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Resumen Ejecutivo

Lai redes de Petri continuas temporizadas con la semántica de servidores infinitos

(ContPN) son una relajación de una red de Petri discreta, en la cual las transi

ciones pueden ser disparadas en valores reales; por esta razón, el marcado de la

red (el estado del sistema) se vuelve un vector real no negativo. En este trabajo

se muestra que las ContPN se pueden modelar como un sistema lineal conmutado

(SIS), el cual consiste en una familia de sistemas lineales (LS) conmutando entre

sf; para la conmutación de LS, dependiendo del marcado de la red, un LS se vuelve

activo. Un resultado conocido es que un SLS autónomo es observable si y solo sf

cada uno de los LS que lo conforman es observable y además cada par de ellos

es distinguible entre sí. Desafortunadamente, aún cuando el problema de Observ

abilidad en SLS está resuelto, en las ContPN el problema no es trivial, puesto que

el número de LS necesarios para la representación de la ContPN en SLS crece de

manera exponencial con el número de transiciones de sincronización, haciendo

que el enfoque ingenuo de verificar si cada uno de los LS sea observable y cada

par de ellos sean distinguible, resulta imposible en términos prácticos. En cambio,

este trabajo presenta dos principales aportaciones:

• Una estrategia para la colocación de sensores en una ContPN, la cual garan

tiza que el sistema sea observable. Para esto, algunos de los subespacios

invariantes de la ContPN son caracterizados desde la estructura de la Con

tPN, eliminando la necesidad de la enumeración y cálculo de las matrices

dinámicas de cada LS de la representación en SLS de la ContPN.

• El diseño de observadores de estado que permiten el cómputo del marcado

del ContPN con un único observador para redes de la clase free choice.



Abstract

Continuous timed Petri nets with infinite servers semantics (ContPN) are a relax

ation of a discrete Petri net In this case, transitions may be fired in real amounts.

For this reason, the marking of the net (the state of the system) becomes a non

negative real vector. In this work it is shown that ContPN can be modelled with a

switched unear system (SLS), which is a family of linear systems (LS) switching

among them; for the switching ofLS, depending on the marking of the net, a LS

is chosen. A known result is that an autonomous SLS is observable if and only if

every LS ofthe family is observable and each pair of ¿5 is distinguishable from

each other. Unfortunately, even when the observability problem in SLS is solved,

in ContPN the problem is not trivial. This is because the number ofLS in the fam

ily of SLS increases exponentially with the number of join transitions; therefore

the naive approach of verifying the observability in each LS and the distinguisha

bility between each pair ofLS becomes prohibited in practice. Instead, this work

presents two main contributions:

1. An strategy for sensor placement in ContPN, which guarantees observabil

ity. In order to achieve this, some of the invariant subspaces of the ContPN

are characterized from the ContPN structure, avoiding the need of the enu

meration and computation of the dynamical matrices of each LS in the SLS

representation of the ContPN.

2. An observer design, which allows the computation of the marking of the

ContPN with a single observer structure for the free choice class of nets.
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1

Introduction

Discrete event systems (DES) framework is adequate to model in a very intuitive way a lot

of human designed systems [1]. For instance, consider algorithms, traffic [2], transportation

or manufacturing processes [3]; all these systems can be explained or modelled by a set of

steps, creating sequences of events leading to the completion of an activity. This behaviour is

easily captured using the DES concepts [4], [5], [1]. In order to represent these systems, many

paradigms have been developed, such as process algebras [6], boolean equations [7] [8], finite

automaton [9] and Petri nets [10] among many others. Each one of these paradigms provides a

series of formal objects to capture the main DES characteristics, such as the state of the system,

the events generating the state changes, event precedence relations and available resources in

the system. In the same way, DES provide a wide variety of strategies to control the behaviour

ofthe systems, such as te ones presented in [11], [12], [13]

Among the many modelling tools, Petri nets (PN), introduced by C. A. Petri in 1962 in

his doctoral thesis [10], provides a compact graphical DES representation, as well as a sound

mathematical background to analyze such models. The graphical representation includes two

types of nodes: places, usually associated to the system's state and graphically represented

by circles; and transitions, usually associated to events and represented by boxes or squares.

These nodes are linked or connected by ares, which are arrows pointing from a place to a

transition or from a transition to a place, and which constitute the precedence relations. The

system's available resources are represented by tokens or marks residing inside each place.

Some relevant properties of PN are :

• Liveness, which deals with the possibility of a transition to be eventually fired again

from any reached state, i.e. the event can occur again.

1



1. INTRODUCTION

• Boundedness, which determines if there exists a bound for the máximum number of

tokens residing inside each place in any system's state.

• Controllability, which deals with the problem of leading the state of the PN from an

initial state to a required one.

• Observability, which deals with the possibility to determine the initial state of the sys

tem (or the current state of the system) when not all the state is available for measure

ment.

In order to determine if any of the previous properties is present in a PN, there exist several

approaches [14], [15]:

1. Enumeration of the state space, which in PN is represented by the reachability graph.

Using this approach, it is always possible (theoretically in bounded PN) to determine ifa

property is present on a PN. Unfortunately, when dealing with highly populated systems,

the state explosión problem appears, and therefore it becomes prohibited in practice to

use this approach.

2. Reduction techniques, which are based on finding out an equivalent net in which the

number of places or transitions is reduced, but guaranteeing the preservation of some

properties of interest. This leads to the analysis of a smaller PN. Unfortunately, this

approach does not provide solution for all possible cases [16].

3. Analytical techniques, which are based on the underlying structure of the PN, which

is captured in a matrix called the incidence matrix of the PN. These mathematical tech

niques are usually dependent on the initial marking of the PN or provide only sufficient

or necessary conditions, but not both [16].

In order to avoid the state explosión problem, continuization ot fiuidization (when also

time is present) is an efficient relaxation technique used in many modelling paradigms, such as

queueing networks [17], Markovian models [18] and stochastic process algebras [19], among

many others. The continuization consists on approximating the discrete states by some contin

uous ones [20]. In the PN context, the continuous JW were first introduced in [21]. This is

achieved by the continuization ofthe transition's firing, i.e. enabled transitions can be executed

in real amounts.

2



Very oñen, the processes described by DES also have a time dependence [4] and many

techniques have been developed to analyze them [22]. In order to include the time in the PN

context, the timed PN were developed. This tool assigns to each transition a delay, i.e. a period

of time that the system must remain in a state before an event can occur. As a natural evo

lution of timed PN continuous timed Petri nets (ContPN) were also developed (the fluidified

model). The ContPN provide useful information of the behaviour of the real system under

some considerations [23] [16] [24].

Even though ContPN were born as an approximation of the discrete PN, they have been

successfully used to model many hybrid and complex systems [25] such as biological systems

[26], traffic systems [27] and manufacturing systems [28], among many other. Besides the

modelling, many properties characterizations have been developed in the continuous PN and

ContPN framework [22]. Some relevant research áreas in the continuous versión of PN are:

fault detection [29], diagnosis [28], [30], control [31] [32] [33] and controllability [34], [35],

performance analysis [36] [37] and deadlock freeness [38].

Unfortunately, in many practical applications, the state of the system is not available for

measurement, but only a part of it (only the output of the system). The knowledge of the

state of the system is important for many applications, such as state feedback control, fault

detection, etc. Then, it is necessary to have techniques to determine either the initial state

of the system, and from its evolution, or the current state of the system [39], [40]. This is

known as the observability problem [41]. In this way, it is important to structurally characterize

if a ContPN presents the observability property [42], [43], [44], [45], [46] or to develop an

strategy to determine the adequate instrumentation that the ContPN must possess to become

observable. This work is concerned with two problems: the sensor placement for observability

in continuous timed Petri nets and, once the observability is obtained, the observer design.

In this work it is shown that ContPN can be modelled with a switched linear system (SLS)

[47], which is a family 1of linear systems (LS) switching among them. The switching between

LS, depends on the marking of the net. The number of LS in the family J depends (exponen

tially) on the number ofjoin transitions, where a transition is named a join if it has more than

one input are.

A very well known result is that an autonomous SLS is observable if and only if every LS

of the family is observable and each pair of LS is distinguishable from each other [48] [49].

The distinguishability property deals with the possibility of determining which LS is evolving

only by measuring the output of the SLS.

3



1. INTRODUCTION

Unfortunately, even when the observability problem in autonomous SLS is solved, in Con

tPN the observability problem is not trivial. This is because the number ofLS in the family 7

increases exponentially with the number ofjoin transitions, i.e. there is a huge number ofLS in

3; therefore the naive approach of verify ing the observability in each LS and the distinguisha

bility between each pair of LS becomes prohibited in practice.

Once a system presents the observability property, it is possible to design an observer,

which will allow the computation of the state of the system ([41], [40], [39] and [50]).

1.1 State ofthe art

In the literature there exist some results on observability in ContPN. The most relevant results

on this topic are presented in [44], [45] and [43]. These results are developed in a very intuitive

way using the underlying graph of the ContPN. With this approach, in [44] the first basic results

on observability in ContPN are presented. First, consider a placewith a sensor, i.e. themarking

of such measured place is always known. Using the knowledge of the marking of a measured

place, the authors show that it is possible to compute the marking ofplaces located upstream as

long as there does not exist any attribution place (a place with more than one input transition).

Using this reasoning and a set ofmeasured places, they also present an algorithm to determine

all the places whose marking can be computed. Then, with the aim of extending these results

for ContPN with join transitions, they provide some conditions under which the same results

hold for the non-join free case.

Once the observability property has been proved, the authors provide an strategy for com

puting estimates in the non-free case of ContPN. In this case, the main drawback is that they

propose to construct an observer for each LS and then filter
out those observers which provide

markings which are not coherent with the ContPN marking.

In [45], the previous results presented in [44] are extended and clarified. Since the number

of LS in the SLS representation of the ContPN increases exponentially, the authors provide a

linear programming problem (LPP) to determine which LS are redundant, i.e. those LS should

not be analyzed since they are never active or they are included in the border of one of the

convex polyedral regions ofthe system [51] [52].

In [45], the authors also provide a characterization for observability in ContPN which also

contain attribution places. This result is a particular result of the ones provided in generic

4



1.2 Objective and main contributions

observability for structured linear systems [53], where an associated directed graph is con

structed. The main drawback of this approach is that in order to determine if the ContPN is

observable, it is necessary to search in the associated directed graph for a contraction [53],

which is also an NP-algorithm.

Finally in [43] the authors provide an strategy to determine optimal cost sensor placement.

It is based on assigning a cost of measuring each place. Then, they construct an output map

such that the ContPN is observable at minimum cost. Unfortunately, these results are very

restrictive in the classes of ContPN that can be solved with the algorithm that they present.

This is because even though the authors use the structure of the ContPN to solve some classes

of nets, the algorithm is still of complexityNP in the general case.

1.2 Objective and main contributions

The main objectives of this work are:

1. To find a procedure for the sensor placement in a general ContPN such that it becomes

observable.

2. To develop an observer design such that with a single observer it is possible to compute

the state of the ContPN.

The first objective deals with the sensor placement for the observability problem. As pre

viously discussed, if a ContPN presents the observability property, then it is possible to deter

mine the initial or the current state of the system. Unfortunately, as previously discussed, it is

not possible in practice to determine the observability property of a ContPN using traditional

methods (such as verifying the rank of the observability matrix [40], [39]), since they lead to

complete NP algorithms. Instead, this work presents an strategy for sensor placement in Con

tPN which guarantees observability. In order to achieve this, some of the invariant subspaces

of the ContPN are characterized directly from the ContPN structure. Using the PN structure,

it is avoided the need of enumerating and computing all of the dynamical matrices (one per LS

in the SLS representation of the ContPN).

The second objective deals with the observer design. Aa observer design for ContPN will

be presented allowing the computation of the marking of the ContPN with a single observer

for the free choice class of nets. This is relevant, since the classical approach is to design an

5



1. INTRODUCTION

observer for each LS; then it is decided which LS is actually active and the state is obtained

from its observer. Unfortunately this approach would require a large number of observers to be

designed, and therefore the existence ofa single observer structure is of relevance.

1.3 Document organization

This document is organized as follows:

• Chapter 2 presents basic concepts on Petri nets and its extensions to continuous and

continuous timed Petri nets (ContPN). In this chapter, a brief review of concepts in linear

systems is included.

• Chapter 3 reviews the existing results on observability and observers design in ContPN.

• Chapter 4 introduces the Ak -invariant subspaces in the ContPN context. These Afc—invariant

subspaces will be characterized using the structure of the ContPN.

• Chapter 5 deals with the sensor placement problem. In order to achieve this, some of the

A—invariant subspaces of the ContPN are characterized. Based on these A—invariant

subspaces, an algorithm is introduced to place sensors in the ContPN such that observ

ability is guaranteed. Since the sensor placement algorithm does not guarantee the op

timality in the number of sensors, an algorithm to reduce the number of sensors is also

included.

• Chapter 6 is concerned with the observer design. For this, a dynamic separation of

the state equation of the ContPN is introduced. With this dynamic separation, a single

structure observer design is presented, which guarantees the asymptotic convergence of

the estimate marking at any desired rate.

• Chapter 7 presents a case of study based on the cigarettes production process. In this

chapter, the process will be represented as a ContPN and then the sensor placement

algorithms will be used to guarantee that the model ofthe process is observable. Finally,

an observer for the process will be designed.

• Chapter 8 provides the conclusions and future work.



2

Basic Concepts

This chapter contains the basic concepts and the notation used in this work. In Section 2.1 the

Petri nets are presented. The basic concepts such as its structure, graphical representation, the

incidence matrix and the discrete evolution is presented. Then, its extensions to continuous and

continuous timed Petri nets (ContPN) are presented in Section 2.1.2. This section also includes

the basic concepts of controllability and observability in ContPN. Finally, at the end of Section

2.1.2, it will be shown that a continuous timed Petri net can be represented by a switched linear

system (SLS), which is a family of linear systems (LS) switching among them. Therefore, in

the Sections 2.3 and 2.4, some basic concepts on linear systems and switched linear systems

are briefly recalled.

7



2. BASIC CONCEPTS

2.1 Petri Nets

This section is devoted to formally define Petri nets (PN) and its relaxations to continuous PN

and continuous timed PN. The Petri nets were first introduced by C. A. Petri in 1962 in his

Ph. D. thesis [10]. Since then, many extensions to PN have been developed and nowadays,

PNs represent a wide research area in the discrete event systems framework. PN and its re

laxations have been intensively studied and are commonly used to model, analyze and control

systems [1] in several fields such as Communications systems, [54], [55], computer science

[56], manufacturing [57], [3], traffic [58] and diagnosis [59], among other applications.

Basic definitions and relevant concepts of PN, continuous PN and continuous timed PN

will be presented next. An interested reader on PN may consult [14], [56]; on continuous

PN, its introduction and general concepts may read [60], [61]; on continuous timed Petri nets

(ContPN) with the infinite servers semantics may consult [16].

2.1.1 Discrete Petri Nets

Definition 2.1.1 77i»? Petri net structure is a bipartite digraph formed by the four-tuple N =

(P, T,Pre, Post) where P = {pi,P2, • ■ • .P\p\} » a finite set afnodes called places; T
=

{íl, *2, • - -

, í|r|} is o finite set of nodes called transitions; The sets P and T are disjoin, i.e.

P n T = 0. Pre and Post are\P\ x |T| matrices representing the weighted ares goingfrom

places to transitions andfrom transitions toplaces respectively.

Each node, either a place or a transition, and the directed ares can be graphically repre

sented as follows:

• Places are represented as circles

• Transitions are represented as boxes or squares

• Ares are represented as arrows from the source node to the ending node.

Example 2.1.2 In Figure 2.1.1, a simple PN structure with two places and two transitions is

presented The set ofplaces is P = {jpi,P2,Pz}. The set of transitions is T
= {ti,t2,t3,t4}.

Matrices Pre andPost are:

"i o o o' "oioo"

0 110 Post = 10 0 1

0 0 0 1 0 0 10

8



2.1 Petri Nets

Figure 2.1.1: A simple PN structure.

The graphical connection among nodes, represented by the ares, lead to the concept of

input set and output set of a node. This is formally defined next:

Definition 2.13 LetnS PuT be anode cfN.

The input set ofn or Pre-set ofn, denoted by »n, is defined as:

•n = {nj 6 P U T\ there exists an arefrom rij to n}.

The output set ofa node n or Post-set ofn, denoted by n», is defined as:

n» = {rn 6 P U T\ there exists an arefrom n to n¿}.

A sequence of nodes in which ni € n» is named a path, formally defined next

Definition 2.1.4 [14]A path in a PN structureN isa non-empty sequence n\n2—ng ofnodes

which Vfc = 1, 2, ..., g satisfies:

Le. there exists an are between node n_\ and nh+v

A path u = n\U2- -.ng is said to lead from ni to ng. It is clear that it starts in ni and ends

inn9.

Definition 2.1.5 Letu be a path in a PN.

• 77K notation firud(u) standsfor thefinal node ofthe path w.

• 77i4? notationwe(NU 0)'T*+'P' is a vectorwhich contains the number oftimes that the

node ríi appears inthepath u, according to the indexationhpi ...

piP| íi ... t*.^]
Particularly ri, represents the vectorfor the path u = m.

• Let u>\ = n\n2...ng be a finite path The notation uní stands for the new path W2 =

nin2...n9nj.

9



2. BASIC CONCEPTS

Example 2.1.6 Take the PN structure in Fig. 2.1.1. The sequence wi = P1Í1P2 « a Patn-

However, the sequence v¡2 = P1P2P3 is not, since there are no aresfrom p\ to pi.

Thefinal node ofthe path u¡\, final(ui) = p%.

The corresponding vector c¿í is given by:

w'i = [l 1 0 1 0 0 0]
For the construction ofa path, consider the path wi. 77ie path W3 = wi*3 = pitiP2*3* WIÍ't

its corresponding vector:

w3
= [l 1 0 1 0 1 0]

Some nodes of particular interest are the ending nodes, formally defined next.

Definition 2.1.7 A node ne PuTis named an ending node ifn» = 0.

--ifl ^o

Figure 2.1.2: Ending nodes.

For instance, in Figure 2.1.1, »pi = {Í2}, »Í2 = {P2}, P2-»
= {*2-*3} and h» = {pz}.

This PN does not have any ending node. The ending nodes are represented in Figure 2.1.2.

The transitions in a PN can be classified based on its input places, as shown in the next

definition:

Definition 2.1.8 Types of transitions based on its input places.

1. Join transitions. A transition is named a join transition ifit has more than one input

place. The set ofjoin transitions is Tj = {U € T\ \»ti\ > 1}.

2. Single input transitions. A transition is named a single input transition ifit has only

one inputplace. The set ofsingle input transitions is Ts
= {U € T\ \»ti\ = 1}.

It is clear from the previous definition that the set ofjoin transitions and single input tran

sitions are a partition ofT, i.e. Tj D Ts = 0 and Tj U Ts = T.

Similarly to transitions, places can also be classified based on its input transitions in:

Definition 2.1.9 Types ofplaces based on its input transitions.

10
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I. Attribution places. A place is named an attribution place ifit has more than one input

transition. The set ofattribution places is Pa = {pj € P\ \»p¡\ > 1}

2. Single input places. A place is named a single input place if it has only one input

transition. The set ofsingle inputplaces is Ps = {pj € P\ |»p_*| = 1}

It is also clear that the set of attribution places and single input places are a partition of P,

i.e. PA n Ps = 0 and PA U Ps = T.

■•n+l PnW

Figure 2.1J: A join transition and an attribution place.

In Figure 2.1.3, transition ín+_ is a join transition. Similarly, place prl+1 is an attribution

place.

Transitions can also be classified by its output places:

Definition 2.1.10 Types of transitions based on its outputplaces.

1. Ending transitions. A transition is named an ending transition ifit does not have any

outputplace. The set ofending transitions is Te = {t_ € T\ t.« = 0}

2. Attributing transitions. A transition is named attributing transition ifat least one ofits

output places is an attribution place. The set ofattributing transitions ísTa = {U £

T\ 3pj e U; Pj 6 PA}

Finally, places can also be classified by its output transitions:

Definition 2.1.11 Types afplaces based on its output transitions.

1. Ending place. A place is named an ending place ifit does not have any output transi

tions. The set ofending places is Pe = {pj e P\ pj» = 0}

2. Join-inputplace. A place is named ajoin-inputplace ifat least one of its output transi

tions is a join transition. The set ofjoin-inputplaces is Pj = {p¡ 6 P\ 3íi £ pj», U e

Tj}

11
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Tj Ts

<2¡T

(rT

Pa Ps

Figure 2.1.4: Classification of transitions and places.

The classification of transitions and places is presented as a Venn diagram in Figure 2.1.4.

There exists some basic classes ofPN. These classes are defined based on its structure.

Definition 2.1.12 A PN is said to be

• Join Free (JF) if:

Attribution-Free (AF) if:

Ví e T,K| < i

Vp e P, tal < i

• Join-Attribution-Free (JAF) if:

Vp e p, tal < i & ví e t, |«í.| < i

• State machine or S-net [14] if:

Ví e T, |«í| = |t«| = i

Marked graph or T-net [14] if:

Vp e p, |.p| = H = i

• Free choice (FC) [14] if:

Vpi,p2 e P either p\ • Hp2»
= 0 orpí» = P2«

In Figure 2. 1 .5 a), the dashed aremakes the PN not to be a statemachine. If it was removed,

then the PN would be a state machine. Similarly in Figure 2.1.5 b), the dashed are makes the

PN not to be a marked graph. Similarly if it was removed, the PN
would be a marked graph.

12



2.1 Petri Nets

a) b)

Figure 2.1.5: The state machine and marked graph case.

Figure 2.1.6: The Free-Choice case.

It is clear that S-nets and T-nets are subclasses ofFree choice (FC). The PN in Figure 2. 1 .6,

a) is not a Free choice while b) is. If the dashed are in Fig. 2.1.6 a) was removed, then both

cases would be FC.

Definition 2.1.13 A Petri net system or simply a Petri net (PN) is the tupie (N, mo) where N

is the Petri net structure and mo is the initial token distribution or initial marking, where a
\P\

marking va. : P —. Z>0' is a vector representing the number of tokens inside each place. The

notation m(p_,) denotes the marking in theplace pj.

Figure 2.1.7: A simple PN system.

A transition ti is said to be enabled at a marking m¿ if for every place pj e «íi, m* (pj) >

Pre(p_*,í¿); if the transition tj is enabled at a marking mfc, then í_ can be fired reaching a

new marking m^+1. The notation m*. represents the fc—th (ordered) element in a sequence of

markings. The firing of a transition í¿ removes Pre(t , j) tokens from each place p_ 6 »U and

adds Post (i, h) tokens in each place p-, € íj».

13
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In a similar way, let o
— ti_ti_t--Uk be a firing transitions sequence leading from mo to

some mfc+i in the following way:

mo -I mi -4 m2 -**-* ... -4 mj.+i

where íi_,ít2, ...,Uk € T and the notation mjt -4 mjt+i means that from the marking mfc

transition t¡k is fired, reaching a new marking mfc+i. This discrete evolution can also be

computed by the equation

mfc+i
= mo + C<7

which is known as the fundamental PN equation, where C = Post — Pre is the incidence

matrix and 5 is an |T|-dimensional vector with the i-th entry representing the number of oc

currences of ti in o. Vector 3 is known as the parikh vector of a sequence o*.

For instance, in the PN in Figure 2.1.7, transitions Í2 and Í3 are enabled 3 times, while

transitions íi and Í4 are not enabled. If transition Í2 is fired once, then the marking mi =

[l 2 0] is reached. With marking mi transition f 1 is now enabled and therefore it is

capable of being fired. The firing of transition Í2 and the marking mi can be computed with

equation (2.1.1) as follows:

0 -1 1 0 0

3 + 1 -1 -1 1

0 0 0 1 -1

rn] 1
1

—

V
0

n

kl L J

n>l =

Left and right rational annulers of C are called P-and T-flows respectively. When the

elements of the annuler are either positive or zero they are called P-Semiflow and T-Semiflow.

Definition 2.1.14 A T-Semiflow is a rational solution X > Ofor

CX = 0

Definition 2.1.15 A P-Semiflow is a rational solution Y > Ofor

YT ■ C = 0.

The notation Y > 0 (Y > 0) means that the vectorY is greater than (greater or equal than)

zero in each entry, i.e. the t-th entry Y(i) > 0 (Y(i) > 0), Vt = 1, 2, ..., |V|.

Definition 2.1.16 Ifthere exists a T-SemiflowX > 0, then the PN is said to be consistent.

If there exists a P-Semiflow Y > 0, then the PN is said to be conservative.

14



2.1 Petri Nets

Another important structure of the PN are siphons and traps, formally defined next.

Definition 2.1.17 A set ofplaces Ps Q P ofa PNisa siphon if:

•Ps C Ps»

A siphon Ps is calledproper siphon ifP_R / 0, i-t?. it is not the empty set.

Definition 2.1.18 A set ofplaces Pr Q P ofa PN is a trap if:

Pr» C »Pt

A trap Pt is calledproper trap ifPr^Q, i.e. it is not the empty set.

The characterization of every siphon and trap of a PN has been proved ofNP complexity,

however, an interesting approach for generating a family of siphons and traps is presented in

[62]. It is based on the synthesis of a generator of siphons or traps.

The following proposition shows a trap generator.

Proposition 2.1.19 [62]

Let (N, mo) be a PN, where Pre = W~ andPost = W+. Also, letWg andW¿~ be two

non negative \P\ x |T| matrices, such that:

W+\p,t]=0<r=*W+ = 0

Wg]p,t]=0<=>W-=0.

Also, letW$ = Wg
—

Wg. Ify is an integer non-negative solution of

yTWe>0

then (y) is a trap ofN.

When infinite servers semantics is used, if the input places *í . ofa transition í. have enough

tokens, the transition may be fired as many times as possible at once. The number of times that

a transition can be fired at a given marking is known as its enabling degree. This concept will

be formally defined later.

As a notation, for any vector y e R'p' (x € R'T'), y(p¿) (x(Pj)) represents the valué of

the vector in its corresponding j-th (i-th) entry associated to place pj (transition í
■

).
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Definition 2.1.20 [14] The Support ofa vector x e RlTl (y e Rlpl), denoted by (x) ((y)) is

the set ofall the transitions (places) satisfying x(í¿) **¿ 0 (y(j>j) ¿ 0), where x(í.) (y(p.)) «

the valué o/x (y) in the corresponding position ofU (p3)

<x) = {í. 6 T|x(í.) =¿ 0}

((y) = (Pj e Plyfe) ?« o».

For instance, let m = [0 1 2] be a marking of the PN in Figure 2. 1.7. The support of

mis(m) = {P2,P3}*

As a notation, an elementary vector is a vector e-j e {0, 1}™ having ra
— 1 zeros and only

one entry equal to one in the h
— th position, of the form e-,

= [0 ... 0 1 0 ... 0]
The elementary vectors are important since they can represent in vectorial form a place or a

transition. This is formally defined next.

Definition 2.1.21 A place pj is said to be associated to an elementary vector ej s= {0, 1}IPI
and represented by e_.*

~

p¡, since

(ei) = {Pj}

A transition ti is said to be associated to an elementary vector e_ e {0, 1}'TI and repre
sented by e¿ ~ ti, since

(e.) = {k}.

2.1.2 Continuous Petri nets

A continuous Petri net, introduced in [21] and further studied in [60], [63], [64], [61] and [65],

is a relaxation of the discrete PN model, where a transition can be fired in any real amount

between zero and its enabling degree. As a consequence, the number of tokens in each place

can be a positive real number. This model is formally defined below.

Definition 2.1.22 A continuous Petri net, is the tupie (N,mo) where N is the PN structure

and mo ií the initial token distribution, where m : P —, R^J is a vector representing the

number of tokens inside each place.

In a continuous Petri net a transition í¿ e T is enabled if and only if for every p¿ e

•ti, m(p_ ) > 0. The enabling degree of a continuous transition í¿ is given by the equation:

enoí>(íi,m) = min i ——

,

j
__,-, >v"

PiZ'ti 1 Pre \pj,ti]_í
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2.1 Petri Nets

An enabled transition ti at a marking m can be fired in any real amount 0 < o. <

enab(ti,m) leading to a marking m' that can be computed with the fundamental continuous

PN equation

m' = m + Cef (2.2)

where 3 =\o\ ... o\t\\ , represents the firing amounts of each transition.

0 -1 1 0 0

3 + 1 -1 -1 1

0 0 0 1 -1

'0'

[1 3]i :-t
—

OK
0.9

0.9

[ 0 J

Figure 2.1.8: A continuous PN system.

In figure 2.1.8 a continuous Petri net system (CPN) is presented. Transitions Í2 and Í3 are

3 — enabled. If transition Í2 is fired 1.3 times and transition .3 is fired 0.9 times, the CPN

reaches a new marking

mi =

2.13 Continuous timed Petri nets

In order to include the notion of time in the continuous PN models, a function A : T —> R>o is

introduced. This function assigns to each transition a positive valué representing the máximum

number of tokens that can flow through the transition per time unit and per server [51] and it is

called the firing rate of the transition. Henee, a continuous timed Petri net (ContPN) is formally

defined as:

Definition 2.1.23 A continuous timed Petri net system is the tupie (N, X,mo) where N is the

Petri net structure; X : T -> R>o are the firing rates ofthe transitions and mo is the initial

marking ofthe net.

The marking evolution of the ContPN is now modelled with the equation

m(r) = m0 + C3(t) (2.3)

17
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where o(t) represents the firings amounts of each transition at time r.

Since the marking evolution is now time dependent, it is possible to obtain the derivative

of Eq. (2.3) with respect to time r to obtain the dynamic equation

m(r) = Ct?(r) = Cf(r), m(0) = m0. (2.4)

The relaxation of the discrete model used in this work considers infinite server semantics,

therefore the flow /(r) through a transition í. is computed as the product ofA(í¿)ena&(í. , m).

As a notation, the firing rate of a transition is represented by A(í.) = A., and the vector

A = [Ai ... A|T|]
The computation of a transition's flow requires the computation of its enabling degree

function: eno6(í, m); however, this function requires the min operator, which leads to the

concept of configurations.

Definition 2.1.24 A configuration e* of a net N is a set of (p, í) ares, one per transition,

covering the setT of transitions [16].

A configuration is represented by the set of |T| ares covering T, and denoted by Gk- If an

are (pj, U) e Qk, then it is said that the place pj constrains transition íj or that transition U is

constrained by the place p_ .

The flow through the transitions can be written as /(m) = AII(m)m [51] where A =

diag(X) and II(m) is the configuration matrix at marking m, defined by

„, - , -, ~

—

í r ifp, constrains íi ,_,.

U(iu)[i,j}=l Pre [pj.íi]
*

(2.5)

y 0 otherwise.

If more than one place is constraining the flow of a transition at a given marking, any of

them can be used, but only one is taken. The number of configurations in a ContPN is upper-

bounded by Ilter I * *»!• ***e* there exists an exponential number of configurations.

Example 2.1.25 Consider the ContPN in Figure 2. 1.9, transition Í3 ií a join transition. Itsflow

can be either constrained by place p2 orplace p_. With the marking mo = 0 3 0 0 its

flow is actually constrained byplace p_, since mo(p_) < mo(p2)- Letmi = 0.5 0.5 0 1.5 1

be the marking ofthe ContPN after the firing sequence a
= [l.5 2 oj Now, m(p2) <

m(p4) and theflow of transition t¡ is now constrained byplace pi. The configurationmatrices

for this example are:
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P1

^< >v >^3

Figure 2.1.9: A continuous PN system with join transitions.

'i o o o" 1 o o o'

0 10 0

0 0 0 1
n(mi) =

0 10 0

0 10 0

0 0 10 0 0 10

A ContPN with infinite servers semantics (or just ContPN), as previously discussed, can

be modelled by a SLS with polyhedral regions determined by the configurations [51], [52]. A

región, denoted by 3?fc, is a set of markings reachable from the initial marking mo, such that

they have the same configuration matrix.

The configuration matrix for the región %k will be denoted by ufc. Thus, (2.4) can be

rewritten for the fc-th región as:

m = CAnfcm. (2.6)

Source transitions are not defined in the infinite servers semantics, because no place is

constraining its flow. One way to define constant flow transition (fixed flow source transition)

is to model a transition í¿ together with a place p¡ such that «íi
= í¿» = pj and Pre(p* , ti) =

Post(í.,p_*) = 1 as in Fig. 2.1.10. Next definition is introduced to ensure that (2.6) can model

the flow Ví» € T.

Figure 2.1.10: A well defined source transition.
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Definition 2.1.26 In a ContPN, a transition íj e T is named well defined if |*»t¿¡ > 1, i.e. it

has at least one inputplace.

Definition 2.1.27 A ContPN is named weü defined i/Víj e T, í» is well defined.

Through this work the ContPN are considered to be well delined.

2.2 Controlability and Control Laws

The results presented in this section are taken from [35], [34] and [66].

In order to apply a control action in Equation (2.6), a subtracting term tt¿, 0 < u¡ < fi, is

added to every transition í_ to indicate that its flow can be reduced. This is adequate because it

captures the real behaviour in which the máximum machine's throughput can only be reduced.

Thus the controlled flow of transition íj, becomes u>i = fi
—

V4. In this sense, fi is named the

natural flow ofthe transition ti and w¿ is its controlled flow.

Now, introducing / = All*; * m and u in (2.6) the forced state equation is

m = C [/
- it] = Cto

0 < m < fi.

Definition 2.2.1 Ifthe inequality

0 < «i < fi (2.7)

holds, then the control action is named suitably bounded.

A simplified versión of the state equation can be obtained writing the input vector as

m = JuAIIfc ■

m,

where Iu = diag ( IUl ,..., IUm J and 0 < IUi < 1- Then thematrix Ic = I— Iu is constructed

and the state equation can be rewritten as

m = CIcf = Cw. (2.8)

Notice that 0 < /_. < 1 is the equivalent condition of Eq 2.7 (suitably bounded). In this

way, the diagonal valúes 7^ represent the opening proportion of a transition's natural flow.

As in the case of the discrete PN, the set of all reachable markings from mo is called the

reachability set [67] and it is denoted by RS (N, m0).
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2.2.1 Observability in ContPN

Some important definitions regarding the observability in ContPN will be provided next. An

interested reader can find more information in [44], [45], [46], [43], [16].

The output matrix of a ContPN is represented by the matrix S. This matrix S is composed

only by transposed elementary vectors, showing which places of the ContPN have a sensor.

This is formally defined next.

Definition 2.2.2 LetS be the outputmatrixofa ContPN. Aplacepj e Pis said to bemeasured

if there exists a row h in S, represented by S(h, •) such that:

S(h,.) = Bj

where e¿
*-*-*

pj (i.e. e_* 6 {0, l}'pl and (ej) = pj)

Definition 2.23 Let S be the outputmatrix ofa ContPN.

Pm(S) = {p3*|ejíí a row ofmatrix S}

is the set ofmeasuredplaces with the outputmatrix S.

Definition 2.2.4 [46] A ContPN system (N,mo, A) is observable in infinitesimal time ifit is

always possible to compute its initial state mo in any time interval r 6 [0, e], Ve > 0, by

measuring only a set ofplaces Pm C P.

It is important to recall that the aim of this work is to develop a strategy to construct an

output matrix 5 such that the ContPN is observable in polynomial time.

2.2.2 Controllability in ContPN

Once it is guaranteed that a ContPN is observable with an appropriate sensor placement, the

second objective of this work is to deal with the construction of observers. Then, it is also

interesting to use the observer integrated with a control strategy. Therefore, in this subsection

some basic concepts of controllability in ContPN will be briefly recalled.

Since ContPN are positive SLS then the LS controllability concept cannot be applied to this

case. Instead, the controllability definition presented in [66] is used.

Definition 2.2.5 The equivalence relation fi is defined as mi/3m2 iffBTm__ = BTm.2, where

B is an algebraic basis ofP-flows.
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The system admissible states set is the equivalent class of the initial marking Class (mo)

under the relation /?. The set of interior points ofClass (mo) is defined as

intClass (mo) = {m € Class(mo) A "ipi € P, m(pi) =*■£ 0}.

Definition 2.2.6 Let (N, X, mo) be a ContPN. The system is said to be fully controllable

with bounded input (BIFC) if there is an input such that for any two markings mi,m2 €

Class (mo), it is possible to transfer the markingfrommi to m-¡ infinite or infinite time, and

the inputfulfils the suitably bounded condition along the trajectory.

The system is said to be controllable with bounded input (BIC) over S C Class (mo)

if there is an input such thatfor any two markings mi, 1112 G S, it is possible to transfer the

marking from mi to ni2 infinite or infinite time, and the input fulfils the suitably bounded

condition along the trajectory.

It is important to remark that controllability is a structural property for the ContPN. The

following theorem is valid only when all transitions in a ContPN are controllable.

Theorem 2.2.7 A ContPN is BIFC iff the structure ofthe netN is consistent and there do not

exist empty siphons at any marking in Cíass(mo).

JP e^
PROCESS STORE

Figure 2.2.1: A manufacturing process.

Example 2.2.8 Consider the manufacturing process depicted in Figure 2.2.1. The ContPN of

this manufacturing process is presented in Figure 2.2.2.

Places pi and pi represent a production machine, places P3 and p¿ represent a store

(buffer) and places ps andp¡¡ represent a consumption machine. Marking mi represents inac

tive production resources, m_i represents active production resources, mz represents free cells

of storage (10 ofthem), mi represents occupied cells of storage, ms represents free carriers

andmg represents occupied carriers.

Transition íi puts a free production resource to work, transition Í2 produces a product if

there is a free cell and reléase a production resource, transition Í3 consumes a product from

the store if there is afree carrier, releasing a cell, and transition í_ releases a carrier.
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Figure 2.2.2: ContPN model of amanufacturing process.

This ContPN has four different configurations and therefore there are four different prop

agation matrices. The configurations index corresponds to the following sets ofplaces and

transitions:

#1 = {(Pl-*l)-(P2,Í2)-(P4*Í3)*(P6-Í4)}

%2 = {(Puh),(p2,t2),(P5,tz),(p6,t4)}

#3 = {0l,*l),(P3*Í2),(P4,Í3),(P6>Í4)}

$4 = {(Pl-*l). (P3,t2), (P5-Í3), (P6,ti)}.
The incidence matrix ofthis ContPN is given by:

C =

-1 1 0 0

1 -1 0 0

0 -1 1 0

0 1 -1 0

0 0 -1 1

0 0 1

T

-]

Since there exists x

controllable.

= [l 1 1 1 1 ll such that Cx = 0, then the ContPN is

Another important concept is the equilibrium point, formally presented next.

Definition 2.2.9 Let (JV, A, mo) be a ContPN. Also, let me<7 £ RS (N, m0) and 0 < i__ [i, i] <

1-//

m = C/Ce,An (meg)
■

meg
= 0,

then (meg, /<-_,) w called an equilibrium point and meg an equilibrium marking. Also, the

steady state flowfor (me,, /__,) is wss (m.,, ICmq) = -í__.An (meg)
■

me,.

An equilibrium point represents a state in which the system can be maintained using the

defined control action. According to [51], these points can represent states ofmáximum system
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throughput. Thus, an important problem is that given an initial marking mo and a required

target marking mv (for instance, markings allowing máximum system throughput), to obtain

a control law leading the ContPN state from mo to rn,. This problem is formally defined as

follows.

Definition 2.2,10 Let (N, A,mo) be a ContPN. Then the Regulation Control Problem in

(ntiv, /_,) (written as iZCePíjii,., /__.) deals with the computation ofa control ¡aw Ic(t), 0 <

t < t¡feasible in the ContPNsuch thatm(r__) = mv and Ic(Tas) = Icn Vts_ > t/.

2.23 Control laws

Control laws for ContPN are widely studied in the literature. For instance in [68] a fiízzy

proportional controller is introduced. However, it only guarantees a bounded error between the

target and the actual finalmarking ofthe system. In [32] implicit and explicitModel Predictive

Control are presented as well as a comparison between them. Unfortunately the computational

time becomes prohibited when the system is large on the number of nodes.

In [33] a control strategy is presented, assigning piecewise constant flows to transitions

in order to reach the target state. The idea presented is to use linear programming to drive

the system through a linear trajectory and then to include intermediate states to improve time

performance. Nevertheless, an important drawback of this approach is that the problem of

defining the intermediate states is exponential.

In this work, the idea presented in [26] and [69] will be briefly reviewed.

In order to deal with the ContPN it is necessary to measure the cumulative transition's flow,

therefore some extra places are added to the ContPN. The following definition shows how these

places are included in an extended ContPN.

Definition 2.2.11 Let (N,mo, A) be a ContPN, where N = (P, T, Pre, Post). Its extensión

is defined by xContPN = (Nx,mo. , A), where:

Nx = (PUPa, T,Pre, Post U Posta),

\Pa\ = \T\, mo, = [ mo 0m ]
Posta = {(ti,Poi) |Ví¿ 6 TaruFipai 6 Pa} ■

Then the incidence matrix ofxContPN isCx=\ C J)-*-* I
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Figure 2.23: An extended ContPN.

Since TIZ (m_) = [ II (m) 0|x|X|r| ] - ^hen the state equation of xContPN is

• m Cw
mx = •

=

m«
w (2.9)

m(0) = mo, ma(0) = 0.

Notice that the extensión has the same dynamics over the marking as the original system

and the marking over extra places is die transition flow integration, then it can only increase.

In fact, if the ContPNis live, then by construction the xContPN is also live.

As an illustration about the extensión concept refer to Figure 2.2.3.

Another concept that will be used herein is the minimum Parikh vector. A Parikh vector a,

Vt a[i] > 0, due tom must fulfilm = mo+Ca, where mo is the initial marking andm is the

reached marking. When a ContPN is live it contains right annulers of C (T-flows), therefore

o has several solutions such thatm —

mo — Co. In order to fix a unique solution it is chosen,

for convenience, the one which involves less marking transit, i.e. the smallest vector solution.

This can be done by solving the next linear programming problem:

= min<T such that Cct = vaT
—

mo and o > 0 (2.10)

where nir € RS(N,mo) is a marking that is required to reach.

2.23.1 A solution to the regulation control problem

A solution to the regulation control problem for ContPNs is presented next [[26]].

Theorem 2.2.12 Let (N,mo, A) be a BIC over int (Class (mo)) ContPN and xContPN =

(Nx, mo_ , A) be its extensión. ¡f(ICr.mr) is an arbitrary equilibrium point such that mv e
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int (Class (mo)), then there exists Ic(t), 0 < r <
r¡, feasible in the ContPN such that

m(r_s) = nv, 7c(t__) = !___,., Vr__ > r/.

_

í 1 i/mtt [i] < oy |
1 0 otherwise

where Coy = m, —

mo-

(2.11)

Figure 2.2.4: The controlled marking evolution of a ContPN.

Figure 2.2.4 shows the marking evolution of the system in Figure 2.2.2 using the control

r iT
law presented in Theorem 2.2.12 and with a target marking mr = [2 0 10 0 0 3j

This is computed considering that the marking of all places is known Vr.

2.3 Linear systems

Since each configuration in the ContPN defines a linear system, some basic concepts that will

be used through this work will be briefly recalled. An interested reader may consult [40] and

[39].

A time invariant linear system (LS) E(A, B, S) is represented by

x(t) = Ax(t) + Bu(t), y(r) = Sx(r)
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2.3 Linear systems

where i e 1" is the state vector, u € R6 is the control input, y e Rs the output signal

(sensors in the systems which are a linear combination of the state vector), and A, B and S are

constant matrices of appropriate dimensions. A LS is a differential equation and its evolution

is completely defined with an initial condition x(ro) = xo, where tq is the initial time (usually

0).

The evolution of the state of the LS E(A, B, S) is given by the equation [40]

T

x(t) = eMx0 + í eA{-T-^Bu(i))d4>.
o

It is clear from the previous equation that if the initial condition x(tq) is known, then it is

possible to determine the valué for the state vector x Vt. Unfortunately, in practical problems,

the initial condition cannot always be exactly known. This leads to the problem of determin

ing the initial condition of the state x of the LS only by the knowledge (or measurement) of

the output variables within a finite time period. This problem is known as the observability

problem. The observability property in a LS is formally defined next.

Definition 23.1 [40] The system E (A, B, S) is said to be observable at time ro ifthere exists

afinite time T\ > ro such thatfor any state xo at time ro, the knowledge ofthe inputW[T_,n]
and

the output 2/[T0,n] over
the time interval [ro, n] suffices to determine the state xo- Otherwise

the system E (A, B, S) is said to be unobservable at time tq.

This problem has been addressed and is completely solved for LS [40], [39], [41]. The

characterization for the observability problem in LS is presented in the next subsection.

2.3.1 Observability in LS.

With the following theorems it is possible to determine if a LS is observable.

Theorem 2.3.2 The linear time-invariant system _T (A, B, S) is observable iffthe observabil

ity matrix

0=[sF (SAf ... (SAk)T]T (2.12)

hasfull rank.

Example 2.3.3 Takefor instance a LS E(A, B, S) with the followingmatrices

"l 2 3" "o"

4 5 6 B = 0

7 8 9 _1_
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The observabilitymatrix ofthe LS E(A, B, S) is

0 =

1 0 o"

1 2 3

.30 36 42

which hasfull rank, therefore the LS E(A, B , S) is observable.

It is also possible to determine if aLS is observable by analysing its A— invariant subspaces.

Let V be a subspace of Rn. V is said to be A-invariant ifAV c V.

In Example 2.3.3, spon{ [0.2320 0.5253 0.8187]T} is an A-invariant subspace, be-

cause

0.2320

0.5253

0.8187

-3.7386

-8.4665

-13.1944

= -16.1168

0.2320

0.5253

0.8187

The supremal A-invariant subspace contained in ker S is

n

K=f|ker(5A<-1).
i=l

The following theorem gives necessary and sufficient condition for observability in LS [70].

Theorem 2.3.4 77tc LS E (A, B, S) is observable ifand only ifthe supremal A-invariant sub

space contained in ker S is the trivial subspace, i.e. N = 0.

The subspace LN is known as the unobservable subspace of the LS E(A, B, S) and it is

closely related to the observability matrix of the LS since it holds that LN
= ker(O).

2.3.2 Observer design in LS.

Once that a LS shows the observability problem, it is possible to créate a mathematical entity

called observer, which actually computes the state vector of the LS.

There exist several approaches for the observers design in the literature. The most com

monly used observer is the so called Luenberger observer [41] which is a copy of the LS

E(A, B, S) with an error correction term as described by the equation

*x(t) = Ax(t) + Bu(t) + L(y - y)

y(r) = Sx(t).
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23 Linear systems

Figure 23. 1 : State evolution and its observed state.

It is now possible to compute the error between theLSE(A.B, S) and its observer, denoted

by T.(A.B,S). Let x = x
-

x be the observer's error. Henee, the dynamics of the observer's

etroris

x(t) = (A- LS)x(t). (2.13)

Itis known that the set of eigenvalues of the matrix A- LSinEq. (2.13) can be arbitrarily

I by a suitable choke ofL ifand only if, the LSE(A,B,S) is observable. Thus, by a

suitable choice of £ the observer's error x converges asymptotically to zero at a desired rate

[40], [39].

233 Consider die LS determined bymatrices

A =

The observerfor this example is given by É (A , B, S):

-1 -2 -3 0

4 -5 6 B = 0

7 -8 -9 1

'

= [i o o]

x(r) =

-1 -2 -3 0 12

4 -5 6 £(r) + 0 «0) + -4

7 -8 -9 1 23.33

í/(r)=[l 0 0 x(r).

.J

(y-y)

Thematrix L = 1 12 —4 23.331 in tfter previous equation leads to an observer's error

dynamic with poles located in -9, -10 y S. which is asymptotically stable. In Figure 2.3.1 ihe

evolution ofthe states and its observed state (in dashed line) is shown.
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2.4 Switched linear systems.

A switched linear system is a collection ofLS switching among them, formally defined next

Definition 2.4.1 A switched linear system (SIS) E^r)
= (ÍF, 4>) '■* a hybrid system where

7= {Ei, E2, ...,E,.} isa collection oflS and tf,: [0,oo) -» {1,2, ...,m} is a switching signal

determining, at each time instant, the evolving LS E_ e 5.

In the general case of the SLS, the switching signal is extemal and it can be either known

or unknown. For the particular case ofContPNs, the switching signal is dependent on the state

of the ContPN, i.e. the ContPN marking.

2.4.1 Observability in SLS.

The observability problem in SLS is more complex than the one in LS. This is because, in order

to determine the state of the SLS, it is necessary to determine which LS is actually evolving

as well as the state vector x from the output measurements. Once the evolving LS has been

uniquely identified, then the state vector x of the system should be computed. However, it is

possible that two different LS genérate the same output trajectory with an input If this happens.

the two LS are said to be indistinguishable from each other. Therefore it is necessary that each

pair of LS are distinguishable. The distinguishability property deals with the possibility to

determine which LS is evolving at any given time r, only by the knowledge of the output of the

SLS over a finite time period. The concept of distinguishability is presented next.

Definition 2.4.2 / 71] Let Ei and Ea be two IS of the same dimensión and with the same

number of inputs. Then, the LS £-., E2 are said to be distinguishable from each other iffor

every initial condition xq and input u(t), the knowledge ofthe input u(t) and the outputs yi

and j/2 over thefinite time interval r e [r n] suffices to determine which LS is evolving, Ei or

E2.

Theorem 2.4.3 ([48], [49]) The autonomous LS E.(Aí,0,S,) and EJ(AJ)O.Sí) are distin

guishablefrom each other ifand only ifthe extended LS Ey (Ay, 0, Sy) with matrices

is observable.

Ai 0

0 Aj
Sy = [ St -Sj ] (2.14)
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2.4 Switched linear systems.

Clearly, the distinguishability between LS implies the observability of the individual LS,

but the converse is not true in general.

The characterization of the indistinguishability subspace is given next.

Definition 2.4.4 [49] Given any two LS Ej, Ej, the indistinguishability subspace of Ej, Ej,

denoted byWij, is

%j = { Í - Mr) Vr > 0 such that K(_4, u(í)) = y. (xj, u(f)) 1

The previous definition shows that the indistinguishability subspace contains the state tra

jectories which are equal under the same input, and therefore it is not possible to determine to

which LS it belongs (it could be to any of them).

For the autonomous case of SLS, the observability problem has been completely character

ized in [48] and [49]. Even though SLS are non linear systems, [48] and [49] provide a simple

and linear characterization for the distinguishability property.

2.4.2 SLS and ContPNs

A ContPN can be modelled by a switched linear system SLS with polyhedral regions, which

are determined by the configurations or regions ofthe ContPN([l6], [51], [52]).

Consider the family of IS

7 = {m = Afcm; y
= Sm} (2.15)

where Ak = CAüjt and Uk is the configuration matrix introduced in Eq. (2.5). The switching

signal for the case ofContPN is state dependent, where the configuration matrix Uk is selected

depending on the ContPN marking. Notice that in ContPNs Bi = 0, S. = S, Vt = 1, ..., n, i.e.

the LS are autonomous and the output matrix is the same for each LS E*. € 3".

As a notation, the observability matrix and the unobservable subspace for the configuration

3?*,- represented by the LS E(Aj., 0, S) are denoted as 0k and -Nj. respectively.

It is important to recall that the ContPNs are a special class of autonomous SLS. First be-

cause the marking is always non-negative. Second, the switching among LS is state dependent.

Finally, the number of LS in the SLS representation of the ContPN grows exponentially with

the number ofjoin transitions. Take for instance the ContPN in Fig. 2.4. 1-A. This ContPN has

13 places and 4 transitions and there exists 81 LS in the family 7. However, in the ContPN
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jftjftift TTTT
? l t _W .251.

JL-fJL T T
A B

Figure 2.4.1: Explosión on the number of ZS.

presented in Figure 2.4. 1-B, there are 37 places and 12 transitions, but 53 1 ,441 .LS in the family

J.

It seems that since ContPNs are a SLS, then the previously explained approach to determine

the observability in SLS suffices to determine if a ContPN is observable. However, as previ

ously discussed, the number of LS in the family 3F grows exponentially on the number ofjoin

transitions in the ContPN. Therefore, the naive approach of verifying the observability of each

Ek 6 ÍF and the distinguishability between each pair of LS becomes prohibited in practice. For

instance, to determine if the ContPN in Figure 2.4. 1-A is observable, it is necessary to verify

that each of the 81 .LS are observable and distinguishable from each other. To achieve that, it is

necessary to verify the rank of 81 observability matrices to determine if each one is observable

and 3,240 extended observability matrices to determine if each pair of LS is distinguishable

from each other. In the ContPN in Fig. 2.4.1-B, the number of observability matrices to verify

are 531,441 for observability in each LS + 141,214,502,520 for the distinguishability between

each pair of LS.
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3

Observability and observers design.

State of the art.

This chapter provides the most relevant results on observability of ContPN. Since a ContPN

can be modelled by a SIS, the observability in SIS is an important approach for the solution

of the observability problem in ContPN. Unfortunately, due to the exponential number of LS

required to model a ContPN with join transitions, this approach results infeasible in practice.

Therefore, a different approach is required. The existing results on observability for ContPN

will be provided in this chapter. These results are based on analysing the underlying graph

of the ContPN (i.e. the structure of the ContPN), which is very convenient, since it provides

algorithms in polynomial time to verify if a ContPN is observable or not. Unfortunately the

existing results are valid only for the JF, AF and JAF classes ofContPN. In the general case,

the current results also require the explicit enumeration of every IS of the SIS representation

oftheContfW.
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3.1 Results on observability ofContPN

In this section, the existent results on observability of ContPN will be described. The work

herein presentedwas mainly developed by the OISED research group, from the Universidad de

Zaragoza.

The work presented in [45] is based on the previously known concept of observabüity in

SIS: AJ'ü'is observable iff

I. VE, e 'J, E, is observable.

2. VE<, Ej, » -jé j, the pair £<, E¿ are distinguishable from each other.

One of their main contributions is that in ContPN there exist redundant LS, therefore the

number ofLS to analyze can be reduced. In this work, the authors state that a place ph € P ls

implicit for any reachable marking from an initial marking m*>, i.e.

»n(f>j)
^

m(Ph)

Pre(pj,U)
~

Prefrk.U)

with p} e «í. \ {p/.} is satisfied Ví* € p/.«. This implies that the regions where

m(Pfc)
^

"(P.)

■Preípfc.tí)
~

Prefj^.íO

are either empty or reduced to their borders. Therefore such región should not be considerad.

Unfortunately this approach is based on the initial marking mo. which is actually unknown,

In order to avoid the dependence ofmo, they remove the structurally rtdundantmodes, i.e.

the modes which for every initial marking mo are redundant. This ls solved by solving a linear

programming problem (LPP) where the objective function is max t and there is a restriction of

the form:

PreOj.í.)
-

Pre(ph.U)

for each inequality determining the región. The main drawback of this approach is that lt

requires the enumeration of the inequalities which determine the regions of the ContPN, i.e. an

exponential number of restrictions.

Once the redundant modes are removed, they address the distinguishability problem with

the following linear programming problem (LPP).
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Proposition 3.1.1 Let k(k = 1,2) be a mode, Ok and Jik the corresponding observability

matrix and región. IftheWP

maxe

s.t.

—

e ■ 1 < mi
—

m2 < e • 1

Oi ■

mi
- O2 •

012 = 0

mi eXi

ms €$2

mi.m2 > 0

has solution e = 0 then the modes I and 2 are distinguishable.

The previous LPP looks for a marking m¡ in %i which can be confusedwith amarking nv**

in 3?2- If such pair ofmarkings exist (e > 0), then the pair ofmodes will be undistinguishable.

Otherwise, when e = 0, it means that there does not exist any similar marking in both regions,

thus the pair of regions are distinguishable from each other. Unfortunately, this approach also

needs the computation of aLPP for each pair of regions in the ContPN.

For the observability of the ContPN, the problem is addressed in the graph level of the Con

tPN. This is a great advantage since it does not require the enumeration of neither the constrains

which determine each región of the ContPN ñor the actual LS structure (E.(A¿, 0, S)).

The most important contribution of [45] is based on the next definition:

Definition 3.1.2 A place pj is output connected ifthere exists a path, denoted jjjromplace pj

to a measuredplace ph 6 Pm-

The output connectedness characterizes the existence of a path from a place pj to another

place ph which is measured. This path does not have any restrictions, but the authors show that

in some classes of ContPNs, the output connectedness leads to the computation of the marking

m(pj) from the knowledge ofm(p/,) in infinitesimal time.

Proposition 3.1.3 [45] LetN be a JAF ContPN. A place pj is structurally observable iffpj is

output connected.

The previous propositions states that in JAF ContPNs, it is necessary and sufficient that

from each non-measured place pj there exists a path to a measured place.

Also, Proposition 3.1 .3 can be interpreted as the following idea: if there exists a JAF-path

from a place pj to a measured place p-., then the marking of place pj can be computed in

infinitesimal time, using the back propagation algorithm presented in [44].
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In J
'

AF-ContPNs they also propose to analyze the terminal components. A set of places

F is said to define a strongly connected component ofN, named N', which is the subnet N'

generated by the set of places F and the set of transitions T' = »F UF:

Definition 3.1.4 [45]A strongly connected componentN' = (F,T, Pre!, Post/) ofa ContPN

is said to be terminal if there is no pathfrom aplace belonging to F to a place not in F.

The general solution for the observability in JAF ContPNs is given by the following propo

sition:

Proposition 3.1.5 [45] Let N be a JAF ContPN. N is structurally observable iffat least one

placefrom each terminal strongly connected component is measured.

For the attribution free (AF) case, they propose the following:

Proposition 3.1.6 [45]LetNbea ContPN. Then, constructN'fromN by removing everyjoin

transition and its input and output ares. Then, N is structurally observable iffN' is structurally

observable.

With previous proposition, aAF-ContPN is broken intomany pieces, each of them a JAF-

ContPN. With this strategy, the previous results apply and each strongly connected component

should have at least one measured place. Unfortunately, the previous results do not apply if the

ContPN is not AF.

For the nonAF case, the observability problem addressed is the generic observability, for

mally defined next.

Definition 3.1.7 Let (N, X,mo) be a JF ContPNand Pm the setofmeasuredplaces. (N, X, mo)

íí weakly structural or generically observablefrom Pm if (N, A, mo) is observablefor all val

úes ofX outside a proper algebraic variety ofthe parameter space.

In [45], it is also presented an algorithm to determine if a ContPN is generically observable

when there exist attribution places but only for the join free (JF) case. The idea is based on

[53], and it consists on building a directed digraph S(N) for the ContPN. The directed digraph

S(N) is constructed in the following way:

1 . The vértex set Z is given by the set P of places (Z = P).
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2. The edge set is computed as:

W = {(Pi,Pj)\Pj € (pí«) • Ap„ ¿ pj} U {(pi,Pi)\3t € p^, Pre(pi, t) ¿ Post(pi, t)}

In the edges computation, the first set adds an edge from a place p¿ to all places (?»•)• since

the dynamic matrix has a non-nuil entry and prevents adding an edge in the case ofa self-loop.

The second subset will add a self-loop in the associated graph for any place with Pre(pi, t) ■*■£

Post(pi, t) i.e., the marking of pi will change firing í, implying that the dynamical matrix has

a non-zero entry.

Definition 3.1.8 Let N be a ContPN and S(_V) its associated digraph with vértex set Z and

edge setW. Consider a setWs made ofks vértices. Denote by E(Ws) the set ofvértices Wi,

for i = 1, 2, ..., ls ofZ such that there exists an edge (xj,Wí) G W with x_ G Ws. Ws is said

to be a contraction ifk, — la>0.

Using the previous definition, the next proposition determines if a JF-ContPN is generi

cally observable.

Proposition 3.1.9 LetN be a JF-ContPNand 5 (N) be its associatedgraph. N is generically
observable iff:

• N is output connected

• S(N) contains no contraction

Unfortunately, for this procedure it is needed to compute many combinations of sets Ws

and its possible contractions E(WS) in order to verify if a contraction exists.

3.2 Observer design

The work presented in [44] introduces an algorithm to compute the marking of a JF-ContPN

from a given set of measured places PM. It is important to notice that a JF-ContPN has

only one aLS E(A, 0, S) which determines its behaviour. Then, they use such single structure

captured in the dynamical matrix A to compute the marking of every place in the ContPN. This
is executed as explained in the following example.
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CHHCHHCH]

Figure 3.2.1: A simple ContPN structure.

Example 3.2.1 The ContPN in Figure 3.2.1 (takenfrom [44]) has a very simple structure. Let

the rate oftransitions be X = Ai A2 A3] . 77ie set ofmeasuredplaces is Pm = {pz}- This

ContPN has the following incidence matrix and dynamicalmatrix:

-10 0 -Ai 0 0

C = 1 -1 0 A = Ai -A2 0

0 1-1 0 A2 -A3

Then the dynamics ofthe system is modelled by:

(3.1)

m_ = -A_m(pi)

m2 = Aim(pi) - A2m(p2)

1113 = A2m(p2)
- A3m(p3)

Since the marking ofplace P3 is known, then also its derivative can be computed with the

evolution ofthe ContPN. Then, m(p2) = (m3 + Xzm(pz))/X2. Once m(p2) is computed, its

derivative can also be computed andm(pi) = (nv. + A2m(p2))/Ai.

The algorithm explained in the previous example will be further referred as the backward

computation algorithm (BCA).

This paper also provides a definition ofobservable places and structurally observable places.

Definition 3.2.2 A place pj e P is observablefrom Pm iffit is possible to compute its initial

markingmo(pj) bymeasuring themarking evolution ofthe places in the set Pm- A place pj is

structurally observablefrom Pm iffit is observable from PmÍot any A > 0.

They also provide an algorithm that, given a measured set of places Pm, retums a set of

structurally observable places Q. With the assumption that every input place to join transitions,

the authors claim that the same algorithm can be executed for non JF—ContPN.

For the state estimation, they propose the following.

1 . Compute an estimate for every structural PT
— set of the ContPN.

2. Rule out the PT - sets of the ContPN which are not ruling the behaviour of the ContPN:
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(a) Aa estimate marking m for a PT - set W is infeasible if

2/(0)

y(o)
= Qjfcmo

L3/|PM(o).

where O* is the observabilitymatrix of the configuration k.

(b) An estimate marking m for a PT — set W is incoherent ifW °t PT — Seí(m),

i.e. W is not a PT — set ofm.

3. The remaining estimates represent every potential marking of the ContPN.

However, there are two relevant drawbacks in the previous approach. The first one is the

need of the computation of every PT
— set or configuration of the ContPN, which grows

exponentially with the join transitions, as previously discussed. The second drawback is that

the computation of the estimate marking is very sensitive to noise in the output derivatives.

In order to improve the estimate marking, they propose to use a Luenberger observer for

each configuration, and then, rule out the PT
— sets as previously discussed. Unfortunately,

there is still needed the computation of every dynamical matrix of the SLS representation of

the ContPN (an exponential number of them) in order to be able to design its observer, which

becomes prohibited in practice.

3.3 Optimal observability in ContPN

The work presented in [43] deals with the sensor placement problem. It is considered that all

places are measurable, i.e. it is possible to add a sensor to every place, therefore its marking

is always known. Assuming that there exists an associated cost to add a sensor to every place,

i.e. Vpj e P the cost of adding a sensor is <r(í>j). This concept is extended to a set ofmeasured

places Dj, where the cost ofmeasuring the places in D. is <;(1>.) = £ ?(?_■)• Based on these

definitions, the problem is to find a set D of minimum cost from which a ContPN (N,mo, A)

is observable.

In this work, they define the set of observable places as the following:

Definition 3.3.1 A place pj e P is observablefrom "Di ifthe markingm(pj) can be computed

from the knowledge ofthe marking ofthe places in "Di.
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The set ofall the places which are observablefrom the measuredplaces Di is named
the

observable placesfrom "Di and it is denoted by Oj.

It is assumed that it is possible to computeOj from Di using the tools provided in [44].

Unfortunately ithas been shown in [46], [44] that ifD = DiUD2U...UDi, the observable

places from T>, denoted by O fulfils the following

|0| > |Oi u o2 U ... U Oi|

i.e. the places that can be computed from a unión of disjoin sets ofmeasured places Di can be

greater than the unión of the observable places Oí from each set ofmeasured places Di. This

can be seen in the following example.

Figure 33.1: A ContPN structure with an attribution.

Example 3.3.2 Consider the Figure 3.3.1 with A2 = A3. LeíDi = {pi}. The setofobservable

placesfrom Di is Oi = {pi}. Also, let D2 = {02}- The set ofobservable places from D2 is

O2 = {p2,Pi}. However, if"D = Di U D2 = {pi,P2}. then the net becomes observable, Le.

O = {pi,P2,P3,Pi}-

The previous example shows that the optimal observability problem can be seen as a Set

Covering Problem, which is NP-hard in the strong sense [43], then the authors show that it is

possible to determine the optimal sensor placement for some subclasses or, in the
worse case,

to reduce considerably the number of covers to consider with an algorithm that they introduce.

This algorithm can be further studied in [43].
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On invariant subspaces and the

ContPN structure

This chapter deals with the Afc—invariant subspaces characterization of the ContPN. As pre

viously discussed, ContPN are a special class of autonomous SLS. Also, in Subsection 2.4.2

it was shown that the number of configurations in a ContPN, and equivalently the number of

LS in its SLS representation, increases exponentially with the number ofjoin transitions. Even

when obtaining an A/, -invariant subspace of a particular dynamical matrix A¿ is possible, and

actually simple, the problem of obtaining them for all of the matrices Ak would also lead to

JVP-complete algorithms. Fortunately, the complexity problem can be avoided by characteriz

ing these invariant subspaces directly from the structure of the ContPN.

It will be shown in this chapter that the ContPN structure allows the computation of the

A«—invariant subspaces associated to ker(Ajt), but also some other Ak—invariant subspaces

which do not belong to ker(A¿). Even though not every Ak—invariant subspace is character

ized, itwill also be shown that every Afc—invariant subspace which does not belong to ker(Afc)

is contained in the image of the incidence matrix C (Im(C)).

The results obtained in this chapter will later be used to propose a strategy to construct the

output mapping such that the ContPN becomes observable.
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4. ON INVARIANT SUBSPACES AND THE CONTPN STRUCTURE

4.1 Invariant subspaces

In this section, some of the invariant subspaces of the ContPN will be characterized using the

PN structure.

As discussed in Subsection 2.4.2, the ContPN systems have several regions due to join

transitions, and each región has a different dynamical matrix Afc = CAII-. (ü-, is different

in each región 3tfc). The naive approach of verifying the observability property by computing

each observability matrix Ofc leads to NP-complete algorithms since the number of regions in

a ContPN grows exponentially with the join transitions.

As previously defined, a subspace V is named Afc—invariant iff AfcV C V.

A particular case of subspaces are those of dimensión one, generated by the eigenvectors.

An eigenvector is a non-zero vector v satisfying

Akv = 0v (4.1)

i.e. the eigenvector generates an Afc—invariant subspace of dimensión one. The vector v is said

to be an eigenvector of Afc associated to the eigenvalue ¡3.

Particularly, it is known that a subspace V C ker Afc iffVu e V, Afct; = 0. In this case, all

vectors v e V are eigenvectors associated to the eigenvalue /3 = 0.

Consider now a subspace V such that V $í ker(Afc). Then, since V C Im(Ak) and Afc =

CAIIfc then V C Im(CAHk). Then, it is possible to see that V C Im(C). It is an important

fact, since the ContPN has only one incidence matrix C. However, if V C ker(Afc) then there

are two options:

1. V C ker(IIfc) or

2.VC ker(C) n Jm(AIIfc)

i.e. V may not be contained in Im(C). Therefore ker(Afc) should be characterized differently,

as shown in the next section.

4.1.1 The kernel Afc- invariant subspaces

The problem of finding ker(Afc) is equivalent to find the eigenvectors for amatrix Afc associated

to an eigenvalue /3 = 0. In this way, Equation (4.1) must hold and it becomes CAüfci; = 0.

Since A has full rank, the only two possibilities are AIIfc*y e ker(C) or v € ker(IIfc). Because
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4.1 Invariant subspaces

of the form of matrix Uk, it can be seen that this matrix only looses rank when a place is not

constraining any transition's flow. The following proposition characterizes vectors v € ker(II).

Proposition 4.1.1 Let (N, X, mo) be a ContPN. A vector v e ker(Ilfc) iffv = J2j ajej> where

aj G R and the associatedplaces pj
~

b¡ do not constrain any transition in the región 3lfc.

Proof:

■f— When a place pj does not constrain any transition, the j-th column of Uk is a zero

column. Clearly a vector ej e ker(IIfc), since Ukej = 0. Even more, any linear combination

ofsuch vectors also belongs to ker üfc.

—► Each ww of Uk is i-ki
= e\, meaning that a place ph, is constraining the flow of

transition ti. Clearly ifa vector v e ker(IIfc), 7Tfcit;
= 0 Vi, i = 1, 2, ..., \T\. Therefore every

7Tfci ii orthogonal to ej, i.e. n^ =f= ¿j Vi which proves that place p¡\ does not constrain any

transition. ■

One of the cases when a place pj does not constrain any transition is when pj € Pe, where

Pe is the set of ending places, i.e. p¿.
= 0. The following proposition characterizes those

ending places.

Proposition 4.1.2 Let (N, X, mo) be a ContPN. Ifpj e Pm, ie. Pj is an ending place, then

VA: e_* 6 ker(Afc).

Proof: Let pj be an ending place. Then any configuration matrix Uk has its j
— th

column equal to zero, because pj is not constraining the flow of any transition. Therefore

UkCtjej = 0 -. otjej € kerllfc -. a_*e_* e kerCAIIfc. ■

It is important to notice that Proposition 4.1.2 applies for every class of ContPN.

The other possibility for a placepj not to constrain any transition is when p3« / 0 but some

other place, say p_\ constrains the flow of those transitions in _._••, When this occurs, clearly the

transitions in |J¿« are join transitions. The following proposition characterizes the nuil space

corresponding to join transitions.

Proposition 4.1.3 Let {N, X,mo) be a ContPN with a set Tj / 0 ofjoin transitions. Ifpj» C

Tj then 3Uk such that ej € ker(CAIIfc).

Proof: Let í¿ be a join transition with Pj,Pí £ »íj. Now, Vf¿ let pi be the place con

straining the flow of transition í¿. 77ten p_ does not constrain any transitions1 flow in such

configuration and therefore 3Uk such that ej e ker ufe. ■

The previous result can be particularized for the class of free choice ContPN (FC-ContPN).
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4. ON INVARIANT SUBSPACES AND THE CONTPN STRUCTURE

Corollary 4.1.4 Let U be a join transition ofa FC-ContPN. Then for each vector ej
~

p-,

where p¡ e «fi, there exist some dynamical matrices CAIIfc such that e¡ is an eigenvector

associated to the eigenvalue 0 = 0.

Proof: APNisFCwhen:

a) For any two places s,r e P,s» Hr» = 0. In this case, there are not Join transitions.

b) For any two places s,r e P, s» = r: Let »U = {pi,p2> ••.,?■-•.} >
* = 1>2, —,m. Let

Pi constrain the flow ofti. It is clear thatplaces p2, ...,pn are not constraining the flow ofany

other transition and every matrix Uk forwhich pi íí constraining the flow ofti has n
— 1 zero

columns associated to places p2, ...,p„. It is also clear that those zero columns are also zero

columns o/CAüfc and every vector e2, ..., e„ are eigenvectorsfor some CAIIfc. Following this

reasoning, Vp,* e «íj, ej is an eigenvector associated to some CAIIfc.
■

Corollary 4.1.4 is important, since it states that for every input place p_ to a join transition

ti, the vector ej
~

p,* is contained in ker(Afc) for some k.

k
Pi

O-
Vi

O-

■PiU ti ps

-O-O

Figure 4.1.1: A ContPN system with join transitions and ending places.

Example 4.1.5 77ie ContPN in figure 4.1.1 has two regions. One ofthem is when place p\

constrains the flow of transition t__ (say, represented by configuration matrix U\); the second

one is when p2 does, represented by configuration matrix II2.

n,=

1 0 0 0 o"

0 0 0 1 0

0 0 1 0 0

0 0 0 1 0

n2

0 1 0 0 o"

0 0 0 1 0

0 0 1 0 0

0 0 0 1 0

Assume that the transition's rates are X = [l 2 3 4] With these configurations and

transition 's rates, the dynamicalmatrices are:

44



4.1 Invariant subspaces

Ai = CAIIi

-10 0 0 0

-10 0 0 0

10-320

0 0 3 -6 0

0 0 0 4 0

A2 = CAÜ2 =

0-10 0 0

0-10 0 0

0 1-320

0 0 3-6 0

0 0 0 4 0

In Figure 4.1.1, the PN structure shows an ending place (ps). Therefore, the vector es G

ker Uk, k = 1, 2 (es associated to place ps); also, for each ofthe dynamical matrices ofthe

ContPNAk, e5 G kerAfc, fc = 1,2.

Similarly, vectors ei and e% associated to places p\ and p2 respectively, are inputplaces

to join transitions as in Lemma 4.1.4. Therefore e\ G kerll2 and e2 G kerüi. In the same

way e\ G ker A2 and e2 G kerAi.

Propositions 4.1.2 and 4.1.3 characterize all vectors in ker(II). Now, as previously dis

cussed, Equation (4.1) also holds when Alifc-y G ker(C). The solution are those vectors

v G /m(AIIfc) n ker(C). (4-2)

Clearly those vectors v are T-Semiflows, but not every T-Semiflow belongs to im(AITfc) n

ker(C). A T-Semiflow belonging to Im(A) will be called a T-Semiflow agreeing with A,

formally defined next.

Definition 4.1.6 A T-Semiflow agreeing with X is a vector x G ker(C) such that for every

decisión place p j with pj» = {íi,Í2, .-.jin}, either every transition t\, ...,tn belongs to a

different minimum T-Semiflow or for those transitions in the same minimum T-Semiflow, the

ratio Xi/xh = Ai/A-, holds Vii, th G Pj».

The following proposition characterizes the conditions for which a T-Semiflow becomes an

annuler for CAIIfc in ajoin free (JF) ContPN, i.e. a T-Semiflow that also belongs to 7m(ATIfc).

Proposition 4.1.7 Let (N,X,vao)beaJF ContPN and letXbea T-Semiflow agreeing with A.

Then 3v £ ker(ü) such that CAüfc-y = 0 iff(u(X))» = (X). v will be calledAnnuler vector.

The structure ofv is given by

v =

[71 72

where 7/. = 0 ifPi <£ *X or -yh jé 0 ifpt G •X

7|P|
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4. ON INVARIANT SUBSPACES AND THE CONTPN STRUCTURE

Proof:

Necessity. Let vbe a vector such that CAIL.v = 0. Clearly, AIIfc*y = x is a T-Semiflow.

However, Aük is a function that maps from places in (v) that constrain the flow of some

transitions, to all transitions in (v) .. Let ti G (v) • such that U £ (x). The i
— th component

ofkUkv is nonzero and the i — th component ofx is zero. This is a contradiction andfor v to

exist, (• (x)) • = (x) must hold

Sufficiency. Let (• (x)) . = (x). Then every non-zero (zero) component in AIL.t; is also

non-zero (zero) in x. The i — th component ofAUkv can be written as \vj, where Vj cor

responds to the place pj that is constraining transition U. If each transition is constrained

by a different place, equation XíVj = Xi can always be solved with Vj
= Xí/Aí. When

a place pj constrains the flow ofmore than one transition (i.e. pj is a decisión place), let

Pj»
= {íi,í2, ....tn}- There are n equationsforplace pj, XiVj = x_,..., XnVj = xn. Since x

agrees with X, there are two cases:

a) When each transition in pj» belongs to a different T-Semiflow. Let Vj
= xai/X\ and

compute aaXai = X¡Vj for i = 2,..., n (clearly aaxaiis also a T-Semiflowfor aa G R).

b) When some ofthe transitions inpj• belong to the sameminimum T-Semiflow. Let f2 , Í3 G

(xa), xa be a minimum T-Semiflow. Since Vj can be fixed with some other transition let aa
=

XiOj/XaZ- Clearly, equation aaxaz = A3«_ holds. ■

Example 4.1.8 In Figure 4.1.1, transitions í2 and tz are the basis ofthe only T-Semiflow,

i.e. xi = 0 1 1 0 G kerC. However, (x) = {íi,í2} and (• (x))» = {pz,Pi}» =

{tz. *2, ti}. Therefore $v ker CAIIfc.

However, in the ContPN in Fig. 4.1.2 with A = 1 2 3 4 the T-Semiflow xi =

0 1 1 fulfils the conditions in Proposition 4. 1.7. Therefore there isa vector:

v = [o 0 71 72]
such that v G ker CAIIfc. The dynamicalmatrices are:

-1 0 0 0 0 -1 0 0

-1 0

1 0

0

-3

0

2
A2 = CAn2 =

0

0

-1

1

0

-3

0

2

0 0 3 -6 0 0 3 -(

Ai = CAIIi =

ln order to obtain v, solving Ait* and A_\v, two simultaneous equations are obtained:

272
-

371 = 0 and 371
-

27-j = 0. Clearly any valué such that *y2 = §71 fidfik the conditions.

However, it is important to notice that the actual valúes ofji are not required, only the structure

where the vector v is non-zero.
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4.1 Invariant subspaces

Bo-

Figure 4.1.2: A ContPN system with aT-Semiflow and an annuler.

4.1.2 A/t -invariant subspaces contained ín Im(C)

The following definitions will be used to characterize the Afc—invariant subspaces from the

structure ofthe ContPN.

Definition 4.1.9 Let Tx QT be a set of transitions. The set qfplaces constraining Txina

given configuration 6fc ií

y(Tx\ek) = {pj e p\(pj,u) g ek, u g tx}.

Definition 4.1.10 Let Px C P be a set ofplaces. The set qftransitions constrained by Pxina

given configuration Gk is

7(Px\Gk) = {U G T\(pj,tt) G efc, Pj G Px}.

Definition 4.1.11 LetTxCTbea set qf transitions and Px = 9(Tx\ek) be the set qfplaces

that constrain Tx in the configuration Gk- If

7(px\ek) = Tx,

Le. the places that constrain the transitions in Tx only constrain transitions in Tx, then Txisa

self-contained set of transitions.

Definition 4.1.12 Let Tx be a self-contained set of transitions. IfTx» C 7(Tx\Gk) then Tx is

afully self-contained set of transitions.

te a notation, let a vector x € R*r'. If (x) is a self-contained set of transitions, then it is

said that x is self-contained.

In this subsection, the Afc—invariant subspaces contained in Im(C) will be characterized.

This characterization will be made for the JF-ContPN. This is because it has been proved in

[44] that if all the join transitions are removed from a ContPN, and all the remaining JF nets

are observable, then the ContPN is observable.
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4. ON INVARIANT SUBSPACES AND THE CONTPN STRUCTURE

Figure 4.1.3: A simple ContPN with two T-Semiflows.

In a JF-ContPN a single dynamical matrix A = CAü determine the behaviour of the Con

tPN. Then, the traditional methods to verify the observability property in LS, such as verifying

the rank of the observability matrix or computing the non observable subspace Ji, can bemade

in polynomial time. However, the characterization herein presented is relevant because it
will

not need the computation of matrix A, i.e. it depends only on the structure N of the ContPN.

This characterization can be further extended to the non-/F case, where the number of LS in

creases exponentially, and the naive approach of using the traditional methods fail to provide

an answer in polynomial time.

The analysis will start with ker(A) C Im(C) and the eigenvectors of the dynamical ma

trix A = CAII associated to eigenvalues 0^0, since they are A-invariant subspaces of

dimensión one. Then, the general A—invariant subspaces will be characterized.

4.1.3 The JF case - Eigenvectors

This section is devoted to analyse the underlying structure of the eigenvectors, i.e. the sets of

places and transitions in the underlying graph which are related to the eigenvector.

Take for instance the ContPN in Figure 4. 1 .3 with A = [Ai A2 A3 A4] The incidence

matrix and the dynamical matrix of this ContPN are

C =

First, let us analyse the vectors v G ker(A). In Section 4.1.1 it was proved that v G

ker(Afc) if v G ker(IIfc) or if there exists a vector x G ker(C) n Im(AU). Since in the

ContPN in Fig. 2.1.1 is JF, there are not any join transitions. Also this ContPN does not

have any ending places; then, there does not exist any vector v G ker (EL). However the vector

v = [(A2/Ai) 1 (A3/A4)]T G ker(A). Then, the vector x = AUv = [A2 A2 A3 A4]T

-1 1 0 0 "-Ai A2 0

1 -1 -1 1 A = Ai -A2 - A3 A4

0 0 1 -1 0 A3 -A4
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4.1 Invariant subspaces

is a T-flow. On the other hand, let B\ be a matrix whose columns are a basis of ker(CA). In

this example,

"A2/A1 0
■

R -

1 °
Bx~

0 1

0 A3/A4.

Clearly the linear combinations of the columns of B\ genérate T-flows x G Im(A).

However, not every column of B\, B\i generates an annuller v because x must also fulfil

x G /m(A)II. In Proposition 4.1.7 it was proved that in a JF-ContPN, a T-flow x generates a

vector v G ker(A) iff (»(x)). C (x). Let B\i stand for the i — th column ofB\. The support

sets (x), .(x) and (<»(x)). are:

(Bxi) = {hM (BX2) = {í3,í4}
•(■Bai) = {pi,P2> , •(B\2) = {p2,P3}

(•(■BA1)). = (*»(BA2)). = {íl,í2,í3}

showing that none of the columns of Bx generates an annuller. The vector x = AUv =

[A2 A2 A3 A4] does fulfil (*»(x))« C (x). Actually, (x) is self-contained (see Def.

4.1.11).

The following proposition shows that in a JF-ContPN a subset of transitions Tx is a self-

contained set of transitions iff (»TX)» C Tx.

Proposition 4.1.13 Let (N, X, mo) be a JF-ContPN and Tx CT be a subset of transitions

(•Tx)» C TX iffTx is a self-contained set of transitions.

Proof: (=»Let(mTx)» C Tx. SinceNisJF, then?(Tx\Ül) = »TX. Now, since Tx» C Tx,

then every transition constrained by •Tx is contained in Tx.

(<=) Let Tx be a self-contained set of transitions. Again, since N is JF, then \T(TX\X) =

•Tx and every transition in T(«T_;|3í) C Tx (definition of self-contained set of transitions).

SinceN is JF, ifU €pj» then pj constrains U, then (•Tx)» C Tx. ■

Proposition 4.1.14 Let (N, X, mo) be a JF-ContPN andTxCTbea self-contained subset of

transitions. lfTx* C mTx thenTx is a fully self-contained set of transitions.

Proof: It is clear since Tx. C »TX. ■

It can be deduced from previous the proposition and Proposition 4.1.7 that in the case of

the annuller eigenvectors, there exists a fully self-contained set of transitions Tx associated.
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Proposition 4.1.15 Let (N,mo, A) be a JF-ContPN. Ifv G ker(C) n Im(AUk) then »v is a

fully self-contained set of transitions.

Proof: v e ker(C) n Im(AII). In this case, v is an annuller ofthe matrix CAII and

conditions ofPropositions 4.1.13 and 4.1.14 holdfor (•v). ■

Now for the eigenvectors of a dynamical matrix A = CAII associated with an eigenvalue

0 jé 0, the underlying structure will be analysed.

From (4.1) it can be seen that v G Im(CAII). Also, when 0 jé 0, v € Im(C), i.e. 3x,

such that Cx = y. The entries of the vector x G R'TI are the coefficients associated to a linear

combination of the columns of the incidence matrix; these columns are directly associated to

the transitions of the ContPN.

Proposition 4.1.16 Let (N, X, mo) be a JF-ContPNÍf v is an eigenvector of the dynamical

matrix A, with an eigenvalue 0 jé 0, then 3x such that v = Cx and »{x) = (v).

Proof: Since v is an eigenvector, then CAHu = 0v, therefore v G Im(CAII). Also, since

0 jé 0 -*► v G Im(C). Then 3x G Im(AU) such that Cx = v. Particularly, x = (l/0)AUv

fulfils Cx = v. It is clear thatAlivmaps to every output transition of (v). Since N is a JF-PN,

then (v) = »(x), i.e. (v) contains every inputplace to the transitions in (x). ■

The converse of the previous proposition is not true in general. Take for instance the Con

tPN in Fig. 2.1.1. A vector x = [71 72 0 0] with 71, 7-. jé 0 has (x) = {fi,í2}. Its

inputsetis.(x) = {pi,p2}. Thevectory = Cx = [-71 +72 71-7:2 0] has the support

(y) = {PI1P2} which actually fulfils the conditions of Proposition 4.1.16. However y is not an

eigenvector of A with 0 --é 0 since

A

Proposition 4.1.17 Let (N, X, mo) be a JF-ContPN. Ifv is an eigenvector ofthe dynamical

matrix A, with an eigenvalue 0 j£ 0, then 3x such that v = Cx and (.(x)). C (x).

Proof: Based on Proposition 4.1.16, there exists x such that (y) =** .(x). In addition,

because ofthemapping AU, every output transition of (v) is contained in (x). 77i-»n (.(x)). C

(x). .

The converse of the previous proposition is not true. Take for instance the ContPN in Fig.

2.1.1 . Transition íi fulfils («(x)). C (x). However the vector ei, associated to.íi = {pi}, is

not an eigenvector since Aei =
—Aiei + Aie2.
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-
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Propositions 4.1.16 and 4.1.17 show that if v is an eigenvector associated to an eigenvalue

0 jé 0, then 3x G R|T| such that Cx = v, (u). = (x) and (v) = .(x) are fulfilled. This means

that there exists a set of self-contained transitions Tx associated to the eigenvector v (in this

case, given by (x)).

Now, it is easy to see that if a transition íi G (x), then the marking in the places p_ G

•íi U íi* is affected, i.e. there is a marking change in these places due the firing of transition

U. Take for instance the ContPN example in Figure 2.1.1. A vector xi
=

7iei with 71 G R

has Cii = [—71 7i 0] , i.e. it removes marks from place p\ and adds marks to place p2.

Similarly the vector x4 = 74e4 affects the marking in places P3 andp2. Now, let xa = xi +x4.

Then Cx„ = [-71 71 + 74 -74] If 71
=

-74, then Cxa = [74 0 -74] , i.e. it

only changes the marking of places pi and P3, but not P2*s. However, the existence of a linear

combination of the columns of the incidence matrix C (in the example (x) = {íi, Í4}) does

not guarantee that there exists an eigenvector associated to places pj G (v) = *(x) (in the

example, .(x) = (v) = {pi,pz})- For the example in Fig. 2.1.1, let the transition's firing rates

be A = [Ai A2 A3 A4] . Now, to find an eigenvector v such thatpi,p3 G (v) but p2 ^ (v),

let v = [vi 0 vz] . Such eigenvector is given by the solution of the equation:

-Ai 0 Vl

Ai + Vz A4 = 0 0

0 -A4 vz

In this example, the vector [l —1 0] is an eigenvector when Ai = A4, associated to the

eigenvalue —Ai . However, ifAi **é A4, then it is not possible to find an eigenvector v associated

to places pi and P3 exclusively, i.e., an eigenvector v such that pi , P3 G (v) and p2 £ (v) . This

is showed formally in the next proposition. The next proposition is generalized even for the

FC—ContPN class of nets, but clearly it also holds for the JF case.

Proposition 4.1.18 Let (N, X, mo) be a FC-ContPN and pj be an attribution place. Also, let

Vii G »Pj, | • íi| = 1, i.e. each U has only one input place pi such that p^
= {ti}. If

3A.X = A¡2 for some transition t^,^ G •pjand^pj)» = {p¡} then a vector vai = e-, -e¡2,

associated to places {pi_} = »íi_ and {p¡2} = .íj_ is an eigenvector ofall matrices CAIIfc.

The vector vai is calledAttribution eigenvector.

Proof: The i\
— th column ofC is Cí_ = eJ

—

e^, i.e. it adds one token to place pj and

removes onefrom pjt. Similarly, the i2-th column C¿2 = ej-ef^. SinceVti G .p¿, |«t_| = 1

thentix is constrained by pii andtÍ2 is constrained by p¡2 and neither pix norpi2 constrain the
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4. ON INVARIANT SUBSPACES AND THE CONTPN STRUCTURE

flow ofany other transition. Then in matrix CAIIfc its h
- th column will be A^C^ and its

l2 - th column will be Ai2CÍ2. Then CAIIfce-j = A._C._ and CAIIe*2
= AJ2C.2.

Let vai
=

eh
-

eh, CAUva, = CAníe-j
- e¡2) = XhCh

- A.2C¡2 = Xh(ej
-

e£)
-

Ai2(ej
-

eg). Since Xh = A¿2, CAHi>0< = -A^eg + A^eg = -Xh(eh
-

eh) which is the

definition ofeigenvector. ■

In order to find the eigenvectors associated to attribution places, it suffices to find those

attribution places and their attributing transitions. It must be verified that each attribution

transition does not have any output place other than the attribution place itself. Also, each

input place to the attribution transition should only be connected with the attributing transition.

Then, for each pair of attributing transitions U, tj G »pk with Aj = Aj and «íj = {p*4} and

•tj
= {p*3. }, the vector va = e*t

—

e*3. will be
an eigenvector of each CAIIfc. This is important,

since matrices CAIIfc are not needed to compute the attributing eigenvector va.

For the case of attribution eigenvectors, there is also a self-contained set of transitions

associated, as shown in the next proposition.

Proposition 4.1.19 Let (N, X, mo) be a JF-ContPN. Let v be an attribution eigenvector. Then

•v is a self-contained set of transitions.

Proof: It is clear since the effects of transitions in «v only affectplaces in»»v but they

do not affect the attribution place. ■

The previous proposition shows that when there exist attribution eigenvectors, then the

associated set of transitions is only self-contained, but not fully self-contained.

Besides eigenvectors associated to attributions and similarly to the eigenvectors associated

to ending places, it is possible to characterize eigenvectors associated to ending transitions

when («íi) • = ti (it will be assumed that if Ví» G p_*«, íj.
= 0, those ending transitions are

represented as only one ending transition). The next proposition is generalized for every class

of ContPN, therefore clearly holds for the JF case.

Proposition 4.1.20 Let U be an ending transition ofa ContPN. If(»U) • = {ti}, then a vector

corresponding to each place pj G «íi, ej is an eigenvector of matrix CAIIfc. The vector

e¡
~

pj will be named ending transition eigenvector.

Proof: There are two cases:

a) Let {pj} = «íi. Then the i-th column of C has only one negative element corre

sponding to the are from pj to í¿. In addition, every matrix Uk has its i-th row equal to

some elementary vector ej. Then, the matrix CAIIfc = ai AjC, a2l where C. is the i-th
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column ofC and ai and a2 are twomatrices with n rows and j
—

l,n—j columns respectively.

Clearly the elementary vector ej is an eigenvector qfCAUk since CAIIfc
•

ej
= —Ai •

ej, where

—Xi is the eigenvalue associated to ej.

If\»ti\ > 1 then each place p¡ G «íilp.» = U is either constraining the flow ofU and the

previous reasoning applies or it is not constraining it and the place p¡ is not constraining any

transition. Ifso, then the l
— th column CAIIfc íj zero and e¡ is also an eigenvector ofCAIIfc.

■

For the case of ending transition eigenvectors, there is also a fully self-contained set of

transitions associated, as shown in the next proposition.

Proposition 4.1.21 Let (N, X,mo) be a JF-ContPN. Let ej be an ending transition eigenvec

tor. Then ej» is a fully self-contained set of transitions.

Proof: Since ej is an ending transition eigenvector, then («íi) • = {U} holds. Also, since

Ti» = 0, then the conditions ofProposition 4.1.14 also hold. ■

4.1.4 The JAF case. Afc -invariant subspaces

Based on the previous examples and propositions, there is the intuition that the A—invariant

subspaces V C Im(C) have a special structure on the ContPN. In this section, this intuition

will be proved for the join attribute free class of ContPN.

Definition 4.1.22 Let Vb — {vi, ■■■- vn} be a basis ofthe A-invariant subspace V. The sup

port ofan invariant subspace V, denoted by (V) is

(V) = |J (ví) (4.3)

-j*eVB

Proposition 4.1.23 Let (N, X,mo) be a JF-ContPN and V C Im(C) be an A-invariant

subspace. Then Vu G V, 3x G R'T' such that Cx = v and (u). = (x).

Proof: Clearly v G Jm(CAII) and v ^ ker(CAII). Then v G Im(C). Now, since v is

A-invariant, then CAIto = i>i G V. Let x = All-y. It is clear that Aü maps to every output

transition of (v) because N is JF. Then (v) • = (x) . ■

Clearly since previous the propositions hold for the JF class of ContPN, then they also hold

fort he JAF class. Proposition 4.1.23 states that for every vector v G V it is possible to make

Cx = v with a linear combination of columns of C associated to output transitions of (v).
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Proposition 4.1.24 Let (N, X,mo) be a JF-ContPN and V C Im(C) be an A-invariant

subspace. Then 3TV, a set ofself-contained transitions associated to the A—invariant subspace

V, i.e.

1. .T„ = (V).

2. (V). = T„.

Proof: 2 is a consequence of Proposition 4. 1.23. 1 is a consequence of the fact that N if

JF. m

Propositions 4.1.23 and 4.1.24 show that for any invariant subspace V, there exists a set of

self-contained transitions Tv, i.e. .T. = (V) and (V). = Tv; this means that the effects ofthe

transitions in Tv in the marking of the ContPN is restricted only to the places p¡ G (V).

It is important to notice that in Proposition 4.1.24, the effects of the transitions í¿ G Tv

are contained only in places pj G •%, but it states nothing about the output places of the

transitions in T_.

Now, the following proposition shows that if V is an A-invariant subspace in a JAF-

ContPN and T„ is its associated set of self-contained set of transitions then Mpj e Tv; the

place pj G (V).

Proposition 4.1.25 Let (N, A,mo) be a JAF-ContPN andV C Im(C) be an A-invariant

subspace. Also, let Tv be the self-contained setof transitions associated toV. Then»Tvl)Tv» C

(V).

Proof: From Proposition 4.1.24, »TV C (V). Then it will only be proved thatWpj G T„.,

Pj G (V). Let pj G «íi where í» G Tv, such thatp-, is the place constraining tu i.e. J»(¿_|e) =

ph. Let v G V such thatp-, G (v). Clearly Av = t*i G V contains the effects of every transition

tg G ph; particularly, it contains the effect of í¿ e=
»Pj, since it cannot be cancelled by the

effect of another transition (the net is JAF). Therefore pj G (ui) .

Let vi,v2 G V such thatp-, G (t>i) n (v2). Clearly aivi + a2v2 = v3 G V, with on G R,
i = 1,2.

m

Now it will be proved that if such fully self-contained set T. of transitions exists, then there

exists an invariant subspace V C Im(C) associated to places in .T_.

Definition 4.1.26 A set of transitions Tv is said to genérate an A-invariant subspace V ifan
A-invariant subspace V exists such that (V) C .T„.
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4.1 Invariant subspaces

Proposition 4.1.27 Let (N, X, mo) be a connected JAF-ContPN and Tv C T be a fully self-

contained set. Then Tv generates an A—invariant subspace V G Im(C).

Proof: Let the index of the transitions and places be assigned in such a way that T. =

{íi,Í2, ...,ín} CTandP„ = »TV = {puP-2, —,Pm} Q T. The incidencematrix has the form:

C =

c.

o c5

where Cv is the incidence matrix of the subnet Nv = (PV,TV, Prev ,
Prey) . It is clear that

Vfi G Tv, ti» C Pv and »U C Pv, i.e. U has only input and output places pj G P_. Also, since

N is JF and T„ is fully self-contained, "ipj G Pv, Pj» C Tv, i.e. the output transitions of the

places pj G Pv are contained in the set Tv. C¿" represents the input transitions to the places

Pj G P«. It is clear that at least one placepj G P_ has an input transition í-, G T—Tv, otherwise

the net would not be connected. Finaly Cc represents the rest of the incidence matrix. Using

the same reasoning, the configuration matrices A and II have the following structure:

A =
A„ 0

0 Ac
and 11 =

IL. 0

0 uc

where A„ and A*- are the transitions' firing rates associated to the transitions íi G Tv and the

transitions í-, ^ Tv respectively. The configuration matrix II can be similarly separated since

the transitions U G T„ are constrained by places in P„ and the places Pj G P_ only constrains

transitions íi G Tv. Then, the dynamical matrix A = CAII is given by:

A =

C„A.II„ C+Aellc
0 CcAcIIo

Now, let V = {v\vv G Rm, and vv(h) = Q,h = m+1,m+2, ..., \P\}, i.e. v = [vv 0] C V.

Clearly Av C V. ■ ■

Theorem 4.1.28 Let (JV, A,mo) be a JAF-ContPN. TXCT is fully self-contained iffTx gen

erates an invariant subspace V.

Proof: It follows from Propositions 4.1.25 and4.1.27.

n
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5

Sensor placement for observability in

ContPN

This chapter presents a sensor placement strategy which guarantees observability of a ContPN.

Tbe problem consists on determining which places should be measured so that later on, the

marking of every place p¡ G P can be computed trough an observer.

Even when the observability in infinitesimal time in autonomous SIS has been completely

characterized in [48] and [49], it has been pointed out that this approach is not feasible in

practice. Similarly, the observability characterization for general ContPN provided in [46] also

leads to high complexity algorithms.

However, using the results in [48] and [49] it is known that a SLS is observable iffevery LS

is observable and distinguishable from each other.

Therefore, the strategy herein presented will determine where to place sensors to guarantee

observability in each LS of the SLS representation of the ContPN and the distinguishability

among them. This approach, however, may lead to observability by excess, i.e. it may add

more sensors than the strictly necessary. Then a sensor reduction strategy is also presented.

For the distinguishability between each pair of LS, it will be shown that for some classes of

ContPN observability in each LS implies distinguishability as well, but also that the classical

test for distinguishability in SLS fails to provide a correct answer in the ContPN context, since

the information provided by the ContPN is greater than the one available in the general SLS.
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5. SENSOR PLACEMENT FOR OBSERVABILITY IN CONTPN

5.1 Sensor placement for Observability in each LS

Since every Afc—invariant subspace of each matrix Ak must not be in ker(S) for the ContPN

to be observable, it is possible to design S such that neither of the eigenvectors and subspaces

previously characterized in 4 is contained in ker(S). For every other Afc—invariant subspace

which is not characterized, it is known that it is also contained in Im(C). The Im(C) con

tains more elements than those invariants, but if Im(C) is not in ker(S), clearly neither the

Afc—invariant subspaces are. The following definitions will allow us to define an invariant

matrix and to propose an algorithm to determine where to place sensors in a ContPN so that

observability is guaranteed.

Definition 5.1.1 Let a place pt G P H Pe (i.e. Pi is an ending place). Let Eep = {ei\e¡

is an elementary vector associated to the ending place pi} be the set of elementary vectors

associated to the ending places. Then, the Ending PlacesMatrix is defined as

Vep = |e¿ ... ejj (5.1)

where a,...,ej G Ee-

Definition 5.1.2 Let pi G P such that p,. = {tj} for some tj G Te (i.e. tj is an ending

transition andpi constrains its flow). Let Est = {e%\ei is an elementary vector associated to

the place pi constraining the flow ofan ending transition tj} be the set of elementary vectors

associated to the places constraining the ending transitions tj G Te-

The Ending Transitions Matrix is defined as

Vst = [ei ... ej] (5.2)

where e», ..., ej G Est-

Definition 5.1.3 Let vai be an Attribution eigenvector as the ones computed with Proposition

4.1.18. Let Ea = {v0i| vai is an Attribution eigenvector}. Then, theAttribution Eigenvector

Matrix is

VA = [vai ... va„] (5.3)

where vai , —, v0„ G Ea-

Definition 5.1.4 Let Vi be anAnnuler vector as the ones computed with Proposition 4.1.7. Let

F-ap = {ví\ví is an Annuler vector}. Then, the Annuler Matrix Vap is a matrix with all

Annuler Vectors

Vap = [vi ... vn] (5.4)

where vi,...,vne Eap-
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5.1 Sensor placement for Observability in each LS

Definition 5.1.5 Let pi G Pfl »tj where tj is a Join transition. Let ESp = (4\4 is an

elementary vector associated to a place pá G »tj and tj is a Join transition} be the set with

all elementary vectors associated to places p¿ G »tj, where tj is a Join transition. Then, the

SynchronizedPlaces AnnulerMatrix VSp is

VSP=[4 ... e{] (5.5)

4,-,<^heEsp.

With the previous definitions, some important matrices will be defined, which wül be fur

ther used to compute an output matrix such that the observability of the ContPN is guaranteed.

Definition 5.1.6 Let the matrices VEp, VAp and VSp be as defined in (5.1), (5.4) and (5.5)

respectively. The Invariant Kernel MatrixMk is defined as

MK = [vEp VAP Vsp] . (5.6)

Definition 5.1.7 Let the matrices MK, VEt and VA, be as defined in (5.6), (5.2) and (5.3)

respectively. The InvariantMatrixMi is defined as

M[=[mk VEt VA]. (5.7)

It is important to notice that M¡ has every invariant subspace characterized in this work.

Vf-p are the invariant subspaces associated to ending places, Vg- are the invariant subspaces

associated to ending transitions, Va are the invariant subspaces associated to attribution places,

Vap are the invariant subspaces associated to T-Semiflows and they are annulers for some ma

trix CAIIfc and Vsp are the invariant subspaces associated to Join transitions. Clearly, for the

ContPN to be observable, each of these invariant subspaces must not belong to ker(-S). How

ever, there are still some invariant subspaces associated to some nonzero eigenvalues which are

not represented inM/. Nevertheless, these invariant subspaces are in Im(C) and as previously

discussed, if Jm(C) is not in ker(S), neither the invariant subspaces of CAIIfc are. In order to

consider Im(C) to determine sensor placement in a ContPN, the next definition is introduced.

Definition 5.1.8 LetMi be the InvariantMatrix ofa ContPN andC/ = cn cj2 ... c/n

be a matrix with n linearly independent columns ofC The Extended Invariant Matrix Mje

is defined as

MIE = [Mi Cj] . (5.8)
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5. SENSOR PLACEMENTFOR OBSERVABILITY IN CONTPN

Using the extended invariant matrix of a ContPN, it is now possible to present an algorithm

to determine sensor placement in a ContPN that guarantees observability. The next algorithm

will be used with the extended invariant matrix Míe as an input; however, it is presented in

terms of a general input matrix Minjmt, because it will later be used with another input matrix.

As a notation S(i, •) represents the i — fft row of the outputmatrix S, andM(», j) represents

the j
— th column ofmatrixM.

Algorithm 5.1.9 Sensorplacement algorithm.

Function: S = SensorPlacement(Minput).

Inputs: A invariantmatrix Minput.

Outputs: The outputmatrix S such that S ■

Minvut / 0.

Initialize: The matrix oforthogonal columns to S as zero: OS = 0. Initialize the counter

sensor num = 1. Initialize the temporary variable Temp = 0.

/. Build the linearly independerá elementary vector setLIS as the setofall columns ofM¡

which are linearly independentfrom each other and these columns are scaled elementary

vectors, i.e. v G LIS ifv = &i^ifor some S G R (a scaled elementary vector).

2. VSiei G LIS, add a new sensorforplace pt, Le. a new row num
— th, Le. S(num, •) =

ef and increment num (num = num + 1) - Vectors in LIS are no longer in ker(S).

3. While there exist columns in Minímt

(a) Temp = Minin_t.

(b) For i = 1 tothe number ofcolumns qfTemp

L IfS Temp(», i) = 0 then

OS= [OS Temp(.,i)|
else remove columnMinpal(», i) from M¡nput.
- Ifthe i

— th column ofMinput is in ker(S) this column is added to OS

otherwise it is removedfrom Minput.

(c) Find the row ri in OS with the largest number ofelements differentfrom zero.

(d) Add a new row num to S equal to ej and increment num (num = num + l)-at

least one column ofMin,„_t is now removedfrom ker(S).

End While

4. Retum S.
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5.1 Sensor placement for Observability in each IS

The previous algorithm ensures that none of the columns of Minput is in ker(S). Step 1

and 2, remove every elementary vector in Minput from ker(S). By removing these elementary

vectors, some other columns of A/,nput may also be removed from ker(S). Step 3 removes

from A/„lfm, those columns which no longer belong to ker(S) and puts in a matrix OS all

columns which still are in ker(S). Then, it chooses the row of OS with more non-zero valúes,

say the t
- íh row, and places a sensor in place p, . The algorithm is repeated until every column

in Minput is not in ker(S) and finally retums the valué of the computed outputmatrix S.

Using .Algorithm 5.1.9 with the invariant matrix M.__ as an input, i.e.

S = SensorPlacement(MiE),

it will retum an output matrix such that each column of matrix M/__ is removed from ker(S).

However, some Afc—invariant subspaces may still be in ker(S). In order to avoid this problem,

the following algorithm will verify if Im(C) is removed from ker(S). Similarly to Algorithm

5.1 .9, it is presented in terms of a more general input matrix Mlnput .

Algorithm 5.1.10 Validation algorithm

Function: S = Validation(Minput, S)

Inputs: An outputmatrix S = \Sf ... £%um obtainedfromAlgorithm 5.1.9.

A matrixMinjmt with only linearly independent columns andwith k = rank(Minput).

Outputs: The outputmatrix S such that Im(Min]mt) <£_ ker(S).

Initialize: f = [l ... l] e 1*. j = l, i = n and z = 1.

/. While z^O

(a) Solve the LPP:

max z = fa,

s.t.

S ■

Minputa = 0

Q*i<l

(a) Ifz^Othen

i. compute Q = Minput
■ a.

ii. choose any row hofQ such that Qh / 0.
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5. SENSOR PLACEMENT FOR OBSERVABILITY IN CONTPN

iii. add the (num + 1) —th row equal to e-, to S and increment the valué num

(num = num + 1) - places a sensor in place p-,.

Let S = SensorPlacement(MiE), which is an output matrix such that none of the

columns of Míe is contained in ker(S). However, a linear combination of the kemel in

variant matrixMk, which also belongs to ker(Afc) may still be in ker(S). Then, it should be

computed 5o = Validation(Mk, S), such that neither the columns ofMk or any of its linear

combinations are contained in ker(Si). Then, in order to obtain an output matrix such that the

ContPN is observable, it is necessary to compute Si = Validation(Ci, Sq), which guarantees

observability of the ContPN. However, Si guarantees observability by excess, i.e. it has more

sensors than the strictly needed for the ContPN to be observable. This occurs since Algorithm

5.1.10 designs Si such that Im(C) $_ ker(Si), but as previously discussed, Im(C) is larger

than the Afc—invariant subspaces.

1Í4

Pá""
'

Pá~^ *7

Figure 5.1.1: An illustrative example of a ContPN for observability.

Example 5.1.11 Letus consider the ContPN in Figure 5. 1.1. Let X = [l 2 3 4 3 5 6]
The matrixMíe, composed by one ending place vector, one annuler vector and two syn

chronizedplace annuler vectors is:

MK =

"o 0 0 o"

0 0 0 0

0 0 0 0

0 71 0 0

0 72 0 0

0 0 1 0

1 0 0 0

0 0 0 1

0 1 0 0
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5.1 Sensor placement for Observability in each LS

where 71,72 =^ 0 (the actual valúes are not relevant). The complement ofmatrixMíe, com

posed by one ending transition vector, one attribution eigenvector and the linearly independent

columns ofthe incidence matrix C, represented by C¡ is

[Vst VA Cj] =

0 0 0 0

0 0 1-1

0 10 1

oooo

0-100

0 0 10

oooo

0 0 10

10 0 0

o

o

-1

1

o

o

o

o

o

0 0"

0 0

0 0

0 0

0 0

-1 0

1 0

-1 0

1 -1

The outputmatrix obtainedfromAlgorithm 5.1.9 with thefunction

S = SensorPlacement(M1e)

isS= [ej ef¡ es eg e3 e._]T
In order to validate that there exists no other vector v G ker(Afc) contained in ker(S),

it is computed So = Validation(Mk, S). In this case, Sq = S, Le. there is not any

linear combination of the columns of Mk contained in ker(S). Finally, to make sure that

Im(C) is not contained in ker(So), it is computed Sx. = Validation(C¡_ So). In this ex

ample, there exists a linear combination ofthe columns ofCi G ker(So). The vector Q =

0—10010000 G ker(So). Then a sensor in place pi is added and S\ =

[e7 e6 eg eg e3 e4 e2]T Si guarantees observability of each IS in the SIS repre

sentation ofthe ContPN.

5.1.1 Sensor reduction

As previously discussed, Algorithms 5.1.9 and 5.1.10 are used to compute an output matrix Si

which guarantees, by excess, that the ContPN is observable. Now, in [46] it was proved that

if there exists a JAF-path from a place p, to a measured place p¡, then the marking of place pi

can be computed in infinitesimal time. Then, it is possible to reduce the number of sensors and

still guarantee observability of the ContPN.

In order to reduce the number of sensors in a ContPN the following definitions and algo

rithms are presented.
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For the following algorithm let w = nin2...n9 be a finite path. The notation wn-, stands for

the new pathw = nin2...ngn_\. Also, the notation final(w) stands for the final node ofthe path

u. Finally the notation w G (N U 0)lTWpl is a vector which contains the number of times that

the node n¿ appears in the path w, according lo the indexation [pi ... p\p\ íi ... í|*r|]

Particularly ñ. is the vector for the path u = ni.

A JAF-path from an arbitrary place pj to a measured place p¡ can be constructed in the

following way:

Algorithm 5.1.12 JAF-pathfrom a given place pj to a measuredplace pi G Pm-

Function: fí = JAF(pj,PM(S)).

Inputs: Initial place pj. The measured setplaces Pm(S) from a given outputmatrix S.

Outputs: If there exists, a set íí ofthe shortest JAF-paths from pj to a measured place

Pi £ Pm- Otherwise íí = 0.

Initialize: SetQ = fí = {pj} and íí0 = 0. - Qisa search set, íí is a paths set and íía is

an auxiliarypaths set.

Compute: Compute the auxiliary set Aux = Q».

WHILEAux ± 0

1. Vn¿ G Aux if\ • íij| > 1, then remove ni from Aux - removes every join transition and

attributionplace from the set Aux.

2. Vtií G Aux ifni» = 0 and ni G T, then remove ni from Aux - removes every ending

transition from the set Aux.

3. Make Q = Aux.

4. lf\Aux n Pji/| > 1 then

(a) Vn, G Aux ifni G Pm then.

i. Voy, G íí, ifni G final(u>h)» then add wj,7ii to íí0 - adds the node n¡ to each

path in íí and the resultingpath is added to íí0.

ii. Make ü = üaand EXITWhile.

5. Else Vni g Aux

(a) Va;-, G íí, ifni G final(wh,)» andütJni = 0 then adduhni t0 *^a - odds the node

ni to each path in Clforwhich ni is an output node to the ending node ofu and ni

is not already in the path. The resulting path is added to íí0.
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5.1 Sensor placement for Observability in each LS

(b) Makeíl = íi0 andüa = 0.

6. Make Aux = Q».

END WHILE

Vwí G íí Iffinal(ui) */ Pm then remove Wifrom íí - Removes every path which does not

end in a measured place.

Return íí.

The previous algorithm starts in a given input place pj. Then, it creates a set Sí of paths

starting on pj and containing only single input transitions and single input places, i.e. JAF-

paths. If a path is a loop, i.e. a node ni is visited more than once, such path is not further

analyzed. When one of the paths reaches a measured place, then it removes from the set íí all

the paths in which final(u) is not a measured place and returns íí.

Now, in order to reduce the number of sensors in a ContPN guaranteeing the observability

in each of the LS of the ContPN the idea is the following: If there exists a JAF
— path from a

measured place p¿ to a different measured place pj, then the valué of m(p¿) can be computed

in infinitesimal time from the knowledge ofm(pj); therefore it is not necessary to measure pi

and the sensor from pi caá be removed.

Definition 5.1.13 A sensor in aplace pi is named redundant ifthere exists a JAF-pathfrom p¿

to another measuredplace pj.

Algorithm 5.1.14 Sensor reduction.

Function: S = SensorReduction( (N, X,mo) , Si )

Inputs: A ContPN (JV, A,mo). Si, an output matrix which guarantees observability by

excess.

Outputs: An output matrix S such that the ContPN (N, X,mo) íí observable and with

\Pm(S)\ < \Pm(Si)\.

Initialize S = S\.

1. VPj G PM(S) compute íi = JAF(p},PM(S)
-

{pj}).

If íí ± 0 then remove the sensorfrom place pj, i.e. remove the row S(i, •) = ejfrom S.

2. Return S.

The previous algorithm computes an output matrix which still guarantees observability of

the ContPN but removes redundant sensors.
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Example 5.1.15 From the Example 5.1.11, the algorithm 5.1.14 will be applied The output

matrix such that the ContPN in Fig. 5.1.1 is observable, is given by

Si = e7 e6 es eg e3 e4 e2

Then, PM(Si) = {pr,P6,Ps,P9,P3,Pi,P2}-

íl = JAF(p7,PM(Si)-{p7})^9.

íí = JAF(p6,PM(Si)
- {p6}) = 0.

íl = JAF(p8,PM(Si)
- {ps}) = 0.

íí = JAF(p9,PM(Si)
-

{pg}) = 0.

íl = JAF(pz,PM(Si) - {pz}) = 0-

íl = JAP(p4l Paí(Si)
- {p4}) = 0.

íi = JAF(p2,PM(Si) - {p.}) = p2,í2,p3.

Therefore the sensor in place p2 is redundant and it can be removed.

S = SensorReduction((N,X_rao),Si) =\e-j e§ e% eg e3 e_

5.2 Distinguishability

As mentioned in previous chapters, the observability in ContPN requires the observability of

each IS and the distinguishability of every pair ofLS. In this work it is assumed that each LS of

the SLS representation of the ContPN is already observable, for instance, by choosing output

matrix S as proposed in Section 5.1.

The naive approach of verifying the distinguishability property for each pair of LS using

Eq. (2.14) also becomes prohibited, since the number of LS increases exponentially with the

join transitions. Evenmore, testing the distinguishability for every pair ofLS using the methods

proposed by [48] and [49] may lead to a wrong conclusión, as shown in the next section.

5.2.1 Classical testing for Distinguishability

The following result provides sufficient conditions for indistinguishability in SZ*S, i.e. there

exists a pair of LS which are not distinguishable from each other. It will be proved that if two

given LS have the same output matrix and there exists a common eigenvector with the same

eigenvalue for the two LS, then those LS will not be distinguishable from each other. Notice

that this result is relevant since a ContPN fulfils the condition ofhaving the same output matrix

for all LS.
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Theorem 5.2.1 Let Ei and Ej be two IS of the same dimensión and with the same output

matrix, Si = Sj. Letve Rlpl be a vector such that A¡v = AjV = $v. Then the IS Ei and Ej
are not distinguishablefrom each other.

Proof: The extended LS for system Ei and Ej is

A.**-í^ °

3
~

L ° Ai
.

Now, let v^
= [vTvT]T Then Vy isan eigenvector ofAy sinceAijVy = [(Aív)t (Ajv)t]t =

[(¡3v)T (_8v)T)T Now, since Si = Sj, then Síj = [S¡
- Si] and then Syuy = 0, therefore

v^ G ker(Sij). Then, there exists an Ay-invariant subspace contained in ker(Sij) and Aij is

not observable. Therefore Ei and Ej are not distinguishable from each other. ■

It can be seen from the previous theorem that if there exists a common eigenvector with the

same eigenvalue for two IS, then this pair of LS are not distinguishable from each other and

therefore the SLS is not observable.

Particularly for FC-ContPN when dealing with join transitions, it has been proved that in

FC-ContPN each input place pj to a join transition íj has associated an elementary eigenvector

ej for some matrix CAIIfc (see Proposition 4.1.3).

When all the input places to join transitions are measured, the ContPN becomes trivially

distinguishable. Indeed, using this infonnation, the evolving configuration (henee the actual

evolving IS) is known. However, using the classical distinguishability tests, the indistinguisha

bility of the ContPN is obtained, which is a failure of this test. This problem is shown in the

next proposition.

Proposition 5.2.2 Let a FC-ContPN having all the inputplaces to its join transitionmeasured

and every LS of the ContPN be observable. Let Tj be the set ofjoin transitions ofa FC-

ContPN. If\»U\ > 3 for some í¿ G Tj or \Tj\ > 1, then there exists two indistinguishable

LS.

Proof:

Case | • íi| > 3 for some f¿ G Tj.

Let »ti = {pi,p2,P3} and II-, be the configuration matrix in which place p-, G »U con

strains the transition's flow, h = 1, 2, 3. Then ei G ker(CAIl2) n ker(CAIl3), since pi does

not constrain the flow of transition U when configuration II2 or II3 are active. Therefore 3ei

which fulfills conditions ofTheorem 5.2.1 and CAII2 and CAII3 systems are indistinguishable

from each other. It occurs similarly with place p2 and P3 and its associated vectors e2 and 63.
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5. SENSOR PLACEMENT FOR OBSERVABILITY IN CONTPN

Case \Tj\ > 1.

Let Tj = {íi,í2}- If íi is a join transition, then U has at least two input places. If one of

them has more than two input places, then the previous case applies. Let «íi = {pi,p2} and

•í2 = {ps -. P4 } ■ LetUgh be the configurationmatrix where placepg constrains the flow for tran

sition íi and ph constrains the flow for transition í2. Then ei G ker(CAÜ23) n ker(CAIÍ24).

Therefore 3e- which fulfils the conditions ofTheorem 5.2.1 and therefore CAII23 and CAII24

systems are indistinguishable from each other. It occurs similarly with the other combinations

for the places constraining transitions íi and í2. ■

There are other cases when the classical tests for distinguishability in SIS fail to determine

if a ContPN is distinguishable. To cope with this problem, some Afc—invariant subspaces for

the non FC-ContPN will be characterized.

Proposition 4.1.3 shows that when the output transitions of a place pj are join transitions,

then there exists an invariant subspace generated ej of configuration matrices where place pj

is not constraining a transition's flow.

The next proposition shows that if a place pj is input place to only join transitions and end

ing transitions, then the associated elementary vector ej generates an Afc—invariant subspace.

Proposition 5.2.3 Let a ContPN having a set Tj ofjoin transitions and a set Te of ending

transitions. Letpj be a place such that pj» C Tjr U Te- Then BUk such that CAIIfcej = ¡8ej,
Le. ej generates an Ak—invariant subspace.

Proof: Similarly to Proposition 4.1.3, let Ví4 G Pj
• PxTj be join transitions with some

place pi G »U, pi t¿ pj constraining its flow. Then pj does not constrain any flow for its output

join transitions. However, pj does constrain the flow for all the ending transitions í *, G Pj»CiTE.

Then, as in Proposition 16 in [72] (Proposition 4.1.20 in this work), CAIIfcej = /Je,. ■

The next corollary summarizes the two previous propositions.

Corollary 5.2.4 Letpj be a place such thatpj» QTjU TE. Then BIL. such that CAEfcej =

pej, Le. ej generates an Ak— invariant subspace.

Proof: The result isa consequence of Propositions 4.1.3 and 5.2.3. ■

The previous corollary shows that if a place pj is input place to only join transitions and

ending transitions, then CAIIfcej = Pej for some fe and some fi. These Afc—invariant sub

spaces will be used to determine if there exist two indistinguishable LS in a ContPN.
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Definition 5.2.5 Let Pk be the places fulfilling the conditions ofCorollary 5.2.4. Each place

Pj G Pk wil¡ be named a ker—place.

Definition 5.2.6 LetUe Tj. The ker -places indexfor transition íif denoted by L(ti),

tr(U) = \PKrx»ti\

Le. is the cardinality ofthe set Pk Cx »tit the number ofinput ker -places to transition %

The next propositions show that even ifa ContPN is distinguishable, the classical test shows

that there exist two indistinguishable IS.

Proposition 5.2.7 Let a ContPN having every input place to join transitions measured Let

Tj -^ 0 be the set ofjoin transitions qf the ContPN. If any of the following conditions is

fulfilled, then there exist two indistinguishable IS

1. 3ía, i. G Tj with i(ta) >land L(tb) > 1.

2. 3íi G Tj with i(U) > 3.

Proof:

1) Let ta and tb be two join transitions with i(ta) = 2 and ¿(íj,) = 2. Also, let pi,P2 G

Pkn «í0 and 03, p_ G Pkn «í-,. Let Ugh be the configurationmatrix where place pg constrains

transition ta and place p-, constrains transition í_. Then ei G ker(CAII23) n ker (CAII24) and

the IS with dynamical matrices CAIT23 and CAIT24 are not distinguishable from each other.

2) Let «íi D Tk = {pi,P2,P3}- Now, let IIj stand for the configuration matrix where pj

constrains the flow of transition i,-. Then, ei G ker(CAn2) n ker(CAIl3) and the LS with

dynamical matrices CAII2 and CAÍI3 are not distinguishable from each other. ■

For the case of ending transitions, let íi be an ending transition and places pj G »t ¿ are its

input places. It will be assumed that ifVii G Pj» such that ti»
= 0, those ending transitions are

represented as only one ending transition. Proposition 4.1 .20 characterize the ending transitions

eigenvectors.

With this proposition it can be seen that if \Tj\ ^ 0 and 3íi, U» = 0 with (»ti) • = {U},

i.e. its input places only have U as output transition, then VEfc, Akej = ¡Sej and every pair of

LS are indistinguishable from each other.

Similarly to ending transitions, ending places also have Afc-invariant subspaces associated,

as shown in Proposition 4.1.2.
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5. SENSOR PLACEMENT FOR OBSERVABILITY IN CONTPN

Again, if a ContPN has an ending place and \Tj\ ^ 0, then every pair of LS are indistin

guishable from each other.

In the proposition 4.1.18, the attribution eigenvector is an eigenvector for all matrices

CAIIfc, therefore if such vector exists in a ContPN and |T>| **¿ 0, then every pair of LS are

indistinguishable from each other.

Now, as discussed in [72], there exist annulers of CAIIfc. For that, it is required that

3v G Jm(AIIfc) n ker(C). Such vector v is contained in Jm(AIIfc) when the next definition is

fulfilled.

Definition 5.2.8 A T-Semiflow agreeing with X is a vector x G ker(C) such that for every

decisión place pj with pj»
= {íi,í2,..-,ín}> either every transition ti,...,t„ belongs to a

different minimum T-Semiflow orfor those transitions in the same minimum T-Semiflow, the

ratio Xi/xh = Ai/A-, holds Ví<, f *, G pj».

Proposition 4.1.7 characterizes the conditions for which a T-Semiflow becomes an annuler

for CAIL..

The next proposition shows that ifa T-Semiflow does not contain a join transition, then the

associated annuler vector v is a common eigenvector to every LS.

Proposition 5.2.9 Let x be a T-Semiflow in which (x) D Tj = 0, i.e. there is not any join

transition in the T-Semiflow. Let v be the annuler of CAIIfc associated to x. Then Vfe, v G

ker(CAIIfc).

Proof: It is clear that if x does not contain any join transition, then each transition's flow

is constrained by the same place in every configuration fl*.. Then, the i — th column in each

matrix Afc(«, i) is the same. Therefore Vfe, v G ker(CAIIfc). ■

The previous proposition shows that ifTj **>£ 0 and if there exists a T-Semiflow which does

not contain any join transition, then every pair of LS are not distinguishable from each other.

5.2.2 Sensor placement for distinguishability

Now, this subsection addresses the problem of finding out the places in a ContPN that must

be measured for the ContPN to exhibit the distinguishability property. In this subsection we

assume that there exists a set of measured places such that every LS is observable. This set

of measured places can be constructed with the algorithms of the previous section. Thus the

problem consists in adding (removing) sensors to (from) places to guarantee distinguishability.

70



5.2 Distinguishability

As previously discussed, it is clear that if every input place to join transitions are mea

sured, then the ContPN becomes trivially distinguishable. However, it may not be necessary

to measure every input place to join transitions for distinguishability (nets where the LS are

observable but the are indistinguishable from each other is presented next [44]).

Figure 5.2.1: An indistinguishable ContPN system.

Now, in [46] it was proved that if there exists a JAF-path from a place pj to a measured

place pi, then themarking of place pj can be computed in infinitesimal time. Thus the problem

deals with verifying if every input place pj to a join transition í, is either measured or if there

exists a JAF-path from pj to a measured place. If none of these conditions occur, then a

sensor must be added to pj. If both conditions hold, then the sensor ofpj should be removed.

Otherwise no sensor is added or removed.

Since adding/removing sensors as explained before leads to ContPN where the marking of

all input places to join is known or can be computed in infinitesimal time, then the net becomes

distinguishable. The adding/removing sensors procedure is implemented with the following

two algorithms.

Let S be the output matrix of the ContPN and Pm = {Pj |ejis a row of matrix S} be the

set of measured places.

Based on Algorithm 5.1.12, the next algorithm is introduced to determine weather or not

to put a sensor in a place p, G »U, where íi is a join transition.

Algorithm 5.2.10 Sensorplacementfor distinguishability.

Inputs: »Tj, the set of inputplaces tojoin transitions. Pm, the set ofmeasuredplaces.

Outputs: The outputmatrix Sfor which the ContPN is distinguishable.

Initialize: Si = S. Pmi = Pm- - Initializes matrix Si as the outputmatrix S and the set of

measuredplaces Pmi = Pm-

71



5. SENSOR PLACEMENT FOR OBSERVABILITY IN CONTPN

Si

1. VPj G »Tj

(a) Compute íl = JAF(jjj, Pmi).

/f íl = 0 and pj is not measured, then add a sensor to place pj, Le., S\ =

and addpj to the set Pmi-

Else Iffl **¿ 0 andpj is measured, then remove sensorfrom place p¡, Le. remove

the row ej G {0, 1}ITI from matrix S\.

2. Return Si.

The previous algorithm adds a sensor on a place p¡ G .í¿, where íi is a join transition, when

Pj is not measured and there does not exist a JAP—path from pj to a measured place. On the

other hand, ifplace pj G »U is measured but there exists JAF—path to another measured place

Pi, then pj can be computed in infinitesimal time; therefore this sensor in p,* is not necessary,

and it can be removed. Since in infinitesimal time it is possible to determine all the marking

m(Pj), Vpj ■= *Tj, i.e. the marking of all the input places to join transitions, then the actual

IS evolving is known.

Algorithm 5.2.10 guarantees that the ContPN is distinguishable.
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6

Observer design

In this chapter, the observers design problem is addressed. Once a ContPN shows the observ

ability property, then a mathematical entity called observer may be designed. This observer

will allow the computation of the state of the ContPN. In Subsection 2.3.2 it was presented the

strategy for observas design in LS. The same idea, based on aLuenberger observer, will be ap

plied to ContPN. For the observer design in ContPNs, a different state equation representation

than the one in Eq. (2.6) will be introduced so that a single observer for the ContPN can be

designed. Finally, a general ContPN-observer structure will be presented. If the extended tran

sitions of such ContPN'-observer stmcture are adequately controlled, then the marking (state)

of the ContfW-observer will converge to the ContPN marking.
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6. OBSERVER DESIGN

6.1 State space representation for ContPN

In this section the dynamics of the join transitions will be separated from the dynamics of

those transitions with a single input place. Then, it will be shown that with this representation,

a single observer may be designed.

First, consider the sets of single input and join transition, as defined in Definition 2.1.8.

The set of single input transitions can also be represented with the vector

tsG{0,l}lTl

such that (t5) = Ts.

Similarly, the set ofjoin transitions can be represented by the vector

t,G{0,l}lrl

such that (tj*) = Tj.

Clearly Ts DTj = 0 and Ts UTj = T. Using vectors ts and tj matrices C and A will be

now rewritten.

Definition 6.1.1 The \P\ x \T\ Join (Single Input) IncidenceMatrix is

Cj = C • diag(tj) (Cs = C ■ diag(ts))

which is a \P\ x \T\ matrix where its j-th column corresponds to the j-th column of C if

tj(j) = 1 (ts(j ) = 1) else it is a zero column.

It is also clear that Cs + Cj = C. Similarly to Definition 6.1.1, matrices As and Aj are

As = A ■ diag(ts) andAj = A • diag(tj)

For the configuration matrices, if a transition íj G Ts then there exists only one place

that can constrain its flow. Therefore there exists a unique matrix Us for which its i-th row

(associated to transition ti) is an elementary transposed vector e£ ,
associated to the place p-,

that constrains its flow. Otherwise the i-th row of lis is a zero row when í¿ G Tj. Then,

it is possible to rewrite every matrix Ilfc = lis + Kjk where njt contains every switching

representation for the enab(U,pj) function.

Using the previously defined matrices, it is possible to rewrite (2.4) as follows:

m=(Cs +Cj)-f (6.1)
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6.2 Luenberger observer for ContPN

where the flow vector is / = fs + fj, fs and fj are the flow vectors corresponding to single

input and join transitions respectively. Now, it is possible to represent the flow of the single

input transitions as:

fs = As • nsm (6.2)

and substituting (6.2) in (6.1) we obtain:

m = (Cs + Cj) ■ (As ■ Us ■ m + fj) . (6.3)

The product Csfj = 0 since every column corresponding to a join transition in Cs is a

zero column and for those nonzero columns, the corresponding entry in fj is zero. Similarly

Cjfs — 0. Therefore, the ContPN dynamics can be represented with:

m = CsAsüsm+Cjfj (6.4)

whereCsAsüsm will be named single input dynamics andCjfj will be named join dynam

ics.

6.2 Luenberger observer for ContPN

Using (6.4) and the observer presented in Subsection 2.3.2, it can be introduced a ContPN

observer given by:

m = CsAsüsm +Cjfj + L(y
-

y) (6 5)
y
= Sm

whereCjfj are the Join transitions' dynamics of the observer.

Now, consider the case of FC-ContPNs. In this case, vector fj is known since in a FC-

ContPN every input place to join transitions must be measured and it can always be made

fj = fj. Proposing an error system with m = m -

m, the dynamics of the error system is

rr •
*

given by m = m
—

m from which the following equation is obtained:

m = CsAsüsm -L(j/- y). (6.6)

However, for the ContPN y
= Sm and y

= Sm and Equation (6.6) becomes

■

m = (CsA5üs
- LS) ih (6.7)
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6. OBSERVER DESIGN

tíh64
Figure 6.3.1: Observer stmcture for a place.

which is a standard Luenberger observer design as in Subsection 2.3.2 [39] and ifL is designed

properly, the error system is asymptotically stable and the state vector m -, m at any desired

rate.

The main advantage of this observer is that with a single structure it is possible to observe

a ContPN no matter the number ofLS in the family J representing it. The only problem is that

it is not guaranteed that the estimated marking m remains non-negative during the transient

state. In such cases when this observer is used to obtain a control action, the negative markings

should be considered zero.

The initial marking for this observer can be any marking, but it can be used the following:

-

i \ _ /Ytaa(Pj) ifPj isa measured place
"tiKPj)

—

\
Q ^pj js not a measure(_ place

6.3 A ContPN general observer

The observer for a ContPN (N, mo) can also be implemented as a ContPN with a structure

similar to N extended with one place and 2|P| transitions.

For each place pj e Pina ContPN, its observer will have two additional transitions:

An input transition íj and an output transition tf with are weights equal to 1. In order to

guarantee that every transition in the ContPN observer (ContPN-O) is also well defined, one

additional place p1 connected as input and output to each and every transition tí is included,

as shown in Fig. 6.3.1. In this way, the ConrPaV-Observer graphical representation (ContPN-

O) is the ContPN (N°,mg) where N° = (P°,T°, Pre°,Post°) and m^ is the initial

marking of the ContPN-O. The set P° = P U {p1}. The set T° = T U Tin U T^ where

Tin = {tftpj G P} and T^t = {tfVpj G P}. In order to modify the ContPN-O dynamics

each transition t G Tin U T^t will be Controllable [73], meaning that it is possible to slow

down its flow. Let now the transition's index assignation be accordingly to the following vector:

t° = [tT tT tL]T where (t) = T, (t*_) = Tin and {tmt) = Tmt. Matrix Post° is
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6.3 A ContPN general observer

defined as:

P0St°(pj,fi)=

Similarly, matrix Pre° is defined as:

Pre°(pj,íi)= i

1 ifpj
= p7 and íi G Tin

1 ifíi = íjGTin
and pj G P

Post(pj, U) if íi G T and pj G P

0 otherwise

1 ifpj=prandíiGT.rl
1 ifíi = ífGTout

and pj G P

Pre(pj , íi) if íi G T and pj G P

0 otherwise

The Observer Incidence matrix isC° = Post0 - Pre°. ThismatrixC° has always the form:

C° =
C It

I?
tIPI

where 1|/>| is the identity matrix of dim\P\ and 0 is a zero vector of dim(\T\ + 2|P|). Since

Víj G (rin U Toui), \*tj\ — 1 then the number of configurations in the ContPN-O is the same

than in the ContPN. Therefore, the configuration matrices for the ContPN are:

[üfc 0

0 i

Añ 0

n?«

The speed vector is A° = [AT A^ A^], where A.„ and Xmt are the speed vectors

associated to transitions in Tin and Tmt respectively. Finally, the initial marking vector is

given by:

fm(pi)
if Pi is a measured place

0 ifpi is not a measured place (6.8)

1 ifpi=p/.

The state equation for the ContPN-O is given by:

_n° = C0A0n?m0

Using m° = [mT mJ]
T

and substituting the previous matrix definitions, it can be obtained:

(6.9)

-

■

m
=

CAüfc • m

0
+

Ainl

n

-

Aout * m

0
m
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Since the dynamics for place p' is equal to zero, its marking is always m1 = 1 and it

is possible to eliminate the last row of (6.9). Now, using the Single Input and Join Dynam

ics representation given in (6.4), the dynamics for the ContPN-O can also be represented as

follows:
•

_

m = CsA5üs ■ m + Cjfj + A¡nl - Amt ■ m.

From the previous equation, it can be seen that Cjfj should be dependent on the state

vector m. However, in FC-ContPN, fj is known and it can be considered as an external input

for the ContPN-O.

Let a transition íi G (2_n U Tout) be named an extended transition. Every extended transi

tion is controllable since they are designed to that end, therefore it is possible to include a mn

and a Uout control vectors to slow down the flow of those extended transitions. Then, the flow

for the extended transitions can be written as:

fe = (Ai„l
-

Uin) ~ (Aoutñl -

Uout) (6.10)

where 0 < Uin < Aj„l and 0 < «out < Amitm. It is possible to represent u¿„ and «out as a

proportion ofthe flow Ainl and Aoutiñ respectively:

Uin
= ItAinl

_

*W
=

ioufAoutm

where Ifn and /;£__ are diagonal matrices with elements Ifn , 1%^ . G [0, 1]. Substituting (6.1 1)

in (6.10) it is obtained:

fe = (Ainl -

IinA-in.1)
~

(Aoufiñ -

7/£_tAoutm)
= (■T-5-.Air.l)

- (iS_tAox*tm)

where Ifn = I*p*
-

/£ and Icmt = I*P* -

!£,_.

It is clear that the speed vectors A¿n and Aout are design parameters for the ContPN-O.

Proposing Ain and A„ut valúes sufficiently big and with matrices Ifn, 1%^ it is possible to add

or remove marks at any place and with an adequate control strategy for fe, marking m —¥ m.

Let the observer's error be defined as e = m—m. The error system therefore is é = m—m,

where

é = CsAsüs(m - m) -

(Jt>,Ainl) + (I^tA0Utm)

and it is possible to make (I?nAinl) = (/_^tAoutm) + fin, i.e. the input flow for each place in

the observer is greater than its output flow, obtaining

é = CsAsüs(m -

iñ)
- fin (6. 12)
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Strawberry

Arrival
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Drying
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Sealing
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Figure 6.3.2: Illustrative example flow diagram.

where fin > 0.

The following control action for the extended input transitions is now introduced

e(pd) ifpj G Pm

otherwise.
(6.13)

The stability demonstration for this observer's strategy is currently being developed.

6.3.1 Illustrative example

Consider the flow diagram in Figure 6.3.2. It represents a simple process for the production

of strawberry jam. The process consists of three steps: Washing, Cooking and Packaging.

The Washing process consists of Washing the strawberries, drying them, chopping them to

simplify the cooking and finally weighting them in standard lots. The cooking process consists

on pounding the strawberries. Then the actual cooking of the strawberries take place, where

the sugar is added. Afterwards, for the pasteurization process the jam is cooled. Finally, the

jam is again weighted and ready to be packaged. After the packaging, the jars are washed to

ensure no spills are in the jar. Then, the full clean jars are labelled and sealed. The final step

before they are ready to be shipped is a final cleaning and visual inspection. The simplified

ContPN model is also presented in Figure 6.3.3.

The firing rates for the transitions are given by

Jl = [2111 132221 1 1 1 Uf

This ContPN is observable with an output matrix

S=[eí '10 eíif

The Single Input and Join transitions sets are Ts = {ti , Í2, *3* *4- *6* tj, ts, tío, tn, ti2, tiz}

and Tj = {í5, í9} respectively.
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Figure 633: ContPN model for the strawberry jam production.

Figure 63.4: Luenberger observer estimates.

In the Luenberger observer. the output error feedback matrix L, can be computed to obtam

any desired dynamics for the error system. Particularly for this example. L is designed in order

to obtain an asymptoticaUy stable enor system with eigenvalues

<*9 = {-3, -4, -5, ..., -15, -16, -17}.

In Hg. 6.3.4 the marking evolution for the places of ContPN (continuous line) and its

Luenberger observer (dashed Une) are shown. It is important to notice that with the observo*

design previously introduced, it is not relevant to know theminimum dweU time of the ContPN.

In fact. since the active configuration is always known, it is possible to determine the continuous

state even when switching occurs in the ContPN.

In Figure 6.35 the ContPN-O for the ContPN infRg. 6.33 is shown. The results for the

ContPN-O are shown in figure 6.3.6. Fbr this example Kj
= 075. Vp, g Pm. It can be seen

that the observed marking in each place is always non-negative and reaches asymptoticaUy

the marking of the ContPN. Therefore, if the results are used for controlling the marking of

a ContPN it is not necessary to filter the valué. Instead, the separation principle should be

provided.
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Figure 6.4.1: The xContPN for figure 6.3.3.

6.4 Observer and control integration

The control law introduced in (2. 1 1) requires, for the computation of the minimum Parikh vec

tor, the initial marking mo ofthe ContPN as well as the valué ofthe transitions flow. However,

mo is actually unknown, otherwise it would not be necessary to have an observer. It is only

known the output marking, i.e. aSmn. Fortunately, the observer can be designed in such a

way that the steady state is reached within any desired r > 0. Then the control and observer

integration strategy will be the next:

1. Design a Luenberger observer as in Eq. (6.5) to guarantee |m(Ti)
—

m(*r_)| = e where

e is a very cióse to zero valué reached in designed time t_.

2. Design the xContPN for the original ContPNwith an initial marking as in Eq (6.8). The

xContPN represents the observer, where the marking m(pi) = nii Vp¿ G P. If 3r such

that m¿(r) < 0, then m(pi) = 0.

3. Once |m
—

m| = e, then compute the min Parikh vector omin as in Eq. (2.10).

4. Let ma(r2) for a time r2 > ti, be the marking in the places Pa of the xContPN at time

t2. Then apply the control law introduced in Eq. (2.1 1) with aT
=
omin + ma(r2).

Notice that, since there exists an observer's errorm
— m = e at time r_, then the marking

evolution of the ContPN will also have an error in the reached steady state. This error depends

on the design parameter e, so the smaller the convergence observer error e is, the smaller the

steady state error m
—

mr will be.
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6.4.1 Illustrative example

The initial marking of the ContPN in Figure 6.3.3 is taken as mo(p_) = 2, mofe) =

mo(p3) = mo(p4) = moÍPs) = 1/2, mo(p6) = mo(p7) = mo(ps) = mo(pg) = m0(pio) =

1, mo(pn) = mo(pi2) = m0(pi3) = mo(pi4) = mo(pis) = 3.

For the observer, its initial marking is considered as mofas) = 1/2, mo(pe) = mo(pio) =

1, mo(pn) = 3 and zero for all the other places.

The target marking for this example is m-(pi) = 1.6, var(p2) = m*-(p3) = my(p4) =

mr(p5) = 0.6, TOr(jps) = 3, my(p7) = mr(ps) = xorípa) = nvípio) = 0.5, tOrfjpu) = 5,

my(pi2) = mr(pi3) = mr(pi4) = mr(pi5) = 2.5.

The firing rates for the transitions are given by

A=[l 11 1222233333 ]T

This ContPN is observable with an output matrix

S=[eí =6 e10
T,T
&]

The Single Input and Join transitions sets are Ts = {ti,t2, í3, í4, í6, t7, í8, í10, ín, Í12, Í13}

aadTj = {Í5,fg} respectively.

Figure 6.4.2: A) Quadratic Luenberger observer error. B) Quadratic regulation error.

In the Luenberger observer, the correction gain matrix L can be computed to obtain any

desired dynamics for the error system. Particularly for this example, two correction gain ma

trices L were designed. The first one was designed in order to make the quadratic error of

T

the Luenberger observer m m
—> 0 in 0.25 time units. The second one was designed to

T

make m m -, 0 in 1.25 time units. In Figure 6.4.2 A) the quadratic observer error for both

simulations is shown.
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6. OBSERVER DESIGN

Once m m -* 0, in time t = 2 time units, the control action (2.1 1) is appUed in both

simulations (each with a different gain matrix L). In Fig. 6.4.2 B) the quadratic regulation

error (m
—

mr )T (m —m-) is shown. It can be seen that in proximately 1 1 time units the target

marking is reached. Of course, in both simulations, the marking evolution for the ContPN is

the same.
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7

Case of study

This chapter is devoted to present a case of study to illustrate the previously presented theory

about sensor placement for observabiUty in ContPN and observer design (see chapters 4 and

5). The case of study is about the cigarettes production and packaging. In Section 7.1 a brief

descriptionof the system will be presented. Then, in Section 7.2, an abstraction of the system (a

model) will be obtained as a ContPN. Then, the concepts presented in previous chapters will be

used to determine a proper instrumentation to guarantee that the ContPN is observable. Then,

the model wiU be analyzed and simplified based on the knowledge of the system dynamics,

leading to a simpler model. This simplification will be presented in Section 7.3. Again, this

work's theoretical results will be used to determine a sensor placement selection such that the

simplified model is also observable. With this simplifiedmodel, an observer will be constructed

as presented in Chapter 6. FinaUy, in Section 7.4, the simplified model will be simulated and

the results for the observer will be presented.
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7. CASE OF STUDY

7.1 Process description

The cigarette production and packaging is separated into three main steps:

1. Cigarette formation. In this process the cigarette itself is made. It includes the rod

formation, the filter assembly and the delivery of the cigarette to a buffer machine.

2. Packing. A standard pack of cigarettes contain 20 cigarettes. The packs are cartónmade

and covered with polypropylene. The pack also has an auto strip, which is a polymer

strip that allows the polypropylene straight ripping.

3. Packaging process. A standard package contains 10 packs, which are put together and

then covered with polypropylene.

The whole production is made within a production module, also named link-up. In Figure

7.1.1 a link-up is presented. A standard link-up, such as the one shown in Figure 7.1.1 requires

two operators and an assistant operator per two modules. In an eight hour shift, a standard

link-up is expected to produce 130,000 packs of cigarettes, with the equivalent of 2,600,000

cigarettes plus scrap production. These valúes are based on a statistics of machines of fifth

generation (médium speed) as the ones modelled.

Figure 7.1.1: A cigarette production module.
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7.1 Process description

7.1.1 Cigarette formation.

The cigarette formation is a process which includes several machines connected one to the

other as presented in the schematic (Figure 7.1.2).
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Figure 7.L2: Cigarette formation schematic.

The process begins with the tobáceo arrival. The tobáceo is placed in a chute. To lead

the tobáceo to the chute there exists a pneumatic system, which ensures a regular amount of

tobáceo in the chute. The chute and the tobáceo arrival can be seen in Figure 7. 1 .3. The tobáceo

arrives from the left of the chute. On the right of the chute there is also a pipe with an arrow.

This pipe removes tobáceo powder and maintains the chute with an appropriate pressure.

Tobacco

Arrival

Figure 7.13: Tobacco arrival and the chute.
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7. CASEOFSTUDY

Qncein the cfause, tfae tobáceo is preparedwith anakunlMttoa'gfa aUgAi^ device fio»

UKtapafthenndmietoilsbononi. After dg preparado... the tobáceo is once again etewaed

with air to a compression device. At ihis pon», the tobáceo tos already Ihe rod shape, which

wül be assembled wilh the roffiag papen Tus psat of the process is made in ihe Mataer-A

nm hit?,» as shown in Figure 7.1.4.

Rg«*s7AAz Ibbacco pKfMnaian and coaapressnL

Ono^oo^er hand Midm a paralldproc-ess, the roDi^ paper (dgaretfc

in another partoftheMaker-Amachine. Thepaper is fiíst accunHilaKd so it can be puDedwith

a constant speed. The paper is prepared trough a guide. Trough dñs guiíie. Ihe paper wiD be

stretched and printed. This part of ibe process is made in die Maker-A machine as shown in

Fígwe 7.1.5

Flgare 7XS: ftper stretchmg and prin&tg.

Finally the paper already printed wfll be assembled together with Ihe tobáceo rod in the

former oftheMaker-A machine. In orfer to make Ihe assembly, both the dgarette rod and Ihe
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7J Process description

printed paper should join together in Ihe Maker-A machine in a concurrency step. When the

paper is being folded, air is injected in order to avoid the presence of tobáceo particles in the

dgarette's seem (this is considered a veqr relevant non-confonnity ofquality, since it canmake

the cigarette to open because of the lack of glue). Then. ihe rolling paper is completely folded

around the tobáceo rod. ghñng Ihe seem. After the ghñng, ihe cigarette rod is sealed with a

heating device. This process deUvers a continuóos cigarette rod. This process is made in the

Maker-A machine as shown in Figure 7.1.6

Gluing Glue container

Figure 7.1.6: Cigarette assembly (cigarette rod formation).

Once a continuous cigarette rod is obtained, h is cut into smaller pieces of tbe appropriate

dimensión in the cutter oftheMaker-Amachine. The process oftheMaker-Amachine deUvers

up to 7,000 cigarettes perminute. In Figure 7.1.7 it is shown where the cutting process is made

in tbe Maker-A machine.

Figure 7X7: Ggaiene cutting.

After the rod is cot into pieces, the pieces are delivered to the Maker-B machine. The
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7. CASE OF STUDY

lí í ]

Maker-B machine is composed of several drums in which the filter assembled with the cigarette

rod. The first step is devoted to place properly two cigarette rods with an appropriate distance

between them. In the second step, a filter is added in between them. Then, a different drum

closes the existing gap between both the cigarettes rods and the filter (Step 3). When the gap

is closed, the tipping paper is added (Step 4). Right after that, the tipping paper is glued (Step

5) and rolled (Step 6). Then, with a heating drum, the complete rod is sealed (Step 7). Then,

in a cutting drum, the rod is cut in half (Step 8) in order to finally turn it around (Step 9) so all

the cigarettes are delivered to the buffer in the same position. This process, step by step, can

be seen in Figure 7.1.8.

Step 1 Cigarette rod Cigarette rad

Step 2 [

Step 3

Step 4

Step 5

Step 6

Step 7

Step 8

Step 9

tías

IE

xn

J
Figure 7.1.8: Filter assembly process.

The equipment which is devoted to make the previous process is a Maker-B machine. In

Figure 7.1.9 it is possible to see the Maker-B in operational mode.

In Figure 7.1.10, theMaker-B is empty and clean, so all its components are visible.

Similarly to theMaker-A, the Maker-B is also capable to deUver up to 7,500 cigarettes per
minute. Once the cigarettes are ready and aligned, they are sent into a buffer where cigarettes
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7.1 Process description

Tipping paper Drums

Figure 7.1.10: Maker-B. Open machine.

can be extracted in containers or they can be sent to continué into the Packer-1 machine. This

part ofthe equipment can be seen in Figure 7.1.11. This part ofthe process is important since

it ensures a minimum amount of cigarettes available for the Packer-1 machine. Also, if it

was necessary, it is possible to obtain cigarettes from the maker and take them into a different

packer, since there are several packers which can use the same cigarette for different pack's

presentation.

In order to guarantee the cigarettes' availability, the cigarettes collected in the buffer or

made on a different maker machine, can be inserted to continué into the packing process with

the help of a cigarettes tray turner machine. This equipment can be seen in Figure 7.1.12
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7. CASE OF STUDY

Maker-B output

Figure 7.1.11: Cigarette tray filler. A cigarettes buffer.

Figure 7.1.12: Cigarette tray turner machine.

With this equipment, the cigarette formation process ends. The complete cigarettes' pro

duction is usually also named the making process. It is important to mention that the mak

ing process can be understood as a supplier process for the packing and packaging process.

However, the making process can be also a part of a link-up process, as explained in this

work. Therefore the cigarette tray filler machine and the cigarette tray turner machine will not

be included in the model, since they only represent an increase of cigarettes' capacity in the

equipment.

Now, in the next subsection, the packing process will be described.
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7.1 Process description

7.1.2 Packing process.

The packing is made in the second set of equipment on a link-up. An standard set of cigarettes

(20 of them) will be covered by an aluminium layer, a cartón layer and a polypropylene film.

This step concludes the packing process. An schematic of this process is presented in Figure

7.1.13.
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Figure 7.1.13: Packing process schematic.

The packing process starts with the accumulation
of the cigarettes on a guided chute. The

cigarettes are guided into a set of channels, where an injector pushes them into the folded

aluminium.

The aluminium is cut and prepared to receive the 20 cigarettes set in a slider component.

The cigarettes are then pushed into the cut aluminium. The set aluminium-cigarettes is then

folded in such a way that the cigarettes are completely covered by
the aluminium paper.

Then on a parallel process, the pack is being sided, glued
and folded in order to assemble

it with the aluminium set. In the aluminium set assemble process with the pack, the pack goes

trough several folding steps and a sealing step. All these steps but the sealing are made in a

Packer-1 machine. This machine can be seen in Figure 7.1.14.
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7. CASE OF STUDY

Ratpacfcs

Figure 7.1.14: Packer-1 machine.

The sealing step is made on the last part of the Pack-1 machine. It is made trough a heating

device which allows the glue to quickly dry out The sealing device can be seen in Figure

7.1.15.

Aluminium / cigarettes set
Sealing step

Figure 7.1.15: Sealing device. Packer-1 machine.

Finally, the polypropylene film is added to the pack. The polypropylene film has an auto-

strip that allows the film to rip aligned to the top opening-part of the pack. This process is

made on a Packer-2 machine, which can be seen in Figure 7.1.16.

The packing process ends with this step. In the next subsection,
the packaging process will

be described..
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7.1 Process description

Polypropylene film Auto-strip Sealed packs

Figure 7.1.16: Packer-2 machine.

7.13 Packaging process.

In the packaging process, 10 packs are assembled into one package. This process consists of

the injection of two layers of five packs which are covered by a polypropylene film. Then the

film is properly folded and delivered as a final product. The schematic of this process can be

seen in Figure 7.1.17.

Packs

Airtvl

Polypropylene
Afflvtl

Auto-itrip
AlTtVll

Polypropylana cutting

Autoatrtp Intenten

Packaging Packi Injection

Polypropylene fddlngl

Equipment: Polypropylene foldlng2

Packer-3 Polypropylene fold'ngS

Polypropylene aeallng

Delivery to cartonlng

Figure 7.1.17: Packaging process schematic.

This process is made on a Packer-3 machine. This machine can be seen in Figure 7.1.18.

The packages, consistent on 10 packs will be later included into a cartón. This process

is not included since it is made in a different location, i.e. out of the link-up. Actually, the

packages are taken from the link-up to be inserted on the cartón box all around the factory
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7. CASE OF STUDY

Packs sends to cartoning
Packer-3 machine

Figure 7.1.18: Packer-3 machine.

trough a belt conveyor. Each cartón contains 50 packages, i.e. 500 packs. This step of the

process is known as cartoning.

In the final step, the cartón goes into a wrapper and a labelling machine. Then, the cartons

are taken into the finished goods warehouse.
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7.2 Process representation as a ContPN

7.2 Process representation as a ContPN

In this section the ContPN representation of the previously described processes will be pre

sented.

7.2.1 Cigarette formation.

The cigarette formation process' representation as a ContPN can be seen in Figure 7.2.1.

Figure 7.2.1: Cigarette formation ContPN representation.
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7. CASE OF STUDY

The interpretation of the nodes in the ContPN presented in Figure 7.2.1 is given in the

Figure 7.2.2 (refer to Figure 7.1.2 for the schematic process).

p Interpretation / Interpretation

1 Tobacco (infinite) warehouse 1 Tobacco arrival to chute

2
. Tobacco in tbe chute 2 Tobacco preparation

3 Tobacco in preparation compartment 3 Tobacco elevation

4 Tobacco in the elevator 4 Tobacco compression

5 Compressed tobáceo 5 Concurrency with rolling paper

6 Tobacco compartment free capacity 6 Paper accumulation

7 Rolling paper (infinite) buffer 7 Paper guiding

8 Accumulated paper 8 Paper stretching

9 Guided paper 9 Paper printing

10 Stretched paper 10 Air injection

11 Ink (infinite) buffer 11 Gluing

12 Prínted paper 12 Sealing

13 Printer fice capacity 13 Cutting

14 Tobacco-paper (TP) rod 14 Delivery toMaker-B

15 Small particles free TP rod 15 Drum positioning

16 Glue (infinite) container 16 Filter inclusión

17 Cigarette rod 17 Gap closing

18 Sealed cigarette rod 18 Tipping paper rolling

19 Cut cigarette rod 19 Gluing

20 Maker-A fice capacity 20 Sealing

21 Cigarette rods in Maker-B 21 Cutting

22 Positioned cigarette rods 22 Turning

23 Filter (infinite) buffer 23 Delivery to buffer

24 Cigarette-Filter-Cigarette (spaced)

25 Cigarette-Filter-Cigarette rod

26 Tipping paper (infinite) buffer

27 Double cigarette rod

28 Glue (infinite) container

29 Glued double cigarette rod

30 Sealed double cigarette rod

31 Cut double cigarette rod

32 Maker-B fiee capacity

Figure 7.2.2: Nodes interpretation ofthe cigarette making.
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7.2 Process representation as a ContPN

7.2.2 Packing process.

The ContPN which represents the packing process can be seen in Figure 7.2.3.

Figure 7.2.3: Packing process ContPN representation.
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7. CASE OF STUDY

The interpretation of the nodes in the ContPN presented in Figure 7.2.3 is given in the

Figure 7.2.4 (refer to Figure 7.1 . 13 for the schematic process).

p Interpretation / Interpretation

33 Packer-1 aluminium free capacity 23 Cigarettes injection in Packer-1

34 Aluminium paper (infinite) buffer 24 Aluminium cutting

35 Cut aiumi&ium 25 Aluminium süding

36 Slided (ready) aluminium 26 Aluminium folding 1

37 Alumii-ium-cigarette (AAC) set 27 Aluminium folding 2

38 Folded 1 AAC set 28 Aluminium folding 3

39 Folded 2 A&C set 29 Flat pack sliding

40 Folded 3 A&C set 30 Flat pack gluing

41 Packer-1 flat pack free capacity 31 Pack folding 1

42 Flat pack (infinite) buffer 32 Pack folding 2

43 Slided (ready) flat packs 33 Aluminium set injection

44 Glue (infinite) buffer 34 Pack folding 3

45 Glued flat packs 35 Pack folding 4

46 Folded 1 flat packs 36 Pack folding 5

47 Folded 2 flat packs 37 Pack folding 6

48 Pack & A&C se» 38 Pack sealing

49 Folded 3 pack& A&C set 39 Delivery ID Packer-2

50 Glue (infinite) buffer 40 Pack& polypropylene folding 1

51 Glued and folded 4 pack & A&C set 41 Pack& polypropylene folding 2

52 Folded 5 pack & A&C set 42 Pack & polypropylene folding 3

53 Folded 6 pack & A&C set 43 Pack & polypropylene folding 4

54 Sealed pack & A&C set 44 Pack & polypropylene sealing

55 Paker-1 Pack folding free capacity 45 Delivery to Packer-3

56 Packs & polypropylene 46 Polypropylene cutting

57 Folded 1 packs& polypropylene 47 Autostrip insertion

58 Folded 2 packs & polypropylene

59 Folded 3 packs& polypropylene

60 Folded 4 packs & polypropylene

61 Sealed packs& polypropylene

62 Packer-2 free capacity

63 Potypropylene (infinite) buffer

64 Cut polypropylene
65 Autostrip (infinite) buffer

66 Polypropylene & autostrip set

Figure 7.2.4: Nodes interpretation of the packing process.
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12 Process representation as a ContPN

7.23 Packaging process.

The ContPN which represents the packaging process can be seen in Figure 7.2.5.

«45

O w*

«54 1 <«,

p**C 0 pm

ny, 'sa 1 «49

PTSf* Cl pro

«sa 1 «50

mf- Ó P71

Figure 7.2.5: Packaging process ContPN representation.

The interpretation of the nodes in the ContPN presented in Figure 7.2.5 is given in the

Figure 7.2.6 (refer to Figure 7.1.17 for the schematic process).

a» Interpreíation 1 Interpn-tatioa

67 Package with polypropylene 45 From Packer-2 (packs insertion)

68 Folded 1 package 48 Polypropylene folding 1

69 Folded 2 package 49 Polypropylene folding 2

70 Folded 3 package 50 Polypropylene folding 3

71 Sealed package 51 Polypropylene sealing

72 Packer 3 free capacity 52 Dehvery to cartoning

73 Polypropylene (infinite) buffer 53 Polypropylene cutting

74 Cut polypropylene 54 Autostrip insertioo

75 Autostrip (infinite) buffer

76 Potypropylene & autostrip set

Figure 7.2.6: Nodes interpretation of the packaging process.
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7.2.4 Complete model.

The completemodel is shown in Figure 7.2.7. For simplicity ofthe representation, all the labels

were removed but the synchronizations between processes.

Figure 7.2.7: Packaging process ContPN representation.

7.2.5 Observability of the complete model.

The ContPN in Figure 7.2.7 has 20 join transitions. The join transitions set is

Tj = {íl , t¡, Í6, *9, til, *14, *16, hs, *19, *23> *24, t2g, Í30, ¿33- *35, *39- *45, *46, *47, *53, tsi}

In order to represent it as a SLS it is necessary to model a family $ of LS with 4,718,592

IS, due to the join transitions. In order to compute the number of IS needed to represent the

ContPN, it is necessary to compute.

\T\

n i • *<i
i=l

Also, in order to make the ContPN using Algorithms 5.1.9 and 5.1.10 retums an output

such that the set ofmeasured places is:
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7.3 Model simplification

Pm=<
P43, P44, P45i P47, P48, PSOí P51i P53, P55i P56,

P58iP60lP62)P63>P64>P65-P66.P67-P69iP71i

P73 > P74 . P75 1 P76 , P77

i.e. 55 measured places in order to compute the marking of 77 places. The distinguishability

in this case is guaranteed, since every input place to a join transition is measured.

Using the sensor reduction algorithm (see Algorithm 5.1.14), the set ofmeasured places is

reduced to the set:

-P.V2=<

Pi-

P15-P16-

P28,

P43- P44, P45i P48- P50- P51 1 P55- P56.

P62, P63- JP64, P65, P66, P67.

P73, P74, P75- P76, P77

which only contains 44 places.

73 Model simplification

The previously presented model can be simplified under the following consideration:

The material buffers (tobáceo, rolling paper, tipping paper, glue, etc.) are infinite.

With previous consideration, it is possible to see that the evolution of the ContPN does not

depend on such material buffers. Therefore, the marking ofthe set of places

-Pao-urce = {pi,P7-Pll,Pl6-P23-P26,P28-P35,P43-P45,P51iP64-P66-P74-P76}

can be considered as known Vt.

Now, let the source transitions set be defined as P.ource» = TSOUTCe. Consider a transition

U € Tgource- Each of these transitions has two input places, one which belongs to PSOUrce

and the other which does not. Then, the transition í.'s flow is always constrained by the place

Pj € »U such that pj f\t Psmirce- Then, it is not longer necessary to measure the set of places

Pms =
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7. CASE OF STUDY

i.e. 30 places can be removed from the set ofmeasured places. It is important to remark that the

distinguishability property is also preserved, since every input place to a join transition (which

has a non zero dynamics) is measured; and, for the ones with zero dynamics, its marking is

assumed to be known and those places never constrain the flow of their output join transitions..

In this way, the set of measured places that guarantees observability of the ContPN in Figure

7.2.7 and its outputmatrix is given by:

Pm4
= Pm2 — Pjií4

_
í _-J5-Pl2-Pl9-P20-P32-P33>P37, 1

\ P41-P48-P55.P56-P62,P67,P77 /

es

•o**"
«12

e19

e20

e32

S =
c37

e4_

e48

e55

e56

B62

rl
=67

B77
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7.4Model simulation

7.4 Model simulation

Using the approach proposed in 6, a single observer was designed.

The ContPN and its observer were simulated on Simulink (§), based onMatlab (§).

The Simulink ®diagram can be seen in Figure 7.4.1.

Figure 7.4.1: Simulink (Ddiagram.

The main component is a differential equation editor, which contains the ContPN described

on Section 7.3. In the differential equation editor, the dynamics of the ContPN is captured,

together with its initial state and the output variables. In order to have the state marking m as

a reference, all the markings were available in the output. The differential equation editor can

be seen in Figure 7.4.2.

Figure 7.4.2: Differential equation editor.
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7. CASE OF STUDY

The state equations used in the differential equation editor can be seen in Figure 7.4.3. It

is important to recall that these equations represent the component m = CsAsüsm, i.e. the

single input dynamics.
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U(53)-JU-lJ*«i.(I*3
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(S3)--j(Í4).0**.PÍ)

"

|{JS}.0*X(7*!)

Figure 7.4.3: State equations for the ContPN.

Since the marking depends on the flow of the transitions, the Simulink ®bIock named

Transitions computes the flow of each transition. The implementation of this computation can

be seen in Figure 7.4.4.

Figure 7.4.4: Transition's flow computation.
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7.4 Model simulation

The observer for the ContPN was also implemented in Simulink ®. Its implementation

can be seen in Figure 7.4.5.

Figure 7.4.5: Simulink ©diagram for the observer.

The observer also includes as an input the component of the join transitions dynamics and

the correction factor, given by the term

Cjfj + LS(y-y)

The state equations for the observer are presented in Figure 7.4.6.

As a result ofthe simulation, the quadratic error over time ofthe observedmarking (defined

by m = m
—

m) can be seen in Figure 7.4.7.
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Figure 7.4.6: Observer's state equation.
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Figure 7A.7: Quadratic enor of the observer.
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8

Conclusions and future work

The observability problem in ContPN, as in many other applications is relevant to determine

the state of the system only by measuring its output. The knowledge of the state of the system

is quite relevant in ContPNsince it makes possible to determine control strategies, isolate faults

or supervise the system. Even though ContPN can be seen as an autonomous SLS and the

observability problem in autonomous SLS is solved [48] [49], the observability of ContPN

is not trivial. This is because the observability characterization in autonomous SLS requires

as a necessary and sufficient condition the observability of each LS and the distinguishability

between each pair of LS. This becomes prohibited in practice since the number of LS necessary

to represent the ContPN as a SLS increases exponentially with the number ofjoin transitions.

Instead, this work presented two main contributions:

1. An strategy for sensor placement in ContPN which guarantees observability. In order

to achieve this, some of the invariant subspaces of the ContPN are characterized from

the ContPN structure, i.e. the underlying graph of the PN. This avoids the need of the

enumeration and computation of the dynamical matrices of each LS in the SLS repre

sentation of the ContPN. The Afc -invariant subspaces are divided into two disjoin sets:

ker(Afc) and all the other Afc-invariant subspaces. In this work ker(Afc) is completely

characterized. For the rest of the Afc-invariant subspaces, it is shown that they are

also contained in Im(C). Then, it is proposed an algorithm to place sensors by en

suring that neither ker(Afc) ñor Jm(C) is contained in ker(S). Therefore there is not

any Afc-invariant subspace contained in ker(S), i.e. each LS is observable. However,

the number of sensors placed on the ContPN may not be minimum, since 7m(C) is
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8. CONCLUSIONS AND FUTUREWORK

greater than the Afc-invariant subspaces. It is also shown that for the free choice class

ofContPN, distinguishability is a consequence of observability in each LS.

2 . An observer design, which allows the computation of the marking of the ContPN with a

single observer structure for die free choice class ofnets. This result is relevant since no

matter the number ofLS required to represent the ContPN, only one observer is required.

The future work consists on dealing with the following topics:

1. Distinguishability. It has been shown that distinguishability is a consequence of observ

ability in each ¿5 for the free choice class of ContPN. However, this is not true in the

general case. Then, it is relevant to provide results for the distinguishability property in

the general case of ContPN, or an strategy for sensor placement which guarantees the

distinguishability property.

2. Closed loop Control and observer. It is important to determine an strategy for the

integration of the presented observer with a control strategy, which allows to lead the

marking of the ContPN from an initialmarking to a required one only by the knowledge

of its output

3. Optimal sensor placement. Another open discussion is to determine the minimum

number of sensors required (and their locations) in order to guarantee observability in

ContPN.
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