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Abstract

The aim of this thesis was to design an artificial neural network (ANN) based sub-optimal con-

troller for a finite horizon optimization problem. The class of systems considered in this thesis

were continuous systems with parametric uncertainties and bounded external perturbations. The

control design approach considered the uncertain part of the system by proposing a min-max

problem. The min-max problem was tackled using a neural dynamic programming solution, this

approach was selected due to the universal approximation capabilities of ANNs.

An ANN structure approximates the Value function (VF) used in the solution of the Hamilton-

Jacobi-Bellman (HJB) equation. The network topology was proposed to satisfy the characteristics

of the VF including positiveness and continuity. The explicit adaptive laws, that adjusted the

weights in the ANN, were obtained directly from the HJB approximated solution. The stability

analysis based on the Lyapunov theory yields to confirm that the approximated VF can be used

as a Lyapunov function candidate to confirm the practical stability of the origin in the stabilization

problem.

Two cases of the studied class of systems were considered. First, a system with additive

uncertain term, then, in the second case, an uncertain multiplicative element with the input was

added.

The approximation capabilities of ANNs were also used to design an ANN identifier. The

identifier consisted on a differential neural network (DNN) structure and the proposed learning

laws ensures the ultimate boundedness and the input to state stability of the weights and the

identification error. The study on the identifier extends the approximation capabilities of ANNs for

a class of homogeneous nonlinear systems.
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Homogeneous systems has a symmetry-like property under which an object remains consis-

tent with respect to a certain scaling or dilation. Homogeneity allows local properties of vector

fields to be extended globally.

The DNN-identifier obtains an approximated model for the class of uncertain nonlinear ho-

mogeneous systems, this solution can be used for the design of controllers such as the optimal

control problem presented in this thesis. In addition, the result of the extension of the ANN approx-

imation capabilities could be helpful to obtain approximated VF structures with the homogeneous

properties.
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Resumen

El objetivo de esta tesis fue diseñar un controlador subóptimo utilizando redes neuronales artifi-

ciales para obtener la solución de un problema de optimización de horizonte finito. La clase de

sistemas considerados en el problema son sistemas continuos con incertidumbres paramétricas

y perturbaciones externas acotadas.

El enfoque de diseño de control considera la parte incierta del sistema al proponer un prob-

lema min-máx. Para la solución del problema min-máx se utilizó la técnica de programación

dinámica neuronal, se seleccionó esta técnica por las propiedades de aproximación universal

que poseen las redes neuronales artificiales.

Se propuso el uso de una estructura especial de red neuronal artificial para aproximar la

solución o la función Valor para la ecuación de Hamilton-Jacobi-Bellman. La topologı́a de red

se propuso para satisfacer las caracterı́sticas de la función Valor como positividad y continuidad.

La ley adaptable para ajustar los pesos de la red neuronal artificial se obtuvo directamente de

la solución aproximada de la ecuación de Hamilton-Jacobi-Bellman. Se realizó el análisis de es-

tabilidad con base en la teorı́a de Lyapunov, esto permitió confirmar que la función Valor aprox-

imada se puede utilizar como una función candidata de Lyapunov para confirmar la estabilidad

práctica del origen en el problema de estabilización.

Se consideraron dos casos en la clase de sistemas estudiados. Primero, un sistema con un

término desconocido de forma aditiva, este término representa la incertidumbre o perturbación

acotada, después, en el segundo caso, se añadió un elemento desconocido asociado a la en-

trada en forma multiplicativa.
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Las propiedades de aproximación de las redes neuronales también fueron utilizadas para el

diseño de un identificador basado en redes neuronales. El identificador consiste en una estruc-

tura de red neuronal diferencial cuyas leyes de aprendizaje se proponen de tal forma que se ase-

gure que el error de identificación y los pesos de ajuste están últimamente acotados, probando

también estabilidad de entrada-estado. El estudio del identificador extiende las propiedades de

aproximación de las redes neuronales artificiales para una clase de sistemas no lineales ho-

mogéneos.

Los sistemas homogéneos poseen un tipo de simetrı́a, esta propiedad permite que un objeto

siga siendo consistente respecto a cierta escala o dilación. La homogeneidad en los campos

vectoriales permite que propiedades que son probadas localmente puedan ser extendidas de

forma global.

El identificador basado en redes neuronales diferenciales obtiene una aproximación del mod-

elo para la clase de sistemas no lineales homogéneos, esta solución puede ser utilizada para

el diseño de controladores, por ejemplo, para el problema de optimización presentado en esta

tesis. Además, el resultado de la extensión de las propiedades de aproximación de las redes

neuronales artificiales puede ser útil para obtener soluciones aproximadas de la función Valor

contando con las propiedades homogéneas.
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Notation

The following notation is used through this thesis:

• In is the identity matrix of n×n dimension.

• R is the set of real numbers. Rn \{0} denotes the difference of the set R and {0}, i.e., all

real numbers except zero. R+ = {x ∈ R : x ≥ 0} is the set of the positive real numbers,

including zero. Rn is the set of column vectors of dimension n×1.

• A⊤ denotes the transpose operator over the matrix A ∈ R
n×m (or vector), i.e., the i-th row,

j-th column element of A⊤ is the j-th row, i-th column element of A.

• ‖ · ‖ represents the Euclidean norm. ‖z‖H =
√

z⊤Hz is the weighted norm for z ∈ R
n and

H ∈ R
n×n, H = H⊤, H > 0. ‖M‖F =

√

tr
{

M⊤M
}

is the Frobenius norm.

• tr{H} =
n

∑
i=1

Hi,i is the trace operator and Hii is the element of matrix H ∈ R
n×n in row i

and column i.

• ∇F(x) is the operator representing the gradient or the partial derivative respect x ∈ R
n,

∂
∂x

F(x) of the function F : Rn→ R.

• ν∗ represents that such value of ν is an extremal or optimal (minimum or maximum).

• u[a,b) indicates that the signal u is restricted to the interval [a,b).

• V ∈C1 the V function is continuously differentiable.

• o(α) represents the o-small (“high-order terms”), which go faster to zero than α goes, i.e.,

lim
α→0

o(α)
α = 0.

• 〈x,y〉 represents the inner product, x ∈ R
n, z ∈ R

n, 〈x,y〉= x⊤y.
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• The Kronecker product is denoted by ⊗.

• For any ϑ ∈ R+ and ∀x ∈ R we set ⌈x⌋ϑ = sign(x)|x|ϑ.

• For M ∈ R
m×n, M = [m1,m2, . . . ,mn], we set vec(M) = [m⊤1 ,m

⊤
2 , . . . ,m

⊤
n ]
⊤.

• A class-K function is a continuous function φ : [0,a)→ [0,∞), a ∈ R+, if it is strictly in-

creasing and φ(0) = 0.
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Chapter 1

Introduction

This chapter presents the general introduction, the motivation of this research, the main objec-

tives and the formal definitions of the three main concepts on which this work is based, that is, the

principle of optimality, dynamic programming and the approximation capabilities of artificial neural

networks. In addition, the state of art and the description of the thesis structure are presented at

the end of this chapter.

Numerous dynamical systems are represented with a mathematical model, for example, me-

chanical, biological, financial, electronic, among other class of plants are described using ordi-

nary differential equations (ODEs) [3,4]. The mathematical representation of a dynamical system,

among other applications, serves to design the input signals. It is possible to drive the system

from one state to another using a determinate input signal or signals1, moreover, there is not only

one possible control input to regulate the system [6].

One of the main objectives of automatic control theory is the regulation of different systems

by designing appropriate input signals. For some applications the interest in the design of the

control is to find the one which represents the “best” way to do a task according to a given

criterion, for example, the time to go from one state to another, the energy of the input signal

1Considering the controllability property of the system [3,5].

1



CHAPTER 1. INTRODUCTION

or the convergence of the state to an equilibrium. In real applications, this could be traduced

as the less waste of fuel in a vehicle, the minimum error in the trajectory tracking problem for

a robot, the maximum thrust developed by a missile, etc. This class of control requires the

exact mathematical model and the input to achieve the minimization or maximization is known as

optimal control (OC), while the criterion is called cost functional [7].

The base of the OC theory started with the study of the calculus of variations [8] three cen-

turies ago and in the decade of 1960 the two principal approaches in modern control theory to

solve an optimal control problem (OCP) arised, the Maximum Principle (MP) of Pontryagin [9]

and the Bellman’s Principle of Optimality (PO) [10].

The theoretical framework for linear systems is well established and both theories (the MP and

the PO) give the necessary and sufficient conditions, however, in the case of nonlinear systems,

finding the exact analytic solution is a difficult task. The design of the OC needs the exact model

and parameters of the system, however, for real applications, to get the exact mathematical

model may seem to be unfeasible. In addition, it is important to consider the model uncertainties

and the presence of perturbations. To get an approximate linear model is a possible solution to

obtain an OC, however, this is a local solution, which is valid in a small region around the origin.

Moreover, the OC solution for the linearized system does not consider nor eliminate the effects

of the uncertainties and perturbations.

For the case of nonlinear plants, the MP approach states the necessary conditions for opti-

mality and leads to a nonlinear two-point boundary value problem [11], meanwhile, the Dynamic

Programming (DP) approach, which is derived from the PO, states sufficient and necessary con-

ditions2. The DP approach uses the definition of Value function (VF) and leads to finding the

solution of a partial differential equation (PDE) [13].

The MP approach gives open-loop solutions. On the other hand, with the DP approach, state

feedback control laws are obtained. This is an important feature from the practical implementation

point of view, nonetheless, the feedback solution cannot be implemented unless the PDE can be

solved [12]. The PDE derived from the DP approach is known as the Hamilton-Jacobi-Bellman

(HJB) equation. In general it is a nonlinear first order with respect to time and the state as well

2Under smoothness assumptions on the VF, otherwise, this approach can only state sufficient conditions [12].

2



CHAPTER 1. INTRODUCTION 1.1. MOTIVATION

PDE and finding the solution is a challenging task.

The interest of this thesis is the design of a feedback OC for a class of continuous dynamical

affected by modeling uncertainties or external perturbations. This approach uses the PO to obtain

a closed loop structure. Moreover, to find the solution of the PDE (HJB equation) is proposed an

approximation based on artificial neural networks (ANNs).

1.1 Motivation

The PO drives to the DP approach to solve OCPs with closed loop solutions and this approach

is used for finite horizon optimization problems. Some applications of OC in real systems require

closed loop solutions in finite time [7]. Nonetheless the general theory of DP is well studied,

solving the finite horizon OCP for nonlinear systems with a DP approach is a difficult task due to

the complexity of finding the solution for the HJB equation. In addition, the necessity of having

the exact mathematical model of the system can not be neglected.

According with the DP literature review, there exist numerous works related with finding the

solution for the HJB equation, for example viscosity solutions [14], discrete approximations [15],

model predictive control [16], reinforcement learning (RL) [17] and ANNs [18]. On one hand,

this last method is useful because of the universal approximation properties of ANNs [19]. On

the other hand, the problem of estimating the exact mathematical representation of the plant or

system to be optimally controlled is another motivation. This problem has been solved by using

mixed controllers with classical robust techniques or by modifying the cost functionals by adding

the uncertain elements [20,21].

Two main ideas are proposed in this work: the first one consists on including the effect of

the unknown bounded elements in the Hamiltonian and to set a min-max problem to obtain a

robust-like solution. This approach has been used to solve OCPs for multimodel systems3. The

second proposition is the approximated solution for the max-min HJB equation based on ANN

structures. ANNs are used to approximate solutions for PDEs. The use of ANNs in DP (to ap-

3In [22], the OCP for the finite case (miltimodel systems) was set with the min-max approach using Lagrange

multipliers and solved using the MP.
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proximate the HJB equation) is known as Neuro-Dynamic Programming (NDP) [23], this method

has demonstrated sub-optimal results for different class of systems, this is a big motivation of the

thesis.

1.2 Objectives

1.2.1 General objective

The main objective of the thesis is to present an ANN feedback control solution for the finite

horizon OCP for a class of continuous dynamic system affected by bounded perturbations or

model uncertainties.

1.2.2 Particular objectives

Within the scope of this investigation work, the following particular objectives are stated:

• To set a min-max problem for continuous systems with bounded perturbations or model

uncertainties in order to solve the finite horizon OCP with the DP approach.

• To derive the max-min HJB equation for the class of systems using the theory of the PO,

setting the sufficient and necessary conditions for the optimality with the min-max proposi-

tion4.

• To find the optimal arguments for the Hamiltonian, i.e., to minimize the Hamiltonian with

respect to the unknown elements and to maximize the Hamiltonian to obtain the OC ex-

pression.

• To approximate the solution for the max-min HJB equation using ANN structures, which

consider the characteristics of such solution5. In addition, to study the impact of the ap-

proximation quality using the ANN structure in the optimality.

4Under smoothness assumption on the max-min HJB equation solution.
5Positiveness, continuity and differentiability, this properties are also used for the stability and optimality analysis.
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• To obtain the learning laws using the max-min HJB equation and to propose a numerical

solution to adjust the free parameters or initial conditions of the parameters for the ANN

structure.

• To use the approximated solution to compute the OC and to study the closed loop system

stability with the Lyapunov theory. Finally, to evaluate the designed control with different

numerical simulations.

1.3 Theoretical Framework

The objective of OC theory is to determine the control signals that will cause a process to satisfy

the physical constraints and at the same time optimize (minimize or maximize) some performance

criterion [9]. The formulation of an OCP needs three main elements:

(i) The mathematical description (or model) of the process to be controlled.

(ii) The statement of the physical constraints.

(iii) The specification of the performance criterion.

Given a dynamical model and the corresponding cost functional6, there are basically two ways

for solving the OCP, one is the Pontryagyn MP [24] and the other is the Bellman’s PO [25]. In this

thesis we are concentrated on the use of Bellman’s principle.

DP is the technique derived of the PO, the basic idea for the application of DP is easy to

understand for discrete systems, where it can be seen as a discrete, multistage optimization

problem in the sense that at each of the finite set of times, a decision is chosen from a finite

number of decisions based on certain optimization criterion [7].

In continuous systems, the DP approach leads to the called HJB equation. The PO and

the DP approach for continuous systems is presented in the next sub-sections following by the

description of the ANN theory for approximation, these three topics are the keystone for the

understanding of this thesis.

6In some works is also named performance index or performance criterion.
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1.3.1 Bellman’s Principle of Optimality

In his book, Richard Bellman wrote the following sentence:

In place of determining the optimal sequence of decisions from the fixed state of the system, we

wish to determine the optimal decision to be made at any state of the system. Only if we know

the latter, do we understand the intrinsic structure of the solution [10].

The principle of Bellman in a simplified way sets that if a path is optimal from a point A to

a point C passing through a point B, the path from B to C is also an optimal one. Consider the

following example: The supposed optimal path for a multistage decision process is depicted in

blue color in Figure 1.1. Now consider that the decision made in point A results in the segment

AB with the cost JAB and the remaining decisions yield segment BC.

Figure 1.1: Two possible paths from the point A to the point C.

The minimum cost from the point A to the point C is:

J∗AC = JAB + JBC.

Then, consider the following proposition.

Proposition 1 (PO for multistage decision). If ABC is the optimal path from A to C, then BC is

the optimal path from B to C.

The previous statement can be seen as if one can “break ” the complete optimal path into

smaller segments, these segments are optimal and if one finds the optimal costs of the segments,

then one can obtain the optimal cost of the complete path.

6
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Proof. By contradiction suppose that the segment BB′C is the optimal path from point B to C.

Hence, the following inequality is valid:

JBB′C < JBC,

then,

JAB + JBB′C < JAB + JBC = J∗AC. (1.1)

However, (1.1) can be satisfied only by violating the condition that ABC is the optimal path

from A to C.

In other words, the cost functional has the property that whatever the initial state and initial

decision are, the remaining decisions must constitute an optimal policy with regard to the state

resulting from the first decision.

The keystone theory of the OP and DP was presented in [10] by Bellman. The theory related

with its application in control theory can be consulted in [7, 9, 11–13, 22, 26], where in a simplify

statement the OP is described as:

An optimal policy has the property that no matter what the previous decision (i.e., controls) have

been, the remaining decisions must constitute an optimal policy with regard to the state resulting

from those previous decisions.

To describe the OP applied to OCPs for continuous systems, it is important to define formally an

OCP. This is a basic theory, however, it is included in this thesis in order to define properly the

DP for the robust case in the next chapters.

Optimal Control Problem

Recalling the aforementioned concepts, an OCP needs the mathematical description of the plant

or process, the restrictions and the cost functional. The mathematical description for different

class of dynamical systems can be represented by the following ODE:

ẋ(t) = f (t,x,u), x(t0) = x0, (1.2)

7
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here x ∈ R
n is the state, u ∈ U ⊂ R

m is the control, t ∈ R+ is the time, t0 ∈ R+ is the initial

time and x0 ∈ R
n is the initial state and the vector field f : R+×R

n×U → R
n described the

dynamics. The conditions for the OCP in this case could be a desired fixed time t1 ∈ R+ and the

set U of admissible controls, for this example, the set is restricted to the piecewise continuous

signals. The cost functional can be represented in the Bolza7 form, which is a more general cost

functional including the state, input and time.

J(t,x,u) =
∫ t1

t
L(s,x(s),u(s))ds+K (x(t1)) , (1.3)

where t1 ∈ R+ is the fixed final time, t ∈ [t0, t1), L : R+×R
n×U → R is the running cost8, and

K : Rn→ R is the terminal cost.

Now that the three main elements to formulate an OCP are described, the formal problem

statement is:

To find the input u∗ ∈U (the OC) such that, this control drives the plant (1.2) through a state

x∗(t) that minimize (or maximize) the cost functional (1.3).

J(t,x,u)→min
u∈U

, ∀t ∈ [t0, t1) . (1.4)

The PO gives the sufficient conditions to obtain the solution to this OCP using a DP approach

(this approach will be described in the following subsection). The next definition of the VF9 is the

key to define the PO for its application in OCPs.

Definition 1 (Value Function). The function V (t,x) defined for any t ∈ [t0, t1) and x ∈ R
n by

V (t,x) := inf
u[t,t1)

J (t,x,u) ,

satisfying the boundary condition

V (t1,x) = K(x(t1)),

is called the VF of the OCP.

7There are other class of cost functionals for OCPs, such as Mayer forms, Lagrangian costs and modified Bolza

costs with discount terms (exponential functions), saturation functions and Barrier functions [7,9,11,12,26].
8Also known as the Lagrangian [12].
9Notice that the OCP is studied for the minimization and the existence of the minimum is not assumed, the

infimum is used instead in the definition.

8
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Then the PO can be expressed using the VF, this is the base of DP and to derive the HJB

equation.

Proposition 2 (PO for the OCP). For every (t,x) ∈ [t0, t1)×R
n, the VF satisfies the equation

V (t,x) = inf
u[t,t2)

{∫ t2

t
L(s,x(s),u(s))ds+V (t2,x(t2))

}

, ∀t2 ∈ (t, t1] . (1.5)

Proof. On one hand, by the Definition 1, the following inequality is valid

V (t,x)≤ J(t,x,u), ∀u ∈U, ∀t ∈ [t0, t1) , ∀x ∈ R
n.

Therefore, substituting (1.3) and considering the boundary condition (terminal cost).

V (t,x)≤
∫ t2

t
L(s,x(s),u(s))ds+ J (t2,x(t2);u(·)) , ∀t2 ∈ (t, t1] .

This inequality is valid for any u ∈U . Taking the infimum over u(·).

V (t,x)≤ V̄ , (1.6)

where V̄ is denoting the right hand side of (1.5). On the other hand, for any ε > 0, there exists a

control uε ∈U such that the derived state xε of that control drives

V (t,x)+ ε≥ J(t,x,uε), ∀t ∈ [t0, t1) .

Then,

V (t,x)+ ε≥
∫ t2

t
L(s,xε(s),uε(s))ds+K (xε (t2)) ∀t2 ∈ (t, t1] .

Therefore, the following inequality is valid

V (t,x)+ ε≥ V̄ . (1.7)

Letting ε→ 0, the inequalities (1.6) and (1.7) imply (1.5).

In the following subsection it is described the application of the PO to solve an OCP, this

drives to the DP approach and the formulation of the HJB equation.

9
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1.3.2 Dynamic Programming

The representation of the PO in an infinitesimal form gives as a result the HJB equation, this is

sum up in the following Theorem.

Theorem 1. Suppose that the VF (Definition 1) is V ∈C1 ([t0, t1)×R
n). Then, the VF V (t,x) is a

solution to the following terminal value problem of a first order PDE, known as the HJB equation,

associated with the OCP (1.4), ∀t ∈ [t0, t1), ∀x ∈ R
n.

− ∂

∂t
V (t,x)+ sup

u∈U

H (−∇V (t,x),x(t),u(t), t)= 0,

V (t1,x) = K(x(t1)),

(1.8)

here the function H : Rn×R
n×U× [t0, t1)→ R is known as the Hamiltonian and is defined by

H (−∇V (t,x),x(t),u(t), t) :=−∇⊤V (t,x) f (t,x,u)−L(t,x,u) . (1.9)

Proof. Necessary condition. Considering the definition of the VF and (1.3),

V (t,x) = inf
u[t,t1)

{∫ t1

t
L(s,x(s),u(s))ds+K (x(t1))

}

. (1.10)

By subdividing the interval of the integral, we obtain

V (t,x) = inf
u[t,t1)

{∫ t+∆t

t
L(s,x(s),u(s))ds+

∫ t1

t+∆t
L(s,x(s),u(s))ds+K (x(t1))

}

.

Then, using the PO,

V (t,x) = inf
u[t,t+∆t)

{∫ t+∆t

t
L(s,x(s),u(s))ds+V (t +∆t,x(t+∆t))

}

.

Under the smoothness assumption on the VF, we can express V (t +∆t,x(t +∆t)) using its

Taylor series expansion about (t,x), then, we obtain,

V (t,x) = inf
u[t,t+∆t)

{∫ t+∆t

t
L(s,x(s),u(s))ds+V (t,x)

+
∂

∂t
V (t,x)∆t+∇⊤V (t,x) f (t,x,u)∆t+o(∆t)

}

.

Simplifying the previous expression by gathering terms and considering in the infimum the

associated terms with the control,

0 = inf
u[t,t+∆t)

{∫ t+∆t

t
L(s,x(s),u(s))ds+∇⊤V (t,x) f (t,x,u)∆t+o(∆t)

}

+
∂

∂t
V (t,x)∆t.

10
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Dividing the previous equation by ∆t and then ∆t→ 0, we obtain

0 = inf
u∈U

{

L(t,x,u)+∇⊤V (t,x) f (t,x,u)
}

+
∂

∂t
V (t,x). (1.11)

Considering the definition of the Hamiltonian and the definition of supremum and infimum10,

equation (4.32) can be rewritten as (1.8), the boundary final value can be obtained by setting

t = t1 in (1.10).

Sufficient condition. Suppose that a C1 function V̂ : [t0, t1)×R
n → R satisfies the HJB

equation, then,

− ∂

∂t
V̂ (t,x) = inf

u∈U

{

L(t,x,u)+∇⊤V̂ (t,x) f (t,x,u)
}

. (1.12)

Consider that an optimal pair û : [t0, t1)→U and x̂ : [t0, t1)→ R
n satisfy the previous equa-

tion, with a given initial condition x̂(t0) = x0,

− ∂

∂t
V̂ (t, x̂) = L(t, x̂, û)+∇⊤V̂ (t, x̂) f (t, x̂, û).

Using the fact that the sum of the time partial derivative of ∂
∂t

V̂ (t, x̂) and the inner product
〈

∇V̂ , f
〉

is indeed the full time derivative, we can rewrite the previous equation as follows

L(t, x̂, û)+
d

dt
V̂ (t, x̂) = 0,

by the integration of this equation with respect to the time t ∈ [t0, t1), we obtain

t1∫

t0

L(t, x̂, û)dt +V̂ (t1, x̂(t1))−V̂ (t0, x̂(t0)) = 0.

Rewriting this equality, such that,

V̂ (t0,x0) =

t1∫

t0

L(t, x̂, û)dt +V̂ (t1, x̂(t1)),

which is equal to,

V̂ (t0,x0) = J (t0,x0, û) .

10The existence of an optimal control has not been assumed, when it (u∗) exists, the infimum in the previous

calculations can be replaced by a minimum, whch is achived with u∗.

11
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Now, if we consider other pair x ∈ R
n and u ∈U satisfying (1.12), the following inequality is

valid

− ∂

∂t
V̂ (t,x)≤ L(t,x,u)+∇⊤V̂ (t,x) f (t,x,u).

Therefore, using similar procedure as before (gathering the partial derivatives to rewrite in

terms of the full time derivative and then integrating), we obtain

V̂ (t0,x0)≤ J (t0,x0,u) . (1.13)

Inequalities (2) and (1.13) show that the input û gives the cost V̂ (t0,x0) and any other control u

can not obtain a smaller cost.

The HJB equation provides the solution for the OCP for general nonlinear systems. However,

finding the analytic solution of the HJB equation11 is a difficult task, moreover if we do not have

the complete information of the plant. The most logical approach is to propose the form of the

solution and prove if it satisfy the equation. One way to approximate the solution is the use of

ANN structures, in the following section, the approximation capabilities of ANN are discussed.

1.3.3 Approximation using ANN

An additional difficulty for solving the HJB equation is added because of the robustness asked to

the OC. The proposition is to obtain an approximated solution based on ANNs12.

The use of ANN structures in diverse control and estimation problems (see for example

[27–30]) has presented reliable results. One of the motivations of the use of such structures

is because ANNs are recognized by their universal approximation capacity [19]. This charac-

teristic has been used to approximate static maps, time dependent and multivariable nonlinear

functions [31, 32]. Moreover, ANNs can be used to approximate the trajectories associated with

11Satisfying the smoothness with respect to time and state simultaneously.
12The VF must be smooth enough with respect to its both arguments to fulfill sufficient and necessary conditions

of optimality. The solution must consider the specific characteristics of the HJB trajectories (positiveness, continuity

and differentiability).
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the solutions of ODEs and PDEs [33, 34]. Some particular variants of these approximations

appeared in the last decade to approximate the solutions of the HJB equations13.

An ANN can be seen as a simplified mathematical representation of the neural connections

in a living being. The unit or the simplest element in an ANN structure is the artificial neuron14,

which can be mathematically represented by the following equation

z = ϕ

(

p

∑
j=1

ω jx j +b

)

, (1.14)

where x j ∈ R are the input signals, ω j ∈ R are the synaptic weights, b ∈ R is the bias and

ϕ : R→ R is the activation function. Graphically the artificial neuron is depicted in Figure 1.2,

where it is compared with a biological cell.

Figure 1.2: Comparison between the information flow

on a biological neuron and its nonlinear model.

In a biological neuron, the dendrites collect the electrical signals. This is emulated in the

artificial model with a set of synapses, each of which is characterized by a weight. The cell body

contains the nucleus and organelles, in the artificial model the body is structured by an adder

summing the weighted input signals. In the artificial model the activation function characterizes

the output, while in the biological neuron is the axon which passes the electrical signals on to

another cell.

13The approach is called NDP, this is addressed in the State of art section.
14The ANN unit is a basic mathematical representation of a biological neuron.
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There exists different types of activation functions: threshold, piecewise-linear, sigmoids,

polynomials, Radial-Basis, Gaussian, Wavelet, among others [35]. The selection of the acti-

vation functions and the structure depends on the application of the ANN [27]. The structure or

architecture is related with the configuration of the neurons, moreover, the configuration is inti-

mately related with the learning algorithm to train the net or the adaptive algorithm to find the

synaptic weights.

The common applications of ANNs are: pattern association [36], pattern recognition [37],

filtering [38], smoothing [39], prediction [40], control [30], observation [41], system identification

[42], beamforming [43] and function approximation [44]. The application of ANNs for function

approximation has been studied with different methodologies. There exist a relation between the

ANN topology and the studied structures in the general approximation theory.

In the literature of ANN, some works are devoted to the theory of approximation by super-

position of nonlinear functions [45, 46], other research use the application of the Kolmogorov

theory [19,47–49] or the application of the Stone–Weierstrass Theorem [50], also the frequency

domain approach using Fourier series approximation [51,52], among other perspectives.

For example, the issue of the ANN structure to achieve a local approximation for nonlinear

mappings depends on the basis of activation functions, the number of layers, the configuration

or in general the complexity of the net. In [31], the approximation bounds for a class of ANN with

sigmoidal activation functions are derived, the structure is a one-layer with n nodes. In [53] the

role of the input dimension is considered in the estimation for the bounds of approximation errors,

the structure of the ANN has a perceptron and Gaussian radial computational units. The quality

of the approximation remains as an interest of research. In [54] the bound of the approximation

error for a single hidden layer feed-forward ANN with fixed weights is analyzed.

Based on all the aforementioned properties, ANN could be implemented as feasible approx-

imations for the trajectories corresponding to well-defined solutions of either ODEs or PDEs.

Some particular variants of these approximations appeared in the last decade to approximate

the solutions of the HJB equations (see e.g. [15,55–59]). These solutions usually did not satisfy

the constraints of the HJB trajectories15. Moreover, the approximation capacity of the ANN is

15Positiveness, continuity, differentiability and zero vanishing.
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only justified if the number of artificial neurons in the network tents to infinity.

In this thesis, the activation functions are selected as sigmoid functions. The selection of

such function is based on several results [31,45,51], where the approximation of nonlinear multi-

variable functions on a compact set using sigmoidal functions has been proved.

Definition 2. A sigmoid function is bounded, differentiable and has a non-negative derivative.

For this study, the sigmoid function ϕ : Rn→ R is defined as

ϕ(z) :=
(

1+ e−(y⊤z+θ)
)−1

, (1.15)

where, z ∈ R
n, y ∈ R

n and θ ∈ R+.

The universal approximation property of ANNs claims that a continuous function can be ap-

proximated on a compact set using weighted superposition of nonlinear functions16. The fol-

lowing theorem can be recalled to show the approximate realization of nonlinear functions using

sigmoidal functions:

Theorem 2. [45] Let ϕ(·) be any continuous sigmoidal function. Then, finite sums of the form

Γ(x) =
N

∑
j=1

w jϕ
(

y⊤j x+θ j

)

, w j ∈ R, y j ∈ R
n, θ j ∈ R+, (1.16)

are dense in C([0,1]n). In other words, given any f ∈C([0,1]n) and ε > 0, there is a sum, Γ(x)

of the above form , for which

|Γ(x)− f (x)|< ε, ∀x ∈ [0,1]n, (1.17)

where C([0,1]n) is the space of continuous functions on [0,1]n which denotes the n-dimensional

unit cube.

Notice that (1.16) is the structure of an ANN with one internal layer and the needed param-

eters are w j, y j and θ j. Based on such arguments, in this work, the parameters y j and θ j are

16The nonlinear functions are the activation functions such as, radial basis functions, polynomials, and sigmoidal

functions [17].
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randomly selected and the adjustment laws for the parameters w j are proposed17 in order to

approximate the nonlinear function that satisfies the HJB equation.

In the following section, some results related with the problem presented in this thesis, includ-

ing the works devoted to the approximation of the HJB solution using ANNs, are described.

1.4 State of art

The classification of OCPs is given by the class of system (linear, nonlinear, continuous, discrete,

with uncertainties, etc), the time (finite horizon or infinite horizon) and by the selected approach

(the Maximum principle [61] and the PO [10]).

An OCP may consider the optimization of the performance index in the infinite horizon [62],

usually, these solutions are preferred because the gain of the OC depends on algebraic solutions

of matrix equations such as the Riccati one [7]. Nevertheless, if the OCP considers the finite

horizon problem, then it is usual that time-varying gains modify the control action [22]. In the

DP theory, the OCs are presented as close-loop solutions. This characteristic makes these

controllers more useful within the automatic control area [11,63].

One of the major difficulties in solving OCPs relies on the assumption that the accurate math-

ematical model of the plan is available, which seems to be unfeasible. Indeed, the application of

OC solutions in real systems has been limited because of the lack of accurate enough models,

in some cases, the dynamic description of the system that must be controlled is partially known

and it is affected by external perturbations. In consequence, the classical OC approaches cannot

be applied straightforwardly [13]. The alternative of robust controllers appeared as an option to

deal with modelling uncertainties and the effect of bounded perturbations.

Robust controllers are designed to enforce the convergence of a practical equilibrium point.

There are several theories to design robust controls such as: sliding mode controllers [64, 65],

attractive ellipsoid based controllers [66,67] and ANNs based controllers [68,69]. The combina-

tion of robust and optimal control theories is not common because they are dealing with systems

17In [29] and [60], the selection of y j and θ j is based on a uniform distribution using random parameters and the

universal approximation property holds.
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which have dissimilar characteristics.

Under some given conditions of the uncertain system that should be regulated, a degree

of robustness has been considered in the design of OCs. Systems with parametric uncertain-

ties, multimodel representation [22], or bounded perturbations [21] have been controlled sub-

optimally. In general, sub-optimal robust approaches tried to compensate the unknown section

of the system exactly, but the effect of the uncertainties over the optimization criterion has not

been completely researched. Some other robust-optimal control design approaches use the OC

estimated by the DP theory, but assuming that the system is not perturbed. The degree of ro-

bustness is evaluated using the variation of the performance index by neglecting the uncertain

section of the system [70].

Independently of the uncertainties in the model, the application of the DP theory leads to con-

struct the gain control in terms of the solution of the HJB equation. This equation may have an

analytic solution if the system has an exact mathematical model of the plant to be controlled and

no perturbations affect the dynamics. The HJB equation when uncertainties and disturbances

affect the system has analytic solutions in very specific cases. Indeed, just a few works charac-

terized the effect of perturbations/uncertainties on the HJB solution [55, 56, 71]. Even more, the

stability (in some well-defined sense) of the equilibrium point enforced by the sub-optimal control

has not been clearly explained yet.

One manner to overcome the problem of finding the HJB solution (maybe not exact but close

enough to it) uses the approximate DP concept. This technique has been proposed to attain a

feasible realization of robust OCs based on a feasible approximation of the HJB solution. There

are diverse applications of the approximate DP, including discrete approximations for the domain

of the HJB equation.

In [15] and [72] the authors develop a method to approximate the HJB solution in two steps.

In the first step, by means of successive approximations, they reduce the equation to a linear

PDE and in the second step, they propose a Galerkin’s approximation. In [73] and [74] the

approximation of the solution is obtained using a discretization technique. In [75,76] and [77], the

HJB equation is reduced to a state dependent Riccati equation, [78] presents a survey of state

dependent Riccati equations. The authors in [79,80] and [81] use the theory of viscosity solutions
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to obtain the VF of specific HJB equations. In [82], the authors give an analytical-approximate

solution using He’s polynomials based on the called homotopy perturbation method which is a

combination of the classical perturbation technique and topological concepts (homotopy). Some

of the studies working on approximations of the HJB solution do not consider the quality of the

approximation on the optimality conditions and in some of them the plant is considered nonlinear

but all the elements are assumed as known.

In recent years, diverse OC designs considered approximations for the VF leading to get a

controller that enforces the states to track trajectory which corresponds to the minimum value

of the performance index. This methodology is called NDP if the approximation uses ANNs

[57,59,83].

The use of ANNs to find approximated optimal solutions has been also studied in different

works. ANNs are mathematical structures with the property of approximation for numerous class

of multivariable nonlinear functions [19]. The number of applications of these algorithms is ex-

tensive, e.g. ANNs have been used for classification tasks [37], non-parametric and parametric

identification [42,84], observers and controllers design [30], approximation of nonlinear mappings

(static and continuous) [46], approximation of solutions for different class of equations such as

ODEs and PDEs [85].

Based on all the aforementioned properties, the solution for the HJB equation has been ap-

proximated using ANNs structures, e.g., in [86], a nearly optimal solution is obtained with the

approximated VF of a generalized HJB equation considering saturated inputs in infinite hori-

zon. The authors of [57] prove the convergence of the ANN approximation using Kronecker

matrix methods, the adjustment of the parameters is made off-line. In [58] is proposed an on-line

method using policy iteration, meanwhile, [59] presents an ANN solution for discrete-time non-

linear control-affine systems. This ANN approximation must apply different learning paradigms:

reinforcement learning (RL), adaptive critics, integral RL or reinforcement Q learning which are

unsupervised methods [17,87–89]. In particular, NDP has been used to solve finite horizon OCPs

in systems with uncertainties, for example the works [18,55,71,90].

The aforementioned works consider an exact model for the plant, however, the presence of

uncertainties or perturbations is a common problem in control design. In [22], a robust optimal
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control approach considering the Maximum principle, for the case of multimodel systems is stud-

ied. In [55, 71, 91] and [92], an approximated solution using ANNs is proposed for systems with

uncertainties. The solutions presented usually do not satisfy the constraints of the HJB trajec-

tories. Moreover, the approximation capacity of the ANN is only justified when the number of

elements in the network tents to infinity.

In this thesis, we consider a finite horizon OCP for systems with uncertainties or/and bounded

perturbations. The approach to obtain the control law is DP and the HJB equation solution is

approximated with ANNs. The method to deal with the unknown dynamics is based in [22],

where a robust optimal control is obtained for the case of multi-model systems.

1.5 Contributions

The main contributions of this work are as follows:

• The formulation of the finite horizon OCP for continuous systems with presence of uncer-

tainties is presented by setting a min-max DP approach. In the cost functional, the uncer-

tainties are not included explicitly and the boundaries for the admissible set of uncertainties

are taken into account instead.

• The necessary and sufficient conditions18 for optimality of the min-max DP approach are

given.

• An ANN structure is designed for the approximation of the HJB equation solution derived

from the min-max DP approach. The learning laws for the adjustment of the parameters are

obtained by the study of the HJB equation under the approximated solution. In addition, this

paper presents the analysis including the approximation error for the optimality conditions.

• The implementation of an off-line algorithm to ensure the convergence of the approximation

error is described (training process).

18Necessary and sufficient conditions considering the VF definition as solution of the HJB equation.
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• The stability analysis of the plant affected by uncertainties in closed loop with the designed

control law is realized by means of the Lyapunov theory, using the structure of the proposed

ANN.

• In addition, the approximation capabilities of ANN are used to design an identifier for ho-

mogeneous nonlinear systems. This result is the initial study of the application of ANNs

for homogeneous systems and that can be used to apply NDP for a more general type of

systems.

Homogeneity is a kind of symmetry under which an object remains consistent with respect

to a certain scaling or dilation. Homogeneous systems can be utilized for local approximations

[93,94] or set-valued extensions [95,96] of nonlinear control systems. In particular, some models

of process control [97], non-holonomic mechanical systems [98] and systems with frictions [95]

are homogeneous or at least locally homogeneous.

One of the main features of homogeneous systems is that the local analysis (on the unit

sphere, for example) can be extended to the whole state space [99–101].

Based on all the above mentioned homogeneity properties and the wide application of the

non-parametric identifiers for controlling uncertain systems, in this thesis, the design of a non-

parametric identifier with a homogeneous structure using Differential Neural Networks (DNNs),

which are a class of ANNs with a continuous evolution of its states, is presented.

Among the contributions of this result, is presented the extension of the approximation theo-

rem of ANNs for this class of systems. The idea was to extend this result for a future application

in the approximation of solutions for other class of equations such as PDEs and of course the

HJB equation.

1.6 Structure

The content of this thesis is structured in the following chapters:

Chapter 2 formulates the OCP describing the class of system considered in this thesis and

the class of unknown elements in the system. We consider two class of system, the first has
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a structure with an additive perturbation or uncertainty and the second considers an additive

perturbation or uncertainty and a multiplicative one associated with the input. The problem con-

sidering the perturbations or uncertainties is setting with a min-max approach. Then, the PO is

used to obtain a min-max DP methodology, deriving the concept of a Robust VF and the respec-

tive max-min HJB equation for each case. The complete methodology is summarized in the last

section of the chapter.

After the formulation of the max-min HJB equation, in Chapter 3 an ANN approximated so-

lution for each case is presented. A Corollary is used to demonstrate the approximation capabil-

ities of the ANN structure approximating the robust VF. Using the proposed approximation and

the max-min HJB equation for each case, the learning laws are derived and a numerical off-line

algorithm to adjust the free parameters or the initial conditions in the learning laws is presented.

In the last section of this chapter the analysis stability for the equilibrium of the systems is made

using as a Lyapunov function candidate the approximated Robust VF.

After these results, in Chapter 4, other application of the ANN approximation capabilities is

presented. Here is important to mention that the main goal of this chapter was to use the ANN

and the properties of homogeneous systems, such as, most of local properties can be extended

globally. This chapter presents an ANN identifier for a class of homogeneous systems, this work

is planned to extend the use of ANN along with homogeneous properties for other applications,

for example the approximation of solutions for ODE’s and PDE’s as the HJB equation.

The work of the aforementioned chapter was develop in an research internship during the

PhD at the Institut National de Recherche en Informatique et en Automatique in Lille France

under the supervision of doctors Andrey Polyakov and Denis Efimov.

The numerical results of the theory presented in the previously mentioned chapters are pre-

sented in Chapter 5. The chapter is divided in three sections, one for each result. The numerical

simulations includes comparisons with other approaches.

The general conclusions and remarks of this thesis are presented after Chapter 5 with the

topics that are planned to be studied in a recent future.

At the end, in the appendix, the proofs of some results are stated and the list of publications

derived of this thesis.
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Chapter 2

The min-max Dynamic Programming

In this chapter, the considered class of systems with uncertain models is described and the finite

horizon OCP is formulated according to the min-max optimization approach. The main optimality

conditions related with the max-min HJB equation are stated. At the final section, the proposed

methodology to obtain the optimal arguments for the max-min HJB equation is described. Then,

to summarize the proposed approach, an integrated scheme representing all the steps to solve

the OCP is presented.

The class of systems considered in this work satisfies:

ẋ = Ax+Bu+ηizi, x(t0) = x0, t ∈ [t0,T ], t0 ∈ R+, i = a,b, (2.1)

where x ∈ R
n is the state vector, u ∈Uadm ⊂ R

m is the control input in the admissible set Uadm

defined below. The matrices A ∈ R
n×n and B ∈ R

n×m are constant known matrices (the column

rank of matrix B is m, with m≤ n).

The term ηi is defined as ηi = [Fi(x, t),Gi(x, t)], where the functions Fi : Rn×R+→ R
n×n,

Ga : Rn×R+→ R
n and Gb : Rn×R+→ R

n×m are uncertain but satisfy the following assump-

tion,
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Assumption 1. The admissible set containing the uncertainties of (2.1) is characterized as:

Ψadm = {ηi : ‖Fi(t,x)‖F ≤ αi,‖Gi(t,x)‖F ≤ βi} , (2.2)

∀t ∈ R+, ∀x ∈ R
n, with 0 < αi <+∞ and 0 < βi <+∞.

The variable zi is used here to take into account two type of uncertainties affecting the non-

linear system (2.1):

a) the first case when the system is affected by an additive uncertain term, then za =
[

x⊤1
]⊤

,

b) the second case when the system is affected by both a multiplicative uncertainty to the

input and an additive uncertain term to the dynamics of x, then, zb =
[

x⊤u⊤
]⊤

.

The following assumptions are assumed to be valid throughout this thesis:

Assumption 2. The admissible control u ∈Uadm ⊂ R
m is piece-wise continuous over [t0,T ].

Assumption 3. The pair (A,B) is controllable in the Kalman sense.

The class of systems with uncertain models (2.1) could represent different types of nonlinear

systems1 such as mechanical, biological and chemical, among others [4].

2.1 Robust Optimal Control Problem

The main purpose of this work consists in designing the control u∗ ∈Uadm⊆R
m which minimizes

a given cost functional J, for (2.1), subjected to the presence of uncertainties characterized by

(2.2).

The general form of the cost functional considered in this study obeys the Bolza form [12]:

J(t0,x0;u(·)) = h0(x(T ))+

∫ T

t0

h(x(t),u(t))dt. (2.3)

1Notice that (2.1) is in fact an affine nonlinear form with respect the input general system and the nonlinear

unknown elements are presented using the extended linearization [102] or state-dependent coefficient representa-

tion [103]. As a result, the system is factored into a linear-like structure with state dependent matrices.
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The cost functional depends on the state and control. The form of function h : Rn×Uadm→ R+

on (2.3) satisfies the following quadratic structure:

h(x,u) = x⊤Qx+u⊤Ru, (2.4)

where Q ∈ R
n×n and R ∈ R

m×m are positive definite and symmetric matrices. The continuous

function h0 : Rn→ R defines the terminal condition.

In a classical OCP, if the plant to be controlled has a complete known model then, the OC so-

lution consists in finding the explicit stabilizing u∗ which optimizes the given functional. However,

in this work, the model (2.1) is affected with some uncertain nonlinear functions which prevents

finding the eact calculus of u∗. Hence, one of the contributions of this study is the design of

a robust optimal solution for the worst case associated to the class of admissible uncertainties,

then a min-max approach. Hence, the proposed controller considers the maximization over the

admissible set of the uncertainties. To solve this, an alternative approach to characterize the

problem of designing the OC is given in terms of the following min-max problem [22]:

max
ηi∈Ψadm

J(t0,x0;u(·))→ min
u(·)∈Uadm[t0,T ]

,

subject to (2.1).

According to the Dynamic Programming Approach, the presented finite-horizon OCP entails in

finding the solution for the following PDE (known as the Hamilton-Jacobi-Bellman equation),

− ∂V (t,x)

∂t
+ max

u∈Uadm

min
ηi∈Ψadm

H (−∇V (t,x),x,u,ηi) = 0. (2.5)

The function H : Rn×R
n×Uadm×Ψadm→R is the Hamiltonian, which was defined in (1.9), for

the class of system in this OCP, that is

H (−∇V (t,x),x,u,ηi) =−∇⊤V (t,x)(Ax+Bu+ηizi)−h(x,u) . (2.6)

The function V : R+×R
n→R is the VF and t ∈ [t0,T ]. In view of the uncertainties effect on the

dynamics of (2.1), in this study, the following definition of robust VF is considered:

Definition 3. The robust VF is defined for any (t,x) ∈ [t0,T )×R
n by:

V (t,x) = min
u∈Uadm

max
ηi∈Ψadm

J(t,x;u(·)), (2.7)

with the boundary condition V (T,x) = h0(x).
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The max-min equation (2.5) is derived from the PO. This robust version of OC design is useful

for the case of multi-model systems (finite dimensional case) or for systems with uncertainties

such as (2.1) (infinite dimensional case). The following sub-section presents the main theorem

which proves how to derive the max-min estimation on the Hamiltonian considering the robust

VF associated to the proposed cost functional. Such result implies that the proposed robust VF

is the solution of a modified (robustified) HJB equation.

2.2 Max-min HJB Equation

In the previous chapter, we studied that the DP method [13] provides sufficient conditions2 on

the optimality for an admissible control with the application of the HJB equation. This study

takes advantages of such property to derive the proposed robust OC. The following Theorem

derives the corresponding HJB equation for systems with bounded perturbations or parametric

uncertainties such as (2.1).

Theorem 3. Suppose that V (t,x) in (2.7), is continuously differentiable with respect to its two ar-

guments, then, it is a solution of (2.5), (t,x)∈ [t0,T )×R
n, with the boundary condition V (T,x) =

h0(x(T )).

Proof. Consider a control u ∈Uadm and the following representation based on the PO (see e.g.

[10]) for the robust VF with s ∈ [t0,T ):

V (s,y) = min
u∈Uadm

max
ηi∈Ψadm

{∫ ŝ

s
h(x(t),u(t))dt+V (ŝ,x(ŝ))

}

,

∀ŝ ∈ [s,T ] , x(s) = y.

Therefore, by the definition of the minimum operator, the following inequality is valid:

V (s,y)≤ max
ηi∈Ψadm

{∫ ŝ

s
h(x(t),u(t))dt+V (ŝ,x(ŝ))

}

, ∀ŝ ∈ [s,T ] .

Using the fact that min{a}=−max{−a}, one can obtain:

V (s,y)+ min
ηi∈Ψadm

{

−
∫ ŝ

s
h(x(t),u(t))dt−V (ŝ,x(ŝ))

}

≤ 0, ∀ŝ ∈ [s,T ] .

2DP states necessary conditions assuming smoothness properties on the VF.
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Multiplying by 1
ŝ−s

and considering the Definition 3, the following inequality holds:

1

ŝ− s

[

min
ηi∈Ψadm

{

V (s,y)−V (ŝ,x(ŝ))−
∫ ŝ

s
h(x(t),u(t))dt

}]

≤ 0. (2.8)

Using the Mean Value Theorem in (2.8), we obtain:

−∂V (t,x)

∂t
+ min

ηi∈Ψadm

{

−∇⊤V (t,x)(Ax+Bu+ηizi)−h(x(t),u(t))
}

≤ 0, ∀ŝ ∈ [s,T ] ,

which implies:

0≥−∂V (t,x)

∂t
+ max

u∈Uadm

min
ηi∈Ψadm

{H (−∇V (t,x),x,u,ηi)} . (2.9)

On the other hand, for any ε > 0 and s close to ŝ, there exists a control signal u(·) := uε,ŝ(·) ∈
Uadm[s,T ] for which:

V (s,y)+ ε(ŝ− s)≥ max
ηi∈Ψadm

{∫ ŝ

t=s
h(x(t)ε,ŝ,u(t)ε,ŝ)dt +V (ŝ,x(ŝ))

}

. (2.10)

Subtracting V (s,y) from both sides of (2.10) and multiplying by 1
ŝ−s

, one can obtain:

ε≥ 1

ŝ− s

[

max
ηi∈Ψadm

{∫ ŝ

t=s
h(x(t)ε,ŝ,u(t)ε,ŝ)dt +V (ŝ,x(ŝ))−V (s,y)

}]

. (2.11)

Using the Fundamental Calculus Theorem on (2.11) and multiplying it by −1 at both sides

− ε≤ 1

ŝ− s

[

− max
ηi∈Ψadm

{∫ ŝ

s
−H (−∇V (t,x),xε,ŝ,uε,ŝ,ηi)dt

}

−
∫ ŝ

t=s

∂V (t,x)

∂t
dt

]

. (2.12)

Then, considering the definition of the minimum and maximum, the inequality (2.12) can be

rewritten as follows

−ε≤ 1

ŝ− s

∫ ŝ

s

[

min
ηi∈Ψadm

{H (−∇V (t,x),xε,ŝ,uε,ŝ,ηi)}−
∂V (t,x)

∂t

]

dt.

Therefore, taking the maximum on the right-hand side, the following inequality is also valid

−ε ≤ 1

ŝ− s

∫ ŝ

s

[

max
u∈Uadm

min
ηi∈Ψadm

{H (−∇V (t,x),xε,ŝ,uε,ŝ,ηi)}−
∂V (t,x)

∂t

]

dt. (2.13)

Let s→ ŝ in (2.13), hence, we obtain:

− ε≤ max
u∈Uadm

min
ηi∈Ψadm

{H (−∇V (t,x),x,u,ηi)}−
∂V (t,x)

∂t
. (2.14)

Considering (2.9) and (2.14) and taking ε→ 0 the proof is completed.

The previous proof uses the condition on the robust VF V ∈C1. Notice also that the construc-

tion of the previous proof states a kind of necessary conditions. The following section states the

sufficient conditions of the optimality.
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2.3 Verification Rule

Consider the optimal admissible value for the uncertainties η∗i ∈ Ψadm, such that the following

optimization is solved,

H (−∇V (x, t),x,u,ηi)→ min
ηi∈Ψadm

,

and the control law given by

u∗(·) := u∗ (η∗i ,x,∇V (t,x)) , (2.15)

be a robust optimal solution, such that,

H (−∇V (x, t),x,u,η∗i )→ max
u∈Uadm

, (2.16)

and suppose that we can obtain a VF solution V ∗ ∈C1 to the HJB equation (2.5), then

− ∂

∂t
V ∗(t,x)+H (−∇V ∗(t,x),x,u,ηi) = 0, V ∗(T,x) = h0(x(T )), (2.17)

which for any (t,x) ∈ [t0,T )×R
n is unique and smooth.

Considering the OC (u∗) in the system (2.1), there exists a solution x∗ ∈ R
n satisfying the

ODE (2.1).

Suppose the pair (u∗,x∗), u∗[t0,T ) ∈Uadm, x∗[t0,T ) ∈ Rn satisfies (2.17), then the definition of the

Hamiltonian (2.6) for this OCP implies V ∗(t,x∗(t)) satisfies the following ODE

d

dt
V ∗(t,x∗(t)) =−h(x∗,u∗) .

Integrating this equality by t ∈ [t0,T ] leads to the relation

V ∗(T,x∗(T ))−V ∗(t0,x∗(t0)) =−
∫ T

t0

h(x∗(t),u∗(t))dt. (2.18)

The last equation could be rewritten by considering the final condition for VF as:

V ∗(t0,x0) = h0(x
∗(T ))+

∫ T

t0

h(x∗(t),u∗(t))dt. (2.19)

By Definition 3, the equation (2.19) means exactly that (x∗,u∗,η∗i ) is an optimal triplet and u∗ is

the OC.

The max-min HJB to obtain a robust-like OC needs the optimal arguments η∗i and u∗ and

then, the robust is the VF solution. The following section describes the proposed methodology

to obtain the optimal values η∗i and u∗.
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2.4 Optimal arguments for the max-min HJB

The first step to solve (2.5) consists in finding η∗i such that the Hamiltonian is minimized.

2.4.1 Optimal value for the uncertain element (η∗i )

One can consider only the terms related to ηi due to the structure of (2.5). Then, the solution for

the first step can be achieved by solving the following equivalent optimization problem:

η∗i = argmin
ηi∈Ψadm

{

−∇⊤V (t,x)ηizi

}

.

The solution for this problem was gotten with two different approaches, one for each case of zi.

a) Additive uncertain term.

For the case of za, consider the following partial optimization problem to characterize η∗a:

η∗a = argmin
ηa∈Ψadm

{

−∇⊤V (t,x)ηaza

}

. (2.20)

Using the inner product, the equation (2.20) is equivalent to

η∗a = argmin
ηa∈Ψadm

{

−〈η⊤a ∇V (t,x),za〉
}

. (2.21)

The application of the Cauchy-Schwartz inequality on the inner product in (2.21) leads to

−〈η⊤a ∇V (t,x),za〉 ≥ −
∥

∥

∥
η⊤a ∇V (t,x),

∥

∥

∥
‖za‖ ,

then, using the triangle inequality3 on the previous inequality, such that

−〈η⊤a ∇V (t,x),za〉 ≥ −
∥

∥

∥
η⊤a
∥

∥

∥

F
‖∇V (t,x)‖‖za‖ ,

and considering the Assumption 1 regarding the admissible set of uncertainties Ψadm (2.2),

one gets

−〈η⊤a ∇V (t,x),za〉 ≥ −
√

φ‖∇V (t,x)‖‖za‖ , (2.22)

3Considering the adequate consistent norm in the space of matrices [104,105], the Frobenious norm is compatible

with the Euclidean vector norm.
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where φ = α2
a +β2

a, with αa and βa given in (2.2).

The inequality (2.22) can be used to obtain the exact value of η∗a taking into account the

equality:

η∗a =
√

φ∇V (t,x)z⊤a
∥

∥

∥
∇V (t,x)z⊤a

∥

∥

∥

−1

.

b) Additive uncertain term and multiplicative uncertainty with the input.

For the case of zb, consider the following partial optimization problem to characterize η∗b:

η∗b = argmin
ηb∈Ψadm

{

−∇⊤V (t,x)ηbzb

}

.

Using the Λ-inequality4, the terms related to ηb in the Hamiltonian can be bounded as

follows:

−∇⊤V (t,x)ηbzb ≥−0.5
(

‖∇V (t,x)‖2
Λ+‖ηbzb‖2

Λ−1

)

.

Considering that Λ= In, and the compatibility of norms in metric spaces [105], the following

inequality is also valid:

−∇⊤V (t,x)ηbzb ≥−0.5
(

‖∇V (t,x)‖2+‖ηb‖2
F‖zb‖2

)

.

Considering (2.2), one can obtain

−∇⊤V (t,x)ηbzb ≥−0.5‖∇V (t,x)‖2− γ‖zb‖2,

where γ = 0.5
(

α2
b +β2

b

)

. Then, the optimal argument is

η∗b = ∇V (t,x)z⊤b
(

0.5‖zb‖−2 + γ‖∇V (t,x)‖−2
)

.

The second step consists on finding the OC u∗i , which is obtained by solving the following equa-

tion

u∗i = argmax
u∈Uadm

{

min
ηi∈Ψadm

H (−∇V (t,x),x,u,ηi)

}

.

The following subsection describes the methodology to obtain the OC.

4For all x ∈ R
n and y ∈ R

n the inequality 2x⊤y ≤ ‖x‖2
Λ + ‖y‖2

Λ−1 holds with any Λ ∈ R
n×n, Λ = Λ⊤, positive

definite [105].

30



CHAPTER 2. MIN-MAX DP 2.4. OPTIMAL ARGUMENTS FOR THE MAX-MIN HJB

2.4.2 Optimal control value (u∗)

The methodological difference to obtain the optimal values η∗i is mainly because the second case

considers a multiplicative unknown element with respect to the input. The optimal value η∗b has

separated (additive) elements (∇V (t,x),zb) while in the first approach, for the case of η∗a, these

elements are multiplicative. Then, after the substitution of the optimal value η∗i in each case, we

use the following approach to obtain the OC u∗i .

a) Additive uncertain term.

In this case, the OC is obtained directly 5 because the unknown elements are not related

with the input, then

u∗a =−0.5R−1B⊤∇V (t,x). (2.23)

b) Additive uncertain term and multiplicative uncertainty with the input.

By the substitution of η∗b, equation (2.5), for this case, is equivalent to:

−∂V (t,x)

∂t
+ max

u∈Uadm

{

−∇⊤V (t,x)Ax−∇⊤V (t,x)Bub−0.5‖∇V (t,x)‖2

−γ‖zb‖2−‖x‖2
Q−‖ub‖2

R

}

= 0.
(2.24)

Considering the terms related to the control (u) in (2.24), the maximization problem over

the Hamiltonian is equal to:

u∗b = argmax
ub∈Uadm

{

−∇⊤V (t,x)Bub− γ‖zb‖2−‖ub‖2
R

}

.

Considering the control u on vector zb and gathering terms,

u∗ = argmax
u∈Uadm

{

−∇⊤V (t,x)Bu−‖u‖2
Φ

}

,

where Φ = γIm +R. Therefore, the optimal control u∗ is given by:

u∗ =−0.5Φ−1B⊤∇V (t,x). (2.25)

The HBJ equation for the cases, considering the optimal arguments is given by:

5By direct differentiation respect to u.
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a) Additive uncertain term.

Substituting both u∗ and η∗ on (2.5), such that

−∂V (t,x)

∂t
−∇⊤V (t,x)Ax+

1

4
∇⊤V (t,x)BR−1B⊤∇V (t,x)

−‖x‖2
Q−

√

φ(‖x‖2 +1)‖∇V (t,x)‖= 0.
(2.26)

b) Additive uncertain term and multiplicative uncertainty with the input.

The substitution of (2.25) in (2.24) yields to

−∂V (t,x)

∂t
−∇⊤V (t,x)Ax−‖∇V (t,x)‖2

Φ2
−‖x‖2

Φ3
= 0, (2.27)

where Φ2 = 0.5In−0.25BΦ−1B⊤ and Φ3 = Q+ γIn.

The min-max DP approach to obtain a robut-like OC solution is summarized in the following

section.

2.5 Procedure summary of the min-max DP approach

Table 2.1 summarizes all the steps of the proposed methodology to solve the min-max DP ap-

proach of the analyzed OCP.

Table 2.1: Procedure summary

Step Description

1 Problem Formulation

Given the plant as (2.1), the performance index (2.3) and

the initial condition x(t0) = x0, find the OC u∗, consider-

ing the unknown elements ηi characterized by (2.2).

max
ηi∈Ψadm

J(t0,x0;u(·))→ min
u(·)∈Uadm[t0,T ]

,

subject to (2.1) and (2.2).
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2
PO for the min-max problem, the

min-max DP

After the formulation problem, setting the optimal con-

ditions for the DP approach using the PO for the min-

max problem. The robust VF is defined for any (t,x) ∈
[t0,T )×R

n by

V (t,x) = min
u∈Uadm

max
ηi∈Ψadm

J(t,x;u(·)).

3 The max-min HJB

The use of the VF definition to obtain the PDE (max-min

HJB equation)

−∂V (t,x)

∂t
+ max

u∈Uadm

min
ηi∈Ψadm

H (−∇V (t,x),x,u,ηi) = 0.

4 Minimization of the Hamiltonian

To find the optimal argument η∗i for the PDE of the pre-

vious step, minimize respect to ηi.

η∗a =
√

φ∇V (t,x)z⊤a

∥

∥

∥
∇V (t,x)z⊤a

∥

∥

∥

−1

,

and

η∗b = ∇V (t,x)z⊤b
(

0.5‖zb‖−2 + γ‖∇V (t,x)‖−2
)

.

5 Maximization of the Hamiltonian

With a fixed η∗i , to find the OC u∗ for the PDE of the step

3, maximize respect to u. For a)

u∗ =−0.5R−1B⊤∇V (t,x).

For b)

u∗ =−0.5Φ−1B⊤∇V (t,x).
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6 The optimal HJB equation

To obtain the HJB equation after the substitution of the

optimal arguments of the steps 4 and 5.

−∂V (t,x)

∂t
+H (−∇V (t,x),x,u∗ ,η∗i ) = 0.

7
Solution of the HJB equation

(VF)

To solve the PDE of the step 6 with terminal condition

V (T,x(T )) = h0(x(T )), obtaining the respective VF.

8 Computation of the OC
To compute the gradient of the solution (robust VF) ob-

tained in the previous step, i.e., ∇V (t,x).

Notice that the structures of the Step 5 (OC for (2.1)) need the gradient (Step 8) of the solution

for the max-min HJB in Step 7. An additional difficulty for solving the max-min HJB is added

because of the robustness asked to the control solution. The Steps 7 y 8 are described in the

following Chapter, that is, the ANN approximation for the solution of this max-min HJB equation

and the computation of the gradient.
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Chapter 3

ANN approximation for the max-min HJB

This chapter describes the ANN approximation for the max-min HJB equation solution. The ANN

approximation theorem (universal approximation property) is used to demonstrate the approxi-

mation capabilities of the ANN structure approximating the robust VF. The description of such

an approximation for both classes of systems, a) the case of additive uncertainties and b) the

case of additive and input multiplicative uncertainties is given. In addition, the stability analysis

for the controlled systems using the approximated VF as a Lyapunov function candidate is also

presented.

This part of the thesis analyses two major aspects regarding the ANN application as a feasible

approximation for the Robust VF (V (t,x)): the first deals with the justification of the requested

properties to derive the approximate solution of the max-min HJB and the second studies the

approximation error enforced by the ANN to the robustified version of the VF.

The following section describes the proposed ANN structure, which approximates the solution

for each case of the two aforementioned cases for the max-min HJB equation.
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3.1 ANN approximated VF

The VF V (t,x) for linear systems without perturbations or uncertainties is a quadratic form of the

state vector x. Then, the problem of solving (2.5) modifies to ensure the existence of an uniform

positive definite solution for a differential Riccati equation [12, 63, 106]. Inspired on this solution,

the proposed approximation considers a similar quadratic form of the state complemented with a

suitable ANN topology.

Consider the following representation of (2.26) and (2.27):

V (t,x) =Va(t,x)+Ṽ (t,x), (3.1)

where Va : R+×R
n→R is the ANN-based approximation and Ṽ : R+×R

n is the approximation

error. Therefore, the approximation structure is proposed as

Va(t,x) =VNN(t,x)+ x⊤P(t)x, (3.2)

with P : R+→ R
n×n being positive definite ∀t ∈ [t0,T ) and uniformly bounded with respect to t,

let x ∈ R
n are the states of (2.1) and VNN is the selected ANN structure. The following Corollary

justifies the approximation property (using the ANN structure) for the solution of (2.26) and (2.27).

Corollary 1. Consider that the Robust VF (2.7) satisfies the conditions of Theorem 3 and con-

sider P : R+→R
n×n to be a positive definite matrix ∀t ∈R+. Then, for any ϕa ∈R+, there exists

an integer p defining the number of neurons of the VNN structure and a set of p output weights,

such that:

|Ṽ (t,x)| ≤ ϕa, ∀x ∈ R
n, ∀t ∈ R+.

Proof. The absolute value of the approximation error can be represented as:

|Ṽ (t,x)|= |VNN(t,x)− v1(t,x)|, ∀t ∈ R+, ∀x ∈ R
n,

where v1(t,x) =V (t,x)− x⊤P(t)x. The function v1(t,x) is continuous for all x ∈ R
n and t ∈ R+.

Applying the Theorem 2, the proof is completed.
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The approximate function VNN satisfies a single-layer ANN topology. In this study, the learning

laws design is made using the min-max HJB equation for each class of systems (additive and

multiplicative uncertainties).

3.1.1 ANN solution for the case a)

Assume that VNN(t,x) represents an approximate solution associated to the max-min HJB (2.26)

given by the following ANN structure

VNN(x, t) = ω(t)σ(x). (3.3)

The structure of ω ∈ R
+ and σ ∈ R

+ is proposed as follows:

ω(t) = ω̃⊤(t)ω̃(t), σ(x) = σ̃⊤(x)σ̃(x).

The function ω̃ : R+ → R
p corresponds to the weights vector and σ̃ : Rn → R

p is the ANN

activation vector based on sigmoid activation functions. This particular structure ensures the

positiveness of the approximate Robust VF. For this case, the sigmoid function satisfies the Defi-

nition 2. Therefore, the max-min HJB equation (2.26) based on the approximated function Va(t,x)

considering Ṽ (t,x)→ 0, is governed by

−x⊤Ṗ(t)x− ω̇(t)σ(x)−ω(t)∇⊤σ(x)Ax−2x⊤P(t)Ax

+
1

4

(

ω(t)∇⊤σ(x)+2x⊤P(t)
)

BR−1B⊤ (ω(t)∇σ(x)+2P(t)x)

−
√

φ(‖x‖2 +1)‖ω(t)∇σ(x)+2P(t)x‖−‖x‖2
Q = 0.

(3.4)

The equation (3.4) can be separated in time dependent differential equations using the rewriting

of quadratic terms x⊤Ric(P)x as follows,

Ric(P) =−Ṗ(t)−P(t)A+A⊤P(t)+P(t)BR−1B⊤P(t)−Q− 4
√

φ(‖x‖2 +1)

z(ω(t),P)
P2(t), (3.5)

and the elements ω̃⊤W̃ , where

W̃ =−dω̃(t)

dt
+

ω̃(t)∇⊤σ(x)

2σ(x)

[

−Ax+
1

4
ω(t)BR−1B⊤∇σ(x)

+BR−1B⊤2P(t)x− 4
√

φ(‖x‖2 +1)

z(ω,P)
P(t)x− ω(t)

√

φ(‖x‖2 +1)

z(ω,P)
·∇σ(x)

]

,
(3.6)
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Here z(ω(t),P)= ‖ω(t)∇σ(x)+2P(t)x‖, considering W̃ = 0 and Ric(P) = 0. The simultaneous

on-line numerical solution of (3.5) and (3.6), and the numerical solution for the initial conditions

define an approximated numerical solution of the max-min HJB.

3.1.2 ANN solution for the case b)

Let consider the following structure for the approximation of (2.27):

VNN(t,x) =
p

∑
i=1

ωi(t)σi(x), (3.7)

where ωi : R+→ R+ are defined as ωi(t) = (ω̃i(t))
2
, ω̃i : R+→ R are the adjustment weights

of the ANN structure. Therefore, the HJB equation using (3.7) has the approximated solution

governed by

−x⊤Ṗ(t)x−
p

∑
i=1

ω̇i(t)σi(x)−2x⊤P(t)Ax−
p

∑
i=1

ωi(t)∇
⊤σi(x)Ax− x⊤Φ3x

−4

[

x⊤P(t)+
p

∑
i=1

ωi(t)∇
⊤σi(x)

]

Φ2

[

P(t)x+
p

∑
j=1

ω j(t)∇σ j(x)

]

= 0.

(3.8)

The equation (3.8) can be rewritten gathering the quadratic terms with respect the state and the

elements associated to the weights

−x⊤
[

P

dt
(t)+P(t)A+A⊤P(t)+4P(t)Φ2P(t)+Φ3

]

x

−
p

∑
i=1

ω̃i(t)

[

2
d

dt
ω̃i(t)σ(x)+ ω̃i(t)∇

⊤σi(x)Ax +8ω̃i(t)∇
⊤σi(x)Φ2P(t)x

+ 4ω̃i(t)∇
⊤σi(x)Φ2

p

∑
j=1

(

ω̃ j(t)
)2

∇σ j(x)

]

= 0.

(3.9)

Then, (3.9) can be separated in the following two differential equations:

P

dt
(t) =−P(t)A−A⊤P(t)−P(t)4Φ2P(t)−Φ3, (3.10)

and

d

dt
ω̃i(t) =−

ω̃i(t)∇
⊤σi(x)

2σi(x)

[

Ax+8Φ2P(t)x+4Φ2

p

∑
j=1

(

ω̃ j(t)
)2

∇σ j(x)

]

. (3.11)
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Equations (3.5) and (3.6) are the learning laws associated with the ANN solution for (2.26)

and equations (3.10)-(3.11) are the learning laws associated with the ANN approximation of

(2.27). From these learning laws, we obtain the structure of Va(t,x) for both classes of systems

with uncertain models. Notice that the gradient of this approximated Robust VF (∇Va(t,x)) can

be used for realizing the corresponding OCs.

The initial condition and the methodology for the implementation of the OCs are described in

the following section.

3.2 Numerical adjustment of the free ANN parameters

The solution for the class of robust OC requires the implementation of a special class of recurrent

algorithm (Algorithm 1) to adjust the initial conditions of the weights participating in the ANN

structure. The realization of this method is equivalent to the regular training process of ANN-

based approximation solutions.

The algorithm implements a routine to check the terminal condition of the approximated Ro-

bust VF. If the expected value is not gotten, then an adjust for the parameters of the learning laws

is enforced by the proposed algorithm.

The numerical method used a mixed strategy realizing the evolution of the states regulated

by the sub-optimal controller. Each sequence was evaluated by adjusting only the initial condition

of the weights adjustment laws1.

Figure 3.1 depicts the scheme to represent the interaction between the numerical solution

and the OC implementation.

1Algorithm 1 implements a class of Levenberg-Marquardt method [107] for inverse problems (parameter identifi-

cation). In [108], the authors present the proofs for the global convergence and they do not assume that there is a

solution with zero residuals, which is a natural condition if the number of activation functions in the ANN is finite.
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Algorithm 1 Recurrent algorithm to adjust the initial parameters of the learning laws equations

1: Start

2: Variables initialization

3: κ, µ; Γ; wa; µi; γa; i;

4: µi > µ; wi← wa; Vi← µi; γi← γa; µ̄ = µi;

5: while Vi ≥ µ do

6: Exert simulation of

(

xi,ui =−0.5R−1B⊤0
∂
∂x

V (wi)
)

;

7: aux1i =
(

∂
∂w

V (wi)
)⊤(

∂
∂w

V (wi)
)

+ γiIp;

8: aux2i =
(

∂
∂w

V (wi)
)⊤

V (wi);

9: si+1 =−aux−1
1i aux2i;

10: numi =V 2
i −V 2

i (wi + si);

11: deni =V 2
i −

(

Vi +
∂

∂w
V (wi)si

)2

− γi‖si‖2;

12: ρi = den−1
i numi;

13: if ρi ≥ κ then

14: wi+1 = wi + si;

15: µi+1 ∈
[

max
{

µ, µ̄
Γ

}

, µ̄
]

;

16: µ̄ = µi+1;

17: else

18: wi+1 = wi;

19: µi+1 = Γµi;

20: end if

21: Vi+1 =V (wi);

22: γi+1 = µi+1

∥

∥

∥

∂
∂wi

Vi+1

∥

∥

∥

2

;

23: i = i+1;

24: end while

25: u∗ = ui;

26: Stop

40



CHAPTER 3. ANN APPROXIMATION 3.3. STABILITY ANALYSIS

The vector w ∈ R
p is defined as w =

[

ω̃1(0), . . . , ω̃p(0)
]⊤

. Here, the parameter i denotes

the number of iteration and it is initialized with i = 0. The initial parameters are selected such as,

κ∈ (0,1), µ∈R+, Γ > 1 wa ∈Rp
+, µi > µ, γa ∈R+. The following section presents the Lyapunov

stability analysis using the approximated Robust VF.

Figure 3.1: Structure of the routines for the numerical simulation

and the adjustment of the parameters.

3.3 Practical stability analysis using the OC solution

The presence of uncertainties Fi and Gi has an impact on the value estimation for the perfor-

mance index (2.3) evaluated over the trajectories of the nonlinear system (2.1). Therefore, a

robustness analysis for the state trajectories is requested. The stability analysis for the equilib-

rium point of (2.1) is based on the Lyapunov stability method. In the following sub-sections, the

stability analysis for each case is presented.

3.3.1 Lyapunov analysis for the case a)

Proposition 3. Consider the nonlinear uncertain system given in (2.1) with the sub-optimal con-

troller design introduced in (2.25). Suppose that Assumption 1 stands, then, if there is a bounded

positive and symmetric matrix P (P− ≤ P(t)≤ P+ with P− ∈ R
n×n and P+ ∈ R

n×n positive defi-

41



3.3. STABILITY ANALYSIS CHAPTER 3. ANN APPROXIMATION

nite matrices) of the time varying Riccati matrix equation (Λ1 > 0,Λ1 ∈ R
n×n):

Ṗ(t)−
(

P(t)A+A⊤P(t)
)

+2P(t)BR−1B⊤P(t)−P(t)Λ1P(t)−Q2 = Q4(t),
(3.12)

with Q4 : R+ → R
n×n a time-dependent positive definite matrix, and the weights in the ANN

approximation (3.3) governed by (3.6) are bounded by ω≤ω+ ∀t ≥ 0 with σ(x) 6= 0, ∀x 6= 0 then,

the origin defines an uniformly practical stable equilibrium point of (2.1) [109] with an ultimate

bound given by

β =
ε0

supt≥0λmax{Q4(t)}
. (3.13)

Proposition 1 states sufficient conditions only. The boundedness of the stable trajectory under

the robust optimal closed loop control depends on the existence of the positive solution for (3.5).

The proposed method can provide just sufficient arguments in view of the main result, which

comes from a Lyapunov-like stability analysis.

Proof. Introduce the approximate value function Va : R+×R
n → R

+ as a feasible Lyapunov

function candidate for (2.1). Based on the assumptions, the candidate energetic function satisfies

x⊤P−x≤Va(t,x)≤ x⊤P+x+ω+σ(x).

Notice that both x⊤P−x and ω+σ(x) + x⊤P+x are both class-K functions [3]. The full-time

derivative of Va along the trajectories of x and ω satisfies:

V̇a(t,x(t)) = 2x⊤(t)P(t)ẋ(t)+ x⊤(t)Ṗ(t)x(t)+
d

dt
ω(t)σ(x)+ω(t)∇⊤σ(x)ẋ(t). (3.14)

Reorganizing the elements on (3.14), such differential equation yields

V̇a(t,x(t)) =
(

2x⊤(t)P(t)+ω(t)∇⊤σ(x)
)

ẋ(t)+ x⊤(t)Ṗ(t)x(t)+2ω̄⊤(t)
d

dt
ω̄(t)σ(x). (3.15)

The substitution of (2.1) in (3.15) leads to

V̇a(t,x(t)) = x⊤(t)Ṗ(t)x(t)+2ω̄⊤(t)
d

dt
ω̄(t)σ(x)

+
(

2x⊤(t)P(t)+ω(t)∇⊤σ(x)
)

[Ax(t)+Bu(t)+ηaza] .
(3.16)
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The application of the sub-optimal admissible controller u∗ (2.25) transforms (3.16) to

V̇a(t,x(t)) = x⊤(t)
(

P(t)A+A⊤P(t)
)

x(t)+2x⊤(t)P(t)B

(

−1

2
R−1B⊤∇V (t,x)

)

+2x⊤P(t)ηaza +ω(t)∇⊤σ(x)

[

Ax+B

(

−1

2
R−1B⊤∇V (t,x)

)]

+ω(t)∇⊤σ(x)ηaza + x⊤Ṗ(t)x(t)+2ω̄⊤(t)
d

dt
ω̄(t)σ(x).

(3.17)

The gradient of V can be estimated using the definition of activation functions. Then, the

reorganization of the terms in (3.17) is equivalent to:

V̇a(t,x(t)) = x⊤
(

P(t)A+A⊤P(t)−2P(t)BR−1B⊤P(t)
)

x−2x⊤P(t)BR−1B⊤ω(t)∇σ(x)

+2x⊤P(t)ηaza +ω(t)∇⊤σ(x)Ax− 1

2
ω(t)∇⊤σ(x)BR−1B⊤ω(t)∇σ(x)

+ω(t)∇⊤σ(x)ηaza + x⊤Ṗ(t)x(t)+2ω̄⊤(t)
d

dt
ω̄(t)σ(x).

The application of the Young’s inequality [66], justifies the following inequality, straightforwardly

from the previous equation

V̇a(t,x(t))≤ x⊤
(

P(t)A+A⊤P(t)−2P(t)BR−1B⊤P(t)
)

x+ω(t)∇⊤σ(x)Ax+ x⊤Ṗ(t)x(t)

−1

2
ω(t)∇⊤σ(x)BR−1B⊤ω(t)∇σ(x)−2x⊤P(t)BR−1B⊤ω(t)∇σ(x)+2ω̄⊤(t)

d

dt
ω̄(t)σ(x)

+
(

ω(t)∇⊤σ(x)
)

Λ2

(

ω(t)∇⊤σ(x)
)⊤

+ x⊤P(t)Λ1P(t)x+ z⊤a η⊤a Λ−1
1 ηaza + z⊤a η⊤a Λ−1

2 ηaza.

Factorizing with respect to ω and ηa (Λ−1 = Λ−1
1 +Λ−1

2 ),

V̇a(t,x)≤ x⊤
(

Ṗ(t)+P(t)A+A⊤P(t)−2P(t)BR−1B⊤P(t)+P(t)Λ1P(t)
)

x

−ω(t)

(

2x⊤P(t)BR−1B⊤− x⊤A⊤+
1

2
∇⊤σ(x)BR−1B⊤ω(t)−ω(t)∇⊤σ(x)Λ2

)

∇σ(x)

+z⊤a η⊤a Λ−1ηaza +2ω̄⊤(t)
d

dt
ω̄(t)σ(x).

Considering that F⊤a Λ−1Fa ≤ Q0 y G⊤a Λ−1Ga ≤ ε0, one gets

V̇a(t,x)≤ x⊤
(

Ṗ(t)+P(t)A+A⊤P(t)−2P(t)BR−1B⊤P(t)+P(t)Λ1P(t)+Q0

)

x

−ω(t)

(

2x⊤P(t)BR−1B⊤− x⊤A⊤+
1

2
∇⊤σ(x)BR−1B⊤ω(t)−ω(t)∇⊤σ(x)Λ2

)

∇σ(x)

+2ω̄⊤(t)
d

dt
ω̄(t)σ(x)+ ε0.
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Substituting the adjustment laws for the weights, the previous inequality yields to

V̇a(t,x)≤ x⊤
(

Ṗ(t)+P(t)A+A⊤P(t)−2P(t)BR−1B⊤P(t)+P(t)Λ1P(t)+Q0

)

x

−ω(t)

(

2x⊤P(t)BR−1B⊤− x⊤A⊤+
1

2
∇⊤σ(x)BR−1B⊤ω(t)−ω(t)∇⊤σ(x)Λ2

)

∇σ(x)

+2ω̄⊤(t)
ω̃(t)∇⊤σ(x)

2σ(x)

(

−Ax+
1

4
ω(t)BR−1B⊤∇σ(x)+BR−1B⊤2P(t)x

−ω(t)
√

φ(‖x‖2 +1)

z(ω,P)
∇σ(x)

)

σ(x)+ ε0−
4
√

φ(‖x‖2 +1)

z(ω,P)
P(x)xσ(x).

Simplifying the previous expression, one gets

V̇a(t,x)≤ x⊤
(

Ṗ(t)+P(t)A+A⊤P(t)−2P(t)BR−1B⊤P(t)+P(t)Λ1P(t)+Q0

)

x

−ω(t)

[

1

4
∇⊤σ(x)B0R−1B⊤0 ω(t)−ω(t)∇⊤σ(x)Λ2

]

∇σ(x)+ ε0

−ω(t)x⊤P(t)
4
√

φ(‖x‖2 +1)

z(ω,P)
∇σ(x)−∇⊤σ(x)

ω2(t)
√

φ(‖x‖2 +1)

z(ω,P)
∇σ(x).

Considering the extended vector ϕ :=
[

x⊤ ∇⊤σ(x)
]⊤

yields to the simplified form given by:

V̇a(t,x)≤−x⊤
(

−Ṗ(t)−P(t)A−A⊤P(t)+2P(t)BR−1B⊤P(t)−P(t)Λ1P(t)−Q2

)

x

−ω(t)ϕ⊤Q3ϕ+ ε0,
(3.18)

where:

Q2 := Q0 +ω(t)Q1, Q3(t) :=





Π11 Π12

Π⊤12 Π22



 ,

Π12 := 2

√

φ(‖x‖2 +1)

z(ω,P)
P(t), Π11 := Q1, Q1 ∈ R

n×n,Q1 = Q⊤1 ,Q1 > 0

Π22 :=

[

1

4
B0R−1B⊤0 −Λ2 +

ω(t)
√

φ(‖x‖2 +1)

z(ω,P)

]

ω(t).

Considering (3.12), the inequality (3.18) is equivalent to:

d

dt
Va(t,x)≤−x⊤Q4(t)x−ω(t)ϕ⊤Q3ϕ+ ε0,

If one considers the subspace of the state variables x ∈
{

x⊤Q4(t)x≥ ε0

}

(Q4(t) is given in

(3.12)), then

d

dt
Va(t,x)≤ 0

In consequence, the states x are ultimately bounded with the bound given in (3.13).
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3.3.2 Lyapunov analysis for the case b)

For the second considered case, let use the following assumption for system (2.1).

Assumption 4. The uncertainty Gb(x, t) satisfies the following representation:

Gb(x, t) = BΞ(x, t), (3.19)

where Ξ : Rn×R+→ R
m×m is bounded ‖Ξ(x, t)‖F ≤ ν, ν > 0, ∀t ∈ R+, x ∈ R

n.

Theorem 4. Consider the nonlinear system given in (2.1) with the suboptimal control design

u∗ =−0.5Φ−1B⊤∇Va(t,x). (3.20)

Suppose that assumptions 1-3 and Assumption4 hold, then, if there exists a bounded positive

definite and symmetric matrix P (P− ≤ P(t) ≤ P+ with P− ∈ R
n×n and P+ ∈ R

n×n positive

definite matrices) solution of (3.10), and the weights in the ANN approximation (3.7) governed by

(3.11) are bounded by |ω̃i| ≤ ω+
i for all t ∈ R+ with σi(x) 6= 0 for all x 6= 0, and matrix R in (2.4)

satisfies

R≤ φIm, (3.21)

where φ =
γ

2

(

ν−2−ν−1
√

ν−2−4−2
)

, with γ = 0.5(α2
b+β2

b), αb and βb are given in Assump-

tion 1 and ν is given in Assumption 4. Then, the origin is an uniformly practical stable equilibrium

point of (2.1).

Proof. Consider (3.2) as the Lyapunov function candidate for (2.1). Based on the conditions of

Theorem 4, the approximation for the robust VF (3.2) satisfies the following sequence of inequal-

ities

W1(x)≤Va(t,x)≤W2(x), ∀t ∈ R+, ∀x ∈ R
n,

where W1 : Rn → R+ is given by W1 = λmin{P−}‖x‖2 and W2 : Rn → R+ is given by W2 =

λmax{P+}‖x‖2 + max
i=1,...,p

{

(

ω+
i

)2
} p

∑
i=1

σi(x).

The derivative of (3.2) along the trajectories of (2.1) is defined by

V̇a(t,x) =
∂Va(t,x)

∂t
+∇⊤Va(t,x)Ax+∇⊤Va(t,x)Fb(t,x)x+∇⊤Va(t,x)Bu+∇⊤Va(t,x)Ga(t,x)u.
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Considering that (3.2) satisfies (2.27) and by the substitution of (3.20) in the previous equa-

tion, the following relation holds

V̇a(t,x) =−‖∇Va‖2
Φ2
−‖x‖2

Φ3
− 1

2
∇⊤Va(t,x)BΦ−1B⊤∇Va(t,x)

+∇⊤Va(t,x)Fb(t,x)x− 1
2
∇⊤Va(t,x)Gb(t,x)Φ

−1B⊤∇Va(t,x).

Using the Λ-inequality [105] on the element ∇⊤Va(t,x)Fb(t,x)x, such that,

∇⊤Va(t,x)Fb(t,x)x≤
1

2
x⊤F⊤b (t,x)Fb(t,x)x+

1

2
∇⊤Va(t,x)Va(t,x).

Gathering terms, the following inequality is valid

V̇a(t,x)≤−∇⊤Va(t,x)Πa∇Va(t,x)− x⊤Πbx− 1
2
∇⊤Va(t,x)Gb(t,x)Φ

−1B⊤∇Va(t,x), (3.22)

where Πa =
1
4
BΦ−1B⊤ and Πb = Q+ 1

2
β2

bIn.

Applying the same procedure (Λ-inequality) to the third element,

1
2
∇⊤Va(t,x)Gb(t,x)Φ

−1B⊤∇Va(t,x), of (3.22), one can obtain

V̇a(t,x)≤−∇⊤Va(t,x)Πa∇Va(t,x)− x⊤Πbx+ 1
4
∇⊤Va(t,x)Gb(t,x)ΛG⊤b (t,x)∇Va(t,x)

+1
4
∇⊤Va(t,x)BΦ−1Λ−1Φ−1B⊤∇Va(t,x).

Selecting Λ = γ−1Im in the previous inequality and considering the Assumption 4, one gets

Va(t,x)≤−∇⊤Va(t,x)Πc∇Va(t,x)− x⊤Πbx, (3.23)

with Πc =
1

4
B
(

Φ−1RΦ−1−ν2γ−1Im

)

B⊤. Therefore, considering (3.21), the equilibrium point of

(2.1) is uniformly asymptotically stable (see e.g [3], Theorem 4.9).

The numerical results for both cases: a) additive uncertain term and b) additive uncertain

term and multiplicative uncertainty with the input are presented in Chapter 5. The following

Chapter explores the ANN approximation capabilities for a class of systems with uncertain models

but satisfying a homogeneous property. Such assumption provides a natural way to extend the

applicability of the suggested sub-optimal controller.

The presented ANN identifier is devoted to a class of homogeneous system (standard ho-

mogeneity). This research was developed during the PhD internship at the Institut National de
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Recherche en Informatique et en Automatique (INRIA) in Lille France under the direction of doc-

tors Andrey Polyakov and Denis Efimov. The original idea was to study the ANN approximation

capabilities along with the properties of homogeneous structures to approximate solutions for

PDEs, which is a goal of this thesis. As a first application of ANN with homogeneous structures,

the identifier of the next chapter was obtained. It is planned to continue the research for the

application of ANN with homogeneous structures for other class of applications such as NDP in

near future.
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Chapter 4

ANN Identification for homogeneous

systems

This chapter presents the design of a non-parametric identifier for homogeneous systems based

on a class of ANNs with continuous dynamics. The study extends the universal approximation

property of ANNs for homogeneous systems. The adjustment laws for the weights are obtained

from a Lyapunov stability analysis and the ultimate boundedness of the origin for the identifi-

cation error is formally demonstrated. In addition, under the persistent excitation condition, the

boundedness for the error of the weights in the ANN structure design is also proven.

Analysis, design and optimization of dynamic control systems need a valid mathematical

model of the plant. However, most of the exiting control systems have model uncertainties.

Therefore, the tools looking for a valid mathematical description of the dynamic system are widely

demanded and applied.

Nonlinear system identification is a field of control theory [110], which develops algorithms

of mathematical modeling of control systems based on input and output signals measured on-

line or/and during some experiments. Identification problem has been tackled using different

approaches due to a large class of system models and its inherent complexity. The identifi-
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cation process in general needs to handle the available input and output data in order to pos-

tulate a model and validate it somehow. Some of the most popular identification techniques

are: functional series methods, frequency domain approaches, fuzzy models and ANNs (see

e.g. [27,111–113] for more details).

The class of neural networks with continuous dynamics (DNN) are utilized to get the approx-

imation of dynamical systems [29, 30, 114], since they can be trained on-line (in a real time). In

addition, DNNs can process many inputs and outputs, so they are applicable to multi-variable

systems. The DNN identification admits the selection of different activation functions, which

represent a certain basis for the model of the system in an admissible space, for example, sig-

moidal functions, polynomials or radial basis functions [45, 115, 116]. The adjustment of the

time-varying parameters (weights) in the DNN according to its structure and the set of activation

functions should be adjusted, for example, by a stability analysis based on Lyapunov procedure,

see e.g. [28, 117]. In this chapter, the DNN identification algorithms are developed for a specific

class of systems: homogeneous nonlinear systems affine in the input.

Homogeneity is a symmetry-like property under which an object remains consistent with re-

spect to a certain scaling or dilation. Homogeneous systems can be utilized for local approx-

imations [93, 94] or set-valued extensions [95, 96] of nonlinear control systems. In particular,

some models of process control [97], nonholonomic mechanical systems [98] and systems with

frictions [95] are homogeneous or at least locally homogeneous.

Identification problem of homogeneous systems is not well studied in the literature. One of

the main features of homogeneous system is that an analysis of its behavior in a whole state

space can be reduced to a similar analysis on a unit sphere [99–101]. This feature implies a

specific structure of the DNN identifier. The activation functions are selected to approximate the

systems on the unit sphere, next due to homogeneity the system model can be expanded to the

whole space. The rest of the chapter develops the identifier for a class of homogeneous systems

with uncertain dynamics.

The considered nonlinear system with uncertain model is given by the following ordinary
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differential equation:

ẋ = f (x,u), t ∈ R+, x(0) = x0, f (x,u) := f0(x)+
m

∑
i=1

fi(x)ui, (4.1)

where x(t) ∈ R
n is the state vector of the system and x0 ∈ R

n is the initial condition.

The function f0 : Rn → R
n is unknown, the input associated functions fi : Rn → R

n, i =

0,1, ...,m are unknown nonlinear vector fields, u(t) = [u1(t), ..,um(t)]
⊤ ∈ R

m is the control input,

m≤ n. The identifier design for (4.1) is studied under the following basic assumptions:

Assumption 5. The vector fields fi, i = 0,1, ...,m are continuous on the unit sphere:

S = {x ∈ R
n : ‖x‖= 1} . (4.2)

Assumption 6. The vector fields fi are homogeneous in the standard sense1 with known homo-

geneity degrees νi ∈ R, i.e., fi(λx) = λνi fi(x), ∀x ∈ R
n, ∀λ > 0, where i = 0,1, ...,m.

The standard homogeneity for the given function f means that such a function f is symmetric

with respect to dilation x 7→ λx of its argument2.

Assumption 7. The whole state vector of (4.1) assumed to be on-line measured, bounded and

sufficiently excited by control inputs (the details are given Theorems 5 and 6).

Assumption 8. The control inputs are known essentially bounded functions such that

|ui(t)| ≤U <+∞, ∀t ∈ R+, i = 1, . . . ,m.

1The generalized concepts of homogeneity have been developed for other types of dilation D : R→ R
n×n, x 7→

D(λ)x, and for both finite and infinite dimensional systems, see e.g. [101,118–120].
2In this thesis, the standard homogeneity property in the finite dimensional case is considered, since any gener-

alized homogeneous system is topologically equivalent to a standard homogeneous one [121,122].
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4.1 System Identification Problem

The identification problem consists on finding an approximate model for the vector field f and

its parameters such that, the error between the states of (4.1) and the states of the approximate

structure is small (in a certain norm). Therefore, the first step is to represent (4.1) as a valid

approximate model taking into account the homogeneity property of f . To solve this first step, we

propose a homogeneous DNN structure. The second step consists in designing adaptive laws

for the adjustment of weights of this DNN identifier, such that, the identification error

e := x− x̂ (4.3)

between the system states x and the DNN identifier states x̂ satisfies limsup
t→∞

‖e(t)‖ ≤ ρ(ε+) <

+∞, where ε+ ∈ R+ characterizes the best possible approximation of the unknown mapping f

by means of the DNN identifier and ρ : R+ → R+ is a class-K function. Obviously, if ε+ = 0

then, the error e(t) must tend to zero3 as t→+∞.

4.2 ANNs property for homogeneous systems

The approximation capabilities of ANNs with sigmoidad functions were stated in Theorem 2,

which is formulated under the assumption that the ANN has two layers and it has a static struc-

ture. The proof of this theorem has its fundamentals on the Stone–Weierstrass and the Kol-

mogorov approximation theorems [50]. This property is used in DNN structures for the represen-

tation of dynamic systems.

Based on the necessity of a well-justified approximation theory, the next result establishes the

universal approximation property of the homogeneous ANN structures for the case of systems

as the proposed in (4.1).

Corollary 2. Consider that (4.1) satisfies the assumptions 5 and 6. Then, for any εi ∈ R+ and

for any Hurwitz matrix A ∈ R
n×n there exist Ni ∈ R and W ∗i ∈ R

n×Ni , i = 0,1, ..,m such that:

‖p(x,u)‖≤ε0‖x‖ν0+
m

∑
i=1

εi‖x‖νi |ui|, ∀x∈Rn, ∀u∈Rm, (4.4)

3ε+ = 0, i.e., the DNN model may exactly approximate the original system.
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where p(x,u) := f (x,u)−F(x,u) and the approximate function F(x,u) is given by

F(x,u)=‖x‖ν0

[

Ax
‖x‖ +W ∗0 σ0

(

x
‖x‖

)]

+
m

∑
i=1

‖x‖νiW ∗i σi

(

x
‖x‖

)

ui. (4.5)

The elements of the vector functions σi : Rn→R
N
i are proposed as (1.15).

Proof. Based on the properties given in Assumption 6, the system (4.1) can be rewritten as

follows:

ẋ = ‖x‖ν0 f0

(

x

‖x‖

)

+
m

∑
i=1

‖x‖νi fi

(

x

‖x‖

)

ui.

Notice that, the right-hand side of (4.1) is uniquely identified by its values on the unit sphere

(4.2). Consider the functions4 f̃i : Rn→ R
n, i = 0,1, ...,m, i.e., f̃i(x) = fi

(

x
‖x‖

)

.

The modeling error function f̃i is continuous on R
n \ {0} due to continuity of fi on the unit

sphere 5. Applying the Theorem 2 to each component of the vector f̃i, i = 1,2, . . . ,m and

to f̃0 (x)− Ax/‖x‖ on (4.2), and based on the continuity arguments, it can be observed that

W ∗i σi(x/‖x‖) approximates f̃i(x) = fi(x/‖x‖) with an arbitrary small error εi. Notice that the

application of sigmoidal functions justifies that the approximation error can be made arbitrary

small with the proper selection of parameters (scalars and vectors) W ∗i , yi j and θi j. Taking into

account the homogeneity of nonlinear functions fi, i = 0, ...,m, the desired global estimate (4.4)

holds.

We assume that the parameters yi j and θi j, are selected randomly with a uniform distribu-

tion, and it is needed to find matrices W ∗i in order to complete the identification of the uncertain

homogeneous model (See Definition 2).

Remark 1. The activation functions (1.15) are bounded. Hence, the vectors of the activation

functions used for the identification on the unit sphere are bounded in the following sense:

∥

∥

∥
σi

(

x
‖x‖

)
∥

∥

∥
≤
√

Ni, ∀x ∈ R
n. (4.6)

4Associated to the components of the control u, except f̃0.
5The vector field fi : Rn→R

n satisfying Assumption 6, is locally Lipschitz continuous on R
n \ {0} if and only if it

satisfies the Lipschitz condition on (4.2), see e.g. [122] and [123]. Similarly, (4.1) satisfying assumptions 1 and 2 has

the continuous right-hand side (on the first argument) in R
n\{0}. For νi = 0, the function fi may be discontinuous

at the origin. Therefore, the developed identifier has to be able to deal with discontinuous models.
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Usually, a function f can be approximated by NN structure only on a compact set (see Theo-

rem 2). The homogeneous ANN structure (4.5) gives a global approximation of f (see the formula

(4.4)).

4.3 Identification of affine homogeneous control systems

In this section, the identifier design for two cases on the identification problem of (4.1) is pre-

sented. The first case considers that the vector fields associated with the input are known and

the second case assumes that all vector fields are unknown.

4.3.1 The case of known control gains

Let consider the case when the nonlinear maps fi : Rn → R
n, i = 1, . . . ,m associated with the

inputs are known and we need to identify only the vector field f0.

Remark 2. In Corollary 2, the bound for the approximation error for the complete unknown vector

field case is presented. Hence, the approximation error considering f0 unknown and the control

gains fi, i = 0, . . . ,m as known, leads to the following inequality:

∥

∥

∥
d
(

x
‖x‖

)
∥

∥

∥
≤ ε0 , ∀x ∈ R

n, (4.7)

where d
(

x
‖x‖

)

= f0

(

x
‖x‖

)

−A x
‖x‖ −W ∗0 σ0

(

x
‖x‖

)

.

Notice that

W ∗0 σ0

(

x
‖x‖

)

:= Σ0

(

x
‖x‖

)

w∗0, (4.8)

where Σ0(z) = In⊗σ⊤0 (z) ∈ R
n×nN0 , z ∈ R

n and w∗0 = vec
(

(

W ∗0
)⊤) ∈ R

nN0 . The norm matrix

Σ0

(

x
‖x‖

)

has a finite upper-bound (in the matrix space) in view of (4.6), i.e.

∥

∥

∥
Σ0

(

x
‖x‖

)
∥

∥

∥

F
≤
√

nN0, ∀x ∈ R
n. (4.9)

The identification problem can be understood as finding the vector of weights w0 by imple-

menting a weights adjustment law such that w0 converges to w∗0 and x can be reproduced by x̂,
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where x̂ ∈Rn represents the state vector of the DNN identifier. The following theorem introduces

the first result for the convergence of the identification error.

Theorem 5. Let assumptions 5-8 be satisfied and consider the approximation (4.5) for the ho-

mogeneous vector field f0, with modeling error as in Remark 2 and the DNN identifier6 given

by

d

dt
x̂ = ‖x‖ν0

[

A x̂
‖x‖ +Σ0

(

x
‖x‖

)

w0 +ΩKΩ⊤e
]

+
m

∑
i=1

fi (x)ui, (4.10)

where A ∈ R
n×n is a Hurwitz matrix, e(t) = x(t)− x̂(t) is the identification error (4.3), w0(t) ∈

R
nN0 is the vector of weights adjusted as follows:

d

dt
w0 =−‖x‖ν0KΩ⊤e, (4.11)

and Ω ∈ R
n×nN0 is an auxiliary variable satisfying:

dΩ
dt

= ‖x‖ν0

(

A
Ω

‖x‖ −Σ0

(

x
‖x‖

)

)

. (4.12)

If K ∈ R
nN0×nN0 is a positive definite symmetric matrix and the control inputs u in (4.1) are

such that ∃x− > 0, ∃x+ > 0, x− < ‖x(t)‖ < x+ < +∞, ∀t ∈ R+ and the following persistent

excitation (PE) condition 7 holds

∫ t+ℓω

t
Ω⊤(s)Ω(s)ds≥ ϑωInN0

, ∀t ∈ R+, (4.13)

for some ℓω > 0 and ϑω > 0. Then, there exist two class-K functions ρ1 and ρ2 such that:

limsup
t→∞

‖e(t)‖ ≤ ρ1 (ε0) , (4.14)

limsup
t→∞

‖w0(t)−w∗0(t)‖ ≤ ρ2 (ε0) , (4.15)

where ε0 is given by (4.4).

6Notice that the DNN identifier (4.10) is not regular [30,117] because it has a direct injection of the identification

error e.
7Notice that in many cases the persistent excitation condition (4.13) can be fulfilled by a proper selection of a

control input u (see e.g. [124] for more details about this).
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Proof. To prove the ultimate boundedness of the identification error e and the input to state

stability for the weights deviation variable ω̃ := w∗0−w0 consider the following auxiliary input:

δ = e+Ωω̃. (4.16)

The dynamics of (4.16) satisfies:

δ̇ = ė+
dΩ

dt
ω̃+Ω

dω̃

dt
. (4.17)

In (4.17), ė corresponds to:

ė = ‖x‖ν0

[

Ae

‖x‖ +Σ0

(

x

‖x‖

)

ω̃−ΩKΩ⊤e+d

(

x

‖x‖

)]

. (4.18)

The time derivative of ω̃ satisfies dω̃
dt

= −dw0

dt
. Then, the substitution of (4.11), (4.12) and

(4.18) on (4.17) yields:

δ̇ = ‖x‖ν0

[

A e
‖x‖ +Σ0

(

x
‖x‖

)

ω̃−ΩKΩ⊤e+d
(

x
‖x‖

)

+
(

A Ω
‖x‖ −Σ0

(

x
‖x‖

))

ω̃+‖x‖ν0ΩKΩ⊤e
]

.

According to the definition of δ in (4.16), the previous equation is equivalent to:

δ̇ = ‖x‖ν0

(

A

‖x‖δ+d

(

x

‖x‖

))

. (4.19)

Since A is Hurwitz, ‖x‖ 6= 0 and the modeling error d (·) corresponds to a bounded additive

input (4.7) in (4.19), we can conclude that the auxiliary variable δ is also bounded, i.e.

limsup
t→∞

‖δ(t)‖ ≤ ρ0 (ε0) , (4.20)

where ρ0 is a class-K function (see Lemma 1 in the Appendix). By the same result and consid-

ering (4.9), as well as (4.12), it is straightforward to observe that the variable Ω is also bounded,

i.e.

limsup
t→∞

‖Ω(t)‖F ≤ Ω̄, (4.21)

where Ω̄ is depends on
√

nN0 (see (4.9)), x+ and x−. Using the selected learning law (4.11) and

(4.16), one obtains:

dω̃

dt
=−‖x‖ν0KΩ⊤ (Ωω̃−δ) . (4.22)
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Due to boundedness of ‖x‖ and Ω, the system (4.22) is input-to-state stable (ISS) with re-

spect to the input δ (see Corollary 3 in the Appendix), i.e. the inequality (4.15) holds.

An estimate for the convergence quality of (4.3) can be obtained using (4.16). Since e =

δ−Ωω̃, one may notice that:

‖e‖ ≤ ‖δ‖+‖Ωω̃‖ , ∀t ∈ R+. (4.23)

Using the norm relation in (4.23) (see e.g. [105]) and the fact that bound of ω̃ depends on the

upper bound for δ (see Lemma 1 in the Appendix), one gets:

limsup
t→∞

‖Ω(t)ω̃(t)‖ ≤ limsup
t→∞

‖ω̃(t)‖Ω̄≤ Ω̄ρ2(ε0), (4.24)

where ρ2 is a class-K function from (4.15). The following relation for (4.23) takes place:

limsup
t→∞

‖e(t)‖ ≤ ρ1(ε0) := ρ0(ε0)+ Ω̄ρ2(ε0). (4.25)

4.3.2 The case of unknown control gains

In this section, we design a DNN identifier for the considered class of homogeneous system

assuming that functions fi are unknown, but admits the representation (4.5). Similarly to (4.8),

we introduce the vectors w∗i and the matrix-valued function Σi such that:

W ∗i σi

(

x

‖x‖

)

:= Σi

(

x

‖x‖

)

w∗i .

The matrices Σi

(

x

‖x‖

)

have a finite upper bound (in the matrix space) in view of (4.6), i.e.

∥

∥

∥

∥

Σi

(

x

‖x‖

)
∥

∥

∥

∥

F

≤
√

nNi, ∀x ∈ R
n. (4.26)

Theorem 6. Let assumptions 5-8 be satisfied and the control input u be selected as follows

ui(t) =
ũi(t)

‖x(t)‖νi−ν0
, i = 1, . . . ,m,, where ũi : R+→R are continuous uniformly bounded functions,

i.e. that |ũi(t)| ≤ Ũ ,∀t ∈ R+ for some number Ũ > 0. Consider the system (4.1) which can be
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represented in the form (4.5) with an estimation error given in (4.4). Define the DNN identifier as

follows

dx̂

dt
= ‖x‖ν0−1Ax̂+‖x‖ν0

[

m

∑
i=0

Σi

(

x
‖x‖

)

wiũi +ΩiKiΩ
⊤
i e

]

,

where ũ0(t) := 1 , A ∈ R
n×n is a Hurwitz matrix and e(t) = x(t)− x̂(t) is the identification error

(4.3), wi(t) ∈ R
nNi , i = 0,1, . . . ,m are the vectors of the weights to be adjusted as follows

d

dt
wi =−‖x‖ν0KiΩ

⊤
i e (4.27)

and Ωi ∈ R
n×nNi are auxiliary variables satisfying:

d

dt
Ωi = ‖x‖ν0−1AΩi−‖x‖ν0 ũiΣi

(

x

‖x‖

)

, (4.28)

If Ki ∈ R
nNi×nNi , i = 0,1, . . . ,m are positive definite matrices and the control inputs u in (4.1) are

such that ∃x− > 0, ∃x+ > 0, x− < ‖x(t)‖< x+ < +∞, ∀t ∈ R+ and the following PE condition

holds for all t ∈ R+ and some ϑW > 0 and ℓW > 0:

t+ℓW∫

t

G⊤(s)G(s)ds≥ ϑW InN0
, (4.29)

where the matrix G∈Rn×n∑m
i=0 Ni is given by G= [Ω0,Ω1, . . . ,Ωm]. Then, there exist two class-K

functions ρ1 and ρ2 such that

limsup
t→∞

‖e(t)‖ ≤ ρ1

(

ε+
)

, (4.30)

limsup
t→∞

‖wi(t)−w∗i (t)‖ ≤ ρ2

(

ε+
)

, (4.31)

where ε+ = max
i=0,...,m

{εi} and εi are given by (4.4).

Proof. Consider ω̃i = w∗i −wi, i = 0,1, . . . ,m and the following auxiliary variable

δ = e+
m

∑
i=0

Ωiω̃i. (4.32)

Hence, the dynamics of (4.32) is

δ̇ = ė+
m

∑
i=0

[

dΩi

dt
ω̃i +Ωi

dω̃i

dt

]

, (4.33)
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where ė is given by

ė = ‖x‖ν0−1Ae

+‖x‖ν0
m

∑
i=0

[

Σi

(

x
‖x‖

)

ω̃iũi−ΩiKiΩ
⊤
i e
]

+ p(x,u) .
(4.34)

The function p(x,u) is defined in (4.4). The time derivative of ω̃i satisfies dω̃i

dt
=−dwi

dt
. Then,

the substitution of (4.27), (4.28) and (4.34) on (4.33) yields to:

δ̇ = ‖x‖ν0−1Ae+‖x‖ν0

m

∑
i=0

[

Σi

(

x
‖x‖

)

ω̃iũi−ΩiKiΩ
⊤
i e
]

+ p(x,u)

+
m

∑
i=0

(

‖x‖ν0−1AΩi−‖x‖ν0 ũiΣi

(

x
‖x‖

))

ω̃i +‖x‖ν0

m

∑
i=0

ΩiKiΩ
⊤
i e.

(4.35)

According to (4.32), (4.35) is equivalent to

δ̇ = ‖x‖ν0−1Aδ+ p(x,u) . (4.36)

Taking into account the identity ui(t) = ũ(t)/‖x‖νi−ν0 , from (4.4) we derive

‖p(x(t),u(t))‖≤ ‖x‖ν0

(

ε0 +Ũ
m

∑
i=1

εi

)

.

Since A is Hurwitz and x is uniformly bounded from below and from above, we have (using

Lemma 1)

limsup
t→∞

‖δ(t)‖ ≤ ρ0

(

ε+
)

, (4.37)

for some class-K function ρ0. Similarly, for (4.28) we conclude limsup
t→∞

‖Ωi(t)‖ ≤ Ω̄i, where the

number Ω̄i depends on
√

nNi, Ũ , x− and x+ (see Lemma 1 in the Appendix). Using (4.27) and

(4.32), we obtain:

dω̃i(t)

dt
=−‖x‖ν0KiΩ

⊤
i

(

m

∑
j=0

Ω jω̃ j−δ

)

. (4.38)

or, equivalently dW
dt

=−‖x‖ν0KG⊤(GW −δ), where,

W (t) =

















ω̃0(t)

ω̃1(t)
...

ω̃m(t)

















, K =

















K0 0 . . . 0

0 K1 . . . 0

...
...

. . .
...

0 . . . . . . Km

















> 0.
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Due to boundedness of Ωi, we derive (4.31)(From Corollary 3 in the appendix). Finally, using

(4.32) we finish the proof:

limsup
t→∞

‖e(t)‖ ≤ ρ1(ε
+) := ρ0(ε

+)+
m

∑
i=0

ρ2(ε
+)Ω̄i. (4.39)

The complementary Corollary 3 and the associated Lemma 1 for the previous proofs are

presented in the Appendix A.

The following Chapter presents the numerical results of the DNN homogeneous identifier, as

well as the numerical results of the OC solution presented in the previous Chapters.
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Chapter 5

Numerical Results

In this Chapter, the numerical simulations for the OC solution and the min-max DP for the class of

uncertain system, are presented. The performance index using the proposed control laws is com-

pared when another classical OCs are applied. The numerical results for both cases, the additive

perturbation or uncertainty and the additive perturbation or uncertainty along with a uncertain

multiplicative element associated with the input, are described. In addition, the effectiveness of

the proposed identifier is verified by means of a simulation of a three-tank homogeneous model.

In this example, the proposed identification scheme is compared with a non-homogeneous one.

The first section is devoted to the description of the numerical results for the OC solution,

which was presented in the first Chapters of this thesis. The second section shows the numerical

results of the DNN homogeneous identifier.

5.1 Numerical results of the min-max DP Approach

To evaluate the performance of the algorithm proposed in Chapter 2 and Chapter 3, an academic

example for each case, describing a simplified nonlinear systems as in (2.1), was considered.
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The simulations were made in Simulink Matlab® implementing a variable step integration method

(minimum simulation step = 1 ms).

5.1.1 Numerical results for the case a)

The nominal matrices A and B for the system were:

A =











0 1 0

0 0 1

−8 −4 −12











, B =











0 0

0 0

2.38 1.7











.

The uncertain section of the model are is characterized by the matrices were:

Fa =











sin(100∗ t) sin(10000∗ t) 0.6∗ sin(10000∗ t)

0.8∗ cos(69∗ t) 0.3∗ sin(854∗ t) sin(90∗ t)

0.5∗ sin(100t) 0.4∗ cos(972t) 0.6∗ cos(80t)











,

Ga =











0.245∗ sin(10t) cos(15t)

0.157∗ cos(5t) sin(0.3t)

sin(0.3t) 0.245∗ cos(0.2t)











.

The matrices Fa and Ga belong to the given set Ψadm. The boundary values for the uncertain

matrices are: αa = 1.00 and βa = 0.13. The proposed ANN was simulated using the following

number of ANN weights ω = [ω1b ω2b ω3b ω4b ω5b ω5b]
⊤

.

A simple validation scheme used the comparison of the states calculated if the robust sub-OC

was evaluated in contrast to the numerical result achieved when the pole placement technique

was proposed. In this numerical case, the desired vector of roots corresponded to

[−23.68, −0.15+0.8 j, −0.15−0.8 j]⊤ ,

that leads to the following control gain

K =





2.17 −1.08 −3.25

−1.66 −0.83 −2.49



 .
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The comparison of the state trajectories of both controllers (the ANN based sub-optimal and

the pole placement based) appears in Figure 5.1.

This comparison demonstrates that all the states converge to a bounded region near the

origin with an upper bound of 0.03 after 1.0 seconds. However, the trajectories of the system

controlled with the sub-optimal controller approaches the origin slower than the ones controlled

with the pole-placement method.

The trajectories depicted in Figure 5.1 served to estimate the norm of x. The Euclidean

norm was used for comparison purposes. This comparison confirmed that the pole-placement

technique enforces a faster movement of the state trajectories toward the origin within the first

1.5 seconds. The variation of the state norm also served to estimate the variation of the VF, as

well as the functional time evolution (Figure 5.2).

Figure 5.1: States determined with the states and control actions using the sub-optimal and

pole-placement approaches.
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Figure 5.2: Norm of the states vector estimated with the states and control actions using the

sub-optimal and pole-placement approaches.

The evolution of the states and the evaluation of the control function yield to determine the

variation of the performance index. This comparison was a major element to define the advantage

of the control design attained in this thesis. The comparison of the performance index calculated

with the sub-OC and the pole-placement technique showed a significant reduction of such a value

after 0.05 seconds and a final (after 0.5 seconds) of 33 % after 0.5 seconds (Figure 5.3).

The depicted results also show that the variation of the initial condition for the weights in the

ANN provides a significant variation in the performance index temporal evolution. Also, with the

local optimal values for the weights of the ANN, the lowest performance index is attained (Figure

5.3).

With the aim of showing the dependence of the performance index with respect to the initial

condition of the weights, Figure 5.4 demonstrates the value of the performance index J(u(·))
calculated with T = 30s. This behavior confirms the usefulness of the suggested algorithm,

which is in charge of adjusting the ANN weights.
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Figure 5.3: Cost functional estimated with the states and control actions using the sub-optimal

and pole-placement approaches.

Figure 5.4: Cost functional estimated with the states and control actions using the sub-optimal

approach presented as a function of the variation of the initial weights in the ANN.

Figure 5.5 shows the variation of the approximate Robust VF Va obtained with the states

and the control signal calculated from the functional J(u(·)). The decreasing behavior of this

VF confirmed the applicability of the approximation based on the ANN, as well as the numerical
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methodology used to adjust the initial weights (Chapter 3, Section 2).

Figure 5.5: Value function calculated with the states and control actions using the sub-optimal

controller obtained by the approximation based on neural networks.

Figure 5.6: Comparison of the control signals obtained by the sub-optimal approach and the PD

design strategy.

Figure 5.6 demonstrates the time evolution of the controller using the sub-optimal solution

and the pole-placement approach. The sub-optimal control signals were smaller than those

produced by the pole-placement except during the first 0.05 seconds. This fact justifies the
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differences between the convergences of the states to a bounded zone near the origin. It is

relevant that sub-optimal control signals reach the values obtained when the pole-placement

controller is considered. This fact can be confirmed after the first second of simulation.

Figure 5.7 depicts the variation for the norm associated to the controller signal u. The time

evolution of this function was considered due to its participation on the VF, as well as the func-

tional estimation. The variation of the control norm together with the variation of the states norm

justifies the increment of the function when the sub-OC is considered in comparison to the regular

pole-placement method, which is not taking care of the perturbations effect.

Figure 5.8 shows the variation of all the four components in the weights vector ω̃ that were

considered in the approximation of the VF solution for the HJB equation Va(t,x). Notice that in

opposition to the usual behavior in the ANN approximation of uncertain functions, the weights

obtained in this study do not converge to constant values because of the influence of the system

states x and the time dependent solution of the Riccati equation given by P.

Figure 5.7: Norm of control signal
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Figure 5.8: Time dependent trajectories of ωb(t).

The evolution of the weights included in the ANN structure can be complemented with the

variation of sigmoidal functions. Their variations demonstrate the effect of the states evolution

over the ANN structure (Figure 5.9).

Figure 5.9: Time dependent trajectories of σb(t).

Figure 5.10 shows the time evolution of all the four elements included in P which was obtained

by the on-line numerical solution for the Riccati time varying matrix differential equation.
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Figure 5.10: Time evolution of the components of the matrix P calculated by the numerical

solution of the time-dependent Riccati matrix differential equation.

The ANN approximation proposed in this thesis represents a contribution to the robust re-

alization of OC for systems with the admissible class of parametric uncertainties and external

perturbations.

The proposed numerical results demonstrated the existence of the practical stable equilibrium

point associated to the origin. This result justifies the theoretical result associated to the stability

analysis based on the Lyapunov-like function (energetic type) (Chapter 3, Section 4). Moreover,

the approximate solution based on the Riccati matrix equation also shows the convergence to

bounded and constant values. Interestingly, the weights of the ANN are not converging to con-

stant values in contrast to the regular ANN approximations of the HJB for the optimal control

realization.

The existing approximate results of the OC for the class of systems considered in this study

have not proposed the analytic results attained here. Notice that this study provides the eval-

uation of the approximate function over the sub-OC, as well as its impact on the Hamiltonian

associated to the ANN approximation. The quasi-linear form of the uncertain system has moti-

vated the proposal of a mixed controller using a linear form plus the approximated solution based

on the ANN.
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5.1.2 Numerical results for the case b)

The system as in (2.1), is characterized with the following matrices

A =





0 1

0.2 −3



 , B =





1 2

3 2



 , Fb =





100sin(100x1) 5sin(10000x1)

−20cos(10000x2) −6cos(69x2)



 ,

Gb =





0.245sin(0.1x1) 0.24sin(50x1)

−0.25cos(15x1) −0.2cos(x2)



 ,

The initial condition for (2.1) is x0 =
[

5, 15.5
]⊤

. The cost functional that must be optimized

satisfies (2.3). The matrices Q and R for the cost functional are

Q =





120 0

0 130



 , R =





0.04 0

0 0.028



 .

The final time is selected as T = 20 seconds. The ANN structure has four activation functions

with the following parameters:

y1 =





0.001

0.004



 , y2 =





0.007

0.003



 , y3 =





0.003

0.002



 , y4 =





0.004

0.001



 ,

θ1 = 0.02, θ2 = 0.03, θ3 = 0.04, θ4 = 0.05.

(5.1)

The initial condition to evaluate the dynamics of the matrix P(t) is selected as

P(0) =





43.75 3.75

3.75 28.75



 . (5.2)

The initial weights are obtained with Algorithm 1 after 222 iterations, such that,

w222 =
[

0.8, 1.6, 3.2, 4

]⊤

.

The designed controller was compared with a Linear Quadratic Regulator (LQR), whose gain

is computed using the nominal matrices A and B. The estimated gain matrix (using the Matlab®
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function LQR) is

KLQR =





12.0493 −51.5647

−66.5233 −15.4592



 .

In Figure 5.11, the comparison between the cost functional obtained with the ANN controller

and the cost functional obtained with the LQR is depicted. The smaller functional is result of the

system in closed loop using the ANN approximation for the VF.

Figure 5.11: Comparison between the cost functionals obteined with the designed controller and

with the LQR.

Figure 5.12 shows the evolution of the system states using both controllers, the LQR and the

ANN sub-OC. The first subplot of Figure 5.12 shows that the first state x1(t) reaches the origin

in less than two seconds. However, the first state x1(t) obtained with the LQR implementation

converges only to a zone around the origin with size of 0.44. In the second subplot, similar results

for the second state x2 are presented with the zone having the size of 0.14.
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Figure 5.12: Evolution of the states with the ANN controller and with the LQR.

Figure 5.13 depicts the evolution of the elements of matrix P(t). The elements converge to

constant values around two seconds. The matrix remains symmetric and positive definite during

the simulation time.

Figure 5.13: Evolution of the elements of the matrix P(t) (Solution of the Riccati Equation).

The evolution of the ANN weights (Figure 5.14) shows that their values converge to constant

values in less than one second.
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Figure 5.14: Evolution of the adjustment weights ωi(t).

In Figure 5.15, the control signals with the LQR and the ANN controller are showed. The

obtained signals with the LQR present oscillations during the first 0.5 seconds, while the ANN

based controller does not enforce similar oscillations.

Figure 5.15: Evolution of the control signals u(t).

The time varying changes of the four activation functions evaluations are depicted in Fig-

ure 5.16. All the activation functions are selected as the square of (1.15) with the parameters

proposed in (5.1).
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Figure 5.16: Evolution of the activation functions

In Figure 5.17, the Euclidean norm of the states with both controllers, the LQR and the ANN

controller, is compared. This result shows that the robust optimal solution has smaller values

of this norm after 20 seconds. Indeed, the states converge to the origin around two seconds

yielding the norm also to the origin at the same time.

Figure 5.17: Norm of the states of the systems

Figure 5.18 depicts the comparison between the Euclidean norm of the control signal with the

LQR and the Euclidean norm with the suboptimal controller. The time evolution of the Euclidean
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norm of the controller with the ANN is smaller than the obtained with the LQR. This result confirms

that smaller states norm provided by the ANN based controller does not imply a higher control

realization.

Figure 5.18: Norm of the control input

Figure 5.19: Final value of the approximated function V̂ (T,x(T ))

Figure 5.19 shows the final value evolution of the approximated ANN solution (approximated

VF). The measured changes of the final value are consequence of the adjustment of the initial
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condition for the weights of the ANN using Algorithm 1. This result confirms the convergence of

the proposed algorithm to adjust the initial weights of the ANN approximation. Notice that despite

the presence of local minimum values, the algorithm adjusts the initial weights values until getting

an invariant value (0.047) observed after 200 iterations.

The following section describes the numerical results for the other application of the ANN

approximation capabilities, the DNN homogeneous identifier.

5.2 DNN homogeneous identification for a three tank system

To show the performance of the designed identifier, we use a three-tank system. The mathemat-

ical model for the system is presented with its homogeneity degrees, however the explicit model

is not used in the application of the identifier.

Consider the three-tank system (Figure 5.20).

Figure 5.20: Three tank system.

The three-tank nonlinear system admits the following dynamic model [97,125,126]:

ẋ1 = S−1
tank

(

−a13⌈x1− x3⌋0.5 +u1

)

,

ẋ2 = S−1
tank

(

a32⌈x3− x2⌋0.5−a20⌈x2⌋0.5 +u2

)

,

ẋ3 = S−1
tank

(

a13⌈x1− x3⌋0.5−a32⌈x3− x2⌋0.5
)

,

(5.3)
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where x1, [L], x2, [L] and x3, [L] represent the liquid level of each tank respectively, Stank, [m] is the

diameter of the three tanks, the input flows u1, [L ·s−1] and u2, [L ·s−1] are the control signals and

the constant parameters a13, a32 and a20 are coefficients related with the outflow rate according

to Torricelli’s rule.

Table 5.1: Parameters for the simulation of the three-tank system

Parameter Description Value

Stank Tank diameter 1m

a13 Outflow rate coefficient 3 m
3
2/s2

a32 Outflow rate coefficient 2 m
3
2/s2

a20 Outflow rate coefficient 1 m
3
2/s2

x0 Initial conditions [3, 1, 2]⊤

Obviously, the system admits the representation (4.1) with the functions vectors fi

f1(x) =











1

0

0











, f2(x) =











0

1

0











, f0(x) =
1

Stank











−θ1⌈x1− x3⌋0.5

θ3⌈x3− x2⌋0.5−θ2⌈x2⌋0.5

θ1⌈x1− x3⌋0.5−θ3⌈x3− x2⌋0.5











, x =











x1

x2

x3











.

which are homogeneous with the associated degrees ν0 =−0.5, ν1 = ν2 = 0. We assume that

the functions fi are unknown, but their homogeneity degrees are known.

The matrix A for the identification algorithm has been selected as follows:

A =











−5.1 −3.5 −3

−22.5 −32 −17

−4 −2 −12











,
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and the activation functions are given by (1.15) with Ni = 3. The constant parameters θ0,1 = 5,

θ0,2 = 10 and θ0,3 = 20, the constant vectors are:

y0,1 =











0.01

0.02

0.03











, y0,2 =











0.01

0.04

0.01











, y0,3 =











0.04

0.01

0.06











.

Equal constant parameters θi, j and θ0, j are chosen (θi, j = θ0, j), as well as in the case of the

vectors yi, j = y0, j. The initial conditions for the adjustment laws are selected as:

w0(0) =
[

1 2 1 1 3 2 1 2 3

]⊤
w1(0) =

[

1 3 1 5 3 2 1 2 3

]⊤

w2(0) =
[

1 4 1 2 1 6 1 3 3

]⊤
,

(5.4)

and the gain matrices K0 = I3⊗ K̃0 and K1 = K2 = I3⊗ K̃1, with:

K̃0 =











5220 −1044 1566

−1044 1566 522

1566 522 7830











, K̃1 =











5250 −1050 1575

−1050 1575 525

1575 525 7875











.

The performance of the designed algorithm was compared with a classical DNN identifier

(see [30], Chapter 2). The numerical simulations for the identifiers are made in Simulink Matlab®

by using the Runge Kutta integration method with a step of 0.1 ms.

For the classical DNN identifier, the following parameters are considered, the matrix A is

the same as the selected for the homogeneous one, the constants for the vector of activation

functions associated to f0 in the classical DNN identifier were the same as the parameters for

σ0 (x) in the homogeneous identifier. The matrix of activation functions φ :R3→R
3×2 is selected

as φ(x) = [σ1 (x) ,σ2 (x)]. The initial conditions for the adjustment law are:

W1(0) =











10 23 12

14 33 26

14 25 36











, W2(0) =











13 34 15

56 53 2

12 23 35











The initial conditions are the same for both identifier algorithms x̂(0) = [5 ,2 ,3]⊤.
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In Figures 5.21, 5.22 and 5.23, the signal with the displayed name DNN classical Identifier

(dotted line, red color) describes the states for the identifier using the algorithm presented in [30].

The states of the designed identifier for homogeneous systems that assumes all the functions

fi as unknown, appear represented with the reference DNN Identifier for homogeneous systems

(dashed line, blue color).

In Figure 5.21, the first estimated state of the identifier for homogeneous systems converges

faster (before 0.01 seconds) to the state of the uncertain system (solid line, black color) than the

classical DNN identifier. The estimation of the classical algorithm contains oscillations of relevant

amplitude with respect to the values of the states.

Figure 5.21: Identification result for the first state (x1).

Figure 5.22 shows similar results for both identifiers. In the closer view, it is possible to

notice that the second estimated state (dotted line, color red) of the identifier using a classic

series-parallel DNN structure presents bigger oscillations and has a slower convergence than

the homogeneous algorithm. The second estimate state (dashed line, blue color) of the identifier

for homogeneous systems converges in an approximated time of 8 ms.
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Figure 5.22: Identification result for the second state (x2).

In Figure 5.23, the estimation for the third state of the three-tank plant is depicted. The es-

timate state convergence using the algorithm devoted to homogeneous systems (before 0.02

seconds) is faster than the convergence of the estimate state with the classical DNN identifier

(around 0.3 seconds). In addition, the estimation with the classical algorithm presents oscilla-

tions.

Figure 5.23: Identification result for the third state (x3).

In Figure 5.24, the comparison for the norm of the identification error with the classic DNN

structure identifier (dotted line, color red) and the DNN homogeneous identifier for systems with
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uncertain model (solid line, blue color ) is depicted. The identification error with the classical DNN

identifier converges around 0.8 seconds versus 0.02 seconds of the identification error when the

DNN identifier is devoted to homogeneous systems.

Figure 5.24: Norm of the identification error.

For the simulation, considering all the vector functions unknown used the same 9 activation

functions for both algorithms. In the case of the classical DNN structure, the activation functions

matrix for the terms associated to the input has the same elements of the two activation functions

vectors of the algorithm for homogeneous systems.
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General conclusions

In this thesis, the finite time horizon OCP for a class of uncertain system has been tackled by

proposing a class of a min-max sub-optimal control with a NDP approach. The controller used an

ANN approximation of the VF. The proposed approximated solution of the HJB equation has been

based on the given ANN structure added with a classical quadratic form of the state weighted

by a time-dependent positive definite matrix. The ANN structure obeys the nature of the VF by

using quadratic terms and by choosing sigmoidal activation functions. The tuning of the free-

parameters for the approximation adjustment was solved with a recurrent numerical algorithm

based on the application of a Levenberg-Marquardt algorithm.

Compared with other works, in this thesis, the effect of the unknown terms is added in the

main theorems, and the structure of the ANN considered the natural quadratic structure of the

nominal part of the system. The numerical simulation of the proposed controller was implemented

to regulate a quasi-linear system with parametric uncertainties and external perturbations and it

was compared with a classical pole-placement controller. The performance of the sub-optimal

controller was illustrated by the numerical simulation proposed in this work.

The ANN approximation proposed in this thesis represented a contribution to the robust re-

alization of OCs for systems with the admissible class of parametric uncertainties and external

perturbations considered in this study.

The proposed numerical results demonstrated the existence of the practical stable equilib-

rium point associated to the origin. This result justified the theoretical result associated to the

stability analysis based on the Lyapunov-like function (energetic type). Moreover, the approxi-

mated solution based on the Riccati matrix equation also showed the convergence to bounded
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and constant values.

The existing approximate results of the OC for the class of systems considered in this study

have not proposed the analytic results attained here. Notice that, this study provided the eval-

uation of the approximate function over the sub-optimal control, as well as its impact on the

Hamiltonian associated to the ANN approximation. The quasi-linear form of the uncertain sys-

tem has motivated the proposal of a mixed controller using a linear form plus the approximated

solution based on the ANN.

The results were obtained for two cases of the considered class of system. The first case

considered an additive unknown term and the second case considered an additional uncertain

multiplicative element associated with the input. In both structures the unknown elements can

represent model uncertainties or bounded perturbations.

On the other hand, the approximation capabilities of the ANN have been used for the design

of an identifier for a class of homogeneous systems.

The design of an identification algorithm for standard homogeneous uncertain control sys-

tems was developed in this thesis using a DNN approach and stability Lyapunov theory to derive

the learning laws.

The convergence of the identification error and the learning laws is proven theoretically, given

as a result the ultimate boundedness and ISS for the identification error and the adaptive weights

of the network.

The PE condition for the designed identifier is used in the stability analysis, in other words,

a constructive form of the PE condition applied for the realization of the convergence analysis is

presented.

Numerical simulations were presented using a three-thank homogeneous model to demon-

strate the performance of the identification algorithm. The homogeneous identifier was compared

with a classical DNN identifier. The results of such comparison demonstrated that the homoge-

neous identifier approximates the homogeneous model of the three-tank simulation with less

oscillations and a smaller identification error.
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Future work

After the realization of this thesis, it is planned to extend the applications of the solutions

obtained here, for example:

• To implement the OC solution in an experimental platform and to study the performance

index evolution using different numbers of neurons in the ANN structure.

• In addition, the design of other class of algorithms for the learning laws to achieve an ap-

proximation in a predefined exponential time or learnings laws with finite time convergence.

This aims are for its used in the identification problem.

• As a future extension dor the identifier, it is planned the study of the particular different

cases based on the sign of the homogeneous degree and its identification due to the

requirements of Assumption 6, as well as the implementation in an experimental platform.

• Other future objective is to extend the result of the identifier for generalized homogeneity

and to use it for the design of the OC solution for the problem presented in this thesis but

considering an generalized homogeneous structure in the system.
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[107] R. Behling, D. S. Gonçalves, and S. A. Santos, “Local Convergence Analysis of the

Levenberg–Marquardt Framework for Nonzero-Residue Nonlinear Least-Squares Prob-

lems Under an Error Bound Condition,” Journal of Optimization Theory and Applications,

vol. 183, no. 3, pp. 1099–1122, 2019. 39

[108] E. Bergou, Y. Diouane, and V. Kungurtsev, “Global and Local Convergence of a Levenberg-

Marquadt Algorithm for Inverse Problems,” Technical Report ISAE-SUPAERO, Tech. Rep.,

2017. 39

[109] W. M. Haddad and V. Chellaboina, Nonlinear dynamical systems and control: a Lyapunov-

based approach, ., Ed. Princeton University Press, 2011. 42

[110] L. Ljung, “Some aspects on Nonlinear System Identification,” IFAC Proceedings Volumes,

vol. 39, no. 1, pp. 553 – 564, 2006, 14th IFAC Symposium on Identification and System

Parameter Estimation. 49

[111] S. A. Billings, “Identification of nonlinear systems-a survey,” in IEEE Proceedings D-Control

Theory and Applications, vol. 127, no. 6. IET, 1980, pp. 272–285. 50

[112] R. Haber and L. Keviczky, Nonlinear System Identification Input-Output Modeling Ap-

proach. Kluwer Academic Publishers, 1999. 50

[113] O. Nelles, Nonlinear system identification: from classical approaches to neural networks

and fuzzy models. Springer Science & Business Media, 2013. 50

[114] E. D. Sontag, “Some topics in neural networks and control,” in Proceedings of the European

Control Conference, 1993. 50

[115] P. Diaconis and M. Shahshahani, “On nonlinear functions of linear combinations,” SIAM

Journal on Scientific and Statistical Computing, vol. 5, no. 1, pp. 175–191, 1984. 50

[116] S. Hubbert, “Radial basis function interpolation on the sphere,” Ph.D. dissertation, Univer-

sity of London, 2002. 50

98



BIBLIOGRAPHY BIBLIOGRAPHY

[117] I. Chairez, “Adaptive neural network nonparametric identifier with normalized learning

laws,” IEEE Transactions on Neural Networks and Learning Systems, vol. 28, no. 5, pp.

1216–1227, 2017. 50, 55

[118] V. Zubov, “On systems of ordinary differential equations with generalized homogenous

right-hand sides,” Izvestiya Vuzov, Matematika, vol. 1, no. 2, pp. 80–88, 1958. 51

[119] V. V. Khomenuk, “(in russian),” Izvestiya Vuzov, Matematika, vol. 3, no. 22, pp. 157–164,

1961. 51

[120] M. Kawski, “Geometric homogeneity and stabilization,” in Nonlinear Control Systems De-

sign 1995. Elsevier, 1995, pp. 147–152. 51
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Appendix A

Complementary Results

A.1 Proof of boundedness for the auxiliary variables

This appendix presents the lemmas to prove the boundedness for δ and Ωi.

Lemma 1. Consider the following dynamical system:

ṙ = ϕ1 (t)Ar+ϕ2(t), (A.1)

where r ∈ R
n, A ∈ R

n×n is a Hurwitz matrix, ϕ1 : R+→ R+ is locally bounded separated from

zero

ϕ1 (t)≥ β1 > 0, ∀t ∈ R+, (A.2)

and the function ϕ2 : R+→R
n is globally bounded sup

t∈R+

‖ϕ2(t)‖= ϕ+
2 <+∞. Then, there exists

a class-K function ρr(·) such that the solutions of (A.1) satisfy

limsup
t→∞

‖r(t)‖ ≤ ρr

(

ϕ+
2

)

, (A.3)

Proof. Consider the Lyapunov function candidate Vr(r) = r
⊤

Pr, the time derivative is:

V̇r = ϕ1r
⊤ (

A⊤P+PA
)

r+2ϕ
⊤
2 Pr, (A.4)
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where P ∈ R
n×n, P = P⊤ > 0, such that:

A⊤P+PA≤−γP, γ ∈ R+, (A.5)

Using the Λ-inequality we derive

2ϕ
⊤
2 Pr ≤ ‖ϕ2‖2

Λ +‖Pr‖2
Λ−1, (A.6)

for any Λ ∈ R
n×n, Λ = Λ⊤, Λ > 0. By taking Λ = 2β−1

1 γ−1P in (A.6), considering (A.5) and the

condition (A.2), the following relation holds:

V̇r ≤−0.5β1γVr(r)+2β−1
1 γ−1λmax{P}‖ϕ2(t)‖2, (A.7)

Hence, we derive

limsup
t→+∞

Vr(t)≤
2β−1

1 γ−1λmax{P}(ϕ+
2 )

2

0.5β1γ

and (A.3) is fulfilled.

A.2 Persistent excitation condition

The following result is a Corollary of [124, Lemma 1].

Corollary 3. Consider the time-varying dynamical system:

ż(t) =−γz(t)KzG
⊤
z (t)Gz(t)z(t)+ v(t), t ∈ R+, (A.8)

where z(t) ∈ R
k is the state of the system, the continuous function γz : R+→ R+ is positive and

bounded 0 < γ− ≤ γz(t) ≤ γ+, ∀t ∈ R+, the continuous vector-valued function v : R+ → R
k is

uniformly bounded and limsupt→+∞ ‖v(t)‖ ≤ v+.

The symmetric matrix Kz ∈Rk×k is positive definite and the continuous matrix-valued function

Gz : R+→ R
q×k is uniformly bounded. If the following PE condition

∫ t+ℓ

t
G⊤z (s)Gz(s)ds≥ ϑIk, ∀t ∈ R+ (A.9)

holds for some ϑ > 0 and ℓ > 0, then, there exists ρz ∈ K such that for any initial condition

z(0)∈Rk, the solution z(t) of the system (A.8) is defined for all t ∈R+ and limsupt→+∞‖z(t)‖≤
ρz(v

+).
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Proof. Applying the following change of variable z̃ = K
−1/2
z z, we derive

dz̃(t)

dt
=−γz(t)K

1/2
z G⊤z (s)Gz(s)K

1/2
z z̃(t)+K

−1/2
z v(t)

Then,

−γz(t)K
1/2
z G⊤z (s)Gz(s)K

1/2
z z̃(t)+K

−1/2
z v(t) =−G̃⊤(s)G̃(s)z̃(t)+ ṽ(t),

where G̃(t) =
√

γz(t)Gz(t)K
1/2
z and ṽ(t) = K

−1/2
z v(t). Obviously, if the PE condition holds, then

∫ t+ℓ

t
G̃⊤(s)G̃(s)ds = K

1/2
z

(∫ t+ℓ

t
γz(s)G

⊤
z (s)Gz(s)ds

)

K
1/2
z .

Considering γ− the following inequality holds

∫ t+ℓ

t
G̃⊤(s)G̃(s)ds≥ γ−K

1/2
z

(∫ t+ℓ

t
G⊤z (s)Gz(s)ds

)

K
1/2
z .

Under (A.9), ∫ t+ℓ

t
G̃⊤(s)G̃(s)ds≥ γ−K

1/2
z (ϑIk)K

1/2
z ,

Therefore, as γ−K
1/2
z (ϑIk)K

1/2
z = γ−ϑKz, we obtain

∫ t+ℓ

t
G̃⊤(s)G̃(s)ds≥ γ−ϑλmin(Kz)Ik, ∀t ∈ R+.

Finally, applying [124, Lemma 1] we complete the proof.
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