently attracting enormous attention. It has, and will continue to have, considerable

impact on our lives as well as on the global economy. The main reason for the fascination in

nanometer-sized structures are their interesting properties, which are fundamentally different

to those of bulk materials. Surface effects and quantum mechanical effects arise in nanos-

tructures due to their large surface-to-volume ratio and reduced dimensions comparable to

the electron wavelength, respectively. Such effects are utilized to produce new improved ma-

terials, as well as novel medical, optical and electronic devices. Applications of some of these

nanostructured materials are shown in Table 1.

Table 1: Nanostructured materials and their common applications in
nanoscience and nanotechnology.

Nanostructured material Application
Nanoparticles/Nanoclusters Catalysis
Quantum dots Sensors
Nano films Adhesive and coating
Biological structures Medicine/Drug delivery system
Nanocomposites Material ceramics
Nano porous materials Information storage
Nanowires Magnetic, electrical and optical devices
Nanotubes Separation technologies

At the present state of our scientific understanding, quantum mechanics plays a fundamental

role in the description of natural phenomena. In fact, phenomena that occur on a very small

scale cannot be explained without the framework of quantum physics. The bulk properties of

materials often change dramatically when reduced to nanoscale dimensions. Starting roughly

1



2

at 100 nanometers, materials go through a size barrier below which quantization of energy

for the electrons in solids becomes relevant. The bulk properties of any material, which

are merely the average of all the quantum forces affecting all the atoms that make up the

material, start to suffer from these so-called quantum size effects. As things get smaller and

smaller, eventually a point is reached where averaging no longer works. From here on we

have to deal with the specific behavior of individual atoms or molecules resulting in effects

that are very different from those in macroscopic aggregates.

The applicability of quantum mechanics to study the properties of matter at the level of

nuclear, atomic, molecular and condensed matter physics is both universal and so far unques-

tionable. In the last decades, Density Functional Theory (DFT) [1, 2] and its complementary

time-dependent DFT (TDDFT) [3] have emerged as the leading electronic structure modeling

techniques and are widely used in fields as diverse as chemistry, physic, material science and

electronic engineering. The basic assumption in the quantum mechanical DFT description

of many electron systems is the expression of the energy as a functional of the density. The

ability to model the atomic and electronic structure of molecules, liquids, nanoparticles and

solids has become a key part of modern research. However, almost all simulations are limited

to a relatively small number of particles, here atoms. The principle reason for this restriction

is the high order scaling of the computational demand with the number of electrons in the

system. As an example, standard Kohn-Sham DFT implementations scale formally quartic

in computational time and quadratic in memory with respect to the number of electrons.

To overcome this computational bottleneck, density fitted Kohn-Sham DFT (DF-DFT) and

auxiliary density functional theory (ADFT) have been established in recent years as compu-

tationally efficient alternatives to conventional four-center electron repulsion integral (ERI)

Kohn-Sham implementations [4, 5], allowing the routine calculation of systems with hundreds

of atoms and thousands of electrons [6, 7].

DFT, in form of the local density (LDA) and generalized gradient (GGA) approximation,

is widely used to determine properties of a large variety of molecular systems including

energies and thermodynamic data, geometries, charge distributions, vibrations, electric and

magnetic response properties as well as reaction pathways, to name a few. However, several

problems have been found in practical calculations. For example, LDA and GGA severely
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overestimate the polarizabilities in certain conjugated systems. This overestimation increases

with the size of the molecular systems and becomes even worse for hyperpolarizabilities of

elongated conjugated molecules [8, 9]. Here the failure of LDA and GGA is catastrophic. For

similar reasons, TDDFT calculations poorly estimate Rydberg excitations and their oscillator

strengths [10–12] and often fail completely for charge-transfer excitations [13].

To overcome the errors in the calculation of polarizabilities and hyperpolarizabilities, a new

class of density functional approximations (DFAs) has been proposed. These functionals,

known as long-range corrected (LC) functionals, include a growing fraction of exact ex-

change as the distance between electrons increases. They are able to improve the agreement

between calculated DFT and experimental polarizabilities and hyperpolarizabilities [14–17].

Moreover, Tawada et al. [18] applied the LC scheme within TDDFT and found that this

methodology yields accurate Rydberg excitation energies within 0.5 eV of the measured

experimental values, recovering oscillator strengths of the same order as the experimental

values. Further improvements to LC functional, like the Coulomb attenuated method and

the screening Coulomb method, generated a new family of DFAs named range-separated

hybrid functionals.

One of the successes of the range-separated hybrid functionals are molecular polarizability cal-

culations. Although, coupled-cluster (CC) [19] calculations are in principle more reliable for

polarizabilities, their unfavorable computational scaling with system size makes them only

partially suitable for systematic polarizability studies [20]. Thus, range-separated hybrid

calculations of polarizabilities are the current state-of-art for systematic polarizability and

hyperpolarizability studies. In fact, their results are closed to corresponding well-correlated

CC calculations. For these calculations, the solution of the coupled-perturbed Kohn-Sham

(CPKS) [21, 22] equations is needed. Due to the large dimension of the corresponding equa-

tion system, iterative solvers must be employed. As a result, the solution of the CPKS

equation system can become computationally very demanding or even impossible, e.g. for

nanosystems. A computationally more efficient alternative to CPKS is auxiliary density per-

turbation theory (ADPT), which recently has been successfully used to calculate response

properties of nanosystems such as static and dynamic polarizabilities [23–26]. An important

milestone in this respect was the development and implementation of a robust, iterative solver
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for the non-symmetric, indefinite, ADPT equation system based on the Eirola-Nevanlinna

(EN) algorithm in deMon2k. This iterative methodology, combined with an efficient paral-

lel implementation, permitted the calculation of response properties on systems with more

than 14,000 basis functions and 30,000 auxiliary functions in very reasonable times. So far

these property calculations are limited to LDA and GGA and, therefore, are not generally

suitable for the calculation of static and dynamic polarizabilities and hyperpolarizabilities of

nanosystems. Following these argumentations it is rather straightforward to assume that the

implementation of range-separated hybrid functionals into the DF-DFT and ADFT method-

ology, followed by a corresponding extension of ADPT, will permit fist-principle calculations

of non-linear optical properties of nanosystems. This thesis aims to contribute to this long-

term goal.

The first challenge in this respect is the efficient calculation of Fock or modified Fock exchange

needed for global and range-separated hybrid DFAs. Because this step includes four-center

ERI calculations, it usually represents the computational bottleneck for large-scale global

and range-separated hybrid calculations. This is particularly true if the variational fitting

of the Coulomb potential [27–29] is used and the obtained auxiliary density is employed for

the calculation of the local or semilocal DFA, i.e. ADFT calculations are performed. De-

spite impressive progress in the scaling reduction of Fock calculations for increasing system

sizes by algorithms like ONX [30] and LinK [31], its unfavorable O(N4
bas) scaling with re-

spect to the basis set size, Nbas, has for long time hampered the implementation of efficient

linear combination of Gaussian type orbital hybrid DFT calculations. More recently, this

bottleneck has been overcome by density fitting [32–35] algorithms for the Fock potential.

These algorithms build on earlier resolution of the identity approaches [36–38] but improve

their computational performance by efficient molecular orbital localizations. In this work the

recently developed variational fitting of the Fock potential [34] is extended to the modified

Fock potential needed for range-separated hybrid DFAs. Here we present the development

and implementation of the new basic integrals used in the corresponding two- and three-

center ERI recurrence relations [39–41]. Based on these ERI algorithms energy and gradient

expressions for four-center ERI free range-separated hybrid DFAs are derived and their serial

and parallel implementation and performance are discussed. It is shown that this approach
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permits range-separated hybrid energy and gradient calculations of nanosystems.

After this milestone was reached, we focused on the extension of ADPT for global and range-

separated hybrid functionals. To this end, we derive here new ADPT working equations,

now including Fock exchange, and propose a corresponding modifications of the underlying

EN algorithm. With a first proof-of-principle serial implementation we validate these new

ADPT working equations in this thesis.

Whereas ADFT hybrid functional calculations of standard enthalpies of formation are already

extensively validated, corresponding validations for activation and reaction enthalpies are less

abundant. To the best of our knowledge attention has so far only been focused on reactions

contained in the HTBH38/08 and NHTBH38/08 databases [42]. For these simple reactions

the activation energies obtained from ADFT hybrid functional calculations compare very

favorably with those from conventional four-center ERI Kohn-Sham calculations [43]. These

results have encouraged us to investigate the accuracy of ADFT hybrid calculations for

activation and reaction energies of more complex reactions. To this end, we followed Houk et

al. [44] who provided a general protocol, based on critically evaluated experimental activation

barriers for hydrocarbon pericyclic reactions, to test the performance of different levels of

theory for the calculations of these barriers. Thus, the direct comparison of the experimental

data with the calculated ones can be used to evaluate the performance of different DFAs. To

bridge to nanostructures, we extended these studies to the [4+2] Diels-Alder cycloaddition

of cyclopentadiene to C60. Here we found that the accuracies of DFAs for small pericyclic

reactions is not straightforward scalable to reactions involving nanosystems. This underlines

the need for more extensive studies of classical reactions of nanosystems. Such calculations

are facilitated by the methodological developments presented in this thesis.

Recently, the core-level shifts for the ESCA molecule were calculated by Van den Bossche et

al. [45] and the importance of including exact exchange in the DFT functional for accurate

results was pointed out. Here, we extend this work by evaluating the performance of various

DFAs for standard full core-hole final-state calculations. As an alternative to the full core-

hole calculations we also apply the chemically intuitive Z+1 approximation, i.e. replacing the

core-ionized carbon by nitrogen and computing the total energy for the positively charged

system. Our results shows that the Z+1 approximation yields similar results as the full
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core-hole calculations and also benefits from the use of global and range-separated hybrid

functionals.

Although the focus of this thesis is on the development of new methodologies for large scale

calculations, it is important to note that several of the here presented benchmark calculations

include molecules that contain hundreds of atoms and posses nanometric extensions. For

example, the linear alkane chain C150H302 has 452 atoms and a length of approximately 18

nm, the (α-D-glucose)16 amylose fragment which consist of 339 atoms, has a diameter of

around 1 nm and a length of 5 nm. The systematic study of these large molecular systems

has been possible due to the new algorithms for hybrid ADFT and DF-DFT methodologies

developed in this thesis.

The thesis is organized as follows. In chapter one the foundations of density functional theory

starting from elementary quantum mechanics are outlined. In chapter two the variational fit-

ting of the Coulomb and Fock potentials are derived and their use in the DF-DFT and ADFT

methodologies are described. Chapter three details the range-separation methodology and its

use in density functional approximations. The implementation, validation and benchmark-

ing of range-separated hybrid functionals, in the framework of DF-DFT and ADFT, both

in serial and parallel, are presented in chapter four. Selected applications of the here devel-

oped algorithms for the calculation of thermodynamic properties, electric response properties

and X-ray photoemission spectroscopy are presented in chapter five. Final conclusions and

perspectives of this work are drawn in the last chapter.

Objetives

The main objective of this thesis is to incorporate the range-separation methodology into the

framework auxiliary density functional theory (ADFT) and auxiliary density perturbation

theory (ADPT). Such an implementation will permit reliable energy and property calculations

of nanosystems. To achieve this main objective the following milestones must be reached:

• Derivation of variational fitted long-range Fock exchange energy.

• Serial and parallel implementation of the long-range Foch exchange potential.

• Serial and parallel implementation of the long-range Fock exchange energy gradients.
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• Serial and parallel implementation of range-separated hybrid functionals.

• Validation and benchmarking of the new range-separated hybrid functional implemen-

tation.

• Derivation of ADPT working equations for range-separated hybrid functionals.

• Validation of the new ADPT working equations.
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Chapter 1

Density Functional Theory

In this introductory chapter we will review some of the fundamental aspects of electronic

structure theory in order to lay the foundations for the theoretical discussion of density

functional theory presented in later parts of this thesis.

1.1 Quantum Mechanics

Classical mechanics is inadequate for describing systems composed of small particles such as

electrons, atoms, and molecules. What is missing in classical mechanics is the description

of wavelike properties for matter that predominates the physics of small particles. Quan-

tum mechanics takes into account the wavelike properties of matter when solving mechanical

problems. The mathematics and laws of quantum mechanics that must be used to explain

wavelike properties cause a dramatic change in the way mechanical problems must be solved.

In quantum mechanics, to yield something that can be observed experimentally, the expecta-

tion value of the measurable quantity is calculated. The expectation value can be interpreted

as the average value of the measurable quantity that we would obtain from a large number

of measurements or the simultaneous measurement of a large number of entities.

In quantum mechanics a system is described completely by the function Ψ(r, t) that depends

on the coordinates of the particle, r, and the time, t (for simplicity we ignore spin dependency

here). This function is called the wave function or state function. In order to represent

a viable physical state, the wave function must be single-valued, continuous and square-

integrable. In the probabilistic interpretation of Born [46], the wave function of a single

particle system is a function whose modulus |Ψ(r, t)|2 describes the probability density, i.e.

10
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the probability to detect a particle at the position r as a result of a measurement at the time

t. For a single particle quantum system the probability density function must satisfy the

normalization condition

〈Ψ|Ψ〉 =

∫
Ψ∗(r, t)Ψ(r, t)dr = 1 (1.1)

In equation (1.1) Dirac’s bracket notation has been used, where the state of a system is

represented by a ket vector, |Ψ〉, which belongs to a Hilbert space [47], H . For each ket

there exist a bra vector, 〈Ψ|, which belongs to the dual of H , H ∗, and represents its complex

conjugate. Associated to Hilbert space exist operators, Â, such that their application on a

ket yields a ket again

Â|Ψ〉 = |Φ〉 Ψ,Φ ∈H (1.2)

The physical meaning of an operator in quantum mechanics is given by the definition of

an observable (any measurable property of the system, i.e. position, momentum, energy,

etc.). Quantum mechanics postulates that for each observable there exist an associate linear

Hermitian operator, Â, and the only quantities that can ever be observed are the eigenvalues,

a, that satisfy the eigenvalue equation

Â|Ψ〉 = a|Ψ〉 (1.3)

If a system is in a state described by a normalized wave function Ψ, then the average value

of the observable corresponding to Â is given by

〈A〉 = 〈Ψ|Â|Ψ〉 (1.4)

The evolution of a quantum system is determined by the time dependent Schrödinger equation

ĤΨ(r, t) = i~
∂

∂t
Ψ(r, t) (1.5)

In Eq.(1.5) Ĥ is the Hamilton operator, i the imaginary unit and ~ the reduced Plank

constant, h/2π. To solve the time-depended Schrödinger the method of variable separation

is used. Therefore, we make the following ansatz

Ψ(r, t) = Ψ(r)X(t) (1.6)



12 Section 1.1. Quantum Mechanics

By inserting Eq. (1.6) into Eq. (1.5) it follows

ĤΨ(r)X(t) = i~
∂

∂t
Ψ(r)X(t)

X(t)ĤΨ(r) = i~Ψ(r)
∂

∂t
X(t)

1

Ψ(r)
ĤΨ(r) =

i~
X(t)

∂X(t)

∂t
(1.7)

Since the right hand side in Eq. (1.7) only depends on t and the left hand side only on r,

both sides must be equal to a constant, which we name E . Solving the right hand side of Eq.

(1.7),

i~
X(t)

∂X(t)

∂t
= E (1.8)

yields

X(t) = e−iEt/~ (1.9)

By inserting Eq. (1.8) into Eq. (1.7) and multiplying from the left with Ψ(r) we obtain

ĤΨ(r) = EΨ(r) (1.10)

Eq. (1.10) is known as the time-independent Schrödinger equation. For a given potential V̂ (r)

in the Hamilton operator, Ĥ, there are many solutions {Ψn} with corresponding eigenvalue

{En}. Thus, a general solution for Eq. (1.5) is given by

Ψn(r, t) = Ψn(r) e−iEnt/~ (1.11)

For a particular state, e.g. Ψ1(r), the probability density becomes time independent

|Ψ1(r, t)|2 = |Ψ1(r)|2 |e−iE1t/~|2 = |Ψ1(r)|2 (1.12)

These states are called stationary states. Therefore, a stationary state is a standing wave

that oscillates with an overall complex phase factor, where its oscillation frequency is equal

to its energy divided by ~.

Since stationary states form a complete orthonormal basis, we may write

Ψ(r, t) =
∞∑
n=1

cnΨn(r)e−iEnt/~ (1.13)
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where the cn are expansion coefficients. Thus, for the expectation value of the Hamilton

operator follows

〈Ĥ〉 = 〈Ψ|Ĥ|Ψ〉 =

∫
Ψ(r, t)∗ĤΨ(r, t) dr

=
∞∑
n,n′

∫
c∗n Ψ∗n(r) eiEnt/~ Ĥ cn′ Ψn′(r) e−iEn′ t/~ dr

=
∞∑
n,n′

c∗n cn′ ei(En−En′ )t/~
∫

Ψ∗n(r)ĤΨn′(r) dr

=
∞∑
n,n′

c∗n cn′ ei(En−En′ )t/~ δn,n′ En

=
∞∑
n=1

|cn|2 En (1.14)

As Eq. (1.14) shows, the expectation value of the Hamilton operator is time-independent.

This is the quantum version of energy conservation.

1.2 Born-Oppenheimer Approximation

A molecular quantum system is characterized by the number of nuclei and electrons, M and

N , respectively. The atomic mass of nucleus A is MA and its charge ZA. Therefore, the non-

relativistic Hamilton operator for an isolated molecule (from now on all equations presented

in this thesis are written using atomic units) is given by

Ĥ = −1

2

N∑
i

∇2
i −

M∑
A

1

2MA

∇2
A −

∑
A

∑
i

ZA
|ri −A|

+
N∑
i

N∑
j>i

1

|ri − rj|
+ (1.15)

M∑
A

M∑
B>A

ZAZB
|A−B|

In Eq (1.15) the ri and rj denote the spatial coordinates of the electrons i and j, respectively.

The position vectors A and B denote the spatial coordinates of the corresponding nuclei.

The physical meaning of the terms on the right-hand-side of Eq. (1.15) are:

The kinetic energy of the N electrons,

T̂e = −1

2

N∑
i

∇2
i , (1.16)
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the kinetic energy of the M nuclei,

T̂n = −
M∑
A

1

2MA

∇2
A, (1.17)

the electrostatic attraction between the N electrons and the M nuclei,

V̂ne = −
M∑
A

N∑
i

ZA
|ri −A|

, (1.18)

the electrostatic repulsion between the electrons,

V̂ee =
N∑
i

N∑
j>i

1

|ri − rj|
, (1.19)

and the electrostatic repulsion between the nuclei,

V̂nn =
M∑
A

M∑
B>A

ZAZB
|A−B|

. (1.20)

Therefore, it is customary to express Eq. (1.15) as:

Ĥ = T̂e + T̂n + V̂ne + V̂ee + V̂nn (1.21)

The wave functions associated to the Hamilton operator of Eq (1.21) must be a function of the

electron and nuclear coordinates. Thus, the concept of a molecular structure is not existing

at this level of approximation. To overcomer this conceptional drawback an approximate

separation of the differential equation based upon the very large difference between the mass

of an electron and the masses of the nuclei is suggested by the following ansatz

Ψ(r,R) = ΨR(r)Θ(R) (1.22)

In Eq. (1.22) ΨR(r) is the electronic wave function which is parametrically dependent from

the nuclear configuration. The corresponding nuclear wave function is denoted by Θ(R).

Due to the mass difference the nuclear components of the wave function are much more

localized in space. Thus, only a small space around the nuclei must be considered. Only

here the nuclear wave function is significantly different from zero. In this small region the

nuclear wave function rises much more steeply than the electronic one, which means that
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∇AΘ(R)� ∇AΨR(r). Thus, we may approximate according to Born and Oppenheimer [48]

T̂nΨ(r,R) = T̂nΨR(r)Θ(R)

= −
M∑
A

1

2MA

[
ΨR(r)∇2

AΘ(R) + Θ(R)∇2
AΨR(r) + 2∇AΨR(r) · ∇AΘ(R)

]
≈ −

M∑
A

1

2MA

ΨR(r)∇2
AΘ(R) = ΨR(r)T̂nΘ(R) (1.23)

Substitution of Eq. (1.22) into Eq. (1.10), considering the approximation obtained in Eq.

(1.23) and, employing once again the method of variable separation yields[
T̂e + T̂n + V̂ne + V̂ee + V̂nn

]
ΨR(r)Θ(R) = E ΨR(r)Θ(R)

ΨR(r) T̂nΘ(R) + Θ(R)
[
T̂e + V̂ne + V̂ee + V̂nn

]
ΨR(r) = E ΨR(r)Θ(R)[

T̂e + V̂ne + V̂ee + V̂nn

]
ΨR(r)

ΨR(r)
= E − T̂nΘ(R)

Θ(R)
(1.24)

Because the left hand side of Eq. (1.24) can only be a function of R, we write[
T̂e + V̂ne + V̂ee + V̂nn

]
ΨR(r)

ΨR(r)
= E(R)[

T̂e + V̂ne + V̂ee + V̂nn

]
ΨR(r) = E(R) ΨR(r) (1.25)

and

T̂nΘ(R) + E(R) Θ(R) = E Θ(R) (1.26)

Eq (1.25) and (1.26) are called the electronic and nuclear Schrödinger equations, respectively.

Classically, their separation by the Born-Oppenheimer approximation is often justified by

stating that the heavy nuclei move more slowly than the light electrons. In quantum me-

chanics, a physical system remains in its instantaneous eigenstate if a given perturbation is

acting on it slowly enough and if it is smaller than the corresponding eigenvalue gap. This

quantum mechanical concept is known as the adiabatic theorem. Under these conditions the

nuclear configuration can be assumed frozen for the solution of the electronic Schrödinger

equation, Eq. (1.25). The corresponding electronic Hamilton operator is given by

Ĥe = T̂e + V̂ee + V̂ne + V̂nn (1.27)
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Thus, we can rewrite Eq. (1.25) as

ĤeΨR(r) = E(R)ΨR(r) (1.28)

Eq (1.28) is also known as the clamped-nuclei Schrödinger equation. To avoid cluttering

of notation we will drop from now on the subscripts on the electronic Hamilton operator

and wave function. Note that the nuclear repulsion energy, V̂nn, was incorporated into the

electronic Hamilton operator because it contributes to the potential energy surface (PES)

and will be calculated by classical electrostatic repulsion between nuclear point charges. The

solutions of the electronic Schrödinger equation form a set of orthogonalized eigenfunctions,

Ψ(r), with corresponding eigenvalues E(R). In this thesis we focus on the energetically

lowest solution of this set, i.e. the ground state solution. The usual procedure to solve Eq.

(1.26) is then to solve first Eq. (1.28) for the electronic ground state and substitute its energy

value into the nuclear Schrödinger equation where it serves as potential for the nuclei. In

Born-Oppenheimer molecular dynamics (BOMD) the motions of the nuclei on the PES are

solved by Newtonian mechanics. As a result, an on-the-fly propagation of molecular systems

becomes possible.

1.3 Hohenberg-Kohn Theorems

The probabilistic interpretation of the electronic wave function leads directly to the (one

particle) electron density ρ(r). For a many electron system, neglecting spin dependencies,

the one-electron density is defined as the multiple integral over all spatial electron coordinates,

except one

ρ(r) = N

∫
· · ·
∫
|Ψ(r, r2, . . . , rN)|2dr2 . . . rN (1.29)

The electron density, ρ(r), determines the probability of finding an electron at position r,

while the other N − 1 electrons having arbitrary positions. For a system with N electrons

the electronic wave function depends on 3N spatial coordinates while the corresponding

electronic density depends only on 3 spatial coordinates. This dramatic reduction of spatial

coordinates has stimulated the research on density functional models over many decades since

the early thirties of the last century.
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For obtaining information about the electronic structure, the earliest attempts to use the

electron density rather than the wave function were made when quantum mechanics was

emerging itself. The works of Thomas in 1926 [49] and Fermi in 1928 [50] pursued indepen-

dently the same idea, namely to construct a model in which the kinetic and potential energy

was expressed directly as a function of the electron density. Further works by Dirac [51] as

well as Wigner and Seitz [52] improved the model by introducing a local expression for the

exchange potential. However, in 1962, the Teller theorem [53] showed the intrinsic instability

of the Thomas-Fermi model to describe molecular binding. Nevertheless, Slater successfully

introduced the idea of approximating the non-local Fock exchange potential in the Hartree-

Fock method by an average local potential based on the free-electron gas model. The result

was an exchange potential expressed solely in terms of ρ(r). Further development led to the

so-called Xα methodology of Slater and Johnson [54], which suggested that a theory based

on ρ(r) instead of Ψ(r) seemed feasible. However, it was not before 1964 that a rigorous

proof for the validity of the substitution of the wave function by the density as basic quantity

was provided by Hohenberg and Kohn [1] with the following theorem:

First Hohenberg-Kohn theorem: The external potential v(r) is determined, within a

trivial additive constant, by the electron density, ρ(r).

To proof this theorem, we assume, for a non-degenerate ground state, that two different

external potentials, v(r) and v′(r), arise from the same electronic density ρ(r). This implies

two different Hamilton operators, Ĥ and Ĥ ′ with the corresponding different wave functions

Ψ(r) and Ψ′(r). Taking Ψ′(r) as a trial wave-function for Ĥ and using the variational principle

yields

E0 = 〈Ψ|Ĥ|Ψ〉 < 〈Ψ′|Ĥ|Ψ′〉 = 〈Ψ′|Ĥ ′|Ψ′〉+ 〈Ψ′|Ĥ − Ĥ ′|Ψ′〉

< E ′0 +

∫
ρ(r)[v(r)− v′(r)]dr (1.30)

Similar if we take Ψ(r) as trial wave function for Ĥ ′

E ′0 = 〈Ψ′|Ĥ ′|Ψ′〉 < 〈Ψ|Ĥ ′|Ψ〉 = 〈Ψ|Ĥ|Ψ〉 − 〈Ψ|Ĥ − Ĥ ′|Ψ〉

< E0 −
∫
ρ(r)[v(r)− v′(r)]dr (1.31)
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Adding the inequalities (1.30) and (1.31) leads to the contradiction

E0 + E ′0 < E ′0 + E0 (1.32)

From this contradiction Hohenberg and Kohn concluded that the ground state density

uniquely determines the external potential v(r). Because the ground state density and its

potential, v(r), determine uniquely the Hamiltonian, Ĥ, which yields the energy by solving

the Schödinger equation, the following mapping can be established

ρ(r)↔ N, v(r)↔ Ĥ → Ψ[ρ]→ E[ρ] (1.33)

A consequence of the one-to-one mapping between the electronic density ρ(r) and the external

potential v(r) is that the wave function and the energy are functionals of the density. Hence

all ground state properties of a system are entirely determined by the ground state electronic

density. The variational energy principle can be used to obtain the ground state density as

proven by the second Hohenberg-Kohn theorem.

Second Hohenberg-Kohn theorem: The ground state density ρ(r) can be determined

from the ground state energy functional E[ρ] via the variational principle.

To proof this theorem we write the ground state energy, E0, as a functional of the density

E0 = E[ρ0] = 〈Ψ[ρ0]|Ĥ|Ψ[ρ0]〉 (1.34)

For a trial density ρt(r) such that,∫
ρt(r)dr = N and ρt(r) ≥ 0 ∀ r (1.35)

follows from the first Hohenberg-Kohn theorem the corresponding external potential vt(r).

With vt(r) and ρt(r) the Hamilton operator can be constructed and the trial wave function

ψt[ρt] is obtained from the Schrödinger equation. Based on the variational energy principle

follows that

E[ρt] = 〈Ψ[ρt]|Ĥ|Ψ[ρt]〉 ≥ E[ρ0] = E0 (1.36)

The equality holds only when the trial density, ρt(r), equals the true ground state density,

ρ0(r), of the system.
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1.4 Kohn-Sham Method

The energy functional E[ρ] of the system can be written in terms of the external potential,

v(r), in the following way

E[ρ] = F [ρ] +

∫
ρ(r)v(r)dr (1.37)

Here F [ρ] denotes the universal (unknow) Hohenberg-Kohn functional. In this context, uni-

versal means that the functional has the same form for all systems, i.e. atoms, molecules and

solids. The ground state density ρ0(r) can be obtained by minimization of the functional

E[ρ] given in Eq. (1.37). The universal Hohenberg-Kohn functional F [ρ] can be split into

two terms, which are the kinetic energy functional T [ρ] and a functional that contains all

electron-electron interactions vee[ρ]

F [ρ] = T [ρ] + vee[ρ] (1.38)

Here vee[ρ] collects the classical Coulomb interaction and all the quantum interactions be-

tween the electrons. Thus

vee =
1

2

∫∫
ρ(r)ρ(r′)

|r− r′|
dr dr′ + vnc[ρ] (1.39)

The only part of Eq. (1.38) that is known is the classical Coulomb interaction between

the electrons. The expressions for T [ρ] and vnc[ρ] are unknown. But in 1965, Kohn and

Sham provided a way to overcome this limitation with a trade-off between simplicity and

accuracy [2] by the introduction of orbitals from a non-interacting reference system. For a

non-interacting system the exact wave function is the antisymmetric product of orbitals ψi(r),

i.e. the Slater determinant of these orbitals. Therefore, the corresponding expression for the

kinetic energy of the non-interacting Kohn-Sham system is just the sum od the single-particle

kinetic energies given by

TKS[ρ] = −1

2
〈Ψ[ρ]|∇2|Ψ[ρ]〉 = −1

2

N∑
i

〈ψi|∇2|ψi〉 (1.40)

Similar, the electronic density of the non interacting system, that must match by construction

with the density of the real interacting system, can be calculated from these Kohn-Sham

orbitals as
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ρ(r) =
N∑
i

|ψi(r)|2 (1.41)

Using the explicit expression for the classical Coulomb interaction between the electrons the

energy functional of the interacting system can now be written as

E[ρ] = TKS[ρ] +

∫
v(r)ρ(r)dr +

1

2

∫∫
ρ(r)ρ(r′)

|r− r′|
dr dr′ + Exc[ρ] (1.42)

All unknown energy functional components are collected in the exchange-correlation energy

functional Exc[ρ]. At this point, it is important to note that this functional is universal,

i.e. it is the same functional for an atom, a molecule, and a solid. The orbitals of the non-

interacting reference system are obtained by minimizing Eq. (1.42) imposing the restrictions

of orbital orthonormality

〈ψi|ψj〉 = δij (1.43)

As a result, we obtain single particle Kohn-Sham equations of the form

(
−1

2
∇2 + v(r) +

∫
ρ(r′)

|r− r′|
dr′ + vxc[ρ(r)]

)
ψi(r) = εiψi(r) (1.44)

Here vxc[ρ(r)] is the exchange-correlation potential, which is defined as the functional deriva-

tive of the exchange-correlation energy

vxc[ρ(r)] ≡ δExc[ρ]

δρ(r)
(1.45)

In the Kohn-Sham method the exact form of the exchange-correlation functional Exc[ρ] is

unknown. In fact, the quality of a DFT calculation employing the Kohn-Sham method is de-

termined by the quality of the approximations for the exchange-correlation energy functional.

Fundamental to these approximations is the universal nature of the exchange-correlation func-

tional. The local density approximation (LDA) combines the Dirac exchange functional [51]

with local correlation functional fits for the homogeneous electron gas. A popular choice is

the local correlation from Vosko, Wilk and Nussair (VWN) [55]. A more sophisticated ap-

proach represents the generalized gradient approximation (GGA). Popular GGA functionals,

besides others, are the ones from Becke, Lee, Yang,and Parr (BLYP) [56, 57] and the most

popular Perdew, Burke, and Ernzerhof (PBE) [58].



Chapter 1. Density Functional Theory 21

More accurate functionals for the calculation of the exchange-correlation energy and potential

include not only the density and its gradient, but also the kinetic energy density of the non-

interacting system and/or the laplacian of the density [59, 60]. These functionals are called

meta-GGA (m-GGA) functionals. Most recently a strongly constrained and appropriately

normed (SCAN) m-GGA functional [61] was proposed that show improvements over other

(semi-)local functionals and could be as accurate as a fully nonlocal hybrid functional with

decreased computational cost in plane waves and traditional DFT [62].

Another class of functionals represent the so-called hybrid functionals. They combine LDA or

GGA exchange with Fock exchange. Many of these functionals are highly parametrized and,

therefore, yield excellent results for a certain class of molecules or properties. Unfortunately,

this parametrization destroys the universal nature of these functionals. Therefore, care must

be taken when applying these functionals to molecules outside their parametrization space.

To overcome this problem range-separated hybrid functionals have been introduced. They

solve some problems of the global hybrid functionals but others still remain.

An alternative approach represents the so-called exact exchange approach in which a Fock

type exchange is calculated in the framework of the non-interactive system. If the corre-

sponding potential is obtained in local form, e.g. by the optimized effective potential (OEP)

method, a systematic extension of the Kohn-Sham approach can be pursued [63–68]. Unfor-

tunately, the OEP method introduces a (O5) scaling which renders this approach inefficient.

Common to all hybrid and OEP approaches is the need to calculate Fock exchange, either in

its global or range-separated form. Once a specific exchange-correlation functional is selected

the Kohn-Sham equations have to be solved iteratively. They can be casted in matrix form

yielding Roothaan-Hall like equations systems, similar to the Hartree-Fock equations. The

details of such a formulation are given in the following sections.

1.5 Linear Combination of Gaussian Type Orbital Ap-

proximation

In the linear combination of atomic orbital (LCAO) DFT ansatz the Kohn-Sham molecular

orbitals (MOs) are expanded into atomic orbitals as
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ψi(r) =
∑
µ

cµiµ(r) (1.46)

Here µ(r) denotes an atomic orbital, often also named a basis function. The sum in Eq. (1.46)

runs over all atomic orbitals used in the calculation. In the linear combination of Gaussian

type orbital (LCGTO) ansatz contracted (Cartesian) Gaussian type orbital (CGTO) are used

as basis functions. The unnormalized form of such an orbital is given by

µ(r) = (x− Ax)ax (y − Ay)ay (z − Az)az
K∑
k

dke
ζk(r−A)2

(1.47)

This function is uniquely defined by its atomic center A, its angular momentum index

a = (ax, ay, az), the degree of contraction K, the contraction coefficients dk and the or-

bital exponents ζk. It should be noted that the contraction coefficients, orbital exponents

and angular moment index remain constant during the electronic structure calculation. For

a closed-shell system the LCGTO expansion of the electronic density is given by

ρ(r) = 2
occ∑
i

∑
µ,ν

cµicνiµ(r)ν(r) =
∑
µ,ν

Pµνµ(r)ν(r) (1.48)

Here Pµν is an element of the density matrix, which, for a closed-shell system, is defined as

Pµν = 2
occ∑
i

cµicνi (1.49)

The upper sum limit, occ, in Eq. (1.49) denotes the number of doubly occupied molecular

orbitals (MOs) in the system. Taking into account the LCGTO expansion for the Kohn-Sham

orbitals, Eq. (1.46), and the electronic density, Eq. (1.48), the Kohn-Sham energy expression

(1.42) takes the following form

E =
∑
µ,ν

PµνHµν +
1

2

∑
µ,ν

∑
σ,τ

PµνPστ 〈µν‖στ〉+ Exc[ρ] (1.50)

The first term in Eq. (1.50) represents the one-electron energy, often named the core energy.

Hµν is an element of the mono-electronic Hamiltonian, that contains the kinetic and nuclear

attraction energy of the electrons

Hµν = −1

2
〈µ|∇2|ν〉 −

∑
A

〈
µ

∣∣∣∣ ZA
|r−A|

∣∣∣∣ ν〉 (1.51)
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The second term in Eq. (1.50) is the Coulomb repulsion energy between the electrons. The

here used four-center electron repulsion integral (ERI) short hand notation has the form

〈µν‖στ〉 =

∫∫
µ(r)ν(r)σ(r′)τ(r′)

|r− r′|
dr dr′ (1.52)

In this ERI notation the double vertical bar represents the two-electron operator

‖ ≡ 1

|r− r′|
(1.53)

It also separates the orbitals with the electronic coordinate r from the orbitals with the

electronic coordinate r′.

The third term in Eq. (1.50), the exchange-correlation energy, accounts for three distinct

physical effects: The exchange energy Ex corrects the spurious self-interaction of one electron

with itself and also contains the effects of the Pauli exclusion principle. The correlation energy

Ec = Exc − Ex accounts for the effects of Coulomb and kinetic energy correlations upon the

many-electron wave function [69].

The derivation of the Kohn-Sham equations starts with the minimization of the energy ex-

pression (1.50), under the constrain of molecular orbital orthonormality, Eq. (1.43). In the

LCGTO method Eq. (1.43) is expanded as

〈ψi|ψj〉 =
∑
µ,ν

cµi〈µ|ν〉cνj =
∑
µ,ν

cµiSµνcνj = δij (1.54)

Here Sµν are elements of the atomic overlap matrix. The Lagrange function for the energy

minimization is then defined by the following expression

L = E − 2
∑
i,j

λij

(∑
µ,ν

cµiSµνcνj − δij

)
(1.55)

The energy E is given by Eq. (1.50). The variation of the Lagrange function with respect to

MO coefficients yields

∂L

∂cµi
= 4

∑
ν

(
Hµν +

∑
σ,τ

Pστ 〈στ‖µν〉+ 〈µ|vxc[ρ]|ν〉

)
cνi − 4

∑
j

∑
ν

Sµνcνjλji (1.56)

In the above equation, the variation of the exchange-correlation energy with respect to the

MO coefficient, cµi, was expanded as
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∂Exc[ρ]

∂cµi
=

∫
δExc[ρ]

δρ(r)

∂ρ(r)

∂cµi
dr = 4

∑
ν

〈µ|vxc[ρ]|ν〉 cνi (1.57)

At this point of the derivation it is convenient to introduce the Kohn-Sham matrix elements

that are given by the variation of the electronic energy with respect to the density matrix

Kµν ≡
∂E

∂Pµν
= Hµν +

∑
σ,τ

Pστ 〈στ‖µν〉+ 〈µ|vxc[ρ]|ν〉. (1.58)

Substitution of Eq. (1.58) into the Eq. (1.56) yields

∑
ν

Kµνcνi =
∑
j

∑
ν

Sµνcνjλji ∀µ;∀ i (1.59)

which is a generalized eigenvalue equation. By collecting all equations into a single matrix

equation we find

Kc = Scλ (1.60)

This set of equations has a closed resemblance to the Roothaan-Hall equation [70, 71]. Here

c is a square matrix composed from the occupied and virtual molecular orbital coefficients.

Because the electronic density is invariant under unitary transformations of the occupied

molecular orbitals, it is possible to choose a set of molecular orbitals for which the off-diagonal

undefined Lagrange multipliers, λji, are zero. Thus, we can use a molecular orbital repre-

sentation cU, where U is an orthogonal transformation matrix, such that UλUT becomes a

diagonal matrix

KcU = ScU UTλU︸ ︷︷ ︸
ε

(1.61)

These transformed molecular orbitals are called canonical, and they are solutions of the

canonical Kohn-Sham equations,

Kc = Scε (1.62)

To proceed we now analyze the computational complexity for solving the Kohn-Sham equa-

tions: The computation of the core Hamiltonian, Hµν , scales formally quadratic, O(N2
bas),
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with the number of basis functions, Nbas. The second term in the Kohn-Sham matrix, Eq.

(1.58), represents the Coulomb repulsion energy between the electrons. It introduces a formal

O(N4
bas) scaling. For the calculation of the exchange-correlation energy a numerical integra-

tion has to be performed. This integration scales formally as O(N2
bas ×Ngrd), where Ngrd is

the number of grid points necessary for the numerical integration. From this discussion fol-

lows, that the calculation of the Coulomb repulsion energy and exchange-correlation energy

in the Kohn-Sham matrix represent the computationally most demanding tasks.



Chapter 2

Auxiliary Density Functional Theory

To overcome the computational bottleneck associated to the calculation of the four-center

ERIs the so-called variational fitting of the Coulomb potential is introduced. We now describe

this methodology as implemented in the LCGTO-DFT program deMon2k [72].

2.1 Variational Fitting of the Coulomb Potential

The variational fitting of the Coulomb potential as introduced by Dunlap and coworkers [27,

28] is a popular technique to reduce the formal scaling for the computation of the two electron

Coulomb repulsion energy. It was inspired by a previous work from Sambe and Felton [73].

This approach became available more than 30 years ago in the deMon-KS program [74]. It

also is equivalent with the so-called truncated resolution of identity (RI) [36–38] for Coulomb

integrals used in other programs.

The variational Coulomb energy fitting, is based on the minimization of the following second

order energy error

εH2 =

∫∫
[ρ(r)− ρ̃(r)][ρ(r′)− ρ̃(r′)]

|r− r′|
dr dr′. (2.1)

Here, we introduce the approximated electronic density which is often called the auxiliary

density, ρ̃(r). It is calculated as a linear combination of auxiliary functions

ρ̃(r) =
∑
k̄

xk̄k̄(r) (2.2)

In deMon2k primitive Hermite Gaussian functions, indicated by a bar, are used in this

expansion. An unnormalized primitive Hermite Gaussian auxiliary function, located on atom

26
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A with exponent ζk̄, has the form

k̄(r) =

(
∂

∂Ax

)k̄x ( ∂

∂Ay

)k̄y ( ∂

∂Az

)k̄z
e−ζk̄(r−A)2

(2.3)

In deMon2k the auxiliary functions are grouped into s, spd and spdfg sets. The exponents are

shared within each of these sets. Thus, a spd auxiliary function set contains ten functions,

namely one s, three p and six d functions. Also, the auxiliary functions are normalized with

respect to the Coulomb norm.

Since εH2 is positive semi-definite [75] the following inequality holds

εH2 =
1

2
〈ρ− ρ̃‖ρ− ρ̃〉 ≥ 0

=
1

2
〈ρ‖ρ− ρ̃〉 − 1

2
〈ρ̃‖ρ− ρ̃〉 ≥ 0

=
1

2
〈ρ‖ρ〉 − 1

2
〈ρ‖ρ̃〉 − 1

2
〈ρ̃‖ρ〉+

1

2
〈ρ̃‖ρ̃〉 ≥ 0

=
1

2
〈ρ‖ρ〉 − 〈ρ‖ρ̃〉+

1

2
〈ρ̃‖ρ̃〉 ≥ 0 (2.4)

Therefore,

1

2
〈ρ‖ρ〉 ≥ 〈ρ‖ρ̃〉 − 1

2
〈ρ̃‖ρ̃〉 (2.5)

Eq. (2.5) shows that the minimization of the error will produce a maximization of the

approximated Coulomb energy. Employing the LCGTO expansion for ρ(r) and ρ̃(r) yields

the following expression,

1

2

∑
µ,ν

∑
σ,τ

PµνPστ 〈µν‖στ〉 ≥
∑
µ,ν

∑
k̄

Pµν〈µν‖k̄〉xk̄ −
1

2

∑
k̄,l̄

xk̄〈k̄‖l̄〉xl̄ (2.6)

With this inequality an approximated SCF energy, which is based on Eq. (1.50), can be

formulated as

E =
∑
µ,ν

PµνHµν +
∑
µ,ν

∑
k̄

Pµν〈µν‖k̄〉xk̄ −
1

2

∑
k̄,l̄

xk̄〈k̄‖l̄〉xl̄ + Exc[ρ] (2.7)

In the context of deMon2k calculations this is often called the BASIS approach [76] because

the basis set density, ρ(r), is used for the calculation of the exchange-correlation energy.
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Variation of Eq. (2.7) with respect to the density matrix yields the corresponding Kohn-

Sham matrix which now includes the variational fitting of the Coulomb potential

Kµν ≡
(
∂E

∂Pµν

)
xk̄

= Hµν +
∑
k̄

〈µν‖k̄〉xk̄ + 〈µ|vxc[ρ]|ν〉 (2.8)

The fitting coefficients, xk̄, are obtained from the minimization of εH2 keeping the density

matrix constant

(
∂εH2
∂xm̄

)
Pµν

= −
∑
µ,ν

Pµν〈µν‖m̄〉+
∑
l̄

xl̄〈l̄‖m̄〉 ≡ 0 ∀ m̄ (2.9)

Thus, the following inhomogeneous equations system is obtained for the determination of the

fitting coefficients, collected in the vector x

Gx = J, (2.10)

where the Coulomb matrix elements are defined as,

Gl̄m̄ = 〈l̄‖m̄〉 (2.11)

and the Coulomb vector elements are given by

Jm̄ =
∑
µ,ν

Pµν〈µν‖m̄〉 = 〈ρ‖m̄〉 (2.12)

A straightforward solution can be obtained by the inversion of the Coulomb matrix

x = G−1J (2.13)

Because the Kohn-Sham density changes in each SCF step the auxiliary density must be

fitted in each SCF step, too. For large auxiliary functions sets with high angular momentum

functions the direct inversion of G is numerically unstable. To stabilize the solution of the

linear equation system truncated eigenvalue decomposition (TED) [77] is used in deMon2k.

This requires the diagonalization of the Coulomb matrix G. For very large systems with tens

of thousands of auxiliary functions this diagonalization becomes a computational bottleneck.

To avoid this bottleneck an iterative procedures for solving linear equation system based
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on the minimal residual method (MINRES) for symmetric indefinite equation systems was

recently implemented in deMon2k [78]. This method avoids the explicit diagonalization of

G and, therefore, permits rapid calculations of nanosized macro-molecules with hundreds of

atoms on parallel architectures.

2.2 Variational Fitting of the Fock Exchange Potential

The variational potential fitting can be extended to the Fock exchange energy defined as

EF
x = −

occ∑
i,j

∫∫
ψi(r)ψj(r)ψi(r

′)ψj(r
′)

|r− r′|
dr dr′

= −
occ∑
i,j

〈ψiψj‖ψiψj〉

= −
occ∑
i,j

〈ρij‖ρij〉 (2.14)

In the framework of Kohn-Sham this energy is also named exact exchange (EXX) if the Kohn-

Sham orbitals are used for its calculations. In Eq (2.14) we introduce the orbital transition

densities defined as

ρij(r) = ψi(r)ψj(r) =
∑
µ,σ

cµicσjµ(r)σ(r) (2.15)

Within the LCGTO expansion, Eq. (2.14) transforms to

EF
x = −1

4

∑
µ,ν

∑
σ,τ

PµνPστ 〈µσ‖ντ〉 (2.16)

where we have used the definition of the closed-shell density matrix, Eq. (1.49). The total

Hartree-Fock [79] energy employing the variational fitting of the Coulomb potential is given

by

EHF =
∑
µ,ν

PµνHµν +
∑
µ,ν

∑
k̄

Pµν〈µν‖k̄〉xk̄−
1

2

∑
k̄,l̄

xk̄Gk̄l̄xl̄−
1

4

∑
µ,ν

∑
σ,τ

PµνPστ 〈µσ‖ντ〉 (2.17)

There are two main problems with the energy expression given by Eq. (2.17). First, comput-

ing the Fock term introduces a formal O(N4
bas) scaling that renders the approach unsuitable

for large systems. Second, the energy is not self-interaction free. The self-interaction appears

because the variational fitted Coulomb energy represents a lower bound to the real Coulomb
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energy. This difference, albeit small, will make the potential for each particle a little bit too

attractive. Similar as for the variational fitting of the Coulomb potential, the orbital product,

ρij, can be approximated as a linear combination of atom-centered auxiliary functions

ρ̃ij(r) =
∑
k̄

xk̄ij k̄(r) (2.18)

The variational fitting of the Fock energy is based on the minimization of the negative-definite

error functional

εF2 = −
occ∑
i,j

∫∫
[ρij(r)− ρ̃ij(r)][ρij(r

′)− ρ̃ij(r′)]
|r− r′|

dr dr′ (2.19)

Due to the negative-definite nature of εF2 [80] the following inequality holds

εF2 = −
occ∑
i,j

〈ρij − ρ̃ij‖ρij − ρ̃ij〉 ≤ 0

= −
occ∑
i,j

(〈ρij‖ρij〉+ 2〈ρij‖ρ̃ij〉 − 〈ρ̃ij‖ρ̃ij〉) ≤ 0 (2.20)

Therefore

−
occ∑
i,j

〈ρij‖ρij〉 ≤ −2
occ∑
i,j

〈ρij‖ρ̃ij〉+
occ∑
i,j

〈ρ̃ij‖ρ̃ij〉 (2.21)

Employing the LCGTO approximation yields

EF
x = −

occ∑
i,j

〈ψiψj‖ψiψj〉 ≤ −2
occ∑
i,j

∑
k̄

〈ψiψj‖k̄〉xk̄ij +
occ∑
i,j

∑
k̄,l̄

xk̄ijGk̄l̄xl̄ij = ẼF
x (2.22)

In this case the maximization of the negative fitting error goes along with the minimization

of the approximated Fock exchange energy. This suggests that the simultaneous variational

fitting of the Coulomb and Fock potentials should benefit from systematic error compensation

if the same auxiliary function set is used for both fits. In fact, if the variational nature of both

potential fits is preserved, the resulting four-center ERI free Hartree-Fock energy is nearly

indistinguishable (≤ 1 kcal/mol) from its four-center ERI counterpart. The variation of the

error functional εF2 with respect to the fitting coefficients xk̄ij along with the maximization

condition yields
∂εF2
∂xk̄ij

= −〈ψiψj‖k̄〉+
∑
l̄

Gk̄l̄xl̄ij = 0 (2.23)
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Form Eq. (2.23), one can define a set of linear equation systems,

Gxij = Jij (2.24)

with

Jk̄ij = 〈ψiψj‖k̄〉 = 〈ρij‖k̄〉. (2.25)

The solution for the fitting coefficients xk̄ij is obtained as

xk̄ij =
∑
l̄

G−1
k̄l̄
〈l̄‖ψiψj〉 (2.26)

After the fitting equations have been solved, the fitted Fock exchange can be written in a

more compact form as

ẼF
x = −

occ∑
i,j

∑
k̄,l̄

〈ψiψj‖k̄〉G−1
k̄l̄
〈l̄‖ψiψj〉 = −1

4

∑
µ,ν

∑
στ

PµνPστ 〈µσ‖k̄〉G−1
k̄l̄
〈l̄‖τν〉 (2.27)

The direct use of Eq. (2.27) avoids the explicit calculation of the three-index Fock exchange

fitting coefficients appearing in Eq. (2.22). Note, however, that this is the result of solving

the set of fitting equations given by Eq. (2.24). If this fitted Fock exchange energy is added to

the Hartree energy with Coulomb fitting, the self-interaction-free density fitting Hartree-Fock

energy expression is obtained [34]

ẼHF =
∑
µ,ν

PµνHµν +
∑
µ,ν

∑
k̄

Pµν〈µν‖k̄〉xk̄ −
1

2

∑
k̄,l̄

xk̄Gk̄l̄xl̄ −

1

4

∑
µ,ν

∑
στ

PµνPστ 〈µσ‖k̄〉G−1
k̄l̄
〈l̄‖τν〉 (2.28)

It is important to note that ẼHF is self-interaction free only when the same auxiliary function

set is used for both Coulomb and Fock exchange fittings [80]. Variation of Eq. (2.28) with

respect to the density matrix yields the corresponding Fock matrix elements, Fµν , which now

includes the variational fitting of the Coulomb and Fock potential

Fµν ≡

(
∂ẼHF

∂Pµν

)
xk̄

= Hµν +
∑
k̄

〈µν‖k̄〉xk̄ +XF
µν (2.29)

Here the Fock potential contribution is defined as

XF
µν =

∂ẼF
x

∂Pµν
= −1

2

∑
στ

∑
k̄,l̄

Pστ 〈µσ‖k̄〉G−1
k̄l̄
〈l̄‖τν〉

= −
occ∑
i

∑
k̄,l̄

〈µψi‖k̄〉G−1
k̄l̄
〈l̄‖ψiν〉 (2.30)
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Straightforward implementation of Eq. (2.30) leads to an algorithm that scales as O(Naux×

N2
bas×Nocc) with Naux and Nocc being the number of auxiliary functions and occupied MOs,

respectively. Such an algorithm is useful only when O(Nbas) � O(Nocc) [37, 38]. Note,

however, that Eq. (2.30) is invariant under orthogonal transformation of the MOs, because

the density matrix is invariant under such transformations. Thus, any set of molecular

orbitals obtained by an unitary transformation of the canonical MOs can be used in (2.30). In

this way, the canonical molecular orbitals (CMOs) can be transformed into spatially localized

molecular orbitals (LMOs) by minimizing, or maximizing, an appropriated functional.

The recently developed variational fitting of the Fock potential [34] based on Foster-Boys

localization shows an improved computational performance for the calculation of variational

fitted Fock exchange energy. In this implementation a two step localization is used: First

an incomplete Cholesky decomposition [81] is performed followed by a tighter Foster-Boys

localization [82, 83]. The molecular orbital localization permits a variational fitting of Fock

exchange by defining fitting domains around each localized molecular orbital. In particular,

we define fitting domains around each localized MO in terms of atomic centers. To this

end, we calculate the atomic Löwdin population for each atom A in a given localized MO i

according to

niA =
∑
µ∈A

∑
ν

S1/2
µν cνi (2.31)

After ordering these atomic populations from the largest to the smallest, we sum them up until

a threshold value (0.9995 for final energy calculation) is reached. All atoms that contribute to

this sum define the atomic domain for the given localized MO i. The auxiliary functions on

these atoms define the local auxiliary function set. The corresponding local basis function set

is defined by all basis functions of the domain atoms and augmented by the basis functions

from neighboring atoms with significant overlap (≥10−6) into the domain. As a consequence

of this localization each LMO has a particular Coulomb matrix. The computational cost for

computing all these local G and G−1 matrices for all occupied LMOs is in larger systems

more than overcompensated by the reduced dimensionality of these matrices.
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2.3 Exchange-Correlation Potential from the Auxiliary

Density

If the variational fitting of the Coulomb and Fock potential is used in the construction

of the Kohn-Sham matrix for hybrid functionals, the most time-demanding computational

step corresponds to the numerical integration of the exchange-correlation potential. This

has motivated the use of auxiliary functions for the calculation of the exchange-correlation

potential, too. A serious drawback of this approximation is that neither the fit nor the energy

expression are variational and, therefore, only approximated gradients (and higher order

derivatives) are available. As an alternative to this approach the direct use of the auxiliary

function density from the variational fitting of the Coulomb potential for the calculation of

the exchange-correlation potential has been investigated over the last two decades.

If the auxiliary function density is used for the evaluation of the exchange-correlation poten-

tial it is desirable that it is positive semi-definite and integrates to the number of electrons of

the system. The normalization to the number of electrons can be included in the construc-

tion of the approximated density. Even without such a constraint the approximated density

conserves the electron number to a high degree. In fact, in the latest deMon2k version this

constraint is not used. On the other hand, the positive definiteness of the approximated

density cannot be guaranteed by constraints. However, the construction of the approximated

density avoids by itself the accumulation of larger areas with negative densities. As soon as a

region accumulates negative fitted density it acts as an attractive potential for the remaining

electron density. Because the fitting is variational in the Coulomb energy error, Eq. (2.1),

negative fitted density regions almost never occur. In practice, during the numerical integra-

tion of the approximated density, grid points with negative density values can be screened

without sacrificing the accuracy of the integrated electron number. This clearly indicates

that the effect of artificial negative fitted density values is much smaller than the usually

used grid accuracy for the numerical integration.

We now derive the basic working equations for the energy calculation using the auxiliary

function density, ρ̃(r), from the variational fitting of the Coulomb potential for the calculation

of the exchange-correlation energy and potential. In this approach, which we name auxiliary

density functional theory (ADFT), the energy, Eq. (2.7), is modified as follows:
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E =
∑
µ,ν

PµνHµν +
∑
µ,ν

∑
k̄

Pµν〈µν‖k̄〉xk̄ −
1

2

∑
k̄,l̄

xk̄Gk̄l̄xl̄ + Exc[ρ̃] (2.32)

In the context of deMon2k calculations this energy expression is often named the AUXIS ap-

proach [76] because the auxiliary function density is used for the calculation of the exchange-

correlation energy. The variation of this energy expression with respect to density matrix

elements yields the corresponding Kohn-Sham matrix elements

Kµν = Hµν +
∑
k̄

〈µν‖k̄〉xk̄ +
∂Exc[ρ̃]

∂Pµν
(2.33)

For the derivative of the exchange-correlation energy, assuming a local functional (the gen-

eralization to GGA functionals is straightforward [84]), follows

∂Exc[ρ̃]

∂Pµν
=

∫
δExc[ρ̃]

δρ̃(r)

∂ρ̃(r)

∂Pµν
dr =

∑
k̄

∂xk̄
∂Pµν

∫
vxc[ρ̃(r)]k̄(r)dr (2.34)

Here we have introduced the exchange-correlation potential calculated from the auxiliary

function density as:

vxc[ρ̃(r)] =
δExc[ρ̃]

δρ̃(r)
(2.35)

The differentiation of the variational fitting coefficients with respect to the density matrix is

given by

∂xk̄
∂Pµν

=
∑
l̄

Gk̄l̄〈l̄‖µν〉 (2.36)

By inserting this result into Eq. (2.34) we find

∂Exc[ρ̃]

∂Pµν
=
∑
k̄,l̄

〈µν‖k̄〉G−1
k̄l̄
〈l̄|vxc[ρ̃]〉 (2.37)

At this point, it is convenient to introduce the exchange-correlation fitting coefficients, zl̄,

defined as

zl̄ =
∑
k̄

G−1
k̄l̄
〈k̄|vxc[ρ̃]〉 (2.38)
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It is important to note that z is spin-dependent and accounts for the difference between the

α and β Kohn-Sham matrices in open-shell calculations. We can reformulate Eq. (2.38) as

an inhomogeneous equation system of the form

Gz = L (2.39)

The vector L collects the numerical integrals 〈k̄|vxc[ρ̃]〉. Thus, in ADFT two inhomogeneous

equation systems, (2.10) and (2.39), have to be solved. Because these two equation sys-

tems share the same coefficient matrix, namely G, Domı́nguez-Soria et al. [85] proposed

a preconditioned conjugate gradient iterative solver for Eq (2.39) coupled to the Coulomb

fitting solver. Recently, Pedroza-Montero et al. [78] implemented an iterative solver based

on a Krylov subspace method for solving these two linear system of equations in the de-

Mon2k code. Once the Coulomb and exchange-correlation fitting coefficients are calculated

the Kohn-Sham matrix elements can be expressed solely in terms of these coefficients

Kµν = Hµν +
∑
k̄

〈µν‖k̄〉 (xk̄ + zk̄) (2.40)

Because the explicit derivative of the approximated density with respect to the density matrix

elements can be calculated, the energy expression remains variational. For the implemen-

tation it is important to note that the fitting coefficients defined by Eq.(2.13) have to be

used directly for the evaluation of the exchange-correlation potential in order to keep the

calculation variational. Any manipulation of these coefficients, e.g. the mixing with previ-

ous coefficients, destroys the variational nature of the described approach. Of course, the

coefficient mixing can still be used for the Coulomb term in the SCF energy expression.



Chapter 3

Range-Separated Hybrid
Functionals in Auxiliary Density

Functional Theory

3.1 Range-Separation Schemes

Based on the early ideas of Savin [86], in 2001 Iikura et al. [87] proposed a long-range

correction (LC) scheme where the Coulomb operator is separated into two terms by using

the error function

1

|r− r′|
=

erfc(ω|r− r′|)
|r− r′|

+
erf(ω|r− r′|)
|r− r′|

(3.1)

In Eq. (3.1) the left-hand side is the Coulomb operator and the first term of the right-hand

side is the short-range Coulomb operator. Consequently the last term on the right-hand side

is the long-range Coulomb operator.

E
n
er

g
y

0 Distance ∞

Coulomb
Long-range Coulomb
Short-range Coulomb

Figure 3.1: Schematic separation of the Coulomb operator into its short- and
long-range contributions, respectively.

36
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The parameter ω in Eq. (3.1) determines the ratio between short-range (SR) and long-range

(LR) contribution. Fig. 3.1 shows the splitting of the Coulomb operator (red line) into a SR

(green line) and LR (blue line) contribution defined in Eq. (3.1) with ω = 0.3. For ω =∞ it

follows SR = 0 and the LR contribution becomes the Coulomb operator. On the other hand,

for ω = 0 the SR contribution becomes the Coulomb operator and LR = 0 follows.

In long-range correction scheme the SR contribution is generally expressed by an appropriate

modified GGA functional of the form [87]

ESR-GGA
x = −3

4

(
3

π

)1/3 ∫
ρ(r)4/3Fx(s)

(
1− 8

3
a

[√
π erf

(
1

2a

)
+ 2a(b− c)

])
dr (3.2)

where

a =
ω
√
Fx

2π2/3(6ρ)1/3
(3.3)

b = exp

(
− 1

4a2

)
− 1, (3.4)

c = 2a2b+
1

2
(3.5)

In Eqs. (3.2) and (3.3) Fx is the enhancement factor of the GGA exchange. In the here

discussed functionals either the B88 or the PBE exchange is used. The LR contribution is

usually expressed by the corresponding Fock energy as

ELR-F
x = −

occ∑
i,j

∫∫
ψi(r)ψj(r)

erf(ω|r− r′|)
|r− r′|

ψi(r
′)ψj(r

′) dr dr′, (3.6)

Using the LCGTO approximation the LR Fock energy can be written as

ELR-F
x = −1

4

∑
µ,ν

∑
σ,τ

PµνPστ 〈µσ‖ντ〉 (3.7)

In this notation we used the underlined double vertical bar to represents the LR Coulomb

operator

‖ ≡ erf(ω|r− r′|)
|r− r′|

(3.8)

Similar to the Coulomb operator, Eq. (1.53), this operator also separates the functions of

electron 1, on the left, from those of electron 2, on the right.

Therefore, long-range corrected exchange-correlation functionals have the general form

ELC
xc = ESR-GGA

x + ELR-F
x + EGGA

c (3.9)



38 Section 3.1. Range-Separation Schemes

The two bound limits for the range-separation parameter ω are the used GGA exchange for

ω = 0 and the standard Fock exchange for ω =∞.

Later on, in 2004, Yanai et al. [88] extended the LC approach by the following separation of

the Coulomb operator

1

|r− r′|
=

1− [α + β erf(ω|r− r′|)]
|r− r′|

+
α + β erf(ω|r− r′|)

|r− r′|
(3.10)

Again the first term on the right-hand side of Eq. (3.10) represents the SR and the second

term the LR part of the Coulomb operator. This approach is called Coulomb attenuating

method (CAM). In the CAM α and β satisfy the conditions 0 ≤ α + β ≤ 1, 0 ≤ α ≤ 1

and 0 ≤ β ≤ 1. In Eq. (3.10) the parameter α allows the incorporation of global Fock

exchange while decreasing the contribution of global GGA exchange. As a result, the SR

GGA contribution also depends from α and β in the CAM. The SR CAM GGA energy

expression is given by [88]

ESR-GGA
x = −3

4

(
3

π

)1/3 ∫
ρ(r)4/3Fx(s)

(
1− α− 8

3
aβ

[√
π erf

(
1

2a

)
+ 2a(b− c)

])
dr (3.11)

Figure 3.2: Schematic plots of the contribution of DFT and Fock exchange
to the total exchange regarding the distance increase for LC (left) and CAM
(right) functionals.

The original LC scheme corresponds to the CAM with α = 0.0 and β = 1.0. The schematic

diagrams in Figure 3.2 illustrate the partitioning of the DFT and Fock exchange components

for the LC (α = 0.0, β = 1.0, ω = 0.33), on the left, and the CAM (α = 0.2, β = 0.6,

ω = 0.33) on the right side. In the LC functionals Fock and DFT exchanges vanish at r = 0
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and r = ∞, respectively. On the other hand, in the CAM functionals there exist always a

mixing of Fock and DFT exchange. The Fock exchange contribution at r = 0 is given by the

α parameter and increases until a limit given by the amount α+ β for r =∞. The behavior

of the DFT exchange is opposite to that described for the Fock exchange. As we will see

later, this exchange mixing in the CAM improves the results that can be obtained with LC.

In this thesis we will discuss a family of B88 range-separated hybrid functionals with the

general form given by [18, 88–91]

ERS-B88
xc = αEF

x + βELR-F
x + ESR-B88

x + γ∆EB88
x + δELYP

c + (1− δ)EVWN5
c (3.12)

The values for the different parameters are given in Table 3.1 for the here used functionals

of this type.

Table 3.1: Parameter values for the here discussed family of B88 range-
separated hybrid functionals.

Exchange Correlation
Functional α β δ γ ω
LCBLYP 0.00000 1.00000 1.00 0.0000 0.33
CAMB3LYP 0.19000 0.46000 0.81 0.0000 0.33
CAMQTP00 0.54000 0.37000 0.80 0.0000 0.29
CAMQTP01 0.23000 0.77000 0.80 0.0000 0.31
rCAMB3LYP 0.18352 0.94979 0.81 0.1359 0.33

The value of ω = 0.33 was originally determined for the LCBLYP [18] functional so as to

minimize the mean absolute deviation of the calculated equilibrium distance for dimers of

first and second-row atoms (except rare-gas dimers) with the 6-311G++(2d,2p) basis set. For

CAMB3LYP [88] the α and β parameters were determined through a fit to the atomization

energy of the G2 set of molecules. Notice that if β = 0 in Eq. (3.11), the first three exchange

energy terms in Eq. (3.12) reduce to αEF
x + (1 − α)EB88

x , demonstrating that CAMB3LYP

has a closed connection to the B3LYP functional (α = 0.20). The parameters α, β and

ω for the CAMQTP00 [89] functional were optimized to reproduce best the experimental

vertical ionization potentials for the following molecules: H2O, CO, HF, N2, F2, H2CO, CH4,

pyridine, CHF=CF2, thiophene, CH2=CF2, O3, H2C-CCl2, CH3CN, CH3F, C2H4, HCONH2,

HCOOH, NH3, CH3COCH3, CH3CCH, CH3NC, CH2F2, C2H6, P2, HCN, C2H2, HCCN,

NCCCN, C2N2, CO2, C3O2, OCS, FCN, s-tetrazine, furan, acrolein, CS, SiO, HCl, CHF3,
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and N2O using a cc-pVTZ basis set. The range-separation parameters in CAMQTP01 [90]

functional were optimized to improve the accuracy over CAMQTP00, especially in the vertical

excitation energies for Rydberg states of the above mentioned molecular systems. QTP

stands for the Quantum Theory Project at University of Florida by R. Bartlett. Finally, the

rCAMB3LYP [91] (r stands for revised) α, β and ω parameters were optimized by considering

the performance of the functional for systems with fractional numbers of electrons as well as

standard thermochemical tests. This parametrization aims to minimize the many-electron

self-interaction error. It additionally includes a fraction of global semi-local B88 exchange,

∆EB88
x .

Also we will discuss a family of PBE range-separated hybrids with the general form [92, 93]

ERS-PBE
xc = αEF

x + βELR-F
x + ESR-PBE

x + EPBE
c (3.13)

Table 3.2: Parameter values for the here discussed family of PBE range-
separated hybrid functionals

Functional α β ω
LCPBE 0.00 1.00 0.30
CAMPBE0 0.25 0.75 0.30

Here the parameter ω = 0.30 for LCPBE [92] and CAMPBE0 [93] functionals was calibrated

to provide reasonable accuracy for both ground-state properties (atomization energies, barrier

heights, electron affinities and ionization energies) as well as for time-dependent DFT vertical

excitation energies (localized and charge-transfer). The parameters α and β in CAMPBE0

were taken to recover the PBE0 (0.25EF
x + 0.75EPBE

x + EPBE
c ) functional for ω = 0.

In 2003 Heyd and coworkers [94] proposed a new family of range-separated hybrid functional

which utilize Fock exchange for short-range interactions. This allows the exchange hole to

become delocalized among the near neighbors of a reference point, but not beyond. Since in

real system, polarization effects screen the interactions between distant electrons, the corre-

sponding contribution to the long-range exchange disappears. Thus, this part of exchange is

modeled by the long-range GGA exchange.

The SR Fock exchange energy is defined as

ESR-F
x = −

occ∑
i,j

∫∫
ψi(r)ψj(r)

erfc(ω|r− r′|)
|r− r′|

ψi(r
′)ψj(r

′) dr dr′ (3.14)
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Employing the LCGTO approximation the SR Fock energy can be expressed as

ESR-F
x = −1

4

∑
µ,ν

∑
σ,τ

PµνPστ 〈µσ‖ντ〉 (3.15)

The overlined double vertical bar represents the SR Coulomb operator

‖ ≡ erfc(ω|r− r′|)
|r− r′|

(3.16)

Alike to the Coulomb and LR Coulomb operators, the SR Coulomb operator separates the

functions of electron 1, on the left, from those of electron 2, on the right. The short-range

component of Fock exchange can be obtained by using the global and long-range Coulomb

potential

ESR-F
x = Ex − ELR-F

x (3.17)

This represent a straightforward implementation for SR electron repulsion integrals (ERIs)

by small modifications of the recurrence relations for the three-center ERI calculation [40].

Evaluating the short range ERIs is only slightly more time consuming than the regular ERIs

since only the primitive integrals are modified.

The corresponding LR-GGA contribution can be calculated by the definition of GGA and

short-range GGA exchange functionals, Eq. (3.2), as follows

ELR-GGA
x = EGGA

x − ESR-GGA
x (3.18)

Eq. (3.18) is an easy way to program the LR-GGA contribution for the screened hybrid func-

tional. This particular range separation is nowadays referred to as Heyd-Scuseria-Ernzerhof

(HSE) functional which has the general form

EHSE
xc = 0.25ESR-F

x + 0.75ELR-PBE
x + EPBE

c (3.19)

The ω parameter was optimized with respect to a benchmark data set of molecules [94,

95], which yielded ω = 0.15 (Erroneously in the original implementation two ω parameters

were introduced ω = 0.15/
√

2 for Fock exchange and ω = 0.15 × 21/3 for the PBE part).

Krukau et al. [96] later redefined this value for solids to a value of ω = 0.11. To differentiate

between the different screening parameters, the corresponding functionals are labeled HSE03

[95] and HSE06 [96] for ω = 0.15 and ω = 0.11, respectively. The amount of SR-Fock and



42 Section 3.2. Variational Fitting of Fock Potential with Range-Separation

LR-PBE exchange in (3.19) was chosen to recover the PBE0 hybrid functional for ω = 0

and asymptotically reaches PBE for ω = ∞. The calculation of the LR-PBE exchange in

Eq. (3.18) involves the computation of the SR-PBE exchange. This implicates the use of the

range-separation parameters α and β. For this particular case the values for α and β are 0.0

and 1.0, respectively. This approach permits the use of a common subroutine for evaluating

Eq. (3.2) for SR and LR GGA contributions.

3.2 Variational Fitting of Fock Potential with Range-

Separation

A variational local density fitting approach for the Fock exchange energy and potential was

presented in section 2.2. Fock exchange is necessary for the computation of global and range-

separated hybrid functionals. In combination with ADFT a computational efficient approach

for global hybrid functional calculations was achieved [43]. By construction, the long-range

correction scheme and the Coulomb attenuating methodology need to compute the long-range

Fock exchange energy and potential. In this section we develop the local density fitting for

the LR Fock exchange by using the orbital product, ρij, and auxiliary orbital product, ρ̃ij,

given by Eqs. (2.15) and (2.18), respectively. Similar as for the Fock exchange energy,

the variational fitting of the LR Fock exchange energy is based on the maximization of the

following negative semi-definite (see Appendix A) error functional

εLR-F
2 = −

occ∑
i,j

〈ρij − ρ̃ij‖ρij − ρ̃ij〉 ≤ 0 (3.20)

Here, for convenience of notation, we used the short-hand notation for the long-range Coulomb

operator ‖, Eq. (3.8). Due to the negative definiteness of the error functional, Eq. (3.20), it

follows

−
occ∑
i,j

〈ρij‖ρij〉 ≤ −2
occ∑
i,j

〈ρij‖ρ̃ij〉+
occ∑
i,j

〈ρ̃ij‖ρ̃ij〉 (3.21)

Employing the LCGTO approximation yields

ELR-F
x = −

occ∑
i,j

〈ψiψj‖ψiψj〉 ≤ −2
occ∑
i,j

∑
k̄

〈ψiψj‖k̄〉xk̄ij +

occ∑
i,j

∑
k̄,l̄

xk̄ijG
LR
k̄l̄ xl̄ij = ẼLR-F

x (3.22)

where we introduce the long-range Coulomb matrix defined as

GLR
k̄l̄ = 〈k̄‖l̄〉 (3.23)
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The maximization of the error functional εLR-F
2 with respect to the fitting coefficients, xk̄ij,

∂εLR-F
2

∂xkij
= −2〈ψiψj‖k̄〉+ 2

∑
l̄

xl̄ijG
LR
k̄l̄ = 0, (3.24)

yields an inhomogeneous equation system for each occupied MO combination ij similar to

the Fock exchange, Eq. (2.24). Solving the corresponding equation system yields for the

long-range fitting coefficients

xLR
k̄ij =

∑
l̄

GLR
k̄l̄

−1〈l̄‖ψiψj〉 (3.25)

According to the maximization of εLR
2 , the variationally approximated LR Fock exchange

energy is given by

ẼLR-F
x = −

occ∑
i,j

∑
k̄,l̄

〈ψiψj‖k̄〉GLR
k̄l̄

−1〈l̄‖ψiψj〉 = −1

4

∑
µ,ν

∑
σ,τ

PµνPστ 〈µσ‖k̄〉GLR
k̄l̄

−1〈l̄‖τν〉 (3.26)

Eq. (3.26) is LR four-center ERI free and depends only from LR three-center ERIs and

the inverse of the LR Coulomb matrix. Note that the MOs in the long-range ERIs in Eq.

(3.26) are localized and the corresponding atomic orbitals and auxiliary functions are selected

according to the same criteria as for the Fock exchange fitting described in the section 2.2.

The validity of the fitting domains around each localized MO will be discussed later on in

section 4.2.2 of this thesis. Because of the different domains the long-range Coulomb matrix

will be different for each occupied MO, ψi, in Eq (3.26).

The long-range Fock potential contribution that enters the Kohn-Sham matrix with LC and

CAM functionals can be directly calculated by differentiation of ẼLR-F
x , Eq. (3.26), with

respect to density matrix elements

XLR-F
µν ≡ ∂ẼLR-F

x

∂Pµν
= −

occ∑
i

∑
k̄,l̄

〈µψi‖k̄〉GLR
k̄l̄

−1〈l̄‖ψiν〉 (3.27)

Having developed the variational fitted long-range Fock exchange energy and its correspond-

ing potential in combination with the previously discussed variational fitted Fock exchange

potential, a variational fitted short-range Fock potential, that enters to the Kohn-Sham ma-

trix in HSE functionals, can be defined as follows

XSR-F
µν = XF

µν −XLR-F
µν (3.28)
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By the combination of fitted global and long-range Fock exchange energies with exchange-

correlation energy functionals calculated with auxiliary densities, range-separated hybrid

ADFT energy expressions without four-center ERIs are obtained. In particular, we find the

following generic ADFT energy expressions for the here discussed functionals

ERS-B88 =
∑
µ,ν

PµνHµν +
∑
µ,ν

∑
k̄

Pµν〈µν‖k̄〉xk̄ −
1

2

∑
k̄,l̄

xk̄Gk̄l̄xl̄ −

α

occ∑
i,j

∑
k̄,l̄

〈ψiψj‖k̄〉Gk̄l̄
−1〈l̄‖ψiψj〉 − β

occ∑
i,j

∑
k̄,l̄

〈ψiψj‖k̄〉GLR
k̄l̄

−1〈l̄‖ψiψj〉+

ESR-B88
x (ω)[ρ̃] + γ∆EB88

x [ρ̃] + δELYP
c [ρ̃] + (1− δ)EVWN5

c [ρ̃] (3.29)

ERS-PBE =
∑
µ,ν

PµνHµν +
∑
µ,ν

∑
k̄

Pµν〈µν‖k̄〉xk̄ −
1

2

∑
k̄,l̄

xk̄Gk̄l̄xl̄ −

α
occ∑
i,j

∑
k̄,l̄

〈ψiψj‖k̄〉Gk̄l̄
−1〈l̄‖ψiψj〉 − β

occ∑
i,j

∑
k̄,l̄

〈ψiψj‖k̄〉GLR
k̄l̄

−1〈l̄‖ψiψj〉+

ESR-PBE
x [ρ̃] + EPBE

c [ρ̃] (3.30)

EHSE =
∑
µ,ν

PµνHµν +
∑
µ,ν

∑
k̄

Pµν〈µν‖k̄〉xk̄ −
1

2

∑
k̄,l̄

xk̄Gk̄l̄xl̄ +

0.25

− occ∑
i,j

∑
k̄,l̄

〈ψiψj‖k̄〉Gk̄l̄
−1〈l̄‖ψiψj〉+

occ∑
i,j

∑
k̄,l̄

〈ψiψj‖k̄〉GLR
k̄l̄

−1〈l̄‖ψiψj〉

+

0.75
(
EPBE
x [ρ̃]− ESR-PBE

x [ρ̃]
)

+ EPBE
c [ρ̃] (3.31)

Here α and β denotes the fraction of Fock and long-range Fock exchange, respectively, to be

used in the range-separated hybrid functionals.

A generalization of these ADFT energy expressions (Eqs. 3.29, 3.30 and 3.31) can be formu-

lated as follows

E =
∑
µ,ν

PµνHµν +
∑
µ,ν

∑
k̄

Pµν〈µν‖k̄〉xk̄ −
1

2

∑
k̄,l̄

xk̄Gk̄l̄xl̄ + Exc[ρ̃] +

cF

−α occ∑
i,j

∑
k̄,l̄

〈ψiψj‖k̄〉Gk̄l̄
−1〈l̄‖ψiψj〉 − β

occ∑
i,j

∑
k̄,l̄

〈ψiψj‖k̄〉GLR
k̄l̄

−1〈l̄‖ψiψj〉

 (3.32)
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In Eq. (3.32) we have introduced the cF factor, which scales the total amount of Fock

exchange, e.g. for the RS-B88 and RS-PBE functionals cF=1.0 and for HSE functionals

cF=0.25. The short-range Fock exchange energy in Eq. (3.32) can be obtained by setting

α = 1.0 and β = −1.0. Note however, that for the calculation of the SR-PBE exchange con-

tribution in HSE functionals α = 0.0 and β = 1.0 must be used. These non Fock exchange

contributions, i.e. the corresponding DFT exchange and correlation functional contribution

are collected in Exc[ρ̃] and are specific to each family of range-separated hybrid functionals.

The variation of the generic energy expressions, Eq. (3.32), with respect to the MO coeffi-

cients, under the MO orthonormality constraints, leads to Roothaan-Hall equation systems.

The generic ADFT Kohn-Sham matrix elements for range-separated hybrid functionals is

then given by

Kµν = Hµν +
∑
k̄

〈µν‖k̄〉 (xk̄ + zk̄) + cF

−α occ∑
i

∑
k̄,l̄

〈µψi‖k̄〉〈k̄‖l̄〉−1〈l̄‖ψiν〉−

β
occ∑
i

∑
k̄,l̄

〈µψi‖k̄〉〈k̄‖l̄〉−1〈l̄‖ψiν〉

 (3.33)

Note that the exchange-correlation fitting coefficients appearing in Eq. (3.33) absorb the con-

tribution from all exchange-correlation functionals wired into the corresponding functional.

The implementation of Eqs. (3.32) and (3.33) into deMon2k allows for self-consistent energy

calculations with range-separated hybrid functionals.

3.3 Energy Gradients of Range-Separated Functionals

Analytic energy derivatives with respect to nuclear positions play a fundamental role for

structure optimizations and vibrational frequency analyses. To formulate ADFT energy

derivatives for range-separated hybrid functionals we use the generic energy expression of

Eq. (3.32) written in the form

E =
∑
µ,ν

PµνHµν +
∑
µ,ν

∑
k̄

Pµν〈µν‖k̄〉xk̄−
1

2

∑
k̄,l̄

xk̄Gk̄l̄xl̄+Exc[ρ̃]+cF

(
αEF

x + βELR-F
x

)
(3.34)
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Thus, the ADFT energy derivative with respect to a nuclear coordinate, indicated by the (λ)

superscript, is given by [80, 97, 98]

E(λ) =
∑
µ,ν

P (λ)
µν Hµν +

∑
µ,ν

PµνH
(λ)
µν +

∑
µ,ν

∑
k̄

Pµν〈µν‖k̄〉(λ)xk̄ +
∑
µ,ν

∑
k̄

P (λ)
µν 〈µν‖k̄〉xk̄ −

1

2

∑
k̄,l̄

xk̄G
(λ)

k̄l̄
xl̄ + E(λ)

xc + cF

(
αEF

x

(λ)
+ βELR-F

x

(λ)
)

(3.35)

The derivatives of the elements of H, G and the three-center ERIs are obtained through

integral recurrence relations. The derivative of Exc is obtained via the chain rule and is given

by [4]

Exc[ρ̃](λ) =
∑
µ,ν

∑
k̄

P (λ)
µν 〈µν‖k̄〉zk̄ +

∑
µ,ν

∑
k̄

Pµν〈µν‖k̄〉(λ)zk̄ −∑
k̄,l̄

xk̄G
(λ)

k̄l̄
zl̄ +

∑
k̄

xk̄〈vxc[ρ̃]|k̄(λ)〉 (3.36)

The derivative of EF
x

(λ)
can be expressed as [80]

EF
x

(λ)
=

∑
µ,ν

P (λ)
µν X

F
µν +

∑
k̄,l̄

Γk̄l̄G
(λ)

k̄l̄
−

occ∑
i

∑
k̄

∑
σ

∑
µ,ν

Pµνxk̄µi〈k̄‖νσ〉(λ)cσi (3.37)

where

Γk̄l̄ =
1

2

occ∑
i

∑
µν

xk̄µiPµνxl̄νi (3.38)

and

xk̄µi =
∑
l̄

G−1
k̄l̄
〈k̄‖µψi〉 (3.39)

It should be noted that all these terms are readily available in deMon2k and we will not

further discuss them. For a competent discussion of the calculation and implementation of

these terms we refer the interested reader to references [80], [97] and [98].

Now we will develop the analytic energy gradients for the variational fitted long-range Fock

potential. In order to ease notation we rewrite the LR Fock exchange energy, Eq. (3.26), in

terms of fitting domains of LMOs as follow

ELR-F
x = −1

2

∑
µ,ν

Pµν

occ∑
i

∑
k̄

xLR
k̄µiJ

LR
k̄νi (3.40)

where

JLR
k̄νi = 〈k̄‖νψi〉 (3.41)



Chapter 3. Range-Separated Hybrid Functionals in ADFT 47

and

xLR
k̄µi =

∑
l̄

GLR
k̄l̄

−1
JLR
l̄µi (3.42)

The derivative of Eq (3.40) is

ELR-F
x

(λ)
= −1

2

∑
µ,ν

P (λ)
µν

occ∑
i

∑
k̄

xLR
k̄µiJ

LR
k̄νi −

1

2

∑
µ,ν

Pµν

occ∑
i

∑
k̄

xLR
k̄µi

(λ)
JLR
k̄νi −

1

2

∑
µ,ν

Pµν

occ∑
i

∑
k̄

xLR
k̄µiJ

LR
k̄νi

(λ)
(3.43)

The xLR
k̄µi

(λ)
are obtained by differentiation of Eq. (3.42). This yields

ELR-F
x

(λ)
= −1

2

∑
µ,ν

P (λ)
µν

occ∑
i

∑
k̄

xLR
k̄µiJ

LR
k̄νi +

1

2

∑
µ,ν

Pµν

occ∑
i

∑
k̄,l̄

xLR
k̄µiG

LR
k̄l̄

(λ)
xLR
l̄νi −

1

2

∑
µ,ν

Pµν

occ∑
i

∑
k̄

JLR
k̄µi

(λ)
xLR
k̄νi −

1

2

∑
µ,ν

Pµν

occ∑
i

∑
k̄

xLR
k̄µiJ

LR
k̄νi

(λ)
(3.44)

With the substitution,

JLR
k̄µi

(λ)
=
∑
µ

〈k̄‖µν〉(λ)cµi +
∑
µ

〈k̄‖µν〉c(λ)
µi , (3.45)

Eq. (3.44) can be rewritten as

ELR-F
x

(λ)
=
∑
µ,ν

P (λ)
µν X

LR
µν +

∑
k̄,l̄

ΓLR
k̄l̄ G

LR
k̄l̄

(λ) −
occ∑
i

∑
k̄

∑
σ

∑
µ,ν

Pµνx
LR
k̄µi〈k̄‖νσ〉

(λ)cσi (3.46)

Here we have introduced the auxiliary matrix ΓLR with elements

ΓLR
k̄l̄ =

1

2

occ∑
i

∑
µν

xLR
k̄µiPµνx

LR
l̄νi (3.47)

Substituting Eqs. (3.36), (3.37) and (3.46) into Eq. (3.35) yields

E(λ) =
∑
µ,ν

P (λ)
µν Kµν +

∑
µ,ν

PµνH
(λ)
µν +

∑
µ,ν

∑
k̄

Pµν〈µν‖k̄〉(λ) (xk̄ + zk̄) +

∑
k̄,l̄

xk̄G
(λ)

k̄l̄

(
1

2
xl̄ + zl̄

)
+
∑
k̄

xk̄〈vxc[ρ̃]|k̄(λ)〉+ cF

α∑
k̄,l̄

Γk̄l̄G
(λ)

k̄l̄
+

β
∑
k̄,l̄

ΓLR
k̄l̄ G

LR
k̄l̄

(λ) − α
occ∑
i

∑
k̄

∑
σ

∑
µ,ν

Pµνxk̄µi〈k̄‖νσ〉(λ)cσi −

β
occ∑
i

∑
k̄

∑
σ

∑
µ,ν

Pµνx
LR
k̄µi〈k̄‖νσ〉

(λ)cσi

)
(3.48)
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The first term in Eq. (3.48) collects all derivatives of the molecular orbital coefficients and

is absorbed in the Pulay forces [99]. Thus, the final expression for an ADFT energy gradient

component, including global and range-separated Fock exchange is given by

E(λ) = −
∑
µ,ν

WµνS
(λ)
µν +

∑
µ,ν

PµνH
(λ)
µν +

∑
µ,ν

∑
k̄

Pµν〈µν‖k̄〉(λ) (xk̄ + zk̄) +

∑
k̄,l̄

xk̄G
(λ)

k̄l̄

(
1

2
xl̄ + zl̄

)
+
∑
k̄

xk̄〈vxc[ρ̃]|k̄(λ)〉+ cF

α∑
k̄,l̄

Γk̄l̄G
(λ)

k̄l̄
+

β
∑
k̄,l̄

ΓLR
k̄l̄ G

LR
k̄l̄

(λ) − α
occ∑
i

∑
k̄

∑
σ

∑
µ,ν

Pµνxk̄µi〈k̄‖νσ〉(λ)cσi −

β
occ∑
i

∑
k̄

∑
σ

∑
µ,ν

Pµνx
LR
k̄µi〈k̄‖νσ〉

(λ)cσi

)
(3.49)

Here Wµν is an element of the closed-shell energy-weighted density matrix

Wµν = 2
occ∑
i

εicµicνi (3.50)

The last terms in brackets on the right hand side of Eq. (3.49) are the additions to the

energy derivative when performing a range-separated hybrid calculation in comparison to

pure ADFT ones. Notice that an efficient algorithm for the calculation of Fock type energy

gradients was already developed in [80] and is here adapted for the derivatives of long-range

Fock exchanges.

3.4 Perturbation Theory with Hybrid Functionals

In order to include Fock exchange into the auxiliary density perturbation theory (ADPT)

formalism a modification of the Eirola-Nevanlinna (EN) algorithm is suggested. Because

the inclusion of the external field frequency is not trivial, we start our discussion with the

frequency dependent perturbed molecular orbital (MO) coefficients [21]

c
(λ)
σj (±ω) =

uno∑
b

cσbU
(λ)
bj (±ω) (3.51)

Here the MO transformation matrices are given by [22]

U
(λ)
bj (±ω) =

K(λ)
bj (±ω)

εj − εb ∓ ω
(3.52)
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Throughout this discussion, we adopt the usual convention from the literature for MO index-

ing, i.e. p, q, . . . denote general MOs, i, j, . . . are occupied (occ) and a, b, . . . are unoccupied

(uno) MOs. In Eq. (3.52) K(λ)
bj (±ω) refers to a perturbed Kohn-Sham matrix element in

MO representation and εj and εb are the corresponding occupied and unoccupied MO ener-

gies, respectively. The external field frequencies are given by ±ω with a phase convention

accordingly to Karna and Dupuis [22]. Assuming that the basis functions are perturbation

independent, i.e. S
(λ)
µν = 0, we find for the zeroth and first order orthonormality condition∑

µν

cµpSµνcµq = δpq ∀ p, q (3.53)

∑
µ,ν

cµpSµνc
(λ)
νq (±ω) +

∑
µ,ν

c(λ)
µp (∓ω)Sµνcνq = 0 ∀ p, q (3.54)

Expanding the perturbed MO coefficients yields∑
b

∑
µ,ν

cµpSµνcνbU
(λ)
bq (±ω) +

∑
b

∑
µ,ν

U
(λ)
pb (∓ω)

T
cµbSµνcνq = 0 ∀ p, q (3.55)

∑
b

δpbU
(λ)
bq (±ω) +

∑
b

U
(λ)
pb (∓ω)

T
δbq = 0 ∀ p, q (3.56)

From Eq. (3.56) follows as general relationship between the transformation matrices

U (λ)
pq (±ω) + U (λ)

pq (∓ω)
T

= 0 ∀ p, q (3.57)

Based on this relationship, we use the following parametrization for the MO transformation

matrices

1. Case: p ∈ occ and q ∈ occ

U
(λ)
ij (+ω) = U

(λ)
ij (−ω)

T
= U

(λ)
ij (−ω) = U

(λ)
ij (+ω)

T
≡ 0 (3.58)

2. Case: p ∈ uno and q ∈ uno

U
(λ)
ab (+ω) = U

(λ)
ab (−ω)

T
= U

(λ)
ab (−ω) = U

(λ)
ab (+ω)

T
≡ 0 (3.59)

3. Case: p ∈ uno and q ∈ occ

U
(λ)
ai (+ω) + U

(λ)
ia (−ω) = 0 and U

(λ)
ai (−ω) + U

(λ)
ia (+ω) = 0 (3.60)
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This parametrization yields the following structures for the transformation matrices

U(λ)(+ω) =

i a

i

a


0 −⊕

⊗ 0


occ

uno

U(λ)(−ω) =

i a

i

a


0 −⊗

⊕ 0


occ

uno

Based on the symmetry of the transformation matrices we need to determine U
(λ)
ai (+ω) and

U
(λ)
ai (−ω) ∀ a ∈ uno and i ∈ occ to obtain both transformation matrices. Alternatively, we

also can determine U
(λ)
ai (+ω) and U

(λ)
ia (+ω) ∀ a ∈ uno and i ∈ occ. These both approaches are

equivalent. Thus, for a given pair of frequencies, for example ±ω, we only need to compute

either the K matrix for +ω or −ω.

Following this argumentation, we use McWeeny’s self-consistent perturbation (SCP) theory

[100–102] for the +ω branch to obtain the elements of the dynamic first-order perturbed

closed-shell density matrix as

P (λ)
µν (ω) = 2

occ∑
i

uno∑
a

K(λ)
ai (ω)

εi − εa − ω
cµacνi + 2

occ∑
i

uno∑
a

K(λ)
ia (ω)

εi − εa + ω
cµicνa (3.61)

Here

K(λ)
ai (ω) =

∑
µ,ν

cµaK
(λ)
µν (ω)cνi (3.62)

and

K(λ)
ia (ω) =

∑
µ,ν

cµiK
(λ)
µν (ω)cνa (3.63)

denote first-order perturbed Kohn-Sham matrix elements in molecular orbital representation.

The cµi and cνa are the canonical MO coefficients and εi and εa are the corresponding orbital
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energies of the ith occupied and ath unoccupied MO, respectively. The first-order perturbed

range-separated hybrid ADFT Kohn-Sham matrix elements are given by

K(λ)
µν (ω) = H(λ)

µν +
∑
k̄

〈µν‖k̄〉
[
x

(λ)

k̄
(ω) + z

(λ)

k̄
(ω)
]

+ cF

[
αXF

µν

(λ)
(ω) + βXLR-F

µν

(λ)
(ω)
]

(3.64)

The here appearing perturbed core-Hamilton matrix elements, H
(λ)
µν , depend on the particular

perturbation being studied. In Eq. (3.64) x(λ)(ω) corresponds to the first-order perturbed

Coulomb fitting coefficients. The corresponding first-order perturbed exchange correlation

fitting coefficients can be expressed as

z
(λ)

k̄
(ω) =

∑
l̄

Fk̄l̄x
(λ)

l̄
(ω) (3.65)

with the kernel response matrix

Fk̄l̄ =
∑
m̄

G−1
k̄m̄
〈m̄|fxc[ρ̃]|l̄〉 (3.66)

where fxc[ρ̃] is the second functional derivative of the exchange-correlation energy functional.

The perturbed (closed-shell) global and long-range Fock potentials are given by

XF
µν

(λ)
(ω) = −1

2

∑
σ,τ

∑
k̄,l̄

P (λ)
στ (ω)〈µσ‖k̄〉G−1

k̄l̄
〈l̄‖τν〉 (3.67)

XLR-F
µν

(λ)
(ω) = −1

2

∑
σ,τ

∑
k̄,l̄

P (λ)
στ (ω)〈µσ‖k̄〉GLR

k̄l̄

−1〈l̄‖τν〉 (3.68)

The here appearing perturbed density matrix elements have the form

P (λ)
στ (ω) = 2

occ∑
i

c
(λ)
σi (+ω)cτi + 2

occ∑
i

cσic
(λ)
τi (−ω) (3.69)

with

c
(λ)
σi (+ω) =

uno∑
a

K(λ)
ai (ω)

εi − εa − ω
cσa (3.70)

and

c
(λ)
σi (−ω) =

uno∑
a

K(λ)
ia (ω)

εi − εa + ω
cσa (3.71)

At this point we emphasize that c
(λ)
σi (+ω) and c

(λ)
σi (−ω) are used merely as a convenient

notation and that they are calculated within the +ω branch. Substituting Eq. (3.69) into
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Eq. (3.67) yields

XF
µν

(λ)
(ω) = −

∑
k̄,l̄

occ∑
i

c
(λ)
σi (+ω)cτi〈µσ‖k̄〉G−1

k̄l̄
〈l̄‖τν〉

−
∑
k̄,l̄

occ∑
i

cσic
(λ)
τi (−ω)〈µσ‖k̄〉G−1

k̄l̄
〈l̄‖τν〉

= −
∑
k̄,l̄

occ∑
i

〈µψ(λ)
i (+ω)‖k̄〉G−1

k̄l̄
〈l̄‖ψiν〉

−
∑
k̄,l̄

occ∑
i

〈µψi‖k̄〉G−1
k̄l̄
〈l̄‖ψ(λ)

i (−ω)ν〉 (3.72)

Analogously, we find for the perturbed long-range Fock exchange potential

XLR-F
µν

(λ)
(ω) = −

∑
k̄,l̄

occ∑
i

〈µψ(λ)
i (+ω)‖k̄〉GLR

k̄l̄

−1〈l̄‖ψiν〉

−
∑
k̄,l̄

occ∑
i

〈µψi‖k̄〉GLR
k̄l̄

−1〈l̄‖ψ(λ)
i (−ω)ν〉 (3.73)

Note that the localization of ψi(r) is possible in the calculation of XF
µν

(λ)
(ω) and XLR-F

µν
(λ)

(ω).

To do so ψ
(λ)
i (±ω, r) must be transformed with the localization matrix for the canonical MOs

obtained from the foregoing SCF.

To find an expression for the calculation of the first-order perturbed Coulomb fitting coeffi-

cients we combine Eq. (3.61) with the derivative of the fitting equation, Eq. (2.10)

∑
k̄

Gn̄k̄x
(λ)

k̄
(ω) =

∑
µ,ν

〈n̄‖µν〉P (λ)
µν (ω) (3.74)

Inserting the perturbed density matrix elements of Eq. (3.61) into Eq. (3.74) and expanding

the perturbed Kohn-Sham matrix elements yields
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∑
k̄

Gn̄k̄x
(λ)

k̄
(ω) = 2

occ∑
i

uno∑
a

〈n̄‖ ai〉 K
(λ)
ai (ω)

εi − εa − ω
+ 2

occ∑
i

uno∑
a

〈n̄‖ia〉 K
(λ)
ia (ω)

εi − εa + ω

= 2
occ∑
i

uno∑
a

〈n̄‖ai〉
εi − εa + ω

(
H(λ)
ai +

∑
k̄

〈ai‖k̄〉
[
x

(λ)

k̄
(ω) + z

(λ)

k̄
(ω)
]

+

cF

[
αX F

ai

(λ)
(ω) + βX LR-F

ai

(λ)
(ω)
])

+

2
occ∑
i

uno∑
a

〈n̄‖ia〉
εi − εa + ω

(
H(λ)
ia +

∑
k̄

〈ia‖k̄〉
[
x

(λ)

k̄
(ω) + z

(λ)

k̄
(ω)
]

+

cF

[
αX F

ia

(λ)
(ω) + βX LR-F

ia

(λ)
(ω)
])

= 4
occ∑
i

uno∑
a

〈n̄‖ia〉 ωia
ω2
ia + ω2

H(λ)
ia +

4
∑
k̄

occ∑
i

uno∑
a

〈n̄‖ia〉 ωia
ω2
ia + ω2

〈ia‖k̄〉x(λ)

k̄
(ω) +

4
∑
k̄,l̄

occ∑
i

uno∑
a

〈n̄‖ia〉 ωia
ω2
ia + ω2

〈ia‖k̄〉Fk̄l̄x
(λ)

l̄
(ω) +

2cF

occ∑
i

uno∑
a

〈n̄‖ia〉

[
αX F

ai
(λ)

(ω) + βX LR-F
ai

(λ)
(ω)

ωia − ω
+

αX F
ia

(λ)
(ω) + βX LR-F

ia
(λ)

(ω)

ωia + ω

]
(3.75)

To ease notation we used ωia = εi − εa. The perturbed Fock potential terms in molecular

orbital representation are given by

X F
ai

(λ)
(ω) =

∑
µ,ν

cµaX
F
µν

(λ)
(ω)cνi (3.76)

X LR-F
ia

(λ)
(ω) =

∑
µ,ν

cµiX
F
µν

(λ)
(ω)cνa (3.77)

X LR-F
ai

(λ)
(ω) =

∑
µ,ν

cµaX
F
µν

(λ)
(ω)cνi (3.78)

X LR-F
ia

(λ)
(ω) =

∑
µ,ν

cµiX
LR-F
µν

(λ)
(ω)cνa (3.79)
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To proceed, we now introduce the elements of the Coulomb response matrix A(ω) and the

perturbation vectors b(λ)(ω) and
•
b(λ)(ω)

An̄k̄(ω) =
occ∑
i

uno∑
a

〈n̄‖ia〉 ωia
ω2
ia + ω2

〈ia‖k̄〉 (3.80)

b(λ)
n (ω) =

occ∑
i

uno∑
a

〈n̄‖ia〉 ωia
ω2
ia + ω2

H(λ)
ia (3.81)

•
b
(λ)
n̄ (ω) = cF

occ∑
i

uno∑
a

〈n̄‖ia〉

[
αXFai

(λ)
(ω) + βX LR-F

ai
(λ)

(ω)

ωia − ω
+
αXFia

(λ)
(ω) + βX LR-F

ia
(λ)

(ω)

ωia + ω

]
(3.82)

Rearranging Eq. (3.75) yields the following linear equation system for x(λ)(ω) in matrix form

[G− 4A(ω)− 4A(ω)F] x(λ)(ω) = R(ω) x(λ)(ω) = 4b(λ)(ω) + 2
•
b(λ)(ω) (3.83)

This is the ADPT equation system for global and range-separated hybrid functionals. Note

that the perturbation vector
•
b(λ)(ω) depends on the perturbed fitting coefficients. There-

fore, Eq (3.83) must be solved iteratively. To this end, we use the Eirola-Nevanlinna (EN)

algorithm [103, 104] in order to obtain the perturbed Coulomb fitting coefficients, x(λ)(ω).

Once these coefficients are obtained, the perturbed exchange correlation fitting coefficients,

z(λ)(ω), are readily available via Eq. (3.65). The basic quantity for the calculation of
•
b(λ)(ω)

are the perturbed global and long-range Fock potentials given by Eqs. (3.67) and (3.68).

These matrix elements are also needed for the calculation of the perturbed Kohn-Sham ma-

trix elements, Eq. (3.64). With the perturbed Kohn-Sham matrix elements the pertubed MO

coefficients c
(λ)
σi (+ω) and c

(λ)
σi (−ω) can be calculated according to Eq. (3.70) and (3.71) which

in turn permits the calculation of new perturbed global and long-range Fock potentials. This

closes the iterative loop for the perturbed Fock potential calculation.

A flowchart of the modified EN algorithm is depicted in Fig. 3.3. The ADPT equation

systems solved by EN micro iterations are dark violet underlaid. In the initialization step

(top of Fig. 3.3) a LDA/GGA like ADPT equation system is solved, i.e.
•
b(λ)(ω) = 0 is

used. From this solution the first set of perturbed MO coefficients is calculated according

to Eq. (3.70) and (3.71). Note that the Fock contribution is still set to zero. Once the

perturbed MO coefficients are calculated, the corresponding perturbed Fock potentials are

calculated according to (3.72) and (3.73) and stored on tape. In turn the Fock dependent
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part of the perturbation vector,
•
b(λ)(ω), is calculated and a new ADPT equation system is

solved with the EN algorithm. The obtained perturbed fitting coefficients, together with the

reloaded perturbed Fock potentials (top HD in Fig 3.3), are used for the calculations of the

new perturbed Kohn-Sham matrix elements and the new perturbed MO coefficients. Thus,

the perturbed Fock potentials are always 1 macro iteration behind the perturbed fitting

coefficients. With the calculation of the new perturbed Fock potential a new macro iteration

starts. After the new Fock dependent part of the perturbation vector is calculated, the new

ADPT equation system is solved by EN micro iterations. Convergence is reached after the

calculation of the next perturbed Kohn-Sham matrix. Once the convergence is reached the

perturbed density matrix is calculated according to (3.61).

There are several particular cases worth mentioning. If α = 1.0 and β = 0.0 we obtain the

perturbation vector
•
b(λ)(ω) for global hybrid functionals. If additionally z

(λ)

k̄
(ω) = 0 and

cF = 1.0 Hartree-Fock perturbation theory is recovered. Thus, the here discussed ADPT

formalism can be also used as an alternative to the coupled perturbed Hartree-Fock (CPHF)

approach. Of course, if no Fock exchange potential exists Eq. (3.83) reduces to the well-

known ADPT equation system for LDA and GGA functionals

[G− 4A(ω)− 4A(ω)F] x(λ)(ω) = 4b(λ)(ω) (3.84)

For ω = 0 the equation system for global and range-separated hybrid functionals, Eq. (3.83),

reduces to its static counterpart. In fact, the ω dependency of the Coulomb coupling matrix

and of the perturbation vector can be easily incorporated into the static matrix and vector

element calculations. As a result, the computational performance for static and dynamic

ADPT polarizabilities is very similar.
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R(λ)(ω) x(λ)(ω) = b(λ)(ω)

K(λ)(ω)

c(λ)(ω)

XF(λ)
(ω) and XLR-F(λ)

(ω)

•
b(λ)(ω)

R(λ)(ω) x(λ)(ω) = b(λ)(ω)+
•
b(λ)(ω)

K(λ)(ω)

c(λ)(ω)

XF(λ)
(ω) and XLR-F(λ)

(ω)

•
b(λ)(ω)

R(λ)(ω) x(λ)(ω) = b(λ)(ω)+
•
b(λ)(ω)

K(λ)(ω)
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Figure 3.3: Flow chart of the modified EN algorithm for global and range-
separated hybrid calculations. Dashed lines indicate storage/loading operations
from hard drive (HD). See text for further details.



Chapter 4

Implementation, Validation and
Benchmarks

In this chapter we will give the details for the implementation as well as the validation of the

range-separated hybrid functionals in the ADFT and ADPT frameworks. Also, a parallel

implementation is presented and benchmarked.

4.1 Implementation

4.1.1 Basic Integrals for Range-Separated Fock Exchange

In our variational fitting approach the basic primitive three-center LR ERI is given as

[ab‖c̄] =

∫∫
a(r)b(r)

erf(ω|r− r′|)
|r− r′|

c̄(r′) dr dr′ (4.1)

Here a and b denote (unnormalized) primitive atom centered Cartesian Gaussian type func-

tions of the form

a(r) = (x− Ax)ax(y − Ay)ay(z − Az)aze−ζa(r−A)2

(4.2)

and c̄ is a atom centered (unnormalized) primitive Hermite Gaussian function given by Eq.

(2.3). Using the definition of the error function, the long-range Coulomb operator, Eq. (3.8),

can be rewritten as

‖ =
2√

π|r− r′|

∫ ω|r−r′|

0

e−t
2

dt (4.3)

With the variable substitution

u =
t

ω|r− r′|
(4.4)

follows for the long-range Coulomb operator

‖ =
2ω√
π

∫ 1

0

e−u
2ω2(r−r′)2

du (4.5)

57
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In Eq. (4.5), the long-range Coulomb operator is written in Gaussian form. Therefore, we

can apply the Gaussian product theorem (GPT). The GPT states that the product of two

Gaussian functions at centers A and B yields a Gaussian function with center P on the line

that connects A and B [105]. Thus, the basic integral, Eq. (4.1), over s functions takes the

form

[s̄](0) =

∫∫∫ 1

0

e−ζa(r−A)2

e−ζb(r−B)2

e−u
2ω2(r−r′)2

e−ζc̄(r
′−C)2

du dr dr′ (4.6)

Applying the GPT to compute new centers, the final expression for the basic integral of the

long-range three-center ERIs is given by [106]

[s̄](n) =
2ωπ5/2√

(ζa + ζb)ζc̄ + ω2(ζa + ζb + ζc̄)

(−2ηω)n

(ζa + ζb)ζc̄
e−ξ(A−B)2

Fn(Tηω) (4.7)

with

ηω = − ω2(ζa + ζb)ζc̄
(ζa + ζb)ζc̄ + ω2(ζa + ζb + ζc̄)

, Tηω = ηω(P−C)2, (4.8)

where

P =
ζaA + ζbB

ζa + ζb
, ξ =

ζaζb
ζa + ζb

. (4.9)

Here A and B are the centers of the primitive Cartesian Gaussian functions with exponents

ζa and ζb respectively, and C is the center of the primitive Hermite Gaussian type auxiliary

function with exponent ζc̄. The so-called Boys function in Eq. (4.7) is ω dependent over its

argument and has the form

Fn(Tηω) =

∫ 1

0

t2neTηω t
2

dt (4.10)

Similar to standard three-center ERIs, LR three-center ERIs can also be asymptotically

expanded by introducing a LR electrostatic potential for the primitive Hermite Gaussian

auxiliary functions,

φc̄(r) =

∫
erf(ω|r− r′|)
|r− r′|

c̄(r′) dr′ (4.11)

Following the same arguments as in reference [40] the asymptotic expansion for the LR

electrostatic potential of a s̄ type auxiliary function is given by

‖s̄](0) ∼
(
π

ζc̄

)3/2
1

|r−C|
(4.12)

Thus, LR three-center ERIs have the same asymptotic expansion as their standard counter-

part. However, it should be noted that the number of asymptotically expanded ERIs [41] is
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much smaller for LR Fock exchange fitting than for the corresponding Coulomb fitting due

to the intrinsic local nature of LR Fock exchange, that is exploited in our algorithm by the

use of localized MOs.

For the calculation of the long-range Coulomb matrix elements, appearing in Eq. (3.23), two-

center LR ERIs over primitive Hermite Gaussian functions are needed. These (unnormalized)

integrals are

[c̄‖d̄] =

∫∫
c̄(r)

erf(ω|r− r′|)
|r− r′|

d̄(r′) dr dr′ (4.13)

Using Eq. (4.5) the above basic integral over s̄ functions takes the form

[s̄](0) =

∫∫∫ 1

0

e−ζc̄(r−C)2

e−u
2ω2(r−r′)2

e−ζd̄(r′−D)2

du dr dr′ (4.14)

The basic LR integral of the corresponding recurrence relation is given by

[s̄](n) =
2π5/2

ζc̄ζd̄

ω(−2ϑω)n

[ζc̄ζd̄ + ω2(ζc̄ + ζd̄)]
1/2
Fn(Tϑω) (4.15)

with

ϑω = − ω2ζc̄ζd̄
ζc̄ζd̄ + ω2(ζc̄ + ζd̄)

and Tϑω = ϑω(C−D)2 (4.16)

In range-separated hybrid ADFT calculations, Fock exchange energy, potential, gradient

and perturbed potential depend on the computation of two- and three-center ERIs. The

expression of the basic ERIs, Eqs. (4.7) and (4.15) have the same form as for conventional

ERIs [39, 40], except for a correction term depending on the attenuation parameter ω. Thus,

we can combine conventional and range-separated ERIs at the level of basic integrals. This

yields for the three-center ERIs

[s̄](n) =

(
α(−2η)nFn(Tη)√
ζa + ζb + ζc̄

− βω(−2ηω)nFn(Tηω)√
(ζa + ζb)ζc̄ + ω2(ζa + ζb + ζc̄)

)(
2π5/2

ζc̄(ζa + ζb)
e−ξ(A−B)2

)
(4.17)

with

η = − (ζa + ζb)ζc̄
ζa + ζb + ζc̄

, Tη = η(P−C)2, (4.18)

The corresponding basic two-center range-separated ERIs are given by

[s̄](n) =
2π5/2

ζc̄ζd̄

(
α(−2ϑ)nFn(Tϑ)√

ζc̄ + ζd̄
− βω(−2ϑω)nFn(Tθω)√

ζc̄ζd̄ + ω2(ζc̄ + ζd̄)

)
(4.19)
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with

ϑ = − ζc̄ζd̄
ζc̄ + ζd̄

, T = ϑ(C−D)2 (4.20)

In Eqs. (4.17) and (4.19), α and β are the range-separation parameters. With these basic

integrals the standard recurrence relations [40, 41] can be used to compute the ERIs for range-

separated Fock exchange. Therefore, ERI calculations for range-separated Fock exchange is

of similar computational demand as for standard Fock exchange.

4.1.2 Parallelization Scheme for Fock Exchange ERI Calulation

To improve workload balance with respect to the octree parallelization algorithm [80] a new

two step parallelization scheme was developed. In the first step the three-center ERIs 〈µν‖k̄〉

are calculated. Here the workload is distributed over the shell combinations to which the

atomic orbitals µ and ν belong. The different shell combinations are distributed equally over

the computational cores and the calculated integrals are stored locally as partial contributions

to the ERIs 〈µψi‖k̄〉 in RAM. These contributions from different cores are then summed

up to build the target ERIs 〈µψi‖k̄〉. After this step the work is redistributed over the

occupied LMO index i in such a way that at the end each core processes about the same

number of 〈µψi‖k̄〉 integrals. This distribution over the LMO index i is also used for the

calculation of the long-range Fock potential XLR
µν . Note that the first distribution for the

calculation of the 〈µν‖k̄〉 integrals can become RAM demanding due to the storage of 〈µψi‖k̄〉

ERIs [107]. Therefore, integral batching is introduced. In case RAM demand exceeds the

physical available memory, the occupied LMOs are split into batches and the 〈µν‖k̄〉 ERIs

are recalculated for each batch. The final results of each batch are added sequentially to the

long-range Fock potential XLR
µν . This approach provides a good compromise between RAM

demand and computational efficiency.

Serial and parallel calculations have shown that the computation of the inverse of the local

Coulomb matrix, Gi, i denoting the corresponding occupied LMO, can be a bottleneck in

the computation of range-separated Fock potentials [106]. In the original deMon2k imple-

mentation of the variational fitting of Fock exchange this inverse was calculated either by

Cholesky decomposition or, when this fails, by TED. From a computational point of view

it is desirable to avoid TED altogether. To this end, we propose here the use of a modified
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Cholesky decomposition for the calculation of the inverse of the Gi matrices. To ease the

notation, we introduce a set of matrices Ei with elements

Eµk̄,i = 〈µi‖k̄〉 (4.21)

In general, all Ei matrices have different dimensions due to the local fitting domains. In

addition, each LMO has an associate Coulomb matrix Gi either global or range separated,

GF/GLR.The contribution of each LMO to the Fock potential matrix X is given by

Xi = −EiGi
−1ET

i (4.22)

We use Xi or X as generic representation for XF
i /X

LR
i and XF/XLR. Note that in general

Xi and X will have different dimensions.

If the matrix Gi is positive definite we can always find a decomposition of the form Gi =

LiDiL
T
i , where Li is a unit lower triangular matrix and Di is a diagonal matrix with strictly

positive diagonal entries. However, if Gi is positive semidefinite, Di may have zero elements

on the diagonal and the decomposition is no longer unique [108]. We can, however, find a

permutation matrix Pi such that PiGiP
T
i has a unique decomposition of the form LiDiL

T
i ,

with

Di =

 D1 0

0 0

 (4.23)

where D1 is a square diagonal matrix with positive diagonal elements. The dimension of

D1 is r, where r is the rank of Gi. Thus, this decompostion is useful for its rank-revealing

property [108] and extends the Cholesky decomposition to all positive semidefinite matrices.

Several modified Cholesky algorithms exist that aim to compensate for the lack of positive

definiteness. The basic idea is to perturb Gi, i.e. add a matrix Hi to it, to make it positive

definite and then find a Cholesky decomposition of this perturbed matrix instead. The

challenge is to do this in such a way that the perturbed matrix remains pertinent to the

original application.

In practice, we usually need to perform pivoting on the matrix being decomposed to ensure

numerical stability. Thus, we actually calculate the decomposition

Pi(Gi + Hi)P
T
i = LiDiL

T
i (4.24)
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where Pi is an appropriate permutation matrix according to Eq. (4.23). Here we use the

particular pivoting strategy proposed by Cheng and Higham [109] for the modified Cholesky

algorithm. They recommend using the bounded Bunch-Kaufman (rook) diagonal pivoting

method [110] to find the indefinite factorization of PiGiP
T
i = LiD̃iLi. After the decom-

position has been found the symmetric indefinite block diagonal matrix D̃i is perturbed in

the Frobenius norm ∆D̃i such that λmin

(
D̃i + ∆D̃i

)
≤ δ using the Higham theorem [111].

In the deMon2k implementation we set δ = 1.0 × 10−9 for this tolerance [112]. Using the

modified Cholesky decomposition, we can transform equation Eq. (4.22) into

Xi = −EiBi, (4.25)

where Bi is the matrix solution of the following equation system,

(LiDiL
T
i )Bi = ET

i . (4.26)

The advantage of employing Eq. (4.25) instead of Eq. (4.22) is that solving Eq. (4.26)

avoids the computation of the inverse of Gi. In practical implementation we take advantages

of LAPACK [113] libraries for solving Eq. (4.26), as well as, for the computation of the

modified Cholesky decomposition.

4.2 Validation

The validation calculations for the here discussed range-separated hybrid functionals with

DF-DFT and ADFT were performed in a developer version of deMon2k using the Cartesian

def2-TZVPP [114] basis set in combination with the automatically generated GEN-A2* aux-

iliary function sets [115]. The structures of the first 56 molecules from the original G2 [116,

117] test set were optimized at the DFT, DF-DFT, and ADFT levels of theory to validate

the total energy and energy gradients. The n-alkane chains C10H22, C20H32, and C30H62 were

used for the validation of domain cutoffs. Formation enthalpies of the 223 molecules of the

G3 [118, 119] test set in their B3LYP/6-31G(2df,p) optimized geometries were used for fur-

ther validation of energies. For four-center ERI DFT calculations, the NWChem [120] code

was used. To facilitate the comparison to NWChem, we used the fixed coarse grid with the

Mura-Knowles [121] radial quadrature in deMon2k. Furthermore, unscreened Becke atomic
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weights [122] were used in the validation calculations. For all other keywords, the default

deMon2k settings are used.

4.2.1 Total Energies and Energy Gradients

For the validation of the total energies and analytic energy gradients of range-separated

hybrid functionals we use a modified G2 set, which contains 122 bond lengths, 64 bond angles

and 34 dihedral angles. Fig. 4.1 shows the linear correlation plots of converged total energies

between four-center ERI DFT and DF-DFT as well as four-center ERI DFT and ADFT

for the modified G2 set using the CAMPBE0, HSE06 and LCPBE range-separated hybrid

functionals. The energy differences found in the modified G2 set are less than 1.0 × 10−4

a.u. for all comparisons. Moreover, the values found for the correlation coefficient are around

0.9999 in all cases.

The mean absolute deviations (MADs) in bond lengths, angles and dihedral angles with

respect to standard four-center ERI DFT optimized structures are reported in Table. 4.1 for

the CAMPBE0, HSE06 and LCPBE functionals. Table 4.1 shows MADs of around 10−4 Å

for bond lengths, 10−2 degrees for bond angles, and 10−1 degrees for dihedral angles for both,

DF-DFT and ADFT, methodologies. We note that these deviations are within the accuracy

of the used numerical integration and optimization thresholds. Although we compare here

optimized DF-DFT and ADFT structure parameters only for 3 functionals explicitly with

four-center ERI results we note that the other functionals discussed in this thesis show similar

results for total energies and gradientes.

Table 4.1: MADs of the bond lengths, bond angles and dihedral angles of
the DF-DFT and ADFT optimized CAMPBE0, HSE06 and LCPBE structures
with respect to corresponding NWChem optimized structures for the modified
G2 set.

Bond [pm] Angle [deg] Dihedral [deg]

DF-DFT
CAMPBE0 1.2×10−4 2.0×10−2 1.5×10−1

HSE06 2.3×10−4 3.5×10−2 1.5×10−1

LCPBE 1.9×10−4 5.6×10−2 1.4×10−1

ADFT
CAMPBE0 2.5×10−4 2.3×10−2 2.7×10−1

HSE06 2.0×10−4 3.5×10−2 2.5×10−1

LCPBE 4.2×10−4 6.9×10−2 1.4×10−1

We finish our discussion on the accuracy of the variational fitted (long-range) Fock exchange
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Figure 4.1: Linear correlation plots between the energies [a.u] calculated with
four-center ERI density functional theory of the modified G2 test set molecules
with density fitted DFT (DF-DFT) and auxiliary density functional theory
(ADFT) for the CAMPBE0, HSE06 and LCPBE range-separated hybrid func-
tionals.
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with the asymptotic expansion of the involved three-center ERIs. Due to the underlying

implementation structure only the first asymptotic ERI expansion [41] is used for the vari-

ational fitted Fock exchange. Nevertheless, the same asymptotic radii as for the double

asymptotic Coulomb ERIs are used. Although this has no effect on the converged SCF en-

ergies, it became problematic for gradient calculations as detailed in Appendix B for the

C54H20 graphene flake. A straightforward solution is to double the asymptotic radii of the

atoms for the gradient calculation of the variational fitted (long-range) Fock exchange.

4.2.2 Domain Selection

In order to demonstrate that our domain cutoffs are also reliable for increasing system sizes

we report in Table 4.2 energy differences of global and range-separated Fock exchange, DF-

DFT and ADFT calculations with respect to corresponding four-center ERI calculations for

the n-alkanes C10H22, C20H42 and C30H62. Table 4.2 shows that the energy differences are in

the range of 10−3 a.u. or below, indicating that the here used cutoffs are also appropriate

for larger systems. We note that due to slightly different physical constant definitions and

standard SCF convergence thresholds total energy differences of 10−4 a.u. between deMon2k

and NWChem are common for these system sizes. Furthermore, we also point out that the

convergence limits of (four-center ERI) Kohn-Sham DFT and ADFT are slightly different

which is included in a total energy comparison.

Table 4.2: Converged Fock, CAMPBE0, HSE06 and LCPBE total energy
differences [a.u.] with respect to four-center ERI DFT total energies for C10H22,
C20H42 and C30H62 alkane chains.

C10H22 C20H42 C30H62

Fock
Global 1.2×10−3 2.6×10−3 4.0×10−3

Long-range 2.6×10−4 5.0×10−4 7.4×10−4

Short-range 7.3×10−4 1.5×10−3 2.7×10−3

DF-DFT
CAMPBE0 7.7×10−5 6.0×10−5 1.2×10−4

HSE06 2.0×10−4 3.1×10−4 5.0×10−4

LCPBE 5.4×10−4 1.0×10−3 1.5×10−3

ADFT
CAMPBE0 1.6×10−3 2.9×10−3 4.3×10−3

HSE06 1.8×10−3 3.2×10−3 4.5×10−3

LCPBE 2.5×10−3 4.6×10−3 6.8×10−3

Further calculations were performed on the C30H62 alkane chain in order to evidence the
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behavior of the domain and overlap cutoffs. In Fig. 4.2 the converged long-range Fock

exchange energy differences [a.u.] of C30H62 with respect to a domain cutoff of 1.000 and an

overlap cutoff of 1.0×10−8 a.u. are plotted.
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Figure 4.2: Converged long-range Fock exchange energy differences [a.u.] of
the C30H62 alkane chain with respect to four-center ERI calculations.

In the top of Fig. 4.2 the converged long-range Fock exchange energy difference is plotted as

a function of the atomic population sum used for the definition of atomic auxiliary function

centers in the LMOs according to Eq. (2.31). The overlap cutoff was 1.0 × 10−8 in these

calculations. The bottom of Fig. 4.2 shows the same energy difference now as a function of

the overlap cutoff for the definition of the corresponding atomic basis set centers. The atomic

population sum was 0.9990 in these calculations. As Fig. 4.2 shows smooth convergence of

the energy difference is obtained for the domain cutoff. In case of the overlap cutoff the

error turns from small negative to small positive values with decreasing thresholds. The

different convergence behaviors in Fig. 4.2 underline once again the variational nature of the

density fitting with respect to the auxiliary function expansion, here altered by the domain

cutoff value. On the other hand, the overlap cutoff is similar to an integral screening and,

therefore, does not possess a variational bound. Altogether, Fig 4.2 demonstrates that our

domain and overlap cutoffs are size extensive and can be used for nanosystems. For the here

plotted C30H62 the energy differences are in the range of 10−5 and 10−6 a.u. for the atomic
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population sum threshold and the overlap cutoff, respectively. Thus, also the absolute values

of the long-range Fock exchange energy differences are size extensive thanks to the variational

character of the here proposed long-range Fock exchange fitting.

4.2.3 Thermochemical Properties

For further validation of the here discussed range-separated hybrid functional implementation

we calculated standard heats of formation as proposed by Curtis et al. [116–119] for the 223

molecules of the G3/99 test set. Here the calculations were performed with the Cartesian

def2-TZVPP basis set. For the variational density fitting in DF-DFT and ADFT the GEN-

A2* auxiliary function set was employed. In order to calculate ∆H298K
f for a general molecule

with formula AxByCz, the following steps must be performed:

1. Calculate the zero-point corrected atomization energy D0 as:

D0(AxbyCz) = [xEe(A) + yEe(B) + zEe(C)]− Ee(AxByCz) + EZPE(AxByCz) (4.27)

2. Calculate the enthalpy of formation at 0 K as:

∆H0K
f (AxByCz) =

[
x∆H0K

f (A) + y∆H0K
f (B) + z∆H0K

f (C)
]
−D0(AxByCz) (4.28)

3. Calculate ∆H298K :

∆H298K = ∆H0K
f (AxByCz) +H298K(AxByCz)−H0K(AxByCz)−

x [H298K(A)−H0K(A)]− y [H298K(B)−H0K(B)]− (4.29)

z [H298K(C)−H0K(C)]

The ∆H0K
f (X) and [∆H298K(X)−∆H0K(X)] for a given atom X as well as the zero point

energy corrections were taken from Ref. [116]. The MADs of the calculated standard

heats of formations with respect to experiments are show in Table 4.3 for the CAMB3LYP,

CAMPBE0, CAMQTP00, CAMQTP01, HSE03, HSE06, LCBLYP, LCPBE and rCAMB3LYP

functionals. The second column of Table 4.3 corresponds to the MADs as obtained with stan-

dard four-center ERI DFT calculations. These MADs are compared with those obtained from

DF-DFT (third column) and ADFT (fourth column) calculations employing the here pro-

posed local density fitted range-separated Fock exchange energy. As Table 4.3 shows the
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DF-DFT calculations differ for almost all functionals by less than 0.1 kcal/mol in the MADs

from the DFT reference that employs four-center ERIs. The only exception is CAMQTP01

where we found a MAD of 0.14 kcal/mol between DFT and DF-DFT. With ADFT this differ-

ence increases to about 0.2 kcal/mol. Note, however, that ADFT MADs can be significantly

smaller than their four-center counterparts. Most remarkable in this respect is CAMB3LYP

where the ADFT MAD is around 0.5 kcal/mol smaller than the corresponding DF-DFT and

four-center ERI DFT MADs. This underlines once again the different convergence bounds of

functionals in ADFT and Kohn-Sham DFT. In the particular case of CAMB3LYP, a detailed

analysis showed that this improvement is mainly due to LYP correlation, which produces

larger symmetry breaking in Kohn-Sham DFT than in ADFT. Most certainly this is rooted

in the use of the auxiliary density for the calculation of the LYP correlation in ADFT. Thus,

it is not surprising that also ADFT CAMQTP01, LCBLYP and rCAMB3LYP results im-

prove upon DF-DFT and DFT, albeit less pronounced than for CAMB3LYP. For the PBE

based range-separated hybrid calculations this effect is not seen because PBE correlation

shows almost no symmetry breaking in Kohn-Sham DFT as well as in ADFT.

Table 4.3: MADs [kcal/mol] for the studied range-separated hybrid functionals
of the 223 standard enthalpies of formation of the G3 test set molecules.

DFT DF-DFT ADFT
CAMB3LYP 4.80 4.84 4.32
CAMPBE0 26.10 26.12 26.22
CAMQTP00 17.24 17.15 17.40
CAMQTP01 13.70 13.84 13.61
HSE03 4.90 4.90 5.04
HSE06 6.62 6.61 6.72
LCBLYP 32.53 32.57 32.33
LCPBE 48.90 48.93 48.96
rCAMB3LYP 5.91 5.94 5.85

4.2.4 Static and Dynamic Polarizabilities

In order to validate the newly developed ADPT working equations for global and range sep-

arated hybrid functionals, we compare static and dynamic polarizabilities and static hyper-

polarizabilities of small molecules with four-center ERI reference results. The experimental

geometries were used for this comparison [123]. All calculations were performed with the
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aug-cc-pVTZ basis set. For the ADFT and ADPT calculations the GEN-A2* auxiliary func-

tion set was employed. The ADPT static polarizabilities were compared with corresponding

ADFT finite field results as well as with their coupled cluster singles and doubles (CCSD)

counterparts [124, 125]. The calculated dynamical polarizabilities at a frequency of 500 nm

were compared with those obtained with the CPKS methodology implemented in the Gaus-

sian 09 code [126]. Static first hyperpolarizabilies obtained by finite field method were also

compared with CCSD results from the literature [124, 125].

In order to obtain suitable finite field expressions for static response properties calculation,

we used the dipole moment Taylor series expansion [127]

µi(E) = µi(0) +
∑
j

αijEj +
∑
j,k

βijkEjEk +
1

6

∑
j,k,l

γijklEjEkEl + ... (4.30)

where Ei denotes the magnitude of the ith Cartesian component of the electric field, E , µi(0) is

the permanent dipole moment of the molecular system in the absence of the external electric

field and αij, βijk and γijkl, are tensor elements of the polarizability, first hyperpolarizability

and second hyperpolarizability, respectively. If the molecule is considered to be in a uniform

electric field aligned along one of the axis of the system and the dipole moment is evaluated

at various field strengths, the following equations can be derived [127, 128]

αiiEi =
2

3
[µi(Ei)− µi(−Ei)]−

1

12
[µi(2Ei)− µi(−2Ei)] (4.31)

αijEj =
2

3
[µi(Ej)− µi(−Ej)]−

1

12
[µi(2Ej)− µi(−2Ej)]. (4.32)

βiiiE2
i =

1

3
[µi(2Ei)− µi(−2Ej)]−

1

3
[µi(Ei) + µi(−Ei)] (4.33)

βijjE2
j =

1

3
[µi(2Ej)− µi(−2Ej)]−

1

3
[µi(Ej) + µi(−Ej)] (4.34)

Thus, for the calculation of the α components, self-consistent field runs are necessary with

field strengths ±Ei and ±2Ei (i = x, y, z). Note that dynamical polarizalibities can not be

obtained from finite field calculations. On the other hand, in analytic derivative methods

the perturbed density matrix can be obtained via ADPT by McWeeny’s SCP theory, as we
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discussed in Section 3.4. Employing basis and auxiliary function sets that are independent

from the external electric field, we find for the polarizability tensor components [22]

αij(ω) = −
∑
µ,ν

P (i)
µν (ω)〈µ|rjν〉 (4.35)

Here the 〈µ|rj ν〉 are dipole moment matrix elements and the perturbed density matrix P
(i)
µν (ω)

is calculated using Eq. (3.61). From the calculated polarizability components, either by the

finite field or analytical methodology, the average polarizability can be obtained as

ᾱ =
1

3
(αxx + αyy + αzz) (4.36)

The finite field calculation of the β components permits the calculation of the average first

hyperpolarizability along the direction of the permanent dipole moment, in our particular

case the z axis using the EFISH [76] keyword in deMon2k

β̄ =
3

5

∑
i

βiiz (4.37)

Static ADPT polarizabilities of 14 small molecules were calculated using Hartree-Fock, the

PBE0 global hybrid functional and CAMPBE0, LCPBE and HSE06 range-separated hybrid

functionals. In Table 4.4 these results are compared with the corresponding CCSD results

from Ref. [124, 125]. As this table shows the analytically calculated ADPT static polarizabil-

ities are generally in excellent agreement with their finite field ADFT counterpart. Deviations

are in the range of 0.1 a.u. or smaller that are characteristic for finite field approaches. Thus,

we find internal consistency between analytically calculated ADPT static polarizabilities and

corresponding ADFT finite field results. The comparison to CCSD results shows large devi-

ations for Hartree-Fock with a MAD of 0.86 a.u. that is significantly reduced by all hybrid

functionals except LCPBE. No significant differences between the here studied global and

range separated hybrid functionals are found for static polarizabilites.

Table 4.5 compares three-center ERI ADPT with four-center ERI CPHF/CPKS dynami-

cal polarizabilities at the Hartree-Fock, global hybrid (PBE0) and range-separated hybrid

(CAMB3LYP and HSE06) level of theory. The external field frequency was set to ω = 500

nm in all calculations.
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As Table 4.5 shows the ADPT Hartree-Fock and CPHF dynamic polarizabilities match per-

fectly. This validates our newly developed ADPT working equations. The small differences

found for the hybrid functional dynamical polarizabilities can be traced back to the different

numerical integration algorithms used in the deMon2k and Gaussian09 codes.

Static ADPT first hyperpolarizabilities of small molecules were calculated using Hartree-

Fock, the PBE GGA functional, PBE0 global hybrid functional and CAMPBE0, LCPBE

and HSE06 range-separated hybrid functionals. They are compared with the corresponding

CCSD results [124, 125] in Table 4.6. As this table shows, the comparison between CCSD re-

sults with Hartree Fock and PBE ADFT finite field static hyperpolarizabilities presents large

MADs of 10.35 and 10.83 a.u., respectively. With hybrid functionals these MADs are reduced

to less than half, with the exception of LCPBE which presents a MAD of 6.05 a.u. Note the

similarity to the static polarizability LCPBE results. As Table 4.6 shows the HSE06 func-

tional yields the smallest MAD for first hyperpolarizabilities. Altogether, hybrid functionals

improve polarizabilities and first hyperpolarizabilities with respect to CCSD reference data.

Here, we have demonstrated that our new developed ADPT working equations can correctly

compute electric response properties within the selected basis set quality, regardless of the

functional type, and can be used instead of expensive iterative CPKS or CPHF methods.

Our first results indicate that ADPT hybrid functional calculations of polarizabilities and

hyperpolarizabilities compare favorable with CCSD correlated wave function results. Most

certainly more systematic studies are needed for pinpointing appropriate functionals.
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4.3 Benchmarks

The computational performance of the here discussed range-separated hybrid functional im-

plementations in deMon2k was benchmarked on linear alkane chains (CnH2n+2, n ≤ 150),

amylose fragments (α-D-glucose)n with n = 1,2,4,8,16 and graphene sheets with stoichiomet-

ric C26H16, C40H18, C54H20, C68H22 and C82H24. Structure examples of these systems are

depicted in Fig. 4.3. We use the LCPBE functional with the cc-pVTZ [129] basis set in

combination with the GEN-A2* auxiliary function set for our benchmark calculations. The

calculations were performed in serial and parallel using Dual Intel Xeon E5-2650@2.20 GHz

12-core processor with around 4 GB RAM per core.

Figure 4.3: Illustrative structure examples of benchmark systems. From top
to bottom: Linear C40H82 alkane chain, (α-D -glucose)16 amylose fragment and
hydrogen terminated C82H24 graphene lattice

Single point energy calculations of small alkane chains (CnH2n+2, n ≤ 20) were also performed

in order to compare the SCF step time from our implementation with that from four-center

ERI DFT calculations, here NWChem [120]. In Fig. 4.4 the time per SCF cycle, in hours,

for serial four-center ERI DFT (green squares) and three-center ERI ADFT energy (blue

dots) calculations are shown. Note the difference of factor 100 between the DFT and ADFT
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time scales. Thus, points of equal height in Fig. 4.4 indicate a speedup factor of 100. The

actual speedup factors are 87, 88, 83, 89 and 87 for C4H10 (290), C8H18 (550), C12H26 (810),

C16H34 (1070) and C20H42 (1330), respectively. The numbers in parentheses refer to the

number of basis functions in these systems. This enormous improvement in computational

performance allows the use of the hybrid ADFT methodology implemented in deMon2k to

calculate nanometric systems. We will present some examples in this thesis and will refer

to recent corresponding works of others. It is important to emphasize that comparative

calculations with larger systems could not be performed because serial calculations with

NWChem require a enormous amount of RAM. Thus, in the following discussion we will

only analyze timings obtained with our implementation in deMon2k.
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Figure 4.4: Serial CPU timings [h] for one LCPBE SCF step with four-center
ERI DFT and three-center ERI ADFT of small linear alkane chains. To guide
the eye the data points are connected by lines.

Figure 4.5 depicts serial SCF timings, in hours, versus the number of basis functions for the

studied alkane chains, amylose fragments and saturated graphene sheets. The displayed SCF

cycle times in Fig. 4.5 are averages obtained from converged single point energy calculations.

In these calculations the local Coulomb matrices are inverted by Cholesky decomposition, or

if this fails, truncated eigenvalue decomposition (Cholesky/TED). Since our LDF LR Fock

exchange energy implementation strongly depends on the localization of MOs, systems with
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Figure 4.5: Serial CPU timings [h] for one SCF step of linear alkane chains,
amylose fragments and saturated graphene sheets. To guide the eye the data
points are connected by lines.

tightly localized MOs, such as the alkane chains, show better computational performance

than less localized molecular systems, such as the graphene sheets. This is also reflected

in the average scalings which are 1.5, 2.0 and 3.3 for the alkane chains, amylose fragments

and graphene sheets, respectively. Besides the MO localization problem the larger graphene

sheet timings also suffer from ERI batching due to the limited available memory (4 GB).

Nevertheless, for the largest benchmarked systems, i.e. the C150H302 alkane chain, the (α-D-

glucose)16 amylose fragment and the C82H24 graphene sheet, the time for a serial SCF cycle

is less than 0.5 hours, less than 2.0 hours and less than 1.7 hours, respectively.

In order to study the computational performance of our parallel implementation for the

calculation of LR Fock exchange we performed the above discussed benchmark calculations

also with 24 cores. Fig. 4.6 shows the corresponding averaged serial and parallel timings

for one SCF cycle, excluding the time for the Fock potential calculation (green) and for the

excluded Fock potential calculation (blue) alone. Note the difference of a factor of 10 between

the serial and parallel time scales. Thus, bars of equal height in the serial and parallel plot

indicate a speedup factor of 10. As Figure 4.6 shows significant speedups are obtained for all
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systems by parallel execution. In particular, the calculations of the Fock potential (blue) with

24 cores show parallel speedup factors between 12 and 20 for the alkane (top row), between

9 and 12 for graphene sheets (bottom row) and between 17 and 20 for the amylose systems

(middle row). The corresponding speedup factors are listed in Table C.1 of Appendix C. The

reason for the different behavior in the here compared systems is rooted in the extension of

the localized MOs. In the studied alkane systems the localized MO extensions are already

converged and relatively small compared with the ones of the other two system types. This

leads to a fast calculation of the Fock potential. Note, however, that in the calculation times

for the Fock potential a serial part for the administration of data is included. The relative

contribution of this part to the calculation time grows with increasing system size and reduces

the overall parallel performance as the corresponding speedup factors in Figure 4.6 show.
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Figure 4.6: Serial and parallel timings per SCF cycle [h] for the SCF iteration
(green) and the Fock potential (blue) calculation alone using Cholesky/TED:
top row, alkane chains; middle row, amylose fragments; bottom row, graphene
sheets.

On the other hand, the localized MO extensions still grow with increasing system size in

the graphene sheets. As a result, the proportion of the linear algebra tasks (TED of the

Coulomb matrix) increases with system size which in turn reduces the parallel efficiency.
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For the amylose systems neither the administrative part nor the linear algebra tasks become

dominant and, therefore, a good parallel speedup for the Fock potential calculation is found

for all system sizes. As Figure 4.6 shows the speedup factors for the SCF iterations are

roughly equal or smaller than for the Fock potential. If the two speedup factors are roughly

equal the Fock potential calculation is the computationally most demanding task in each SCF

iteration. This is the case for all studied graphene sheets and amylose fragments, except the

largest amylose fragment. This indicates that from this system size on other tasks than the

Fock potential calculation dominate the SCF iteration time.
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Figure 4.7: Number of SCF cycles per hour versus number of cores for the
C150H302 alkane chain, (α-D-glucose)16 amylose fragment and C82H24 saturated
graphene sheet. The Cholesky/TED based algorithm was used to compute the
Fock potential. To guide the eye the data points are connected by lines.

We also studied the scalability of our parallel implementation with respect to the number

of cores in a calculation. To this end, we performed parallel calculations of our largest

benchmark systems, namely the C150H302 alkane, the (α-D-glucose)16 amylose fragment and

the C82H24 graphene sheet with 12, 24, 36 and 48 cores. The number of SCF cycles per hour

versus the number of cores are depicted in Fig. 4.7. For all systems we find a reduction of

the CPU time with increasing numbers of cores. However, the efficiency of the parallelization

reduces with increasing core numbers, i.e. the slope of the graph reduces. This effect is most
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pronounced for the alkane and graphene systems and less for the amylose systems. It directly

reflects the behavior of the scaling factors described above. By and large the same results

are also obtained for the parallelization of global hybrid functionals and the corresponding

parallelization of global and range-separated hybrid functional gradients.

In order to test the performance of the modified Cholesky decomposition, parallel calculations

with 24 cores were carried out on the above discussed benchmark systems. Fig. 4.8 shows

the corresponding averaged serial and parallel timings similar to Fig. 4.6. These timings

along with the corresponding speedup factors are listed in Table C.2 of the Appendix C.

Comparison of Fig 4.8 with Fig. 4.6 shows that the switch from Cholesky/TED to modified

Cholesky decomposition has only little effect on the timings for the alkane chains and amylose

fragments. Because in these systems the LMOs are rather localized most Gi inversions

are successfully calculated with Cholesky decomposition. Thus, we can conclude from this

comparison that the modified Cholesky decomposition has similar computational cost as its

parent algorithm. The mild performance improvement (∼ 5%) of the modified Cholesky

decomposition based algorithm in serial and parallel Fock potential calculations as seen from

the comparison of the corresponding entries in Tables C.1 and C.2 is most likely due to the

sporadic TEDs in these systems. On the other hand, for the graphene sheets the use of the

modified Cholesky decomposition yields large computational savings as the comparison of

the corresponding plots in Fig. 4.8 and Fig. 4.6 shows. The quantitative comparison of

the serial and parallel Fock potential timings for the graphene sheets in Table C.1 and C.2

reveals that the modified Cholesky decomposition speedups the serial calculations by 20 to

30%, whereas for parallel calculations speedup factors of up to 3 are reached. We attribute

this to the fact that some LMOs in the graphene sheets are rather delocalized, due to the

extended π-system in these molecules, and, therefore, TEDs are more likely to occur. Because

this affects a certain part of the LMOs percentage speedup, as observed in the serial Fock

potential calculations with the modified Cholesky decomposition, are expected. However, the

large parallel speedups cannot be alone explained by the substitution of TEDs by modified

Cholesky decomposition.

To gain more insight into this behavior, we plot in Fig. 4.9 once again the number of

SCF cycles per hour versus the number of cores, now, however, for the modified Cholesky
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Figure 4.8: Serial and parallel timings per SCF cycle [h] for the SCF iteration
(green) and the Fock potential (blue) calculation alone using modified Cholesky
decomposition: top row, alkane chains; middle row, amylose fragments; bottom
row, graphene sheets.

decomposition based algorithm. Comparison of Fig. 4.9 with 4.7 immediately shows that for

all systems, starting form 12 cores, performance is improved when employing the modified

Cholesky decomposition. Whereas this improvements is for alkane and amylose systems

rather moderated and levels out with increasing number of cores, it is for graphene sheets

dramatic and remains to increases with increasing number of cores. This result indicates

that the increased use of TEDs in graphene sheet Fock potential calculations introduces

a severe workload unbalance that compromises the overall parallel performance. With the

implementation of the modified Cholesky decomposition TEDs are avoided, resulting in a

more balanced workload between processors which in turn improves the overall parallelization

and scaling. This opens up the possibility for hybrid functional calculations on molecules

with large delocalized π-systems at the nanometric scale.
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Chapter 5

Applications

5.1 Activation and Reaction Enthapies

In this section, the performance of range-separated hybrid functionals for the computation

of activation and reaction energies, for both small and large molecular systems, is presented.

5.1.1 Hydrocarbon Pericyclic Reactions

To this end, we have studied a set of hydrocarbon pericyclic reactions that were originally

proposed by Houk and co-workers for benchmarking the performance of computational meth-

ods [44]. Fig. 5.1 depicts schematically the reactions considered in this study. As was pointed

out in [44] hydrocarbon pericyclic reactions are particularly well suited for the validation of

computed classical activation barriers. In order to compare directly with four-center ERI

reference data from the literature all reactant and product structures were fully optimized

without symmetry constraints with the B3LYP/6-31G*/GEN-A2* ADFT methodology. For

the transition state search a hierarchically two step procedure [130] was used. First, dou-

ble ended saddle interpolations starting with the optimized reactant and product structures

were employed in order to find appropriate start structures for the local transition state op-

timizations. In a second step the transition states were optimized by an uphill trust region

method [131, 132]. For the local quasi-Newton transition state optimizations the start Hes-

sian matrices were calculated. Once the transition state structures were optimized, they were

characterized by frequency analyses. To ensure that the obtained transition states indeed

connect the reactants and products initially used in the double ended saddle interpolation

the intrinsic reaction coordinates (IRCs) were also calculated [133].

83
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Figure 5.1: Reaction schemes of the pericyclic reactions used for ADFT bench-
marking.

Houk et al. [44] studied the first nine reactions from Figure 5.1 at the B3LYP/6-31G*

level of theory with a conventional DFT approach and compared the obtained activation

energies, ∆H‡0K, and reaction enthalpies, ∆Hrxn
0K , with carefully selected experimental data

adjusted to 0 K. Table 5.1 compares our ADFT results with those from Houk et. al. [44]

and the corresponding experimental data. For the zero point energy correction we scaled

the B3LYP/6-31G*/GEN-A2* zero point energies by a factor of 0.9804 according to the

literature [44]. As Table 5.1 shows the ADFT and conventional four-center ERI DFT acti-

vation energies differ usually by 0.1 to 0.2 kcal/mol. The largest deviation of 0.4 kcal/mol

is found for reaction 5, the [1,5]-sigmatropic shift of hydrogen in cyclopentadiene. For the

corresponding reaction enthalpies slightly larger differences are observed. They are, however,

all below or equal to 0.5 kcal/mol. The mean absolute deviation (MAD) from experiment for

the activation energies, ∆H‡0K , was reported to 1.7 kcal/mol for the conventional four-center

ERI Kohn-Sham approach. The corresponding ADFT MAD is 1.8 kcal/mol. For the six

reactions with non-zero reaction enthalpies the MADs from experiment of the conventional

Kohn-Sham approach and of ADFT are 4.1 and 3.9 kcal/mol, respectively. Taking into ac-

count that these results were obtained from two different programs using default settings the

agreement between ADFT and conventional four-center ERI Kohn-Sham activation energies
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and reaction enthalpies for the studied pericyclic reactions can be considered quantitative.

Table 5.1: Comparison of ADFT B3LYP/6-31G*/GEN-A2* and correspond-
ing Kohn-Sham DFT B3LYP/6-31G* results from the literature with experi-
mental data [44]. All values are in kcal/mol.

ADFT DFT Experiment

Reaction ∆H‡0K ∆Hrxn
0K ∆H‡0K ∆Hrxn

0K ∆H‡0K ∆Hrxn
0K

1 34.1 -12.5 33.9 -12.7 31.9 -10.6
2 30.0 -12.9 30.1 -12.5 30.2 -15.3
3 27.1 -14.6 27.3 -14.1 29.1 -10.5
4 36.7 0.0 36.6 0.0 36.7 0.0
5 27.0 0.0 26.6 0.0 23.7 0.0
6 34.0 0.0 34.1 0.0 34.5 0.0
7 24.8 -36.9 24.9 -36.6 23.3 -39.6
8 22.3 -19.0 22.2 -18.6 21.6 -23.2
9 21.1 -11.5 21.1 -11.1 15.1 -19.7

The ADFT B3LYP/6-31G*/GEN-A2* reaction profiles of the here discussed pericyclic reac-

tions are depicted in Fig. 5.2. Note that for the calculations of these reaction profiles the

reactants in the bimolecular reactions 7, 8 and 9 are optimized together to form a pre-reaction

complex. The calculated IRCs confirm that only reaction 1 and 7 show intermediates accord-

ing to cis-trans isomerizations. These intermediates are directly accessible by the employed

hierarchically two step transition state search approach. For the calculation of the activation

and reaction enthalpies the following comments must be taken into account. In reaction 1

butadiene is calculated in trans configuration for the product energy. The reactant in reac-

tion 2 is calculated as cis-hexa-1,3,5-trien. The reactants and products of reaction 4 and 6

are cis-1,3-pentadiene and 1,5-hexadiene, respectively. The reactants for the cycloaddition

reactions 7, 8 and 9 are separately calculated for the corresponding energies. In reaction 7

butadiene is calculated in trans configuration. For reaction 9 the endo reaction path is con-

sidered. Even though our focus is on ADFT B3LYP results which we can compare directly

with their four-center ERI counterparts from the literature, we also employed various global

and range-separated hybrid functionals in combination with several basis sets in our ADFT

study. As exchange-correlation functionals we used B3LYP and PBE0 as examples for global

hybrid functionals and CAMB3LYP, LCBLYP and HSE06 as examples for range-separated

hybrid functionals.
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For that purpose, we performed single-point energy calculations employing the B3LYP/6-

31G*/GEN-A2* optimized reactant, transition state and product structures. On the other

hand, it is well know that GGA optimized structure parameters are usually in good agree-

ment with experimental data. Therefore, we also performed single-point energy calculations

employing PBE/DZVP-GGA/GEN-A2* optimized structures. For the zero point energy

corrections the unscaled PBE/DZVP-GGA/GEN-A2* zero point energies were taken. The

Hartree-Fock optimized 6-31G* [134], the DFT optimized DZVP-GGA [115] and the corre-

lation consistent aug-cc-pVXZ (X = D, T and Q) [135] basis sets were used in combination

with the corresponding GEN-A2* auxiliary function sets.

Table 5.2 reports the MADs of the ADFT calculated activation energies and reaction en-

thalpies with respect to the recommended experimental reference values employing the B3LYP,

PBE0, CAMB3LYP, HSE06 and LCBLYP functionals in combination with the 6-31G*,

DZVP-GGA and aug-cc-pVXZ (X=D,T,Q) basis sets. As can be seen from Table 5.2

B3LYP/6-31G*/GEN-A2* yields one of the smallest MADs for activation energies. We note

that the here obtained 2.2 kcal/mol MAD with ADFT is in perfect agreement with the cor-

responding Kohn-Sham MAD found by Houk and co-workers [44]. The good performance of

B3LYP/6-31G*/GEN-A2* is at least partially due to the used optimized structures from the

same level of theory. From the other functionals only PBE0 and HSE06 reach comparable

accuracies for the activation energy MADs. In particular PBE0 activation energy MADs of

the here studied pericyclic reactions show a very systematic improvement with basis set size.

Convergence is nearly reached with the aug-cc-pVTZ basis with a MAD of 2.8 kcal/mol.

Further increase of the basis set to aug-cc-pVQZ improves the MAD only marginally to 2.7

kcal/mol. With the HSE06 functional this MAD is already reached with the DFT optimized

DZVP-GGA basis set. On the other hand, the range-separated CAMB3LYP and LCBLYP

functionals perform rather poor for the activation energies of the here studied reactions.

Surprisingly Table 5.2 shows that B3LYP/6-31G*/GEN-A2* performs not best for the reac-

tion enthalpies despite the fact that the structures were optimized at this level of theory. Even

more disturbing is the fact that the ADFT B3LYP reaction enthalpies deteriorate significantly

with increasing basis set size. We note that this observation is in qualitative agreement with

results from Houk and co-workers employing conventional Kohn-Sham methodology. A sim-
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ilar trend is also seen for the activation energies, albeit much less pronounced. On the other

hand, PBE0 and HSE06 show systematic improvements in the reaction energy MADs with

increasing basis set size. As for the activation energies near basis set convergence is reached

for PBE0 and HSE06 with the aug-cc-pVTZ basis with MADs of 2.5 and 2.4 kcal/mol, respec-

tively. In view of the rather disappointing performance of the range-separated CAMB3LYP

hybrid functional for activation energies, it is surprising that this functional performs best

for the reaction energies of the 11 pericyclic reactions with a MAD of 1.4 kcal/mol employing

the CAMB3LYP/DZVP-GGA/GEN-A2* level of theory.

Table 5.2: MADs from experiment of ADFT activation energies and reac-
tion enthalpies (in parenthesis) for single point energy calculation with different
density functional and basis set employing B3LYP/6-31G*/GEN-A2* optimized
reactant, transition state and product structures. All values are in kcal/mol.

Functional
BASIS B3LYP PBE0 CAMB3LYP HSE06 LCBLYP
6-31G* 2.2 (3.0) 4.1 (6.0) 4.9 (2.4) 3.5 (4.1) 5.7 (8.1)
DZVP-GGA 2.6 (4.3) 3.5 (4.4) 5.1 (1.4) 2.7 (2.7) 5.1 (6.3)
aug-cc-pVDZ 2.2 (4.7) 3.3 (4.1) 4.5 (1.5) 2.7 (2.6) 4.6 (5.1)
aug-cc-pVTZ 3.4 (7.1) 2.8 (2.5) 5.5 (3.3) 2.7 (2.4) 4.3 (2.6)
aug-cc-pVQZ 3.3 (7.2) 2.7 (2.3) 5.4 (3.2) 2.7 (2.6) 4.2 (2.5)

So far, our analysis clearly demonstrates that hybrid functionals, here PBE0 and HSE06,

are most appropriate for the reliable calculation of activation and reaction enthalpies. How-

ever, these functionals are computationally very demanding for structure optimization of

nanosystems. A possible solution to this problem is a composite approach [136, 137] in

which ADFT GGA structure optimizations and frequency analyses are combined with single

point global and range-separated ADFT hybrid calculations. Such an approach has already

been successfully employed for relative energy calculations of large carbon fullerenes [137]

on the nanometer length scale. Table 5.3 list the MADs of the ADFT calculated activation

energies and reaction enthalpies with respect to the recommended reference values employing

now PBE/DZVP-GGA/GEN-A2* optimized structures. For the activation energies, B3LYP

performs again best, either with the 6-31G* or aug-cc-pVDZ basis set. As the comparison of

Table 5.3 with Table 5.2 shows the change of the structure optimization method has only lit-

tle effect on the MADs of the activation energies. The same is also true for the corresponding
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reaction enthalpy MADs.

Table 5.3: MADs from experiment of ADFT activation energies and reaction
enthalpies (in parenthesis) for single point energy calculation with different den-
sity functional and basis set employing PBE/DZV-GGA/GEN-A2* optimized
reactant, transition state and product structures. All values are in kcal/mol.

Functional
BASIS B3LYP PBE0 CAMB3LYP HSE06 LCBLYP
6-31G* 2.2 (2.7) 4.4 (6.4) 5.0 (2.9) 3.7 (4.4) 5.8 (8.6)
DZVP-GGA 2.5 (4.2) 3.7 (4.6) 4.9 (1.4) 2.9 (2.9) 5.1 (6.5)
aug-cc-pVDZ 2.1 (4.5) 3.6 (4.2) 4.4 (1.3) 2.9 (2.7) 4.8 (5.5)
aug-cc-pVTZ 3.0 (6.7) 3.0 (2.8) 5.2 (2.8) 2.6 (2.2) 4.3 (3.1)
aug-cc-pVQZ 2.9 (6.7) 3.0 (2.7) 5.2 (2.7) 2.7 (2.2) 4.2 (3.0)

Altogether, this study suggests that the ADFT approaches PBE0/aug-cc-pVXZ/GEN-A2*

(X=T,Q) and HSE06/aug-cc-pVTZ/GEN-A2* are best suited for the overall description of

the studied pericyclic reactions.

5.1.2 Diels-Alder Reactions on C60

As discussed in the previous section, pericyclic reactions are usually rearrangement reactions

wherein the transition state of the molecule has a cyclic geometry, and the reaction progresses

in a concerted fashion. The most famous example is the Diels-Alder reaction which occurs

between a conjugated diene and a, usually conjugated, dienophile. It was formulated by Diels

and Alder in 1928 [138] and due to its importance in synthetic organic chemistry rewarded

them the Nobel Prize in Chemistry in 1950.

Fullerenes are a large class of allotropes of carbon and have attracted considerable attention

in different fields of science since their discovery. The structures of the two most commonly

used fullerenes, C60 and C70, have been determined since long time [139–141]. The shape

of C60 is very closed to spherical, the C atoms forming a truncated icosahedron resembling

the shape of a soccer ball with a cage diameter of 7.1 Å. Fig. 5.3 shows the structure of

C60 which has Ih symmetry with equivalent carbon atoms and follows the isolated pentagon

rule (IPR). Therefore, it has two different types of C-C bonds, namely, the [6,6] bonds in

hexagon-hexagon ring junctions and the [5,6] bonds in the connection between a hexagon

and a pentagon. The two different C-C bond types are depicted in Fig. 5.3, too. The bond

lengths of [6,6] and [5,6] junctions are 1.401 Å and 1.458 Å, respectively [142, 143].
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Figure 5.3: Structure of the C60 fullerene cage and the two types of ring
junctions in a pyracylenic unit [6,6] (green circle) and corannulenic unit [5,6]
(blue circle).

For the Diels-Alder reaction between cyclopentadiene as diene and C60 as dienophile, Pang

and Wilson [144] reported an activation energy of 6.9 kcal/mol. For the corresponding retro

Diels-Alder reaction of C60 and cyclopentadiene Giovane et al. [145] reported an activation

energy of 26.7 kcal/mol. From the combination of these two activation energies a reaction

energy of around -19.8 kcal/mol can be estimated. Due to structure of C60 three different

configurations for the Diels-Alder addition of cyclopentadiene are possible as depicted in

Fig. 5.4. They are named 66, 56-1 and 56-2 according to addition over the pyracylenic or

coranulenic bonds.

66 56-1 56-2

Figure 5.4: Three possible configuration for the Diels-Alder addition of cy-
clopentadiene with C60 over the [6,6] (66) and [5,6] (56-1 and 56-2) bonds.

In order to perform an ADFT theoretical study of the Diels-Alder reaction of cyclopentadiene

with C60 we follow the same strategy as for the study of the pericyclic reactions. First we

optimize the structures of the reactants, products and transition states at PBE/DZVP-

GGA/GEN-A2* level of theory. The optimized structures were characterized by frequency

analysis. The double ended saddle interpolation was then used to obtain the initial structures

of the transition states which in turn were optimized by a local uphill trust region method.
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Finally, the IRC was computed. The C60 optimized bond lengths are 1.408 Å and 1.459 Å

for the [6,6] and [5,6] bonds, respectively. Thus, the computed bond lengths differ by less

than 0.01 Å from the corresponding experimental values. They are also in good quantitative

agreements with the results from Yang et al. [146] who found at the M06-2X/6-31G* level

of theory optimized bond lengths of 1.387 Å abd 1.451 Å for the [6,6] and [5,6] bonds in C60,

respectively.

The PBE/DZVP-GGA/GEN-A2* optimized transition states and products of the Diels-Alder

reaction between cyclopentadiene and C60 are shown in Fig. 5.5. The calculated distance

between C60 and cyclopentadiene in the 66 bond Diels-Alder addition for the transition state

and product are 2.25 Å and 1.60 Å, respectively. These results compare favorably with those

reported by Yang et. al. [146] of 2.22 Å for the transition state and 1.58 Å for the product

by employing the M06-2X/6-31G* methodology. Similar agreements are found for the 56-1

and 56-2 Diels-Alder reaction of cyclopentadiene with C60.

Figure 5.5: PBE/DZVP-GGA/GEN-A2* optimized transition states structures (top)
and products structures (bottom). From left to right 66, 56-1 and 56-2 addition. Rele-
vant bond lengths are also given.

Having the reactants, products and transition states optimized, we can calculate the activa-

tion and reaction energies for the different Diels-Alder cycloadditions of cyclopentadiene with
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C60. The obtained activation energies, Ea, and reaction energies, Erxn, are listed in Table

5.4 along with the corresponding experimental results. Previous experimental and theoreti-

cal investigations revealed that the [6,6] bond is shorter and has a larger π-electron density,

resulting in its higher dienophil reactivity than the [5,6] bonds [144–150]. This is confirmed

by our results for the 66 addition which shows the smallest activation energy of 8.9 kcal/mol

for the cycloaddition of cyclopentadiene with C60. We also note that the corresponding tran-

sition state (Fig. 5.5 top left) has equal bond distances between cyclopentadiene and C60

which is caracteristic for a truly concerted reaction. On the other hand, the activation ener-

gies for the 56 additions are much larger and the corresponding transition states ares much

more asymmetric. Whereas the PBE/DZVP-GGA/GEN-A2* activation energy for the 66

addition of cyclopentadiene with C60 is in fair quantitative agreement with experiment, the

corresponding reaction energy is significantly too small and only in qualitative agreement

with experiment. Nevertheless, our results confirm the experimental finding that cycload-

dition of cyclopentadiene with C60 takes place over the [6,6] bond along the reaction path

depicted in Fig. 5.6.

Table 5.4: PBE/DZVP-GGA/GEN-A2* activation and reaction energies of the three
different Diels-Alder addition of cyclopentadiene with C60. See Fig. 5.4 for the labeling.
All values are in kcal/mol.

Sites of cycloadition
Exp. 66 56-1 56-2

Ea 6.9 8.9 18.7 17.2
Erxn -19.8 -12.4 3.9 4.2

To investigate the influence of the DFA on the activation energy and reaction energy for

the 66 addition of cyclopentadiene with C60 we performed ADFT and DF-DFT single-point

energy calculations using the B3LYP hybrid functional and the M06-2X [151] hybrid meta-

GGA functional, respectively. These calculations were performed with the PBE/DZVP-

GGA/GEN-A2* optimized geometries. In both cases the 6-31G* basis set was employed in

combination with the GEN-A2* auxiliary functions set in order to compare directly with

literature values. Table 5.5 lists the activation and reaction energies for the 66 Diels-Alder

reaction of cyclopentadiene with C60. Values in parenthesis refer to literature results [146,

147]. Our B3LYP/6-31G*/GEN-A2* activation energy differs by less than 0.1 kcal/mol
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Figure 5.6: Intrinsic reaction coordinate for the Diels-Alder reaction of cyclopentadiene
with C60. Note concerted nature of transition state.

from the one reported by Osuna et al. [147] employing the B3LYP/6-31G* four-center ERI

Kohn-Sham methodology. Similar, our DF-DFT M06-2X/6-31G* activation energy matches

perfectly with the one from Yang et al. [146] using a four center ERI code. For the reaction

energies larger differences are observed. While the M06-2X/6-31G* DF-DFT and four-center

ERI DFT reaction energy differ by less than 1.0 kcal/mol the ADFT B3LYP/6-31G* reaction

energy is more than 3.0 kcal/mol lower than its four-center ERI counterpart. Note, however,

that the ADFT reaction energy is closer to experiment. In any case, neither the B3LYP/6-

31G* nor the M06-2X/6-31G* results improve significantly over the PBE/DZVP-GGA ones

given in Table 5.4.

Table 5.5: B3LYP/6-31G*/GEN-A2* and M06-2X/6-31G*/GEN-A2* activation and
reaction energies for the 66 Diels-Alder reaction of cyclopentadiene with C60. Values
in parentheses refer to literature results from Ref. [147] for B3LYP and Ref. [146] for
M06-2X. All values are in kcal/mol.

Exp. B3LYP M06-2X
Ea 6.9 17.9 (18.0) 6.5 ( 6.5)
Erxn -19.8 -9.8 ( -6.6) -27.9 (-27.1)

To investigate further how functionals and basis sets influence the energetic of this Diels-

Alder reaction we performed composite calculations of the form DFA/aug-cc-pVTZ/GEN-

A2*//PBE/ DZVP-GGA/GEN-A2*. Here DFA refers to the functional used for the single

point energy calculation on top of the PBE/DZVP-GGA/GEN-A2* optimized structures.

These approaches are motivated by the success of the PBE0/aug-cc-pVTZ/GEN-A2*//PBE/
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DZVP-GGA/GEN-A2* composite approach for the calculation of large fullerenes [137] and

for the study of hydrocarbon pericyclic reactions [136].

Table 5.6 reports calculated activation and reaction energies computed with the GGA PBE

fucntional, B3LYP and PBE0 global hybrid functionals and the M06-2X meta-GGA hybrid

functional. As the comparison of this table with Table 5.4 shows, the increase in the basis

set size does not improve the activation energy or reaction energy obtained with the PBE

functional. We attribute this to the composite approach itself which carries an intrinsic error

in the range of 1.0 kcal/mol due to the different basis sets used for structure optimization

and energy calculation [137]. The comparison of the B3LYP entries in Table 5.5 and 5.6

reveal that also this functional does not benefit from the enlarged basis set in the energy

calculation. Note the agreement with the corresponding results for the pericyclic reactions.

This further supports the assumption that B3LYP is indeed optimized for the 6-31G* basis

set. On the other hand, enlarging the basis set size for energy calculations is beneficial

for M06-2X as the comparison of the corresponding entries of Table 5.5 and 5.6 reveal.

Whereas the already very good activation energy is only slightly improved, namely from 6.5

to 7.1 kcal/mol (vs. 6.9 kcal/mol experimentally), the improvement in the reaction energy is

significant. Here the error to experiment is reduced from 8.1 to 4.7 kcal/mol. We also note

that the PBE0/aug-cc-pVTZ/GEN-A2*//PBE/DZVP-GGA/GEN-A2* composite approach

yields results comparable to the M06-2X one, now, however, with improved accuracy for the

reaction energy and diminished accuracy for the activation energy.

Table 5.6: Calculated activation and reaction energies using the PBE GGA functional,
the B3LYP and PBE0 global hybrid functionals and M06-2X hybrid meta-GGA functional
for the Diels-Alder cycloadition of cyclopentadiene with C60. All values are in kcal/mol.

Exp. PBE B3LYP PBE0 M06-2X
Ea 6.9 10.8 20.5 12.4 7.1
Erxn -19.8 -11.5 -3.9 -18.7 -24.5

The calculated activation and reaction energies for the Diels-Alder reaction between cy-

clopentadiene and C60 using the CAMB3LYP, CAMPBE0, HSE06, LCBLYP and LCPBE

range-separated hybrid functionals are listed in Table 5.7. This table shows that the use of

range-separated hybrid functionals does not improve the results. The best calculated activa-

tion energy is obtained with the CAMPBE0 functional that, however, severally overestimates
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the corresponding reaction energy by around 15 kcal/mol. This overestimation of the reac-

tion energy is also found for the LCPBE functional. On the other hand, the CAMB3LYP

and HSE06 functionals severely underestimate the experimental reaction energy as can be

seen from Table 5.7. In general, the performance of the range-separated hybrid functionals

for the Diels-Alder addition of cyclopentadiene with C60 is rather disappointing. None of

them come close to the accuracies for activation and reaction energies obtained with PBE0

and M06-2X. In particular, HSE06 that showed best overall performance for small pericyclic

reactions is failing for the here discussed Diels-Alder reaction.

Table 5.7: Calculated activation and reaction energies using the CAMB3LYP,
CAMPBE0, HSE06, LCBLYP and LCPBE range-separated hybrid functionals for the
Diels-Alder reaction of cyclopentadiene with C60. All values are in kcal/mol.

Exp. CAMB3LYP CAMPBE0 HSE06 LCBLYP LCPBE
Ea 6.9 20.33 8.38 16.39 13.54 5.63
Erxn -19.6 -10.62 -35.03 -10.85 -22.53 -33.81

In conclusion, we find that only the M06-2X meta-GGA and PBE0 global hybrid functionals

yield semi-quantitative results for the here studied cycloaddition of cyclopentadiene with

C60. Enlarging basis set size for energy calculations with hybrid functionals is generally

advisable, except for B3LYP which seems to be optimized for the 6-31G* basis set. The

proposed composite approach [137] consisting of GGA structure optimizations and single

point hybrid energy calculations is also applicable for the calculation of chemical reactions.

Once an appropriate functional is pinpointed, it is straightforward with the here presented

methodology to perform full structure optimizations at the hybrid level employing large

basis sets. In particular, this investigation underlines the need for more systematic reaction

studies of nanosystems with a wide variety of (hybrid) functionals in order to find appropriate

theoretical methodologies. With the newly developed variational fitting for global and range-

separated Fock exchange such studies of chemical reactions on large molecular systems are

now readily available.

5.2 Polarizabilities of Small Molecules

The molecular polarizability describes the tendency of a molecule to deform or polarize in

response to an applied electric field. As such, this quantity governs key intra- and inter-
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molecular interactions such as induction and dispersion, plays a key role in determining the

spectroscopic signatures of molecules and is an essential ingredient in polarizable force fields

and other empirical models for collective interactions [152]. Therefore, there is an increasing

demand for reliable static and dynamic polarizability calculations of molecules. To this end,

we have calculated the static and dynamic polarizability of a set of small molecules and

compare our results with experimental data. For all calculations the aug-cc-pVTZ basis sets

in combination with the GEN-A2* auxiliary function sets were used. For all molecules the

experimental structures [123] are employed

In Table 5.8 we compare average static polarizabilities obtained from Hartree-Fock, BLYP and

PBE GGA functionals, B3LYP and PBE0 global hybrid functionals as well as CAMB3LYP,

CAMPBE0, HSE06, LCBLYP and LCPBE range-separated hybrid functionals with corre-

sponding experimental data. As can be seen from this table, Hartree-Fock calculations yield

a rather large MAD of 1.41 a.u. due to the systematic underestimating of the experimental

polarizabilities. This result is in perfect agreement with the literature [153]. The MADs of

the BLYP and PBE GGA functionals are 0.62 and 0.36 a.u., respectively. Table 5.8 shows

that the polarizabilities calculated with GGAs usually overestimate the corresponding experi-

mental data. The observed polarizability overestimation by the BLYP functional has already

been reported [154]. The corresponding MAD obtained with the the B3LYP and PBE0

global hybrid functional are 0.20 and 0.48 a.u., respectively. Here, the B3LYP fucntional

shows an improvement with respect to the MAD obtained with Hartree-Fock and GGAs

while PBE0 does not. CAMPBE0 and HSE06 range-separated hybrid functionals do not

improve substantially the GGA MADs and are far from the B3LYP MAD. The CAMB3LYP

and LCBLYP functionals improves the MAD of the PBE functional and show a MAD very

closed to the one obtained with B3LYP. The smallest MAD of 0.13 a.u. corresponds to the

long-range corrected LCPBE functional as it is shown in Table 5.8.

ADFT dynamic polarizabilities of 10 small molecules were calculated at the Hartree-Fock,

GGA (BLYP and PBE), global hybrid (B3LYP and PBE) and range-separated hybrid (CAM-

B3LYP, CAMPBE0, LCBLYP, LCPBE and HSE06) level of theory. Again the aug-cc-

pVTZ/GEN-A2* basis sets and auxiliary functions sets were used.
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The dynamical polarizabilities were calculated at the experimental wavelength as indicated

in Table 5.9 which compares the calculated results with corresponding experimental data.

Similar to the static polarizabilities (Table 5.8) Hartree-Fock dynamic polarizabilities tend to

underestimate the experimental values. With Hartree-Fock a MAD of 1.16 a.u. is obtained.

This result is improved using BLYP and PBE GGA functionals. The corresponding MADs

are 0.88 and 0.66 a.u., respectively. The obtained GGA MADs are improved employing the

B3LYP (0.52 a.u.) and PBE0 (0.44 a.u.) global hybrid functionals. The CAMPBE0 and

HSE06 range-separated hybrid functionals yield similar MADs as the PBE0 functional, while

CAMB3LYP and LCBLYP functionals improve these results by approximately 0.05 a.u. The

LCPBE functional with a MAD of 0.31 a.u. improves even more the here studied dynamic

polarizabilities of small molecules. The calculated static and dynamic polarizabilities with

LCPBE are in excellent agreement with experiment. Note that LCPBE compared worst of all

range-separated hybrid functionals with CCSD/aug-cc-pVTZ reference data (see Table 4.4).

This might indicate that CCSD/aug-cc-pVTZ is either still not sufficiently well correlated

or that the used aug-cc-pVTZ basis is not flexible enough to yield highly accurate static

and dynamic polarizabilities. Thus, further studies, where reliable experimental data are

used as reference, are needed. These results confirm that range-separated hybrid functionals

can yield highly accurate static and dynamic polarizabilities that compare favorable, or even

outperform, correlated wave-function approaches.

5.3 X-ray Photoelectron Spectroscopy

Core-level shifts in X-ray Photoemission Spectroscopy (XPS) are commonly used to obtain

information on the chemical environment of specific atoms in a given system. From a compu-

tational perspective they are often decomposed into initial and final state contributions and

this was also the aim of ESCA (Electron Spectroscopy for Chemical Analysis) [159], i.e. to

obtain information on the initial charge distribution and oxidation state of the probed atom

as well as its chemical environment and conformation. The ethyl trifluoroacetate (CF3-CO-

O-CH2-CH3), also known as the ESCA molecule, is the most illustrative showcase for core

level shifts. Historically the molecule had been synthesized in order to give an illustrative ex-

ample of what could be learned from core photoelectron spectroscopy [159]. It contains four
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carbon atoms in different chemical environments. The carbon 1s binding energy decreases

from the CF3 end onwards as can be seen from Fig. 5.7.

 C3 C1  C2
 C4

 Chermical shift (eV)

Figure 5.7: C 1s photoelectron spectrum of ethyltrifluoroacetate taken from
Ref. [160] . Color legend: violet - Fluorine, grey - Carbon, red - Oxygen, white
- Hydrogen.

It is well know that when computing shifts as a total energy difference, the initial state cancels

out and the shift is obtained as the energy difference between the different core-hole states.

In the actual experimental set-up there is only one initial electronic state also for a molecule

or system with many inequivalent atomic sites. This has led to a proposal to interpret

experimental XPS shifts in terms of the different final states using the Z+1 approximation

[161]. The inner-most core-level, 1s, of an atom is spherically symmetric and largely screens

two positive charges of the nucleus. Removing one electron from this level effectively increases

the nuclear charge felt by the valence electrons by one unit, i.e. transforming the atom to

the next on the right in the periodic table; this is the Z+1 approximation.

The calculations on the ESCA molecule were performed with ADFT methodology imple-

mented in the deMon2k program. The PBE, BLYP, B3LYP, PBE0, LCBLYP, LCPBE0,

CAMB3LYP and CAMPBE0 were used as exchange-correlation functionals. The XPS shifts

were computed in two ways: (i) as total energy differences between explicit core-hole states

in a SCF procedure and (ii) as total energy differences between the valence-ionized molecule

with the selected atom replaced by its Z+1 counterpart (e.g. carbon replaced by nitrogen).



Chapter 5. Applications 101

In the latter case the core level of the Z+1 atom was fully occupied. By systematically in-

creasing the basis sets we obtained converged results with the all-electron aug-cc-pVTZ basis

set which in turn was employed for all here reported molecular calculations. In the core-hole

calculations quasi-relativistic effective core potentials (QECPs) [162] were used for the non-

ionized carbon atoms leaving four valence electrons and no core-electrons on these sites. The

structures of the anti-anti and anti-gauche conformers of the ESCA molecule were optimized

at PBE/aug-cc-pVTZ/GEN-A2* level of theory. The obtained minimum structures showed

in the Fig. 5.8 were confirmed by frequency analysis.

Figure 5.8: PBE/aug-cc-pVTZ/GEN-A2* optimized structures of the anti-
anti (left) and anti-gauche (right) conformers of the ESCA molecule.

Table 5.10 reports averaged core-level shifts of the ESCA molecule computed with GGA and

global hybrid functionals as the energy difference between the neutral ground state and the

core-ionized molecule at the respective site. The structures are PBE/aug-cc-pVTZ/GEN-A2*

optimized and averaged results refer to a 56:44 mixture of the anti-anti and anti-gauche con-

formers as suggested by gas phase electron diffraction (GED) analysis of the ESCA molecule

[163]. In parenthesis we also report the corresponding values obtained with the Z+1 approx-

imation. The GGA results show rather large deviations of 0.2 0.6 eV from the experimental

reference. Using global hybrid functionals this deviation is reduced to around 0.2 eV. These

results are in perfect agreement with the ones reported by Van den Bossche et al. [45].

Concerning the Z+1 approximation, Table 1 shows that independent of the functional the

results obtained by changing carbon to nitrogen differ by less than 0.1 eV from the explicitly

calculated ones. This shows that interpreting the shifts within the Z+1 approximation is

within the intrinsic accuracy of global hybrid functionals for core-level shift calculations and

that the conceptually simple Z+1 final-state picture holds very well.

Table 5.11 reports averaged core-level shifts computed with range-separated hybrid function-
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Table 5.10: Calculated averaged core level shifts using the PBE and BLYP
GGA functionals and the PBE0 and B3LYP global hybrid functionals. Val-
ues in parenthesis refer to the Z+1 approximation. All values are in eV. The
experimental data are taken from Ref. [160].

Exp. PBE BLYP PBE0 B3LYP
C1 0.00 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 0.00 (0.00)
C2 1.72 1.54 (1.56) 1.51 (1.53) 1.66 (1.68) 1.61 (1.63)
C3 4.33 3.77 (3.74) 3.85 (3.79) 4.27 (4.23) 4.27 (4.20)
C4 7.46 6.78 (6.86) 6.86 (6.90) 7.27 (7.38) 7.27 (7.35)

als using the optimized structures from above. Agreement with experiment can be further

improved with the CAM range-separated hybrid functionals. In particular, the CAMB3LYP

results show the best agreement with experiment. For this functional, the largest deviation

between explicitly calculated core level shifts and the Z+1 approximation is 0.12 eV, which is

still below the maximum deviation between experiment and theory. Note also the excellent

agreement between the CAMB3LYP Z+1 approximation and experiment with all core-level

shifts within 0.05 eV of the experimental value.

Table 5.11: Calculated core level shifts using range-separated hybrid function-
als LCPBE, LCBLYP, CAMPBE0 and CAMB3LYP. Values in parenthesis use
the Z+1 approximation. The experimental data are taken from Ref. [160]. All
values are in eV.

Exp. LCPBE LCBLYP CAMPBE0 CAMB3LYP
C1 0.00 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 0.00 (0.00)
C2 1.72 1.68 (1.68) 1.67 (1.67) 1.75 (1.77) 1.67 (1.68)
C3 4.33 4.29 (4.17) 4.45 (4.26) 4.62 (4.51) 4.49 (4.37)
C4 7.46 7.22 (7.26) 7.37 (7.35) 7.56 (7.64) 7.46 (7.50)

In order to study structure relaxation effects within the Z+1 approximation, CAMB3LYP/aug-

cc-pVTZ/GEN-A2* optimizations were performed for the anti-anti and anti-gauche conform-

ers of the ESCA molecule and their core-ionized or Z+1 approximated counterparts. The

optimized structures of the C1, C2 and C3 (see Fig. 5.7) core-ionized or Z+1 approximated

conformers are topologically identical to the non-ionized structures with bond length changes

below 0.01 Å. The agreement between the structures optimized with the explicit core hole

and the Z+1 approximation is in the same range, i.e. with differences below 0.01 Å. For the

C4 core-ionized structure, a much larger relaxation effect is found as shown in Figure 5.8

and also previously reported in the literature [160]. Here the C3-C4 bond lengths stretch
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considerably with respect to the anti-anti and anti-gauche reference structures after core ion-

ization as can be seen from Fig. 5.9. This structural deformation results in a linear CO2

unit from the ether and carbonyl oxygens, with bonds weakly to the CF3 moiety over the

central carbon atom. In the explicit core-hole calculations C3-C4 bond lengths of 2.81 and

2.80 Å are found for the anti-anti and anti-gauche conformers, respectively. With the Z+1

approximation, these bond distances increase to 2.93 and 2.92 Å. These results are in fair

agreement with the calculations from Travnikova et al. [160] who found bond distances in

the range of 2.9 Å.

Figure 5.9: CAMB3LYP/aug-cc-pVTZ/GEN-A2* optimized structures of the
ESCA molecule on the left the anti-anti C4 core-ionized state and on the right
anti-gauche C4 core-ionized state. Values in parenthesis correspond to optimized
structures with the Z+1 approximation.

From the above discussion we can conclude that independent of the functional, the Z+1 ap-

proximation yields results very closed to the explicitly calculated core excitation and provides

a chemically intuitive understanding of shifts in XPS peak positions in terms of differences

in chemical bonding between the initial molecule and the core-ionized atom replaced by

the next atom to the right in the periodic table. Furthermore, the Z+1 approximation is

less computationally expensive than the explicit core-hole calculation. In addition, the Z+1

approximation has been successfully used for surface-core-level shifts (SCLS) for the close-

packed surfaces of second-row transition metals [164]. We also note that the here proposed

methodology for the calculation of core-level excitations with global and range-separated

hybrid functionals can be straightforward extended to nanosystems.
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Conclusions and Pespectives

This thesis reports the implementation, validation, benchmarking and application of range-

separated hybrid functionals in the framework of density fitted Kohn-Sham (DF-DFT) and

auxiliary density functional theory (ADPT). From this work the following conclusions can

be drawn.

The newly developed variational fitted long-range exact exchange algorithm was successfully

validated against conventional four-center ERI algorithms. This validation shows that long-

range four-center ERIs can be approximated by variational Fock potential fitting without loss

of accuracy [106]. On the basis of these results, a computationally efficient implementation

of range-separated hybrid functionals free of four-center ERIs is presented. The accuracy

in the energy calculations and structure optimizations of the here implemented functionals

are in excellent agreement with their four-center ERI Kohn-Sham DFT counterparts. The

corresponding serial benchmark calculations show significant speedups (∼ 80) for one SCF

step in comparison to four-center ERI implementation in NWChem. Moreover, an efficient

and scalable parallelization is presented. In particular, we demonstrate that the parallel

performance benefits from the use of the modified Cholesky decomposition instead of the

TED of the Coulomb matrix. Our analysis shows that the improved parallel scaling results

from a more homogeneous workload balance due to the modified Cholesky decomposition of

the Coulomb matrix.

The successful extension of the ADPT working equations for global and range separated

hybrid functionals opens an avenue for the systematic study of response properties of large

molecular systems using these functionals. The here presented comparison of static and dy-

namic polarizabilities of small molecules with available experimental data demonstrates the

need of range-separated hybrid functionals for these property calculations. The CAMPBE0

104
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and HSE06 functionals show the best match with CCSD polarizabilities and hyperpolarizabil-

ties. However, comparison with experimental data indicates that LCPBE is best suited for

static and dynamic polarizability calculations. We attribute this to the CCSD/aug-cc-pVTZ

reference data that include larger intrinsic errors with respect to experimental reference data

than some of the used range-separated hybrid functionals employing aug-cc-pVTZ/GEN-A2*

basis and auxiliary function sets. Although, these results are obtained with a preliminary

proof-of-principle implementation, they guide the path to first-principle calculations of non-

linear optical properties of nanosytems.

In this thesis we have also investigated the performance of range-separated hybrid functionals

for the calculation of activation and reaction energies. The calculated activation and reaction

energies of small pericyclic hydrocarbon reactions show that hybrid functionals improve in

general the results from GGAs. In particular, we show that composite approaches, consisting

of GGA structure optimization and single point hybrid energy calculations, are well suited

for the study of pericyclic reactions. Best results are obtained with the PBE0 global hy-

brid functional and the HSE06 range-separated hybrid functional. Unfortunately, it is not

straightforward to extrapolate the results from small pericyclic reactions to corresponding

nanosystem reactions as our study of the [4+2] Diels-Alder cycloaddition of cyclopentadiene

with C60 showed.

The Z+1 approximation was employed as a more chemical intuitive picture for the simulation

of X-ray photoemission spectroscopy. The calculation of the explicit core-hole excitation as

well as the alternatively Z+1 approximation for the ESCA molecule evidenced that the use

of hybrid functionals is needed for an accurate description of X-ray photoelectron spectra.

Immediate perspectives resulting from this thesis are the following:

1. Extension of ADPT for global and range separated functionals to open shell

The newly derived ADPT working equations are restricted to closed-shell systems.

Although, the extension to open-shell is rather straightforward care has to be taken in

the corresponding implementation. In particular, the localization of α and β MOs needs

further consideration. This might result in a new localization approach that is more

suitable for the variational fitting of Fock potential than the current 2 step algorithm

[34].
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2. Parallelization of new ADPT working equations

In order to perform large scale polarizability calculations, it is mandatory to implement

an efficient parallel scheme for the calculation of the perturbation vector
•
b(λ)(ω) in the

global and range-separated ADPT equation system.

3. Perturbation theory for magnetic interactions

Magnetic shieldings and spin-spin coupling constants are interesting molecular proper-

ties that can be calculated as response properties to the perturbation with an external

or internal magnetic field. For LDA and GGA these properties can be calculated within

the ADPT framework [165]. Note the missing response in the shielding tensor calcula-

tions at this level of theory. With the newly developed ADPT equations these magnetic

response calculations can be extended to global and range-separated hybrid functionals.

4. Static and dynamic polarizabilities of oligothiophenes

In a previous work [166] we showed that the dynamical polarizabilities of oligothio-

phenes can be correctly described with GGAs only until four units, i.e. the tetramer.

For the following two polymers, pentamer and hexamer, this level of theory failed to

reproduce the experimental dynamical polarizabilities. A detailed analysis revealed

that the GGA poles of the dynamical polarizabilities of these systems were too closed

to the frequency at which the experiment was performed. Thus, the wrong position

of the GGA dynamical polarizability poles is responsible for the failure at this level of

theory. From the literature it is well known that hybrid functionals enlarge the energy

differences between occupied and unoccupied MOs. Thus, we assume that the position

of the dynamical polarizability pole will move away, which in turn will yield better

agreement to experiment than at GGA level of theory.

5. Cycloaddition reactions of polyacenes with fullerenes

Further systematic studies are needed to pinpoint hybrid functionals that yield reli-

able results with the here discussed composite approach for chemical reactions at the

nanometric scale. Experimental activation and reaction energies of cycloadditions be-

tween fullerenes and polyacenes like cyclopentadiene, dimethylanthracene and others

are available. However, only very few theoretical investigations of such reactions can
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be found in the literature due to the associate computational demand. We hope that

the developments outlined in this thesis will contribute to change this situation in the

near future.



Appendix A

Negative Definiteness of
Range-Separated Operators

We wish to show that the error functional

εRS
2 = −

occ∑
i,j

∫∫
[ρij(r)− ρ̃ij(r)] g(r− r′) [ρij(r

′)− ρ̃ij(r′)] dr dr′ (A.1)

is negative semidefinite. In Eq (A.1) g(r− r′) is a multiplicative operator depending on the

distance between the positions of two electrons. If we write

fij(r) = ρij(r)− ρ̃ij(r) (A.2)

the error functional may be rewritten in the form

εRS
2 = −

occ∑
i,j

∫∫
fij(r) g(r− r′) fij(r

′) dr dr′ (A.3)

To proceed, we assume that g(r− r′) has a well-defined three dimensional Fourier transform,

G(k), given by

G(k) =

∫
g(r− r′) e−ik·r dr

= e−ik·r
′FG(k) (A.4)

Based on Eq. (A.4) we can represent g(r− r′) in terms of its inverse Fourier transform

g(r− r′) =
1

2π

∫
G(k)eik·rdk

=
1

2π

∫
e−ik·r

′FG(k)eik·rdk (A.5)

Here FG was written as a function of k = |k| because it only depends on the norm of the

distance, i.e. r = |r− r′|. The corresponding Fourier transform of fij(r) is given as

Fij(k) =

∫
fij(r) e−ik·r dr (A.6)
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Substituting (A.5) into (A.3) yields

εRS
2 = −

occ∑
i,j

∫∫
fij(r)

[
1

2π

∫
e−ik·r

′FG(k)eik·rdk

]
fij(r

′) dr dr′ (A.7)

= − 1

2π

occ∑
i,j

∫
FG(k)

[∫
f ∗ij(r)e−ik·rdr

]∗ [∫
fij(r

′)e−ik·r
′
dr′
]
dk (A.8)

= − 1

2π

occ∑
i,j

∫
FG(k)F ∗ij(k)Fij(k) dk (A.9)

= − 1

2π

occ∑
i,j

∫
FG(k) |Fij(k)|2 dk (A.10)

The condition FG > 0 for k > 0 is, according to Bochner’s theorem [167], equivalent to

the statement that g(r− r′) is a positive-definite function. Thus, it is sufficient to calculate

the Fourier transform of g(r − r′) and confirm that it is positive for k > 0. Table A.1 lists

the calculated [168] Fourier transforms of the global, long-range and short range Coulomb

operators used in this thesis. In each case, the transforms are strictly positive for k > 0.

Table A.1: Fourier transforms for the global, long-range, and short-range
Coulomb operators.

Operator Fourier transform

1

|r− r′|
1

2πk

erf(ω|r− r′|)
|r− r′|

1

2πk
e−

k2

4ω2

erfc(ω|r− r′|)
|r− r′|

1

2πk

[
1− e−

k2

4ω2

]

Since Fij(k) is square and FG is positive then the sum appearing in Eq. (A.4) is positive

definite. Thus, it follows that εRS2 is negative semidefinite, vanishing only for fij(r) = 0 for

every point in space. This derivation follows the same line of arguments as for the positive

definiteness proof of range-separated four-center ERIs using the Schwartz inequality [168].



Appendix B

Energy Gradients of C54H20

While the parallelization of the potential and energy gradient calculations for the variational

fitted Fock exchange was investigated, it was found that hydrogen-terminated graphene sheets

needed many optimization steps to reach convergence or did not converge at all. The con-

vergence of the total energy and maximum absolute gradient (MAG) component for the

C54H20 graphene sheet is plotted in Fig. B.1. For this calculation the standard ERI setting

of deMon2k, i.e. the direct calculation of the near-field and far-field ERIs according to the

default asymptotic atomic radii, are used. As Fig B.1 shows this setting yields an almost

random behavior of the MAG component during the structure optimization. As a result, no

convergence in the structure optimization was achieved within 200 optimization steps.
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Figure B.1: Total energy [a.u.] and maximum absolute gradient (MAG) com-
ponent [a.u./Bohr] convergence of the C54H20 computed using the original de-
fault setting for the asymptotic atomic radii for far-field ERIs.
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At this point it is important to note that changing the ERI setting to DIRECT [76], i.e. treat-

ing all ERIs as near-field ERIs, yields a smooth structure convergence for C54H20. Therefore,

we conclude that the far-field ERIs are the reason for the erratic behavior of the MAG com-

ponent in the structure optimization. Closer inspection revealed that the standard setting for

the asymptotic atomic radii is problematic for variational fitted Fock gradients. A straight-

forward solution is to double these radii for Fock gradients. Fig B.2 shows energy and MAG

convergence for the C54H20 structure optimization with these doubled asymptotic radii. As

this figure shows a smooth structure optimization reaching convergence within 35 geometry

steps is now obtained. This optimization is very similar to the one obtained with the ERIs

DIRECT setting. Therefore, we established this setting of asymptotic radii as new default

in deMon2k.
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Figure B.2: Total energy [a.u.] and maximum absolute gradient (MAG)
[a.u./Bohr] component convergence of the C54H20 computed with doubled
asymptotic atomic radii for the far-field ERI derivatives.



Appendix C

Serial and Parallel Timing Tables

Table C.1: Serial and parallel timings per SCF cycle [s] for the SCF itera-
tion and the Fock potential calculation along with the corresponding parallel
speedup factors, Sp. The entries are ordered according to the number of basis
functions, Nbas, in the benchmarks systems. The Fock exchange contributions
were calculated with the combination of Cholesky decomposition and TED for
the inversion of the local Coulomb matrix, Gi, for each LMO.

SCF Fock potential
Nbas Serial Parallel Sp Serial Parallel Sp

A
lk

an
e

ch
ai

n
s

680 30.8 2.0 15.4 24.1 1.4 17.4
1980 195.0 12.3 15.9 152.0 8.5 17.9
3280 384.2 26.7 14.4 291.8 16.9 17.3
4580 599.2 55.8 10.7 438.8 26.7 16.4
5880 854.2 100.2 8.5 599.3 38.4 15.6
7180 1043.4 152.3 6.9 686.9 47.0 14.6
8480 1371.5 236.7 5.8 869.2 65.0 13.4
9780 1748.5 343.4 5.1 1062.3 86.6 12.3

A
m

y
lo

se
fr

ag
m

en
ts

600 32.8 2.2 15.1 25.5 1.5 17.0
1135 156.7 9.3 16.8 124.1 6.6 18.8
2205 612.6 34.6 17.7 488.3 24.7 19.8
4345 1823.2 112.0 16.3 1373.8 70.5 19.5
8625 6954.0 533.7 13.0 5528.3 310.7 17.8

G
ra

p
h
en

e
sh

ee
ts

1150 185.2 16.1 11.5 144.4 11.9 12.2
1670 631.8 57.2 11.0 488.4 42.9 11.4
2190 1415.1 138.4 10.2 1045.6 91.0 11.5
2710 2705.0 271.4 10.0 1985.2 181.6 10.9
3230 5997.0 685.4 8.7 4618.0 516.5 8.9
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Table C.2: Serial and parallel timings per SCF cycle [s] for the SCF itera-
tion and the Fock potential calculation along with the corresponding parallel
speedup factors, Sp. The entries are ordered according to the number of basis
functions, Nbas, in the benchmarks systems. The Fock exchange contributions
were calculated using the Eq. (4.25) which employs the modified Cholesky de-
composition.

SCF Fock potential
Nbas Serial Parallel Sp Serial Parallel Sp

A
lk

an
e

ch
ai

n
s

680 28.5 1.8 15.7 22.2 1.2 17.8
1980 187.4 11.7 16.0 145.6 8.0 18.1
3280 370.4 25.7 14.4 280.1 16.3 17.2
4580 584.0 54.2 10.8 427.0 25.8 16.6
5880 824.0 98.9 8.3 575.8 37.0 15.6
7180 1004.3 150.0 6.7 657.4 45.7 14.4
8480 1281.1 229.6 5.6 807.6 62.8 12.9
9780 1560.4 344.6 4.5 942.2 86.1 10.9

A
m

y
lo

se
fr

ag
m

en
ts

600 29.1 1.8 16.0 22.8 1.3 18.1
1135 145.4 8.2 17.8 117.0 6.1 19.2
2205 588.6 31.5 18.7 475.0 23.7 20.0
4345 1721.5 105.6 16.3 1312.4 68.3 19.2
8625 6111.5 522.7 11.7 4831.4 307.9 15.7

G
ra

p
h
en

e
sh

ee
ts

1150 149.5 8.7 17.1 120.3 6.6 18.3
1670 440.1 24.8 17.7 358.5 19.2 18.7
2190 940.7 52.4 18.0 747.4 39.7 18.8
2710 1612.0 91.9 17.5 1286.2 70.3 18.3
3230 3643.7 209.9 17.4 3040.0 169.9 17.9
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[8] B. Champagne, E. A. Perpète, S. J. A. van Gisbergen, E.-J. Baerends, J. G. Snijders,
C. Soubra-Ghaoui, K. A. Robins, and B. Kirtman, J. Chem. Phys. 109, 10489 (1998).

[9] S. J. A. van Gisbergen, P. R. T. Schipper, O. V. Gritsenko, E. J. Baerends, J. G.
Snijders, B. Champagne, and B. Kirtman, Phys. Rev. Lett. 83, 694 (1999).

[10] N. N. Matsuzawa, A. Ishitani, D. A. Dixon, and T. Uda, J, Phys, Chem. A 105, 4953
(2001).

[11] M. E. Casida and D. R. Salahub, J. Chem. Phys. 113, 8918 (2000).

[12] H. Appel, E. K. U. Gross, and K. Burke, Phys. Rev. Lett. 90, 043005 (2003).

[13] A. Dreuw, J. L. Weisman, and M. Head-Gordon, J. Chem. Phys. 119, 2943 (2003).

[14] H. Sekino, Y. Maeda, M. Kamiya, and K. Hirao, J. Chem. Phys. 126, 014107 (2007).

[15] D. Jacquemin, E. A. Perpète, M. Medved, G. Scalmani, M. J. Frisch, R. Kobayashi,
and C. Adamo, J. Chem. Phys. 126, 191108 (2007).
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[152] E. Heid, A. Szabadi, and C. Schröder, Phys. Chem. Chem. Phys. 20, 10992 (2018).

[153] R. R. Zope, T. Baruah, M. R. Pederson, and B. I. Dunlap, Int. J. Quantum Chem.
108, 307 (2008).

[154] S. A. McDowell, R. D. Amos, and N. C. Handy, Chem. Phys. Lett. 235, 1 (1995).

[155] A. J. Perkins, J. Phys. Chem. 68, 654 (1964).

[156] M. A. Spackman, J. Phys. Chem. 93, 7594 (1989).

[157] N. J. Bridge, A. D. Buckingham, and J. W. Linnett, Proc. R. Soc. of London Ser. A
295, 334 (1966).

[158] W. F. Murphy, J. Chem. Phys. 67, 5877 (1977).

[159] K. Siegbahn, C. Nordling, A. Fahlman, R. Nordberg, K. Hamrin, J. Hedman, G. Jo-
hansson, T. Bergmark, S.-E. Karlsson, I. Lindgren, and B. Lindberg, ESCA, Atomic,
Molecular and Solid State Structure Studied by Means of Electron Spectroscopy (Almqvist
and Wiksell, Uppsala, 1967).

[160] O. Travnikova, K. J. Børve, M. Patanen, J. Söderström, C. Miron, L. J. Sæthre, N.
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