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Resumen

Los seres vivos en la naturaleza se reúnen en comunidades de individuos con intereses

o características en común. Tales comunidades usualmente reaccionan como entidades

individuales. El comportamiento de un individuo de la comunidad afecta el compor

tamiento de algunos de los miembros mas cercanos a él y a través de ellos puede llegar
a afectar el comportamiento de todo el grupo.

El estudio de sistemas multiagentes puede ser concebido como un intento de replicar
el comportamiento de las comunidades en la naturaleza. En particular, el consenso se

ocupa del acuerdo entre los diferentes agentes, en el cual, el estado de los agentes alcanza

un valor de estado estable no especificado y que depende del algoritmo de consenso y

de la comunicación entre los agentes.

Cuando los problemas de consenso y seguimiento de trayectoria se abordan de

manera conjunta, las perturbaciones en la trayectoria seguida por un agente afectarán

las trayectorias que sus vecinos seguirán, de manera similar como se observa en bancos

de peces y rebaños.

En este trabajo, se presenta el diseño de leyes de control distribuidas para el con

senso y regulación de la salida de sistemas multiagentes. Se considera que solo un

subconjunto de los agentes tiene acceso a la referencia a seguir, que es tomada como

la salida de un agente virtual o exosistema. Se considera de igual forma que ninguno
de los agentes tiene acceso al estado del exosistema y que todos los agentes tienen el

conocimiento de las salidas de sus vecinos.

Se presentan tres casos diferentes. En el primero, se resolvió el problema del con

senso y regulación de la salida para sistemas multiagentes compuestos de sistemas lin

eales multivariables con diferentes dimensiones, manteniendo una formación del sistema

multiagente y considerando una red de comunicación fija entre sus miembros.

En el segundo y tercer caso, se resolvió el problema de consenso y regulación de

la salida para sistemas multiagentes compuestos por una clase de sistemas lineales

conmutados (SLS) de diferente dimensión. En el segundo caso se da una solución similar

al primero, pero en el tercer caso, se resuelve el problema de consenso y regulación de la

salida para una clase de sistemas SLS multiagentes considerando redes de comunicación

cambiantes en el tiempo, pero la formación del sistemas multiagente no es considerada.
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Abstract

Living creatures in nature gather together in groups of individuáis with common char

acteristics or interests. Such groups of individuáis often react as single entities. The

behavior of one individual of the group affects the behavior of some of its members,
and through them it may affect the behavior of the whole group.

The study of multi-agent systems can be thought of as an attempt to replícate the

behavior of communities of individuáis in nature. In particular, consensus deals with

the problem of the agreement of agents, in which the state of the agents reaches a steady
state valué which is unspecified and is dependent on the communication topology and

on the employed consensus algorithm.
When consensus and trajectory tracking are addressed together, the disturbances on

the trajectory followed by one agent will affect the trajectories followed by its neighbors,
similar to what happens in shoals and flocks.

In this work, the design of distributed control laws for the output consensus and

output regulation of multi-agents systems is presented. It is considered that only a

subset of the agents has access to the reference, which is taken as the output of a

virtual agent (exosystem). It is also considered that none of the agents has access to

the exosystem state and that every agent has access to the output of all its neighbors.
Three different approaches are presented. In the first one, the problem of output

consensus and output regulation is solved for multi-agent systems composed by multi-

input multi-output Unear systems of different dimensions maintaining the multi-agent

system in formation under a fixed communication topology.
In the second and third case, the problem of output consensus and output regulation

is solved for a class of switched linear multi-agent systems of different dimensión. The

second approach is similar to the first one, but the third addresses the problem of output

consensus and output regulation of a class of switched linear multi-agent systems under

switching communication topologies although multi-agent formation is not considered.

The proposed control laws guarantee multi-agent system output consensus and out

put regulation by means of the stabiUty of the observer-regulation error dynamics.
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Chapter 1

Introduction

A multi-agent system can be described as a group of dynamical systems which interact

with each other by means of the state or the outputs of their neighbors, in order to

achieve a common goal. Multi-agent systems execute common tasks with distributed

control actions and local information. In recent years, multi-agent systems have at

tracted the attention of the scientific community for their capacity to perform cooper

ative and coordinated tasks, under an individual control paradigm and their múltiple

appUcations in the fields of power systems, autonomous vehicles, transportation sys

tems, and miUtary applications. Many topics such as consensus, formation, trajectory

tracking, and flocking have been widely studied, and approaches as self organization,

goal achievement with robustness to component failures, and network evolution are

becoming the objective of the research.

Output consensus deals with the problem of the agreement of the outputs of the

agents composing amulti-agent system. The restriction of consensus only to the output
of the systems opens the possibility ofmulti-agent interaction to wide different systems,

including Unear, nonlinear, systems of different dimensions, etc. in a common multi

agent system.

The output regulation deals with the problem of trajectory tracking of a signal

generated by an exosystem. The multi-agent interaction allows that a group of systems

succeed in trajectory tracking even when not all the agents in the group know the

reference to track.

Addressing output consensus and output regulation at the same time allows the

interaction of different system in a coordinated trajectory tracking with restricted in

formation. Such trajectories can be thought of as actual trajectories, like in the dis

placement of a group ofmilitary vehicles or as a totally different concept like the tensión

and frequency of the energy on a power system generated by different generators.

The problem of output consensus and output regulation of multi-agent systems is

the topic this thesis is focus on. This problem is addressed from three different points
of view. First, the problem of output consensus and output regulation allowing for-
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1.1. STATE OF THE ABT

mation is addressed for multi-agent systems, composed by multi-input multi-output

Unear systems, under fixed communication topologies. Then, the same problem is ad

dressed for multi-agent systems composed by agents of class of switched linear systems

(SLS). FinaUy, the problem of output consensus and output regulation is addressed for

the same class of switched multi-agent systems but considering switching communica*-

tion topologies. This final approach can be applied to linear multivariable multi-agent

systems as a particular case, but formation is not allowed.

In the following section some works related to the topic of this thesis are presented

and briefly described.

1.1 State of the art

Previous results related to consensus problems and a theoretical framework for the

analysis of consensus algorithms in multi-agent systems is presented in [30], where an

overview of methods for convergence and analysis of consensus algorithms is presented.

In [31] and [27] consensus algorithms are introduced, for both Unear and nonünear

systems, and a Lyapunov function is used to analyze the convergence of the consensus

algorithms.

A general formulation of multi-agent formation is presented in [10], where the au

thors also address some problems such as how the information flow topology affects the

system coordination stability and performance.

In [17], necessary and sufficient conditions for an appropriate decentraUzed Unear

stabiUzing feedback are estabüshed and a relationship between the rate of convergence

to the formation and the eigenvalues of the (directed) Laplacian matrix is established.

Necessary and sufficient conditions for a distributed consensus controUer to stabilize

a set of multi-agent systems, and consensus of multi-agent systems under switching

interaction topologies are studied in [41].
Formation control laws based on artificial potential fields and consensus algorithms

for a group of nonholonomic vehicles are proposed in [23].
In [32], the problem of "flocking" with obstacles is addressed, where flocking is

defined as achieving both structural and navigational stability. A flock is aüowed to

divide into múltiple flocks to avoid obstacles and continué its trajectory. The sys

tems considered are restricted to have integrator dynamics, and no stabiUty results are

presented.
A feedback control strategy which achieves convergence of a multi-agent system, for

single-integrator dynamics with a desired formation and avoiding coUisions is proposed
in [5]. It is shown that under certain assumptions, when the control law forces the

multi-agent system to attempt to reach an unfeasible formation, it drives the agents

velocity vectors to a common valué at steady state, which estabhshes some connection

between formation infeasibility and a sort of flocking.
Consensus of múltiple autonomous vehicles is addressed in [18], by using virtual

2



CHAPTER 1. INTRODUCTION

leaders and artificial potential fields among neighboring vehicles. Virtual leaders are

used to manipúlate formation topology and direct the motion of the formation. Results

are also restricted to vehicles with integrator dynamics.
A decentraUzed dynamic controUer is presented in [9], which deals with the prob

lem of cooperation among a coUection of vehicles performing a shared task using inter-

vehicle communication, considering Unear dynamics. The authors estabUsh the condi

tions for the stabiUty of formations related to the topology of communication network,
and discuss some topics on network information flow.

An approach to regulation of multi-agent Unear systems is presented in [36], where
the authors demónstrate zero tracking error under switching interaction topologies

using observers for the exosystem. However, each agent observer depends on the ex

osystem output and/or on the full state of the observers of its neighbors.
In [42], the regulation ofmulti-agent Unear systems considering uncertainties on the

matrices of the system description is addressed. The results presented in that paper

assure zero tracking error even when only a subset of the systems has access to the

reference signal based on an internal model approach. But this approach does not

I allow the multi-agent system to achieve a formation.

The robust regulation of multi-agent linear systems considering uncertainties was

| also addressed in [40]. The results obtained provide sufficient conditions for multi-agent
zero tracking error under switched connection topologies based on a canonical internal

i model approach. Similar to the previous work, the results presented do not allow the

:multi-agent system to achieve a formation.

Although, many works have appeared addressing topics related to multi-agent con

sensus, most of them are restricted to multi-agent systems with relatively simple dy
namics Uke integrator dynamics or Unear systems with identical dynamics. However,

there are stiU few results on output consensus and trajectory tracking. The work de

veloped in this thesis addresses the problem from a different perspective, and considers

complex dynamics like the switched Unear systems, for which the appUcation to Unear

multivariable systems is a particular case. In the foUowing section the objectives of

this thesis are stated.

1.2 Objectives

The main objectives of this work are stated as follows:

• To design a distributed control law for the output consensus and output regu

lation of Unear multivariable multi-agent systems, under a fixed communication

topology, when only a subset of the agents has access to the reference (exosystem

output) and none of them to the state of the exosystem.

• To achieve and maintain multi-agent formation whüe the linear multi-agent sys
tem achieves regulation.

3



1.3. CONTRIBUTIONS

• To design a distributed control law for the output consensus and output regulation

of a class of switched linear multi-agent systems, under a fixed communication

topology, when only a subset of the agents has access to the reference and none

of them to the state of the exosystem.

• To achieve and maintain multi-agent formation while the switched linear multi

agent system achieves regulation.

• To design a distributed control law for the output consensus and output regulation

of a class of switched linear multi-agent systems, under a switching communica

tion topology, when a possibly varying subset of the agents has access to the

reference and none of them to the state of the exosystem.

1.3 Contributions

In this work, the design of distributed control laws for the output consensus and

output regulation of multi-agents systems is presented. It is considered that only

a subset of the agents has access to the reference, which is taken as the output

of a virtual agent (exosystem). It is also considered that none of the agents has

access to the exosystem state and that every agent has access to the output of aü

its neighbors.

The communication among the agents is restricted such that it can be represented

by graphs which contain a spanning tree and do not contain any loops.

In order to reach consensus, it is also considered that each agent has to foüow

the same reference provided by the exosystem, whose structure is known.

Under such assumptions, distributed observers for the state of the exosystem are

designed depending on the outputs of the neighbors of each agent.

Three different approaches are presented. In the first one, the problem of output

consensus and output regulation is solved for multi-agent systems composed by

multi-input multi-output Unear systems of different dimensions maintaining the

multi-agent system in formation under a fixed communication topology. This

approach is similar to the one presented in [36], but in the case of the work herein

presented, the observer depends only on the outputs of the neighbors of each

agent.

In the second and third case, the problem of output consensus and output reg

ulation is solved for switched linear multi-agent systems of different dimensión.

The second approach is similar to the first one, but the third addresses the prob

lem of output consensus and output regulation of SLS systems under switching

interaction topologies although multi-agent formation is not aüowed. The third

4



CHAPTER 1. INTRODUCTION

approach includes the problem of output consensus and output regulation of Un

ear multivariable multi-agent systems as a particular case.

The proposed control laws guarantee multi-agent system output consensus and

output regulation by means of the stabüity of the observer-regulation error dy
namics.

1.4 List of publications

1. A. Cervantes-Herrera, C. López-Limón, A. Ramirez-Treviño, and J. Ruiz-
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Congreso Anual de la Asociación de México de Control Automático AMCA-

2010, Puerto Vaüarta México, 2010.

2. C. López-Limón, A. Cervantes-Herrera, J. Ruiz-León and A. Ramirez-Treviño,

"Formation and trajectory tracking of a class of nonlinear systemswith super

twisting control," IEEE International Conference on Emerging Technologies

and Factory Automation ETFA-2011, Toulouse, France, 2011.

3. C. López-Limón, A. Cervantes-Herrera, J. Ruiz-León, and A. Ramirez-Treviño,

"Trajectory tracking and consensus of SISO Unear multi-agent systems with

formation changes," 8th International Conference on Electrical Engineering,

Computing Science and Automatic Control CCE-2011, pp. 391-396, Mérida,

Yucatán, México, 2011.
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6. C. López-Limón, J. Ruiz-León, A. Cervantes-Herrera, and A. Ramirez-Treviño,
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der switching communication topologies and formation changes," Submitted

to Kybernetika, 2012.
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"A distributed control design for the output regulation and output consensus

of a class of switched linear multi-agent systems, under switching communi

cation topologies," To be submitted.
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1.5. ORGANIZATION OF THE DOCUMENT

1.5 Organization of the document

This document is organized as foUows: The second chapter presents concepts

and previous results on consensus and trajectory tracking of multi-agent sys

tems. The contributions of this work appear in the third and the fourth chapter.

The third chapter shows a result on multi-input multi-output linear multi-agent

systems distributed output regulation and output consensus. The fourth chap

ter presents the design of distributed control laws for the output consensus and

output regulation of switched Unear multi-agent systems considering the cases

of fixed and switching communication topologies. FinaUy, some conclusions and

future research goals are stated in chapter five.
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Chapter 2

Preliminaries

Consensus and trajectory tracking have been very active research topics in the

field of multi-agent systems, and many works regarding diverse topics, such as,

different consensus algorithms, convergence rate, performance, robustness and

stabiUty have appeared, some of them wül be presented in this chapter as a basis

fbr the results presented in chapters three and four.

A multi-agent system can be described as a network of dynamical systems called

agents. In general, these agents interact with each other by means of the knowl

edge of the state or the output of their neighbors. This knowledge is achieved by

means of a communication framework which is usuaUy described by a graph as

detaüed in the foUowing section.

2.1 Graph theory fundaments

The relations among a system of agents are commonly described by a graph

Q = (t?, $. A), where tf is a set of nodes (agents), $€tfxtfisasetof edges that

connect a node to another (self edges are not allowed), and A = [a,,_,] € RNx N

is its adjacency matrix containing positive weights describing the relationships

among nodes. An edge (i>,
■

. i/¿) 6 $ means that node Vj can get information from

node v^ If an edge (v..Vj) is contained in $, this impUes that the term a:_, of

the adjacency matrix is different from zero and vice versa, nevertheless, it does

not imply that the edge (vj.v,) is also contained in $. The set of neighbors of

node i wül be denoted by 6¿ = {vj : (i/,*, i/<) € #, j = 1, . . .
, N} and by pi •=|0«|

its cardinality.

The Laplacian C wül be defined as C = A —

diag i Sj^jay
■ ■ •

X$___orjvj J*. By

definition, every row sum ofthe Laplacianmatrix is zero. Therefore, the Laplacian

7



2.2. CONSENSUS

matrix always has a zero eigenvalue corresponding to a right eigenvector with

identical nonzero elements.

A spanning tree is a graph in which every node can get information from only
one node, except for one called root. The root node does not receive information

from any node. A graph Q is said to have a spanning tree if every one of its nodes

and a subset of its edges form a spanning tree, which means that at least one of

the nodes has a communication path to every other node.

If any two distinct nodes of a graph Q can be connected via a path that follows

the direction of its edges, then it is called strongly connected.

When the relations among the agents change in time, a switching graph be-

comes necessary. A switching graph will be defined asQet = (tf,^^,^), where

Qt :. [ío, oo) —> {1, . . .
, 7} is the switching signal that determines the communica

tion topology at time t. The set of neighbors of node i at time t, 6.et ,
wül be

defined analogously as 0i((t
= {v¡ : (vj, ¿v<) € ^m, j = 1, . . .

, JV} and piet =\&iet \
its cardinality.

In this work, for the case of multi-agent systems, it will be considered that the

condition (1/., Vj) e $ <■» (vj, //») ^ $ is met.

In the case of switching interaction topologies, it will be considered that the set of

nodes tf is constant, and also, that the condition (14, i/_¡) G $g_ ** (v¡, vi) <¿ Og.
is met.

2.2 Consensus

In networks of dynamic systems consensus means to reach an agreement regarding
a certain quantity of interest that depends on the state of all the agents [30].

The most general definition of consensus ofmulti-agents implies that the state of

every system converge to the same valué. Such a valué will depend on the initial

valúes of the states of the agents, the communication topology and the employed
consensus algorithm.

A consensus algorithm is an interaction rule that specifies the information ex

change between an agent and all of its neighbors on the network [30].

The most basic approach to multi-agent consensus is when only agents with in

tegrator dynamics are considered.

Consider a multi-agent system composed of N agents with integrator dynamics

±í = uí t = {l,2,--- ,N} (2.1)

8



CHAPTER 2. PRELIMINARIES

and a consensus algorithm

«i(*)=E (Xi(t)-Xi(t)) (2.2)

¿ee.

henee, the multi-agent dynamics are

x(í) = -Cx(t)

where C is the Laplacian corresponding to the graph Q oí the communication

topology, and x(t)T = [ x\(t) Xi(t) • • • xn(í) ] .

Corollary 2.1. (Corollary 1 of [33]) Consider a multi-agent system as (2.1)
where each node applies control (2.2). Assume its communication topology is

such that Q is strongly connected. Then, control (2.2) globally asymptotically
solves a consensus problem.

The equilibrium x* = alT, a € R of the multi-agent system is a right eigenvector
of £ associated with the eigenvalue A = 0, and 1 G RN is a row vector full of

ones.

Different consensus algorithms, convergence analysis, equilibrium points, and top
ics related, for systems with integrator and double integrator dynamics, are found

in [30], [33], [32], [35], [8], [6], [18], [13], [34], and references therein.

In [41] a controller parametrization for the consensus of Unearmulti-agent systems
with identical dynamics is presented.

Consider a Unear multi-agent system composed by Ar identical linear dynamics

ii(t) = Axi(t) + Bui(t) i=l,...,N, (2.3)

a communication topology according to a graph Q, a consensus error

<,i(t)=Y.<*i,j[(xj(t)-xi(t))) (2.4)
¿=x

and a consensus error state feedback

Ui(t) = KQ(t). (2.5)

PD(n) is the set of n x n positive definite matrices, Skew(n) is the set of n x n

skew symmetric matrices, and B* G jj¡mxn ^ a generalized inverse matrix of B.

Therefore,

- Both BB* and / — BB* are symmetric matrices. Furthermore BB^B = B,
B*BB1 = Bl BTBB* = BT

9



2.2. CONSENSUS

— BB^ is an orthogonal projection matrix to ImB.

Lemma 2.2. (Lemma 1 of [41]) For given Qi G PD(n), i ■= 1, • • •

,
N — 1, if

there is K to satisfy

(A + XiBK)Pi + Pi(A + XiBKf + Q. = 0, Pi G PD(n), (2.6)

where A¿ = 1,
• ■ •

,
N — 1 are the nonzero eigenvalues of the Laplacian matrix

associated with the graph Q having a spanning tree, then Pí, i = 1, • • • ,N
— 1,

satisfy

(I
- BB^)(APi + PiAT + Qi)(I - BB¡) = 0, i = 1,

- - .

,
N - 1,

B*(APi + PiAT + Qi)(I - \bB¡)P-1 + XiBWPr1

Xi \b^(APj + P¡AT + Qi)(I
- \BB^)P^ + A"1

(2.7)

(2.8)

and K is taken the form of

K = - — B^(APi + PiAT + Qi)(I
- \BB¡)PrA - B^WPr\ (2.9)

with Xi = 0, W = BB^W G Skew(n), W = BB^WBB^ G Skew(n).

Henee, from the previous feedback parametrization the achievement of consensus

is guaranteed.

Theorem 2.3. (Theorem 1 of [41]) Assume that the interconnection digraph of
the multi-agent system (2.3) has a spanning tree. Then the following conditions

are equivalent:

1. The consensus of system (2.3) is achieved, under control (2.5).

2. Any feedback controller K makes A + XíBK stable (Hurwitz), where i =

1, • • •

,
N — 1 are the nonzero eigenvalues of Laplacian matrix C.

3. For given matrices Qi G PD(n), i =!,.■•• ,N
— 1„ the feedback controller

K satisfies (2.6).

4. The matrices Pi G PD(n), i = 1,
■ • •

,
N - 1 satisfy (2.7) and (2.8).

5. The feedback controller K can be written in the form of (2.9) with Pi G

PD(n), i = 1, • • •

,
N - 1 satisfying (2.7), (2.8).

Further information about consensus of linear systems can be found in [31], [27],
[2], [4], [19], [26], and references therein.

10



CHAPTER 2. PRELIMINARIES

Oulpul consensus

The output consensus will be defined as in [16]. Consider a multi-agent system

composed by N linear dynamics

xi(t) = AiZi(t) + Biui(t) i = l,...,N, (2.10)

with outputs

yi(t) = Cixi(t) (2.11)

The goal of the controUer u¡(t) is to guarantee that lim (yj(t)
— yi(t)) = 0 for aü

t—**00

:,je{l,2,**, .V}, and for any initial conditions x, (0).

This implies that a certain signal yo(t) exists such that lim (yo(i)
—

y%(t)) — 0 for
t—»oo

aU ii g { 1 . 2. * ■ ■

, N} . and yo(t) is the outcome of the on-line consensusmechanism

among the agents. Since the overaU system is linear, the synchronized signal yo(t)
needs to be the output of a certain linear system, namely, exosystem.

It should be noted that the i — th controller u,{í) uses only the output information

of agent i and the outputs of its neighbors.

Different results on output consensus are found in [44], [45], and [39], and [7].

2.3 Output regulation

Consider a Unear system

x(t) = Ax(t) + Bu(t)

y(t) = Cx(t).
<*""'

The problem of output regulation consist on designing a control law

u(í) = Kx(t) + Tu(t), (2.13)

such that,

]im(y(t)-yo(t)) = 0 (2.14)
t—"-OO

where

yo(t) = Rlj(Í) (2.15)

is a reference to follow for the output of system (2.12), and u(t) is the state of

an exosystem

¿j(t) = Su(t). (2.16)

Consider also the following hypotheses

11



2.4. DISTRIBUTED OUTPUT REGULATION OF LINEAR MULTI-AGENT SYSTEMS

Hypothesis 2.1. (H2.1) o(S) C {A G C | Re [A] > 0}

where cr(S) is the spectrum of S.

Hypothesis 2.2. (H2.2) The pair (A, B) is stabilizable.

Proposition 2.4. (Proposition 1 of [15]) Suppose H2.1 andH2.2 hold. Then,

the linear state feedback regulator problem is solvable if and only if there exist

matrices H and F which solve the linear matrix equations

nS=-AU + BT (2.17)

CU - R = 0. (2.18)

For topics on regulation, please refer to [11], [15], [12], and [14].

2.4 Distributed output regulation of linear multi-agent

systems

Consider a linear multi-agent system composed by a set ofN agents with different

Unear dynamics described by

±i(t) = AiXi(t) + BiUi(t)

yi(t) = CiXi(t)
i-i,...,". (2.19)

where, x. G Rn*, yi G Rq, and u¿ G Rm

The problem of distributed output regulation is defined as the problem of design

ing a local control strategy for the output regulation of a multi-agent systems.

2.4.1 Internal model approach

In [42], the problem of distributed output regulation of linear multi-agent systems
is addressed. A linear multi-agent system as (2.19), with systems of the same

dimensión (ni = n), is considered, and parameter variations in the matrices are

allowed.

Define the output consensus error as

1 Wi
■

¿ee*

12



CHAPTER 2. PRELIMINARIES

and consider the control law

Ui(t) = -KiXi(t) + KziZi(t)

where

(2.21)

ii(t) = G1zi(t) + G2Vi(t)

vi(t) = (Ci®
ffí t^Ht (2.22)

l 2/o(<)
-

yi(t) (vo, v.) e $,
v '

and the condition (vo, Vi) G $ indicates that agent i knows the state of the

exosystem.

Hypothesis 2.3. (H2.3)

rank{^Ai~^ ^)=n + g. A G a(S), i G {1,2,- •• ,N}

Hypothesis 2.4. (H2.4) The graph Q describing the communication topology of
the multi-agent system does not contain loops, and incorporates a spanning tree

mth root on i/0 (reference agent).

Hypothesis 2.5. (H2.5) The pair of matrices (G*i,C?2) incorporates a p-copy

internal model of matrix S.

Theorem 2.5. (Theorem 3.1 of [42]) Under hypotheses H2.1-H2.5, the dis

tributed output regulation of system (2.19) can be solved by a dynamic state feed
back control of the form (2.21).

The matrices Ki and Kzi in control (2.21) must be calculated such that the

matrices

( Ai — BíKí BíKzí \

V G2Ci Gi ;
are Hurwitz for i G {1, 2, ■ ■ ■

, N}.

2.4.2 Observer approach

In [36], the problem of distributed output regulation of linear multi-agent systems
is addressed. A linear multi-agent system as (2.19) is considered. The communi
cation topology is considered to be switching, and only a subset of the agents is

supposed to receive the exosystem state at time t.

In order to compute the state of the exosystem the following observers are pro

posed

¿>i(t) = S¿bi(t) + l

'

N

£ o*.,. (u>j(t)
-

u>i(t)) + aifi (u(t)
-

úi(t)) (2.23)

13



2.4. DISTRIBUTED OUTPUT REGULATION OF LINEAR MULTI-AGENT SYSTEMS

The observer of the agent i depends on the exosystem observed state of its neigh

bors.

Consider the control law

Ui(t) = -ATi-rití) + TiúJi(t) (2.24)

and, the hypothesis

Hypothesis 2.6. There exists a subsequence {i*} with í.fc+1
—

Uk < r for some

positive t such that every node is reachable from the node vq in the unión graph

<rt€{tk)

Theorem 2.6. (Theorem 1 of [36]) Assume that there exists a solution for the

equation system (2.17), (2.18) and that Hypotheses H2.1, H2.2, and H2.6 are

met. Then, the distributed output regulation problem of system (2.19) can be

solved by the distributed dynamic state feedback control law (2.24) where Ki, i —

1, • • •

, N, are such that Ai
— BíKí are Hurwitz, and l is any positive constant.

14



Chapter 3

Output consensus and output

regulation of MIMO linear

multi-agent systems

Multi-agent consensus has been widely studied in the last decade, and many works

have been presented attempting to solve consensus problems with obstacles and

control stability.

In this chapter, a first approach to the problem of output consensus and out

put regulation of a multi-agent system with linear dynamics is presented. The

proposed control scheme attains output consensus and output regulation of the

multi-agent system, so that the N agents in formation track a desired reference

by means of a virtual leader agent that has communication to a subset of the

agents. The virtual leader dynamics are described as a function of the state of

an exosystem. Given that, not all the agents receive the reference and none of

them receives the state of the exosystem. Observers, dependent on the outputs

of the neighbors of the agents, are designed in order to compute the state of the

exosystem and solve regulation.

Different approaches have appeared addressing the problem of robust output con

sensus an output regulation of Unear multi-agent systems. In [42] and [40] the

problem is addressed, for fixed and switching communication topologies respec

tively, based on the internal model principle [12]. But none of these works allow

the multi-agent system formation. A different approach is the presented in [36].
In this paper the problem is addressed in a similar way to the developed here,

but the exosystem observer of a given agent depends on the reference and on the

state of the observers of its neighbors. Nevertheless, the result in [36] allows the

consideration of switching communication topologies.

15



3.1. PROBLEM STATEMENT

3.1 Problem statement

Consider a set of N agents with different Unear dynamics described by

±i(t) = AiXi(t) + Bim(t) N (31)
= CíXí(í)

where, x¿(í) G R"* is the state, Ui(t) G Rm the control, and yi(t) G R9 the output

vector of the i-th agent. The matrices A. G Rn*xny _3¿ G R"iXm and C¿ G R«xn<

are supposed to be such that rankBi > q, and it wül be considered that every

agent is stabilizable.

Consider also an exosystem

ú>(t) = Su>(t), (3.2)

and its output

y0(t)=[R 0]w(í) (3.3)

where, w(t) G Rp, S G Rpxp, R G R'xp_1, and the last entry of vector oj is a

constant ujp(t) = 1.

Regard j/J* = <kwp(t) G R' as the desired relative position of the output of the

i-th agent with respect to the virtual agent output yo(t) (multi-agent system

reference) and let it also depend on the exosystem state ui(t). Then define the

z-th agent output consensus and regulation error as

Cito = E «i,¿ [(%(*)
-

¡/ito)
-

(d¿
-

*H(*)1
(3-4)

+at,o [(yo
- s/ito) + «íi^pí*)] ■

Note that this definition is similar to the consensus error (2.4). The weight as^o

corresponds to the difference between the i-th agent output and the reference j/o

(virtual agent output).

The problem of output consensus and regulation of multi-agent systems consists

on obtaining a control law such that the output consensus and regulation error

Um £•(*) = 0 for each agent i = {1, 2,
■ • -

, N).
t—»oo

3.2 Distributed output consensus and regulation con

trol

Hypothesis 3.1. (H3.1) The graph Q describing the communication topology of

the multi-agent system does not contain loops, and incorporates a spanning tree

with root on vq (reference agent).

16



CHAPTER 3. CONSENSUS AND REGULATION OF LINEAR MAS

Given that it is considered that each agent has only the information of the output

of its neighbors including the exosystem, none of the agents has access to its

state. Thus, order to obtain the state of the exosystem, the following observers

are proposed

¿ito = Su>i(t) + m(VVj(t)
~ Pilüi(t)) Vj G Gi (3;5)

where L= [ R 0 I, ],

S =
S 0

0 0, j

(3.6)

0g is a q x q zero «matrix. The matrix /«. should be computed such that the

matrix (S
— piKiL) is Hurwitz in order to guarantee the stability of the error of

observation as shown later.

Remark 3.1. Given that the agents are allowed to follow the reference in for

mation, the outputs of each agent may have an offset from the actual reference

valué, henee the matrix S is used as an extended exosystem matrix to filter the

unknown dj 's from the exosystem states.

Hypothesis 3.2. (H3.2) a) The linear systems (3.1) under the state feedback
controls Ui(t) =

—

Kxi(t) are Hurwitz.

b) There exists solutions Iii to the following equations

IUS = (Ai
-

BíKí)IU + (Pi + BíTí)
0 = CíUí-R i = l,2,---,N.

Now, set the distributed output regulation control law as

Ui(t) = -KiXi(t) + [ Ti 0, ] u>i(t). (3.7)

Note that control (3.7) is of the form (2.13) and depends on the exosystem ob

server state <2>i(_).

Define the i-th observer error as

Wi(r) = Qi(t)
-

^(í), (3.8)

where u;í(í) =
u(t)

Si
,
and ¿i = Edj/pi, Vj G 0».

3

Note that an extended exosystem observer £ji(t) is defined in order to fíltrate from
the reference the offsets from the outputs of the neighbors of agent i. The vector

Si is the media of the separation of the neighbors of agent i from the reference.

17



3.2. DISTRIBUTED OUTPUT CONSENSUS AND REGULATION CONTROL

It wiU be demonstrated later that the extended variables of the observer will

converge to this valué.

The dynamics of the observer dynamics will be described by

¿i(í) = Sü>i(t) - «.(Etyto
- PiLu>i(t)). (3.9)

i

Consider that % = [ Ik 0, ] ,
and that Hypothesis (H3.2) is met, then the i-th

agent regulation error can be defined as

ei(í) = Si(t)
" ÜA(í) (3-10)

and its dynamics is given by »

éi(í) = (Ai
-

BiKi)ei(t)
-

____«_(&_.(*)
- PiU>i(t)). (3,U)

From (3.8) and (3.10), it can be inferred that

2/ito = dxi(t)
= d (-sito + tk (ü>i(t)

-

«,(*))) (3.12)
= Ciei(t) + Ri(ü>i(t)-Qi(t))

where, R\=[ R di 0, ] .

Take the second term in (3.9) and substitute yj as in (3.12)

hVj(t) - PíImjS)) = -PiLuji(t) + E {Rj (Qj(t)
-

üj(t)) + Cjej(t)} . (3.13)

Given that up(t) = 1, it can be seen that

ZRjü>j(t) = piLQi(t), (3.14)
i

thus,

(zRjü.j(t) - piLC.i(t)\ = PiLwi(t). (3.15)

Remark 3.2. The observed variables Cjitrp+a) where a = 1, 2,
• • ■

, q, will tend

asymptotically to 6i = Y.dj/pi, Vj G Qi.
i

Using (3.13) and (3.15), the i-th observer and regulation error dynamics (3.9),

(3.11) can be restated as

¿i(t) = m (>2 (Rjüj(t) -

Cjej (í)) J + (S
- KíPíL) ü)i(t) (3.16)

18



CHAPTER 3. CONSENSUS AND REGULATION OF LINEAR MAS

éi(t) = Üi/tiE (Rjüj(t)
-

Cjej(t))

+(Ai
-

BiKi)ei(t) - ñiKiPiLQ^t).

Define the i-th agent observer-regulation error as

«*>-[2$l
and multi-agent observer-regulation error as

€«=[efw tfto ••• iUt)]T

(3.17)

(3.18)

(3.19)

Under Hypothesis (TiZ.V), the Laplacian £ is a lower triangular matrix. Thus, the

multi-agent observer-regulation error dynamics wül have a block lower triangular
form

«*) =

with matrix blocks

fil 0 0 0

02,1 fi2 0 0

QN-1,1 QN-l.2 «¿V-l 0

QN.l QN,2 QN,N-1 ííaV

€(*) (3.20)

íli =

S —

iííPíL 0

(3.21)
-IUkíPíL Ai - BíKí

on its diagonal. The terms g,j_ are considered constant.

Now, the main result of this chapter can be stated.

Theorem 3.1. Consider that Hypothesis (H2.1), (H2.2), (H3.1), and (H3.2)
are met, then the distributed output regulation and output consensus of the linear

multi-agent system (3.1) can be solved by a control law of the form (3.7).

Proof. Consider a Unear multi-agent system with agents of the form (3.1), and
control law (3.7).

Then, underHypothesis (W3.1) the correspondingmulti-agent observer-regulation
error wül have the form (3.20). Given the block triangular form of the observer-

regulation error dynamics and the stabüity of the blocks (3.21), the stabüity of

the observer-regulation error (3.20) is guaranteed.

FinaUy, given the stabüity of the observer-regulation error, in steady state, the

foUowing holds

C¿i(t) - u.i(t)

Xi(t) = Iku>(t)

Vi(t) =[R ck] uj(t)

(3.22)

(3.23)

(3.24)
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3.3. EXAMPLE

thus, the i-th output consensus and regulation error Q(t) -= 0 for i = 1, 2,
• • •

,
N.

D

The foUowing example is presented in order to illustrate the previous result.

3.3 Example

Consider 3 agents with the foUowing dynamics

¿i(í) -
1 2 3 1 roo]
0 -2 4 •ri(í) + 0 1

0 0 -3 1 0

Ul(t),

vi(t)

X2(t)

V2(t) =

¿sto =

y3(t) =

o o i

i o i
uto

0 10 5 4

-2-13 0 0

0-3 0 0 1

4 0 6-10

0 0 0 0 0

r 0 0 ]
0 0

x2(t) + 0 1

0 0

.20,

u2(t),

110 0 0

0 0 12 0
x2(í)

-3005

3 2 0 3

14-20

0 -2 -2 -1

rio]
x3(t) +

0 0

0 0

u

2 1

^to

ll 0 0

2 0 0 3
x3(t)

with initial conditions

xi(0) - x2(0) = x3(0) =

3

7

-9

2
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The multi-agent system including the above systems is connected according to

the foUowing Laplacian matrix

£ =

0 0 0 0

0-110

10-10

0 0 1-1

in this way, only the second system receives the reference to track. The graph

corresponding to this communication topology is shown in Fig. 3.1.

Figure 3.1: Communication topology graph

The desired relative positions of each output with respect to the reference are

considered constant, and are described by the next constant vectors

Let the reference exosystem be

d3 -l-t)

ú(t) =
0 2 0 ]
-2 0 0

0 0 0

"to

where the zero row accounts for a constant W3(í),and consider the initial condi

tions

«(0) =
1

-1

1

where the last initial condition must be one in order to respect the relative posi
tions defined by the di's.
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Take the reference matrix as

R =

2 0 0

0 1 0

Then, the exosystem observers are described by

u>i(t) = Bu>i(t) +

4.58 5.54 1

5.20

0

0.84

7.76

0

-14.91
(V2(t)~

6.02 0.21

2 0 0 10

0 10 0 1 £ito)

¿ato = Su>2(t) +

4.58 5.54 "1

5.20 7.76
/

0 0 2/oto
-

0.84 -14.91 \

6.02 0.21
_

2 0 0 10

0 10 0 1 ¿2to)

¿ato = Sú3 (t) +

where

4.58 5.54 1

5.20 7.76
/

0 0 y2to-
0.84 -14.91 V

6.02 0.21
.

5 =

2 0 0 0 ]
0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0
.

2 0 0 10

0 10 0 1

The initial conditions of the observers were taken as

¿i(0) = Ú>2(0) = w3(0) =

¿sto)

The third initial condition is restricted to be the one, in order to obtain the

desired separations yf 's.
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FinaUy, according to the previous the distributed control laws are computed as

«ito =

u2(t) =

5.39 2.25 4.36

x_to +
1.6£, 4.77 15.94 0 0

3.91 3.63 6.44 -5.57 14.36 -24.04 0 0

[ 8.84 0.07 3.81 8.34 6.74 | x2(t)+
0.32 -0.67 9.50 1.53 0.89

4.16 8.36 0 0 0

2.52 -7.31 0 0 0

¿ito

ú2(t)

«ato =
11.05 22.59 2.80 12.38

-22.54 -50 -9.85 -19.83
x3(t)+

4.73 5.92 89.42 0 0

-16.87 -5.96 -178.79 0 0
Ú>s(t)

Time(s)

Figure 3.2: Outputs achieving consensus and regulation

The trajectories of the outputs of each system obtained using this technique in

simulation are shown in Fig. 3.2. The outputs of the same agent share the same

Une style. The exosystem tj(t) is composed by a sine function ui(t), a cosine

u>2(f) and a constant u.3(t) — 1.1% can be seen in this figure that the valué of the

reference is attained by every output.
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Time)s)

Figure 3.3: Observer-regulation errors (3.19)

Fig. 3.3 displays the behavior of the observer-regulation errors (3.19), and the

regulation errors errori = n
— Üju; are shown in Fig. 3.4. It can be seen that

both errors are stable.
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Time(s)

Figure 3.4: Regulation errors
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Chapter 4

Output consensus and output

regulation of a class of SLS

multi-agent systems

The design of distributed control laws for the output consensus and output regu
lation of switched linear multi-agent systems is addressed in this chapter, where

each agent receives the measurement of the outputs of its neighbors. The com

munication among the agents is described as a graph, and it is restricted to be

such that the corresponding graph has a spanning tree.

The cases of fixed and switching communication topologies are undertaken. In

the first case, it is considered that a subset of the agents has access to the output

of the reference (exosystem) and none of them has access to the state of the

exosystem.

In the case of switching communication topologies, it is considered that the set of

agents (nodes) remain constant under any communication topology. Similar to

the case of fixed topologies, it is required that each of the graphs representing each

of the communication topologies contains a spanning tree. It is also considered

that only a subset of the agents has access to the output of the reference and

none of them has access to the state of the exosystem. This subset is allowed to

be different in any communication topology.

The subset of the agents with access to the references is, in both cases, restricted

to be different from the empty set.
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4.1. SWITCHED LINEAR SYSTEMS

4.1 Switched linear systems

A switched linear system (SLS) V = (T, ot) is a hybrid dynamical system where

T = {Ei, E2, • • •

, Efc} is a collection of Unear systems of the form

{
. x(t) = Aatx(t) + B<_rtu(t), x(t0) = x0

1.
"" 1

y(t) = Cx(t)

where x(t) G R", u(t) G Rm, j/(í) G Rq, are the state, input and output variables

respectively and Ai, Bi and C, i G {1, . . .

, k} are constant matrices of appropriate

dimensions, and <rt : [ío, oo)
—> {1, . . .

, k} is the switching signal that determines

the evolving Unear dynamics,.

Remark 4.1. In systems as (4-1), it is often taken that y(t) = dx(t), but for

the object of this work only systems mth Ci = C for all i G {1, . . - . k} will be

considered.

The last restriction is required in order to fulfill the SLS systems regulation

conditions to be introduced later in this chapter.

This model presents a state x(t) that evolves according to k different dynamics.

The switching between any of these dynamics can be triggered by many different

events: the change of state on an automaton, the elapsed of a certain amount of

time, the reach of a given región of space by the state, direct manipulation of the

controller, etc.

4.1.1 Switched linear systems stability

In this section, results on SLS stability are presented. Several new results have

been presented to this respect, the readers interested in related topics are referred

to [21], [1], [3], [20], [46], [29], [38], [43], [37], [22], and [24].

Lyapunov stability

The following definitions and results on Lyapunov stabiUty were taken from [21].

The switched Unear system (4.1) under a state feedback control

u(t) = -KiX(t) ot
= i (4.2)

is uniformly asymptotically stable if there exist a positive constant g and a class

ICC function / such that for all switching signals at the solutions of (4.1) with

|x(0)| < g satisfy the inequality

|xW|</(|x(0)|,í) Ví>0. (4.3)
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CHAPTER 4. CONSENSUS AND REGULATION OF SLS MAS

If the inequaUty (4.3) is valid for aU switching signals and all initial conditions,
the system (4.1) under a state feedback control(4.2) is globally uniformly asymp
totically stable (GUAS).

A positive definite continuously differentiable function V : Rn —

■ R is a common

Lyapunov function for the family of systems T if there exists a positive definite

continuous function Q : Rn —* R such that

dV

g¿(Ai- BíKí) x(t)
< -Q(x(t)) \/x(t), Vi (4.4)

Then, the foUowing result on stabüity can be stated.

Theorem 4.1. (Theorem 2.1 [21]) If all systems in the family ]F with control

(4-2) share a radially unbounded common Lyapunov function V(x(t)), then the

switched system (4-1) is globally uniformly asymptotically stable (GUAS).

This result assures the stabiUty of the SLS system under any switching sequence.
It is important to mention that if a common Lyapunov function for the SLS is

not found, it is not enough proof to assert that a SLS is unstable.

In ([28]) the foUowing result is stated

Lemma 4.2. // there exist a symmetric positive definite matrix P € Rnxn and

matrices Zi G R™-"", i = {1,
■ - •

, N}, such that

AiP + PAj + BíZí + ZjBj < 0

then the switched control law (4-2) with

Ki = ZiP-1

assures the closed-loop stability of the switched system (4-1).

Now, it is possible to state the problem of finding a common Lyapunov function

for a SLS system as a LMI program to compute a switched state feedback.

Phase plañe stability condition for SLS systems

In the following, a sufficient condition for SLS systems stabiUty is presented. This

condition is related to the eigenvectors of the subsystems of the SLS system.

An eigenvector associated to a Unear system x(t) = Ax(t) is a vector . ^0, such

that Av = Xv, where A is an eigenvalue of the system.

Consider a switched Unear system

x(t) = Aix(t) + Biu(t) (4.5)

where the pairs (A_,i9i) are controUable and a switched state feedback (4.2).
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Theorem 4.3. // the switched state feedback (4-2) is such that, the matrices

(Ai — BiKi) are Hurwitz, and its eigenvectors are the same for all i, then the

SLS system will be stable.

If a SLS system is stabilized using this result, then the phase planes of its com

posing Unear dynamics wiU align and the SLS system will have a phase plañe

similar to a Unear system.

For the proof and control design related to the previous result, refer to the ap

pendix.

4.1.2 Output regulation of switched linear systems

Let

w(t) = Su(t) (4.6)

where w(t) G Rp and S G Rpxp, be an exosystem from which a reference Ru;(t)
wiU be defined for a SLS system and consider the input

u(t)^-Kix(t) + Tiu(t) (4.7)

then, from [25], the problem of Output Regulation via FuU Information for SLS

(ORFI) consists on, given Ai, Bi, C, Pi, R, S, and having fuU access to x(t), find

a feedback law of the form (4.7) such that

1) system (4.1) with control (4.2) is asymptotically stable under arbitrary switch

ing laws, and

2) for each initial condition xq, the solution x(i) of system (4.1) with (4.7) is such

that Cx(t) — Rw(t) tends to zero uniformly under arbitrary switching laws.

Consider the following

Hypothesis 4.1. (H4-1) System (4-6) is antistable, i.e. all the eigenvalues of S

have nonnegative real part.

Hypothesis 4.2. (H4-2) a) system (4-1) with (4-2) has a common Lyapunov

function.

b) there exists a solution Ui to the following equations

UiS = (Ai
-

BíKí)Uí + (Pi + BíTí)
0 = CUi-R i = l,2,--,k.

Hypothesis 4.3. (H4-3) It will be considered that the evolving dynamics of sys

tem (4- 1) and its switching instants are always known.
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Theorem 4.4. (Theorem 1 [25]) Assume (H4.1) and (H4.2). Then the ORFI

of switched system (1) is solvable only iffor Vt, j, i,j = 1,2, • - •

, k, the following
condition holds

C(Ai - BtKi)m(Ui -

Uj,) = 0, m = 0, 1, • • •

,
s l = i,j,

where s is the mdex of the admissible pair (C, Ai — BíKí).

A more restrictive condition is given if (A. — BíKí, C) is observable, as in the

foUowing result.

Theorem 4.5. (Theorem 2 [25]) Assume (H4A), (H4-2), and that (Ai- BiKit
C), i = 1, 2, • • -

, k is observable. Then the ORFI of (1) is solvable if and only if

Hi =Hjt for i,j = 1,2,- ■ ,k.

From Theorem 4.4, it is clear that a sufficient condition for the problem of ORFI

to be solvable is: if a state of a subsystem £. G T is observable, its respective
elements ofH have to be equal to those of Hj for i,j = 1, 2, - • •

,
fe.

A class of SLS systems that meets the conditions of Theorem 4.4 is the one of

systems of the form

x(í) =

'

Ai A2 0
'

*i(i)
'

0

A34 A4.Í 0 x2(í) + BU

. M,i Ae,i A7.i L **(*) J . H2,i

«to

•<«>-[« -i[!23]

(4.8)

(4.9)

for i = 1,2, •■• ,k, where x_(t) G R'-', x2(í) G R«, x3(t) G R"-". u(í) G Rra,

q<m, Bu ís a full row rank matrix, A-¡__ is Hurwitz and the subsystem

x"(í) = _4?x"(t) + H¡u(t), x"(í) = [ ^g ] (4.10)

is controllable. Matrices Al[ and B*l are defined as foUows

, _ [ Ai A2 1
, _

0

* [ A3¿ Am J' "«
~

l Bw

In particular, subsystem (4.10) with output y*»(í) = Cíx'-'to also fulfills the con

ditions of Theorem 4.5.
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4.2 Design of a distributed control law for the output

consensus and output regulation of SLS multi-agent

systems

In the present section, the problem of output consensus and output regulation of

SLS multi-agent systems is addressed.

The proposed approach starts by computing a local state feedback control law

for each linear dynamics of a SLS agent. Such local feedback control is computed

to ensure the stability of the SLS system. Under the assumptions made on

communication topologies, every agent is capable of getting the exosystem state

by means of an observer to be regulated, and the stability of the SLS agents

guarantee the stability of the switched observer-regulation error. Therefore, the

outputs ofthe SLS system achieve consensus and, regulation on a given formation.

4.2.1 Problem statement

Consider a system of N agents with different SLS dynamics of class (4.8), (4.9)
described by

x«to = AiM*) + BijMt) i = l,---,N . .

Vi(t) = CiXi(t) ji = l,...,ki
^Ll)

where, Xi(t) G Rn* is the state, Ui(t) G Rmi the control, and yi(t) G R9 the output

of the i-th agent, and a virtual reference agent whose dynamics is represented by
the exosystem (4.6) with output

yo(t) = [R 0]u/(t) (4.12)

where R G R,xp_1 and the last entry of vector w is a constant u>p(t) = 1.

Remark 4.2. It is considered that rank {Ci} —

q for i = 1, . . .
,
N.

Let Q be a graph representing the communication between the SLS agents of

system (4.11) together with the exosystem (4.6), then the following hypothesis is

assumed.

Hypothesis 4.4. (H4-4) The graph Q does not contain loops, and incorporates

a spanning tree with root on vq (reference agent).

Consider yf = diwp(t) G Rq as the constant desired relative position of the output

ofthe i-th agent with respect to the virtual agent output (reference). Then define

the i-th agent output consensus and regulation error as

N

Cito = £ <*i¿ {(Vi to
-

2/ito)
-

(dj
~

dk)ujp(t)} (4 13)

+«i,o [(j/oto
~ 2/ito) + diujp(t)} .
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Note that the weight cí^o corresponds to the difference between the i-th agent

output and the virtual agent (reference) output (4.12).

Thus, the problem of distributed output regulation and output consensus of SLS

multi-agent systems consists on obtaining a distributed control law such that

every agent output consensus and regulation error Q(t) tends to zero asymptoti

caUy.

Next, the problem of distributed output regulation and output consensus oí SLS

multi-agent systems, is addressed for agents with different dimensión and dynam

ics.

-4.2.2 Distributed output consensus and regulation control

For ease of notation and without loss of generality, consider the controllable part

(4.10) of N SLS agents of class (4.8), with output (4.9) as in (4.11).

Given that only a subset of the SLS agents will have access to the reference

(4.12) and none of them to the exosystem state (4.6), the following observers are

proposed

úi(t) = Süi(t) + Ki(-£yj(t)
-

piLu>i(t)) VjgOí (4.u)

where L = [ R 0 I, ] , and Ki is such that the matrix (5
— piKiL) is Hurwitz,

S 0

0 0, j

(4.15)

and 0, is a q x q zero matrix.

Remark 4.3. The matrix S is used as an extended exosystem matrix to füter the

unknown dj 's from the exosystem states.

Now, set the distributed output regulation control law as

Ui(t) = -KitjiXi(t) + [ Titji % ] üi(t), (4.16)

for ji G {1, • • • ki}. Note that control (4.16) is of the form (4.7) and depends on

the exosystem observer state <2>i(t).

Define the i-th observer error as

where Ui(t) =

described by

w(t)
Si

ü>i(t) = ü>i(t)-úi(t), (4.17)

,
and Si = Tidj/pu Vj G Qi. Henee, its dynamics will be

¿i(í) = Sü>i(t)
-

Ki(Eyj(t)
-

PiLÚJi(t)). (4.18)
3
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4.2. DESIGN OF A DISTRIBUTED CONTROL LAW FOR SLS MAS

Consider that n» = [ 11» 0g } ,
and that Hypothesis (H4.2) is met, then the i-th

agent regulation error can be defined as

eito = Xi(í)
- HiU)i(t)

and its dynamics is given by

¿ito = (Aij,
- Bi^KijJe^t)

- fkm(Eyj(t)
- PiLá>i(t)).

From (4.17) and (4.19), it can be inferred that

(4.19)

(4.20)

(4.21)
yi(t) = dxi(t)

= Ci(ei(t) + ñi(üii(t)-¿Ji(t)))
= Ciei(t) + Ri(ÜLi(t)-ÜJi(t))

where, R\ = [ R di 0q ] .

Take the second term in (4.18) and substitute yj as in (4.21)

hVj(t) - PiLu>i(t)\ = -piLÜi® + E {Rj (Qj(t)
-

ü>¿(t)) + Cjej(t)} . (4.22)

Given that (Jp(t) — 1, it can be seen that

thus,

YlRjU)j(t) = piLui(t),

\YZ,Rjü)j(t)
-

PiLu)i(t)j
= PiLü)i(t).

(4.23)

(4.24)

Remark 4.4. The observed variables u)i,(p+a) where a — 1,2, ■■• ,q, will tend

asymptotically to Si = T¡dj/pi, Vj G Qi.
3

Using (4.22) and (4.24),z the i-th observer and regulation error dynamics (4.18),

(4.20) can be restated as

w-; (t) = kí (E (RjQj (t)
-

Cjej (í)) ) + (S - mpiL) ¡bi (t) (4.25)

(4.26)
éi(t) = ni«iE (Rjd>j(t)

-

Cjej(t))
3

+(Ai,ji
-

Bi^KijJe^t)
-

IíiKiPiLüi(t)

Define the i-th agent observer-regulation error as

&(*) =
¿ito

a(t)
(4.27)
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CHAPTER 4. CONSENSUS AND REGULATION OF SLS MAS

and SLS multi-agent observer-regulation error as

€(*)-[<F(«) tfto ••• $to]T (4.28)

Under Hypothesis (W4.4), the Laplacian £ is a lower triangular matrix. Thus,
the SLS multi-agent observer-regulation error dynamics will have a block lower

triangular form

m =

xQ2,l

0

^2,j2
■ •

0

0

0

0

«<) (4.29)

t?AT-l,l QN-1,2

QN,1 QN,2

tÜN~ljN,
Qn,n-i

»
o

x blocks

*kk =
S —

KiPiL

—tíiKiPiL

0

Aiji
—

BijiKi,ji .

(4.30)

on its diagonal. The terms gijt are considered constant.

Now, the main result of this section can be stated.

Theorem 4.6. Consider that Hypothesis (H4-l)-(H4-4) c-re met, then the dis

tributed output regulation and output consensus of the SLS multi-agent system
with agents of the form (4-8) with output (4-9) can be solved by a control law of
the form (4-16).

Proof. Consider a SLS multi-agent system with agents of the form (4.8) with

output (4.9), an exosystem (4.6) with output (4.12), and control law (4.16).

Then, under Hypothesis (H4A) the corresponding SLS multi-agent observer-

regulation error will have the form (4.29). Given Hypothesis (H4.1), the switched

blockmatrices fi¿tj4 are such that there exist positive definitematrices Pi and Qijt ,

for which the equations

«■Ji * "i^i-Jt — Qi',3i

are met.

Set

V(t) - EVito
i

as a common Lyapunov function for system (4.29) where

Vi(t) = Zi(t)TP¿i(t)-

(4.31)

(4.32)

(4.33)
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Consider V_(í), whose derivative

Vito = -6toTQi¿_6to (4.34)

is clearly negative, independent from the valué of £i(í). Thus, the observer-

regulation error £■■(£) -*s stable. For V2(t) its derivative is

V2(t) = -t2(t)TQ2j2t2(t) + flítffiiuftíato + kto^^ifcto (4-35)

henee, given the stability of £i(í) the terms with £2,1 will become zero and the

derivative of V2(t) will be negative, therefore, the observer-regulation error £2(_)
is stable. The same reasoning can be applied to the rest of the V.(í)'s. In this

way, It is concluded that the derivative of the common Lyapunov function (4.32)
is negative, and as a result, the observer-regulation error (4.29) is stable.

Finally, given the stability of the observer-regulation error, in steady state, the

following holds

¿ito =¿ito

Xi(í) = Ii>(í)

Vi(t) =[R ck] u(t)

(4.36)

(4.37)

(4.38)

thus, the i-th output consensus and regulation error Q(t) = 0 for i = 1, 2, • ■ •

,
_V.

D

4.2.3 Example

Consider 3 agents with the following switched linear dynamics

xito

12 3 6

9-240

0 0 1-3

7 4-1-1

"00]

Xl(í) +
0 0

1 2

7 0

2 3 6 1 roo'

2 4

2 5

0

1
**,(«) +

0 0

4 0

2 5 -3 0 1

«i (t) (xi (t) > 0 and x2(t) > 0)

ui (t) not(x\ (t) > 0 and x2(t) > 0)

í/lto =

0 0 0 1

12 0 0
xi(í)
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x2(t) = '

O

-2

4

1 0 1 "03"

1 0 x2(t) + 1 2

7 -7 0 1

10 -1 0 1 "03'

-3 1 0 x2(t) + 1 2

9 -3 -1 0 1

10 0

1 o o

O 1 -2

x2(í) +

V2(t) =

O 3

1 2

O 1

1 1 O

0 2 0

u2(t) (xi(í) > O and x2(t) > 0)

u2(t) (xi(<) < O and x2(t) < 0)

u2(t) (xi(í).x2(í) <0)

x2(í)

x3(í) = i

3 0 0 5

3 2 0 3

1 4 -2 0

0 -2 -2 -1

3 0 0 5

3 2 0 3

1 4 -2 0

0 -2 -2 -1

'10'

x3(t) +
0 0

0 0

2 1

r i 2
"

x3(í) +
0 0

0 0

0 1

u3(t) (xi(t) > O and x2(t) > 0)

u3(í) not(x\(t) > O and x2(t) > 0)

VÁt)
110 0

2 0 0 3
x3(í)

with initial conditions

xi(0) = x2(0) = x3(0)

3

7

-9

2

The multi-agent system including the above systems is connected according to

the following Laplacian matrix

C =

0 0 0 0

1-10 0

0 1-10

0 11-2
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Figure 4.1: Communication topology graph

so that only the first agent receives the reference to track. The graph correspond

ing to this communication topology is shown in Fig. 4.1.

The desired relative positions of each output with respect to the reference are

described by the next constant vectors

di =

Let the reference exosystem be

"0 -2 0
'

ú(t)=200 uj(t)
- f>

'

4

4
<k =

0

0
d3 =

'

-4

-4

0 -2 0]
2 0 0

0 0 0

where the zero row accounts for a constant w3 (t), consider the initial conditions

o>(0) =
1

-1

1

and take the reference matrix as

R =

2 0

0 1

Then, the exosystem observers are described by

'

4.58 5.54

-5.20 7.76

¿ito = s¿n(t) + 0 0

0.84 -14.91

6.02 0.21

(yo(t)
2 0 0 10

0 10 0 1
¿ito
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(¿a(t) = -Suato +

4.58 5.54 "1

5.20 7.76

0 0

0.84 -14.91

6.02 0.21
_

(yito-[
2 0 0 10

0 10 0 1 *»(<))

¿sto = Sú3(t) +

where

4.58 5.54 1

5.20 7.76

0 0

0.84 -14.91

6.02 0.21

,Vito+Ífi.(í)-2
2 0 0 10

0 10 0 1
<*>(*)

0 -2 0 0 0

2 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

s =

The initial conditions of the observers were taken as

1

1

wi(0)= 1 ó)2(0)= 1 ú3(0) =

1

1

The third initial condition is restricted to be the one, in order to obtain the

desired separations yf's.

FinaUy, according to the previous, the switched distributed control laws are com

puted as

1.63 -0.05 0.63

«ito = <

'

[ 1.14 0.63 -0.05 0.63 1 . . j 1.

[6.31 1.91 6.31 3.29 j111
;+

[ -3.
40 -0.56

77 1.83

2.89

-6.67

[ 4.47 0.62 4.15 2.81 ] ..[ -1

, [6.89 2.43-5.53 2.37]XlW+[ 9

U2(t) = i

.47 0.62

.89 2.43

4 2.33

1 0.33

-1.54 0.78 -2.61

9.83 -3.96 20.14

0 ° 1 -

M

0 oJ^w

o o pW

x2(t) +
[ 1-

-2.33 5.66 0 0 0

66 -1.83 0 0 0
w2(í)

-11.66 5.66 0

4.33 -0.33 0
x2(t) +

-2.33 5.66 0 0 0

1.66 -1.83 0 0 0
ú2(t)

l ["i
-1.66 4

33 0
x2(t) +

-2.33 5.66 0 0 0

1.66 -1.83 0 0 0
¿ato
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4.2. DESIGN OF A DISTRIBUTED CONTROL LAW FOR SLS MAS

«ato =

[ 11.05 22.

[ -22.54

59 2.80

50 -9.88

•38 1 /á> __

T 4.73

l88 J ■«(')+[ _16.8T -

5.92 89.42

5.96 -178.79

0 0 ]
0 0 j

£>a(0

[ 12.10 32.63 11.27 2.68] ,. f 19.31 -8.58 91.79 0 0 "I ....

[ -0.49 -4.94 -4.23 4.88 ]
X3(t) +

[ -7.32 8.79 -0.89 0 0 J ,Sa(í,•

The order of the switching controls is the same as the one of the SLS dynamics
to which they correspond.

»

18

10

i:
•s

• 10

Tlm»(»!

Figure 4.2: Output reaching formation and tracking.

The trajectories of the outputs of the multi-agent system obtained in simulation

are shown in Fig. 4.2. The outputs, j/»,i and ¡/<,2 follow the same trajectory
respectively. The outputs of the same system share the same Une style. The

exosystem u> is in this case composed by a sine function w., a cosine w2 and a

constant u2 = 1. It can be seen in this figure that the valué of the reference is

attained by every output.

ÍV
T~

jmSMi i '' V.mn "" ■'

V

Tlnw(f)

Figure 4.3: Output regulation and consensus error ej = Xi
-

Tkj&.

Fig. 4.3 displays the behavior of the regulation error (4.20), while Fig. 4.4 displays
the regulation error with respect to the state of the exosystem errori = x<

-

I1í,ju>.

40



CHAPTER 4. CONSENSUS AND REGULATION OF SLS MAS

■^
•o ,

tioro.'.-' *..» *■
...<■»•'

_¿ , ,

Figure 4.4: Output regulation and consensus error errori = Xj
— II, j-w.

From these figures, it can be seen that both errors are very similar and stable

except by the dashed lines on errors of system two.

The dashed lines on errors of system two never decay to zero because the corre

sponding state does not share the same terms on the corresponding II, but this

error does not affect the regulation, given that such a state is not observable.

4.3 A distributed control design for the output regu
lation and output consensus of a class of switched lin

ear multi-agent systems under switching communica

tion topologies

In the present section, the problem of output consensus and output regulation of

SLS multi-agent systems under switching communication topologies is addressed.

In the proposed approach. a local state feedback control law is computed for

each linear dynamics of a SLS agent, such that, each of the Unear dynamics of

SLS system share a common Lyapunov function, thus the SLS agent dynamics

ís stabilized, and as ín the previous approach the exosystem state is obtained by

means of an observer.

Under the assumptions made on communication topologies, the existence of Lya

punov functions for each of the agents guarantee the existence of a common

Lyapunov function for the SLS system with a negative derivative under any com

munication topologymeeting the restrictions. Henee, the stabüity of the switched

regulation and consensus error is guaranteed under switching communication

topologies, and the outputs of the SLS multi-agent system achieve consensus

and regulation.

41



4.3. SWITCHED COMMUNICATION TOPOLOGIES

4.3.1 Problem statement

Consider a system of N agents with different SLS dynamics of class (4.8), (4.9)
described by

xi(t)=Aijixi(t) + Bijiui(t) i = l,.-.,N

yi(t) = CiXi(t) ji = l,...,ki
^áy)

where, Xi(t) G R"* is the state, Ui(t) G R"1* the control, and yi(t) G Rg the output

of the i-th agent, and a virtual reference agent whose dynamics is represented by
the exosystem (4.6) with output

t/oto = B"(t) (4.40)

where R G R?*?"1

Remark 4.5. It is considered that rank {Ci} = q for i — l,...,N.

Let Q^ be a switching graph representing communication among the SLS agents

of system (4.39) together with the exosystem (4.6), then the foUowing hypothesis
is assumed.

Hypothesis 4.5. (H4-5) The graph Q^ does not contain loops, and incorporates
a spanning tree with root on vq (reference agent) for any Qt.

Define the i-th agent output consensus and regulation error as

Ciet to
= £ «í,jw [Oí to

-

»(*))] + «i,oet l(yo(t)
-

yi(t))] . (4.4i)
■7=1

Note that the weight tti,o corresponds to the difference between the i-th agent

output and the virtual agent (reference) output (4.40).

Thus, the problem of distributed output regulation and output consensus of SLS

multi-agent systems under switching interaction topologies consists on obtaining
a distributed control law such that every agent output consensus and regulation
error Q (t) tends to zero asymptoticaUy under any switching sequence of gt.

Next, the problem of distributed output regulation and output consensus of

SLS multi-agent systems under switching interaction topologies, is addressed for

agents with different dimensión and dynamics.

4.3.2 Distributed output consensus and regulation control

For ease of notation and without loss of generaüty, consider the controllable part

(4.10) of JV SLS agents of class (4.8), with output (4.9) as in (4.39).
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Given that only a subset of the SLS agents will have access to the reference

(4.40) and none of them to the exosystem state (4.6), the following observers are

proposed

¿i(t) = Su>i(t) +— (?»(*)
~

Pi*AfcW) Vj € eiít (4.42)
Pie, '

where «i is such that the matrix (S
- mR) is Hurwitz. Now, set the distributed

output regulation control law as

■mi» = -KíjMQ + r*jA(t), (4-43)

for ji G {1, • - -Jfci}. Note that control (4.43) is of the form (4.7) and depends on

the exosystem observer state J>i(í).

Define the ¿-th observer error as

Wi(t)=u(t)-u3i(t), (4.44)

henee, its dynamics will be described by

¿i(í) = Sü>i(t)
- — (E%(í)

-

Piet Ru>i(t)). (4.45)

Consider that Hypothesis (H4.2) is met, then the i-th agent regulation error can

be defined as

eito = Xito-IIi(2-ito (4.46)

and its dynamics is given by

¿ito = ÍA*
-

BijiKijMt)
- Ui^-myj(t)

-

PiHR¿>i(t)). (4.47)

From (4.44) and (4.46), it can be inferred that

j/ito = dxi(t)
= d (ei(í) + Ui (w(t)

- ^(í))) (4-48)
= Ciei(t) +R(w(t)-üi(t)).

Take the second term in (4.45) and substitute yj as in (4.48)

(e%(í)
-

P.„ ilúito) = E {ñMt)
-

¿ito) + C. e. (*)}
-

Pi.t -R^ito- (4-49)

It can be seen that

ERw(t) = pietRuj(t), (4-50)
i
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thus,

(zRu>(t) - pietRwi(t)\ = PietRC¿i to- (4.51)

Using (4.49) and (4.51), the i-th observer and regulation error dynamics (4.45),

(4.47) can be restated as

¿ito = — (V (rüi(t) -

Cjej(t)) ) + (S
- i^r) Qi(t)

Piet \J 1

éi(t) = üi-^-E (Rwj(t)
-

CjCj(t))

+(Aijt
-

BijiKij-^t)
-

UiKiRü>i(t).

Define the i-th agent observer-regulation error as

6(9 =

and SLS multi-agent observer-regulation error as

4to = [tfto íí(*) •■• $to]s

¿>ito

ei(í)

(4.52)

(4.53)

(4.54)

(4.55)

Consider that Hypothesis (H4.5) is met, then, given any communication topology

G-yo, there exist an order 07o, such that, the Laplacian £7o is a lower triangular
matrix. Thus, the reordered SLS multi-agent observer-regulation error dynamics
will have a block lower triangular form

where

•^to ~

ni*
/%,i

S70 to —

-™70S70 to

0 •■• 0

n2,i2
• ■ • o

(4.56)

Pn-1,1 /3/V-1.2 Qn-IJn-! 0

Pn,i Pn,2 ■■•

Pn,n-i £Injn

with indexes according to the order O70 and switched matrix blocks

"i,.* =
S-kíR 0

-IUkíR Aiji
—

BijtKijt

(4.57)

on its diagonal, where £ft(i) = Te¿(t) for gt = 70 and 7^4(4) G RSni is a

transformation matrix, which changes the order of the agents.
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Henee, it is clear that the SLS multi-agent observer-regulation error will have

switched Unear dynamics

é(t) = Áe¿(t) (4.58)

where Aft G R2"**2"..

Now, the main result of this section can be stated.

Theorem 4.7. Consider that Hypothesis (H4.1)-(H4.3), and (H4.5) are met,

then the distributed output regulation and output consensus of the SLS multi

agent system under switched interaction topologies with agents of the form (4-8)
with output (4-9) can be solved by a control law of the form (4-43)-

Proof. Consider a SLS multi-agent system with agents of the form (4.8) with

output (4.9), an exosystem (4.6) with output (4.40), and control law (4.43).

Then, under Hypothesis (W4.5) and a given order 07o the corresponding SLS

multi-agent observer-regulation error will have the form (4.56). Given Hypothesis

(H4.1), the switched block matrices ííjj4 are such that there exist positive definite

matrices Pi and Qiji, for which the equations

SlljiPi - PA* = -Qiji (4.59)

are met.

Set

V(t) = EVÍ(Í) (4.60)
i

as a common Lyapunov function for system (4.56) where

Vi(t) = íitoT^ito- (4.61)

Consider V_(í), whose derivative

Vito = -6toTQi,¿!6to (4.62)

is clearly negative, independent from the valué of £i(í)- Thus, the observer-

regulation error £i(í) is stable. For V2(t) its derivative is

V2(t) = -6 (t)TQ2j2^(t) + 6 (tfol&Ut) + 6 torP2í?2)i6 (t) (4.63)

henee, given the stability of £1 (t) the terms with £2ii will become zero and the

derivative of V2(t) will be negative, therefore, the observer-regulation error £2(t)
is stable. The same reasoning can be applied to the rest of the V.(í)'s. In this

way, it is concluded that the derivative of the common Lyapunov function (4.60)
is negative, and as a result, the observer-regulation error (4.56) is stable.
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and the Aj's are diagonal matrices containing the absolute valúes of the eigenval
ues of the matrices Ai.

Define a common Lyapunov function for the JV linear subsystems

V(x) = x(t)TPx(t) i = l,2,-..,JV (A.3)

where

P = (EET)-1 (A.4)

Taking the derivative of V(x(í))

V(x(t)) = x(t)T(PAi + AfP)x(t) (A.5)

is obtained, clearly in order to guarantee that V"(x(t)) is negative and consequently
the SLS system is stable, it is needed that L = PAí + AfP < 0.

Let L be

L = (EE¡T)~lAi + Af(EET)~1 = -(EET)-lWE~l (A.6)

solving for W from (A.6)

Ai + (EET)Aj(EET)-1 = -WE-1

AiE + (EET)A[(EET)-1E = -W

AiE + EETAfE-TE-1E = -W

AiE + EETAjE-T = -W

-2EKi = -W.

Substituting W in equation (A.6)

L = -(EET)-1(2EAi)E-1

l = -2í;-Tí;-1_5Ai£,-1

henee

L = -2E-TKiE-1 (A.7)

which is negative defined for all Ai. This demonstrates that there exists a com

mon Lyapunov function with negative derivative for all the linear subsystems,

therefore, the SLS system is stable. Q
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A.2 Design of a stabilizing control

Consider a switched Unear system

x(t) = Aix(t) + Biu(t) (A.8)

where the pars (Aí,Bí) are controllable In order to stabilize the switched linear

system, a switched state feedback wiU be designed to move the eigenvectors of its

composing linear subsystems.

This way the objective is to design an algorithm to find a set of eigenvectors to be

shared by all the subsystems of system (A.8), which at the same time guarantee
the stabiUty of every subsystem.

Let

xi(í) = A.xito + Bitiito (A.9)

be a controllable linear system which belongs to a switched linear system like

(A.8), consider a state feedback input Ui(t) = —K\Xi(t), then

xi(í) = (Ai -

Bi^Oxito. (A.10)

It is clear that the eigenvectors of system (A.10) are in the kernel of matrix

Ai - XJ - BtKi

(Ai-XiI-B1K1)vi = 0 (A.11)

henee, calculating ker {Ai - Xii - BiKi}, the eigenvectors of system (A.10) re
lated to eigenvalue Ai will be found, but K\ is unknown.

To overeóme this problem define a set of new vectors

<7*
= Kxví (A.12)

now the augmented vector [ vf qf ] satisfies the foUowing condition

[ Ai - XJ Bi ] = 0. (A.13)

Condition (A.13) enables us to calcúlate the Vi = iber- {Ai - XJ -

B\Ki} as a

function of Ai

Vi = i9(Xi) (A.14)

without using an explicit valué for K\. Unfortunately, in general, these functions
are nonlinear.

Having these expressions for the subsystems of a SLS, a relation between the

eigenvalues of the subsystems while guaranteeing the same eigenvectors, wiU be

sought.
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b) ®

c) ®

Figure 4.5: Graphs of the corresponding communication topologies

consider the initial conditions

uj(0) =
1

-1

1

and take the reference matrix as

R =

2 0 1

0 1 1

Then, the exosystem observers are described by

¿¡(i) = Su)i(t) +

2.03 -1.84

5.53 7.84

5.41 -2.34

y^
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2 O 1

O 1 1

*«
= <

(l/oto-[o
°

!]*(*))

fy2(t) + y3(t)

(yo(t) + y3(t)

i V 2

p.Os < t < p.250s

<2>i (t) ) /x.250s < í < p.500s

? Jlwito) /x.500s < t < /i.750s

wi(t) J /i.750s < í < /x + l.Os

2 O

O

2 O 1

O 1 1

y*et
= <

'(S&+M.-[J J }]*(,)) p.0s<t<p.250s

(yo(i)- l J J w2to) /x.250s < í < /i.500s

(*»(*)" o 1 1 ^(í)) ' 00s-

(yito- Q i 1 ¿2W) ,
^ - ! 1.0

3*.=

(=Itt(í)
"

'

2 0 1

0 1 1

r 2 o 1

0 1 1

"

2 0 1

0 1 1

"

2 0 1

'

0 1 1

"

2 0 1
'

0 1 1

Uto-
o i 1 ^W) /i-Os < t < /i.5005

flato ) ¿/.500s < t < p + l.Os

where p,
= {l, 2, ■ ■ • 14}. The initial conditions of the observers were taken as

fli(O) = wa(0) = , A3(0) =

FinaUy, according to the previous the switched distributed control laws are com-
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puted as

itito = <

1.14 0.63

6.31 1.91

-0.05 0.63

6.31 3.29

4.47 0.62 4.15 2.81

6.89 2.43 5.53 2.37

xi(t) +

xi(t) +

1.41 -0.56 0.72

-3.77 1.83 -1.66
fliW

-1.54

9.83

0.78 -0.65

-3.96 5.03
¿>i(t)

u2(t) = <

-4 2.33 0

1 0.33 0
x2(t) +

-11.66

4.33

5.66 0

-0.33 0

-2.33

1.66

x2(t) +

-1.66 4 0

1.33 0 0
x2(t) +

-2.33

1.66

5.66

-1.83

1
'

0.5
Ul2(t)

2.33 5.66 1

1.66 - -1.83 0.5

5.66

-1.83

1

0.5
w2(t)

Ci2(t)

«sto =

11.05 22.59

-22.54 -50

12.10

-0.49

32.63

-4.94

2.80

-9.85

11.27

-4.23

12.38

-19.83
x3(t) +

4.73

-16.87

¡2.68

4.88
a*W +

r 19.31

[ -7.32

5.92

-5.96

-22.35

44.69
ws(t)

-5.56

5.79

-22.94

0.17
<Í3(t)-

The order of the switching controls is the same as the one of the SLS dynamics to

which they correspond. The references and the trajectories of the outputs of the

multi-agent system obtained in simulation are shown in Fig. 4.6. The outputs,

j/í,i and yi.2 follow the same trajectory respectively. The exosystem u is in this

case composed by a sine function uj\, a cosine w2 and a constant u3 = 1. It can

be seen in this figure that the valué of the reference is attained by every output.

Fig. 4.7 displays the behavior of the regulation error (4.47), while Fig. 4.8 displays
the regulation error with respect to the state ofthe exosystem errori — Xí-Híju.
From these figures, it can be seen that both errors are stable except by the dashed
lines on errors of system two.

The dashed lines on errors of system two never decay to zero because the corre

sponding state does not share the same terms on the corresponding n. But, this
error does not affect the regulation given that such a state is not observable.
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Time (s)

Figure 4.6: Outputs reaching consensus and tracking.

Time ls\

Figure 4.7: Output regulation and consensus error ei = Xi
—

Hija.
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Figure 4.8: Output regulation and consensus error errori
= Xj

—
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Chapter 5

Conclusions and future work

5.1 Conclusions

In Chapter 3, it is presented a control strategy for the output consensus and out

put regulation ofmulti-agent systems with agents described by linear multi-input
and multi-output systems with different dimensions, and a reference produced by
an exosystem considered a virtual agent. The number of outputs of each agent

to be controUed is restricted to be the same.

It was demonstrated that the proposed control law guarantees that output con

sensus and output regulation is attained by the group of agents in formation,
when only a subset of the agents has access to the reference, and none of them

has access to the state of the exosystem.

The agents make use of an observer, with the outputs of its neighbors as inputs,
to get the state of the exosystem.

The butput consensus and output regulation error stability is guaranteed by prop

erly selecting a stabilizing state feedback for each of the agents.

Recent works addressing the same problem are [42], [40], and [36]. The three

of them solve the problem of output consensus and output regulation of linear

multi-agent systems. In [42] and [40] control laws are designed based on an

internal model approach, such that the control is robust to parameter variations

in the systems. In addition, the work in [40] takes into account systems with

different dimensions and switching communication topologies. But none of these

works allow the multi-agent system formation. In [40], an approach similar to

the presented in this thesis is used, with the difference that the observer of one

agent depends on the state of the observers of its neighbors, while here, only
the knowledge of the outputs of its neighbors is considered. Another difference
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is that such characteristic of the observers allow the consideration of switched

interaction topologies.

In Chapter 4 two different approaches to the output consensus and output regu

lation of SLS multi-agent systems are presented. The first of them addresses the

design of a control law for the distributed output consensus and output regulation
of a group of SLS agents of class (4.8) in formation.

It was demonstrated that the proposed strategy achieves the output regulation

and consensus of the SLS multi-agent system preserving a desired formation even

when only a subset of the agents has access to the reference, and none of them

have access to the state of the exosystem.

The agents obtain the exosystem state by means of distributed observers based

in the outputs of their neighbors.

The observer-regulation error results with a lower block triangular form, and its

stability is guaranteed by properly selecting a switched state feedback to assure

the stability of the agents.

Finally, the second approach in Chapter 4 addresses the design of a distributed

control law for output consensus and output regulation for a group of SLS agents

of class (4.8) under switched communication topologies.

It was demonstrated that the proposed control law achieves the output regulation
and consensus of the SLS multi-agent system, under switching communication

topologies, even when only a subset of the agents has access to the reference, and

none of them have access to the state of the exosystem.

The observer-regulation error results in a switched linear system. If the state

feedback is selected such that each of the agents has a common Lyapunov func

tion, then the existence of a common Lyapunov function for the dynamics of the

observer-regulation error for a given communication topology is guaranteed. Un

der the assumptions made on communication topologies, the common Lyapunov
function for the dynamics ofthe observer-regulation error for a- given communica

tion topology is a vahd common Lyapunov function for the observer-regulation er

ror under any topology. Henee, the switched dynamics of the observer-regulation
error share a common Lyapunov function, consequently, the observer-regulation
error is stable.

5.2 Future work

Among the future work appears the following:

1. Improve the control laws adding robustness to parameter variations.
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2. Consider the case of delays in the communication between agents.

3. Make use of an observer to compute the states of the agents.

4. Design of a control law for SLS output consensus and regulation avoiding
agents collision.
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Appendix A

Phase plañe aligning stability
condition for SLS systems:

proof and control design

This appendix presents the proof and control design related to the Theorem 4.3

in Chapter 4

Consider a switched linear system

x(í) = Atx(t) + Biu(t)

where the pairs (Ai, Bi) are controllable and a switched state feedback (4.2).

Theorem 4.3: If the switched state feedback (4-2) is such that, the matrices

(Ai
— BíKí) are Hurwitz, and its eigenvectors are the same for all i, then the

SLS system will be stable.

A.l Proof

Proof. Let

x(t) = Aix(t) i = l,2,...,N (A.l)

be a SLS system composed by N stable linear subsystems sharing all their eigen

vectors, where x(t) e Rn and let E € Rnxn be a matrix formed by those eigen

vectors

AiE = -Ehi (A.2)
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and the Ai's are diagonal matrices containing the absolute valúes of the eigenval

ues of the matrices Ai.

Define a common Lyapunov function for the JV linear subsystems

V(x) = x(t)TPx(t) i = 1, 2,
■ • ■

,
JV (A.3)

where

P = (EET)'1 (A.4)

Taking the derivative of V(x(í))

V(x(t)) = x(t)T(PAi + AfP)x(t) (A.5)

is obtained, clearly in order to guarantee that ^(x(í)) is negative and consequently
the SLS system is stable, it is needed that L = PAi + Á[P < 0.

Let L be

L = (EET)-lAi + ATi(EET)-1 = -(EE^WE-1 (A.6)

solving for W from (A.6)

Ai + (EET)Áf(EET)-1 = -WE'1

AiE + (EET)Af(EET)-1E = -W

AiE + EETAfE-TE-1E = -W

AiE + EETAfE-T - -W

-2EAi = -W.

Substituting W in equation (A.6)

L ______-(EET)-1(2EAi)E-1

L = ~2E-TE-1EAiE-1

henee

L = -2f;-rAiE-1 (A-7)

which is negative defined for all A¿. This demonstrates that there exists
a com

mon Lyapunov function with negative derivative for all the linear subsystems,

therefore, the SLS system is stable. '-'
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A.2 Design of a stabilizing control

Consider a switched linear system

x(t) = Aix(t) + Biu(t) (A.8)

where the pars (Aí,Bí) are controllable In order to stabilize the switched linear

system, a switched state feedback will be designed to move the eigenvectors of its

composing linear subsystems.

This way the objective is to design an algorithm to find a set of eigenvectors to be

shared by all the subsystems of system (A.8), which at the same time guarantee
the stabiUty of every subsystem.

Let

xi(t) = Aixi(t) + Biuito (A.9)

be a controUable Unear system which belongs to a switched linear system like

(A.8), consider a state feedback input ui(t) = —K\Xi(t), then

xl(t) = (A1-B1K1)x1(t). (A.10)

It is clear that the eigenvectors of system (A.10) are in the kernel of matrix

A1-XiI-B1Ki

(Al-\I-BlKl)vi = Q (A.11)

henee, calculating ker {A\
— XJ —

B\K\}, the eigenvectors of system (A.10) re

lated to eigenvalue Ai will be found, but K\ is unknown.

To overeóme this problem define a set of new vectors

?i
= Km (A.12)

now the augmented vector [ vf qf ] satisfies the foUowing condition

[ A1 - Xii Si ]
Vi

Qi

= 0. (A.13)

Condition (A.13) enables us to calcúlate the Vi = fcer {Ai
— XJ —

B\K\} as a

function of Ai

ví = t9(Xi) (A.14)

without using an explicit valué for K\ . Unfortunately, in general, these functions

are nonUnear.

Having these expressions for the subsystems of a SLS, a relation between the

eigenvalues of the subsystems while guaranteeing the same eigenvectors, will be

sought.
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Consider a SLS composed of JV different subsystems of dimensión n, and let Víj

be the j-th eigenvector of the i-th subsystem. Then, given that it is wanted that

all the subsystems have the same eigenvectors, it is set

víj
= tf(Ai¿) = tf (Ai+i¿) = vi+1j (A.15)

which results in a set of n nonlinear simultaneous equations, therefore, no solution

can be found (for the general case).

Nevertheless, for the case of subsystems of dimensión two, such a solution can al

ways be found, furthermore, the expressions for the eigenvectors can be expressed

in a linear form. For subsystems of dimensión three with one input, only three

solutions can be found for any pair of subsystems, in other words, in general, for

two systems of dimensión three with one input, only there exist three different

eigenvectors to be shared.

These results make this approach hardly useful for systems of dimensions bigger

than two.

Consider a controllable linear system of dimensión two part of a SLS

xito = A_xito+&iUi(t), (A.16)

with input u = —K\X\(t) and let v\ and v2 be the eigenvectors required to be

common for the system, such that

(Ai-Mfi^Ai.ii;! (A.17)

and

(Ai
- biKi )v2 = Ai,2-y2. (A.18)

Rearranging equations (A.17) and (A.18) leaving on the right side only the terms

independent from Ai,i, Aij2 y K\

X\_\V\ + b\K\V\ = A\V\

Ai,2v2 + b\K\v2 = A\V2

define Ai = [ Ai,i Ai)2 ]

[vi 0 ] Xi+hvfKf = Aiv-i

[0 v2 ] Ai + hvjKf = A__v2

In this way the equations can be set on a matrix form

(A.19)
vi 0 Mí] r Ai

• '

Aivi

0 v2 M_T L ^ \ .

AiV%
.
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solving for Ai and Kf, the state feedback that makes v\ and v2 the eigenvectors
of system (A.16) can be calculated

Ai «i 0 bivf
-i

Aivi

Kf j 0 vi b\v\\ Aiu2
(A.20)

At this point, the eigenvectors of the linear subsystems can be assigned, but given
that by the time of moving the eigenvectors to a set valué, the eigenvalues move

on a random way, thus a new problem arises: how to find a set of eigenvectors
that at the same time of being common for the Unear subsystems of a SLS system,
also be associated to eigenvalues with negative real part?

Consider a similarity transformation to take the system to its controUer form

xi(t) = AiXito-|-&it.to

where for an xi (t) € Rn

¿ito = TfMiTiíito + T{lbiu{t)

Tf^iTi =
0 J„-i

ai a2

the terms cu are the coefficients of the characteristic polynomial ofAi, and

Tf1^ =
0„-i

1

Applying the previous procedure to move the eigenvectors of x\(t)

vf.i 0 0 0

«1,2 0 Vl.i Vy2 Ai
■

TfUiT^-i
0 v2>i 0 0 K,1

. rfUiTuJa
0 V2<2 V2.l V2.2

(A.21)

where i/_ and v2 are the eigenvectors of the matrix (Tx JAiTi —

Tt 161J^1) and
t>i = TitJi and v2 = Tiv2.

Rewriting (A.21) it is obtained

vi'i 0 0 0

V\,2 0 vf,i uf,2
0 vii 0 0

0 u2>2 u2,i u2,2

Kr

«1,2

alvi,l + OC2V\m2

«2,2

ot\v2ti + a2v2_2

(A.22)

where it can be clearly observed the next relationships between the elements of

the eigenvectors V\ and v2
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«r.iAi.i = «í,2

«2,iAi,2 = «2,3.
(A.23)

The relationships shown in (A.23) can be written in the form of a vector equation

[ Ai,i -1 ] «i = 0

[ Ai,2 -1 ] V3 = 0.

(A.24)

Substituting the vectors v\ and v2, a relationship between eigenvalues and eigen
vectors is found

[ Ai,i -i ] rfV = o

(A.25)

[ Ai,2 -1 ] T^v2 = 0.

Simplifying the equations in (A.25) in a matrix form

Tf1 [ Vl v2]=0.
Ai.i -1

Ai,2 -1
(A.26)

Consider the result in equation (A.26) for two different linear subsystems of di

mensión two, then, it can be seen that

.
^1,2

t^1 [v! V2] =
A2,i -1

A2,2 -1
IJ-1 [Vl v2]. (A-27)

Given that the eigenvector matrix is invertible, it can be eliminated from equation

(A.27)

Ai.i -1

Ai,2 -1
ir1-

A2,i -1

A2j2 -1

-.-i

(A.28)

Solving for the eigenvalues of the second subsystem, a direct relation between the

eigenvalues of two different linear systems of dimensión two which share eigen
vectors is found

(A.29)
A2,i -1 Ki -1

A2,2 -1
.
Ai,2 -1

T^T2.

Repeating the previous process for aU the subsystems of the SLS system and

solving in every case for the same eigenvalues, the. problem of finding the com

bination of eigenvalues that stabilizes the SLS system reduces to solve an LMI

program to find the valúes of the dependent eigenvalues

Ai,i -1 Ai.i -1

Ai,2 -1
.
Aii2 -1

T^Ti (A.30)
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including the relations with the other eigenvalues as restrictions to the program

T^Ti < 0. (A.31)
r a,.! -i

In this way, if a solution exists for the LMI, it guarantees the negativity of the

eigenvalues of aü the linear dynamics that composes the SLS system.

FinaUy, having calculated the stabilizing eigenvalues, the SLS stabilizing feedback

can be calculated through the weU known methods.

A.3 Example

Consider a piecewise linear system of dimensión two,

xto = Aix(t) + ¿«(i) i 6 {1, 2, 3}

composed of three different Unear subsystems with matrices

A*=[w í] ^2=[-21 3] Á3=[~J

(A.32)

-7 8

2

each of them with unstable dynamics, therefore, each of the subsystems has at

least one eigenvalue with positive real part.

The subsystems are distributed in the state space as displayed on Fig. A.1.

Employing the proposed stabilizing procedure, the desired eigenvalues are found

A_ =
-78

-79
A2 =

-1

-1.0455
Aa =

-39

-39.3636

consequently, the required feedback gains

Ki = [ 366 167 ] K2 = [ -4.81 8.04 ]

wül produce the following common eigenvectors

K3 = [ 138.45 73.36 ]

v =
0.2425 -0.2400

-0.9701 0.9708

The phase plañe of the autonomous SLS system is shown in Fig. A.2.

Applying the feedback gains obtained previously, the resulting phase plañe of the

piecewise linear system is shown in Fig. A.3, where aü the system trajectories
are stable and phase plañe is similar to that of a Unear system with eigenvectors
v.
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\ A3 A1

A2

\
A3

A1 A2

Figure A.l: Phase plañe of the autonomous PWL system

Figure A.2: Phase plañe of the autonomous PWL system
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