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Resumen

La búsqueda de soluciones de Sitter (dS) en compactificaciones de teoría de cuerdas
con todos los módulos estabilizados, esto es, sin direcciones planas en el potencial han
sido llevadas a cabo en el contexto del modelo KKLT dirigiendo el problema de la
constante cosmológica sugerida por la fuerte evidencia de un universo en expansión
acelerada. Además esto es importante debido a algunas conjeturas motivadas por
teoremas de imposibilidad que imponen restricciones a la existencia de soluciones dS
en supergravedad de teoría de cuerdas.

En esta tesis estudiamos una variante del paradigma principal para la construcción de
vacío de Sitter metaestable de soluciones Anti de Sitter (AdS) supersimétricas obtenidas
de teoría de supergravedad de bajas energías cuatro-dimensional con todos los módulos
establizados basado en introducir anti-D3-branas proporcionando una cantidad de
energía positiva a la energía potencial, este proceso es conocido como levantamiento del
mínimo ya que eso levanta el vacío a un mínimo de vacío dS. En cambio consideramos
la posibilidad de D-branas envolviendo ciclos torsionales de una variedad mitad plana
y estudiamos sus consecuencias en el vacío AdS. Mostramos que para estas branas
torsionales el vacío permanece en un mínimo AdS con todos los módulos estabilizados
y también calculamos la contribución a la energía potencial viniendo de estas branas
torsionales.
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Abstract

The search for de Sitter (dS) solutions in string theory compactifications with all
stabilized moduli i.e., no flat direction of the potential energy has been carried out in the
context of KKLT model addressing the problem of the positive cosmological constant
suggested by the strong evidence of an accelerated expanding universe. In addition this
is important because of some conjectures motivated by no-go theorems that impose
constraints to the existence of dS solutions in string theory supergravity.

In this thesis we work on a variant to the leading paradigm for the construction of
metastable de Sitter vacuum of supersymmetric Anti de Sitter (AdS) solutions obtained
by four-dimensional low-energy supergravity theory with all muduli stabilized which is
based on introduce anti-D3-branes providing a positive energy to the potential energy
and this process is known as uplifting since it uplifts the AdS vacua to a dS vacua.
Instead of we consider the possibility of D-branes wrapped around of torsional cycles
of a half-flat manifold and study its consequences in the AdS vacuum. We show that
for these torsional D3-branes the vacua remains in an AdS minimum with all moduli
stabilized and work out the contribution to the energy potential arising of this torsional
branes as well.
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1. Introduction

One of the most surprising discoveries is the accelerated expansion of the universe
on a large scale, a fact supported by a plenty of experimental evidence collected by
high-precision cosmology experiments. As a result of this, it is necessary to offer
an explanation to this problem leading presumably because of a vacuum energy or
cosmological constant, and then why it has an extremely small value but in fact non-
zero value in the field equations of general relativity under quantum effects. One could
try to address the problem from the perspective of Quantum Field Theory, that is,
include quantum corrections, however the different contributions that are calculated in
this approach contradict the evidence, the extent in which theory and experiment failure
to thrive is around 60 to 120 orders of magnitude.

What makes this problem truly challenging is that it arises from two theories with the
greatest experimental success. On the one hand General Relativity with more than a
century of its discovery and on the other hand the Standard Model of Particle Physics.
It seems clear in term of the evidence that an interplay between these two frameworks is
indispensable to address this problem of the cosmological constant, for an introductory
description to this problem see [1]. At this stage the emergence of a quantum theory of
gravity is necessary and in the light of the developments the most prominent candidate
we have today is String Theory. We have five perturbative theories precisely formulated
in ten space-time dimensions known as superstrings theories and one more theory
formulated in eleven space-time dimensions known as eleven-dimensional sugra. All of
them are limits of the so called M-theory [2, 3].

To describe the universe in its early stage (this problem mostly driven by the inflationary
paradigm) as well as the observation of late-time cosmic acceleration, the search for dS
solutions was launched, i.e. vacuum with positive energy density. There are many no-go
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CHAPTER 1. INTRODUCTION 2

theorems [4] that complicate the construction of de Sitter vacuum in string theory as well
as from a pure supergravity perspective, additionally to the string swampland/landscape
conjectures (at this point the anthropic principle is expected play an important role)
suppose another problem. The first steps in this search were taken by the KKLT model
[5] (by the names of its discoverers S. Kachru, R. Kallosh, A. Linde and S. Trivedi)
in the context of highly warped compactifications on a Calabi-Yau (CY) manifold of
type IIB/F theory [6] . For this it was necessary turn on background fluxes for NSNS
(Neveu-Schwarz-Neveu-Schwarz) and RR (Ramond-Ramond) forms fixing all of the
complex structure moduli and the axion-dilaton of CY compactification. Focusing
on models having only one Kähler modulus, they use nonperturbative effects to fix
this remaining modulus thus this allowed them to carry out the moduli stabilization
problem (which by it self is a difficult problem when we are looking for realistic string
compactifications). This combined with a remnant superpotential characterized by the
presence of fluxes, have shown that the minimum of the potential is a supersymmetric
four-dimensional AdS vacuum. For an analysis of inflationary context to Cosmology
see [7] and for the importance of the moduli stabilization problem see [8]. The addition
of an anti-D3-brane has a significant impact providing an extra term for the potential
which depends on Kähler modulus given rise to an extra source of positive potential
energy uplifting the AdS minimum, finally resulting in a metastable de Sitter vacua
with broken supersymmetry in four-dimension and of lifetime much greater than the
cosmological timescale.

On the other hand a beautiful connection between the type II theories without fluxes
is based on a duality known as mirror symmetry which under some precise require-
ments asserts that the low-energy four-dimensional effective theories derived from
type IIA compactified on a CY manifold X3 is equivalent to type IIB compactified
on a CY manifold Y3 mirror to X3. In order to have these mirror pairs (X3, Y3) is
necessary, among other things, the possibility of relate their cohomology groups, more
precisely there exists a relation between even (odd) cohomology groups on X3 and
odd (even) cohomology groups on Y3. However in this context of mirror symmetry the
compactifications of type II theories in the presence of RR and NSNS fluxes it has been
necessary to resort to more sophisticated manifolds than the commonly used CY. The
main problem has arisen from the fact that in the most general compactifications, one
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finds that some of the fluxes appear to be related with (con)torsional elements of the
Levi-Civita connection into the mirror symmetric manifold, in consequence most of the
forms (as the holomorphic (3,0) form Ω and the Kähler form J) do not close under the
standard differential operator d of the differential geometry, and the mirror symmetry is
less clear and our knowledge of the standard cohomology is lost.

The mirror symmetry with fluxes is guaranteed in compactifications known as compact-
ifications of Type II theories on generalized manifolds, e.g. half-flat manifolds [9, 10],
in despite of not to have the cohomology structure than CY manifolds. And this leads to
the existence of torsional elements in the (co)homology [11] which is important for us
on search for implications in Cosmology. In addition we suppose, if mirror symmetry
holds in the limit of small torsion, i.e. the limit of large complex structure thus the
moduli space of the CY manifold, at least locally, should coincide with the moduli
space of the half-flat manifold in particular its metric deformations and in both cases
we used the same tool for describe the complex structure deformation [9, 10]. In this
thesis by simplicity we do not consider any quantum correction to Kähler potential and
therefore work out in the large volume limit. For an analysis of the nonperturbative
correction to the Kähler potential, see [12].

This thesis is organized as follows. In Chapter 2 we briefly review the elements of type
II theories, recall the necessary fact on CY compactifications and flux compactification
and we focus on the complex structure moduli. We briefly describe the structure
of the corresponding supergravity theory, superpotential, Kähler potential and the
supersymmetry conditions. In Chapter 3 we introduce half-flat manifolds in the context
of mirror symmetry and their associated torsional components that we then use in
generic context to expand fluxes into both torsional and non-torsional elements, we
rewrite the Kähler potential and the superpotential. Chapter 4 contains a brief review of
the KKLT model and the strategy in the mechanism to obtain dS vacuum. We explore
the effects of D3-branes wrapped in torsional cycles instead of the last step of the KKLT
strategy. Finally some remarks are include in Chapter 5



2. Preliminaries of String Theory

2.1 String Theory Elements

String theory is a theory of quantum gravity, which can at the present be precisely
formulated in high dimensions and several weakly coupled versions. There are two
versions that are very important for us, these are the superstring theories in ten space-
time dimensions, called Type IIA and Type IIB. These theories are described at low
energies by effective ten dimensional supergravity theories. We will now briefly de-
scribe both type IIA and type IIB string theories focusing our discussion throughout
the content of bosonic fields of the NSNS and RR sectors [2, 3, 8]. There are other
three ten-dimensional versions, these are Type I, and the Heterotic E8×E8 and SO(32)

theories which can be found in e.g. [2] and there is one more limit eleven dimensional
known as M-theory can be seen in [3]. On the other hand, there are other two sectors
corresponding to NS-R and R-NS sectors where the content of fermionic fields is present
but for this thesis they will not play an important role in our discussion, so we refer the
reader for more details to [2, 3].
The NSNS sector of type II supergravities in ten dimensions contains the metric GMN ,
the dilaton Φ, and the two-form B2. The string-frame action for this field is (character-
ized by the exponential dilaton dependence)

SNS =
1

2κ2
10

∫
d10X

√
−Ge−2Φ

(
R + 4(∂Φ)2 − 1

2
|H3|2

)
, (2.1)

where H3 = dB2. The ten-dimensional gravitational coupling constant κ2
10, correspond-

ing to the Newton constant in ten-dimensions G10, can be related to the string tension
(it has been introduced the string length scale ls =

√
2α′ ) by comparing the worldsheet

4



CHAPTER 2. PRELIMINARIES OF STRING THEORY 5

and supergravity actions; one finds [2, 3]

2κ2
10 = (2π)7(α

′
)4 . (2.2)

In addition, type IIA supergravity have R-R p-forms that is, an one-form C1 and a
three-form C3 which appear in the complete action as form field strengths in the kinetic
terms. The type IIA complete action then take the form

SIIA = SNS + S
(IIA)
R + S

(IIA)
CS , (2.3)

where the RR and Chern-Simons (CS) actions are

S
(IIA)
R = − 1

4κ2
10

∫
d10X

√
−G

(
|F2|2 + |F̃4|2

)
, (2.4)

S
(IIA)
CS = − 1

4κ2
10

∫
B2 ∧ F4 ∧ F4 , (2.5)

with Fp = dCp−1 and F̃4 = F4 +C1∧H3. The field content in the type IIB supergravity
are a zero-form C0, a two-form C2 and the four-form C4. The type IIB complete action
is

SIIB = SNS + S
(IIB)
R + S

(IIB)
CS , (2.6)

where the RR and CS actions are

S
(IIB)
R = − 1

4κ2
10

∫
d10X

√
−G

(
|F1|2 + |F̃3|2 +

1

2
|F̃5|2

)
, (2.7)

S
(IIB)
CS = − 1

4κ2
10

∫
C4 ∧H3 ∧ F̃3 , (2.8)

with Fp = dCp−1, F̃3 = F3 − C0 ∧H3, and F̃5 = F5 − 1
2
C2 ∧H3 + 1

2
B2 ∧ F3 with the

observation that F5 has to satisfy a self-duality constraint in type IIB theory.

The field equations of motion from the action (2.6) are consistent after to impose

F̃5 = ?F̃5 , (2.9)

where ? is the Hodge star operator in the ten-dimensional theory. One has to impose
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the self-duality constraint after derive the equations of motion from the type IIB action.
This must be imposed as an additional constraint; it cannot be imposed on the action
then wrong equations of motion result [2].

We have written the NSNS sector (2.1) of the actions (2.3) and (2.6) in the string frame,
meaning that appears an exponential dilaton dependence e−2Φ in front of the Ricci
scalar R. However, for many reasons involving supergravity theory and at the same time
to make apparent a global symmetry SL(2,R) it is more convenient to work in Einteins
frame. It is possible to get Einstein frame by performing the Weyl transformation (Weyl
rescaling)[3, 8, 6]

GE,MN ≡ e−2ΦGMN , (2.10)

then the NSNS action transform as [3]

SNS =
1

2κ2
10

∫
d10X

√
−Ge−2ΦR→ 1

2κ2
10

∫
d10X

√
−GE

(
RE −

9

2
∂MΦ∂MΦ

)
.

(2.11)
Also in type IIB string theory, it is convenient to define the combinations

G3 ≡ F3 − τH3 , (2.12)

τ ≡ C0 + ie−Φ , (2.13)

in terms of which the action (2.6), written in Eintein frame, takes the form manifestly
invariant under SL(2,R) transformations [3, 6]

SIIB =

∫
d10X

√
GE

[
RE −

∂Mτ∂
Mτ

2(Im(τ))2
− |G3|2

2Im(τ)
− |F̃5|2

4

]

− i

8κ2
10

∫
C4 ∧G3 ∧ Ḡ3

Im(τ)
.

(2.14)

Normally, this equation is the starting point for discussion of type IIB flux compactifi-
cation in the search for supersymmetric vacuum N = 1 [8] as well as to address the
problem of hierarchies from perspective of wrapped compactifications [6].
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The superstring theories are consistent in ten dimensions and connected by different
dualities that allow us to explore different regimes of the theories. Nevertheless in the
cosmological likewise phenomenological context need to connect with the physics in the
four-dimensional spacetime. For this, the best-understood mechanism is string theory
compactifications, and for more realistic descriptions, we consider the compactification
in Calabi-Yau manifolds. In addition, in the light of preserving the minimum of
supersymmetry in the four-dimensional theory resulting from the compactification
process, the proposed Calabi-Yau manifold is the best understood which the majority
of the cases contain an extension of the Standard Model. The reason for this is due to
the simplicity of calculating the effects of the internal space in the four-dimensional
physics that finally is our purpose. The theories mentioned above have supersymmetry
N = 2 in ten dimensions and when we perform the dimensional reduction, e.g. Kaluza-
Klein in a Calabi-Yau [13, 14, 15, 16] we have a four-dimensional low-energy theory
with supersymmetry N = 2. However, for many reasons need configurations with
supersymmetry N = 1 in four dimensions. There are compactifications in Calabi-Yau
orientifolds which leads to four-dimensional low energy effective theory compatible
with N = 1 supergravity [13, 14, 15, 17].

In any of these compactifications, the four-dimensional low-energy action appears with
a number of massless scalar fields without potential. These would lead to long-range
scalar forces unobserved in nature. Furthermore, the couplings of other fields depend
on their vacuum expectation values (VEV’s), an example is a dilaton Φ which describe
the interaction strengths between the strings. As a consequence, it difficult make
any predictions in these scenarios since the VEV of the moduli can take any vacuum
expectation values. Therefore, it is important to realize that a mechanism that generates
a potential for these free parameter is necessary, fixing (or "stabilizing") their VEV’s
. The mechanism within perturbative string theory that we know today is via fluxes
explained e.g. in [6, 13, 14, 15, 17, 18, 19]. It has been shown that non-pertubative
mechanisms work out for this purpose. We are going to talk about this in the following
sections.
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2.2 Compactification on Calabi-Yau Manifolds

Here we briefly describe the mechanism to connect our ten-dimensional description
with the four-dimensional physics considering a background

M4 ×X3 , (2.15)

whereM4 is the four-dimensional Minkowski-space and X3 is a compact Calabi-Yau
manifold of complex dimension three. This manifold with a Levi-Civita connection
defines a transformation group1 which is called the holonomy group and it is who
determines the amount of supersymmetry left intact by the background. The four-
dimensional low-energy effective action can be determined via Kaluza-Klein reduction
of the ten-dimensional supergravity actions in the product space background (2.15).
At the same time compactification in the internal compact space X3 choosen to be a
Calabi-Yau threefold, leads to a simplification for the ten-dimensional equations of
motion, e.g the ten-dimensional equation of motion for a p-form field Bp

∆10Bp =
(
d†d+ dd†

)
Bp = 0 , (2.16)

where (2.16) encode the equation of motion and a choice of gauge. Thanks to the
product structure of the background (2.15), the spacetime and internal Beltrami operator
split, additionally the ten spacetime coordinates split into four spacetime coordinates
plus six real coordinates (or three complex coordinates) thus the internal forms in this
separation are eigenfunction of the internal Beltrami operator of the CY manifold

∆10Bp = (∆4 + ∆6)Bp , (2.17)

and the massless modes of the four-dimensional theory correspond to the harmonic
forms of ∆6 in the low-energy approximation. These zero modes (or harmonic forms)
correspond to elements of the Dolbeault cohomology groups on X3. More precisely the
cohomology groups of X3 decompose in subspaces which are more refined cohomology

1More in general an m-dimensional Riemannian manifold M with an affine connection defines a
group of transformation called holonomy group and in a complex manifold M , which is, that admit
complex structure also is possible to talk about its holonomy group.
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groups which is, the Dolbeault cohomology groups

Hk =
⊕
p+q=k

Hp,q . (2.18)

Here (p, q) denotes the number of holomorphic and anti-holomorphic differentials of the
harmonic forms. The dimension of the (p, q)-cohomology group are called the Hodge
number and it is denoted by hp,q = dimHp,q(Y ). If we consider to a CY threefold then
the non-trivial Hodge numbers are

h1,0 = h0,1 = h2,0 = h0,2 = h3,1 = h1,3 = h3,2 = h2,3 = 0 ,

h0,0 = h3,0 = h0,3 = h3,3 = 1 ,

h2,1 = h1,2 ,

h1,1 = h2,2 .

We see that h1,2 and h1,1 are the non vanishing Hodge numbers in the CY threefold.
Apart of the zero modes in the reduction of the bosonic supergravity actions, that
is, the scalar and p-form fields corresponding to harmonic forms on Y , we have that
deformations of the CY metric which does not modify the condition of Ricci-flatness
(hermitian metric with vanishin Ricci tensor) correspond to elements that lie in the
cohomology groups of X3 and those are manifested in the low-energy effective action
as free parameter. This moduli space M of metric deformations can be described
into a product space which locally splits into the space of Kähler deformations of the
hermitian metric and in complex structure deformations of the same metric. In other
words, the moduli spaceM of CY manifolds is locally a direct product ofM1,1 and the
spaceM2,1, both are Kähler manifolds, spanned by the complex structure deformations,
which deformations into M1,1 are parameterized by the harmonic (1,1)-forms and
deformations intoM2,1 correspond to harmonic (2,1)-forms. In what follows we briefly
summarize the description of moduli spaceM of CY manifolds, for more detail, see [3,
20].
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2.2.1 The Special Geometry H3(X)

The mathematical tools used to describe CY moduli spaces known as special geometry
is presented here. The complex structure deformation can be expanded in harmonic real
(2,1)-forms of H3(X). From (2.18) one finds that the holomorphic (3,0)-form Ω is the
representative of H3,0 and that H0,3 correspond to the anti-holomorphic (0,3)-form Ω̄.
One can also choose the elements of H2,1 ⊕H1,2 to be the real basis

(
αI , β

J
)

where
I, J = 0, . . . , h1,2 and specifying a basis of three cycles of the Calabi-Yau

{
AI , BJ

}
,

with intersection numbers satisfying AI ∩BJ = −BJ ∩ AI = δJI and otherwise zero,
thus together they can also be chosen to satisfy [3, 9, 12, 15, 21, 22]∫

AI
αJ = δIJ ,

∫
BI

βJ = −δJI ,
∫
X3

αI ∧βJ = δJI ,

∫
AI
βJ = 0 =

∫
BI

αJ . (2.19)

The unique holomorphic (3,0)-form Ω can be expressed in this basis, it follows that in
term of it

Ω = XIαI −FIβI , (2.20)

where XI ,FI are the periods of Ω, defined by

XI =

∫
AI

Ω , FI =

∫
BI

Ω , (2.21)

where the XI are projective coordinates in the moduli space of complex structures and
the FI are functions of XI and determined by a homogeneous function (in a proper
symplectic frame), i.e. a prepotential of degree two F(X) as

FI =
∂F
∂XI

≡ ∂IF . (2.22)

The periods can be conveniently combined into a period vector Πt =
(
XI ,FI

)
and

if one expresses XI = (X0, X i), the deformations of the complex structure ui, i =

1, . . . , h1,2 which parameterize H1,2(Y3) are related to the coordinate XI via ui =

X i/X0 or in other words one could choose XI = (1, ui) establishing a gauge X0 = 1,
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then the period vectors can be expressed as [23, 21]

Π =


X0

X i

F0

Fi

 =


1

ui

2F − uiFi
Fi

 , (2.23)

where the second equality is normalized choosing X0 = 1 as it was mentioned above.
The metric gab on the space of complex structure deformationM2,1 is characterized by
a Kähler metric given by gab = ∂a∂bK and the Kähler potential is

K = − log

(
−i
∫

Ω ∧ Ω

)
= − log

[
i(X̄KFK −XKF̄K)

]
= log

[
2iIm

(
X̄IFI

)]
.

(2.24)

Defining the symplectic matrix Σ =
(

0 I
−I 0

)
the Kähler potential (2.24) is rewritten as

K = − log

(
−i
∫

Ω ∧ Ω

)
= − log

[
iΠ† · Σ · Π

]
, (2.25)

where “ · ” is the ordinary scalar product. Note that in the above expression there
is freedom to normalize the X0 component of the period vector consistent with the
equations defined in (2.19). Later in this thesis this gauge freedom in component X0

will depend on the size of the torsional cycles of the manifold which will be generalized.

2.2.2 The Special Geometry H2(X)

Harmonic (1,1)-forms and its dual (2,2)-forms being part of (ωi, ω̃
i) and satisfying the

normalization condition ∫
X3

ωi ∧ ω̃j = δji , (2.26)

denote the elements ωi ∈ H1,1(X) and those ω̃i ∈ H2,2 and i = 1, . . . , h1,1. Usually
it is combined the Kähler form J and the two-form B2 since after a compactification
there arise so many h1,1 zero modes in low dimensions as Kähler deformations. Hence
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can use the basis ωi ∈ H1,1 to expand J and B2 as follows

J = viωi , B2 = biωi . (2.27)

Now combine them in the complexified Kähler form

B2 + iJ = (bi + ivi)ωi ≡ tiωi , (2.28)

given rise to h1,1 massless complex scalar fields. Also we define the following integrals

K =
1

6

∫
X3

J ∧ J ∧ J , Kijk =

∫
X3

ωi ∧ ωj ∧ ωk , (2.29)

where K is the classical volume of the CY X , and it is used the Kähler form expanded
in terms of the basis ωi

J = viωi . (2.30)

The deformation space of the complexified Kähler form is Kähler with metric gij =

∂i∂̄jK and given by [3, 20, 18, 16]

gij = ∂i∂̄j(− log 8K) . (2.31)

Furthermore, the Kähler potential can be written in terms of a prepotential F in analogy
to the prepotential of the complex structure moduli space

e−K = i(X̄KFK −XKF̄K) , FI =
∂F
∂XI

≡ ∂IF , (2.32)

with

F =
1

3!

KijkX iXjXk

X0
. (2.33)

The coordinates XI with I = 0, . . . , h1,1 are defined in terms of the special coordinate
ti via XI = (1, ti) choosing the normalization X0 = 1. And therefore ti parametrizes
the deformations of the complexified Kähler form.
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2.3 Flux Compactification

In flux compactifications of CY manifolds (in fact, it requires a CY orientifold) the
effective field theory corresponding to a standard N = 1 supergravity theory and with
the presence of three-form fluxes, one generates a superpotential for the CY moduli, i.e.
it possible the stabilisation of axion-dilaton and complex structure moduli which we
denote as τ = C0 + i/gs where gs = eΦ and ui , i = 1, . . . , h1,2. Then the R-R-fluxes
and NS-NS-fluxes, F3 = dC2 and H3 = dB2 respectively and it is usual to combine
them into G3 = F3 − τH3, and it is induced the following superpotential [6, 24]

Wflux(u
i, τ) =

∫
X3

G3 ∧ Ω . (2.34)

In this point we make to note that this superpotential (2.34) depends on the axion-dilaton
and complex structure moduli ui, but it does not depend on Kähler moduli which implies
that we have to resort to another mechanism for stabilization of this moduli.

The fluxes satisfy a quantization condition [21]∫
AI
F3 = −f IA ∈ Z ,

∫
BI

F3 = −fBI ∈ Z ,

∫
AI
H3 = −hIA ∈ Z ,

∫
BI

H3 = −hBI ∈ Z .

(2.35)

Here the minus signs have been introduced for convenience. If we define the sym-
plectic flux vectors f t = (f IA, f

B
I ) , ht = (hIA, h

B
I ), they can be used to write the flux

superpotential (2.34) in a compact way using

F3 = −(f IAαI − fBI βI) , H3 = −(hIAαI − hBI βJ) , (2.36)
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and the relations (2.19) and Σ =
(

0 I
−I 0

)
as follows

W (ui, τ) =

∫
X3

[
−(f IAαI − fBI βI) + τ(hIAαI − hBI βJ)

]
∧
[
XJαJ −FJβJ

]
=
[
(f IA − τhIA)FI − (fBI − τhBI )XI

]
= (f − τh)t · Σ · Π .

(2.37)

The Kähler potential for the different moduli (and if in the expression that follows
we consider one Kähler modulo) become in the sum of terms after a compactification
depending on the different moduli and take the form

K = − log [−i(τ − τ̄ ])− log
[
iΠ† · Σ · Π

]
− log [−i(ρ− ρ̄)] . (2.38)

Now, the above expressions (2.37) and (2.38) combine in the formula for the potential
in N = 1 supergravity as

V = eK
(
KIJ̄DIWDJW − 3|W |2

)
, (2.39)

where I, J run over indices labeling the complex structure and Kähler moduli as well as
the axion-dilaton. DIW is the Kähler covariantized derivative DIW = ∂IW +W∂IK.
At this point something very interesting happen. Because of W is independent of the
Kähler moduli at tree level using (2.37) and (2.38), we have that the term

KIJ̄DIWDJW = Kij∂iK∂jK|W |2 = 3|W |2 (2.40)

where Kij = ∂2K/∂iρ∂jρ and Kij = (Kij)
−1 (note that I, J only run over the i, j

Kähler moduli there) precisely cancels the term −3|W |2 in (2.39). Therefore, one can
express this tree-level flux potential as

V = eKsc+Kτ
(
KabDaWDbW

)
, (2.41)

where a and b run over axion-dilaton and complex-structure moduli only and where Ksc

denote the Kähler potential of complex structure and Kτ denote the Kähler potential of
axion-dilaton.
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Notice that this potential known as no-scale potential in N = 1 supergravity is positive
semi-defined and precisely the minimum can be located in Vno-scale = 0, such that for
generic fluxes choice this minimum corresponds to a supersymmetric minimum with
the dilaton and the complex structure moduli stabilized. More precisely, we have that
the supersymmetric minimum corresponds to points of the moduli space that give a
solution to V = 0, that is, we need to solve the equations

DτW = DiW = 0 . (2.42)

Hence, it seems clear that we are solving h2,1 + 1 equations in h2,1 + 1 variables and
therefore that generic fluxes choices will fix all the complex structure moduli as well as
axion-dilaton, more explicitly for the axion-dilaton [23]

τ =
f · Π̄
h · Π̄

, τ̄ =
f · Π
h · Π

, (2.43)

and the complex structure moduli

(f − τh) · (∂iΠ + Π∂iK) = (f − τh) · ∂iΠ− (f − τh) · ΠΠ† · Σ · ∂Π

Π† · Σ · Π
= 0 , (2.44)

where we used (2.25) and have a set of h2,1 equations that we should solve for the
h2,1 variables with all moduli stabilized in the minimum of the potential (2.41) which
correspond to zero.

Also, it is important to mention that in orientifold compactifications the cancellation
requirement of tadpoles implies that the allowed flux choices are stringently constrained
and hence the number of flux vacua, in that way the enormous number of consistent
vacuum come from flux compactification may be reduced, for more detail see [6, 25].

At this point, as mentioned above the Kähler moduli is not stabilized by the presence
of fluxes in our compactification manifold, hence another mechanism is necessary
to stabilize this moduli and then have under control these free parameters that are
manifested in our low-dimensional theory. For this purpose non-perturbative effects
are used, e.g., arising either Euclidean D3-brane instantons or gaugino condensation
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on stacks of D7-brane wrapping a four-cycle in the internal space. In the seminal work
of KKLT these non-perturbative corrections were added to the superpotential which
allowed to stabilize the Kähler modulus in their model, we will specify more on this
model in Chapter 4.



3. Generalized Compactifications

3.1 Half Flat Compatification

The background geometry (2.15) undergo slight modifications when one allows the
presence of p-form field strengths, and take a certain non-trivial background value so
that fluxes associated thread appropriate cycles in the internal Calabi-Yau manifold
and therefore the background geometry changes to a warped geometry. These back-
ground fluxes configuration are allowed to have certain component that are restricted by
Poincare invariance and the Bianchi identities, and the metric written as the product
metric of a four-dimensional Minkowskian spacetime and six-dimensional Calabi-Yau
manifold is replaced by a warped-metric with a warp factor that depend on the coor-
dinate of the internal space. With a convenient parameterization the warped metric
normally considered [3, 6]

ds10 = ηµνdx
µdxν + gmndy

mdyn → e2A(y)ηµνdx
µdxν + e−2A(y)gmndy

mdyn , (3.1)

in terms of four-dimensional coordinates xµ and coordinates ym on the six-dimensional
internal space. From the equations of motion one can see that the flux parameters con-
tribute to the energy-momentum tensor and as a consequence the geometry backreacts
and it is induced a non-trivial warp-factor in terms of the fluxes. However preserving
the CY geometry in the large volume approximation we are considering here they
appear as continuous parameters which modify the low energy supergravity. In the
low-energy approximation the homology cycles are so that the flux parameters are
effectively continuous and represent small perturbations of the original Calabi–Yau
compactification that otherwise could contribute as torsional elements in the connection,
see section 3.1.1.

17
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In the above discussion, a important role has been played by topological invariants of
the compactification manifold. In particular, we have been able to derive rather general
features of the four-dimensional low energy action thanks to the fact that each object
of the compactification corresponds to a topological classes of the compactification
manifold, in particular an important role is played by the (co)homology in the four-
dimensional low-energy physics. Given these facts, in [26] they wondered if that is
all the topological information of complex Kähler manifold X that is relevant for the
four-dimensional effective action coming from the (co)homology.1 More precisely
the homology group with integers coefficients Hp(X,Z) contains more information
than Hp(X,R), cohomology with real coefficients, the difference being the torsion
homology groups Tor Hp(X,Z). Actually the most general form of Hp(X), i.e the
universal coefficient theorem is

Hp(M6,Z) = Z⊕ · · · ⊕ Z︸ ︷︷ ︸
bp

⊕Zk1 ⊕ · · · ⊕ Zkn . (3.2)

Here bp ≡ dimHp(X,R) stands for the pth Betti number of X , which also counts the
number of harmonic p-forms of X , in other words is the dimension of the pth group
of homology Hp(X,R) and at the same time is the dimension of the pth cohomology
group via de Rahm theorem, i.e., Hp(X,R) and Hp(X,R) are dual vector space. See
[26, 27] for more detail in these torsional elements.

In what follows we will motivate the appearance of half-flat manifolds, which in the
context of mirror symmetry allowed to show that the compactification of type IIB
theory in the presence of NSNS fluxes in an internal Calabi-Yau space is dual to Type
IIA theory compactified in a half-flat manifold [9]. In the ref [10] it was shown that
the opposite situation, i.e., type IIA in the presence of NSNS fluxes compactified in
Calabi-Yau threefolds is dual to type IIB compactified in a half-flat manifold.

1Treat the problem of mass mixing of gauge symmetries U(1) of open and closed string, in particular,
among other things, they studied RR U(1) gauge symmetries arising from KK reduction of RR closed
string fields and their possible mixing with D-brane gauge bosons and found that such mixing are posible
e.g. via mass terms induced by Stückelberg mechanism which appears whenever D-branes wrap torsional
p-cycles in the compactification manifold.
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3.1.1 Half-Flat Manifold

Briefly we define the half-flat manifolds following the references [9, 15, 16]. Then we
motive its appearance in the context of mirror symmetry of type II theories.

In relation with supersymmetry a non-vanishing globally well defined spinor have
to exist. Manifolds with SU(3) structure admit one globally defined spinor η. And
more in general a well-defined non-vanishing spinor exist only on manifolds that its
structure group is reduced. In addition if we demand to preserve supersymmetry in
a Minkowskian ground state η it has to be convariantly constant with respect to the
Levi-Civita connection ∇, which corresponds to a particular case of SU(3)-structure
manifolds, i.e., the holonomy group has to be SU(3) and therefore the manifold is a
Calabi-Yau threefold. However, in general the covariant derivative ∇ does not need
to vanish on η, this means that generically the Levi-Civita connection no longer has
SU(3)-holonomy, then

∇η = κ · η , (3.3)

where κ is the contorsion which is related to torsion T , the torsion is defined as
Tmn

p = κ[mn]
p with indices m = 1, . . . , 6, running over the real dimension of internal

space. When we consider the action of κ on the spinor η and since from the point of
view of the irreducible representations η is an SU(3) singlet, it is found that the failure
of the Levi-Civita connection to vanish on η is measured by a piece of the contorsion
which is called the intrinsic contorsion and hence, from (3.3), we have that

(∇+ κ0)η = ∇(T )η = 0 , (3.4)

where we have defined the covariant derivative operator∇(T ) with torsion in such a way
∇(T ) = ∇+ κ0 vanishes on η.

The corresponding intrinsic torsion (or equivalently the contorsion, as we have seen
torsion and contorsion are actually equivalent i.e. torsion is defined as Tmnp = κ[mn]

p)
can be decomposed in SU(3)-representations labelled Wk, k = 1 . . . , 5 all of which
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appear in the exterior derivative of the Kähler and the holomorphic form, as

dJ =
3

2
Im(W̄1Ω) +W4 ∧ J +W3 ,

dΩ = W1J
2 +W2 ∧ J + W̄5 ∧ Ω .

(3.5)

The manifolds known as half-flat manifolds correspond to

T ∈ ReW1 + ReW2 +W3 , (3.6)

what is equal to having the following vanishing torsion class

ImW1 = ImW2 = W4 = W5 = 0 , (3.7)

and which can be written alternatively in term of the conditions

J ∧ dJ = 0 , ImdΩ = 0 . (3.8)

These half-flat manifolds are not complex, not Kähler and not Ricci-flat, and therefore
not Calabi-Yau.

Now the mirror duality that exists between compactifications of type II theories is a
well-known fact in the absence of fluxes, that is, the type IIB theory compactified in a
manifold X3 is dual to the type IIA theory compactified in a manifold Y3, in order to do
this one requires that for every X3 exit a mirror manifold with Hodge numbers

h1,1(X3) = h2,1(Y3) , h2,1(X3) = h1,1(Y3) . (3.9)

Therefore the theories obtained from the pair (X3, Y3) are equivalent [10]

LIIB(X3) ≡ LIIA(Y3) , (3.10)

which is known as mirror symmetry and therefore the theories are mirror symmetric.
However, as mentioned before, the presence of fluxes is essential if we want to stabilize
(part of) the massless modes (moduli space) that are manifested at low-dimension.
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On the one hand in type IIA the p-form field strengths of the RR sector, (see Section
2.1) lie in the even cohomology group of the CY threefold. On the other hand for the
type IIB one encounters odd p-form field strengths and therefore written in terms of
element of odd cohomology groups of internal space. So one can argue that under
mirror symmetry which exchanges the even cohomology for the odd cohomology of
two internal spaces, appears to be clear the duality in the RR sector. However, in both
type IIA and type IIB theory we can have the presence of NS-NS fluxes H3 however
mirror symmetry in this case is lees clear as none of the two type II theories contain
even form field strengths in the NS-NS sector only the H3 flux. With the purpose of
solving this problem and guarantee mirror symmetry of the two type II theories in the
presence of NS-NS fluxes, [9] used a half-flat manifold as compactification manifold,
where, unlike the standard CY, the Levi-Civita connection fails to preserve Ω and J , i.e.
are no longer closed. Therefore they found that the non-closed part of the holomorphic
form Ω plays precisely the role of an NS four-form thus the missing NS-fluxes are
purely geometrical and arise directly from the change in the compactification geometry.
Moreover, in order of mirror symmetry works, precise relation must be maintained. In
particular the moduli space of metrics of the half-flat manifold should coincide with
the moduli space of the corresponding CY manifold. However, the key point here is
that although (αI , β

I) form a basis for Ω and the ωi of H1,1(Y ) form a basis for J they
are not, in general, harmonic, and thus there are not bases for H2,1(Yhf) and H1,1(Yhf)

respectively. However in the limit of large complex structure (the limit of small intrinsic
torsion2) locally the usual basis (αI , β

J) ∈ H2,1(Y ) and (ωi, ω̃
j) ∈ H1,1 must be used

to perform the usual moduli expansion

Ω = XIαI −FIβJ , J = viωi , (3.11)

and the forms (αI , β
J) and (ωi, ω̃

j) should have the same relations (2.19) and (2.26),
respectively, as on the CY cases. However, as it was found in [9] the NSNS fluxes
mirror was provided by RedΩ and in order to have this and (3.11) then

dα0 = eiω̃
i , dαi = dβJ = 0 , (3.12)

2Do not confuse geometric torsion, referring to the metric and more precisely to the connection in the
manifold, with that of the torsion group, a topological concept that does not depend on the metric.
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where αi and βJ are closed under the action of the differential operator d. And this
operator d is a map Ωp(X) to Ωp+1(X) where Ωp(X) is the vector space of p-forms.

In addition consistency with both (2.19) and (2.26) thus

dωi = eiβ
0 , dω̃i = 0 . (3.13)

In what follows, these forms that are no longer harmonic imply the existence of torsional
component in the (co)homology of Yhf.

3.1.2 Torsional Elements

As pointed out and shown by the authors of [11] the facts mentioned above lead to the
existence of torsional components in the (co)homology of half-flat manifold. Taking
the zero-components of the symplectic three-form basis

(
αI , β

J
)

satisfying

dα0 = eiω̃
i ,

dωi = eiβ0 ,
(3.14)

then the cohomology group of the half-flat manifold are as shown in the Table 1 [11]

Hn(Y3,Z) TorHn(Y3) exact mod k non-closed
n = 0 Z − − −
n = 1 − − − −
n = 2 Zh1,1−1 − − niωi ≡ ω̂2

n = 3 Z2h2,1 Zk niniβ
0 ≡ β0,tor α̂0

n = 4 Zh1,1−1 Zk niω̃i ≡ ωtor4 −
n = 5 − − − −
n = 6 Z − − −

Table 1. Cohomology group Y3, taken from Ref. [11]
.

Let us note that a correspondence was established between the elements (α0, β
0) of

the simplectic three-form basis of H3(Y ) used in the description of the moduli space
of deformations of complex structure in the section 1.1.1, with the torsional elements
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of the cohomology of the half-flat manifold. More specifically [11, 26] it is possible
to define a basis of three-forms in the half-flat manifold as (α̂0, β

0,tor) so that the pair(
Σtor

3 , Π̂3

)
using (3.14) and Poincare duality are conformed by a three-cycle and a

three-chain with

kΣtor
3 = ∂Π̂4 ,

∂Π̂3 = kΣtor
2 ,

(3.15)

such that the following relation is holding∫
Σtor3

α̂0 = −
∫

Π̂3

β0,tor =

∫
Y3

α̂0 ∧ β0,tor = 1 ,∫
Π4

ωtor4 = −
∫

Σtor2

ω̂2 =

∫
Y3

ωtor4 ∧ ω̂2 = 1 ,

(3.16)

where it was used∫
Σtor3

α̂0 =
1

k

∫
∂Π̂4

α̂0 =
1

k

∫
Π̂4

dα̂0 =

∫
Π̂4

ωtor4 = 1 . (3.17)

Now, using this structure it is possible to write down a expression for the holomorphic
form which has information about torsional cohomology. Additionally we develop part
of work of section 1.1.1 using this torsional structure

Ω3 = Ω0
3 + Ω̃3 = X iαi −Fiβi +X0α̂0 −F0β

0,tor , (3.18)

with Ω̃3 corresponding to the components expanded in the basis (α̂0, β
0,tor) referred to

torsional structure, and where the periods are given by the integrals

XI =

(
X0

X i

)
=

(∫
Σtor3

Ω̃3∫
Ai

Ω0
3

)
, (3.19)

FI =

(
F0

Fi

)
=

(∫
Π̂3

Ω̃3∫
Bi

Ω0
3

)
. (3.20)

Moreover we organize this information in a period vector that now corresponds to a
period vector of a half-plane manifold whose moduli space is at least locally equal to
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the moduli space of a CY, where the deviation is measured by the presence of torsional
classes and therefore the value of X0 and F0 will depend on the size of the torsional
cycles, then

Πhf =


X̃0

X i

F̃0

Fi

 , (3.21)

where X0 and F0 are determined for the torsional component and X i and Fi are
the projective coordinates that describe the complex structure deformation and the
superpotential, respectively. In addition the fluxes can be decomposed in the symplectic
basis with the use of torsional components and satisfy the quantization conditions∫

AI
F3 =

∫
Σtor3

F3 +

∫
Ai
F3 = −f torΣ + f iA ∈ Z ,

∫
AI
H3 =

∫
Σtor3

H3 +

∫
Ai
F3 = −htorΣ + hiA ∈ Z ,

(3.22)

and ∫
BI
F3 =

∫
Π̂3

F3 +

∫
Bi
F3 = −f torΠ + f iB ∈ Z ,∫

BI
H3 =

∫
Π̂3

H3 +

∫
Bi
F3 = −htorΠ + hiB ∈ Z .

(3.23)

Therefore the fluxes are

F3 = −(f torΣ α̂0 + f iAαi − f torΠ β0,tor − fBi βi) ,

H3 = −(htorΣ α̂0 + hiAαi − htorΠ β0,tor − hBi βi) ,
(3.24)

and the flux superpotential can be determined considering the torsional structure as

W =
[
(f iA − τhiA)Fi − (fBi − τhBi )X i + (f torΣ − τhtorΣ )F0 − (f torΠ − τhtorΠ )X0

]
,

(3.25)
where X i , i = 1, . . . , h1,2 parameterize the complex structure deformation and Fi =

∂iF is the derivative of a holomorphic prepotential F(X).
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The Kähler potential is

Kcs = − log

(
i
∫

Ω0 ∧ Ω̄0 +

∫
Ω̃ ∧ ¯̃Ω

)
= − log

[
i(X̄ iFi −X iF̄i) + i(X̄0F0 −X0F̄0)

]
= − log

[
2iIm(X̄ iFi) + 2iIm(X̄0F0)

]
.

(3.26)

Notice the Kähler potential contains some information coming from torsional cohomol-
ogy since it is related to the geometry of the internal space.
At tree-level, the Kähler sector satisfies the no-scale property Kρσ̄∂ρ∂σ̄K = 3, and
therefore the scalar potential of the effective supergravity action reads

V = eKcs+Kτ
[
Kij̄DiWDj̄W +Kτ τ̄DτWDτ̄W

]
. (3.27)

If we consider points where the axion-dilaton/complex structure configuration preserve
supersymmetry, namely those satisfying

DτW = 0 , DiW = 0 . (3.28)

Evaluating these conditions we obtain a supersymmetric minimum as explained in the
previous chapter. Therefore, based on the previous discussion about torsional elements
in the next chapter explore the KKLT model.



4. KKLT and Torsion Cycles

4.1 KKLT

Kachru, Kallosh, Linde and Trivedi [5] found the first explicit realization of four-
dimensional de Sitter space as a solution to the low-energy equations of string theory
with the axion-dilaton and complex structure moduli stabilized in a minimum supersym-
metric of the potential and they applied nonpertuvative effects to stabilize the unique
volume Kähler modulo considered in their model. Finally, the addition of an anti-D3-
brane provides an extra source of positive potential energy which depends on the Kähler
modulus, and hence uplifting the minimum to a four-dimensional de Sitter vacuum.
This is a significant achievement given the importance that de Sitter space has acquired
from the recent data on the acceleration of the universe and also for its close relation
with the inflationary scenario and different conjectures limiting the existence of these
type of solutions.

Here we quickly review the KKLT model. In order to stabilize ρ one adds nonper-
turbative corrections, e.g. Euclidean D3-brane instanton or gaugino condensation on
stacks of D7-brane that wrap a 4-cycle in the internal space. Both effects lead to the
superpotential

W = W0 + Aeiaρ . (4.1)

Here W0 is a constant at tree-level and can viewed as the remnant from (2.34) after
stabilization of axion-dilaton/complex structure moduli with (2.43) and (2.44), in
consequence it depends on a generic selection of the fluxes. And the parameters A and
a can be chosen as appropriate constants. Using (2.39), the tree-level Kähler potential
K = −3 log [−i(ρ− ρ̄)] and assuming for simplicity real A and W0 as well as Re(ρ)

26
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= 0 one find the potential

V =
aAe−aσ

2σ2

[
1

3
σaAe−aσ +W0 + Ae−aσ

]
, (4.2)

with Im(ρ) = iσ. At a supersymmetric vacuum DρW = 0

Dρ

(
W0 + Aeiaρ) = 0, Dρ = ∂ρ +Kρ, Kρ = ∂ρK , (4.3)

then minimum lies at
W0 = −Ae−aσ0

(
1 +

2

3
aσ0

)
. (4.4)

Therefore the minimum of the potential corresponds to a supersymmetric AdS minimun

V = eKρ(Kρρ̄DρWDρW − 3|W |2)

= −a
2A2e−2aσ0

6σ0

.
(4.5)

As an example they considered constants with values W0 = −10−4, A = 1, a = 0.1. In
the Figure 1 we show an image representing the minimum of the potential (4.2)
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Figure 1. Potential (multiplied by 1015). There is an AdS minimum.
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Up to now we have stabilized all moduli in a supersymmetric minimum of negative
vacuum energy density. First at tree-level in a wrapped compactification [6] stabilized
a dilaton/complex structure moduli and then introduce nonpertuvative correction for
stabilizing the Kähler volume modulo. Now [5] uplift the minimum by incorporating
an anti-D3-brane in the resulting warped geometry of the compactification. This adds a
contribution of the scalar potential and (4.2) is as follows1

V =
aAe−aσ

2σ2

[
1

3
σaAe−aσ +W0 + Ae−aσ

]
+
D

σ3
. (4.6)

By fine-tuning D it is possible to have the dS minimum and we note that it is very close
to zero, Figure 2. As before we use the model with W0 = −10−4, A = 1, a = 0.1,
D = 3× 10−9. The new minimum obtained via the potential contributed by anti-D3-

100 150 200 250 300 350 400

0.2

0.4

0.6

0.8

1.0

1.2

Figure 2. Potential (multiplied by 1015). There is a dS minimum.

brane is a metastable dS minimum, with supersymmetry broken by the presence of the
term coming from anti-D3-branes. Furthermore, this minimum is only metastable in
the sense that the decompactification limit σ −→∞ necessarily has zero, it is expected
to decay to a Minkowski vacuum consistent with the age of our universe [5].

1Here we used the original term D/σ3 from the anti-D3-brane proposed by [5], however this term
it was refined to D/σ2 by considering a contribution coming form the warp factor in the warpped
compactifications, see e.g. [28].
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4.2 KKLT with Torsion Cycles

In this section we explore the effects of the superpotential resulting from wrapping D3-
branes in torsional cycles using the results of the reference [11]. In that reference, the
effects of torsional (co)homology present in a half-plane manifold D3-branes wrapping
torsional cycles were explored and found that a supersymmetric black hole has quantum
hair at quantum level. They also find extra degrees of freedom due to these torsional
groups associated to the mass, entropy and temperature of the supersymmetric black
hole, and the change associated with these parameters when k of the D3-branes reaches
the order of the discrete group, i.e., the torsional group.

The superpotential (4.1) additionally to nonperturbative contribution will have a contri-
bution that depend on D3-branes wrappind torsional cycles, we generically denote this
contribution as W̃

W = W0 + Ae−iaρ + W̃ , (4.7)

where the contribution to the superpotential W is [11]

W̃ = −
(
h0

k
mod1

)
1

C
. (4.8)

The equation (4.8) say that if h0 = k then this contribution to superpotential it is
vanishing, where h0 is the zero component of the flux vector NSNS and k is the order
of torsional group. C is a matrix that depend of wedge product of the basis (αI , β

I) and
in general of the moduli of complex structure.
Using (4.7) and the Kähler potential in (2.39) and assuming that the Kähler moduli, the
volume modulus we are considering remain unchanged we have that

DρW = ∂ρW +W (∂ρK)

= iAaeaσ +
3i
2σ

(
W0 + W̃ + Ae−aσ

)
,

(4.9)
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and our potential be as follow inserting (4.7) and (4.9)

V = eKρ(Kρρ̄DρWDρW − 3|W |2)

1

(2σ)3

[
−1

3
(i2σ)2

(
Aae−aσ +

3

2σ

(
W0 + W̃ + Ae−aσ

))

×
(
Aae−aσ +

3

2σ

(
W0 + W̃ + Ae−aσ

))
−3
(
W0 + W̃ + Ae−aσ

)(
W0 + W̃ + Ae−aσ

)]
=

1

(2σ)3

[
−4

3
σ2

(
A2a2e−2aσ +

9

4σ2

(
W0 + W̃ + Ae−aσ

))

×
(
W0 + W̃ + Ae−aσ

)
+

3Aae−aσ

2σ

(
W0 + W̃ + Ae−aσ

)
+

3Aae−aσ

2σ

(
W0 + W̃ + Ae−aσ

)
−3
(
W0 + W̃ + Ae−aσ

)(
W0 + W̃ + Ae−aσ

)]
,

(4.10)

and assuming likewise KKLT W0, A, a real constant, thus

V =
aAeaσ

2σ2

(
1

3
σAe−aσ +W0 + Ae−aσ

2

)
+
aAe−aσ

4σ2

(
W̃ + W̃

)
. (4.11)

We note on the one hand that the first term on the right hand side of (4.11) is the KKLT
potential with the dilaton/complex structure moduli stabilized at the tree level under the
choice of RR and NSNS fluxes and including non-perturbative effects, the only volume
modulus in the model stabilized. On the other hand, the second term on the right hand
side of (4.11) is the contribution of the torsional part, i.e., of the D3-branes wrapping
torsional cycles.

Since the moduli of complex structures were fixed by the fluxes to appropriate scale
we can integrate them out and view W̃ as a contribution to the potential. In addition
this contribution does not depend on the volume Kähler modulo only depend of the
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number D3-branes wrapping torsional cycles and in consequence the condition of
supersymmetry depend on these torsional branes, while h0

k
mod 1 does not saturate. In

this point we also stress that in the supergravity limit of type IIB string, to ensure a
computation only valid in the large volume limit thus ρ� 1 [5]. In addition to this the
α′ corrections to the Kähler potential are neglected, however for a critical assessment
of such concern of α′ effect , see [12]. From the above it follows that W0 � 1 (recall
we adjust W0 = −10−4 as in KKLT model) in equation (4.4) such that ρ� 1 it is hold
thus in consequence aσ > 1 [5]. From the discrete adjustment that the fluxes admit, it
is expected to achieve these conditions with some precision. We observe that (4.11)
has the same structure as (4.2) except for a contribution to W0 making it a Weff in the
sense that the contribution of torsional branes is included, and for simplicity we take in
accordance with the choice of constants of the KKLT model W̃ to be real. In addition,
for consistency with the KKLT model we take this contribution such that W0 is not
severely modified and therefore we have that the minimum is AdS with a contribution
of energy coming from torsional D3-brane. During these torsional D3-branes does not
reach k and therefore does not saturated the relation h0

k
mod 1, the D3-branes wrapping

torsional cycles are stable BPS state [11, 26] since the Kähler form J is non-close on the
half-flat manifold and therefore the charge computed through dJ on a three-chain does
not vanish so that the corresponding AdS vacuum preserve supersymmetry. However,
once the number of torsional branes reach the number k, the torsional three-cycles
become trivial in homology departing the system from the stable BPS state and therefore
during this stage the vacuum is not supersymmetric. We can write dawn the potential
during the torsional D3-branes are present

V =
aAe−aσ

2σ2

[
1

3
σaAe−aσ + (W0 + W̃ ) + Ae−aσ

]
, (4.12)

and this has the same structure of the potential in Figure 1, an AdS minimum. However
once we reach k torsional branes and after this setup radiate its energy decay to the
vacuum (4.2).

We would like to comment that in [29] was addressed the problem of finding W0 � 1

in the limit of a large complex structure and this process was generalized in [30] in the
context of CY compactifications and this lead the problem of fine-tuning of the different
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constants.

According to Table 1 and equations (3.15), the above opens the window of exploring
2-cycles of torsion and again exploring its consequences in the AdS vacuum without
resorting to anti-D3-branes and we are working on it.



5. Conclusions

In this thesis, we investigated the possibility of finding a de Sitter vacuum without
resorting to anti-D3-branes as in the KKLT model. Instead of we use torsional elements,
i.e. the (co)homology groups present in a halt-flat manifold. We explore the effect of a
superpotential coming from these torsional elements calculated in [11]. We find that the
remnant superpotential W0 after the stabilization of the moduli of complex structure and
the dilaton via the RR and NSNS fluxes, appears with an additional contribution making
W0 it become into a Weff in the sense that it contains this contribution of D3-branes
wrapping torsional cycles . For reasons of consistency in the KKLT model imposed by
the large volume limit, i.e. the supergravity limit it has to be Weff � 1 and therefore
the AdS structure for the potential continues to be of negative energy, therefore we
conclude that the potential continues to be anti de Sitter during these torsional branes
are present, in addition this minimum is a stable N = 1 supersymmetric vacuum.

However the supersymmetry depends on the contribution W̃ , i.e. once we add k tor-
sional branes this contribution disappear and the AdS minimum goes from a (meta)stable
state to the original state (4.2), but during the transition the system is not (meta)stable
because of the torsional brane are not represented by stable BPS state but we remark
that both state (4.2) and (4.12) are minimum (meta)stables with objects being BPS
states.
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