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Resumen Ejecutivo

Las redes de Petri continuas temporizadas con la seméntica de servidores infinitos
(ContPN) son una relajacién de una red de Petri discreta, en la cual las transi-
ciones pueden ser disparadas en valores reales; por esta razén, el marcado de la
red (el estado del sistema) se vuelve un vector real no negativo. En este trabajo
se muestra que las ContPN se pueden modelar como un sistema lineal conmutado
(SLS), el cual consiste en una familia de sistemas lineales (LS) conmutando entre
sf; para la conmutacién de LS, dependiendo del marcado de la red, un LS se vuelve
activo. Un resultado conocido es que un SLS auténomo es observable si y solo sf
cada uno de los LS que lo conforman es observable y ademds cada par de ellos
es distinguible entre sf. Desafortunadamente, atin cuando el problema de Observ-
abilidad en SLS est4 resuelto, en las ContPN el problema no es trivial, puesto que
el ndmero de LS necesarios para la representacion de la ContPN en SLS crece de
manera exponencial con el nimero de transiciones de sincronizacién, haciendo
que el enfoque ingenuo de verificar si cada uno de los LS sea observable y cada
par de ellos sean distinguible, resulta imposible en términos préicticos. En cambio,
este trabajo presenta dos principales aportaciones:

o Una estrategia para la colocacién de sensores en una ContPN, la cual garan-
tiza que el sistema sea observable. Para esto, algunos de los subespacios
invariantes de la ContPN son caracterizados desde la estructura de la Con-
tPN, eliminando la necesidad de la enumeracién y célculo de las matrices
dindmicas de cada LS de la representacién en SLS de la ContPN.

o El disefio de observadores de estado que permiten el cémputo del marcado
del ContPN con un Gnico observador para redes de la clase free choice.



Abstract

Continuous timed Petri nets with infinite servers semantics (ContPN) are a relax-
ation of a discrete Petri net. In this case, transitions may be fired in real amounts.
For this reason, the marking of the net (the state of the system) becomes a non-
negative real vector. In this work it is shown that ContPN can be modelled with a
switched linear system (SLS), which is a family of linear systems (LS) switching
among them; for the switching of LS, depending on the marking of the net, a LS
is chosen. A known result is that an autonomous SLS is observable if and only if
every LS of the family is observable and each pair of LS is distinguishable from
each other. Unfortunately, even when the observability problem in SLS is solved,
in ContPN the problem is not trivial. This is because the number of LS in the fam-
ily of SLS increases exponentially with the number of join transitions; therefore
the naive approach of verifying the observability in each LS and the distinguisha-
bility between each pair of LS becomes prohibited in practice. Instead, this work
presents two main contributions:

1. An strategy for sensor placement in ContPN, which guarantees observabil-
ity. In order to achieve this, some of the invariant subspaces of the ContPN
are characterized from the ContPN structure, avoiding the need of the enu-
meration and computation of the dynamical matrices of each LS in the SLS
representation of the ContPN.

2. An observer design, which allows the computation of the marking of the
ContPN with a single observer structure for the free choice class of nets.
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Introduction

Discrete event systems (DES) framework is adequate to model in a very intuitive way a lot
of human designed systems [1]. For instance, consider algorithms, traffic [2], transportation
or manufacturing processes [3]; all these systems can be explained or modelled by a set of
steps, creating sequences of events leading to the completion of an activity. This behaviour is
easily captured using the DES concepts [4], {5], [1]. In order to represent these systems, many
paradigms have been developed, such as process algebras [6], boolean equations [7] [8], finite
automaton [9] and Petri nets [10] among many others. Each one of these paradigms provides a
series of formal objects to capture the main DES characteristics, such as the state of the system,
the events generating the state changes, event precedence relations and available resources in
the system. In the same way, DES provide a wide variety of strategies to control the behaviour
of the systems, such as te ones presented in [11], [12], [13]

Among the many modelling tools, Petri nets (PN), introduced by C. A. Petri in 1962 in
his doctoral thesis [10], provides a compact graphical DES representation, as well as a sound
mathematical background to analyze such models. The graphical representation includes two
types of nodes: places, usually associated to the system’s state and graphically represented
by circles; and transitions, usually associated to events and represented by boxes or squares.
These nodes are linked or connected by arcs, which are arrows pointing from a place to a
transition or from a transition to a place, and which constitute the precedence relations. The
system’s available resources are represented by fokens or marks residing inside each place.

Some relevant properties of PN are :

e Liveness, which deals with the possibility of a transition to be eventually fired again

from any reached state, i.e. the event can occur again.
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o Boundedness, which determines if there exists a bound for the maximum number of

tokens residing inside each place in any system’s state.

e Controllability, which deals with the problem of leading the state of the PN from an

initial state to a required one.

o Observability, which deals with the possibility to determine the initial state of the sys-
tem (or the current state of the system) when not all the state is available for measure-

ment.

In order to determine if any of the previous properties is present in a PN, there exist several
approaches [14], [15]:

1. Enumeration of the state space, which in PN is represented by the reachability graph.
Using this approach, it is always possible (theoretically in bounded PN) to determine if a
property is present on a PN. Unfortunately, when dealing with highly populated systems,
the state explosion problem appears, and therefore it becomes prohibited in practice to

use this approach.

2. Reduction techniques, which are based on finding out an equivalent net in which the
number of places or transitions is reduced, but guaranteeing the preservation of some
properties of interest. This leads to the analysis of a smaller PN. Unfortunately, this

approach does not provide solution for all possible cases [16].

3. Analytical techniques, which are based on the underlying structure of the PN, which
is captured in a matrix called the incidence matrix of the PN. These mathematical tech-
niques are usually dependent on the initial marking of the PN or provide only sufficient
or necessary conditions, but not both [16].

In order to avoid the state explosion problem, continuization or fluidization (when also
time is present) is an efficient relaxation technique used in many modelling paradigms, such as
queueing networks [17], Markovian models [18] and stochastic process algebras [19], among
many others. The continuization consists on approximating the discrete states by some contin-
uous ones [20]. In the PN context, the continuous PN were first introduced in [21]. This is
achieved by the continuization of the transition’s firing, i.e. enabled transitions can be executed

in real amounts.



Very often, the processes described by DES also have a time dependence [4] and many
techniques have been developed to analyze them [22]. In order to include the time in the PN
context, the timed PN were developed. This tool assigns to each transition a delay, i.e. a period
of time that the system must remain in a state before an event can occur. As a natural evo-
lution of timed PN continuous timed Petri nets (ContPN) were also developed (the fluidified
model). The ContPN provide useful information of the behaviour of the real system under
some considerations [23] [16] [24].

Even though ContPN were born as an approximation of the discrete PN, they have been
successfully used to model many hybrid and complex systems [25] such as biological systems
[26], traffic systems [27] and manufacturing systems [28], among many other. Besides the
modelling, many properties characterizations have been developed in the continuous PN and
ContPN framework [22]. Some relevant research areas in the continuous version of PN are:
fault detection [29], diagnosis [28], [30], control [31] [32] [33] and controllability [34], [35],
performance analysis [36] [37] and deadlock freeness [38].

Unfortunately, in many practical applications, the state of the system is not available for
measurement, but only a part of it (only the output of the system). The knowledge of the
state of the system is important for many applications, such as state feedback control, fault
detection, etc. Then, it is necessary to have techniques to determine either the initial state
of the system, and from its evolution, or the current state of the system [39], [40]. This is
known as the observability problem [41]. In this way, it is important to structurally characterize
if a ContPN presents the observability property [42], [43], [44], [45], [46] or to develop an
strategy to determine the adequate instrumentation that the ContPN must possess to become
observable. This work is concerned with two problems: the sensor placement for observability
in continuous timed Petri nets and, once the observability is obtained, the observer design.

In this work it is shown that ContPN can be modelled with a switched linear system (SLS)
[47], which is a family F of linear systems (LS) switching among them. The switching between
LS, depends on the marking of the net. The number of LS in the family F depends (exponen-
tially) on the number of join transitions, where a transition is named a join if it has more than
one input arc.

A very well known result is that an autonomous SLS is observable if and only if every LS
of the family is observable and each pair of LS is distinguishable from each other [48] [49].
The distinguishability property deals with the possibility of determining which LS is evolving
only by measuring the output of the SLS.
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Unfortunately, even when the observability problem in autonomous SLS is solved, in Con-
PN the observability problem is not trivial. This is because the number of LS in the family ¥
increases exponentially with the number of join transitions, i.e. there is a huge number of LS in
F; therefore the naive approach of verifying the observability in each LS and the distinguisha-
bility between each pair of LS becoines prohibited in practice.

Once a system presents the observability property, it is possible to design an observer,
which will allow the computation of the state of the system ([41], [40], [39] and [50]).

1.1 State of the art

In the literature there exist some results on observability in ContPN. The most relevant results
on this topic are presented in [44], [45] and [43]. These results are developed in a very intuitive
way using the underlying graph of the ContPN. With this approach, in [44] the first basic results
on observability in ContPN are presented. First, consider a place with a sensor, i.e. the marking
of such measured place is always known. Using the knowledge of the marking of a measured
place, the authors show that it is possible to compute the marking of places located upstream as
long as there does not exist any attribution place (a place with more than one input transition).
Using this reasoning and a set of measured places, they also present an algorithm to determine
all the places whose marking can be computed. Then, with the aim of extending these results
for ContPN with join transitions, they provide some conditions under which the same results
hold for the non-join free case.

Once the observability property has been proved, the authors provide an strategy for com-
puting estimates in the non-free case of ConsPN. In this case, the main drawback is that they
propose to construct an observer for each LS and then filter out those observers which provide
markings which are not coherent with the ContPN marking.

In [45], the previous results presented in [44] are extended and clarified. Since the number
of LS in the SLS representation of the ContPN increases exponentially, the authors provide a
linear programming problem (LPP) to determine which LS are redundant, i.e. those LS should
not be analyzed since they are never active or they are included in the border of one of the
convex polyedral regions of the system [51] [52].

In [45], the authors also provide a characterization for observability in ContPN which also

contain attribution places. This result is a particular result of the ones provided in generic
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observability for structured linear systems [53], where an associated directed graph is con-
structed. The main drawback of this approach is that in order to determine if the ContPN is
observable, it is necessary to search in the associated directed graph for a contraction [53],
which is also an NP-algorithm.

Finally in [43] the authors provide an strategy to determine optimal cost sensor placement.
It is based on assigning a cost of measuring each place. Then, they construct an output map
such that the ContPN is observable at minimum cost. Unfortunately, these results are very
restrictive in the classes of ContPN that can be solved with the algorithm that they present.
This is because even though the authors use the structure of the ContPN to solve some classes
of nets, the algorithm is still of complexity NP in the general case.

1.2 Objective and main contributions
The main objectives of this work are:

1. To find a procedure for the sensor placement in a general ContPN such that it becomes
observable.

2. To develop an observer design such that with a single observer it is possible to compute
the state of the ContPN.

The first objective deals with the sensor placement for the observability problem. As pre-
viously discussed, if a ContPN presents the observability property, then it is possible to deter-
mine the initial or the current state of the system. Unfortunately, as previously discussed, it is
not possible in practice to determine the observability property of a ContPN using traditional
methods (such as verifying the rank of the observability matrix [40], [39]), since they lead to
complete NP algorithms. Instead, this work presents an strategy for sensor placement in Con-
tPN which guarantees observability. In order to achieve this, some of the invariant subspaces
of the ContPN are characterized directly from the ContPN structure. Using the PN structure,
it is avoided the need of enumerating and computing all of the dynamical matrices (one per LS
in the SLS representation of the ContPN).

The second objective deals with the observer design. An observer design for ContPN will
be presented allowing the computation of the marking of the ContPN with a single observer

for the free choice class of nets. This is relevant, since the classical approach is to design an
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observer for each LS; then it is decided which LS is actually active and the state is obtained
from its observer. Unfortunately this approach would require a large number of observers to be

designed, and therefore the existence of a single observer structure is of relevance.

1.3 Document organization

This document is organized as follows:

o Chapter 2 presents basic concepts on Petri nets and its extensions to continuous and
continuous timed Petri nets (ContPN). In this chapter, a brief review of concepts in linear

systems is included.
e Chapter 3 reviews the existing results on observability and observers design in ContPN.

e Chapter 4 introduces the A —invariant subspaces in the ContPN context. These Ax—invariant
subspaces will be characterized using the structure of the ContPN.

o Chapter 5 deals with the sensor placement problem. In order to achieve this, some of the
A—invariant subspaces of the ContPN are characterized. Based on these A—invariant
subspaces, an algorithm is introduced to place sensors in the ContPN such that observ-
ability is guaranteed. Since the sensor placement algorithm does not guarantee the op-
timality in the number of sensors, an algorithm to reduce the number of sensors is also
included.

o Chapter 6 is concened with the observer design. For this, a dynamic separation of
the state equation of the ContPN is introduced. With this dynamic separation, a single
structure observer design is presented, which guarantees the asymptotic convergence of
the estimate marking at any desired rate.

o Chapter 7 presents a case of study based on the cigarettes production process. In this
chapter, the process will be represented as a ContPN and then the sensor placement
algorithms will be used to guarantee that the model of the process is observable. Finally,
an observer for the process will be designed.

o Chapter 8 provides the conclusions and future work.



2

Basic Concepts

This chapter contains the basic concepts and the notation used in this work. In Section 2.1 the
Petri nets are presented. The basic concepts such as its structure, graphical representation, the
incidence matrix and the discrete evolution is presented. Then, its extensions to continuous and
continuous timed Petri nets (ContPN) are presented in Section 2.1.2. This section also includes
the basic concepts of controllability and observability in ContPN. Finally, at the end of Section
2.1.2, it will be shown that a continuous timed Petri net can be represented by a switched linear
system (SLS), which is a family of linear systems (LS) switching among them. Therefore, in
the Sections 2.3 and 2.4, some basic concepts on linear systems and switched linear systems
are briefly recalled.
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2.1 Petri Nets

This section is devoted to formally define Petri nets (PN) and its relaxations to continuous PN
and continuous timed PN. The Petri nets were first introduced by C. A. Petri in 1962 in his
Ph. D. thesis [10]. Since then, many extensions to PN have been developed and nowadays,
PN s represent a wide research area in the discrete event systems framework. PN and its re-
laxations have been intensively studied and are commonly used to model, analyze and control
systems [1] in several fields such as communications systems, [54], [55], computer science
[56]), manufacturing [57], [3], traffic [58] and diagnosis [59], among other applications.

Basic definitions and relevant concepts of PN, continuous PN and continuous timed PN
will be presented next. An interested reader on PN may consult [14], [56]; on continuous
PN, its introduction and general concepts may read [60], [61]; on continuous timed Petri nets

(ContPN) with the infinite servers semantics may consult [16].

2.1.1 Discrete Petri Nets

Definition 2.1.1 The Petri net structure is a bipartite digraph formed by the four-tuple N =
(P,T,Pre,Post) where P = {p1,p2,--.,P|p|} is a finite set of nodes called places; T =
{t1,t2,.--, t|T|} is a finite set of nodes called transitions; The sets P and T are disjoin, i.e.
PNT = 0. Pre and Post are |P| x |T| matrices representing the weighted arcs going from
places to transitions and from transitions to places respectively.

Each node, either a place or a transition, and the directed arcs can be graphically repre-

sented as follows:
o Places are represented as circles
o Transitions are represented as boxes or squares
o Arcs are represented as arrows from the source node to the ending node.
Example 2.1.2 In Figure 2.1.1, a simple PN structure with two places and two transitions is

presented. The set of places is P = {p1,p2,p3}. The set of transitions is T = {t1,ta,t3,t4}.
Matrices Pre and Post are:

1 1 00
Pre= |0 001
0 010

o = O
o = O
- o O
e,
g
I
o = o
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n
to t4
Figure 2.1.1: A simple PN structure.

The graphical connection among nodes, represented by the arcs, lead to the concept of
input set and output set of a node. This is formally defined next:

Definition 2.1.3 Letn € PUT be a node of N.
The input set of n or Pre-set of n, denoted by en, is defined as:

on = {n; € PUT)| there exists an arc from n; to n}.
The output set of a node n or Post-set of n, denoted by ne, is defined as:

ne = {n; € PUT)| there exists an arc from n to n;}.
A sequence of nodes in which n; € ne is named a path, formally defined next.

Definition 2.1.4 [14] A path in a PN structure N is a non-empty sequence nny...ng of nodes
whichVYh = 1,2, ..., g satisfies:
Nyl € Npe

i.e. there exists an arc between node ny, and 1.

A path w = nyny...ny is said to lead from n; to ng. It is clear that it starts in n; and ends
inn,.
Definition 2.1.5 Ler w be a path in a PN.

® The notation final(w) stands for the final node of the path w.

e The notation & € (N U 0)TWHPl is g vector which contains the number of times that the
T
node n; appears in the path w, according to the indexation [pl - PPt . tITl]
Particularly 1; represents the vector for the path w = n;.

¢ Let wy = nyny...n, be a finite path. The notation wn stands for the new path wy =
mng...ngnl.
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Example 2.1.6 Take the PN structure in Fig. 2.1.1. The sequence w; = pitips is a path.
However, the sequence wy = p1paps is not, since there are no arcs from p, to ps.

The final node of the path w1, final(w;) = ps.

The corresponding vector W is given by:

w*1=[1101000]T

For the construction of a path, consider the path w1. The path w3 = w1tz = p1t1pats, with
its corresponding vector:

a7§=[1101010]T

Some nodes of particular interest are the ending nodes, formally defined next.

Definition 2.1.7 A node n € P U T is named an ending node if ne = {.

Figure 2.1.2: Ending nodes.

For instance, in Figure 2.1.1, ep; = {t2}, ot2 = {p2}, p2e = {t2,t3} and tze = {p3}.
This PN does not have any ending node. The ending nodes are represented in Figure 2.1.2.

The transitions in a PN can be classified based on its input places, as shown in the next
definition:

Definition 2.1.8 Types of transitions based on its input places.

1. Join transitions. A transition is named a join transition if it has more than one input
place. The set of join transitions is Ty = {t; € T| |et;| > 1}.

2. Single input transitions. A transition is named a single input transition if it has only
one input place. The set of single input transitions is Ts = {t; € T |ot;| = 1}.

It is clear from the previous definition that the set of join transitions and single input tran-
sitions are a partition of T, i.e. TyNTs =Qand T; UTs =T.
Similarly to transitions, places can also be classified based on its input transitions in:

Definition 2.1.9 Types of places based on its input transitions.

10



2.1 Petri Nets

1. Attribution places. A place is named an attribution place if it has more than one input
transition. The set of attribution places is Py = {p; € P| |ep;| > 1}

2. Single input places. A place is named a single input place if it has only one input
transition. The set of single input places is Ps = {p; € P| |ep;| = 1}

It is also clear that the set of attribution places and single input places are a partition of P,
ie. PANPs=0and PA,UPs=T.

t 4
n
tn

Pn+
Figure 2.1.3: A join transition and an attribution place.

In Figure 2.1.3, transition ¢, is a join transition. Similarly, place p,; is an attribution
place.

Transitions can also be classified by its output places:

Definition 2.1.10 Types of transitions based on its output places.

1. Ending transitions. A transition is named an ending transition if it does not have any
output place. The set of ending transitions is Tg, = {t; € T| t;e = 0}

2. Atributing transitions. A transition is named attributing transition if at least one of its
output places is an attribution place. The set of attributing transitions is Ta = {t; €
T| 3p; € tio, pj € Pa}

Finally, places can also be classified by its output transitions:

Definition 2.1.11 Types of places based on its output transitions.

1. Ending place. A place is named an ending place if it does not have any output transi-
tions. The set of ending places is Pg = {p; € P| pje = 0}

2. Join-input place. A place is named a join-input place if at least one of its output transi-
tions is a join transition. The set of join-input places is P; = {p; € P| 3t; € pje, t; €
T5}

11
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TJ P, A PS

TE PE‘

Ta Py

Figure 2.1.4: Classification of transitions and places.

The classification of transitions and places is presented as a Venn diagram in Figure 2.1.4.
There exists some basic classes of PN. These classes are defined based on its structure.

Definition 2.1.12 A PN is said to be

e Join Free (JF) if:
VteT, |Ot,'| <1

o Attribution-Free (AF) if:
Vperl.pl'l 51

o Join-Attribution-Free (JAF) if:
Vpe P op;| <1&VteT,|ot;| <1
o State machine or S-net [14] if:
Vt €T, |ot| = |te| =1
Marked graph or T-net [14] if:
Vp € P,|op| = |pe| = 1
o Free choice (FC) [14] if:

Vp1,p2 € P either py @ Npae = () or p1e = pye

In Figure 2.1.5 a), the dashed arc makes the PN not to be a state machine. If it was removed,
then the PN would be a state machine. Similarly in Figure 2.1.5 b), the dashed arc makes the
PN not to be a marked graph. Similarly if it was removed, the PN would be a marked graph.

12
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pi t:ﬂ ff tzl] pt tgl]
7O Pl

a) b)

Figure 2.1.5: The state machine and marked graph case.

%mig EIQ
1 2 I3 4 i5
a) b)

Figure 2.1.6: The Free-Choice case.

It is clear that S-nets and T-nets are subclasses of Free choice (FC). The PN in Figure 2.1.6,
a) is not a Free choice while b) is. If the dashed arc in Fig. 2.1.6 a) was removed, then both
cases would be FC.

Definition 2.1.13 A Petri net system or simply a Petri net (PN) is the tuple (N, mg) where N
is the Petri net structure and my is the initial token distribution or initial marking, where a

marking m : P — Zg;,l is a vector representing the number of tokens inside each place. The
notation m(p;) denotes the marking in the place p;.

t1 t3
n 3
ta t4
Figure 2.1.7: A simple PN system.

A transition ¢; is said to be enabled at a marking my if for every place p; € ot;, my(p;) >
Pre(pj, t;); if the transition t; is enabled at a marking my, then t; can be fired reaching a
new marking my ;. The notation my, represents the k—th (ordered) element in a sequence of
markings. The firing of a transition ¢; removes Pre(z, j) tokens from each place p; € ot; and
adds Post (4, h) tokens in each place pj, € t;e.

13
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In a similar way, let o = ¢;,t;,...t;, be a firing transitions sequence leading from myg to

some m in the following way:

ty, & ty, &
mp 3 m; =3 my 3 ... 3 myyy
t; .
where t;,,t;,,...,t;,, € T and the notation my % m;,, means that from the marking mx
transition ¢;, is fired, reaching a new marking my ;. This discrete evolution can also be
computed by the equation
myy; = mg + Cd

which is known as the fundamental PN equation, where C = Post — Pre is the incidence
matrix and & is an |T'|-dimensional vector with the i-th entry representing the number of oc-
currences of ¢; in o. Vector & is known as the parikh vector of a sequence o.

For instance, in the PN in Figure 2.1.7, transitions t2 and t3 are enabled 3 times, while
transitions £; and t4 are not enabled. If transition £, is fired once, then the marking m; =
[1 2 O]T is reached. With marking m; transition ¢; is now enabled and therefore it is
capable of being fired. The firing of transition ¢2 and the marking m; can be computed with
equation (2.1.1) as follows:

0 -1 1 0 0
m=|3/+|]1 -1 -1 1
0 0o 0 1 -1

Left and right rational annulers of C are called P-and T-flows respectively. When the
elements of the annuler are either positive or zero they are called P-Semiflow and T-Semiflow.

oo =o
I
—
O N

Definition 2.1.14 A T-Semiflow is a rational solution X > 0 for
C-X=0
Definition 2.1.15 A P-Semiflow is a rational solution Y > 0 for
vyT.c=o0.

The notation Y > 0 (Y > 0) means that the vector Y’ is greater than (greater or equal than)
zero in each entry, i.e. the i-th entry Y (i) > 0 (Y'(i) > 0), Vi = 1,2,...,|Y].

Definition 2.1.16 If there exists a T-Semifiow X > O, then the PN is said to be consistent.
If there exists a P-Semifiow Y > 0, then the PN is said to be conservative.

14



2.1 Petri Nets

Another important structure of the PN are siphons and traps, formally defined next.

Definition 2.1.17 A set of places Ps C P of a PN is a siphon if:

oPs C Pse

A siphon Ps is called proper siphon if Pr # 0, i.e. it is not the empty set.

Definition 2.1.18 A set of places Pr C P of a PN is a trap if:

Pre C oPr

A trap Pr is called proper trap if Pr # 0, i.e. it is not the empty set.

The characterization of every siphon and trap of a PN has been proved of NP complexity,
however, an interesting approach for generating a family of siphons and traps is presented in
[62]. It is based on the synthesis of a generator of siphons or traps.

The following proposition shows a trap generator.

Propasition 2.1.19 [62]
Let (N, mg) be a PN, where Pre = W~ and Post = W+. Also, let W; and Wy be two
non negative |P| x |T'| matrices, such that:

Wilpt]=0<= W+ =0

2.1
Wylpt] =0<= W~ =0. @D

Also, let Wy = W,T" — Wy . Ify is an integer non-negative solution of
yl-Wp>0
then (y) isatrap of N.

When infinite servers semantics is used, if the input places t; of a transition ¢; have enough
tokens, the transition may be fired as many times as possible at once. The number of times that
a transition can be fired at a given marking is known as its enabling degree. This concept will
be formally defined later.

As a notation, for any vector y € RIP! (x € RIT!), y(p;) (x(p;)) represents the value of
the vector in its corresponding j-th (i-th) entry associated to place p; (transition ¢;).
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Definition 2.1.20 [14] The Support of a vector x € RIT| (y € RIP)), denoted by (x) ((y)) is

the set of all the transitions (places) satisfying x(t;) # 0 (y(p;) # 0), where x(t;) (y(p;)) is
the value of x (y) in the corresponding position of t; (p;)

(x) = {t: € T|x(t;) # 0}
({y) = {p; € Ply(p;) # 0}).

For instance, let m = [0 1 2] Tbea marking of the PN in Figure 2.1.7. The support of
m is (m) = {pz, p3}.

As a notation, an elementary vector is a vector e;, € {0, 1}™ having n — 1 zeros and only
one entry equal to one in the h — th position, of the form e, = [0 . 01 0 .. O]T
The elementary vectors are important since they can represent in vectorial form a place or a

transition. This is formally defined next.

Definition 2.1.21 A place p; is said to be associated to an elementary vector e; € {0,1}/Pl
and represented by e; ~ pj, since

(ej) = {ps}
A transition t; is said to be associated to an elementary vector e; € {0, 1}|T' and repre-
sented by e; ~ t;, since

(ej) = {t:}.
2.1.2 Continuous Petri nets

A continuous Petri net, introduced in [21] and further studied in [60], [63], [64], [61] and [65],
is a relaxation of the discrete PN model, where a transition can be fired in any real amount
between zero and its enabling degree. As a consequence, the number of tokens in each place

can be a positive real number. This model is formally defined below.

Definition 2.1.22 A continuous Petri net, is the tuple (N, mq) where N is the PN structure
and my is the initial token distribution, where m : P — ]RL%' is a vector representing the

number of tokens inside each place.

In a continuous Petri net a transition ¢; € T is enabled if and only if for every pj €
ot;, m(p;) > 0. The enabling degree of a continuous transition t; is given by the equation:

m(p;) }

enab(t;,m) = pﬂlﬂi {m
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2.1 Petri Nets

An enabled transition t; at a marking m can be fired in any real amount 0 < o; <

enab(t;, m) leading to a marking m’ that can be computed with the fundamental continuous

PN equation
m’ = m+ C& 22
where & = [01 0'|T|] T, represents the firing amounts of each transition.
4 i3
n 3
() t4

Figure 2.1.8: A continuous PN system.

In figure 2.1.8 a continuous Petri net system (CPN) is presented. Transitions ¢z and ¢3 are
3 — enabled. If transition ¢ is fired 1.3 times and transition ¢3 is fired 0.9 times, the CPN

reaches a new marking

0 -1 1 0 O 103 1.3
m=|3|+|1 -1 -1 1 0' 9| = 0.8
0 0 0 1 -1 0 0.9

2.1.3 Continuous timed Petri nets

In order to include the notion of time in the continuous PN models, a function A : T' — Rxq is
introduced. This function assigns to each transition a positive value representing the maximum
number of tokens that can flow through the transition per time unit and per server [51] and it is
called the firing rate of the transition. Hence, a continuous timed Petri net (ContPN) is formally
defined as:

Definition 2.1.23 A continuous timed Petri net system is the tuple (N, A\, mg) where N is the
Petri net structure; A : T — Ryq are the firing rates of the transitions and my is the initial
marking of the net.

The marking evolution of the ContPN is now modelled with the equation

m(7) = mg + C&(7) .(2.3)

17
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where (1) represents the firings amounts of each transition at time 7.
Since the marking evolution is now time dependent, it is possible to obtain the derivative

of Eq. (2.3) with respect to time 7 to obtain the dynamic equation
m(r) = C&(r) = Cf(r), m(0) = my. (2.4

The relaxation of the discrete model used in this work considers infinite server semantics,
therefore the flow f(7) through a transition ¢; is computed as the product of A(t;)enab(t;, m).

As a notation, the firing rate of a transition is represented by A(t;) = A;, and the vector
A= e ]t

The computation of a transition’s flow requires the computation of its enabling degree
function: enab(t, m); however, this function requires the min operator, which leads to the

concept of configurations.

Definition 2.1.24 A configuration Cy, of a net N is a set of (p,t) arcs, one per transition,
covering the set T of transitions [16].

A configuration is represented by the set of |T°| arcs covering T', and denoted by Cy. If an
arc (pj,t;) € Cx, then it is said that the place p; constrains transition £; or that transition t; is
constrained by the place p;.

The flow through the transitions can be written as f(m) = AII(m)m [51] where A =
diag()) and I1(m) is the configuration matrix at marking m, defined by

1

.. ——— if p; constrains ¢;
(m) [i,j] = { Pre[pj,t] P; *
0

2.5)
otherwise.

If more than one place is constraining the flow of a transition at a given marking, any of
them can be used, but only one is taken. The number of configurations in a ContPN is upper-

bounded by Ht.-eT | @ ¢;], i.e. there exists an exponential number of configurations.

Example 2.1.25 Consider the ContPN in Figure 2.1.9, transition t3 is a join transition. Its gow
can be either constrained by place p, or place py. With the marking mg = [0 30 O] its
flow is actually constrained by place py, since mg(p4) < myp(p2). Letm; = [0.5 05 0 1.5]

T
be the marking of the ContPN after the firing sequence G = [1.5 2 0] Now, m(pz) <
m(p4) and the flow of transition t3 is now constrained by place pa. The configuration matrices

for this example are:
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41 3

to t4

Figure 2.1.9: A continuous PN system with join transitions.

1000 1000
0100 0100

H = Hm_—_

mo)=10 0 0 1| "™)=15 1 ¢ 0
0010 0010

A ContPN with infinite servers semantics (or just ContPN), as previously discussed, can
be modelled by a SLS with polyhedral regions determined by the configurations [51], [52]. A
region, denoted by Ry, is a set of markings reachable from the initial marking my, such that
they have the same configuration matrix.

The configuration matrix for the region Ry will be denoted by Ilx. Thus, (2.4) can be

rewritten for the k-th region as:

m = CAIl;m. (2.6)

Source transitions are not defined in the infinite servers semantics, because no place is
constraining its flow. One way to define constant flow transition (fixed flow source transition)
is to model a transition ¢; together with a place p; such that et; = t;e = p; and Pre(p;,t;) =
Post(t;,p;) = 1 asin Fig. 2.1.10. Next definition is introduced to ensure that (2.6) can model

the flow Vt; € T'.

(ex

Figure 2.1.10: A well defined source transition.
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Definition 2.1.26 In a ContPN, a transition t; € T is named well defined if |ot;| > 1, i.e. it
has at least one input place. '

Definition 2.1.27 A ContPN is named well defined ifVt; € T, t; is well defined.

Through this work the ContPN are considered to be well defined.

2.2 Controlability and Control Laws

The results presented in this section are taken from [35], [34] and [66].

In order to apply a control action in Equation (2.6), a subtracting term u;, 0 < u; < fj, is
added to every transition £; to indicate that its flow can be reduced. This is adequate because it
captures the real behaviour in which the maximum machine’s throughput can only be reduced.
Thus the controlled flow of transition ¢;, becomes w; = f; — u;. In this sense, f; is named the
natural flow of the transition £; and wj; is its controlled flow.

Now, introducing f = All - m and u in (2.6) the forced state equation is

m=C[f —u] = Cw
0<u; < fi

Definition 2.2.1 If the inequality
0<u; < f; @7

holds, then the control action is named suitably bounded.
A simplified version of the state equation can be obtained writing the input vector as
u = IyAll; - m,

where I, = diag (Iul, Piiy Ium) and 0 < I, < 1. Then the matrix I, = I —I,, is constructed

and the state equation can be rewritten as
m= CI.f = Cw. (2.8)

Notice that 0 < I, < 1 is the equivalent condition of Eq 2.7 (suitably bounded). In this
way, the diagonal values I, represent the opening proportion of a transition’s natural flow.

As in the case of the discrete PN, the set of all reachable markings from my is called the
reachability set [67] and it is denoted by RS (N, mg).
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2.2.1 Observability in ContPN

Some important definitions regarding the observability in ContPN will be provided next. An
interested reader can find more information in [44], [45], [46], [43], [16].

The output matrix of a ContPN is represented by the matrix S. This matrix .S is composed
only by transposed elementary vectors, showing which places of the ContPN have a sensor.
This is formally defined next.

Definition 2.2.2 Let S be the output matrix of a ContPN. A place p; € P is said to be measured
if there exists a row h in S, represented by S(h, e) such that:

S(h,e) = e;
where ej ~ p;j (i.e. e; € {0, 1}1Pl and (e;) = pj)
Definition 2.2.3 Let S be the output matrix of a ContPN.
Py (S) = {pjleJT-'is a row of matrix S}
is the set of measured places with the output matrix S.

Definition 2.2.4 [46] A ContPN system (N, my, )) is observable in infinitesimal time if it is
always possible to compute its initial state mq in any time interval T € [0,€], Ye > 0, by
measuring only a set of places Pys C P.

It is important to recall that the aim of this work is to develop a strategy to construct an
output matrix S such that the ContPN is observable in polynomial time.

222 Controllability in ContPN

Once it is guaranteed that a ContPN is observable with an appropriate sensor placement, the
second objective of this work is to deal with the construction of observers. Then, it is also
interesting to use the observer integrated with a control strategy. Therefore, in this subsection
some basic concepts of controllability in ContPN will be briefly recalled.

Since ContPN are positive SLS then the LS controllability concept cannot be applied to this

case. Instead, the controllability definition presented in [66] is used.

Definition 2.2.5 The equivalence relation 3 is defined as m; fmy; iff BTm; = BTmy, where
B is an algebraic basis of P-flows.
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The system admissible states set is the equivalent class of the initial marking Class (mg)
under the relation 8. The set of interior points of Class (myg) is defined as

intClass(mg) = {m € Class(mg) A Vp; € P, m(p;) # 0}.

Definition 2.2.6 Let (N, )\, mq) be a ContPN. The system is said to be fully controllable
with bounded input (BIFC) if there is an input such that for any two markings mi, my €
Class (mp), it is possible to transfer the marking from m to my in finite or infinite time, and
the input fulfils the suitably bounded condition along the trajectory.

The system is said to be controllable with bounded input (BIC) over S C Class (my)
if there is an input such that for any two markings m1,my € S, it is possible to transfer the
marking from my to my in finite or infinite time, and the input fulfils the suitably bounded
condition along the trajectory.

It is important to remark that controllability is a structural property for the ContPN. The

following theorem is valid only when all transitions in a ContPN are controllable.

Theorem 2.2.7 A ContPN is BIFC iff the structure of the net N is consistent and there do not
exist empty siphons at any marking in Class(mg).

BT

PROCESS STORE

Figure 2.2.1: A manufacturing process.

Example 2.2.8 Consider the manufacturing process depicted in Figure 2.2.1. The ContPN of
this manufacturing process is presented in Figure 2.2.2.

Places py and py represent a production machine, places p3 and p4 represent a store
(buffer) and places ps and pg represent a consumption machine. Marking m represents inac-
tive production resources, my represents active production resources, mg represents free cells
of storage (10 of them), my represents occupied cells of storage, ms represents free carriers
and mg represents occupied carriers.

Transition t puts a free production resource to work, transition tp produces a product if
there is a free cell and release a production resource, transition t3 consumes a product from

the store if there is a free carrier, releasing a cell, and transition t4 releases a carrier.
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2.2 Controlability and Control Laws

Figure 2.2.2: ContPN model of a manufacturing process.

This ContPN has four different configurations and therefore there are four different prop-
agation matrices. The configurations index corresponds to the following sets of places and
transitions:

R = {(Pl, t1), (pz,tz), (P4, t3): (ps> t4)}
Rz = {(p1,t1), (P2, t2), (P5, 13), (Ps, t4)}
R3 = {(p1,t1), (3, t2), (P4, t3), (Ps, t4)}
Rq = {(p1,t1), (p3, t2), (P5, 13), (P6, ta)}-

The incidence matrix of this ContPN is given by:

-1 1 0 o]
i, =i 0
c_|0 -1 1 0
0 -1 0
0 -1 1

0 0 1 -1

T
Since there exists T = [1 1111 1] such that Cx = 0, then the ContPN is
controllable.

Another important concept is the equilibrium point, formally presented next.

Definition 2.2.9 Let (N, \, mp) be a ContPN. Also, letmeg € RS (N,mq) and0 < I, [i,i] <

LIf
m = CL,, ATl (m,g) - meg =0,

then (meg, L.,

steady state flow for (Meg, I.,,) is Ws (Meg, Ie,,) = Ic, ATl (Meg) - Meg.

) is called an equilibrium point and m.q an equilibrium marking. Also, the

An equilibrium point represents a state in which the system can be maintained using the

defined control action. According to [51], these points can represent states of maximum system
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‘throughput. Thus, an important problem is that given an initial marking mg and a required
target marking m, (for instance, markings allowing maximum system throughput), to obtain
a control law leading the ContPN state from myg to m,. This problem is formally defined as

follows.

Definition 2.2.10 Let (N, \,mg) be a ContPN. Then the Regulation Control Problem in
(my, I, ) (written as RC P(my, I...) deals with the computation of a control law I.(7), 0 <
T < 7y feasible in the ContPN such that m(7,5) = m, and I(755) = I, , V145 > 74.

2.2.3 Control laws

Control laws for ContPN are widely studied in the literature. For instance in [68] a fuzzy
proportional controller is introduced. However, it only guarantees a bounded error between the
target and the actual final marking of the system. In [32] implicit and explicit Model Predictive
Control are presented as well as a comparison between them. Unfortunately the computational
time becomes prohibited when the system is large on the number of nodes.

In [33] a control strategy is presented, assigning piecewise constant flows to transitions
in order to reach the target state. The idea presented is to use linear programming to drive
the system through a linear trajectory and then to include intermediate states to improve time
performance. Nevertheless, an important drawback of this approach is that the problem of
defining the intermediate states is exponential.

In this work, the idea presented in [26] and [69] will be briefly reviewed.

In order to deal with the ContPN it is necessary to measure the cumulative transition’s flow,
therefore some extra places are added to the ContPN. The following definition shows how these

places are included in an extended ContPN.

Definition 2.2.11 Let (N, mg, A) be a ContPN, where N = (P, T, Pre, Post). Its extension
is defined by xContPN = (N, myq_, \), where:
N; = (PU P,,T,Pre,Post U Post,),

T
Pl =T}, mo, = [ mo Oy |
Post, = {(ti,Pa;) |Vti € T andVpa; € Pa } .

T
Then the incidence matrix of zContPN is C; = [ C Ip ]
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Figure 2.2.3: An extended ContPN.

Since IT; (m;) = [ I (m) Oppyxr| ] , then the state equation of zContPN is

o m Cw
““=[l;1¢]=[w] 29)
m(0) = mg, m,(0) =0.

Notice that the extension has the same dynamics over the marking as the original system
and the marking over extra places is the transition flow integration, then it can only increase.
In fact, if the ContPNis live, then by construction the zContPN is also live.

As an illustration about the extension concept refer to Figure 2.2.3.

Another concept that will be used herein is the minimum Parikh vector. A Parikh vector o,
Vi oli] > 0, due to m must fulfil m = my + Co, where my is the initial marking and m is the
reached marking. When a ContPN is live it contains right annulers of C (T-flows), therefore
o has several solutions such that m — mg = Co. In order to fix a unique solution it is chosen,
for convenience, the one which involves less marking transit, i.e. the smallest vector solution.

This can be done by solving the next linear programming problem:
Omin = mino suchthat Co =m, —mgando >0 (2.10)
where m, € RS(N, my) is a marking that is required to reach.
223.1 A solution to the regulation control problem
A solution to the regulation control problem for ContPNss is presented next [[26]].

Theorem 2.2.12 Let (N, my, ) be a BIC over int (Class (mg)) ContPN and zContPN =
(Nz,mg,, \) be its extension. If (I..,m,) is an arbitrary equilibrium point such that m, €
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int (Class (my)), then there exists 1.(1), 0 < T < 7y, feasible in the ContPN such that
m(7ss) = my, Ie(7ss) = I, , VTes > Tf-

Ic.-={ 1 ifmgli] < or[i]

2.11
0 otherwise ( )

where Co, = m, — my.

L
1]
(B
-
H

"""""""""""""""""""""""""""""""""""""""" —m[1]

ast T -=--m[2]||
""" mid

L —m| 1
a o e mis]
a5k ——m[6]

2.5 3 35 4 45 5
Time

Figure 2.2.4: The controlled marking evolution of a ContPN.

Figure 2.2.4 shows the marking evolution of the system in Figure 2.2.2 using the control
law presented in Theorem 2.2.12 and with a target markingm, = [2 0 10 0 0 3]T
This is computed considering that the marking of all places is known V7.

2.3 Linear systems

Since each configuration in the ContPN defines a linear system, some basic concepts that will
be used through this work will be briefly recalled. An interested reader may consult [40] and
[39].

A time invariant linear system (LS) £(A, B, S) is represented by

() = Az(r) + Bu(r), y(r) = Sz(r)
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where £ € R is the state vector, u € R? is the control input, y € R? the output signal
(sensors in the systems which are a linear combination of the state vector), and A, B and S are
constant matrices of appropriate dimensions. A LS is a differential equation and its evolution
is completely defined with an initial condition z(7p) = zo, where 79 is the initial time (usually
0).

The evolution of the state of the LS ¥(A, B, S) is given by the equation [40]

,
z(1) = ATz + / €A% Bu(y)dy.
i
It is clear from the previous equation that if the initial condition z(7g) is known, then it is
possible to determine the value for the state vector z V7. Unfortunately, in practical problems,
the initial condition cannot always be exactly known. This leads to the problem of determin-
ing the initial condition of the state z of the LS only by the knowledge (or measurement) of
the output variables within a finite time period. This problem is known as the observability

problem. The observability property in a LS is formally defined next.

Definition 2.3.1 [40] The system ¥ (A, B, S) is said to be observable at time Ty if there exists
afinite time 71 > Tq such that for any state o at time 7o, the knowledge of the input v, | and
the output Yir, | over the time interval [10,71] suffices to determine the state To. Otherwise
the system ¥ (A, B, S) is said to be unobservable at time Ty.

This problem has been addressed and is completely solved for LS [40], [39], [41]. The

characterization for the observability problem in LS is presented in the next subsection.

2.3.1 Observability in LS.
With the following theorems it is possible to determine if a LS is observable.

Theorem 2.3.2 The linear time-invariant system Y, (A, B, S) is observable iff the observabil-
ity matrix
wT|*
0=[s7 (sAT .. (5447 @12)
has full rank.

Example 2.3.3 Take for instance a LS %.(A, B, S) with the following matrices

0

123
A=|4 5 6| B=|o S=[100]
7 8 9 1

oo Ot N
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The observability matrix of the LS £(A, B, S) is

1 0 0
0=1]1 2 3
30 36 42

which has full rank, therefore the LS ¥.(A, B, S) is observable.

Itis also possible to determine if a LS is observable by analysing its A—invariant subspaces.
Let V be a subspace of R™. V is said to be A—invariantif AV C V.
In Example 2.3.3, span{ [0.2320 0.5253 0.8187]T} is an A—invariant subspace, be-

ause
0.2320 —3.7386 0.2320
A |0.5253| = | —8.4665 | = —16.1168 |0.5253
0.8187 —13.1944 0.8187
The supremal A-invariant subspace contained in ker S is
L .
N= n ker(SA™1).
i=1

The following theorem gives necessary and sufficient condition for observability in LS [70].

Theorem 2.3.4 The LS ¥ (A, B, S) is observable if and only if the supremal A-invariant sub-
space contained in ker S is the trivial subspace, i.e. N = 0.

The subspace N is known as the unobservable subspace of the LS X(A, B, S) and it is
closely related to the observability matrix of the LS since it holds that N = ker(0O).

2.3.2 Observer design in LS.

Once that a LS shows the observability problem, it is possible to create a mathematical entity
called observer, which actually computes the state vector of the LS.

There exist several approaches for the observers design in the literature. The most com-
monly used observer is the so called Luenberger observer [41] which is a copy of the LS
¥ (A, B, S) with an error correction term as described by the equation

Z(r) = AZ(r) + Bu(r) + L(y - )
g(r) = Sz(r).
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2.3 Linear systems

s e B
X X

Figure 2.3.1: State evolution and its observed state.

It is now possible to compute the error between the LS £( A, B, S) and its observer, denoted
by £(A, B, S). Let T = z — Z be the observer’s error. Hence, the dynamics of the observer’s
error is

i(r) = (A — LS)z(7). 213

It is known that the set of eigenvalues of the matrix A — LS in Eq. (2.13) can be arbitrarily
assigned by a suitable choice of L if and only if, the LS £(A, B, S) is observable. Thus, by a
suitable choice of L the observer's error T converges asymptotically to zero at a desired rate
(40}, [39].

Example 2.3.5 Consider the LS determined by matrices

azla :g} =H [t 0.

T =

The observer for this example is given by £(A, B, S):

7 -8 -9
y(-r)— l 0 0 :l:(T)

1 -2 -3
1::(r)= 4 -5 6]|z(r)+ [0] u(t)+ | —4 (!l—fl)

T
The matrix L = [12 —4 2333] in the previous equation leads to an observer’s error
dynamic with poles located in -9, -10 y -8, which is asymptotically stable. In Figure 2.3.1 the
evolution of the states and its observed state (in dashed line) is shown.
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2.4 Switched linear systems.
A switched linear system is a collection of LS switching among them, formally defined next.

Definition 2.4.1 A switched linear system (SLS) Lyr) = (F,¢) is a hybrid system where
F = {Z1,%2, ..., En} is a collection of LS and ¢ : [0, 00) — {1,2, ..., m} is a switching signal
determining, at each time instant, the evolving LS 3; € 3.

In the general case of the SLS, the switching signal is external and it can be either known
or unknown. For the particular case of ContPNs, the switching signal is dependent on the state
of the ContPN, i.e. the ContPN marking.

24.1 Observability in SLS.

The observability problem in SLS is more complex than the one in LS. This is because, in order
to determine the state of the SLS, it is necessary to determine which LS is actually evolving
as well as the state vector = from the output measurements. Once the evolving LS has been
uniquely identified, then the state vector z of the system should be computed. However, it is
possible that two different LS generate the same output trajectory with an input. If this happens,
the two LS are said to be indistinguishable from each other. Therefore it is necessary that each
pair of LS are distinguishable. The distinguishability property deals with the possibility to
determine which LS is evolving at any given time 7, only by the knowledge of the output of the
SLS over a finite time period. The concept of distinguishability is presented next.

Definition 2.4.2 [71] Let ¥, and X3 be two LS of the same dimension and with the same
number of inputs. Then, the LS ¥, X2 are said to be distinguishable from each other if for
every initial condition x( and input u(7), the knowledge of the input u(T) and the outputs y,
and y; over the finite time interval T € |7, suffices to determine which LS is evolving, T, or
o

Theorem 2.4.3 ([48], [49]) The autonomous LS ¥;(A;,0, S;) and £;(A;,0,S;) are distin-
guishable from each other if and only if the extended LS ¥j(A;;, 0, Si;) with matrices

Ay = [ J:i 2]_ ] S.'j = [ Si —S;j ] 219

is observable.
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Clearly, the distinguishability between LS implies the observability of the individual LS,
but the converse is not true in general.

The characterization of the indistinguishability subspace is given next.

Definition 2.4.4 [49] Given any two LS %;, ¥;, the indistinguishability subspace of Z;, X;,
denoted by W; g 1S

W, = { l::g] : Ju(r) Vr > 0 such that yi(xh, u(t)) = yj(z:g,u(t))}

The previous definition shows that the indistinguishability subspace contains the state tra-
jectories which are equal under the same input, and therefore it is not possible to determine to
which LS it belongs (it could be to any of them).

For the autonomous case of SLS, the observability problem has been completely character-
ized in [48] and [49]. Even though SLS are non linear systems, [48] and [49] provide a simple
and linear characterization for the distinguishability property.

24.2 SLS and ContPNs

A ContPN can be modelled by a switched linear system SLS with polyhedral regions, which
are determined by the configurations or regions of the ContPN([16}, [51], [52]).
Consider the family of LS

F={m=Am; y=5m} (2.15)

where A; = CAIl, and II; is the configuration matrix introduced in Eq. (2.5). The switching
signal for the case of ContPN is state dependent, where the configuration matrix I is selected
depending on the ContPN marking. Notice that in ContPNs B; =0, S; = 5,Vi = 1,...,n,i.e.
the LS are autonomous and the output matrix is the same for each LS I € F.

As a notation, the observability matrix and the unobservable subspace for the configuration
Ry, represented by the LS X( A, 0, S) are denoted as Oy and Ny, respectively.

It is important to recall that the ContPNs are a special class of autonomous SLS. First, be-
cause the marking is always non-negative. Second, the switching among LS is state dependent.
Finally, the number of LS in the SLS representation of the ContPN grows exponentially with
the number of join transitions. Take for instance the ContPN in Fig. 2.4.1-A. This ContPN has
13 places and 4 transitions and there exists 81 LS in the family F. However, in the ContPN
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Figure 2.4.1: Explosion on the number of LS.

presented in Figure 2.4.1-B, there are 37 places and 12 transitions, but 531,441 LS in the family
7.

It seems that since ContPNs are a SLS, then the previously explained approach to determine
the observability in SLS suffices to determine if a ContPN is observable. However, as previ-
ously discussed, the number of LS in the family F grows exponentially on the number of join
transitions in the ContPN. Therefore, the naive approach of verifying the observability of each
¥x € F and the distinguishability between each pair of LS becomes prohibited in practice. For
instance, to determine if the ContPN in Figure 2.4.1-A is observable, it is necessary to verify
that each of the 81 LS are observable and distinguishable from each other. To achieve that, it is
necessary to verify the rank of 81 observability matrices to determine if each one is observable
and 3,240 extended observability matrices to determine if each pair of LS is distinguishable
from each other. In the ContPN in Fig. 2.4.1-B, the number of observability matrices to verify
are 531,441 for observability in each LS + 141,214,502,520 for the distinguishability between
each pair of LS.
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Observability and observers design.
State of the art.

This chapter provides the most relevant results on observability of ContPN. Since a ContPN
can be modelled by a SLS, the observability in SLS is an important approach for the solution
of the observability problem in ContPN. Unfortunately, due to the exponential number of LS
required to model a ContPN with join transitions, this approach results infeasible in practice.
Therefore, a different approach is required. The existing results on observability for ContPN
will be provided in this chapter. These results are based on analysing the underlying graph
of the ContPN (i.e. the structure of the ContPN), which is very convenient, since it provides
algorithms in polynomial time to verify if a ContPN is observable or not. Unfortunately the
existing results are valid only for the JF', AF and J AF classes of ContPN. In the general case,
the current results also require the explicit enumeration of every LS of the SLS representation
of the ContPN.
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3.1 Results on observability of ContPN

In this section, the existent results on observability of ContPN will be described. The work
herein presented was mainly developed by the GISED research group, from the Universidad de
Zaragoza.

The work presented in [45] is based on the previously known concept of observability in
SLS: A SLS is observable iff

1. YI; € F, L, is observable.
2. VI;, Zj,1 # J, the pair I;, I; are distinguishable from each other.

One of their main contributions is that in ContPN there exist redundant LS, therefore the
number of LS to analyze can be reduced. In this work, the authors state that a place p, € P is
implicit for any reachable marking from an initial marking my, i.e.

m(p;) _ _m(pa)
Pf‘e(pj,t‘) - Pfe(Phat‘)

with p; € ot; \ {py} is satisfied ¥t; € pje. This implies that the regions where

_m) _ _mp;)
Pre(pa,t;) ~ Pre(p;, ti)
are either empty or reduced to their borders. Therefore such region should not be considered.
Unfortunately this approach is based on the initial marking mg, which is actually unknown.
In order to avoid the dependence of my, they remove the structurally redundant modes, i.e.
the modes which for every initial marking mg are redundant. This is solved by solving a linear
programming problem (LPP) where the objective function is max ¢ and there is a restriction of

the form:
m(p;) m(pn)
Pretp,t) | = Pre(mt)

for each inequality determining the region. The main drawback of this approach is that it
requires the enumeration of the inequalities which determine the regions of the ContPNV, i.e. an

exponential number of restrictions.
Once the redundant modes are removed, they address the distinguishability problem with
the following linear programming problem (LPP).
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Proposition 3.1.1 Let k(k = 1,2) be a mode, O and Ry, the corresponding observability
matrix and region. If the LPP

max €

S.1

—€-1<mj-—my<e-1

Ol-ml —02-m2=0

m; € Ry

m3 € Ra

m;,ms >0

has solution € = 0 then the modes 1 and 2 are distinguishable.

The previous LPP looks for a marking m; in R; which can be confused with a marking m;
in R,. If such pair of markings exist (¢ > 0), then the pair of modes will be undistinguishable.
Otherwise, when € = 0, it means that there does not exist any similar marking in both regions,
thus the pair of regions are distinguishable from each other. Unfortunately, this approach also
needs the computation of a LPP for each pair of regions in the ContPN.

For the observability of the ContPN, the problem is addressed in the graph level of the Con-
tPN. This is a great advantage since it does not require the enumeration of neither the constrains
which determine each region of the ContPN nor the actual LS structure (X;(4;, 0, S)).

The most important contribution of [45] is based on the next definition:

Definition 3.1.2 A place p; is output connected if there exists a path, denoted ~y; from place p;
to a measured place p, € Pyy.

The output connectedness characterizes the existence of a path from a place p; to another
place py, which is measured. This path does not have any restrictions, but the authors show that
in some classes of ContPNs, the output connectedness leads to the computation of the marking
m(p;) from the knowledge of m(py,) in infinitesimal time.

Proposition 3.1.3 [45] Let N be a JAF ContPN. A place p; is structurally observable iff p; is
output connected.

The previous propositions states that in JAF ContPNs, it is necessary and sufficient that
from each non-measured place p; there exists a path to a measured place.

Also, Proposition 3.1.3 can be interpreted as the following idea: if there exists a J AF —path
from a place p; to a measured place py, then the marking of place p; can be computed in

infinitesimal time, using the back propagation algorithm presented in [44].
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In JAF-ContPNs they also propose to analyze the terminal components. A set of places
F is said to define a strongly connected component of N, named N’, which is the subnet N’

generated by the set of places F' and the set of transitions TV = ¢ F' U Fle.

Definition 3.1.4 [45] A strongly connected component N' = (F,T', Pre, Post') of a ContPN
is said to be terminal if there is no path from a place belonging to F' to a place not in F.

The general solution for the observability in JAF ContPNs is given by the following propo-

sition:

Proposition 3.1.5 [45] Let N be a JAF ContPN. N is structurally observable iff at least one
place from each terminal strongly connected component is measured.

For the attribution free (AF) case, they propose the following:

Proposition 3.1.6 [45] Let N be a ContPN. Then, construct N’ from N by removing every join
transition and its input and output arcs. Then, N is structurally observable iff N is structurally
observable.

With previous proposition, a AF-ContPN is broken into many pieces, each of thema JAF-
ContPN. With this strategy, the previous results apply and each strongly connected component
should have at least one measured place. Unfortunately, the previous results do not apply if the
ContPN is not AF.

For the non AF case, the observability problem addressed is the generic observability, for-

mally defined next.

Definition 3.1.7 Let (N, X\, mg) be a JF ContPN and Py the set of measured places. (N, \, mg)
is weakly structural or generically observable from Py if (N, X, mg) is observable for all val-
ues of A outside a proper algebraic variety of the parameter space.

In [45], it is also presented an algorithm to determine if a ContPN is generically observable
when there exist attribution places but only for the join free (JF') case. The idea is based on
[53], and it consists on building a directed digraph G(IV) for the ContPN. The directed digraph
G(N) is constructed in the following way:

1. The vertex set Z is given by the set P of places (Z = P).
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2. The edge set is computed as:
W = {(pi, p;)Ip; € (pi®) ® Apu # p;} U {(pi, pi) |3t € pio, Pre(pi,t) # Post(pi,t)}

In the edges computation, the first set adds an edge from a place p; to all places (p;e)e since
the dynamic matrix has a non-null entry and prevents adding an edge in the case of a self-loop.
The second subset will add a self-loop in the associated graph for any place with Pre(p;, t) #
Post(p;, t) i.c., the marking of pi will change firing ¢, implying that the dynamical matrix has

a non-zero entry.

Definition 3.1.8 Let N be a ContPN and G(N) its associated digraph with vertex set Z and
edge set W. Consider a set Wg made of ks vertices. Denote by E(Wys) the set of vertices w;,
fori=1,2,...,l; of Z such that there exists an edge (z;,w;) € W with zj € Ws. Wy is said
to be a contraction if k, — I, > 0.

Using the previous definition, the next proposition determines if a JF-ContPN is generi-

cally observable.

Proposition 3.1.9 Let N be a JF-ContPN and G(N) be its associated graph. N is generically
observable iff:

o N is output connected

® G(N) contains no contraction

Unfortunately, for this procedure it is needed to compute many combinations of sets Wy
and its possible contractions E (W) in order to verify if a contraction exists.

3.2 Observer design

The work presented in [44] introduces an algorithm to compute the marking of a JF—ContPN
from a given set of measured places Py;. It is important to notice that a JF—ContPN has
only one LS ¥(A, 0, S) which determines its behaviour. Then, they use such single structure
captured in the dynamical matrix A to compute the marking of every place in the ContPN. This

is executed as explained in the following example.
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Figure 3.2.1: A simple ContPN structure,

Example 3.2.1 The ContPN in Figure 3.2.1 (taken from [44]) has a very simple structure. Let
T

the rate of transitions be \ = [,\1 A2 )\3] . The set of measured places is Py = {p3}. This

ContPN has the following incidence matrix and dynamical matrix:

-1 0 0 -1 0 0
C= 1 -1 0 A=) =X O 3.1
0 1 -1 0 A2 —A3

Then the dynamics of the system is modelled by:

m; = —A;m(p;)
m = Aym(p1) — Agm(ps)
m; = Jom(pz) — Asm(p3)
Since the marking of place p3 is known, then also its derivative can be computed with the
evolution of the ContPN. Then, m(pz) = (m3 + A3m(p3))/Ag. Once m(p) is computed, its
derivative can also be computed and m(p;) = (mj + Aem(p2)) /A1

The algorithm explained in the previous example will be further referred as the backward
computation algorithm (BCA).

This paper also provides a definition of observable places and structurally observable places.

Definition 3.2.2 A place p; € P is observable from Py iff it is possible to compute its initial
marking mq(p;) by measuring the marking evolution of the places in the set Py. A place pj is
structurally observable from Py iff it is observable from Py for any A > 0.

They also provide an algorithm that, given a measured set of places Py, returns a set of
structurally observable places Q. With the assumption that every input place to join transitions,
the authors claim that the same algorithm can be executed for non JF—ContPN.

For the state estimation, they propose the following.

1. Compute an estimate for every structural PT' — set of the ContPN.

2. Rule out the PT — sets of the ContPN which are not ruling the behaviour of the ContPN:
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(a) An estimate marking 1 for a PT — set W is infeasible if

y(0)
y{O) = Ormy

ylP |‘:‘(0)
where Oy is the observability matrix of the configuration k.

(b) An estimate marking 1 for a PT — set W is incoherent it W ¢ PT — Set(im),

i.e. Wisnot a PT — set of m.

3. The remaining estimates represent every potential marking of the ContPN.

However, there are two relevant drawbacks in the previous approach. The first one is the
need of the computation of every PT — set or configuration of the ContPN, which grows
exponentially with the join transitions, as previously discussed. The second drawback is that
the computation of the estimate marking is very sensitive to noise in the output derivatives.

In order to improve the estimate marking, they propose to use a Luenberger observer for
each configuration, and then, rule out the PT — sets as previously discussed. Unfortunately,
there is still needed the computation of every dynamical matrix of the SLS representation of
the ContPN (an exponential number of them) in order to be able to design its observer, which
becomes prohibited in practice.

3.3 Optimal observability in ContPN

The work presented in [43] deals with the sensor placement problem. It is considered that all
places are measurable, i.e. it is possible to add a sensor to every place, therefore its marking
is always known. Assuming that there exists an associated cost to add a sensor to every place,
i.e. Vp; € P the cost of adding a sensor is ¢(p;). This concept is extended to a set of measured

places D;, where the cost of measuring the places in D; is ¢(D;) = Y. ¢(p;). Based on these
p;€D;
definitions, the problem is to find a set D of minimum cost from which a ContPN (N, mg, \)

is observable.

In this work, they define the set of observable places as the following:

Definition 3.3.1 A place p; € P is observable from D; if the marking m(p;) can be computed
from the knowledge of the marking of the places in D;.
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The set of all the places which are observable from the measured places D; is named the
observable places from D; and it is denoted by O;.

It is assumed that it is possible to compute O; from D; using the tools provided in [44].
Unfortunately it has been shown in [46], [44] that if D = D; UD3U...UD;, the observable
places from D, denoted by O fulfils the following

0] >|0;UO02U...U Oy

i.e. the places that can be computed from a union of disjoin sets of measured places D; can be
greater than the union of the observable places O; from each set of measured places D;. This

can be seen in the following example.

t3

P1
t1

Figure 3.3.1: A ContPN structure with an attribution.

Example 3.3.2 Consider the Figure 3.3.1 with A\a = A\3. Let Dy = {{p,}. The set of observable
places from D, is Oy = {p1}. Also, let Dy = {p2}. The set of observable places from D is
O3 = {p2,psa}. However, if D = D1 U Dy = {p1,p2}, then the net becomes observable, i.e.
O = {p1,p2.p3,Pa}-

The previous example shows that the optimal observability problem can be seen as a Set
Covering Problem, which is NP-hard in the strong sense [43], then the authors show that it is
possible to determine the optimal sensor placement for some subclasses or, in the worse case,
to reduce considerably the number of covers to consider with an algorithm that they introduce.
This algorithm can be further studied in [43].



4

On invariant subspaces and the
ContPN structure

This chapter deals with the Ax—invariant subspaces characterization of the ContPN. As pre-
viously discussed, ContPN are a special class of autonomous SLS. Also, in Subsection 2.4.2
it was shown that the number of configurations in a ContPN, and equivalently the number of
LS in its SLS representation, increases exponentially with the number of join transitions. Even
when obtaining an Aj-invariant subspace of a particular dynamical matrix Ay is possible, and
actually simple, the problem of obtaining them for all of the matrices Ax would also lead to
N P-complete algorithms. Fortunately, the complexity problem can be avoided by characteriz-
ing these invariant subspaces directly from the structure of the ContPN.

It will be shown in this chapter that the ContPN structure allows the computation of the
A —invariant subspaces associated to ker(Ag), but also some other A, —invariant subspaces
which do not belong to ker(Ay). Even though not every A;—invariant subspace is character-
ized, it will also be shown that every Ay —invariant subspace which does not belong to ker(Ax)
is contained in the image of the incidence matrix C (Im(C)).

The results obtained in this chapter will later be used to propose a strategy to construct the
output mapping such that the ContPN becomes observable.

41



4. ON INVARIANT SUBSPACES AND THE CONTPN STRUCTURE

4.1 Invariant subspaces

In this section, some of the invariant subspaces of the ContPN will be characterized using the
PN structure.

As discussed in Subsection 2.4.2, the ContPN systems have several regions due to join
transitions, and each region has a different dynamical matrix Ay = CAII; (Il is different
in each region R;). The naive approach of verifying the observability property by computing
each observability matrix O, leads to NP-complete algorithms since the number of regions in
a ContPN grows exponentially with the join transitions.

As previously defined, a subspace V is named Ay —invariant iff A,V C V.

A particular case of subspaces are those of dimension one, generated by the eigenvectors.

An eigenvector is a non-zero vector v satisfying
Apv = v “.1)

i.e. the eigenvector generates an Ax—invariant subspace of dimension one. The vector v is said
to be an eigenvector of A, associated to the eigenvalue 3.

Particularly, it is known that a subspace V C ker Ay iff Vv € V, Axv = 0. In this case, all
vectors v € V are eigenvectors associated to the eigenvalue S = 0.

Consider now a subspace V such that V ¢ ker(Ag). Then, since V C Im(A) and Ay =
CAIlg, then V C Im(CAIl). Then, it is possible to see that V C Im(C). It is an important
fact, since the ContPN has only one incidence matrix C. However, if V C ker(Ay) then there
are two options:

1. V C ker(II) or

2. V C ker(C) N Im(AIl)

i.e. V may not be contained in Im(C). Therefore ker(Ax) should be characterized differently,

as shown in the next section.

4.1.1 The kernel A;— invariant subspaces

The problem of finding ker (Ay) is equivalent to find the eigenvectors for a matrix Ay, associated
to an eigenvalue 8 = 0. In this way, Equation (4.1) must hold and it becomes CAIlxv = 0.
Since A has full rank, the only two possibilities are ATl v € ker(C) or v € ker(II). Because
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of the form of matrix I, it can be seen that this matrix only looses rank when a place is not

constraining any transition’s flow. The following proposition characterizes vectors v € ker(II).

Proposition 4.1.1 Let (N, A\, mg) be a ContPN. A vector v € ker(Ily) iffv = 3_; oije;, where
a; € R and the associated places p; ~ e; do not constrain any transition in the region Ry,
Proof:

< When a place p; does not constrain any transition, the j-th column of Il is a zero
column. Clearly a vector e; € ker(Ily), since Ilxe; = 0. Even more, any linear combination
of such vectors also belongs to ker Ili.

— Each row of Il is mp; = e{, meaning that a place py, is constraining the flow of
transition t;. Clearly if a vector v € ker(Il), mgv = 0 Vi, 1 = 1,2,...,|T|. Therefore every
Tkq is orthogonal to €T, i.e. my; # e;-r Vi which proves that place py, does not constrain any
transition. u

One of the cases when a place p; does not constrain any transition is when p; € Pg, where
Pg is the set of ending places, i.e. pje = @. The following proposition characterizes those
ending places.

Proposition 4.1.2 Let (N, A\, mq) be a ContPN. If p; € Py, i.e. p; is an ending place, then
Vke; € ker(Ag).

Proof: Let p; be an ending place. Then any configuration matrix Il has its j — th
column equal to zero, because p; is not constraining the flow of any transition. Therefore
Iiaje; = 0 = aje; € kerIlx — aje; € ker CAIlL. | |

It is important to notice that Proposition 4.1.2 applies for every class of ConzPN.

The other possibility for a place p; not to constrain any transition is when p;e # () but some
other place, say pj, constrains the flow of those transitions in p;e. When this occurs, clearly the
transitions in p;e are join transitions. The following proposition characterizes the null space

corresponding to join transitions.

Proposition 4.1.3 Let (N, X\, mg) be a ContPN with a set T # ( of join transitions. If pje C
Ty then 31}, such that e; € ker(CAIL).

Proof: Let t; be a join transition with p;,p; € et;. Now, Vi; let p; be the place con-
straining the flow of transition t;. Then p; does not constrain any transitions’ flow in such
configuration and therefore 3I1i, such that e; € ker II;. [ ]

The previous result can be particularized for the class of free choice ContPN (FC-ContPN).
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Corollary 4.1.4 Let t; be a join transition of a FC-ContPN. Then for each vector ej ~ DPj;
where p; € ot;, there exist some dynamical matrices CAIly such that e; is an eigenvector
associated to the eigenvalue 8 = 0.

Proof- A PN is FC when:

a) For any two places s, € P, s e Nre = {). In this case, there are not Join transitions.

b) For any two places s,r € P, s = re. Let ot; = {p1,p2,...,Pn},t = 1,2,...,m. Let
p1 constrain the flow of t;. It is clear that places p3, ..., p,, are not constraining the flow of any
other transition and every matrix I1i, for which p; is constraining the flow of t; has n — 1 zero
columns associated to places ps, ..., pn. It is also clear that those zero columns are also zero
columns of CAIly, and every vector ey, ..., e, are eigenvectors for some CAIl,. Following this

reasoning, 'p; € ot;, e; is an eigenvector associated to some CAll. |

Corollary 4.1.4 is important, since it states that for every input place p; to a join transition

t;, the vector e; ~ p; is contained in ker(Ay) for some k.

p U ty

O_’ D3 Pe_ ty D5
D2

(}._.‘ .

Figure 4.1.1: A ContPN system with join transitions and ending places.

Example 4.1.5 The ContPN in figure 4.1.1 has two regions. One of them is when place p,
constrains the flow of transition t; (say, represented by configuration matrix I11); the second
one is when pa does, represented by configuration matrix Il,.

10000 01000
10

I = 00010 o, = 00O
00100 00100
00010 00010

T .
Assume that the transition’s rates are A = [1 2 3 4] With these configurations and

transition’s rates, the dynamical matrices are:
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-10 0 0 O 0 -1 0 0 O
-10 0 0 O 0 -1 0 0 O
Aj=CAl,=|1 0 -3 2 0 A2=CAll={0 1 -3 2 0
0 03 60 0 0 3 60
0 0 0 4 0 0 0 0 4 0

In Figure 4.1.1, the PN structure shows an ending place (ps). Therefore, the vector e5 €
kerIlx, k = 1,2 (es5 associated to place ps); also, for each of the dynamical matrices of the
ContPN Ay, es € ker A, k=1,2.

Similarly, vectors e) and ey, associated to places py and ps respectively, are input places
to join transitions as in Lemma 4.1.4. Therefore e; € kerIl; and es € kerIl;. In the same
way e; € ker A3 and es € ker A;.

Propositions 4.1.2 and 4.1.3 characterize all vectors in ker(II). Now, as previously dis-
cussed, Equation (4.1) also holds when AIl;v € ker(C). The solution are those vectors

v € Im(Allg) Nker(C). 4.2

Clearly those vectors v are T-Semiflows, but not every T-Semiflow belongs to Im(All) N
ker(C). A T-Semiflow belonging to Im(A) will be called a T-Semiflow agreeing with A,
formally defined next.

Definition 4.1.6 A T-Semiflow agreeing with X is a vector = € ker(C) such that for every
decision place p ; with pje = {t1,t3,...,t,}, either every transition ti, ...,t, belongs to a
different minimum T-Semiflow or for those transitions in the same minimum T-Semiflow, the
ratio x;/zp, = \;/Ap holds Vt;, t), € pje.

The following proposition characterizes the conditions for which a T-Semiflow becomes an
annuler for CAIl in a join free (JF) ContPN, i.e. a T-Semiflow that also belongs to In(AIlL).

Proposition 4.1.7 Let (N, A\, my) be a JF ContPN and let X be a T-Semiflow agreeing with ).
Then v ¢ ker(IT) such that CAIl,v = 0 iff (¢(X))e = (X). v will be called Annuler vector.
The structure of v is given by

T
U=[71 Y2 - 'YlPl]

where Y, = 0ifp; ¢ e X ory, # 0ifp; € oX.
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4. ON INVARIANT SUBSPACES AND THE CONTPN STRUCTURE

Proof:

Necessity. Let v be a vector such that CAllyv = 0. Clearly, Allxv = z is a T-Semiflow.
However, Ally, is a function that maps from places in (v) that constrain the flow of some
transitions, to all transitions in (v) e. Let t; € (v) e such that t; ¢ (z). The i — th component
of Allv is nonzero and the i — th component of x is zero. This is a contradiction and for v to
exist, (o (z)) e = (x) must hold.

Sufficiency. Let (o (x)) ® = (z). Then every non-zero (zero) component in Allxv is also
non-zero (zero) in x. The i — th component of Allxv can be written as \ivj, where vj cor-
responds to the place p; that is constraining transition t;. If each transition is constrained
by a different place, equation \yv; = z; can always be solved with v; = z;/);. When
a place p; constrains the flow of more than one transition (i.e. p; is a decision place), let
pj® = {t1,%2,...,tn}. There are n equations for place p;, \1v; = T1,..., A\n¥j = Tn. Since T
agrees with ), there are two cases:

a) When each transition in p;e belongs to a different T-Semiflow. Let v;j = q1/A1 and
compute 0gTai = AiVj fori =2, ...,n (clearly agz,; is also a T-Semiflow for a, € R).

b) When some of the transitions in p;e belong to the same minimum T-Semiflow. Let t5,t3 €
(Ta), Ta be a minimum T-Semiflow. Since vj can be fixed with some other transition let ag =
A2v;j/Tq2. Clearly, equation 0, a3 = A3v; holds. [ ]

Example 4.1.8 In Figure 4.1.1, transitions to and t3 are the basis of the only T-Semiflow,
e x;=00110 T € ker C. However, (x) = {t1,t2} and (e (z))e = {p3,ps}e =
{ts,t2,t4}. Therefore Fvker CAIL.

However, in the ContPN in Fig. 4.1.2 with A\ = [1 2 3 4]T the T-Semiflow x; =

T
[0 1 1] Julfils the conditions in Proposition 4.1.7. Therefore there is a vector:

v=[0 0 m 2

such that v € ker CAIly. The dynamical matrices are:

10 0 0 0 -1 0 0

1 10 0
a=cam=|1 20 Ay = CAIL = |°

0 -3 2 01 -3 2

00 3 -6 00 3 -6

In order to obtain v, solving Ajv and Asv, two simultaneous equations are obtained:
27v2 — 371 = 0 and 3y, — 272 = 0. Clearly any value such that v = —3-71 fulfils the conditions.
However, it is important to notice that the actual values of y; are not required, only the structure

where the vector v is non-zero.
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n t 2]

t3
Figure 4.1.2: A ContPN system with a T-Semiflow and an annuler.

412 A,;—invariant subspaces contained in /m(C)

The following definitions will be used to characterize the Ay —invariant subspaces from the
structure of the ContPN.

Definition 4.1.9 Let T, C T be a set of transitions. The set of places constraining T in a
given configuration Cy. is

P(Tz|Ck) = {p; € Pl(pj,t:) € Cx, t: € Tz}

Definition 4.1.10 Let P, C P be a set of places. The set of transitions constrained by Py ina
given configuration Cy. is

T(Pz|Ck) = {ti € T|(pj, ti) € Ck, pj € P:}.

Definition 4.1.11 Let T, C T be a set of transitions and P, = P(T;|Cy) be the set of places
that constrain T, in the configuration Cy. If

T(P:|Ck) = T,

i.e. the places that constrain the transitions in T, only constrain transitions in T, then T is a
self-contained set of transitions.

Definition 4.1.12 Let T, be a self-contained set of transitions. If Tpe C P(T;|Ck) then T is
a fully self-contained set of transitions.

As a notation, let a vector z € RIT!. If (z) is a self-contained set of transitions, then it is
said that z is self-contained.

In this subsection, the Ax—invariant subspaces contained in Im(C) will be characterized.
This characterization will be made for the JF-ContPN. This is because it has been proved in
[44] that if all the join transitions are removed from a ContPN, and all the remaining JF nets
are observable, then the ContPN is observable.
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i1 ts
D 3
ta t4
Figure 4.1.3: A simple ContPN with two T-Semiflows.

In a JF-ContPN a single dynamical matrix A = CAII determine the behaviour of the Con-
tPN. Then, the traditional methods to verify the observability property in LS, such as verifying
the rank of the observability matrix or computing the non observable subspace N, can be made
in polynomial time. However, the characterization herein presented is relevant because it will
not need the computation of matrix A, i.e. it depends only on the structure N of the ContPN.
This characterization can be further extended to the non-JF case, where the number of LS in-
creases exponentially, and the naive approach of using the traditional methods fail to provide
an answer in polynomial time.

The analysis will start with ker(A) C I'm(C) and the eigenvectors of the dynamical ma-
trix A = CAII associated to eigenvalues 8 # 0, since they are A—invariant subspaces of

dimension one. Then, the general A—invariant subspaces will be characterized.

4.1.3 The JF case - Eigenvectors

This section is devoted to analyse the underlying structure of the eigenvectors, i.e. the sets of
places and transitions in the underlying graph which are related to the eigenvector.

Take for instance the ContPN in Figure 4.1.3 with A = [)\1 A2 A3 )\4] 4 The incidence
matrix and the dynamical matrix of this ContPN are

-1 1 0 0 -1 Ao 0
C=|1 -1 -1 1 A= )A1 X=X M\
0 O 1 -1 0 A3 -

First, let us analyse the vectors v € ker(A). In Section 4.1.1 it was proved that v €
ker(Ag) if v € ker(Ilx) or if there exists a vector z € ker(C) N Im(AIl). Since in the
ContPN in Fig. 2.1.1 is JF, there are not any join transitions. Also this ContPN does not
have any ending places; then, there does not exist any vector v € ker(Il). However the vector
v=[(2/A) 1 (a/M)]" € ker(A). Then, the vectorz = ATlv = [\ Az Az Ag]”
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is a T-flow. On the other hand, let B be a matrix whose columns are a basis of ker(CA). In

this example,
A2/ 0
1 0
Bi=1 o 1
0 A3/

Clearly the linear combinations of the columns of By generate T-flows z € Im(A).
However, not every column of B), B); generates an annuller v because = must also fulfil
z € Im(A)II. In Proposition 4.1.7 it was proved that in a JF-ContPN, a T-flow z generates a
vector v € ker(A) iff (e(z))e C (z). Let B); stand for the i — th column of B). The support
sets (z), o(z) and (o(x))e are:

(Bx1) = {t1,t2} (Bx2) = {t3, ta}
o(Bx) = {p1,p2} ., (Bx2)={p2,p3}
(o(Bx1))® = (o(Bx2))e = {t1, 12,13}
showing that none of the columns of B) generates an annuller. The vector z = Allv =
A2 A2 A3 /\4]T does fulfil (e(z))e C (z). Actually, (z) is self-contained (see Def.
4.1.11).

The following proposition shows that in a JF-ContPN a subset of transitions T is a self-

contained set of transitions iff (eT)e C T;.

Proposition 4.1.13 Let (N, A\, mg) be a JF-ContPN and T; C T be a subset of transitions
(oT;)e C Ty iff T is a self-contained set of transitions.

Proof: (=) Let (¢T;)e C Ty. Since N is JF, then P(T;|R) = Ty. Now, since Tye C T},
then every transition constrained by T}, is contained in T.
(<) Let T, be a self-contained set of transitions. Again, since N is JF, then P(T;|R) =
oT,, and every transition in T(eT;|R) C T (definition of self-contained set of transitions).
Since N is JF, if t; € p;e then p; constrains t;, then (oT;)e C Ty. [ ]

Proposition 4.1.14 Let (N, A\, mg) be a JF-ContPN and T;; C T be a self-contained subset of
transitions. If T,e C oTy then Ty is a fully self-contained set of transitions.
Proof: It is clear since Tyo C oT;. =

It can be deduced from previous the proposition and Proposition 4.1.7 that in the case of

the annuller eigenvectors, there exists a fully self-contained set of transitions T, associated.
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Proposition 4.1.15 Let (N, myo, \) be a JF-ContPN. If v € ker(C) N Im(AIly) then ov is a
fully self-contained set of transitions.

Proof: v € ker(C) N Im(AIL). In this case, v is an annuller of the matrix CAII and
conditions of Propositions 4.1.13 and 4.1.14 hold for (ev). ]

Now for the eigenvectors of a dynamical matrix A = CAII associated with an eigenvalue
B # 0, the underlying structure will be analysed.

From (4.1) it can be seen that v € Im(CAII). Also, when 8 # 0, v € Im(C), i.e. 3z,
such that Cz = y. The entries of the vector x € RI7| are the coefficients associated to a linear
combination of the columns of the incidence matrix; these columns are directly associated to
the transitions of the ContPN.

Proposition 4.1.16 Let (N, \,mq) be a JF-ContPNIf v is an eigenvector of the dynamical
matrix A, with an eigenvalue 8 # 0, then 3z such that v = Cz and ¢(z) = (v).

Proof: Since v is an eigenvector, then CAIlv = Bv, therefore v € Im(CAIL). Also, since
B #0 — v € Im(C). Then 3z € Im(AIl) such that Cx = v. Particularly, z = (1/8)Allv
fulfils Cz = wv. It is clear that ATlv maps to every output transition of (v). Since N is a JF-PN,
then (v) = o(z), i.e. (v) contains every input place to the transitions in (x). ]

The converse of the previous proposition is not true in general. Take for instance the Con-
tPN in Fig. 2.1.1. Avectorz = [y1 72 0 O]T with 71,72 # 0 has (z) = {t1,t2}. Its
input set is o(z) = {p1,p2}. The vectory = Cz = [—'yl +v% M- O]T has the support
{(y) = {p1, p2} which actually fulfils the conditions of Proposition 4.1.16. However y is not an
eigenvector of A with 8 # 0 since

-7+ 72 =A1(=711 +7) + X2 —72)
Alm—m|=|MEn+7)+ (22— 23)(n —72)
0 A3(v1 —72)

Proposition 4.1.17 Let (N, X\, mq) be a JF-ContPN. If v is an eigenvector of the dynamical
matrix A, with an eigenvalue 8 # 0, then 3z such that v = Cz and (e(z))e C (z).

Proof: Based on Proposition 4.1.16, there exists = such that (y) = e(z). In addition,
because of the mapping AL, every output transition of (v) is contained in (x). Then (e(z))e C
(z). ]

The converse of the previous proposition is not true. Take for instance the ContPN in Fig.
2.1.1. Transition ¢; fulfils (e(z))e C (z). However the vector e1, associated to et; = {p;}, is

not an eigenvector since Ae; = —Aje; + Ajes.

50



4.1 Invariant subspaces

Propositions 4.1.16 and 4.1.17 show that if v is an eigenvector associated to an eigenvalue
B # 0, then 3z € R!T! such that Cz = v, (v)e = (z) and (v) = e(z) are fulfilled. This means
that there exists a set of self-contained transitions T, associated to the eigenvector v (in this
case, given by (z)).

Now, it is easy to see that if a transition t; € (z), then the marking in the places p; €
ot; U t;e is affected, i.e. there is a marking change in these places due the firing of transition
t;. Take for instance the ContPN example in Figure 2.1.1. A vector z; = y;e; withy; € R
has Cz; = [—‘yl T O]T, i.e. it removes marks from place p; and adds marks to place ps.
Similarly the vector z4 = -y4e4 affects the marking in places p3 and p. Now, let £, = z1 +z4.
Then Czo = [-m1 M+ —74]T Ify1 = —7y4, then Czq = [y4 0 —74]T, ie. it
only changes the marking of places p; and ps3, but not p,’s. However, the existence of a linear
combination of the columns of the incidence matrix C (in the example (z) = {t1,t4}) does
not guarantee that there exists an eigenvector associated to places p; € (v) = o(z) (in the
example, o(z) = (v) = {p1,p3}). For the example in Fig. 2.1.1, let the transition’s firing rates
be A= [)q A2 A3 A4]T. Now, to find an eigenvector v such that p;, p3 € (v) but ps ¢ (v),

letv = [vl 0 vs]T. Such eigenvector is given by the solution of the equation:

—)\1 0 V1
Av=vi | A1 | +v3| M | =80
0 - v3

In this example, the vector [1 -1 O]T is an eigenvector when A\; = )4, associated to the
eigenvalue —\;. However, if A\; # A4, then it is not possible to find an eigenvector v associated
to places p; and p3 exclusively, i.e., an eigenvector v such that p;, p3 € (v) and ps ¢ (v). This
is showed formally in the next proposition. The next proposition is generalized even for the
FC—ContPN class of nets, but clearly it also holds for the JF case.

Proposition 4.1.18 Let (N, A\, mg) be a FC-ContPN and p; be an attribution place. Also, let
Vt; € ep;, | ®ti| = 1, i.e. each t; has only one input place p; such that p;e = {t;}. If
3\, = \i, for some transitiont;,,t;, € ep; and (ep;) ® = {p;} then a vector v,, = e;, —ey,,
associated to places {p,} = ot;, and {pi,} = et;, is an eigenvector of all matrices CAIly.
The vector v,, is called Attribution eigenvector.

Proof: The i1 —th column of C is C;; = ef - eflz;, i.e. it adds one token to place p; and
removes one from py,. Similarly, the i —th column C;, = e] —e{.. Since Vit; € opj, |ot;| =1
then t;, is constrained by p, and t;, is constrained by p;, and neither pj, nor p;, constrain the
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flow of any other transition. Then in matrix CAIly, its Iy — th column will be Xi; Gy, and its
Iy — th column will be \;,C;,. Then CAIlie;, = \i; Ci; and CAlley, = X, Ci,.

Let vg, = e}, — ey, CAlly,, = CAll(ey, —e3,) = A, Ciy — 2,Cip = Ay (e]T = eli;) &=
Mz (€] — ef). Since Mi; = Xip, CAlug, = —)i €] + i ef, = —i (e1, — e1,) which is the
definition of eigenvector. | |

In order to find the eigenvectors associated to attribution places, it suffices to find those
attribution places and their attributing transitions. It must be verified that each attribution
transition does not have any output place other than the attribution place itself. Also, each
input place to the attribution transition should only be connected with the attributing transition.
Then, for each pair of attributing transitions ¢;,t; € epx with A\; = A; and et; = {p;,} and
ot; = {plj }. the vector v, = e, —€; , will be an eigenvector of each CAIl. This is important,
since matrices CAIl}, are not needed to compute the attributing eigenvector vg.

For the case of attribution eigenvectors, there is also a self-contained set of transitions

associated, as shown in the next proposition.

Proposition 4.1.19 Let (N, A\, mg) be a JF-ContPN. Let v be an attribution eigenvector. Then
ov is a self-contained set of transitions.

Proof: It is clear since the effects of transitions in ev only affect places in o e v but they
do not affect the attribution place. |

The previous proposition shows that when there exist attribution eigenvectors, then the
associated set of transitions is only self-contained, but not fully self-contained.

Besides eigenvectors associated to attributions and similarly to the eigenvectors associated
to ending places, it is possible to characterize eigenvectors associated to ending transitions
when (ot;) ® = ¢; (it will be assumed that if Vt; € p;e, t;® = (), those ending transitions are
represented as only one ending transition). The next proposition is generalized for every class
of ContPN, therefore clearly holds for the JF case.

Proposition 4.1.20 Let t; be an ending transition of a ContPN. If (et;) ¢ = {t;}, then a vector
corresponding to each place p; € et;, e; is an eigenvector of matrix CAIl.. The vector
e; ~ pj will be named ending transition eigenvector.
Proof: There are two cases:
a) Let {p;} = et;. Then the i — th column of C has only one negative element corre-
sponding to the arc from p; to t;. In addition, every matrix Il;. has its i — th row equal to
some elementary vector e;. Then, the matrix CAIly = [a1 AiC; a2] where C,; is the i — th
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column of C and a; and a3 are two matrices with . rows and j — 1, n— j columns respectively.
Clearly the elementary vector e; is an eigenvector of CAIl}, since CAll;-e; = —\;-e;, where
—A; is the eigenvalue associated to e;.

If |ot;| > 1 then each place p; € ot;|pje = t, is either constraining the flow of t; and the
previous reasoning applies or it is not constraining it and the place p; is not constraining any
transition. If so, then the | — th column CAlly is zero and ey is also an eigenvector of CAIlL.

|

For the case of ending transition eigenvectors, there is also a fully self-contained set of

transitions associated, as shown in the next proposition.

Proposition 4.1.21 Let (N, A\, mg) be a JF-ContPN. Let e; be an ending transition eigenvec-
tor. Then eje is a fully self-contained set of transitions.

Proof: Since e; is an ending transition eigenvector, then (ot;) @ = {t;} holds. Also, since
T.e = 0, then the conditions of Proposition 4.1.14 also hold. |

4.14 The JAF case. Ax—invariant subspaces

Based on the previous examples and propositions, there is the intuition that the A—invariant
subspaces V C Im(C) have a special structure on the ContPN. In this section, this intuition
will be proved for the join attribute free class of ContPN.

Definition 4.1.22 Let Vg = {v1, ..., U} be a basis of the A—invariant subspace V. The sup-
port of an invariant subspace V, denoted by (V) is

W= |J @) 43)

v€Vp

Proposition 4.1.23 Let (N, )\, mq) be a JF-ContPN and V C Im(C) be an A—invariant
subspace. ThenVv € V, 3z € R!T! such that Cx = v and (v)e = (z).

Proof: Clearly v € Im(CAII) and v ¢ ker(CAII). Then v € Im(C). Now, since v is
A-invariant, then CAIlv = v; € V. Let z = Allv. It is clear that AII maps to every output
transition of (v) because N is JF. Then (v)e = (z). ]

Clearly since previous the propositions hold for the JF class of ContPN, then they also hold
fort he JAF class. Proposition 4.1.23 states that for every vector v € 'V it is possible to make

Cz = v with a linear combination of columns of C associated to output transitions of (v).
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Proposition 4.1.24 Let (N, A\, mg) be a JF-ContPN and V C Im(C) be an A—invariant
subspace. Then 3T, a set of self-contained transitions associated to the A—invariant subspace
v, ie.

1. T, = (V).

2. (Vye=T,.

Proof: 2 is a consequence of Proposition 4.1.23. 1 is a consequence of the fact that IV if
JF. |

Propositions 4.1.23 and 4.1.24 show that for any invariant subspace V, there exists a set of
self-contained transitions T}, i.e. T}, = (V) and (V)e = T,; this means that the effects of the
transitions in 7, in the marking of the ContPN is restricted only to the places p; € (V).

It is important to notice that in Proposition 4.1.24, the effects of the transitions ¢; € T,
are contained only in places p; € T, but it states nothing about the output places of the
transitions in 7,.

Now, the following proposition shows that if V is an A—invariant subspace in a JAF-
ContPN and T, is its associated set of self-contained set of transitions then Vp; € Tye, the
place p; € (V).

Proposition 4.1.25 Let (N, A, mg) be a JAF-ContPN and V C Im(C) be an A—invariant
subspace. Also, let T, be the self-contained set of transitions associated to V. Then oT,UT,e C

(V).

Proof: From Proposition 4.1.24, eT,, C (V). Then it will only be proved that Vp; € T e,
pj € (V). Let p; € ot; where t; € T, such that py, is the place constraining ¢;, i.e. P(¢;|€) =
Ph- Letv € Vsuch that pj, € (v). Clearly Av = v; € 'V contains the effects of every transition
tg € ppe, particularly, it contains the effect of t; € pj, since it cannot be cancelled by the
effect of another transition (the net is JAF). Therefore Pj € (n1).

Let v1,v2 € V such that p, € (v1) N (vg). Clearly ayv; + gy = vz € V, with o; € R,
i1=1,2, [ ]

Now it will be proved that if such fully self-contained set T, of transitions exists, then there
exists an invariant subspace V C I'm(C) associated to places in oT,.

Definition 4.1.26 A set of transitions T, is said to generate an A—invariant subspace V ifan
A—invariant subspace 'V exists such that (V) C oT,,.
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Proposition 4.1.27 Let (N, A\, mg) be a connected JAF-ContPN and T,, C T be a fully self-
contained set. Then T,, generates an A—invariant subspace V € Im(C).

Proof: Let the index of the transitions and places be assigned in such a way that T, =
{t1,t2,..,tn} C T and P, = T, = {p1, P2, ---,Pm} C T. The incidence matrix has the form:

_[C ©
e=[v &

where C, is the incidence matrix of the subnet N,, = (P,, Ty, Prey,Pre,). It is clear that
Vt; € Ty, tie C P, and ot; C P,, i.e. ¢; has only input and output places p; € P,. Also, since
N is JF and T, is fully self-contained, Vp; € P,, pje C Ty, i.e. the output transitions of the
places p; € P, are contained in the set T,,. CJ represents the input transitions to the places
pj € P,. Itis clear that at least one place p; € P, has an input transition ¢, € T —T,,, otherwise
the net would not be connected. Finaly Cj represents the rest of the incidence matrix. Using
the same reasoning, the configuration matrices A and II have the following structure:
_|Ay O _ (I, 0o
ol 2] e n [ )
where A, and Aj are the transitions’ firing rates associated to the transitions ¢; € T}, and the
transitions ¢, ¢ T, respectively. The configuration matrix IT can be similarly separated since
the transitions ¢; € T, are constrained by places in P, and the places p; € P, only constrains
transitions £; € T,,. Then, the dynamical matrix A = CAII is given by:
A [CohuTl, CHAGL;
0 CyAslls |-

Now, letV = {vlv, € R™, and v,(h) =0, h = m+1,m+2, .., |P|}.ie.v = [v, 0]7 CV.
Clearly AvCV. B [ |

Theorem 4.1.28 Let (N, A\, mg) be a JAF-ContPN. Ty C T is fully self-contained iff T'; gen-

erates an invariant subspace V.

Proof: 1t follows from Propositions 4.1.25 and 4.1.27. |
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5

Sensor placement for observability in
ContPN

This chapter presents a sensor placement strategy which guarantees observability of a ContPN.
The problem consists on determining which places should be measured so that later on, the
marking of every place p; € P can be computed trough an observer.

Even when the observability in infinitesimal time in autonomous SLS has been completely
characterized in [48] and [49], it has been pointed out that this approach is not feasible in
practice. Similarly, the observability characterization for general ContPN provided in [46] also
leads to high complexity algorithms.

However, using the results in [48] and [49] it is known that a SLS is observable iff every LS
is observable and distinguishable from each other.

Therefore, the strategy herein presented will determine where to place sensors to guarantee
observability in each LS of the SLS representation of the ContPN and the distinguishability
among them. This approach, however, may lead to observability by excess, i.e. it may add
more sensors than the strictly necessary. Then a sensor reduction strategy is also presented.

For the distinguishability between each pair of LS, it will be shown that for some classes of
ContPN observability in each LS implies distinguishability as well, but also that the classical
test for distinguishability in SLS fails to provide a correct answer in the ContPN context, since
the information provided by the ContPN is greater than the one available in the general SLS.
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5.1 Sensor placement for Observability in each LS

Since every Ay —invariant subspace of each matrix A must not be in ker(S) for the ContPN
to be observable, it is possible to design .S such that neither of the eigenvectors and subspaces
previously characterized in 4 is contained in ker(S). For every other Ay —invariant subspace
which is not characterized, it is known that it is also contained in Im(C). The Im(C) con-
tains more elements than those invariants, but if Im(C) is not in ker(S), clearly neither the
Ap—invariant subspaces are. The following definitions will allow us to define an invariant
matrix and to propose an algorithm to determine where to place sensors in a ContPN so that

observability is guaranteed.

Definition 5.1.1 Let a place p; € P N Pg (i.e. p; is an ending place). Let Egy, = {eile:
is an elementary vector associated to the ending place p;} be the set of elementary vectors
associated to the ending places. Then, the Ending Places Matrix is defined as

A ¢.1)
where e;, ...,e; € Ep.

Definition 5.1.2 Let p; € P such that p;e = {t;} for some t; € Tg (i.e. t; is an ending
transition and p; constrains its flow). Let Egy = {e;|e; is an elementary vector associated to
the place p; constraining the flow of an ending transition t;} be the set of elementary vectors
associated to the places constraining the ending transitions t; € Tg.

The Ending Transitions Matrix is defined as

VEt = [ei e,'] (52)
where e, ...,e; € Egy.
Definition 5.1.3 Let vy, be an Attribution eigenvector as the ones computed with Proposition
4.1.18. Let E5 = {vq,| vq, is an Attribution eigenvector}. Then, the Attribution Eigenvector
Matrix is
Va=[va - v (5.3)
where Vg, , ..., Vg, € E4.
Definition 5.1.4 Let v; be an Annuler vector as the ones computed with Proposition 4.1.7. Let
Easp = {vi|vi is an Annuler vector}. Then, the Annuler Matrix V4p is a matrix with all
Annuler Vectors
Vap=[o1 .. v (5.4)

where vy, ...,v, € Epp.
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5.1 Sensor placement for Observability in each LS

Definition 5.1.5 Let p; €¢ PN ot; where t; is a Join transition. Let Esp = {eZIe,7 is an
elementary vector associated to a place p; € ot; and t; is a Join transition} be the set with
all elementary vectors associated to places p; € ot;, where t; is a Join transition. Then, the
Synchronized Places Annuler Matrix Vsp is

Vsp=[ef .. ef] .5
e{, ,eﬁ € Egp.

With the previous definitions, some important matrices will be defined, which will be fur-

ther used to compute an output matrix such that the observability of the ContPN is guaranteed.

Definition 5.1.6 Let the matrices Vgy, Vap and Vsp be as defined in (5.1), (5.4) and (5.5)
respectively. The Invariant Kernel Matrix M is defined as

Mk = [Vep Vap Vsp|. 5.6)

Definition 5.1.7 Let the matrices Mk, Vgt and V4, be as defined in (5.6), (5.2) and (5.3)
respectively. The Invariant Matrix M is defined as

My = [MK Vies VA]. o))

It is important to notice that M has every invariant subspace characterized in this work.
VEp are the invariant subspaces associated to ending places, Vg are the invariant subspaces
associated to ending transitions, V4 are the invariant subspaces associated to attribution places,
Vap are the invariant subspaces associated to T-Semiflows and they are annulers for some ma-
trix CAIIj, and Vgp are the invariant subspaces associated to Join transitions. Clearly, for the
ContPN to be observable, each of these invariant subspaces must not belong to ker(S). How-
ever, there are still some invariant subspaces associated to some nonzero eigenvalues which are
not represented in M. Nevertheless, these invariant subspaces are in /m(C) and as previously
discussed, if Im(C) is not in ker(S), neither the invariant subspaces of CAIlj, are. In order to

consider I (C) to determine sensor placement in a ContPN, the next definition is introduced.

Definition 5.1.8 Let M be the Invariant Matrix of a ContPN and Cp = [cn cry .. C]n]
be a matrix with n linearly independent columns of C. The Extended Invariant Matrix Mg

is defined as _
Mg = [M] C[] : (5.8)
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5. SENSOR PLACEMENT FOR OBSERVABILITY IN CONTPN

Using the extended invariant matrix of a ContPN, it is now possible to present an algorithm
to determine sensor placement in a ContPN that guarantees observability. The next algorithm
will be used with the extended invariant matrix Mg as an input; however, it is presented in
terms of a general input matrix My, because it will later be used with another input matrix.
As a notation S(3, ) represents the i — th row of the output matrix S, and M (e, j) represents
the j — th column of matrix M.

Algorithm 5.1.9 Sensor placement algorithm.

Function: S = Sensor Placement(Minpyt)-

Inputs: A invariant matrix Miypy:.

Outputs: The output matrix S such that S - Mippy; # 0.

Initialize: The matrix of orthogonal columns to S as zero: OS = (. Initialize the counter
sensor num = 1. Initialize the temporary variable Temp = 0.

1. Build the linearly independent elementary vector set LIS as the set of all columns of My
which are linearly independent from each other and these columns are scaled elementary
vectors, i.e. v € LIS if v = d;e; for some & € R (a scaled elementary vector).

2. Vb;e; € LIS, add a new sensor for place p;, i.e. a new row num —th, i.e. S(num,e) =
€7 and increment num (num = num + 1) — Vectors in LIS are no longer in ker(S).

3. While there exist columns in Mippy:

(a) Temp = anut-
(b) Fori =1 to the number of columns of Temp
i. If S -Temp(e,i) = Othen
05 =[085 Temp(s,i)]
else remove column Miypi(e, 1) from Minpus.
— If the i — th column of Minpy: is in ker(S) this column is added to OS
otherwise it is removed from Mipys.
(c) Find the row r; in OS with the largest number of elements different from zero.

(d) Add a new row num to S equal to e‘T and increment num (num = num+1) —at
least one column of Minpy is now removed from ker(S).

End While

4. Return S.
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The previous algorithm ensures that none of the columns of Minpy: is in ker(S). Step 1
and 2, remove every elementary vector in Mjnpy.: from ker(S). By removing these elementary
vectors, some other columns of Mjnpy: may also be removed from ker(S). Step 3 removes
from Mnpy, those columns which no longer belong to ker(S) and puts in a matrix OS all
columns which still are in ker(S). Then, it chooses the row of OS with more non-zero values,
say the i —th row, and places a sensor in place p;. The algorithm is repeated until every column
in Minput is not in ker(S) and finally returns the value of the computed output matrix S.

Using Algorithm 5.1.9 with the invariant matrix M/ as an input, i.e.

S = Sensor Placement(M|g),

it will return an output matrix such that each column of matrix Mg is removed from ker(S).
However, some A;—invariant subspaces may still be in ker(S). In order to avoid this problem,
the following algorithm will verify if I (C) is removed from ker(.S). Similarly to Algorithm
5.1.9, it is presented in terms of a more general input matrix Minput.

Algorithm 5.1.10 Validation algorithm
Function: S = Validation(Minput, S)
Inputs: An output matrix S = [S’II' .. ST T obtained from Algorithm 5.1.9.

A matrix Minpt with only linearly independent columns and with k = rank(Minput)-

Outputs: The output matrix S such that Im(Minput) € ker(S).

Initialize: f = [1 1] €1t j=lLi=nandz=1

num

1. Whilez #0
(a) Solve the LPP:

max z = fa,
s.t1
S- M.—,,,,.,ta =0

a; <1

(a) If z # O then
i. compute Q = Minpy: - a.
ii. choose any row h of Q such that Qy, # 0.
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5. SENSOR PLACEMENT FOR OBSERVABILITY IN CONTPN

iii. add the (num + 1) — th row equal to ey, to S and increment the value num
(num = num + 1) — places a sensor in place py.

Let S = SensorPlacement(Mjg), which is an output matrix such that none of the
columns of M;g is contained in ker(S). However, a linear combination of the kernel in-
variant matrix Mg, which also belongs to ker(Ay) may still be in ker(S). Then, it should be
computed Sy = Validation(Mj, S), such that neither the columns of M or any of its linear
combinations are contained in ker(S ). Then, in order to obtain an output matrix such that the
ContPN is observable, it is necessary to compute S; = Validation(Cy, Sp), which guarantees
observability of the ContPN. However, S; guarantees observability by excess, i.e. it has more
sensors than the strictly needed for the ContPN to be observable. This occurs since Algorithm
5.1.10 designs S; such that Im(C) ¢ ker(Si), but as previously discussed, Im(C) is larger
than the Ax—invariant subspaces.

Figure 5.1.1: An illustrative example of a ContPN for observability.

T
Example 5.1.11 Let us consider the ContPN in Figure 5.1.1. Let A = [1 2 3435 6]
The matrix M1, composed by one ending place vector, one annuler vector and two syn-
chronized place annuler vectors is:

o
-

Mg =

"o o m oo oo oo
NS
coor~ooo oo
o~ oo oo oo
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5.1 Sensor placement for Observability in each LS

where 11,72 # 0 (the actual values are not relevant). The complement of matrix Mg, com-
posed by one ending transition vector, one attribution eigenvector and the linearly independent
columns of the incidence matrix C, represented by Cy is

[0 0 0 0 0 0 0 O]
0 01 -10 0 0 O
01 01 -1 0 0 0
000 0 1 -1 0 O
Vet VaCil=|0 -1 0 0 0 1 0 o0
001 0 0 0 -1 0
0000 0 0 1 0
001 0 0 0 -1 0
1 00 0 0 0 1 -1

The output matrix obtained from Algorithm 5.1.9 with the function
S = Sensor Placement(M/g)

isS=[e; e eg ey ez eq]T
In order to validate that there exists no other vector v € ker(Ay) contained in ker(S),
it is computed So = Validation(My,S). In this case, S = S, i.e. there is not any
linear combination of the columns of Mg contained in ker(S). Finally, to make sure that
Im(C) is not contained in kexr(Sp), it is computed S; = Validation(Cy, Sp). In this ex-
ample, there exists a linear combination of the columns of C1 € ker(Sp). The vector Q =
[0 1001000 o]T € ker(So). Then a sensor in place p; is added and Sy =
[ez es es es ez ey ez]T S1 guarantees observability of each LS in the SLS repre-
sentation of the ContPN.

5.1.1 Sensor reduction

As previously discussed, Algorithms 5.1.9 and 5.1.10 are used to compute an output matrix S
which guarantees, by excess, that the ContPN is observable. Now, in [46] it was proved that
if there exists a JAF-path from a place p; to a measured place p;, then the marking of place p;
can be computed in infinitesimal time. Then, it is possible to reduce the number of sensors and
still guarantee observability of the ContPN.

In order to reduce the number of sensors in a ContPN the following definitions and algo-

rithms are presented.
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5. SENSOR PLACEMENT FOR OBSERVABILITY IN CONTPN

For the following algorithm let w = n1n3...ng be a finite path. The notation wny, stands for
the new pathw = nyny...ngny. Also, the notation final(w) stands for the final node of the path
w. Finally the notation @ € (N U 0)IT*+1P! j5 a vector which contains the number of times that
the node n; appears in the path w, according to the indexation [py ... pp| t1 .. t|T|]T
Particularly 73; is the vector for the path w = n;.

A JAF-path from an arbitrary place p; to a measured place p; can be constructed in the

following way:

Algorithm 5.1.12 JAF-path from a given place p; to a measured place p; € Pyy.

Function: Q2 = JAF (pj, Py (S)).

Inputs: Initial place p;. The measured set places Py (S) from a given output matrix S.

Outputs: If there exists, a set ) of the shortest JAF-paths from p; to a measured place
p; € Py Otherwise Q = ().

Initialize: Set Q = Q = {p;} and Q, = 0. - Q is a search set, Q is a paths set and 2, is
an auxiliary paths set.

Compute: Compute the auxiliary set Auz = Q.

WHILE Auz # 0

1. Vn; € Auz if | @ n;| > 1, then remove n; from Aux - removes every join transition and
attribution place from the set Aux.

2. Vn; € Auz if n;je = 0 and n; € T, then remove n; from Auzx - removes every ending
transition from the set Auz.

3. Make Q = Aux.
4. If |Auz N Py| > 1 then

(a) Vn; € Auz if n; € Py then.

i. Yop € Q, ifn; € final(wp)e then add wyn; to Q, - adds the node n; to each
path in ) and the resulting path is added to Q.
ii. Make QQ = Q4 and EXIT While.

5. ElseVn; € Auzx

(a) Ywp, € Q, if n; € final(wp)e and i, T75; = 0 then add wyn; to Q, - adds the node
n; to each path in ) for which n; is an output node to the ending node of w and n;
is not already in the path. The resulting path is added to .
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(b) Make Q = Qg and Q, = 0.

6. Make Auz = Q.

END WHILE

VYw; € QIf final(w;) # Pu then remove w; from §) - Removes every path which does not
end in a measured place.
Return Q.

The previous algorithm starts in a given input place p;. Then, it creates a set €2 of paths
starting on p; and containing only single input transitions and single input places, i.e. JAF-
paths. If a path is a loop, i.e. a node n; is visited more than once, such path is not further
analyzed. When one of the paths reaches a measured place, then it removes from the set € all
the paths in which final(w) is not a measured place and returns €.

Now, in order to reduce the number of sensors in a ContPN guaranteeing the observability
in each of the LS of the ContPN the idea is the following: If there exists a JAF — path from a
measured place p; to a different measured place p;, then the value of m(p;) can be computed
in infinitesimal time from the knowledge of m(p;); therefore it is not necessary to measure p;

and the sensor from p; can be removed.

Definition 5.1.13 A sensor in a place p; is named redundant if there exists a JAF-path from p;
to another measured place p;.

Algorithm 5.1.14 Sensor reduction.

Function: S = SensorReduction((N, A\, mp), S1)

Inputs: A ContPN (N, )\, mg). Si, an output matrix which guarantees observability by
excess.

Outputs: An output matrix S such that the ContPN (N, A\, my) is observable and with
[Py (S)| < |Pm(S1)l-

Initialize S = S;.

1. Vp; € Py(S) compute Q@ = JAF (pj, Pm(S) — {p;})-
If Q # 0 then remove the sensor from place pj, i.e. remove the row S(i, ) = e; from S.

2. Return S.

The previous algorithm computes an output matrix which still guarantees observability of
the ContPN but removes redundant sensors.

65



5. SENSOR PLACEMENT FOR OBSERVABILITY IN CONTPN

Example 5.1.15 From the Example 5.1.11, the algorithm 5.1.14 will be applied. The output
matrix such that the ContPN in Fig. 5.1.1 is observable, is given by

T
Sl = [e7 € €3 €eg €3 ey e2]

Then, Py (S1) = {p7,Ps; Ps, P9, P3, P4, P2}-

Q = JAF (p7, Pu(S1) - {p1}) = 0.

Q = JAF (ps, Pr(51) — {ps}) = 0.

Q = JAF(ps, Pu(S1) — {ps}) = 0.

Q = JAF (p9, Pm(S1) — {po}) = 0.

Q = JAF(p3, Pu(S1) — {ps}) = 0.

Q = JAF (ps, Pu(S1) — {ps}) = 0.

Q = JAF(p2, P (81) — {p2}) = p2, t2, p3.

Therefore the sensor in place ps is redundant and it can be removed.

T
S = Sensor Reduction((N, A\, mg), S1) = [e-; e es ey e3 e4]

5.2 Distinguishability

As mentioned in previous chapters, the observability in ContPN requires the observability of
each LS and the distinguishability of every pair of LS. In this work it is assumed that each LS of
the SLS representation of the ContPN is already observable, for instance, by choosing output
matrix S as proposed in Section 5.1.

The naive approach of verifying the distinguishability property for each pair of LS using
Eq. (2.14) also becomes prohibited, since the number of LS increases exponentially with the
join transitions. Even more, testing the distinguishability for every pair of LS using the methods

proposed by [48] and [49] may lead to a wrong conclusion, as shown in the next section.

5.2.1 Classical testing for Distinguishability

The following result provides sufficient conditions for indistinguishability in SLS, i.e. there
exists a pair of LS which are not distinguishable from each other. It will be proved that if two
given LS have the same output matrix and there exists a common eigenvector with the same
eigenvalue for the two LS, then those LS will not be distinguishable from each other. Notice
that this result is relevant since a ContPN fulfils the condition of having the same output matrix
for all LS.
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Theorem 5.2.1 Let X; and X; be two LS of the same dimension and with the same output
matrix, S; = Sj. Letv € RIP! be a vector such that Av=Ajv= Bv. Then the LS ¥; and &;
are not distinguishable from each other.

Proof: The extended LS for system X; and X; is

; 0
A= [ %‘ A; }

Now, letv;; = [vT vT]T Then v;; is an eigenvector of A;; since 4;;vi; = [(Aw)T (4;v)T]T =
[(Bv)T (Bv)T]T Now, since S; = S;, then S;; = [S; — ;] and then S;;v;; = 0, therefore
vi; € ker(S;;). Then, there exists an A;;-invariant subspace contained in ker(S;;) and A;; is
not observable. Therefore ¥; and X; are not distinguishable from each other. |

It can be seen from the previous theorem that if there exists a common eigenvector with the
same eigenvalue for two LS, then this pair of LS are not distinguishable from each other and
therefore the SLS is not observable.

Particularly for FC-ContPN when dealing with join transitions, it has been proved that in
FC-ContPN each input place p; to a join transition t; has associated an elementary eigenvector
e; for some matrix CAIl, (see Proposition 4.1.3).

When all the input places to join transitions are measured, the ContPN becomes trivially
distinguishable. Indeed, using this information, the evolving configuration (hence the actual
evolving LS) is known. However, using the classical distinguishability tests, the indistinguisha-
bility of the ContPN is obtained, which is a failure of this test. This problem is shown in the

next proposition.

Proposition 5.2.2 Let a FC-ContPN having all the input places to its join transition measured
and every LS of the ContPN be observable. Let T be the set of join transitions of a FC-
ContPN. If | e t;| > 3 for some t; € Ty or |Ty| > 1, then there exists two indistinguishable
LS.

Proof:

Case | o t;| > 3 forsome t; € T}.

Let ot; = {p1,p2,p3} and IIj, be the configuration matrix in which place p, € et; con-
strains the transition’s flow, h = 1,2, 3. Then e; € ker(CAIly) N ker(CAIl3), since p; does
not constrain the flow of transition ¢; when configuration II or I3 are active. Therefore Je;
which fulfills conditions of Theorem 5.2.1 and CAIl; and CAIlj3 systems are indistinguishable

from each other. It occurs similarly with place p2 and p3 and its associated vectors e; and e3.
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Case [Ty| > 1.

Let T = {t1,t2}- If ¢; is a join transition, then #; has at least two input places. If one of
them has more than two input places, then the previous case applies. Let ot; = {p;,p»} and
oty = {p3, ps}. Let Il ;, be the configuration matrix where place p, constrains the flow for tran-
sition ¢; and pj, constrains the flow for transition £5. Then e; € ker(CAlIly3) N ker(CATLy).
Therefore Je; which fulfils the conditions of Theorem 5.2.1 and therefore CAllz3 and CAlIloy
systems are indistinguishable from each other. It occurs similarly with the other combinations
for the places constraining transitions ¢; and ¢p. [ |

There are other cases when the classical tests for distinguishability in SLS fail to determine
if a ContPN is distinguishable. To cope with this problem, some Ay —invariant subspaces for
the non FC-ContPN will be characterized.

Proposition 4.1.3 shows that when the output transitions of a place p; are join transitions,
then there exists an invariant subspace generated e; of configuration matrices where place p;
is not constraining a transition’s flow.

The next proposition shows that if a place p; is input place to only join transitions and end-

ing transitions, then the associated elementary vector e; generates an Ax—invariant subspace.

Proposition 5.2.3 Let a ContPN having a set T of join transitions and a set Tg, of ending
transitions. Let p; be a place such that pje C Ty U Tg. Then 31y, such that CAllre; = Be;,
i.e. ej generates an Ay—invariant subspace.

Proof: Similarly to Proposition 4.1.3, let Vt; € p; e NT; be join transitions with some
place p; € et;, p; # pj constraining its flow. Then p; does not constrain any flow for its output
join transitions. However, p; does constrain the flow for all the ending tranéiﬁons tp € pjenTE.
Then, as in Proposition 16 in [72] (Proposition 4.1.20 in this work), CAll.e; = Se;. m

The next corollary summarizes the two previous propositions.

Corollary 5.2.4 Let p; be a place such that pje C T; U Tg. Then 31k such that CAlle; =
Pe;j, i.e. e generates an Ar—invariant subspace.

Proof: The result is a consequence of Propositions 4.1.3 and 5.2.3. n

The previous corollary shows that if a place p; is input place to only join transitions and

ending transitions, then CAIlze; = fe; for some k and some B. These Ar—invariant sub-
spaces will be used to determine if there exist two indistinguishable LS in a ContPN.
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Definition 5.2.5 Let Px be the places fulfilling the conditions of Corollary 5.2.4. Each place
pj € P will be named a ker —place.

Definition 5.2.6 Let t; € T);. The ker —places index for transition t;, denoted by (t;),
u(t;) = |Px N ot;|
i.e. is the cardinality of the set Pk N ot;, the number of input ker —places to transition t;.

The next propositions show that even if a ContPN is distinguishable, the classical test shows
that there exist two indistinguishable LS.

Proposition 5.2.7 Let a ContPN having every input place to join transitions measured. Let
Ty # O be the set of join transitions of the ContPN. If any of the following conditions is
Julfilled, then there exist two indistinguishable LS

1. 3y, ty € Ty with1(t;) > 1 and c(tp) > 1.

2. 3t; € Ty with((t;) > 3.

Proof:

1) Let t, and t; be two join transitions with ¢(t;) = 2 and ¢(tp) = 2. Also, let p;,p2 €
Py Net, and p3, ps € Px Nety. Let Iy be the configuration matrix where place py constrains
transition ¢, and place py, constrains transition ¢;. Then e; € ker(CAIl23) Nker(CAIly4) and
the LS with dynamical matrices CAIl,3 and CAIl,4 are not distinguishable from each other.

2) Let ot; N Tx = {p1,P2,p3}. Now, let II; stand for the configuration matrix where p;
constrains the flow of transition ¢;. Then, e; € ker(CAIl;) N ker(CAIl3) and the LS with
dynamical matrices CAII; and CAIl3 are not distinguishable from each other. [ ]

For the case of ending transitions, let £; be an ending transition and places p; € ot; are its
input places. It will be assumed that if V¢; € p;e such that t;e = @, those ending transitions are
represented as only one ending transition. Proposition 4.1.20 characterize the ending transitions
eigenvectors.

With this proposition it can be seen that if |T;| # 0 and 3¢t;, t;® = @ with (et;) ¢ = {t;},
i.e. its input places only have t; as output transition, then VX, Axe; = Be; and every pair of
LS are indistinguishable from each other.

Similarly to ending transitions, ending places also have Ax-invariant subspaces associated,
as shown in Proposition 4.1.2.
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Again, if a ContPN has an ending place and |T’;| # 0, then every pair of LS are indistin-
guishable from each other.

In the proposition 4.1.18, the attribution eigenvector is an eigenvector for all matrices
CAIlL, therefore if such vector exists in a ContPN and |T;| # 0, then every pair of LS are
indistinguishable from each other.

Now, as discussed in [72], there exist annulers of CAIl;. For that, it is required that
Jv € Im(AIl) Nker(C). Such vector v is contained in I (AIl,) when the next definition is
fulfilled.

Definition 5.2.8 A T-Semiflow agreeing with X is a vector = € ker(C) such that for every
decision place p; with pje = {t1,t,...,tn}, €ither every transition t, ...,t, belongs to a
different minimum T-Semiflow or for those transitions in the same minimum T-Semiflow, the
ratio T; [Ty = Ai/ Ap holds Vi, ty, € pje.

Proposition 4.1.7 characterizes the conditions for which a T-Semiflow becomes an annuler
for CAIl,.
The next proposition shows that if a T-Semiflow does not contain a join transition, then the

associated annuler vector v is a common eigenvector to every LS.

Proposition 5.2.9 Let z be a T-Semiflow in which (z) N Ty = 0, i.e. there is not any join
transition in the T-Semiflow. Let v be the annuler of CAIly, associated to x. Then Vk, v €
ker(CAILL).

Proof: 1t is clear that if z does not contain any join transition, then each transition’s flow
is constrained by the same place in every configuration II;. Then, the i — th column in each
matrix A(e, ) is the same. Therefore Vk, v € ker(CAIlL). ]

The previous proposition shows that if Ty # () and if there exists a T-Semiflow which does

not contain any join transition, then every pair of LS are not distinguishable from each other.

5.2.2 Sensor placement for distinguishability

Now, this subsection addresses the problem of finding out the places in a ContPN that must
be measured for the ContPN to exhibit the distinguishability property. In this subsection we
assume that there exists a set of measured places such that every LS is observable. This set
of measured places can be constructed with the algorithms of the previous section. Thus the

problem consists in adding (removing) sensors to (from) places to guarantee distinguishability.
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5.2 Distinguishability

As previously discussed, it is clear that if every input place to join transitions are mea-
sured, then the ContPN becomes trivially distinguishable. However, it may not be necessary
to measure every input place to join transitions for distinguishability (nets where the LS are

observable but the are indistinguishable from each other is presented next [44]).

p1 P2

3

P3

t4
Figure 5.2.1: An indistinguishable ContPN system.

Now, in [46] it was proved that if there exists a JAF-path from a place p; to a measured
place p;, then the marking of place p; can be computed in infinitesimal time. Thus the problem
deals with verifying if every input place p; to a join transition t; is either measured or if there
exists a JAF-path from p; to a measured place. If none of these conditions occur, then a
sensor must be added to p;. If both conditions hold, then the sensor of p; should be removed.
Otherwise no sensor is added or removed.

Since adding/removing sensors as explained before leads to ContPN where the marking of
all input places to join is known or can be computed in infinitesimal time, then the net becomes
distinguishable. The adding/removing sensors procedure is implemented with the following
two algorithms.

Let S be the output matrix of the ContPN and Py = {pj|e17.'is a row of matrix S} be the
set of measured places.

Based on Algorithm 5.1.12, the next algorithm is introduced to determine weather or not

to put a sensor in a place p; € ot;, where ¢; is a join transition.

Algorithm 5.2.10 Sensor placement for distinguishability.

Inputs: T, the set of input places to join transitions. Py, the set of measured places.
Outputs: The output matrix S for which the ContPN is distinguishable.
Initialize: S1 = S. Pyp1 = Pyy. — Initializes matrix S as the output matrix S and the set of
measured places Pyr1 = Py
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5. SENSOR PLACEMENT FOR OBSERVABILITY IN CONTPN

1. Vp; € oT}y

(a) Compute Q = JAF (p;, Pan).

el

IfQ = 0 and p; is not measured, then add a sensor to place p;, i.e, S1 = [Sl]
]

and add p; to the set Pyr;.

Else If @ # 0 and pj is measured, then remove sensor from place p;, i.e. remove
the row e; € {0, 1}7! from matrix S.

2. Return Si.

The previous algorithm adds a sensor on a place p; € ot;, where t; is a join transition, when
pj is not measured and there does not exist a JAF —path from p; to a measured place. On the
other hand, if place p; € ot; is measured but there exists JAF —path to another measured place
i, then p; can be computed in infinitesimal time; therefore this sensor in p; is not necessary,
and it can be removed. Since in infinitesimal time it is possible to determine all the marking
m(p;), Vp; € Ty, i.e. the marking of all the input places to join transitions, then the actual
LS evolving is known.

Algorithm 5.2.10 guarantees that the ContPN is distinguishable.
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6

Observer design

In this chapter, the observers design problem is addressed. Once a ContPN shows the observ-
ability property, then a mathematical entity called observer may be designed. This observer
will allow the computation of the state of the ContPN. In Subsection 2.3.2 it was presented the
strategy for observers design in LS. The same idea, based on a Luenberger observer, will be ap-
plied to ContPN. For the observer design in ContPNss, a different state equation representation
than the one in Eq. (2.6) will be introduced so that a single observer for the ContPN can be
designed. Finally, a general ContPN-observer structure will be presented. If the extended tran-
sitions of such ContPN-observer structure are adequately controlled, then the marking (state)
of the ContPN-observer will converge to the ContPN marking.
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6. OBSERVER DESIGN

6.1 State space representation for ContPN

In this section the dynamics of the join transitions will be separated from the dynamics of
those transitions with a single input place. Then, it will be shown that with this representation,
a single observer may be designed.

First, consider the sets of single input and join transition, as defined in Definition 2.1.8.

The set of single input transitions can also be represented with the vector
ts € {0, l}lTl

such that (tg) = Ts.

Similarly, the set of join transitions can be represented by the vector
ts € {0, l}lTl

such that (t;) = T7.
Clearly Ts N Ty = @ and Ts UT; = T. Using vectors tg and t; matrices C and A will be

now rewritten.
Definition 6.1.1 The |P| x |T'| Join (Single Input) Incidence Matrix is
Cy = C-diag(ts) (Cs = C-diag(ts))

which is a |P| x |T| matrix where its j-th column corresponds to the j-th column of C if
t;(j) =1 (ts(j) = 1) else it is a zero column.

It is also clear that Cg + C; = C. Similarly to Definition 6.1.1, matrices Ag and A are
As = A - diag(ts) and Ay = A - diag(ts)

For the configuration matrices, if a transition t; € Ts then there exists only one place
that can constrain its flow. Therefore there exists a unique matrix IIg for which its i—th row
(associated to transition £;) is an elementary transposed vector e{, associated to the place p,
that constrains its flow. Otherwise the i—th row of Ilg is a zero row when t; € T;. Then,
it is possible to rewrite every matrix ITy = IIs + II;, where II;, contains every switching
representation for the enab(t;, p;) function.

Using the previously defined matrices, it is possible to rewrite (2.4) as follows:

m=(Cs+Cy)-f (6.1)
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6.2 Luenberger observer for ContPN

where the flow vector is f = fs + fs, fs and f; are the flow vectors corresponding to single
input and join transitions respectively. Now, it is possible to represent the flow of the single
input transitions as:

fs =As-IIsm 6.2

and substituting (6.2) in (6.1) we obtain:
m=(Cs+Cy)-(As-Tlg-m+ fy). (6.3)

The product Cgf; = 0 since every column corresponding to a join transition in Cg is a
zero column and for those nonzero columns, the corresponding entry in f; is zero. Similarly

C,fs = 0. Therefore, the ContPN dynamics can be represented with:
m= CsAsllsm+Cyfy 6.4)

where CgAsIIgm will be named single input dynamics and C f; will be named join dynam-

ics.

6.2 Luenberger observer for ContPN

Using (6.4) and the observer presented in Subsection 2.3.2, it can be introduced a ContPN
observer given by:
f = CsAsllsim + Cyfy + L(y — ) 6.5)
g=Sm
where C f are the Join transitions’ dynamics of the observer.
Now, consider the case of FC-ContPNs. In this case, vector f; is known since in a FC-
ContPN every input place to join transitions must be measured and it can always be made
fr=1fs5 .Proposing an error system with m = m — 1, the dynamics of the error system is

given by m = M — th from which the following equation is obtained:
m= CsAsnsr;l — L(y - 9). (6.6)

However, for the ContPN y = Sm and § = S and Equation (6.6) becomes

m= (CsAsIls — LS) m (6.7)
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6. OBSERVER DESIGN

Figure 6.3.1: Observer structure for a place.

which is a standard Luenberger observer design as in Subsection 2.3.2 [39] and if L is designed
properly, the error system is asymptotically stable and the state vector m — m at any desired
rate.

The main advantage of this observer is that with a single structure it is possible to observe
a ContPN no matter the number of LS in the family F representing it. The only problem is that
it is not guaranteed that the estimated marking 1 remains non-negative during the transient
state. In such cases when this observer is used to obtain a control action, the negative markings
should be considered zero.

The initial marking for this observer can be any marking, but it can be used the following:

fio(p;) = my(p;) if p; is a measured place
To\ps} = 0  if p; is not a measured place

6.3 A ContPN general observer

The observer for a ContPN (N, myg) can also be implemented as a ContPN with a structure
similar to NV extended with one place and 2| P| transitions.

For each place p; € P in a ContPN, its observer will have two additional transitions:
An input transition tg and an output transition t;-) with arc weights equal to 1. In order to
guarantee that every transition in the ContPN observer (ContPN-O) is also well defined, one
additional place p! connected as input and output to each and every transition tJI. is included,
as shown in Fig. 6.3.1. In this way, the ContPN-Observer graphical representation (ContPN-
0) is the ContPN (N©,m§) where N° = (P9, T°,Pre®, Post®) and mg is the initial
marking of the ContPN-O. The set P9 =pPu {p’ }. The set TO = T U T}, U Tyye where
Tin = {t!Vp; € P} and Ty = {t9V¥p; € P}. In order to modify the ContPN-O dynamics
each transition t € T;, U Ty, will be Controllable [73], meaning that it is possible to slow
down its flow. Let now the transition’s index assignation be accordingly to the following vector:
t0 = [tT T t@t]T where (t) = T, (tin) = Tin and (tout) = Tous. Matrix Post® is
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6.3 A ContPN general observer

defined as:
1 ifp_,-=p'andt,-€T,—,.
1 ift;=t] € Tin
POSto(pj, t")= and pj € P
Post(p;,t;) ift;€ Tandp; € P
0 otherwise
Similarly, matrix Pre© is defined as:
1 if p; =p1andt,-€Ti,.
1 ift; = th € Tout
Preo(pj,t;) = andp; € P
Pre(pj, t;) ift;eT and pjEP
0 otherwise

The Observer Incidence matrix is C° = Post© — Pre©. This matrix C© has always the form:
cO = [ o

where I;p| is the identity matrix of dim|P| and 0 is a zero vector of dim(|T| + 2|P|). Since
Vt; € (Tin U Tout), |ot;| = 1 then the number of configurations in the ContPN-O is the same
than in the ContPN. Therefore, the configuration matrices for the ContPN are:
II, 0O
m=[o0o 1
The speed vector is AC = [AT AL AL,], where Ai, and Aoy; are the speed vectors
associated to transitions in T}, and To,; respectively. Finally, the initial marking vector is
given by:
0 if p; is not a measured place (6.8)
1 if p; = p'.
The state equation for the ContPN-O is given by:

m(p;) if p; is a measured place
m(p;) =

!;10 = COAOH,?mO

Usingm® = [m” m! ]T and substituting the previous matrix definitions, it can be obtained:

m| [CAL-@]  [Ainl] [Aow @
o] =[] - P ©)

77



6. OBSERVER DESIGN

Since the dynamics for place p! is equal to zero, its marking is always m! = 1 and it
is possible to eliminate the last row of (6.9). Now, using the Single Input and Join Dynam-
ics representation given in (6.4), the dynamics for the ContPN-O can also be represented as
follows:

i = CgAslls - @ + Cyfy + Ainl — Agys - 1.

From the previous equation, it can be seen that C;f; should be dependent on the state
vector m. However, in FC-ContPN, f; is known and it can be considered as an external input
for the ContPN-O.

Let a transition £; € (Ti, U Tit) be named an extended transition. Every extended transi-
tion is controllable since they are designed to that end, therefore it is possible to include a u;y,
and a uy,s control vectors to slow down the flow of those extended transitions. Then, the flow

for the extended transitions can be written as:
fe = (Ainl — tin) —~ (Aouti® — Uout) (6.10)

where 0 < 4 < Ajpl and 0 < Uy < Agyeim. It is possible to represent u;, and Uy as a

proportion of the flow A;,1 and Ay¢in respectively:

Uin = I;:‘Ainl
Uout = IgutAwtﬁl

6.11)

where I, and I}, are diagonal matrices with elements Ii’ﬁbj,
in (6.10) it is obtained:

fe

I3, € [0,1]. Substituting (6.11)

(Ainl — I A1) — (Apyem — I%, Apye )
= (Ianin]-) - (IgutAo'utm)
where If = 1ip| — I} and I, = I|p| — I3,,;.

It is clear that the speed vectors \;, and A,y are design parameters for the ContPN-O.
Proposing A, and A,y values sufficiently big and with matrices I, IS, it is possible to add
or remove marks at any place and with an adequate control strategy for f,, marking m — m.

Let the observer’s error be defined as e = m—rf. The error system therefore is & = rh—f;‘l,
where

e = CsAslls(m — @) — (I5Ainl) + (IS Aousim)
and it is possible to make (I£,Ainl) = (IS Aousth) + fi, ie. the input flow for each place in

the observer is greater than its output flow, obtaining

e = CsAslls(m — ) — fi, (6.12)
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Strawberry Jars
Arrival Arrival
I—)I Washing -)[ Cooking H Packaging I
Washing Pounding Packaging
Drying Coocking Washing
Chopping Cooling Labeling
Weighting Weighting Sealing
Final cleaning

Figure 6.3.2: Illustrative example flow diagram.

where f;;, > 0.

The following control action for the extended input transitions is now introduced

f'inj =

rxje(p;) ifpj € Pm
{ 0 otherwise. (6.13)

The stability demonstration for this observer’s strategy is currently being developed.

6.3.1 Ilustrative example

Consider the flow diagram in Figure 6.3.2. It represents a simple process for the production
of strawberry jam. The process consists of three steps: Washing, Cooking and Packaging.
The Washing process consists of Washing the strawberries, drying them, chopping them to
simplify the cooking and finally weighting them in standard lots. The cooking process consists
on pounding the strawberries. Then the actual cooking of the strawberries take place, where
the sugar is added. Afterwards, for the pasteurization process the jam is cooled. Finally, the
jam is again weighted and ready to be packaged. After the packaging, the jars are washed to
ensure no spills are in the jar. Then, the full clean jars are labelled and sealed. The final step
before they are ready to be shipped is a final cleaning and visual inspection. The simplified
ContPN model is also presented in Figure 6.3.3.

The firing rates for the transitions are given by

A=[211113222111112]

This ContPN is observable with an output matrix

S=[ef o e efi]"

The Single Input and Join transitions sets are Ts = {t1, t2, 3, t4, 6, t7, t8, t10, t11, t12, t13}
and T’y = {ts,t9} respectively.
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(i

Figure 6.3.4: Luenberger observer estimates.

In the Luenberger observer, the output error feedback matrix L, can be computed to obtain
any desired dynamics for the error system. Particularly for this example, L is designed in order
to obtain an asymptotically stable error system with eigenvalues

eig = {-3,-4,-5,...,-15,—16,-17}.

In Fig. 6.3.4 the marking evolution for the places of ContPN (continuous line) and its
Luenberger observer (dashed line) are shown. It is important to notice that with the observer
design previously introduced, it is not relevant to know the minimum dwell time of the ContPN.
In fact, since the active configuration is always known, it is possible to determine the continuous
state even when switching occurs in the ComPN.

In Figure 6.3.5 the ContPN-O for the ContPN inf Fig. 6.3.3 is shown. The results for the
ContPN-Q are shown in figure 6.3.6. For this example x; = 675,Vp; € Pn. It can be seen
that the observed marking in each place is always non-negative and reaches asymptotically
the marking of the ContPN. Therefore, if the results are used for controlling the marking of
a ContPN it is not necessary to filter the value. Instead, the separation principle should be
provided.
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Figure 6.3.5: ContPN-O for the ContPN in Fig. 63.3.

= i
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Figure 6.3.6: ContPN-O results for the ComtPN in Fig. 6.3.3.
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Figure 6.4.1: The xContPN for figure 6.3.3.

6.4 Observer and control integration

The control law introduced in (2.11) requires, for the computation of the minimum Parikh vec-
tor, the initial marking mg of the ContPN as well as the value of the transitions flow. However,
my is actually unknown, otherwise it would not be necessary to have an observer. It is only
known the output marking, i.e. Smyg. Fortunately, the observer can be designed in such a
way that the steady state is reached within any desired 7 > 0. Then the control and observer

integration strategy will be the next:

1. Design a Luenberger observer as in Eq. (6.5) to guarantee |m(71) — m(71)| = € where

€ is a very close to zero value reached in designed time 7y.

2. Design the zContPN for the original ContPNwith an initial marking as in Eq (6.8). The
xContPN represents the observer, where the marking m(p;) = m; Vp; € P. If 37 such
that m;(7) < 0, then m(p;) = 0.

3. Once |m — m| = ¢, then compute the min Parikh vector o5, as in Eq. (2.10).

4. Let my(72) for a time 75 > 71, be the marking in the places P, of the zContPN at time

7. Then apply the control law introduced in Eq. (2.11) with 0, = omin + mg(72).

Notice that, since there exists an observer’s error m — m = e at time 73, then the marking
evolution of the ContPN will also have an error in the reached steady state. This error depends
on the design parameter ¢, so the smaller the convergence observer error ¢ is, the smaller the

steady state error m — m, will be.
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6.4 Observer and control integration

6.4.1 Ilustrative example

The initial marking of the ContPN in Figure 6.3.3 is taken as mg(p1) = 2, mo(p2) =
my(p3) = mo(pa) = myo(ps) = 1/2, mo(ps) = mo(pr) = mo(ps) = mo(ps) = mo(p10) =
1, mo(p11) = mo(p12) = mo(p13) = mo(p14) = mo(p15) = 3.

For the observer, its initial marking is considered as Mq(ps) = 1/2, fg(ps) = my(p10) =
1, mo(p11) = 3 and zero for all the other places.

The target marking for this example is m,(p;) = 1.6, m,(p2) = m,(p3) = m,(pg) =
m,(ps) = 0.6, m,(ps) = 3, m,(p7) = m,(pg) = m,(pg) = m,(p1o) = 0.5, m,(p11) = 5,
m,(p12) = m(p13) = m,(p14) = m,(p15) = 2.5.

The firing rates for the transitions are given by

A=[1111222233333]

This ContPN is observable with an output matrix
S=1TleT e oI (T1T
= [35 € €10 311]

The Single Input and Join transitions sets are Ts = {t1, t2, t3, ta, t6, t7, ts, t10, t11, t12, ti3}
and Ty = {ts,t9} respectively.

bbbl b 1. )}

Tt i 0 [ 5

A) B)

Figure 6.4.2: A) Quadratic Luenberger observer error. B) Quadratic regulation error.

In the Luenberger observer, the correction gain matrix L can be computed to obtain any
desired dynamics for the error system. Particularly for this example, two correction gain ma-
trices L were designed. The first one was designed in order to make the quadratic error of
the Luenberger observer I';ITI';I — 0in 0.25 time units. The second one was designed to
make ﬁiTﬁl — 0in 1.25 time units. In Figure 6.4.2 A) the quadratic observer error for both

simulations is shown.
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~T .
Once m m — 0, in time 7 = 2 time units, the control action (2.11) is applied in both

simulations (each with a different gain matrix L). In Fig. 6.4.2 B) the quadratic regulation
error (m —m,.)T(m — m, ) is shown. It can be seen that in proximately 11 time units the target
marking is reached. Of course, in both simulations, the marking evolution for the ContPN is

the same.
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7

Case of study

This chapter is devoted to present a case of study to illustrate the previously presented theory
about sensor placement for observability in ContPN and observer design (see chapters 4 and
5). The case of study is about the cigarettes production and packaging. In Section 7.1 a brief
description of the system will be presented. Then, in Section 7.2, an abstraction of the system (a
model) will be obtained as a ContPN. Then, the concepts presented in previous chapters will be
used to determine a proper instrumentation to guarantee that the ContPN is observable. Then,
the model will be analyzed and simplified based on the knowledge of the system dynamics,
leading to a simpler model. This simplification will be presented in Section 7.3. Again, this
work’s theoretical results will be used to determine a sensor placement selection such that the
simplified model is also observable. With this simplified model, an observer will be constructed
as presented in Chapter 6. Finally, in Section 7.4, the simplified model will be simulated and
the results for the observer will be presented.
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7. CASE OF STUDY

7.1 Process description
The cigarette production and packaging is separated into three main steps:

1. Cigarette formation. In this process the cigarette itself is made. It includes the rod

formation, the filter assembly and the delivery of the cigarette to a buffer machine.

2. Packing. A standard pack of cigarettes contain 20 cigarettes. The packs are carton made
and covered with polypropylene. The pack also has an auto strip, which is a polymer
strip that allows the polypropylene straight ripping.

3. Packaging process. A standard package contains 10 packs, which are put together and
then covered with polypropylene.

The whole production is made within a production module, also named link-up. In Figure
7.1.1 a link-up is presented. A standard link-up, such as the one shown in Figure 7.1.1 requires
two operators and an assistant operator per two modules. In an eight hour shift, a standard
link-up is expected to produce 130,000 packs of cigarettes, with the equivalent of 2,600,000
cigarettes plus scrap production. These values are based on a statistics of machines of fifth

generation (medium speed) as the ones modelled.

Figure 7.1.1: A cigarette production module.
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7.1 Process description

7.1.1 Cigarette formation.

The cigarette formation is a process which includes several machines connected one to the

other as presented in the schematic (Figure 7.1.2).

Arival Arival H
Tobacco rod Accusmulstion Accurmulation Rolling paper Printing
Praperstion Guiding Rolng paper H
Equipment: Elevation Stretching Equipment: Arrival
Compression Printing Maker-A
1 1
¥y
Concusrency
Cigaretts rod Alr injaction
=
Equipsweat: Sealing
Maker-A Cutting
Delivery to Maker-8
[&= P> e
d . Filter inciysion
. Gup chosing
s
Amival ) Glubg
Equipment: Sasling
Maker-8 Culting
=
Delivary ©© Packer-1
(Cigursties Injection)

Figure 7.1.2: Cigarette formation schematic.

The process begins with the tobacco arrival. The tobacco is placed in a chute. To lead
the tobacco to the chute there exists a pneumatic system, which ensures a regular amount of
tobacco in the chute. The chute and the tobacco arrival can be seen in Figure 7.1.3. The tobacco
amrives from the left of the chute. On the right of the chute there is also a pipe with an arrow.
This pipe removes tobacco powder and maintains the chute with an appropriate pressure.

Tobacco
Arrival

Figure 7.1.3: Tobacco arrival and the chute.
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Once in the chute, the whacco is prepared with an 2ir cortaim troegh 2 breshing device from
the top of the machine W its bottom. Afier the preparation, the sobacco is omoe again clevated
with air 0 a compression device. At this poist, the tobacco has already the rod shape, which
will be assembled with the rolling paper. This paxt of the process is made in the Maker-A
machine, as shown in Figare 7.1 4.

Figure 7.1.4: Tobacoo preparation and comspression.

On the other hand and in a parallel process, the rolling paper (cigaretic paper) is processed
in another part of the Maker-A machine. The paper is first accumulated so it can be pulled with
a constant speed. The paper is prepared trough a guide. Trough this guide, the paper will be
stretched and printed. This past of the process is made in the Maker-A machine as shown in
Figwe 7.15

Paper printing

Figwre 7.1.5: Paper stresching and printing.

Finally the paper already printed will be asscmbled together with the tobacco rod in the
former of the Maker-A machine. In order to make the assembly, both the cigarette rod and the



7.1 Process description

printed paper should join together in the Maker-A machine in a concumrency step. When the
paper is being folded, air is injected in order to avoid the presence of tobacco particles in the
cigarette’s seem (this is considered a very relevant non-conformity of quality, since it can make
the cigarette to open because of the lack of glue). Then, the rolling paper is completely folded
around the tobacco rod, gluing the scem. Afier the gluing, the cigarette rod is sealed with a
heating device. This process delivers a continuous cigarette rod. This process is made in the
Maker-A machine as shown in Figure 7.1.6

Gluing Glue container

Sealing

Cigarette rod Air injection

Figure 7.1.6: Cigarette assembly (cigarette rod formation).

Once a continuous cigarette rod is obtained, it is cut into smaller pieces of the appropriate
dimension in the cutter of the Maker-A machine. The process of the Maker-A machine delivers
up to 7,000 cigarettes per minute. In Figure 7.1.7 it is shown where the cutting process is made
in the Maker-A machine.

Cutter

Figure 7.1.7: Cigarette cutting.

After the rod is cut into pieces, the pieces are delivered to the Maker-B machine. The
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Maker-B machine is composed of several drums in which the filter assembled with the cigarette
rod. The first step is devoted to place properly two cigarette rods with an appropriate distance
between them. In the second step, a filter is added in between them. Then, a different drum
closes the existing gap between both the cigarettes rods and the filter (Step 3). When the gap
is closed, the tipping paper is added (Step 4). Right after that, the tipping paper is glued (Step
5) and rolled (Step 6). Then, with a heating drum, the complete rod is sealed (Step 7). Then,
in a cutting drum, the rod is cut in half (Step 8) in order to finally turn it around (Step 9) so all
the cigarettes are delivered to the buffer in the same position. This process, step by step, can

be seen in Figure 7.1.8.

Step 1

Step 2 I Cigarette rod ] [ Filter | L Cigarette rod |

S[ep 3 L Cigarette rod l Filter I Cigarette rod I

Step 4 I Cigarette rod er [ Cigarette rod —I
Tipping paper ——J>

- <
Step 5 j Ir T Cigarette rod I
|

Step6 | cigaretierod m kTl Cigaretterod |

Step 7 I Cigarette rod mu JI_L Cigarette rod I

Step 8 | Cigaretie rod - [ _ Cigarette rod I
11—
] <

Step 9

Figure 7.1.8: Filter assembly process.

The equipment which is devoted to make the previous process is a Maker-B machine. In
Figure 7.1.9 it is possible to see the Maker-B in operational mode.

In Figure 7.1.10, the Maker-B is empty and clean, so all its components are visible.

Similarly to the Maker-A, the Maker-B is also capable to deliver up to 7,500 cigarettes per
minute. Once the cigarettes are ready and aligned, they are sent into a buffer where cigarettes
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7.1 Process description

Tipping paper Drums

Figure 7.1.9: Maker-B.

Figure 7.1.10: Maker-B. Open machine.

can be extracted in containers or they can be sent to continue into the Packer-1 machine. This
part of the equipment can be seen in Figure 7.1.11. This part of the process is important since
it ensures a minimum amount of cigarettes available for the Packer-1 machine. Also, if it
was necessary, it is possible to obtain cigarettes from the maker and take them into a different
packer, since there are several packers which can use the same cigarette for different pack’s
presentation.

In order to guarantee the cigarettes’ availability, the cigarettes collected in the buffer or
made on a different maker machine, can be inserted to continue into the packing process with

the help of a cigarettes tray turner machine. This equipment can be seen in Figure 7.1.12
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7. CASE OF STUDY

Maker-B output

Figure 7.1.11: Cigarette tray filler. A cigarettes buffer.

Figure 7.1.12: Cigarette tray turner machine.

With this equipment, the cigarette formation process ends. The complete cigarettes’ pro-
duction is usually also named the making process. It is important to mention that the mak-
ing process can be understood as a supplier process for the packing and packaging process.
However, the making process can be also a part of a link-up process, as explained in this
work. Therefore the cigarette tray filler machine and the cigarette tray turner machine will not
be included in the model, since they only represent an increase of cigarettes® capacity in the
equipment.

Now, in the next subsection, the packing process will be described.
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7.1 Process description

7.1.2 Packing process.

The packing is made in the second set of equipment on a link-up. An standard set of cigarettes
(20 of them) will be covered by an aluminium layer, a carton layer and a polypropylene film.
This step concludes the packing process. An schematic of this process is presented in Figure
7.1.13.

Aminium cutiing

el =R
Cigarettes injection Flst pack gluing
Equipment; Aluminium folding 1 Pack folding 1 Equipment: Chie
IE——) Packer-1 Asminium folding 2 Pack folding 2 Packer-1
" Aluminium folding 3
1 1
Aluminum set injection
Pack Aluminium Pack folding 3
Assambly Pack folding 4 & gluing
Equipment: Pack folding 6
Packer-1 Pack sealing
Defivery to Packer-2
Polypropylene cutting
Autostrip insertion
E Pack injection
[ | pakcommiog | pohropfan o 1
Polypropylene folding 2
[ | Lo et
2 Polypropylene folding 4
Polypropylene sealing
Delivery to Packer-3

Figure 7.1.13: Packing process schematic.

The packing process starts with the accumulation of the cigarettes on a guided chute. The
cigarettes are guided into a set of channels, where an injector pushes them into the folded
aluminium.

The aluminium is cut and prepared to receive the 20 cigarettes set in a slider component.
The cigarettes are then pushed into the cut aluminium. The set aluminium-cigarettes is then
folded in such a way that the cigarettes are completely covered by the aluminium paper.

Then on a parallel process, the pack is being sided, glued and folded in order to assemble
it with the aluminium set. In the aluminium set assemble process with the pack, the pack goes
trough several folding steps and a sealing step. All these steps but the sealing are made in a

Packer-1 machine. This machine can be seen in Figure 7.1.14.
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Figure 7.1.14: Packer-1 machine.

The sealing step is made on the last part of the Pack-1 machine. It is made trough a heating
device which allows the glue to quickly dry out. The sealing device can be seen in Figure
7.1.15.

Sealfing step Aluminium / cigarettes set

Figure 7.1.15: Sealing device. Packer-1 machine.

Finally, the polypropylene film is added to the pack. The polypropylene film has an auto-
strip that allows the film to rip aligned to the top opening-part of the pack. This process is
made on a Packer-2 machine, which can be seen in Figure 7.1.16.

The packing process ends with this step. In the next subsection, the packaging process will
be described..



7.1 Process description

Polypropylene film Auto-strip Sealed packs

Figure 7.1.16: Packer-2 machine.

7.1.3 Packaging process.

In the packaging process, 10 packs are assembled into one package. This process consists of
the injection of two layers of five packs which are covered by a polypropylene film. Then the

film is properly folded and delivered as a final product. The schematic of this process can be
seen in Figure 7.1.17.

: Polypropylene cutting
: Autostrip Insertion

Packaging Packs injection
Polypropylene Polypropylene folding1
Equipment: Polypropylene folding2

: Arrival

H Packer-3 Polypropylene folding3
: Polypropylene sealing
Dellvery to cartoning

Figure 7.1.17: Packaging process schematic.

This process is made on a Packer-3 machine. This machine can be seen in Figure 7.1.18.
The packages, consistent on 10 packs will be later included into a carton. This process
is not included since it is made in a different location, i.e. out of the link-up. Actually, the

packages are taken from the link-up to be inserted on the carton box all around the factory
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Packs sends to cartoning Packer-3 machine

Figure 7.1.18: Packer-3 machine.

trough a belt conveyor. Each carton contains 50 packages, i.e. 500 packs. This step of the
process is known as cartoning.
In the final step, the carton goes into a wrapper and a labelling machine. Then, the cartons

are taken into the finished goods warehouse.
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7.2 Process representation as a ContPN

In this section the ContPN representation of the previously described processes will be pre-
sented.
7.2.1 Cigarette formation.

The cigarette formation process’ representation as a ContPN can be seen in Figure 7.2.1.

P3
ty t2
Pa ]
P1
tg ¢y
Pg,
5
ts L
P14
ti0
P1s|
t11
on(? 1
t12
P18
t13
Pagl
tiq

Figure 7.2.1: Cigarette formation ContPN representation.
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The interpretation of the nodes in the ContPN presented in Figure 7.2.1 is given in the
Figure 7.2.2 (refer to Figure 7.1.2 for the schematic process).

P Interpretation t Interpretation
1 Tob (infinite) h 1 Tobacco arrival to chute
2 . Tobacco in the chute 2 Tobacco preparation
3 Tobacco in preparation compartment 3 Tobacco elevation
4 Tobacco in the elevator 4 Tobacco compression
5 Compressed tobacco 5 Concurrency with rolling paper
6 Tobacco compartment free capacity 6 Paper accumulation
7 Rolling paper (infinite) buffer 7 Paper guiding
8 Accumulated paper 8 Paper stretching
9 Guided paper 9 Paper printing

10 Stretched paper 10 Air injection

11 Ink (infinite) buffer 11 Gluing

12 Printed paper 12 Sealing

13 Printer free capacity 13 Cutting

14 Tobacco-paper (TP) rod 14 Delivery to Maker-B

15 Small particles free TP rod 15 Drum positioning

16 Glue (infinite) container 16 Filter inclusion

17 Cigarette rod 17 Gap closing

18 Sealed cigarette rod 18 Tipping paper rolling

19 Cut cigarette rod 19 Gluing

20 Maker-A free capacity 20 Sealing

21 Cigarette rods in Maker-B 21 Cutting

22 Positioned cigarette rods 22 Turning

23 Filter (infinite) buffer 23 Delivery to buffer

24 Cigarette-Filter-Cigarette (spaced)

25 Cigarette-Filter-Cigarette rod

26 Tipping paper (infinite) buffer

27 Double cigarette rod

28 Glue (infinite) container

29 Glued double cigarette rod

30 Sealed double cigarette rod

31 Cut double cigarette rod

32 Maker-B free capacity

Figure 7.2.2: Nodes interpretation of the cigarette making.
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7.2.2 Packing process.

The ContPN which represents the packing process can be seen in Figure 7.2.3.

P3s
tas taq
P35
P37 P34
tag
P » | | —
P38 P41
tag t2

P3g

t27

Peo ’“Qb

Figure 7.2.3: Packing process ContPN representation.
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The interpretation of the nodes in the ContPN presented in Figure 7.2.3 is given in the
Figure 7.2.4 (refer to Figure 7.1.13 for the schematic process).

P Interpretation t Interpretation

33 Packer-1 aluminium free capaci 23 Cigar injection in Packer-1

34 Aluminium paper (infinite) buffer 24 Aluminium cutting

35 Cut alumini 25 Aluminium sliding

36 Slided (ready) alumini 26 Aluminium folding 1

37 Aluminium-cigarette (A&C) set 27 Aluminivum folding 2

38 Folded 1 A&C set 28 Aluminium folding 3

39 Folded 2 A&C set 29 Flat pack sliding

40 Folded 3 A&C set 30 Flat pack gluing

41 Packer-1 flat pack free capacil 31 Pack folding 1

42 Flat pack (infinite) buffer 32 Pack folding 2

43 Slided (ready) flat packs 33 Aluminium set inj

44 Glu (infinite) buffer 34 Pack folding 3

45 Glued flat packs 35 Pack folding 4

46 Folded 1 flat packs 36 Pack folding 5

47 Folded 2 flat packs 37 Pack folding 6

43 Pack & A&C set 38 Pack sealing

49 Folded 3 pack & A&C set 39 Delivery to Packer-2

50 Glue (infinite) buffer 40 Pack & polypropylene folding 1

51 Glued and folded 4 pack & A&Cset || 41 Pack & polypropylene folding 2

52 Folded 5 pack & A&C set 42 Pack & polypropylene folding 3

53 Folded 6 pack & A&C set 43 Pack & polypropylene folding 4
Scaled pack & A&C set 44 Pack & polypropylene sealing

55 Paker-1 Pack folding free capacity 45 Delivery to Packer-3
Packs & polypropylene 46 Polypropylene cutting

57 Folded 1 packs & polypropylene 47 Autostrip insertion

58 Folded 2 packs & polypropylene

59 Folded 3 packs & polypropylene

60 Folded 4 packs & polypropylene

61 Sealed packs & polypropylene

62 Packer-2 free i

63 Polypropylene (infinite) buffer

64 Cut polypropyl

65 Autostrip (infinite) buffer

66 Polypropylene & autostrip set

Figure 7.2.4: Nodes interpretation of the packing process.
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7.23 Packaging process.

The ContPN which represents the packaging process can be seen in Figure 7.2.5.

Figure 7.2.5: Packaging process ContPN representation.

The interpretation of the nodes in the ContPN presented in Figure 7.2.5 is given in the
Figure 7.2.6 (refer to Figure 7.1.17 for the schematic process).

» Interpretation P Interpretation
67 Package with polypropylene 45 From Packer-2 (packs insertion)
68 Folded 1 package 43 Polypropylene folding 1

69 Folded 2 packag 49 Polypropylene folding 2
70 Folded 3 packag 50 Polypropylenc folding 3

71 Sealed package 51 Polypropylene sealing

72 Packer 3 free capaci 52 Delivery to ing

73 Polypropylene (infinite) buffer 53 Polypropylene cutting

74 Cut polypropylene 54 Autostrip inserti

75 ‘Autostrip (infinite) buffer

76 Polypropylene & ip set

Figure 7.2.6: Nodes interpretation of the packaging process.
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7.24 Complete model.

The complete model is shown in Figure 7.2.7. For simplicity of the representation, all the labels

were removed but the synchronizations between processes.

0

Making

o
ey
;5”5
I

Figure 7.2.7: Packaging process ContPN representation.

7.2.5 Observability of the complete model.

The ContPN in Figure 7.2.7 has 20 join transitions. The join transitions set is
Ty = {t1,ts,t6, to, t11, t14, t16, t18, t19, £23, t24, L29, t30, £33, 135, t39, t4s, ta6, ta7, ts3, tsa }

In order to represent it as a SLS it is necessary to model a family F of LS with 4,718,592
LS, due to the join transitions. In order to compute the number of LS needed to represent the

ContPN, it is necessary to compute.
||

IT1etil.

i=1
Also, in order to make the ContPN using Algorithms 5.1.9 and 5.1.10 returns an output

such that the set of measured places is:
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7.3 Model simplification

D1, p3, Ps, P6, P71, P8, P10, P11, P12, P13,
P15, P16, P17, P19, P20, P22, P23, P25, P26, P27,
P28, P30, P32, P33, P34, P35, P37, P39, P41, P42,
P43, P44, P45, P47, P48, P50, P51, P53, P55, P56,
P58, P60, P62, P63, P64, P65, P66, P67, P69, P71,

P73, P14, P75, P76, P17

i.e. 55 measured places in order to compute the marking of 77 places. The distinguishability

I

Py

in this case is guaranteed, since every input place to a join transition is measured.
Using the sensor reduction algorithm (see Algorithm 5.1.14), the set of measured places is
reduced to the set:

P1, Ps, P6, P7, P10, P11, P12, P13,
D15, P16, P19, P20, P22, P23, P25, P26, P27,
D28, P32, P33, P34, P35, P37, PAl, P42,

Py =
P43, P44, P45, P48, P50, P51, P55, P56
P62, P63, P64, P65, P66, P67,
P73, P74, P75, P76, P17
which only contains 44 places.

7.3 Model simplification

The previously presented model can be simplified under the following consideration:

The material buffers (tobacco, rolling paper, tipping paper, glue, etc.) are infinite.

With previous consideration, it is possible to see that the evolution of the ContPN does not
depend on such material buffers. Therefore, the marking of the set of places

Piource = {P1, P71, P11, P165 P23, P26, P28, P35, P43, P45, P51, D64 P66 P74, P76 }

can be considered as known V7.

Now, let the source transitions set be defined as Pyource® = Tsource- Consider a transition
t; € Tsource- Each of these transitions has two input places, one which belongs to Psoyrce
and the other which does not. Then, the transition ¢;’s flow is always constrained by the place

pj € ot; such that p; & Psource- Then, it is not longer necessary to measure the set of places
P1, P6, P7, P10, P11, P13, P15, P16, P22, P23,

PM3 = D25, P26, P27, P28, P34, P35, P42, P43, P44, P45,
P50, P51, P63, P64, P65, P66, P73, P74, P78, P76,
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7. CASE OF STUDY

i.e. 30 places can be removed from the set of measured places. It is important to remark that the
distinguishability property is also preserved, since every input place to a join transition (which
has a non zero dynamics) is measured; and, for the ones with zero dynamics, its marking is
assumed to be known and those places never constrain the flow of their output join transitions..
In this way, the set of measured places that guarantees observability of the ContPN in Figure
7.2.7 and its output matrix is given by:

PM4 e PM2_PM4 ={ DPs; P12, P19, P20, P32, P33, P37, }
P41, P48, P55, P56, P62, P67, P17
_eg,-
€12
€19
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7.4 Model simulation

7.4 Model simulation

Using the approach proposed in 6, a single observer was designed.
The ContPN and its observer were simulated on Simulink ®), based on Matlab ®.
The Simulink ®diagram can be seen in Figure 7.4.1.

Figure 7.4.1: Simulink ®diagram.

The main component is a differential equation editor, which contains the ContPN described
on Section 7.3. In the differential equation editor, the dynamics of the ContPN is captured,
together with its initial state and the output variables. In order to have the state marking m as
a reference, all the markings were available in the output. The differential equation editor can

be seen in Figure 7.4.2.

Figure 7.4.2: Differential equation editor.
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The state equations used in the differential equation editor can be seen in Figure 7.4.3. It

L ]
is important to recall that these equations represent the component m = CgAgllgm, i.e. the

single input dynamics.
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Figure 7.4.3: State equations for the ContPN.

Since the marking depends on the flow of the transitions, the Simulink ®block named

Transitions computes the flow of each transition. The implementation of this computation can

be seen in Figure 7.4.4.

Figure 7.4.4: Transition’s flow computation.
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7.4 Model simulation

The observer for the ContPN was also implemented in Simulink ®. Its implementation
can be seen in Figure 7.4.5.

It

| - LS

Figure 7.4.5; Simulink ®diagram for the observer.

The observer also includes as an input the component of the join transitions dynamics and

the correction factor, given by the term

Csfs+LS(y—17)

The state equations for the observer are presented in Figure 7.4.6.
As aresult of the simulation, the quadratic error over time of the observed marking (defined

by m = m — ) can be seen in Figure 7.4.7.

107



7. CASE OF STUDY

!nhwu ﬁidéa ﬂwmlu Yer  Ayyds

O'X(l)ou
éz% +0*x
+0*x

w'xE
s

gou 56)
+u 57

+u SB
+U 59

u 6 vO'x B8)+u(62)
u(7 -u 3 +0*x(9)+u(63)
u(8)-u(9)+0*x(10)+u(64)
0+0*x(11)+u(65)

322313523182831352?3

2
3
4

u(5)-u(10)+0*x(14)+u(68)
u(10)-u(11)+0*x(15)+u(69)
0+0*x(16)+u (70,

)
u(11)-u(12)+0*x 17gou 71
u(12)-u 13300': 18)+u(72
u(13)-u(14)+0*x(19)+u(73

u(14)-u(S5)+0*x(20)+u(74)
u 143—u 15;+0'x§21;4u§75;
15)-u(16)+0*x(22)+u(76
0+0*x(23) ‘)( 7) s
u(16)-u(17)+0*x(24)+u (7
5173 éla)vo'x22530u€79g
0+0*x(26)+u(80)
u(lB) u(19)+0*x(27)+u(81)
0+0*x(28)+u(82
u(19)-u(20)+0*x 29g¢u(83;
u(20)-u(21)+0*x(30 ¢u§54
u(21)-u(22)+0*x(31)+u(85)
u(22 -20'0(23300'1(32)¢u586)
20*u(23)-u(14)+0*x(33)+u(87)
u(33)-u(24)+0*x(34)+u(88)
0+0*x(35)+u(89)
u ng-u 25)+0*x(36)+u(90)
-u(23)+0*x(37)+u(S1
23;—u 26)+0*x(38)+u(92
u(26)-u(27)+0*x(39)+u(933
7)-u(28)+0*x(40)+u(34
Bg—u 33)+0*x(41)+u(95
3)-u(29)+0*x(42)+u(96)

[T
SR

04+0*x(43)+u(97)
u(29)-u(30)+0*x(44)+u(98)
0+0*x(45)+u(99)
u(30, —uE}l +0*x (46, +u 100;
u(31)-u(32)+0*x(47)+u(101
u(32)-u(33)+0*x(48)+u(102
-u(34)+0*x(49)+u(103
u(34)-u(35)+0*x(50)+u(104
0+0*x(51)+u(105)
5)-u(36)+0*x(52)+u (106
-u +0*x(53)+u(107
-u(38)+0*x +u(108
-u +0*x +u(109,
-u +0*x
-u +0*x
-u +0*x
-u +0*x
-u +0*x
3)-u(44)+0*x(61)+u 115
-10'u(l5)40'x(62)+u

to'u(ds) -u(46)+0*x(63)+u
0+0*x(64)+u (11,

u(AS)—u(47)+0'x(65)¢u(119)
0+O'x(66)+u(

+u(110
+u(111
+u(112
+u(113
+u 114

u
u
u
u
u
u
u
u
u
u
u
(11

(67 +u(121

48 +0*x EGB

49)+0*x(69

50)+0*x(70

51)+0*x(71

52 +0*x(72

52)-u *O‘X 73)+u(127
0+D'x(74)¢u(

u(S!)—u(54)+0‘x(75)¢u(129)
0+0*x(76)+u(13

u(54)-u(45)+0*x(77)+u(131)

Figure 7.4.6: Observer’s state equation.
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Figure 7.4.7: Quadratic error of the observer.
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8

Conclusions and future work

The observability problem in ContPN, as in many other applications is relevant to determine
the state of the system only by measuring its output. The knowledge of the state of the system
is quite relevant in ContPNsince it makes possible to determine control strategies, isolate faults
or supervise the system. Even though ContPN can be seen as an autonomous SLS and the
observability problem in autonomous SLS is solved [48] [49], the observability of ContPN
is not trivial. This is because the observability characterization in autonomous SLS requires
as a necessary and sufficient condition the observability of each LS and the distinguishability
between each pair of LS. This becomes prohibited in practice since the number of LS necessary
to represent the ContPN as a SLS increases exponentially with the number of join transitions.
Instead, this work presented two main contributions:

1. An strategy for sensor placement in ContPN which guarantees observability. In order
to achieve this, some of the invariant subspaces of the ContPN are characterized from
the ContPN structure, i.e. the underlying graph of the PN. This avoids the need of the
enumeration and computation of the dynamical matrices of each LS in the SLS repre-
sentation of the ContPN. The Ay —invariant subspaces are divided into two disjoin sets:
ker(Ay) and all the other Ax—invariant subspaces. In this work ker(Ay) is completely
characterized. For the rest of the Ax—invariant subspaces, it is shown that they are
also contained in Im(C). Then, it is proposed an algorithm to place sensors by en-
suring that neither ker(Aj) nor Im(C) is contained in ker(S). Therefore there is not
any Ay —invariant subspace contained in ker(S), i.e. each LS is observable. However,

the number of sensors placed on the ContPN may not be minimum, since Im(C) is

109



8. CONCLUSIONS AND FUTURE WORK

greater than the A;—invariant subspaces. It is also shown that for the free choice class
of ContPN, distinguishability is a consequence of observability in each LS.

2. An observer design, which allows the computation of the marking of the ContPN with a
single observer structure for the free choice class of nets. This result is relevant since no
matter the number of LS required to represent the ContPN, only one observer is required.

The future work consists on dealing with the following topics:

1. Distinguishability. It has been shown that distinguishability is a consequence of observ-
ability in each LS for the free choice class of ContPN. However, this is not true in the
general case. Then, it is relevant to provide results for the distinguishability property in
the general case of ContPN, or an strategy for sensor placement which guarantees the

distinguishability property.

2. Closed loop Control and observer. It is important to determine an strategy for the
integration of the presented observer with a control strategy, which allows to lead the
marking of the ContPN from an initial marking to a required one only by the knowledge
of its output.

3. Optimal sensor placement. Another open discussion is to determine the minimum
number of sensors required (and their locations) in order to guarantee observability in
ComtPN.
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