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Abstract

Loop quantum gravity is one of the main proposals in the search for a quantum theory of

gravity. Its starting point is the Hamiltonian formulation of general relativity encompassed

by the Ashtekar-Barbero variables. This formulation describes gravity as an SU(2) [or

SO(3)] invariant theory, which translates into a quantum description without the Lorentz

invariance. The absence of the Lorentz symmetry is a direct consequence of a partial gauge

fixing implemented during the classical Hamiltonian analysis.

In this work we explore the Hamiltonian formulation of two different actions, the Holst

action and a BF -type action with the Barbero-Immirzi parameter. Both actions describe

general relativity in the first-order formalism. During their usual Hamiltonian analysis, we

found the presence of second-class constraints which we explicitly solve. We do it without

resorting to any gauge fixing and in a manifestly Lorentz-covariant fashion. Later, thanks

to the use of canonical transformations, we obtain different Hamiltonian formulations for

general relativity, all of them exposing their Lorentz-covariant nature explicitly. With the

Lorentz symmetry intact, we explore two different gauge fixings, one that allows us to

land at the usual Ashtekar-Barbero formulation and one that leads us to a new description

invariant under SU(1, 1) [SO(2, 1)] transformations. Finally, we present a new method

that bypasses the appearance of second-class constraints from the very beginning, which

simplifies the Hamiltonian analysis considerably.
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Resumen

La gravedad cuántica de lazos es una de las principales propuestas en busca de una

teoŕıa cuántica de la gravedad. Su punto de partida es la formulación Hamiltoniana de

la relatividad general descrita por las variables de Ashtekar-Barbero. Esta formulación

describe la gravedad como una teoŕıa invariante ante transformaciones locales del grupo

SU(2) [ó SO(3)], lo cual se traduce en una descripción cuántica sin la invarianza de Lorentz.

La ausencia de la simetŕıa de Lorentz es una consecuencia directa de una fijación de norma

parcial que se implementa a nivel clásico durante el análisis Hamiltoniano.

En este trabajo exploramos la formulación Hamiltoniana de dos acciones diferentes,

la acción de Holst y una acción tipo BF con el parámetro de Barbero-Immirzi. Ambas

acciones describen la relatividad general en el formalismo de primer orden. Durante su

análisis Hamiltoniano usual aparecen constricciones de segunda clase las cuales resolvemos

expĺıcitamente. Además, lo hacemos sin recurrir a ninguna fijación de norma y de una

manera manifiestamente covariante de Lorentz. Luego, gracias al uso de transformaciones

canónicas, obtenemos diferentes formulaciones Hamiltonianas para la relatividad general,

todas ellas mostrando su naturaleza covariante de Lorentz de manera expĺıcita. Con

la simetŕıa de Lorentz intacta, exploramos dos fijaciones de norma diferentes, una que

nos permite llegar a la formulación usual de Ashtekar-Barbero y otra que nos lleva a

una nueva descripción invariante ante transformaciones del grupo SU(1, 1) [ó SO(2, 1)].

Finalmente, presentamos un nuevo método que evita, desde el principio del análisis, la

aparición de constricciones de segunda clase, lo cual simplifica el análisis Hamiltoniano

considerablemente.
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Introduction

Chapter

1

1.1 Context

Until now, the general theory of the relativity of motion (general relativity for short)

gives the best-known description of gravity. It was formulated by Albert Einstein in

1915 [1, 2], and it describes gravity as a spacetime deformation rather than an action-

at-a-distance force. The theory has surpassed every experimental test so far [3], from

the bending of light as it moves through the spacetime to the discovery of gravitational

waves [4]. Nonetheless, this description of gravity is incomplete since it breaks down at the

singularity points, such as the center of a black hole or the big bang. The incompleteness

of the theory embarks us on the mission to find a more general perspective that embodies

the complete nature of gravity. Here it is where the quest for a quantum theory of gravity

begins.

Among the different proposals that attempt to describe the quantum nature of gravity,1

we found those that try to implement the canonical quantization program. The first

efforts towards this approach began when Arnowitt, Deser, and Misner provided the

first Hamiltonian formalism for general relativity [6] (commonly referred to as the ADM

formulation). They decomposed the spacetime manifold into spacelike leaves to foliate it

along a timelike direction. The foliation is characterized by four fields, the lapse function

and the shift vector, which act as Lagrange multipliers in the Hamiltonian framework.

Therefore, they impose restrictions on the phase-space variables for general relativity. The

restrictions are categorized—according to Dirac’s criteria [7, 8]—as first-class constraints,

and are the gauge generators responsible for the spacetime diffeomorphism symmetry.

Despite being widely used in numerical general relativity, the development of a quantum

theory along the ADM road ended due to theoretical and technical complications [9].

The canonical path resurged in the mid-80s when Ashtekar performed a complex

canonical transformation from the SO(3)-ADM variables to the now known Ashtekar

1See Ref. [5] for a discussion of the different approaches.
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variables [10,11]. The Ashtekar formulation offers several advantages over its predecessor.

First, we have the geometric nature of the canonical variables. In particular, the

configuration variable is an SO(3,C)-valued connection, and thus, it motivates the use

of loop variables [12, 13]. Second, the first-class constraints in the Ashtekar formalism are

much more manageable than the former case leading to a more appealing formulation.

Third, the Ashtekar formalism incorporates local Lorentz transformations as part of the

gauge symmetries of the theory. Although the Ashtekar formulation exposed new insights

into the quantum character of gravity, due to the complex nature of the phase-space

variables, it is necessary to introduce reality conditions to recover a real description. When

the conditions are implemented at the classical level we lose the advantages of the Ashtekar

complex variables [14], whereas at the quantum domain the conditions are too challenging

to handle. Thus, this road was abandoned as well.

As the use of connection variables appeared to be fruitful for the canonical quantization

program, the attention then focused on first-order formulations of gravity. Here, we

can employ an orthonormal tetrad field and an internal Lorentz connection to describe

the dynamics of general relativity with first-order equations. We can derive such

formulation from the Palatini (or Einstein-Cartan) action, and incorporate it into the

canonical quantization program. However, it is during the Hamiltonian analysis that other

restrictions among the phase-space variables appear, they are known—again, in Dirac’s

terminology [7, 8]—as second-class constraints, and, unlike the first-class constraints, we

need to get rid of them to continue with the canonical quantization.

We can deal with the second-class constraints using a partial gauge fixing that reduces

the internal Lorentz group into its compact subgroup SO(3) [15]. As a consequence,

the second-class constraints become easier to solve, and the ensuing formulation results

invariant under SO(3) rotations. This description is precisely the SO(3)-ADM formulation

and uses SO(3) vectors as its canonical variables [16]. Therefore, the techniques of the

Ashtekar approach are unfitting for this description.

Finally, in 1995, following the steps and ideas of Ashtekar, Barbero implemented a

real canonical transformation from the SO(3)-ADM formalism. He obtained a formulation

characterized by a real SO(3) [or SU(2)] connection as a configuration variable and a

densitized triad field as its associated momentum [17]. The clear geometrical meaning of

the canonical variables allowed the use of the quantization techniques of Ashtekar complex

formalism. This Hamiltonian description received the name of the Ashtekar-Barbero

formulation, and it became the starting point into what is known as loop quantum gravity
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[18–21]. Nevertheless, in the Ashtekar-Barbero description, the first-class constraints are

not as simple as they are in their complex counterpart, and the canonical conjugated

variables are SO(3) [SU(2)] covariant fields as opposed to the Lorentz-covariant fields of

the Ashtekar formalism.

Loop quantum gravity has unraveled essential results about the quantum nature of

gravity, like the discreteness of the spacetime [22] and the occurrence of a “big bounce”

that avoids the big bang singularity [23–26]. Also, it has been possible to derive the

entropy associated with a black hole [27–31]. However, despite the promising results of

loop quantum gravity, the theory is not complete yet. One of the main concerns is the

absence of the Lorentz symmetry in the quantum domain. If it is one of the fundamental

symmetries of nature, we must find a way to incorporate it back to the formalism.

1.2 Motivation

One way to promote the Lorentz symmetry into the quantum realm is to avoid any gauge

fixing at the classical level. Hence, we must deal with the second-class constraints without

spoiling the Lorenz invariance. The task was accomplished in a manifestly covariant fashion

for the 4-dimensional Palatini action [32]. It resulted in a Hamiltonian description formed

solely by first-class constraints with Lorentz vectors as their canonical conjugated variables.

Nevertheless, no further results have arisen from here.

In the next year after Barbero’s work, Holst presented a different path to derive the

Ashtekar-Barbero formulation [33]. He proposed a new action principle from which the

Ashtekar-Barbero formalism emerges after a gauge fixing. The Holst action (as it was

later coined) is a first-order description that, at the Lagrangian standpoint, renders the

same dynamics as the Palatini action. Thus, both actions are equivalent, at least from the

classical viewpoint.

Holst action leads to a new and alternative Hamiltonian framework for general relativity.

Despite not being exempt from the appearance of second-class constraints, some progress

has been made in this direction. Barros e Sá dealt with the second-class constraints of the

Holst action by explicitly solving them [34]. He addressed the problem without resorting

to any gauge fixing. However, to simplify the solution of the second-class constraints, he

split the internal symmetry group. Although it does not break the Lorentz invariance, the

lack of manifest Lorentz covariance makes the ensuing formulation quite cumbersome to
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manage.

On the other hand, Alexandrov and collaborators faced the problem of the second-

class constraints from a different, but equivalent, perspective. They introduced the so-

called Dirac bracket and ended up with a description with manifestly Lorentz-covariant

variables [35–37]. Nonetheless, some of the variables that label the phase space in their

Hamiltonian formulation do not commute with each other. Therefore, the implementation

of this description into the quantization program might be troublesome.

A few years later, Cianfrani and Montani attempted to promote the Lorentz invariance

into the quantum regime with a different solution for the second-class constraints [38].

Their approach followed similar ideas to those of Barros e Sá. However, their solution

turned out to be incomplete. Thus, it misleads to an incorrect Hamiltonian description.

Due to the difficulties of these three approaches (the one from Barros e Sá, the one from

Alexandrov and collaborators, and the one from Crianfrani and Montani), we have been

unable to implement the complete (4-dimensional) Lorentz symmetry into the quantum

realm. Nevertheless, if we consider an alternative gauge fixing, we can derive a Hamiltonian

formulation invariant under the 3-dimensional Lorentz group [39]. Thus, in principle, we

can explore some of the Lorentz symmetry into the quantum domain. Although some

interesting results have been exposed in this direction by Ref. [39], they did not present the

complete Hamiltonian description. In particular, the form of the Hamiltonian constraint

is still missing.

1.3 Outline

This dissertation deals with the second-class constraints of the Holst action in a

manifestly Lorentz-covariant fashion. Along the way, we tackle some of the issues enlisted

above and disclose the complete Hamiltonian picture for Holst action.

We begin our discussion in Chapter 2, where we start with the Hamiltonian analysis of

the Holst action. Here, we sketch the key features of Dirac’s method for constrained systems

and classify the constraints that arise during the formalism. We also solve the second-class

constraints, but in a way similar to Cianfrani and Montani. With the correct solution,

we fix their mistake and obtain a formulation described by a noncanonical symplectic

structure. Then, with the suitable Darboux map, we connect our formulation with the one

found by Barros e Sá. We finish this chapter showing how the noncanonical and canonical
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descriptions are reduced to the Ashtekar-Barbero formulation.

Next, in Chapter 3, we explicitly solve the second-class constraints in a manifestly

Lorentz-covariant fashion and, employing canonical transformations, we derive three

alternative formulations that maintain their explicit Lorentz covariance. At the end, we

conclude this chapter by exposing a gauge fixing in all the previous formulations. We

observe that they collapse either to the Ashtekar-Barbero formalism or to the SO(3)-ADM

description.

In Chapter 4, we explore a different gauge fixing, one that reduces the Lorentz group to

its subgroup SU(1, 1) [or SO(2, 1)]. The remnant formulation comes straightforwardly

thanks to the explicit covariant nature of the variables involved. Remarkably, the

description invariant under local SU(1, 1) [or SO(2, 1)] transformations resembles the

formulation of Ashtekar-Barbero. The form of the Hamiltonian constraints is the same

as the SO(3) Ashtekar-Barbero formulation.

Another type of classical formulations of interest for the quantization program of gravity

are the BF formulations for general relativity. They are the starting point in the covariant

version of loop quantum gravity known as the spin foam models [40–42]. Moreover, they are

known to be related to the Ashtekar original variables in the Hamiltonian framework [43].

Thus, in Chapter 5, we describe the Hamiltonian analysis for a real BF -type action that,

at the Lagrangian level, is equivalent to the Holst action. Hence, we make contact between

the BF descriptions for gravity and the Ashtekar-Barbero formalism.

In Chapter 6, we use what we learned in the previous chapters about the structure

of the phase space, and we develop a method to bypass the introduction of second-class

constraints from the very beginning. We do it while maintaining the complete Lorentz-

covariant nature of the variables. Furthermore, we generalize the canonical transformations

enlisted in Chapter 3 with a two-parameter family of canonical transformations.

Finally, in Chapter 7, we conclude with some final remarks and discuss future

implications for the obtained results. In addition, we devote Appendix A to define the

notation used throughout the entire document. On the other hand, in Appendix B, we

enlist the contributions of this dissertation.
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Revisiting the Hamiltonian formalism of Holst

action

Chapter

2

In this chapter we introduce the reader to the Hamiltonian formulation of general relativity.

We start with the Holst action with a cosmological constant term and use Dirac’s method

for constrained systems [7, 8]. Along the way, we encounter the presence of second-class

constraints, which we solve without resorting to any gauge fixing. The solution leads us to

a noncanonical symplectic structure. Then, with the proper Darboux map, we construct

a Hamiltonian description labeled with canonical conjugated variables. Finally, at the

end of this chapter, we impose the gauge fixing known as “time gauge” and arrive at the

Ashtekar-Barbero formulation for general relativity.

The analysis and results of this chapter were published in Ref. [44].

2.1 The Holst action

In the first-order formalism, gravity is described by a set of four orthonormal 1-forms

(cotetrads) and an internal connection. Let M represent the spacetime manifold. Then,

at each point of it, we denote the cotetrad field by eI and the connection with ωIJ . The

indices I, J, ... take the values {0, 1, 2, 3}. They are group indices and are lowered and

raised with the internal metric (ηIJ) = diag (σ, 1, 1, 1), being σ = ±1. We work with the

internal group SO(3, 1) when σ = −1 and SO(4) if σ = 1. They are the Lorentz and

Euclidean groups, respectively; ωIJ is the group-valued connection compatible with the

metric, dηIJ − ωKIηKJ − ωKJηIK = 0, and thus, ωIJ = −ωJI .

After the conventions mentioned above, we consider the action

S[e, ω] =
1

κ

∫
M

[
∗
(
eI ∧ eJ

)
∧ FIJ +

σ

γ
eI ∧ eJ ∧ FIJ − 2Λρ

]
, (2.1)

where κ = 16πG (G as Newton’s gravitational constant). The first term inside the square

brackets represents de Palatini action, with the asterisk being the internal dual [see (A.2)]

7



and F IJ denotes the curvature of the connection ωIJ

F IJ := dωIJ + ωIK ∧ ωKJ . (2.2)

The second term in (2.1) is the Holst term [33] coupled through the Barbero-Immirzi

parameter γ [45]. Also, the last term in (2.1) involves the cosmological constant Λ and

the volume form ρ = (1/4!)εIJKLe
I ∧ eJ ∧ eK ∧ eL, with εIJKL the totally antisymmetric

SO(3, 1) [or SO(4)] tensor (ε0123 = 1).

The action in Eq. (2.1) describes general relativity with a cosmological constant Λ. The

Barbero-Immirzi parameter γ in (2.1) drops out from the equations of motion. In fact,

the Holst term is said to be of topological nature since it does not propagate any physical

degree of freedom [46]. Although the Barbero-Immirzi parameter drops out classically; at

the quantum regime its significance is unclear because it appears in the spectra of the area

and volume operators, and on the formula of the black hole entropy [18,47].

Furthermore, the action (2.1) is invariant under spacetime diffeomorphisms and local

Lorentz (Euclidean) transformations. They constitute the distinctive symmetries of general

relativity in the first-order formalism.1

2.2 Classification of the constraints

Before we begin with the Hamiltonian description, we introduce the γ-hat notation

defined in Eq. (A.4). Using this notation, action (2.1) acquires the form

S[e, ω] =
1

κ

∫
M

[
∗
(
eI ∧ eJ

)
∧

(γ)

F IJ −2Λρ

]
. (2.3)

Next, we define the notion of evolution and choose a coordinate with respect to which the

system evolves. For this reason, we assume that the spacetime manifold M is diffeomorphic

to R×Σ, with Σ a 3-dimensional spacelike manifold without boundary, ∂Σ = 0. Then, we

foliate the spacetime with spacelike surfaces Σt for every t ∈ R. Each Σt is diffeomorphic

to Σ, and every point p ∈ M is labeled with the coordinates {xα} = {t, xa}, where {xa}
label the points on Σt. In this adapted coordinates, the differential forms are

eI = eµ
Idxµ = et

Idt+ ea
Idxa, (2.4a)

1For a new perspective on the symmetries of first-order general relativity, see Refs. [48–50].

8



ωIJ = ωµ
I
Jdx

µ = ωt
I
Jdt+ ωa

I
Jdx

a, (2.4b)

F IJ =
1

2
Fµν

I
Jdx

µ ∧ dxν = Fta
I
Jdt ∧ dxa +

1

2
Fab

I
Jdx

a ∧ dxb. (2.4c)

The splitting of the spacetime indices into “space” indices, a = {1, 2, 3}, and a “time”

direction does not break any of the general relativity symmetries since the splitting of the

indices is arbitrary.

Also, to describe the foliation, it is convenient to define an internal vector orthogonal

to ea
I . We denote it by nI and demand it to be normalized to σ, so it is a timelike vector

in the Lorentzian case. The two properties: nIea
I = 0 and nIn

I = σ, are enough to

determine the explicit form of nI

nI =
1

6
√
q
εIJKLη̃

abcea
Jeb

Kec
L, (2.5)

with η̃abc being the totally antisymmetric tensor density (η̃123 = +1) and q = det(qab) > 0

(of weight +2) being the determinant of the induced metric, qab := ηIJea
Ieb

J , on Σt.

After the splitting of the local indices, the action acquires the form

S =
1

κ

∫
R
dt

∫
Σt

d3x
[
η̃abcea

Ieb
J∗

(γ)

F tcIJ +η̃abcet
Iea

J∗
(γ)

F bcIJ −2
√
qet

InI

]
, (2.6)

where we omitted the wedge product between dt and d3x := dx1 ∧ dx2 ∧ dx3. Also, from

Eqs. (2.2), (2.4b), and (2.4c), we have

Fµν
I
J = ∂µων

I
J − ∂νωµIJ + ωµ

I
Kων

K
J − ωνIKωµKJ . (2.7)

Next, we reparametrize the four fields et
I with the usual lapse function N and the shift

vector Na of the ADM formalism

et
I = NnI +Naea

I . (2.8)

The reparametrization of the cotetrad eµ
I and an integration by parts lead us to the

action

S =
1

κ

∫
R
dt

∫
Σt

d3x

[
Π̃aIJ∂t

(γ)
ω aIJ −H̃ + ∂a

(
Π̃aIJ (γ)

ω tIJ

)]
, (2.9)

where we identified
(γ)
ω aIJ as the configuration variable and defined its associated

9



momentum as

Π̃aIJ :=
1

2
η̃abcεIJKLeb

Kec
L. (2.10)

The boundary term in the action (2.9) is a direct consequence of the integration by parts.

However, we will neglect it since ∂Σ = 0. Also, in the action (2.9) we have the Hamiltonian

density

H̃ := −ωtIJ G̃IJ +NaṼa +
˜
N ˜̃S, (2.11)

with

G̃IJ := Da

(γ)

Π̃ aIJ = ∂a

(γ)

Π̃ aIJ + 2ωa
[I|
K

(γ)

Π̃ aK|J ], (2.12a)

Ṽa := Π̃bIJ
(γ)

F abIJ , (2.12b)

˜̃S := Π̃aIKΠ̃b
K
J

(γ)

F abIJ +2σqΛ. (2.12c)

Notice that we used the antisymmetrizer notation defined in (A.1b). Since ωtIJ , Na, and

˜
N := q−1/2N appear linearly in the action, they act as Lagrange multipliers. Therefore,

they impose the constraints: G̃IJ ≈ 0, Ṽa ≈ 0, and ˜̃S ≈ 0. Here the symbol “≈” stands

for a weak equality, it means that the equality is valid only on the constraint surface (see

Ref. [7, 8]).

Thanks to the properties enlisted in (A.7a), we see from (2.9) that to work with the

canonical pair (
(γ)
ω aIJ , Π̃aIJ) or with (ωaIJ ,

(γ)

Π̃ aIJ) is equivalent to each other.2 Although

we should express the Hamiltonian in terms of any of these pairs, we mixed the notation

to show the constraints in its simplest form, thanks to the fact that the only difference

between these variables is the internal projector P IJKL. However, to have an appropriate

Hamiltonian description, we need to relate q with the canonical variables. Using (2.10) we

derive the relation

qqab =
σ

2
Π̃aIJ Π̃b

IJ , (2.13)

where qab stands for inverse of qab (qacq
cb = δba). At this point, the entire action (2.9) is

ultimately described by the canonical pair (
(γ)
ω aIJ , Π̃aIJ), and it obeys the fundamental

Poisson bracket {
(γ)
ω aIJ (t, x), Π̃bKL(t, y)

}
= κδbaδ

K
[I δ

L
J ]δ

3(x, y), (2.14)

with δ3(x, y) being the 3-dimensional Dirac delta for the points x, y ∈ Σt.

2This apparent ambiguity disappears once we solve the second-class constraints. Also, if we did not
define the momentum Π̃aIJ the ambiguity does not show up, see Chapter 6.
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Our description is not complete yet, the definition of the canonical momenta in Eq.

(2.10) defines 18 variables Π̃aIJ constructed out of the 12 components of ea
I . This mismatch

imply the existence of the six primary constraints:

˜̃Φab := ∗Π̃aIJ Π̃b
IJ ≈ 0. (2.15)

Consequently, following Dirac’s method [7, 8],3 we must preserve the constraint (2.15)

under time evolution. Thus, we impose ∂t
˜̃Φab ≈ 0. Computing ∂t

˜̃Φab ≈ 0, using either the

equations of motion or the Poisson Bracket, results in

∂t
˜̃Φab =

{
˜̃Φab, H̃

}
≈ 2

˜
NΨab ≈ 0, (2.16)

where Ψab is a tensor density of weight +3 given by

Ψab := εIJKLΠ̃(a|IM Π̃c
M
JDcΠ̃

|b)KL. (2.17)

Therefore, to maintain the evolution of the constraint ˜̃Φab, either
˜
N ≈ 0 or Ψab ≈ 0.

Because the former case imply a degenerate spacetime metric (a case outside of our current

scope, see Ref. [52] for a lower dimension example) we take the latter case. Thereby, (2.16)

implies that Ψab is a secondary constraint. The evolution of Ψab fixes one of the Lagrange

multipliers, and thus, no tertiary restrictions appear. These are all of the constraints of

the theory. Notice that the Poisson bracket among ˜̃Φab and Ψab does not vanish on the

constraint surface, and we will deal with it in the next section.

After all of the constraints are taken into account, the action now reads

S =
1

κ

∫
R
dt

∫
Σt

d3x
[
Π̃aIJ∂t

(γ)
ω aIJ −H̃T

]
, (2.18)

with H̃T being the total Hamiltonian density

H̃T := −ωtIJ G̃IJ +NaṼa +
˜
N ˜̃S +

˜
φab

˜̃Φab + ψabΨ
ab, (2.19)

which incorporates the new constraints ˜̃Φab and Ψab together with their corresponding

Lagrange multipliers
˜
φab and ψab (of weight −2).

Continuing with the Hamiltonian analysis, we compute the Poisson bracket among the

constraints, and we classify them according to Dirac’s criteria [7, 8]. The constraints G̃IJ ,

Ṽa, and ˜̃S, are first class and are known, respectively, as the Gauss, vector, and scalar (or

3See also Ref. [51] for more details on the method.
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Hamiltonian) constraint. They generate the gauge symmetries of the theory. The Gauss

constraint generates local Lorentz (Euclidean) transformations, whereas the vector and

scalar constraints are responsible for generating spacetime diffeomorphisms. On the other

hand, ˜̃Φab and Ψab are second-class constraints; it means that the Poisson bracket among

them does not vanish on the constraint surface. Therefore, second-class constraints must

be suitably handled.

The classification of constraints also provides a way to count the number of degrees of

freedom (d.o.f.) of the theory. Using the formula [53]:

d.o.f. =
1

2

(
# Phase-space

− 2×
# First-class

−
# Second-class

variables constraints constraints

)
, (2.20)

we see that the theory possesses (1/2)(2×18−2×10−12) = 2 d.o.f. per space point, which

is what one expects in general relativity. When we eliminate the second-class constraints

from the formalism, the number of degrees of freedom is not altered. Thus, getting rid

of the second-class constraints implies a reduction of the number of phase-space variables,

and thus, we end up with a smaller phase space.

There are two equivalent ways to deal with the second-class constraints: one is to

work with a modified Poisson bracket—the Dirac bracket—that incorporates the second-

class constraints in its definition; the other consists in explicitly solving the second-class

constraints. During this work, we focus on the second alternative, and we show different

ways of solving the second-class constraints for the Holst action. The approach that uses

the Dirac bracket is reported in Refs. [35–37].

2.3 Solution of the second-class constraints: noncanonical
phase-space variables

Here we get rid of the second-class constraints following the guidance of Refs. [34]

and [38]. Thus, we split the internal indices into their electric and magnetic components.

Although the solution reported by Cianfrani and Montani in Ref. [38] is incomplete, we

mend their mistake and provide the correct solution. We have already published the results

of the upcoming sections; they are found in Ref. [44].

Let us begin by splitting the internal indices into their 0-component and i-components

[i = (1, 2, 3)]. Then, we notice that the 18 components of Π̃aIJ are divided into the 9 + 9

12



variables Π̃ai0 and Π̃aij , of which, according to (2.15), only 12 of them are independent.

Solving the constraint ˜̃Φab = 0 results in

Π̃ai0 =: Π̃ai, (2.21a)

Π̃aij = −2Π̃a[iχj]. (2.21b)

The nine components of the tensor density Π̃ai plus the three components of the internal

vector χi represent the 12 independent variables contained in Π̃aIJ ; they are going to

partially label the coordinates of the points of the phase space. Furthermore, using Eq.

(2.13), we can give some geometrical meaning to these variables. Let det(Π̃ai) 6= 0, then,

we denote the inverse of Π̃ai with
˜
Πai (

˜
ΠaiΠ̃

aj = δji , ˜
ΠaiΠ̃

bi = δba) and use (2.13) to obtain

the relation

qab = ε| det(Π̃ai)|Θij

˜
Πai

˜
Πbj , (2.22)

with ε := sgn(1 + σχiχ
i) and

Θi
j := δij + σχiχj . (2.23)

Therefore, Π̃ai is a nonorthonormal densitized basis for Σt, and χi is the deviation that

prevents Π̃ai from becoming a densitized orthonormal triad.

Although Θi
j is an internal metric for the nonorthogonal basis, we are not using it to

lower or raise the internal indices. Instead, we use δij to deal with the internal indices.

Also, to simplify future expressions, it is convenient to employ the internal matrix

ϑij :=
(

1 + σχkχ
k
)
δij − σχiχj , (2.24)

which is related to Θi
j through Θi

j = (1 + σχkχ
k)
(
ϑ−1

)i
j .

Continuing with the solution of the remaining second-class constraint, Ψab = 0, a direct

substitution of (2.21a) and (2.21b) into the constraint (2.17) leads us to

Ψab = −4σεijkΠ̃
(a|iΠ̃ck

[(
1 + σχlχ

l
)
∂cΠ̃

|b)j + ϑlmΠ̃|b)m
(
ωc
j
l + σωc0lχ

j
)

−σΠ̃|b)lχl
(
ωc0

j + ∂cχ
j
) ]

= 0. (2.25)

This equality represents a set of six linear equations for the 18 unknowns ωa0i and ωaij .

Hence, the solution ought to be parametrized by 12 free variables. Let the electric

components of the connection ωa0i be nine of these variables while we introduce Ỹ i to
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account for the remaining three. Then, the solution of (2.25) is

ωa0i = ωa0i, (2.26a)

ωaij = Ωaij + 2σωa0[iχj] − 2
˜
ΠakΘ

k
[iỸj], (2.26b)

where Ωaij stands for the particular solution

Ωaij = Θ[i|kΠ̃
b
|j]

(
∂b

˜
Πa

k − ∂a
˜
Πb

k
)
−

˜
Πa

kΠ̃b
[i|∂bΘ|j]k − σχ[i|∂aχ|j]

−Θ[i|kΠ̃
b
|j]

˜
Πa

kΠ̃cl∂b
˜
Πcl + Θkl

˜
ΠakΠ̃

b
[iΠ̃

c
j]∂c

˜
Πbl. (2.27)

Cianfrani and Montani’s approach did not consider the existence of the variables Ỹ i,

meaning that they provided a particular solution of (2.25) only. Thus, their approach

is incorrect simply because their solution is not ultimately equivalent to the constraint

Ψab = 0.

Now, we substitute (2.21a), (2.21b), (2.26a), (2.26b), and (2.27) into (2.18), after some

algebra we have

S =
1

κ

∫
R
dt

∫
Σt

d3x
(
µai

˙̃Πai + ν̃iχ̇
i + α̃aiω̇a0i + βi

˙̃Y i − H̃ ′ + ∂aB̃
a
)
. (2.28)

This action is composed by several terms. Let us dissect each of the parts that make up

the action. First, we have the kinetic terms

µai
˙̃Πai + ν̃iχ̇

i + α̃aiω̇a0i + βi
˙̃Y i, (2.29)

where µai, ν̃i, α̃
ai, and βi are functions of the variables ωa0i, Π̃ai, χi, and Ỹ i only; they are

explicitly given by

µai := ϑij∂aχ
j + ∂aχi + 2

(
1 + σχkχk

)
˜
Πajχ

j Ỹi − 2
˜
ΠajΘ

j
iχ
kỸk

−Π̃blχl

[
2Θk

i∂[a
˜
Πb]k − 2Θjk

˜
ΠajΠ̃

c
i∂[b

˜
Πc]k + Θk

i
˜
ΠakΠ̃

cm∂b
˜
Πcm

−2σ
˜
Πa

jχ(j|∂bχ|i)

]
− Π̃b

iχk

[
2Θjk∂[b

˜
Πa]j −Θjk

˜
ΠajΠ̃

cl∂b
˜
Πcl

+2σ
˜
Πajχ

(j∂bχ
k)

]
− 2

γ
εijk

˜
ΠalΘ

jlỸ k, (2.30a)

ν̃i := 4σΠ̃a
iΠ̃

bjχjχ
k∂[a

˜
Πb]k − 2σΠ̃a

[iχj]χ
jΠ̃bk∂a

˜
Πbk + 4σΠ̃a

[iχj]ωa0
j

+4σΠ̃a
[i|χ

j∂aχ|j] + 4σχjχ[iỸj] −
2σ

γ
εijkΠ̃

aj

[
Π̃bk∂a(χ

l

˜
Πbl) + ωa0

k
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−1

2
χkΠ̃bl∂a

˜
Πbl

]
, (2.30b)

α̃ai := −2ϑijΠ̃
aj , (2.30c)

βi := 4χi. (2.30d)

The second part that constitutes the action (2.28) is the first-class Hamiltonian H̃ ′; it is

formed by first-class constraints only

H̃ ′ := εijkωt
jkG̃irot − 2ωti0G̃iboost +NaṼa +

˜
N ˜̃S, (2.31)

where the constraints are given by

G̃iboost := G̃i0 = ∂a

(
P ijΠ̃

aj
)

+ Ωa
i
jP

j
lΠ̃

al + 2σΠ̃a[jωa0
i]χj

−σ
γ
εijkωa0jΠ̃

a
k −

1

γ
εjklωa0

jΠ̃akχlχi +
(
ϑij + P ij

)
Ỹ j , (2.32a)

G̃irot := −1

2
εijkG̃jk = ∂a

(
QijΠ̃

aj
)

+ Ωa
i
jQ

j
lΠ̃

al + 2
σ

γ
Π̃a[jωa0

i]χj

−εijkωa0jΠ̃
a
k − σεjklωa0

jΠ̃akχlχi +

(
1

γ
ϑij +Qij

)
Ỹ j , (2.32b)

Ṽa = 2ωa0i∂b

(
P ijΠ̃

bj
)

+ 2Υai∂b

(
QijΠ̃

bj
)
− 4P ijΠ̃

bj∂[aωb]0i

−4QijΠ̃
bj∂[aΥb]i + 2ωa0iGiboost + 2ΥaiGirot, (2.32c)

˜̃S = −2Π̃aiχiṼa − 2σ (1 + σχnχ
n) εijkΠ̃

aiΠ̃bj

[
σ

γ
∂aωb0

k + ∂aΥb
k

−1

2
εklm

(
2
σ

γ
ωa0lΥbm + σωa0lωb0m + ΥalΥbm

)]
+2σΛ

∣∣1 + σχiχ
i
∣∣ | det(Π̃ai)|. (2.32d)

For the sake of simplicity, we introduced the internal matrices

P ij := δij +
σ

γ
εijkχ

k, (2.33)

Qij :=
1

γ
δij + εijkχ

k, (2.34)

and also we defined

Υai :=
1

2
εijk

(
Ωa

jk + 2σωa0
jχk − 2

˜
ΠalΘ

lj Ỹ k
)
. (2.35)
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Finally, in the action we find the boundary term

B̃a := −2 ˙̃Πaiχi +
1

γ
εijk

(
Θil

˜
ΠblΠ̃

aj ˙̃Πbk − σχ̇iχjΠ̃ak
)
, (2.36)

which might be neglected just like the others. Nonetheless, we will keep track of it since it

can be reabsorbed in the Darboux map given below.

Notice how the splitting of the indices back in (2.21) force us to split the Gauss

constraint into two parts, the part that generates boost transformations G̃iboost and the

one that generates the SO(3) rotations G̃irot.4 Since both generators are present, the theory

is still invariant under the complete Lorentz (Euclidean) group.

The action (2.28) depends on the Lagrange multipliers ωtij , ωti0, Na, and
˜
N as well as

on the variables ωa0i, Π̃ai, χi, and Ỹ i. Therefore, the variables label the coordinates in our

phase space, and the quantities µai, ν̃i, α̃
ai, and βi are the components of a noncanonical

symplectic potential. A quantum theory developed from our noncanonical variables might

be troublesome because of the lack of canonical variables and by the complicated form of

the first-class constraints. Nevertheless, at the classical level, this description is completely

equivalent to Einstein’s theory.

In spite of having noncanonical variables, this formulation also possesses (1/2)(24−2×
10) = 2 d.o.f per space point [see (2.20)]. Thus, our description is correct. On the other

hand, notice that neglecting the variables Ỹ i yields to an incorrect count in the number

of d.o.f. since, to begin with, the number of phase-space variables is odd. We need the

variables Ỹ i to correctly label each point of the phase space; the incompleteness of the

solution reported in Ref. [38] leads to an incorrect parametrization of the phase space for

general relativity.

2.4 Description with canonical conjugated variables through
a Darboux map

For a given noncanonical symplectic structure, Darboux’s theorem states that it is

always possible to find a set of canonical pairs to label the points of our phase space.

Thereby, given the 24 noncanonical variables
(
ωa0i, Π̃ai, χi, Ỹ

i
)

we can find 12 canonical

4Their names are only valid with the Lorentzian signature. In the Euclidean case, it is a linear
combination of both constraints the generator of SO(4) rotations.
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pairs to render an equivalent description. In fact, we make contact with Barros e Sá’s

description if we consider the Darboux map

Π̃ai = Π̃ai, (2.37a)

Aai = −γ
(γ)
ω a0i −γεijkχj

(
Υa

k +
σ

γ
ωa0

k

)
, (2.37b)

χi = χi, (2.37c)

ζ̃i = −γ
(γ)
ω aij Π̃aj . (2.37d)

The new variables Aai and ζ̃i replace ωa0i and Ỹ i, and they become the new configuration

variables for the now canonical momenta Π̃ai and χi, correspondingly. To implement the

Darboux map into the previous description, we invert (2.37b) and (2.37d)

ωa0i = −
(
ϑ−1

)
i
j

{
1

γ
Aaj +

1

2
εklmQkjΩalm +

γ2

2 (γ2− σ)
Mjkl

˜
Πa

kΘl
m

[
1

γ
ζ̃m

−Π̃b
n

(
1

γ
SmnpAbp − TmnpqΩbpq

)]}
, (2.38a)

Ỹ i = − γ2

2 (γ2− σ)
Θi

j

[
Π̃a

k

(
T jklmΩalm −

1

γ
SjklAal

)
+

1

γ
ζ̃j
]
, (2.38b)

where we introduced the following internal quantities:

Mijk := δijχk − ϑikχj +
1

γ
εijk −

σ

γ
εiklχ

lχj , (2.39a)

Sijk := σεijlQ
lm
(
ϑ−1

)
mk

, (2.39b)

T ijkl := δi[kδ
j
l] −

σ

2
εijmεklq

(
ϑ−1

)np
QmnQ

q
p. (2.39c)

Substituting (2.38a), (2.38b) together with Eqs. (2.39a)–(2.39c) into all terms that

form the action (2.28), we find

S =
1

κ

∫
R
dt

∫
Σt

d3x

(
2

γ
ȦaiΠ̃

ai +
2

γ
χ̇iζ̃

i − H̃ ′
)
. (2.40)

Therefore, it is easy to see that the pairs (Aai, Π̃ai) and (χi, ζ̃
i) are indeed canonical

variables because they obey the fundamental Poisson brackets{
Aai(t, x), Π̃bj(t, y)

}
=

κγ

2
δbaδ

j
i δ

3(x, y), (2.41){
χi(t, x), ζ̃j(t, y)

}
=

κγ

2
δji δ

3(x, y). (2.42)

On the other hand, the first-class Hamiltonian is the same as that given in (2.31), but now
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the constraints read

G̃iboost = ∂a

(
P ijΠ̃

aj
)

+
2σ

γ
AajΠ̃

a[iχj] − σ

γ
ζ̃jχ

jχi − 1

γ
ζ̃i, (2.43a)

G̃irot = ∂a

(
QijΠ̃

aj
)

+
1

γ
εijk

(
Aa

jΠ̃ak − ζ̃jχk
)
, (2.43b)

Ṽa =
4

γ
Π̃bi∂[aAb]i +

2

γ
ζ̃i∂aχ

i − 2γ2

γ2 − σ

[
1

γ2
Aai

(
ζ̃i + σζ̃jχ

jχi
)

−2σ

γ2
Π̃b[iχj]AaiAbj −

σ

γ3
εijk

(
Π̃biAb

j + ζ̃iχj
)
Aa

k

+
(
QijGjboost − P

i
jGjrot

)
Jai

]
, (2.43c)

˜̃S = −2Π̃aiχiṼa − 2σ (1 + σχpχ
p) εijkΠ̃

aiΠ̃bj

{
∂aJb

k − 2

γ
(Aal + Jal) Jb

kχl

− σγ2

2(γ2 − σ)

[
εklm

(
1

γ2
AalAbm + σJalJbm +

2

γ2
AalJbm

)
+

2

γ
AalJb

lχk + εlmnJalJbmχnχ
k

]}
+ 2σΛ

∣∣1 + σχiχ
i
∣∣ |det(Π̃ai)|, (2.43d)

where we defined

Jai :=
1

2

(
˜
ΠajM̃

j
i + εijk

˜
Πa

j ζ̃k
)
, (2.44)

with

M̃ij :=
2

(1 + σχrχr)
2

[
δki δ

l
j −

1

4

(
ϑ−1

)
ij
ϑkl
]
εkmpεlnqϑ

mnf̃ (pq), (2.45)

f̃ ij := (1 + σχmχ
m)

{
εiklΠ̃

ak

[(
1− σ

γ2

)
˜
Πbj∂aΠ̃

bl − σ

γ
χlAaj

]
+
σ

γ2

(
Π̃akAakδ

i
j −AaiΠ̃a

j + ζ̃iχj

)}
+ σ

(
P ikG̃krot +QjkG̃kboost

)
χj . (2.46)

This is almost the same formulation presented by Barros e Sá in Ref. [34]. The main

difference between our description and that of Ref. [34] (besides the rescaled phase-space

coordinates),5 is that we have not neglected any of the terms proportional to the Gauss

constraint as it was done in such a reference. Furthermore, here we introduced the quantity

Jai which allows us to write the Hamiltonian constraint in a simple way. Finally, we remark

that the Darboux map given in Eqs. (2.37a)-(2.37d) reincorporates the boundary term B̃a

into the canonical variables. Thus, this description does not neglect the boundary term

5To compare with Barros e Sá’s description, we have to make the changes: Π̃ai → −Π̃ai, Aai → −γAai,
and ζi → γζi. We rescaled the variables in order to make a clear contact with the Ashtekar-Barbero
formulation (employing the usual conventions).
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B̃a, although it still neglects the boundary term of the action (2.9).

Sometimes it is customary to work with the diffeomorphism constraint D̃a instead

of the vector constraint. This constraint is also first class and generates the spatial

diffeomorphisms tangent to Σt. To derive the diffeomorphism constraint we use the identity

Giboost −
σ

γ
Girot =

(
1− σ

γ2

)
∂aΠ̃

ai +
2σ

γ
AajΠ̃

a[iχj] − σ

γ
ζ̃jχ

jχi − 1

γ
ζ̃i

− σ

γ2
εijk

(
Aa

jΠ̃ak − ζ̃jχk
)
. (2.47)

Then, we rewrite (2.43c) as

Ṽa = 2D̃a +
2γ2

γ2 − σ

[(
1

γ
Aai − JajQj i

)
Giboost +

(
JajP

j
i −

σ

γ2
Aai

)
Girot

]
, (2.48)

where we identified the diffeomorphism constraint as

D̃a :=
2

γ
Π̃ai∂[aAb]i −

1

γ
Aai∂bΠ̃

bi +
1

γ
ζ̃i∂aχi. (2.49)

Thus, redefining the Lagrange multipliers that enforce the Gauss constraints

λi :=
1

2
εijkωt

jk +
γ2

γ2 − σ
Na

(
JajP

j
i −

σ

γ2
Aai

)
, (2.50)

ρi := −ωti0 +
γ2

γ2 − σ
Na

(
1

γ
Aai − JajQj i

)
, (2.51)

our theory is described by the action

S =
1

κ

∫
R
dt

∫
Σt

d3x

[
2

γ
Π̃aiȦai +

2

γ
ζ̃iχ̇i −

(
2λiG̃irot + 2ρiG̃iboost + 2NaD̃a +

˜
N ˜̃S

)]
. (2.52)

The implementation of this formulation into the quantization program has not been

attempted due to the complicated form of the constraints, particularly the scalar constraint.

However, it generalizes the Ashtekar-Barbero formulation because it is invariant under

Lorentz (Euclidean) transformations. In the next section, we obtain the Ashtekar-Barbero

formulation from the current Hamiltonian approach.
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2.5 Gauge fixing: time gauge

The formulations enlisted above—either with canonical variables or not—are fully

invariant under SO(3, 1) [SO(4)] transformations. If we want to make contact with the

Ashtekar-Barbero formulation, we need to break this symmetry group down to its compact

subgroup SO(3). To do it, we have to eliminate the boost freedom of the theory. We

accomplish it when we consider the gauge condition

χi = 0, (2.53)

since it does not Poisson-commute with the constraint G̃iboost,6{
χi(t, x), G̃jboost(t, y)

}∣∣∣
χi=0

=
1

γ
δji δ

3(x, y). (2.54)

Therefore, given that δji is nonsingular, the imposed-by-hand constraint χi = 0 and the

constraint G̃iboost = 0 are now second class. Thus, we must get rid of them.

When the condition (2.53) is taken into account, the spatial metric acquires the form

[see Eq. (2.22)]

qab = |det(Π̃ai)|
˜
Πai

˜
Πb

i. (2.55)

Hence, Π̃ai becomes a densitized triad for the spacelike submanifold Σt. Furthermore,

imposing χi = 0 aligns the local time direction with a vector normal to Σt [54,55]. This is

why the gauge condition (2.53) receives the name “time gauge”.

On the other hand, the remaining Gauss constraint obeys the algebra{
G̃irot (t, x), G̃jrot (t, y)

}
=
κγ

2
εijkG̃krotδ3(x, y), (2.56)

which is the Lie algebra of the SO(3) [or equivalently SU(2)] group. Thus, after solving the

second-class constraints (2.53) and G̃iboost = 0, we arrive at a formulation invariant under

SO(3) rotations.

To continue, we introduce the covariant derivative compatible with Π̃ai

∇aΠ̃bi := ∂aΠ̃
bi + ΓbcaΠ̃

ci − ΓccaΠ̃
bi + εijkΓa

jΠ̃bk = 0. (2.57)

This definition involves 27 equations for 18 + 9 unknowns, which are Γabc = Γacb and Γai,

6The condition Poisson-commutes with all the other first-class constraints.
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respectively. Solving (2.57) results in

Γabc =
1

2
qad (∂bqdc + ∂cqbd − ∂dqbc) , (2.58)

Γai = εijkΠ̃
bj
(
∂[b

˜
Πa]

k +
˜
Πa

[l|Π̃c|k]∂b
˜
Πcl

)
. (2.59)

This means that Γabc are the Christoffel symbols for the space metric qab (2.55), while Γai

is the spin connection. The field strength of Γai is defined as

Rabi := ∂aΓbi − ∂bΓai + εijkΓa
jΓb

k. (2.60)

At this point, the analysis bifurcates depending on whether or we consider canonical

variables or not to describe the phase space. Let us to analyze each case separately.

Noncanonical variables

In the time gauge, the variable Ωaij , introduced as the particular solution of (2.25) [see

Eq. (2.27)], and the spin connection of Eq. (2.59) are related by

Ωaij = −εijkΓak. (2.61)

Then, using (2.32a), (2.53), and (2.57), we solve G̃iboost = 0 and obtain

Ỹi =
σ

2γ
εijkωa0

jΠ̃ak. (2.62)

Next, we substitute (2.53) and (2.62) into the action (2.28), then we get

S =

∫
R
dt

∫
Σt

d3x
(
µai

˙̃Πai + α̃aiω̇a0i − H̃ ′ + ∂aB̃
a
)
. (2.63)

Therefore, the theory is described by the phase-space variables ωa0i and Π̃ai only, where

the symplectic potential, derived from Eqs. (2.30a) and (2.30c), is

µai = −2σ

γ2
ωb0[iΠ̃

b
j]

˜
Πa

j , (2.64)

α̃ai = −2Π̃ai. (2.65)

Also, the boundary term of (2.36) is given by

B̃a =
1

γ
εijk

˜
Πb

iΠ̃aj ˙̃Πbk, (2.66)
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and the constraints that make up the first-class Hamiltonian (2.32b)-(2.32d) are given by

G̃i =

(
1− σ

γ2

)
εijkΠ̃

ajωa0
k, (2.67a)

Ṽa = 4∇[b

(
ωa]0iΠ̃

bi
)
− σ

γ2 − σ
εijkΠ̃

bi

˜
Πa

j∇bG̃k, (2.67b)

˜̃S = σεijkΠ̃
aiΠ̃bjRab

k + 2Π̃a[i|Π̃b|j]ωa0iωb0j

− σγ2

2 (γ2 − σ)2 G̃
iG̃i + 2σΛ|det(Π̃ai)|. (2.67c)

We omitted the label “rot” in the rotational Gauss constraint because such a distinction

is no longer necessary.

The formulation is still described by the noncanonical variables ωa0i and Π̃ai.

Nevertheless, we can rearrange the kinetic terms as

µai
˙̃Πai + α̃aiω̇a0i + ∂aB̃

a =
2

γ
Π̃ai∂t

(
−γωa0i + Γai −

σ

γ ˜
Πa

jΠ̃b
[i|ωb0|j]

)
. (2.68)

From here, it is straightforward to identify the configuration variable

Aai := −γωa0i + Γai −
σ

γ ˜
Πa

jΠ̃b
[i|ωb0|j]. (2.69)

If it were not for the last term in the right-hand side of the last equation, the definition of

Aai would take the exact form of Barbero’s canonical transformation [17]. However, this

is not the case because Eq. (2.69) is not a canonical transformation, but rather it is the

Darboux map from our noncanonical approach to the canonical pair (Aai, Π̃ai). Although

we obtained the same connection Aai as Barbero did, we have derived it from a different

perspective. Furthermore, imposing the time gauge in the Darboux map of Eq. (2.37b)

results in Eq. (2.69). Therefore, the time gauge helps us to identify the Darboux map

directly from the action.

Continuing with the analysis, we invert (2.69)

ωa0i =
1

2γ

[
2γ2 − σ
γ2 − σ

δbaδ
j
i −

σ

γ2 − σ ˜
Πa

jΠ̃b
i

]
(Γbj −Abj) , (2.70)

and we substitute ωa0i back into the action (2.63) to get

S =

∫
R
dt

∫
Σt

d3x

[
2

γ
Π̃aiȦai −

(
εijkωt

jkG̃i +NaṼa +
˜
N ˜̃S

)]
. (2.71)
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Notice that the constraints (2.67a)-(2.67c) acquire the form

G̃i =
1

γ

(
∂aΠ̃

ai + εijkAajΠ̃
a
k

)
, (2.72a)

Ṽa =
2

γ
Π̃biFabi + 2 (Γai −Aai) G̃i, (2.72b)

˜̃S =
1

γ2
εijkΠ̃

aiΠ̃bj
[
Fab

k +
(
σγ2 − 1

)
Rab

k
]

+ 2σΛ|det(Π̃ai)|

−2

γ
Π̃a

i∇aG̃i +
σ

2 (γ2 − σ)
G̃iG̃i, (2.72c)

with

Fabi := ∂aAbi − ∂bAai + εijkAa
jAb

k (2.73)

being the field strength of the connection Aai. Also, to obtain the form of the scalar

constraint (2.72c), we used the identity

2∇[a

(
Ab]i − Γb]i

)
= Fabi −Rabi − εijk(Aaj − Γa

j)(Ab
k − Γb

k). (2.74)

To continue, we collect all the terms proportional to the Gauss constraint. Thus, we

integrate by parts the term involving the covariant derivative in (2.72c) and redefine the

Lagrange multiplier that imposes the Gauss constraint as

µi := εijkωt
jk + 2Na(Γai −Aai) +

σ
˜
N

2(γ2 − σ)
G̃i +

1

γ
Π̃a

i∇a
˜
N. (2.75)

Then, the Hamiltonian description is given by the action

S =
1

κ

∫
R
dt

∫
Σt

d3x

[
2

γ
ȦaiΠ̃

ai −
(

2µiG̃i + 2NaC̃a +
˜
N ˜̃C
)

+ ∂a

(
2

γ ˜
NΠ̃aiG̃i

)]
, (2.76)

where the boundary term is a consequence of an integration by parts, and the vector and

scalar constraints are

C̃a :=
1

γ
Π̃biFabi, (2.77a)

˜̃C :=
1

γ2
εijkΠ̃

aiΠ̃bj
[
Fab

k +
(
σγ2 − 1

)
Rab

k
]

+ 2σΛ| det(Π̃ai)|. (2.77b)

This is the Ashtekar-Barbero formulation with cosmological constant, and we have

derived it from a Hamiltonian description with a noncanonical symplectic structure. Here,

the phase space is labeled with the canonical conjugated variables (Aai, Π̃ai), which are an

internal SO(3) [or SU(2)] connection and a densitized triad field, respectively.
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Canonical variables

Given our description of Sec. 2.4, the time gauge in the canonical variables approach is

straightforward. We begin solving G̃iboost = 0; its solution reads

ζ̃i = γ∂aΠ̃
a
i = −γεijkΓajΠ̃ak, (2.78)

where to get the second equality we used (2.57). Also, in the time gauge, Jai is

Jai = − σ

2γ2

(
δbaδ

j
i + Π̃b

i
˜
Πa

j
)

(Abj − Γbj)− Γai. (2.79)

Then, substituting Eqs. (2.53), (2.78), and (2.79) back into the action (2.52) yields

S =
1

κ

∫
R
dt

∫
Σt

d3x

[
2

γ
Π̃aiȦai −

(
2λiG̃i + 2NaD̃a +

˜
N ˜̃S

)]
, (2.80)

where the constraints (2.43b), (2.49), and (2.43d) are

G̃i =
1

γ

(
∂aΠ̃

ai + εijkAajΠ̃
a
k

)
, (2.81a)

D̃a =
2

γ
Π̃bi∂[aAb]i −

1

γ
Aai∂bΠ̃

bi, (2.81b)

˜̃S =
1

γ2
εijkΠ̃

aiΠ̃bj
[
Fab

k +
(
σγ2 − 1

)
Rab

k
]

+ 2σΛ|det(Π̃ai)|

−2

γ
Π̃ai∇aG̃i +

σ

2 (γ2 − σ)
G̃iG̃i, (2.81c)

with Fabi being the field strength of the connection Aai [see Eq. (2.73)].

As before, we work with the vector constraint rather than the diffeomorphism constraint

C̃a := D̃a +AaiG̃i =
1

γ
Π̃biFabi. (2.82)

Then, we collect all the terms proportional to the Gauss constraint, so the action (2.80)

becomes

S =
1

κ

∫
R
dt

∫
Σt

d3x

[
2

γ
ȦaiΠ̃

ai −
(

2µiG̃i + 2NaC̃a +
˜
N ˜̃C
)

+ ∂a

(
2

γ ˜
NΠ̃aiG̃i

)]
, (2.83)

where we integrated by parts the term with the covariant derivative in (2.81c) and redefined

the Lagrange multiplier

µi := λi −NaAai +
σ

˜
N

2(γ2 − σ)
G̃i +

1

γ
Π̃a

i∇a
˜
N. (2.84)
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Also, the scalar constraint is

˜̃C :=
1

γ2
εijkΠ̃

aiΠ̃bj
[
Fab

k +
(
σγ2 − 1

)
Rab

k
]

+ 2σΛ| det(Π̃ai)|. (2.85)

Therefore, we reach the Ashtekar-Barbero formulation with cosmological constant once

again, which is the starting point of loop quantum gravity. The canonical conjugated

variables, the connection Aai and the densitized triad field Π̃ai, are used to construct the

loop variables involved in the quantum theory. Our analysis ends here since the quantum

description is out of the scope of the present work.

2.6 Comments

We finish this chapter with some final remarks about the nonmanifestly Lorentz-

covariant solution of the second-class constraints. Although a Hamiltonian formulation

of this type was already reported by Barros e Sá, we found an equivalent way to describe

the phase space with a noncanonical symplectic structure. Furthermore, it is illustrative

how both descriptions are connected through a Darboux map. In fact, we developed our

Hamiltonian description when we tried to make contact between the two known works at

that time, the one from Barros e Sá and the one from Cianfrani and Montani. Since we

could not find the relation between them because of the lack of variables, we completed

the analysis and found the link that was missing.

Among the results presented in this chapter, our main contributions are:

• The solution of the second-class constraints and the ensuing Hamiltonian formulation

(Sec. 2.3).

• The Darboux map that leads us to a canonical description (Sec. 2.4).

Also, it is worth to mention that Barros e Sá made contact with the Ashtekar-Barbero

formulation by fixing the gauge before solving the second-class constraints; he did not

exposed the method we presented in Sec. 2.5. Our results are found in Ref. [44].
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Manifestly Lorentz-covariant formulation through

the solution of the second-class constraints of Holst

action

Chapter

3

In this chapter we present a manifestly Lorentz-covariant Hamiltonian formulation

for the Holst action. We accomplish it by solving the second-class constraints in

terms of canonical conjugated variables that explicitly exhibit their Lorentz covariance.

Subsequently, we derive different Hamiltonian formulations related to each other via

canonical transformations; the ensuing formulations are also manifestly Lorentz covariant.

Moreover, two of these canonical transformations allow us to connect the Hamiltonian

formalisms of Holst and Palatini actions. Finally, at the end of the chapter, we explore

the time gauge in all the Hamiltonian descriptions previously found, and show they either

become the Ashtekar-Barbero formulation or the SO(3)-ADM description.

The analysis and results of this chapter were published in Ref. [56].

3.1 Hamiltonian action

We begin our analysis right after Sec. 2.2, where we showed that Holst action with a

cosmological constant Λ

S[e, ω] =
1

κ

∫
M

{[
∗
(
eI ∧ eJ

)
+
σ

γ
eI ∧ eJ

]
∧ FIJ − 2Λρ

}
, (3.1)

is equivalent—up to a neglected boundary term, see Eq. (2.9)—1to

S =
1

κ

∫
R
dt

∫
Σt

d3x
[
Π̃aIJ∂t

(γ)
ω aIJ −H̃T

]
. (3.2)

1Throughout this chapter, we will exhibit the boundary terms that appear during the Hamiltonian
analysis. However, we only display them in the first equation they appear; after that, we neglect them.
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Here, (Π̃aIJ ,
(γ)
ω aIJ) are the canonical conjugated variables and the total Hamiltonian is

given by

H̃T := −ωtIJ G̃IJ +NaṼa +
˜
N ˜̃S +

˜
φab

˜̃Φab + ψabΨ
ab, (3.3)

where ωtIJ , Na,
˜
N ,

˜
φab, ψab are Lagrange multipliers that impose the constraints

G̃IJ := Da

(γ)

Π̃ aIJ = ∂a

(γ)

Π̃ aIJ + 2
(γ)
ω a

[I|
KΠ̃aK|J ] ≈ 0, (3.4a)

Ṽa := Π̃bIJ
(γ)

F abIJ≈ 0, (3.4b)

˜̃S := Π̃aIKΠ̃b
K
J

(γ)

F abIJ +2σqΛ ≈ 0, (3.4c)

˜̃Φab := ∗Π̃aIJ Π̃b
IJ ≈ 0, (3.4d)

Ψab := εIJKLΠ̃(a|IM Π̃c
M
JDcΠ̃

|b)KL ≈ 0. (3.4e)

Furthermore, we remind the reader that qab is the induced metric on Σt with qab being its

inverse, and q = det(qab). They fulfill the relation

qqab =
σ

2
Π̃aIJ Π̃b

IJ . (3.5)

Also, from (2.7), the spatial components of the curvature are

Fab
I
J = ∂aωb

I
J − ∂bωaIJ + ωa

I
Kωb

K
J − ωbIKωaKJ . (3.6)

The constraints G̃IJ , Ṽa, and ˜̃S are first class and are associated with the gauge

symmetries of the theory. On the other hand, ˜̃Φab and Ψab are the second-class constraints

that must be handled somehow in the formalism.

3.2 Solution of the second-class constraints: manifestly
Lorentz-covariant phase-space variables

We start with the second-class constraint ˜̃Φab = 0. Equation (3.4d) defines a set

of six quadratic equations for the 18 components in Π̃aIJ ; it means that Π̃aIJ has 12

independent variables that will label the coordinates in our smaller phase space. We

denote the independent variables as Π̃aI , so the solution of ˜̃Φab = 0 is [15,32]

Π̃aIJ = 2εΠ̃a[ImJ ], (3.7)

where ε = ±1 is a sign ambiguity since the constraint is quadratic in the momenta and

mI is an arbitrary internal vector that depends only on Π̃aI . Exploiting its arbitrariness,
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we demand mI to fulfill a pair of properties: to be orthogonal to Π̃aI (mIΠ̃
aI = 0) and

to be a normalized timelike vector in the Lorentzian signature (mIm
I = σ). This vector

might remind us of the internal vector nI introduced in Sec 2.2. Although they are indeed

related, for the moment we only consider mI as the vector that solves the constraint (3.4d)

and that satisfy the two properties enlisted above.2 These two properties are enough to

determine the explicit form of mI [cf. Eq. (2.5)]

mI =
1

6
√
|h|
εIJKLη̃abcΠ̃

aJ Π̃bKΠ̃cL, (3.8)

where h := det(
˜̃
hab) (of weight +4) with

˜̃
hab := ηIJ Π̃aIΠ̃bJ .

Moreover, h is related to the determinant of the spatial metric q. From (3.5) and (3.7)

we find

qqab =
˜̃
hab. (3.9)

Thereby,
˜̃
hab (the inverse of

˜̃
hab,

˜̃
hac

˜̃
hcb = δba) is the densitized metric for the submanifold

Σt. Likewise, the previous relation implies

q2 = h. (3.10)

Therefore, h > 0, and we can safely remove the absolute value bars in (3.8). The relation

between q and h clearly suggest that the spatial part of the tetrad field ea
I and the new

phase-space variables Π̃aI are related. For the moment, let us ignore this fact. We will

elaborate on this relation in Chapter 6.

To simplify future expressions, it is convenient to introduce two quantities. The first

one is an internal projector that we can derive from Eq. (3.8)

qIJ :=
˜̃
habΠ̃

aIΠ̃b
J = δIJ − σmImJ , (3.11)

which projects onto the orthogonal plane to mI . The second one is the covariant derivative

∇a compatible with Π̃aI , i.e., it is the one that satisfies

∇aΠ̃bI := ∂aΠ̃
bI + ΓbacΠ̃

cI − ΓcacΠ̃
bI + Γa

I
J Π̃bJ = 0. (3.12)

The components ΓaIJ = −ΓaJI and Γabc = Γacb are 36 unknowns that we can determinate

2The relation between both vectors will become clear in Chapter 6.
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from the 36 equations defined in (3.12). Solving for these variables we find

ΓaIJ =
˜̃
habΠ̃

c
[I|∂cΠ̃

b
|J ] +

˜̃
hbcΠ̃

b
[I|∂aΠ̃

c
|J ] − σ

˜̃
habΠ̃

c
[ImJ ]mK∂cΠ̃

bK

+σ
˜̃
hbcΠ̃

b
[ImJ ]mK∂aΠ̃

cK +
˜̃
hab

˜̃
hcdΠ̃

c
KΠ̃b

[IΠ̃
f
J ]∂f Π̃dK

−
˜̃
hab

˜̃
hcdΠ̃

b
KΠ̃c

[IΠ̃
f
J ]∂f Π̃dK , (3.13)

Γabc =
1

2
qad (∂bqdc + ∂cqbd − ∂dqbc) . (3.14)

Thus, Γabc are just the Christoffel symbols for the metric qab. In the meantime, we define

the curvature for the internal connection ΓaIJ as

Rab
I
J = ∂aΓb

I
J − ∂bΓaIJ + Γa

I
KΓb

K
J − Γb

I
KΓa

K
J . (3.15)

Now we face the remaining constraint Ψab = 0. After substituting (3.7) back into (3.4e)

and using (3.12), the constraint acquires the form

Ψab = −2σεεIJKLΠ̃(a|IΠ̃|b)M Π̃cJmK
(
Γc
L
M − ωcLM

)
= 0. (3.16)

This is a system of six linear equations for the 18 unknowns contained in ωaIJ . Thus,

solving for ωaIJ (or equivalently for
(γ)
ω aIJ) implies the existence of 12 free variables in

the general solution. These free variables will play the role of phase-space coordinates,

and most likely will not form a set of canonical variables—just as in the case exposed in

Sec. 2.3—. Therefore, we need to find the appropriate Darboux map that leads us to a

description with canonical coordinates. However, we simplify part of the process when we

use (3.7) and manipulate the kinetic term of the action (3.2)

Π̃aIJ∂t
(γ)
ω aIJ = 2εΠ̃aImJ∂t

(γ)
ω aIJ , (3.17)

= 2Π̃aI∂t

(
ε

(γ)
ω aIJ m

J + εmI

(γ)
ω bJK

˜̃
hacΠ̃

cJ Π̃bK

)
. (3.18)

Thereby, it is natural to define the 12 variables

CaI := ε

(
(γ)
ω aIJm

J +mI

(γ)
ω bJK

˜̃
hacΠ̃

cJ Π̃bK

)
, (3.19)

which will act as the canonical configuration variables. Thus, Eqs. (3.16) and (3.19) are

the complete set of 18 equations that solve the constraint Ψab = 0, and, at the same time,

give us the canonical variables (CaI , Π̃aI). The solution for both, (3.16) and (3.19), is

(γ)
ω aIJ= Ma

b
IJKCb

K + Ñ b
IJ

˜
λab, (3.20)
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with

Ma
b
IJK := εσ

[
− δbam[IηJ ]K + δbaPIJKLm

L +
˜̃
hacΠ̃

b
[IΠ̃

c
J ]mK

+
1

2γ
εIJLM

˜̃
hacΠ̃

c
KΠ̃bLmM

]
, (3.21a)

Ña
IJ := εIJKLΠ̃aKmL, (3.21b)

˜
λab :=

1

2
εIJKL

(
˜̃
hab

˜̃
hcd − 2

˜̃
hc(a

˜̃
hb)d

)
Π̃cIΠ̃fJ Π̃dMmLΓf

K
M . (3.21c)

We write
(γ)
ω aIJ as in Eq. (3.20) to highlight the 12 + 6 variables CaI and

˜
λab =

˜
λba,

respectively; they account for the 18 original variables that compose
(γ)
ω aIJ . Furthermore,

we can interpret CaI as the 12 dynamical variables contained in
(γ)
ω aIJ [defined in (3.19)],

whereas
˜
λab are six nondynamical variables determined by (3.16).

With the solutions for both second-class constraints (3.4d) and (3.4e), we substitute

(3.7) and (3.20) [together with (3.21a), (3.21b), and (3.21c)] back into the action (3.2),

then, we obtain

S =
1

κ

∫
R
dt

∫
Σt

d3x
[
2Π̃aIĊaI −

(
−ωtIJ G̃IJ +NaṼa +

˜
N ˜̃S

)]
. (3.22)

The term inside the parenthesis is the first-class Hamiltonian, which is formed by the

first-class constraints

G̃IJ = 2Π̃a[ICa
J ] + 4εP IJKLΠ̃a[MmK]Γa

L
M ≈ 0, (3.23a)

Ṽa = 4∇[a

(
Cb]IΠ̃

bI
)
− 4εΠ̃b[ImJ ]

(γ)

Γ aIK Γb
K
J + εσG̃IJmJ

[
2CaI

−2εmK
(γ)

Γ aIK +
˜̃
habΠ̃

bK G̃IK

]
≈ 0, (3.23b)

˜̃S = −σΠ̃aIΠ̃bJRabIJ + 2Π̃a[I|Π̃b|J ]

[
CaICbJ − 2εCaIm

K
(γ)

Γ bJK

+

(
ΓaIL +

2

γ
∗ ΓaIL

)
ΓbJKm

KmL +
1

γ2
qKLΓaIKΓbJL

]

+G̃IJ
[
− 1

4
G̃IJ +

1

4

(
P−1

)
IJKL

G̃KL − σ

2
mIm

K G̃JK

]
−2εΠ̃aImJ∇aG̃IJ + 2σ

√
hΛ ≈ 0. (3.23c)

We can simplify our formulation if we collect all the terms proportional to the Gauss
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constraint, but first, we notice that the vector constraint can be rewritten as

Ṽa = 2D̃a + G̃IJ
(

ΓaIJ + 2εσCaImJ + 2σmIm
K

(γ)

Γ aJK −εσ
˜̃
habΠ̃

bKmI G̃JK
)
, (3.24)

where D̃a is the diffeomorphism constraint given by

D̃a := 2Π̃bI∂[aCb]I − CaI∂bΠ̃bI . (3.25)

Now, we integrate by parts the term containing the covariant derivative in (3.23c) and

collect all the terms proportional to the Gauss constraint. Doing this, the action becomes

S =
1

κ

∫
R
dt

∫
Σt

d3x
[
2Π̃aIĊaI −

(
λIJ G̃IJ + 2NaD̃a +

˜
N ˜̃H

)
+ ∂a

(
2ε

˜
NΠ̃aImJ G̃IJ

)]
,

(3.26)

where we defined the Lagrange multiplier as

λIJ := −ωtIJ +Na

(
ΓaIJ + 2εσCa[ImJ ] + 2σm[I|m

K
(γ)

Γ a|J ]K −εσ
˜̃
habΠ̃

bKm[I G̃J ]K

)
+

˜
N

[
−1

4
G̃IJ +

1

4

(
P−1

)
IJKL

G̃KL − σ

2
m[Im

K G̃J ]K

]
+ 2εΠ̃a

[ImJ ]∇a
˜
N, (3.27)

and the new Hamiltonian constraint is

˜̃H = −σΠ̃aIΠ̃bJRabIJ + 2Π̃a[I|Π̃b|J ]

[
CaICbJ − 2εCaIm

K
(γ)

Γ bJK

+

(
ΓaIL +

2

γ
∗ ΓaIL

)
ΓbJKm

KmL +
1

γ2
qKLΓaIKΓbJL

]
+ 2σ

√
hΛ. (3.28)

Our formulation is then described by the action (3.26) formed exclusively by the first-

class constraints (3.23a), (3.25), and (3.28). It is written with the manifestly Lorentz-

(Euclidean)-covariant variables (CaI , Π̃aI) that obey the fundamental Poisson bracket{
CaI(t, x), Π̃bJ(t, y)

}
= 2κδbaδ

J
I δ

3(x, y). (3.29)

Thanks to the explicit covariant nature of the variables, the previous description is much

more appealing than those exposed in (2.28) or (2.52). However, the geometrical meaning

of the canonical variables is not as clear as in the Ashtekar-Barbero formulation. Although

the canonical momentum has a clear interpretation, since Π̃aI transforms as a densitized

vector under spatial diffeomorphisms and as an SO(3, 1) [SO(4)] internal vector under

Lorentz (Euclidean) transformations, the configuration variable CaI behaves as a 1-form

under spatial diffeomorphisms. However, its transformation law under Lorentz (Euclidean)
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transformations is quite challenging to interpret. Nevertheless, our description, as opposed

to the Ashtekar-Barbero formulation, is invariant under the complete symmetry group

SO(3, 1) [SO(4)].

3.3 Alternative parametrizations through canonical
transformations

In this section, we exploit the use of canonical transformations to derive alternative

Hamiltonian descriptions for general relativity. All of the following formulations are

described by manifestly Lorentz (Euclidean) covariant variables.

1. The first canonical transformation we consider is

KaI = CaI − ε
(

ΓaIJm
J +

˜̃
habΠ̃

bJ Π̃cKΓcJKmI

)
, (3.30a)

Π̃aI = Π̃aI . (3.30b)

Under it, the theory is now described by the action

S =
1

κ

∫
R
dt

∫
Σt

d3x
[
2Π̃aIK̇aI −

(
λIJ G̃IJ + 2NaD̃a +

˜
N ˜̃H

)
+ ∂a

(
2ε ˙̃ΠaImI

)]
,

(3.31)

where the pair (KaI , Π̃aI) are the new canonical variables. The boundary term

appears from the substitution of (3.30) in the kinetic term of (3.26)

2Π̃aIĊaI = 2Π̃aIK̇aI + ∂a

(
2ε ˙̃ΠaImI

)
, (3.32)

but, since Σt does not possess a boundary, the transformation is canonical. In fact,

the fundamental Poisson bracket is{
KaI(t, x), Π̃bJ(t, y)

}
=
κ

2
δbaδ

J
I δ

3(x, y), (3.33)

and the constraints are

G̃IJ = 2Π̃a[IKa
J ] +

2ε

γ
εIJKLΠ̃a[MmK]Γa

L
M ≈ 0, (3.34a)

D̃a = 2Π̃bI∂[aKb]I −KaI∂bΠ̃
bI ≈ 0, (3.34b)

˜̃H = −σΠ̃aIΠ̃bJRabIJ + 2Π̃a[I|Π̃b|J ]

[
KaIKbJ −

2ε

γ
KaIm

K ∗ ΓbJK
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+
1

γ2
qKLΓaIKΓbJL

]
+ 2σ

√
hΛ ≈ 0. (3.34c)

In the formulation with the variables (KaI , Π̃aI), the diffeomorphism constraint

maintains the same structure, whereas the other two constraints take a more compact

form. Also, the presence of the Barbero-Immirzi parameter is still noticeable. Thus,

the transformation (3.30) connects two formulations inherent to the Holst action.

2. For the next canonical transformation we go back to the formulation with the

variables CaI and Π̃aI , and we consider the transformation

QaI = CaI − ε
(

(γ)

Γ aIJ m
J +

˜̃
habΠ̃

bJ Π̃cK
(γ)

Γ cJK mI

)
, (3.35a)

Π̃aI = Π̃aI , (3.35b)

which leads the action (3.26) (neglecting the boundary term) to the form

S =
1

κ

∫
R
dt

∫
Σt

d3x
[
2Π̃aIQ̇aI −

(
λIJ G̃IJ + 2NaD̃a +

˜
N ˜̃H

)]
. (3.36)

The neglected boundary term comes from

2Π̃aIĊaI = 2Π̃aIQ̇aI + ∂a

(
2ε ˙̃ΠaImI −

εσ

γ

√
hη̃abc

˜̃
hbd

˜̃
hce

˙̃ΠdIΠ̃e
I

)
. (3.37)

Therefore, the pair (QaI , Π̃aI) obeys the Poisson Bracket{
QaI(t, x), Π̃bJ(t, y)

}
=
κ

2
δbaδ

J
I δ

3(x, y), (3.38)

and the first-class constraints in terms of (QaI , Π̃aI) are

G̃IJ = 2Π̃a[IQa
J ] ≈ 0, (3.39a)

D̃a = 2Π̃bI∂[aQb]I −QaI∂bΠ̃bI ≈ 0, (3.39b)

˜̃H = −σΠ̃aIΠ̃bJRabIJ + 2Π̃a[I|Π̃b|J ]QaIQbJ + 2σ
√
hΛ ≈ 0. (3.39c)

Again, the canonical transformation does not modify the diffeomorphism constraint,

but it reduces the form of the other two constraints. Moreover, the remarkable

aspect of the Hamiltonian formulation (3.36) is the absence of the Barbero-Immirzi

parameter. In fact, this is the same formulation that arises during the Hamiltonian
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analysis of the Palatini action [32,57]. Thus, the inverse of the transformation (3.35)

is a Lorentz-covariant version of Barbero’s canonical transformation [17].

3. Finally, we present one more description. Although the next transformation was not

originally presented in Ref. [56], it is already reported in Refs. [57] and [58]. This

time we consider the canonical transformation

QaI = CaI −
ε

γ

(
∗ΓaIJmJ +

˜̃
habΠ̃

bJ Π̃cK ∗ ΓcJKmI

)
, (3.40a)

Π̃aI = Π̃aI . (3.40b)

Using this canonical transformation, the action (3.26) becomes

S =
1

κ

∫
R
dt

∫
Σt

d3x
[
2Π̃aIQ̇aI −

(
λIJ G̃IJ + 2NaD̃a +

˜
N ˜̃H

)]
, (3.41)

where, again, we neglected the boundary term that emerges from

2Π̃aIĊaI = 2Π̃aIQ̇aI − ∂a
(
εσ

γ

√
hη̃abc

˜̃
hbd

˜̃
hce

˙̃ΠdIΠ̃e
I

)
. (3.42)

It is clear from (3.41) that the new variables obey the Poisson bracket{
QaI(t, x), Π̃bJ(t, y)

}
=
κ

2
δbaδ

J
I δ

3(x, y), (3.43)

and the first-class constraints are given by

G̃IJ = 2Π̃a[IQaJ ] + 2εΠ̃aMm[IΓa
J ]
M − 2εΠ̃a[I|mMΓa

|J ]
M ≈ 0, (3.44a)

D̃a = 2Π̃bI∂[aQb]I −QaI∂bΠ̃bI ≈ 0, (3.44b)

˜̃H = −σΠ̃aIΠ̃bJRabIJ + 2Π̃a[I|Π̃b|J ]

[
QaIQbJ − 2εQaImKΓbJK

+ΓaILΓbJKm
KmL

]
+ 2σ

√
hΛ ≈ 0. (3.44c)

Instinctively, the lack of the Barbero-Immirzi parameter suggests that this description

is inherent to the Palatini action. This statement is correct since the last formulation

emerges during the Hamiltonian analysis of the Palatini action [57]. Thus, the inverse

of the transformation (3.40) is also a Lorentz-covariant version of Barbero’s canonical

transformation.
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A few remarks about the canonical transformations. Regardless of the canonical

variables, the diffeomorphism constraints are the same in terms of them. Therefore, all

the configuration variables transform as 1-forms under spatial diffeomorphisms, and the

momentum transforms as a vector of weight +1. Furthermore, under Lorentz (Euclidean)

transformations, Π̃aI transforms as a Lorentz (Euclidean) vector. In contrast, the

transformation law for the majority of the configurational variables are quite complicated,

just the variable QaI has a clear geometrical meaning since it transforms as an SO(3, 1)

[SO(4)] vector.

We notice some interesting facts about the descriptions enlisted above. When we

consider the limit γ →∞ in the formulation with the variables
(
CaI , Π̃aI

)
, the formulation

becomes the one described by the variables
(
QaI , Π̃aI

)
. Also, if the same limit is applied

in the
(
KaI , Π̃aI

)
formulation, we end up with the description of the

(
QaI , Π̃aI

)
variables.

Explicitly: (
CaI , Π̃aI

)
γ→∞−→

(
QaI , Π̃aI

)
, (3.45a)(

KaI , Π̃aI
)
γ→∞−→

(
QaI , Π̃aI

)
. (3.45b)

Furthermore, when we combine Eqs. (3.30a), (3.35a), and (3.40a), we found:

CaI +QaI = KaI +QaI . (3.46)

We do not know if this relationship has some implications, but it is an intriguing relation.

3.4 Gauge fixing: time gauge

Let us explore the previous manifestly Lorentz-covariant formulations under a gauge

fixing. We consider the gauge that reduces the internal symmetry group, SO(3, 1) or

SO(4), to its compact subgroup SO(3). During the first part of this section, we keep

the analysis quite general so that it is valid for the formulations of the last two sections.

However, as the analysis progresses, we are obligated to consider each case separately.

Consider the gauge condition

Π̃a0 = 0, (3.47)

which, regardless of the canonical pair considered, Poisson-commutes with almost every
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first-class constraint. The only nontrivial Poisson bracket is

{Π̃a0(t, x), G̃i0(t, y)} = −σκ
2

Π̃aiδ3(x, y). (3.48)

Therefore, since we consider det(Π̃ai) 6= 0, the condition (3.47) is a second-class constraint

that must be solved together with the now second-class constraint G̃i0 = 0. Consequently,

we lose some of the generators of the Lorentz (Euclidean) group, the remnant subgroup

will be generated by the constraints G̃ij .

Defining

G̃i := −1

2
εijkG̃jk, (3.49)

we notice that the generators fulfill the algebra{
G̃i(t, x), G̃j(t, x)

}
=
κ

2
εijkG̃kδ3(x, y), (3.50)

with εijk := ε0ijk. Thereby, G̃i obeys the Lie algebra corresponding to the SO(3) [or

SU(2)] group. Hence, when we impose (3.47) as gauge condition, we break down the

Lorentz (Euclidean) symmetry and leave behind a theory invariant under SO(3) [SU(2)]

rotations.

We have removed the boost freedom from the theory, as in Sec. 2.5. Thus, this gauge

fixing also receives the name “time gauge”. Also, from equation (3.8), we deduce that

(3.47) implies mi = 0 and m0 = sgn[det(Πai)]. Henceforth, for the Lorentzian signature,

mI is a timelike vector aligned with the internal time direction. Furthermore, let
˜
Πai

denote the inverse of Π̃ai (
˜
ΠaiΠ̃

aj = δji and
˜
ΠaiΠ̃

bi = δba), then, from Eq. (3.9), we obtain

qab = | det(Π̃ai)|
˜
Πai

˜
Πb

i. (3.51)

Thus, Π̃ai is an orthonormal densitized basis for Σt.

Another important consequence of the time gauge happens to the internal connection

ΓaIJ , it discomposes into two parts: the connection along the time direction Γa0i and the

connection tangent to Σt, rewritten as Γai := −(1/2)εijkΓa
jk. Both parts are directly

computed from (3.13), the former is identically zero whereas the latter becomes

Γai = εijk

(
∂[b

˜
Πa]

j +
˜
Πa

[l|Π̃c|j]∂b
˜
Πcl

)
Π̃bk, (3.52)

37



and, from (3.12), it fulfills the equation

∇aΠ̃bi = ∂aΠ̃
bi + ΓbacΠ̃

ci − ΓcacΠ̃
bi + εijkΓa

jΠ̃bk = 0. (3.53)

Therefore, Γai is the spin connection compatible with Π̃ai, and its field strength is

Rabi := −1

2
εijkRab

jk = ∂aΓbi − ∂bΓai + εijkΓa
jΓb

k. (3.54)

All the discussion until now is valid for every formulation of the previous sections since

most of the results are related to the canonical momenta, which are the same in all cases.

Next, we need to solve the constraint G̃i0 = 0, depending on the case we are considering; it

will fix either Ca0, Ka0, Qa0, or Qa0. Thus, in principle, we need to separate our analysis

for each canonical pair. However, imposing (3.47) in (3.30a) leads us to Cai = Kai, and,

from (3.46), we conclude Qai = Qai. Thence, we need to bifurcate our analysis into two

cases only, one for the variables Cai (or Kai) and one for the variables Qai (or Qai). Let

us first explore the former case, since it is the one that arises naturally after solving the

second-class constraints.

Time Gauge for the variables (Cai = Kai, Π̃ai)

From (3.23a) and (3.34a) the solution of G̃i0 = 0 reads

Ca0 = −σεm0

˜
Πai∂bΠ̃

bi, (3.55)

Ka0 = 0. (3.56)

Regardless of which one of the formulation we consider, either (CaI , Π̃aI) or (KaI , Π̃aI),

we will arrive at a description of general relativity under SO(3) [SU(2)] transformations

described by the canonical pair (Cai = Kai, Π̃ai). This formulation is given by the action

S =
1

κ

∫
R
dt

∫
Σt

d3x
[
2Π̃aiĊai −

(
2λiG̃i + 2NaD̃a +

˜
N ˜̃H

)]
, (3.57)

where λi := −(1/2)εijkλ
jk and

G̃i = ε
m0

γ

[
∂aΠ̃

ai + εijk(εm
0γCa

j)Π̃ak
]
, (3.58a)

D̃a = 2Π̃bi∂[aCb]i − Cai∂bΠ̃bi, (3.58b)

˜̃H = σεijkΠ̃
aiΠ̃bjRab

k + 2Π̃a[i|Π̃b|j]
(
Cai −

εm0

γ
Γai

)(
Cbj −

εm0

γ
Γbj

)
+2σΛ| det(Π̃ai)|. (3.58c)
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Taking a closer look at the Gauss constraint in (3.58a), we identify the connection

Aai := εm0γCai. (3.59)

Using Aai as our configuration variable, we rewrite the action and obtain

S =
1

κ

∫
R
dt

∫
Σt

d3x

[
2εm0

γ
Π̃aiȦai −

(
2λiG̃i + 2NaD̃a +

˜
N ˜̃H

)]
. (3.60)

The theory now obeys the fundamental Poisson bracket

{
Aai(t, x), Π̃bj(t, y)

}
=
κγεm0

2
δbaδ

j
i δ

3(x, y), (3.61)

and the constraints are

G̃i = ε
m0

γ

[
∂aΠ̃

ai + εijkAa
jΠ̃ak

]
, (3.62a)

D̃a = ε
m0

γ

(
2Π̃bi∂[aAb]i −Aai∂bΠ̃bi

)
, (3.62b)

˜̃H =
1

γ2
εijkΠ̃

aiΠ̃bj
[
Fab

k +
(
σγ2 − 1

)
Rab

k
]

+ 2ε
m0

γ
Π̃ai∇aG̃i

+2σΛ|det(Π̃ai)|, (3.62c)

where

Fabi := ∂aAbi − ∂bAai + εijkAa
jAb

k (3.63)

is the field strength of the connection Aai. To get (3.62c) we used the identity

2∇[a

(
Ab]i − Γb]i

)
= Fabi −Rabi − εijk(Aaj − Γa

j)(Ab
k − Γb

k). (3.64)

To arrive at the usual Ashtekar-Barbero formulation we need to do two things. First,

we use the vector constraint defined in Eq. (2.82) instead of the diffeomorphism constraint

of (3.62b). Second, we collect all the terms proportional to the Gauss constraint; to do it,

we integrate by parts the term with covariant derivate in Eq. (3.62c). Then, neglecting

the boundary term, we end up with the action

S =
1

κ

∫
R
dt

∫
Σt

d3x

[
2εm0

γ
Π̃aiȦai −

(
2νiG̃i + 2NaC̃a +

˜
N ˜̃C
)]
, (3.65)
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with νi := λi −NaAai + (1/γ)Π̃a
i∇a

˜
N and

G̃i = ε
m0

γ

[
∂aΠ̃

ai + εijkAa
jΠ̃ak

]
, (3.66a)

C̃a = ε
m0

γ
Π̃biFabi, (3.66b)

˜̃C =
1

γ2
εijkΠ̃

aiΠ̃bj
[
Fab

k +
(
σγ2 − 1

)
Rab

k
]

+ 2σΛ|det(Π̃ai)|. (3.66c)

The sign εm0—which comes from the ambiguity of solving the quadratic constraint

(3.4d) and from the sign of the determinant of Π̃ai—plays no important role, because

it could be reabsorbed into the Lagrange multipliers that accompany the Gauss and

diffeomorphism constraints. Apart from that, this is the Ashtekar-Barbero formulation

[17] and is neatly derived from our description with manifestly Lorentz (Euclidean)

covariant phase-space variables. Therefore, our formulation is indeed a generalization of

the Ashtekar-Barbero description when the symmetry group remains intact.

Time Gauge for the variables (Qai = Qai, Π̃ai)

Now, we fix the gauge for the pairs of variables (QaI , Π̃aI) or (QaI , Π̃aI). We solve G̃i0 = 0

from (3.39a) and (3.44a), and get

Qa0 = 0, (3.67)

Qa0 = −σεm0

˜
Πai∂bΠ̃

bi. (3.68)

Thus, substituting (3.47) and the correspondent solution of G̃i0 = 0 into (3.36) or (3.41),

yields

S =
1

κ

∫
R
dt

∫
Σt

d3x
[
2Π̃aiQ̇ai −

(
2λiG̃i + 2NaD̃a +

˜
N ˜̃H

)]
, (3.69)

where the constraints, derived either from (3.39) or (3.44), are

G̃i = εijkQa
jΠ̃ak ≈ 0, (3.70a)

D̃a = 2Π̃bi∂[aQb]i − Uai∂bΠ̃bi ≈ 0, (3.70b)

˜̃H = σεijkΠ̃
aiΠ̃bjRab

k + 2Π̃a[i|Π̃b|j]QaiQbj + 2σΛ| det(Π̃ai)|. (3.70c)

This is precisely the SO(3)-ADM formulation [15, 16], which one obtains after

performing the Hamiltonian formulation of the Palatini action plus the time gauge

[32,57]. Thus, in the manifestly Lorentz-covariant formulations where the Barbero-Immirzi

parameter is absent, they all collapse to the SO(3)-ADM formulation once the time gauge
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is taken into account.

Finally, notice that in the time gauge the inverse of the canonical transformations, either

(3.35a) or (3.40a), become

εm0γQai = Aai − Γai, (3.71)

where we defined Aai as in (3.59). This canonical transformation is, up to the sign εm0, the

inverse of Barbero’s canonical transformation [17]. Hence, (3.35a) and (3.40a) are indeed

Lorentz-covariant versions of the inverse of the Barbero’s canonical transformation.

3.5 Comments

We end the discussion remarking three main results of this chapter:

(i) We have solved, in a manifestly Lorentz-covariant fashion, the second-class

constraints that arise during the Hamiltonian analysis of Holst action. From the

constraint (3.4d), we identified the 12 independent variables Π̃aI that compose

the original momentum Π̃aIJ . Additionally, we split the 18 fields of the internal

connection ωaIJ into the 12 canonical variables CaI and the six nondynamical

variables
˜
λab, the latter are fixed by (3.4e).

(ii) We exposed different sets of Hamiltonian formulations, all of them made of first-

class constraints only and described by canonical conjugated variables that are

explicitly Lorentz covariant. Furthermore, they relate to each other by canonical

transformations, and two of them, namely the transformations of Eqs. (3.35) and

(3.40), link the Holst to the Palatini action.

(iii) Finally, in the time gauge, we notice that the previous Lorentz-covariant formulations

either collapse to the Ashtekar-Barbero formalism or to the SO(3)-ADM description;

it depends on whether or not the Barbero-Immirzi parameter is present in the

formulation.

All of the results presented during this chapter are new, and they were published in

Ref. [56].
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SU(1, 1) phase-space variables from manifestly

Lorentz-covariant phase-space variables for Holst

action

Chapter

4

In this chapter we explore an alternative gauge fixing; one that reduces the original Lorentz

group into its subgroup SU(1, 1) [or SO(2, 1)]. To accomplish it, we need to reformulate

our description. Thus, we foliate the spacetime manifold with timelike leaves along a

spacelike direction. From there, we continue with the usual Hamiltonian analysis and

found the presence of second-class constraints. Using the techniques developed in the

previous chapter, we solve the second-class constraints in a manifestly covariant fashion.

Then, we impose the gauge condition known as “space gauge” and arrive at a formulation

for general relativity described by an SU(1, 1) connection and a densitized triad.

The upcoming description is already published in Ref. [59].

4.1 Unusual Hamiltonian description

Since we want to arrive at a formulation invariant under SU(1, 1) [or SO(2, 1)]

transformations, we need to change some of the usual assumptions in order to have the

correct physical interpretation. First, we consider a spacetime manifold M diffeomorphic

to Ω × R, where Ω is a 3-dimensional timelike submanifold that might have a boundary.

Then, without loss of generality, we foliate the spacetime along the spacelike direction x3,

where each surface x3 = constant is diffeomorphic to Ω. The study of timelike foliations

is not estrange in the context of loop quantum gravity or in the spin foams approach, see

for instance Refs. [39, 60–62].

We start again from the Holst action with cosmological constant Λ. Using the γ-hat

notation of (A.4), Holst action has the form

S[e, ω] =
1

κ

∫
M

[
∗
(
eI ∧ eJ

)
∧

(γ)

F IJ −2Λρ

]
, (4.1)
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where the internal dual was defined in (A.2), ρ = (1/4!)εIJKLe
I ∧ eJ ∧ eK ∧ eL is the

volume form, εIJKL being the totally antisymmetric Lorentz tensor (ε0123 = 1), and F IJ

is the curvature of the connection ωIJ [see (2.2)]. Also, to deal with the internal indices,

we restrict ourselves exclusively to the Minkowski metric (ηIJ) = diag(−1, 1, 1, 1).

The Hamiltonian analysis is as straightforward as the one presented in Sec. 2.2, we

only need to make a few changes. We begin by defining the notion of “evolution” along

the spacelike direction x3. Then, we express the differential forms as

eI = eµ
Idxµ = eā

Idxā + e3
Idx3, (4.2a)

ωIJ = ωµ
I
Jdx

µ = ωā
I
Jdx

ā + ω3
I
Jdx

3. (4.2b)

The bar over the indices indicate that they take the values ā = {0, 1, 2}. Now, we

parametrize e3
I with the four fields N and N ā (analogous to the lapse function and shift

vector of the usual 3 + 1 decomposition)

e3
I = NnI +N āeā

I , (4.3)

where nI is an internal vector satisfying nInI = 1 and nIeā
I = 0. The induced metric on

Ω is qāb̄ = ηIJeā
Ieb̄

J , and its determinant q = det(qāb̄) < 0 since Ω is a timelike surface.

All of the previous considerations lead us to the action

S =
1

κ

∫
Ω
dV

∫
R
dx3

[
Π̃āIJ∂3

(γ)
ω āIJ − H̃ + ∂ā

(
Π̃āIJω3IJ

)]
, (4.4)

with dV := dx0∧dx1∧dx2. Also, we took
(γ)
ω āIJ as the configuration variable and identified

its conjugated momentum as

Π̃āIJ := −1

2
η̃āb̄c̄εIJKLeb̄

Kec̄
L, (4.5)

where η̃āb̄c̄ := η̃āb̄c̄3 is a totally antisymmetric tensor density (η̃012 = +1). Therefore, The

action is described by the variables (
(γ)
ω āIJ , Π̃

āIJ) [or equivalently (ωāIJ ,
(γ)

Π̃ āIJ)], and they

satisfy the commutation relation{
(γ)
ω āIJ (x, x3), Π̃b̄KL(y, x3)

}
= κδb̄āδ

K
[I δ

L
J ]δ

3(x, y), (4.6)

where x and y are points in Ω. Also, since the 3-dimensional manifold might have a

boundary, we will maintain the boundary terms throughout the entire analysis. Continuing
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with the analysis, H̃ is the Hamiltonian density given by

H̃ := −ω3IJ G̃IJ +N āṼā +
˜
N ˜̃S, (4.7)

where ω3IJ , N ā, and
˜
N := |q|−1N are Lagrange multipliers imposing the constraints

G̃IJ := Dā

(γ)

Π̃ āIJ = ∂ā

(γ)

Π̃ āIJ+ 2ωā
[I|
K

(γ)

Π̃ āK|J ] ≈ 0, (4.8a)

Ṽā :=
(γ)

Π̃ b̄IJFāb̄IJ ≈ 0, (4.8b)

˜̃S := Π̃āIKΠ̃b̄
K
J

(γ)

F āb̄IJ − 2qΛ ≈ 0, (4.8c)

where Fāb̄IJ := ∂āωb̄IJ −∂b̄ωāIJ +ωāIKωb̄
K
J −ωb̄IKωāKJ , and q is related to Π̃āIJ through

qqāb̄ = −1

2
Π̃āIJ Π̃b̄

IJ . (4.9)

Furthermore, the definition of momentum Π̃āIJ introduces six new constraints whose

evolution leads us to add another six secondary constraints. Thus, the theory is in fact

described by the action

S =
1

κ

∫
Ω
dV

∫
R
dx3

[
(γ)

Π̃ āIJ∂3ωāIJ − H̃T + ∂ā

(
Π̃āIJω3IJ

)]
. (4.10)

The total Hamiltonian,

H̃T := −ω3IJ G̃IJ +N āṼā +
˜
N ˜̃S +

˜
φāb̄

˜̃Φāb̄ + ψāb̄Ψ
āb̄, (4.11)

is formed by the linear combination of constraints (4.8a), (4.8b), (4.8c), and

˜̃Φāb̄ := ∗Π̃ā
IJ Π̃b̄IJ ≈ 0, (4.12a)

Ψāb̄ := εIJKLΠ̃(ā|IM Π̃c̄
M
JDc̄Π̃

|b̄)KL ≈ 0. (4.12b)

˜
φāb̄, and ψāb̄ (of weight -2, so that Ψāb̄ has weight +3) are also Lagrange multipliers. As

in the usual case, G̃IJ , Ṽā, and ˜̃S are the first-class constraints that generate the gauge

symmetries of the theory (local Lorentz transformations and spacetime diffeomorphisms)

whereas ˜̃Φāb̄ and Ψāb̄ are second class. We deal with them in next section.

Notice that the Hamiltonian description given here is the same as the one in the previous

chapter (see Sec. 3.1, keep in mind that here σ = −1). Therefore, the form of the

constraints does not depend on the foliation considered, they maintain the same functional
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form. This is a direct manifestation of the diffeomorphism invariance of general relativity.

4.2 Solution of the second-class constraints: manifestly
Lorentz-covariant phase-space variables

The next step is to get rid of the second-class constraints. Since we follow the same

method described in the previous chapter, we present only the main results. Thus, the

solution to ˜̃Φāb̄ = 0 is

Π̃āIJ = 2εΠ̃ā[ImJ ], (4.13)

where ε = ±1 and mI is an arbitrary vector. We choose mI such that it fulfills the two

properties: mIm
I = 1 and mIΠ̃

āI = 0. Explicitly, it is

mI :=
1

6
√
|h|
εIJKL

˜
ηāb̄c̄Π̃

āJ Π̃b̄KΠ̃c̄L, (4.14)

where h := det(
˜̃
hāb̄) < 0 and

˜̃
hāb̄ := Π̃āIΠ̃b̄

I . Notice that we use a different normalization

factor for mI , which is required to have consistency with the gauge fixing we are going to

consider in next section.

As in the previous chapter, we introduce two important quantities. The first one is the

projector onto the plane orthogonal to mI

qIJ :=
˜̃
hāb̄Π̃

āIΠ̃b̄
J = δIJ −mImJ , (4.15)

where
˜̃
hāb̄ is the inverse of

˜̃
hāb̄ (

˜̃
hāc̄

˜̃
hc̄b̄ = δb̄ā). The second one is the covariant derivative

compatible with Π̃āI

∇āΠ̃b̄I := ∂āΠ̃
b̄I + Γā

I
J Π̃b̄J + Γb̄āc̄Π̃

c̄I − Γc̄āc̄Π̃
b̄I = 0, (4.16)

which is a system of 36 equations for the 18 + 18 components of ΓāIJ = −ΓāJI and

Γāb̄c̄ = Γāc̄b̄. Their explicit form is similar to the expressions found in (3.13) and (3.14),

respectively, we only need add a bar over the lowercase indices. Furthermore, the curvature

of the internal connection ΓāIJ is

Rāb̄
I
J = ∂āΓb̄

I
J − ∂b̄ΓāIJ + Γā

I
KΓb̄

K
J − Γb̄

I
KΓā

K
J . (4.17)
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On the other hand, before we solve the remaining constraint, we complement the six

constraints in (4.12b) with the definition of CāI that involves 12 equations

CāI := ε

(
(γ)
ω āIJ m

J +mI

(γ)
ω b̄JK

˜̃
hāc̄Π̃

c̄J Π̃b̄K

)
. (4.18)

Thus, solving (4.12b) and (4.18) jointly, we arrive at the solution for
(γ)
ω āIJ

(γ)
ω āIJ= Mā

b̄
IJKCb̄

K +
˜
λāb̄Ñ

b̄
IJ , (4.19)

where

Mā
b̄
IJK := ε

[
− δb̄ām[IηJ ]K + δb̄āPIJKLm

L +
˜̃
hāc̄Π̃

b̄
[IΠ̃

c̄
J ]mK

+
1

2γ
εIJLM

˜̃
hāc̄Π̃

c̄
KΠ̃b̄LmM

]
, (4.20)

Ñ ā
IJ := εIJKLΠ̃āKmL, (4.21)

˜
λāb̄ := −1

2
εIJKL

(
˜̃
hāb̄

˜̃
hc̄d̄ − 2

˜̃
hc̄(ā

˜̃
hb̄)d̄

)
Π̃c̄IΠ̃f̄J Π̃d̄MmLΓf̄

K
M . (4.22)

The solutions (4.13) and (4.19) reduce the action (4.10) to

S =
1

κ

∫
Ω
dV

∫
R
dx3

[
2Π̃āI∂3CāI −

(
−ω3IJ G̃IJ +N āṼā +

˜
N ˜̃S

)
+ ∂ā

(
Π̃āIJω3IJ

)]
, (4.23)

which is formed entirely by the first-class constraints

G̃IJ = 2Π̃ā[ICā
J ] + 4εP IJKLΠ̃ā[MmK]Γā

L
M ≈ 0, (4.24a)

Ṽā = 4∇[ā

(
Cb̄]IΠ̃

b̄I
)
− 4εΠ̃b̄[ImJ ]

(γ)

Γ āIK Γb̄
K
J + εG̃IJmJ

[
2CāI

−2εmK
(γ)

Γ āIK +
˜̃
hāb̄Π̃

b̄K G̃IK

]
≈ 0, (4.24b)

˜̃S = −Π̃āIΠ̃b̄JRāb̄IJ + 2Π̃ā[I|Π̃b̄|J ]

[
CāICb̄J − 2εCāIm

K
(γ)

Γ b̄JK

+

(
ΓāIL +

2

γ
∗ ΓāIL

)
Γb̄JKm

KmL − 1

γ2
qKLΓāIKΓb̄JL

]

+G̃IJ
[
− 1

4
G̃IJ +

1

4

(
P−1

)
IJKL

G̃KL − 1

2
mIm

K G̃JK

]
−2εΠ̃āImJ∇āG̃IJ + 2

√
|h|Λ ≈ 0. (4.24c)

Before we collect all the terms proportional to the Gauss constraint, we rewrite the
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vector constraint as

Ṽā = 2D̃ā + G̃IJ
(

ΓāIJ + 2εCāImJ + 2mIm
K

(γ)

Γ āJK −ε
˜̃
hāb̄Π̃

b̄KmI G̃JK
)
, (4.25)

where D̃a is the diffeomorphism constraint given by

D̃ā := 2Π̃b̄I∂[āCb̄]I − CāI∂b̄Π̃b̄I . (4.26)

Next, we integrate by parts the term containing the derivative of G̃IJ in (4.24c) and redefine

the Lagrange multiplier as

λIJ := −ω3IJ +N ā

(
ΓāIJ + 2εCā[ImJ ] + 2m[I|m

K
(γ)

Γ ā|J ]K −ε
˜̃
hāb̄Π̃

b̄Km[I G̃J ]K

)
+

˜
N

[
−1

4
G̃IJ +

1

4

(
P−1

)
IJKL

G̃KL − 1

2
m[Im

K G̃J ]K

]
+ 2εΠ̃ā

[ImJ ]∇ā
˜
N. (4.27)

Thus, the action becomes

S =
1

κ

∫
Ω
dV

∫
R
dx3

[
2Π̃āI∂3CāI −

(
λIJ G̃IJ + 2N āD̃ā +

˜
N ˜̃H

)
+ ∂ā

(
2εΠ̃āImJω3IJ + 2ε

˜
NΠ̃āImJ G̃IJ

)]
, (4.28)

where the Gauss and diffeomorphism constraints are given in (4.24a) and (4.26),

respectively, and the Hamiltonian constraint is given by

˜̃H = −Π̃āIΠ̃b̄JRāb̄IJ + 2Π̃ā[I|Π̃b̄|J ]

[
CāICb̄J − 2εCāIm

K
(γ)

Γ b̄JK

+

(
ΓāIL +

2

γ
∗ ΓāIL

)
Γb̄JKm

KmL − 1

γ2
qKLΓāIKΓb̄JL

]
+ 2
√
|h|Λ. (4.29)

At this point, we are tempted to explore the different sets of canonical formulations

presented in Sec. 3.3. However, there is no much insight we can gain from displaying them

here. We just remind the reader that under those transformations, we must keep track of

the boundary terms that arise during the canonical transformations.
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4.3 Gauge fixing: space gauge

The group SU(1, 1) [or SO(2, 1)] is one of the subgroups belonging to Lorentz group,

whose generators are two boost transformations and one rotation. We can derive a

Hamiltonian description invariant under local SU(1, 1) transformations if we consider the

gauge condition

Π̃ā3 = 0. (4.30)

Using Eq. (4.14), the former condition implies mī = 0 and m3 = −sgn[det(Π̃ā̄i)], for

ī = {0, 1, 2, }. Therefore, the only nonzero component of mI is along an internal spatial

direction, so we shall name this gauge condition the “space gauge”. Moreover, from the

normalization of mI , we have

mIm
I = m3m

3 =
(
m3
)2

= 1. (4.31)

Thus, in order to keep a real description, mI must be a spacelike vector. This is the reason

why we have assumed it since the very beginning.

Continuing with the analysis, the Poisson bracket of the condition (4.30) with G̃ ī3 is

not zero; it is {
Π̃ā3(x, x3), G̃ ī3(y, x3)

}
= −κ

2
Π̃ā̄iδ3(x, y). (4.32)

As a result, since det(Π̃ā̄i) 6= 0, G̃ ī3 = 0 and Eq. (4.30) are second-class constraints. Fixing

G̃ ī3 drops out the freedom to perform boost transformations along the x3 axis and the

rotations around axes x1 and x2. On the other hand, we define

G̃ī := −1

2
ε̄ij̄k̄G̃ j̄k̄, (4.33)

where ε̄ij̄k̄ := ε̄ij̄k̄3, and then, the remaining Gauss constraint G̃ī obeys the algebra{
G̃ī (x, x3), G̃j̄ (y, x3)

}
=
κ

2
ε̄ij̄

k̄G̃k̄δ3(x, y), (4.34)

which corresponds to the Lie algebra of the group SU(1, 1) [or SO(2, 1)]. The constraint

G̃ī generates rotations around the x3 axis and boost transformations along the axes x1 and

x2.

Under the space gauge, the internal connection ΓāIJ splits into two parts: Γā3̄i = 0

and Γā̄i := −(1/2)ε̄ij̄k̄Γā
j̄k̄; the latter being the spin connection compatible with Π̃ā̄i since,
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from (4.16), it satisfies

∇āΠ̃b̄̄i = ∂āΠ̃
b̄̄i + Γb̄āc̄Π̃

c̄̄i − Γc̄āc̄Π̃
b̄̄i + εī j̄k̄Γā

j̄Π̃b̄k̄ = 0. (4.35)

Explicitly it is

Γā̄i = ε̄ij̄k̄

(
∂[b̄

˜
Πā]

j̄ +
˜
Πā

[l̄|Π̃c̄|j̄]∂b̄
˜
Πc̄l̄

)
Π̃b̄k̄, (4.36)

where
˜
Πā̄i is the inverse of Π̃ā̄i (

˜
Πā̄iΠ̃

b̄̄i = δb̄ā and
˜
Πā̄iΠ̃

āj̄ = δj̄
ī
). Furthermore, the field

strength of Γā̄i is

Rāb̄̄i := −1

2
ε̄ij̄k̄Rāb̄

j̄k̄ = ∂āΓb̄̄i − ∂b̄Γā̄i + ε̄ij̄k̄Γā
j̄Γb̄

k̄. (4.37)

Moving forward, we solve G̃i3 = 0 and obtain

Cā3 = −εm3

˜
Πā̄i∂b̄Π̃

b̄̄i. (4.38)

Substituting (4.30) and (4.38) into the action (4.28), it acquires the form

S =
1

κ

∫
Ω
dV

∫
R
dx3

[
2Π̃āi∂3Cāi −

(
2λīG̃ ī + 2N āD̃ā +

˜
N ˜̃H

)
+ ∂ā

(
2εΠ̃ā̄im3ω3̄i3

)]
, (4.39)

where λī := −(1/2)ε̄ij̄k̄λ
j̄k̄ and the constraints are

G̃ ī = ε
m3

γ

[
∂āΠ̃

ā̄i + εī j̄k̄(εm
3γCā

j̄)Π̃āk̄
]
, (4.40a)

D̃ā = 2Π̃ā̄i∂[āCb̄]̄i − Cā̄i∂b̄Π̃ā̄i, (4.40b)

˜̃H = ε̄ij̄k̄Π̃
ā̄iΠ̃b̄j̄Rāb̄

k̄ + 2Π̃ā[̄i|Π̃b̄|j̄]
(
Cā̄i −

εm3

γ
Γā̄i

)(
Cb̄j̄ −

εm3

γ
Γb̄j̄

)
+2Λ|det(Π̃ā̄i)|. (4.40c)

From Eq. (4.40a) we identify the connection

Aā̄i := εγm3Cā̄i. (4.41)

Thus, using Aā̄i as our configuration variable, the action (4.39) is rewritten as

S =
1

κ

∫
Ω
dV

∫
R
dx3

[
2εm3

γ
Π̃āi∂3Aāi −

(
2λīG̃ ī + 2N āD̃ā +

˜
N ˜̃H

)
+∂ā

(
2εΠ̃ā̄im3ω3̄i3

)]
, (4.42)
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and the constraints are given by

G̃ ī = ε
m3

γ

[
∂āΠ̃

ā̄i + εī j̄k̄Aā
j̄Π̃āk̄

]
, (4.43a)

D̃ā = ε
m3

γ

(
2Π̃b̄̄i∂[āAb̄]̄i −Aā̄i∂b̄Π̃b̄̄i

)
, (4.43b)

˜̃H =
1

γ2
ε̄ij̄k̄Π̃

ā̄iΠ̃b̄j̄
[
Fāb̄

k̄ −
(
γ2 + 1

)
Rāb̄

k̄
]

+ 2ε
m3

γ
Π̃ā̄i∇āG̃i

+2Λ| det(Π̃ā̄i)|, (4.43c)

where we used the identity

2∇[ā

(
Ab̄]̄i − Γb̄]̄i

)
= Fāb̄̄i −Rāb̄̄i − ε̄ij̄k̄(Aāj̄ − Γā

j̄)(Ab̄
k̄ − Γb̄

k̄). (4.44)

Alternatively, as in Sec. 2.5, we can use the vector constraint instead of the

diffeomorphism constraint

C̃ā := D̃ā +Aā̄iG̃ ī = ε
m3

γ
Π̃b̄̄iFāb̄̄i, (4.45)

which requires a redefinition of the Lagrange multiplier

µī := λī −N āAā̄i −
1

γ
Π̃ā

ī∇ā
˜
N. (4.46)

Then, we integrate by parts the term with the covariant derivative in (4.43c) and, with

the redefinition of the Lagrange multiplier µī, we arrive at

S =
1

κ

∫
Ω
dV

∫
R
dx3

[
2εm3

γ
Π̃āi∂3Aāi −

(
2µīG̃ ī + 2N āC̃ā +

˜
N ˜̃C
)

+∂ā

(
2εΠ̃ā̄im3ω3̄i3 − 2ε

m3

γ ˜
NΠ̃ā̄iG̃ī

)]
, (4.47)

where the scalar constraint ˜̃C is given by

˜̃C =
1

γ2
ε̄ij̄k̄Π̃

ā̄iΠ̃b̄j̄
[
Fāb̄

k̄ −
(
γ2 + 1

)
Rāb̄

k̄
]

+ 2Λ|det(Π̃ā̄i)|. (4.48)

The Hamiltonian formulation is encompassed by the action (4.47) and the constraints

(4.43a), (4.45), and (4.48). It is what we call the Ashtekar-Barbero-like formulation.

It resembles the original formulation reported in Ref. [17], but it is constructed with

SU(1, 1)-[SO(2, 1)]-covariant objects instead of the SU(2) [SO(3)] fields of the original

approach. Although the group SU(1, 1) is not compact, it might be possible to implement
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this description into the canonical quantization program (see Ref. [63]).

Finally, for completeness purposes, if we had applied the space gauge in a formulation

described by the variables (QāI , Π̃āI) or (QāI , Π̃āI), we would have obtained the

formulation characterized by the constraints

G̃ ī = εī j̄k̄Qā
j̄Π̃āk̄ ≈ 0, (4.49a)

D̃ā = 2Π̃b̄̄i∂[āQb̄]̄i −Qā̄i∂b̄Π̃b̄̄i ≈ 0, (4.49b)

˜̃H = ε̄ij̄k̄Π̃
ā̄iΠ̃b̄j̄Rāb̄

k̄ + 2Π̃ā[̄i|Π̃b̄|j̄]Qā̄iQb̄j̄ + 2Λ| det(Π̃ai)|. (4.49c)

This formulation is similar to the SO(3)-ADM description, but it is invariant under the

SO(2, 1) group. Thus, we might call it the SO(2, 1)-ADM description.

4.4 Comments

We finish this chapter summarizing the results we presented here. First, we foliated

the spacetime manifold with timelike leaves and found a Hamiltonian description with

first- and second-class constraints. Then, we explicitly solve the second-class constraints in

the same manifestly Lorentz-covariant fashion of the previous chapter. At the end, using

the space gauge, we found a description for general relativity invariant under SU(1, 1) [or

SO(2, 1)] transformations. Remarkably, this new formulation has the same structure as

the Ashtekar-Barbero formulation, and it is also constructed with a densitized triad and

an internal connection.

We also want to point out that a similar description was already reported in Ref. [39].

However, the procedure exposed in that work was not as neat or clear as ours, since

they used the nonmanifestly formulation of Barros e Sá. Furthermore, their Hamiltonian

description is incomplete since they did not present the scalar constraint, which has a

complicated form in the Barros e Sá description.

Finally, we remark that the results exposed in this chapter are found in Ref. [59], and are

published under the terms of the Creative Commons Attribution 4.0 International license.

We, the authors, own the rights for the article distribution.
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Hamiltonian analysis for a BF -type action for

general relativity with the Barbero-Immirzi

parameter

Chapter

5

BF theories are first-order formulations where the fundamental variables are an internal

connection and a B field. In four dimensions, the B field is a 2-form. Although pure

BF theories are topological—in the sense that they do not propagate physical degrees of

freedom—, with the addition of constraints on the B field we can break its topological

nature and describe physical theories such as general relativity.1 Plebański presented the

first BF -type action that describes general relativity [65]. It was later shown that the

Hamiltonian analysis of the Plebański action leads to the Ashtekar complex formulation

[43].

In this chapter, we use a BF -type action that is equivalent, at the Lagrangian level,

to the Holst action. From there, we perform its Hamiltonian analysis and classify its

constraints. Once the solution of the second-class constraints is done, either with manifestly

Lorentz-covariant variables or not, we obtain the same Hamiltonian description of Chapters

2 and 3. Thus, we can connect the Hamiltonian formalism of BF gravity with the Ashtekar-

Barbero formulation.

Some of the results of this chapter were published in Ref. [66].

5.1 Classification of the constraints

The action we consider is [67,68]

S[B,ω, φ, µ] =
1

κ

∫
M

[(
BIJ +

1

γ
∗BIJ

)
∧ FIJ − φIJKLBIJ ∧BKL

−µφIJKLεIJKL + µλ+ l1BIJ ∧BIJ + l2BIJ ∧ ∗BIJ

]
, (5.1)

1For an extensive review in BF formulations for gravity see Ref. [64].
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where M is a 4-dimensional manifold, κ = 16πG, γ represents the Barbero-Immirzi

parameter, and the asterisk stands for the internal dual [see Eq. (A.2)]. Note that the

action depends on the field BIJ , the internal Lorentz (Euclidean) connection ωIJ (with

F IJ = dωIJ + ωIK ∧ ωKJ being its curvature), the internal tensor φIJKL = φKLIJ =

−φJIKL = −φIJLK , and in the 4-form µ. The constants λ, l1, and l2 are related to the

cosmological constant Λ.

To begin with the Hamiltonian analysis, we consider the same assumptions we done in

Chapters 2 and 3 (see Appendix A). Furthermore, along this section we follow Ref. [69]

where this analysis was first reported. Continuing with the analysis, we decompose the

differential forms as

BIJ =
1

2
Bµν

IJdxµ ∧ dxν = Bta
IJdt ∧ dxa +

1

2
Bab

IJdxa ∧ dxb, (5.2a)

ωIJ = ωµ
I
Jdx

µ = ωt
I
Jdt+ ωa

I
Jdx

a, (5.2b)

µ = µ̃0d
4x, (5.2c)

and rewrite the action (5.1) as

S =
1

κ

∫
R
dt

∫
Σt

d3x

[
Π̃aIJ∂t

(γ)
ω aIJ +ωtIJDa

(γ)

Π̃ aIJ +
1

2
η̃abc

(γ)

F abIJ Btc
IJ + µ̃0λ

−
(

2Bta
IJ Π̃aKL + µ̃0ε

IJKL
)
φIJKL + 2l1Π̃aIJBtaIJ + 2l2 ∗ Π̃aIJBtaIJ

]
, (5.3)

where

Π̃aIJ :=
1

2
η̃abcBbc

IJ . (5.4)

Here, Da stands for the covariant derivative associated with ωa
I
J ; explicitly

DaΠ̃
aIJ = ∂aΠ̃

aIJ + 2ωa
[I|
KΠ̃aK|J ]. (5.5)

To simplify the number of variables involved in the analysis, we use the equation of

motion for φIJKL

Π̃aIJBta
KL + Π̃aKLBta

IJ + µ̃0ε
IJKL = 0. (5.6)

Given the symmetries of φIJKL, Eq. (5.6) is a system of 21 independent equations. It can

be shown that the solution of Eq. (5.6) is [69,70]

µ̃0 = − σ

12
εIJKLBta

IJ Π̃aKL, (5.7)

Bta
IJ =

σ

2 ˜
Nqab ∗ Π̃aIJ −

˜
η abcN

bΠ̃cIJ , (5.8)
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together with the constraint

˜̃Φab := −σ ∗ Π̃aIJ Π̃b
IJ = 0, (5.9)

where qab is the inverse of qab, which fulfills the relation

qqab :=
σ

2
Π̃aIJ Π̃b

IJ , (5.10)

with q := det(qab). Moreover, note that we have introduced four arbitrary fields
˜
N and

Na.

Using (5.7) and (5.8), the action (5.3) becomes

S =
1

κ

∫
R
dt

∫
Σt

d3x

[
Π̃aIJ∂t

(γ)
ω aIJ +ωtIJ G̃IJ −NaṼa −

˜
N ˜̃S −

˜
φab

˜̃Φab

]
, (5.11)

we also added the multiplier
˜
φab to impose the constraint (5.9). Here, we observe that

ωtIJ , Na, and
˜
N , play the role of Lagrange multipliers imposing the constraints

G̃IJ := Da

(γ)

Π̃ aIJ ≈ 0, (5.12a)

Ṽa := Π̃bIJ
(γ)

F abIJ≈ 0, (5.12b)

˜̃S :=
σ

2
η̃abcqad ∗ Π̃dIJ

(γ)

F bcIJ +q (12σl2 − λ) ≈ 0. (5.12c)

The next step in the Hamiltonian analysis is to compute the Poisson algebra among

the constraints (5.9) and (5.12a)-(5.12c). The algebra does not close because of the

Poisson bracket between ˜̃Φab and ˜̃S. Therefore, the evolution of ˜̃Φab leads to the secondary

constraint [69]

Ψab := 2η̃(a|cdqcf Π̃f
IJDdΠ̃

|b)IJ ≈ 0. (5.13)

We incorporate the previous constraint into the action, then, it reads

S =
1

κ

∫
R
dt

∫
Σt

d3x

[
Π̃aIJ∂t

(γ)
ω aIJ +ωtIJ G̃IJ −NaṼa −

˜
N ˜̃S −

˜
φab

˜̃Φab − ψabΨab

]
, (5.14)

where the Lagrange multiplier ψab (of weight -2) imposes (5.13). According to Dirac’s

classification of constraints, G̃IJ , Ṽa, and ˜̃S are first class; they generate local Lorentz

(Euclidean) transformations and spacetime diffeomorphisms. On the other hand, ˜̃Φab and

Ψab (of weight +3) are second class, and we deal with them in the next section. All

together, they account for the (1/2)(2 × 18 − 2 × 10 − 12) = 2 local d.o.f. of general

relativity. Note that the formulation (5.14) is the same one that arises from Holst action
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when second-class constraints are involved.

5.2 Solutions for the second-class constraints

At this point, we want to study the solution of the second-class constraints with

nonmanifestly Lorentz-covariant variables and with manifestly Lorentz-covariant variables.

Thus, we bifurcate the analysis for the remaining of this chapter.

5.2.1 Nonmanifestly Lorentz-covariant solution

We begin with the solution in terms of nonmanifestly Lorentz-covariant variables. Here,

instead of the path we followed in Sec. 2.3, we follow an approach closely related to the

one in Ref. [34]. Thus, we can introduce canonical variables to simplify the solution of the

second-class constraints, so we can avoid the formulation with a noncanonical symplectic

structure. It is worth to mention that we have already reported the upcoming results; they

are found in Ref. [66].

First, we solve the constraint (5.9), its solution is

Π̃ai0 =: Π̃ai, (5.15a)

Π̃aij = −2Π̃a[iχj]. (5.15b)

Therefore, the 12 independent variables that constitute Π̃aIJ are Π̃ai and χi.

Before we continue with the next constraint, we notice that we can rearrange the kinetic

term of the action (5.14). Hence, using (5.15a) and (5.15b), we have [34]

Π̃aIJ∂t
(γ)
ω aIJ=

2

γ
Π̃aiȦai +

2

γ
ζ̃iχ̇i, (5.16)

where we made the definitions

Aai := −γ
(γ)
ω a0i −γ

(γ)
ω aij χ

j , (5.17a)

ζ̃i := −γ
(γ)
ω a

i
jΠ̃

aj . (5.17b)

Thus, the Hamiltonian formulation is described by the canonical pairs (Aai, Π̃ai) and
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(χi, ζ̃
i) since the only nonvanishing commutation relations are{

Aai(t, x), Π̃bj(t, y)
}

=
κγ

2
δbaδ

j
i δ

3(x, y), (5.18a){
χi(t, x), ζ̃j(t, y)

}
=

κγ

2
δji δ

3(x, y). (5.18b)

The next step is to parametrize
(γ)
ω a0i and

(γ)
ω aij with the canonical variables Π̃ai, Aai,

χi, and ζ̃i. However, since (5.17a) and (5.17b) are 12 equations for the 18 components of
(γ)
ω a0i and

(γ)
ω aij , we need to introduce the six free variables M̃ij = M̃ji. Then, we invert

(5.17a) and (5.17b) and get

(γ)
ω a0i = −1

γ
Aai −

1

2
εijkχ

j

˜
ΠalM̃

kl −
˜
Πa[iζ̃j]χ

j , (5.19a)

(γ)
ω aij =

1

2
εijk

˜
ΠalM̃

kl +
˜
Πa[iζ̃j]. (5.19b)

The next step is to solve the constraint Ψab = 0 given in (5.13). Substituting (5.15a),

(5.15b), (5.19a), and (5.19b) into (5.13) implies

1

4

(
1− σ

γ2

)
˜
Πai

˜
ΠbjΨ

ab = 2f̃(ij) − (1 + σχpχp) εikmεjlnΘmnM̃kl = 0. (5.20)

The quantities Θi
j and f̃ ij are the ones already defined in (2.23) and (2.46), respectively.

Therefore, the constraint (5.13) allows us to fix the variables M̃ij . The solution of (5.20)

is

M̃ij =
2

(1 + σχrχr)
2

[
δki δ

l
j −

1

4

(
ϑ−1

)
ij
ϑkl
]
εkmpεlnqϑ

mnf̃ (pq), (5.21)

=
1

(1 + σχmχm)2

[(
f̃kk + σf̃klχ

kχl
)
δij +

(
σf̃kk − f̃klχkχl

)
χiχj

−2f̃(ij) − 2 σ
(
χ(if̃j)k + f̃k(iχj)

)
χk
]
, (5.22)

with ϑij defined in (2.24).

We have successfully solved the second-class constraints (5.9) and (5.13), and we have

derived a Hamiltonian formulation described by the canonical variables (Aai, Π̃ai) and

(χi, ζ̃
i). Then, we substitute (5.15a), (5.15b), (5.19a), (5.19b), and (5.22) into the action

(5.14) and in the constraints (5.12a)-(5.12c), and get

S =
1

κ

∫
R
dt

∫
Σt

d3x

[
2

γ
Π̃aiȦai +

2

γ
ζ̃iχ̇i − εijkωtjkG̃irot + 2ωti0G̃iboost −NaṼa −

˜
N ˜̃S

]
, (5.23)
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where the constraints are given by

G̃iboost = ∂a

(
P ijΠ̃

aj
)

+
2σ

γ
AajΠ̃

a[iχj] − σ

γ
ζ̃jχ

jχi − 1

γ
ζ̃i, (5.24a)

G̃irot = ∂a

(
QijΠ̃

aj
)

+
1

γ
εijk

(
Aa

jΠ̃ak − ζ̃jχk
)
, (5.24b)

Ṽa =
4

γ
Π̃bi∂[aAb]i +

2

γ
ζ̃i∂aχ

i − 2γ2

γ2 − σ

[
1

γ2
Aai

(
ζ̃i + σζ̃jχ

jχi
)

−2σ

γ2
Π̃b[iχj]AaiAbj −

σ

γ3
εijk

(
Π̃biAb

j + ζ̃iχj
)
Aa

k

+
(
QijGjboost − P

i
jGjrot

)
Jai

]
, (5.24c)

˜̃S = −2Π̃aiχiṼa − 2σ (1 + σχpχ
p) εijkΠ̃

aiΠ̃bj

{
∂aJb

k − 2

γ
(Aal + Jal) Jb

kχl

− σγ2

2(γ2 − σ)

[
εklm

(
1

γ2
AalAbm + σJalJbm +

2

γ2
AalJbm

)
+

2

γ
AalJb

lχk + εlmnJalJbmχnχ
k

]}
+ 2σΛ

∣∣1 + σχiχ
i
∣∣ |det(Π̃ai)|, (5.24d)

where Λ := (6l2 − σλ/2), while P ij , Q
i
j , and Jai are defined in (2.33), (2.34), and (2.44),

respectively. This is the same description we encountered in Sec. 2.4. Therefore, the

Hamiltonian formulation of the BF action (5.1) is utterly equivalent to the Hamiltonian

formulation of the Holst action. From this point we can easily make contact with the

Ashtekar-Barbero formulation (see Sec. 2.5). Thus, it is possible to derive the Ashtekar-

Barbero formalism from the BF -type action (5.1).

5.2.2 Manifestly Lorentz-covariant solution

Let us move on to the manifestly Lorentz-covariant formalism. The solution of (5.9) is

Π̃aIJ = 2εΠ̃a[ImJ ], (5.25)

where ε = ±1 and mI is an arbitrary internal vector. We choose mI so that it satisfies:

mIΠ̃
aI = 0 and mIm

I = σ, its explicit form is given in Eq. (3.8). Moreover, let us to

define the covariant derivative as

∇aΠ̃bI := ∂aΠ̃
bI + ΓbacΠ̃

cI − ΓcacΠ̃
bI + Γa

I
J Π̃bJ = 0, (5.26)

where ΓaIJ = −ΓaJI and Γabc = Γacb. The solution for ΓaIJ and Γabc is that given in

(3.13) and (3.14), correspondingly. Also, from the definition of mI in Eq. (3.8), we get the
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identity √
hη̃abc

˜̃
hcdΠ̃

d
I = −σεIJKLmJ Π̃aKΠ̃bL. (5.27)

Next, we substitute (5.25) into the second-class constraint (5.13), and we use Eqs. (5.26)

and (5.27) to simplify the expression. Then, the constraint Ψab = 0 of Eq. (5.13) reads

Ψab = 4εIJKLΠ̃(a|IΠ̃|b)M Π̃cJmK
(
Γc
L
M − ωcLM

)
= 0. (5.28)

After a quick comparison with Eq. (3.16), we notice that both expressions are different

by a global factor of (−2σε) which does not alter the result. Thus, we can use the same

solution given in Eq. (3.20).

If we compare the action (5.14) and constraints (5.12a)-(5.12c) with those of (3.2) and

(3.4a)-(3.4c), we found that they only differ in the scalar constraint ˜̃S. Hence, since the

solution of the second-class constraints is the same in both cases, we only need to compute

the scalar constraint to see if both formulations are equivalent. Thus, substituting (5.25)

and (3.20) into (5.12c) yields

˜̃S = −ε
{
− σΠ̃aIΠ̃bJRabIJ + 2Π̃a[I|Π̃b|J ]

[
CaICbJ − 2εCaIm

K
(γ)

Γ bJK

+

(
ΓaIL +

2

γ
∗ ΓaIL

)
ΓbJKm

KmL +
1

γ2
qKLΓaIKΓbJL

]

+G̃IJ
[
− 1

4
G̃IJ +

1

4

(
P−1

)
IJKL

G̃KL − σ

2
mIm

K G̃JK

]

−2εΠ̃aImJ∇aG̃IJ + 2σ
√
hΛ

}
≈ 0. (5.29)

with Λ := −ε(6l2 − σλ/2), whereas qIJ and Rab
I
J are given by (3.11) and (3.15),

respectively.

The only difference between (5.29) and (3.23c) is the global factor (−ε), which can be

reabsorbed into the Lagrange multiplier that impose the scalar constraint; we just need

to make the change
˜
N → −ε

˜
N . Thus, from this departing point we can also derive the

Ashtekar-Barbero formulation as we did in Sec. 3.4.
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5.3 Comments

We finish the chapter with a few remarks. The first part of the analysis was carried out

in Ref. [69]. There, the authors considered the action (5.1) and classified the constraints

that emerge during its Hamiltonian analysis. Following that point of view, we took their

results and solved the second-class constraints in a nonmanifestly covariant fashion. We

already reported that solution; it is found in Ref. [66], where we also presented the complete

path from the BF -type action to the Ashtekar-Barbero formulation. On the other hand,

for the manifestly covariant solution, we followed the procedure of Chapter 3, and our

results agree with those of Chapter 3.
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Manifestly Lorentz-covariant Hamiltonian

analysis for Holst action without introducing

second-class constraints

Chapter

6

As we have seen, second-class constraints usually emerge in the real first-order Hamiltonian

formalism of general relativity. They are introduced due to the mismatch between the

number of independent variables that compose the tetrad (or B field) and the internal

connection. However, if we can identify the canonical variables from the very beginning,

we can avoid to introduce second-class constraints. We develop this idea throughout this

chapter for the Holst action, and we find the suitable parametrization for the fundamental

variables of the action that do this job. The spatial part of the tetrad field is directly related

to the canonical momenta, and we decompose the spatial part of the internal connection

into two parts, one associated with the configuration variables and one composed by

auxiliary fields. After we integrate out the auxiliary fields from the formalism, we end

up with a Hamiltonian formulation described by first-class constraints only. Furthermore,

to complement this chapter, we generalize the canonical transformations enlisted in Sec.

3.3, and we explore the consequences of the time gauge in this general description.

The analysis and results of this chapter are published in Ref. [58].

6.1 The parametrization of the Lagrangian variables

We begin our analysis with the Holst action with cosmological constant Λ

S[e, ω] =
1

κ

∫
M

[
∗
(
eI ∧ eJ

)
∧

(γ)

F IJ −2Λρ

]
, (6.1)

where the internal dual and the γ-hat notation are defined in (A.2) and (A.4), respectively;

and ρ = (1/4!)εIJKLe
I ∧ eJ ∧ eK ∧ eL is the volume form. This action depends on the

tetrad field eI and in the 1-form connection ωIJ through its curvature

F IJ = dωIJ + ωIK ∧ ωKJ . (6.2)
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Along this chapter, we want to keep the analysis as general as possible. Thus, we

assume that the spacetime manifold M is diffeomorphic to R×Ξ, with Ξ as a 3-dimensional

submanifold that can be either a spacelike or a timelike surface. Under this consideration,

the internal indices are raised or lowered with metric (ηIJ) = diag(σ, 1, 1, 1) if Ξ is a

spacelike surface, whereas we use the (ηIJ) = diag(1,−1, 1, 1) when Ξ is a timelike surface.

Also, we will omit the boundary terms that appear during the Hamiltonian analysis. If the

reader is interested in the boundary terms, they are found during the analyses developed

in Chapters 3 and 4.

Next, we choose the x0 direction to define the notion of evolution, whereas xa denotes

the coordinates that label the points of Ξ, with a, b, c, ... = 1, 2, 3. Then, we express the

differential forms as

eI = eµ
Idxµ = e0

Idx0 + ea
Idxa, (6.3a)

ωIJ = ωµ
I
Jdx

µ = ω0
I
Jdx

0 + ωa
I
Jdx

a, (6.3b)

F IJ =
1

2
Fµν

I
Jdx

µ ∧ dxν = F0a
I
Jdx

0 ∧ dxa +
1

2
Fab

I
Jdx

a ∧ dxb, (6.3c)

with Fµν
I
J = ∂µων

I
J − ∂νωµIJ + ωµ

I
Kων

K
J − ωνIKωµKJ .

We denote the induced metric on Ξ as qab := eaIeb
I , and we define internal vector nI

orthogonal to Ξ. Thus, nI fulfills the two properties: nIea
I = 0 and nIn

I = τ , for a fixed

value of τ . Furthermore, let q = det(qab), if Ξ is a timelike surface, then q < 0 and nI is a

spacelike vector with norm τ = 1. On the other hand, if Ξ is a spacelike surface, then q > 0

and nI (in the Lorentzian signature, σ = −1) is a timelike vector, so τ = σ. Explicitly, nI

is

nI :=
1

6
√
|q|
εIJKLη

abcea
Jeb

Kec
L. (6.4)

The case for a null foliation (τ = 0) is out of the scope of this analysis, see Ref. [71] for a

Hamiltonian description on the light front for the Palatini action.

After 3 + 1 decomposition of the fields is made and the considerations mentioned above

are done, the action (6.1) takes the form

S =
1

κ

∫
R
dx0

∫
Ξ
d3x

{
−2Π̃aInJ∂0

(γ)
ω aIJ +ω0IJ G̃IJ + |q|−1/2e0

I
[
2Π̃a

IΠ̃
bJnK

(γ)

F abJK

+nI

(
Π̃aJ Π̃bK

(γ)

F abJK −2Λ|q|
)]}

, (6.5)
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where we performed an integration by parts and defined the quantities

Π̃aI :=
√
|q|qabebI , (6.6)

G̃IJ := −2P IJKL

[
∂a

(
Π̃aKnL

)
+ 2ωa

K
M Π̃a[MnL]

]
. (6.7)

In addition, we define the densitized metric
˜̃
hab := |q|−1qab, whose inverse is

˜̃
hab =

Π̃aIΠ̃b
I , which allows us to invert (6.6) and obtain

ea
I = |h|1/4

˜̃
habΠ̃

bI , (6.8)

where h = det(
˜̃
hab). Thus, we have mapped the 12 components of ea

I into the 12 variables

in Π̃aI . Moreover, if we substitute Eq. (6.8) into Eq. (6.4) we get

nI =
στ

6
√
|h|
εIJKL

˜
η abcΠ̃

aJ Π̃bKΠ̃cL, (6.9)

so we can express the internal vector nI in terms of Π̃aI only. Also, notice that, from (6.6)

or (6.8), nI satisfies nIΠ̃
aI = 0.

On the other hand, the remaining four components of the tetrad e0
I are parametrized

in terms of the lapse function N and the shift vector Na as follows

e0
I = NnI +Naea

I = NnI +Na|h|1/4
˜̃
habΠ̃

bI . (6.10)

Notice that the last equality is completely function of Π̃aI , N , and Na if we consider nI

as given by (6.9). Therefore, Eqs. (6.8) and (6.10) define a map (N, Na, Π̃aI) 7→ (eµ
I),

whose inverse is given by (6.6) and

N = τe0
InI , (6.11)

Na = qabe0
IebI , (6.12)

where nI is taken as in (6.4) and qab is the inverse of qab (qacqcb = δab ).

After substituting the new parameterization given by (6.8) and (6.10) into the action

(6.5), it acquires the form

S =
1

κ

∫
R
dx0

∫
Ξ
d3x

[
−2Π̃aInJ∂0

(γ)
ω aIJ +ω0IJ G̃IJ −NaṼa −

˜
N ˜̃S

]
, (6.13)

63



where we defined
˜
N := |h|−1/4N and

Ṽa := −2Π̃bInJ
(γ)

F abIJ , (6.14a)

˜̃S := −τ Π̃aIΠ̃bJ
(γ)

F abIJ +2τ
√
|h|Λ. (6.14b)

Instead of defining the canonical momentum conjugated to
(γ)
ω a

I
J (which leads to the

introduction of second-class constraints, as we saw in Chapter 2), we rearrange the first

term in (6.13) as

− 2Π̃aInJ∂0
(γ)
ω aIJ= 2Π̃aIĊaI , (6.15)

where

CaI := Wa
b
IJK

(γ)
ω b

JK (6.16)

and Wa
b
IJK = −Wa

b
IKJ is

Wa
b
IJK := −

(
δbaηI[JnK] + nI

˜̃
hacΠ̃

c
[J Π̃b

K]

)
. (6.17)

We can interpret Wa
b
IJK as an operator that projects 12 dynamical variables contained

in
(γ)
ω a

I
J . Furthermore, the null vectors that compose the presymplectic structure of (6.13)

are in the kernel of Wa
b
IJK . Therefore, we can solve the 12 equations in (6.16) to express

(γ)
ω a

I
J in terms of CaI plus the six free variables

˜
λab =

˜
λba that drop out of the presymplectic

structure. The solution for (6.16) is

(γ)
ω aIJ= Ma

b
IJKCb

K + Ñ b
IJ

˜
λab, (6.18)

with the expressions for Ma
b
IJK and Ña

IJ given by

Ma
b
IJK := τδban[IηJ ]K − τδbaPIJKLnL − τ

˜̃
hacΠ̃

b
[IΠ̃

c
J ]nK

− τ

2γ
εIJLM

˜̃
hacΠ̃

c
KΠ̃bLnM , (6.19a)

Ña
IJ := εIJKLΠ̃aKnL. (6.19b)

In addition to the objects (6.17), (6.19a), and (6.19b), we introduce the tensor density

˜
Uab

cIJ =
˜
Uba

cIJ = −
˜
Uab

cJI defined by

˜
Uab

cIJ := στ

(
1− σ

γ2

)
∗ (P−1)IJKLδc(a

˜̃
hb)eΠ̃

e
KnL. (6.20)
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They all together satisfy the following orthogonality relations:

Wa
cIKLMc

b
KLJ = δbaδ

I
J , (6.21a)

˜
Uab

cIJÑd
IJ = δc(aδ

d
b), (6.21b)

Wa
(b
IJKÑ

c)JK = 0, (6.21c)

˜
Uab

cIJMc
d
IJK = 0, (6.21d)

as well as the completeness relation

Ma
c
IJMWc

bMKL + Ñ c
IJ

˜
Uac

bKL = δbaδ
K
[I δ

L
J ]. (6.22)

Therefore, Wa
b
IJK and

˜
Uab

cIJ are the orthogonal projectors that decompose
(γ)
ω a

I
J into

the 12 + 6 variables CaI and
˜
λab. Thus, the map (

(γ)
ω a

I
J) 7→ (CaI ,

˜
λab), is given by (6.16)

and

˜
λab =

˜
Uab

cIJ (γ)
ω cIJ . (6.23)

Going back to the action (6.13), we substitute the new parametrization for
(γ)
ω a

I
J given

in (6.18) and obtain

S =
1

κ

∫
R
dx0

∫
Ξ
d3x

[
2Π̃aIĊaI + ω0IJ G̃IJ −NaṼa −

˜
N ˜̃S

]
, (6.24)

with

G̃IJ = 2Π̃a[ICa
J ] + 4P IJKLΠ̃a[KnM ]Γa

L
M , (6.25a)

Ṽa = 2
(

2Π̃bI∂[aCb]I − CaI∂bΠ̃bI
)

+ (P−1)IJKLG̃IJ
(
Ma

bKLMCbM

+
˜
λabÑ

bKL
)
, (6.25b)

˜̃S = −τ Π̃aIΠ̃bJRabIJ + 2Π̃a[I|Π̃b|J ]

[
CaICbJ + 2CaI

(γ)

Γ bJK nK

+
στ

γ2
qKLΓaIKΓbJL +

(
ΓaIL +

2

γ
∗ ΓaIL

)
ΓbJKn

KnL

]
+ 2τΛ

√
|h|

+2Π̃aInJ∇aG̃IJ −
1

4

[
G̃IJ − (P−1)IJKLG̃KL + 2τnI G̃JKnK

]
G̃IJ

+
σγ2

γ2 − σ
Gabcd

(
˜
λab −

˜
Uab

eIJ
(γ)

Γ eIJ

)(
˜
λcd −

˜
Ucd

fKL
(γ)

Γ fKL

)
. (6.25c)

The quantities qIJ and ΓaIJ are given, respectively, by (3.11) and (3.13) just replacing

σ → τ . Also, the curvature Rab
I
J is the same as that given by (3.15), and we have defined
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Gabcd :=
˜̃
hab

˜̃
hcd − ˜̃

h(a|c˜̃h|b)d, which is a tensor density of weight +4.

To simplify our analysis, we collect all the terms proportional to the Gauss constraint,

so we redefine the Lagrange multiplier that imposes it as

λIJ := −ω0IJ +NaωaIJ − 2Π̃a
[InJ ]∇a

˜
N

−1

4 ˜
N
[
G̃IJ − (P−1)IJKLG̃KL + 2τn[I G̃J ]Kn

K
]
. (6.26)

Thus, after integrating by parts the term containing the covariant derivative of the Gauss

constraint in (6.25c), we have

S =
1

κ

∫
R
dx0

∫
Ξ
d3x

[
2Π̃aIĊaI −

(
λIJ G̃IJ + 2NaD̃a +

˜
N ˜̃H

)]
, (6.27)

with

D̃a := 2Π̃bI∂[aCb]I − CaI∂bΠ̃bI , (6.28a)

˜̃H := −τ Π̃aIΠ̃bJRabIJ + 2Π̃a[I|Π̃b|J ]

[
CaICbJ + 2CaI

(γ)

Γ bJK nK

+
στ

γ2
qKLΓaIKΓbJL +

(
ΓaIL +

2

γ
∗ ΓaIL

)
ΓbJKn

KnL

]
+ 2τΛ

√
|h|

+
σγ2

γ2 − σ
Gabcd

(
˜
λab −

˜
Uab

eIJ
(γ)

Γ eIJ

)(
˜
λcd −

˜
Ucd

fKL
(γ)

Γ fKL

)
. (6.28b)

At this point, we have parametrized the original 24 variables that constitute the

internal connection
(γ)
ω µ

I
J with the 12 + 6 + 6 variables in CaI ,

˜
λab, and λIJ . The map

(
(γ)
ω µ

I
J) 7→ (CaI ,

˜
λab, λIJ) is given by Eqs. (6.16), (6.23), and (6.26). On the other hand,

its inverse map is given by Eqs. (6.18) and

(γ)
ω 0IJ = −

(γ)

λ IJ −2PIJKLΠ̃aKnL∇a
˜
N +Na

(
Ma

b
IJKCb

K +
˜
λabN

b
IJ

)
−1

4 ˜
N

(
(γ)

G̃ IJ −G̃IJ + 2τPIJKLn
K G̃LMnM

)
. (6.29)

To complete the Hamiltonian analysis, we must deal with the variables
˜
λab. Since they

appear quadratically in the action, they are auxiliary fields [53]. Thus, we can integrate

them out using their equation of motion. From the action (6.27) with the constraints

(6.25a), (6.28a), and (6.28b), we compute the equation of motion for
˜
λab

2
˜
NGabcd

(
˜
λcd −

˜
Ucd

fIJ
(γ)

Γ fIJ

)
= 0. (6.30)
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Given that
˜
N 6= 0 and the Gabcd is invertible,

(
G−1

)
abcd

= (1/2)(
˜̃
hab

˜̃
hcd − 2

˜̃
h(a|c

˜̃
h|b)d),

the solution for
˜
λab is

˜
λab =

˜
Uab

cIJ
(γ)

Γ cIJ . (6.31)

Substituting
˜
λab back into the action (6.27), we have the Hamiltonian description for the

Holst action given by the action (6.27) and the first-class constraints (6.25a), (6.28a), and

˜̃H = −τ Π̃aIΠ̃bJRabIJ + 2Π̃a[I|Π̃b|J ]

[
CaICbJ + 2CaI

(γ)

Γ bJK nK

+
στ

γ2
qKLΓaIKΓbJL +

(
ΓaIL +

2

γ
∗ ΓaIL

)
ΓbJKn

KnL

]
+ 2τΛ

√
|h|. (6.32)

Notice that the Hamiltonian formulation described by the action (6.27) and the

constraints (6.25a), (6.28a), and (6.32); is the same we found in Secs. 3.2 (τ = σ) and

4.2 (τ = 1) where we explicitly solved the second-class constraints. Thus, the method

presented in this chapter rendered the same results while we avoided the introduction of

second-class constraints. Furthermore, in this description the sign ambiguity ε does not

appear because we did not involve any second-class constraint. Also, the internal vector

mI , that arises from the solution of the second-class constraints, is directly associated with

the internal vector that characterizes the spacetime foliation nI . In fact, from (6.9) and

(3.8), we conclude that they differ at most by a sign

nI = στmI . (6.33)

6.2 Canonical transformation

With the aid of the projector Wa
b
IJK , defined in Eq. (6.17), we realize that the

canonical transformations enlisted in Sec. 3.3 belong to the family of transformations

XaI = CaI −Wa
b
IJK

(
αΓb

JK +
β

γ
∗ Γb

JK

)
, (6.34a)

Π̃aI = Π̃aI , (6.34b)

where α and β are real parameters.

The substitution of (6.34) into the kinetic term of the action (6.27) results in

2Π̃aIĊaI = 2Π̃aIẊaI + ∂a

(
−2αnI

˙̃ΠaI +
τβ

γ

√
|h|η̃abc

˜̃
hbd

˜̃
hcf

˙̃ΠdIΠ̃f
I

)
. (6.35)
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Therefore, the Hamiltonian formulation is described by the canonical variables (XaI , Π̃aI),

and the action

S =
1

κ

∫
R
dx0

∫
Ξ
d3x

[
2Π̃aIẊaI −

(
λIJ G̃IJ + 2NaD̃a +

˜
N ˜̃H

)]
, (6.36)

with the constraints given by

G̃IJ = 2Π̃a[IXa
J ] + 4

[
(1− α) δI[Kδ

J
L] +

1

2

(
1− β
γ

)
εIJKL

]
Π̃a[KnM ]Γa

L
M ≈ 0,

(6.37a)

D̃a = 2Π̃bI∂[aXb]I −XaI∂bΠ̃
bI ≈ 0, (6.37b)

˜̃H = −τ Π̃aIΠ̃bJRabIJ + 2Π̃a[I|Π̃b|J ]

{
XaIXbJ + στ

(
1− β
γ

)2

qKLΓaIKΓbJL

+2

[
(1− α) δL[Jδ

M
K] +

1

2

(
1− β
γ

)
εJK

LM

]
XaIn

KΓbLM

+ (1− α)

[
(1− α) ΓaIL + 2

(
1− β
γ

)
∗ ΓaIL

]
ΓbJKn

KnL

}
+2τ

√
|h|Λ ≈ 0. (6.37c)

For particular values of α and β, we recover the cases previously discussed:

• Variables
(
CaI , Π̃aI

)
: α = 0, β = 0 (Identity transformation).

• Variables
(
KaI , Π̃aI

)
: α = 1, β = 0.

• Variables
(
QaI , Π̃aI

)
: α = 1, β = 1.

• Variables
(
QaI , Π̃aI

)
: α = 0, β = 1.

Furthermore, from the structure of the constraints, if β = 1 the Barbero-Immirzi

parameter disappears from the formalism. Thus, the remaining formulation can be thought

as naturally associated with the Palatini action. On the other hand, if α = 0 and

β 6= 1, we obtain a description similar to one rendered by the pair of
(
CaI , Π̃aI

)
with

a rescaled Barbero-Immirzi parameter γ/(1 − β). Finally, regardless of the values of

α and β, the diffeomorphism constraints have the same form. Therefore, under spatial

diffeomorphisms, the configuration variables XaI always transforms as a 1-form, and the

canonical momentum ΠaI always transforms as a vector of weight +1.
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6.3 Gauge fixing

The Hamiltonian description given in this chapter allows us to consider either the time

gauge or the space gauge, we only need to keep in mind the different conventions. For

the time gauge, Ξ is a spacelike surface with q > 0 (h > 0) and the norm of nI is τ = σ,

while the internal metric is (ηIJ) = diag(σ, 1, 1, 1). On the other hand, for the space

gauge, Ξ is a timelike surface with q < 0 (h < 0) and τ = 1, and the internal metric

is (ηIJ) = diag(1,−1, 1, 1). The metrics are different so that in both cases the gauge

condition, Π̃a0 = 0, is the same.

However, in this section we only display the case for the time gauge. Hence, we consider

h > 0, τ = σ, and (ηIJ) = diag(σ, 1, 1, 1). Then, we impose the gauge the condition

Π̃a0 = 0, (6.38)

which is equivalent to ni = 0, with i, j, k ... running from 1 to 3. Also, from (6.9) we

conclude that n0 = sgn[det(Π̃ai)]. Next, we see that the condition (6.38) does not commutes

with G̃i0

{Π̃a0, G̃i0} = −κσ
2

Π̃ai. (6.39)

Therefore, we solve (6.38) and G̃i0 = 0 simultaneously, and get

Xa0 = σn0(1− α)
˜
Πai∂bΠ̃

bi. (6.40)

In the time gauge, the action (6.36) is

S =
1

κ

∫
R
dx0

∫
Ξ
d3x

[
2Π̃aiẊai −

(
2λiG̃i + 2NaD̃a +

˜
N ˜̃H

)]
, (6.41)

where we defined λi := −(1/2)εijkλ
jk and G̃i := −(1/2)εijkG̃jk, and the constraints acquire

the form

G̃i = −n
0

γ
(1− β)∂aΠ̃

ai + εijkXa
jΠ̃ak, (6.42a)

D̃a = 2Π̃bi∂[aXb]i −Xai∂bΠ̃
bi, (6.42b)

˜̃H = σεijkΠ̃
aiΠ̃bjRab

k + 2σΛ|det(Π̃ai)|

+2Π̃a[i|Π̃b|j]
[
Xai +

n0

γ
(1− β)Γai

] [
Xbj +

n0

γ
(1− β)Γbj

]
. (6.42c)

The first thing we notice is the absence of the parameter α; it becomes irrelevant in the
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gauge fixing. In contrast, the value of parameter β (either β = 1 or β 6= 1) dictates the

theory under consideration. We analyze more carefully this in what follows:

a) Case β = 1

In this case, the analysis is straightforward. From (6.42a)-(6.42c) we obtain

G̃i = εijkXa
jΠ̃ak, (6.43a)

D̃a = 2Π̃bi∂[aXb]i −Xai∂bΠ̃
bi, (6.43b)

˜̃H = σεijkΠ̃
aiΠ̃bjRab

k + 2Π̃a[i|Π̃b|j]XaiXbj + 2σΛ| det(Π̃ai)|. (6.43c)

Thus, β = 1 implies the absence of the Barbero-Immirzi parameter and, under the time

gauge, the Hamiltonian description becomes the SO(3)-ADM formulation.

b) Case β 6= 1

In this case we begin by rewriting the Gauss constraint as

G̃i = −n
0

γ
(1− β)

[
∂aΠ̃

ai + εijk

(
−n0 γ

1− β
Xa

j

)
Π̃ak

]
, (6.44)

from which we identify the internal connection as

Aai := −n0 γ

1− β
Xai, (6.45)

with its corresponding field strength given by

Fabi := ∂aAbi − ∂bAai + εijkAajAbk. (6.46)

Moreover, using (6.46) and (3.54), we derive the identity

εijk(Aaj − Γa
j)(Abk − Γb

k) = Fabi −Rabi − 2∇[a(Ab]i − Γb]i). (6.47)

With Aai as our new configuration variable and, using the identity (6.47), we rewrite

the action (6.41) and get

S =
1

κ

∫
R
dx0

∫
Ξ
d3x

[
−2

γ
n0(1− β)Π̃aiȦai − 2λiG̃i − 2NaD̃a −

˜
N ˜̃H

]
, (6.48)

where the constraints are given by

G̃i = −n
0

γ
(1− β)

(
∂aΠ̃

ai + εijkAajΠ̃ak
)
, (6.49a)
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D̃a = −n
0

γ
(1− β)

(
2Π̃bi∂[aAb]i −Aai∂bΠ̃bi

)
, (6.49b)

˜̃H =
(1− β)2

γ2
εijkΠ̃

aiΠ̃bj

{
Fabk +

[
σγ2

(1− β)2
− 1

]
Rab

k

}
+2σn0Λ det(Π̃ai)− 2

n0

γ
(1− β)Π̃a

i∇aG̃i. (6.49c)

Furthermore, integrating by parts the last term of (6.49c), and defining

C̃a := D̃a +AaiG̃i = −n
0

γ
(1− β)Fabi, (6.50)

we arrive at

S =
1

κ

∫
R
dx0

∫
Ξ
d3x

[
−2

γ
n0(1− β)Π̃aiȦai− 2µiG̃i − 2NaC̃a −

˜
N ˜̃C

]
, (6.51)

with µi := λi −AaiG̃i + [n0(1− β)/γ]Π̃a
i∇a

˜
N and

˜̃C =
(1− β)2

γ2
εijkΠ̃

aiΠ̃bj

{
Fabk +

[
σγ2

(1− β)2
− 1

]
Rab

k

}
+ 2σΛ|det(Π̃ai)|. (6.52)

This is the Ashtekar-Barbero formulation with a rescaled Barbero-Immirzi parameter

γ/(1 − β) and internal connection given by Aai. Both connections, namely Aai and the

original Ashtekar-Barbero connection Aai, are related to each other via

Aai =

(
1

1− β

)
(Aai − Γai) + Γai. (6.53)

It is remarkable how the complete family of two-parameter canonical transformations

given in (6.34) either collapse to the SO(3)-ADM description or to the Ashtekar-Barbero

formalism. Furthermore, in the time gauge, only one of the two parameters becomes

relevant and it is precisely this parameter which dictates the nature of the Hamiltonian

formalism.

6.4 Comments

To conclude, we want to remark the distinctive aspects of this chapter. We avoided

the introduction of second-class constraints when performing the Hamiltonian analysis of

the Holst action. Thus, they are not mandatory in the real first-order formalism, as it is

often believed. We accomplish such feat with the adequate parametrization of fundamental

variables that describe the Holst action. The 16 components of the tetrad field become the
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12 canonical momenta of the phase space Π̃aI [Eq. (6.6)] plus the four Lagrange multipliers

N and Na [Eqs. (6.11) and (6.12)]. On the other hand, the 24 fields that compose the

internal Lorentz connection are map into the 12 configuration variables CaI [Eq. (6.16)],

the six Lagrange multipliers λIJ [Eq. (6.26)], and the six auxiliary fields
˜
λab [Eq. (6.23)].

Then, we integrate out the auxiliary fields
˜
λab and obtain a Hamiltonian description formed

exclusively by first-class constraints.

Furthermore, we generalized the canonical transformations introduced in Sec. 3.3 with

a two-parameter family of canonical transformations, whose values determine the presence

or absence of the Barbero-Immirzi parameter. At the end, we explored the time gauge

for the generalized variables (XaI , Π̃aI), and we found that the only relevant parameter

is a rescaled version of Barbero-Immirzi parameter γ/(1 − β). Its presence or absence

dictates whether we are working in the Ashtekar-Barbero formalism or in the SO(3)-ADM

description. All of the results of this chapter are published in Ref. [58] under the terms

of the Creative Commons Attribution 4.0 International license. We, the authors, own the

rights for the article distribution.

The results of this chapter open a new avenue that allows us to study different

formulations of gravity. For instance, in the n-dimensional Palatini action, the second-

class constraints are reducible when n > 4 [72]. Thus, the treatment to solve them is

troublesome. However, with the use of the same techniques enlisted above, the Hamiltonian

analysis is simple and direct. We published these results recently in Ref. [57]. Also, the

method reported here has served as an inspiration to avoid the second-class constraints in

BF gravity, see Ref. [73].

Moreover, the new parameterization could allow us to couple fermions into the

Hamiltonian formalism of gravity. So far, this has been achieved only when the time

gauge is considered [74, 75]. It might also be interesting to explore the case when we add

more topological terms to the Palatini action [76–78]. Some of this work is currently under

development.
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Conclusions

Chapter

7

In this work we explored the Hamiltonian framework surrounding the Holst action. Along

the way, we exposed different methods to solve the second-class constraints that arose

during the Hamiltonian analysis. The first type of solution we presented was in a

nonmanifestly Lorentz-covariant fashion, and it served to illustrate the former state of the

Hamiltonian formalism for the Holst action. Here, we followed the approach of Cianfrani

and Montani [38], and, even though their original solution was incomplete, we were able to

mend their mistake and find a suitable Hamiltonian formulation (see Sec. 2.3). Moreover,

although noncanonical variables described the resulting phase space, we made contact with

the Barros e Sá formulation through the Darboux map exhibited in Sec. 2.4.

Next, in Sec. 3.2, we derived a manifestly Lorentz-covariant solution for the second-class

constraints of the Holst action. The ensuing Hamiltonian formulation is formed by first-

class constraints only and explicitly shows its Lorentz covariance. Furthermore, once we

take the time gauge into account, our description neatly collapses to the Ashtekar-Barbero

formulation (see Sec. 3.4).

With the manifestly Lorentz-covariant formulation at hand, we devoted Chapter 4 to

explore an alternative gauge fixing. The new gauge is known as the space gauge, and it

preserves some of the boost freedom of the Lorentz group. Thanks to the explicit covariant

nature of the variables involved, we straightforwardly arrived at a complete formulation

for general relativity invariant under local SU(1, 1) transformations. Remarkably, the new

formulation resembles the Ashtekar-Barbero description.

Regarding the BF approaches, we also studied the Hamiltonian formalism of a BF -type

action for general relativity that, at the Lagrangian level, reduces to the Holst’s case. In

Chapter 5, we showed that once we get rid of the second-class constraints, the BF action

defined in Eq. (5.1) is entirely equivalent to the Holst action at the Hamiltonian level.

Thus, we can also derive the Ashtekar-Barbero formulation from a BF -type action for

general relativity.

73



Another important result was presented in Sec. 3.3. We obtained alternative

Hamiltonian formulations through the use of canonical transformations. They are

descriptions formed solely by first-class constraints, and they are manifestly Lorentz

covariant too. Furthermore, some of the canonical transformations directly relate the

Hamiltonian descriptions of the Holst and Palatini actions, specifically, the maps are:(
CaI , Π̃aI

)
7→

(
QaI , Π̃aI

)
or
(
CaI , Π̃aI

)
7→

(
QaI , Π̃aI

)
of Eqs. (3.35) and (3.40),

respectively.1 Therefore, we showed the equivalence of both actions at the Hamiltonian

level with the complete symmetry group SO(3, 1) [or SO(4)].

In Sec. 6.2, we generalized the canonical transformations mentioned above. We did

it with the map
(
CaI , Π̃aI

)
7→
(
XaI , Π̃aI

)
, defined in Eq. (6.34). This map depends

on two real parameters α and β, and, depending on their value, we can describe any of

the formulations enlisted in Sec. 3.3. Moreover, in the time gauge, we noticed that the

parameter α becomes irrelevant. In contrast, the value of β determines if the formulation is

the SO(3)-ADM description (β = 1), or if it is the Ashtekar-Barbero formulation (β 6= 1).

Thus, in the time gauge, only one parameter is important, and it is precisely the Barbero-

Immirzi parameter (up to a rescaled version of it).

The last result we presented was exposed in Chapter 6 of this thesis. There, we

demonstrated that we could avoid the introduction of the second-class constraints from

the beginning. We achieved it by noticing that the canonical momenta of the smaller

phase space Π̃aI is related to the spatial part of the tetrad field ea
I . Therefore, the 16

independent fields that compose eµ
I are translated into four Lagrange multipliers N and

Na plus 12 canonical momenta Π̃aI . Furthermore, and similarly to the previous case, the

Lorentz connection ωµ
I
J is decomposed into 12 dynamical variables CaI (which play the

role of the configuration variables), plus six Lagrange multipliers λIJ , and six auxiliary

fields
˜
λab. Once we integrate out the auxiliary fields

˜
λab through their own equation of

motion, we land at the same Hamiltonian description of Chapter 3. Thus, this method

simplifies the Hamiltonian analysis significantly.

The method of Chapter 6 is not restricted to the Holst action, it is a generic procedure

that can be applied to avoid the introduction of second-class constraints in other contexts.

For instance, in the Hamiltonian analysis for the n-dimensional Palatini action, there

are second-class constraints that are reducible so further treatment is required [72, 79].

However, employing the method described in Chapter 6, we can avoid the troublesome

1The maps
(
KaI , Π̃aI

)
7→

(
QaI , Π̃aI

)
or

(
KaI , Π̃aI

)
7→

(
QaI , Π̃aI

)
also prove the equivalence of both

actions at the Hamiltonian level. They can be derived from the expressions (3.30), (3.35), and (3.40).
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procedure of dealing with the second-class constraints and directly arrive at a formulation

constructed with first-class constraints only [57]. Furthermore, the method can be

implemented into the BF approaches, as it is treated in Ref. [73]. Also, without

second-class constraints, it will be easier to couple fermionic matter into the Hamiltonian

description of gravity. Although some attempts have been made in the regime of the time

gauge [75, 80], the explicitly covariant description with fermions fields is currently under

development. We hope to report it soon.

As a final remark, we have found several Hamiltonian descriptions for general relativity

using the Holst action. In all of these formulations, the canonical variables lack the

characteristic geometrical meaning of the Ashtekar-Barbero description. Although the

momentum variable always transforms as an internal Lorentz vector, the configuration

variable does not transform as an SO(3, 1) connection. Therefore, in all of our descriptions,

we can not implement the techniques developed in loop quantum gravity. However, our

formulations describe the phase space of general relativity with first-class constraints only,

and with canonical conjugated variables that explicitly exhibit their Lorentz covariance.

Perhaps this could motivate the use of alternative strategies that will lead us to a quantum

description of gravity without losing the Lorentz invariance.
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Conventions and notation

Appendix

A

Throughout this work we use a 4-dimensional spacetime manifold M , in general we will

assume that M is diffeomorphic to R×Σ, with Σ as a spacelike 3-dimensional submanifold

without boundary (∂Σ = 0). However, in Chapter 4, we consider that M is diffeomorphic

to Ω×R, with Ω a 3-dimensional timelike submanifold that might have a boundary. Also,

be aware that Chapter 6 has its own conventions.

Independently of the topology of M , we define an orthonormal 1-form basis eI at each

point p ∈M . The latin capital letters beginning in the middle of the alphabet (I, J, K, ...)

are group indices. They take values {0, 1, 2, 3} and are lowered or raised with the internal

metric (ηIJ) = diag (σ, 1, 1, 1), being σ = ±1, where σ = −1 (σ = +1) indicates a

Lorentzian (Euclidean) signature. These indices represent quantities valued in the group

SO(3, 1) for σ = −1 or SO(4) for σ = 1. In general, we maintain both signatures, except in

Chapter 4 when we strictly stick to the Lorentz group. Sometimes we will split the internal

indices and use lowercase latin letters (i, j, k, ...) to denote that they take the values

{1, 2, 3}. On the other hand, for the spacetime indices, we use greek letters (α, β, µ, ...),

so we label the local coordinates as {xµ} = {t, xa}, with a, b, c, ... = 1, 2, 3. In Chapter 4,

we use a bar over the lowercase indices, either internal (̄i, j̄, k̄, ...) or spacetime (ā, b̄, c̄, ...),

to indicate that they take the values {0, 1, 2}.

Regardless of the set of indices, we define the symmetrizer and the antisymmetrizer,

respectively, as

A(xy) :=
1

2
(Axy +Ayx) , (A.1a)

A[xy] :=
1

2
(Axy −Ayx) . (A.1b)

Also, for any antisymmetric internal quantity UIJ = −UJI , we define its correspondent

internal dual by

∗ UIJ :=
1

2
εIJKLU

KL, (A.2)
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where εIJKL is the totally antisymmetric SO(3, 1) [or SO(4)] tensor and ε0123 = 1. The

internal dual satisfies the properties

∗UIJV IJ = UIJ ∗ V IJ , (A.3a)

∗
(
U[I|KV

K
|J ]

)
= ∗U[I|KV

K
|J ] = U[I|K ∗ V K

|J ]. (A.3b)

Similarly, let γ be a real number, then, it is convenient to define the γ-hat notation as

(γ)

U IJ :=

(
δK[I δ

L
J ] +

1

2γ
εIJ

KL

)
UKL = PIJ

KLUKL, (A.4)

where PIJ
KL defines the internal projector

PIJ
KL := δK[I δ

L
J ] +

1

2γ
εIJ

KL, (A.5)

with
(
P−1

)IJ
KL being its inverse as long as γ2 6= σ. Explicitly

(
P−1

)IJ
KL is given by

(
P−1

)IJ
KL =

γ2

γ2 − σ

(
δI[Kδ

J
L] −

1

2γ
εIJKL

)
. (A.6)

Notice that they fulfill PIJ
MN

(
P−1

)
MN

KL = δK[I δ
L
J ]. From (A.3) it is straightforward to

prove the identities

(γ)

U IJ V
IJ = UIJ

(γ)

V
IJ , (A.7a)

(γ)(
U[I|KV

K
|J ]

)
=

(γ)

U [I|K V K
|J ] = U[I|K

(γ)

V
K
|J ]. (A.7b)

Finally, when working with tensor densities, we will use tildes above (below) the

correspondent variable; the tildes above (below) indicate a positive (negative) weight

equivalent to the number of tildes. For convenience, sometimes we omit the use of tildes,

but its weight is mentioned somewhere in the text. Two of the most common tensor

density we use are η̃αβµν and
˜
ηαβµν , they are totally antisymmetric tensor densities and

satisfy η̃0123 = 1 and
˜
η0123 = 1, respectively. From these tensor densities, we sometimes

use η̃abc := η̃0abc and η̃āb̄c̄ := η̃āb̄c̄3, or
˜
ηabc :=

˜
η0abc and

˜
ηāb̄c̄ :=

˜
ηāb̄c̄3.
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B

Throughout this thesis, I exposed the work I developed during the last few years, in which I

dedicated time to understand the Hamiltonian formulations of first-order general relativity.

My Ph.D. thesis work generated the following publications:

� M. Celada, M. Montesinos, and J. Romero. “Barbero’s formulation from a BF -

type action with the Immirzi parameter”. Classical and Quantum Gravity 33 115014

(2016).

� M. Montesinos, J. Romero, M. Celada. “Manifestly Lorentz-covariant variables for

the phase space of general relativity”. Phys. Rev. D 97 024014 (2018).

� M. Montesinos, J. Romero, R. Escobedo, M. and Celada. “SU(1, 1) Barbero-like

variables derived from Holst action”. Phys. Rev. D 98 124002 (2018).1

� M. Montesinos, J. Romero, M. Celada. “Revisiting the solution of the second-class

constraints of the Holst action”. Phys. Rev. D 99 064029 (2019).

� M. Montesinos, J. Romero, M. Celada. “Canonical analysis of Holst action without

second-class constraints”. Phys. Rev. D 101 084003 (2020).1

� M. Montesinos, R. Escobedo, J. Romero, and M.Celada. “Canonical analysis of

n-dimensional Palatini action without second-class constraints”. Phys. Rev. D 101

024042 (2020).1

1This work is published under the terms of the Creative Commons Attribution 4.0 International license.
We, the authors, own the rights for the article distribution.
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