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Resumen:

Usando la mecánica cuántica supersimétrica de primer orden en nanolis-
tones de grafeno con terminaciones zigzag sin campos magnéticos, construi-
mos su Hamiltoniano de Dirac y el correspondiente espinor. Estudiamos
las componentes del espinor, la ecuación de Schrödinger que satisface cada
componente y su relación descrita por la mecánica cuántica supersimétrica.
Aplicamos condiciones de frontera a las componentes del espinor para ter-
minaciones zigzag y obtenemos soluciones para nanolistones de grafeno en
campos magnéticos no uniformes. Además, implementamos la mecánica
cuántica supersimétrica de primer orden una segunda vez a la ecuación de
Schrödinger que satisface la componente superior del espinor y obtenemos
una nueva familia de Hamiltonianos de Dirac para nanolistones de grafeno
en un campo magnético cuyos espinores también cumplen las condiciones de
frontera zigzag. El rango de valores para los parámetros introducidos por el
algoritmo supersimétrico, donde los campos magnéticos y las soluciones son
regulares, también fue estudiado.
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Abstract:

Using the first-order supersymmetric quantum mechanics on graphene nano-
ribbons with zigzag edges without magnetic fields, we construct their Dirac
Hamiltonian and the corresponding spinor. We study the spinor components,
the Schrödinger equation that each component satisfies and their relationship
described by supersymmetric quantum mechanics. We apply boundary con-
ditions for zigzag edges to the spinor components and obtain solutions for
graphene nanoribbons in non-uniform magnetic fields. Moreover, we imple-
ment the first-order supersymmetric quantum mechanics a second time to the
Schrödinger equation satisfied by the upper spinor component and we obtain
a new family of Dirac Hamiltonians for graphene nanoribbons in a magnetic
field whose spinors also fulfill the zigzag boundary conditions. The range of
values for the parameters introduced by the supersymmetric algorithm, where
the magnetic fields and the solutions are regular, was as well studied.
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Introduction

Graphene is a flat hexagonal structure made of carbon atoms. It is one of the
many allotropes of carbon as graphite, carbon nanotubes, fullerenes, etc. Its
electronic structure was described for first time in 1947 [1], but it was until
2004 that it was found experimentally by Novoselov et al. [2], who received
the Nobel Prize in Physics 2010 for that discovery [3]. The possibility of using
graphene for multiple applications, such as for thermal control of electronic
devices [4] or applications in electronics to produce smaller and flexible de-
vices [5, 6] has generated great interest for this material.

In particular we study graphene nanoribbons, thin graphene sheets that
can be classified into armchair and zigzag edges. These names describe the
type of structure that the carbon atoms form at the edge of the graphene
sheet. We start from solutions to the Dirac equation describing the behavior
of electrons around the so-called Dirac points for zigzag graphene nanoribbons
without magnetic field, and then we use supersymmetric quantum mechanic
to obtain solutions to the Dirac equation for zigzag graphene nanoribbons
with external magnetic fields.

It is worth noting that supersymmetric quantum mechanics, or SUSY, is a
technique that allows us to use the eigenfunctions and energy spectrum of a
known Hamiltonian Ĥ0 to find the eigenfunctions of another Hamiltonian Ĥ1

which conserve the energy spectrum, except perhaps by the ground state ε0
[7, 8, 9, 10].

The organization of this thesis is as follows. In Chapter 1, we will review
the properties of a single-layer graphene and the importance of the Dirac

IX
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INTRODUCTION

points. In Section 1.2 we will introduce the Dirac Hamiltonian ĤD that
describes the behavior of electrons near the Dirac points, and the appropri-
ate boundary conditions for graphene nanoribbons with zigzag edges without
magnetic field. In Section 1.3 we will show how the Dirac Hamiltonian for
zigzag graphene nanoribbons is related to a Schrödinger equation.

In Chapter 2 we will give an introduction to supersymmetric quantum me-
chanics. In Section 2.2 we will show how to apply the first-order SUSY to a
stationary Schrödinger equation, and we will discuss the situations when the
supersymmetric technique generates regular potentials.

In Chapter 3 we will obtain several families of Dirac Hamiltonians for a
nanoribbon in magnetic fields and we will find the spinors that solve the corre-
sponding eigenvalue equation with zigzag boundary conditions. In Section 3.1
we start from the Schrödinger equation for one of the spinor components and
use the first-order SUSY to obtain the expression for the Dirac Hamiltonian
describing the zigzag graphene nanoribbons with magnetic field. In Section
3.2 we will use the solutions of Section 3.1 and the first-order supersym-
metric quantum mechanics, to obtain a new Schrödinger equation for zigzag
graphene nanoribbons with magnetic field. We will use again the first-order
SUSY to obtain the expression for the new Dirac Hamiltonians for graphene
nanoribbons that satisfy the zigzag boundary conditions.

X
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Chapter 1
Graphene

Graphene is an allotrope of carbon that consists of a single layer of atoms
in a two-dimensional hexagonal lattice. P. R. Wallace in 1947 was the first
one who described the band structure of graphene using the tight binding
approximation [1]. However, first experimental realization of graphene was
reported until 2004 by A. K. Geim and K. S. Novoselov [2] and in 2010 they
received the Nobel Prize in Physics for the experimental discovery of graphene
[3]. In the words of The Royal Swedish Academy of Science, they won the
Prize

for groundbreaking experiments regarding the two-dimensional material

graphene.

(The Royal Swedish Academy of Sciences, 2010)

Some characteristics of graphene are:

� It has beneficial properties for electronic applications like interface ma-
terials for thermal control of electronic device. The thermal conductiv-
ity of graphene is 103 W m−1K−1 at room temperature [4].

� Its elastic properties make it the strongest material ever measured [11].
Its Young modulus is ∼ 1012 Pa.

� Graphene is a gapless semiconductor. In contrast, 2D semiconductors
have bandgaps > 1 eV [12]. The minimun conductivity of graphene is

1 Chapter 1



CENTRO DE INVESTIGACIÓN Y DE ESTUDIOS AVANZADOS

ZIGZAG GRAPHENE NANORIBBONS IN MAGNETIC FIELDS

1. GRAPHENE

(a) Lattice of graphene (b) Reciprocal lattice

Figure 1.1. (a) Lattice of graphene. Graphene has two interpenetrating triangular
lattices, the black or lattice A and the white or lattice B. (b) Reciprocal lattice of
graphene. The points K and K′ are the Dirac points.

between 2 e2/h − 12 e2/h [13] and the carrier mobility reaches ∼ 7×104

cm2/v s in transistors with different organic solvents [14].

Regarding its structure, graphene has two interpenetrating triangular lat-
tices. In Figure 1.1 (a) we represented both lattices, one with black carbon
atoms (lattice A) and the other with white atoms (lattice B). Each carbon
atom is surrounded by three carbon atoms from the other lattice. Any point
in the graphene lattice can be reached using the two lattice vectors

a1 =
a

2

(
3,
√

3
)
, a2 =

a

2

(
3, −
√

3
)
,

where |a1| = |a2| =
√

3 a = 0.246 nm, with a = 0.142 nm being the carbon-
carbon distance. Using the relation ai·bj = 2π δi j we can define the reciprocal
lattice vectors

b1 =
2π

3a

(
1,
√

3
)
, b2 =

2π

3a

(
1, −
√

3
)
.

Figure 1.1 (b) shows the points K and K′ of the reciprocal lattice of
graphene, where the valence and the conduction bands meet. These are
known as Dirac points. Since both bands meet at those points, graphene is
an excellent conductor [15].

The electronic properties of graphene are studied within the tight-binding
approach. This formalism predicts that the energy bands are given by the

2 Chapter 1
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equation,

ε±(k) = ±t

√√√√3 + 2 cos
(√

3kya
)

+ 4 cos

(√
3

2
kya

)
cos

(
3

2
kxa

)
,

where the constant t is the nearest-neighbor hopping energy (t ≈ 2.8 eV), the
plus sign applies to the conduction band and the minus sign to the valence
band [16]. A characteristic of the energy bands is that ε±(K) = ε±(K′) = 0,
i.e., ε± is zero at the Dirac points

K =

(
2π

3a
,

2π

3
√

3a

)
, K′ =

(
2π

3a
, − 2π

3
√

3a

)
.

Near the Dirac points, where k = K + δk, we have

ε± ≈ ±vf |k|,

where vf = 3 t a
2
≈ 9.06× 105 m/s is the Fermi velocity.

Using a nearest-neighbor tight-binding model and the k ·P approximation,
we obtain the equation that the electrons obey close to the Dirac points [17],

− i vf σ · ∇ψ(r) = Eψ(r), (1.1)

where the spinor ψ(r) has two entries, σ = (σx, σy) and σx,y are the Pauli
matrices

σx =

(
0 1
1 0

)
, σy =

(
0 −i
i 0

)
, σz =

(
1 0
0 −1

)
. (1.2)

Equation (1.1) resembles the time-independent relatisvistic Dirac equation,

c (−iσ · ∇+ σzm) Ψ = EΨ,

with m = 0 and c → vf . For this and other reasons some authors say that,
for low energies and near the Dirac points, the electrons of graphene obey a
Dirac equation with vanishing rest mass [15, 17].

3 Chapter 1
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1.1. CARBON NANOTUBES AND GRAPHENE NANORIBBONS

1.1 Carbon nanotubes and graphene nanorib-

bons

Two very important carbon nanomaterials are the so called carbon nan-
otubes (CNT) and graphene nanoribbons (GNR). CNT can be single-walled
(SWCNT) or multiwalled (MWCNT). The SWCNT is a single graphene sheet
rolled into a tube, whereas the MWCNT is a carbon nanotube with several
concentric shells of rolled graphene sheets [18].

The SWCNT was discovered by two different research groups in 1993, by
Iijima and Ichihashi [19] and Bethune et al. [20]. They are classified into three
groups according to the chiral vector Ch, a vector that crosses the SWCNT
perpendicular to the tube axis,

Ch = n a1 +m a2,

where n and m are integers. This chiral vector defines all the possible ways
of rolling-up a graphene sheet:

� Zigzag, where n 6= 0 and m = 0.

� Armchair, where n = m.

� Chiral, where n,m 6= 0.

Figure 1.2 shows the chiral vector that gives place to an armchair carbon
nanotube.

Graphene nanoribbons are strips of graphene with thin widths. Similar to
nanotubes, the GNR are classified into armchair and zigzag. These names
refer to the orientation of the carbon atoms on the edge of the graphene sheet,
as can be seen in Figure 1.3.

CNT and GNR are obtained from single-layer graphene, but their band
structure is different. For example, CNT is metallic when n−m = 3 ν, with
ν an integer [21, 18]. Instead, zigzag GNRs are always metallic while the
armchair GNRs are metallic when the number N of carbon atoms across the
width is N = 3 ν − 1 and semiconductors when N = 3 ν or N = 3 ν + 1 [18].

4 Chapter 1



CENTRO DE INVESTIGACIÓN Y DE ESTUDIOS AVANZADOS

ZIGZAG GRAPHENE NANORIBBONS IN MAGNETIC FIELDS

1.2. ZIGZAG BOUNDARY CONDITIONS FOR GRAPHENE NANORIBBONS

Figure 1.2. Chiral vector for an armchair SWCNT. It shows how to roll graphene
to form an armchair carbon nanotube.

1.2 Zigzag boundary conditions for graphene

nanoribbons

Brey and Fertig published two important articles in 2006 [22, 23]. In both ar-
ticles they used the Dirac equation to study the electronic states of graphene
nanoribbons and gave special boundary conditions for zigzag and armchair
graphene nanoribbons of width L and infinite length without external mag-
netic field as well as in a uniform magnetic field. They found that, except
for very thin GNR, their results were quantitatively similar to the one of the
tight binding calculations. In what follow we will develop their results for
zigzag GNR following to Castro Neto et al. [16].

For low-energy states and near the Dirac points, we can write the Dirac
equation (1.1) for the points K as

ĤKψK(r) = vf

(
0 −i ∂x − ∂y

−i∂x + ∂y 0

)
ψK (r) = εψK (r) , (1.3)

and for the points K′ as

ĤK′ ψK′(r) = vf

(
0 −i ∂x + ∂y

−i∂x − ∂y 0

)
ψK′ (r) = εψK′ (r) . (1.4)

5 Chapter 1
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x

y

L

Zigzag

(a) Zigzag GNR.

x

y

L

Armchair

(b) Armchair GNR.

Figure 1.3. (a) Zigzag and (b) armchair graphene nanoribbons. L is the width
of the nanoribbon with infinite length.

Recall now that graphene has two interpenetrating triangular lattices, the
lattices A and B from Figure 1.1 (a). The wave function (real space) for the
lattice A is given by [16]

ΨA (r) = eiK·r ψA(r) + eiK
′·rψ

′

A(r),

and for the lattice B by

ΨB (r) = eiK·r ψB(r) + eiK
′·rψ

′

B(r).

The functions ψA(r) and ψB(r) are the components of the spinor ψK(r) while
ψ

′
A(r) and ψ

′
B(r) are the components of ψK′(r),

ψK (r) =

(
ψA (r)

ψB (r)

)
, ψK′ (r) =

(
ψ

′
A (r)

ψ
′
B (r)

)
.

We assume that our zigzag GNR is on the XY plane, it has finite width
L, infinite lenght and the zigzag edges are on the lines x = 0 and x = L
respectively, as Figure 1.3 (a) shows. The translational symmetry in the Y
direction, along the zigzag edge, guarantees that the spinor ψK or ψK′ can

6 Chapter 1
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be written as,

ψK (x, y) = ei ky y

(
φA (x)

φB (x)

)
, ψK′ (x, y) = ei ky y

(
φ

′
A (x)

φ
′
B (x)

)
.

with ky a real constant. The boundary conditions for GNR at the edges of
the nanoribbon, located at x = 0 and x = L, are,

ΨA (0, y) = 0, ΨB (L, y) = 0,

these two conditions give us that,

eiK·r ei ky yφA(0) + eiK
′·rei ky yφ

′

A(0) = 0,

eiK·r ei ky yφB(L) + eiK
′·rei ky yφ

′

B(L) = 0.

Both conditions are satisfied when,

φA(0) = φ
′

A(0) = φB(L) = φ
′

B(L) = 0. (1.5)

Conditions (1.5) are called zigzag boundary conditions and they will be used
constantly in this work.

The Dirac Hamiltonians ĤK and ĤK′ of equations (1.3) and (1.4) applied
to their respective spinors generate the system of equations(

0 −i∂x − i ky
−i∂x + i ky 0

)(
φA(x)

φB(x)

)
=

ε

vf

(
φA(x)

φB(x)

)
, (1.6)

(
0 −i∂x + i ky

−i∂x − i ky 0

)(
φ

′
A(x)

φ
′
B(x)

)
=

ε

vf

(
φ

′
A(x)

φ
′
B(x)

)
. (1.7)

Both systems of equations can be written in terms of Schrödinger Hamilto-
nians if we multiply them by the energy ε̄ = ε/vf , namely, if

Ĥ0 =

(
0 −i∂x − i ky

−i∂x + i ky 0

)
, Φ(x) =

(
φA(x)

φB(x)

)
, (1.8)

then,

Ĥ0 {ε̄Φ(x)} = ε̄2 Φ(x) → Ĥ0

{
Ĥ0 Φ(x)

}
= ε̄2 Φ(x),

7 Chapter 1
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where,

Ĥ2
0 = Ĥ0 Ĥ0 =

(
−∂2

x + k2
y 0

0 −∂2
x + k2

y

)
.

The procedure for the components φ
′
A(x) and φ

′
B(x) is analogous. Thus, we

have to solve the same equation for the components of both spinors,

− d2 φ
(′)
µ

dx2
+ k2

y φ
(′)
µ (x) = ε̄2 φ(′)

µ (x), µ = A,B. (1.9)

We use the superscript (′) to indicate that the equation (1.9) is the same
for φµ(x) and φ

′
µ(x). The general solution of (1.9) is

φ(′)
µ (x) = α ez x + β e−z x, (1.10)

where z2 = k2
y − ε̄2.

Another property of this system is that the Hamiltonians ĤK and ĤK′

are related through the Pauli matrix σx, defined in (1.2). The relationship
between them is given by

ĤK′ = σx ĤK σx. (1.11)

Thus, we can obtain the spinor ψK′ from the spinor ψK. The proof begins
by multiplying equation (1.3) by σx

ĤKψK(r) = εψK(r) → σxĤKψK(r) = ε σxψK(r),

we can use the properties of the Pauli matrices σ2
x = I, where I is the identity

matrix. Then,

σxĤK σx (σxψK(r)) = ε (σxψK(r)) → ĤK′ (σxψK(r)) = ε (σxψK(r)) .

Therefore, ψK′(r) = σxψK(r). Consequently, we will work only with the
spinor ψK.

To fulfill the zigzag boundary conditions (1.5) we must take β = −α, we
arrive at

φA(x) = α
(
ez x − e−z x

)
.

8 Chapter 1
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(a) ky = 4π
300 a . (b) ky = 0.

Figure 1.4. Modulus square of the lower and upper spinor components for the
ground state energy with ky being a real number. (a) Case with ky 6= 0 and z =
z1 = 8.971× 10−3, the spinor components are a linear combination of exponential
functions. (b) Case with ky = 0 and z = i k0 = i π/2, the spinor components are
a linear combination of trigonometric functions. The width of the nanoribbon is
chosen as L = 14

√
3 a.

Analyzing the lower component of the Dirac equation Ĥ0 Φ(x) = ε̄Φ(x) we
obtain

φB(x) =
1

ε̄
(−i ∂x + iky)φA(x) = −i α

ε̄

[
(z − ky)ez x + (z + ky)e

−z x] ,
when we apply the boundary condition φB(L) = 0 it gives us the transcen-
dental equation

e−2 z L =
ky − z
ky + z

. (1.12)

The solutions of this equation generate a list of real numbers z that are
related to the energy spectrum. Moreover, let us note that if z = i kn we
obtain another important transcendental equation,

tan kn L =
kn
ky
. (1.13)

1.2.1 Examples

In their first article [22], Brey and Fertig showed two examples. The first
example is for z being a real number, this case corresponds to the surface

9 Chapter 1
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states. The energy of these states is ε̄ = ±
√
k2
y − z2, and the spinor compo-

nents φA(x) and φB(x) that solve the system of equations (1.6) are

φA(x) = α
(
ez x − e−z x

)
, (1.14)

φB(x) = −i α
ε̄

[
(z − ky)ez x + (z + ky)e

−z x] . (1.15)

For this case they choose ky = 4π
300 a

. The transcendental equation (1.12)
has three solutions for z: z0 = 0 and z1,−1 = ± 8.971× 10−3. The solution z0

is the trivial one because φA(x) ≡ cte. The solutions z1 and z−1 are similar
and lead to the same energy. In Figure 1.4 (a) we can see the modulus square
of the spinor components for z1.

The second example is for z being a pure imaginary number. Each solution
kn generates two confined states with energies ε̄ = ±

√
k2
y + k2

n and spinor
components

φA(x) = 2 iα sin kn x, (1.16)

φB(x) =
2α

ε̄
(kn cos kn x− ky sin kn x) . (1.17)

Furthermore, in this case they choose ky = 0. The transcendental equation
(1.13) has the following solutions for kn:

kn =
2n+ 1

2
π, n = 0, 1, 2, 3, · · ·

The energies are given by ε̄n = ± kn. If we choose n = 0 we obtain the ground
state eigenfunction, which can be seen in Figure 1.4 (b).

1.3 Relation between Schrödinger and Dirac

equations

The low-energy behavior of massless Dirac electrons in graphene, around the
Dirac points, under a magnetic field B = ∇ ×A is described by the Dirac-
Weyl equation [24],

ĤDψ (x, y) = vf σ · [−i∇+ A]ψ (x, y) = Eψ (x, y) , (1.18)

10 Chapter 1



CENTRO DE INVESTIGACIÓN Y DE ESTUDIOS AVANZADOS

ZIGZAG GRAPHENE NANORIBBONS IN MAGNETIC FIELDS

1.3. RELATION BETWEEN SCHRÖDINGER AND DIRAC EQUATIONS

where the magnetic field is perpendicular to the graphene layer. In (1.18)
σ = (σx, σy) and we have taken c = e = ~ = 1. We can obtain equation
(1.18) from equation (1.1) by using

−i∇ → −i∇+ A.

This change is known as minimal coupling [25] or Peierls substitution [23].

In Section 1.2 we assumed that the graphene sheet was on the XY plane.
Now, we will assume that the vector potential is given by A (x) = Ay(x) êy.
This choice is known as Landau gauge, which produces the magnetic field

B(x) =
dAy(x)

dx
êz (1.19)

pointing along z direction. The most general option would be to take A =
Ax(y) êx + Ay(x) êy, which is called the Coulomb gauge. Also, vector po-
tentials of the form A′ = Ay(x) êy + ∇η, where ∇η is a constant, generate
magnetic fields parallel to the z direction.

After Peierls substitution in equation (1.18), the eigenvalue equation ĤD ψ =
Eψ can be written as

vf

[
−iσx

∂

∂x
+ σy

(
−i ∂

∂y
+ Ay(x)

)]
ψ (x, y) = Eψ (x, y) .

In Section 1.2 we also saw that ψ (x, y) = ei ky y Φ(x). Then,

ĤD Φ(x) = vf

[
−iσx

d

dx
+ σy ω(x)

]
Φ(x) = E Φ(x), (1.20)

where ω(x) = ky +Ay(x), with ky being a real constant. The product ĤD ĤD

produces a pair of Schrödinger equations:

Ĥ2
D Φ(x) = v2

f

(
− d2

dx2
+ V+ (x) 0

0 − d2

dx2
+ V− (x)

)
Φ(x) = E2 Φ(x),

where

V± (x) = ω2(x)± dω (x)

dx
, Φ(x) =

(
φA(x)

φB(x)

)
. (1.21)
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This result is similar to that seen in equation (1.9), but with Ay(x) = 0.
In order to have the same notation, now we change the variable E/vf to
ε̄ = ε/vf . Thus, we have the following two Schrödinger equations:

Ĥ+ φA (x) =

(
− d2

dx2
+ V+ (x)

)
φA (x) = ε̄2 φA (x), (1.22)

Ĥ− φB (x) =

(
− d2

dx2
+ V− (x)

)
φB (x) = ε̄2 φB (x). (1.23)

In summary, we have started with the Dirac-Weyl equation (1.20) and
obtained two Schrödinger equations. The inverse process is also possible,
starting with a Schrödinger equation to obtain the Dirac equation (1.20). We
can do it by defining ω(x) = ν ′(x)/ν(x) and replacing it in the definition of
V+(x) , equation (1.21), which is called Riccati equation. Thus we obtain:

− d2ν(x)

dx2
+ V+(x) ν(x) = 0. (1.24)

After solving the Schrödinger equation (1.24) we will get the expressions
for ω(x) and then the Dirac equation (1.20). This process is similar if we
use V−(x) of equation (1.21) with the replacement ω(x) → −ν ′(x)/ν(x). In
forthcoming Sections we will work exclusively with the procedure described
for V+(x).

The components for the spinor Φ(x) are obtained through the pair of cou-
pled differential equations (1.20):

− i
(
d φB(x)

dx
+ ω(x) φB(x)

)
= ε̄ φA(x), (1.25)

− i
(
d φA(x)

dx
− ω(x) φA(x)

)
= ε̄ φB(x). (1.26)

We can solve this system of equations as follows. If we first solve equation
(1.22) for the component φA(x), we can obtain the component φB(x) using
(1.26),

φB(x) = − i
ε̄

(
d φA(x)

dx
− ω(x) φA(x)

)
. (1.27)

This procedure we will follow in the future. The other alternative is to solve
(1.23) for the component φB(x). The upper spinor component φA(x) can be
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obtained through equation (1.25) because

φA(x) = − i
ε̄

(
d φB(x)

dx
+ ω(x) φB(x)

)
. (1.28)

This is the appropriate procedure for the case when ω(x) = −ν ′(x)/ν(x).

The energy spectrum of the Dirac Hamiltonian is obtained from the energy
spectrum of the Schrödinger Hamiltonian. While we were studying how to
obtain the Hamiltonians Ĥ+ of (1.22) and Ĥ− of (1.23) from the Hamiltonian
ĤD, we found that if εD represents the spectrum of ĤD and εH represents the
spectrum of Ĥ±, the relationship between them is given by

εD = ±
√
εH .
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Chapter 2
Supersymmetric Quantum Mechanics

Supersymmetric quantum mechanics is a technique that allows to manipu-
late the energy spectrum of a Hamiltonian, or, for special potentials, it can
be used to find the solution for new Hamiltonians.

Historically, the origin of this technique is the factorization method, in-
troduced by Dirac in 1935 in the second edition of his quantum mechanics
book [26], where he solved algebraically the spectral problem for the one-
dimensional quantum harmonic oscillator. A few years later, in 1951, Infeld
and Hull published an extensive work [27] identifying several potentials and
systems, that were not limited to the harmonic oscillator, where the factoriza-
tion method can be applied [28]. In 1984 Mielnik generalized the factorization
method through the harmonic oscillator Hamiltonian [29]. His work opened
new ways of solving potentials in quantum mechanics by showing that if the
factorization operators were exchanged a new Hamiltonian could be obtained
[30]. More information on the subject and the supersymmetric quantum me-
chanics can be found in the following books and reviews [7, 31, 8, 9]

One way to introduce supersymmetric quantum mechanics is by introduc-
ing the operators Q+ and Q− [31]:

Q+ =

(
0 L+

0 0

)
, Q− =

(
0 0

L− 0

)
,

with L± being differential operators of k-th order. The operatorsQ± commute
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with the Hamiltonian Ĥ,

[Q±, Ĥ] = 0, Ĥ =

(
L+ L− 0

0 L− L+

)
.

The operators L± are related to two Schrödinger Hamiltonians Ĥ0 and Ĥ1

in the following way

L+ L− =
k∏
i=1

(
Ĥ1 − εi

)
, L− L+ =

k∏
i=1

(
Ĥ0 − εi

)
,

where εi are eigenvalues of Ĥ0 whose meaning we will see later. Multiplying
the operators Q+ and Q− we obtain:

Q+Q− =

(
L+ L− 0

0 0

)
, Q−Q+ =

(
0 0

0 L− L+

)
.

Notice that:

{Q−, Q+} = Q−Q+ +Q+Q− = Ĥ.

The Hamiltonian Ĥ is called supersymmetric Hamiltonian, while Q+ and Q−

are the supercharges.

If we want to intertwine the Hamiltonians Ĥ0 and Ĥ1, whose potentials
are V0,1(x) respectively, we need to select k formal eigenfunctions ui of one of

them, we choose Ĥ0, for different eigenvalues εi,

Ĥ0 ui(x) = εi ui(x), i = 1, 2, · · · , k.

The formal eigenfunctions ui(x) are called seed solutions, and the corres-
ponding εi factorization energies. If the Hamiltonians are of the form

Ĥ0 = − d2

dx2
+ V0(x), Ĥ1 = − d2

dx2
+ V1(x),

then the relationship between the two potentials is given by,

V1(x) = V0(x)− d2 ln [W (u1, · · · , uk)]
dx2

,
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with W (u1, · · · , uk) being the Wronskian of the seed solutions ui(x). There
is also a relationship involving the Hamiltonians Ĥ0, Ĥ1 and the operators
L±:

Ĥ0 L
− = L− Ĥ1, Ĥ1 L

+ = L+Ĥ0.

The last intertwining relation tells us how the eigenfunctions of both Hamil-
tonians are related. If the eigenfunctions of Ĥ1 are φ

(1)
n (x) and the ones of

Ĥ0 are φ
(0)
n (x), it turns out that

φ(1)
n (x) =

L+ φ
(0)
n (x)√

(En − ε1) · · · (En − εk)
.

The eigenvalues of Ĥ0 and Ĥ1 are also related, but it does not mean that
they are equal. Each time that an eigenvalue En of Ĥ0 is equal to a factor-
ization energy, that ε1 could not be part of the spectrum of Ĥ1.

In what follows, we will work exclusively with the first-order supersymmet-
ric quantum mechanics, i.e., we will make k = 1.

2.1 First-order supersymmetric quantum me-

chanics

In the first-order supersymmetric quantum mechanics (or 1-SUSY) the dif-
ferential intertwining operators are of first-order, and take the form:

L+ = − d

dx
+W (x), L− =

d

dx
+W (x), (2.1)

where W (x) is called superpotential.

The 1-SUSY only needs a seed solution u(x) with a factorization energy
ε such that Ĥ0 u(x) = ε u(x). The intertwined Hamiltonians Ĥ0 and Ĥ1 are
related to the operators L± as follows,

Ĥ0 = L−L+ + ε, Ĥ1 = L+L− + ε.

About the energy spectrum of Ĥ0 and Ĥ1 we will have three cases [32]:
the spectrum of Ĥ1 is the same as the spectrum of Ĥ0 except by the ground
state; the spectrum of Ĥ1 contains the complete spectrum of Ĥ0 plus the new
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energy level ε; Ĥ0 and Ĥ1 have exactly the same energy spectrum.

For each of these cases the sets of eigenfunctions and eigenvalues of Ĥ1 be-
come:

� Deleting of the ground state of Ĥ0: this means that ε = E0 and u(x) =

φ
(0)
0 (x). Thus, the eigenfunctions and eigenvalues of Ĥ1 are:

φ
(1)
n−1(x) =

L+ φ
(0)
n (x)√

En − E0

, E
(1)
n−1 = E(0)

n , n = 1, 2, 3, · · ·

� Creating a new level: this means that ε < E0 and the seed solution u(x)
is nodeless in the x-domain of the potential. The sets of eigenfunctions
and eigenvalues of Ĥ1 will be:

φ(1)
ε ∝

1

u(x)
, φ(1)

n (x) =
L+φ

(0)
n (x)√

En − ε
, n = 0, 1, 2, · · ·

Sp(Ĥ1) = {ε, E(0)
n , n = 0, 1, 2, · · · }.

� Isospectral transformation: it appears for ε < E0 and u(x) having a
node at one of the ends of the x-domain of the potential. As φε ∝ 1/u(x)
diverges at such a node, then φε is not square-integrable. Thus, the
eigenfunctions and eigenvalues of Ĥ1 are,

φ(1)
n =

L+ φ
(0)
n√

En − ε
, E(1)

n = E(0)
n , n = 0, 1, 2, · · ·

2.2 Intertwining operators for zigzag graphene

nanoribbons

In Section 1.3 we wrote a series of relations that allow us to obtain a Dirac
Hamiltonian from a Schrödinger equation and the components of its spinor.
In equations (1.27) and (1.28) we can see the following operators to appear,

L+ = − d

dx
+ ω(x), L− =

d

dx
+ ω(x). (2.2)

Thus, we can write equations (1.27) and (1.28) in the way:

φB(x) =
i L+ φA(x)

ε̄
, φA(x) = −i L

−φB(x)

ε̄
.
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CENTRO DE INVESTIGACIÓN Y DE ESTUDIOS AVANZADOS

ZIGZAG GRAPHENE NANORIBBONS IN MAGNETIC FIELDS

INTERTWINING OPERATORS FOR ZIGZAG NANORIBBONS

Therefore, the Schrödinger equations for Ĥ+ in (1.22) and Ĥ− in (1.23)
can be factorized by the operators, L+ and L−. Then, we can express these
Schrödinger Hamiltonians as follows,

Ĥ+ = L−L+, Ĥ− = L+L−. (2.3)

If we expand these products, using the definitions in (2.2), we get that

Ĥ+ = − d2

dx2
+ ω′(x) + ω2(x),

Ĥ− = − d2

dx2
− ω′(x) + ω2(x).

These expressions appear in equations (1.22) and (1.23). Therefore, ω(x)
is a superpotential and the Hamiltonians Ĥ+ and Ĥ− are supersimmetric
partners, which satisfy the intertwining relations,

Ĥ+ L
− = L− Ĥ−, Ĥ− L

+ = L+ Ĥ+. (2.4)

Note that the Hamiltonian Ĥ+ can generate different partner Hamiltonians
Ĥ− when we shift the energy and potential V+ by a real constant ξ,

Ĥ+ φA (x) =

(
− d2

dx2
+ {V+ (x)− ξ}

)
φA (x) =

{
ε̄2 − ξ

}
φA (x),

Now, equation (1.24) for ν(x) becomes,

− d2ν(x)

dx2
+ V+(x) ν(x) = ξ ν(x). (2.5)

Thus, adding a constant energy ξ does not only modify the partner Hamil-
tonian Ĥ−, but it also changes the superpotential ω(x), the operators L± and
the eigenfunctions of Ĥ−. These changes generate new interesting solutions
that we will explore in the next chapter.
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Chapter 3
Zigzag graphene nanoribbons under
magnetic fields

In Chapter 1 we described the Dirac Hamiltonian and Schrödinger equation
that the zigzag graphene nanoribbons must fulfill, as well as its associated
boundary conditions. We developed the method to obtain a Dirac Hamilto-
nian starting from a Schrödinger equation and vice versa, as well as deter-
mining its spinor.

In Chapter 2 we developed the first-order supersymmetric quantum me-
chanics, or 1-SUSY. This technique allows us to obtain solutions of a Schrödin-
ger equation from solutions of another Schrödinger equation, preserving the
energy spectrum except by the ground state, which can change or be pre-
served.

In this Chapter we employ the solutions for zigzag graphene nanoribbons
of Chapter 1 and apply the 1-SUSY technique to them. The goal will be to
obtain new solutions to the Dirac Hamiltonian (1.20) with magnetic fields
from the solutions that Brey and Fertig found for zigzag nanoribbons with-
out magnetic fields. Examples of the use of supersymmetry to relate Dirac
Hamiltonians with Schrödinger equations can be found in [33, 34, 35]. In the
works [24, 25, 36, 37] the authors as well study the way of using supersym-
metry for graphene under magnetic fields.
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3.1 Zeroth SUSY transformation of a zigzag

graphene nanoribbon

In Section (1.2) we derived the Schrödinger equation (1.9) that must fulfill the

components φ
(A)
n (x) and φ

(B)
n (x) of the spinor Φ(x). Let us go back to that

equation and add a zero in the way ξ − ξ = 0, with ξ being a real constant.
Thus we obtain the following Schrödinger equation

Ĥ2
0 φ

(A)
n (x) =

(
− d2

dx2
+ k

′2
y

)
φ(A)
n (x) = ε̄′2n φ

(A)
n (x), (3.1)

where
k

′2
y = k2

y − ξ, ε̄′2n = ε̄2n − ξ, ε̄2n = k2
y − z2

n,

and φ
(A)
n (x) is the upper component of the spinor. As we can see, the constant

ξ shifts the potential and the energy levels.

In what follows, we will derive the Dirac equation ĤD starting from the
Schrödinger equation (3.1) using the procedure described in Section 1.3. We
can distinguish two important cases, the first one where zn =

√
k2
y − ε̄ 2

n is
real for k2

y > ε̄ 2
n and the second one where zn is a pure imaginary number for

k2
y < ε̄ 2

n . In the first case, it is convenient to express φ
(A)
n (x) as

φ(A)
n (x) = A sinh zn x+B cosh zn x, (3.2)

whereas in the second case φ
(A)
n (x) takes the form

φ(A)
n (x) = A sin kn x+B cos kn x. (3.3)

We can use equation (1.27) to know the lower spinor component φ
(B)
n (x).

When z2
n > 0 we have

φ(B)
n (x) = i A

ε̄′
[−zn cosh zn x+ ω(x) sinh zn x ]

+ i B
ε̄′

[−zn sinh zn x+ ω(x) cosh zn x ] ,

(3.4)

while for zn = i kn we obtain

φ(B)
n (x) = i A

ε̄′
[−kn cos kn x+ ω(x) sin kn x ]

+ i B
ε̄′

[ kn sin kn x+ ω(x) cos kn x ] .

(3.5)
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Now we need to know ω(x) = ν ′(x)/ν(x), where ν(x) is the solution of the
Schrödinger equation,(

− d2

dx2
+ k

′2
y

)
ν(x) = 0 or

(
− d2

dx2
+ k2

y

)
ν(x) = ξ ν(x).

Once again we have two solutions. For k2
y − ξ > 0 the solution is

ν(x) = C cosh
√
k2
y − ξ x+D sinh

√
k2
y − ξ x.

We can rewrite it using a constant phase α, where C = cosh α and D =
sinh α. We thus get

ν(x) = cosh
(√

k2
y − ξ x+ α

)
. (3.6)

Then, ω(x) is given by

ω(x) =
√
k2
y − ξ tanh

(√
k2
y − ξ x+ α

)
. (3.7)

The function ω(x) is necessary to find the expressions for the Dirac equation

(1.20) and for the lower spinor component φ
(B)
n (x). The Dirac Hamiltonian

in this case is

ĤD = vf

{
−iσx

d

dx
+ σy

[√
k2
y − ξ tanh

(√
k2
y − ξ x+ α

)]}
. (3.8)

The other solution arises for k2
y − ξ < 0,

ν(x) = C cos
√
ξ − k2

y x+D sin
√
ξ − k2

y x.

We can also rewrite it using now the constants C = cos α and D = − sin α.
Then,

ν(x) = cos
(√

ξ − k2
y x+ α

)
. (3.9)

In this case the function ω(x) and the Dirac Hamiltonian are, respectively,

ω(x) = −
√
ξ − k2

y tan
(√

ξ − k2
y x+ α

)
, (3.10)

ĤD = vf

{
−iσx

d

dx
− σy

[√
ξ − k2

y tan
(√

ξ − k2
y x+ α

)]}
. (3.11)
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Another important result related to the function ω(x) has to do with the
magnetic field B(x). In Section 1.3 we saw that ω(x) is related to the vector
potential A = Ay(x) êy through the expression,

ω(x) = ky + Ay(x).

Equation (1.19) tells us that the magnetic field is the derivative with respect
to x of Ay(x) but, since ky is a constant, such a derivative coincides with the
derivative with respect to x of ω(x),

B(x) =
dω(x)

dx
êz. (3.12)

When k2
y − ξ > 0 the magnetic field is

B (x) =
(
k2
y − ξ

)
sech2

(√
k2
y − ξ x+ α

)
êz, (3.13)

while for k2
y − ξ < 0 it becomes

B (x) = −
(
ξ − k2

y

)
sec2

(√
ξ − k2

y x+ α
)
êz. (3.14)

These results are summarized in Table 3.2.

3.1.1 Zeros of the function ν(x).

In Chapter 2 (section 2.2) we saw that ν(x) is a seed solution associated to
the parameter ξ of equation (2.5) and the functions φ(B)

n (x) can be interpreted
as eigenfunctions of the corresponding partner Hamiltonian of the operator
Ĥ2

0 in equation (3.1). In Section 2.1 three different cases were identified when
ν(x) is a nodeless function in the x-domain or it has a node at one of the ends.
Let us study now the two expressions for ν(x) that we found in this Chapter,
equations (3.6) and (3.9), to determine the values that α and

√
k2
y − ξ can

have. The first case is for

ν(x) = cosh
(√

k2
y − ξ x+ α

)
,

which is not null for all values of x between [0, 1]. Thus, any value of ξ, ky
and α are valid whenever k2

y − ξ > 0. If k2
y − ξ < 0 it turns out that:

ν(x) = cos
(√

ξ − k2
y x+ α

)
.

24 Chapter 3
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Case α
√
|k2
y − ξ|

k2
y − ξ > 0 All All

k2
y − ξ < 0

(
−π

2
, π

2

) [
−π

2
− α, π

2
− α

]
0 or ± π

[
−π

2
, π

2

]
±π

2
(−π, 0) or (0, π)(

π
2
, π
) [

π
2
− α, 3π

2
− α

]
(
−π, −π

2

) [
−3π

2
− α, −π

2
− α

]
Table 3.1. Allowed values of α and

√
|k2
y − ξ| for x ∈ [0, 1]. These values define

a function ν(x) without nodes or with a node at one of the ends of the x-domain.

If π is added or subtracted to α the condition for
√
|k2
y − ξ| does not change.

The cosine function vanishes when its argument takes the values,

2n+ 1

2
π, n = 0, 1, 2, · · ·

In Table 3.1 we show the values of α and
√
|k2
y − ξ| that define ν(x) as a

function without nodes in the closed interval [0, 1] or with a node at one of
the ends.

3.1.2 Zigzag boundary conditions

In Section 1.2 we saw that the upper and lower components of the spinor
Φ(x) for zigzag graphene nanoribbons must satisfy the boundary conditions

φ(A)
n (0) = 0, φ(B)

n (1) = 0.

We have normalized the boundary conditions (1.5) with the change of vari-
able x→ x/L.
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In Section 3.1 we presented general expressions, without considering the
proper boundary conditions. Since the upper spinor component φ

(A)
n must

vanish at x = 0, see equations (3.2) and (3.3), we have that B = 0. Therefore,
when zn =

√
k2
y − ε̄ 2

n is a real number we have:

φ(A)
n (x) = A sinh zn x, (3.15)

φ(B)
n (x) =

i A

ε̄′n
[−zn cosh zn x+ ω(x) sinh zn x ] . (3.16)

Instead, when zn = i kn is a pure imaginary number it is obtained:

φ(A)
n (x) = A sin kn x, (3.17)

φ(B)
n (x) =

i A

ε̄′n
[−kn cos kn x+ ω(x) sin kn x ] . (3.18)

Using now the second boundary condition, φ
(B)
n (1) = 0, we obtain the follow-

ing transcendental equation when zn is a real number,

coth zn =
ω(1)

zn
.

The hyperbolic cotangent function can be written in terms of the exponential
function in the way

coth zn =
1 + e−2 zn

1− e−2 zn
.

Thus, when k2
y − ξ > 0 it is obtained

e−2 zn =
−zn +

√
k2
y − ξ tanh

(√
k2
y − ξ + α

)
zn +

√
k2
y − ξ tanh

(√
k2
y − ξ + α

) , (3.19)

but if k2
y − ξ < 0 it turns out that

e−2 zn = −
zn +

√
ξ − k2

y tan
(√

ξ − k2
y + α

)
zn −

√
ξ − k2

y tan
(√

ξ − k2
y + α

) . (3.20)

If the variable zn is imaginary, that is zn = i kn, the exponential function
is written in terms of trigonometric functions. Thus, for k2

y − ξ > 0 we have

tan kn =
kn√

k2
y − ξ tanh

(√
k2
y − ξ + α

) , (3.21)
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while for k2
y − ξ < 0 it is obtained:

tan kn = − kn√
ξ − k2

y tan
(√

ξ − k2
y + α

) . (3.22)

These results are summarized in Table 3.2.

3.1.3 Example

Now, let us see an example using the parameters α = π, ξ = 1
4
π2 and ky = 0.

Since k2
y − ξ = −1

4
π2 is negative we must take,

ν(x) = cos
(√

ξ − k2
y x+ π

)
,

ω(x) = −
√
ξ − k2

y tan
(√

ξ − k2
y x+ π

)
,

with
√
ξ − k2

y = π
2
, let us note that ν(x) have a node at x = 1. While the

corresponding magnetic field is given by

B(x) = −
(
ξ − k2

y

)
sec2

(√
ξ − k2

y x+ α
)
êz.

In Figure 3.4 (a) we show plots of the function ω(x) and the magnetic field
B(x).

The spinor components φ(A)
n (x) and φ(B)

n (x) are obtained by solving the
transcendental equations for zn being a real number:

e−2 zn = ζ(zn) = −
zn +

√
ξ − k2

y tan
(√

ξ − k2
y + α

)
zn −

√
ξ − k2

y tan
(√

ξ − k2
y + α

) ,
and for zn = i kn:

tan kn = κ(kn) = − kn√
ξ − k2

y tan
(√

ξ − k2
y + α

) .
The transcendental equation when zn is a real number give us the solution
zn = 0. We can see this if we rewrite the function ζ(zn) as,

−
zn +

√
ξ − k2

y tan
(√

ξ − k2
y + α

)
zn −

√
ξ − k2

y tan
(√

ξ − k2
y + α

) = −
zn
[√

ξ − k2
y tan

(√
ξ − k2

y + α
)]−1

+ 1

zn
[√

ξ − k2
y tan

(√
ξ − k2

y + α
)]−1 − 1

.
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Function k2
y − ξ > 0 k2

y − ξ < 0

ν(x) cosh
(√

k2
y − ξ x+ α

)
cos

(√
ξ − k2

y x+ α
)

ω(x)
√
k2
y − ξ tanh

(√
k2
y − ξ x+ α

)
−
√
ξ − k2

y tan
(√

ξ − k2
y x+ α

)
B(x)

(
k2
y − ξ

)
sech2

(√
k2
y − ξ x+ α

)
êz −

(
ξ − k2

y

)
sec2

(√
ξ − k2

y x+ α
)
êz

zn =
√
k2
y − ε̄2n real

T.E. e−2 zn =
−zn+
√
k2y−ξ tanh(

√
k2y−ξ+α)

zn+
√
k2y−ξ tanh(

√
k2y−ξ+α)

e−2 zn = − zn+
√
ξ−k2y tan(

√
ξ−k2y+α)

zn−
√
ξ−k2y tan(

√
ξ−k2y+α)

φ(A)
n (x) sinh zn x

φ(B)
n (x) i√

ε̄2n−ξ
[−zn cosh zn x+ ω(x) sinh zn x]

zn = ikn with kn =
√
ε̄2n − k2

y

T.E. tan kn = kn√
k2y−ξ tanh(

√
k2y−ξ+α)

tan kn = − kn√
ξ−k2y tan(

√
ξ−k2y+α)

φ(A)
n (x) sin kn x

φ(B)
n (x) i√

ε̄2n−ξ
[−kn cos kn x+ ω(x) sin kn x]

Table 3.2. Expressions of the functions ν (x), ω (x), the magnetic field B (x) and
the lower and upper spinor components φ(A)

n (x) and φ(B)
n (x) for different possible

cases considering boundary conditions φ(A)
n (0) = 0 and φ(B)

n (1) = 0. T.E. means
transcendental equation.

28 Chapter 3
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(a) Energy spectrum for ĤD. (b) Solutions for zn = i kn.

Figure 3.1. Energy spectrum (left) and solutions of the transcendental equation
for zn = i kn (right). The points represent the allowed values of kn. The values of

the parameters used are α = π, ξ = π2

4 and ky = 0.

Then, when
√
ξ − k2

y = π
2

and α = π we get that√
ξ − k2

y + α→ 3

2
π, and tan

(√
ξ − k2

y + α
)
→∞.

Thus, the transcendental equation becomes e−2 zn → 1, whose solution is
zn = 0. This solution is not useful because φ(A)

n (x) will be identically zero
and φ(B)

n (x) will be a constant for any x in [0, 1].

When zn = i kn the transcendental equation κ(kn) is a zero function, be-
cause tan

(√
ξ − k2

y + α
)
→ ∞, and the intersections between κ(kn) and

tan (kn) arise at the multiples of π. Thus, we get that

kn = nπ, n = ±1, ±2, ±3, . . . .

The energy spectrum of the Schrödinger Hamiltonian Ĥ2
0 , defined in equa-

tion (3.1), is calculated from ε̄′ 2n = k2
y − z2

n − ξ, which is given by

ε̄′ 2n =

(
n2 − 1

4

)
π2, n = ±1, ±2, ±3, . . .
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(a) ε̄′1 = 2.7207. (b) ε̄′2 = 6.0837.

(c) ε̄′3 = 9.2930. (d) ε̄′4 = 12.4678.

Figure 3.2. Modulus square of the entries of the normalized spinor with param-
eters α = π, ξ = π2

4 and ky = 0 for the first four positive energies.

The energies ε̄′ 2n are always positive, which means that ξ < ε̄ 2
n , and the func-

tion ν(x) have a node at x = 1. Therefore, this case corresponds to an
isospectral 1-SUSY transformation, see Section 2.1.

The energies of the Dirac Hamiltonian ĤD are ε̄′n = ±
√
ε̄′ 2n . In Figure 3.1

(a) we show a plot of some energies of ĤD while in Figure 3.1 (b) we can see
the intersections between the functions κ(kn) and tan (kn). The values of zn
are represented by points.

Therefore, the spinor components φ(A)
n (x) and φ(B)

n (x) are given by

φ(A)
n (x) = A sin kn x,

φ(B)
n (x) = − i A√

ε̄2n − ξ

[
kn cos kn x+

√
ξ − k2

y tan
(√

ξ − k2
y x+ α

)
sin kn x

]
,

where A is a normalization constant. We find this constant using numerical
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CENTRO DE INVESTIGACIÓN Y DE ESTUDIOS AVANZADOS

ZIGZAG GRAPHENE NANORIBBONS IN MAGNETIC FIELDS

3.1. Zeroth SUSY transformation

(a) ε̄′0 = 0. (b) ε̄′1 = 4.44.

(c) ε̄′2 = 7.70. (d) ε̄′3 = 10.88.

Figure 3.3. Modulus square of the components of the normalized spinor Φ(x)

with parameters α = 3
2π and

√
ξ − k2

y = 1
2π for the first four positive energies.

Note that this case can be also interpreted as a 1-SUSY transformation on the
potential V0 = −1

4π
2.

integration with the normalization condition,∫ 1

0

(
|φ(A)
n (x)|2 + |φ(B)

n (x)|2
)
dx = 1.

The functions φ(A)
n (x) are similar to the eigenfunctions of a particle in an

infinite potential well of length L = 1. This happens because the solutions
to the transcendental equation become multiples of π, and therefore,

φ(A)
n (0) = φ(A)

n (1) = 0.

In Figure 3.2 we show plots of the modulus square of the spinor components
for the first four positive energies, whose normalization constants are:
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k1 k2 k3 k4

A 1.0 1.0 1.0 1.0

A second example emerges from the previous one if we make the following
substitution in the function ν(x),

x→ x+ 1 → ν(x) = cos

(
π

2
x+

3π

2

)
.

Then, we can obtain another solution for the parameters k2
y − ξ = −1

4
π2 and

α = 3
2
π. Although we are shifting the variable x in the seed solution, our

interval of interest will remain [0, 1].

The expression for ω(x) is given by

ω(x) = −π
2

tan

(
π

2
x+

3π

2

)
=
π

2
cot
(π

2
x
)
.

The magnetic field has the same expression

B(x) = −
(
ξ − k2

y

)
sec2

(√
ξ − k2

y x+ α
)
êz.

In Figure 3.4 (b) we show a plot of the magnetic field B(x) for this example.

The transcendental equations that we have to solve are the same as in the
previos example, but now the solutions obtained when zn = i kn become

kn =
2n+ 1

2
π, n = 0, ±1, ±2, ±3, . . . ,

and the energies for the Schrödinger Hamiltonian Ĥ2
0 are given by,

ε̄′ 2n =

[(
n+

1

2

)2

− 1

4

]
π2, n = 0, ±1, ±2, ±3, . . . .

These expression for ε̄′ 2n are similar to the previous example, but with the
index change n→ n+1/2. Another difference is that the lowest value of ε̄′ 2n is
zero, which means that for n = 0 we get ξ = ε̄ 2

0 . Thus, this case corresponds
to a 1-SUSY transformation that deletes the ground state energy of the Ĥ2

0
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(a) α = π and
√
ξ − k2y = 1

2π. (b) α = 3
2π and

√
ξ − k2y = 1

2π

Figure 3.4. Magnetic field Bz(x) and function ω(x) for the studied examples.

of equation (3.1).

The expressions of the spinor components φ(A)
n (x) and φ(B)

n (x) are given by

φ(A)
n (x) = A sin kn x,

φ(B)
n (x) = −i A

ε̄′ 2n

[
kn cos kn x−

√
ξ − k2

y cot
(√

ξ − k2
y x
)

sin kn x
]
.

In Figure 3.3 we show a plot of the modulus square of φ(A)
n (x) and φ(B)

n (x)
for zero energy and for the first three lowest positive energies.

Finally, let us mention an interpretation of the effect of magnetic fields
on charged particles has been given by Kuru, Nieto and Negro [36]. From
classical electrodynamics, the Hamiltonian of a particle in a magnetic field is,

H =
1

2
[p− A]2 + V (r).

The quantity,

πy (x) = py − Ay(x),

is the kinetic momentum given by m ṙ. The canonical momentum py = ky is
a real constant and the vector potential Ay(x) = ω(x)− ky. Then,

πy (x) = 2 ky − ω(x).
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As we can see in Figure 3.4, the function ω(x) is decreasing monotonic. If
we consider ky = 0 and a fixed point x0 such that

πy(x0) = 0 → ω(x0) = 0.

When x 6= x0 the particle will move in the positive y direction when ω(x) is
negative and in the negative y direction when ω(x) is positive and vice versa.

3.2 First + second SUSY transformation of a

zigzag graphene nanoribbon

In Chapter 2 we introduced the supersymmetric quantum mechanics, a tech-
nique that intertwines two Schrödinger Hamiltonians. The intertwining pro-
cedure allows us to relate the eigenfunctions and eigenvalues of both Hamil-
tonians. So, if we know the eigenfunctions and eigenvalues of one of them
we can obtain the corresponding ones of the other using the operators L±.
In this Section we will find the operator L+, defined in equation (2.1), and
we will make a first-order SUSY transformation to the Hamiltonian Ĥ2

0 of
equation (3.1) to find its supersymmetric partner Ĥ2

1 . We will apply L+ to

the solutions of Ĥ2
0 , φ

(A)
n (x) from equation (3.2) or (3.3), to find the eigen-

functions of Ĥ2
1 . Then we will do a second first-order SUSY transformation

to find the Dirac Hamiltonian associated to Ĥ2
1 , as we did for Ĥ2

0 in Section
3.1, and we will find the components of the spinor for this Dirac Hamiltonian.

We will work with a simplified version of the general expression of the
solutions φ

(A)
n (x) of equation (3.1). The solution in the case of zn being a real

number comes from equations (3.2),

φ(A)
n (x) = A sinh zn x+B cosh zn x.

The corresponding solution for the case when zn = i kn being a pure imaginary
number appears from equations (3.3),

φ(A)
n (x) = A sin kn x+B cos kn x.

The way to simplify φ(A)
n (x) is to use only one constant for the initial

conditions. Let us make the change of variable A = cosh β and B = sinh β
for zn being a real number or A = cos β and B = sin β for zn = i kn.
Therefore,

φ(A)
n (x) = sinh (zn x+ β) , (3.23)

34 Chapter 3
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φ(A)
n (x) = sin (kn x+ β) . (3.24)

The expression for the operator L+ in equation (2.1) requires a superpo-
tential W (x), which is defined as

W (x) =
u′(0) (x)

u(0) (x)
,

where the seed solution u(0) (x) fulfills the differential equation (3.1) without
the constant ξ, (

− d2

dx2
+ k2

y

)
u(0) (x) = ε̄2µ u

(0) (x).

When zµ =
√
k2
y − ε̄2µ is real the expression for the seed solution is,

u(0) (x) = cosh (zµ x+ γ) , (3.25)

leading to the superpotential,

W (x) = zµ tanh (zµ x+ γ) . (3.26)

However, if zµ = i kµ is a pure imaginary number it turns out that

u(0) (x) = cos (kµ x+ γ) , (3.27)

and the superpotential becomes

W (x) = −kµ tan (kµ x+ γ) . (3.28)

The expressions of these superpotentials are similar to those of ω(x) that
we saw in equations (3.7) and (3.10). The reason is that the seed solutions
that define them solve the same differential equation. The difference is that
ω(x) was used to find the Dirac Hamiltonian of Ĥ2

0 and the W (x) we are using
allows to know the operators L± and find the supersymmetric partners of Ĥ2

0 .

The interwining operators L± are defined as,

L+ = − d

dx
+W (x), L− =

d

dx
+W (x),

and the factorization relationships between the intertwined Hamiltonians and
the operators L± are

Ĥ2
0 − ε̄2µ = L− L+, Ĥ2

1 − ε̄2µ = L+ L−.
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We can find now the relationship between the potentials of the Schrödinger
Hamiltonians and ω(x) because,

L− L+ = − d2

dx2
+W ′(x) +W 2(x), L+ L− = − d2

dx2
−W ′(x) +W 2(x).

Therefore, from relations (2.4) we have,

V1(x) = V0(x)− 2W ′(x).

If we replace the potential V0(x) = k′ 2y from equation (3.1) and the derivative
of the function W (x) of equation (3.26) it is obtained

V1(x) = k2
y − ξ − 2 z2

µ sech2 (zµ x+ γ) ,

when zµ is real. The Schrödinger equation for Ĥ2
1 takes the form

Ĥ2
1 φ

(A,1)
n (x) =

[
− d2

dx2
+ k′ 2y − 2 z2

µ sech2 (zµ x+ γ)

]
φ(A,1)
n (x) = ε̄′ 2n φ

(A,1)
n (x).

(3.29)
When zµ = i kµ being a pure imaginary number,

V1(x) = k2
y − ξ + 2 k2

µ sec2 (kµ x+ γ) ,

Ĥ2
1 φ

(A,1)
n (x) =

[
− d2

dx2
+ k′ 2y + 2 k2

µ sec2 (kµ x+ γ)

]
φ(A,1)
n (x) = ε̄′ 2n φ

(A,1)
n (x),

(3.30)
where ε̄′ 2n = k′ 2y −z2

n. The potentials that we have obtained in equation (3.29)
are known as hyperbolic Pöschl-Teller potentials while are called trigonomet-
ric Pöschl-Teller potentials those of equation (3.30) [38, 39, 40]. Our x-interval
is limited to the width L of the nanoribbons, so the potentials are truncated.

Now we will apply a second first-order SUSY transformation to obtain
the Dirac Hamiltonian Ĥ

(1)
D of Ĥ2

1 and the spinor components that satisfy
the boundary conditions (1.5) plus its energy spectrum. We will take the
solutions of the Schrödinger equation (3.29) or (3.30), which are given by

φ(A,1)
n (x) =

L+ φ(A)
n (x)√

ε̄2n − ε̄2µ
,

as the upper spinor component of the Dirac Hamiltonian Ĥ
(1)
D . The solution

φ(A,1)
n (x) has four possible expressions:
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� When zn and zµ are real numbers we have

φ(A,1)
n (x) = 1√

ε̄2n−ε̄2µ
[−zn cosh (zn x+ β)

+zµ tanh (zµ x+ γ) sinh (zn x+ β)] .
(3.31)

� If zn is a real number and zµ = i kµ is a pure imaginary number we
obtain

φ(A,1)
n (x) = 1√

ε̄2n−ε̄2µ
[−zn cosh (zn x+ β)

−kµ tan (kµ x+ γ) sinh (zn x+ β)] .
(3.32)

� In the case that zn = i kn is a pure imaginary number and zµ is a real
number we arrive at

φ(A,1)
n (x) = 1√

ε̄2n−ε̄2µ
[−kn cos (kn x+ β)

+zµ tanh (zµ x+ γ) sin (kn x+ β)] .
(3.33)

� Finally, if both zn = i kn and zµ = i kµ are pure imaginary numbers we
end up with

φ(A,1)
n (x) = 1√

ε̄2n−ε̄2µ
[−kn cos (kn x+ β)

−kµ tan (kµ x+ γ) sin (kn x+ β)] .
(3.34)

The lower entry of the spinor is obtained from equation (1.27) and a func-
tion ω1(x) such that:

ω1(x) =
ν ′1(x)

ν1(x)
, (3.35)

where ν1(x) is the solution to the differential equation,(
− d2

dx2
+ V1(x)

)
ν1(x) = 0. (3.36)

If zµ is a real number such differential equation is given by,[
− d2

dx2
+ k2

y − 2 z2
µ sech2 (zµ x+ γ)

]
ν1(x) = ξ ν1(x). (3.37)
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CENTRO DE INVESTIGACIÓN Y DE ESTUDIOS AVANZADOS

ZIGZAG GRAPHENE NANORIBBONS IN MAGNETIC FIELDS

3.2. Zeroth + first SUSY transformation

In the case that zµ = i kµ is a pure imaginary number we arrive at[
− d2

dx2
+ k2

y + 2 k2
µ sec2 (kµ x+ γ)

]
ν1(x) = ξ ν1(x). (3.38)

Note that these equations are similar to equations (3.29) and (3.30) but
with energy ε̄2n = ξ. Therefore, the function ν1(x) is any solution appearing
in equations (3.31) to (3.34) with the change zn =

√
k2
y − ε̄n →

√
k2
y − ξ.

The following is a list with the different possible cases.

� If
√
k2
y − ξ and zµ are real numbers we will have:

ν1 (x) = −
√
k2
y − ξ cosh

(√
k2
y − ξ x+ δ

)
+zµ tanh (zµ x+ γ) sinh

(√
k2
y − ξ x+ δ

)
.

(3.39)

� In case that
√
k2
y − ξ is a real number and zµ = i kµ it is obtained:

ν1 (x) = −
√
k2
y − ξ cosh

(√
k2
y − ξ x+ δ

)
−kµ tan (kµ x+ γ) sinh

(√
k2
y − ξ x+ δ

)
.

(3.40)

� When
√
k2
y − ξ is an imaginary number and zµ a real number we arrive

at:

ν1 (x) = −
√
ξ − k2

y cos
(√

ξ − k2
y x+ δ

)
+zµ tanh (zµ x+ γ) sin

(√
ξ − k2

y x+ δ
)
.

(3.41)

� For
√
k2
y − ξ being an imaginary number and zµ = i kµ it turns out

that:

ν1 (x) = −
√
ξ − k2

y cos
(√

ξ − k2
y x+ δ

)
−kµ tan (kµ x+ γ) sin

(√
ξ − k2

y x+ δ
)
.

(3.42)

The lower component of the spinor of Ĥ
(1)
D is obtained from equation (1.27):

φ(B,1)
n (x) = − i√

ε̂2n − ξ

(
d φ

(A,1)
n (x)

dx
− ω1(x) φ(A,1)

n (x)

)
.

In the same way as for φ
(A,1)
n (x), we have four possible cases for φ

(B,1)
n (x).
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� When zn and zµ are real numbers it is obtained:

φ
(B,1)
n (x) = i sinh(zn x+β)√

(ε̄2n−ξ) (ε̄2n−ε̄2µ)

[
z2
n − z2

µ sech2 ( zµ x+ γ )

+ω1 (x) zµ tanh (zµx+ γ) ]− i cosh (zn x+β)√
(ε̄2n−ξ) (ε̄2n−ε̄2µ)

× [zn zµ tanh (zµ x+ γ) + zn ω1 (x)] .

(3.43)

� In the case that zn is a real number and zµ = i kµ a pure imaginary
number we obtain:

φ
(B,1)
n (x) = i sinh(zn x+β)√

(ε̄2n−ξ) (ε̄2n−ε̄2µ)

[
z2
n + k2

µ sec2 ( kµ x+ γ )

−ω1 (x) kµ tan (kµx+ γ) ] + i cosh (zn x+β)√
(ε̄2n−ξ) (ε̄2n−ε̄2µ)

× [zn kµ tan (kµ x+ γ)− zn ω1 (x)] .

(3.44)

� For zn = i kn being a pure imaginary number and zµ a real number we
arrive at:

φ
(B,1)
n (x) = i sin(kn x+β)√

(ε̄2n−ξ) (ε̄2n−ε̄2µ)

[
−k2

n − z2
µ sech2 ( zµ x+ γ )

+ω1 (x) zµ tanh (zµx+ γ) ]− i cos (kn x+β)√
(ε̄2n−ξ) (ε̄2n−ε̄2µ)

× [kn zµ tanh (zµ x+ γ) + kn ω1 (x)] .

(3.45)

� If both zn = i kn and zµ = i kµ are pure imaginary numbers we will
have:

φ
(B,1)
n (x) = i sin(kn x+β)√

(ε̄2n−ξ) (ε̄2n−ε̄2µ)

[
−k2

n + k2
µ sec2 ( kµ x+ γ )

−ω1 (x) kµ tan (kµx+ γ) ] + i cos (kn x+β)√
(ε̄2n−ξ) (ε̄2n−ε̄2µ)

× [kn kµ tan (kµ x+ γ)− kn ω1 (x)] .

(3.46)

3.2.1 The zeros of ν1 (x)

Two seed solutions have been used in this section, the functions u(0) (x) and

ν1(x). To generate a well behaved Dirac Hamiltonian Ĥ
(1)
D both seed solutions

must be nodeless in x ∈ [0, 1], otherwise the auxiliary potential V1(x) and the
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vector potential Ay(x) = ω(x)− ky will be singular at the node positions, see
equations (3.35) and (3.36).

The conditions on the allowed functions u(0) (x) of equations (3.25) and
(3.27) are shown in Table 3.1. The seed solutions ν1(x) of equations (3.39) to
(3.42) have values of x where they vanish. We can identify them if we solve
the following equations:

� For the case of equation (3.39) we have√
k2
y − ξ coth

(√
k2
y − ξ x+ δ

)
= zµ tanh (zµ x+ γ) . (3.47)

� If the equation is (3.40) it turns out that:√
k2
y − ξ coth

(√
k2
y − ξ x+ δ

)
= kµ cot

(
kµ x+ γ +

π

2

)
. (3.48)

� For equation (3.41) it should be fulfilled:√
ξ − k2

y cot
(√

ξ − k2
y x+ δ

)
= zµ tanh (zµ x+ γ) . (3.49)

� In case of equation (3.42) we must have:√
ξ − k2

y cot
(√

ξ − k2
y x+ δ

)
= kµ cot

(
kµ x+ γ +

π

2

)
. (3.50)

If a point xp satisfies one of the equations shown above, then ν1 (xp) = 0
and ω1 (xp) = ν ′1 (xp)/ν1 (xp) → ∞. We were not able to find a general con-
dition on the parameters γ, δ, ξ and zµ, but some cases can be completely
studied. One simple example is when δ = γ + π/2 and kµ =

√
ξ − k2

y for
(3.50).

Although it is better to study equations (3.48) to (3.50) numerically, the
condition (3.47) can be as well fully analyzed. In order that ν1 (x) in equation
(3.39) is not zero at some point in (0, 1), we need that I =

√
k2
y − ξ/zµ > 1.

If I is less than 1 and positive then δ ≤ −
√
k2
y − ξ and γ ≥ 0 are sufficient

to ensure that ν1(x) 6= 0 for all x in [0, 1]. The reason is because the hyper-
bolic cotangent function has its divergence at xδ = −δ/

√
k2
y − ξ. When δ is

less than −
√
k2
y − ξ, the positive part of the hyperbolic cotangent function is
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CENTRO DE INVESTIGACIÓN Y DE ESTUDIOS AVANZADOS

ZIGZAG GRAPHENE NANORIBBONS IN MAGNETIC FIELDS

3.2. Zeroth + first SUSY transformation

(a)
√
k2y − ξ, zµ real numbers and I = 3. (b)

√
k2y − ξ, zµ real numbers and I = 0.3.

Figure 3.5. Plot of cases where the functions I coth (x + δ) and tanh (x + γ)
intersect to each other. In both examples it has been taken γ = 0 for convenience.
In the points xp where they intersect the function ν1 (x) becomes zero.

outside the interval [0, 1]. Thus, the negative part does not intercept with the
hyperbolic tangent function if γ ≥ 1 because the point where the hyperbolic
tangent is zero is shifted to the left of the interval [0, 1]. Two examples can
be seen in Figure 3.5, one with I > 1 and the other with I < 1.

3.2.2 Zigzag boundary conditions

The boundary conditions φ(A,1)
n (0) = 0 and φ(B,1)

n (1) = 0 of equation (1.5) for
the components of the spinor Φ(x) of equation (1.8) give us a transcendental
equation for each component. The following list represents the transcendental
equation coming from φ(A,1)

n (0) = 0.

� If we have that zn and zµ are real numbers then,

zn coth β = zµ tanh γ. (3.51)

� In the case where zn is a real number and zµ = i kµ is a pure imaginary
number it turns out that:

zn coth β = kµ cot
(
γ +

π

2

)
. (3.52)

� When zn = i kn is a pure imaginary number and zµ is a real number we
have:

kn cot β = zµ tanh γ. (3.53)
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� If zn and zµ are pure imaginary numbers it must be fulfilled that

kn cot β = kµ cot
(
γ +

π

2

)
. (3.54)

There is not a general expression telling us what values of zn, zµ, β and
γ solve these equations. However, some particular values of the parameters
β and γ simplify such equations. One case is when β = 0. In this case the
hyperbolic cotangent function of equation (3.51) diverges while the hyper-
bolic tangent function is bounded, then (3.51) cannot be satisfied. In the
same way, equation (3.53) cannot be fulfilled because the cotangent function
diverges. Instead, equations (3.52) and (3.54) are satisfied when β = 0 and
γ = (m+ 1/2) π with m being an integer, since then the right hand side of
both equations becomes cot[(m+ 1)π].

A second case where we can simplify equations (3.51) to (3.54) is taking
the parameters β = π/2 and γ = 0. If γ = 0 the hyperbolic tangent function
of equations (3.51) and (3.53) becomes zero, but for β = π/2 the hyperbolic
cotangent function is different from zero and thus (3.51) cannot be satisfied.
However equation (3.53) is fulfilled because cot π/2 = 0. This also happens
for equations (3.52) and (3.54). Equation (3.52) cannot be satisfied because
cot π/2 = 0 and coth π/2 6= 0, while equation (3.54) is fulfilled.

The boundary condition φ(B,1)
n (1) = 0 for the lower spinor component gives

us the following transcendental equations:

� In the case where zn and zµ are real numbers the transcendental equa-
tion is,

coth (zn + β) =
z2
n − z2

µ sech2 (zµ + γ) + zµ ω1 (1) tanh (zµ + γ)

zn ω1 (1) + zn zµ tanh (zµ + γ)
.

(3.55)

� Instead, if zn is a real number and zµ = i kµ is a pure imaginary number
we obtain:

coth (zn + β) =
z2
n + k2

µ sec2 (kµ + γ)− kµ ω1 (1) tan (kµ + γ)

zn ω1 (1)− zn kµ tan (kµ + γ)
.

(3.56)
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� For zn = i kn being is a pure imaginary number and zµ a real number
the transcendental equation to be solved is:

cot (kn + β) =
−k2

n − z2
µ sech2 (zµ + γ) + zµ ω1 (1) tanh (zµ + γ)

kn ω1 (1) + kn zµ tanh (zµ + γ)
.

(3.57)

� The last situation is when zn and zµ are pure imaginary numbers for
which:

cot (kn + β) =
−k2

n + k2
µ sec2 (kµ + γ)− kµ ω1 (1) tan (kµ + γ)

kn ω1 (1)− kn kµ tan (kµ + γ)
.

(3.58)

For each case, we must solve the corresponding equation for zn, assuming
that we know the values of the parameters zµ, β and γ. There is no single
way to solve these transcendental equations because, they are as well related
with equations (3.47) to (3.50) and equations (3.51) to (3.54).

3.2.3 Examples

Let us see a simple example, for the phases β = δ = π/2 and γ = 0. This
choice simplifies and solves the transcendental equations (3.53) and (3.54),
associated to the condition φ(A,1)

n (0) = 0, and allows us to choose zµ and
zn = i kn independently. Note that we can use zµ as a real or pure imaginary
number, but zn is always pure imaginary.

Equations (3.47) to (3.50), about the zeros of the seed solution ν1(x), limit
the values of zµ.

� If
√
k2
y − ξ and zµ are real numbers then:

−
√
k2
y − ξ < zµ <

√
k2
y − ξ.

� When
√
k2
y − ξ is a real number and zµ = i kµ it turns out that:

−π
2
≤ kµ ≤

π

2
,

√
k2
y − ξ ∈ R \ (−|kµ|, 0),

√
k2
y − ξ 6= kµ.

� In the case that
√
ξ − k2

y and zµ are both real numbers it is obtained:

zµ ∈ R, −π
2
≤
√
ξ − k2

y ≤
π

2
.

43 Chapter 3
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� Instead, if
√
ξ − k2

y is a real number and zµ = i kµ we arrive at:√
ξ − k2

y ∈ [−π, π], kµ ∈ [−π, π],
√
ξ − k2

y 6= kµ.

As we can see, we have available many options, but for simplicity we will
choose the last case with kµ = 4π/10 and

√
ξ − k2

y = 3π/10. The seed
solution ν1(x) will be,

ν1 (x) = a sin ax− b tan b x cos ax, a =
3

10
π, b =

4

10
π.

The superpotential ω1 (x) = ν ′1(x)/ν1(x) becomes:

ω1 (x) =
a2 cos ax+ a b tan b x sin ax− b2 sec2 bx cos ax

a sin ax− b tan b x cos a x
.

Now, equation (3.46) supplies us the expression for the lower spinor com-

ponent φ
(B,1)
n (x), while the Dirac Hamiltonian is given by equation (1.20),

Ĥ
(1)
D = −iσx

d

dx
+ σy ω(x).

The transcendental equation (3.58) associated to the condition φ
(B,1)
n (1) =

0, can be solved straight forwardly. We can write it as follows

cot
(
kn +

π

2

)
= κ (kn),

where,

κ (kn) =
−k2

n + k2
µ sec2 (kµ)− kµ ω1 (1) tan (kµ)

kn ω1 (1)− kn kµ tan (kµ)
.

This equation is solved numerically for kn, generating the following list of
solutions

kn = {± 0.9425, ± 4.6532, ± 7.8193, ± 10.9710, · · · },

where n = ±1,±2, · · · . In Figure 3.6 (a) we can see the first solutions of such
transcendental equation.
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(a) zn = i kn. (b) Energy spectrum.

Figure 3.6. (a) Solutions of the transcendental equation obtained from the con-
dition φ(B,1)

n (1) = 0 for zn = i kn and (b) energy spectrum. We use the parameters

β = δ = 1
2 π, γ = 0, kµ = 4

10 π and
√
ξ − k2

y = 3
10π.

The energy spectrum for the Dirac Hamiltonian is given by ε′n = ±
√
k2
y + k2

n − ξ.
We do not know the value of ky or the value of ξ separately, what we know
is the value of

√
ξ − k2

y = 3π/10. Thus, the energy expression is given by

ε′n =
√
k2
n − (ξ − k2

y) =

√
k2
n −

9

100
π2

We are also in position to know the spinor components, which are given by
equations (3.34) and (3.46). Their explicit form are:

φ(A,1)
n (x) =

1√
ε̄′ 2
n − ε̄

′ 2
µ

[kn sin kn x− kµ tan kµ x cos kn x] ,

φ
(B,1)
n (x) = i cos kn x√

(ε̄2n−ξ) (ε̄′ 2n −ε̄′ 2µ )

[
−k2

n + k2
µ sec2 kµ x− ω1 (x) kµ tan kµx

]
− i sin kn x√

(ε̄2n−ξ) (ε̄′ 2n −ε̄′ 2µ )
[kn kµ tan kµ x− kn ω1 (x)] .

We take the energy parameter ε̄′µ =
√
k2
µ − (ξ − k2

y) = 0.8312. The energy

levels ε̄′± 1 = ±
√
ε̄2± 1 − ξ for k±1 = ±0.9425 are zero. Therefore, the 1-SUSY

transformation to obtain the Schrödinger Hamiltonian Ĥ2
1 deletes the ground

state ε̄21 of the Schrödinger Hamiltonian Ĥ2
0 because k1 =

√
ξ − k2

y. This

means that the spinor component φ
(B,1)
n (x) is not defined for n = ±1. In
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(a) ε′±1 = 0 (b) ε′2 = 4.5568

(c) ε′3 = 7.7623 (d) B(x) and ω(x)

Figure 3.7. (a)-(c) Modulus square of the normalized spinor components φ
(A,1)
n (x)

and φ
(B,1)
n (x). (d) Magnetic field B1(x) and superpotential ω1(x) of the SUSY

transformation. The parameters are taken as β = 1
2 π, γ = 0, δ = 1

2 π, kµ = 4
10 π

and
√
ξ − k2

y = 3
10π.
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Figure 3.7 (a) to (c) we can see the modulus square of the spinor components

φ
(A,1)
n (x) and φ

(B,1)
n (x) for the first three positive values of n.

About the magnetic field, in equation (3.12) we saw that the derivative of
the function ω1(x) gives us the magnetic field expression:

B1(x) =
dω1(x)

dx
êz.

In Figure 3.7 (d) we can see a plot of both, the magnetic field B1(x) and
ω1(x). The graph shows that ω1(x) approaches infinity at x = 0, which means
that ν1(x) has a zero at x = 0.

In the second example we select values of β and γ inside the allowed in-
tervals but without any peculiarity that simplifies equations (3.51) to (3.54).
One way to work is to solve for zµ in the equations, leading to four different
cases

� In the case where zn and zµ are real numbers it is obtained:

zµ = zn coth β coth γ. (3.59)

� When zn is a real number and zµ = i kµ is a pure imaginary number we
arrive at:

kµ = zn coth β tan (γ +
π

2
). (3.60)

� If zn = i kn is a pure imaginary number and zµ is a real number it turns
out that:

zµ = kn cot β coth γ. (3.61)

� Instead, if zn and zµ are pure imaginary numbers we get:

kµ = kn cot β tan (γ +
π

2
). (3.62)

This approach is not the most suitable, since we want our parameters to
affect only the entries of the spinor and the energy spectrum of the Dirac
Hamiltonian. The parameter zµ appears in the expressions for the superpo-

tential W (x), equations (3.26) and (3.28), in the supersymmetric partner Ĥ2
1 ,

equations (3.29) and (3.30), in the spinor components φ
(A,1)
n (x) and φ

(B,1)
n (x),
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equations (3.31) to (3.34) and (3.43) to (3.46), and in the function ω1(x).
Therefore, each value of zn gives us a different value of zµ and thus a solution
for a different Dirac Hamiltonian.

A better option is to solve equations (3.51) to (3.54) for β.

� When zn and zµ are real numbers we obtain:

β(zn) = arcoth

(
zµ
zn

tanh γ

)
. (3.63)

� If zn is a real number and zµ = i kµ is a pure imaginary number we
arrive at:

β(zn) = arcoth

(
kµ
zn

cot (γ +
π

2
)

)
. (3.64)

� In the case where zn = i kn is a pure imaginary number and zµ is a real
number it turns out that:

β(kn) = arccot

(
zµ
kn

tanh γ

)
. (3.65)

� Instead, if zn and zµ are pure imaginary numbers we get:

β(kn) = arccot

(
kµ
kn

cot (γ +
π

2
)

)
. (3.66)

In these equations we select constant values for γ and zµ leaving β as function
of zn. Since the parameter β(zn) only affects the entries of the spinor, it is
our best option.

To illustrate the procedure, let us fix the parameters γ = 2
5
π, δ = −2

5
π,

kµ = −3
5
π and

√
k2
y − ξ = 7

10
π. As zµ is a pure imaginary number and

k2
y − ξ > 0, it turns out that:

W (x) = −kµ tan (kµ x+ γ) ,

ν1 (x) = −
√
k2
y − ξ cosh

(√
k2
y − ξ x+ δ

)
−kµ tan (kµ x+ γ) sinh

(√
k2
y − ξ x+ δ

)
.
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(a) Solutions for zn real. (b) Solutions for zn = ikn.

Figure 3.8. First solutions of the transcendental equation for: (a) zn being a
real number and, (b) zn = ikn being a pure imaginary number.

The supersymmetric partner of Ĥ2
0 is,

Ĥ2
1 = − d2

dx2
+ k′ 2y + 2 k2

µ sec2 (kµ x+ γ) ,

with energies ε̄′ 2n = k2
y − ξ − z2

n. The spinor components depend on the value
of zn, which can be a real number or a pure imaginary number, zn = ikn. In
both cases we have that,

φ(A)
n (x) = sinh [zn x+ β(zn)] , or φ(A)

n (x) = sin [kn x+ β(zn)] ,

and the spinor components are given by

φ(A,1)
n (x) = − 1√

ε̄′ 2
n − ε̄

′ 2
µ

(
d φ(A)

n (x)

dx
−W (x)φ(A)

n (x)

)
,

φ(B,1)
n (x) = − i

ε̄′n

(
d φ(A,1)

n (x)

dx
− ω1(x)φ(A,1)

n (x)

)
,

where,

ω1(x) =
ν ′1 (x)

ν1 (x)
.

The different values of zn are obtained by solving either the transcendental
equation (3.56) for zn being a real number,

coth [zn + β(zn)] = ζ(zn) =
z2
n + k2

µ sec2 (kµ + γ)− kµ ω1 (1) tan (kµ + γ)

zn ω1 (1)− zn kµ tan (kµ + γ)
,
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zn β(zn) Ē ′n =
√
k2
y − z2

n − ξ A

z1 1.4230 0.2504 1.6766 3.06449

kn β(kn) ε̄′n =
√
k2
y + k2

n − ξ A

k1 1.8850 0.3142 2.8964 -

k2 5.1867 0.7295 5.6336 1.0267

k3 8.2349 0.9571 8.5235 1.0292

k4 11.2999 1.0965 11.5119 1.0210

k5 14.3868 1.1875 14.5539 1.0148

k6 17.4890 1.2505 17.6268 1.0109

Table 3.3. First solutions of the transcendental equations, and some parameters
that depend on zn (β(zn), the energy and the normalization constant A). We are
denoting by Ē′n the energy expression that depends on zn and by ε̄′n the energy
expression that depends on kn. The explicit expression for β(zn) is given in equation
(3.64) and for β(kn) in equation (3.66).
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(a) z1 = 1.4230. (b) k2 = 5.1867.

(c) k3 = 8.2349. (d) k4 = 11.2999.

Figure 3.9. Modulus square of the entries φ
(A,1)
n (x) and φ

(B,1)
n (x) of the normal-

ized spinor for the first four values of zn. In (a) the lower spinor component at

x = 0 is not null, φ
(B,1)
n (0) = 0.0415. The parameters we are using are γ = 2

5π,

δ = −2
5π, kµ = −3

5π and
√
k2
y − ξ = 0.7π.

with β(zn) given by (3.64), and the transcendental equation (3.58) for zn =
ikn a pure imaginary number,

cot [kn + β(kn)] = κ(kn) =
−k2

n + k2
µ sec2 (kµ + γ)− kµ ω1 (1) tan (kµ + γ)

kn ω1 (1)− kn kµ tan (kµ + γ)
,

with β(kn) given by (3.66). In Table 3.3 and Figure 3.8 we show the first
values of zn and kn and the energies associated with them. We will use the
notation Ē ′n for the energies of the Dirac Hamiltonian with real values of zn
and ε̄′n for the energies for imaginary values of zn.

The normalization constants A that we are using satisfy

A =

∫ 1

0

(
|φ(A,1)
n (x)|2 + |φ(B,1)

n (x)|2
)
dx.
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Figure 3.10. Magnetic field B(x), function ω1(x) and the superpotential W (x).

We calculate this constant numerically for each value of zn, which is reported
in Table 3.3. The parameters k1 = 1.8850 and kµ = −1.8850 have the same
absolute value but different sign. Therefore, ε̄′1 and ε̄′µ are the same, and the
components of the spinor are undeterminate for k1. For the other values of
zn this problem disappears. In Figure 3.9 we show plots of the square of the
components of spinor for z1 and for the first three positive values of kn.

As we have already seen in the previous examples, the magnetic field is the
derivative of the function ω1(x),

B(x) =
dω1(x)

dx
êz.

In Figure 3.10 we have plotted the corresponding magnetic field, the func-
tion ω1(x) as well as the superpotential W (x). Compared to the previous
examples, this time the magnetic field has no divergences.
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Conclusions

In this thesis we studied solutions to the Dirac equation for zigzag graphene
nanoribbons starting from solutions that did not consider an applied magnetic
field, we arrive to solutions with an applied non-uniform magnetic fields using
the first-order supersymmetric quantum mechanics. We have used as well the
SUSY technique to obtain new Schrödinger equations that satisfy the zigzag
boundary conditions and we found the expressions of the Dirac Hamiltonians
and their spinors for graphene nanoribbons with magnetic field. We studied
the values that the parameters of the solutions must have in order that the
solutions and the magnetic fields are regular.

In Chapter 3 we used a first-order SUSY transformation for three differ-
ent purposes. We first used the SUSY transformation to know the expres-
sion of the Dirac Hamiltonian associated to the Schrödinger equation (3.1).
Then, we used the first-order SUSY to find the supersymmetric partner of the
Hamiltonian of equation (3.1). We found that these transformations had su-
perpotential with similar expressions but different meanings. The first SUSY
transformation gave solutions to the Dirac equation with zigzag boundary
conditions and magnetic field, starting from the solutions to the Dirac equa-
tion that Brey and Fertig found in their article [22] without magnetic fields.
The second transformation gave us two new Schrödinger equations that share
the energy spectrum of equation (3.1) but have associated truncated Pöschl-
Teller potentials. If we study the energy spectrum for each transformation,
we will notice some differences. The spectrum of the first transformation is
the square root of the spectrum of (3.1), while the energy spectrum of the
second transformation becomes the spectrum of (3.1) except perhaps for the
ground state.

53
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CONCLUSIONS

The third SUSY transformation appeared until Section 3.2. With this
transformation we obtained the expressions for the Dirac Hamiltonians asso-
ciated to the Schrödinger equations (3.29) and (3.30) with truncated Pöschl-
Teller potentials. The results we obtained were more complicated than in
the first two SUSY transformations. In the former cases we just had to solve
two transcendental equations, one for the real values of zn and the other for
values of zn being a pure imaginary number. However, in the last case we
had to solve four transcendental equations: one to know which values of the
parameters give a nodeless seed solution, another one to fulfill the condition
φ(A,1)
n (0) = 0 and two additional ones to obtain the real and pure imaginary

values of zn. Then, in Section 3.1 and 3.2 we obtained solutions to several
Dirac equations describing a zigzag graphene nanoribbon in different mag-
netic fields. The spectrum of each Dirac Hamiltonian cannot be expressed by
a single algebraic equation but we gave the transcendental equations that can
be solved numerically to find it. In each Section we presented some examples
for different situations of interest.

As a future work, we could compare our results with the numerical approxi-
mations that the tight-binding model gives for zigzag graphene nanoribbons
in the magnetic fields that we have found in equations (3.13) and (3.14). We
also want to extend the application of the SUSY transformation to graphene
nanoribbons with armchair edges. To conclude, we propose as well to study
graphene nanoribbons in the pseudo-magnetic fields produced by mechanical
deformations.
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