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Resumen
En esta tesis abordamos el problema de definir los espacios congruentes de las representaciones de
tiempo y energía del espacio de estados para sistemas cuánticos con un espectro de energías discreto.
Los casos de un espectro continuo o un espectro discreto equidistante ya han sido estudiados. Para el
primer caso el espacio de tiempo asociado es el espacio de LebesgueL2(R); el espacio de energía se
obtiene con la transformación unitaria de Plancherel, usualmente llamada transformada de Fourier.
Sin embargo, el caso de un espectro de energías discreto no necesariamente equidistante sigue
estando en debate. En esta tesis definimos los espacios de tiempo y energía como subespacios
de dos espacios no separables de Hilbert, el espacio de Besicovitch B2 y el espacio de Lebesgue
l2(R), respectivamente. Mostramos que estos espacios están relacionados por las transformaciones
unitarias: el valor medio asociado a funciones de Besicovitch y la transformada de Fourier respecto
a la medida del conteo.

Por otra parte, en esta tesis proponemos una versión discreta de un operador tiempo, el cual
corresponde a un esquema de diferencias finitas exactas para la derivada respecto al espectro de
energías discreto. Así logramos tener una versión discreta de una derivada continua. Además,
este operador discreto cumple con una ecuación generalizada de eigenvalores, en el sentido que
el eigenket asociado no es normalizable. Este eigenket ha sido estudiado antes como un eigenket
de un operador tiempo, aunque sólo para el caso de un espectro de energías equidistantes. Final-
mente, estudiamos el comportamiento del eigenket del tiempo, para ello usamos el modelo de una
partícula en un pozo de potencial infinito. Los tiempos de Bohr, característicos del sistema y los
cuales corresponden al inverso de las frecuencias de Bohr, surgen en la construcción de un operador
discreto del tiempo. Estos tiempos de Bohr resultan ser los tiempos de llegada en los cuales una
partícula clásica chocaría con las paredes del potencial. Los estados de tiempo formados con sólo
dos estados propios de la energía se pueden reconocer como una onda que viaja a lo largo de las
trayectorias clásicas más una onda estacionaria y otra onda con el mínimo de energía, las cuales
hacen que se cumplan las condiciones de frontera.
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Abstract
In this thesis we address the task of defining congruent time and energy representations of the state
space related to a quantum system with only discrete energy spectrum. The cases of a continuous
and an equidistant energy point spectra have already been studied. For the former, the time space is
L2(R); the related energy space is obtained through the unitary Plancherel’s transform, commonly
called Fourier transform. Nevertheless, the point energy spectrum case, not necessarily equidistant,
is still in debate. In this thesis we define the time and energy spaces as closed subspaces of two
nonseparable Hilbert spaces: the Besicovitch space B2 and the Lebesgue space l2(R). We show
that these spaces are related by means of unitary maps: the mean value defined for Besicovitch
functions and the Fourier transform with respect to the counting measure.

On the other hand, we propose a discrete version of a time operator, that corresponds to an exact
finite difference scheme for the derivative with respect to a discrete energy spectrum. In this way, we
get a discrete version of a continuous derivative. In addition, this operator satisfies a generalized
eigenvalue equation, which means that the eigenket is not normalizable. This eigenket has been
studied before as a time eigenket of a time operator, but mainly for the equidistant energy point
spectrum case. Finally, we study the behavior of the time eigenket using of the model of a particle
in the infinite well. The Bohr times, characteristic of the system and being the inverse of the Bohr
frequencies, arise from the construction of the discrete time operator. These times turn out to be
the arrival times at which a classical particle hit the walls. The time states that are formed with only
two energy eigenstates, can be identified with a traveling wave following classical trajectories plus
stationary and low energy traveling waves, to ensure that the boundary conditions are fulfilled.
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Chapter 1

Introduction

A topic that needs further development in physical theories is how to extract the time information
from the equations of motion. There are many approaches to this topic but none uses a discrete
derivative as an operator in order to compute discrete derivatives with respect to the energy spectrum
of a given Hamiltonian. The derivative with respect to the energy provides quantities perpendicular
to the energy axis, a direction which can be used as a time coordinate. This is one of the aims of
this thesis.

The discrete spectrum of quantum operators has been an outstanding achievement of the stan-
dard theory of quantum mechanics. This spectrum type can be described through the mathematical
concept of the eigenvalue problem, which is stated in the theory of Hilbert spaces. In the abstract
Hilbert space, this concept is written as follows

Ĥ|En〉 = En|En〉, n = 1, 2, . . . , (1.1)

where En is the eigenvalue, |En〉 is the corresponding eigenket, and Ĥ is the Hamiltonian that
describes a physical system and, once its spectrum is known, the Hamiltonian can be written as
the spectral decomposition Ĥ =

∑∞
n=1En|En〉〈En|; which is an operator defined in a maximal

domain of definition.
Although the Dirac notation can be misleading, see for example [16], it has many advantages,

for example, we do not worry about whether the energies are equidistant or not, for instance. To
illustrate this point, we can mention the orthonormalization relation

〈En|Em〉 = δn,m =

{
1 En = Em

0 otherwise
, (1.2)

that avoids to deal with an explicit representation of the abstract Hilbert space. The case of an
equidistant energy spectrum has been frequently considered. For example the cases of the harmonic
oscillator or the angular momentum operator. For a non-equidistant spectrum, we can mention the
infinite well and the hydrogen atoms. In fact, for the latter it is common to work with the abstract
space rather than with the spherical harmonics.
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From the abstract eigenkets we can get some representations of the space of states, for instance
the coordinate and momentum representations. These representations are said to be a pair of con-
jugate spaces; the coordinate q and the momentum p are related through the Plancherel’s transform
(commonly called Fourier transform). Another purpose of this thesis is to establish the time and
energy space representations of the abstract eigenkets, and therefore including the abstract Hilbert
space, such that the time t and energy E variables are conjugated by means of some unitary trans-
formation for the case of a discrete energy spectrum either equidistant or not.

Among the proposed time and energy representations (a few references are [2, 20, 36, 43], see
also the references therein), we can mention the work of Torres-Vega [43] that settles that trajectory-
like states can evolve in time with fixed operators, as is the case in the Wigner phase-space formula-
tion of quantum mechanics. Another related work is due to Olkhovsky [36] who extensive revisited
time and energy representations for both a continuous and bounded from below energy spectrum
and an equidistant one. On the other hand, the time representation we introduce is in agreement
with the one found in Ref. [20]. In his paper, Hall started by recognizing that the orthogonality
relation of the energy eigenfunctions, in a time representation 〈t|En〉 = eitEn/~, t ∈ R (see also
the generalized ket Eq. (1.11) below), can be accomplished by means of the Besicovitch measure;
yielding the representation of the orthonormalization relation

〈En|Em〉 = lim
T→∞

1

2T

∫ T

−T
e−itEn/~ eitEm/~ dt = lim

T→∞
sinc

[
(En − Em)T

~

]
= δn,m. (1.3)

We are interested in the Besicovitch framework because it has a Fourier analysis that includes
the usual Fourier analysis for periodic functions [9]. This allows us to have a representation of
the Hilbert space structure of the abstract space for a non-equidistant energy point spectrum. In
Chapter 2, the starting point is the Fourier series of general type related to the Besicovitch functions.
In that chapter, we want to place the Hilbert space structure with a Besicovitch inner product. Hall
mainly relied on the Besicovitch measure concept [20]. However, our approach immediately leads
to establish the conjugate space to the time representation.

The first goal of this thesis starts in Chapter 3, where we provide two ways to establish the
time representation of wave functions for systems with discrete energy spectrum. First, we use a
purely mathematical point of view. But then, since the Besicovitch setting enable us to use some
elementary facts about the measure problem (see for Ref. [8] Chapter II, section c.3), we construct
a second time representation of states.

In addition, at the end of Chapter 3, we show that the energy representation is a closed subset
of the non-separable Lebesgue space l2(R), that is defined by means of the counting measure. By
using an integral notation for this measure, we can handle a discrete energy spectrum on the same
footing as the continuous case.

On the other hand, regarding the subject of the Chapter 4, we look at the eigenvalue problem
related to the time operator. It is worth to pay attention to the time operator canonically conjugate to
a Hamiltonian with equidistant point spectrum because it has been widely addressed. For example
in References [6, 7, 18, 23, 34, 36, 41].

The commutator between the Hamiltonian Ĥ and an operator T̂ , not necessarily an observable
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can be computed

[T̂, Ĥ] := T̂ Ĥ − ĤT̂ =
∞∑
n=1

∞∑
m=1

Tn,m(En − Em)|En〉〈Em|, (1.4)

where Tn,m = 〈En|T̂ |Em〉. If we restrict our attention to the diagonal entries of this commutator we
find that they are always zero! Then, how can the Heisenberg uncertainty relationship be fulfilled
for discrete spectra? In the matrix formalism this reads [X̂, P̂ ] = i~Î , when X̂ and P̂ are a pair
of canonical conjugated operators and P̂ has a point spectrum as Ĥ does. Specifically, how can
we understand that all the diagonal entries of Î are nonzero while they are zero for [T̂, Ĥ]? This
criticism can be solved with a proper use of the theory of operators. For example, in Ref. [6],
Cannata noticed that instead of dealing with [T̂, Ĥ] = i~Î , it is better to look for the eigenvalue
problem

[T̂, Ĥ]|ϑ〉 = −i~|ϑ〉. (1.5)

Cannata developed this approach mainly for the particular case of an equidistant spectrum. To
illustrate this approach consider the equidistant energy spectrum

En = ~
2πn

2τ
, n = 0,±1,±2, . . . , (1.6)

where τ > 0 has units of time. Cannata found that the symmetric operator

T̂ = −i~
∞∑

n=−∞

∞∑
m=−∞
m ̸=n

ei(En−Em)τ/~

En − Em
|En〉〈Em| (1.7)

along with the Hamiltonian comply with the canonical commutation relation, that is, the commu-
tator [T̂, Ĥ] can be defined in the dense domain of states |ϑ〉 =

∑∞
n=1 ϑn|En〉 (

∑∞
n=1 |ϑn|2 < ∞)

such that
∞∑
n=1

|Enϑn|2 <∞, and
∞∑
n=1

e−iEnτ/~ϑn =
∞∑
n=1

(−1)nϑn = 0, (1.8)

on this domain the commutator [T̂, Ĥ] is proportional to the identity operator Î; satisfying Eq.(1.5).
Recall that Eq. (1.4) is just an infinite matrix written using Dirac notation, but, generally speaking,
an operator is composed of a domain and a rule mapping.

Cannata named T̂ as the conjugate momentum of the label operator Ĥ , and in Ref. [7] he showed
that T̂ can represent a time operator for a one-dimensional harmonic oscillator with period 2τ
and, that the matrix representation of the coordinate operator for the particle in the infinite well
with walls at ±τ is of type T̂ . Also, Weyl quantized the angle observable of the unit circle and
found that the angle operator is of type T̂ [45, p.36]. In this case T̂ has the representation of a
sawtooth function; this identification helps to find that the spectrum of T̂ is the closed set [−τ, τ ],
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for details see Ref. [23]. Afterwards, Galapon [13] also studied the operator e−iτĤ/~T̂ eiτĤ/~, that
is, the operator T̂ but without phases. The starting point is to consider that the energy spectrum is
bounded from below and satisfies the condition

∞∑′

n=1

1

E2
n

<∞, (1.9)

where the prime indicates En 6= 0. The significant improvement of this approach is that the spec-
trum is not constrained to be equidistant and T̂ is still a time operator.

Regarding the spectrum of the canonical pair of operators (Ĥ, T̂ ), by definition the spectrum of
Ĥ is just the set of quantum energy levels En, while for T̂ if we restrict ourselves to the equidistant
case Eq. (1.6), T̂ has only a continuous spectrum. In order to give a rough proof of this assertion
we proceed to establish the eigenvalue problem:

T̂ |t〉 = β(t)|t〉, (1.10)

where β is a sawtooth function (see Eq.(1.14) below).
Let us define the family of generalized kets [6, 7, 20, 34, 41]

|t〉 =
∞∑

n=−∞

eitEn/~|En〉, t ∈ R. (1.11)

Calculating

T̂ |t〉 = −i~
∞∑

n=−∞

∞∑
m=−∞
m ̸=n

ei(En−Em)τ/~eiEmt/~

En − Em
|En〉

=
∞∑

n=−∞

eitEn/~

−i~ ∞∑
m=−∞
m ̸=n

ei(En−Em)(τ−t)/~

En − Em

 |En〉 (1.12a)

Realizing that the bracketed term does not depend on n using Eq.(1.6)

−i~
∞∑

m=−∞
m ̸=n

ei(En−Em)(τ−t)/~

En − Em
= −iτ

∞∑
m=−∞
m ̸=n

eiπ(n−m)(1−t/τ)

π(n−m)
= iτ

∞∑
k=−∞
k ̸=0

e−iπk(1−t/τ)

πk
(1.12b)

we arrive at

T̂ |t〉 =

−iτ ∞∑
k=−∞
k ̸=0

eiπk(1−t/τ)

πk

 |t〉. (1.12c)
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Now, it is easy to identify the infinite sum above to be the usual Fourier series of a sawtooth
function. To show that, we can calculate the usual Fourier coefficients, over a period 2τ , of the
function t:

1

2τ

∫ τ

−τ
teiπnt/τdt =

−iτ e
iπn

πn
n = ±1,±2, . . .

0 n = 0
, (1.13)

then the respective Fourier series converges uniformly to the periodization of t, that is, to the saw-
tooth function

−iτ
∞∑

k=−∞
k ̸=0

eiπk

πk
e−iπkt/τ := β(t) =

{
t (mod 2τ) t ∈ (−τ, τ )
0 t = τ + 2τk, k ∈ Z

. (1.14)

Hence, the generalized eigenket |t〉 and its corresponding eigenvalue β(t) are defined through-
out the real line t ∈ R modulo a period 2τ . This suggests that the spectrum of T̂ is (−τ, τ ).
However, from the theory of self-adjoint operators a bounded self-adjoint operator always has a
compact spectrum. Thus, the right argument is to consider the essential spectrum of β(t), with
respect to the Lebesgue measure, yielding that the spectrum of T̂ is the closed real subset [−τ, τ ].
The boundedness of T̂ follows from the Hilbert inequality [19] which for T̂ reads as follows

∞∑
n=−∞

∣∣∣∣− i~
∞∑

m=−∞
m ̸=n

ei(En−Em)τ/~

En − Em
〈Em|ψ〉

∣∣∣∣2 ≤ τ 2
∞∑

n=−∞

|〈En|ψ〉|2. (1.15)

In fact, this estimate can be improved for the case of an energy spectrum of uniformly discrete type
(also said separated), which means that for some ϵ > 0 the separation of {En}∞n=1 satisfies

δ = inf
n ̸=m

|En − Em| > ϵ. (1.16)

This case includes Eq. (1.9). Then, for a uniformly discrete spectrum instead of considering the
Hilbert inequality we need to use the generalization due to Montgomery [33], which for the operator
T̂ will read as follows

∞∑
n=−∞

∣∣∣∣− i~
∞∑

m=−∞
m ̸=n

ei(En−Em)τ/~

En − Em
〈Em|ψ〉

∣∣∣∣2 ≤ ~2π2

δ2

∞∑
n=−∞

|〈En|ψ〉|2. (1.17)

In this case T̂ should be considered as a τ -parameter operator. Note that the equidistant energy case
Eq. (1.6) has the separation δ = ~π/τ . Thus, estimate Eq. (1.15) is a particular case of inequality
Eq. (1.17).

Thus, a Hamiltonian with pure point spectrum may have a canonical conjugated operator. For
the particular case of the equidistant energy spectrum Eq. (1.6) the Hamiltonian spectrum is un-
bounded, while the spectrum of T̂ is continuous and bounded. Nevertheless, some properties of the
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operator T̂ for the equidistant spectrum case are no longer valid for the general case. For instance,
the series

−i~
∞∑

m=−∞
m ̸=n

ei(En−Em)(τ−t)/~

En − Em
, n = 1, 2, . . . (1.18)

depends onEn, unless the set of energy levels are an additive group as the equidistant case Eq. (1.6).
Then, for a non-equidistant spectrum, we cannot repeat the steps (1.12) to get the eigenvalue equa-
tion (1.10).

On the other hand, let us point out further features of the operator T̂ : it is of infinite dimensional
range and uses of all the coefficients of the states. For example, if we take the energy spectrum itself
as the labeled set, we can identify

〈En|T̂ |ψ〉 = −i~
∞∑

m=−∞
m ̸=n

ei(En−Em)τ/~ ψm
En − Em

, n = 0,±1,±2, . . . (1.19)

with a discrete convolution (commutative only when the spectrum is an additive group) between
the sequences {ψn = 〈En|ψ〉}∞n=−∞ and {−i~eiEnτ/~/En}

′∞
n=−∞ (the prime indicates En 6= 0, and

note that for the equidistant example this series reduces to the Fourier coefficients of the sawtooth
function Eq. (1.14)), then, this convolution can be thought of as the discrete version of the Hilbert
transform [42]

1

π
P.V.

∫ ∞

−∞

ei(E−E′)τ/~f(E ′)

E − E ′ dE ′, f ∈ L2(R), (1.20)

where P.V. denotes the principal value at E ′ = E. The standard definition of the Hilbert transform
does not have the phase ei(E−E′)τ/~. It is in this sense that a meaning of local derivative with respect
to the discrete spectrum cannot be attached to T̂ . In fact, the opposite situation occurs; T̂ is a con-
volution type operator and it is also a discrete version of an integral operator, the Hilbert transform.
This tells us that T̂ does not resemble the operation which should be conjugated to the one of Ĥ (the
action of the Hamiltonian is the multiplication by its discrete spectrum). The continuous operations
counterparts are known to be differentiation and multiplication by the independent variable.

Aside from the previous remarks about T̂ , the generalized ket |t〉 itself yields a time-kind rep-
resentation and they form a continuous basis in the sense of Dirac as is shown in Chapter 3 and in
Ref. [28]. Therefore, we want to present an alternative approach to the time operator.

In Chapter 4, the (generalized) eigenvalue equation we address is

D̂|t〉 = t|t〉, t ∈ R. (1.21)

We will introduce an operator D̂ such that the eigenvalue problem Eq. (1.21) is fulfilled, and such
that the generalized ket |t〉 is always a generalized eigenvector of such an operator regardless if the
energy spectrum is equidistant or not.
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Our approach consists of introducing an operator D̂ which is the realization of an exact finite
difference scheme [25, 26, 27, 28]. This will allow us to get the eigenvalue equation Eq. (1.21),
but with the time variable t itself as the eigenvalue related to the time eigenket |t〉. The variable
t will take on any real value except for some singularities introduced by the discrete operator D̂,
depending on the energy spectrum under consideration. Since finite differences regard a finite
number of terms, for instance to approximate a derivative, the operator D̂ can be local, it can have
only two terms at each point (column)

D̂ =
∞∑
n=1

(Dn,n+1|En〉〈En+1|+Dn,n|En〉〈En|) , (1.22)

where Dn,m = 〈En|D̂|Em〉. Then, we also ask for what Dn,n+1 and Dn,n correspond to the exact
finite difference derivative for the complex exponential function so that we will have that[

−i~ ∂

∂E
eitE/~

]
E=En

= teitEn/~ = eitEn+1/~Dn,n+1 + eitEn/~Dn,n. (1.23)

This equality relates a continuous derivative (the left side hand) to a finite difference scheme (the
right hand side). Instead of having the steps Eqs. (1.12) we will have something like

D̂|t〉 =
∞∑
n=1

[
∞∑
m=1

eitEm/~Dn,m

]
|En〉 = −i~

∞∑
n=1

∂

∂E
eitE/~

∣∣∣∣
E=En

|En〉 = t
∞∑
n=1

eitEn/~|En〉 = t|t〉

(1.24)

We also show the properties of the time eigenket, choosing the infinite well as an example
model. We found states that might resemble classical behavior. Since different operators satisfying
the eigenvalue problem Eq. (1.21) might give distinct information about the system, we want to
show some properties of the discrete time operator D̂ for different sets of energy eigenfunctions.
For example, we ask what states this operator satisfies a symmetric property of discrete type, such
states will lead us to find quantum densities that resemble classical ones [28, 29]. This will be
shown at the end of Chapter 4.

In Chapter 2 we give a presentation of the mathematical framework aimed at facilitating the
study of Chapter 3. At the end of Chapters 3 and 4 there are some conclusions about the contribu-
tions of this thesis, while the last chapter is devoted to the conclusions and perspectives.

As a final remark, let us make some comments about parametric description of curves depicted
in Figure 1.1. For this purpose let us pick the circle of radius ρ0{

(x, y) : x2 + y2 = ρ20
}
, ρ0 > 0. (1.25)

This first description makes use of two variables, namely x, y, see Figure 1.1a. There is one fixed
parameter here: the radius of the circle ρ0 =constant. A second type of description of the circle is
a parametric one;

x = ρ0 cos θ, y = ρ0 sin θ; −∞ < θ <∞, ρ0 > 0, (1.26)
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a description in which we assign values to the additional parameter θ and then we get values for x
and y. See Figure 1.1b. It is similar to the description of a classical trajectory in the phase space
or the evolution of a quantum wave function, where the parameter θ is the time variable t and ρ0 is
related to the constant energy of a given particle.

However, the third type of description, depicted in Figure 1.1c, uses the parameters ρ and θ
as the independent variables so that we only need of these variables to describe the circle, a non-
parametric description. The last description, which is shown in Figure 1.1d, uses ρ and θ as axes.
This is the simplest one: ρ =constant.

(a) (b)

(c) (d)

Figure 1.1: Different descriptions of the same object with: (a) two variables x and y and one fixed
parameter ρ0, (b) the same variables and the fixed parameter as in (a) but with a second parameter θ,
(c) a non-parametric description with two variables θ and ρ, (d) a description with the perpendicular
axes θ and ρ.

Throughout Chapters 3 and 4 we will use a non-parametric description of the dynamics of a
given system to develop some time-related concepts in quantum systems with only discrete energy
spectrum.
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The usual description of motion of classical and quantum particles is similar to the parametric
description of the circle with time playing the role of the parameter. Our purpose is to describe
quantum motion in terms of non-parametric descriptions.
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Chapter 2

Mathematical background

We consider an energy point spectrum σ = {En}∞n=1 of a spin-less particle without degeneracy.
This spectrum is not constrained to be equidistant of magnitude, and it is supposed to be arranged
in increasing order of magnitude.

It should be noted that Hilbert spaces are (upon isomorphisms) “essentially identical” provided
that their dimensions are the same. An isomorphism is a one-to-one, onto map that leaves the inner
product invariant. In fact, the equivalence between Heisenberg’s matrix theory and Schrödinger’s
wave mechanics is based on this concept. In view of this remark, we will denote the inner product
and the norm throughout this thesis by 〈•|•〉 and ‖ • ‖ = [〈•|•〉]1/2 without worrying about the
space we will work with.

2.1 The abstract space
Our starting Hilbert space (in the next chapter) will be the so called “abstract” space defined by

H =

{
|ψ〉 =

∞∑
n=1

〈En|ψ〉 |En〉 : 〈En|ψ〉 ∈ C,
∞∑
n=1

|〈En|ψ〉|2 <∞

}
, (2.1)

where |En〉 are the energy eigenkets, that satisfy the eigenvalue equation

Ĥ|En〉 = En|En〉, n = 1, 2, . . . . (2.2)

We consider the Hamiltonian as a self-adjoint, time-independent, and diagonalized by the energy
eigenkets {|En〉}∞n=1:

Ĥ =
∞∑
n=1

En|En〉〈En|, (2.3a)

with maximal domain of definition

D(Ĥ) =

{
|φ〉 ∈ H :

∞∑
n=1

|En〈En|φ〉|2 <∞

}
. (2.3b)
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Recall that the H is endowed with the inner product 〈•|•〉, and the corresponding norm is given
by

〈ϕ|ψ〉 =
∞∑
n=1

〈ϕ|En〉 〈En|ψ〉, and ‖ψ‖ = [〈ψ|ψ〉]1/2, (2.4)

respectively.
The point to highlight in this construction is the assumptions of the completeness

∑∞
n=1 |En〉 〈En| =

Î , and the orthonormalization relation of the energy eigenkets 〈Em|En〉 = δm,n (the Kronecker
delta). This relation is independent, e.g. the coordinate or momentum representations of the space
of states, or even any other Hilbert space isomorphic to H.

Although H is a separable Hilbert space, in what follows, we present two non-separable Hilbert
spaces that will help us to develop our approach in the time and energy representations, in the next
chapter. At the end of this chapter we provide a summary in order that the reader can get a quick
overlook of the setting of such spaces.

In the rest of this thesis, we will use some standard concepts and usual results of real analysis
and functional analysis. In particular, as standard references we utilize [1, 24, 40].

2.2 The Lebesgue space l2(R)
The non-separable Lebesgue space l2(R) consists of all f̃(E) : R → C such that its support

σf := {E ∈ R : f̃(E) 6= 0}, (2.5)

is countable (denumerable or finite) and has a finite l2-norm

‖f̃‖ =

[∫
R
|f̃(E)|2dE

]1/2
<∞. (2.6)

The integral notation stands for the Lebesgue integral with respect to the counting measure of |f̃ |2,
defined as ∫

R
|f̃(E)|2dE = sup

N

{
N∑
n=1

|f̃(E ′
n)|2 : E ′

n ∈ R, N ∈ N

}
, (2.7)

and such that agrees with the absolutely convergent series [40]∫
R
|f̃(E)|2dE =

∑
E∈σf

|f̃(E)|2. (2.8)

Throughout this thesis dE will stand for the counting measure; this measure assigns to each
finite real set the number of its elements as its measure, if the real set does not have finite elements,
the assigned measure is infinite.
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Comparing the counting measure with the Lebesgue measure, denoted by dµ, we see that the
units associated with the integral

∫
•dE are the same as the integrand because this measure counts

the elements of a given set, for example
∫
{0,1} dE = 2. In contrast, the Lebesgue measure assigns

to sets like [0, l] (l > 0) its length
∫
[0,l]

dµ = l. If we suppose that [0, l] is an interval of length type
, then, the units associated to dµ must be of length, and thus

∫
•dµ will have units of the integrand

times units of length.
By using the polarization formula the Parseval’s identity holds on l2(R) [40], and then, the inner

product on l2(R)

〈g̃|f̃〉 =
∫
R
g̃∗(E) f̃(E) dE =

∑
E∈σfg

g̃∗(E)f̃(E), (2.9)

follows, where σfg = σf ∩ σg is the support of the product g̃∗f̃ . By letting g̃ = f̃ we get the square
norm 〈f̃ |f̃〉 = ‖f̃‖2.

Discrete Signal basics. The more elemental function in l2(R) can be the unit sample function

δ[E − E ′] =

{
1 E = E ′

0 otherwise
(2.10)

a generalization of the Kronecker delta function. The standard, uncountable, orthonormal basis for
l2(R) is thus the set

{δ[E − E ′] : E ′ ∈ R}. (2.11)

This basis expands each function in l2(R) in an unique way as

f̃(E) =
∑
E′∈σf

f̃(E ′)δ[E − E ′]. (2.12)

Remark 2.1. Given an absolutely convergent series
∑∞

n=1 |αn|2 <∞ and a countable real subset
σ′ = {E ′

n}∞n=1 a function in l2(R) is uniquely defined as

g̃(E) =
∞∑
n=1

αn δ[E − E ′
n]. (2.13)

The Lebesgue space l1(R) and the Fourier transform with respect to dE. A function h̃ is said
to be Lebesgue integrable with respect to the counting measure dE, if∫

R
|h̃(E)|dE =

∑
E∈σh

|h̃(E)| <∞. (2.14)
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See the definition of the integral with respect to the counting measure Eq. (2.7).
Henceforth, the Fourier transform of such h̃ with respect to the counting measure (dE) can be

well-defined by

ĥ(t) :=

∫
R
e−itE/~ h̃(E)dE =

∑
E∈σh

e−itE/~ h̃(E), t ∈ R. (2.15)

Now, the next step is to attach to this Fourier transform some meaning when h̃ is an arbitrary
function in l2(R). For this purpose we need to know some things about the Besicovitch framework.
Recall that l1(R) ⊂ l2(R) [44].

Here, we are considering that t and E have units of time and energy, respectively, such that the
product Ent/~ is dimensionless with ~ being the reduced Planck constant. The variables t and E
will play the role of the time and energy variables, respectively.

2.3 The Besicovitch space
An important development is the theory of the Besicovitch spaces; the spaces in which the time
states can be defined. The interested reader can learn more about these spaces in References [4, 5, 9].

The functions f ∈ L2
loc(R) with finite Besicovitch-Marcinkiewicz norm (B2-norm)

[
Mt

{
|f(t)|2

}]1/2
:=

lim sup
T→∞

1

2T

T∫
−T

|f(t)|2dt

1/2

< ∞ (2.16)

are said to be Besicovitch functions (B2-functions). Mt{|f(t)|2} is named the mean value of |f |2.
This class of functions includes those belonging to the Hilbert space L2(R/T ′Z); the classes of
periodic functions that are square Lebesgue integrable over a period (see Remark 2.3 below).

The collection of all the equivalence classes (B2-classes) defined by the B2-functions, through
the equivalence relation

g ∼ f if and only if Mt{|f(t)− g(t)|2} = 0, (2.17)

is a Banach space called the Besicovitch space B2. The symbol ∼ will stand for the equivalence
relation (2.17).

The “lim sup” can be dropped to just the lim in Eq. (2.16) because for B2-functions such limit
exists [9, Theorem 3.1]. Even more, the mean value in Eq. (2.16) can be calculated over half of the
real line [9, Remark. 3.16]

Mt{|f(t)|2} = lim
T→∞

1

T

T∫
0

|f(t)|2dt. (2.18)
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Remark 2.2. Aside from the fact that theB2-functions are defined throughout the real line, expres-
sion Eq. (2.18) allows us to restrict theB2-functions to [0,∞), or possibly, to keep considering that
B2-functions are defined throughout the real line but mean values can be calculated over the half
of the real line. In the rest of this thesis, we will consider the first choice. A similar development as
the following can be elaborated for the second setting if we want that “t” takes negative values.

2.3.1 Harmonic analysis of Besicovitch functions
In order to introduce the Fourier series analysis of the Besicovitch functions to our purposes it is
convenient to work with the complex exponential functions e−itE/~ instead of the usual convention
found in the literature, namely, eitE whit t and E as dimensionless variables. Recall that we are
considering that the product Et/~ is dimensionless.

Mean value. It is an outstanding property of any B2-function that the mean value

Mt{eiEt/~f(t)} = lim
T→∞

1

T

T∫
0

eitE/~f(t)dt (2.19)

exists and is zero for all but a countable number ofE [9, Proposition 4.1]. The set of these numbers
is called the spectrum of f :

σf = {E ∈ R : Mt{eitE/~f(t)} 6= 0}. (2.20)

We will see soon the reason to use the same notation “σf” as for the supports (2.5) of the functions
in l2(R).

Note that the mean value (2.19) is linear

Mt{eitE/~[αf(t) + βg(t)]} = αMt{eitE/~f(t)}+ βMt{eitE/~g(t)} (2.21)

for all B2-functions f, g and α, β ∈ C.

Fourier series. A general type of Fourier series is associated to each B2-function such that

f(t) ∼
∑
E∈σf

e−iEt/~Mt′{eit
′E/~f(t′)}, t ∈ R. (2.22)

We call these series merely Fourier series in the sequel. If f and g are B2-functions and have the
same Fourier series then they comply with Eq. (2.17) [9, Corollary 4.1].

Remark 2.3. In particular, the series (2.22) include the usual Fourier series when the spectrum σf
is equidistant, say Ek = ~2πk/T ′ (T ′ having units of time). Suppose that f ∈ L2(R/T ′Z), first,
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the coefficients can be computed over a period [9]

Mt{eiEkt/~f(t)} = lim
T→∞

1

T

T∫
0

eiEkt/~f(t)dt

= lim
T→∞

1

T

 T ′∫
0

+

2T ′∫
T ′

+ · · ·+
lT ′+s∫
lT ′

 ei2πkt/T
′
f(t)dt

= lim
l→∞

 l

lT ′ + s

T ′∫
0

ei2πkt/T
′
f(t)dt+

1

lT ′ + s

lT ′+s∫
lT ′

ei2πkt/T
′
f(t)dt

 , (2.23)

where T = lT ′ + s, l ∈ N, 0 ≤ s < T . The second integral at the right hand side above tends to
zero as l → ∞ because f ∈ L2(R/T ′Z) and∣∣∣∣∣∣ 1

lT ′ + s

lT ′+s∫
lT ′

ei2πkt/T
′
f(t)dt

∣∣∣∣∣∣ ≤ 1

lT ′ + s

lT ′+s∫
lT ′

|f(t)|dt

≤ 1

lT ′ + s

T ′∫
0

|f(t)|dt

≤
√
T ′

lT ′ + s

√√√√√ T ′∫
0

|f(t)|2dt, (2.24)

in the last inequality we have used the Schwarz inequality. Thus, from Eq. (2.23) we get the usual
way to compute the Fourier coefficients

Mt{eiEkt/~f(t)} =
1

T ′

T ′∫
0

ei2πkt/T
′
f(t)dt. (2.25)

Following a similar procedure for the mean vale of |f |2 we obtain

Mt{|f(t)|2} =
1

T ′

T ′∫
0

|f(t)|2dt. (2.26)

Now, if E 6= Ek, k ∈ Z, and since the nth partial Fourier series fn of f converges in the
corresponding L2-norm of L2(R/T ′Z), we get Mt{eiEt/~f(t)} = limn→∞ Mt{eiEt/~fn(t)}, but it
is easy to verify that Mt{eiEt/~fn(t)} = 0 for all n, hence

Mt{eiEt/~f(t)} = 0, E 6= Ek ∀k ∈ Z. (2.27)
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Isomorphic Hilbert spaces. The Parseval’s formula holds [4] in the form

Mt{|f(t)|2} =
∑
E∈σf

|Mt{eitE/~f(t)}|2. (2.28)

From Eqs. (2.20) and (2.28), see also Remark 2.1, it now follows that the mean-value map

f 7→ Mt{eitE/~f(t)} =: f̃(E) ∈ l2(R) (2.29)

is an isomorphism from B2 onto l2(R). The spectrum of f , Eq. (2.20), can now be identified with
the support of its companion f̃ , Eq. (2.5). Taking the square root of the mean value (2.28) it follows
that the B2-norm agrees with the l2-norm

‖f‖ =
[
Mt{|f(t)|2}

]1/2
= ‖f̃‖, (2.30)

and then, we have that the inner product on l2(R) is also defined on B2

〈g|f〉 = Mt{g∗(t)f(t)} = 〈g̃|f̃〉. (2.31)

The inner product being invariant guarantees that B2 and l2 have the same Hilbert space struc-
ture.

Riesz-Fischer Theorem. The next theorem for B2-functions deals with the convergence of the
Fourier series Eq. (2.22), and at the same time it shows the completeness of B2. For more details,
we refer the reader to Ref. [5, p. 54-58].

Theorem 2.4 (Riesz-Fischer Theorem). Let ϵ1 > ϵ2 > . . . > ϵn → 0 be positive numbers and let
{fn}∞n=1 be a Cauchy sequence ofB2-functions, that is Mt{|fm− fn|2} → 0 as n,m→ ∞. Then,
there exist positive numbers

0 = T0 < T1 < T2 < · · · < Tn → ∞ as n→ ∞, (2.32)

each one depending on the previous Tn = Tn(Tn−1, . . . , T1), such that the piece-wise function

˜
f(t) =


f1(t), T0 ≤ t < T1

...
fn(t), Tn−1 ≤ t < Tn

...

(2.33)

satisfies

Mt

{
|
˜
f(t)− fn(t)|2

}
= lim

T→∞

1

T

∫ T

0

∣∣̃f(t)− fn(t)
∣∣2 dt ≤ ϵn. (2.34)
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Letting n → ∞ in Eq. (2.34) and because ϵn → 0, we have that fn converges to
˜
f in the

B2-norm, showing that the B2-space is complete. In fact,
˜
f is itself a B2-function.

Remark 2.5. The set of nth Fourier series

fn(t) =
n∑
i=1

e−iEit/~Mt′{eit
′Ei/~f(t′)} =

n∑
i=1

e−iEit/~f̃(Ei) (2.35)

of aB2-function f forms a Cauchy sequence. We consideredEi ∈ σf in Eq. (2.35). It can be shown
that for n > m

Mt

{
|fn(t)− fm(t)|2

}
= lim

T2−T1→∞

1

T2 − T1

∫ T2

T1

|fn(t)− fm(t)|2dt =
n∑

i=m+1

|f̃(Ei)|2 (2.36)

tends to zero as m→ ∞, because
∞∑
i=1

|f̃(Ei)|2 <∞. Note that, here, also n→ ∞.

Remark 2.6. From Eq. (2.36), it follows a property that we will use several times in the next proof,
that is, for some ϵ > 0 we can find ∆T ′ > 0 sufficiently large such that∣∣∣∣∣ 1

T2 − T1

∫ T2

T1

|fn(t)− fm(t)|2dt−
n∑

i=m+1

|f̃(Ei)|2
∣∣∣∣∣ < ϵ, (2.37)

provided that the difference T2 − T1 is greater than or equal to ∆T ′. This property holds for any
trigonometric polynomial.

Guided principally by Ref. [3, p. 502-504] we proceed to establish a corollary of Theorem 2.4.

Corollary 2.7. By taking the partial Fourier series as the Cauchy sequence in Theorem 2.4, it
follows that the Fourier series of a B2-function f converges (unconditionally) in the B2-norm to
the piece-wise function

˜
f defined in Eq. (2.33).

Proof. Let m ≥ 1, and let ϵ1 > ϵ2 > · · · be as in Theorem 2.4. Also, denote by ls the sum∑s
i=1 |f̃(Ei)|2, s = 1, 2, . . . . The order in which the numbers of the spectrum of f appear is

arbitrary, E1, E2, . . . , because the important thing in what follows is that the series
∑∞

i=1 |f̃(Ei)|2
does converge absolutely. This will account for the unconditionally convergent sentence.

Let us proceed by induction on n. For n = 1 and ϵ1 we can find T1 such that∣∣∣∣ 1T
∫ T

0

|f1 − fm|2dt− |l1 − lm|
∣∣∣∣ < ϵ1, T ≥ T1. (2.38)

This follows from the fact that Mt{|f1 − fm|2} = |l1 − lm| (see Remark 2.6).
Next, assume that for n > 1 we have found T1 < · · · < Tn such that the next estimates hold:∣∣∣∣ 1

Tk − Tk−1

∫ Tk

Tk−1

|fk − fm|2dt− |lk − lm|
∣∣∣∣ < ϵk, k = 1, 2, . . . , n (2.39)
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and∣∣∣∣ 1T
[∫ T1

0

|f1 − fm|2dt+
∫ T2

T1

|f2 − fm|2dt+ · · ·+
∫ T

Tn−1

|fn − fm|2dt
]
− |ln − lm|

∣∣∣∣ < ϵn,

(2.40)

for T ≥ Tn.
Our first goal is to find the next Tn+1 such that Eqs. (2.39) and (2.40) remain valid for n+ 1.
First note that from Eq. (2.39) it follows∫ Tk

Tk−1

|fk − fm|2dt < (|lk − lm|+ ϵk)(Tk − Tk−1), k = 1, 2, . . . , n. (2.41)

Also, since Mt{|fn+1 − fm|2} = |ln+1 − lm|, for Tn and ϵn+1 we can find T ′ > Tn such that∣∣∣∣ 1

T − Tn

∫ T

Tn

|fn+1 − fm|2dt− |ln+1 − lm|
∣∣∣∣ < ϵn+1

3
, (2.42)

whenever T ≥ T ′.
Let T > Tn. Using inequalities in Eq. (2.41) and the triangle inequality we have that the term∣∣∣∣ 1T
[∫ T1

0

|f1 − fm|2dt+ · · ·+
∫ Tn

Tn−1

|fn − fm|2dt+
∫ T

Tn

|fn+1 − fm|2dt
]
− |ln+1 − lm|

∣∣∣∣ (2.43)

is smaller than

(|l1 − lm|+ ϵ1)T1 + (|l2 − lm|+ ϵ2)(T2 − T1) + · · · (|ln − lm|+ ϵn)(Tn − Tn−1)

T

+

∣∣∣∣ 1T
∫ T

Tn

|fn+1 − fm|2dt− |ln+1 − lm|
∣∣∣∣. (2.44)

Let κn,m denote the numerator of the first quotient in Eq. (2.44). Recall that, given that |lk −
lm| ≤ max{|lk − lm| : k = 1, 2, . . . , n} = Dn,m, and ϵk < ϵ1 for k = 1, . . . , n; κn,m is bounded by
(Dn,m + ϵ1)Tn. On the other hand, if the second term of Eq. (2.44) is written in the form∣∣∣∣T − Tn

T

[
1

T − Tn

∫ T

Tn

|fn+1 − fm|2dt− |ln+1 − lm|
]
+

(
T − Tn
T

− 1

)
|ln+1 − lm|

∣∣∣∣, (2.45)

we have that Eq. (2.44), as well as Eq. (2.43), are smaller than

κn,m
T

+

∣∣∣∣ 1

T − Tn

∫ T

Tn

|fn+1 − fm|2dt− |ln+1 − lm|
∣∣∣∣+ (

1− T − Tn
T

)
|ln+1 − lm|. (2.46)

Recall that 0 < (T − Tn)/T < 1.
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Thus, we can determine Tn+1 by requiring that each of the three terms in Eq. (2.46) is smaller
than ϵn+1/3. Namely, Tn+1 > 3κn,m/ϵn+1, and Tn+1 > T ′ (from Eq. (2.42)), and Tn+1 >
3Tn|ln+1 − lm|/ϵn+1; with this, we get that Eq. (2.43) is then smaller than ϵn+1, obtaining the
induction step for Eq. (2.40). Besides, by letting T = Tn+1 in Eq. (2.42) we have that Eq. (2.39)
holds for n+ 1.

Now that we can find T0, T1, . . . , we can construct the function
˜
f . Thus, by taking the limit

n→ ∞ at both sides of Eq. (2.40) we get

Mt{|
˜
f − fm|2} = lim

T→∞

1

T

∫ T

0

|
˜
f − fm|2dt = l − lm =

∞∑
i=m+1

|f̃(Ei)|2, (2.47)

which for sufficiently large m can be made arbitrarily small, yielding Eq. (2.34), or, equivalently

lim
m→∞

Mt{|
˜
f − fm|2} = 0. (2.48)

Remark 2.8. From Corollary 2.7 it follows that the Fourier series of
˜
f is the same as that of f ,

consequently
˜
f ∼ f [4].

The Fourier transform with respect to the counting measure and the inverse isomorphism.
If f and f̃ are related through (2.29), we can recognize that the Fourier series of f are nothing but
the Fourier transform of f̃ (with respect to the counting measure, see Eq. (2.15)):

∑
E∈σf

e−iEt/~Mt′{eit
′E/~f(t′)} =

∑
E∈σf

e−itE/~f̃(E) =

∫
R
e−itE/~f̃(E)dE = f̂(t), t ∈ R.

(2.49)

Additionally, from the Riesz-Fischer theorem (see also Remark 2.5) it follows that the Fourier
series f̂ defines the inverse isomorphism of Eq. (2.29) from l2(R) onto B2

f̃ 7→ f̂(t) ∼ f ∼
˜
f. (2.50)

Recall that a B2-class is uniquely defined by each Fourier series.

Remark 2.9. Each Fourier series related to a B2-function f is uniquely defined by an absolutely
convergent series of square modulus of some sequence and a countable real subset. This can be
seen, for example, from Eqs. (2.20) and (2.28). Recall that this statement is equivalent to the fact
that by specifying such key ingredients the corresponding function f̃ = Mt{eitE/~f(t)} is also
determined in a unique way, see Remark 2.1.
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An orthonormal basis. It is now easy to see that Eq. (2.50) sends the orthonormal basis {δ[E −
E ′] : E ′ ∈ R} of unit sample functions to the orthonormal basis of complex exponential functions
{e−iE′t/~ : E ′ ∈ R}. The orthonormal relation of this set reads

Mt{eiEt/~ e−iE
′t/~} = lim

T→∞

1

T

∫ T

0

ei(E−E′)t/~dt

= lim
T→∞

ei(E−E′)T/2~ sinc
[
(E − E ′)T

2~

]
= δ[E − E ′] (2.51)

The complex vector space spanned by {e−iE′t/~ : E ′ ∈ R} is called the trigonometric polynomials
and is dense in B2, that immediately follows from Eq. (2.34) by taking the Cauchy sequence as the
nth-Fourier series of B2-functions.

The space AP1 and the Bohr’s property. We can identify the set of all the Fourier transforms
ĥ(t) with h̃ ∈ l1(R), Eq. (2.15), to be the space of almost periodic functions with absolutely con-
vergent Fourier series, denoted by AP1. This space is part of a more general class of functions,
namely, the space AP of almost periodic functions, defined as follows.

A continuous function f : R → C is said to be almost periodic if for each ϵ > 0 there is a
l = l(ϵ) > 0 such that we can find numbers (called ϵ-translations of f ) τ ∈ [a, a + l], for any
a ∈ R, such that

|f(t+ τ)− f(t)| ≤ ϵ, ∀t ∈ R. (2.52)

The space AP is complete with respect to the supremum norm [9], but not with the B2-norm.
Thus, there is no need to introduce equivalence classes in AP when working with the supremum
norm. The Bohr’s property (2.52) that defines the almost periodic functions can be extended to
B2-functions by replacing the module of complex numbers by theB2-norm in Eq. (2.52) [9, Propo-
sition 3.13].

For a continuous periodic function the period T ′ itself can be taken as the length l, working for
each ϵ > 0 in the Bohr property Eq. (2.52), and the entire multiples kT ′ (k ∈ Z) of the period are
thus the ϵ-translation numbers of the periodic function. In our opinion it is difficult to find such an
ϵ-dependent length l for the general case.

2.4 Summary
In this section we summarize of some things about the spaces l2(R) and B2.

We call to an arbitrary countable set of numbers

σ′ = {E ′
1, E

′
2, E

′
3, . . . }, E ′

n ∈ R, n = 1, 2, . . . (2.53)
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and an arbitrary absolutely convergent series of type
∞∑
n=1

|ψ′
n|2 <∞, ψ′

n ∈ C, n = 1, 2, . . . , (2.54)

the key ingredients. There is no loss of generality in using the labeled set n = 1, 2, . . . because
the important thing is that both are labeled by the same set. Starting with the key ingredients, we
construct one element of each space l2(R) and B2, identifying the roles of each ingredient:

Discrete signal
function

f̃(E) =
∞∑
n=1

ψ′
n δ[E−E ′

n]

Key
ingredients

Fourier series
of general type

f̂(t) =
∞∑
n=1

e−itE
′
n/~ψ′

n

B2-class
f(t) ∼ f̂(t)

Support of f̃(E)
{E ∈ R : f̃(E) 6= 0}

σ′ Spectrum of f(t)
{E ∈ R : Mt{eitE/~f(t)} 6= 0}

Samplings of f̃(E)
f̃(E ′

n)
ψ′
n

Fourier coefficients of f(t)
Mt{eitE

′
n/~f(t)}

l2-norm
‖f̃‖2 =

∫
R
|f̃ |2dE

∞∑
n=1

|ψ′
n|2

B2-norm
(Parseval formula)

Mt{|f(t)|2} = ‖f‖2

Fourier transform respect to dE∫
R

e−
itE/~ f̃(E) dE=

Mean value= M
t { e itE/~ f(t)}

= =

= =

= =

Table 2.1: Construction of objects using the key ingredients

In Table 2.1 Mt{•} stands for the mean value defined as limT→∞ T−1
∫ T
0
•dt, and f ∼ f̂

denotes Mt{|f(t) − f̂(t)|2} = 0. Recall that the elements of the Besicovitch space B2 are the
equivalence classes f(t) ∼ f̂(t) and not the B2-functions f(t) (∈ L2

loc(R)). However, the custom
is to treat as equal the B2-functions of the same B2-class.
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Besicovitch made the remarkable observation that for each Fourier series of general type there
corresponds a B2-function

˜
f(t) constructed from the partial Fourier series fn and some positive

numbers T0 = 0 < T1 < T2 < · · · → ∞:

T1 T2 T3 T4

t

˜
f(t) : f1(t) f2(t) f3(t) f4(t)

T0

· · ·

As usual, the members of each equivalence class can be treated as if they were the same function.
Thus, we can pick the Fourier series themselves if they converge absolutely or uniformly, for in-
stance. Otherwise, we can chose the piece-wise function

˜
f(t). The usual Fourier series of periodic

functions L2(R/T ′Z), with period T ′, are a particular case of the Fourier series of B2-functions.
Recall that the counting measure counts the elements of a set, thus the only sets that have finite

counting measure are those having finite elements, for example
∫
R χ{1,2}(E)dE = 2. On the other

hand, the Besicovitch measure assigns only to sets of infinite length a non zero measure, for example
limT→∞ T−1

∫ T
0
χ[0,∞)(t)dt = 1. The function χ• is the characteristic function of the given set •.

As shown in Table 2.1, the maps the mean value and the Fourier transform with respect to
the counting measure yield the isomorphisms between l2(R) and B2, thus both have the same the
Hilbert space structure:

l2(R) Hilbert spaces B2

〈g̃|f̃〉
∑
σ′∩σ′′

ϕ′∗
nψ

′
n 〈g|f〉 = Mt{g∗(t)f(t)}

{δ[E − E ′] : E ′ ∈ R} Orthonormal basis {e−itE′/~ : E ′ ∈ R}

Fourier transform dE

= =

Mean value

Above, we have used another set of key ingredients σ′′ and
∑∞

n=1 |ϕ′
n|2 <∞ so as to define the

discrete signal function g̃ and its companion g(t). Note that, the more elemental functions in each
space l2(R) and B2 are the unit sample functions δ[E−E ′] and the complex exponential functions
e−itE/~, respectively. The mean value sends the latter to the former

Mt{eitE
′/~e−itE/~} = lim

T→∞

1

T

∫ T

0

eit(E
′−E)/~dt = δ[E − E ′] (2.55)
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On the other hand, the reciprocity map is the Fourier transform with respect the counting measure,
which for the unit sample functions δE,E′ = δ[E − E ′] it reads as follows

δ̂E,E′(t) =

∫
R
e−itE/~δE,E′dE = e−itE

′/~. (2.56)
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Chapter 3

Time and energy representations

This chapter is devoted to the development of the mathematical framework in which the continuous
set of generalized abstract kets{

|t〉 =
∞∑
n=1

eitEn/~|En〉 : t ∈ [0,∞)

}
(3.1)

forms a basis in a Dirac sense. This set has already been considered by some authors [6, 20]. The
presentation here of |t〉 as a time basis is an in-deep review of a part given by Martínez and Torres in
Ref. [28]. In addition, we want to stress the convenience and usefulness of the Besicovitch frame-
work as well as of the Lebesgue space l2(R) in order to introduce time and energy representations
for quantum systems with discrete energy spectrum, in standard quantum mechanics.

3.1 Time representation
Let us define the time representation of the state |ψ〉 ∈ H to be its projection on the continuous
generalized kets |t〉

〈t|ψ〉 =
∞∑
n=1

e−itEn/~〈En|ψ〉, t ∈ [0,∞). (3.2)

Since we assume that the energy spectrum has no other restrictions than to be discrete, it might
be questionable in what sense, if it existed, the series in Eq. (3.2) converges. If the energy spec-
trum were equidistant, it would be natural to make use of the L2-convergence of the usual Fourier
series. At this point, the Besicovitch framework becomes valuable because it can explain the afore-
mentioned question and the nature of Eq. (3.2). Then, we only need to recognize Eq. (3.2) to be a
Fourier series of general type, that defines aB2-class 〈t|ψ〉 ∼ ψ(t) in theB2-space, with ψ(t) being
a B2-function. This assertion follows from the Riesz-Fischer Theorem 2.4 (also see Remark 2.9)
because 〈t|ψ〉 satisfies ‖ψ‖2 =

∑∞
n=1 |〈En|ψ〉|2 <∞ and the set of quantum energies {En}∞n=1 in

the exponential functions e−itEn/~ is a countable set.
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Note that 〈t|ψ〉 is a dimensionless quantity. Also, the mean value does not introduce additional
units because units of time cancel each other in it:

M{•} = lim
T→∞

1

T

∫ T

0

• dt. (3.3)

This means that there is no need to add units to 〈t|ψ〉 either. Recall the Parseval formulaMt{|〈t|ψ〉|2} =∑∞
n=1 |〈En|ψ〉|2 = ‖ψ‖2 is dimensionless.
Without restricting the generality of |t〉, the variable t has been restricted to [0,∞), see Re-

mark 2.2.
Now, we proceed to expose another way of introducing a time representation of states, in addi-

tion of the Fourier series of general type 〈t|ψ〉.

3.1.1 An operational construction of the wave functions

In standard quantum mechanics, the way that the mean value 〈ψ|Ĥ|ψ〉 can be approximated is
through a large number of measurements of the observable Ĥ in the same (normalized state) |ψ〉.
Thus, it is hoped that if N is the number of such repetitions and N (En;N) is the number of times
that En was recorded, then N (En;N)/N → |〈En|ψ〉|2 as N → ∞ [8]. This fact leads us to
suppose that the functions

α(En;N) := eiθN,n

√
N (En;N)

N
, N = 1, 2, . . . (3.4)

can be defined for some phases eiθN,n such that

α(En;N) → 〈En|ψ〉 as N → ∞. (3.5)

Recall that α(En;N) are dimensionless.
It results that we can construct a sequence of piece-wise B2-functions as follows.

3.1.1.1 A piece-wise function

Since an extra measurement can only yield at most an energy distinct to all previous values, let us
reorder the energies as they appear in a set of measurements, say {Enj

}∞j=1.
Let N be the number of measurements taken into account. If N = 1, the first energy recorded

is En1 , then, define ψ1(t) = e−itEn1/~, 0 ≤ t. For N > 1 we proceed recursively. Suppose that the
jth measurement had an approximate time duration tj and gave the outcome Enj

; the energies of
the system were different and recorded in the order

En1 , En2 , . . . , EnN
. (3.6)
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For the case without energy repetitions, that is, |α(Enj
;N)|2 = 1/N . Then, define the piece-wise

function as

ψN(t) =



α(En1 ;N)e−itEn1/~ 0 ≤ t < T1

α(En1 ;N)e−itEn1/~ + α(En2 ;N)e−itEn2/~ T1 ≤ t < T2
...

...
j∑
i=1

α(Eni
;N)e−itEni/~ Tj−1 ≤ t < Tj

...
...

N∑
i=1

α(Eni
;N)e−itEni/~ TN−1 ≤ t

(3.7)

where Tj =
∑j

i=1 ti (T0 = 0). If the next measurement (the (N + 1)th measurement) is supposed
to record a previous energy; such that |α(Eni′

;N + 1)|2 = 2/(N + 1) holds only for one Eni′

(1 ≤ i′ ≤ N ), define

ψN+1(t) =



α(En1 ;N + 1)e−itEn1/~ 0 ≤ t < T1
...

...
j∑
i=1

α(Eni
;N + 1)e−itEni/~ Tj−1 ≤ t < Tj

...
...

N∑
i=1

α(Eni
;N + 1)e−itEni/~ TN−1 ≤ t < TN

N∑
i=1

α(Eni
;N + 1)e−itEni/~ TN ≤ t.

(3.8)

Otherwise, if the (N+1)th measurement would yield a different energy than the previous registered
energies, such that |α(Eni

;N+1)|2 = 1/(N+1) for eachEni
, then define ψN+1(t) similar to (3.7),
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that is

ψN+1(t) =



α(En1 ;N + 1)e−itEn1/~ 0 ≤ t < T1
...

...
j∑
i=1

α(Eni
;N + 1)e−itEni/~ Tj−1 ≤ t < Tj

...
...

N∑
i=1

α(Eni
;N + 1)e−itEni/~ TN−1 ≤ t < TN

N+1∑
i=1

α(Eni
;N + 1)e−itEni/~ TN ≤ t.

(3.9)

Repetitions of the measured values of the energy are handled in the way we constructed Eq. (3.8),
so that we can now consider repetitions of the values measured. We keep building these functions
in this way until the M th-measurement, probably the last measurement M ≥ N . The key point is
that ψM is defined to be the trigonometric polynomial

ψM(t) =

M ′(M)∑
i=1

α(Eni
;M)e−itEni/~, TM−1 ≤ t, (3.10)

where M ′ = M ′(M) is the number of all the energies recorded in those M measurements (M ′ ≤
M ). Recall that we might expect that M ′(M) → ∞ as M → ∞ unless the state can be certainly
expanded by a finite set of energy eigenstates. Also, this might be understood that for the sake of
approximating each |〈En|ψ〉|2 by means of α(En;N) we should consider a large enough number of
measurements M � 1 such that additional measurements will not significantly change the values
of 〈En|ψ〉.

Since it would be more realistic to consider M � 1, assuming that En1 , En2 , . . . , EnM′ are
the related measurement results, the time representation of a system in the state |ψ〉 can then be
approximated by the piece-wise function ψM(t). During the time interval [0, TM) the function
ψM(t) accounts for the “history” of the measurements, and, after this period of time, ψM(t) keeps
evolving over time as a superposition of the waves e−itEni/~, i = 1, 2, . . . ,M ′(M), but all at once.
Some improvements can be made, if desired, to the piece-wise functions. For example, we can
redefine them to be continuous at each Tj or even to be just the trigonometric polynomials Eq. (3.10)
for all time. This latter would be the choice if the measurement history is either not necessary or
not feasible. In any case, the choice of a trigonometric polynomial after a while or for all time, is
the important fact for the Besicovitch setting, as shown next.

3.1.1.2 A Cauchy sequence

Since, at least theoretically, we can suppose that an infinity number of measurements of 〈ψ|Ĥ|ψ〉
are achievable, and the corresponding time durations comply with tj ≥ τ for some τ > 0 (the
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measurements might have a finite time duration). Then, roughly speaking, the sequence of the
previous constructed piece-wise functions {ψn}∞n=1 satisfies ψn(t ≥ Tn−1) → 〈t|ψ〉 as n → ∞
(t → ∞). In fact, they are B2-functions because they are defined to be trigonometric polynomials
after a time, and even more, as we show next, they form a Cauchy sequence. We start by showing
the next claim.

Claim 3.1. Each piece-wise function ψn, defined previously in Section 3.1.1.1, is a B2-function.

Proof. To show this, let us consider the probability density

|ψn(t)|2 =

∣∣∣∣∣∣
n′(n)∑
i=1

α(Eni
;n)e−itEni/~

∣∣∣∣∣∣
2

=

n′(n)∑
i,j=1

α(Eni
;n)α∗(Enj

;n)eit(Enj−Eni )/~ (3.11)

for t > Tn−1, see definition (3.10), and split the squared modulus of its norm as

Mt{|ψ(t)|2} = lim
T→∞

1

T

∫ T

0

|ψn|2dt = lim
T→∞

1

T

(∫ Tn−1

0

+

∫ T

Tn−1

)
|ψn|2dt. (3.12)

Noticing that ψn is bounded the first integral on the right hand side of Eq. (3.12) will vanish.
For the last integral in Eq. (3.12), since ψn is a trigonometric polynomial for t > Tn−1 we get that

Mt{|ψ(t)|2} = lim
T→∞

T − Tn−1

T
× lim

T→∞

1

T − Tn−1

∫ T

Tn−1

|ψn|2dt

=

n′(n)∑
i,j=1

α(Eni
;n)α∗(Enj

;n)

[
lim
T→∞

1

T − Tn−1

∫ T

Tn−1

eit(Enj−Eni )/~dt

]

=

n′(n)∑
i,j=1

α(Eni
;n)α∗(Enj

;n)δ[Eni
− Enj

]

=

n′(n)∑
i=1

|α(Eni
;n)|2 <∞, (3.13)

where we have used the limit

lim
T→∞

1

T − Tn−1

∫ T

Tn−1

eit(Enj−Eni )/~dt = lim
T→∞

ei(T+Tn−1)(Enj−Eni )/2~

2T ′

∫ T ′

−T ′
eit(Enj−Eni )/~dt

= lim
T→∞

ei(T+Tn−1)(Enj−Eni )/2~sinc
[
T ′(Enj

− Eni
)

~

]
= δ[Eni

− Enj
], (3.14)

where T ′ = (T − Tn−1)/2. It is a Kronecker delta.
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Proposition 3.2. The sequence of piece-wise functions {ψn}, defined in Section 3.1.1.1, is a Cauchy
sequence with respect to the B2-norm.

Proof. Since Cauchy sequences are still Cauchy sequences under isomorphisms between Hilbert
spaces, it suffices to show that the sequence {ψ̃n(E) = Mt

{
eitE/~ψn(t)

}
}∞n=1 is a fundamental

sequence in l2(R). For this purpose, we begin by calculating

ψ̃n(E) = lim
T→∞

1

T

(∫ Tn−1

0

+

∫ T

Tn−1

)n′(n)∑
i=1

α(Eni
;n)eit(E−Eni )/~

 dt
=

n′(n)∑
i=1

α(Eni
;n)

[
lim
T→∞

1

T − Tn−1

∫ T

Tn−1

eit(E−Eni )/~dt

]

=

n′(n)∑
i=1

α(Eni
;n)δ[E − Eni

]. (3.15)

Then, let m ≥ n, we have that

‖ψ̃m − ψ̃n‖2 =
n′(n)∑
i=1

|α(Eni
;m)− α(Eni

;n)|2 +
m′(m)∑

i=n′(n)+1

|α(Eni
;m)|2. (3.16)

By virtue of Eq. (3.5) and
∑∞

n=1 |〈En|ψ〉|2 < ∞, we can make Eq. (3.16) less than any ϵ > 0 by
taking n sufficiently large. This yields the desired conclusion.

Claim 3.3. The sequence ψ̃n converges to

ψ̃(E) =
∞∑
i=1

〈Eni
|ψ〉δ[E − Eni

] =
∞∑
i=1

〈Ei|ψ〉δ[E − Ei]. (3.17)

Proof. In order to show this assertion, as argued in the paragraph after Eq. (3.16), we get readily

‖ψ̃ − ψ̃n‖2 =
n′(n)∑
i=1

|〈Eni
|ψ〉 − α(Eni

;n)|2 +
∞∑

i=n′(n)+1

|〈Eni
|ψ〉|2 → 0 as n→ ∞. (3.18)

Now, an application of the inverse isomorphism (2.50) to ψ̃ immediately yields the next state-
ment.

Proposition 3.4. Let {ψn}∞n=1 be the sequence built as in Section 3.1.1.1. Then

lim
n→∞

ψn(t) ∼ 〈t|ψ〉 = ψ̂(t) (3.19)

where 〈t|ψ〉 is the Fourier series Eq.(3.2) related to each state |ψ〉 ∈ H, or equivalently, ψ̂(t) is the
Fourier transform with respect to the counting measure of ψ̃(E), defined in Eq.(3.17).
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Remark 3.5. From now on, we can follow the custom to consider as identical the B2-functions
belonging to the same B2-class, analogous to how is done with the elements of L2(R/Z) or L2(T)
(T the torus). In those few instances where it might lead to confusion we will point out the difference,
as in Eq. (3.19). Bearing this in mind, for an arbitrary state |ψ〉 ∈ H we can think of its time
representation as its related Fourier series 〈t|ψ〉, or equivalently, as the limit of the sequence of the
piece-wise functions we just defined.

3.1.2 Time basis
In order to show that the set {|t〉 : t ∈ [0,∞]} constitutes a basis in the Dirac sense, we need to
show its closure and orthonormalization relations. Immediately after, we discuss the space that this
basis projects to.

3.1.2.1 The orthonormalization relation.

Let 〈t|ψ〉 be a trigonometric polynomial. Then we have the next chain of equalities

〈t|ψ〉 =
N∑
n=1

e−itEn/~〈En|ψ〉 =
N∑
n=1

e−itEn/~Mt′{eit
′En/~〈t′|ψ〉}

=
N∑
n=1

e−itEn/~
[
lim
T→∞

1

T

∫ T

0

eit
′En/~〈t′|ψ〉dt′

]
= lim

T→∞

1

T

∫ T

0

[
N∑
n=1

ei(t
′−t)En/~

]
〈t′|ψ〉dt′

= Mt

{
〈t|ÎN |t′〉 〈t′|ψ〉

}
, (3.20)

where ÎN is the projector
∑N

n=1 |En〉〈En|, and where

〈t|ÎN |t′〉 =
N∑
n=1

ei(t
′−t)En/~. (3.21)

Now suppose that ψ(t) is a B2-function such that ψ(t) ∼ 〈t|ψ〉 and let 〈t|ψN〉 denote its N th-
Fourier series. Since the trigonometric polynomials are dense in the B2-space, for each ϵ > 0 we
can find a N such that Mt{|ψ(t)− 〈t|ψn〉|2} < ϵ provided n ≥ N . This statement can be written
in the form

lim
T→∞

1

T

∫ T

0

∣∣∣∣∣ψ(t)− lim
T ′→∞

1

T ′

∫ T ′

0

[
N∑
n=1

ei(t
′−t)En/~

]
〈t′|ψ〉dt′

∣∣∣∣∣
2

dt < ϵ. (3.22)

From Eq. (3.22) we can see that 〈t|ÎN |t′〉 converges to a Dirac-like distribution 〈t|t′〉with respect
to the B2-norm as N → ∞, analogous to how the test functions

∑N
k=−N e

i2πk(t−t′) converge in the
sense of a distribution to the periodization of the Dirac function with respect to the L2-norm of
L2(R/Z). In fact, if the energy spectrum is equidistant, 〈t|t′〉will coincide with such a periodization
because the mean values in Eqs. (3.20) and (3.22) can be computed over a period.
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3.1.2.2 The closure relation

By virtue of Plancherel’s identity for the B2-functions Eq. (2.31) the inner product between the
states |ϕ〉 and |ψ〉 has the representation

〈ϕ|ψ〉 = lim
T→∞

1

T

∫ T

0

〈ϕ|t〉 〈t|ψ〉dt. (3.23)

In particular, by choosing |ϕ〉 = |ψ〉 we will obtain the representation of the norm ‖ψ‖2.
If we use Dirac notation for Eq. (3.23), the closure relation of |t〉 reads

lim
T→∞

1

T

∫ T

0

|t〉〈t|dt = Î . (3.24)

This equality can also be deduced directly by substituting |t〉 by its definition (3.1) at the left-hand
side

lim
T→∞

1

T

∫ T

0

|t〉 〈t|dt = lim
T→∞

1

T

∫ T

0

[
∞∑

n,m=1

ei(En−Em)t/~|En〉 〈Em|

]
dt

=
∞∑

n,m=1

[
lim
T→∞

1

T

∫ T

0

ei(En−Em)t/~dt

]
|En〉 〈Em|

=
∞∑

n,m=1

lim
T→∞

ei(En−Em)T/2~sinc
[
(En − Em)T

2~

]
|En〉 〈Em|

=
∞∑

n,m=1

δn,m|En〉 〈Em|

= Î (3.25)

where we have used the following limits.
For En 6= Em

lim
T→∞

∣∣∣∣ei(En−Em)T/2~sinc
[
(En − Em)T

2~

]∣∣∣∣ ≤ lim
T→∞

∣∣∣∣ 2~
|En − Em|T

∣∣∣∣ → 0 (3.26)

and for En = Em, since

ei(En−Em)T/2~sinc
[
(En − Em)T

2~

] ∣∣∣∣
En=Em

= sinc(0) = 1 (3.27)

we have that

lim
T→∞

ei(En−Em)T/2~sinc
[
(En − Em)T

2~

]
= 1. (3.28)

It is easy to see that the closure and the orthonormalization relations are in correspondence
because limN→∞〈t|ÎN |ψ〉 = 〈t|Î|ψ〉 agrees with Eq. (3.20).
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3.2 Conjugate spaces: the energy representation
Using the mean value for the Besicovitch functions, the next quantity is well defined and can be
taken as the energy representation of the state |ψ〉

ψ̃(E) = Mt{eiEt/~ψ(t)} = lim
T→∞

1

T

∫ T

0

eiEt/~〈t|ψ〉dt, (3.29)

where ψ(t) ∼ 〈t|ψ〉. As we will see later, this representation can be obtained in an analogous
manner to the continuous energy spectrum case.

By the isomorphism Eq. (2.29), namely, f 7→ Mt{eiEt/~f(t)} = f̃(E) from B2 onto l2(R),
the next assertions follow.

We define the time representation of states to be the closed subspace

B2
σ = {ψ ∈ B2 : σψ ⊆ σ} ⊂ B2. (3.30)

Besides, the energy representation turns out to be

l2(σ) = {ψ̃ ∈ l2(R) : σψ ⊆ σ} ⊂ l2(R). (3.31)

Note that the spectrum of ψ(t), or equivalently, the support of ψ̃, defined by the set

σψ =
{
E ∈ R : ψ̃(E) = Mt{eiEt/~ ψ(t)} 6= 0

}
, (3.32)

is the set of energy levels that the state |ψ〉 has. The energy coefficients of |ψ〉 are given in these
representations as

〈En|ψ〉 = Mt{eiEnt/~ ψ(t)} = ψ̃(En). (3.33)

Since σ is supposed to be labeled by the set of integers n = 1, 2, . . . , the space Eq. (3.31) is
just l2(N). If σ were labeled as {Ek : k ∈ Z}, the space Eq. (3.31) would be l2(Z). As usual, we
may also think the functions ψ̃ as being the sequences {ψ̃(En)}∞n=1 such that

∑
|ψ̃(En)|2 < ∞,

but, we think it is more appropriate, for our approach, to view the elements of l2(σ) as functions on
a continuous variable having a countable support; discrete signals.

3.2.1 Canonical conjugate variables
It turns out that time and energy variables are a pair of conjugate variables through the mean value
Eq. (3.29). The inverse transform of Eq. (3.29) to get the time representation of the state |ψ〉 from
its energy representation is just the Fourier transform of ψ̃(E) with respect to the counting measure

〈t|ψ〉 =
∫
R
e−itE/~ψ̃(E) dE =

∫
σ

e−itE/~ψ̃(E) dE = ψ̂(t), (3.34)
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where we have used the fact that ψ̃ has a support at most σ, which implies that∫
R\σ

e−itE/~ψ̃(E) dE = 0. (3.35)

The transform (3.34) is nothing but (3.2) written using integral notation with dE standing for
the counting measure.

Recall that, in contrast to the time representation, the energy representation of the wave function
given by the mean value (3.29) is pointwise well-defined, because the zero distance norm ‖ψ̃−ϕ̃‖ =
0 in l2(R) implies ψ̃(E) = ϕ̃(E) for all E ∈ R.

3.2.2 The representations of the Hamiltonian
Before defining the energy and time representations of the Hamiltonian Ĥ , let us recall the next
definition that will help us to establish such operators.

Let Â1 : D1 → H1 and Â2 : D2 → H2 be two linear operators defined in two Hilbert spacesH1

and H2; D1 ⊂ H1 and D2 ⊂ H2. The operators Â1 and Â2 are said to be unitarily equivalent [1,
p. 115] if there exists an isomorphism V between H1 and H2 such that D2 = V (D1), and Â2 g =
V (Â1 h) whenever g = V (h) for all h ∈ D1. The self-adjointness, and the spectrum are unitary
invariants for such operators [1, p. 292].

Noting that the map |ψ〉 → ψ̃(E) is an isomorphism from H onto l2(σ), then the unitary equiv-
alent operator to the Hamiltonian in the energy representation l2(σ) is the multiplication operator

Ê : D̃(Ĥ) → l2(σ) ; φ̃(E) 7→ E φ̃(E) (3.36a)

defined with a maximal domain of definition

D̃(Ĥ) =

{
φ̃ ∈ l2(σ) :

∫
R
|E φ̃(E)|2dE <∞

}
. (3.36b)

The action of this operator on φ̃ ∈ D̃(Ĥ) yields the function

Eφ̃(E) =
∞∑
n=1

Enφ̃(En)δ[E − En]. (3.37)

Otherwise, the isomorphism |ψ〉 → ψ(t) ∼ 〈t|ψ〉 gives another unitary equivalent operator to
the Hamiltonian: its time representation

i~
d̂

dt
: D(Ĥ) → B2

σ ; φ(t) 7→ i~
dφ

dt
(3.38a)

where

D(Ĥ) =

{
φ ∈ B2

σ : φ′ =
dφ

dt
∈ B2

σ

}
. (3.38b)
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The function obtained by the action of this operator is the weak derivative with respect to the Besi-
covitch measure. This derivative operator sends the functionφ ∈ D(Ĥ) to any Besicovitch function
having the Fourier series

〈t|Ĥ|φ〉 =
∞∑
n=1

Enφ̃(En)e
−itEn/~. (3.39)

A similar situation happens for the momentum operator in its conjugate spaces, for which the
derivative is defined almost everywhere with respect to the Lebesgue measure, see examples in
Subsection 3.2.3.

Note that the conditions defining the domains Eqs. (3.36b) and (3.38b) are equivalent to ‖Ĥφ‖2 =∑∞
n=1 |Enφ̃(En)|2 <∞.

3.2.2.1 Uniformly discreteness

Let us consider that the energy spectrum is uniformly discrete, which means that

δ = inf
n ̸=m

|En − Em| > 0, (3.40)

the number δ is called the separation of σ = {En}∞n=1.
It follows readily from Eq. (3.40) that |Em − En| ≥ |n − m|δ, and it can be shown that a

non-negative separation (3.40) implies

∞∑
n=1

′ 1

E2
n

<∞. (3.41)

Here the prime indicates omission of the term En = 0 if it belongs to σ.
The uniformly discreteness Eq.(3.40) enables us to specify further the domain of the Hamilto-

nian in the time representation as

D(Ĥ) =

{
φ ∈ B2

σ : φ ∈ AP1,
dφ

dt
∈ B2

σ

}
. (3.42)

To show this, it suffices to show that 〈t|φ〉 is absolutely convergent for each |φ〉 ∈ D(Ĥ), see
Section 2.3.1. This will justify that D(Ĥ) is specified by the Fourier series themselves because
〈t|φ〉 = φ ∈ AP1. Note that by Eq. (3.41) and the CauchySchwarz inequality we have

|〈t|φ〉| ≤
∞∑
n=1

|〈En|φ〉| = |〈0|φ〉|+
∞∑
n=1

′ |En〈En|φ〉|
|En|

≤ |〈0|φ〉|+ ‖φ‖

√√√√ ∞∑
n=1

′ 1

E2
n

. (3.43)

The term |〈0|φ〉| should be zero if 0 /∈ σ.
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3.2.3 Two examples
To illustrate the time representation of the Hamiltonian, let us choose the following examples with
equidistant spectra. Recall that an equidistant spectrum complies with the uniformly discrete prop-
erty (3.40), and that the domain of definition in (3.42) indicates that we must choose the Fourier
series as elements of D(Ĥ) because they converge absolutely.

Let us consider that t is the coordinate variable q and En are the momentum eigenvalues pk =
~(θ+2πk)/2a (k ∈ Z and θ ∈ [0, 2π)) for a particle in the infinite square well potential of width 2a.
The momenta pk and the related eigenfunctions χ[−a,a](q)(2a)

−1/2eipkq/~ depend on the parameter
θ and correspond to the momentum operator

−i~ d̂
dq

: Dθ → L2([−a, a]) ; φ(q) 7→ −i~dφ(q)
dq

(3.44a)

where

Dθ =

{
φ(q) ∈ L2([−a, a]) : φ′(q) =

dφ

dq
∈ L2([−a, a]), φ(q) ∈ AC, φ(−a) = φ(a)eiθ

}
.

(3.44b)

Here AC stands for the absolutely continuous functions on [−a, a], defined as the complex functions
f : [−a, a] → C for which there exist g ∈ L1([−a, a]) such that

f(q)− f(a) =

∫ q

−a
g(q)dq, ∀ q ∈ [−a, a], (3.45)

where the integral is the Lebesgue integral.
The operator (3.44) is a particular operator scheme of the time representation of the Hamiltonian

operator (3.38). To show this, let us point out that the absolutely continuous functions in the domain
Dθ agree with their Fourier series, see Theorems 8.5.4 and 2.3.4 in Ref. [12]. Then, instead of
requiring φ(q) ∈ AC, it is possible to demand that

φ(q) = χ[−a,a](q)
1√
2a

∞∑
k=−∞

φke
ipkq/~. (3.46)

Except for the characteristic function χ[−a,a](q), this equivalent requirement is in agreement with
the one in the domain (3.42), namely that the element belongs to AP1.

Another example is the z-component of angular momentum. Similar arguments show that this
operator agrees with the time representation of the Hamiltonian operator (3.38) because its eigen-
values are the entire numbers.

3.3 About the energy representation
The energy representation Eq. (3.33) of the energy coefficients leads us to suspect that we can define
continuous kets

{|E〉 : E ∈ R}. (3.47)
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The energy values can also be continuous for some quantum systems. It is the aim of this sec-
tion to show in what sense the continuous kets |E〉 form a basis. The method below is with the
understanding that |E〉 = |En〉 if E = En, for some n.

3.3.1 Energy basis
We will restrict ourselves to show the orthonormalization and closure relations of |E〉.

3.3.1.1 The orthonormalization relation

By expanding a function f̃ ∈ l2(R) in the basis {δ[E − E ′] : E ′ ∈ R}, and using the integral
notation for the counting measure, we have

f̃(E) =

∫
R
δ[E − E ′]f̃(E ′)dE ′. (3.48)

This suggests that the way to view |E〉 is through the orthonormalization requirement, which
amounts on the unit sample function, Eq. (2.10),

〈E ′|E〉 = 〈E|E ′〉 = δ[E − E ′]. (3.49)

In fact, since the unit sample function belongs to the Hilbert space l2(R) we can write Eq. (3.48)
as f̃(E) = 〈δ|f̃〉, which means that the unit sample function is a kernel for l2(R).

Taking the ket notation to the setting of l2(R), Eq. (3.48) is left as

〈E|f〉 =
∫
R
〈E|E ′〉〈E ′|f〉dE ′. (3.50)

The ket |E〉 might be thought of as the ket abstraction of the basis {δ[E −E ′] : E ′ ∈ R} such that
〈E|f̃〉 = 〈δ|f̃〉 = f̃(E) is now the projection of the abstract ket |f̃〉 on |E〉. The next definition
follows.

The non-separable abstract Hilbert space generated by the continuous abstract kets |E〉 satis-
fying the orthonormalization relation Eq. (3.49) is defined to be{

|f〉 =
∑
σ′

〈E ′|f〉|E ′〉 :
∑
E′∈σ′

|〈E ′|f〉|2 <∞, σ′ ⊂ R countable

}
. (3.51)

We can say that this space is the ket abstraction of the non-separable Hilbert space l2(R).

3.3.1.2 The closure relation

By using the integral sign to write the inner product between g̃, f̃ ∈ l2(R):

〈g̃|f̃〉 =
∫
R
〈g|E〉〈E|f〉dE = 〈g|f〉 (3.52)
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we get the closure relation of |E〉

Î ′ =

∫
R
|E〉〈E|dE. (3.53)

In particular, this identity operator when restricted to the abstract Hilbert space H, which turns out
to be a closed subspace of Eq. (3.51), gives the well-known closure relation

Î ′|H =

∫
σ

|E〉〈E|dE =
∞∑
n=1

|En〉〈En| = Î . (3.54)

The striking differences between the |E〉 and an usual continuous basis in the Dirac notation
for a separable Hilbert space is, first, that the inner product representation associated to |E〉 is with
respect to the counting measure instead of the Lebesgue measure (which is the right measure, e.g.,
for the coordinate representation). For this reason in place of having a Dirac delta function, we have
the unit sample function Eq. (3.49). Second, the only physical kets among all |E〉 are {|En〉}∞n=1,
in the sense that any state |ψ〉 will be orthogonal to |E〉 for all but at most the energy eigenkets
{|En〉}∞n=1. This statement is described by the energy representation Eq. (3.29) of such a state,
which can be now written as

〈E|ψ〉 = ψ̃(E). (3.55)

Remark 3.6. The introduction of the ket notation for the energy representation can be very useful
to handle both the point and the continuous spectrum cases at once. This fact is justified on account
that l2(R) and L2(R) are particular cases of the Lebesgue spaces L2(σ, dµ,M) where σ along with
the σ-algebra M (of some subsets of σ) is a measurable space. The triplet (σ, dµ,M) is said to be
a measure space. If σ is the real line, and M is the power set of σ, and dµ is the counting measure
dE, we get the non-separable Lebesgue space commonly denoted by l2(R). But, if M is the σ-
algebra of the Lebesgue measurable subsets of σ, along with dµ being the Lebesgue measure, the
corresponding Lebesgue space is the separable one denoted, as usual, by L2(R). If σ is a closed
subset as [−A,A] (A > 0) then we will have the Lebesgue space L2([−A,A]).

The continuous spectrum. For the sake of exposure, instead of being a point spectrum let σ be
the real line; a continuous spectrum. We only need to replace the counting measure by the Lebesgue
measure. We hope that no confusion arises from using here the same symbol dE of the counting
measure for the Lebesgue measure. Thus, in this case the integral∫

R
• dE, (3.56)

has units of energy and the energy presentation 〈E|ψ〉 needs to have units of one over square root of
energy. The orthonormalization relation of the basis ket |E〉 turns to be the dirac function 〈E|E ′〉 =
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δ(E ′ − E), and the energy representation is now the Lebesgue space L2(R) (a separable Hilbert
space). The time representation 〈t|ψ〉 of the state |ψ〉 becomes the Plancherel’s transform

〈t|ψ〉 = 1√
2π~

∫
R
e−itE/~〈E|ψ〉 dE, (3.57)

such that the time space is L2(R). The factor 1/
√
2π~ stands for the time representation to have

units of one over square root of time. The energy and time representation are analogous to the
coordinate and momentum representations of the space of states for the free particle. Compare
Eq.(3.57) with Eq.(3.34). Instead of the mean value M, we use the inverse Plancherel’s transform
to get the energy representation from the time representation

〈E|ψ〉 = 1√
2π~

∫
R
eitE/~〈t|ψ〉 dt. (3.58)

Contrast this with the mean value Eq. (3.29).
Guided by this analogy, thinking that the Lebesgue measure appears in the energy and time rep-

resentations Eqs. (3.36) and (3.38) instead of the counting measure (these operators were defined for
a Hamiltonian having pure point spectrum) we have the following. The energy representation (3.36)
is similar to the coordinate representation of the position operator (for the free particle), and, on
the other hand, the time representation (3.38) is then the unitary equivalent operator of the former.
As regarding the time operator canonically conjugate to a Hamiltonian having as spectrum the real
line, it will take the role played by the momentum operator of the free particle in the coordinate
representation.

The relation of the energy representation with the discrete signal theory. The energy rep-
resentation l2(σ) we introduced is not new, it is used implicitly in standard quantum mechanics
textbooks, for example, in the way that the inner product and norm are computed for the abstract
space, see Eqs. (2.4). However, the insight provided by the l2(R) space is the context of the discrete
signal theory. To illustrate this briefly, let |ψ〉 be the initial state of a system, and consider that the
entire spectrum of the Hamiltonian Ĥ is discrete σ = {En}∞n=1, and let |En〉 be the related eigen-
kets. Then, in signal theory, the energy representation of the Hamiltonian is seen as a discrete time
system [37], that takes the input 〈E|ψ〉 into the output (also called response) 〈E|Ĥ|ψ〉; both being
discrete signals. Recall that “time” in “discrete time system” does not stand for the time variable t
we work with but, the energy variable E instead, and the term “discrete” stands for the countable
support σ of the energy representation 〈E|ψ〉. The discrete time systems are considered as “black
boxes”, as illustrated in Figure 3.1, because their input and output are the only things that, for sure,
are feasible. In quantum mechanics, it is supposed that a system can be prepared in a (normalized)
quantum state |ψ〉, and, for example, after a hypothetical infinite number of measurements of the
observable, related to Ĥ , the mean value 〈ψ|Ĥ|ψ〉 can also be obtained; thereby, we can hope that
〈En|ψ〉 and 〈En|Ĥ|ψ〉 are known.

The superposition principle for states (in quantum mechanics) is realized by a particular class of
discrete-systems (in the discrete signal theory) called linear invariant; if the input is a linear super-
position of discrete signals, the output is the same weighted linear combination but of the responses
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Figure 3.1: Representation of a generic discrete system.

of the signals forming the superposition input. Furthermore, the property that “〈En+m|ψ〉 is sent to
〈En+m|Ĥ|ψ〉 whenever 〈En|ψ〉 is sent to 〈En|Ĥ|ψ〉” is called time invariance or shift invariance,
and the discrete systems that satisfy such a condition are named time or shift invariant (again, recall
that the “time” adjective in these terms is played by the energy variable in our approach). The linear
and time invariant systems (LTI systems) are then the discrete signal description for operators of
observables.

In addition, the quantum measurement process can be thought of as a filtering action. A filter
is another view of discrete time systems, in particular, we focus on the so called finite impulse
response (FIR) filters [11] because their outputs have only a finite number of responses. Thus, if
the measurement Em of the observable described by Ĥ is such that the state immediately after is
|Em〉, then, all this process becomes a FIR filter whose output is always a unit sample function, as
depicted in Figure 3.2.

Figure 3.2: Discrete signal picture of a measurement process.

All this is suggestive on the energy representation meaning, which is left for future development.

3.4 Conclusions
The time and the energy representations we have introduced, as well as the corresponding represen-
tations of the Hamiltonian, can be used on any system that have an energy point spectrum without
further constraints. The time representation of the Hamiltonian turned out to be a derivative, similar
to that of the representation of the momentum operator in the momentum space for either the free
particle or the particle in the infinite well potential.

Let us recall that the Hilbert space L2(σ,M, dµ) is the space to be considered when analyzing
a quantum system. For example, it yields the coordinate and momentum representations for some
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usual quantum systems as are the harmonic oscillator, the free particle, the infinite square-well po-
tential, and square potentials. All of the respective representations share the Hilbert space structure
of a separable space, and it may happen that this fact tempts us to think that a time representation
or the energy representation need the use of the Lebesgue measure when the energy spectra is dis-
crete. However, as we have shown in this thesis, a closed subspace of the non-separable Besicovitch
space has all the properties that a representation of the abstract Hilbert space needs. The particular
case of an equidistant spectrum is not refuted by the Besicovitch framework, but on the contrary.
Indeed, historically the main scope of the theory of Harald Bohr, and then of Besicovitch, was to
give a generalization of the periodic functions such that the Fourier analysis was preserved [4]. All
of this suggests that the Besicovitch framework allows to have Hilbert spaces, in addition to the
usual Lebesgue spaces, the mathematical scheme that wave quantum mechanics theory is based on,
to study the role played by the time variable in the standard quantum mechanics.

As we have shown, the introduction of the Besicovitch setting enables us to have a time rep-
resentation of states with discrete energy spectra. This approach had already been studied by
Hall [20, 21]. Also, He pointed out that an observable might be described by bounded operators
in the Besicovitch time representation. Nevertheless, regardless if the Hamiltonian is bounded or
not, we have shown that the closed Besicovitch space B2

σ allows us to have a time representation of
the Hamiltonian. In addition, we have shown that the mean value for Besicovitch functions defines
a unitary map, which leads us to define an energy representation, conjugated to the time represen-
tation. This energy representation has to do with some discrete signal insights, a framework for
further study.

With regard the time eigenket |t〉, let us recall that Cannata in References [6, 7] showed that
for the equidistant spectrum the continuous eigenkets |t〉 forms a basis. We have extended this
statement to the general energy point spectrum by showing that |t〉 is a basis in a Dirac sense. In
the next chapter we provide momentum operators of discrete type, for which |t〉 is, indeed, their
generalized eigenket.

We will apply the ideas developed in this thesis to other theories in physics to provide with a
time axis for them.
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Chapter 4

Discrete time operator

The finite-difference method has been devoted mainly to approximate the derivative of a function
when the independent variable takes discrete values. The main requirement for this approximation
is that the exact derivative can be recovered by taking some limits. The most common partition of
the independent variable, in treatises of finite-difference calculus is the equidistant one [22, 38].

The finite difference scheme we use in this chapter was defined by Ronald E. Mickens [30].
This scheme is such that the difference equation and the associated differential equation have the
same solution. Independently, we have defined such a scheme [25] only for the particular case of
the first order differential equation

df(q)

dq
= i f(q). (4.1)

The main reason for this approach is to have a discrete derivative with respect to a non-equidistant
mesh. A consequence of this approach is the finding of discrete operators that comply with the
properties of the derivative of continuous functions, but defined on a non-equidistant set of points.
These operators were introduced by hand in References [25, 27], but in this chapter we give a sound
mathematical foundation for their existence. In particular, we use the exact finite difference scheme
for the complex exponential function to define a discrete derivative with respect to an arbitrary
energy point spectrum. The results in this chapter can be found in References [25, 26, 27, 28].

4.1 Mathematical background
Theorem 4.1. Let f : [a, b] → C be a derivable function at q0 ∈ [a, b], such that 0 < |f ′(q0)| <∞
(f ′ = df/dq), and let g : [a, b] → C be another derivable function at q0. Define the function

χf (q, q0) =
f(q)− f(q0)

f ′(q0)
, q0, q ∈ [a, b]. (4.2)

Then

lim
q→q0

g(q)− g(q0)

χf (q, q0)
= g′(q0). (4.3)
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This theorem shows that the difference q − q0 in the denominator can be replaced by the more
general function χf (q, q0) to compute the derivative at q0. This function is called a denominator
function [31]. Below we will see the advantage of doing this. For the function f , we obtain the
exact derivative f ′.

Proof. The only difficulty with the limit in Eq. (4.3) is that the function χf might take the value
zero at infinite points q as q → q0. Therefore, it is only necessary to show that we will not encounter
this situation. For this purpose, define the function

ξ(q, q0) =


1

f ′(q0)

[
f(q)− f(q0)

q − q0

]
, q 6= q0

1, q = q0.

(4.4)

Since f is derivable at q0, it follows that ξ is continuous on [a, b]. In particular, since ξ(q0, q0) 6= 0
we can find a neighborhood U of q0 where it happens that ξ(q, q0) is bounded and non zero, and
henceforth ξ(q, q0)−1 is too. If q is a boundary point, the vicinity must be right or left open. So, in
the punctured neighborhood U \ {q0}, we have the well-defined quotient

g(q)− g(q0)

χf (q, q0)
=
g(q)− g(q0)

q − q0

1

ξf (q, q0)
. (4.5)

Finally, since g′(q0) exists, along with the limit ξ(q, q0) → 1 as q → q0, this quotient takes the value
g′(q0) when the limit q → q0 is taken, obtaining the desired result.

Corollary 4.2. Let f, g be as in the preceding theorem. Let ∆f ,∆b ≥ 0 such that

q0 +∆f , q0 −∆b ∈ [a, b] (4.6)

and define

χf (∆f ,∆b; q0) =
f(q0 +∆f )− f(q0 −∆b)

f ′(q0)
. (4.7)

Then

lim
∆f ,∆b→0

g(q0 +∆f )− g(q0 −∆b)

χf (∆f ,∆b; q0)
= g′(q0). (4.8a)

When g = f , even for non zero ∆b and ∆f , we always have

f(q0 +∆f )− f(q0 −∆b)

χf (∆f ,∆b; q0)
= f ′(q0) (4.8b)

Remarks. When ∆b = 0 (∆f = 0) the quotients in Eqs.(4.8) are identified with the forward
(backward) finite-difference derivative.
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Proof. The equality in equation (4.8b) follows directly from the definition (4.7). For the limit
(4.8a) we make the observation that

lim
∆f ,∆b→0

χf (∆f ,∆b; q0)

∆f +∆b

= 1 (4.9)

and then, the proof is similar to that as in the previous theorem.
It is easy to check that if the function f satisfies the condition 0 < |f ′(q0)| < ∞ for each

q0 ∈ [a, b] and g is derivable at each q0 ∈ [a, b], then, the way to compute the derivative of g
on [a, b] established in the previous theorem and its corollary holds true. Moreover, with suitable
increments ∆f and ∆b, the quotient in Eq. (4.8a) gives us a kind of two or three points finite-
differences for the derivative g′ on [a, b]. Equation (4.8b) is called an exact finite difference scheme
for the first derivative.

4.2 Discrete conjugate momenta of the Hamiltonian
We proceed to apply the obtained results to the complex exponential function. Two reasons for the
interest in this function are that it is the eigenfunction of the derivative operator and it is related to
the time evolution in classical and quantum mechanics. Afterwards, we define discrete versions of
a conjugate momentum of the Hamiltonian.

4.2.1 The exact finite differences for the complex exponential function
Let us consider the quantum energies σ = {Ej}∞j=1 and define the increments

∆j = Ej+1 − Ej, j = 1, 2, . . . . (4.10)

Recall that we are supposing that the energies are ordered in increasing value

E1 < E2 < E3 < . . . . (4.11)

The complex exponential function we will work with is

f(E; t) = eiEt/~, E ∈ [E1,∞), t ∈ R. (4.12)

This function is derivable in both continuous variables t and E. Further on, the variable E will be
restricted to take only the values of the energy spectrum.

By noting that f(E; t) complies with 0 < |∂f/∂E| = |t|/~ < ∞ for each fixed nonzero t and
allE, and using the increments ∆j , it follows that we can define the forward version of the function
χf , Eq. (4.7), at each quantum energy Ej by

χj(t) := χf (∆j, 0;Ej) = −i~e
it(Ej+∆j)/~ − eitEj/~

teitEj/~
= ∆je

i∆jt/2~sinc
[
t∆j

2~

]
, j = 1, 2 . . .

(4.13a)
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The backward version is

ηj(t) := χf (0,∆j−1;Ej) = −i~e
itEj/~ − eit(Ej−∆j−1)/~

teitEj/~

= ∆j−1e
−i∆j−1t/2~sinc

[
t∆j−1

2~

]
, j = 2, 3 . . . (4.13b)

where sinc(z) is the entire function sin(z)/z which takes the value sinc(0) = 1. This allows us
to define χj(0) = ∆j and ηj(0) = ∆j−1 such that χj and ηj are well defined for all t ∈ R. The
forward denominator function is related to the backward one by

χj(t) = η∗j+1(t). (4.14)

Thus, both have the same set of zeros

tk,j =
2πk~
∆j

, k = ±1,±2, . . . (4.15)

The zeroes Eq. (4.15) should be excluded in order to avoid any indeterminacy when the functions
1/χj and 1/ηj appear. These zeroes will be explored in Section 4.3.

4.2.2 Discrete momentum operators
At this point, we can define the discrete forward momentum operator

D̂f (t) := −i~
∞∑
j=1

|Ej〉〈Ej+1| − |Ej〉〈Ej|
χj(t)

(4.16a)

and its companion, the discrete backward momentum operator

D̂b(t) := −i~
∞∑
j=2

|Ej〉〈Ej| − |Ej〉〈Ej−1|
ηj(t)

. (4.16b)

At each energy Ej these operators yield the forward and backward finite difference scheme
versions of Eq. (4.8a)

〈Ej|D̂f |ψ〉 = −i~ψj+1 − ψj
χj(t)

, and 〈Ej|D̂b|ψ〉 = −i~ψj − ψj−1

ηj(t)
, (4.17)

respectively, where |ψ〉 =
∑∞

j=1 ψj|Ej〉 (
∑∞

j=1 |ψj|2 <∞). We can identify Eqs. (4.17) as the sam-
plings of the corresponding energy representations 〈E|D̂f,b|ψ〉 (see Section 3.2). These schemes
are equivalent on account of

|〈Ej|D̂f |ψ〉| = |〈Ej+1|D̂b|ψ〉|, j = 1, 2, . . . . (4.18)
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It is in this sense that D̂f (t) and D̂b(t) are equivalent.
The valuable property of the operator (4.16a) is the eigenvalue equation

D̂f |t〉 = t|t〉, ∀ t ∈ R, (4.19)

where the time basis appears

|t〉 =
∞∑
j=1

eiEjt/~|Ej〉.

Equation (4.19) is verified by using the definition Eq. (4.13a) of the denominator function χj(t),
yielding that each jth entry of Eq. (4.19) reads

〈Ej|D̂f |t〉 = −i~e
itEj+1/~ − eitEj/~

χj(t)
= −i~e

it(Ej+∆j)/~ − eitEj/~

χj(t)
= teitEj/~ = t〈Ej|t〉. (4.20)

In turn this shows that Eq. (4.19) is equivalent to the exact forward finite-difference schemes of
Eq. (4.8b) in the particular case of the complex exponential function.

The backward operator satisfies a similar eigenvalue equation D̂b|t〉 = t|t〉, except for the first
entry because the backward finite difference scheme needs of the increments ∆j−1 but these incre-
ments are not defined at j = 1.

Note that the zeros of the denominator functions χj really do not introduce any indeterminacy
in Eq. (4.19), since by means of a limiting procedure as t goes to some of these zeros the eigenvalue
equation (4.19) remains true.

As to the domain of definitions of these discrete operators we have to avoid the zeroes of the
denominator functions χj(t) and ηj(t). Since the energy spectrum is not necessarily equidistant,
another possibility which may happen is that the arguments t∆j/2~ of the sinc functions in the
function denominators (4.13) get closer to nπ (the inverses 1/χj and 1/ηj could tend to infinity)
for some n = ±1,±2, . . . as j → ∞ because the set {t∆j}∞j=1 may be dense on the positive half
of the real line. To avoid such an issue, we also define the operators D̂f,b on the span of the energy
eigenkets, that is, the linear space of finite linear complex combinations of the energy eigenkets
|Ej〉. Recall that such a span is dense in the abstract Hilbert space we work with, so that D̂f,b are
said to be densely defined.

The discrete forward derivative operator D̂f also satisfies a discrete type of a canonical com-
mutation version [25], namely

[D̂f (t), Ĥ] = −i~
∞∑
j=1

Ej+1|Ej〉〈Ej+1| − Ej|Ej〉〈Ej|
χj(t)

+ i~
∞∑
j=1

Ej|Ej〉〈Ej+1| − Ej|Ej〉〈Ej|
χj(t)

= −i~
∞∑
j=1

∆j

χj(t)
|Ej〉〈Ej+1|. (4.21)

The quotient ∆j/χj(t) tends to one either at t = 0 or as ∆j → 0.
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Recall that the time derivative of the time ket is just the (backward solution) Schrödinger equa-
tion

Ĥ|t〉 = −i d
dt
|t〉, (4.22)

for which Eq. (4.19) can be thought of as its discrete conjugate version.
The discrete forward derivative operator defined for a degenerate energy spectrum can be de-

fined by

D̂f (t) := −i~
∞∑
j=1

min{gj+1,gj}∑
α=1

|Ej, α〉〈Ej+1, α| − |Ej, α〉〈Ej, α|
χj(t)

, (4.23)

where α = 1, 2, , . . . , gj is the degeneracy index.

4.2.3 The symmetric property
It is better to consider finite dimensional spaces, i.e. states of the form

∑N
j=1 ψj|Ej〉. Further on, we

will consider that operators are redefined to be restricted to a finite set of N energies, for example

D̂f = ÎND̂f ÎN = −i~
N−1∑
j=1

|Ej〉〈Ej+1| − |Ej〉〈Ej|
χj(t)

, (4.24)

where ÎN =
∑N

j=1 |Ej〉〈Ej|. Similarly, D̂b.

4.2.3.1 The adjoint of the discrete momentum operator

The adjoint of D̂f can be written as:

D̂†
f = i~

N−1∑
j=1

|Ej+1〉〈Ej| − |Ej〉〈Ej|
χ∗
j(t)

= i~
N−1∑
j=1

|Ej+1〉〈Ej| − |Ej〉〈Ej|
ηj+1(t)

= i~
N∑
j=2

|Ej〉〈Ej−1| − |Ej−1〉〈Ej−1|
ηj(t)

= −i~
N∑
j=2

|Ej〉〈Ej| − |Ej〉〈Ej−1|
ηj(t)

+ i~
N∑
j=2

|Ej〉〈Ej| − |Ej−1〉〈Ej−1|
ηj(t)

= D̂b + Î, (4.25)
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where

Î = i~
N∑
j=2

|Ej〉〈Ej| − |Ej−1〉〈Ej−1|
ηj(t)

=

[
i~

N−1∑
j=1

|Ej+1〉〈Ej+1| − |Ej〉〈Ej|
χj(t)

]†

. (4.26)

Further, we can split this diagonal operator into

Î = i~
N∑
j=2

|Ej〉〈Ej|
ηj(t)

− i~
N∑
j=2

|Ej−1〉〈Ej−1|
ηj(t)

= i~
N∑
j=2

|Ej〉〈Ej|
ηj(t)

− i~
N−1∑
j=1

|Ej〉〈Ej|
ηj+1(t)

= i~
N−1∑
j=2

|Ej〉〈Ej|
ηj(t)

+ i~
|EN〉〈EN |
ηN(t)

− i~
N−1∑
j=2

|Ej〉〈Ej|
ηj+1(t)

− i~
|E1〉〈E1|
η2(t)

= i~
N−1∑
j=2

|Ej〉〈Ej|
[

1

ηj(t)
− 1

ηj+1(t)

]
+ i~

|EN〉〈EN |
ηN(t)

− i~
|E1〉〈E1|
η2(t)

. (4.27)

The first sum at right-hand side will be zero if the energy spectrum is equidistant because η2(t) =
η3(t) = · · · when ∆j =cte.

This form suggests to name Î as the boundary and interference term because, as we will show
below, the sum at right-hand side can be seen as an interference term, while the last two terms will
yield a boundary type conditions.

From the adjoint (4.25) it follows

〈D̂fψ|ψ〉 = 〈ψ|D̂†
fψ〉 = 〈ψ|D̂bψ〉+ 〈ψ|Îψ〉 (4.28)

where we have used the notation 〈D̂fψ| =
[
D̂†
f |ψ〉

]†
.

4.2.3.2 Discrete symmetry property

Definition 4.2.1. We say that D̂f satisfies the discrete symmetry property if there exists a domain
of states |ψ〉 such that

〈ψ|Îψ〉 = i~
N∑
j=2

|ψj|2 − |ψj−1|2

ηj(t)
= 0. (4.29)

A way to obtain this value is by making use of the convenient separation Eq. (4.27), which helps
us to write Eq.(4.29) as

〈ψ|Îψ〉 = i~
N−1∑
j=2

|ψj|2
[
1

ηj
− 1

ηj+1

]
+ i~

(
|ψN |2

ηN
− |ψ1|2

η2

)
= 0. (4.30)
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Thus, vanishing interference terms

N−1∑
j=2

|ψj|2
[

1

ηj(t)
− 1

ηj+1(t)

]
= 0 (4.31)

and vanishing boundary type conditions

|ψN |2 −
ηN
η2

|ψ1|2 = 0 (4.32)

will do the job. Another possibility is that the two terms at left-hand side of Eqs. (4.31) and (4.32)
cancel each other.

Observe that the summands in Eq.(4.29) are noting but the backward finite difference derivative
applied to |ψj|2. We proceed to give examples of states for which the symmetry requirement is
fulfilled.

The partial time states. Let us consider a state |ψ〉 =
∑N

j=1 ψj|Ej〉 such that |ψj| = c (constant).
From Eq.(4.29), it follows that 〈ψ|Îψ〉 = 0. Hence, the discrete operator D̂f satisfies the symmetry
property when it acts on these states. Eachψj can include a phase factor, like a time evolution factor,
and still comply with this constant property. Particular states of this class are the following which
we will discuss later.

Definition 4.2.2. A partial time eigenstate is defined to be a normalized equiprobable state of the
form

|t〉N =
1√

nf − ni + 1

nf∑
j=ni

eitEj/~|Ej〉 (4.33)

where nf − ni + 1 = N , and where the finite set of energies Eni
, Eni+1, . . . , Enf

appears.

Equidistant spectrum. Another example for which the symmetry property holds is that of the
equidistant energy spectrum, that is, when Ej+1 −Ej = ∆, j ≥ 1. First note that the denominator
functions η2 = η3 = . . . ηN are constant with respect to j, from which the vanishing interference
terms Eq. (4.31) follows. In addition, it can be seen from Eq. (4.32) that as long as ψN = eiθψ1 (θ
a real parameter) holds true, the symmetry property of D̂f will be fulfilled.

On the fulfillment of the symmetry property. For systems such that ∆j → ∞ as j → ∞ the
symmetry property can be approximated because |1/ηj| ≤ 1/∆j � 1, j > N , for sufficiently large
N . For states having a finite number of energy eigenkets all of them En > EN the term 〈ψ|Îψ〉 in
Eq. (4.29) could be sufficiently small. Besides, roughly speaking, the differences 1/ηj+1−1/ηj will
also be small, because they are the difference between adjacent terms, so that interference terms in
Eq. (4.31) will be small. But, since the time ket comply with the symmetry property, we just have
to consider states written in terms of the time states.
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In the forthcoming section we want to show, by using the particle in a box quantum model, that
we can get some insights about the dynamics of the quantum system only through the time partial
eigenstates.

4.3 The particle in a box
The energy eigenvalues for a particle of mass m in the infinite well potential

V (q) =

{
0 |q| ≤ a

∞ otherwise
(4.34)

are

E ′
k = E ′

1 k
2 =

~2π2k2

2m(2a)2
, k = 1, 2, . . . (4.35)

whereE ′
1 is the energy of the ground state, and 2a is the width of the well. We will pick a = 1 (units

of mass). The related wave-function space is known to be the Lebesgue space L2([−a, a]) [15].
The corresponding odd eigenenergies and odd eigenfunctions are

E−
n = E ′

2n =
~2π2n2

2ma2
, n = 1, 2, . . . (4.36)

and

v−n (q) =
χ[−a,a](q)√

a
sin(πnq/a), (4.37)

respectively, where χ[−a,a](q) is the characteristic function of the interval [−a, a]:

χ[−a,a](q) =

{
1 if q ∈ [−a, a]
0 otherwise

. (4.38)

On the other hand, the even eigenenergies and even eigenfunctions are given by

E+
n = E ′

2n−1 =
~2π2(n− 1/2)2

2ma2
, n = 1, 2, . . . (4.39)

and

v+n (q) =
χ[−a,a](q)√

a
cos(π[n− 1/2]q/a). (4.40)

We also consider the normalized truncated plane waves

u±n (q) =
1√
2a
eip±nq/~χ[−a,a](q), n = 1, 2, . . . , (4.41)
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where p±n = ±~πn/a. These functions allow us to split the odd eigenfunctions as the linear
superposition v−n (q) = [u+n (q) − u−n (q)]/i

√
2, and then, associate two momentum eigenvalues

p±n = ±pn to each energy through the classical type of relationship

En := E−
n =

p2±n
2m

, n = 1, 2, . . . (4.42)

Each energy level En is therefore two-fold degenerate; u±n are a set of eigenfunctions common to
the momentum operator and the kinetic energy operators [17].

The corresponding energy increments are not equally spaced but

∆n =
~2π2

2ma2
[
(n+ 1)2 − n2

]
=

~2π2

ma2
(n+ 1/2) (4.43)

and the zeroes Eq. (4.15) of the denominator function χj (or, equivalently, the zeroes of ηj) are

tk,n =
2π~k
∆n

=
2ma2k

π~(n+ 1/2)
, k = ±1,±2, . . . (4.44)

We can identify the times t1,n as the Bohr times; the inverse of the Bohr frequencies |En+1 −
En|/2π~.

The procedure we are adopting here, that is, the use of the complex exponential functions u±n (q),
enables us to make use of the next nonstandard eigenfunctions. Another choice of complex expo-
nential functions is eip′±nq/~χ[−a,a](q)/

√
2a with p′±n = ±~π(n − 1/2)/a in order to separate two

momenta in the even eigenfunctions. This approach can be treated similarly, reaching similar con-
clusions.

4.3.1 Non standard energy eigenfunctions
From now on, instead of considering the odd eigenfunctions u−n (q) we will consider the functions

wn(q) =
χ[−a,a](q)√

a
cos(pnq/~), n = 1, 2, . . . , (4.45)

which belong to the domain of a self-adjoint extension of the Hamiltonian of the infinite well po-
tential [17] related to periodic boundary conditions, namely, the (self-adjoint) operator defined as

Ĥ ′ : DĤ′ → L2([−a, a]) ; ψ(q) 7→ − ~2

2m

d2ψ(q)

d2q
, (4.46)

where

DĤ′ =
{
ψ ∈ L2([−a, a]) : ψ, ψ′ ∈ AC, ψ′, ψ′′ ∈ L2([−a, a]),

ψ(a) = ψ(−a), ψ′(a) = ψ′(−a)} . (4.47)
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Here AC stands for the class of absolutely continuous functions (see Eq. (3.45)).
As can be verified, the functions wn(q) belong to the domain of Ĥ ′, and satisfy the differential

equation

− ~2

2m

d2wn(q)

d2q
= Enwn(q). (4.48)

This means that the functions wn(q) are eigenfunctions of Ĥ ′ and that each wn(q) does not satisfy
the usual vanishing conditions (wn(±a) = (−1)n/

√
a 6= 0).

4.3.2 Time eigenstates

In order to study the time eigestates |t〉, since they are not normalized, we analyze the behavior of
the partial time states, for the particle in the infinite well, defined by:

|t〉N =
1√
N

N∑
n=1

eitEn/~
[
|E+

n 〉+ |E−
n 〉√

2

]
, (4.49)

where |E±
n 〉 stands for the two-fold degeneracy of each energy level En

〈q|En〉 =
〈q|E+

n 〉+ 〈q|E−
n 〉√

2
=
u+n (q) + u−n (q)√

2
= wn(q). (4.50)

It is worth noting that the partial time eigenstates are the most important states for our approach
because they provide to the discrete momenta −i~D̂f,g the discrete symmetry property, and, as we
will see below, they also give account of classical trajectories.

The coordinate representation of Eq. (4.49) is

〈q|t〉N =
1√
N

N∑
n=1

eitEn/~wn(q)

=
χ[−a,a](q)√

Na

N∑
n=1

eitEn/~ cos(nπq/a)

=
χ[−a,a](q)

2
√
Na

N∑
n=1

eitEn/~
[
eipnq/~ + e−ipnq/~

]
=
χ[−a,a](q)

2
√
Na

N∑
n=1

[
exp

{
iπn

(
q

a
+ t

~πn
2ma2

)}
+ exp

{
−iπn

(
q

a
− t

~πn
2ma2

)}]
(4.51)
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and its corresponding probability density is

|〈q|t〉N |2 =
χ[−a,a](q)

Na

N∑
k,n=1

eit(En−Ek)/~ cos(nπq/a) cos(kπq/a)

=
χ[−a,a](q)

Na

N∑
k,n=1

cos(t(En − Ek)/~) cos(nπq/a) cos(kπq/a)

=
2χ[−a,a](q)

Na

N∑
n=1

N∑
k>n

cos(t(En − Ek)/~) cos(nπq/a) cos(kπq/a)

+
χ[−a,a](q)

Na

N∑
n=1

cos2(nπq)

=
χ[−a,a](q)

Na

N∑
n=1

N∑
k>n

cos(t(En − Ek)/~) cos((n− k)πq/a)

+
χ[−a,a](q)

Na

N∑
n=1

N∑
k>n

cos(t(En − Ek)/~) cos((n+ k)πq/a)

+
χ[−a,a]

2a
+
χ[−a,a]

2Na

N∑
n=1

cos(2nπq). (4.52)

In the first step we considered that the probability density is non-negative, while in the last step we
have used the identities cos θ cosϕ = (cos(θ − ϕ) + cos(θ + ϕ))/2 and cos2 θ = (1 + cos(2θ))/2.

So as to identify each sum in the probability density |〈q|t〉N |2, let us consider the partial time
eigenstates formed by the complex exponential function (free particle) corresponding to either pos-
itive or negative momenta (±pn = ±~πn/a) defined by

〈q|t〉±N =
1√
N

N∑
n=1

eitEn/~〈q|E±
n 〉 =

χ[−a,a](q)√
2Na

N∑
n=1

eitEn/~e±ipnq/~. (4.53)
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Their corresponding probability densities are

|〈q|t〉±N |
2 =

∣∣∣∣∣χ[−a,a](q)√
2Na

N∑
n=1

eitEn/~e±ipnq/~

∣∣∣∣∣
2

=
χ[−a,a](q)

2Na

N∑
n,k=1

exp

{
i
t(En − Ek)

~
± i

(pn − pk)q

~

}

=
χ[−a,a](q)

2Na

N∑
n,k=1

cos

[
t(En − Ek)

~
± (pn − pk)q

~

]

=
χ[−a,a](q)

Na

N∑
n=1

N∑
k>n

cos

[
t(En − Ek)

~
± (pn − pk)q

~

]
+
χ[−a,a](q)

2a
, (4.54)

and using the trigonometric identity cos(θ + ϕ) = cos θ cosϕ− sin θ sinϕ, they can be written as:

|〈q|t〉±N |
2 =

χ[−a,a](q)

Na

N∑
n=1

N∑
k>n

cos (t(En − Ek)/~) cos (π(n− k)q/a)

∓
χ[−a,a](q)

Na

N∑
n=1

N∑
k>n

sin (t(En − Ek)/~) sin (π(n− k)q/a) +
χ[−a,a](q)

2a
. (4.55)

On the other hand, the interference between 〈q|t〉+N and 〈q|t〉−N is

<
{−
N〈t|q〉〈q|t〉

+
N

}
=
χ[−a,a](q)

2Na
<

{
N∑
k=1

e−i(tEk−pkq)/~
N∑
n=1

ei(tEn+pnq)/~

}

=
χ[−a,a](q)

2Na

N∑
n,k=1

cos

[
t(En − Ek)

~
+

(pn + pk)q

~

]

=
χ[−a,a](q)

2Na

N∑
n ̸=k

cos

[
t(En − Ek)

~
+

(pn + pk)q

~

]
+
χ[−a,a](q)

2Na

N∑
n=1

cos

[
2pnq

~

]

=
χ[−a,a](q)

2Na

N∑
k>n

{
cos

[
t(En − Ek)

~
+

(pn + pk)q

~

]
+cos

[
t(Ek − En)

~
+

(pk + pn)q

~

]}
χ[−a,a](q)

2Na

N∑
n=1

cos

[
2pnq

~

]
, (4.56)

the sum of cos functions above can be reduced by using the trigonometric identity

cos(θ + ϕ) + cos(−θ + ϕ) = cos θ cosϕ− sin θ sinϕ+ cos θ cosϕ+ sin θ sinϕ

= 2 cos θ cosϕ (4.57)
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and by replacing in it θ = t(En − Em)/~ and ϕ = (pn + pm)q/~. Thus, the interference term is
left as

<
{−
N〈t|q〉〈q|t〉

+
N

}
=
χ[−a,a](q)

Na

N∑
n=1

N∑
k>n

cos [t(En − Ek)/~] cos [π(n+ k)q/a]

+
χ[−a,a](q)

2Na

N∑
n=1

cos(2πnq/a) (4.58)

Recall that we can split the partial time state into

|t〉N =
|t〉+N + |t〉−N√

2
=

1√
2N

N∑
n=1

eitEn/~|E+
n 〉+

1√
2N

N∑
n=1

eitEn/~|E−
n 〉 (4.59)

such that

|〈q|t〉N |2 =
∣∣∣∣〈q|t〉+N√

2
+

〈q|t〉−N√
2

∣∣∣∣2 = |〈q|t〉+N |2

2
+

|〈q|t〉−N |2

2
+ <

{−
N〈t|q〉〈q|t〉

+
N

}
. (4.60)

In this expression the sin functions in |〈q|t〉±N |2, see Eq. (4.55), cancel each other.
If we had chosen the odd eigenfunctions v−n (q) instead of the non standard eigenfunctionswn(q),

we would have gotten |t〉N = |t〉+N/i
√
2−|t〉−N/i

√
2 with 〈q|t〉N = (N)−1/2

∑N
n=1 e

itEn/~v−n (q) and
the density Eq. (4.60) would be

|〈q|t〉N |2 =
∣∣∣∣〈q|t〉+Ni

√
2

− 〈q|t〉−N
i
√
2

∣∣∣∣2 = |〈q|t〉+N |2

2
+

|〈q|t〉−N |2

2
−<

{−
N〈t|q〉〈q|t〉

+
N

}
. (4.61)

We have plotted in Figure 4.1 an example of each wave: the probability densities Eqs. (4.52),
(4.55), and the interference term (4.58), when the time goes from 0 to a period of the system τ =
4ma2/π~ (see Eq. (4.63) below).

We clearly see in Figure 4.2 that the peaks of |〈q|t〉−N |2 defines classical paths of classical par-
ticles with negative momenta. Note that |〈q|t〉+N |2 = |〈−q|t〉−N |2, thus |〈q|t〉+N |2 defines the corre-
sponding positive classical paths. Roughly, these classical paths are also seen in the Figures 4.1a
and 4.1b. In Figure 4.3 we see a zoom of the density shown in Figure 4.1d.

On the other hand, in Figure 4.4 there is a plot of |〈q|t〉N |2, but in this case we take 50 energy
eigenstates from the 950th to the 1000th energy eigenstates, see Definition 4.2.2. The use of 50
states is enough to get a well-defined density around the classical path, better defined when the
energy is large. In addition to the large peaks pointed out in Figure 4.1, in this figure there are
pronounced peaks sketching paths that connect the peaks at (q = 0, t = 0), (q = ±1, t = τ/2),
and (q = 0, t = τ). These further peaks are due to the interference between positive and negative
momentum parts of the density. This interference was not present when only low energy eigenstates
were used, and it appears because the part of the density that arrives to the wall interferes with the
part that leaves the wall.

We proceed to show some properties that can be seen roughly in the plots of the Figure 4.1.
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(a) (b)

(c) (d)

Figure 4.1: (a) A plot of |〈q|t〉+N |2, (b) a plot of |〈q|t〉−N |2, (c) a plot of <
{−
N〈t|q〉〈q|t〉

+
N

}
, and (d)

a plot of |〈q|t〉N |2. The energy eigenstates used in these plots are from E1 to E8, for the infinite
well. The black arrows in each subplot indicates four pronounced peaks centered at (q = 0, t = 0),
(q = ±1, t = τ/2), and (q = 0, t = τ). Roughly, in (a) and (b) it can be seen that the densities
tend to be concentrated around classical trajectories with only the positive and negative momentum
parts, respectively, starting from the origin of coordinates as indicated by the dashed white arrows.
(d) shows that the interference term <

{−
N〈t|q〉〈q|t〉

+
N

}
, plotted in (c), prevails over the positive and

negative momentum counterparts |〈q|t〉±N |2.

Even function. The time state is an even function of the coordinate, 〈q|t〉N = 〈−q|t〉N because
of wn(−q) = wn(q).

Periodicity. On account of

exp

{
i

(
t+

4ma2

π~

)
En
~

}
= eitEn/~ exp

{
i
4ma2

π~2
~2π2n2

2ma2

}
= eitEn/~ei2πn

2

= eitEn/~ (4.62)

the partial time eigenstates are periodic 〈q|t+ τ〉N = 〈q|t〉N with period

τ =
4ma2

π~
=

2π~
E1

. (4.63)
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(a) (b)

(c) (d)

Figure 4.2: Plots of |〈q|t〉−N |2 for different sets of energies: (a) fromE1 toE4, (b) fromE1 toE6, (c)
fromE1 toE8, (d) fromE1 toE15. The time interval considered is quarter period. In particular, the
plot (c) is a zoom of Figure 4.1b. These plots help to visualize the forms that arise from the densities
|〈q|t〉−N |2 with negative momenta. Note that the density |〈q|t〉+N |2 is the reflection with respect to the
coordinate of |〈q|t〉−N |2. In these plots it is easier to see that the densities are concentrated around
classical trajectories with only negative momentum parts, the dashed white arrows indicates the
paths that a classical particle will follow.

where E1 is the ground state energy. This is the time needed to resolve the energy of the ground
state.

The half of a period. Using the identities

exp

{
i
τ

2

En
~

}
= ein

2π = e±inπa/a = (−1)±n, (4.64)
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Figure 4.3: A plot of |〈q|t〉N |2 formed with the first eight energy eigenstates for the infinite well, in
the coordinate representation. This probability density is the same as the one plotted in Figure 4.1d,
but, the time interval considered here is a quarter period. The density has a pronounced peak
which starts at the origin of coordinates, and then, it is separated into two less pronounced peaks,
the positive and negative momentum parts, each one returning after hitting the walls, and, at this
moment, we can notice some oscillations going on that start to dominate the density.

Figure 4.4: A plot of the density |〈q|t〉N |2 for the infinite well, with only 50 energy eigenstates,
from the state 950 to the state 1000. This figure was taken from Ref. [28]. The density resembles
better the classical behavior at large energies than at low energies, in which oscillations dominate
the evolution of the density as is shown in Figure 4.1.

first we have

〈q|t+ τ/2〉N =
1√
N

N∑
n=1

ei(t+τ/2)En/~wn(q)

=
χ[−a,a](q)

2
√
Na

N∑
n=1

eitEn/~
[
(−1)neinπq/a + (−1)−ne−inπq/a

]
. (4.65)

However, if we write this expression as follows

〈q|t+τ/2〉N =
χ[−a,a](q)

2
√
Na

N∑
j=1

eitEn/~
[
exp

{
inπ

(
q − a

a

)}
+ exp

{
−inπ

(
q + a

a

)}]
(4.66)
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we can now realize that a half of the state is moving to the left and that the other half of the state
moves to the right. At half of the period, the part that was moving towards the right is replaced by
a function that moves towards the left and vice versa. This is a set of waves moving along a set of
classical trajectories with momenta p = ±nπ~/a.

Dirac function. At t = 0, and in each period, the coordinate representation of the time state
becomes a scaled dirac function

lim
N→∞

√
N

a
〈q|t〉N

∣∣∣∣
t=0

= lim
N→∞

χ[−a,a](q)

2a

[
N∑
n=0

einπq/a +
N∑
n=1

e−inπq/a

]
−
χ[−a,a](q)

2a

= χ[−a,a](q) lim
N→∞

[
1

2a

N∑
k=−N

eikπq/a

]
−
χ[−a,a](q)

2a

= χ[−a,a](q)
∞∑

k=−∞

δ(q − 2ka)−
χ[−a,a](q)

2a

= δ(q)−
χ[−a,a](q)

2a
(4.67)

The term χ[−a,a](q)/2a compensates the constant term eiπnq/a|n=0 in the Dirac function that corre-
sponds to zero momentum or zero energy level, thus the zero energy level is still missing.

We can observe that the limit (4.67) accounts for the pronounced peaks at t = 0, τ, 2τ, . . . that
the probability density 〈q|t〉N exhibits in the plots of Figures 4.1, 4.3, and 4.4.

Recall that the Fourier series of the Dirac function with respect to the basis {eikπq/a/
√
2a}k∈Z

yields the periodization of the Dirac function
∞∑

k=−∞

δ(q − 2ka) =
1

2a

∞∑
k=−∞

eikπq/a =
∞∑

k=−∞

1√
2a

eikπq/a√
2a

, (4.68)

where the Fourier coefficients are calculated in the usual way∫ a

−a

e−ikπq/a√
2a

δ(q)dq =
1√
2a
. (4.69)

Dirac functions at the boundaries. If we calculate the Fourier series of a Dirac function at some
boundary, say q = −a, we get its corresponding periodization

∞∑
k=−∞

δ(q + a− 2ka) =
1

2a

∞∑
k=−∞

(−1)keikπq/a =
∞∑

k=−∞

(−1)k√
2a

eikπq/a√
2a

(4.70)

in this case the Fourier coefficients are∫ a

−a

e−ikπq/a√
2a

δ(q + a)dq =
(−1)−k√

2a
=

(−1)k√
2a

. (4.71)
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Therefore, the partial time eigenstates at half of the period behave as scaled partial Fourier series
of such a periodization. This follows from expression Eq. (4.65) and Eq. (4.70):

lim
N→∞

√
N

a
〈q|t〉N

∣∣∣∣
t=τ/2

= lim
N→∞

χ[−a,a](q)

2a

[
N∑
n=0

(−1)neinπq/a +
N∑
n=1

(−1)−ne−inπq/a

]
−
χ[−a,a](q)

2a

= χ[−a,a](q) lim
N→∞

[
1

2a

N∑
k=−N

(−1)keikπq/a

]
−
χ[−a,a](q)

2a

= χ[−a,a](q)
∞∑

k=−∞

δ(q + a− 2ka)−
χ[−a,a](q)

2a

= δ(q + a) + δ(q − a)−
χ[−a,a](q)

2a
. (4.72)

This means that the partial time eigenstates at half the period behave as the partial Fourier series
of two Dirac functions centered at the boundaries. This behavior can be observed in the plots of
Figure 4.1 and 4.4 at time τ/2. Indeed, as suspected, this half of a period and its subsequent times
τ/2 + nτ (n = 1, 2, . . . ) are the arrival times at the boundaries of a classical particle [39] with
velocity

a

τ/2
=

π~
2ma

. (4.73)

Such a particle starts at the origin when t = 0 and it hits a boundary, for the first time, when t = τ/2.

The coordinate mean value. Since 〈q|t〉N is an even function (with respect to the coordinate),
thus q|〈q|t〉N |2 is an odd function and then

N〈t|q̂|t〉N =

∫ a

−a
q|〈q|t〉N |2dq = 0. (4.74)

The root-mean-square deviation. Using the integration formula

1

2a

∫ a

−a
q2eipq/~dq

∣∣∣∣
p=~πn/a

=

2a2 (−1)n/n2π2, n 6= 0
a2

3
, n = 0

, (4.75)
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we can calculate the mean of the square of q̂ in the states |t〉N

N〈t|q̂2|t〉N =

∫ a

−a
q2|〈q|t〉N |2dq

=
1

Na

N∑
k,n=1

eit(En−Ek)/~
∫ a

−a
q2 cos(pnq/~) cos(pkq/~)dq

=
1

2N

N∑
n,k=1

eit(En−Ek)/~ 1

2a

∫ a

−a
q2

[
ei(pn−pk)q/~ + e−i(pn−pk)q/~

]
dq

+
1

2N

N∑
n,k=1

eit(En−Ek)/~ 1

2a

∫ a

−a
q2

[
ei(pn+pk)q/~ + e−i(pn+pk)q/~

]
dq

=
1

2N

N∑
n=1

2a2

3
+

1

2N

N∑
n ̸=k

eit(En−Ek)/~4a
2(−1)n−k

(n− k)2π2

+
1

2N

N∑
n=1

a2

n2π2
+

1

2N

N∑
n ̸=k

eit(En−Ek)/~4a
2(−1)n+k

(n+ k)2π2

=
a2

3
+

a2

2Nπ2

N∑
n=1

1

n2
+

4a2

Nπ2

N∑
n ̸=k

eit(En−Ek)/~(−1)n+k
(n2 + k2)

(n2 − k2)2

=
a2

Nπ2

[
Nπ2

3
+

1

2

N∑
n=1

1

n2
+ 4

N∑
n ̸=k

cos

[
t
(En − Ek)

~

]
(−1)n+k

(n2 + k2)

(n2 − k2)2

]
. (4.76)

In the last step we have used the fact that N〈t|q̂2|t〉N is a real number such that its imaginary part
must be equal to zero.

Thus, we get the root-mean-square deviation

∆q̂ =
√

N〈t|q̂2|t〉N − N〈t|q̂|t〉2N =
√

N〈t|q̂2|t〉N . (4.77)

We have plotted this function in Figure 4.5 for the same energy eigenstates as in Figure 4.1. The
scaled Dirac function behavior at t = 0, and at the next periods, can be observed through the min-
imums of the root-mean-square deviation. On the other hand, the maximum deviation is found at
τ/2 when the partial time eigenstates behave as scaled partial Fourier series of two Dirac functions
centered at the walls at q = ±a. Recall that, ∆q̂ is the width in q of the wave function, and then,
if we base our dynamic analysis on ∆q̂ and 〈q̂〉, as can be seen from Figure 4.5, we will have a
rough description, for instance, we will not be able to notice waves moving accordingly to classical
trajectories.

Classical analogues. Expressing the difference between En and Em in terms of momentum

En − Ek =
~2π2(n2 − k2)

2ma2
=

1

2m
(pn + pk)(pn − pk), (4.78)
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Figure 4.5: A plot of ∆q̂. The energy eigenstates used in these plots are from E1 to E8, again,
for the infinite well. Observe that there are two minima at t = 0, τ , while there is a pronounced
peak centered at t = τ/2. We can see roughly a total of seven peaks before the maximum peak
at t = τ/2, they can be associated with eight classical hits at the boundaries. Even if more and
more energy eigenstates are added to the partial time eigenstates, the maximum at t = τ/2 and the
minimums at t = 0, τ always remains.

and considering only two states corresponding to adjacent energies, and with either positive or
negative momentum only, from Eqs. (4.54) we get

|〈q|t〉±2 |2 =
χ[−a,a](q)

2a
cos

[
q

(
pn+1 − pn

~

)
± t

(
En+1 − En

~

)]
+
χ[−a,a](q)

2a

=
χ[−a,a](q)

2a
cos

[(
q ± t

[
pn+1 + pn

2m

])
pn+1 − pn

~

]
+
χ[−a,a](q)

2a
. (4.79)

Classically, the distance that this wave travels in a Bohr time, Eq. (4.44), is

t1,n

[
pn+1 + pn

2m

]
=

2ma2

~π(n+ 1/2)

[
pn+1 + pn

2m

]
=

2ma2

~π(n+ 1/2)

~π(2n+ 1)

2ma
= 2a, (4.80)

which is exactly the width of the well. Since the constant term χ[−a,a](q)/2a does not evolve in
time we can leave it out of the discussion. Taking N to be an even positive integer, we can always
split |t〉N , and |t〉±N , and |〈q|t〉±N |2, and |〈q|t〉N |2 into pairs of eigenstates corresponding to adjacent
energies. Each of these pairs spends the respective Bohr time from one wall to the other. These
states formed with two adjacent energy eigenkets can be considered then as quantum analogues of
classical trajectories.

4.4 The harmonic oscillator
As an additional example, let us consider the one-dimensional harmonic oscillator. In this case, the
eigenenergies areEn = ~ω(n+1/2), where ω is the angular frequency, and there are no degenerate
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levels. In the coordinate representation, the partial time eigenket is written as

〈q|t〉 =
N∑
n=1

eiω(n+1/2)t 1√
2nn!

(mω
π~

)1/4

e−mωq
2/2~Hn

(√
mω

~
q

)
, (4.81)

where sHn(q) = (−1)neq
2
dn(e−q

2
)/dqn is the Hermite polynomial of degree n = 0, 1, 2, . . . .

The corresponding coordinate density has been traced in Figures 4.6. In each of these plots we
can notice that the pronounced peaks depict the classical paths of a particle having an oscillatory
behavior. Recall that for an equidistant energy spectrum the symmetry property is fulfilled by the
discrete momentum operators (upon to a boundary condition).

(a) (b)

(c) (d)

Figure 4.6: Three-dimensional plots of the coordinate density |〈q|t〉|2 for the one dimensional har-
monic oscillator. We are using states formed with (a) states 0 to 8 during two periods, with (b) 7
to 8 during one period, with (c) 0 to 19 during two periods, and (d) 0 to 40 during two periods. In
these plots we have used dimensionless units, ~ = 1, ω = 1, m = 1, and then, having a unit period
~ω = 1. In (b), we can see one of the quantum analogues of a classical trajectory. In (c) and (d),
we can see peaks around the origin due to the presence of the ground state in the time state.
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4.5 General characterization.
Returning to the general case, each time evolved element of the span of {|En〉}∞n=1

|ψt〉 =
N∑
j=1

e−itEj/~ψj|Ej〉, (4.82)

is a trigonometric polynomial, in t, with coefficients being elements of the abstract Hilbert space (a
Banach space). In fact these trigonometric polynomials are of type of almost periodic functions in
Banach spaces. It means that the Bohr property in Section 2.3.1 for |ψt〉 in the span of the energy
eigenkets and the following holds.

For each ϵ there exists l = l(ϵ) > 0 such that for each interval (a, a + l) (a ∈ R) we can find a
ϵ-translation τ ∈ (a, a+ l) satisfying

‖|ψt+τ 〉 − |ψt〉‖ =
√

2− 2<{〈ψt+τ |ψt〉} < ϵ, (4.83)

where we have assumed |ψt〉 to be normalized, and where< stands for the real part of the correlation
function 〈ψt+τ |ψt〉. Consequently, the states |ψt〉 including the time partial eigenstates comply with
this Bohr property.

In addition, if we consider the coordinate representation of |ψt〉 in the span of {|En〉}∞n=1:

〈q|ψt〉 =
N∑
j=1

e−itEnj /~ψj〈q|Enj
〉. (4.84)

It turns out that 〈q|ψt〉 is again a trigonometric polynomial in t but depending on the parameter
q. Noticing that the product of trigonometric polynomials is a trigonometric polynomial it follows
that for each fixed q the wave function 〈q|ψt〉 and |〈q|ψt〉|2 are trigonometric polynomials, and,
accordingly they are almost periodic functions, depending on the parameter q, and having the Bohr
property, Section 2.3.1, again. Similar arguments apply to the momentum amplitude 〈p|ψt〉.

4.6 Conclusions
We have defined discrete momentum operators conjugated to the Hamiltonian, that satisfy discrete
versions of properties of a usual momentum operator. They are local operators in the sense of
discrete finite difference schemes, becoming exact for the complex exponential function. The time
ket |t〉 is a generalized eigenket of the discrete momentum operators, and the partial time eigenkets,
which are genuine elements of the corresponding Hilbert space, furnish to the discrete momentum
operators a symmetry property. It is in this sense that the discrete momentum operators are good
candidates to be time operators, and we can call them discrete time operators.

An interesting result is that we have found that the partial time states, for the particle in an infinite
well as well as the harmonic oscillator, are sets of waves moving classically. Then, if we use only two
consecutive energy states to form a time state, we have the wave analogue of a classical trajectory,
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providing an interpretation to the time states. We have used non standard energy eigenfunctions
for the particle in the infinite well that give account, for example, of the hits with the walls. Thus,
the time states can be used to define a time coordinate for the quantum system. Happily, the partial
time states belong to the domain of the discrete time operator and are normalizable. However there
are more kets than that which also belong to the domain of the discrete time operators and to the
corresponding Hilbert space as |t〉 itself.

In addition, the discrete momentum operators yield another approach to the characteristic times
of the quantum system, that are the Bohr’s times (En+1 − En)/2π~ in the case of the infinite
well potential. The discrete symmetry property of the momentum operators, as might have been
expected, cannot be satisfied on regions around the zeroes tk,n of the denominator functions, since
they are in fact the singularities for the discrete operators; except for the partial time eigenstates.
However, as we examined for the particle in the infinite well, we can interpret these singularities
as that the particle undergoes an abrupt change of its behavior due to the hits with the walls. For
other systems, having discrete energy spectrum, these times should be analyzed, finding the times
at which the systems experience some characteristic behavior.
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Chapter 5

Conclusions and Perspectives

5.1 Conclusions
The principal object of this thesis was the generalized ket |t〉 and its truncated version. The fact that
|t〉 has been studied, earlier by other authors, mainly for the equidistant energy spectrum, motivated
us to study further this generalized ket for an arbitrary energy spectrum. The original contributions
of this thesis are: the mathematical foundation in which |t〉 is a basis and leads to the definition
of a quantum time axis for quantum systems with discrete energy spectrum, and to show that it
is possible to have momentum operators of discrete type with similar properties to the continuous
counterparts.

In Chapter 2 we have given a brief review of the Besicovitch space B2 and the Lebesgue space
l2(R), with the property that the latter is the discrete version of the former, and that both have the
same Hilbert space structure. In that chapter, we departed from the standard presentation in the
use of the Lebesgue space l2(R) as the conjugate space of the Besicovitch space B2 through the
mean value, and the use of the Lebesgue integral with respect to the counting measure to define
the Fourier series of general type. Also, important to our approach of an energy representation, we
provided an extension {|E〉 : E ∈ R} of the energy eigenkets {|En〉}∞n=1 in such a way that the
space of linear combinations of |E〉 is the ket abstraction of the l2(R) space.

In Chapter 3, we investigated the protection of states |ψ〉 on the ket |t〉. Among our results,
we found that these projections 〈t|ψ〉 define Fourier series of general type, that define a closed
subspace of the Besicovitch space B2. We identified this space with a time representation because
the Besicovitch framework extends in a natural way, and henceforth it includes, the usual Fourier
analysis. Recall that time representations for quantum systems with an equidistant spectrum is based
on the usual Fourier analysis because the states are periodic in time. Additionally, founded on the
B2-norm we were able to give time presentation of wave functions by means of some quantities
acquired through repetitions of a large number of identical experiments.

On the other hand, with the knowledge that l2(R) is an isomorphic Hilbert space toB2, an energy
representation of states was established. Some ideas of the discrete signal theory were taken to this
representation, the closed subspace conjugate to the time representation studied in this thesis.

In Chapter 4 we defined the discrete momentum operators D̂f and D̂b. Let us stress that D̂f ,
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called a discrete time operator, was constructed driven by the quest for a time-type operator satis-
fying an eigenvalue equation, with |t〉 as the time eigenket. This was accomplished by exact finite
difference schemes for the complex exponential function. What it has shown to us is that, for an
arbitrary energy point spectrum, it is always possible to have a discrete time-like operator with |t〉
as its eigenket, and also that at each quantum energy D̂f acts like a finite difference scheme. This
last point enabled us to have a discrete version of the derivative operation −i~d/dE conjugated to
the multiplication by the independent continuous variable E. It is in this sense that D̂f is discrete
version of a time operator.

The time eigenket |t〉 is not normalizable, but a partial time eigenstate is normalizable and, then,
it belongs to the usual Hilbert space. A classical behavior was found through these states for the
particle in the infinite well potential. The conjecture is that the partial time state formed with two
energy eigenstates is the quantum analogue of a classical trajectory for other potentials as well.

5.2 Perspectives
As mentioned in the introduction of this thesis, the time ket |t〉 is an eigenket of the Galapon op-
erator provided the energy spectrum is equidistant. However, as far as we know, the Montgomery
inequality has not been used to deduce directly that the Galapon operator is a bounded operator for
a uniformly discrete energy spectrum. This leads us to ask about the spectrum of such a bounded
operator. An article including these topics has already been submitted for publication. It would be
interesting to study the Galapon operator from the Besicovitch framework.

On the other hand, the discrete momentum operators defined in this thesis are dependent of exact
finite difference schemes. We used forward and backward difference models. However, a discrete
momentum operator has been defined by Martínez and Torres in Ref. [27] using central difference
schemes. The improvement of others finite difference schemes can lead us to complicated things,
but also we can gain more insights about the role played by the time in quantum mechanics. It is
hoped that the use of an appropriate exact finite difference scheme will allow us to find new time
related properties for discrete quantum systems. In forthcoming papers, we will discuss more of
this approach, and we will consider more discrete quantum systems.

With regard to the partial time eigenstates defined in this work, it was possible to obtain classical
densities with peaks around classical paths for the particle in the infinite well potential. This is
different from the quantum trajectories found with the help of equations such as the master equations
of motion that describes an ensemble of particles, and also different from quantum jumps theory [10,
14, 32].

In the future, we would like to study further properties of the partial time eigenstates. For in-
stance, the time derivatives of |〈q|t〉N |2 and |〈p|t〉N |2 as quantum analogues of Hamilton’s equations
q̇ = ∂pH(q, p) and ṗ = −∂qH(q, p).

It would also be interesting to study what happens to classical chaos because it is not directly
observable in quantum systems. We would also like to apply the ideas developed in this thesis in
special relativity, in general relativity, in strings theory and other theories.
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