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Resumen
Motivado por cl rápido crecimiento de la demanda de electricidad, el agotamiento de lo» combustibles

fósiles y la conciencia ambiental, ios países desarrollados empezaron a investigar la posibilidad de utilizar

eficientemente las fuentes de energía renovables. En los últimos años, con distintos grados de éxito,

diferentes fuentes de energía renovables han sido estudiadas para la generación de energía eléctrica; entre

ellos, geotérmica, biomasa, solar, eólica, hidroeléctrica por micro-turbinas y por las mareas. La biomasa es

atractiva como un recuno potencial de energía debido a que las fuentes de petróleo no son ilimitadas,

mientras que la biomasa es renovable. La sustitución de combustibles fósiles con biomasa reduciría lat

emisiones de dióxido de carbono neto a la atmosfera. Además, los combustibles de biomasa tienen un

calor de combustión razonable así como bajo contenido en azufre, ceniza y nitrógeno en comparación con

muchos carbones y aceites. Los derivados de la biomasa tal como hidrógeno, etanol, metanol y metano

pueden ser convertidos en formas de energía como calor, vapor y electricidad. La digestión anaeróbica es

un proceso biológico en el que la materia orgánica (sustrato) se degrada por microorganismos (biomasa),

en ausencia de oxígeno, produciendo biogás (metano y dióxido de carbono) y residuos orgánicos estables.

Los procesos anaeróbicos son muy atractivos debido a sus propiedades de tratamiento de residuos y su

capacidad para ia producción de metano, que puede ser utilizado para la generación de energía eléctrica.

£1 proceso se desarrolla en cuatro etapas sucesivas: hidrólisis, acidogénesis, acetogénesís y

metanogénesis. La metanogénesis es la etapa lenta; ésta impone las dinámicas del proceso y es

considerada como la etapa limitante. En estos procesos anaeróbicos existen variables difíciles de medir o

que no se pueden medir, que son necesarias para el control de procesos. Los observadores y sensores son

una alternativa viable para la estimación de este tipo de variables. Un enfoque interesante para evitar el

problema asociado a los observadores de estado basados en el modelo, es el observador neuronal. En esta

tesis, se propone el uso de un observador neuronal no lineal en tiempo discreto ("Recurrent High Order

Neural Observer", RHONO) para sistemas no lineales desconocidos en presencia de perturbaciones

externas e incertidumbre de parámetros. Este observador es empleado para estimar la concentración de

biomasa, degradación del sustrato y carbono inorgánico en un proceso de digestión anaeróbica de

tratamiento de aguas residuales. Estas variables son buenos indicadores de la actividad biológica dentro

del reactor continuamente agitado ("Continuous Stirred Tank Reactor", CSTR), y son utilizadas para

monitorear el proceso. Una validación experimental para el observador usando datos reales de un proceso
a escala es incluida en este trabajo. El objetivo es la producción de metano para la generación de energía,

por lo tanto la digestión anaeróbica es desarrollada en un CSTR con biomasa inmovilizada en un soporte

sólido, y la etapa limitante es modelada considerando est» condiciones. La producción de metano se

obtiene por forzar al sistema dinámico de digestión anaeróbica a seguir una trayectoria de referencia de

dicho gas. Para alcanzar esto, se utiliza una estrategia de control óptimo inverso inteligente híbrido con

gradiente de velocidad para seguimiento de trayectorias. La ley de control calcula la tasa de dilución y la

adición de bicarbonato necesarios para forzar al sistema a seguir la trayectoria y evitar la inhibición del

proceso. El controlador propuesto se basa en el modelo del RHONO y control óptimo inverso en tiempo
discreto. La aplicabilidad de la estrategia propuesta se ilustra medíante simulaciones.
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Abstract
Motivated by the rapid growth of electricity demand, considering the depletion of fossil fuels, and due

to increased environmental awareness, developed countries began to investigate the possibility of using

renewable energy sources efficiently. ln recent years, with varying degrees of success, different renewable

energy sources have been and continué to be studied for electric power generation, among them,

geothermal, biomass, solar, wind, hydropower by micro-turbines and tidal waves. Biomass is attractive as

a potential energy resource, because the amount of oil sources is not unlimited, while biomass is

renewable. Replacing fossil fuels with biomass would reduce the net carbón dioxide emissions into the

atmosphere. Moreover, biomass fuels have a reasonable heat of combustión, and they usually have low

sulfur, nitrogen and ash content as compared to many coals and oils. Derived from biomass such as

hydrogen, ethanol, methanol, and methane may be converted to energy forms as heat (via burning), steam

and electricity. Anaerobic digestión is a biological process in which organic matter (substrate) is degraded

by micro-organisms (biomass), in absence of oxygen. Such degradation produces biogás (methane and

carbón dioxide), and stable organic residues. Anaerobic processes are ven attractive because of their

waste treatment properties and their capacity for generating methane from waste materials, which can be

used for electrical energy generation. The process is developed in four successive stages: hydrolysis,

acidogénesis, acetogenesis and methanogenesis. Methanogenesis, is considered the limiting stage because

is the slowest one and imposes the dynamics ofthe process. In these anaerobic processes there exist hardly

measurable or unmeasurable variables which are necessaiy for process control. Observers and soft sensors

are an interesting altemative in order to estimate these kinds of variables. An interesting approach for

avoiding the associated problem of model-based state observers is the neural network observer. Neural

observer based on a discrete-time recurrent high-order neural network (RHONN) trained with an extended

Kalman filter (EKF) based algorithm has proven to be effective for biological processes. In this work, a

nonlinear discrete-time neural observer (RHONO) for unknown nonlinear systems in presence of external

disturbances and parameter uncertainties is used to estimate the biomass concentration, substrate

concentration and inorganic carbón in an anaerobic process digestión for wastewater treatment These

variables are good indicators ofthe biological activity inside the reactor; they are used for monitoring the

process. An experimental validation for the observer using real data from a lab scale process is included in

this dissertation. The objective is methane production for energy generation, therefore anaerobic process is

developed in a continuously stirred tank reactor (CSTR), with immobilized biomass on a solid support,

and limiting stage is modeled considering this conditions. Methane production is obtained by forcing the

dynamic system from anaerobic digestión to track a trajectory reference of mentioned gas. In order to

reach this, a hybrid intelligent speed-gradient inverse optimal control for trajectory tracking is applied.

The control law calculates dilution rate and bicarbonate addition in order to forcé the system to track a

trajectory and avoiding the inhibition process. The proposed controller is based on discrete-time RHONN

model and discrete-time inverse optimal control. The applicability of the proposed scheme is illustrated

via simulations.
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Notations

V forall

e belonging to
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n intersection

:= equal by definition

4-(fi) the minimum eigenvalue ofmatrix Q

*-.(G) the máximum eigenvalue ofmatrix Q
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AD Anaerobic Digestión

COD Chemical Oxygen Demand

CLF Control Lyapunov Function

DT Discrete-Time

EKF Extended Kalman Filter

GS Globally Stable

GAS Globally Asymptotically Stable

HJB Hamilton-Jacobi-Bellman

LTI Linear Time Invariant

MI Matrix Inequality

PID Proportional Integral Derivative

PSO Particle Swarm Optimization

RHONO Recurrent High Order Neural Observer

RHONN Recurrent High Order Neural Network

RNN RecurrentNeural Networks

RCLF Robust Control Lyapunov Function

SG Speed-Gradient

TS Takagi-Sugeno

VFA Volatile Fatty Acids
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Chapter 1

Introduction

1.1 State ofthe art

The rapid increase ofwastewater due to domestic, industrial and agricultural activities requires careful

consideration by all society sectors. Wastewater treatment is necessary to reduce organic and suspended

solids loads in order to limit pollution of the environment. One of the more adequate methods for

wastewater treatment is anaerobic digestión. It provides a wide variety of advantages including

environmental benefits, as well as economic ones. Anaerobic processes are very attractive because of their

waste treatment properties and their capacity for generating methane from waste materials, which can be

used for electrical energy generation [1], [2], [3]. However, anaerobic digestión is a sensible process to

operating conditions variations, such as pH, temperature, hydraulic and organic overloads, among others.

In biological processes, there exist hardly measurable or unmeasurable variables which are necessary

for process supervisión and control [4]. Then, estimation and control strategies are required in order to

guarantee adequate performance. Nowadays, there exist commercial biogás sensors, which allow methane

and carbón dioxide to be measured on-line [5], [6]. However, substrate and biomass measures are more

restrictive. The existing biomass sensors are quite expensive, are designed from biological viewpoint

(based on capacitance or turbidity properties), and they are not reliable for control purposes. Furthermore,

substrate measure is done off-line by chemical analysis, which requires at least two hours; then, state

observers are an interesting altemative in order to deal with this situation. Henee, observer design is a

major problem to be solved, in addition to adequate sensors selection. Along this line, the essential idea is

to develop virtual sensors with the purpose of considering variables of difficult access, which are of

crucial importance for control applications. In the literature, different observers have been proposed.

Adaptive observer [7], for nonlinear cascade state affine systems gives a reliable tool towards the control

design considering integrative information about no physically measured states and sensitive parameters

of the model. Based in sensitivity analysis, the proposed nonlinear adaptive observer is able to estimate

the most sensitive parameters and system states with an arbitrarily tunable rate. This observer is tested for

acidogenic and methanogenic bacteria concentration estimations, as well as growth rate parameter

estimations for an AD process. Convergence of estimated states and parametric estimation is verified. For

this methodology is important to remark that, in order to obtain an adaptive observer for n states, first step

1



2 CHAPTER 1. INTRODUCTION

must be to describe the system as a n cascade affine subsystems which states and outputs are defined
for

each one. In [8], [9] a reset adaptive observer (ReAO) for nonlinear systems is presented. ReAO is an

adaptive observer consisting of an integrator and a reset law that resets the output of the integrator

depending on a predefined reset condition. The inclusión of reset elements can improve the observer

performance but it can also destroy the stability of the estimation process if the ReAO is not properly

tuned. The observer gains as well as the reset element parameters are optimally chosen by solving the L¡

gain minimization problem, which can be rewritten as an equivalent LMI problem. The two most popular

reset conditions within the reset time independent framework are zero crossing and sector condition. The

main advantage of ReAOs is that potentially much richer feedback signals can be obtained by resetting

some observer states. Since the method is based on minimizing the L¡ gain ofthe ReAO, the stability and

convergence ofthe estimation process are guaranteed. An exception would be when the system is affected

by disturbances with a steady-state offset, since the ReAO might need more time to reject the effect ofthe

disturbance on the unknown variables. Interval observer [10], [11] is a good alternativo to diminish the

effects of the system uncertainties; nevertheless, the convergence rate of the estimation cannot be tune.

Furthermore, an over-estimation effect in the considered intervals can be induced. Finally, a nonlinear

discrete-time neural observer (RHONO) for unknown nonlinear systems in presence of external

disturbances and parameter uncertainties is proposed in [12], [13]. This neuronal observer based in

recurrent high order neural network (RHONN) has proven to be effective for biological processes. An

artificial neural network (NN) consists of a finite number of neurons (structural element), which are

interconnected to each other; they are inspired from biological neural networks. Recurrent neural networks

have at least one feedback loop, which improves the learning capability and performance of the network

[14]. This structure also offers a better suited tool to model and control nonlinear systems [15]. RHONN

are a generalization ofthe first-order Hopfield networks [16]. The main advantages that offer this neural

network are their high performance and its low level of complexity and tuning; additionally, the

knowledge ofthe model is not strictly necessary.

Simultaneously, an increasing interest has been developed to improve the operation of the bio

processes through the application of advanced schemes of control [17], [18]. The control objectives focus

in the regulation of the pollution, biogás production and maintaining the stability of the process; this is

done in order to reduce the production costs, to increase the biogás production and to conserve quality of

the byproducts. With the purpose of facing the challenges that anaerobic digestión imposes, as sensitivity

to changes in the operating conditions, the uncertainties in the parameters of the process and the highly

nonlinear dynamics, several techniques of control have been implemented. Fuzzy PID control for

nonlinear AD process is proposed in [19], [20]. For control ofthe PH in the system, an automatic dosing

system is installed and strong acid (hydrochloric acid) and strong base (sodium hydroxide) are adopted as

neutralizing liquid in the process. pH is required to be controlled within 6.8 to 7.2. Fuzzy PID control

determines the controlled variable according to control rules and on-line detection results instead of a

precise mathematical model. Furthermore, fuzzy PID control can well solve the difficult problems in an

anaerobic biological treatment system such as difficult precise model building, large lagging, strong

disturbance and múltiple variables. The pH control of the anaerobic wastewater treatment system is an

indispensable measurement item; however, it is difficult to control, for there are numerous phenomena

that cannot be described quantitatively. There is puré lagging at the mixing, measuring and other links in

the PH control process, so that the regulated amount fails to reflect the perturbation borne by the system in
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time. The robust control (21], [22] allows a suitable process operation independent of dynamic changes;

although, ít presents the disadvantage that is necessary to predefine uncertainties limits. Adaptive control

strategies were developed to take into account the nonlinearities and the nonstationary features of the

digestión process [23]. Such strategies depart from a physical (nuas balance) modd ot the anaerobic

procos to implement simple efficient controllers featuring estimation ofphysically-related parameters. In

fact, model-based controllers have proven to be efficient to regúlate nonlinear processes with unknown

and unexpected disturbances. Implementation tests ofmodel-based adaptive controllers in pilot-scale [24]

and real life scale [25] anaerobic process have been successfully carried out, including extreme input or

environmental conditions. Nevertheless, a drawback of adaptive techniques is that linear parametrizatíon

is required in order to implement a parameter estimator. In the case of anaerobic processes, it implies that,

the inputs ve known aid bounded, therefore the states and the parameters are bounded [26]. The

convergence is not guaranteed when the control input becomes saturated. In [27], neural-fuzzy control

system for anaerobic hybrid reactor (AHR) in wastewater treatment and biogás production is proposed.

The neural network is used to predict pH, alkalinify and total volatile acids (TVA) variables and then, the

fuzzy logk control system use this predicted valué as input variables to calcúlate the daily influent feed

flow rate ofthe AHR that is applied to control and monitor the process response at different operations in

the initial, overload influent feeding and the recovery phases. In all three phases, this neural-fuzzy control

system show high stability, performance and quick response. However, according to the 4 variables as pH,

Alk, TVA and influent feed flow rate associated with 5 terms of membership function (very low, low,

médium, high and very high), 625 rules were described and 125 rules were chosen for this fuzzy

controUer. This mean that for all rules there exist an influent feed flow rate and do not allows the system

to opérate ín open loop, which represents energy saving. On the other hand, Predictive control for AD

process is presented in [28], [29]. These model based predictive controllers (MPC) take into account not

only the past information, but also predictions of the future behavior of the system, optimizing thus the

control effort over an interval of future control inputs. The general control objective is to manipúlate the

inputs within the operation limits such that a máximum methane production is ensured at all times. Their

feed flow rates constitute two model inputs, which are considered as manipulated variables, while the

biogás production rate and its methane content constitute two model outputs (controlled variables). The

MPC strategy is able to maintain the methane production at a stable output production rate. As

disadvantages, the MPC requires define operating range and constraints in the inputs-outputs of the

process which guarantee stability. A suitable cost function must be <t*Meigpm-t such that máximum

production ís ensured while satisfying stability constraints (ix. avoid overload). Additionally, it requires a

high computational cost Finally, in [30], [31] speed-gradient inverse optimal neural control is proposed.
In this approach, a stabilizing feedback control is designed first such that asymptotic convergence to state

reference trajectory is guaranteed, and then ít is established that this control optimize a cost functional.

The proposed controller is based on a discrete-time (DT) RHONN model and on DT inverse optimal
control. Inverse optimal neural control has been applied successfully in mechanical and biological

systems. In [30] the applicability of that scheme by trajectory tracking for a two degree of free (DOF)

planar robot ís illustrated. .An on-line series-parallel neural network identifier trained with extended

Kalman filter (EKF) ís implemented to identify the system whh unknown parameters for control synthesis.
Tbe goal is to forcé the angle position to track a desired reference. The goal is achieved because the

designed controller maintains stability on the reference for the plant whh unknown parameters. In [32]
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discrete time inverse optimal trajectory tracking for a class of non-linear positive systems is proposed.
The

scheme is developed for SISO (simple-input, simple-output) affine systems. This approach is adapted for

glycemic control of type 1 diabetes mellitus (T1DM) patients. The control law calculates the insulin

delivery rate in order to prevent hyperglycemia levels. A neural model is obtained from an on-line neural

identifier, which uses a recurrent neural network, trained with the EKF; simulation results show
how the

control law is able to stabilize the blood glucose levels along a desired trajectory. Indeed, this
scheme

improves the regulation of the blood glucose level in T1DM patients, increasing slightly the insulin

quantity. This technique is an important result since most of the biological systems are positive ones.

Speed-gradient inverse optimal neural control is an adequate and novel algorithm easy to implement.

1 .2 Problem Definition

Anaerobic process presents four basic stages: hydrolysis, acidogénesis, acetogenesis and

methanogenesis; each one has particular objectives and specific dynamics. Hydrolysis, acidogénesis and

acetogenesis are fast stages in comparison with methanogenesis, which is the slowest one; it imposes the

dynamics of the process and is considered as the limiting stage. In methanogenesis stage methane is

synthesized in two ways: first by acid acetic cleavage, which produces methane and carbón dioxide; and

then by CO2 reduction by hydrogen, which generates CH4 and water. The acétate reaction is the primary

producer of CH- because ofthe limited amount of hydrogen available [33]. Methanogenesis stage is very

sensitive to variations on substrate concentration, and biomass increase can be stopped by an excessive

substrate production in the previous stages [4]. Depending on the amplitude and duration of these

variations, the environment can be acidified avoiding biomass growth and even producing bacteria death;

besides, the hydraulic overloads can lead the process to washout (absence of active bacteria inside the

reactor). From these situations, substrate concentration and methane production can be blocked and the

process is stopped. Then, dilution rate (£>»,,<-) and bicarbonate supplying rate (b_„c,k) are used in order to

regúlate process pH. D¡„,k changes reject larger disturbances and supplying b¡„c,k allows the process to

produce a large amount of methane. Monitoring the process behavior and control strategies

implementation are important tasks to guarantee an adequate operation. The main idea is to develop

efficient unmeasured variables estimation and control actions, easy to implement.

Due to control strategy limitations for anaerobic process, a hybrid intelligent control scheme for an

anaerobic wastewater treatment process, which takes place in a CSTR, is proposed. First, a RHONO is

designed to estimate hardly measurable or unmeasurable variables which are necessary for monitoring the

process and to design hybrid intelligent control. Estimated variables are biomass (X2), substrate

concentration (S¡) and inorganic carbón (IC) in the methanogenesis stage. The observer structure uses the

hyperbolic tangent as activation function and is trained using an EKF. This activation function is selected

because allows the system dynamic to learn quickly and mathematical calculus are more simples, in

comparison with other functions on, [12]. The main advantage ofthis observer is high performance and

reduced complexity. In order to control the AD process, a speed-gradient inverse optimal neural control

for trajectory tracking based on the RHONO is considered by its characteristics above mentioned. The

controllers determine two control actions, binCik and Din,k, in order to forcé the system to track a methane

production reference trajectory and avoiding washout. A TS fuzzy supervisor detects the disturbance
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amplitude on the input substrate and implements a fuzzy interpolation to obtain the nonlinear reference

trajectories. A second TS fuzzy supervisor for scheduling gain is implemented in order to obtain adequate

controller gains. Finally, a third TS fuzzy supervisor is implemented in order to apply control actions (An,*

and bmc,k) as a function of the operating conditions: if a small input disturbance arrives the supervisor

allows the process to opérate in open loop, if a large disturbance arrives the supervisor applies the

adequate control action (Dmk and bmí,k) avoiding washout.

1.3 Objectives

The general objective is to control an AD process, in presence of disturbances, in order to obtain a

continué methane production. To do so„ next specific objectives are established:

To synthesize a neural observer in order to estimate variables of the methanogenesis stage and

implement a time-varying learning rate in order to improve learning ofthe neural observer in presence of

disturbances.

Perform an experimental validation for the observer in order to verify ¡ts performance in presence of

disturbances.

To synthesize a control action in order to reject disturbances, to obtain a high efficiency ofthe process

to produce as much biogás as possible and to avoid the process to be stopped.

To synthesize TS fuzzy supervisors, in order to interpólate nonlinear reference trajectories, gains for

the controllers and selection among three control actions in presence ofdifferent disturbance magnitudes.

To intégrate the neural observer, fuzzy supervisors and the control strategy.

To test the hybrid intelligent control scheme in presence of disturbances and parameter variations.

Implement PSO algorithm in order to calcúlate optimal parameters of the matrices Pc for the control

law.

1 .4 Dissertation structure

In this dissertation a hybrid intelligent neural control scheme for an anaerobic wastewater treatment

processes, which takes place in a CSTR, is proposed.
This dissertation is organized as follows.

In Chapter 2, theory preliminaries are introduced, including mathematical model of anaerobic process,
neural observer, and an EKF based algorithm training.
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Then, Chapter 3 presents the RHONO structure for state estimation with time-varying learning rate,

which is trained on-line using an EKF. This is one of the main contributions of this dissertation, and

convergence analysis is stated. The structure is validated via simulations in presence of disturbances
and

parameter variations. After that, an experimental validation for the observer using real data from a

prototype reactor is presented. Later is verified which the structure with time-varying learning rate

enhance the NN training and observer is a good altemative to on-line states estimation ofthe AD process.

Chapter 4 discloses the proposed hybrid intelligent control scheme. Controller design based on the

speed-gradient inverse optimal neural control is described. Then, TS fuzzy supervisors for reference

trajectories, scheduling gains for the controllers and selection of control actions are presented. Finally, the

integrated control strategy is implemented for the AD process and is tested in presence of different

disturbances and parameter variations. The convergence analysis of this control scheme is stated. After

that, in order to improve the trajectory tracking, PSO optimization algorithm is implemented to calcúlate

the gain matrices ofthe inverse optimal control law. Later, it is verified that the calculated matrices with

the PSO algorithm improve the control law. This overall control strategy is validated via simulations.

Finally, Chapter 5 presents relevant conclusions and future work.



Chapter 2

Fundamentáis

In this chapter, fundamentáis ofADprocesss, required in future chapters are presented. Additionally,
a mathematical model of an anaerobic process, a neural observer and an EKF training algorithm, are

briefly discussed

2.1 Anaerobic digestión

Anaerobic digestión is a biological process in which organic matter (substrate) is degraded by

anaerobic bacteria (biomass), in absence of oxygen. Such degradation produces biogás (composed

primarüy ofCH4 and CO2) and stable organic residues. Anaerobic processes are very attractive because of

their waste treatment properties and their capacity for generatingmethane from waste materials.

2.1.1 Process description

AD process is a complex and sequential process, which consists of four basic stages [17], [34]-[36]:

• Hydrolysis. There, bacteria converts complex organic materials into simpler monomers.

• Acidogénesis. During this stage, soluble monomers are transformed into organic acids,

alcohols and volatile fatty acids (VFA) by acidogenic bacteria.

• Acetogenesis. In this third stage, acetogenic bacteria convert VFA into acetic acid, C02 and

hydrogen.

• Methanogenesis. In this stage methane is produced in two ways; the first one by acid acetic

cleavage, which produces CH* and CO2; and the second one by C02 reduction with hydrogen,
which generates CEU and H20. The acétate reaction is the primary producer ofCH» because of

the limited amount ofhydrogen available [33].

Figure 1 shows the decomposition pathways for major organic and inorganic components of

biodegradable wastes.

7



8 CHAPTER 2. FUNDAMENTALS

All SoUd Wastes

Organic Waste

Stage I

Hydrolysis

Stage II

Acidogénesis

Stage IU

Acetogenesis ,

Inorganic Waste

Proteins
Cellulose

polymer

FgE7

Liptds

Hydrolysis
(Aerobic)

f Inoi-ganic sahs J

Stage ¡V

Methanogenesis

Process

Product

Micro-organism

Figure 1 Stages in anaerobic wastewater degradation [36]

Each stage has a specific dynamics. Hydrolysis, acidogénesis and acetogenesis are fast stages in

comparison with methanogenesis, which is the slowest one; it imposes the dynamics ofthe process and is

considered as the limiting stage.



9 CHAPTER 2. FUNDAMENTALS

2. 1 .2 Operating conditions

A variety of factors affect the rate of digestión and biogás production. A detailed comparative

summary of research on the inhibition of anaerobic processes is presented in [37]. Some of the most

important factors are:

• Temperature. a«\naerobic bacteria communities can endure temperatures ranging from below

freezing to above 57 °C; however they thrive best at about 37 °C (mesophilic conditions).

• pH. The substrate pH is an important parameter for the adequate growth of bacteria and then

for wastes transformation. For methanogenesis, the optimal range of substrate pH is between

6.6 and 7. Bicarbonato ions and VFA concentration have an influence on the pH. A pH valué

higher than 8 causes an inhibition of the bacteria activity, while a valué under S for a long

time produces irreversible damage and death of the bacteria stopping the process due to

acidification [4].

• Retention time. For a mesophilic system, ranges from IS to 30 days are required to waste

treatment [33] in order to achieve the complete degradation ofthe organic materials.

The AD process considered in this dissertation is developed in a scale CSTR (Figure 2) from

Cinvestav, Unidad Saltillo with biomass filter, which is used to improve the substrate treatment [38].

Commonly, this operation mode allows a continuous treatment ofwastewater, which implies a continuous

biogás production.

*»» Biomass Filter(zcolite)

Figure 2 Completely stirred tank reactor with biomass filter.

In practice, the biomass is fixed in a solid support, e.g. zeolite, minerals, synthetic or biologic materials

acting as filters. As is shown, the substrate S¡„ is fed to the reactor with a flow rate Q¡„ (L h"1); henee, the
dilution rate Dá, = QJV can be determined, where V(L) is the reaction volume. Finally, the treated water

goes out at the same flow rate as the input in order to keep a constant volume: Q^
=

Q¡„.

A illustration of laboratory scale CSTR is shown in Figure 3.
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Figure 3 Anaerobic prototype for wastewater treatment

The prototype is an Applikon® bioreactor of 7 L, composed by ADI 1010 controller with three control

cards: pH, D02 (oxygen dissolved) and temperature. ADI 1025 bioconsole, ADI 1032 motor controller,

vessel, heating mantle and probes for pH, DO2 and temperature.

2. 1 .3 Mathematical model

A functional diagram of AD is proposed in [39], as shown in Figure 4. Biomass is classified as: X¡,

corresponding to hydrolytic, acidogenic and acetogenic bacteria and X2, corresponding to methanogenic

bacteria. On the other hand, the organic load is classified in Si, the components equivalent glucose, which

model complex molecules and S2, the components equivalent acetic acid, which represent the molecules

directly transformed in acetic acid. This classification allows the process to be represented by a fast stage,

which involves hydrolysis, acidogénesis and acetogenesis and a slow stage, which corresponds mainly to

methanogenesis.

I iBiom— Q"M"«

1**™ Aad/baae Rq**-Ja>ri*******

Figure 4 Functional diagram of the anaerobic digestión
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Thus, a mathematical model based on both stages is formulated as follows [38], [39]. On one side, the

biological phenomena are modeled by ordinary differential equations (1), which represent the dynamical

part ofthe process as:

^-^jr.+z^-Sa),
^«(A-A*.)*.,.
Í (1)

=3- = -*3A*2 + *4M*. +A. (**
-

52 ) ,

^- = R2R3M2X2+R5MlXl-XRlR3/hX2+Din(ICi„-IC),

dt
"V " }

where /// is the growth rate (Haldane type) ofX¡ ( h"1), p2 the growth rate (Haldane type) ofXz (h'1), kd¡ the

death rate of X¡ (mol L*1), k& the death rate of X2 (mol L'1), D_„ the dilution rate (h"1), 5/*,, the fast

degradable substrate input (mol L"1), S2j„ the slow degradable substrate input (mol L"1), IC inorganic

carbón (mol L"1), Z the total of cations (mol L'1), ICm the inorganic carbón input (mol L"1), Zu, the input
cations (mol L"1), A is a coefficient considering law ofpartial pressure for the dissolved C02 and R¡, . . .,R(,

are the yield coefficients.

A Haldane type growth rate is selected for this model in order to describe the inhibition by substrate

phenomen [40], which allows to include the pH efect and saturation phenomen. The growth rate for X¡ and

X2 are described by equations (2) and (3) respectively:

Hi S,
nmax 1

Mije
~

~~

k +S +5^ (2)

th,k
=

th^^S

k

where _uimax (h' ) and p2max (h"1) are the máximum growth rate for the X¡_k and X2k biomasses respectively,
ks¡ (mol L'1) and kS2 (mol L"1) are the growth saturation for the biomasses, kn (mol L"1) and ki2 (mol L"1)
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are the inhibition constants by substrate excess, HS is non ionized acetic acid (mol L"1) and 5/> (mol L ) is

slow stage substrate.

On the other side, the physical-chemical phenomena (acid-basc equilibria and material conservation)

are modeled by algebraic equations (4).

HS +S'-S^O,

H*S'-KaHS = 0,

fTB-KbCO2d=0, <4>

B +CO2d-IC = 0,

a9 +S"-Z = 0,

where S~ is ionized acetic acid (mol L"1), /T ionized hydrogen (mol L"1), B measured bicarbonate (mol L'

'), Zthe total of cations (mol L'1), C0M dissolved carbón dioxide (mol L"1), K, is an acid-base equilibrium

constant, Kb is an equilibrium constant between B and C():... Finally, the gaseous phase (Clf, and CO¡) is

considered as the process output:

y
=

YCH^YCOi (5)

with:

Ya,t=WHX. (6)

YCOi=XKlR,^X2 (7)

X is defined as:

K
P,K„-COu

(8)

where P, is atmospheric pressure (Pa), Kh is a gases Henry constant (mol L'1 Pa'1) and ('();., defined as

before. Biomass growth and substrate degradation are good indicators of Cll, production [41] and

biological activity inside the reactor. These variables can be used for monitoring the process and to design

an inverse optimal neural control.

2.2 Recurrent neural networks

Recurrent neural networks are different from feedforward ones, because they have at least one

feedback loop. This recurrent structure has a large impact on the learning capability ofthe network and on

¡ts performance [14], [42], (43). This structure also offers a better suited tool to model and control

nonlinear systems [15|. Using neural networks, control algorithms can be developed to be robust to

uncertainties and modeling errors [44], [45], [46|, [47]. RHONN are a generalization of the first-order

Hopfield networks; they are proposed in [16]. RHONN are efficient for modeling, identification and

control of complex nonlinear dynamic systems.
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2.2. 1 Recurrent high order neural observer design

A nonlinear discrete-time recurrent high order neural observer (RHONO) for unknown nonlinear

systems in presence of external disturbances and parameter uncertainties is described m [48]. This

observer is based on a discrete-time recurrent high-order neural network (RHONN) trained whh an EKF

based algorithm. First, let consider the next nonlinear system, which ís assumed to be observable:

where xt • <= PY" i s the state vector ofthe system, uk ■= fT ís the input vector,» e /r° is the output vector,

Hx.) *= Rf"
"

is a nonlinear function of the system states, dk ■= R" is a disturbance vector and F(-) is a

smooth vector field; henee (9) can be also expressed component wise as:

xiM\
= Fi(Xk>uk)+ d>Jc >

' = 1» '"*w»

***
=

I *■ r* "Xtjt ""*»,* I »

r v
(10)

n
= >»(**)•

For system (1 0), a Luenberger-like neural observer ís proposed, with the following structure:

A _C A LL A Y

*,M\=M;ízÁ**'uk)+8iek> (n>

yk=h{*k)> i = \,...,n,

with g, € lf, u, is the external input vector to the NN and z, ís a function of states and inputs to each

neuron; the weight vectors are updated on-line with a decoupled EKF. The output error is defined as:

**->*-&• (12)

The weight estimation error is defined as

ñ,rk=w,,k-w,* (13)

where w, ¡s the ideal weights vector and w, its estimate.
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The general DT nonlinear system (9), which is assumed to be observable, can be approximated by the

following DT RHONN parallel representation:

xiMi=w.Tzi(xk.Uk)+ez,. i = l-,n O4)

where ez¡ is a bounded approximation error, which can be reduced by increasing the number of the

adjustable weights. Assume that there exists ideal unknown weights vector w¡ such that || c¡¡ || can be

minimized on a compact set £2z/ c R1' The ideal weight vector w' is an artificial quantity required only

for analytical purposes and is defined as

W* =argmin|sup|/í;(xi,Mi)-H'/'z,(»)|> (15)

which is assumed to be unknown, and it constitutes the optimal set which renders the minimum

approximation error, defined as e2i; F,{') is the fth component ofF(') [49].

Due to this fact, we use w¡j_ as the approximation of the weight vector w' and ezi, the modelling error,

corresponds to w*V w¡_k. The estimate w, is used for stability analysis which will be discussed later. Since

w/*is constant, then

wa+I-wa=wa+1-wJt V*eOuZ+ (16)

The weight vectors are updated on-line with a decoupled EKF.

The state observer x¡ k error is stated as

Xi.k =Xi,k ~Xi.k- (17)

The dynamics of*/,*+/ can be expressed as

Xi,k+\
=

Xi,k+\
~

Xi,k+l ■ (18)

Then

*U+i
= WZZ> (Xk>»*)+ e*, -*Z>*t ixk r "*) - gjet . (19)

Adding and subtracting w'Jkz¡ (xk,uk), it can be written as

x¡,m
= \kh (xk,uk)+e \

-

gfik (20)

with
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The dynamics ofthe weights vector estimation error is

(21)

(22)

Stability analysis for system (9)
-

(22) is presented in [50]. In Figure 5, the proposed observer scheme

is displayed.

Figure 5 Observer scheme

where it is a real number representing a time sample, ** G R" is the state vector, m* G R" the input vector, y*

G FF the output vector, «•& 6 J?" a disturbance vector, e* the output error and F(
•

,

■

) a smooth vector field.

2.2.2 EKF training algorithm

EKF based algorithms have been introduced to train neural network improving learning convergence.

Since the neural network mapping is nonlinear, an EKF-type is required. The training goal is to find the

optimal weight valúes, which minimize the predictions error. More details are presented in [Sl], [52]. An

EKF-based training algorithm is described by (23).

KiJC=PiJcHiJcMiJC,

"iM,
=

i,k
~

^i,k"iji"l,k "*" Qi,k »

(23)

with:

eijc=yk-yk'

-i
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where e,,* e R? is the observation error, Pi,k eRLlxL' is the state prediction error associated covariance matrix

at step k, w¡,k e R1' is the weight (state) vector, L¡ is the total number of neural network weights, y eR is

the measured output vector, yeRp is the NN output, r¡¡ is the learning rate parameter, K¡,k e R1 is the

Kalman gain matrix, Qiik e R"*" is the state noise associated covariance matrix, Ri,k e R™" is the

measurement noise associated covariance matrix, and H¡,k £ ■Ri/xP ¡s a matrix for which each entry (Hy) is

the derivative ofthe i-th neural output with respect to ij-th NN weight, (w0). Where i =1,..., n andj =1,...,

L, . Usually P¡, Q¡ and R¡ are initialized as diagonal matrices, with entries P¡,0 , Qi.o and R¡,0 respectively.

It is important to remark that H¡.k, K¡_k and P,,k for the EKF are bounded [53].

2.2.3 Tuning guidelines

As discussed in [14], for NN learning P¡, Q¡ and R¡ can be selected and initialized as diagonals. The

covariance matrices also verify:

^.o >*,,<> >Q,o- (24)

This condition implies that a priori knowledge is not required to initialize the vector weights. In fact,

higher entries in Pt_0 correspond to a higher uncertainty in the a priori knowledge. It is advisable to set Pi¡0

between 100-1000 and so on for the other covariance matrices satisfying (24). An arbitrary scaling can be

applied to /,,<-, Ri¡0 and Qi¡0 without altering the evolution of the weight vector. As aforementioned, since

the NN outputs do not depend directly on the weight vector, the matrix H is initialized as H0 = 0. It is

assumed that the weights valúes are initialized to small random valúes with zero mean and normal

distribution. The learning rate (tj) determines the magnitude ofthe correction term applied to each neuron

weight; it is usually bounded as 0 < n < 1. Thus, if n is small then the transient estimated state is over-

damped; if tj is large then the transient estimated state is under-damped; finally if n is larger than a critical

valué then the estimated state is unstable. Therefore, it is better to set n to a small valué and to increase it

if necessary. More details are discussed in [54].

2.3 Speed-gradient inverse optimal control

On this section, a speed-gradient-based inverse optimal control approach is presented for asymptotic
stabilization of discrete-time nonlinear systems. A DT CLF in a quadratic form adjusted by means ofthe

speed gradient algorithm is established for: a) to avoid the solution ofthe Hamilton-Jacobi-Bellman (HJB)

equation and, b) to minimize a cost function. The proposed stabilizing optimal control uses the speed-

gradient algorithm in order to determine the stabilizing control law. Thus, the combined approach is

referred to as the speed-gradient inverse optimal control [31].
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2.3.1 Optimal control

This section is devoted to briefly discuss the optimal control methodology and their limitations [30],

[31].

Consider the affine-in-the-input discrete-time nonlinear system:

where x G R" is the state ofthe system, u G R" is the control input, f(xk) and g(xk) are smooth maps with

f(xk) 6 If, g(xk) € RT"
, subscript k G Z* U 0 is the k-th sample k. We consider that * is an isolated fixed

point of f{xk)+ g(xk) ü with ü constant, that is,/(x) + g(;c)«*=.x. Without loss of generality, we

consider 3c =0 ,f(0) ■= 0 and rank{g(x)} =m Vxt * 0 .

The following cost functional is associated with system (25):

r(**)=Z('(*.)+|íM*.k) w
*-**■*

where zt
=

^
-

jcí* with *,--* as the desired trajectory for Xk\ zk e R"; V (zk) : R" —* R+; l(zk) : R" —

■ R+ is a

positive semidefinite function and R(fzk) : R"—» /J"""1 is a real symmetric positive definite weighting

matrix. The cost functional (26) is a performance measure [55]. The entries of Rdzk) can be functions of

the system state in order to vary the weighting on control efforts according to the state valué [55].

Considering state feedback control, we assume that the full state xk is measurable. Then, (26) can be

rewritten as

V{zk) = l{zk) + uTkRc(zk)uk
aa

+ Z(7(r.)+MX(*.K) (27)
n=k+X

= !{zk) + «TkRc{Zk)Uk+V(zk+l)

where we require the boundary condition V(0)
= 0 so that V(z¿) becomes a Lyapunov function.

From Bellman's optimality principle [56], [57], it is known that, for the infinite horizon optimization

case, the valué function V(zk) becomes time invariant and satisfies the DT Bellman equation [58], [59]

V(zk) =mm{l(zk) + uTkR(zk)uk +V(zM)} (28)

where V (zk+¡) depends on both zk and uk. Note that the DT Bellman equation is solved backward in time

[58]. In order to establish the conditions that the optimal control law must satisfy, we define the discrete-

time HamiltonianH [60] as
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H(zk,uk) = l(zk) + uTkRc(zk)uk+V(zk+i)-V(zt) (29)

A necessary condition that the optimal control law uk should satisfy is dH I duk =0 [55], which is

equivalent to calcúlate the gradient of (28) right-hand side with respect to uk, then

, , dv(zkr\
0 = 2Rc(zk)uk+—^- (30)

--^(zk)Uk^dl£Á (31)
duk dzk+i

= 2Rc(zk)uk+g^xk)^^l (32)

Therefore, the optimal control law is formulated as

^i^WW^a!. (33)
2 dxzk+l

with the boundary condition V (0)
=

0; uk is used to emphasize that Uk is optimal. Moreover, ifH has a

quadratic form in Uk and R(xk) > 0, then

d2H(xk+i)
du,

>0 (34)

holds as a sufficient condition such that optimal control law (33) globally [55] minimizes H and the

performance index (26) [57]. Substituting (33) into (28), we obtain

/(,J +K(zM)-r(*0+7^^^)^(*.)^(*J^^«0 (35)
4 OZk*l &t+l

Solving the HJB partial-differential equation (35) for V (zi) is not straightforward. This is one ofthe

main disadvantages in discrete-time optimal control for nonlinear systems. To overeóme this problem, we

propose to solve the inverse optimal control problem.

2.3.2 Lyapunov Stability

Due to the fact that the inverse optimal control is based on a Lyapunov function, we establish the

following definitions.

Definition 1. Radially Unbounded Function [61]. A function V(zk) satisfying the condition
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V(zk)—x» as || jt^ ||
—> oo is said to be radially unbounded.

Definition 2. Control Lyapunov Function [62]. Let V (zk) be a radially unbounded function, with

V(zk) > O, Vrt * O and V(0) = 0. Iffor any zk G Rn, there exist real valúes uk such that

AV(zk)<0 (36)

where the Lyapunov difference AV(zk ) is defined as V(zk+¡) - V(zk). Then V(-) is said to be a "discrete-

time control Lyapunov function" (CLF) for system (25).

Theorem 1. Asymptotic Stability [63]: The equilibrium xk
= 0 of (25) is globally asymptotically stable

if there is a function V(z) :R"—rR such that

(i) V is a positive definite function, decrescent and radially unbounded, and

(ii) -AV(zk ) is a positive definite function.

2.3.3 Inverse Optimal Control

Definition 3. Inverse Optimal Control Law.

Let define the control law

uk=-l-R-l(zk)g^(xk)^l (37)

to be inverse optimal (globally) stabilizing along the desired trajectory x¿,k if:

(i) it achieves (global) asymptotic stability ofxk
= 0 for system (25) along reference

xs,k',

(ii) V(zk) is (radially unbounded) positive definite function such that inequality

V: = V(zk+1)-V(zk) + ukTR(zk)uk <0 (38)

is satisfied. When l(zk) := V ,
then V(zk) is a solution for (35) and cost functional (26) is minimized.

As is established in Definition 3, the inverse optimal control problem is based on the knowledge of

V(zk). Then, a CLF V(zk) is proposed such that (i) and (ii) are guaranteed. Henee, instead of solving (35)

for V(zk), we propose a CLF Kc(z¿) with the form:

K(zk) = ±zTkPkzk Pk=P¡>0 (39)
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Moreover it will be established that the control law (37) with (39), which is referred to as the inverse

optimal control law, optimizes a cost functional of the form (26). This will be achieved by defining an

appropriate matrix Pk. Consequently, by considering V¿(zk), the control law (37) takes the following
form:

uk=-^(zky(Xk)^^.
= -\R-\zk)¿ (xk)Pkzk+l (40)

= -^R(zk) + \g^xk)Pkg(xk)Jg^(xk)Pk(f(xk)-xSMl).
It is worth to point out that Pk and R(z__) are positive definite and symmetric matrices; thus, the

existence of the inverse in (40) is ensured. To compute Pk, which guarantees trajectory tracking of Xk for

system (25) with (40), along the desired trajectory xs¿ we will use the speed-gradient (SG) algorithm.

2.3.4 Speed-gradient algorithm

In [64] DT application ofthe SG algorithm is formulated as finding a control law Uk which ensures the

control goal:

Q(zM)<A, fork>k' (41)

where Q is a control goal function, a constant A > 0, and k* G 7T is the time step at which the control goal

is achieved. Q ensures stability if it is a positive definite function.

Control law (40) at every time step depends on the matrix Pk. Let define this matrix Pk as:

Pk=PkPC (42)

where PC=P¿ > 0 is a given constant matrix of appropriate dimensions and/>* is a scalar parameter to be

adjusted by the SG algorithm. Then, (40) is transformed into:

The SG algorithm is now reformulated for the trajectory tracking inverse optimal control problem.

Definition 4. SG goal function for trajectory tracking

Consider a time-varying parameter pk G P c R+ with pk > 0 for all k, and P is the set of admissible

valúes forpk.

A nonnegative C' function Q: R" x R-*R ofthe form
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0(w*)=M*w). <44)

where VSG(zk+x) =—zTk+xPczk+x is referred to as SG goal function for system (25), control law (43) and

desired reference xsj+j.

Definition 5. SG Control goal

Consider a constant p* G P. The SG control goal for system (25) with (43) is defined as finding/?* so

that the SG goal function Q¡ (p) as defined in (44) fulfills:

Qk(p)<A(zk), fox k>k' (45)

where

A(z*) = *»(**) uIR(zk)"k (46)
Pk

with Vso(zk) =—zlPczkand uk as defined in (43); k* G Z* is the time at which the SG control goal is

achieved.

Solution pk must ensure that Vsa(zk)>— uTkR(zk)uk in order to obtain a positive definite function

Pk

A(zk). The SG algorithm is used to compute/)* in order to achieve the SG control goal defined above.

Proposition 1 . Consider a discrete-time nonlinear system ofthe form (25) with (43) as input. Let Q be a

SG goal function as defined in (44) and denoted by Qáp)- Let p, p' e P ,
be positive constant valúes and

A(zk) be a positive definite function with A(0)
= 0 and G* be a sufficiently small positive constant.

Assume that:

There exist p* and G* such that

Qk(p)íe«A(zk) and l-e*/A(z,)«l. (47)

forall/>iGaP:

{p-PkfvPQk{p)^-A(zk)«> (4«)

where VpQk (p) denotes the gradient ofQk(p) with respect topk.

Then, for any initial condition p0 > 0, there exists a k' G Z+ such that the SG Control Goal (45) is

achieved by means ofthe following dynamic variation of parameterpk:

pM=Pk-rd.kvPQk(p)r (49)

with
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rd,k=rA\vPQk{pV o<n<2A(zt) (so)

and

S\X for QM>AM
(51)

[0 otherwise.

Finally, for k>k* ,pk becomes a constant valué denoted by p and the SG algorithm is completed.

Proofofthis proposition is in [31].

Parameter yc in (50) is selected such that solution censures the requirement V^. (zk)>
—uTkR(zk)uk .

Pk

Then, we have a positive definite function A(zk).

When SG Control Goal (45) is achieved, thenpk =p for k > k*. Thus, matrix Pk in (40) is considered

constant and Pk = Pg where Pg is computed as Pg
= pPc ,

with Pc a design positive definite matrix. Under

these constraints, we obtain:

ul -~(n*)+^MPM*)f fMWM-****)- (52)

The proof that control law (52) ensures stability and optimality for (25) without solving the HJB

equation (35) is presented in [31]. The control law (52) is inverse optimal in the sense that it minimizes

the cost functional given by

■%) = £('(**)+«£*(**)»*) (53)
*=o

where

with V defined as

l{zk):=-V (54)

V: =V(zk+l)-V(zk) + uTkR(zk)uk. (55)



Chapter 3

Neural observer synthesis and validation

This chapter discusses the observer structure for methanogenesis state estimation and the dynamic
learning rate as afunction of the pH substrate in order to improve the performance ofthe observer. The
observer validation in presence ofdisturbances andparameter variations is presented via simulation and

experimentally.

3 . 1 Neural observer for an anaerobic process

A nonlinear discrete-time neural observer (RHONO) is designed in order to estimate biomass

concentration, substrate concentration and inorganic carbón for an anaerobic process. The training of the

RHONO is performed on-line. The variables are estimated from CH4 and CO2 flow rates, which are

commonly measured in this process. In addition, is assumed that pH and the process inputs are on-line

measured. In most process these variables are easily measured.

3.1.1 Background

In order to design discrete-time RHONO, model (l)-(8) is discretized by Euler approximation, as

follows. Consider the next nonlinear system:

x = f(x) + g(x)u +d(t) (56)

where x € R" is the state ofthe system,X-*)- R" —*R" and g(x): Rnxm—rRn are nonlinear functions, u e R™ is

the control input, d(t) e A*" is a disturbance term. Discretization by Euler method is defined as:

xk+x =xk +T(f(xk) + g(xk)uk +dk), (57)

where k e Z* U 0 is the sampling time and T is discretization step.

By applying the Euler discretization method to the system (l)-(8), the next model is obtained:

23
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Sljc+l
=

S\,k+T\~R6Mx,kX\,k +An,* \S\mJk ~^l,k))>

X2_k+i
=

X2Jc + T I í _u_,k
-

kd2 )X2k 1
,

( ( w
(58)

^2.k+i
~

$2,k +T(-R3ti2JeXu + RAfiljcXlJt + Dink (S2lnk
-

S2k )) ,

ICk+l =ICk +T{R2RiMlkX2JC +R5^kXu -K*Arh.kXi.k +0^(10^ -ICk)),

Zk+l=Zk+T(Din¿(Zinj!-Zk)),

The gaseous phase (CH4 and C02) considered as the process output is definite as:

Jfc^-W+W (59)

with:

YcHA.k=R,RiMi,kX2,k (60)

Yco1.k=KRiRifh,kX2.k (61)

This model is as described in (9). The observability property of this anaerobic digestión process is

analyzed in a previous work [4], [10]. From this analysis is proven which Zk is the unique non-observable

state, however Zk is biologically inert and its dynamic depends only on hydrodynamic behavior.

Additionally, 5;,* andXi¿ are related to the fast stage and they are not considered for the observer design,

because the main interest is on the slow one. Thus, a RHONO for the methanogenic stage is proposed.

3.1.2 Synthesis

The structure ofRHONO, is formulated as

XiMx = wnks(x2.k ) + wl2tkS2(x2.k) +wnJcs(íCk )

+Wu,kS2 \Xw ]Din,k
+ ™xs.kS2 (■&■* }Kc,k + Sxek,

SiMx = w2lkS í S2,k j + w22kS2 í £2.* j + w2,kS í ÍCk )

+ w24kS2(s2,k "jDmjt + ^5.*^[^.* jS2in¡k +g2ek,

ICk+i = w3lks(lCk ) + w31kS2 (ÍCk ) +wnksíx2.k J
+ w34 kS2 (ÍCkWk + w35kS2 {ÍCk jbinc¿

+ g3ek,

(62)
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where w,j is the respective on-line adapted weight vector; X2k,S2k and ICk are the estimated states; S(>) is

the sigmoid function defined as S(x)= a tanhrjKxJ; (g¡, g¡, g3) are the Luenberger-like observer gains, ek is

the output error, bmc is the bicarbonato input, Dink and S2ín_k are defined as in section 2.1.3.

The observer output is defined as follows:

with:

The output error e* is defined as:

^k = YCHA,k + **rC02>*

YCHtJc
= R\R2fh.kX2.k

Yco1.k
~ K^iPzÍh.,kX2.k-

(63)

(64)

(65)

ek=yk-yk (66)

As shown in (62), the proposed neuronal observer has a parallel configuration and the vector of

weights w¡¡ is on-line updated with the EKF given by (23). RHONO for AD process scheme is illustrated

in Figure 6.

Anaerobic system

"t-Ph-nybs,"-•-!

->l¡n,.*>2n

F(-,-) —*0 ► z
Xi yjrFICH^CO-ipH)

♦I h I—I ►

y^FÍCHoaCO-ipH)

RHONO

Figure 6 RHONO scheme for AD process

This scheme illustrates the inputs of the AD process D^ and b¡„j-<, xk G If represents the states of the

system, xkE If the estimated states X2k,S2k and ICk ,ykeRF the measurable output ofthe system, yk G

Rf is the estimated output ofthe observer, ek the output error, F(- .■) and wlz,{-.-) are smooth vector

fields.



26 CHAPTER 3 . NEURAL OBSERVER SYNTHESIS AND VALIDATION

3. 1 .3 Time-varying learning rate

Parameter tj in the FKE determines the magnitude of the correction term applied to each neuron

weight. This parameter is bounded and its valué is selected heuristically as discussed in section 2.2.3. In

previous works [28], [65] the use of constant valúes illustrates a good performance in presence of small

disturbances; however it presents a transient error increase in presence of large disturbances for AD

process. Valúes ofthis parameter can be selected heuristically in order to find the best performance.

One of the main contributions of this work is a methodology to obtain a time-varying learning rate

(rjD), in order to enhance the performance of neuronal observers. tjD is proposed to be computed on-line as

a function ofthe system operating conditions; this variable improves the learning ofthe neuronal network

in presence of disturbances and parameter variations.

For the AD process i\d is calculated as a function ofthe pH substrate, which represents different system

operating conditions. The pH is an important parameter for the adequate growth of bacteria and then for

waste transformation. For methanogenesis, the optimal range of substrate pH is between 6 and 8.

Bicarbonate ions and volatile fatty acids (VFA) concentration have an influence on the pH. A pH valué

higher than 8 causes an inhibition of the bacteria activity, while a valué under 5 for a long time causes

irreversible damaged and death ofthe bacteria, stopping the process due to acidification [4]. Therefore,

considering that the pH is a sensible and determining variable in the process, it is used to determine t\d as

proportional (y) to the on-line measurement substrate pH, as presented in Figure 7.

1.2

1.15

1.1

105

D
*=*

1

0.95

0.9

0.85

Figure 7 Time-varying learning rate as a function of pH

In order to implement a time varying learning rate, the EKF training algorithm (23) is modified as

follows:

wiMi=wi.k+TlDi.kKi.k^.k- (67)

with \r¡D¡t I < S and S is function of the pH level (Figure 7). The other components of the algorithm

remain unchanged.

i 6.5 7 7.5 8

pH
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Before to state the convergence analysis ofthe observer, let us recall the nonlinear system
assumed

observable as presented in section 2.2.1:

xk+.=F{xk,uk) + dk,

yk=Kxk)>

with xk, uk,dk, yk ,h(xk), and F(
•

) as defined before. For system (68) a Luenberger-like neural observer is

proposed:

Xk
~

[__Xl.k
■ • ••*/,* ' ' •Xfí.k J

Vi-wJ^ (**>"* ) +&**>
í69)

yk=h{xk); i = l,...,n,

where xk,w¡, g¡ , z¡ and yk are defined as before. The output error is expressed as:

ek=yk-yk. (70)

The weight estimation error is defined as

ñ,.k=wi,k-wi* (71)

wherew' is the ideal weights vector. The dynamics ofthe weights vector estimation
error is

ñ,.k+i=ñi,k-nKi.kek- (72)

The state observer xiJc error
is stated as

*,,*=*/,*-*/,*> <73)

which dynamic is expressed as

Km
=

V, (Xk . "* ) + e'„ -Sn,iek (74)

with

e;=sH* (?5)

where ez/ is a bounded approximation error. The convergence analysis is stated
as the follows theorem.
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Theorem 2: For system (68), the RHONO (69), trained with the EKF-based algorithm (23) with w,,**./

determined as (67), ensures that the i-th (i
= 1,2, ... , n) estimation error (73) and the output error (70)

are semiglobally uniformly ultimately bounded (SGUUB); moreover, the RHONO weights remain

bounded.

Proof. Let assume that h (•) is a known output function which is Lipschitz in x*,

\h(xk)-h(xk)\úL\\xk-xk\\ (76)

with L the Lipschitz constant [61].

First, let consider the candidate Lyapunov function with Pqi a positive definite and symmetric matrix

Kk
=

tf,,**^/A* +KkPqiA,k (77)

whose first increment is defined as

w

_

„ - (78)
-

Vti\*+l'V*+lW/,*+l + Xi.k+\Pql,k-rlXi,k-r\ ~Wl,kPql,kWl,k ~X¡.kPq,lkX,_k

Using the EKF (23) and (71) in (78), then

Wj, = [***
~

üaK^kJ [Ak ] x [#,.*
"

-7zA*e* ] + [/*- fie*f [-4,* ]*[/*" fie* ]
(?0)

~

w/,*-íí(,*w/,* ~xt¡kPqt_kXl_k

with

4,*=*na-A.*+a

A,* =

K-l.kHi,kPqt,k

fk=ñ,.kz,{xk,uk) + e\i

Henee, (79) can be expressed as

A^,*
= 2w[kPq,kwKk -2Ü& [5a]wa +2r;>/A:r [4.*K*** +V/4,*/*

.

rf- -, . „
. (80)

+Hs< [4.* Jfie* -wu,Pqi.kwi.k -Xxj.Pm.kXx.k

with Ba
=

D,lk - Q,.
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Using the following inequalities

XTX +YTY*2XTY

XTX +YTY*-2XTY (81)

-^{P)X2^-XrPX^-^(P)X2

which are valid VX,Y e R" , VP^ e R"",P¥
=P/ > 0, and considering (76), (80) can be rewritten as

a^* 4%t^ fahKt^ (^)+*f«^rf4- (^) (82)

«Uf^K)+%íMf^ (^)-ftf ^- fa)

Substituting fk =wlkzi(xk,uk)+e\, in (82), then

a^* *Kt*-fa)-KtK>fa)+iMV^^M

+ :

Defining

£a
=2¡^iir^K*)+%rf^k*)-^ (>,,*)

Then (83) can be rewritten as

AKttsHftfj^-|^fFM+4|.;f^(^)

Henee A^4 -SO when

M

or

4»»K*)

E»
«*u

wa >'
4.(4*)

-*u

(83)

(84)

'a
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Therefore the solution of (72) and (74) is SGUUB; henee, the estimation error and the RHONO

weights are SGUUB [66].

To proceed with the proof for all the states, let consider the Lyapunov function candidate.

n

vk = Z(^.,*Pí/A* + xi,kPqi.kxi,k ) (85)
/=i

n .

Wk = _Y,(yvik+iPqik+xwiMX + x1MlPqlMlxtMX
-

w^P, ■A,* -\kPqiJcxiJc ) (86)
;=1

Therefore, (85) can be expressed in the following equation

AVk * £(-|**í hk~M Fi.k i^i»; f ^x (4,*))

with Ej and F¡ defined as above. Henee AVtk < 0 when

\xk\>hk
or

h,k\\>k2,k

If |JcJt|>^tand|H'a||>^i,V/ = l,...,« holds, then A^t<0.

Finally considering (69) and (70), it is easy to see that the output error has an algebraic relation with xk

; for that reason, if xk is bounded, then ek is bounded too.

ek=hxk

kh

3 .2 Observer validation via simulation

A set of simulations, cióse to real conditions, are presented to validate the proposed RHONO (62); the

observer estimation convergence is tested at random initial conditions, in presence of disturbances on the

input substrate and parameter variations in the growth rate. Parameter valúes are presented in Tables 1 and

2, appendix A. The process model and the observer are implemented using Matlab/Simulink™ (TM: The

Mathworks Inc., Cambridge, MA, USA) in order to verify the performance of the RHONO via

simulations.
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First, constant valúes of n were determined in [13] for each one ofthe estimated variables as: r¡¡=\ for

the estimation of X2, ij2=0.5 for the estimation of S2 and tjy=lQ for the estimation of IC. The initial

conditions for the observer states are presented in Table 2. A disturbance on the input substrate S2ln of 50%

is incepted at t
= 200 h in open loop, as shown in

Figure 8.
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Figure 8 Estimated states with constant learning rate for test 1

As can be seen X2, S2 and IC are well estimated during all the simulation despite disturbance.

Estimation presents a fast convergence from the beginning without transient error. Thus, the proposed

neural observer trained with constant r\, for EKF-based algorithm is a good altemative to estimate those

important system states. Figure 9 illustrates the disturbance in S2in at f=200 h.
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Figure 9 Input disturbance on the substrate

In order to show the performance improvement of the observer with a time-varying t\D, a comparative

analysis between constant and time-varying learning rate is realized. AD system convergence is ensured in

closed loop with a PID L/A controller designed in a previous work [65].

The second test is done with the following initial conditions for constant learning rate: n¡
=

6.4,

tj2
= 0.648 and tj3

= 20. The initial conditions for the observer states are 40% smaller than the previous

ones. On the other hand, observer tolerance to change on the system parameters is tested; such variation is

incepted as a disturbance on the bacteria concentration, pimax= 0.0825 and p2max= 0.023. Parameter valúes

are presented in Table 3, appendix A. Finally a disturbance on the input substrate S2in of 250% increase is

incepted at t=200 h. Results are illustrated in Figure 10.
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Figure 10 States estimation with constant learning rate for test 2
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Figure 10 (Continued)

Figure 10 illustrates the performance in closed loop of the observer and r\¡ trajectories when the

disturbance on the input substrate is incepted. Observer presents a fast estimation convergence for all

estates. As can be seen, X2¡k is estimated with a transient error during all the simulation; particularly

chattering in steady state is shown at the end of the simulation. This error could be due to disturbance

amplitude which produces oscillations and the processor effect in the numerical simulation. A critical

valué exists for which the control cannot reject the disturbances and the system tends to washout. The ICk

estimation is similar as for the previous description. In contrast, S2.k is well estimated during all

simulation. This behavior illustrates which the disturbance amplitude affects directly to the

microorganisms and the pH related to the ICk. Despite the errors in transient state and chattering, the

observer is able to estimate adequately the three variables ofmethanogenesis stage.

Third test is done using time-varying t¡Di, with the following initial conditions: r¡D¡
=

6.4, rjD2
= 0.648 and

t]D3
= 20. The other parameters ofthe neural observer remain unchanged.
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Figure 11 States estimation with time-varying learning rate for test 3
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Figure 1 1 illustrates the performance in closed loop ofthe observer and tjD¡, when the disturbance on

the input substrate is incepted. As can be seen with r¡D¡, transient state error of X2 and IC states is

decreased and chattering is eliminated as compared with Figure 10. S2 remain well estimated. Therefore,

from the simulation results, the r¡DI contribute to better performance ofthe RHONO. Thus, the robustness

ofthe proposed RHONO to parameters variations is verified.

The proposed neural observer trained with the EKF-based algorithm is a good altemative to estimate

those important states in presence of disturbances on the input substrate, parameter variations on the

growth rate and random initial conditions. The proposed r¡D, as a function ofthe pH on-line measurement,

produces good results.

3 . 3 Experimental validation

This section describes an experimental validation in order to verify the proposed neural observer

performance in a laboratory scale wastewater treatment process. First, the experimental setup is presented
and then the respective validation results.

3.3.1 Experimental setup

3.3.1.1 Biomass

Biomass is composed of anaerobic bacteria fixed as biofilm on a natural zeolite support which acts as a

biomass filter. The substrate comes from an abattoir wastewater in Saltillo, Coahuila, México as explained
in [67], Batch mode experiments are performed to obtain: bacteria adaptation to substrate and bacteria

colonization on the zeolite.

Hydrodynamic behavior of the biomass filter allows obtaining high microorganisms concentration

inside the reactor [67], which produces an efficient treatment of wastewater and improves methane

production. In [68] a manure digestión study is presented, where biomass is immobilized on zeolite; use of

the support produced a 59% and 35% increase in the valúes of growth rate and kinetic constant of the
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process, respectively. This behavior is believed to be due to the exchange of ammoniacal nitrogen that

occurs in this type of digester between the support and the médium. In [67] the effect of different sizes of

zeolite particle is analyzed for an abattoir wastewater anaerobic treatment process. Natural zeolite ofup to

1 mm (14 mesh) particle size was used in batch experiments. The anaerobic process was favored by the

addition of natural zeolite at doses of between 0.05 and 0.30 g/g of volatile suspended solids. The

significant contribution is the high capacity of zeolite for microorganisms immobilization. For this, a

natural zeolite with 9-10 mesh particle size is used because this contributes to best biomass retention [67].

Deposited zeolite with bacteria biofilm at the bottom ofthe reactor is illustrated in Figure 12.

Figure 12 Bacteria colonization on natural zeolite

3.3.1.2 Substrate

Substrate samples are taken from an abattoir in Saltillo city, displayed in Figure 13; this abattoir has

the TIF ("Tipo de Inspección Federal") federal certification, granted to meats processing plants which

meet health and hygiene standards ofthe Mexican Government.

The abattoir effiuents have a strong concentration of organic matter; typically contain a high

concentration of proteins, fats, oils, suspended solids, other produets of the meat industry and basic pH.

Abattoir effiuents within the food industry are classified as larger than 2000 mg L"1 [69]. Average

composition on this wastewater type is shown in Table 4.

The mentioned effiuents after solid residues separation go through an aerobic treatment process. A

portion of the treated water is used for irrigation and the other part is integrated into the municipal water

supply and sanitation [69].
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Figure 13 Municipal abattoir from Saltillo, Coahuila

3.3.1.3 Bioreactor

The employed CSTR is a laboratory prototype Applikon®; this system is composed of the following

elements: bioreactor with capacity of 7 L, featuring a metallic lid to seal it hermetically, in which are

located the pH sensor, temperature sensor, dissolved O2 sensor, liquid level and agitation speed; ADI 1010

controller, for the regulation of variables such as pH, temperature, dissolved O2, liquid level and agitation

speed; ADI 1025 consolé, which consists of the actuators for the variables regulation, as feeding and

substrate extraction pumps, transfer heat, base addition, etc. Databases of the pH and temperature

variables are obtained using the BioXpert Lite® data acquisition system.

A bioreactor configuration is illustrated in Figure 14.

Driver Biogás

ADI 1010 measurement

Consolé Bioreactor

.ADI 1025

Figure 14 Bioreactor configuration

3.3.1.4 Measurement ofvariables
The experiment is performed in a prototype bioreactor of 7 L (Figure 14) as follows: a continuous

configuration is used considering an input flow rate (Qin) of450 mL h'1, D¡„ of 0.1 h"1, substrate volume of
4.5 L, 400 mg of zeolite, constant temperature of 37 °C, initial pH of 6.85 and agitation speed of 100 rpm.
Continuous configuration is operates during ten days after bacteria adaptation. During this test, the next
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variables are measured [70]: pH, biogás, input substrate COD (chemical oxygen demand) and output

substrate COD. DataMeasured are illustrated in Figure 15.
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100 150
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Figure 15 Variables measurement

To keep constant the reactor volume, the input and output flow rates are controlled independently by

means of pumps. The prototype is equipped with sensors to measure temperature and pH inside the

reactor. A homogeneous environment is assured inside the reactor by a stirring system. The produced

biogás (CH» and C02) is measured by displacing of liquid. In order to determine CHt concentration, every

5h a gas sample is sent to a gaseous phase chromatograph.

The input COD is selected by the operator when the bacteria are adapted to continuous operating

conditions. The biomass adaptation to each different COD level requires 10 or 15 days. This is verified via

the pH and methane flow rate variations, which become constant when the biomass is adapted. For

purposes ofthis test, the COD is varied each day.

The substrate time evolution is detected measuring the COD, which is an indicator of the pollution in

the substrate. The measure ofthis variable is easy, but it requires at least 3 h and has to be done off-line.

COD is usually measured in anaerobic wastewater treatment plants and it is associated with S2

concentration.
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At the beginning of continuous experiment, when the acidogénesis phase begins the pH decreases, and

if its valué becomes less than 6, the process can be biologically destabilized due to acidification. To avoid

this situation, it is advisable to keep pH cióse to 7.The biogás composition is an indicator ofthe biological

activity inside the reactor. The substrate can be considered as totally transformed when the biogás

production becomes negligible; then the biological reaction is over.

3.3.2 Experimental results

Data of pH measurement, COD measurements and biogás production measurement are used to

calcúlate the model states (l)-(8) described in chapter 2. Input substrate S2m is considered as proportional

to the input substrate COD and output substrate COD is considered as proportional to the S2. The outputs

of the system are the YCHt and Yco¡ flows, defined by equations (6) and (7) described in chapter 2,

respectively. From previous experiments [70], the YCHt constitutes around 70% ofthe produced biogás and

the YCOj remaining is around 30%. Experimental results are compared with the valúes obtained from the

observer as shown Figure 16Figure 16. The observer parameters S¡_n, S¡_„ and X2_o for this test are

decrement a 50 %.
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Figure 16 Observer and measurements comparison

Figure 16 illustrates a good estimation with a transient state error for Y^ and S2. This transient error

may be due to the input substrate changes due to disturbances or could be due to the observer structure,
which is a simple one. Additionally, in the model, X2 is considered fixed on the solid support (zeolite) and
does not contain the effect of the inputs; this affects the observer since the only way of access to X2 is

through the output (biogás). Despite this, estimation convergence speed from observer presents a good
performance.

Since the biomass cannot be measured, X2 is calculated using the model (validated experimentally in

[13]) and the on-line pH measures. Model is compared with the valúes obtained from the observer Figure
17 display such comparison.
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Figure 17 Biomass estimation

As can be seen, X2 is estimated with a negligible transient error; this error could be induced by the

abrupt change on the input substrate; anyway the estimation converges and the error is eliminated in

Steady state. Despite the errors in transient state, the RHONO is able to estimate adequately X2 and S2 of

methanogenesis stage. Thus, it can be noticed that the proposed neural observer is a good altemative to

estimate the important states ofthe anaerobic process.



Chapter 4

Control strategy synthesis and validation

This chapter discusses hybrid intelligent control, speed-gradient inverse optimal neural control, TS

fuzzy supervisors for reference trajectories, gain scheduling and selection of controllers. The proposed
neuronal observer is integrated into the hybrid intelligent control scheme, which keeps the process

operating in presence ofdisturbances. A PSO optimization algorithm is implemented in order to improve
the trajectory tracking.

4.1 Control scheme

In this section, a hybrid intelligent control structure is presented in order to control the methane

production in presence of disturbances; this control strategy allows to choose an appropriate control action

as a function of the system operating conditions. Reference trajectories for different states are calculated

by a TS fuzzy supervisor in order to obtain a desired methane production.

4.1.1 Inverse optimal control strategy

Speed-gradient inverse optimal neural controllers for trajectory tracking are developed on the basis of

the above mentioned neural observer. Two controllers are designed: a base supplying (bmcJí) action to

regúlate C02-bicarbonate equilibrium and a dilution rate (Dm.k) action to reject large disturbances in

the input substrate, respectively. A fuzzy supervisor is implemented in order to apply speed-gradient

inverse optimal neural control actions. Fuzzy reference trajectories for the system states and YCH are

implemented in order to forcé the system to track them. The process works in open loop in presence of

small disturbances and for large disturbances, inverse optimal control actions are applied avoiding
washout.

41
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RHONO as an affine system. The proposed RHONO (62) is formulated as an affine system (25)

with the aim of a speed-gradient inverse optimal control design for the AD system. Equation (87)

corresponds to function / and (88) to function g. Equation (89) illustrates /, g and xs,k+i (reference

trajectories) in vector form.

fx ix2,k,ÍCk j = wnsíX2.k j + wl2S2 (X2.k j +wus[íCkyglek,
f2 (s2.k ,ICk)= w2XS (s2,k ) + w22S2 (s2.k ) + w23S (ÍCk )

+w25S2ís2,kjS2¡n¿+g2ek,
fJx2.k,ICk )= wnSUCk ) +wnS2ílCk ) +w33síx2.k ) + g3ek

(87)

Gn(X2.k) = wuS2 (Xl,k ) Gn(X2.k) = wuS2 {x2,k )

G2_(S2,k) = wuS2 (s2.k J G22(S2,k) = 0

G3l(ÍCk) = w34S2 [lh | G32(ICk) = w35S2 [tk J

(88)

Sx{xk) =

Axk) =

Ai

J2X

J31

&(**) = -•22

32,

fx yA
2 re/,*

Í2 XS,k
~

^2ref.k

ft. _ref,k_

According to (52), the inverse optimal control law is formulated as

A,.* =-^Rc_(zk) +±gir(xk)Pglgi(xkj] g_T(xk)Pgl(f(xk)-xs¡k)

hc,k =-\[^M+\g.T i*k)p,M*k)\ g2T(xk)pg2(f(xk)-xSk)

(89)

(90)

(91)
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where the positive definite matrix P^ = PktPQ is calculated by the SG algorithm, Rc{zk) is a constant

matrix, g,{xk) aadfixk) are matrices as in (89), for i = 1,2. Parameter valúes for inverse optimal control are
in Table 5, appendix A.

The tracking ofa desired trajectory, defined in terms ofthe plant state x,,k formulated as (58) can be

established as the following inequality:

I*/.*.* -

\k | <, I*,,, - x, k ¡ + \x¡SJc - xIJc || (92)

where ||.|| stands for the Euclidean norm, xlk is the observed state, x,Ak is the desired trajectory signal,
which is assumed smooth and bounded. Inequality (92) is valid considering the separation principle for
discrete-time nonlinear systems [30], and based on (92), the tracking ofa desired trajectory can be divided
into the following two requirements:

Requirement 1:

with £¡ a small positive constant.

Requirement 2:

lim\\xl¡k-xik\\<^ (93)

lim||^,t-^||
= 0.

(94)

An on-line neural observer trained with EKF based on (9) ensures (93) [71], while (94) is guaranteed

by a discrete controller developed using inverse optimal control law.

4.1.2 Fuzzy supervisor structure

The AD process works in open loop in presence of small disturbances. However, for large

disturbances, anaerobic microorganisms can die, and methane production stopped. Therefore, in order to

solve this situation, a TS fuzzy supervisor [72], [73] for controllers selection is implemented. This

supervisor allows a smooth switching between open loop and closed loop, avoiding washout. In order to

forcé the system to produce methane at different disturbance magnitudes, a TS supervisor is designed to

calcúlate reference trajectories for the system states and methane production. Finally, a TS supervisor for

fuzzy gain scheduling is implemented in order to calcúlate gains for the controllers at different operating

points. The applicability ofthe proposed scheme is illustrated via simulations.

4.1.2.1 Fuzzy supervisorfor controllers

The supervisor has two main tasks: i) detect the process state, and ii) select the most adequate control

action allowing smooth switching (if required) between them. The idea is to detect the attraction región
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where the process is working; if any operating conditions cause the process to move away from the

operating domain, the supervisor must determine and apply the control action which allows the bacteria to

grow in order to avoid washout. Besides, if a variation on the operating conditions can be managed by the

process itself, the supervisor must allow the system to opérate in open loop, which represents energy

saving. These objectives are achieved monitoring the variables that are indicators ofthe biological activity

inside the reactor as a consequence of variations on the operating conditions. Organic daily load per

biomass unit (ODL/X2) variable is proposed for the fiízzy inference rules. ODL/X2 represents the maximal

quantity oforganic load that a biomass unit can treat during a working day.

Each process stage has different reaction rates according to the substrate composition, and the stable

development of the global process will require a balance that avoids the accumulation of inhibitors

intermediate compounds or the accumulation of volatile fatty acids (VFA), which decrease the pH.

Substrate pH must be kept cióse to neutrality. The C02-bicarbonate equilibrium is important for the pH

stability. On the other hand, large input substrate disturbances which cannot be treated by the biomass

require to be rejected. Therefore, a first control action in closed loop is required to regúlate acidification

and a second to reject large disturbances and avoid washout. There exists a limit of ODUX2 to which the

process can opérate in open loop, after that require a control action. Then, the input disturbances can be

classified by this variable ¡nto small, average and large. For this reason, three fuzzy sets are determined as

shown in Figure 18.

LOW AVERAGE HIGH

Open \/b¡^\/ Din

Loop /\action/\. action

CX=L4 C2=1.7 C3=L8 ODL/X2

Figure 18 ODL/X2 fuzzyfication

The ODL/X2 is defined as:

ODL/X2=DlnA2S20/X2i (95)

where D¡„ is the dilution rate (h"1), A2 a disturbance amplitude on the substrate input S2in (mol L'1), S2<¡ the

initial valué ofthe substrate S2 (mol L"1) and X2 is the estimated biomass X2 (mol L"1).

Concerning the output fiízzy variables, three operation regions for the process are identified as function of

the ODL/X2: open loop which represents energy saving, closed loop with binc action which contributes to

C02-bicarbonate equilibrium and closed loop with D,„ action to reject large disturbances. The number of

fuzzy sets is determined from simulations in order to classify the input variables behavior as a function of

the operation conditions. Then, three fuzzy inference rules are deduced (96)-(98):
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If ODL I X2 is LOW then u. = open loop

If ODL I X2 is AVERAGE then u2
= blnck action

If ODL/X2 is HIGH then m, =Dlnk action

Defuzzification is done using the average center method [72]:

(96)

(97)

(98)

« =
• (99)

ZR

with R the number of rules, y¡ is known as the membership function and is calculated as y}
=

_Y0DL/X¡

where Yodlix 's ^e membership degree of variable ODL/X2 on the fuzzy set, k the A* fiízzy set ofODL/X2

R

and Xr,=L

In presence of a disturbance on S2ín, ODL/X2 can abruptly increase up to a valué, which exceeds the

conditions of stability limits (critical valué); therefore the process tends to washout or system instability. If

ODL/X2 is above its critical valué then a control law must be applied in order to allow biomass growth,

and henee, diminishing ODL/X2 and stabilizing the system. In contrast, if the ODL/X2 is under its critical

valué then the system can work in open loop. Depending on the ODL/X2 valué, commutation between

operating modes (open loop, closed loop) is done by a TS fuzzy supervisor. This commutation takes place

progressively in order to avoid abrupt switching. The main idea of this control scheme is to combine

different control actions in order to minimize their drawbacks and to profit from their advantages.

Consequently, the most adequate control action is applied in order to avoid washout. The structure ofthe

hybrid intelligent control is shown in the Figure 19.

: Estimated :

i Biomass .p. ¡

TS supervisor controller

: ■"•»!

i

D,„ actior

Inverse optimal

control
i
—►

f)„cact¡or

Process

Open loop
►

Figure 19 TS supervisor for controllers
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4. 1.2.2 Fuzzy supervisor ofreference trajectories
The inverse optimal neural control algorithm requires reference trajectories to forcé the system to track

them. The proposed reference trajectories are taken from a previous work [65], because they represent an

optimal dynamic behavior of the anaerobic process for growth biomass and methane production in

presence of disturbances. Five trajectories from low to high disturbances on input substrate are calculated.

In order to obtain global reference trajectories, a TS supervisor for is implemented. The specific structure

is based on five trajectories, which are interpolated by a fuzzy algorithm in order to obtain the global

reference trajectories in presence of disturbances. The inference rules are composed of linguistic variables

as premises and varying-time reference trajectories (instead of linguistic variables) as consequents [74].

For the premises, the input disturbance S2in is selected as the fuzzy input variable and 5 fuzzy sets are

proposed, as illustrated in Figure 20.

|
VERY AVERAGE VERY

LOW LOW HIGH HIGH

0.07 0.11 0.14 0.175 0.21 0.26 S2h

Figure 20 S2¡„ fuzzyfication

Each fuzzy set corresponds to a different disturbance amplitudes; for each amplitude, a reference

trajectory is synthesized. From the fuzzy variable and the different reference trajectories, five inference

rules are deduced as follows:

If S2ltt is VERY LOW then xrrf=xrl, y
=

Cxx^ (100)

If Slln is LOW then x^
=

xr2, y
=

C2x^ (101)

If Slln is AVERAGE then x^
=

xr3, y
=

C3x^ (102)

If S2I„ is HIGH then x„f =xr4, y
=

C4x^ (103)

If S2ln is VERY HIGH then Xrtf =xrs, y
=

Csx^- (104)

xref
=

xs,k corresponds to reference trajectories for X2, S2 and IC. From this fuzzy rules structure, it is

easy to see that the active reference trajectories at each instant are determined by S2¡„. The global reference

trajectory is calculated using the defuzzyfication algorithm [74] described by:
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Xrtf
~ (105)

YCH<n,
= (106)

where yy is the membership function and determined as y¡
=

Ys w^ Ys „
^e membership degree of

variable iS^ú, on the respective fuzzy set.

The scheme ofthe reference trajectories supervisor is shown on the Figure 21.

Input

substrate S2¡n

TS supervisor for reference trajectories

Reference

trajectories

/

Inverse optimal
A control • Process

Output
■>

Figure 21 TS supervisor for reference trajectories

4.1.2.3 Fuzzy supervisor gain scheduling
With global reference trajectories the control algorithm requires to tune the gains ofthe controllers. In

order to simplify this tuning task, a fiízzy gain scheduling is implemented [74]. For the rules, the input

disturbance S2I„ is selected as the input variable because control actions tuning depends of disturbance

amplitude. A TS supervisor detects the disturbance amplitude on the input substrate and implements a

fuzzy interpolation to keep updating the gain of the controller. Fuzzy sets are the same as illustrated in

Figure 20.

For each one ofthe disturbance amplitude, an inverse optimal neural control (90)-(91) is synthesized in

order to regúlate the substrate around an operating point. The corresponding gains of the nonlinear

controllers are determined according to the inverse optimal control approach and are used as output

variables in the consequents. Henee, the fuzzy rules have the structure:

If aSV is VERY LOW then K. =Kr

If S2ln is LOW then Kf
= KD2

(107)

(108)
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If Slin is AVERAGE then Kf
= KD3

If S2i„ is HIGH then Kf
= KD4

If S2I„ is VERYHIGH then Kf
= KDS

(109)

(110)

(111)

Gain KD is applied in the inverse optimal control law as follows:

Aa =~[Rcx{zk) + \gx{xk)PMxk)] 18xT(xk)Pgl(f(xk)-xSMl). (112)

Time-varying gain KB for b_„Cik control is calculated on a similar way.

The global gain is calculated using the defuzzyfication equation described by:

A/
—

^ (113)

where y, is the membership function and determined as Yj=Ys „ "whit yt the membership degree of

variable S2i„ on the respective fiízzy set. The scheme is shown in Figure 22.

Input

substrate S2in

TS supervisor gain scheduling

Reference

trajectories Inverse optimal

control

7

Process

Output

Figure 22 TS supervisor for gain scheduling
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The whole hybrid intelligent control scheme is displayed in Figure 23.

Input

substrato $_,._, !

TS supervisor far reference j Estimated

¡ Biomass X2

/
TS supervisor gain scheduling

/
/ / TS supervisor for controller

/ D,„ action

Reference

trajectories

Inverse optimal

control
■ >

b_„c action
■ '

A.,AMI

•

V_ Process

i 1 .,

i

—» Open loop

Figure 23 Integrated hybrid intelligent control scheme

Integrated hybrid intelligent control scheme improves the performances ofthe anaerobic process and is

feasible for application in real processes, since the control scheme shows a good compromise between

efficiency and complexity.

The convergence analysis ofthis control scheme is stated as the following theorem.

Theorem 3: Consider that the neural system (62) in affine form (87)-(88) with control law (43) has

achieved the SG control goal (45) by means of (49). Then, the inverse optimal control law with fuzzy

reference trajectory (100)-(104) and time-varying gain (107)-(1 1 1) renders solution jt^ of system (62) to be

globally asymptotically stable along the desired trajectory x¿,k. Moreover, inverse optimal control law (52)

minimizes the cost functional (53).

Proof. Let Vsg[zqk) =-zTqkPczqkhe a Lyapunov function candidate with Pc = PCT > 0 and

zqk =xsk-xk. Considering that system (62) in affine system form, with control law (43) and (49) has

achieved the SG control goal (45) for k> k', then (45) can be rewritten as
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'

«7

Vsg(zqMi)-Vsg(zqJc) + -u?R(zq¿)uk =

(114)

\zlkrxPczqMx ~2TqkPczqJ(+^R(zq<k)uk<Q

with

where Ku represents KD and KB time-varying gains for uk_Dink and Uk_b¡nc.k controllers respectively, xK/

corresponds to global reference trajectories and Pg
=

p Pc-

Thus, multiplying (1 14) by the positive constant p ,
we obtain

V=^zTqMXPczqMl -£zTqkPczqJc +ukTR{zqk)uk

= \zTqMxPgzqMi -\Z\AZ<> +«kR(z<,M (H6)

= V{zqMx)-V(zqJ¡) + ulTR(zqJc)u'k<0

and condition (38) is fulfilled. From (116), v{zqM^)-V(zqk)<,0is satisfied for all zqk =*0and therefore

global asymptotic stability is achieved in accordance with Theorem 1 . When function -l(xk) is set to be

the (116) right-hand side, then:

^(v)=-(r(v+.)-^(v))+«r(v)/?(v)a(v)>0 (117)

Vz? k
* 0

,
minimize the cost functional:

•/=¿(/kO+M^(zí.Ow0 (118>
*=0

In order to obtain the optimal valué function for the cost functional (118), we substitute (117) into

(1 18) to obtain:

J = ÍL{l{zq,kWkR(zqJc)uk)
i-=0

*=0 í-=0
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with

(120)

(121)

the optimal control law. After evaluating (1 19) for k
= 0, then it can be written as

^=-|(^ki+1)-^KO)-F(v)^ko)
+£(4*fah-Jfa)*faM*i*))

*=o

a-lW^)-ir(^))-»rfe)+^)-K(íw)+^)
*=2

¡h**0

For notation convenience in (I2l), the upper limit oo will be considered as N—>co, and therefore

J=^fa)+H*w)-rfa-*)+rfa)

+UulR{z^)uk-aT{z^)R{Z^)a(Z^)) (122)
*■*-<>

=-F(^)+F(Z9>o)+£(u^(v)%-«r(^)^K0«k0)-

Letting JV-*>oo and noting that V(zq,N)^>0 for all z?,„, then

^)-vfahtWhj)^'^fa)^H*A (123)

Thus, the minimum valué of (123) is reached with uk
=

*(zq,k). Henee, the control law (120) minimizes

the cost functional (118). The optimal valué function
of (1 1 8) is j\ zq,N, «(*,,*))

=

V(zq,0) for all zq,0.

D

4.2 Control scheme validation

A set of simulations cióse to experimental conditions are presented
to validate the proposed control

strategy. The presented results correspond to the experiment with the largest experimentation time. The
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control scheme is tested in presence of disturbances on the input substrate and parameter variations on the

growth rate. Initial conditions for tjD and observer states are the same as the third test of the previous

chapter.

First, the proposed strategy is tested in presence of a 120 % disturbance on S2i„, incepted at t=200

hours. Trajectories tracking for states and YCHt are illustrated in Figure 24.
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Figure 24 Trajectories tracking states for a 120 % disturbance

When the disturbance is introduced on the input substrate, the fuzzy supervisors determine adequate

reference trajectories and control law in order to allow biomass growth, diminishing ODLIX2 and

stabilizing the system. As can be seen, the process operates in open loop because the disturbance is small;

this is due to the fact that ODLIX2 belongs to the associated fiízzy set corresponding to open loop (Figure

1 8). This situation implies that the AD process is able to work adequately without control (b^k and A*.,/*

have the respective equilibrium valué) in presence of this small disturbance. Thus, the response of the

system is stable during all process time. The YCH is calculated with equation (65), which is based on the

observed system states.
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A second test for the integrated hybrid control strategy is done introducing a 165 % disturbance on S2i„

incepted at /=200 hours, as illustrated in Figure 25.
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Figure 25 Trajectories tracking states for a 165 % disturbance

For this disturbance, integrated hybrid intelligent control strategy operates in closed loop because the

disturbance is large and a control action is required. During disturbance, ODL/X2 increases its valué until

reaching a level corresponding to HIGH fuzzy set (Figure 18). Therefore, the system goes to closed loop

operation mode applying control action An.*- During the evolution process ODLIX2 diminishes its level

and starts to belong to HALF fuzzy set. Thus, control action b^_c,k is applied and the control action An,* is

stopped. Finally, ODLIX2 diminishes its valué until belonging to the fuzzy set associated to open loop.

This situation implies that the disturbance has been rejected completely. Under these last conditions,

supervisor stops the action b„c¡k and the process returns to its operation in open loop. Thus, trajectory

references for the states and YCH> are reached with error approaching zero on the steady state as illustrated

in Figure 25. This error could be due to which the control law requires a better tuning.
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A third test for the proposed integrated hybrid intelligent control strategy is introducing a 200 %

disturbance on S2Ul incepted at r=200 hours, as is illustrated in Figure 26.
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Figure 26 Trajectories tracking for a 200 % disturbance

As can be seen, the control strategy detects a large disturbance and the fuzzy supervisors determine

adequate reference trajectories and control action to be applied until the disturbance is rejected. Thus,
reference trajectories for the states and Ya¡t are reached and the error approaches zero on the steady state

as illustrated in Figure 26. As in the previous test, this error could be eliminated with an optimal tuning of

the control law. Corresponding bmCtk and An.* control signals are displayed. System operation is ensured

because control strategy is applied, even though a large disturbance is incepted.

Finally, control strategy tolerance to change in the system parameters is tested; such variation is

incepted as a disturbance on the bacteria concentration, p,max and _u2max as presented in Table 3, appendix

A, and a disturbance on the input substrate of 200 % S2¡„ increase incepted at t=200 h as in Figure 26.

Performance ofthe system is illustrated in Figure 27.
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Figure 27 Trajectories tracking for parameter variation

As it is illustrated in Figure 27, AD system presents a transient state error due to disturbance in rate

growth parameters which affect directly the kinetic; the control strategy acts in order to reject the

disturbances and to track the trajectory which is achieved on steady state with a small error. Reference

trajectories are achieved and the robustness of the proposed RHONO to parameters variations is verified.

Thus, the proposed control strategy is efficient in order to control the AD process.

For the case ofdisturbances larger than 200 % on S2in, the oscillation induced by the observer prevents

the supervisor to control the process. Therefore, the system tends to washout. Thus, a critical valué exists

for which the supervisor cannot control the bio-process due to the magnitude ofthe disturbances.

4.3 Particle swarm optimization

PSO is a population-based algorithm, which exploits a population of potential solutions to probé the

search space concurrently. The population is called the swarm and its individuáis are called ihe particles; a
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notation retained by nomenclature used for similar models in social sciences and particle physics [75].

PSO is based on simulation models of social behavior; thus, an information exchange mechanism shall

exist to allow particles to mutually communicate their experience. The algorithm approximates the global

minimizer with the best position ever visited by all particles. Therefore, it is a reasonable choice to share

this crucial information.

4.3.1 Algorithm description

For the PSO algorithm, each member ofthe population is treated as a point in a D-dimensional space

[76]. Let, Ac R", be the search space, and, / : A—*Yc R, be the objective function. In order to keep

descriptions as simple as possible, we assume thata4 is also the feasible space ofthe problem at hand, i.e.,

there are no further explicit constraints posed on the candidate solutions. The swarm is defined as a set:

s = {xid>x_u¡,~.,XNtl} (124)

of .V particles (candidate solutions), defined as:

x,d= (x,i,xl2, ...,xln)T eA, i = \,2,...,N. (125)

índices are arbitrarily assigned to particles, while N is a user-defined parameter of the algorithm. The

objective function, f(x), is assumed to be available for all points in A. Thus, each particle has a unique

function valué,,/? =fix¡) 6 Y.

The particles are assumed to move within the search space, A, iteratively. This is possible by adjusting
theirposition using a proper position shift, called velocity, and denoted as:

vid
= (v,t-v,2, ...,vlnf i = l,2,...,N. (126)

Velocity is updated based on information obtained in previous steps of the algorithm. This is

implemented in terms of a memory, where each particle can store the best position it has ever visited

during its search. For this purpose, besides the swarm, S, which contains the current positions of the

particles, PSO maintains also a memory set:

P= (Pxd>P2d Pm)r (127)

which contains the best positions:

P,d= (Píx'Piv •■;PI„)T *A, i = l,2,...,N, (128)

ever visited by each particle. These positions are defined as:
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Pldk=argmmflk, (i29)
*

where k stands for the iteration counter.

The best particle among all the particles (the global best position) is represented by pgd. Let gd be the

index ofthe best position with the lowest function valué in P at a given iteration k, i.e.,

PgdJ[ =argmm f(pldk). (130)

Then, the early versión ofPSO is defined by the following equations [76]:

vid
=

vld +cxrandx (pid -xld) + c2rand2 (pgd -xld) (131)

xld=xid+vid (132)

where ci and c2 are weighting factors, also called the cognitive and social parameter, respectively. rand¡

and rand2 are random variables uniformly distributed within [0, 1]. The performance of each particle is

measured according to a predefined fitness function, which is related to the problem to be solved [75].

At each iteration, after the update and evaluation of particles, best positions (memory) are also updated.

Thus, the new best position ofx,,/ at iteration k+\ is defined as follows:

Pid,k+X
~

XiMl> Íf f(xiMl)¿f{P>*)>
plt, otherwise.

The new determination of index gd for the updated best positions completes an iteration of PSO.

Particles are usually initialized randomly, following a uniform distribution over the search space, A. This

choice treats each región ofA equivalently; therefore it is mostly preferable in cases where there is no

information on the form of the search space or the objective function, requiring a different initialization

scheme. The previous velocity term, v^, in the right-hand side of equation (131), offers a means of

inertial movement to the particle by taking its previous position shift into consideration. This property can

prevent it from becoming biased towards the involved best positions, which could entrap it to local

minima if suboptimal information is carried by both (e.g., if they both lie in the vicinity of a local

minimizer).

Furthermore, the previous velocity term serves as a perturbation for the global best particle, xgd. Indeed,

if a particle, x¡, discovers a new position with lower function valué than the best one, then it becomes the

global best (i.e., gd*—i) and its best position, pid, will coincide with pgd and xid in the next iteration. Thus,

the two stochastic terms in equation (131) will vanish. If there was no previous velocity term in equation

(131), then the aforementioned particle would stay at the same position for several iterations, until a new

best position is detected by another particle. Contrary to this, the velocity term allows this particle to

continué its search, following its previous position shift.
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The valúes of c¡ and c2 can affect the search ability of PSO by biasing the sampled new positions ofa

particle, x¡, towards the best positions, />«/ and pgd, respectively, as well as by changing the magnitude of

search. If a better global exploration is required, then high valúes of c¡ and c2 can provide new points in

relatively distant regions of the search space. On the other hand, a more refined local search around the

best positions achieved so far would require the selection of smaller valúes for the two parameters. Also,

choosing, c¡ > c2, would bias sampling towards the direction of p¡4, while in the opposite case, c¡ < c2,

sampling towards the direction ofpgd would be favored. This effect can be useful in cases where there is

special information regarding the form of the objective function. For instance, in convex unimodal

objective functions, a choice that promotes sampling closer to pgd is expected to be more efficient, if

combined with a proper search magnitude. For more detail ofPSO algorithm see reference [75].

4.3.2 PSO application to theAD process

In this dissertation, the PSO algorithm is employed to find the Pc matrix elements for SG inverse

optimal control. Figure 28 shows a block diagram which illustrates how PSO algorithm affects the AD

process control scheme, by means of the matrices Pc¡ and Pqi of the m*_A«,* and Uk_bmc.k actions,

respectively. The algorithm computes the matrices which minimize the mean square tracking error

between the estimated biomass x2k and its given trajectory reference xs.k-

■

. PSO
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*r(*)=Z('W+<4-*-[>.>«0
Bat

•

)
H-4*/

Cost functional

•*■■-

L3>-""
*¿4l=/(x¿)+*0<OMt
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/
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Figure 28 PSO Hybrid intelligent inverse optimal control Scheme

4.3.3 PSO algorithm validation for the AD process

Test 1. The proposed control strategy is tested introducing a large disturbance of 150% on S2in, incepted
at /=200 hours. Matrices Pa and PC2 (133) for uk_Din,k and Uk_binc.k respectively, are selected heuristically
such that the system (62) to be asymptotically stable along the desired trajectory xs,k- The selected matrices

are
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Pcx =

23300 1112 2028 355 164 160

1112 422 310 PC2 = 164 669 492

2028 310 354 160 492 583

(133)

Trajectories tracking for X2_k and YCH are illustrated in Figure 29, where the continuous line is the

reference trajectory signal and the dotted line is the system output signal.
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Figure 29 Trajectory tracking for a 150 % disturbance

As can be seen, with this disturbance, the trajectory references for X2ik and YCH are reached with a

transient error which approaching zero on the steady state.

Test 2. PSO algorithm is used in order to find the matrices Pc¡ and PC2 for the control laws. PSO

algorithm parameters used for this control scheme are shown in Table 6 from appendix A. With these

parameters, the output matrices ofthe PSO algorithm are:

Pcx =

58530 918 3463

918 914 869

3463 869 1033

p =

rC2

820.65 1017.78 444.23'

1017.78 1386.91 520.29

444.23 520.29 335.70

(134)

Simulation with the new matrices is done for the same conditions as in the previous test; the results are

illustrated in Figure 3030.



60 CHAPTER 4. CONTROL STRATEGY SYNTHESIS AND VALIDATION

0.02

0.015

| 0.01

>?

0.005

• Neural estimated

■Reference trajectory

0.05

500 1000

Time (h)

1500 500 1000

Time (h)

1500

Figure 30 PSO Trajectory tracking for a 150 % disturbance

In Table 7 (Appendix A), a mean square error (MSE) comparison between test 1 and test 2 is

displayed. For test 2, reference trajectory is achieved at minor time with a smaller transient error as shown

in Table 7. Henee, the proposed control law based on PSO algorithm shows a better performance. In order

to test this control scheme with different reference trajectories, the system is disturbed introducing a large

disturbance of200 % on S2i„, incepted at t=200 hours.

Test 3. First, matrices Pc¡ and PC2 heuristically determined in (133) are selected. Figure 311 illustrates

trajectories tracking for X2fk and YCHt
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Figure 31 Trajectory tracking for a 200 % disturbance

This test illustrates a big error in transient state which approaching zero on the steady state. Trajectory

references forX^j, and YCH< are never reached with this matrices.

Test 4. In this test, matrices Pc¡ and PC2 calculated with a PSO algorithm are selected (134) . Figure

32 illustrates trajectories tracking for X2k and YCH
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On Table 8 (appendix A), aMSE comparison between test 3 and test 4 is presented. As can be seen, for

this test trajectory tracking is achieved with a smallerMSE in transient state. Henee, the proposed control

law based on PSO algorithm is the best in order to reach reference trajectories. PSO algorithm is a good

strategy in order to calcúlate matrix elements of inverse optimal control because diminishing the tracking

error and the system reaches the reference in minor time. Figure 33 displays PSO algorithm evolution

MSE forX2ik with initial valué MSE = 0.2.54X IO"5 and final valuéMSE = 1 .7x IO"7.

,x10

Generations

Figure 33 PSO evolution

For AD process control law, PSO algorithm calculates five generations with rand¡ and rand2 selected

as random 4-dimensional vectors with their components uniformly distributed within [0,1]. Figure 33

illustrates the minimization ofthe MSE for estimated X2,k at each iteration. It is concluded that the PSO

algorithm calculates Pc matrix optimal parameters which enhanced the convergence speed ofthe system

to the reference trajectory and the error in the steady state is eliminated.



Chapter 5

Conclusions and future work

5.1 Conclusions

In this dissertation, an integrated hybrid intelligent control strategy scheme for an anaerobic

wastewater treatment process is proposed. The main objective is a continuous methane production in

presence of disturbances and to avoid washout. In order to reach this, biological, physicochemical and

hydrodynamic behaviors of anaerobic process is modeled. This model is composed by a fast stage for

acétate production and methanogenesis stage for methane production considered as the limiting stage.

This process is developed in a CSTR with biomass filter in continuous mode. With the purpose of satisfied

the main objective, a nonlinear discrete-time recurrent high order neural observer (RHONO) trained with

an EKF is used to estimate the biomass concentration, substrate concentration, and inorganic carbón from

the methanogenesis stage. These variables are estimated from CH) and C02 flow rates, which are

commonly measured in this process. In addition, is assumed that pH and the process inputs are on-line

measured. One ofthe principal contributions ofthis dissertation is a methodology to obtain a time-varying

learning rate (tjD), in order to enhance the performance of neuronal observers. r¡D is proposed as a function

ofthe pH substrate because is a determining variable in the process operation. Simulation results illustrate

the observer effectiveness with r¡D in presence of disturbances and parameter variation. Thus, observer

robustness is proven and is a good altemative to estimate important states ofAD process.

With the purpose of achieves the second objective of this dissertation, an experimental validation for

the observer is performed in order to verify its performance in presence of disturbances. The experiment is

performed in a prototype bioreactor of 7 L in continuous mode during ten days. In this test, the next

variables are measured: pH biogás, input substrate COD and output substrate COD. The input substrate

COD is varied each day with the purpose of verifies the performance in presence of disturbances.

Experimental validation ofthe observer illustrates that it is a good altemative to estimate on-line important
states and Yaft of the AD process. Since one of the limiting factors in the implementation of control
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strategies is the lack of on-line sensors, the results of this neuronal observer are an altemative adequate

that can be applied in continuous bioreactors for wastewater treatment.

On the other hand, once this neural observer is obtained, it can be integrated to control strategies.

Fuzzy supervisors and speed-gradient inverse optimal control law, based on this neural observer, are

developed and they form the Hybrid intelligent inverse optimal control. Thus, a third objective of this

dissertation is satisfied. Two speed-gradient inverse optimal neural controllers for trajectory tracking are

developed: a base supplying (bmCtk) action to regúlate C02-b ¡carbonate equilibrium and a dilution rate

(An,*) action to reject large disturbances in the input substrate, respectively. The process works in open

loop in presence of small disturbances which represents energy saving.

A fourth objective of this work is the implementation of TS supervisors to be integrated into the

control scheme. First a TS supervisor for controllers is implemented. It detects biological activity inside

the tank reactor, on the basis of estimated biomass, and selects between open and closed loop actions

depending on the disturbance amplitude. A second TS supervisor for reference trajectory generates

reference trajectories for the system states and YCH ,
on the basis ofthe disturbance amplitude on the input

substrate. Finally, a third TS supervisor gain scheduling detects the disturbance amplitude on the input

substrate and interpólales adequate gains for the controllers. The goal is to forcé the system to track

desired reference trajectories avoiding washout. Simulation results show that the integrated hybrid

intelligent control scheme is able to stabilize the methane production along of desired trajectories in

presence of disturbances and parameter variations. Trajectory references are reached with error

approaching zero on the steady state. This error could be due to the fact that the control law requires a

better tuning. However, control action fulfills the objectives of rejecting disturbances, and obtaining a high

efficiency ofthe process, which is reflected in a good production of biogás. With this achievement, a fifth

objective ofthis dissertation is achieved.

As a last objective, a PSO algorithm for parameter optimization is employed to find the Pc matrix

elements for SG inverse optimal control. In previous tests Pc matrix is selected heuristically such that the

system to be asymptotically stable along the desired trajectory x¡ik. However results illustrate a steady state

error which approaches zero. In order to solve this problem PSO algorithm is implemented. Results with

this approach illustrated which the PSO algorithm calculates Pc matrix optimal parameters which

enhanced the convergence speed of the system to the reference trajectory and the error in the steady state

is eliminated.

5.2 Future work

As future work, it is worth to mention:

The exosystem for reference trajectories may be obtained from laboratory experiments.

Experimental validation of the neural observer can be enhanced by performing more experiments in

continuous mode.
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Reset adaptive observer for nonlinear systems
could be implemented for AD process.

Covariance matrices P,, Q¡ and R¡ ofEKF forNN learning, may be calculated with PSO algorithm.

Implementation in real-time ofthe proposed RHONO and the control scheme for an AD process.
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A. PARAMETER VALÚES

Table 1 . Parameter valúes for anaerobic digestión model
Kinetic parameters Initial conditions

Symbol Valué Unit Symbol Valué Unit

Plmax 0.205 h"1 X¡.o 5.6836 mol L"1

ksi 0.26 mol L"' Sij 0.0537 mol L"'

ka 16.333x10"
4

mol L"1 X2,o 0.0068 mol L'1

í*2max 0.017 h"1 S2.o 0.0037 mol L"1

ks2 2.18X10"5 mol L"' IC0 0.0817 mol L"1

ki2 8.22x1 0"' mol L"' Zo 0.0551 mol L"1

Equation parameters D,„ 0.1 h"1

Symbol Valué Unit Sli„ 10 mol L"1

kd¡ 0.035 h"1 S2in 0.07 mol Ll

kdi 0.0085 h"1 icin 0.0051 mol L"1

R, 0.99 7
'-rm 0.0051 mol L"1

R2 0.99

R3 345

R4 0.0666

Rs 0.0005

Rs 5

Ka 1.7X10"5 mol L'1

K„ 1.7X10"7 mol L"1

Kh 0.065 mol L"1 Pa"'

P, 1 Pa

Table 2. Parameter valúes for neural observer

Symbol Valué Unit Symbol Valué Unit

yVll,Wl2t W,3,W,4, Wis 0.0068 mol L"1 gml 0.12

W2¡,W22, W23,W24,W2S

y>26

0.0037 mol L"' gm2 0.09

W31, WS2 , W33 , W34, W35 0.0817 mol L"1 gm3 0.09

Plo 1500 Til 2

P2.0 1000 Tl2 1

P3.0 1500 Tl3 10

Qi,o 1.5 A

*2,1
0.0102 mol L"1

Q2,0 1.5 A

S2.X
0.0046 mol L"1

Q3.0 0.2 A

ICx
0.1223 mol L"'

R1.0 150

R2.0 150

R3.0 1.5
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72 A. PARAMETER VALÚES

Table 3. Parameter valúes variation

Symbol Valué Unit

A

X2,\
0.0116 mol L"1

A

$2.1
0.0052 mol L"1

A

ICx
0.1386 mol L"'

Plmax 0.1845 n1

r^2max 0.0188 h"1

Table 4. Abattoir wastewater characteristics

Element Valué

Soluble solids 33.5 %

PH 8 to 8.5

Total Solids 5166 mgL"1
Total Volatile

solids

3387 mgL"1

Fat 1057 mgL"1

Alkalinity 1791 mgL"1
COD 5945 mg L"1

^able 5. Controller parameters

Symbol Valué Unit Symbol Valué Unit

-Rc/ 0.6 Rc2 0.4

Pci. 11 2.8X10"4 Pc2.11 729

Pci. 12 2.5XlO"5 Pc2,12 437

Pci. 13 2.3XlO"5 Pc2.13 291

Pci.21 2.5 xlO"5 Pc2.21 437

Pci. 22 5X10"* PC2.22 729

Pci, 23 4x10"* PC2.23 629

Pci.31 2.3XlO"5 Pc2.31 291

Pci.32 4x10"* PC2.32 629

Pci.33 5x10"* PC2.33 729

£s. 1600 gS2 500
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Table 6. PSO parameters

PSO parameter MSE afi.*

c¡ 1

c2 2

Initial Vid 0

Initial pid Random

particles 8

Generations 5

Initial local

MSE (mol L"1)

lxlO"3

Initial global
MSE (mol L"1)

lxlO"3

Tab e 7. MSE Comparative

Test MSEAi,* MSE YCHt

Testl 3.3712X10"6 5.6277X10"5

Test 2 1.0495XlO"7 1.9202x10"*

Table 8. MSE Comparative

Test MSEXlk MSE YCH

Test 3 5.8601x10" 8.5370x10"'
T"

Test 4 1.6686x10 2.9727x10-
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