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ABSTRACT

Loop quantum gravity is one of the main proposals in the search for a quantum theory of
gravity. Its starting point is the Hamiltonian formulation of general relativity encompassed
by the Ashtekar-Barbero variables. This formulation describes gravity as an SU(2) [or
SO(3)] invariant theory, which translates into a quantum description without the Lorentz
invariance. The absence of the Lorentz symmetry is a direct consequence of a partial gauge

fixing implemented during the classical Hamiltonian analysis.

In this work we explore the Hamiltonian formulation of two different actions, the Holst
action and a BF-type action with the Barbero-Immirzi parameter. Both actions describe
general relativity in the first-order formalism. During their usual Hamiltonian analysis, we
found the presence of second-class constraints which we explicitly solve. We do it without
resorting to any gauge fixing and in a manifestly Lorentz-covariant fashion. Later, thanks
to the use of canonical transformations, we obtain different Hamiltonian formulations for
general relativity, all of them exposing their Lorentz-covariant nature explicitly. With the
Lorentz symmetry intact, we explore two different gauge fixings, one that allows us to
land at the usual Ashtekar-Barbero formulation and one that leads us to a new description
invariant under SU(1,1) [SO(2,1)] transformations. Finally, we present a new method
that bypasses the appearance of second-class constraints from the very beginning, which

simplifies the Hamiltonian analysis considerably.
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RESUMEN

La gravedad cudntica de lazos es una de las principales propuestas en busca de una
teoria cuantica de la gravedad. Su punto de partida es la formulacién Hamiltoniana de
la relatividad general descrita por las variables de Ashtekar-Barbero. Esta formulacién
describe la gravedad como una teoria invariante ante transformaciones locales del grupo
SU(2) [6 SO(3)], lo cual se traduce en una descripcién cudntica sin la invarianza de Lorentz.
La ausencia de la simetria de Lorentz es una consecuencia directa de una fijacién de norma

parcial que se implementa a nivel clasico durante el andlisis Hamiltoniano.

En este trabajo exploramos la formulacién Hamiltoniana de dos acciones diferentes,
la accion de Holst y una accién tipo BF con el pardmetro de Barbero-Immirzi. Ambas
acciones describen la relatividad general en el formalismo de primer orden. Durante su
andlisis Hamiltoniano usual aparecen constricciones de segunda clase las cuales resolvemos
explicitamente. Ademds, lo hacemos sin recurrir a ninguna fijacién de norma y de una
manera manifiestamente covariante de Lorentz. Luego, gracias al uso de transformaciones
candnicas, obtenemos diferentes formulaciones Hamiltonianas para la relatividad general,
todas ellas mostrando su naturaleza covariante de Lorentz de manera explicita. Con
la simetria de Lorentz intacta, exploramos dos fijaciones de norma diferentes, una que
nos permite llegar a la formulacién usual de Ashtekar-Barbero y otra que nos lleva a
una nueva descripcién invariante ante transformaciones del grupo SU(1,1) [6 SO(2,1)].
Finalmente, presentamos un nuevo método que evita, desde el principio del andlisis, la
aparicion de constricciones de segunda clase, lo cual simplifica el andlisis Hamiltoniano

considerablemente.
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Introduction

Context

Until now, the general theory of the relativity of motion (general relativity for short)
gives the best-known description of gravity. It was formulated by Albert Einstein in
1915 [1,2], and it describes gravity as a spacetime deformation rather than an action-
at-a-distance force. The theory has surpassed every experimental test so far [3], from
the bending of light as it moves through the spacetime to the discovery of gravitational
waves [4]. Nonetheless, this description of gravity is incomplete since it breaks down at the
singularity points, such as the center of a black hole or the big bang. The incompleteness
of the theory embarks us on the mission to find a more general perspective that embodies
the complete nature of gravity. Here it is where the quest for a quantum theory of gravity

begins.

Among the different proposals that attempt to describe the quantum nature of gravity,'
we found those that try to implement the canonical quantization program. The first
efforts towards this approach began when Arnowitt, Deser, and Misner provided the
first Hamiltonian formalism for general relativity [6] (commonly referred to as the ADM
formulation). They decomposed the spacetime manifold into spacelike leaves to foliate it
along a timelike direction. The foliation is characterized by four fields, the lapse function
and the shift vector, which act as Lagrange multipliers in the Hamiltonian framework.
Therefore, they impose restrictions on the phase-space variables for general relativity. The
restrictions are categorized—according to Dirac’s criteria [7, 8]—as first-class constraints,
and are the gauge generators responsible for the spacetime diffeomorphism symmetry.
Despite being widely used in numerical general relativity, the development of a quantum

theory along the ADM road ended due to theoretical and technical complications [9].

The canonical path resurged in the mid-80s when Ashtekar performed a complex

canonical transformation from the SO(3)-ADM variables to the now known Ashtekar

!See Ref. [5] for a discussion of the different approaches.



variables [10,11]. The Ashtekar formulation offers several advantages over its predecessor.
First, we have the geometric nature of the canonical variables. In particular, the
configuration variable is an SO(3,C)-valued connection, and thus, it motivates the use
of loop variables [12,13]. Second, the first-class constraints in the Ashtekar formalism are
much more manageable than the former case leading to a more appealing formulation.
Third, the Ashtekar formalism incorporates local Lorentz transformations as part of the
gauge symmetries of the theory. Although the Ashtekar formulation exposed new insights
into the quantum character of gravity, due to the complex nature of the phase-space
variables, it is necessary to introduce reality conditions to recover a real description. When
the conditions are implemented at the classical level we lose the advantages of the Ashtekar
complex variables [14], whereas at the quantum domain the conditions are too challenging

to handle. Thus, this road was abandoned as well.

As the use of connection variables appeared to be fruitful for the canonical quantization
program, the attention then focused on first-order formulations of gravity. Here, we
can employ an orthonormal tetrad field and an internal Lorentz connection to describe
the dynamics of general relativity with first-order equations. We can derive such
formulation from the Palatini (or Einstein-Cartan) action, and incorporate it into the
canonical quantization program. However, it is during the Hamiltonian analysis that other
restrictions among the phase-space variables appear, they are known—again, in Dirac’s
terminology [7, 8]—as second-class constraints, and, unlike the first-class constraints, we

need to get rid of them to continue with the canonical quantization.

We can deal with the second-class constraints using a partial gauge fixing that reduces
the internal Lorentz group into its compact subgroup SO(3) [15]. As a consequence,
the second-class constraints become easier to solve, and the ensuing formulation results
invariant under SO(3) rotations. This description is precisely the SO(3)-ADM formulation
and uses SO(3) vectors as its canonical variables [16]. Therefore, the techniques of the

Ashtekar approach are unfitting for this description.

Finally, in 1995, following the steps and ideas of Ashtekar, Barbero implemented a
real canonical transformation from the SO(3)-ADM formalism. He obtained a formulation
characterized by a real SO(3) [or SU(2)] connection as a configuration variable and a
densitized triad field as its associated momentum [17]. The clear geometrical meaning of
the canonical variables allowed the use of the quantization techniques of Ashtekar complex
formalism. This Hamiltonian description received the name of the Ashtekar-Barbero

formulation, and it became the starting point into what is known as loop quantum gravity



[18-21]. Nevertheless, in the Ashtekar-Barbero description, the first-class constraints are
not as simple as they are in their complex counterpart, and the canonical conjugated
variables are SO(3) [SU(2)] covariant fields as opposed to the Lorentz-covariant fields of

the Ashtekar formalism.

Loop quantum gravity has unraveled essential results about the quantum nature of
gravity, like the discreteness of the spacetime [22] and the occurrence of a “big bounce”
that avoids the big bang singularity [23—26]. Also, it has been possible to derive the
entropy associated with a black hole [27-31]. However, despite the promising results of
loop quantum gravity, the theory is not complete yet. One of the main concerns is the
absence of the Lorentz symmetry in the quantum domain. If it is one of the fundamental

symmetries of nature, we must find a way to incorporate it back to the formalism.

Motivation

One way to promote the Lorentz symmetry into the quantum realm is to avoid any gauge
fixing at the classical level. Hence, we must deal with the second-class constraints without
spoiling the Lorenz invariance. The task was accomplished in a manifestly covariant fashion
for the 4-dimensional Palatini action [32]. It resulted in a Hamiltonian description formed
solely by first-class constraints with Lorentz vectors as their canonical conjugated variables.

Nevertheless, no further results have arisen from here.

In the next year after Barbero’s work, Holst presented a different path to derive the
Ashtekar-Barbero formulation [33]. He proposed a new action principle from which the
Ashtekar-Barbero formalism emerges after a gauge fixing. The Holst action (as it was
later coined) is a first-order description that, at the Lagrangian standpoint, renders the
same dynamics as the Palatini action. Thus, both actions are equivalent, at least from the

classical viewpoint.

Holst action leads to a new and alternative Hamiltonian framework for general relativity.
Despite not being exempt from the appearance of second-class constraints, some progress
has been made in this direction. Barros e Sa dealt with the second-class constraints of the
Holst action by explicitly solving them [34]. He addressed the problem without resorting
to any gauge fixing. However, to simplify the solution of the second-class constraints, he
split the internal symmetry group. Although it does not break the Lorentz invariance, the

lack of manifest Lorentz covariance makes the ensuing formulation quite cumbersome to

3



manage.

On the other hand, Alexandrov and collaborators faced the problem of the second-
class constraints from a different, but equivalent, perspective. They introduced the so-
called Dirac bracket and ended up with a description with manifestly Lorentz-covariant
variables [35-37]. Nonetheless, some of the variables that label the phase space in their
Hamiltonian formulation do not commute with each other. Therefore, the implementation

of this description into the quantization program might be troublesome.

A few years later, Cianfrani and Montani attempted to promote the Lorentz invariance
into the quantum regime with a different solution for the second-class constraints [38].
Their approach followed similar ideas to those of Barros e Sa. However, their solution

turned out to be incomplete. Thus, it misleads to an incorrect Hamiltonian description.

Due to the difficulties of these three approaches (the one from Barros e S&, the one from
Alexandrov and collaborators, and the one from Crianfrani and Montani), we have been
unable to implement the complete (4-dimensional) Lorentz symmetry into the quantum
realm. Nevertheless, if we consider an alternative gauge fixing, we can derive a Hamiltonian
formulation invariant under the 3-dimensional Lorentz group [39]. Thus, in principle, we
can explore some of the Lorentz symmetry into the quantum domain. Although some
interesting results have been exposed in this direction by Ref. [39], they did not present the
complete Hamiltonian description. In particular, the form of the Hamiltonian constraint

is still missing.

Outline

This dissertation deals with the second-class constraints of the Holst action in a
manifestly Lorentz-covariant fashion. Along the way, we tackle some of the issues enlisted

above and disclose the complete Hamiltonian picture for Holst action.

We begin our discussion in Chapter 2, where we start with the Hamiltonian analysis of
the Holst action. Here, we sketch the key features of Dirac’s method for constrained systems
and classify the constraints that arise during the formalism. We also solve the second-class
constraints, but in a way similar to Cianfrani and Montani. With the correct solution,
we fix their mistake and obtain a formulation described by a noncanonical symplectic
structure. Then, with the suitable Darboux map, we connect our formulation with the one

found by Barros e S4. We finish this chapter showing how the noncanonical and canonical

4



descriptions are reduced to the Ashtekar-Barbero formulation.

Next, in Chapter 3, we explicitly solve the second-class constraints in a manifestly
Lorentz-covariant fashion and, employing canonical transformations, we derive three
alternative formulations that maintain their explicit Lorentz covariance. At the end, we
conclude this chapter by exposing a gauge fixing in all the previous formulations. We
observe that they collapse either to the Ashtekar-Barbero formalism or to the SO(3)-ADM

description.

In Chapter 4, we explore a different gauge fixing, one that reduces the Lorentz group to
its subgroup SU(1,1) [or SO(2,1)]. The remnant formulation comes straightforwardly
thanks to the explicit covariant nature of the variables involved. Remarkably, the
description invariant under local SU(1,1) [or SO(2,1)] transformations resembles the
formulation of Ashtekar-Barbero. The form of the Hamiltonian constraints is the same
as the SO(3) Ashtekar-Barbero formulation.

Another type of classical formulations of interest for the quantization program of gravity
are the BF formulations for general relativity. They are the starting point in the covariant
version of loop quantum gravity known as the spin foam models [40-42]. Moreover, they are
known to be related to the Ashtekar original variables in the Hamiltonian framework [43].
Thus, in Chapter 5, we describe the Hamiltonian analysis for a real BF-type action that,
at the Lagrangian level, is equivalent to the Holst action. Hence, we make contact between

the BI' descriptions for gravity and the Ashtekar-Barbero formalism.

In Chapter 6, we use what we learned in the previous chapters about the structure
of the phase space, and we develop a method to bypass the introduction of second-class
constraints from the very beginning. We do it while maintaining the complete Lorentz-
covariant nature of the variables. Furthermore, we generalize the canonical transformations

enlisted in Chapter 3 with a two-parameter family of canonical transformations.

Finally, in Chapter 7, we conclude with some final remarks and discuss future
implications for the obtained results. In addition, we devote Appendix A to define the
notation used throughout the entire document. On the other hand, in Appendix B, we

enlist the contributions of this dissertation.






Revisiting the Hamiltonian formalism of Holst

action

In this chapter we introduce the reader to the Hamiltonian formulation of general relativity.
We start with the Holst action with a cosmological constant term and use Dirac’s method
for constrained systems [7,8]. Along the way, we encounter the presence of second-class
constraints, which we solve without resorting to any gauge fixing. The solution leads us to
a noncanonical symplectic structure. Then, with the proper Darboux map, we construct
a Hamiltonian description labeled with canonical conjugated variables. Finally, at the
end of this chapter, we impose the gauge fixing known as “time gauge” and arrive at the

Ashtekar-Barbero formulation for general relativity.

The analysis and results of this chapter were published in Ref. [44].

The Holst action

In the first-order formalism, gravity is described by a set of four orthonormal 1-forms
(cotetrads) and an internal connection. Let M represent the spacetime manifold. Then,
at each point of it, we denote the cotetrad field by e! and the connection with w’;. The
indices I, J, ... take the values {0, 1, 2, 3}. They are group indices and are lowered and
raised with the internal metric (n;;) = diag (o, 1, 1, 1), being o = £1. We work with the
internal group SO(3,1) when ¢ = —1 and SO(4) if 0 = 1. They are the Lorentz and
Euclidean groups, respectively; w’; is the group-valued connection compatible with the

metric, dnry — meKJ — wKJmK =0, and thus, w;;y = —wyy.

After the conventions mentioned above, we consider the action

1
Sle,w] = K/M [* (el/\e‘]) /\FIJJr%eI/\eJ/\FIJfQAp , (2.1)

where k = 167G (G as Newton’s gravitational constant). The first term inside the square

brackets represents de Palatini action, with the asterisk being the internal dual [see (A.2)]

7



and F!; denotes the curvature of the connection w! ;

FIJ = deJ+wIK/\wKJ. (2.2)

The second term in (2.1) is the Holst term [33] coupled through the Barbero-Immirzi
parameter 7 [45]. Also, the last term in (2.1) involves the cosmological constant A and
the volume form p = (1/4)ersxre’ Ae’ A e Ael, with ersxr the totally antisymmetric
SO(3,1) [or SO(4)] tensor (ep123 = 1).

The action in Eq. (2.1) describes general relativity with a cosmological constant A. The
Barbero-Immirzi parameter v in (2.1) drops out from the equations of motion. In fact,
the Holst term is said to be of topological nature since it does not propagate any physical
degree of freedom [46]. Although the Barbero-Immirzi parameter drops out classically; at
the quantum regime its significance is unclear because it appears in the spectra of the area

and volume operators, and on the formula of the black hole entropy [18,47].

Furthermore, the action (2.1) is invariant under spacetime diffeomorphisms and local
Lorentz (Euclidean) transformations. They constitute the distinctive symmetries of general

relativity in the first-order formalism.!

Classification of the constraints

Before we begin with the Hamiltonian description, we introduce the ~-hat notation

defined in Eq. (A.4). Using this notation, action (2.1) acquires the form

Sle,w] = 1/ [* (el nel) A (g’)[J —2Ap]| . (2.3)
K Jm

Next, we define the notion of evolution and choose a coordinate with respect to which the

system evolves. For this reason, we assume that the spacetime manifold M is diffeomorphic

to R x X, with ¥ a 3-dimensional spacelike manifold without boundary, 93 = 0. Then, we

foliate the spacetime with spacelike surfaces ¥; for every t € R. Each ¥ is diffeomorphic

to X, and every point p € M is labeled with the coordinates {z“} = {t,x}, where {z%}

label the points on ¥;. In this adapted coordinates, the differential forms are

el = e Jda" =eldt + e, da?, (2.4a)

'For a new perspective on the symmetries of first-order general relativity, see Refs. [48-50].



wl; = wuljda:“ = w! jdt + w,! yda?, (2.4b)

1 1
Fl; = 5F,Wf Jda? A dax” = Fy, ydt A da® + §Fabl gdz® A da®. (2.4c)

The splitting of the spacetime indices into “space” indices, a = {1, 2, 3}, and a “time”
direction does not break any of the general relativity symmetries since the splitting of the

indices is arbitrary.

Also, to describe the foliation, it is convenient to define an internal vector orthogonal

to e,l. We denote it by n; and demand it to be normalized to o, so it is a timelike vector

in the Lorentzian case. The two properties: nre,/ = 0 and nyn! = o, are enough to
determine the explicit form of ny
1 ~abc, J_ K _ L
nr = 67\/661JKL77 €a € €c (2.5)
with 7% being the totally antisymmetric tensor density (7'2% = +1) and ¢ = det(gqp) > 0

(of weight +2) being the determinant of the induced metric, qqp := nryeq’ey”, on 3.

After the splitting of the local indices, the action acquires the form

1 ) ()
S = - / dt/ d%[ﬁabcealeb‘]* Frers +i™e e’ Foers —2\/@%]”1]’ (2.6)
R it

where we omitted the wedge product between dt and d®z := dx' A dz? A dz3. Also, from
Egs. (2.2), (2.4b), and (2.4c), we have

I I I I K I K
F;,LI/ Jzauwl/ J_auwu Jr Wy kW g —wy KWy g (27)

Next, we reparametrize the four fields e,/ with the usual lapse function N and the shift
vector N of the ADM formalism

e/ = Nnl + N, . (2.8)

The reparametrization of the cotetrad eul and an integration by parts lead us to the

action

1 ) ) )
g1 / dt / & [H“”&t W —F+0, <H“” (J;)HJH , (2.9)
K JR bON

where we identified ((;y))a] J as the configuration variable and defined its associated

9



momentum as

~ 1
HaIJ = iﬁabc€[JKL€bKecL- (210)

The boundary term in the action (2.9) is a direct consequence of the integration by parts.

However, we will neglect it since 0¥ = 0. Also, in the action (2.9) we have the Hamiltonian

density
H:=—wiy 6" + NV, + NS, (2.11)
with
~ ) Q) 93]
Gl = D, O =9, I Y+ 20,1 11 oKV (2.12a)
~ - ()
a = HbIJ Fabvig, (212b)
z . . ()
S = T¥EM .7 Farg +204A. (2.12¢)

Notice that we used the antisymmetrizer notation defined in (A.1b). Since wyry, N¢, and
N := ¢~ /2N appear linearly in the action, they act as Lagrange multipliers. Therefore,
they impose the constraints: G ~ 0, V, ~0, and § ~ 0. Here the symbol “~” stands
for a weak equality, it means that the equality is valid only on the constraint surface (see
Ref. [7,8]).

Thanks to the properties enlisted in (A.7a), we see from (2.9) that to work with the
. @)
canonical pair (((:ky))a] 7, 1147 or with (wary, 11 ¢17) is equivalent to each other.? Although

we should express the Hamiltonian in terms of any of these pairs, we mixed the notation
to show the constraints in its simplest form, thanks to the fact that the only difference
between these variables is the internal projector P!/ i;. However, to have an appropriate
Hamiltonian description, we need to relate ¢ with the canonical variables. Using (2.10) we
derive the relation

qq® = gﬁaljﬁblj7 (2.13)

where ¢® stands for inverse of gy (gacq® = 0%). At this point, the entire action (2.9) is

ultimately described by the canonical pair ((Jj)al 7, 1947 ), and it obeys the fundamental

Poisson bracket :
( -
{l oty (t,2), HbKL(t,y)} = kLK 6% 6% (2, y), (2.14)

with 63(z,y) being the 3-dimensional Dirac delta for the points z,y € %;.

2This apparent ambiguity disappears once we solve the second-class constraints. Also, if we did not
define the momentum II%7 the ambiguity does not show up, see Chapter 6.

10



Our description is not complete yet, the definition of the canonical momenta in Eq.
(2.10) defines 18 variables IT*” constructed out of the 12 components of e,!. This mismatch

imply the existence of the six primary constraints:
P .= <115 =~ 0. (2.15)

Consequently, following Dirac’s method [7,8],> we must preserve the constraint (2.15)
under time evolution. Thus, we impose 8; % ~ 0. Computing 0,0 ~ 0, using either the

equations of motion or the Poisson Bracket, results in
9,0 — {éab, ﬁ} ~ 2NT & (), (2.16)
where U is a tensor density of weight +3 given by
U = ep g @M DKL (2.17)

Therefore, to maintain the evolution of the constraint Ci“b, either N ~ 0 or U? = 0.
Because the former case imply a degenerate spacetime metric (a case outside of our current
scope, see Ref. [52] for a lower dimension example) we take the latter case. Thereby, (2.16)
implies that U7 is a secondary constraint. The evolution of ¥ fixes one of the Lagrange
multipliers, and thus, no tertiary restrictions appear. These are all of the constraints of
the theory. Notice that the Poisson bracket among %ab and ¥ does not vanish on the

constraint surface, and we will deal with it in the next section.

After all of the constraints are taken into account, the action now reads
1 3, [rarsq (V) 3
S=- dt d 1’|:H 8t WalJ —HT y (218)
K Jr N

with Hyp being the total Hamiltonian density

HT = —thQNU + Naf}a + NS + (?ab(i)ab + wab\paba (219)

which incorporates the new constraints ®* and W% together with their corresponding

Lagrange multipliers ¢qp, and 4y (of weight —2).

Continuing with the Hamiltonian analysis, we compute the Poisson bracket among the
constraints, and we classify them according to Dirac’s criteria [7,8]. The constraints G/,

V,, and S, are first class and are known, respectively, as the Gauss, vector, and scalar (or

3See also Ref. [51] for more details on the method.
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Hamiltonian) constraint. They generate the gauge symmetries of the theory. The Gauss
constraint generates local Lorentz (Euclidean) transformations, whereas the vector and
scalar constraints are responsible for generating spacetime diffeomorphisms. On the other
hand, é’ab and U are second-class constraints; it means that the Poisson bracket among
them does not vanish on the constraint surface. Therefore, second-class constraints must

be suitably handled.

The classification of constraints also provides a way to count the number of degrees of
freedom (d.o.f.) of the theory. Using the formula [53]:

1
dof = -
ol =5

# Phase-space 5 # First-class # Second-class (2.20)
X , .
variables constraints constraints

we see that the theory possesses (1/2)(2x 18 —2x10—12) = 2 d.o.f. per space point, which
is what one expects in general relativity. When we eliminate the second-class constraints
from the formalism, the number of degrees of freedom is not altered. Thus, getting rid
of the second-class constraints implies a reduction of the number of phase-space variables,

and thus, we end up with a smaller phase space.

There are two equivalent ways to deal with the second-class constraints: one is to
work with a modified Poisson bracket—the Dirac bracket—that incorporates the second-
class constraints in its definition; the other consists in explicitly solving the second-class
constraints. During this work, we focus on the second alternative, and we show different
ways of solving the second-class constraints for the Holst action. The approach that uses
the Dirac bracket is reported in Refs. [35-37].

Solution of the second-class constraints: noncanonical
phase-space variables

Here we get rid of the second-class constraints following the guidance of Refs. [34]
and [38]. Thus, we split the internal indices into their electric and magnetic components.
Although the solution reported by Cianfrani and Montani in Ref. [38] is incomplete, we
mend their mistake and provide the correct solution. We have already published the results

of the upcoming sections; they are found in Ref. [44].

Let us begin by splitting the internal indices into their 0-component and i-components
[i = (1,2,3)]. Then, we notice that the 18 components of 1117 are divided into the 9 + 9
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variables I1%0 and I1%7, of which, according to (2.15), only 12 of them are independent.

Solving the constraint P = 0 results in

me0 = M, (2.21a)
e = —orreliyl, (2.21D)

The nine components of the tensor density II% plus the three components of the internal
vector x; represent the 12 independent variables contained in II%7; they are going to
partially label the coordinates of the points of the phase space. Furthermore, using Eq.
(2.13), we can give some geometrical meaning to these variables. Let det(IT%) # 0, then,
we denote the inverse of TI% with I,; (I, I1% = 5{ , I 11 = 6%) and use (2.13) to obtain
the relation

Gab = €| det (1) | ©7 Ty I, (2.22)

with € := sgn(1 + ox;x*) and
©'; =8 + ox'x;- (2.23)

Therefore, II* is a nonorthonormal densitized basis for ¥, and X: is the deviation that

prevents II% from becoming a densitized orthonormal triad.

Although ©° j is an internal metric for the nonorthogonal basis, we are not using it to
lower or raise the internal indices. Instead, we use 6;- to deal with the internal indices.

Also, to simplify future expressions, it is convenient to employ the internal matrix
19ij = (1 + kaxk) 5;- — axixj, (2.24)
which is related to ©%; through ©%; = (1 + oxex") (z?‘l)ij.

Continuing with the solution of the remaining second-class constraint, ¥ = 0, a direct
substitution of (2.21a) and (2.21b) into the constraint (2.17) leads us to

TP = —dge ek [ (14 oax') 9T + 9 IO (o, + ownd)

oMy (e + D) } —0. (2.25)

This equality represents a set of six linear equations for the 18 unknowns wg,o; and we;.
Hence, the solution ought to be parametrized by 12 free variables. Let the electric

components of the connection wgy; be nine of these variables while we introduce Y to
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account for the remaining three. Then, the solution of (2.25) is

Wa0i = Wa0is (2.26&)

waij = Qaij + 20wa0pix;j — 2Lk © Yy, (2.26b)

where €),;; stands for the particular solution

b k k kb
Qaij = @[z|kn m <8b1:[a - 8a1:[b ) - 1:[@ H Mab@mk — O'XMaaXU]
— O T T FTT0p  y + OFL 1117 10,10 (2.27)

Cianfrani and Montani’s approach did not consider the existence of the variables ?i,
meaning that they provided a particular solution of (2.25) only. Thus, their approach
is incorrect simply because their solution is not ultimately equivalent to the constraint
yab = 0.

Now, we substitute (2.21a), (2.21b), (2.26a), (2.26b), and (2.27) into (2.18), after some

algebra we have
1 L ) . L ~ ~
s = / dt / BB (uainm oY+ A% + BV — H + 8aB“> . (2.28)
R P

This action is composed by several terms. Let us dissect each of the parts that make up

the action. First, we have the kinetic terms
ailI% + DXt 4 @%%q0; + BiY, (2.29)

where pqi, 7, @*, and §; are functions of the variables wqo;, e, Xi, and Y only; they are

explicitly given by
pai = VijOax’ + Oaxi +2 (1 + UXka:> i’ Y; — 200407 %" Yy
~1"y, [2@ki3[aﬂb]k — 207* 10, 110 g, + O Tar 17" 0y Loy,
_ZUHan(ﬂain)] — %X |:2@jk8[b1:[a]j — ©7F 1, 1190, 1

. 2 -
+20Han(jaka)} — eIy 07YF, (2.30a)
Y
i = AoTI Iy x 0y, — 2011 TT* 0 o + 40T1% s x jjwan”

- . L 2% -~ [
4ol x Daxj) + 4o X! XY — 76ijkﬂ°‘3 [kuaa(xlljbl) + wao®
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1 -
*kaﬂblaaﬂbl ; (2.30b)

a% = 290, (2.30c)
Bi = 4x. (2.30d)

The second part that constitutes the action (2.28) is the first-class Hamiltonian H'; it is

formed by first-class constraints only

I;[/ = eijkwtjkgfot - 2wti0g~li)oost + Nai}a + NS, (231)

where the constraints are given by

Nlioost = gNZO = aa (P’L]]-:-[a]) + Qaszjlﬁal + QO-ﬁa[]waOl] X]
y - 1 - . , L
—%eljkwaojﬂak — ;ejklwaojﬂakxlxl + (ﬁzj + P’j) Y7, (2.32a)
5i L kg i Traj i j fral 0 =alj 4
Goor = —5€ Gjk = Oq (Q ST ) + Q' Q7 I + Q;H wWa0" X

g N N , 1. N\ -
— ¥ wa0; 1%, — € jmwan’ T X' X' + <779Zj + QZ‘) Y7, (2.32b)

51
I

2wa0i8b (Pijﬁbj) + 2Tai8b (Qijﬁbj> — 4P"j1:[bj8[awb]0i

rot?

S = —21:I“ixi1~)a —20 (14 oxnXx") eijkf[“if[bj

g
§8awb0k + 0, Tbk

1 o
_§6klm <2P}/wa0lrbm + 0Wa01Wbom + TalTbm>

+20A |1+ oxix’| | det(TT%)). (2.32d)

For the sake of simplicity, we introduced the internal matrices

Pij = (5; + %Eijkxk, (233)
i Lo ik
Q j o= §5] + € 6X, (234)
and also we defined
1 . . .
Tai = Seish (Qaﬂk + 20000 — 211al@lﬂyk) . (2.35)
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Finally, in the action we find the boundary term

L 1 . ~ L ..
B i= =201 + Zeije (O™ — oy ITI) (2.36)

which might be neglected just like the others. Nonetheless, we will keep track of it since it

can be reabsorbed in the Darboux map given below.

Notice how the splitting of the indices back in (2.21) force us to split the Gauss
constraint into two parts, the part that generates boost transformations Géoost and the
one that generates the SO(3) rotations G' .. Since both generators are present, the theory

rot*

is still invariant under the complete Lorentz (Euclidean) group.

The action (2.28) depends on the Lagrange multipliers wy;;, wio, N, and N as well as
on the variables wq;, ﬁ‘”, Xi, and Y. Therefore, the variables label the coordinates in our
phase space, and the quantities juq;, 7, @, and f; are the components of a noncanonical
symplectic potential. A quantum theory developed from our noncanonical variables might
be troublesome because of the lack of canonical variables and by the complicated form of
the first-class constraints. Nevertheless, at the classical level, this description is completely

equivalent to Einstein’s theory.

In spite of having noncanonical variables, this formulation also possesses (1/2)(24 —2 x
10) = 2 d.o.f per space point [see (2.20)]. Thus, our description is correct. On the other
hand, notice that neglecting the variables Y yields to an incorrect count in the number
of d.o.f. since, to begin with, the number of phase-space variables is odd. We need the
variables Y to correctly label each point of the phase space; the incompleteness of the
solution reported in Ref. [38] leads to an incorrect parametrization of the phase space for

general relativity.

Description with canonical conjugated variables through
a Darboux map

For a given noncanonical symplectic structure, Darboux’s theorem states that it is
always possible to find a set of canonical pairs to label the points of our phase space.

Thereby, given the 24 noncanonical variables (wam, ﬁai, Xis ?’) we can find 12 canonical

4Their names are only valid with the Lorentzian signature. In the Euclidean case, it is a linear
combination of both constraints the generator of SO(4) rotations.
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pairs to render an equivalent description. In fact, we make contact with Barros e Sa’s

description if we consider the Darboux map

() ; o
Agi = —7 Wa0i —’Yﬁz'ij] <Tak + ’ywaok) )
Xi = Xi (2.37c

G o= —v (‘Z)aij . (2.37d

o“ = %, (2.37a
(

)
2.37b)
)
)

The new variables A,; and {NZ replace wqg; and Y, and they become the new configuration
variables for the now canonical momenta II1% and y;, correspondingly. To implement the

Darboux map into the previous description, we invert (2.37b) and (2.37d)

1 i1 1 72 1~
wi = — (0 1y J A = kim o) M Hak lm* m
~ 1
_an (’ysmnpAbp _ Tmanprq>] }’ (2.38&)
Y= *L@i' 1%, ([ TR Qg1 — lSJMA 1)+ l@ (2.38b)
27— ) om =587 At J 5 ~

where we introduced the following internal quantities:

1 o
Mije = dijxr — Vikxj + aﬁijk — ?Q‘lelX]H (2.39a)
Sijk = oeaQ™ (W), (2.39Db)
Ty = 60 - geijmequ (O™ Quun Q7. (2.39¢)

Substituting (2.38a), (2.38b) together with Eqs. (2.39a)—(2.39c) into all terms that
form the action (2.28), we find

1 2. - . 2 _ -
S == / dt/ A3z <AaiHm + —xi¢" — H’) . (2.40)
K JRr poM Y Y

Therefore, it is easy to see that the pairs (Ag;, II%) and (i, C~’) are indeed canonical

variables because they obey the fundamental Poisson brackets

{Autt.o) (g} = Slololo*(e,y), (2.41)

{xtta). Jty} = oy, (2.42)

On the other hand, the first-class Hamiltonian is the same as that given in (2.31), but now
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the constraints read

- L 2 P N
Ghoot = Oa (Pljﬂ‘”> + T Ag 1ol = Tt - =, (2.43a)
v g ot
. C o 1 . s -
Gioo = Oa (szﬂa]) + ;Ezjk <AaJH“k — C]xk) , (2.43Db)
- 4~ 2~ . 272 1 . -
Vo = S0 Ay + Z60ax’ — o | 5 4ai (8 4+ 00X
ot v V2 -0y

2% i - N
_TZHb[ZXJ]AaiAbj - %Ez‘jkz <HbZAbJ + CZX]> At

+ (Qijgioost - Pijggot> Jaz] ) (2.43c¢)

O)ZI
Il

. o 92
—201%x;Va — 20 (1 + oxpx?) € 1T {anb’f = (Aar - Ja) %
2
oy kim (1 2
—m [6 " <72AalAbm +oJaJom + /VQAalme>

2 , o
—l—;AalJblxk + elanalmeank} } +20A ‘1 + inxz‘ | det(I1**)|, (2.43d)

where we defined

1 - .
Jai = 5 (HajMJi + 6ijk[[a]<k> , (2.44)
with
Y 2 ksl 1 -1 kl mn £(pq)

~
kx@
I

A o - o
(14 oxmx™) {ezklnak [(1 - 72> 1,0, 11" — 7XZAOL]}

O' ~ . .~ ~. . ~ . ~
2 (A% At = AT + ) } + o (PG + Q'kGhu ) x5 (2:46)

This is almost the same formulation presented by Barros e S& in Ref. [34]. The main
difference between our description and that of Ref. [34] (besides the rescaled phase-space
coordinates),® is that we have not neglected any of the terms proportional to the Gauss
constraint as it was done in such a reference. Furthermore, here we introduced the quantity
Jai which allows us to write the Hamiltonian constraint in a simple way. Finally, we remark
that the Darboux map given in Eqs. (2.37a)-(2.37d) reincorporates the boundary term B®

into the canonical variables. Thus, this description does not neglect the boundary term

5To compare with Barros e S4’s description, we have to make the changes: 1% — —I%, Aui — —vAai,
and ¢; — ~(i. We rescaled the variables in order to make a clear contact with the Ashtekar-Barbero
formulation (employing the usual conventions).
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B®, although it still neglects the boundary term of the action (2.9).

Sometimes it is customary to work with the diffeomorphism constraint D, instead
of the vector constraint. This constraint is also first class and generates the spatial

diffeomorphisms tangent to >;. To derive the diffeomorphism constraint we use the identity

. o _: o ~ . 20 ~ . o~ . 1~
glzjoost - 5 ;ot = <1 - 72) 011" + TAajHa[zX]] - ;CjX]Xz - ggz

—%eijk (Aajf[ak - @Xk“') . (2.47)
Then, we rewrite (2.43c) as

V. = 2D, + ——— —Agi — Ja‘QJZ‘ QZOOS + | Joi P — — Agi ;0 , (2.48
72 — 0 y J boost J ’}/2 t ( )
where we identified the diffeomorphism constraint as

2~ . 1 ~ .1~
Dy = “T1%0), Ay; — —AaiOTI" + —(' 0. (2.49)
Y gl ¥

Thus, redefining the Lagrange multipliers that enforce the Gauss constraints

1 jk 72 a j o
)\i = ieijkWt +72—0'N JajPi_?Aai ) (250)

2 1 .
pPi = —Wo t+ 727_ N <7Aai - Jan]i> ) (2'51)

g

our theory is described by the action

g1 / dt | dz [Qﬁmm- + 25y - (2Aig~fot +2p:Gl 4 2ND, + Jy§) ] (2.52)
KJr Jxy g 8

The implementation of this formulation into the quantization program has not been

attempted due to the complicated form of the constraints, particularly the scalar constraint.

However, it generalizes the Ashtekar-Barbero formulation because it is invariant under

Lorentz (Euclidean) transformations. In the next section, we obtain the Ashtekar-Barbero

formulation from the current Hamiltonian approach.
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Gauge fixing: time gauge

The formulations enlisted above—either with canonical variables or not—are fully
invariant under SO(3,1) [SO(4)] transformations. If we want to make contact with the
Ashtekar-Barbero formulation, we need to break this symmetry group down to its compact
subgroup SO(3). To do it, we have to eliminate the boost freedom of the theory. We

accomplish it when we consider the gauge condition

xi =0, (2.53)
since it does not Poisson-commute with the constraint Q};OOS“(;
5 Lejss
{ual62). Goon )| = 010%w,) (2.54)

Therefore, given that (55 is nonsingular, the imposed-by-hand constraint y; = 0 and the

7
boost

constraint G = (0 are now second class. Thus, we must get rid of them.
When the condition (2.53) is taken into account, the spatial metric acquires the form
[see Eq. (2.22)]
Gap = | det(T1)| g 11" (2.55)

Hence, 1% becomes a densitized triad for the spacelike submanifold ;. Furthermore,
imposing x; = 0 aligns the local time direction with a vector normal to ¥y [54,55]. This is

why the gauge condition (2.53) receives the name “time gauge”.

On the other hand, the remaining Gauss constraint obeys the algebra
5i 55 _ KV i Ak 3
{Gh (t.2), G (1y)} = 5e1GE,6% (@), (2.56)

which is the Lie algebra of the SO(3) [or equivalently SU(2)] group. Thus, after solving the

7
boost

second-class constraints (2.53) and G = 0, we arrive at a formulation invariant under

SO(3) rotations.

To continue, we introduce the covariant derivative compatible with I1%
Vo II" i= 0TI + TP, IT¢ — T, I + €5, T,/ T = 0. (2.57)

This definition involves 27 equations for 18 + 9 unknowns, which are I'%,. = I'*y, and T'y;,

5The condition Poisson-commutes with all the other first-class constraints.
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respectively. Solving (2.57) results in

1
'y = §qad (Ov4de + Ocvd — Oaqre) + (2.58)

Loi = eijpll” (8[6Ha]k +Ua[l|ﬁclk}8b1:[cl> : (2.59)

This means that I'%. are the Christoffel symbols for the space metric gqp (2.55), while T'g;
is the spin connection. The field strength of I'y; is defined as

Rapi := 0aThi — OTai + €iju D/ ThF. (2.60)

At this point, the analysis bifurcates depending on whether or we consider canonical

variables or not to describe the phase space. Let us to analyze each case separately.

Noncanonical variables

In the time gauge, the variable €;;, introduced as the particular solution of (2.25) [see
Eq. (2.27)], and the spin connection of Eq. (2.59) are related by

Qaij = —Gijkrak. (261)
Then, using (2.32a), (2.53), and (2.57), we solve G/, = 0 and obtain

~ g .~
Y;; = %Eijkwaojnak. (262)

Next, we substitute (2.53) and (2.62) into the action (2.28), then we get
S = / dt/ A3z (,um-ﬁ‘” + daid}aol' — H + (%B") . (263)
R Jx

Therefore, the theory is described by the phase-space variables wqo; and e only, where

the symplectic potential, derived from Eqs. (2.30a) and (2.30c¢), is

20 ~ .
Hai = _?wbo[iﬂbj]l:[aja (2.64)

av = —oII%. (2.65)
Also, the boundary term of (2.36) is given by

1 L
BY = =~ I, TITIOF, (2.66)
gl
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and the constraints that make up the first-class Hamiltonian (2.32b)-(2.32d) are given by

G = (1 — ;) € MY w,o", (2.67a)
Vo = 4V, (wa]Oiﬁbi> - ,Y;%Jﬁijkﬁbiﬂajvbgkj (2.67b)
§ = UﬁijkﬁaiﬁbjRabk + 2ﬁa[i|ﬁb\j]wa0iwb0j
o2 s = i
5 gl G 2o det(17) (2.67c)

We omitted the label “rot” in the rotational Gauss constraint because such a distinction

is no longer necessary.

The formulation is still described by the noncanonical variables wqg; and e,

Nevertheless, we can rearrange the kinetic terms as
L o ~ 2. . o .~
paill™ + @™ wap; + 0u B = ;Hmat <_7wa0i + Loi — 7Uaj1_Ib[z'|¢db0|j]) - (2.68)
From here, it is straightforward to identify the configuration variable

g .~
Agi = —ywa0i + ai — ;Hagﬂb[uwbom- (2.69)

If it were not for the last term in the right-hand side of the last equation, the definition of
Agi would take the exact form of Barbero’s canonical transformation [17]. However, this
is not the case because Eq. (2.69) is not a canonical transformation, but rather it is the
Darboux map from our noncanonical approach to the canonical pair (Ag;, ﬁai). Although
we obtained the same connection A,; as Barbero did, we have derived it from a different
perspective. Furthermore, imposing the time gauge in the Darboux map of Eq. (2.37b)
results in Eq. (2.69). Therefore, the time gauge helps us to identify the Darboux map

directly from the action.

Continuing with the analysis, we invert (2.69)

12y —0 4 o -
Wa0i = % [ ’;’YQ iy 6263 - ,YQ _ UHa]Hbi (Fbj - Abj)? (270)
and we substitute wqo; back into the action (2.63) to get
2~ . o~ ~ =
S = / dt/ 3z [H“’Aai - <eijkwt9kgl + NV, +]~VS>] . (2.71)
R Y v
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Notice that the constraints (2.67a)-(2.67c) acquire the form

G = }Y (aaﬁ‘“' + eijkAajﬁ“k> , (2.72a)
Vo = iﬁbiFabi +2(Tai — Aai) G, (2.72Db)
s = ;eijkﬁ“iﬁbﬂ' [Fus + (077 = 1) Ra*| + 20 det (11|
_?yﬁaivag*i i (7;_ 596 (2.72¢)
with
Fupi := 0 Api — OpAgi + €ijiAg” A® (2.73)

being the field strength of the connection A,;. Also, to obtain the form of the scalar
constraint (2.72¢), we used the identity

2V, (Api — T4ji) = Fapi — Ravi — €iji(Ad’ — To? ) (A" — T,F). (2.74)

To continue, we collect all the terms proportional to the Gauss constraint. Thus, we
integrate by parts the term involving the covariant derivative in (2.72c) and redefine the

Lagrange multiplier that imposes the Gauss constraint as

olN
2(v* - o)

1

fi = €ijpwi’ ™ + 2N (Toi — Agi) + Gi + ;ﬁaivazy. (2.75)

Then, the Hamiltonian description is given by the action
1 3 125 Fai 5i ap 5 2 ais
S=— [t | du|Z AT — (26 +2NC, +zyc) + 0, (NTIG, )|, (2.76)
K JRr PN v Y

where the boundary term is a consequence of an integration by parts, and the vector and

scalar constraints are

1~
Co = —II"Fy, (2.77a)
Y
= 1 ~ i~ ~ .
¢ = ?ezjkn‘"nbﬂ [Fabk + (092 —1) Rabk] + 20 A| det(T1%)). (2.77b)
This is the Ashtekar-Barbero formulation with cosmological constant, and we have
derived it from a Hamiltonian description with a noncanonical symplectic structure. Here,

the phase space is labeled with the canonical conjugated variables (Ag;, f[ai), which are an

internal SO(3) [or SU(2)] connection and a densitized triad field, respectively.
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Canonical variables

Given our description of Sec. 2.4, the time gauge in the canonical variables approach is

straightforward. We begin solving Géoost = 0; its solution reads
52- = ’yaaﬁai = —veijkfajﬁ“k, (278)

where to get the second equality we used (2.57). Also, in the time gauge, Jy; is

g

Jai = 2’72

<5Z(52] + ﬁbil:[aj) (Abj - Fbj) — L. (2'79)
Then, substituting Eqgs. (2.53), (2.78), and (2.79) back into the action (2.52) yields
1 3 |24 g 5 af s
S== [ at dx;JIAm—@&Q+QNI%+NS>, (2.80)
Kk Jr Tt v

where the constraints (2.43b), (2.49), and (2.43d) are

- 1 - .
o = Lo+ i), (2810
~ 2 =i 1 ~bi
Dy, = —II"0,Apy; — —AniOpIl™, (2.81b)
Y la 2] v
= 1 e ~ .
S = ?eijkﬂmﬂm [Fabk + (072 -1) Rabk} + 20 A| det(I1")|

2. . .
——I*V,G; + g'q;, (2.81c¢)
ol 2

(72— o)

with Fyp; being the field strength of the connection A,; [see Eq. (2.73)].

As before, we work with the vector constraint rather than the diffeomorphism constraint
5 A 50 L
Co =D, + AyG" = ;H Fopi. (2.82)

Then, we collect all the terms proportional to the Gauss constraint, so the action (2.80)

becomes
1 3 |2 cai 5i aj 5 2 ais
S== [ dt | &z |ZAu1 — (G +2NCo+ NC) +0, ( ZNTI"G;) |, (2.83)
Kk Jr po Y Y

where we integrated by parts the term with the covariant derivative in (2.81c) and redefined

the Lagrange multiplier

oN

i =N — NAgi + o5
" NETCEEYS

1.
g + ;Haiva]y' (2.84)
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Also, the scalar constraint is
= 1 o~ ~ .
¢ .= ?eijknmn’v [Fab’f + (072 —1) Rabk] + 20 A| det(I1%)). (2.85)

Therefore, we reach the Ashtekar-Barbero formulation with cosmological constant once
again, which is the starting point of loop quantum gravity. The canonical conjugated
variables, the connection A,; and the densitized triad field f[“i, are used to construct the
loop variables involved in the quantum theory. Our analysis ends here since the quantum

description is out of the scope of the present work.

Comments

We finish this chapter with some final remarks about the nonmanifestly Lorentz-
covariant solution of the second-class constraints. Although a Hamiltonian formulation
of this type was already reported by Barros e Sa, we found an equivalent way to describe
the phase space with a noncanonical symplectic structure. Furthermore, it is illustrative
how both descriptions are connected through a Darboux map. In fact, we developed our
Hamiltonian description when we tried to make contact between the two known works at
that time, the one from Barros e S4 and the one from Cianfrani and Montani. Since we
could not find the relation between them because of the lack of variables, we completed

the analysis and found the link that was missing.

Among the results presented in this chapter, our main contributions are:

e The solution of the second-class constraints and the ensuing Hamiltonian formulation
(Sec. 2.3).

e The Darboux map that leads us to a canonical description (Sec. 2.4).

Also, it is worth to mention that Barros e S4 made contact with the Ashtekar-Barbero
formulation by fixing the gauge before solving the second-class constraints; he did not

exposed the method we presented in Sec. 2.5. Our results are found in Ref. [44].
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Manifestly Lorentz-covariant formulation through
the solution of the second-class constraints of Holst

action

In this chapter we present a manifestly Lorentz-covariant Hamiltonian formulation
for the Holst action. We accomplish it by solving the second-class constraints in
terms of canonical conjugated variables that explicitly exhibit their Lorentz covariance.
Subsequently, we derive different Hamiltonian formulations related to each other via
canonical transformations; the ensuing formulations are also manifestly Lorentz covariant.
Moreover, two of these canonical transformations allow us to connect the Hamiltonian
formalisms of Holst and Palatini actions. Finally, at the end of the chapter, we explore
the time gauge in all the Hamiltonian descriptions previously found, and show they either
become the Ashtekar-Barbero formulation or the SO(3)-ADM description.

The analysis and results of this chapter were published in Ref. [56].

Hamiltonian action

We begin our analysis right after Sec. 2.2, where we showed that Holst action with a

cosmological constant A
S[e,w]:/ {|:*(€I/\€J)+O-€I/\€J:|/\F]]—QAP}, (3.1)
M Y
is equivalent—up to a neglected boundary term, see Eq. (2.9)—'to

S = 1/ dt/ dgl' [ﬁ“”at (oVJ)aU _f{T}- (32)
K JRrR bof

IThroughout this chapter, we will exhibit the boundary terms that appear during the Hamiltonian
analysis. However, we only display them in the first equation they appear; after that, we neglect them.
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Here, (ﬁ“I S (J;)a, J) are the canonical conjugated variables and the total Hamiltonian is
given by
Hr = —wi1sG" + NV 4+ NS + ¢ @™ + 10, T, (3.3)

where wiry, N N, ¢ab, Yap are Lagrange multipliers that impose the constraints

() ) ™)

¢l = D, =9, 0 42w, Uk ~ o, (3.4a)
Vo = 11"/ (}’;)abIJm 0, (3.4b)
§ = TIYET (]}Y‘)abu +20gA ~ 0, (3.4c)
- «I17T1 ;5 ~ 0, (3.4d)
U = e IIMTe, D TTIDEL & 0, (3.4e)

Furthermore, we remind the reader that ggp is the induced metric on ¥; with ¢*® being its

inverse, and ¢ = det(qgp). They fulfill the relation
qq™ = %ﬁal‘]ﬁbu- (3.5)
Also, from (2.7), the spatial components of the curvature are
Fa' 7= 0aws’ s — Oowa’ 7 + wa’ kwp™ 7 — wy kwa™ . (3.6)

The constraints G!7 , V,, and S are first class and are associated with the gauge
symmetries of the theory. On the other hand, ®% and ¥ are the second-class constraints

that must be handled somehow in the formalism.

Solution of the second-class constraints: manifestly
Lorentz-covariant phase-space variables

We start with the second-class constraint ®® = 0. Equation (3.4d) defines a set
of six quadratic equations for the 18 components in et/ ; it means that 7 has 12
independent variables that will label the coordinates in our smaller phase space. We

denote the independent variables as 11, so the solution of &)“b =0is [15,32]
e = 2emelm?l, (3.7)

where ¢ = +1 is a sign ambiguity since the constraint is quadratic in the momenta and

my is an arbitrary internal vector that depends only on e Exploiting its arbitrariness,
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we demand m; to fulfill a pair of properties: to be orthogonal to 1% (mIfIaI = 0) and
to be a normalized timelike vector in the Lorentzian signature (mym! = o). This vector
might remind us of the internal vector ny introduced in Sec 2.2. Although they are indeed
related, for the moment we only consider m; as the vector that solves the constraint (3.4d)

2

and that satisfy the two properties enlisted above. These two properties are enough to

determine the explicit form of my [¢f. Eq. (2.5)]

1 o
my = — €17k Liape 1 TIPRTIF, (3.8)

6/[h]
where h := det(;ﬂb) (of weight +4) with hob = np I TI0.
Moreover, h is related to the determinant of the spatial metric ¢. From (3.5) and (3.7)

we find
ab __ 7 ab
qq® = h*. (3.9)

Thereby, hqp (the inverse of lzzab, LLGC}:LCb = 60) is the densitized metric for the submanifold

3. Likewise, the previous relation implies
2 _
q° = h. (3.10)

Therefore, h > 0, and we can safely remove the absolute value bars in (3.8). The relation
between g and h clearly suggest that the spatial part of the tetrad field e, and the new
phase-space variables 1%/ are related. For the moment, let us ignore this fact. We will

elaborate on this relation in Chapter 6.

To simplify future expressions, it is convenient to introduce two quantities. The first

one is an internal projector that we can derive from Eq. (3.8)
q[J = Qabﬁafﬁbj = (5:9 - O’TTLIWLJ7 (311)

which projects onto the orthogonal plane to m;. The second one is the covariant derivative

V. compatible with % i.e., it is the one that satisfies

Va].:[bl = aaﬁbl + Pbacf—[CI - Fcacﬁbl + FaIJﬁbJ =0. (312)

The components I'yr7 = —I',yr and I'%,. = I'?,, are 36 unknowns that we can determinate

2The relation between both vectors will become clear in Chapter 6.
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from the 36 equations defined in (3.12). Solving for these variables we find

Targ = hall°0c1° g + eIl (11011 ) — o hapI1(rm m g OITPH

+ohpeITP pmymu 0TI + haphedl g T1° T 0, 1T
—hapheall” KT 0TI, (3.13)

1
'y = iqad (Ov4dc + Ocqva — Oagne) - (3.14)

Thus, I'%;. are just the Christoffel symbols for the metric g,. In the meantime, we define

the curvature for the internal connection I',rj as

Rap s =0Ty y — 0T 7 + T kTp5 5 — Ty T . (3.15)

Now we face the remaining constraint ¥ = 0. After substituting (3.7) back into (3.4e)

and using (3.12), the constraint acquires the form

yb — —QO'EEIJKLﬁ(a‘Iﬁ‘b)MﬁCJmK (FCLM — wcLM) =0. (3.16)

This is a system of six linear equations for the 18 unknowns contained in wgry. Thus,
solving for wgry (or equivalently for ((Z)a[ J) implies the existence of 12 free variables in
the general solution. These free variables will play the role of phase-space coordinates,
and most likely will not form a set of canonical variables—just as in the case exposed in
Sec. 2.3—. Therefore, we need to find the appropriate Darboux map that leads us to a
description with canonical coordinates. However, we simplify part of the process when we

use (3.7) and manipulate the kinetic term of the action (3.2)

9179, Wy = 2e0m?0, W), (3.17)

= Zﬁ‘”o”?t <6 (l)ajj m? +emyg (o’.yJ)bJK Qacﬁc‘]ﬁb[(> . (318)

Thereby, it is natural to define the 12 variables

Car =€ <((Z})aIJmJ +my (J})bJK}:lacﬁCJﬁbK> ; (3.19)

which will act as the canonical configuration variables. Thus, Egs. (3.16) and (3.19) are
the complete set of 18 equations that solve the constraint W = 0, and, at the same time,
give us the canonical variables (Cyr, II%). The solution for both, (3.16) and (3.19), is

() ~
Warg= My 115 Cy™ + N7 jDab, (3.20)
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with

M1y = eo| —8bmyumnx + 0o Pryxrm® + haoII°f1I° ymi
+217eULMgacﬁcKﬁbLmM , (3.21a)
Ny = ey Iml, (3.21b)
Aap = %GIJKL (habhed — 2he(ahi)a) e M mr Ky (3.21c)

We write (LY))GU as in Eq. (3.20) to highlight the 12 + 6 variables Cy; and Agp = Apa,
respectively; they account for the 18 original variables that compose (Z;)a 1J. Furthermore,

we can interpret C,; as the 12 dynamical variables contained in (ovJ)a 77 [defined in (3.19)],

whereas )\, are six nondynamical variables determined by (3.16).

With the solutions for both second-class constraints (3.4d) and (3.4e), we substitute
(3.7) and (3.20) [together with (3.21a), (3.21b), and (3.21c)] back into the action (3.2),

then, we obtain
1 ~ . ~ ~ =
S=- / dt/ &z [2H“fca1 - (—wt”g” N, + Jys)} . (3.22)
K JRr PN

The term inside the parenthesis is the first-class Hamiltonian, which is formed by the

first-class constraints

¢l = o, + 4eP! o 1M KT L)y & 0, (3.23a)
- ~ - @) 5
Vo = 4V, (cb]lnbf) 4T T i ThE 5+ e0G P my | 200
x @) LK
—2em” T arx +ha!l”" Gri | =0, (3.23b)

™)

= ~ ~ ~ ~ 2
S = —O’HaIHbJRab[J + QHQ[I‘Hle] CoiCpy — 26Ca1mK Tk

2 1
+ (FaIL + 5 * FaIL) Tyyxemmb + 7Q(JKLFaIKPbJL]

. 1. 1, . o .
+G"7 | - 9t (P ) o 9°° = QmIngJK]
—2el1'm?V,G17 + 20VhA = 0. (3.23¢)

We can simplify our formulation if we collect all the terms proportional to the Gauss
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constraint, but first, we notice that the vector constraint can be rewritten as
B ~ S1T K () ~ K 5
V,=2D,+G Turg +2e0Cyimy +2ommm™ T aJk —EUiLabH miGik |, (3.24)

where D, is the diffeomorphism constraint given by
Dy := 211" 01, Cyj; — Car 011" (3.25)

Now, we integrate by parts the term containing the covariant derivative in (3.23c) and

collect all the terms proportional to the Gauss constraint. Doing this, the action becomes

S— % /]R dt /E | @ 20107 Cor — (AsG" + 2N“Dy + NH) + 0, (26N m? Gy )|
(3.26)

where we defined the Lagrange multiplier as

() - -
Ny = —wgy +N® <Fa]J + 2600a[[mj} + 20m[]|mK r alJ|K —60’£LabeKm[IgJ]K)
15 1, 5 o 5 ~
+N [491J +1 (P, e G5~ 2m[1ngJ]K] + 2l ym Vo N, (3.27)
and the new Hamiltonian constraint is

= ~ ~ ~ ~ ()
H = —UHaIHbJRab[J + 2Ha[I|Hb|J} CuiCry — 2eC’armK ok

2 1
+ <Fa]L + § * Fa[L) FbJKmeL + ?QKLFa[KFbJL + 20\/EA. (3.28)

Our formulation is then described by the action (3.26) formed exclusively by the first-
class constraints (3.23a), (3.25), and (3.28). It is written with the manifestly Lorentz-

(Euclidean)-covariant variables (Cyz, II%7) that obey the fundamental Poisson bracket
{Carlt,2), T (t,y) | = 266257 8%, y). (3.29)

Thanks to the explicit covariant nature of the variables, the previous description is much
more appealing than those exposed in (2.28) or (2.52). However, the geometrical meaning
of the canonical variables is not as clear as in the Ashtekar-Barbero formulation. Although
the canonical momentum has a clear interpretation, since II*! transforms as a densitized
vector under spatial diffeomorphisms and as an SO(3,1) [SO(4)] internal vector under
Lorentz (Euclidean) transformations, the configuration variable C,; behaves as a 1-form

under spatial diffeomorphisms. However, its transformation law under Lorentz (Euclidean)
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transformations is quite challenging to interpret. Nevertheless, our description, as opposed
to the Ashtekar-Barbero formulation, is invariant under the complete symmetry group

S0(3,1) [SO(4)].

Alternative parametrizations through canonical
transformations

In this section, we exploit the use of canonical transformations to derive alternative
Hamiltonian descriptions for general relativity. All of the following formulations are

described by manifestly Lorentz (Euclidean) covariant variables.

1. The first canonical transformation we consider is

K, = Ca1—6<Fa1JmJ +gabﬁbJﬂcKchKm1), (3.30a)
m = 1ol (3.30D)

Under it, the theory is now described by the action

S = lli/Rdt/Et d3x [Qﬁalka[ — ()\]JQNIJ + 2Na2~)a + Nﬁ) + 0, (QEﬁaImI)} y
(3.31)

where the pair (K7, ! ) are the new canonical variables. The boundary term

appears from the substitution of (3.30) in the kinetic term of (3.26)

oM Cyp = 20 Koy + 0, (2eﬁ“1 m1> , (3.32)

but, since Y; does not possess a boundary, the transformation is canonical. In fact,

the fundamental Poisson bracket is
{Kar(t,2), T (1,9)} = 500676% (@, y), (3.33)

and the constraints are

¢l = onlk,”l + %e”KLﬁ“[MmKlraLM ~ 0, (3.34a)
¥
Do = 200, Ky — Koo 1" ~ 0, (3.34b)
= N S 2
H o= —oT1TY Rypry + 200 | Koy Ky — = Korm™ # Ty
gl
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1
+¥QKLFaIKFbJL +20VhA ~ 0.

(3.34c¢)

In the formulation with the variables (K,j, el ), the diffeomorphism constraint

maintains the same structure, whereas the other two constraints take a more compact

form. Also, the presence of the Barbero-Immirzi parameter is still noticeable. Thus,

the transformation (3.30) connects two formulations inherent to the Holst action.

variables C,; and II*/, and we consider the transformation

) v eere ()
Qar = Car—c <F arg M7+ hap I TIF T oy mI) ;

ﬁal _ ﬁal

)

which leads the action (3.26) (neglecting the boundary term) to the form

S = i/Rdt/Et B [211‘“@1— (AUQU+2NGZSQ+M§>}.

The neglected boundary term comes from

oM Cyy = 211 Quy + B (%ﬁ‘” my — %\/ﬁﬁ“‘w@bdgceﬁdf e 1) .

Therefore, the pair (Qq7, II*') obeys the Poisson Bracket

K

{Qurlt,2), ¥ (1) | = £0k67 8 (@),

and the first-class constraints in terms of (Q,7, II!) are

Gl7 = omeliQ, M ~ 0,
= 201"0,Qu; — QuidpI"" ~ 0,
= —UﬁalﬁbJRab[J + Qﬁa[l‘ﬁb‘J]Qa[QbJ + 20VhA ~ 0.

2o
|

. For the next canonical transformation we go back to the formulation with the

(3.35a)

(3.35D)

(3.36)

(3.37)

(3.38)

(3.39a)
(3.39b)
(3.39¢)

Again, the canonical transformation does not modify the diffeomorphism constraint,

but it reduces the form of the other two constraints. Moreover, the remarkable

aspect of the Hamiltonian formulation (3.36) is the absence of the Barbero-Immirzi

parameter. In fact, this is the same formulation that arises during the Hamiltonian



analysis of the Palatini action [32,57]. Thus, the inverse of the transformation (3.35)

is a Lorentz-covariant version of Barbero’s canonical transformation [17].

. Finally, we present one more description. Although the next transformation was not
originally presented in Ref. [56], it is already reported in Refs. [57] and [58]. This

time we consider the canonical transformation
Qut = Car—~ (*FaIJmJ + hap T T « FcJKmI> ; (3.40a)
~ 3
m = . (3.40D)
Using this canonical transformation, the action (3.26) becomes
1 3 ~al 517 af ¥
S = = [at| & [211 Our — (Aug +2ND, + Jyy)} o (3.41)
Kk JRrR e
where, again, we neglected the boundary term that emerges from

2y = 211 Oy — 0 <€;7\/Eﬁ“bcgbdl:zceﬁdfﬁe,> . (3.42)
It is clear from (3.41) that the new variables obey the Poisson bracket
{Qu(t2), 11" (t.9)} = 50L076%(w,y), (3.43)
and the first-class constraints are given by

gl7 = a1 4 2el1*Mmlr, /1y, — 2em1MImMT V1) ~ 0, (3.44a)
Dy = 210,91 — QurdI" ~ 0, (3.44b)

H = —ol Rypry + 2TV Qa1 Qpy — 26Qurm™ Ty k¢

—|—Fa1LFbJKmeL + 20\/EA =~ 0. (3440)

Instinctively, the lack of the Barbero-Immirzi parameter suggests that this description
is inherent to the Palatini action. This statement is correct since the last formulation
emerges during the Hamiltonian analysis of the Palatini action [57]. Thus, the inverse
of the transformation (3.40) is also a Lorentz-covariant version of Barbero’s canonical

transformation.
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A few remarks about the canonical transformations. Regardless of the canonical
variables, the diffeomorphism constraints are the same in terms of them. Therefore, all
the configuration variables transform as 1-forms under spatial diffeomorphisms, and the
momentum transforms as a vector of weight +1. Furthermore, under Lorentz (Euclidean)
transformations, % transforms as a Lorentz (BEuclidean) vector. In contrast, the
transformation law for the majority of the configurational variables are quite complicated,
just the variable Q,; has a clear geometrical meaning since it transforms as an SO(3,1)
[SO(4)] vector.

We notice some interesting facts about the descriptions enlisted above. When we

consider the limit v — oo in the formulation with the variables (C’a 7, ! ) , the formulation
becomes the one described by the variables (Qa[, et ) Also, if the same limit is applied

in the (Ka 7, el ) formulation, we end up with the description of the (Qa 7, el ) variables.
Explicitly:

(Cal, ﬁd) 3 (Qab ﬁa[) ; (3.45a)
(Kaz, fl‘”) i (Qaz, ﬁ“f’). (3.45b)

Furthermore, when we combine Egs. (3.30a), (3.35a), and (3.40a), we found:
Car + Qa[ = Kar + Qar- (346)

We do not know if this relationship has some implications, but it is an intriguing relation.

Gauge fixing: time gauge

Let us explore the previous manifestly Lorentz-covariant formulations under a gauge
fixing. We consider the gauge that reduces the internal symmetry group, SO(3,1) or
SO(4), to its compact subgroup SO(3). During the first part of this section, we keep
the analysis quite general so that it is valid for the formulations of the last two sections.

However, as the analysis progresses, we are obligated to consider each case separately.

Consider the gauge condition
1 = 0, (3.47)

which, regardless of the canonical pair considered, Poisson-commutes with almost every
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first-class constraint. The only nontrivial Poisson bracket is

{I™(t,2), G°(t.y)} = =T 16 . ). (3.48)

Therefore, since we consider det(I1%) # 0, the condition (3.47) is a second-class constraint
that must be solved together with the now second-class constraint Gio = 0. Consequently,
we lose some of the generators of the Lorentz (Euclidean) group, the remnant subgroup

will be generated by the constraints G,

Defining .
Gi = _§6ijkg]ka (3.49)

we notice that the generators fulfill the algebra

{g}-(t,x), Gj(t,x)} - geijkg*k(s?’(x, y), (3.50)

with €5 = €gijk. Thereby, g} obeys the Lie algebra corresponding to the SO(3) [or
SU(2)] group. Hence, when we impose (3.47) as gauge condition, we break down the
Lorentz (Euclidean) symmetry and leave behind a theory invariant under SO(3) [SU(2)]

rotations.

We have removed the boost freedom from the theory, as in Sec. 2.5. Thus, this gauge
fixing also receives the name “time gauge”. Also, from equation (3.8), we deduce that
(3.47) implies m; = 0 and mo = sgn[det(I1*)]. Henceforth, for the Lorentzian signature,
my is a timelike vector aligned with the internal time direction. Furthermore, let II,;
denote the inverse of T1% (II,I1% = (53 and I, I1% = &), then, from Eq. (3.9), we obtain

Gap = | det(T1) [ Mo Iy (3.51)
Thus, 1% is an orthonormal densitized basis for ;.

Another important consequence of the time gauge happens to the internal connection
Iary, it discomposes into two parts: the connection along the time direction I'yo; and the
connection tangent to X, rewritten as I'y; = —(1 /2)eiijajk. Both parts are directly

computed from (3.13), the former is identically zero whereas the latter becomes
Lai = €iji (3[bﬂa}j + Ha[”ﬁclj]abl:[cl) I, (3.52)
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and, from (3.12), it fulfills the equation
VoIl = 9,117 4 TP, 1% — 1€, 1% + ¢, T, T1% = 0. (3.53)
Therefore, I'y; is the spin connection compatible with I1%, and its field strength is
Rapi == _%ﬁiijabjk = 0oL — Oplai + eiju I ThF. (3.54)

All the discussion until now is valid for every formulation of the previous sections since
most of the results are related to the canonical momenta, which are the same in all cases.
Next, we need to solve the constraint G = 0, depending on the case we are considering; it
will fix either Cyo, Ka0, Qao, or Qqo- Thus, in principle, we need to separate our analysis
for each canonical pair. However, imposing (3.47) in (3.30a) leads us to Cy; = K, and,
from (3.46), we conclude Qq; = Q. Thence, we need to bifurcate our analysis into two
cases only, one for the variables Cq; (or K;) and one for the variables Qq; (or Q). Let
us first explore the former case, since it is the one that arises naturally after solving the

second-class constraints.

Time Gauge for the variables (Cy; = Ky, fI‘”)

From (3.23a) and (3.34a) the solution of G = 0 reads

Coo = —0cemI,;0I1%, (3.55)
Ko = 0. (3.56)

Regardless of which one of the formulation we consider, either (Cyr, I1e! ) or (Kar, et )
we will arrive at a description of general relativity under SO(3) [SU(2)] transformations

described by the canonical pair (Cy; = K, IZI‘”). This formulation is given by the action
1 ~ ~. ~ =
S== / dt / & [2Ha’0ai - <2Aig’ +2ND, + JyH)} , (3.57)
K JRr ¥y

where \; := —(1/2)e;;xM* and

54 m’ Srai i 0 i\Trak
g = 67 [8(11_[ + €' ji(em " yC,7 )T } , (3.58a)

Dy = 201"0,,Ch; — Cai0pTI", (3.58D)
= ~ o~ ~ o~ . 0 0
H = O'EiijmejRabk + QHCLMHbm (Cai - Eml“ai> <ij - ETnF[;j)
Y Y
+20 A| det(I1%)). (3.58¢)
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Taking a closer look at the Gauss constraint in (3.58a), we identify the connection

Agi = em®~yCly;. (3.59)

Using A,; as our configuration variable, we rewrite the action and obtain

1 2¢m ~ . . . N =
g1 / dt/ P [EmHmAai - <2>\in +2ND, + NH)} . (3.60)
K Jr poA Y

The theory now obeys the fundamental Poisson bracket

~q . 0 -
{Aailt,2), (ty) | = 200008 @, ), (3.61)
and the constraints are
~ mo ~ . . .~
G o= v [aanm n ezjkAaJH“k] , (3.62a)
Y
A m® <y rbi
Do = e (211 o Apyi — AiOp1T ) (3.62b)
¥ 1 ~raiTbj k 2 k m® =i
Ho= el |Fus + (077 = 1) Ru] 26TV,
+20A| det(I1%4)], (3.62c)
where
Fopi = 00 Api — OpAai + €ijp Ao’ A" (3.63)

is the field strength of the connection A,;. To get (3.62¢) we used the identity

2V (o (Aps = Tojs) = Fabi — Rabi — eije(A’ = Ta?) (A" —Tp%). (3.64)

To arrive at the usual Ashtekar-Barbero formulation we need to do two things. First,
we use the vector constraint defined in Eq. (2.82) instead of the diffeomorphism constraint
of (3.62b). Second, we collect all the terms proportional to the Gauss constraint; to do it,
we integrate by parts the term with covariant derivate in Eq. (3.62c). Then, neglecting

the boundary term, we end up with the action

1 2¢m0 - .. . - x
§== / dt / &z [emnamai - (2yl-gl +2NC, + ch)] : (3.65)
Kk JR ¥y Y

39



with v; == \; — N%A,; + (1/7)ﬁaiva1y and

5i m’ Tai | i i Tyak

G = [l g AT (3.662)

Co = TV R, (3.66b)
Y

= 1 ~ i~ ~ .

C = el [Fus + (092 = 1) R*| + 204 det(T1)].  (3.66¢)

The sign em®—which comes from the ambiguity of solving the quadratic constraint
(3.4d) and from the sign of the determinant of II% —plays no important role, because
it could be reabsorbed into the Lagrange multipliers that accompany the Gauss and
diffeomorphism constraints. Apart from that, this is the Ashtekar-Barbero formulation
[17] and is neatly derived from our description with manifestly Lorentz (Euclidean)
covariant phase-space variables. Therefore, our formulation is indeed a generalization of

the Ashtekar-Barbero description when the symmetry group remains intact.

Time Gauge for the variables (Qu = Qui, fI‘”)

Now, we fix the gauge for the pairs of variables (Qq7, II*) or (Qqur, II%!). We solve G0 = 0
from (3.39a) and (3.44a), and get

Qa0 = 0, (3.67)
Qu0 = —oem’IL,;0,I1%. (3.68)

Thus, substituting (3.47) and the correspondent solution of G = 0 into (3.36) or (3.41),
yields

5= % /R dt /Z t P [QﬁaiQai - (2&9"’ +2ND, + NH)] : (3.69)

where the constraints, derived either from (3.39) or (3.44), are

G = €xQ % =0, (3.70a)
Dy = 200"0,Qp; — UwiOpII” ~ 0, (3.70b)
H = oep I Ryy® + 20T Q Q) + 20°A| det (IT))]. (3.70¢)

This is precisely the SO(3)-ADM formulation [15, 16], which one obtains after
performing the Hamiltonian formulation of the Palatini action plus the time gauge
[32,57]. Thus, in the manifestly Lorentz-covariant formulations where the Barbero-Immirzi

parameter is absent, they all collapse to the SO(3)-ADM formulation once the time gauge
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is taken into account.

Finally, notice that in the time gauge the inverse of the canonical transformations, either
(3.35a) or (3.40a), become
Emo’me‘ == Am' - Faia (371)

where we defined A,; as in (3.59). This canonical transformation is, up to the sign em?, the
inverse of Barbero’s canonical transformation [17]. Hence, (3.35a) and (3.40a) are indeed

Lorentz-covariant versions of the inverse of the Barbero’s canonical transformation.

Comments

We end the discussion remarking three main results of this chapter:

(1) We have solved, in a manifestly Lorentz-covariant fashion, the second-class
constraints that arise during the Hamiltonian analysis of Holst action. From the
constraint (3.4d), we identified the 12 independent variables I1% that compose
the original momentum I1%/7. Additionally, we split the 18 fields of the internal
connection wyr; into the 12 canonical variables C,; and the six nondynamical
variables Aqp, the latter are fixed by (3.4e).

(7i) We exposed different sets of Hamiltonian formulations, all of them made of first-
class constraints only and described by canonical conjugated variables that are
explicitly Lorentz covariant. Furthermore, they relate to each other by canonical
transformations, and two of them, namely the transformations of Egs. (3.35) and
(3.40), link the Holst to the Palatini action.

(747) Finally, in the time gauge, we notice that the previous Lorentz-covariant formulations
either collapse to the Ashtekar-Barbero formalism or to the SO(3)-ADM description;
it depends on whether or not the Barbero-Immirzi parameter is present in the

formulation.

All of the results presented during this chapter are new, and they were published in
Ref. [56].
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SU(1, 1) phase-space variables from manifestly
Lorentz-covariant phase-space variables for Holst

action

In this chapter we explore an alternative gauge fixing; one that reduces the original Lorentz
group into its subgroup SU(1,1) [or SO(2,1)]. To accomplish it, we need to reformulate
our description. Thus, we foliate the spacetime manifold with timelike leaves along a
spacelike direction. From there, we continue with the usual Hamiltonian analysis and
found the presence of second-class constraints. Using the techniques developed in the
previous chapter, we solve the second-class constraints in a manifestly covariant fashion.
Then, we impose the gauge condition known as “space gauge” and arrive at a formulation

for general relativity described by an SU(1, 1) connection and a densitized triad.

The upcoming description is already published in Ref. [59].

Unusual Hamiltonian description

Since we want to arrive at a formulation invariant under SU(1,1) [or SO(2,1)]
transformations, we need to change some of the usual assumptions in order to have the
correct physical interpretation. First, we consider a spacetime manifold M diffeomorphic
to Q x R, where 2 is a 3-dimensional timelike submanifold that might have a boundary.

Then, without loss of generality, we foliate the spacetime along the spacelike direction 23
3

9

where each surface z° = constant is diffeomorphic to €2. The study of timelike foliations
is not estrange in the context of loop quantum gravity or in the spin foams approach, see

for instance Refs. [39,60-62].

We start again from the Holst action with cosmological constant A. Using the ~-hat
notation of (A.4), Holst action has the form

1

()
Sle,w] = H/M [* (e] /\e‘]) A g‘u —2Ap|, (4.1)
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where the internal dual was defined in (A.2), p = (1/4)ersxrel Ael A ef Ael is the
volume form, €77k being the totally antisymmetric Lorentz tensor (ep123 = 1), and F I,
is the curvature of the connection w!; [see (2.2)]. Also, to deal with the internal indices,

we restrict ourselves exclusively to the Minkowski metric (n7;) = diag(—1,1,1,1).

The Hamiltonian analysis is as straightforward as the one presented in Sec. 2.2, we
only need to make a few changes. We begin by defining the notion of “evolution” along

the spacelike direction 3. Then, we express the differential forms as

el = e da" = ez da® + ez da?, (4.2a)

wl; = wuljdfc“ = wy! jdz® + w3l jda®. (4.2Db)

The bar over the indices indicate that they take the values a = {0, 1, 2}. Now, we
parametrize e3! with the four fields N and N (analogous to the lapse function and shift

vector of the usual 3 4+ 1 decomposition)

esl = Nn! + N%,!, (4.3)

1

where n! is an internal vector satisfying n‘n; = 1 and nyez’ = 0. The induced metric on

Q0 is g5 = nrsea’ ep’, and its determinant ¢ = det(q,;) < 0 since € is a timelike surface.

All of the previous considerations lead us to the action
1 3 [FaLt 5 O) 7 alJ
§== [ av [ da® |00,y — H + 0 (n wgu) , (4.4)
Q R

with dV := da Ada Ada?. Also, we took ((:/J)@ 1J as the configuration variable and identified
its conjugated momentum as

_ 1
el .— _§7~]abcelJKLeBK€EL’ (4.5)

where 7%¢ := {353 is a totally antisymmetric tensor density (7°12 = +1). Therefore, The

- D
action is described by the variables ((ovJ)a 17, 11%Y) [or equivalently (wary, II “7)], and they

satisfy the commutation relation
() ~ 7 5
{ars (009, 0 5,0%) | =t 0% ). (16)

where x and y are points in Q. Also, since the 3-dimensional manifold might have a

boundary, we will maintain the boundary terms throughout the entire analysis. Continuing

44



with the analysis, H is the Hamiltonian density given by

ﬁ = —w;g]JGIJ—i-Na]}a—‘rNg, (4.7)
where w3r7, N% and N :=|q|"'N are Lagrange multipliers imposing the constraints
~ ) ) ™
Gl = DI = 9,1 Y 4 2w 11 K11 ~ 0, (4.8a)
Y . bIJ
a = I "7Fg;,~0, (4.8b)
z \ e~ ()
S = NYETx” Py —2gA =0, (4.8¢)

where Fyp;; := Oawyyy — Oqwars +warkwy™ 7 — wyyewa’ 7, and ¢ is related to 1% through

_ |
qqab = —§HaIJHb[J. (49)

Furthermore, the definition of momentum M%7 introduces six new constraints whose
evolution leads us to add another six secondary constraints. Thus, the theory is in fact

described by the action

92)
1 L . -
== / % / do® | TT Y 9ywary — Hy + 05 (Ha%gl J)] . (4.10)
K Ja R
The total Hamiltonian,
ﬁT = —(,L)3[Jg~IJ + Naf}a + JNS + (?(—lg(i)m; + 1!1(—15‘1}&5, (4.11)

is formed by the linear combination of constraints (4.8a), (4.8b), (4.8¢c), and

b = W1, ~0, (4.12a)
TP = ey TEAIMTE T DKL & . (4.12D)

Gap> and gy (of weight -2, so that U has weight +3) are also Lagrange multipliers. As
in the usual case, GV, V;, and S are the first-class constraints that generate the gauge
symmetries of the theory (local Lorentz transformations and spacetime diffeomorphisms)

whereas @ and U are second class. We deal with them in next section.

Notice that the Hamiltonian description given here is the same as the one in the previous
chapter (see Sec. 3.1, keep in mind that here ¢ = —1). Therefore, the form of the

constraints does not depend on the foliation considered, they maintain the same functional
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form. This is a direct manifestation of the diffeomorphism invariance of general relativity.

Solution of the second-class constraints: manifestly
Lorentz-covariant phase-space variables

The next step is to get rid of the second-class constraints. Since we follow the same
method described in the previous chapter, we present only the main results. Thus, the
solution to ®% = 0 is

%7 = 2er1® m!, (4.13)
where € = +1 and m! is an arbitrary vector. We choose m; such that it fulfills the two
properties: mym! =1 and m;II1* = 0. Explicitly, it is

1 o
my = ——e1 gk L5 PR IIF, (4.14)

6+/1h|
where h := det(h%) < 0 and A% := IITI’;. Notice that we use a different normalization
factor for mj, which is required to have consistency with the gauge fixing we are going to

consider in next section.

As in the previous chapter, we introduce two important quantities. The first one is the

projector onto the plane orthogonal to m;

Bﬁa]ﬁl}J = 55 — mlmj, (4.15)

where h;p is the inverse of hab (l:zaafzai’ = 51—’). The second one is the covariant derivative

a
compatible with 1%
Vaﬁgl = 8@1:1[;1 + F&IJﬁBJ + FBaEﬁEI - FEaEﬁBI = 07 (416)

which is a system of 36 equations for the 18 4+ 18 components of I'z;; = —I'zsr and
% = T%;. Their explicit form is similar to the expressions found in (3.13) and (3.14),
respectively, we only need add a bar over the lowercase indices. Furthermore, the curvature

of the internal connection I'zrs is

RaBIJ = 8@F51J — @EP&IJ + FEIKFBKJ — FBIKF(—ZKJ. (4.17)
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On the other hand, before we solve the remaining constraint, we complement the six

constraints in (4.12b) with the definition of Cz; that involves 12 equations

Car i= € <((23)ajj m? +my (J))EJK QaCﬁEJﬁEK> . (4.18)

Thus, solving (4.12b) and (4.18) jointly, we arrive at the solution for (LY))aU

()

Wars= Mo’ 17k C5™ + A NPrs, (4.19)
where
Mgk = 6[ - 52m[177J]K + 8 Prygcm® + Q&EﬁB[IﬁéJ]mK
+;YEIJLMQacﬁEKﬁbLmM:| ; (4.20)
Ny = ey IEmr, (4.21)
Aap = —%UJKL (’}az‘)’}a‘ - 2’}5(&’}5)&) O T M AT . (4.22)

The solutions (4.13) and (4.19) reduce the action (4.10) to

S = % /Q dv /R da’ [211@1330@[ - (—o.;gI JG1 4+ N, ¢ Jy§) + 04 (ﬁawa3I J)} . (4.23)

which is formed entirely by the first-class constraints
gNIJ — 21:[ﬁ[ICaJ] + 4€PIJKLﬁa[MmK}FE,LM ~ 0, (424&)

- -7 -7 () <
Vd = 4V[6« (CB]]Hb1> — 46Hb[ImJ] I al K FBKJ + EgIJmJ [20(1]

) T
—2em® Tarx +hgp 1K g[K] ~0, (4.24D)

()

§ = MY Ry, + 2000V | Cor Gy — 2eCarm® Ty

2 1
+ (FaIL + 5 * PalL) Ty emmb — f}/quLFaIKFbJL]

~ 1~ 1 ~ 1 5
+G"| - EgIJ +1 (P71, 7 - 2mlngJK]
—2el1"'m?VaGry + 24/|h|A =~ 0. (4.24c)

Before we collect all the terms proportional to the Gauss constraint, we rewrite the
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vector constraint as
Y 5 517 K @) S
V,=2D;+G Tar7 +2eCormy +2mmm™ T aik —GQaBH miGrk R (425)
where D, is the diffeomorphism constraint given by
Dy = 211 9,Cyy; — CardI1°. (4.26)

Next, we integrate by parts the term containing the derivative of G/7 in (4.24¢) and redefine

the Lagrange multiplier as

_ ) .z ~
A1y = —wsrg+ N (FaIJ +2eCqpmy) + 2mm™ T g i —EQabeKm[IgJ]K)

15 1 ~ 1 5 ~ -
+N [491J +7 (P, e, G5 — Qm[lngJ]K] + 2ell?(ym  ValN. (4.27)

Thus, the action becomes

1 ~_ ~ o~ =
§ = = / av / da [211“1030@,— ()\I ,Gl +2N“Da+ly%>
K Jo R
+ 0z (2€ﬁalme3U + 2eJyfI“mJg~U>] , (4.28)

where the Gauss and diffeomorphism constraints are given in (4.24a) and (4.26),

respectively, and the Hamiltonian constraint is given by

7 — _feY J -+ ol 1] 0)

+2/|h|A. (4.29)

2 1
+ <FaIL + 5 * FaIL) Ty emSm? — ?qKLFZzIKPBJL

At this point, we are tempted to explore the different sets of canonical formulations
presented in Sec. 3.3. However, there is no much insight we can gain from displaying them
here. We just remind the reader that under those transformations, we must keep track of

the boundary terms that arise during the canonical transformations.
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Gauge fixing: space gauge

The group SU(1,1) [or SO(2,1)] is one of the subgroups belonging to Lorentz group,
whose generators are two boost transformations and one rotation. We can derive a
Hamiltonian description invariant under local SU(1,1) transformations if we consider the
gauge condition

% = 0. (4.30)

Using Eq. (4.14), the former condition implies m’ = 0 and m® = —sgn[det(II%)], for
i = {0, 1, 2, }. Therefore, the only nonzero component of m; is along an internal spatial
direction, so we shall name this gauge condition the “space gauge”. Moreover, from the

normalization of my, we have
mym! = mam?3 = (m?’)2 =1 (4.31)

Thus, in order to keep a real description, m; must be a spacelike vector. This is the reason

why we have assumed it since the very beginning.

Continuing with the analysis, the Poisson bracket of the condition (4.30) with G is
not zero; it is

{%(2,2%), G¥(y,2%) } = ~S0176% (). (4.32)

As a result, since det(I1%) #£ 0, G = 0 and Eq. (4.30) are second-class constraints. Fixing
G drops out the freedom to perform boost transformations along the z? axis and the

rotations around axes 2! and z2. On the other hand, we define

. 1 -
G; = ermgﬂf, (4.33)
where €51 1= €33, and then, the remaining Gauss constraint ,C’;; obeys the algebra
~ ~ K 7~
{G: @), G (n.0") ) = Sei"Ged* (), (4.34)

which corresponds to the Lie algebra of the group SU(1,1) [or SO(2,1)]. The constraint
g} generates rotations around the 2% axis and boost transformations along the axes z! and

x2.

=0

and I';; := —(1/2) ;ﬁcI‘(—lﬁ : the latter being the spin connection compatible with TI% since,

Under the space gauge, the internal connection I'zr; splits into two parts: I';s;
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from (4.16), it satisfies
Valll! = 9,117 4 T04eI1% — D017 4 e, T I = 0. (4.35)

Explicitly it is

T = e (a[l—,ljaﬁ + oy, ) %, (4.36)

ijk

where II; is the inverse of 1% (IL 1% = 6% and II;11% = (5% ). Furthermore, the field
strength of I';; is

1 o
R = —ie;ﬁcRagjk = 0l — Lo + 552 La er ) (4.37)

Moving forward, we solve éi3 = 0 and obtain

Caz = —em3T ;0511 (4.38)

Substituting (4.30) and (4.38) into the action (4.28), it acquires the form

1 /Q dv /]R da? {2ﬁ6i33c'ai - (2)‘297 +2ND; + *N?—:[) +0a (26ﬁaim3w3{3)}  (4:39)

where A; := —(1/ 2)(—:--—)\Jk and the constraints are
53 m? ai i 3 I\Trak

G = [aan + s (emyCoI )T ] , (4.40a)

Da = 2079,Cy; — CopOpIl™, (4.40b)

iu
Il

U - O 3 3
ep 17T Ry + 211l P! (Caz' - ET:%) (ij - Lj Tbj>

+2A| det(T1%)]. (4.40¢)

From Eq. (4.40a) we identify the connection
Agz = eym*Cg. (4.41)
Thus, using A;; as our configuration variable, the action (4.39) is rewritten as
26m ai 50 a7y ¥
s = | av 2 faig, Ay — (mgg +2ND, +N7—l>

+0a <2eﬁaim3wgg3) ] , (4.42)
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and the constraints are given by

5% m? cai | i itrak
g = 67 |:8aH +e€ 5];;14[1‘71—[ i| ; (443&)
- m* - 5
Da = e (2H O Ay — Agi0pT ) , (4.43b)
¥ 1 S @i ) k k m® i =
Ho= el 1% [Fag’“ — (2 +1) Raz‘,k] + 2 V.G
+2A| det(I1%)], (4.43c)
where we used the identity
2V (AB]; - FE]%) = Fyi — Ras — ep(Ad? — Ta?)(AF — T3F). (4.44)

Alternatively, as in Sec. 2.5, we can use the vector constraint instead of the

diffeomorphism constraint

~ 3 ~ 7
Ca =Dz + Ay;G' = emTHbZFm—,;, (4.45)
which requires a redefinition of the Lagrange multiplier
7 = X; — N%Ag; — ~T1%V;N. (4.46)

Then, we integrate by parts the term with the covariant derivative in (4.43c) and, with

the redefinition of the Lagrange multiplier p;, we arrive at

1 2em3 ~ . x
s = L / v / d:c3[ 10y Ay — (21367 + 2NCo + NC)
Kk JQ R v

~ 3 ~ ~
+0s (26H“2m3w3;3 — 2™ NI )] : (4.47)
v

7

where the scalar constraint C is given by

; 1 S aiTyb) k -
€ = gel1m” [Faa® = (4% 1) Bg®| + 2A] det(17), (4.48)

The Hamiltonian formulation is encompassed by the action (4.47) and the constraints
(4.43a), (4.45), and (4.48). It is what we call the Ashtekar-Barbero-like formulation.
It resembles the original formulation reported in Ref. [17], but it is constructed with
SU(1,1)-[SO(2,1)]-covariant objects instead of the SU(2) [SO(3)] fields of the original
approach. Although the group SU(1,1) is not compact, it might be possible to implement
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this description into the canonical quantization program (see Ref. [63]).

Finally, for completeness purposes, if we had applied the space gauge in a formulation
described by the variables (Qaz, %) or (Qaz, II*), we would have obtained the

formulation characterized by the constraints

G = €300 ~0, (4.49a)
Da = 210"0,Qp — QuidpI1" = 0, (4.49b)
q - qﬁﬁrﬁﬁ@j RF + QﬁaﬁlﬁélilQﬁQw + 2A| det(T1)). (4.49¢)

This formulation is similar to the SO(3)-ADM description, but it is invariant under the
SO(2,1) group. Thus, we might call it the SO(2,1)-ADM description.

Comments

We finish this chapter summarizing the results we presented here. First, we foliated
the spacetime manifold with timelike leaves and found a Hamiltonian description with
first- and second-class constraints. Then, we explicitly solve the second-class constraints in
the same manifestly Lorentz-covariant fashion of the previous chapter. At the end, using
the space gauge, we found a description for general relativity invariant under SU(1,1) [or
SO(2,1)] transformations. Remarkably, this new formulation has the same structure as
the Ashtekar-Barbero formulation, and it is also constructed with a densitized triad and

an internal connection.

We also want to point out that a similar description was already reported in Ref. [39].
However, the procedure exposed in that work was not as neat or clear as ours, since
they used the nonmanifestly formulation of Barros e S4. Furthermore, their Hamiltonian
description is incomplete since they did not present the scalar constraint, which has a

complicated form in the Barros e Sa description.
Finally, we remark that the results exposed in this chapter are found in Ref. [59], and are

published under the terms of the Creative Commons Attribution 4.0 International license.

We, the authors, own the rights for the article distribution.
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Hamiltonian analysis for a BF-type action for
general relativity with the Barbero-Immirzi

parameter

BF theories are first-order formulations where the fundamental variables are an internal
connection and a B field. In four dimensions, the B field is a 2-form. Although pure
BF theories are topological—in the sense that they do not propagate physical degrees of
freedom—, with the addition of constraints on the B field we can break its topological
nature and describe physical theories such as general relativity.! Plebariski presented the
first BF-type action that describes general relativity [65]. It was later shown that the
Hamiltonian analysis of the Plebariski action leads to the Ashtekar complex formulation
[43].

In this chapter, we use a BF-type action that is equivalent, at the Lagrangian level,
to the Holst action. From there, we perform its Hamiltonian analysis and classify its
constraints. Once the solution of the second-class constraints is done, either with manifestly
Lorentz-covariant variables or not, we obtain the same Hamiltonian description of Chapters
2 and 3. Thus, we can connect the Hamiltonian formalism of BF gravity with the Ashtekar-

Barbero formulation.

Some of the results of this chapter were published in Ref. [66].

Classification of the constraints

The action we consider is [67,68]

1 1
S[B,w, ¢, u] = FG/M {(BU—F,Y *B”> AFry— ¢y B A BEE
—,U(b[JKLEIJKL—I—,u)\—{—llB[J/\B]J—I—lgBIJ/\*B]J , (5.1)

'For an extensive review in BF formulations for gravity see Ref. [64].
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where M is a 4-dimensional manifold, x = 167G, v represents the Barbero-Immirzi
parameter, and the asterisk stands for the internal dual [see Eq. (A.2)]. Note that the
action depends on the field B/, the internal Lorentz (Euclidean) connection w’; (with
FI; = dw!; 4+ wlxg Ay being its curvature), the internal tensor ¢rjxr = dxrr; =
—¢JIikL = —¢1jrK, and in the 4-form pu. The constants A, [, and [y are related to the

cosmological constant A.

To begin with the Hamiltonian analysis, we consider the same assumptions we done in
Chapters 2 and 3 (see Appendix A). Furthermore, along this section we follow Ref. [69]
where this analysis was first reported. Continuing with the analysis, we decompose the

differential forms as

1 1
Bl = §BWde“ Adz¥ = Byt dt A da® + §Bab1‘]da:“ A dax?, (5.2a)
wly = wu]Jd:L"“ = wl jdt + w,! yda?, (5.2b)
po o= jipdiz, (5.2¢c)

and rewrite the action (5.1) as

1 3 |marrqa ) @ 17, L gpe @) 1J
S = / dt/ d w[ﬂa Oy Warg +wirgDg 1T %77 + iﬁa “ Fabrg B + [oA
K JR b

- <23mUﬁaKL + ﬂoé”KL) brixr + 200 Brarg 4 21 17 Byars |, (5.3)

where

1
7ﬁachbcIJ' (54)

ﬁaIJ —
2

Here, D, stands for the covariant derivative associated with w,’s; explicitly
D17 = 9,117 4 20,11 g T10K11, (5.5)

To simplify the number of variables involved in the analysis, we use the equation of

motion for ¢]JKL
ﬁaIJBtaKL 4 ﬁaKLBtaIJ + ﬂoEIJKL =0. (5.6)

Given the symmetries of ¢ryx1, Eq. (5.6) is a system of 21 independent equations. It can
be shown that the solution of Eq. (5.6) is [69, 70]

~ o ~
flo = —EGIJKLBtaIJHaKLv (5.7)
0- ~ ~
BtaIJ = §]~VQab * HaIJ - yachbHdJa (58)
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together with the constraint
(iab = —0 * ﬁaIJﬁb[J = 0, (59)
where ggp, is the inverse of ¢?°, which fulfills the relation
ab 0 =alJfyb
qq” = I Il (5.10)

with ¢ := det(gqp). Moreover, note that we have introduced four arbitrary fields N and
N®,

Using (5.7) and (5.8), the action (5.3) becomes
1 ~ ~ ~ = =
§=- / dt / Bz [H“”@t (&)a[ 7w G — N, — NS — ¢, @%|, (5.11)
R J%, -

we also added the multiplier ¢4, to impose the constraint (5.9). Here, we observe that

wirg, N, and IV, play the role of Lagrange multipliers imposing the constraints

99

¢ = D, U =0, (5.12a)
- - ()
. = P F a0, (5.12b)
= ~ (’Y)
§ = S0 ua x I Frors +9 (1201 = 3) 0. (5.12¢)

The next step in the Hamiltonian analysis is to compute the Poisson algebra among
the constraints (5.9) and (5.12a)-(5.12c). The algebra does not close because of the
Poisson bracket between %ab and 5:' . Therefore, the evolution of éab leads to the secondary
constraint [69]

Wb = oplaledg 11/ 1 DT 0. (5.13)

We incorporate the previous constraint into the action, then, it reads
1 ~ ~ ~ = =

S == / dt / 3z [H“I ) (J))af 7 4w G — N, — NS — ¢ — 1pp U |, (5.14)
Kk JRrR e -

where the Lagrange multiplier 14, (of weight -2) imposes (5.13). According to Dirac’s
classification of constraints, GglJ , f/a, and § are first class; they generate local Lorentz
(Euclidean) transformations and spacetime diffeomorphisms. On the other hand, & and
U (of weight 43) are second class, and we deal with them in the next section. All
together, they account for the (1/2)(2 x 18 —2 x 10 — 12) = 2 local d.o.f. of general

relativity. Note that the formulation (5.14) is the same one that arises from Holst action
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when second-class constraints are involved.

Solutions for the second-class constraints

At this point, we want to study the solution of the second-class constraints with
nonmanifestly Lorentz-covariant variables and with manifestly Lorentz-covariant variables.

Thus, we bifurcate the analysis for the remaining of this chapter.

Nonmanifestly Lorentz-covariant solution

We begin with the solution in terms of nonmanifestly Lorentz-covariant variables. Here,
instead of the path we followed in Sec. 2.3, we follow an approach closely related to the
one in Ref. [34]. Thus, we can introduce canonical variables to simplify the solution of the
second-class constraints, so we can avoid the formulation with a noncanonical symplectic
structure. It is worth to mention that we have already reported the upcoming results; they
are found in Ref. [66].

First, we solve the constraint (5.9), its solution is

m = 1, (5.15a)
e = —a1reliyJl. (5.15b)

Therefore, the 12 independent variables that constitute e/ are % and Xi-
Before we continue with the next constraint, we notice that we can rearrange the kinetic

term of the action (5.14). Hence, using (5.15a) and (5.15b), we have [34]

- 2. .. 92 .
ey, (Jj)a] g= %A, + =Cxs, (5.16)
v ol

where we made the definitions
() () ;
Agi = —Y Waoi = Waij X, (5.17a)

TS, ) (5.17D)

Thus, the Hamiltonian formulation is described by the canonical pairs (Ag;, f[‘”) and
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(i, @) since the only nonvanishing commutation relations are

{Ault2), 1¥(ty)} = TLotelo*(w.y). (5.18a)

{xtta). Jty} = ooy, (5.18b)

The next step is to parametrize (&y))ao?; and (J))aij with the canonical variables f[ai, Ay,

Xi, and ¢*. However, since (5.17a) and (5.17b) are 12 equations for the 18 components of

((:/J)a()i and (J))m-j, we need to introduce the six free variables Mij = Mji. Then, we invert

(5.17a) and (5.17b) and get

™) 1 1 , ~ L
Waoi = _§Aai - §€iijjHalel — Wi (5.19a)
() 1 - -

Waij = §6ijkﬂalel + oGy (5.19b)

The next step is to solve the constraint ¥ = 0 given in (5.13). Substituting (5.15a),
(5.15b), (5.19a), and (5.19b) into (5.13) implies
1

g ~ ~
1 <1 - 72> iy U = 2 — (L + 0X"Xp) €ikmejm©™" MM = 0. (5.20)

The quantities ©%; and f?; are the ones already defined in (2.23) and (2.46), respectively.
Therefore, the constraint (5.13) allows us to fix the variables M;;. The solution of (5.20)

is

8 9 1 _
M; = — = |skst — = (97! ..19’“] hmpEing®™" fPD, 5.21
’ (1+O'X7”XT)2|:Z] 1) 77 | comtina™] 21
IS e WA S AU
= Ut o) {(f k + 0 frix X>5zg+ <Uf k— JriX X)Xng
—2fup—20 (X(ifj)k: + fk(z‘Xj)) Xk] ; (5.22)

with ¥; defined in (2.24).

We have successfully solved the second-class constraints (5.9) and (5.13), and we have
derived a Hamiltonian formulation described by the canonical variables (Ag;, %) and
(i, C'). Then, we substitute (5.15a), (5.15b), (5.19a), (5.19b), and (5.22) into the action
(5.14) and in the constraints (5.12a)-(5.12c), and get

1 2. . 9 _. . - _ .
S = /{/ dt/ A3z |:7HMA(M‘ + ;Cle — eijkwtjkgfot + 2wti0gé005t - NYY, — NS|, (523)
R it
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where the constraints are given by

- L 2 P N
Ghoost = Oa (Pljﬂ‘”> + L Ag el — L — =&, (5.24a)
gl v v
. C o 1 . s -
Gho = 00 (@) 4~y (AT = ) (5.240)
- 4, 2. . 292 J1 L
Vo = S0 Ay + Z60ax’ — o | 5 4ai (8 4+ 00X
v gl V2 —oly

2% i - N
_TZHb[ZXJ]AaiAbj - %Ez‘jkz <HbZAbJ + CZX]> At

+ (Qijgioost - Pijggot> Jaz] ) (5.24c¢)
= ~ .~ - 2
S = —2MNVa— 20 (1+ oxpx?) il {an b S (Aat + Ja) T X!
O”)/2

1 2
klm
—_—— — AuApm Jadvm + —=AuJom
2(72—0)[6 <72 (om0 et Jom ¥ lb)

2 , o
—l—;AalJblxk + elanalmeank} } +20A ‘1 + JXZ‘XZ‘ | det(TI**)], (5.24d)

where A := (613 — o) /2), while P'j, Q°;, and J,; are defined in (2.33), (2.34), and (2.44),
respectively. This is the same description we encountered in Sec. 2.4. Therefore, the
Hamiltonian formulation of the BF action (5.1) is utterly equivalent to the Hamiltonian
formulation of the Holst action. From this point we can easily make contact with the
Ashtekar-Barbero formulation (see Sec. 2.5). Thus, it is possible to derive the Ashtekar-
Barbero formalism from the BF-type action (5.1).

Manifestly Lorentz-covariant solution

Let us move on to the manifestly Lorentz-covariant formalism. The solution of (5.9) is
1Y = 2¢11em 7, (5.25)

where € = +1 and mj is an arbitrary internal vector. We choose mj so that it satisfies:
mI = 0 and mym! = o, its explicit form is given in Eq. (3.8). Moreover, let us to

define the covariant derivative as
VoII? := 9,11 + I 117 — T 11" + T,/ ;11" =0, (5.26)

where I'y;; = —I'oyr and I'*. = I'*,. The solution for I'y;; and I'%,. is that given in
(3.13) and (3.14), correspondingly. Also, from the definition of m; in Eq. (3.8), we get the
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identity
\/Eﬁabcgcdﬁd[ = —O’GIJKLmJﬁaKﬁbL. (527)

Next, we substitute (5.25) into the second-class constraint (5.13), and we use Egs. (5.26)
and (5.27) to simplify the expression. Then, the constraint ¥ = 0 of Eq. (5.13) reads

U = dep e TOTTTOM T S (DL 0y — welar) = 0. (5.28)

After a quick comparison with Eq. (3.16), we notice that both expressions are different
by a global factor of (—20¢) which does not alter the result. Thus, we can use the same

solution given in Eq. (3.20).

If we compare the action (5.14) and constraints (5.12a)-(5.12c) with those of (3.2) and
(3.4a)-(3.4c), we found that they only differ in the scalar constraint S. Hence, since the
solution of the second-class constraints is the same in both cases, we only need to compute
the scalar constraint to see if both formulations are equivalent. Thus, substituting (5.25)
and (3.20) into (5.12c¢) yields

()

= ~ ~ ~ ~ Y
S = —e{ — oMY Ry s + 21TV O Cv g — 26Curm™ T i

2 1
+ (FaIL + 5 * Ta1L> Tyyem™ml + 7QCJKLFaJKFbJL]

5 1 1, ~ o -
+GM | - ZQU +t3 (P, 5, G5 - 2mIngJK]
—2e1"m’V .Gy + 20\/EA} ~ 0. (5.29)
with A = —¢(6ly — o)\/2), whereas ¢'; and Rg’; are given by (3.11) and (3.15),

respectively.

The only difference between (5.29) and (3.23c) is the global factor (—e¢), which can be
reabsorbed into the Lagrange multiplier that impose the scalar constraint; we just need
to make the change N — —eN. Thus, from this departing point we can also derive the

Ashtekar-Barbero formulation as we did in Sec. 3.4.
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Comments

We finish the chapter with a few remarks. The first part of the analysis was carried out
in Ref. [69]. There, the authors considered the action (5.1) and classified the constraints
that emerge during its Hamiltonian analysis. Following that point of view, we took their
results and solved the second-class constraints in a nonmanifestly covariant fashion. We
already reported that solution; it is found in Ref. [66], where we also presented the complete
path from the BF-type action to the Ashtekar-Barbero formulation. On the other hand,
for the manifestly covariant solution, we followed the procedure of Chapter 3, and our

results agree with those of Chapter 3.
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Manifestly Lorentz-covariant Hamiltonian
analysis for Holst action without introducing

second-class constraints

As we have seen, second-class constraints usually emerge in the real first-order Hamiltonian
formalism of general relativity. They are introduced due to the mismatch between the
number of independent variables that compose the tetrad (or B field) and the internal
connection. However, if we can identify the canonical variables from the very beginning,
we can avoid to introduce second-class constraints. We develop this idea throughout this
chapter for the Holst action, and we find the suitable parametrization for the fundamental
variables of the action that do this job. The spatial part of the tetrad field is directly related
to the canonical momenta, and we decompose the spatial part of the internal connection
into two parts, one associated with the configuration variables and one composed by
auxiliary fields. After we integrate out the auxiliary fields from the formalism, we end
up with a Hamiltonian formulation described by first-class constraints only. Furthermore,
to complement this chapter, we generalize the canonical transformations enlisted in Sec.

3.3, and we explore the consequences of the time gauge in this general description.

The analysis and results of this chapter are published in Ref. [58].

The parametrization of the Lagrangian variables

We begin our analysis with the Holst action with cosmological constant A

()
Sle,w] = FJ/M [* (e[ /\e‘]) A }}Y‘U —2Ap|, (6.1)

where the internal dual and the y-hat notation are defined in (A.2) and (A.4), respectively;
and p = (1/4)ersxre’ Ael Aef Ael is the volume form. This action depends on the

tetrad field e/ and in the 1-form connection w!; through its curvature
FIJ:dw[J—l-wIK/\wKJ. (6.2)
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Along this chapter, we want to keep the analysis as general as possible. Thus, we
assume that the spacetime manifold M is diffeomorphic to R x =, with = as a 3-dimensional
submanifold that can be either a spacelike or a timelike surface. Under this consideration,
the internal indices are raised or lowered with metric (n;;) = diag(o,1,1,1) if = is a
spacelike surface, whereas we use the (1) = diag(1, —1,1,1) when Z is a timelike surface.
Also, we will omit the boundary terms that appear during the Hamiltonian analysis. If the
reader is interested in the boundary terms, they are found during the analyses developed
in Chapters 3 and 4.

Next, we choose the z° direction to define the notion of evolution, whereas 2% denotes
the coordinates that label the points of =, with a, b, ¢, ... = 1,2,3. Then, we express the

differential forms as

el = e du" = el da® + e, dx, (6.3a)

wly = w,fjdx“ = wol ydaz® + w,! jdz?, (6.3Db)
1 1

Fl, = 5 WIJd:E“ Adx’ = Foo! yjdaz® A dz® + §Fabljda:a A da?, (6.3¢)

. I I T I K I K
with F,," ;= 0w, g — Opwy' 7 +wy,' kw7 —wy' kw, ™ .

We denote the induced metric on = as qqp = eqrep’, and we define internal vector ny
orthogonal to Z. Thus, n; fulfills the two properties: nre,! = 0 and nyn! = 7, for a fixed
value of 7. Furthermore, let ¢ = det(qqp), if Z is a timelike surface, then ¢ < 0 and ny is a

spacelike vector with norm 7 = 1. On the other hand, if = is a spacelike surface, then g > 0

and ny (in the Lorentzian signature, o = —1) is a timelike vector, so 7 = o. Explicitly, ns
is )
ny = 7€[JKL?7abc€aJ6bK€cL. (6.4)
6+/lql

The case for a null foliation (7 = 0) is out of the scope of this analysis, see Ref. [71] for a

Hamiltonian description on the light front for the Palatini action.

After 3+ 1 decomposition of the fields is made and the considerations mentioned above

are done, the action (6.1) takes the form

1 N - - (v)
S = / dxo/ dgx{—QHaango ((z})ajj +woug” + ’q|71/2€01 2Ha1HanK Favik
Kk JRr =
rraJ 710 K o)
+ng (H " F ok —2A|Q|>} ; (6.5)
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where we performed an integration by parts and defined the quantities

= Vliglg™e', (6.6)
G = 2Py [9, (T00) 4 2 T8 67
In addition, we define the densitized metric hqp = || qap, whose inverse is hab =

I%/T1%;, which allows us to invert (6.6) and obtain

ea’ = R hapIT", (6.8)

where h = det(izab). Thus, we have mapped the 12 components of e, into the 12 variables
in I1%. Moreover, if we substitute Eq. (6.8) into Eq. (6.4) we get

€17k LT abel1* TIPFIIF (6.9)

so we can express the internal vector n; in terms of II*/ only. Also, notice that, from (6.6)

or (6.8), ny satisfies na = 0.

On the other hand, the remaining four components of the tetrad ey’ are parametrized

in terms of the lapse function N and the shift vector N¢ as follows

o’ = Nn! + N, = Nnl + N|h|"/*hg, 117 (6.10)

Notice that the last equality is completely function of 11/, N, and N if we consider n;
as given by (6.9). Therefore, Eqgs. (6.8) and (6.10) define a map (N, N%, %) — (e,)),

whose inverse is given by (6.6) and

N = rteolny, (6.11)
N® = q“beolebf, (6.12)

where n; is taken as in (6.4) and ¢% is the inverse of up (¢%°qey = 0%).

After substituting the new parameterization given by (6.8) and (6.10) into the action

(6.5), it acquires the form
1 ~ ~ ~ =
S = n/ d:z;o/ d*x [—QH“IHJ% Wty +ewors G — N, — NS, (6.13)
R =

63



where we defined N := |h|~V/4N and

- - (7)
V, = =200’ Foprs. (6.14a)

L ()
—rY Y F apry +27/|BIA. (6.14b)

D
i

Instead of defining the canonical momentum conjugated to (J))af J (which leads to the
introduction of second-class constraints, as we saw in Chapter 2), we rearrange the first
term in (6.13) as

— 2107 8, (&)a[ g= 201 C,;, (6.15)
where
Car = Wo' 17k (‘j})b TR (6.16)
and Wolryjx = —W,ik s is
Wbk = — (52771[Jn1q + mfgacﬁcwﬁbx}) : (6.17)

We can interpret W,%; i as an operator that projects 12 dynamical variables contained
in (Jz)al J. Furthermore, the null vectors that compose the presymplectic structure of (6.13)
are in the kernel of W, k. Therefore, we can solve the 12 equations in (6.16) to express

J,)al 7 in terms of C,; plus the six free variables Ay = Ap, that drop out of the presymplectic

structure. The solution for (6.16) is

() =
Warg= My 115 Cy™ + N7 Dab, (6.18)

with the expressions for M,k and Ne 17 given by

M1k = T6inmgx — T00Pr k" — ThaeeIl’ [ 11° yng
_2L€IJLMbacﬁcKﬁbLnM, (6.19a)
~ d
Najj = EIJKLﬁaKnL. (619b)

In addition to the objects (6.17), (6.19a), and (6.19b), we introduce the tensor density
U’ = Upo®’ = —Uyp®! defined by

Uade =0T <1 — ;) * (P_I)IJKL(SC(a]:Ib)eﬁeKnL. (6.20)
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They all together satisfy the following orthogonality relations:

W KEM ey = 0064, (6.21a)
Ua™' N1y = 60,08, (6.21b)

Wo e NOTE = o, (6.21c)
U™ M1 = 0, (6.21d)

as well as the completeness relation

Mac[JMWCbMKL + NC[JUaCbKL = 535{;5]} (622)

Therefore, W77k and Ug®'Y are the orthogonal projectors that decompose ((j))al J into
the 12 + 6 variables C,; and Ag. Thus, the map ((ﬁ)afJ) — (Car, Aab), is given by (6.16)
and

Aab = U™’ (‘:/j)c[J : (6.23)

Going back to the action (6.13), we substitute the new parametrization for (JJ)@I J given

in (6.18) and obtain

1 - . ~ ~ s
S = / dax® / d3x [mafca, + worsG!7 — N, — NS/, (6.24)
R JR =

with

Gt = omlle, )l 4 4Pl B My, Ly (6.25a)
f/a = 2 (21:1“3[(101;]1 — Calabﬁbl) + (P—I)IJKLQIJ (MabKLMCbM

+2\abNbKL) : (6.25b)

z ~ ~ ~ ~ ()
S = —THaIHbJRabIJ + ZHQ[”HM‘]] CoiCry +2Cur T pik nK

oT 2
+?QKLFaIKFbJL + (FaIL + 5 * I aIL> Ty e’ n”

+27A/|h|

- - 1r-~ - -
2010’V oGrs - [g” (PYIKLG ., szgJKnK} Grs

o~ @) ()
+72%0Gabcd(éab = Uas™ T 1) et = Uea”™ T prc)- (6.25¢)

The quantities ¢ ; and T,y are given, respectively, by (3.11) and (3.13) just replacing
o — 7. Also, the curvature Ry’ 5 is the same as that given by (3.15), and we have defined
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Gabed = ;Lab;LCd — h(a‘cl:ﬂb)d, which is a tensor density of weight +4.

To simplify our analysis, we collect all the terms proportional to the Gauss constraint,

so we redefine the Lagrange multiplier that imposes it as

Aty = —worg + N%Warg — Qﬁa[mﬂva]y
1 s ) . i
*Z]y [gIJ — (P l)IJKLgKL + QTn[IQJ}KnK . (6.26)

Thus, after integrating by parts the term containing the covariant derivative of the Gauss

constraint in (6.25¢), we have
1 ~ . ~ ~ =
s = = / dz® / @ |27 Cp — (MsG" + 2N"D, + NH)| (6.27)
K JR E
with

'ba = 2f[b18[aCb]I—Ca18bﬁ”, (6.28&)

o o ()
—rI T Rypr g + 21UV G 1Oy + 2C0r T osie 0

;fu
i

+27A/|h|

oT 2
+?QKLFaIKFbJL + <Fa1L + 5 * FaIL> Ty n”

2 () ™)
o ol
+,¢%0G“b0d(aab — Uas™ Ters) (dea = Uea’™™ T jicr). (6.28b)
At this point, we have parametrized the original 24 variables that constitute the

internal connection (LY))uI J with the 12 + 6 + 6 variables in Cy7, Agp, and Ary. The map

((J)),/ 1) = (Car, Aap, Ary) is given by Eqs. (6.16), (6.23), and (6.26). On the other hand,

its inverse map is given by Egs. (6.18) and

) () -
Worg = — A1g —2Ppx KtV N + N° (MabIJKCbK + Z\abNbIJ)

I

W .
N (g 17 =915 + 2TPIJKLanLMnM> : (6.29)

To complete the Hamiltonian analysis, we must deal with the variables \,;. Since they
appear quadratically in the action, they are auxiliary fields [53]. Thus, we can integrate
them out using their equation of motion. From the action (6.27) with the constraints
(6.25a), (6.28a), and (6.28b), we compute the equation of motion for \g,

()
NG (N — Ueg?!” T p15) = 0. (6.30)
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Given that N # 0 and the G®? is invertible, (G_l)abcd = (1/2)(habhed — 2B (q)chip)a);

the solution for ),y is

)
Aab = U™ Ters - (6.31)

Substituting A back into the action (6.27), we have the Hamiltonian description for the
Holst action given by the action (6.27) and the first-class constraints (6.25a), (6.28a), and

= ~ ~ ~ ~ ()
H = *THaIHbJRab[J + QHQ[I‘HMJ] CorCry +2Cur T vk nK

aT

2
"‘?QKLFaIKFbJL + (FaIL + 5 * Fa1L> Tpyxn™nl| +27Ay/|h]. (6.32)

Notice that the Hamiltonian formulation described by the action (6.27) and the
constraints (6.25a), (6.28a), and (6.32); is the same we found in Secs. 3.2 (7 = o) and
4.2 (1 = 1) where we explicitly solved the second-class constraints. Thus, the method
presented in this chapter rendered the same results while we avoided the introduction of
second-class constraints. Furthermore, in this description the sign ambiguity e does not
appear because we did not involve any second-class constraint. Also, the internal vector
my, that arises from the solution of the second-class constraints, is directly associated with
the internal vector that characterizes the spacetime foliation n;. In fact, from (6.9) and

(3.8), we conclude that they differ at most by a sign

ny = oTmy. (6.33)

Canonical transformation

With the aid of the projector W,’;sx, defined in Eq. (6.17), we realize that the

canonical transformations enlisted in Sec. 3.3 belong to the family of transformations

Xarg = Cur— Wab[JK <anJK + f * Fb‘]K> , (6.34&)

nm = e, (6.34D)
where « and 3 are real parameters.

The substitution of (6.34) into the kinetic term of the action (6.27) results in

8

QﬁaICa[ = QﬁaIXa[ + 8a <—20&n[ﬁal + ~ |ﬁabcl~}bd@cfﬁdlﬁf[> . (6.35)
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Therefore, the Hamiltonian formulation is described by the canonical variables (X7, ! ),

and the action
1 - . ~ ~ =
5=- / dz° / & [QHGIXM - ()\1 5G4 2N9D, + NH)} , (6.36)
R =

with the constraints given by

- - 1/1— .

¢l = omlx,”l 44 [(1 — ) 687, + 5 (ﬁ) (-;”KL} oK pMip Ly~ 0,
(6.37a)

Qﬁbla[aXbH — Xal(‘)bf[bl ~ 0, (637b)

Q@z
Il

X
|

— 7T Ry + 21U TP {XaleJ +or (ﬁ> ¢""Tark oL

Y
+2 (l—cy)(5L(5]\/[—|—1 1=5 e MM | XonET
S Sl JK al™ Lpras
1-p K L
+(1—a)|(1—a)lqr+2 - * Lorr | Dogrn™n
2r/hIA ~ 0. (6.37¢)

For particular values of o and 3, we recover the cases previously discussed:
e Variables (Cal, el ): a=0, [ =0 (Identity transformation).

e Variables (Ka], 1:[“[>: a=1, p=0.

e Variables (QaI, ﬁ“l): a=1, pg=1.

e Variables (Qa[, ﬁ‘”): a=0, =1

Furthermore, from the structure of the constraints, if 3 = 1 the Barbero-Immirzi
parameter disappears from the formalism. Thus, the remaining formulation can be thought
as naturally associated with the Palatini action. On the other hand, if « = 0 and
B # 1, we obtain a description similar to one rendered by the pair of <C’a1, e ) with
a rescaled Barbero-Immirzi parameter v/(1 — ). Finally, regardless of the values of
o and B, the diffeomorphism constraints have the same form. Therefore, under spatial
diffeomorphisms, the configuration variables X,; always transforms as a 1-form, and the

canonical momentum II* always transforms as a vector of weight +1.
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Gauge fixing

The Hamiltonian description given in this chapter allows us to consider either the time
gauge or the space gauge, we only need to keep in mind the different conventions. For
the time gauge, = is a spacelike surface with ¢ > 0 (h > 0) and the norm of ny is 7 = o,
while the internal metric is (n7;) = diag(o,1,1,1). On the other hand, for the space
gauge, = is a timelike surface with ¢ < 0 (h < 0) and 7 = 1, and the internal metric
is (n;y) = diag(1,—1,1,1). The metrics are different so that in both cases the gauge

condition, 1% = 0, is the same.

However, in this section we only display the case for the time gauge. Hence, we consider

h >0, 7 =0,and (n77) = diag(c,1,1,1). Then, we impose the gauge the condition
1 = o, (6.38)

which is equivalent to n; = 0, with ¢, 7, k... running from 1 to 3. Also, from (6.9) we
conclude that ng = sgn[det(I1%)]. Next, we see that the condition (6.38) does not commutes
with G

KO

{1, g = -, (6.39)

Therefore, we solve (6.38) and G = 0 simultaneously, and get
Xao = 0’77,0(1 — Ck)l:[aiabﬁbi. (6.40)

In the time gauge, the action (6.36) is

1 ~ . ~. ~ =
s—2 / dz" / @ |20 Xy — (206" + 2N°D, + NH) |, (6.41)
K JRr =)
where we defined \; := —(1/2)e;;xM* and G = —(1/2)eijkéfk, and the constraints acquire
the form
~. nO ~ . . .~
G = ——(1—B)0,I% + €' XTI, (6.42a)
Y
Dy = 21”0, Xy — Xai0pI1", (6.42b)
H = oepllTY Ryy? + 20 A| det(11)]

~ o~ . 0 O
+orTelilT7bl] X+ %(1 — /B)I‘m-] |:ij + %(1 — By | - (6.42¢)

The first thing we notice is the absence of the parameter «; it becomes irrelevant in the
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gauge fixing. In contrast, the value of parameter [ (either 5 = 1 or 5 # 1) dictates the

theory under consideration. We analyze more carefully this in what follows:

a) Case f =1

In this case, the analysis is straightforward. From (6.42a)-(6.42c) we obtain

g~2 = Eiijajf[ak’ (643&)
Dy = 210, Xy — Xai0p11", (6.43b)
H = oep I Ryy® + 20U X, X + 20 A det(197)]. (6.43c)

Thus, 8 = 1 implies the absence of the Barbero-Immirzi parameter and, under the time

gauge, the Hamiltonian description becomes the SO(3)-ADM formulation.

b) Case 5 # 1

In this case we begin by rewriting the Gauss constraint as

~ . 0 ~ . . . ~
Gi= - (1= B) [0uT17 + ¢y, | —nO—1— x,7 ) TIok | | (6.44)
gl 1-p
from which we identify the internal connection as
Aai = 7n0$Xai, (645)
with its corresponding field strength given by
Fovi := 0aApi — OpAai + €ijiAd’ A (6.46)

Moreover, using (6.46) and (3.54), we derive the identity
€ijk(Aa? — Tod ) (A" — To%) = Fupi — Rapi — 2V (o (Agi — Typi)- (6.47)

With A,; as our new configuration variable and, using the identity (6.47), we rewrite
the action (6.41) and get

1 2 ~ .. ~. ~ =
S == / daz® / 3z [—n°(1 — A% Ay — 20G" — 2ND,, — Jy}z] : (6.48)
K JR = Y
where the constraints are given by

G = (=) (Ol AT (6.492)
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0

Dy = ~(1-p) (201790 gy — Awi 1" (6.49b)
s (1=8)%  cuic k o k
H = 7’72 ekaH II Fap" + (1 — 5)2 1| Rap

+20n0 A det(TT%) — 2%(1 — A V,.G (6.49¢)

Furthermore, integrating by parts the last term of (6.49¢), and defining

Ca =Dy + AuiG' = _%(1 — B)Favi, (6.50)

we arrive at

1]

g1 / da:o/ d3x [—3710(1 — B)I% Agi — 2u;G* — 2N°C, — ch:] : (6.51)
Kk Jr =

with i = A — AeiGt + [n°(1 — 5)/7]ﬁaivazy and

(1”7;)2 - 1] Rabk} + 20 A| det(I1%)). (6.52)

1—B)?2 oy
( 72&) Eiijme] {fabk+|:

C =
This is the Ashtekar-Barbero formulation with a rescaled Barbero-Immirzi parameter
v/(1 — B) and internal connection given by 4,;. Both connections, namely A,; and the

original Ashtekar-Barbero connection Ag;, are related to each other via

Agi = (1_15> (Agi — Tai) + Lo (6.53)

It is remarkable how the complete family of two-parameter canonical transformations
given in (6.34) either collapse to the SO(3)-ADM description or to the Ashtekar-Barbero
formalism. Furthermore, in the time gauge, only one of the two parameters becomes
relevant and it is precisely this parameter which dictates the nature of the Hamiltonian

formalism.

Comments

To conclude, we want to remark the distinctive aspects of this chapter. We avoided
the introduction of second-class constraints when performing the Hamiltonian analysis of
the Holst action. Thus, they are not mandatory in the real first-order formalism, as it is
often believed. We accomplish such feat with the adequate parametrization of fundamental

variables that describe the Holst action. The 16 components of the tetrad field become the
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12 canonical momenta of the phase space 1%/ [Eq. (6.6)] plus the four Lagrange multipliers
N and N® [Egs. (6.11) and (6.12)]. On the other hand, the 24 fields that compose the
internal Lorentz connection are map into the 12 configuration variables Cy; [Eq. (6.16)],
the six Lagrange multipliers A7y [Eq. (6.26)], and the six auxiliary fields A\g, [Eq. (6.23)].
Then, we integrate out the auxiliary fields A\, and obtain a Hamiltonian description formed

exclusively by first-class constraints.

Furthermore, we generalized the canonical transformations introduced in Sec. 3.3 with
a two-parameter family of canonical transformations, whose values determine the presence
or absence of the Barbero-Immirzi parameter. At the end, we explored the time gauge
for the generalized variables (X7, el ), and we found that the only relevant parameter
is a rescaled version of Barbero-Immirzi parameter v/(1 — ). Its presence or absence
dictates whether we are working in the Ashtekar-Barbero formalism or in the SO(3)-ADM
description. All of the results of this chapter are published in Ref. [58] under the terms
of the Creative Commons Attribution 4.0 International license. We, the authors, own the

rights for the article distribution.

The results of this chapter open a new avenue that allows us to study different
formulations of gravity. For instance, in the n-dimensional Palatini action, the second-
class constraints are reducible when n > 4 [72]. Thus, the treatment to solve them is
troublesome. However, with the use of the same techniques enlisted above, the Hamiltonian
analysis is simple and direct. We published these results recently in Ref. [57]. Also, the
method reported here has served as an inspiration to avoid the second-class constraints in
BF gravity, see Ref. [73].

Moreover, the new parameterization could allow us to couple fermions into the
Hamiltonian formalism of gravity. So far, this has been achieved only when the time
gauge is considered [74,75]. It might also be interesting to explore the case when we add
more topological terms to the Palatini action [76-78]. Some of this work is currently under

development.
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Conclusions

In this work we explored the Hamiltonian framework surrounding the Holst action. Along
the way, we exposed different methods to solve the second-class constraints that arose
during the Hamiltonian analysis. The first type of solution we presented was in a
nonmanifestly Lorentz-covariant fashion, and it served to illustrate the former state of the
Hamiltonian formalism for the Holst action. Here, we followed the approach of Cianfrani
and Montani [38], and, even though their original solution was incomplete, we were able to
mend their mistake and find a suitable Hamiltonian formulation (see Sec. 2.3). Moreover,
although noncanonical variables described the resulting phase space, we made contact with

the Barros e Sa formulation through the Darboux map exhibited in Sec. 2.4.

Next, in Sec. 3.2, we derived a manifestly Lorentz-covariant solution for the second-class
constraints of the Holst action. The ensuing Hamiltonian formulation is formed by first-
class constraints only and explicitly shows its Lorentz covariance. Furthermore, once we
take the time gauge into account, our description neatly collapses to the Ashtekar-Barbero

formulation (see Sec. 3.4).

With the manifestly Lorentz-covariant formulation at hand, we devoted Chapter 4 to
explore an alternative gauge fixing. The new gauge is known as the space gauge, and it
preserves some of the boost freedom of the Lorentz group. Thanks to the explicit covariant
nature of the variables involved, we straightforwardly arrived at a complete formulation
for general relativity invariant under local SU(1, 1) transformations. Remarkably, the new

formulation resembles the Ashtekar-Barbero description.

Regarding the BF approaches, we also studied the Hamiltonian formalism of a BF-type
action for general relativity that, at the Lagrangian level, reduces to the Holst’s case. In
Chapter 5, we showed that once we get rid of the second-class constraints, the BF' action
defined in Eq. (5.1) is entirely equivalent to the Holst action at the Hamiltonian level.
Thus, we can also derive the Ashtekar-Barbero formulation from a BF-type action for

general relativity.
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Another important result was presented in Sec. 3.3. We obtained alternative
Hamiltonian formulations through the use of canonical transformations. They are
descriptions formed solely by first-class constraints, and they are manifestly Lorentz
covariant too. Furthermore, some of the canonical transformations directly relate the
Hamiltonian descriptions of the Holst and Palatini actions, specifically, the maps are:
(Ca[, ﬁ“l> — (Qa], f[al) or <C’a1, 1:[“1> — <Qa[, ﬁ“l) of Egs. (3.35) and (3.40),
respectively.! Therefore, we showed the equivalence of both actions at the Hamiltonian

level with the complete symmetry group SO(3,1) [or SO(4)].

In Sec. 6.2, we generalized the canonical transformations mentioned above. We did
it with the map (Ca[, 1:[“I> — (Xaj, ﬁal), defined in Eq. (6.34). This map depends
on two real parameters o and 3, and, depending on their value, we can describe any of
the formulations enlisted in Sec. 3.3. Moreover, in the time gauge, we noticed that the
parameter a becomes irrelevant. In contrast, the value of 8 determines if the formulation is
the SO(3)-ADM description (8 = 1), or if it is the Ashtekar-Barbero formulation (5 # 1).
Thus, in the time gauge, only one parameter is important, and it is precisely the Barbero-

Immirzi parameter (up to a rescaled version of it).

The last result we presented was exposed in Chapter 6 of this thesis. There, we
demonstrated that we could avoid the introduction of the second-class constraints from
the beginning. We achieved it by noticing that the canonical momenta of the smaller
phase space II*! is related to the spatial part of the tetrad field e,!. Therefore, the 16

I are translated into four Lagrange multipliers N and

independent fields that compose e,
N plus 12 canonical momenta I1%/. Furthermore, and similarly to the previous case, the
Lorentz connection wMI s is decomposed into 12 dynamical variables C,; (which play the
role of the configuration variables), plus six Lagrange multipliers A;y, and six auxiliary
fields Agp. Once we integrate out the auxiliary fields Ay, through their own equation of
motion, we land at the same Hamiltonian description of Chapter 3. Thus, this method

simplifies the Hamiltonian analysis significantly.

The method of Chapter 6 is not restricted to the Holst action, it is a generic procedure
that can be applied to avoid the introduction of second-class constraints in other contexts.
For instance, in the Hamiltonian analysis for the m-dimensional Palatini action, there
are second-class constraints that are reducible so further treatment is required [72,79].

However, employing the method described in Chapter 6, we can avoid the troublesome

'The maps (Kaz, 1:[‘1[) — (QQI, 1:[“I> or (Kaf, I:I“I) — (Qaf, I:I“I) also prove the equivalence of both
actions at the Hamiltonian level. They can be derived from the expressions (3.30), (3.35), and (3.40).
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procedure of dealing with the second-class constraints and directly arrive at a formulation
constructed with first-class constraints only [57]. Furthermore, the method can be
implemented into the BF approaches, as it is treated in Ref. [73]. Also, without
second-class constraints, it will be easier to couple fermionic matter into the Hamiltonian
description of gravity. Although some attempts have been made in the regime of the time
gauge [75,80], the explicitly covariant description with fermions fields is currently under

development. We hope to report it soon.

As a final remark, we have found several Hamiltonian descriptions for general relativity
using the Holst action. In all of these formulations, the canonical variables lack the
characteristic geometrical meaning of the Ashtekar-Barbero description. Although the
momentum variable always transforms as an internal Lorentz vector, the configuration
variable does not transform as an SO(3, 1) connection. Therefore, in all of our descriptions,
we can not implement the techniques developed in loop quantum gravity. However, our
formulations describe the phase space of general relativity with first-class constraints only,
and with canonical conjugated variables that explicitly exhibit their Lorentz covariance.
Perhaps this could motivate the use of alternative strategies that will lead us to a quantum

description of gravity without losing the Lorentz invariance.

75



76



Conventions and notation

Throughout this work we use a 4-dimensional spacetime manifold M, in general we will
assume that M is diffeomorphic to R x ¥, with X as a spacelike 3-dimensional submanifold
without boundary (0¥ = 0). However, in Chapter 4, we consider that M is diffeomorphic
to Q x R, with Q a 3-dimensional timelike submanifold that might have a boundary. Also,

be aware that Chapter 6 has its own conventions.

Independently of the topology of M, we define an orthonormal 1-form basis e! at each
point p € M. The latin capital letters beginning in the middle of the alphabet (I, J, K, ...)
are group indices. They take values {0, 1, 2, 3} and are lowered or raised with the internal
metric (n7y) = diag(o, 1, 1, 1), being 0 = +1, where 0 = —1 (0 = +1) indicates a
Lorentzian (Euclidean) signature. These indices represent quantities valued in the group
SO(3,1) for 0 = —1 or SO(4) for 0 = 1. In general, we maintain both signatures, except in
Chapter 4 when we strictly stick to the Lorentz group. Sometimes we will split the internal
indices and use lowercase latin letters (i, j, k, ...) to denote that they take the values
{1, 2, 3}. On the other hand, for the spacetime indices, we use greek letters (o, 3, p,...),
so we label the local coordinates as {z#} = {t, 2}, with a, b, ¢,... = 1, 2, 3. In Chapter 4,
we use a bar over the lowercase indices, either internal (i, j, k, ...) or spacetime (a, b, ¢, ...),
to indicate that they take the values {0, 1, 2}.

Regardless of the set of indices, we define the symmetrizer and the antisymmetrizer,

respectively, as

1
A($y) = 5 (Azy + Ay:r) , (Ala)
1
Ay = 3 (Agy — Aya) . (A.1b)
Also, for any antisymmetric internal quantity U;y = —Uj;, we define its correspondent
internal dual by )
xUry = 56[]KLUKL, (A.2)

7



where €77k, is the totally antisymmetric SO(3,1) [or SO(4)] tensor and eyjo3 = 1. The

internal dual satisfies the properties

U VY7 = Upy« v, (A.3a)
*(UneV) = UV = U« VE . (A.3b)

Similarly, let v be a real number, then, it is convenient to define the y-hat notation as

) 1
U= (6{}5% + Z.YEIJKL> Ukt = Pry" Uk, (A4)

where Pr;%% defines the internal projector
1
KL KL KL
P[J = 5[[ 5]] + aejj s (A5)
with (P_l)IJ K1, being its inverse as long as 72 # o. Explicitly (P_l)” KL is given by

2
s 10 Lo

Notice that they fulfill PN (P~1), KL = 5{1((55]. From (A.3) it is straightforward to

prove the identities

) ()
ﬁu vl = U, ‘} L (A.7a)
“ () ()
UneVin) = Umk VEn=Unx V50 (A.7b)

Finally, when working with tensor densities, we will use tildes above (below) the
correspondent variable; the tildes above (below) indicate a positive (negative) weight
equivalent to the number of tildes. For convenience, sometimes we omit the use of tildes,
but its weight is mentioned somewhere in the text. Two of the most common tensor
density we use are 7*°* and Napuvs they are totally antisymmetric tensor densities and

satisfy 79123 = 1 and no12s = 1, respectively. From these tensor densities, we sometimes

~abc ._ ~0ab ~abé .__ ~abc3 - e -
use 777 1= 7" and 7 := ", OF Nabe = Noabe AN Tape = Napes-
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