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Abstract

Correlation and structure functions are widely used in many branches of physics and in gen-

eral in stochastic analysis. Correlation functions are well supported by many theoretical and

technical works treating its fast calculations and statistical accuracy. The structure-function

has received less attention than the correlation function, but it offers a better performance

in some analysis, and it is the only function capable of characterizing nonstationary process

with unitary increments.

In this thesis, we present PhotonSTR − 18, a free LabVIEW software. This software com-

putes the auto and cross-correlation and structure-functions in an off-line mode in parallel.

To do so, we extended the multi-τ algorithm, initially formulated for calculating the correla-

tion function, to calculate the structure-function. The algorithm allows the fast calculation

of the structure-function by software. These two functions, correlation and structure func-

tions, are used to analyze phenomena where there is a fluctuation in the intensity of events

over time, as in chemical, biological, and other physical processes.

To show the use of PhotonSTR − 18, we perform light scattering experiments using poly-

acrylamide networks and PNiPAM microgel colloidal systems as samples. In our experiment,

we avoid using a hardware correlator; instead, we save the photon history of the scattered

photons and use PhotonSTR − 18 to perform the analysis. Using our software, we obtain

the advantage of having both the correlation and the structure-function without losing the

photon history. We pay special attention to the results of the binary-charged colloidal sus-

pensions due to unexpected results. This system’s cross-correlation function passes from

ix



being a decreasing function to an increasing function as time evolves. We use the photon

history to make a more in-depth analysis of the time series.
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Resumen

Las funciones de correlación y de estructura son ampliamente usadas en muchas áreas de la

f́ısica y en general en el análisis estocástico. Las funciones de correlación están bien funda-

mentadas por muchos trabajos tanto teóricos como prácticos donde se aborda su cómputo

rápido y su exactitud estad́ıstica. Por su parte, la función de estructura ha recibido menos

atención y uso que la función de correlación, sin embargo, esta ofrece un mejor desempeõ en

algunas situaciones y es la única capaz de caracterizar procesos no estacionarios con incre-

mentos unitarios.

En esta tesis presentamos PhotonSTR − 18, un software libre programado en LabView.

Este software realiza el cómputo en paralelo de las funciones de correlación y de estructura

en modo auto y cross- de manera ”off-line”. En este contexto, se extendió el algoritmo

Multi-τ , originalmente formulado para las funciones de correlación, para calcular las fun-

ciones de estructura lo cual permite el computo rápido de la funciones de estructura por

software. Ambas funciones pueden ser utilizadas para analizar fenómenos donde existe una

fluctuación en el tiempo de alguna señal, tal y como sucede en qúımica, bioloǵıa y algunos

procesos f́ısicos.

Para mostrar el uso de PhotonSTR − 18 realizamos experimentos de dispersión de luz us-

ando como muestras redes de polyacrylamide y microgeles coloidales de PNiPAM. En los

experimentos se evita el uso de correladores por hardware, en su lugar, se guardó el tiempo

de llegada de los fotones dispersados y se usó PhotonSRT −18 para realizar el análisis. Esto

nos da la ventaja de tener no solamente la función de corrrelacion sino también la función

xi



de estructura y sin perder el registro de los tiempos de llegada de los fotones. Se presta

atención especial a los resultados de los cristales binarios de particulas de Latex debido a

unos resultados inesperados. Las funciones de cross-correlación pasan de ser funciones de-

crecientes a ser crecientes con el paso del tiempo. Usamos el tiempo de llegada de los fotones

para hacer un análisis más profundo de los resultados.
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Chapter 1

Introduction

Correlation functions (CF ) are widely used in condensed matter and quantum optics exper-

iments. For example, in the field of the so-called photon correlation spectroscopy, CF are

used to determine the diffusion coefficient of colloidal particles in suspension and their size

distribution [1]. The interesting phenomena of glass transition [2, 3] is studied in terms of

CF among other examples [4]. The use of CF is well supported by many theoretical works,

analyzing its statistical accuracy; and technical works (see for example [1, 5, 6, 7, 8]). In

particular, we highlight the Multi-τ algorithm which is critical for a fast calculation of the

CF . This algorithm reduces drastically the total number of operations required to compute

the CF . The fast calculation of CF by software and the online calculation by hardware

makes the CF an excellent option to be used in condensed matter experiments.

The structure-function (SF ), first proposed by Kolmogorov in fluid mechanics, is also de-

fined on the same grounds as the CF . Historically, the SF has received less attention than

the CF . There are only a few theoretical works [1, 5, 9, 10] and none experimental technical

work regarding the use of SF despite the fact it is less sensitive to statistical errors. To our

knowledge, there is not a single paper in literature treating the fast calculation of the SF .

We believe this is one of the reasons why the use of structure-function in photon correlation

spectroscopy has been almost ignored.
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Both CF and SF are equivalent when characterizing wide-sense stationary processes. A

more general kind of processes are the non-stationary processes with stationary increments

[11], where we can not use correlation functions and the structure functions are the only

possible choice [9, 1]. In the general case, a time series is not necessarily wide-sense sta-

tionary. The use of the correlation function alone is risky in these cases since it may not

characterize the process adequately. Thus, a fast calculation of both correlation and struc-

ture (CF & SF ) functions is desired. Additionally, (CF & SF ) functions have different

statistical properties, and even in the case of a wide sense stationary process, one could be

more accurate than the other.

Here we extend the use of the Multi-τ algorithm, initially designed to calculate the correlation-

function, to make the fast calculation of the structure-function possible. We present PhotonSTR−

18 [12], a LabView free software that computes the auto and cross- (CF & SF ) functions

in parallel by the multi-τ algorithm in offline mode. The theory behind PhotonSTR − 18

is displayed in this work together with a time performance analysis of our software. We

consider that the software architecture presented here can be exported to other language

programs and even hardware.

To test our mathematical model and software, we perform light scattering experiments. We

use a 3D LS spectrometer (LS Instruments AG, Switzerland) working with a He-Ne laser

and two avalanche photodiodes as detectors. The configuration of the 3D LS device allows

us to perform two scattering experiments simultaneously on the same scattering volume;

thus, obtaining the photon history of the two scattered beams and therefore being able to

compute auto and cross (CF & SF ) functions. In our scattering experiments, we choose

stationary and non-stationary systems to show the structure-function’s advantages over the

correlation function. The systems used are turbid media, known for being non-stationary

systems as the media becomes more turbid.

One of the systems under study are polymer matrices of polyacrylamide (PA), as those

used in reference [13]. We choose these systems because they are Polyacrylamide gels whose
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elasticity depends linearly on the amount of cross-linking fBis for small concentrations of

bisacrylamide [13]. We should expect light scattering from such systems departs from a

pure wide-sense stationary random process as fBis grows and the system becomes a non-

stationary process.

The second system under study is a binary charged colloidal suspension at low ionic strength,

composed of latex particles of different sizes suspended in deionized water. We pay special

attention to the results obtained from this system, because the correlation function pass to be

a decreasing function (g(2)(τ) > g(2)(τ+δτ)) to a increasing function (g(2)(τ) < g(2)(τ+δτ)).

A similar behaviour is found in the the structure-function.

The thesis is organized as follows. Chapter 2 displays the definition of the correlation and

structure function in their continuous and discrete forms together with a brief discussion

of their statistical properties. Later the Multi-τ algorithm for the correlation function is

presented, then we show how to compute the structure-function with the Multi-τ algorithm.

Chapter 3 reviews light scattering and derive the correlation and structure functions of the

scattered intensity, and discusses their equivalence to the photon counts’ correlation and

structure functions. Additionally, we derive the photon counts’ probability density func-

tions for different cases of the detected light. In chapter 4 we present PhotonSTR− 18. We

give a short mathematical description, a calibration, and a time performance analysis of our

software. In chapter 5, we describe our experimental setup and the synthesis of the samples.

The results of our experiments are shown together with an analysis of the results. Last, in

chapter 6, we present some concluding remarks of the work presented in this thesis.
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Chapter 2

Correlation and Structure Functions

We begin this chapter introducing some concepts of the theory of random processes, the

intention is to be self consistent rather than give a complete background. A random pro-

cess A(t) is a mathematical concept which includes all possible outcomes of an experiment

{a1(t), a2(t), ...}, where each function a(t) represents a particular outcome of an experiment

and t is the time or a evolution parameter. We will refer to a(t) as sample function and

to the complete set of sample functions as the ensemble of such functions. One may think

of the sample function a(t) as the outcome of a detector. The necessity of the definition of

the random process lies in the fact that in experiments where the sample function a(t) is

a measure over time, it is unlikely that if we repeat the experiment we measure the exact

same a(t), instead we measure another sample function of the ensemble of functions, say

b(t). Nonetheless, the two sample functions a(t) and b(t) may be different but they may hold

similar or same information of the experiment. Thus, we need a mathematical background

to deal whit these functions. In this chapter, we first introduce the concept of stationarity

and ergodicity of a random process. Then, the definitions of the correlation and structure

functions are presented and finally the Multi-Tau algorithm is introduced.
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2.1 Stationarity and Ergodicity

In the theory of random processes we say that a random process A(t) is Wide-Sense Station-

ary (WSS) if the following conditions are met [11]: the expected value E[a(t)] is independent

of t and E[a(t1)b(t2)] depends only on τ = t1−t2, being a(t) and b(t) two sample functions of

the random process A(t). From these two conditions one concludes that in a WSS process,

the statistical properties does not depend on the time origin. Another concept necessary for

our study is Ergodicity, which in the language of random processes consists in the equivalence

between temporal and ensemble averages[14].

2.2 Correlation function

The correlation function G is defined as [11],

Gab(τ) = lim
T→∞

1

T

∫ T

0

a(t+ τ)b(t)dt = 〈a(t+ τ)b(t)〉, (2.1)

where 〈 〉 indicates temporal average, a and b are two sample function of a stochastic process

and τ is the lag time. Usually, if a(t) = b(t) then Gaa(τ) is called auto-correlation function,

otherwise, its called cross-correlation function. The correlation function can be understood

as the average of the similarity of the function a(t) and b(t). Additionally, the statistical

correlation function is defined as;

Ḡab(t1, t2) =

∫ ∞
−∞

∫ ∞
−∞

a(t1)b(t2)P (a, b; t1, t2)dadb = a(t1)b(t2) (2.2)

where a(t1) and b(t2) are the sample functions at time t1 and t2, respectively, P (a, b; t1, t2)

is the join probability density function of the sample functions a(t1) and b(t2) and a(t1)b(t2)

indicates ensemble average. For an ergodic process, Gab(τ) = Ḡab(t1, t2) with the condition

that τ = t1 − t2. In practice, one computes the correlation function and not the statistical

correlation function due the difficulty to specify P (a, b; t1, t2). From equation 2.1, limit cases
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and properties of Gab(τ) can be computed, these are [11]:

Gab(0) = 〈a(t)b(t)〉, (2.3)

Gab(τ) = Gab(−τ), (2.4)

√
Gaa(0)Gbb(0) ≥ |Gab(τ)|. (2.5)

In the literature is common to use the normalized correlation function g(τ) instead of G(τ),

defined as

gab(τ) =
Gab(τ)

〈a〉〈b〉
, (2.6)

where we assume stationarity for the mean values of the sample functions, a(t) and b(t).

2.3 Structure function

The structure function is defined as [11]

Sab(τ) = lim
T→∞

1

T

∫ T

0

(a(t+ τ)− b(t))2dt = 〈(a(t+ τ)− b(t))2〉. (2.7)

Again, if a(t) = b(t) then Saa(τ) is called auto-structure function, otherwise, it is called cross-

structure function. As well as the correlation function, the statistical structure function is

defined as

S̄ab(t1, t2) =

∫ ∞
−∞

∫ ∞
−∞

(a(t1)− b(t2))2P (a, b; t1, t2)dadb = (a(t1)− b(t2)2. (2.8)

For ergodic processes Sab(τ) = S̄ab(t1, t2) with the condition τ = t1 − t2. The structure

function can be cast in analogy to the mean square displacement. Again, due to the impos-

sibility of specifying P (a, b; t1, t2), one computes the structure function and not the statistical

7



structure function. The structure and the correlation function are related by the equality

Sab(τ) = 〈a(t+ τ)2〉+ 〈b(t)2〉 − 2Gab(τ). (2.9)

For a WSS process, Equation 2.9 turns into

Sab(τ) = Gaa(0) +Gbb(0)− 2Gab(τ). (2.10)

As the correlation function, the structure function can also be expressed in its normalized

form, which definition is

sab(τ) =
Sab(τ)

2〈a〉〈b〉
. (2.11)

2.4 Correlation and Structure functions in their dis-

crete form

The definitions of the correlation and structure functions C & S need an explicit form of

the sample functions a(t) and b(t) in order to be calculated. On the other hand, in an

experiment only the discrete and finite forms of these function are available, in consequence,

discrete forms of equations 2.1 and 2.7 are needed. The discrete form of a sample function

aj, j = 0, 1, ..., T , where T is an integer, is a set of T + 1 numbers. Experimentally, the

sample functions are the result of a segmentation process (see appendix B). The raw data

of a detector is averaged over time intervals of width ∆t. We will refer to ∆t as the sample

time. As an example, in DLS each aj represent the sum of photons detected in the jth

time window of width ∆t and it is a discrete version of the number of detected photons per

unit of time. We also present the C & S functions in they normalized form. Additionally,

definitions of the moments of the sample functions are presented.
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2.4.1 Discrete definition of correlation and structure functions

The discrete definitions of the correlation and structure functions are [9]

Ĝab(τ) =
1

T − τ

T−τ−1∑
i=0

ai+τbi = 〈ai+τbi〉, (2.12)

Ŝab(τ) =
1

T − τ

T−τ−1∑
i=0

(ai+τ − bi)2 = 〈(ai+τ − bi)2〉, (2.13)

where τ is the the discrete lag time τ = 0,∆t, ..., T∆t and the hat stands for estimator. One

should note that the number of therms decreases as τ increases, thus, Ĝab(τ) and Ŝab(τ)

decrease in statistical accuracy as τ increase. A relation between Ĝab(τ) and Ŝab(τ) is also

present in their discrete form

Ŝab(τ) =
1

T − τ

T−τ∑
i=1

(a2
i+τ + b2

i )− 2Ĝab(τ) = 〈a2〉i+τ + 〈b2〉i − 2Ĝab. (2.14)

Where terms of the type 〈a2〉i+τ are given by

〈a2〉i+τ =
1

T − τ

T−τ∑
i=1

a2
i+τ . (2.15)

For a WSS process Ĝab(τ) and Ŝab(τ) are related by

Ŝab(τ) = Ĝaa(0) + Ĝbb(0)− 2Ĝab(τ). (2.16)

The moments of the discrete samples functions can be easily computed, the first moment of

a sample function for a WSS process is

〈a〉 =
1

T

T−1∑
i=0

ai, (2.17)

the second moment of the sample function is
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〈a2〉 =
1

T

T−1∑
i=0

a2
i . (2.18)

Higher order moments are computed similarly. As it was mentioned, the discrete estima-

tors do not include any consideration of possible noise in the data; then, we introduce the

following estimators for the correlation and structure functions, respectively

ĝ
(2)
ab (τ) =

Ĝab(τ)

〈a〉〈b〉
− 1 = ĝab(τ)− 1 (2.19)

and

ŝ
(2)
ab =

Ŝab
2〈a〉〈b〉

, (2.20)

These estimators reduce the estimator’s noise [6, 10], and are used in this work.

2.4.2 Correlations vs Structure functions

Even though the definitions of the correlation and structure functions are similar, they have

different statistical properties. The signal to noise ratio (S/N) behaves differently for each

functions, it depends on the nature of the noise in the data. The structure function is less

sensitive to low frequency noise [9], which leads to a better (S/N) ratio for short lag times

as compared with the correlation function. In photon detection experiments, the high fre-

quency noise is dominated by the low frequency noise for which the correlation function is

less sensitive [5].

In the context of DLS, the length of the measured data, the sample time of the raw data and

photon count rate also affects the accuracy of the estimators. For high photon count rate

〈a〉/γ ≥ 1, there is a region of lag times τ < ∆t/τc = γ; with τc being the coherence time,

where the structure function shows less statistical error than the correlation function [5].

Increasing the ratio 〈a〉/γ expands this region of lag times. On the contrary, for larger lag

times, the correlation function presents less statistical error. For short data length T < 104,
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the structure function shows less error than the correlation function for 〈a〉 ≥ 1 and short

lag times [5].

2.5 Linear Correlator/Structurator and the Multi-τ al-

gorithm

In order to compute the correlation and structure functions in their discrete form, one can

make use of a linear Correlator/Structurator (C/S), which computes the structure and cor-

relation function using their discrete definition. Using a linear C/S could be computationally

expensive, for example; in a data set of T + 1� 1 numbers, aj j = 0, ..., T in order to com-

pute C & S functions at all lag times 0 ≤ τ ≤ T , approximately T 2 operations are required.

On the other hand, a Multi-τ algorithm can compute the correlation and structure functions

in a fraction of a time compared to a linear correlator. The multi-τ algorithm uses an en-

semble of K linear C/S, each one of them computes the correlation and structure functions

increasing the sample time semi-logarithmically, in the segmentation process of the data.

Theoretical justification for Multi-τ algorithm is presented for both C&S, we first present

the one for correlation function and then we show how this can be extended to structure

functions.

2.5.1 Linear Correlator/Structurator

The architecture of a linear C/S consists of P counters, each one of them computes the

correlation and structure function at a different value of τ . For example, the channel P = 0

computes the C & S functions at lag-time τ = 0, the counter P = 1 computes at lag-time

τ = 1 and so on. The linear C/S covers the lag times 0 ≤ τ ≤ P∆t, a illustrative picture

of a linear C/S is presented in figure 2.1. The selection of the number P must be done

considering that the length of the time series used in the last counter is long enough to
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Figure 2.1: Graphical representation of a linear C/S with a lag-time τ = 3∆t. The function
f(aj, aj+3) = ajaj+3 for the correlation function, and f(aj, aj+3) = (aj − aj+3)2 for the
structure function. The function Σ computes the mean value of the operations.

reduce the statistical errors. The number of operations to compute C & S functions at

P = cT lag times, where 0 ≤ c ≤ 1 is a constant, in a data set of T � 1 is approximately

PT = cT 2. Different schemes of linear C/S have been reported in the literature[8, 15].

2.5.2 Multi-τ Correlator/Structurator

The multi-τ algorithm consists of an ensemble of K linear C/S with P counters and each

one of them increases the lag-time logarithmically. The sample time of the lth, l = 0, ..., K

C/S order scales as ∆tl = ml∆t0, where ∆t0 is the sample time of the 0th C/S and m ≥ 2

is an integer. In consequence, the lth C/S covers lag times τ = 0,ml∆t0, ...,m
lP∆t0 and

it computes the discrete estimator of the C & S with less operations than a linear C/S.

Approximately PTm/(m − 1) operations are needed to compute C & S functions. In the

multi-τ algorithm typically P is at most 256 and m is at most 4. Finally, the C & S

functions are obtained by properly joining the channels of C & S functions calculated in

each correlator.

To illustrate this better we introduced the following notation; let Ĝ(l)(τ), Ŝ(l)(τ), a
(l)
j and

b
(l)
j be the estimators of the C & S functions and the jth numbers in the data sets in the

12



lth linear C/S. We stress that the lag time scales different in each C/S, in the l − th

C/S τ = 0, ...,mlP∆t0 in steps of ml∆t0. Thus, the definitions of the normalized discrete

estimator of the C & S functions in the context of multi-τ algorithm become

ĝ
(l)
ab (τ) =

1

Tl − τ

Tl−τ−1∑
i=0

a
(k)
i+τb

(k)
i

〈a〉〈b〉
, (2.21)

ŝ
(l)
ab (τ) =

1

Tl − τ

Tl−τ−1∑
i=0

(a
(l)
i+τ − b

(l)
i )2

2〈a〉〈b〉
=
〈(a(l))2〉i+τ + 〈(b(l))2〉i − 2Ĝ

(l)
ab (τ)

2〈a〉〈b〉
. (2.22)

Where the mean values of the sample functions are computed at l = 0, Tl = T/ml. For

a WSS process, the terms 〈(a(l))2〉i+τ and 〈(b(l))2〉i are reduced to G
(l)
aa(0) and G

(l)
bb (0). We

want to emphasize that the length of the data set is reduced since Tl ≤ T . Not all lag times

computed in the C/S for k ≥ 1 are useful since some times overlap.

Increasing the sample time introduces systematic errors [7, 8]. The values of the C & S

functions calculated with different sample time but with the same lag-time do not necessarily

match, for example, g(1)(τ = 1) 6= g(0)(τ = 2) with m = 2. These systematic errors can be

set to be in the order of 10−3 or less (less than unavoidable errors [5, 6, 10]) if we choose

P/m ≥ 8 and join the C & S properly. To join the counters of the C & S functions

calculated in the different C/S we use all lag times with l = 0. Then, these are joined with

the channels at l = 1 and τ > P/m∆t0 to avoid overlapping, the next ones are joined in the

same way,

ĝ(τ) = ĝ(0)(τ) ∪ ĝ(1)(τ > P/m) ∪ ... ∪ ĝ(K)(τ > P/m) (2.23)

ŝ(τ) = ŝ(0)(τ) ∪ ŝ(1)(τ > P/m) ∪ ... ∪ ŝ(K)(τ > P/m). (2.24)

The systematic error introduced by increasing the sample time behaves differently in each

function. In the correlation function the systematic error is 10−3 in average [6, 7], thus, it

does not present substantial distortions. This is totally different for the structure functions,
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the use of equation 2.22 introduces systematic errors, at less, in the order of 100, which are

much larger than any other possible error and leads to substantial distortions. The source of

this errors are the therms 〈(a(l))2〉i+τ and 〈(b(l))2〉i, which have a huge systematic error while

Ĝ
(l)
ab (τ) holds an average error of 10−3. The solution to this problem is to use 〈(a(0))2〉i+τ and

〈(b(0))2〉i instead of 〈(a(l))2〉i+τ and 〈(b(l))2〉i in equation 2.22; by doing this, we reduce the

systematic error to the one introduced by G
(l)
ab (τ). Additionally, the terms 〈(a(0))2〉i+τ and

〈(b(0))2〉i present shot noise and must be properly corrected. Shot noise naturally appears in

photon detection process, it is due to the discrete nature of light and electric current and it

can be shown than only the terms of the type τ = 0 suffers from it [15]. This type of noise

also appears in the auto-correlation function G
(0)
aa (0) must be corrected as well.

2.5.3 Justification of Multi-τ for Intensity Correlations Functions

The estimation of a discrete correlation function depends non-trivially in the sample time,

choosing different sample times leads to different correlations functions. Nevertheless, the

gap between correlation functions computed with different sample time can be tuned to

minimize the associated errors. To show this we consider the well known relationship between

the expectation value of the estimator of the intensity correlation function and the theoretical

intensity correlation function[6],

〈ĝ(τ)〉TA =
1

(∆t)2

∫ ∆t

−∆t

〈I(t)I(t+ τ)〉
〈I(0)〉2

(∆t− |t|)dt =
1

(∆t)2

∫ ∆t

−∆t

g(τ)(∆t− |t|)dt (2.25)

where ∆t is the sample time, 〈I(0)〉2 is a normalization factor and 〈 〉TA stands for triangular

average. It is important to understand equation 2.25, first, the estimator 〈ĝ(τ)〉TA is a

smoothed version of the intensity correlation function g(τ). Second, the chose of the sample-

time can lead to distortions on the estimator due the fluctuation of g(τ). Third, equation

2.25 holds for auto-correlation functions and cross-correlation functions.
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If an algebraic form of g(τ) is known, the gap δg = 〈ĝ(τ)〉TA − g(τ) can be calculated.

This gap depends on the sample time ∆t as well as the lag-time τ . The gap represents the

systematic error due to the triangular average and is required to be as small as possible. An

relevant case is when g(τ) = 1 + exp(−2τ/Γ) (diffusive motion of colloids in suspension),

where Γ is a constant. A simple calculation leads to [7],

δg(τ,∆t) = e−2τ/Γ

{(
sinh (∆t/Γ)

∆t/Γ

)2

− 1

}
, (2.26)

this formula is valid only for the case τ ≥ ∆t. When 0 ≤ τ ≤ ∆t the gap δg is

δg(τ,∆t) =
1

(2∆t/Γ)2

{
e−2(∆t/Γ−τ) + e−2(∆t/Γ+τ) + 4(∆t/Γ− τ/Γ)

}
−1

2
e−2τ/Γ

(
1

(∆t/Γ)2 − 2

)
,

(2.27)

it is easy to show that equations 2.26 and 2.27 match in the case τ = ∆t. Equation 2.27 can

be deduced from the results of reference [8].

A graphical representation of equations 2.26 and 2.27 is presented in figure 2.2. As we see

in figure 2.2, the upper bound of δg(τ,∆t), with τ ≥ ∆t, tends to 0 as the α = τ/∆t grows.

Therefore, we are able to choose the maximum value of δg(τ,∆t) by tuning τ and ∆t. If

we wish to assure a maximum error of 10−3 between each merge of the correlation function

in the multi-τ algorithm, we must set τ/∆t ≥ 8. In the multi-τ algorithm, this condition

is achievable by setting P/m ≥ 8, and this guaranties a maximum systematic error of 10−3

between each joint in the multi-τ algorithm.

2.5.4 Justification of Multi-τ for structure functions

Following the same philosophy of the subsection above, we calculated the gap δs = 〈ŝ(τ)〉TA−

s(τ); where, for the sake of simplicity, we used the auto-structure function but these results

hold for cross-structure function as well. For a wide sense stationary process δs is
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Figure 2.2: δg(τ,∆t) (left axis) for different values of α = τ/∆t and δg(0,∆t) (right axis)
as a function of ∆t/Γ. The dotted line represents the upper bound 10−3, and it is used in
the left axis. The plots for α ≤ 7 may cross the upper bound 10−3 while for α ≥ 7 these
never crosses the upper bound regardless of the value ∆t/Γ. The plot for δg(0,∆t) shows
how the function has a lower bound of 100.

δs(τ,∆t) = 2δg(0,∆t)− 2δg(τ,∆t). (2.28)

We have already discussed the term δg(τ,∆t), and we concluded that the error can be set

to be smaller than 10−3 by fixing the parameters P and m. The term δg(0,∆t) is more

complicated to treat since it only depends on ∆t and, as it can be seen in figure 2.2, it has

a lower bound of 100. Therefore, to avoid the introduction of systematic errors we have

changed the terms G
(l)
aa(0) and G

(l)
bb (0) by G

(0)
aa (0) and G

(0)
bb (0).

We generalized this result for terms of the type 〈(a(l))2〉i alike to G
(l)
aa(0), and assume that

they also have a big systematic error. This suggests the use of terms of the type 〈(a(0))2〉i

instead of 〈(a(l))2〉i to construct the structure function. In consequence, equation 2.22 is

changed by the following equation

ŝ
(l)
ab (τ) =

〈(a(0))2〉i+τ + 〈(b(0))2〉i − 2Ĝ
(l)
ab (τ)

2〈a〉〈b〉
. (2.29)
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There is not shot-noise considerations in equation 2.29. In light scattering experiments, the

correction of the shot-noise for Poisson’s statistics in the photon count is done by subtracting

the mean value of photo counts; 〈(a(0))2〉i+τ → 〈(a(0))2〉i+τ − 〈a(0)〉i+τ [1]. Other type of

statistical properties of the photon counts require special attention and those will be treated

later on the text.

The systematic error in each join of equation 2.24, introduced by the multi-τ algorithm, is

reduced to δs(τ,∆t) = −2δg(τ,∆t). Another advantage of equation 2.22 is the recycling

of the correlation function. For the computation of the structure function, i.e. it is only

needed to calculate the terms 〈(a(0))2〉i+τ and 〈(b(0))2〉i.

17



Chapter 3

Light Scattering

In this chapter we discuss the basic notions of light scattering. We present a discussion of

the light scattering techniques and we display the experimental set-ups that we have used in

this work. We highlight the dynamic light scattering technique and derive some important

results of it. We also review photon statistics, in particular the Mandel’s formula and derive

some useful results of it.

3.1 Scattering of light

The Scattering theory (ST ) is one of the most important and successful frameworks in

physics with formulations in terms of classical mechanics, classical electrodynamics and

quantum mechanics among others. In simple terms ST studies the dispersion of particles or

waves by a potential, for example, in classical mechanics one could ask; how point particles

are dispersed by a hard-sphere potential? In more technical terms, ST solves the problem

of finding the flux of particles, or radiation, by a potential in a fixed direction known as the

differential cross section. Also, one can study the inverse problem of ST , being the differ-

ential cross section known, one could determinate the potential which causes the scattering

process.

For this work, we are interested in elastic dispersion of laser light, say electromagnetic waves
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or photons rather than mass particles and the scatters of interest are colloidal particles,

liquid crystal and gels which individual dimensions are less than the wavelength of the light

(Rayleigh scattering). The two accessible approaches are: 1) solve the Maxwell equations

for the scattered fields and compute the differential cross section, which can be measured

experimentally and, 2) the inverse one, which consists in measuring the differential cross

section and try to determinate the information about the scatters using previous results.

The first of this approaches is complicated due to the equations required to solve and does

not led to fruitful results. Due to this, the inverse approach will be used since information

about the scatters can be easily determined.

In this context, we understand the scattering process as follows; a known incident light beam

with intensity Io impinges on a sample, it transmits a portion of the incident intensity It

and scatters another portion Is. The scattered portion is then collected by a detector in an

specific direction, as is shown in figure 3.1, we refer to this set-up as the auto-correlation

scheme. In real experiments more complicated set ups are used but this basic idea still holds.

Thus, the scattered intensity is the outcome of the scatter process and contains information

of the sample. We describe the process in terms of the intensity rather than field because

all detectors are sensitive to intensity and not to the field itself.

There are many ways to analyse the scattered intensity, two main techniques must be dis-

tinguished; Static Light Scattering (SLC) and Dynamic Light Scattering (DLS). SLC

measures the mean scattered intensity as a function of the scattering angle 〈Is(θ)〉. On the

other hand, DLS measures Is(t), this is, the scattering intensity as a function of time at

a fixed scattering angle. The fluctuations of Is(t) are a consequence of the nature of the

sample.

Since this work, we mostly deal with DLS, thus a more detailed description of the exper-

iment is presented in the following sections. Additionally, the so-called photon correlation

spectroscopy is introduced together with some important results of correlation and structure

functions of the scattered field and intensity.
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Figure 3.1: Representation of a light scattering experiment. A light beam with intensity Io
and with a wave-vector ~ko impinges over a volume of the sample. The sample consists of
scatterers immersed in a continuous media. The transmitted light is not of interest since
it did not interacted with the sample. The scattered light beam is collected at an angle θ,
measured with respect to the transmitted beam. The detector used for SLS can be a light
intensity detector while for DLS it must be a photon detector.

3.1.1 Elastic Light Scattering

In the introduction of this chapter we have illustrated the scatter of light by matter, to

go on we must take further considerations. The first one is to consider the light source as

nearly monochromatic and very stable intensity. This consideration is no unrealistic if one

chooses laser light, whose frequency distribution is narrowed. The second is the assumption

that each photon, or partial electromagnetic wave, is scattered only one time before being

detected; this is possible when the samples are highly dilutes suspensions. The third one is

to consider the energy and momentum conservation in each scattering event, the momentum

conservation implies | ~ko |2=| ~ks |2. More general treatments correspond to other beyond

the scope of this work.

Let us consider a single photon scattering with a scatterer at position ~x(t). The photon has

an initial energy of ~ωo and momentum of ~~ko. The transfer of energy ∆ω and momentum
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~~q of the photon to the scatterer are

~∆ω = ~(ωo − ωs), (3.1)

and

~~q = ~(~ko − ~ks), (3.2)

where the subscript o and s refers to incident and scattered light, respectively. In DLS, the

energy and momentum transfers are typically in the order of ~∆ω ≈ 10o − 10−4(eV ) and

q ≈ 10−4 − 10−2(nm−1) [15]. This transfer of momentum corresponds to probing internal

structures of the sample, which dimensions are in the order of q−1. Studies of 〈Is(k)〉

correspond to SLS while studies of 〈Is(k, t)〉 to DLS.

The scattered and incident wave-vector have the same magnitude | ~ko |2=| ~ks |2= 4πn/λo,

where λo is the wavelength of the incident light and n is the effective refractive index of the

sample. Due to this, we are able to solve for the magnitude of ~q, a simple calculation leads

to

| ~q |2=| ~ko − ~ks |2=
4πn

λo
sin(θ/2). (3.3)

Thus the scattered photon reaches the detector with energy ~ωs and momentum ~~q. The

explicit form of the scattered electric field Es(t, ~qs) depends on the position of the scatter and

the wave-vector ~k. The scattering process produces a phase change on the photon; therefore,

the scattered electric field is Es(t, ~q) = E exp[φ(t,~k)] with φ(t, ~q) = ~q · ~x(t). The scattered

intensity is Is(t, ~q) = Es(t, ~q)E
∗
s (t, ~q), where E∗s (t, ~q) is a complex conjugate amplitude of

the electric field corresponding to the scattered photon. Without loss of generality, we will

write the electric field in a scalar form rather than the vector form.

A natural generalization of the scattering of a single photon is the scattering of a large

number of photons. Photons are bosons and they do not scatter with themselves, thereby,

the scattered photons are only due to the photon-sample interaction. For the scattering of
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a large number of photons we write Es(t) as

Es(t, ~q) =
N∑
j=1

Ej exp[iφj(t, ~q)], (3.4)

where Ej and φj(t, ~q) are the magnitude and phase function of the j − th planar wave,

respectively, and N is the total number of amplitudes scattered in the θ direction.

3.1.2 Cross-correlation experiments

The set-up of figure 3.1 can be generalized to a cross-correlation scheme. This scheme is the

combination of two auto-correlation experiments. The advantage of using cross-correlation

experiments is that we are not restricted to perform experiments at low molecular mass

concentrations, as imposed in auto-correlation experiments [16]. Using cross-correlation we

are able to deal with turbid media. In figure 3.2 we show a representation of the set up of

a cross-correlation experiment.

Having two different scattered beams impinging over the same volume allows us to eliminate

noise in the experiment, e.g, see Ref.[16]. In cross-correlation experiments on turbid media,

the resulting multiple scattering contributes only to the background.

3.2 Correlation functions

The scattered field must be treated as a random variable because, even if the incident inten-

sity is constant in time, the scatters in the sample show random movements and; therefore,

the photons are randomly scattered in time. In terms of the scattered angle photons are not

randomly scattered in general. This is also true in the case of liquid crystals and gels, where

the scatters are not moving completely free but they show small random oscillations around

their equilibrium positions; and the scattered photons may take random paths through the

sample. Therefore, we are able to speak in the context of random functions. We treat
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Figure 3.2: Representation of a cross-correlation experiment. A light beam is splitted by a
beam splitter (BS). The two beams are directed to the sample by a mirror (M) and a lens
(L) and they impinge over the same volume, then the two scattered beams are detected by
two different detectors (D1 and D2) at the same scattered angle θ.

Es(t, ~q) as a Gaussian random variable with zero mean.

Information of the sample is hidden in the phase functions, i.e., the fluctuations of the scat-

tered field are a result of the geometrical distribution of the scatters and their movement.

To pull out this information, we make use of the correlation functions presented in chapter

II.

3.2.1 Correlation function of the scattered field

The first order correlation function of the scattered field is defined as

GE(~q, t, τ) = 〈Es(t, ~q)E∗s (t+ τ, ~q))〉, (3.5)

where 〈 〉 stands for temporal average. We will assume a WSS process; therefore, the

correlation function GE(~q, t, τ) will only depend on the lag-time τ . For simplicity we will
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refer to GE(~q, t, τ) as GE(~q, τ). If we insert equation 3.5 into equation 3.4 we obtain

GE(~q, τ) =

〈
N∑
j=1

N∑
i=1

EiE
∗
j exp [i(φi(0, ~q)− φj(τ, ~q))]

〉
. (3.6)

Separating equation 3.6 in two different terms

GE(~q, τ) =

〈
N∑
j=1

|Ej|2 exp [i~q · (~xj(0)− ~xj(τ))]

〉
+

〈
N∑

i,j=1,j 6=i

EiEj exp [i~q · (~xi(0)− ~xj(τ))]

〉
.

(3.7)

After exchanging the sum and the temporal average, 〈Σ〉 → Σ〈 〉, the second term of the

last equation corresponds to the sum of phase averages of the form 〈exp [i~q · (~xi(0)− ~xj(t))]〉

with the condition i 6= j. For the case of colloidal suspensions, where the scatters are in

random movement, the phase functions are all independent and uncorrelated; therefore, the

mean values of the form 〈exp [i~q · (~xi(0)− ~xj(t))]〉 i 6= j are all equal to zero. This may

not be true for crystals and gels, where the scatters are almost fixed in their positions. To

evaluate the first term, we assume statistical independence between the amplitude Ei and

the phase average. Another assumption is to consider identical scatters in the sample; in

consequence, all terms in the sum contribute equally. Thus we get the result

GE(~q, τ) = N
〈
|Ej|2

〉
〈exp [i~q ·∆~xj(τ)]〉 , (3.8)

where j refers to any scatter in the sample and ∆~xj(τ) = ~xj(0) − ~xj(τ) represents the

displacement of the particle. Now, taking the Fourier transform of equation 3.8 into the

space domain, the result is

F [GE(~q, τ)] = ḠE(~x, τ) =

∫
d3~qexp(i ∗ ~q · ~x)GE(~q, τ) = N

〈
|Ej|2

〉
〈δ(~x−∆~xj(τ))〉 , (3.9)

where δ is the Dirac delta function. The function ḠE(~x, τ)d3~x is interpreted as the proba-

24



bility density function of finding a particle in the neighbourhood d3~x at time τ and ḠE(~x, τ)

obeys a diffusive equation [17]. This differential equation is

∂

∂τ
ḠE(~x, τ) = D∇2ḠE(~x, τ), (3.10)

where D is the coefficient of diffusion. To obtain an explicit form of equation 3.8, we take

the inverse Fourier transform of equation 3.10, this yields

∂

∂τ
GE(~q, τ) = −q2DGE(~q, τ). (3.11)

To solve equation 3.11, we set the initial condition GE(~q, 0) = N 〈|Ej|2〉. Then, the solution

of the equation 3.11 is

GE(~q, τ) = N
〈
|Ej|2

〉
exp(−q2Dτ). (3.12)

3.2.2 Correlation function of the scattered intensity

As we mentioned before, the detectors are sensitive to the squared modulus of the electric

field and not to the field itself. Therefore, GE(~q, τ) is not directly measurable in the ex-

periment. It is of convenience to define the correlation functions of the scattered intensity

GI(~q, τ). We define the correlation function of the scattered intensity as

GI(~q, τ) = 〈Is(0, ~q)Is(τ, ~q))〉 = (3.13)

=

〈
N∑

j,i,q,p=1

EjE
∗
iEqE

∗
pexp(i~q · (~xj(0)− ~xi(0) + ~xq(τ)− ~xp(τ)

〉

To evaluate equation 3.13, we use the same arguments as done for GE(~q, τ). Switching the

subscripts in equation 3.13 we get the next results.
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1. If j = i = q = p, then

〈
N∑

j,i,q,p=1

EjE
∗
jEjE

∗
j

〉
= N

〈
|Ej|4

〉
=
GE(~q, 0)2

N
. (3.14)

2. If j = i, q = p and i 6= p, then

〈
N∑
p=1

N−1∑
i=1

EiE
∗
iEpE

∗
p

〉
= N(N − 1)

〈
|Ei|2

〉2
=

(
1− 1

N

)
GE(~q, 0)2 (3.15)

3. If q = i, p = j and i 6= j, then

〈
N∑
i=1

〈
|Ei|2

〉
exp(i~q · (~xi(τ)− ~xi(0))

〉〈
N−1∑
j=1

〈
|Ej|2

〉
exp(−i~q · (~xj(τ)− ~xj(0))

〉
=

(3.16)

= N(N − 1)
〈
|Ei|2

〉2 〈exp [i~q ·∆~xj(τ)]〉 〈exp [−i~q ·∆~xj(τ)]〉

=

(
1− 1

N

)
|GE(~q, τ)|2

Adding equations 3.14,3.15 and 3.16 and setting N � 1 we get

GI(~q, τ) = GE(~q, 0)2 + |GE(~q, τ)|2. (3.17)

We have obtained an analytic expression for both GI(~q, τ) and GE(~q, τ). In the literature is

common to find the normalized form of GE(~q, τ) and GI(~q, τ), these are defined as

gE(~q, τ) =
GE(~q, τ)

N 〈|Ej|2〉
= exp(−q2Dτ) (3.18)
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and

gI(~q, τ) =
GI(~q, τ)

(N 〈|Ej|2〉)2
= 1 + exp(−2q2Dτ). (3.19)

Here we have assumed a perfect detector for the scattered intensity. Detectors have a finite

coherence area which produces a reduction in the detected signal [1], this redefines equation

3.19 as

gI(~q, τ) = 1 + β exp(−2q2Dτ), (3.20)

where 0 ≤ β ≤ 1. For later purposes, we rewrite equation 3.20 in the form of equation 2.19

ĝ
(2)
I (~q, τ) = gI(~q, τ)− 1 = βexp(−2q2Dτ). (3.21)

In the same context, we present a form of the auto-structure function given by equation 2.20

ŝ
(2)
I (~q, τ) = β(1− exp(−2q2Dτ)), (3.22)

where we have assumed a wide sense stationary process. To deduce equation 3.20 we do not

make any distinction if the correlation was cross or auto; therefore, equation 3.20 holds for

both operations. On the other hand, the structure function given by equation 3.22 is only

valid for auto-structure function. For cross-structure function, we use the following equation

ŝ
(2)
I (~q, τ) = α− βexp(−2q2Dτ), (3.23)

where the constant α is given by

α =
Gaa(0) +Gbb(0)

2 〈a〉 〈b〉
. (3.24)
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3.3 Photon counts and intensity statistics

Previously we have mentioned that detectors are sensitive to the intensity rather than to

the electric field. However, we did not mention any detail of the response of the detector.

Photon detectors do not measure Is(t, ~q) (which is a continuous function), instead they mea-

sure a discrete form of the scattered intensity nj, e.g., see figure 3.3. To fully understand

the response of the detector, we must consider the scattered beam made up of photons and

not by waves. This picture suggest us the quantum nature of the detection process.

When a scattered photon reaches the detector, it hits the detection area of a photon detec-

tor and the next events may occur [11]: absorption of a photon by an atom and the energy

transfer to an electron of the atom and transport of the electron to the conducting band,

electron release from the surface, and finally the current originated by this electron is then

amplified and detected, we will refer to this event as a photon event. The detection of a

current is the signature of a photon reaching the detector. Moreover, a photo event may

not be originated by a photon, an electron can emerge to the surface by thermal agitation

introducing noise to the experiment. Also, a photon hitting the sensitive area the detector

may not be absorbed, in fact, if a photon is absorbed by an atom and detected or not is

determined by the laws of quantum mechanics [18]. Even so, the semi-classical theory gives

equivalent results [11].

The raw output of a photon counter is the time between two consequent photo events mea-

sured in time units of the detector. The detector has a count frequency f and a time

resolution of f−1, thus, the time between two photon events is a multiple of f−1. From the

raw data we used a process of segmentation to get a discrete form of the number of scattered

photons in the q direction per unit of time nj with j = 1, ..., T , e.g., see appendix B. nj is

the sum of the scattered photons in a time window of ∆t ≥ f−1 (sample time), the subscript

j refers to the jth time window and ∆tT is the total measure time. nj is a doubly stochastic

process since is modelled by two stages, the first is the scattered intensity Is(t, ~q) and the

second are the photon events in the detection process. We are interested in the statistical
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Figure 3.3: Representation of Is(t, ~q) (red line), the photon events (yellow bars) and nj
(green bars). nj is a discrete function of width ∆t. The height of nj is determined by the
number of photon events within its width, for example n1 is equal to two units, n2 is equal
to one unit and so on.

properties of Is(t, ~q); thus, we must set ways to extract the information of Is(t, ~q) out of nj.

3.3.1 Photon statistics

Having in hand the discrete form of the scattered intensity, the question of interest is: are the

statistical properties of Is(t, ~q) preserved by nj?. To answer this question, two fundamental

properties are proposed [19], here we reformulated them in terms of the detection process.

Following the notation of Shatzel [1], we write this conditions mathematically, let 〈nj|Is(t, ~q)〉

indicate the conditional expectation of nj given Is(t, ~q), then:

• Linearity between the two random process Is(t, ~q) and nj, 〈nj|Is(t, ~q)〉 = CIs(t, ~q),

where C is a constant. This condition is reachable if we stay in the linear response of

our detector.

• Second, statistical independence of the counts nj and nj+τ ,〈njnj+τ |Is(t, ~q)Is(t+τ, ~q)〉 =

〈nj|Is(t, ~q)〉〈nj+τ |Is(t + τ, ~q)〉. This condition is reachable if the scattered intensity is

low and it does not saturate the detector.

The answer to the previous question is, the statistical properties are preserved partially. The
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first order statistical properties are not preserved while the second order statistics may be

preserved. It is shown by Schatzel that the temporal correlation functions of both processes

are equivalent Ĝn(τ) = C2GI(~q, τ) [1]. For the structure function the following relation

holds,

Ŝn(τ) = 〈V ar [nj|Is(t, ~q)]〉+ 〈V ar [nj+τ |Is(t+ τ, ~q)]〉+ C2SI(~q, τ). (3.25)

These variances are what we call shot-noise after equation 2.29. For a WSS process and

Poisson statistics, in the photon counts the two variances of equation 3.25 are equal to the

mean value of photon counts and contribute only as a baseline. This last case is out of

our interest since the case of Poisson’s statistics is only found when the scattered intensity

is constant over time, as it is shown later in this chapter. A more general and important

situation arises when the scattered light is thermal and polarized, in this case the variances

of equation 3.25 are equal to

〈V ar [nj+τ |Is(t+ τ, ~q)]〉 = 〈n〉j+τ
(

1 +
〈n〉j+τ

M

)
, (3.26)

where M = MtMs represents the number of degrees of freedom. The term Mt is the tem-

poral degrees of freedom while Ms is the spacial degrees of freedom [11]. The Poisson’s

statistics case is obtained when M � 〈n〉j+τ .

3.3.2 Photon counts statistics

From the discrete form of the scattered intensity, an histogram of nj can be computed. As

a result, we have access to the probability density function of nj, P(k) with k being the

number of photon counts in a sample time of width ∆t. The probability P(k) is estimated

in therms of the observed frequency of nj = k. On the other hand, the probability density
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Figure 3.4: Plot of WP(W/W ) for polarized thermal light (blue continuous line). Plots of
the distribution of photon counts P(k) are presented with k = 1 (green squares) and k = 0.5
(red circles). The points are joined by a dashed line but only the integer values of k makes
sense. It can be seen that the exponential decay of WP(W/W ) is somehow preserved for
P(k).

function of Is(t, ~q), P(Is(t, ~q)) is related to P(nj) by the Mandel’s formula [20, 11],

P(k) =

∫ ∞
0

(αW )k

k!
exp [−αW ]P(W )dW. (3.27)

Here, α = η/hν̄ is a constant where η is the quantum efficiency of the detector, h is the

Plank’s constant and ν̄ is the mean value of the optical frequency of the radiation. W is the

integrated intensity given by

W = A

∫ t

t−∆t

Is(z, ~q)dz, (3.28)

where A is the photon sensitive area of the detector. If the coherence time of Is(t, ~q), τc, is

such that τc � ∆t then W = A∆tIs(t, ~q). The coherence time of light is understood as the

time in which the propagated light is still consider coherent. In the situations we deal the

coherent time is excepted to be at least in the order of 10−3s while our sample time is at

most in the order of 10−5s.
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To show the use of equation 3.27; and for later purposes, we explicitly calculate several

forms of P(k). By considering that the scattered intensity constant in time, this means

Is(t, ~q) = Io; therefore, the integrated intensity is W = A∆tIo, which probability distribution

is P(W ) = δ(W − A∆tIo). A simple calculation leads to

P(k) =
(k̄)k

k!
exp

[
−k̄
]
. (3.29)

Here k̄ = αAδtIo = αW is interpreted as the mean number of photon events. This result

highlights the stochastic nature of the detection process, even for the detection of time inde-

pendent intensity the number of photons detected in a sample time is Poisson distributed.

Another example is the polarized thermal radiation, for which the probability density func-

tion of the integrated intensity is [11]

P(W ) =
1

W
exp

[
−W
W

]
, (3.30)

where W = A∆tIs(t, ~q) is the mean value of W . A simple calculation leads to

P(k) =
1

1 + k

(
k

1 + k

)k
. (3.31)

Equation 3.31 is the geometric distribution. A graphic representation of equations 3.30 and

3.31 is presented in figure 3.4.

Another case of interest is the unpolarized thermal light, whose integrated intensity distri-

bution is [11]

P(W ) =

(
2

W

)2

Wexp

[
−2W

W

]
. (3.32)

Using Mandel’s formula we get the result

P(k) =

(
2

2 + k

)2

(k + 1)

(
k

2 + k

)k
. (3.33)
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Figure 3.5: Plot of W
2P(W/W ) for unpolarized thermal light (red continue line plotted in

the right axis). Plots of the distribution of photon counts P(k) are presented with k = 1

(blue circles) and k = 4 (green squares). The form of W
2P(W/W ) is not preserved by P(k).

For k = 1 P(k) is a decreasing function, while for k = 4 it increases and decreases. The two
lines meet at k = 2.

A plot of equations 3.32 and 3.33 is presented in figure 3.5.

Last, we present a more general case: partially polarized thermal light. It’s probability

distribution is [11]

P(W ) =
1

PW

(
exp

[
− 2W

(1 + P)W

]
− exp

[
− 2W

(1−P)W

])
, (3.34)

where 0 ≤ P ≤ 1 is the degree of polarization. Equation 3.30 and 3.32 are particular

cases of equation 3.34. It is straightforward to show that when P = 1, the equation 3.35 is

reduced to equation 3.31; and, when P = 0 the equation 3.35 is reduced to equation 3.33

The distribution of photon counts is

P(k) =
1

Pk + 2P
1+P

(
k

k + 2
1+P

)k

− 1

Pk + 2P
1−P

(
k

k + 2
1−P

)k

(3.35)
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Figure 3.6: Plot of WP(W/W ) using the left y axis for different values of P = 0.9 (black
solid line), P = 0.6 (red solid line) and P = 0.3 (blue solid line). The graphs of P(k)
are represented by squares for P = 0.9, triangles for P = 0.6 and circles for P = 0.3.
The dashed lines corresonds to k = 1, while the dotted lines are for k = 4. The form of
WP(W/W ) may not be preserved by P(k).

We present a plot of equation 3.34 and 3.35 for different values of k and P in figure 3.6.

3.5.
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Chapter 4

PhotonSTR− 18

In this chapter, the principal characteristics of PhotonSTR− 18 are discussed. We present

the time performance, the limitations and the calibration of our software. It is not our

intention to display a full explanation of the code, rather we briefly show the architecture

of the software and its potential uses. Our software can be free downloaded in the page [21]

4.1 About PhotonSTR− 18

4.1.1 Motivation and significance

PhotonSTR − T18 was developed in LabVIEW and can be used to analyze phenomena

where there is a fluctuation in the intensity of events over time as it happens in chemical,

biological, and other physical processes. PhotonSTR− T18 is able to compute sequentially

the correlation and structure (C & S) functions in auto- or cross-mode of time series in off-

line mode, the user must have the time series already. Using LabVIEW allows us to parse

long sets of data efficiently as processing of data in parallel is native in this programming

language, which shortens considerably the processing time. The current version of the

program is able to work with binary and ASCII files of 8 and 16 bits.

In recent literature, there are works treating the fast calculation of correlation function by
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hardware [22, 23, 24] and software [25, 26], to cite some of them. Nevertheless, none of

them deals with the structure function, this makes our software interesting for the scientific

community. Additionally, the use of hardware to compute the C & S functions might

requires the use of graphic cards, fpga cards or other electronic component that may not be

accessible by all the users. On the other hand, our software requires only access to LabVIEW

and a regular computer, this makes it attractive to the scientific community.

Another appealing feature of PhotonSTR − T18 is its flexibility. A user may modify the

software freely according to his necessities. In the current version of the code, it can only

analyze zero dimensional point processes but it can be generalized to 2 dimensional processes.

We believe that PhotonSTR − T18 can even be implemented in hardware to also work on

on-line mode.

4.1.2 Mathematical description

In PhotonSTR−T18 to calculate the C & S functions we use the theory we have developed

in chapter 2. More specifically, the C & S are obtained using equations 2.21, 2.23, 2.24 and

2.29. We have mentioned in chapter 3 the equivalence of the correlation function for the

random processes Is(t, ~q) and ni, Ĝn(τ) = C2GI(~q, τ). So we are able to directly interpret

the correlation function obtained by the program as the intensity correlation function.

This is not the case for the structure function of the random processes Is(t, ~q) and ni are

not equivalent, as we have already mentioned. The structure function of these two processes

are related by equation 3.25. To correctly interpret the structure function of the photon

counts as the structure function of the scattered intensity, we must subtract the conditional

variances of equation 3.25 or to correct the shot noises mentioned after equation 2.29. The

two approaches are totally equivalent.

In the current version of the software, the shot-noises are corrected by the use of equation

3.26, this is
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〈(a(0))2〉i+τ → 〈(a(0))2〉i+τ − 〈a(0)〉i+τ
(

1 +
〈a(0)〉i+τ

M

)
. (4.1)

To calculate the value of M it is required an algebraic form of the correlation function of

the scattered field, the complex coherence factor and the evaluation of very complicated

integrals [11]. We estimate the value of M using the following algorithm.

• First, we use the points g
(2)
aa (τ = 1) and g

(2)
aa (τ = 2) to estimate the intercept β ≡

g
(2)
aa (τ = 0) through an interpolation using a second order polynomial function. We

take this intercept as the noise free intercept. This approach is valid when the function

g(2)(τ) can be approximated by a second order polynomial around τ = 0.

• Second, having in hand the noise-free intercept (β) and the noisy intercept (g(2)(τ = 0))

those are related by equation 4.1, which in its normalized form is,

β = g(2)(0)− 1

〈a(0)〉2i

(
〈a(0)〉i +

〈a(0)〉2i
M

)
. (4.2)

From equation 4.2 we solve for M .

With an estimated M we can use equation 4.1 to correct the shot-noise and correctly

interpret the structure function of the photon counts as the intensity structure function.

4.2 Software calibration

As calibration we analyzed a photon history of 50 s from a DLS experiment, where a set-up

as described in chapter 5 was used. The sample used was a highly diluted suspension, ( ∼

1×10−5 in volume fraction), of latex nanoparticles of radius r = 50nm (IKERLAT Polymers,

Spain) at a temperature of 20Co. The calibration consist in estimating the hydrodynamic

radius that is reported by the manufacturer rH = 50nm. We use PhotonSTR − T18 to

analize the raw data and compute the C & S functions using P = 64, m = 2 and a sample
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Figure 4.1: Plot of the ICF and ISF functions for the two channels A and B and for the
cross-structure function AxB. The continuous lines correspond to the fits.

time of 100. To the C & S functions obtained by our software we fit the following laws,

ĝ
(2)
ab (τ) = β exp(−2q2Dτ), (4.3)

and

ŝ
(2)
ab (τ) = α− β exp(−2q2Dτ), (4.4)

where q is the magnitude of the scattering vector, D is the diffusion coefficient of the nanopar-

ticles, which depends on the hydrodynamic radius, and β is a parameter to be determined.

The parameter α is equal to β in the case of auto-structure functions and is a free param-

eter in the case of the cross-structure function. To obtain equations 4.3 and 4.4, we have

to assume a wide sense stationary process, use of equations 2.19, 2.20 and 3.21. A plot of

the intensity correlations functions (ICF) and the intensity structure functions (ISF) are

presented in figure 4.1, where IACF A makes reference to ĝ
(2)
aa (τ), ICCF AxB to ĝ

(2)
ab (τ) and
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Function Estimated rH (nm)
IACF A 52.6
IACF B 52.3
ICCF AxB 51.8
IASF A 52.6
IASF B 52.2
ICSF AxB 53.2

Table 4.1: Estimated radius in the calibration process.

so on.

We estimated the hydrodinamic radius of the nanoparticles using the fallowing relation,

D =
kT

6πηrH
, (4.5)

where T is the temperature of the experiment, k is the Boltzmann constant, η is the viscosity

of the solvent and rH is the hydrodynamic radio of the nanoparticles. The values we obtain

in the calibration process are resumed in table 4.1. In general, we see a good agreement in

the estimated hydrodynamic radius with the one reported by the manufacturer (50nm).

4.3 Time Performance

Fast data processing is an important aspect in most of the applications using C & S func-

tions. We compared the time performance of PhotonSTR − T18 programmed in LabView

with a version of the same sofware programmed in MatLab and also with a simple linear

Correlator/Structurator programmed in MatLab. We understand the time performance as

the total time required to compute the discrete estimators ĝ(2)(τ) and ŝ(2)(τ), including the

time used to read and process the raw data. For this performance study we have used a

desktop computer with a Intel Core i5− 3570 processor with 32GB of ram memory .

To compare the time performance of the three programs we used the auto-mode and time

series of length T = 10r with r = 5, 6, 7, 8, 9, the results are presented in figure 4.2 for

different values of parameters of the multi-τ algorithm. From these results we justify the
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Figure 4.2: Time performance of the three different programs. We used the notation Mp =
x,m = y and Lp = x,m = y for Matlab and Labview respectively, with x = 16, 32, 64 and
y = 2, 4. We do not present any result of a run taking more than 3 hours.

choice of LabVIEW as the proper language for our software. Contrary to most of the lan-

guage programs that execute code sequentially (as Matlab does), Labview runs following

a data-flow model[27]. Any code line will be execute when it receives all required inputs,

this is a clear advantage for our software since the calculation of all lag times of the C & S

functions are independent.

One limitation of our software is presented in figure 4.2, the memory runs out when we

analyse time series of length (> 108). Only the configuration P = 16, m = 2 was able to

compute the operations when T = 109. The other configurations of the multi-τ algorithm

made the computer run out of ram memory. In our experience it is not common to deal

with time series of length T > 109 in practice, most of the time series are in the order of

106 − 107.

Any attempt to run the MatLab programs in parallel will of course reduce the time process-

ing of data. The reduction of this time will depend on the number of cores of the computer

one uses, a priori the time processing will be reduced in C−1, where C is the numbers of

cores of the computer. As a reference, nowadays the maximum number of cores in a desktop
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computer is 10. Even if the MatLab code would run in parallel, it will not overcome the

LabVIEW performance. This last discussion applies to any non data flow programming

language.
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Chapter 5

Experiments

In this chapter we give a brief description of the apparatus we have used to perform our light

scattering experiments. We show the synthesis of our samples as well. We present results

of the correlation and structure functions C & S that we have obtained using our software

PhotonSTR− 18 together with an analysis of the functions.

5.1 Experimental setup

The spectrometer used is a 3D LS spectrometer (LS Instruments AG, Switzerland).The

spectrometer works with a He-Ne laser that emits light at a wavelength of λ = 632.8nm

and possesses two avalanche photodiodes (APD) as detectors (EXCELITAS SPCM-AQRH-

13-FC). We will refer to the data measured by each APD as detector channel A and channel

B. The APD’s have a photon detection efficiency of ≈ 62% at λ = 650nm, a dark count

of 250counts/sec and a dead time of 50ns. The spectrometer has a motorized goniometer

with a resolution of 0.1o to perform scattering experiments in the range 30-130 degrees. The

samples are in a thermal bath to control the temperature of the samples.

In figure 5.1 a set-up of the 3D LS spectrometer is presented. In the appendix A we present

a calibration of our apparatus. More details on this device and its features are given, for

example, in references [13] and [16].
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Figure 5.1: 3D LS Spectrometer set-up. The laser light first enter to the Deflection unit to
be directed to a beam splitter. Then, the light is split in two beams and directed to the
sample by the lens L1. The sample is kept in the Cell housing unit, where it is maintained
at a fixed temperature by the thermal bath. The scattered photons are directed to the lens
L2 and then to the Detection unit, where they are collected and recorded by the detectors
channels A and B. The Detection unit is assembled with the Goniometer by an arm. The
optical alignment is such that any effect due to light refraction of light is compensated in
the thermal bath.

The manufacturer of the 3D includes with it a digital correlator Flex03lq (correlator.com).

This device allows the user to compute the correlation function of the scattered photons in

real time or to measure directly the photon history. We avoid the use of the correlator by

directly measuring the photon history from the experiments for later analysis. From this

data we compute the sample functions of the processes by a segmentation process (see the

appendix B), and later use the software PhotonSTR− 18 to compute the C & S functions.

5.2 Samples

We chose two different samples for our study, both have in common that are samples that not

produce a wide sense stationary process in a light scattering experiment. In this section, we

briefly describe the synthesis and some properties of this samples, a more detailed description
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is given in references [13, 16, 28].

5.2.1 Polymer matrices of polyacrylamide

The polymer matrices have a total weight concentration of monomer of 2.5% with different

quantities of crosslinker bisacrylamide. The cross-linking content can be estimated as,

fbis =
mbis

mbis +mA

× 100%. (5.1)

The mass of bisacrylamide used in the synthesis is mbis, and of acrylamide monomer is

mA. Before the polymerization process, latex spheres of ≈ 110nm diameter were added

to the samples at 0.02% in volume fraction. The concentration of particles is high enough

to particles scatter much more light than the polymer matrix but not very high to avoid

multiple scattering. In all cases, the systems are kept in sealed cylindrical glass cells.

5.2.2 PNiPAM microgels

We use PNiPAM microgels synthesized by using the standard dispersion polymerization

described by Senff and Richtering [29]. We produce quasideionized samples by putting the

microgel dispersion in contact with ionic exchangers (Amberlite IRN-150) in sealed quartz

cells. The number concentration of the final stock dispersion is estimated from the Bragg

peak positions that appears in the crystalline samples [30].

5.3 Results

From the photon history obtained by the light scattering experiments we used our software

to do an off-line analysis. All correlation and structure functions were obtained by our

software using the configuration P = 64, m = 2 and a sample time of 1000.
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Figure 5.2: (IACF & IASF ) functions for the four different samples. Continuous lines are
the fitting results.

5.3.1 Polymer matrices of polyacrylamide

We use four different samples varying the cross-linking content as; fbis = 0, 1.25, 1.70 and

2.00%. We perform the scattering experiments at an angle of 90o, use a time measurement

of 100s for all the samples and a temperature of 20Co. In figure 5.2, the intensity auto-

correlation and structure functions (IACF & IASF ) are presented. To make a qualitative

analysis of the results, we fit a generalization of equations 4.3 and 4.4 to the data. These

models are,

ĝ(2)(~q, τ) = β exp (−2 [τ/τo]
γ) , (5.2)

and

ŝ(2)(~q, τ) = β(1− exp (−2 [τ/τo]
γ)), (5.3)

where γ is the stretching exponent and τo = q2D is the decay time. When γ = 1 we get

equations 4.3 and 4.4. In the fitting process we use γ, τo and β as free parameters. The

resulting parameters from the fitting are presented in table 5.1. The highest value of γ
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fbis = 0% fbis = 1.25% fbis = 1.70% fbis = 2.00%
τo (ICCF) 0.0164 0.2475 0.2162 0.1431
τo (ICSF) 0.0165 0.2520 0.1992 0.1327
γ (ICCF) 0.9403 0.5199 0.3984 0.3033
γ (ICSF) 0.9185 0.5500 0.4730 0.4098

Table 5.1: Values of γ and τo obtained in the fitting process using the model IACF & IASF .

corresponds to the sample in which the tracers’ motion is closer to pure diffusive motion in a

continuous medium [13]. On the other hand, as the concentration of fBis increases, both the

decay time and the stretching exponent γ decrease, indicating sub-diffusive motion of the

tracers as the network becomes rigid. Our analysis is consistent with previous results [13]

and indicates that equations 5.2 and 5.3 are reliable functions to characterize soft condensed

materials.

5.3.2 PNiPAM microgel colloids

We used a single sample having a concentration of n = 102 part/µm3, calculated considering

a microgel’s radius RM = 120nm at T = 20oC. In figure 5.3, we present the static scattered

intensity of the sample, as described in previous works [16, 31], this device enables us to

determine the single scattering contributions of moderately turbid samples in dynamic and

static light-scattering experiments. To obtain ensemble-averaged estimates of the scattered

intensity IS(θ) for the nonergodic systems, such as those forming crystals, we slowly rotate

the samples during data acquisition. Two peaks are observed in θ ≈ 61o and θ ≈ 120o, we

will refer to the peak at θ ≈ 61o as the principal peak. In figure 5.3, we plot the principal

peak with a better angular resolution. The relative position of the peaks highlights the

crystalline structure, the bragg’s planes identified (labels in the figure) indicate a BCC-like

crystalline lattice.

We perform dynamic light scattering experiments at the position of the half width half

maximum of the principal peak, θ ≈ 60.7o. In figure 5.4 and 5.5, we plot the ICCF’s and

the ICSF’s of four different measurements of 10s duration. In figures 5.4 and 5.5, the same
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Figure 5.3: Principal peak of the static scattered intensity of the sample C5 (left) and the
principal peak with a higher angular resolution (right).

measurements share the same color and markers, for later purposes we label this measure-

ments as: measurement 1 for red squares, measurement 2 for yellow circles, measurement 3

for purple triangles and measurement 4 for blue diamonds. Despite the labels the measure-

ments were not consecutive obtained in the experiments, these were selected since are the

most representative of the complete set of measurements. All functions where obtained by

our software using the configuration P = 64, m = 2 and a sample time of 1000.

We observed some unexpected results in both correlation and structure functions. The

correlation function of figure 5.4 passes from being a decreasing function (red squares and

yellow circles) to be almost flat (purple triangles) to later be a increasing function (blue

diamonds). The same occurs with the structure function in figure 5.5, it passes from being

a increasing function (red squared and yellow circles) to be a flat curve (purple triangles) to

be a decreasing function (blue diamonds).

47



Figure 5.4: Intensity cross-correlation functions of four different measurements.

In the literature, a common practice is to classify the nature of light by the value of the

auto-correlation function g(2)(τ → 0) [32, 33]. If g(2)(τ → 0) > 0, then the light is recognized

to represent a thermal state. If g(2)(τ → 0) = 0, then the light is identified to represent a

coherent state. Finally, if g(2)(τ → 0) < 0, then the light is considered to correspond to a

pure quantum state (number state). Additionally, the increasing or decreasing behavior of

the correlation function is interpreted in the following way: (i) if the correlation function is

a decreasing function, then this is an evidence of the bunching of photons, as is suggested

by the classical experiment of Brown and Twiss [34]. (2) When the correlation function is

a increasing function, then the anti-bunching of photons may be present [35, 36]. Despite

these facts, we make a further analysis of our data.

One of the advantages of having access to the photon history, working in off-line mode, is

that we are able to do different analysis rather than only the correlation function. In figure

5.6, we plot the time series of the photon counts by using a sample time of 5×106. Although

48



Figure 5.5: Intensity cross-structure functions of four different measurements.

the structure and correlation function above were obtained with a much more smaller sample

time, these plots will give us an idea of what is happening.

In figure 5.6, we can observe other behaviour in the time series. In the first graph of the same

figure, the red curve is almost always above of the blue one, in other words, the mean value

of the photon counts of the detector channel B is greater than the one from channel A. The

same occurs in the first six seconds of the measurement 2, and later the two curves fluctuate

around a well defined mean value. In measurement 3 there are time windows where the blue

curve is above the red one and time windows where both curves fluctuate with approximately

the same mean value. Lastly, in the measurement 4 we can observe how the blue curve is

above the red one, then the red one is above and so on for the first 8 seconds: the maximum

mean value of the photon count is alternating between the two detectors channels. This

last behaviour is observed along the four measurements. This suggest us that the sample is

acting as a ”light scattering modulator”, the light scattered by can be negative correlated
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Figure 5.6: Photon counts of the different measurements. The first plot corresponds to the
measurement 1, the second to the 2 and so on. In the four graphs, the blue curve refers to
the detector channel A and the red one to channel B. We can observe how the mean value
of the time series is changing, which is a signature of a non-stationary process.

(measurement 4) and also positive correlated (measurement 1 and 2) and it can also be in

intermediate steps (measurement 3).

To go even further, we compute the probability density function of the photon counts nj,

P(k) by using the histogram of the time series and fitting the expression given in equation

3.35. We use this function since we supposed that the scattered intensity from the sample

has an arbitrary degree of polarization. In this step, we used a sample time of 1000 and

assumed that this time is much less than any coherence time of the sample. As a first ap-

proximation to the problem we use the value k̄ of the data and only let as fitting parameter

P in the fitting process. The results are presented in figure 5.7. The results from the fitting

process are presented in table 5.2, additionally, the mean value of the photon counts is also
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Figure 5.7: Probability density function P(k) of the four measurements. Only values from
k = 0 to k = 10 are shown, higher values have almost zero probability. In general, we see a
good agreement between the data and the fits.

reported. As reference, the value of P estimated by the same fitting process of suspension

of latex nanoparticles used in the calibration of the 3D spectrometer (see appendix A) was

for both detector channels P ≈ 0.99.

From table 5.2, we can see how the polarization of the scattered light is time dependent as

well as the mean number of photon counts. Purcell suggest that the output of a split beam of

non-polarized electron that fall into two different electron multipliers would be negative cor-

related [37]. Here we observe other phenomena, the polarization of the negative correlated

scattered light (M4) is closed to unity in both channels, while the polarization of the ‘most

positive’ correlation (M1) is closed to 0.3 for one channel and 0.9 for the other one. The

values of the polarization changes again for M2 and M3. This suggest us that the negative
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cross-correlation may be caused partially for the photon count rate and the polarization of

the light.

M1 M2 M3 M4

P A 0.8738 0.7559 0.5271 0.8343

P B 0.3120 0.8179 0.7804 0.9659

k̄ A 1.1239 1.1703 1.7784 1.2386

k̄ B 2.1107 1.3529 1.2709 0.9593

Table 5.2: Values of the parameters P and k̄ of the four measurements for both detector
channels A and B. M1 stands for measurement 1 and so on.
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Chapter 6

Discussion and Concluding Remarks

In this work, the software PhotonSTR − 18 is presented, it is capable of computing the

correlation and structure functions of time series in the off-line mode. We showed a calibra-

tion of the software together with a time performance of it. In the calibration, we use both

intensity correlation and structure functions from a light scattering experiment to estimate

the hydrodynamic radius of a highly diluted suspension of latex nanoparticles. The analysis

of both functions gave satisfactory results. The time performance showed the advantage

of using LabView, since it takes a shorter time to compute time series using LabView as

compared, for example, with MatLab.

We also presented the theoretical background for our software. We have extended a multi-τ

algorithm for the intensity correlation function to the structure function, which allows a fast

calculation of the structure function. We also put forward a semi-empirical algorithm to

remove the conditional variances (or shot-noise) that naturally appear in the photon counts

structure function. This allows us to correctly interpret the photon counts structure function

as the intensity structure function, in the context of light scattering experiments.

To show the use of PhotonSTR − 18, we analyzed data from dynamical light scattering

experiments of polyacrylamide networks. Our results were consistent with previous results.

We consider that the structure function may be better to characterize non-stationary time
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series as indeed produce this kind of systems.

The other system we analyzed is PNiPAM microgel colloidal systems, which showed some

unexpected results. The cross-correlation functions, as well as the cross-structure functions,

exhibited a peculiar behaviour. For example, the intensity cross-correlation functions passed

from being a decreasing to a increasing function as time evolves. From the analysis of the

photon history and taking into account polarization effects in the detected signal, we were

able to put forward an hypothesis of what causes the observed phenomena. We believe

that the PNiPAM microgel colloidal systems are acting as a ”light scattering modulator”

since the light scattered by it can be positive-correlated and negative-correlated randomly

(in a first approximation) as time evolves. Also, we believe that the light polarization of the

scattered light contributes to the phenomena since we associate with the multiple scattering

of light. Nevertheless, we are far from a complete description of the observed phenomena.

As future work, we propose to translate PhotonSTR − 18 to hardware to be able to work

in on-line mode. Also, we expect to find the advantages of the use of the structure function

upon the correlation function to non-stationary phenomena. And last, extend our experi-

ments and theoretical models to fully understand what causes the negative cross-correlation

that we have observed in the PNiPAM microgel colloidal systems.
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Appendix A

Calibration of the 3D LS

Spectrometer

For the calibration of the 3D LS Spectrometer we used an standard method. We perform a

cross-correlation light scattering experiment using a highly diluted suspension, ∼ 1 × 10−5

in volume fraction, of latex nanoparticles of radius r = 50nm (IKERLAT Polymers, Spain).

If one has a perfect alignment, a clean model sample and laser light with a perfect Gaussian

profile, the following condition should be met g(2)(τ → 0) = β → 0.25 in a cross correlation

experiment. By a clean and model sample we mean that the latex particles are all perfect

spheres with a unique radius and the absence of any dirtiness in the sample.

In figure A.1, we plot the intercept (g(2)(τ → 0)) as a function of the scattered angle θ for

θ = 30−135o. Each point represents the average of measuring the static scattering intensity

for 60s. The values for the intercept are below 0.20, we attribute this to any imperfection in

the spectrometer, the non-perfect Gaussian profile and dirtiness in the sample. Nevertheless,

based on the 3D LS manufacturer specs, We consider this is a good calibration.

In figure A.1 (right y axis), we plot the mean scattered intensity 〈Iss(q)〉 as a function of

the scattered vector q for θ = 30− 135o as obtained from averaging the signal over 60s. We

fit the static scattering intensity, form factor, using a model for perfect spheres [17],
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P (q) = P0

[
3

(qr)3
(sin(qr)− qr cos(qr))

]2

. (A.1)

Here P0 and r are the parameters to be determined. The estimated radius obtained from

the fitting process is r = 52nm.

Figure A.1: Intercept g(2)(τ → 0) (left y axis) and 〈Is〉(right y axis). The continuous line
corresponds to the fit with the model described in the text.
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Appendix B

Data segmentation process

In a light scattering experiment photons are scattered by a sample and recorded in a fixed

direction by an instrument which measures the time of arrival of individuals photons, we

refer to this as the photon history. In our setup, this is done using a photon-detector (PD)

to detect the scattered photons and a photon-counting (PhC) to count the time of arrival of

them. Each time a photon is detected by the PD it sends a voltage signal to the PC which

records the time at which the signal was received using an internal clock. It is important

to note that, due to the quantum nature of the detection process, a photon can enter the

PD and not be recorded. Our PhC (flex03lq-12 from correlator.com) has a frequency of

f = 60MHz while our PD has a dead time of 50ns.

The PhC outcome in a light scattering experiment is a file of N 8 bit numbers that are later

transformed to decimal numbers. The internal clock of the PC runs in cycles of 0 to 255 in

time units of f−1. If a photon is detected in a cycle, then the PC records the time when

the photon was detected in a number from 0 to 254. If no photon is recorded in the cycle,

it starts again and the number 255 is recorded. The recovery time between each cycle is

one unit time; thus, N represents the total number of cycles and each 8 bit number the time

of arrival of the photon in the n − th cycle. Using the output file from the PhC, the total

8 bit numbers of photons recorded, its arrival time and the total time of measurement can
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be computed.

The final outcome of a PC is then a file which contains the time separation of two distinct

photon events. For example, the following data 123, 255, 75, 201, ... is interpreted as follows:

a first photon was detected at time 123, the second was detected at time 331 and the third

at time 532. The number 255 is taken as no photon detected. Following this procedure, we

compute the times at which the photons where detected, 123, 331, 532, ....

The segmentation process then consist in averaging the total number of photons recorded in

time windows of fixed width ∆t = kf−1, where k is an integer and we will refer to it as the

sample time. As an example, if k = 1000 the segmentation process consist in counting how

many photons were detected in the time windows 0−999, 1000−1999 and so on. The result

of this corresponds to the scattered number of photons in the j th time window of kf−1, nj.

Mathematically we represent this as

nj =
k

f

∑
j−th time window

photons detected. (B.1)

The segmentation process can be understood in the context of any time-dependent mea-

surement. If a detector has a frequency of f , the discreet time-dependent measurement aj

is

nj =
k

f

∑
j−th time window

data recorded. (B.2)
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