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Abstract

In this work we studied models of interaction between Dark Energy and

Dark Matter at a macroscopic level by modifying the continuity equation

of each component. The particular form of the interaction is initially free,

but we studied three particular forms. We computed the evolution equa-

tions at background level and at first order in perturbations theory. Then,

we implemented these equations in the CLASS code. We also added the

new feature of choosing the particular interacting model at runtime. Im-

plementing new interacting functions is now straightforward. We obtained

the numerical solutions for background quantities and the CMB and Matter

Power Spectra. We compared the Background data with available analyt-

ical solutions. Finally, we compared all the numerical results with respect

to the ΛCDM model ones. These interacting models might reduce the ten-

sion in the measurement of the Hubble parameter and can reproduce more

general microscopic models.



Resumen

En este trabajo estudiamos modelos de interacción entre la Enerǵıa Oscura

y la Materia Oscura a un nivel macroscópico, modificando las ecuaciones de

continuidad para cada componente. La forma particular de la interacción

es inicialmente libre, nosotros estudiamos tres casos particulares. Calcu-

lamos las ecuaciones de evolución para el Background y a primer orden

en teoŕıa de perturbaciones. Posteriormente, implementamos estas ecua-

ciones en el código de CLASS. También añadimos la nueva caracteŕıstica

de poder elegir el modelo de interacción al momento de correr el código.

Implementar nuevos modelos de interacción es ahora sencillo. Obtuvimos

las soluciones numéricas para el Background y los Espectros de Materia y

del CMB. Comparamos los datos del Background con soluciones anaĺıticas

disponibles. Finalmente, comparamos todos los resultados numéricos con

los respectivos al modelo cosmológico estándar ΛCDM. Estos modelos de in-

teracción podŕıan reducir la actual tensión en las mediciones del parámetro

de Hubble y pueden reproducir modelos microscópicos más generales.
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To my thesis advisor Jousé de Santiago who always had the disposition of

helping me in any situation and showed me how to be a kind, human and

fact-based scientist.

To the National Polytechnic Institute of Mexico (IPN) for give me the op-

portunity to develop all my human capacities. To my beloved Superior

School of Physics and Mathematics (ESFM-IPN), that in addition to knowl-

edge gave me friends and a place where I felt secure, surrounded and guided

by dedicated professors to the generation of future scientist.

To the Physics Department of CINVESTAV U. Zacatenco and all the Physics

researchers that besides to carry out an international-quality investigation,

had the time to share their knowledge in the Master’s courses I took and

for receiving me as a part of their community.

To CONACYT for gave the financial support for this work, corresponding

to the scholarship’s call named “Becas Nacional (Tradicional) 2018 -

2”, with CVU-932093.

Last but not least, to my family who always stayed with me providing their

love and support in every step of my life.



ii



Contents

List of Figures vii

List of Tables ix

1 Introduction 1

2 Theory 5

2.1 Cosmology foundations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.1.1 The Cosmological Principle . . . . . . . . . . . . . . . . . . . . . 5

2.1.2 The Doppler Effect . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.1.3 The Hubble Law . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.2 Homogeneous and isotropic Universe . . . . . . . . . . . . . . . . . . . . 6

2.2.1 Units convention and notation . . . . . . . . . . . . . . . . . . . 6

2.2.2 Coordinate choice in a homogeneous and isotropic Universe . . . 6

2.2.3 The FRW metric . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.2.4 Distances in cosmology . . . . . . . . . . . . . . . . . . . . . . . 8

2.2.5 The comoving distance . . . . . . . . . . . . . . . . . . . . . . . . 9

2.2.6 Luminosity distance . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.2.7 Angular diameter distance . . . . . . . . . . . . . . . . . . . . . . 10

2.2.8 The Friedmann equations . . . . . . . . . . . . . . . . . . . . . . 10

2.2.9 Universe filled with mixture of non-interacting fluids . . . . . . . 11

2.2.10 Universe components in the Standard Cosmological Model . . . . 12

2.2.11 Brief history of the Universe according to Standard Cosmological

Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.2.12 Decoupling and the origin of Cosmic Microwave Background . . 14

2.2.13 Overview of Standard Cosmology . . . . . . . . . . . . . . . . . . 14

iii



CONTENTS

2.3 Linear Perturbations Theory . . . . . . . . . . . . . . . . . . . . . . . . 15

2.3.1 Metric perturbations . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.4 Gauges and time slicing . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.4.1 Newtonian Gauge . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.4.2 Synchronous Gauge . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.5 Calculations in Synchronous Gauge . . . . . . . . . . . . . . . . . . . . . 18

2.5.1 Linear Scalar Perturbations for spatially plane FRW metric . . . 18

2.5.2 Stress-energy tensor perturbations . . . . . . . . . . . . . . . . . 19

2.5.2.1 Stress-energy tensor perturbations of a perfect fluid . . 19

2.6 The Interacting Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.6.1 Generalized Continuity Equation . . . . . . . . . . . . . . . . . . 20

2.6.2 Fluid Equations for Dark Matter and Dark Energy . . . . . . . . 21

2.6.3 Background Equations . . . . . . . . . . . . . . . . . . . . . . . . 22

2.6.4 Models for Q . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.6.4.1 Constant interacting function . . . . . . . . . . . . . . . 23

2.6.4.2 Martinelli’s Model . . . . . . . . . . . . . . . . . . . . . 24

2.6.4.3 Wang’s Model . . . . . . . . . . . . . . . . . . . . . . . 24

2.6.5 Effective Equation of State for the Interacting Dark Energy . . . 25

2.6.6 Linear Perturbation Equations . . . . . . . . . . . . . . . . . . . 25

2.6.6.1 The Dark Matter Geodesic Model . . . . . . . . . . . . 26

2.6.7 Adiabatic Initial Conditions . . . . . . . . . . . . . . . . . . . . . 27

2.7 Usage of Newtonian Gauge in this section . . . . . . . . . . . . . . . . . 28

2.7.1 Power Spectrum and Transfer Functions . . . . . . . . . . . . . . 28

2.7.2 The CMB Power Spectrum . . . . . . . . . . . . . . . . . . . . . 30

2.7.3 CMB anisotropies . . . . . . . . . . . . . . . . . . . . . . . . . . 31

2.7.4 Physics of the CMB Power Spectrum . . . . . . . . . . . . . . . . 33

2.7.4.1 The Sachs-Wolfe Contribution . . . . . . . . . . . . . . 34

2.7.4.2 The Doppler Contribution . . . . . . . . . . . . . . . . 36

2.7.4.3 The Integrated Sachs-Wolfe Contribution . . . . . . . . 36

2.7.5 Parameter dependence in the CMB Power Spectrum . . . . . . . 37

2.7.6 Parameter Basis in the Interacting Models . . . . . . . . . . . . . 38

2.8 The Matter Power Spectrum . . . . . . . . . . . . . . . . . . . . . . . . 38

iv



CONTENTS

3 Metodology 39

3.1 The Cosmic Linear Anisotropy Solving System (CLASS) . . . . . . . . . 39

3.1.1 Overview of CLASS . . . . . . . . . . . . . . . . . . . . . . . . . 39

3.2 Implementing the Dark Energy- Dark Matter Model in CLASS . . . . . 41

3.2.1 The shooting method . . . . . . . . . . . . . . . . . . . . . . . . 42

3.3 Modifying CLASS Code . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

3.3.1 Modifying Input Module . . . . . . . . . . . . . . . . . . . . . . . 43

3.3.2 Modifying Background Module . . . . . . . . . . . . . . . . . . . 46

3.3.3 Modifying the Perturbations Module . . . . . . . . . . . . . . . . 48

3.4 Running CLASS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

3.4.1 Commentary about Standard Cosmology parameter Basis . . . . 51

3.5 Plotting the Numerical Output and Regions of Validity for the Interact-

ing Model Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

4 Results 53

4.1 Comparison with Analytic Results . . . . . . . . . . . . . . . . . . . . . 53

4.2 Ω’s for the Interacting Models . . . . . . . . . . . . . . . . . . . . . . . 54

4.3 Hubble Parameter for the Interacting Models . . . . . . . . . . . . . . . 59

4.4 CMB Power Spectrum for the Interacting Models . . . . . . . . . . . . 60

4.5 The Matter Power Spectrum for the Interacting Models . . . . . . . . . 64

4.6 Effective Equation of State for the Interacting Models . . . . . . . . . . 65

5 Conclusions 69

Bibliography 73

v



CONTENTS

vi



List of Figures

3.1 Metodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

4.1 ρc comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

4.2 ρΛ comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

4.3 ρc comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

4.4 ρΛ comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

4.5 Ω ’s for Constant Interacting Model . . . . . . . . . . . . . . . . . . . . 57

4.6 Ω ’s for Martinelli’s Interacting Model . . . . . . . . . . . . . . . . . . . 58

4.7 Ω ’s for Wang’s Interacting Model . . . . . . . . . . . . . . . . . . . . . 58

4.8 Ω ’s for Wang’s Interacting Model . . . . . . . . . . . . . . . . . . . . . 59

4.9 Hubble parameter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

4.10 CMB Power Spectrum for Constant Interacting Model . . . . . . . . . . 62

4.11 CMB Power Spectrum for Martinelli’s Interacting Model . . . . . . . . . 63

4.12 CMB Power Spectrum for Wang’s Interacting Model . . . . . . . . . . . 63

4.13 CMB Power Spectrum for Wang’s Interacting Model . . . . . . . . . . . 64

4.14 Matter Power Spectrum for Constant Interacting Model . . . . . . . . . 65

4.15 Matter Power Spectrum for Martinelli’s Interacting Model . . . . . . . . 66

4.16 Matter Power Spectrum for Wang’s Interacting Model . . . . . . . . . . 66

4.17 Matter Power Spectrum for Wang’s Interacting Model . . . . . . . . . . 67

4.18 Effective equation of state for interacting Dark Energy . . . . . . . . . . 68

vii



LIST OF FIGURES

viii



List of Tables

2.1 Brief history of the Universe from [1] . . . . . . . . . . . . . . . . . . . . 13

3.1 ΛCDM fixed parameter basis . . . . . . . . . . . . . . . . . . . . . . . . 51

3.2 Interacting model parameters and their region of validity. . . . . . . . . 52

ix



LIST OF TABLES

x



1

Introduction

The modern study of Universe started last century since the development of General

Relativity. Images taken of the Universe at different wavelengths and scales suggested

that as we go to larger scales the Universe begins to look smooth, equivalent at all

points and at all directions. These ideas are now stated as the Cosmological Principles.

Following these principles of homogeneity and isotropy the scientists found several

solutions to Einstein’s equations. One of those solutions was the Friedmann-Robertson-

Walker metric that is compatible with the cosmological principles and also allows for

a non-static evolution of the Universe. This is important because Hubble found at the

beginning of last century experimental evidence for a Universe in expansion and since

then many measurements have been made. So, we needed a theory that explains this

feature. Various theoretical models of the Universe have been presented, where it is a

standard proposal to model the diverse components of the Universe as perfect fluids

in a first approach. But the more particular components we add the more difficult it

becomes to solve the obtained coupled differential equations. This is why computational

tools are extremely important nowadays.

Observations favored a particular model that currently receives the name of ΛCDM

model where the Universe is composed by baryons, photons, Dark Energy, Dark Matter

and neutrinos. Baryons are essentially the ordinary matter that planets, stars and

ourselves are made of. Photons are conceived as relativistic particles that are ruled

by the special theory of relativity. Dark Matter is necessary to explain many observed

characteristics of the Universe, among them we find the structure formation of the

Universe, the galaxy rotation curves, the velocity dispersion in bounded star systems
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1. INTRODUCTION

and the mass of galaxy clusters. All these effects can be explained easily by postulating

a component of non-luminous matter, that is the reason this kind of matter is called

dark, since it is thought that it do not interact with electromagnetic fields; so it do

not absorb, reflect or emit electromagnetic radiation. On the other side Dark Energy

is necessary to the expansion of the Universe indicated by supernovae measurements

which found it to be accelerated. Another clue for the existence of Dark Energy came

from CMB (Cosmic Microwave Background) measurements, they suggest a Universe

with spatial curvature close to zero and to achieve this a particular energy density is

needed, which is not reached if we only account for baryonic and Dark Matter. The

simplest model that takes into account the Dark Energy with these characteristics is

the cosmological constant (Λ) model that is a natural degree of freedom in general

relativity, where the space-time itself has an intrinsic energy that is not diluted by the

expansion, scientists think it could be thought as a zero-point of energy, i.e., a vacuum

energy. Another possibility is that the accelerated expansion is carried out by the

potential energy of a dynamical field, where the principal difference is that it can be

seen as cosmological constant that varies on time and space. Despite the evidence for

the existence of Dark Matter and Dark Energy in the Universe, evidence is still indirect

and we do not know exactly what they are. This opens a theoretical and experimental

opportunity that give us freedom to postulate new ideas to explain some remained

issues, for example the actual tension in the measurement of the Hubble parameter,

see [2–8]. In this work we proposed that general relativity is the correct theory that

describes the Universe at large scales. In that context we proposed an exchange of

energy between Dark Matter and Dark Energy via their continuity equations. Dark

Energy in this work is the standard one, but we add the characteristic of interact

with Dark Matter, so this is an interacting Dark Energy model. Then, this proposal

is made at macroscopic level but allowed us to obtain the corresponding CMB and

matter Power Spectrum in this interacting scenario. The objective is to study both

spectra and analyze the changes that take place in them and in a future work see if

it could relax the tension between the measurements of the Hubble constant. These

power spectra are highly important because they encode a wide range of cosmological

phenomena, and are comparable with experimental results. Therefore, the hypothesis

made here can be directly tested.

2



Based in this model we obtained the cosmological equations in the background

and at lineal perturbations level, with their corresponding initial conditions in order to

obtain a numerical solution for them. Then we proceeded to implement those equations

in the CLASS code [9], we also added the feature of easily adding new interaction

models. We used three different models for the interacting scenario, we proposed a

simple case where the interaction is carried out by a constant function and two models

found in literature [10, 11]. Then we successfully ran the code, and obtained the

numerical evolution for all density components at the background level and the matter

and CMB Power Spectrum for each of the proposed models. After that, we performed a

comparison between the obtained numerical solution and available analytical solutions

in order to check if the numerical integration was correct. Once we verified that the

solutions agreed with the analytical ones we analyzed the results and made the pertinent

conclusions.

In literature there are many alternative models to ΛCDM, even there are proposed

modified versions of general relativity. Here we present one of this possibilities that

need to be verified or excluded. It presents a macroscopic view without the necessity

to specify the underlined microscopic nature of the phenomena. This model also can

account for several different microscopic models and have the feature of be flexible,

since we can add diverse interacting models in an easy way. And moreover, we can

obtain the CMB and matter Power Spectra with a simple running of CLASS. In a

future work this proposal can be tested and the parameters fitted with the available

experimental data, technically the implementation in CLASS is harder to code than

making the fitting, for example with aid of Montepython [12].
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2

Theory

2.1 Cosmology foundations

2.1.1 The Cosmological Principle

Modern cosmology is based on the simple but powerful assumption that on large scales

the Universe is homogeneous and isotropic, as supported by observations [1]. Homo-

geneity means that all physical conditions are the same at every point of the Universe

and isotropy refers to the fact that this physical conditions do not depend on the di-

rection of observation. This implies that there are no special places in the Universe

and this statement has validity only at scales of Mpc (1pc ≈ 3.08× 1016m) where the

Universe looks smooth.

2.1.2 The Doppler Effect

In 1842, Johann Christian Doppler asserted that if an observer receives an emitted wave

by a source in relative motion, the wavelength measured will be shifted proportionally

to the velocity of the source projected along the line of sight

∆λ

λ
=

v · n
c

, (2.1)

with c the celerity of the wave and n the unit vector along the line of observation. It

was suggested and then proved that this relation holds for sound and electromagnetic

waves [13].

It is useful to define the redshift parameter as

z ≡ ∆λ

λ
, (2.2)

5



2. THEORY

when z is positive the wave is said to be red-shifted and if it is negative blue-shifted.

2.1.3 The Hubble Law

Another last century experimental result is that objects in the Universe are moving

away from us, because emitted light from distant objects is received by us redshifted

due to the Doppler effect. Moreover it was found by Edwing Hubble [14], that the

recession velocity v of a galaxy is proportional to its position r

v = H0r, (2.3)

whereH0 is the constant of proportionality known as the Hubble constant. This relation

states that velocities of objects increase with the distance they are, so we can infer that

at cosmological scales objects are moving away from us. Note that this law breaks

at small scales because if we observe nearby objects we will see they have peculiar

velocities not proportional to their distance. This particular relation between velocity

and distance also implies that all observers see the same effect no matter the place of

observation, i. e., it is left unchanged by a change of origin and therefore is compatible

with the Cosmological Principle.

2.2 Homogeneous and isotropic Universe

2.2.1 Units convention and notation

From now on we will adopt the unit convention c = ~ = kb = 1 in most of the

expressions. Einstein’s summation convention is used throughout all the following

work and as usual Greek alphabet run for space-time index coordinates {t, x, y, z} and

Latin alphabet run only for spatial coordinates {x, y, z}.

2.2.2 Coordinate choice in a homogeneous and isotropic Universe

The fact that the Universe is homogeneous and isotropic implies that for a given time all

spatial points and directions are equivalent, in that sense physical quantities depend on

time but not on the spatial coordinates. We then can construct a coordinate system that

preserves this characteristic in the following way; we start from an initial homogeneous

spatial hypersurface and we assign it the time t1 and some arbitrary spatial coordinates,

6



2.2 Homogeneous and isotropic Universe

we put observers in each point and define a new hypersurface as the collection of all

points such that observer’s clocks measure t2. We assign to this hypersurface the time

coordinate t2, and some spatial coordinates such that each of our observers keeps fixed

spatial coordinates. We can repeat this process, until all time-spatial points map to

a coordinate system with fixed spatial coordinates and a common proper time. This

particular coordinate system is called Comoving Coordinate System and will be denoted

by

{t, x, y, z}. (2.4)

Note that a particular transformation t → t′(t) or xi → x′i(xi) does not modify the

homogeneity of equal-time hypersurfaces. But in a more general transformation t →
t′(t, xi) equal-time hypersurfaces homogeneity no longer holds. That is the reason we

can use spherical coordinates as a comoving coordinate system

{t, r, θ, φ}. (2.5)

2.2.3 The FRW metric

Standard cosmology is based in the fact that general relativity is the correct theory

of gravity on cosmological scales. So, if we impose the conditions of homogeneity and

isotropy by pure geometrical arguments we can find the metric that describes this

situation. This metric is known as Friedmann-Robertson-Walker (FRW) metric, see

[15–18].

ds2 = −dt2 + a(t)2

(
dr2

1− kr2
+ r2dθ2 + r2sin2(θ)dφ2

)
, (2.6)

where a(t) is known as the expansion parameter and takes into account the time evolu-

tion of the Universe, the constant parameter k is the three dimensional space curvature.

Note that k can be positive, negative or zero (plane space) and that we have used the

convention c = 1 for the speed of light c.

It is common to define a conformal time η by the expression

dt = adη, (2.7)

in order to have the expansion factor as an overall factor in the metric

ds2 = a(η)2

(
−dη2 +

dr2

1− kr2
+ r2dθ2 + r2sin2(θ)dφ2

)
. (2.8)

7



2. THEORY

2.2.4 Distances in cosmology

There are different ways to specify the distance between two points in cosmology. The

reason is that in an expanding Universe the distance between comoving objects are

constantly changing and that observers, for example in Earth’s comoving system when

observing a star, we are looking to radiation emitted some time ago in the past. In order

to solve this issues let us introduce some useful parameters. Because of the expansion,

light received in Earth is redshifted, where redshift is defined as the fractional Doppler

shift of its emitted light resulting from radial motion

z ≡ νe
νo
− 1 =

λo
λe
− 1, (2.9)

where ν and λ are frequency and wavelength of light and subscripts e, o denote emitted

and observed light. As wavelength is proportional to the time between crests we have

λo
λe

=
a(to)

a(te)
, (2.10)

with to, te the time of observation and emission of light. Now we can obtain the relation

between redshift and the expansion parameter

1 + z =
a(to)

a(te)
, (2.11)

where is common to set the time of observation to be the actual time.

Relation 2.11 is important because redshift is and easy to measure parameter, and

usual astronomical experiments are reported with this parameter. So in order to com-

pare our models with experimental data, all distances are reported in terms of redshift.

Other parameters needed in order to define distances in cosmology are the Hubble

parameter H0 defined in Eq.(2.3). It is usually written H0 ≡ 100hkms−1Mpc−1, where

h is a dimensionless number parameterizing the existing uncertainty in the value of H0,

it is often said that (0.6 < h < 0.9). If light velocity is set to one, then the distance

traveled by light in the Hubble time (defined as the inverse of H0), is known as the

Hubble distance

dH ≡
1

H0
= 3000h−1Mpc (2.12)

8



2.2 Homogeneous and isotropic Universe

2.2.5 The comoving distance

Consider light traveling in radial and null trajectories

ds2 = 0 = −adη + adr, (2.13)

we can obtain the radial comoving distance r by integrating and applying the chain rule

to change the integration variable from the conformal time η to the redshift parameter

z, along with the definitions of the Hubble parameter and Friedmann equation to obtain

r(z) = dH

∫ z

0

dz′

E(z′)
, (2.14)

with E(z) ≡
√

Ωr(1 + z)4 + Ωm(1 + z)3 + ΩΛ. And Ωi the density parameter for each

component of the spatially flat Universe.

2.2.6 Luminosity distance

We can not measure directly the comoving distance, but we can measure for example

a star’s energy density flux f received by an astronomical observatory and if we know

the luminosity of and object L, assuming valid the inverse square law for L we obtain

4πd2
lum =

L

f
. (2.15)

Notice that dlum is not the real distance to the object because the Universe is expand-

ing and therefore the inverse square law does not hold. In that sense dlum is only a

parameter for distance since it is a growing function of the real distance. If we were in

a static space, the energy flux received would be f = L
4πr2 . But according to [1], due to

the expansion the photons lose energy ∝ (1 + z) and arrive less frequently ∝ (1 + z).

So the received energy flux is

f =
L

4πr2(1 + z)2
, (2.16)

so we can infer

dlum = r(1 + z), (2.17)

with r the comoving distance defined in the previous section.

9



2. THEORY

2.2.7 Angular diameter distance

If we now consider and object of physical length ` lying perpendicular to our line of

sight, the angular diameter distance is a measure of how long the object appears to be

under the assumption of flat space

dang ≡
`

2sin( θ2)
≈ `

θ
for θ � 1. (2.18)

Now in a spherical coordinate system with origin at where we are measuring and if the

object is at comoving radial coordinate r, we would have

ds = ` = a(te)rdθ, (2.19)

where we have used the metric at the emission time. Taking into account Eq.(2.11) for

the expansion of the Universe we obtain

dθ =
`

a(te)r
=
`(1 + z)

r
, (2.20)

from where we obtain the useful relation between dang and the comoving distance r

dang =
r

1 + z
. (2.21)

2.2.8 The Friedmann equations

If we consider a universe filled with a perfect fluid with four-velocity uµ, we then have

the stress-energy tensor

Tµν = (ρ+ p)uµuν + pgµν , (2.22)

with ρ and p the proper energy density and pressure of fluid in the fluid rest frame

which is defined by condition ui = 0 (i stands for spatial components).

Now we can compute the Einstein’s equations

Gαβ ≡ Rαβ −
1

2
δαβR− δαβΛ = 8πGTαβ , (2.23)

here

Rαβ ≡ gαγ
(
∂δΓ

δ
γβ − ∂βΓδγδ + ΓδγβΓσδσ − ΓσγδΓ

δ
βσ

)
, (2.24)

is the Ricci tensor defined in terms of Christoffel symbols

Γαµν =
1

2
gαβ(∂µgβν + ∂νgβµ − ∂βgµν). (2.25)
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2.2 Homogeneous and isotropic Universe

R is the Ricci curvature scalar R ≡ Rαα and G, Λ are the gravitational and cosmological

constants respectively.

Solving, we obtain two independent equations known as Friedmann Equations

ȧ2 + k

a2
=

8πGρ+ Λ

3
, (2.26)

ä

a
= −4πG

3

(
ρ+ 3p

)
+

Λ

3
, (2.27)

where dot represents a derivative respect to cosmological time t.

We can combine the above equations and obtain a non-independent third equation

ρ̇ = −3H(ρ+ p), (2.28)

where the Hubble parameter

H ≡ ȧ

a
, (2.29)

is defined.

2.2.9 Universe filled with mixture of non-interacting fluids

In this case Eq.(2.28) holds separately for each component and implementing a partic-

ular equation of state p = p(ρ) we can substitute ρ̇ in Eq.(2.26) to obtain

H2 =
8πG

3

∑
i

ρi, (2.30)

where the index i stands for each component in the Universe. Note that with simple re-

definitions we can include as Universe components the curvature k and the cosmological

constant Λ. Explicitly we have

ρk ≡ −
3k

8πGa2
, (2.31)

ρΛ ≡
Λ

8πG
. (2.32)

11
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2.2.10 Universe components in the Standard Cosmological Model

The standard cosmological model, named ΛCDM model, lays on the assumption of the

cosmological principle in an expanding Universe and takes General Relativity as the

correct theory of gravity on cosmological scales. With respect to the contents of the

Universe this model considers

• Dark Energy. Associated to the cosmological constant Λ and currently associ-

ated with a vacuum energy. It is believed to be responsible of actual expansion

of the Universe against attractive gravitational forces and has negative pressure

pΛ = −ρΛ.

• Cold Dark Matter (CDM). It is a component postulated in order to explain

the large scale structures’ gravitational effects that can not be explained with

the current observed quantity of normal matter. For example the galaxy rotation

curves or gravitational lensing of light by galaxy clusters. It is believed to be non-

baryonic, dissipationless (can not cool by radiating photons), collisionless and cold

(its velocity is much less than the speed of light). This implies an equation of

state p(ρ) = 0.

• Baryonic Matter. It includes normal matter from which stars, planets and

galaxies are made.

• Radiation. It is mostly important at the beginning of the Universe and it is

responsible of the observed Cosmic Microwave Background (CMB).

2.2.11 Brief history of the Universe according to Standard Cosmolog-

ical Model

As we trace back in time we find the Universe in a singular state. Colloquially people

says that there was a Big Bang, but formally it refers to the fact that space-time itself

originated from a singularity according to a Penrose’s theorem [19]. Then the model

postulates an epoch known as cosmic inflation where the Universe expands exponen-

tially and solves some issues of the theory [20]. After that Friedmann equations rule

the Universe evolution.

A pedagogical way to study the evolution of the Universe is to take the Friedmann

equations and set as an approximation k = Λ = 0 and no contribution from Dark

12



2.2 Homogeneous and isotropic Universe

Matter, even if they are not zero now, they would be negligible in early stages of the

Universe. In that situation and assuming instantaneous transition between radiation

domination and matter domination we can solve and describe the evolution of the

Universe in terms of time or temperature. A good description is given in [1] where we

found Table (2.1)

Time Temperature What is going on?

t < 10−10s T > 1015K Open to speculation.

10−10s < t < 10−4s 1015K > T > 1012K

Free electrons, quarks, photons,

neutrinos; everything is strongly

interacting with everything else.

10−4s < t < 1s 1012K > T > 1010K

Free electrons, protons, neutrons,

photons, neutrinos; everything is

strongly interacting with everything

else.

1s < t < 1012s 1010K > T > 103K

Protons and neutrons have joined to

form atomic nuclei, and so we have

free electrons, atomic nuclei,

photons, neutrinos; everything is

strongly interacting with everything

else except the neutrinos, whose

interactions are now too weak. The

Universe is still radiation

dominated.

1012s < t < 1013s 103K > T > 3000K
As before, except that now the

Universe is matter dominated.

1013s < t0 3000K > T > 3K

Atoms have now formed from the

nuclei and the electrons. The

photons are no longer interacting

with them, and are cooling to form

what we will see as the microwave

background.

Table 2.1: Brief history of the Universe from [1]
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2.2.12 Decoupling and the origin of Cosmic Microwave Background

The Cosmic Microwave Background (CMB) is radiation that bathes the Earth from all

directions, Penzias & Wilson discovered it in 1965 [21]. This radiation has an energy

distribution analogue to a black-body with temperature T0 = 2.725 ± 0.001K. The

origin of this radiation dates back to when the Universe was smaller and hotter so

photons were able to highly interact with electrons preventing the formation of atoms.

The Universe was a sea of free nuclei, electrons and photons interacting principally via

scattering. As the Universe expanded and cooled mean energy of photons decreased,

so progressively atoms could form and photons were free to travel from that time until

the present days. This process in known as decoupling.

All photons we observe as CMB radiation have traveled a large distance comparable

to the size of the observable Universe, they all come from a spherical surface called the

last scattering surface, with a very large radius and center in the point of observation.

At decoupling, when this photons set free their energies were not in the microwave

spectrum but as they traveled and the Universe expanded, we finally observe them in

the microwave spectrum.

2.2.13 Overview of Standard Cosmology

This model is called standard because it is the simplest model that explains most

features of the observable Universe, among them we find:

• The accelerating expansion of the Universe.

• The origin and structure of the cosmic microwave background.

• The large scale distribution of galaxies.

• The observed abundances of light elements.

But some issues still remain, for example:

• The cosmological constant problem. Which refers to the disagreement between

the observed values of vacuum energy density and the theoretical large value of

zero-point energy suggested by quantum field theory.

• The Dark Energy presents no dynamics as ρΛ is constant.
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2.3 Linear Perturbations Theory

• An homogeneous and isotropic Universe expanding preserves this characteristics

through its evolution and do not explain the structure formation at local scales.

2.3 Linear Perturbations Theory

Evidence suggests we live in a nearly spatially flat Universe [22], so it is common to

set k = 0 as a good approximation to reality. Also, if we want to explain structure

formation in the Universe at lower scales where homogeneity and isotropy no longer

hold we will have to allow for small perturbations in the metric and the stress-energy

tensor.

gµν(t,x) = gµν(t) + δgµν(t,x), (2.33)

Tµν(t,x) = Tµν(t) + δTµν(t,x), (2.34)

where gµν(t) and Tµν(t) stand for metric and stress-energy tensor spatial averages in

a linearly perturbed Universe. Note that linear perturbations δgµν(t,x) and δTµν(t,x)

depend both on space and time and that they must be symmetric tensors, since gµν(t,x)

and Tµν(t,x) are symmetric. Therefore each one contains ten degrees of freedom. In

1980, Bardeen [23] showed that these perturbations decompose in the basis of scalar,

vector, and tensor perturbations under spatial rotations.

2.3.1 Metric perturbations

In general we can decompose metric perturbations in

δg00 = −2a2φ, (2.35)

δg0i = a2Bi, (2.36)

δgij = 2a2Cij . (2.37)

The {0i} and {ij} perturbation components can be further decomposed into scalar,

vectors and tensor contributions

Bi = B,i − Si (2.38)
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Cij = −Ψδij + E,ij + F(i,j) +
1

2
hij , (2.39)

with φ,B,Ψ, E scalar perturbations, Fi, Si vector perturbations and hij tensor pertur-

bation. These perturbations are restricted, vector perturbations are divergence-free, so

from the original six vectorial degrees of freedom (three for each one) only remain four.

And tensor perturbation which is symmetric, divergence-free (hjij, = 0) and trace-free

(hii = 0) stands for two degrees of freedom.

In the vacuum, scalar and vector perturbations vanish and tensor perturbations

account for gravitational waves [24]. In the presence of matter, scalars can be seen as

a response of the metric to the presence of irrotational matter, vectors represent the

response of metric to vorticity and has no analogue with Newton’s theory of gravity.

It is common to consider that vorticity of the different species of the Universe decays

with time, so vector perturbations are neglected and tensor plays only a small role in

CMB anisotropies, so we will focus on linear scalar perturbations of the metric

{φ,B,Ψ, E} (2.40)

The general metric in linear perturbations theory is described by the line element,

ds2 = −(1 + 2εφ)dη2 + 2aε∂iBdηdx
i + a2 [(1− 2εψ)δij + 2ε∂i∂jE] dxidxj , (2.41)

with η conformal time, a=a(η) the expansion factor and φ, ψ,E,B functions of space

and time assumed to be proportional to ε� 1 in accordance with perturbation theory.

2.4 Gauges and time slicing

A gauge is a coordinate transformation xµ → xµ + εµ that preserves the linearity of

perturbations, this restricts εµ to be very small in every point.

Note that for example in energy density perturbations

δρ(η, xi) ≡ ρ(η, xi)− ρ(η), (2.42)

ρ(η, xi) is a local and well defined quantity, while ρ(η) is a spatial average that depends

on the choice of equal-time hypersurfaces going through the point (η, xi). In that sense

δρ(η, xi) is said to be gauge dependent, because a particular gauge defines a particular

kind of equal-time hypersurfaces or time slicing.
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2.4 Gauges and time slicing

In an idealized FRW Universe there is only one time slicing compatible with the

Cosmological Principle, but in linear perturbations theory there are various choices of

time slicing compatible with perturbations theory, i.e., we can find multiple equal-time

hypersurfaces such that all physical quantities remains close to their average value.

This freedom of choosing between different gauges without changing physical results

has the effect that some solutions in perturbations theory are gauge modes with no

physical meaning. So we have two options

• Work with non-trivial combinations of stress-energy tensor and metric compo-

nents with the property of being gauge invariant and obtain and solve equations

of motion where gauge degrees of freedom no longer account.

• Fix a particular gauge, with the possible disadvantage that some results will have

a particular form depending on the gauge choice. Note that choosing a particular

gauge implies to set fixed two degrees of freedom. Since in general we have to

specify the εµ component of the gauge transformation which accounts for ε0 and

the potential e such that εi = ∂ie.

It is important to stress that in practice physical results do not depend on which of the

two above ways we took since physical quantities are gauge independent.

In the following sections we will fix a particular gauge.

2.4.1 Newtonian Gauge

In the Newtonian gauge the non-diagonal scalar perturbations of the metric are imposed

to vanish

E = B = 0. (2.43)

The result is that since metric perturbation elements are diagonal, calculations under

this gauge become easy to handle. Another characteristic of this gauge is that Ψ

and φ have direct physical interpretation; Ψ for lower scales reduces to the classical

gravitational potential and φ can be thought as a local deviation of the expansion

parameter a.
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2.4.2 Synchronous Gauge

In the synchronous gauge, introduced by Lifshitz [25] in 1946, the components g00 and

g0i of the metric tensor are by definition unperturbed

φ = B = 0. (2.44)

It is not difficult to show by computing the geodesic equation that in this gauge ui = 0

is a solution of the geodesic equation (since the Christoffel symbols Γi00 vanish). This

means that there exists a set of comoving observers who fall freely without changing

their spatial coordinates, they are called fundamental comoving observers. This gauge

is not free of issues [26], for example, when the trajectory of two fundamental comoving

obervers intersect the coordinates become singular (one spacetime point would have two

different labels); or the conditions (2.44) do not remove completely the gauge modes

since the choice of initial time and initial spatial coordinates for fundamental comoving

obervers is arbitrary. This situation led Bardeen in 1980 [23] to formulate alternatives

dealing with gauge invariant quantities.

In this work we will work mostly in the Synchronous gauge, the reason is that we

are not treating with direct spacetime properties and that it allows us to obtain simple

expressions for the equations of motion and only a single equation for the evolution of

linear perturbations (see Eq.(2.100)).

2.5 Calculations in Synchronous Gauge

The principal aim of this section is to derive the equations of evolution for back-

ground quantities and linear scalar perturbations in the synchronous gauge for the

Dark Energy-Dark Matter interacting model.

2.5.1 Linear Scalar Perturbations for spatially plane FRW metric

Matrix elements of metric 2.41 in synchronous gauge and expanded at first order in ε

are

g00 = −a2 +O
(
ε2
)
, (2.45)

g0i = O
(
ε2
)
, (2.46)
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2.5 Calculations in Synchronous Gauge

gii = a2 − 2a2ε(Ψ− E,ii) +O
(
ε2
)
, (2.47)

gij = 2a2εE,ij +O
(
ε2
)

for i 6= j, (2.48)

where as usual we have used the correspondence {η, x, y, z} → {0, 1, 2, 3} with

i, j = {1, 2, 3} and comma indicates partial derivation.

2.5.2 Stress-energy tensor perturbations

Similarly we need to specify four scalar degrees of freedom for the stress-energy tensor.

• δρ(η, xi) the energy density perturbation.

• δp(η, xi) the pressure perturbation.

• The potential v of the irrotational component of the flux of energy δT 0
i = ∂iv

• The potential s of the shear stress or anisotropic stress δTij = (∂i∂j − 1
3δij)s.

2.5.2.1 Stress-energy tensor perturbations of a perfect fluid

If we consider that matter can be modeled with a perfect fluid, where microscopic

interactions impose local thermodynamical equilibrium, the pressure is then isotropic

and therefore we have the condition for the shear stress s

s = 0 (2.49)

Moreover for a perfect fluid pressure perturbations obey δp = c2
aδρ, with ca the adiabatic

sound speed inferred from the equation of state of the fluid. So, we can describe a perfect

fluid in a linearly perturbed Universe with the reduced set

{δρ(η, xi), v} (2.50)

Notice that normalization uµuµ = −1 along with perturbed metric and the perfect fluid

stress-energy tensor implies at first order in perturbations

uµ = a[−1, ∂iv], uµ =
1

a
[1, ∂iv], (2.51)
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with vi = dxi

dη a non rotational velocity. Strictly speaking vi is not the three-velocity

because we have now in consideration perturbations in the metric, i.e., adxi is not a

proper distance and adη is not a proper time. If perturbations are small enough then

vi � 1 and this velocity becomes a good approximation to the three-velocity.

We can now compute the stress-energy tensor for perfect fluid in the perturbed and

plane FRW metric through equations (2.22), (2.45), (2.46), (2.47), (2.48), and (2.51).

Introducing the fluid equation of state defined by

w ≡ p

ρ
, (2.52)

we obtain at first order in perturbations

T 00 =
ρ

a2
+ ε

δρ

a2
+O

(
ε2
)
, (2.53)

T 0i = ε
(ρ+ wρ)v,i

a2
+O

(
ε2
)
, (2.54)

T ii =
wρ

a2
+ ε

w (ρ (2Ψ− 2E,ii) + δρ)

a2
+O

(
ε2
)
, (2.55)

T ij = −2ε
wρE,ij
a2

+O
(
ε2
)
. (2.56)

We would like to emphasize that background functions a and ρ only depend on time

while perturbations functions Ψ, E, δρ, v depend both on space and time.

2.6 The Interacting Model

2.6.1 Generalized Continuity Equation

We introduce the energy transfer four-vector Qµ defined by

Qµ ≡ ∇νTµν . (2.57)

Following [27] we may decompose Qµ in components parallel and orthogonal to matter

four-velocity described by Tµν

Qµ = Quµ + fµ, (2.58)

with fνuν = 0 by definition.
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We propose an interaction between Dark Energy and Dark Matter via their conti-

nuity equations

∇νTµνDM = QµDM = −QµDE = −∇νTµνDE . (2.59)

This assumption essentially introduces an energy conversion between Dark Energy and

Dark Matter and gives no clue about the micro-physical description of the phenomena

but allows us to subject the model to the observations. This useful feature makes that

interacting models have been studied for some authors, see for example [27–29].

We are now able to compute the continuity equation using

∇νTµν = ∂νT
µν + ΓµναT

αν + ΓνναT
αµ. (2.60)

Computing Q and fµ is straightforward with the aid of the metric and the above

expressions

Q = Qµuµ, (2.61)

fν = (gµν + uµuν)Qµ, (2.62)

since we know the projection operator Pµν ≡ (gµν+uµuν) is orthogonal to four-velocity.

Explicitly, for the perfect fluid model at first order in perturbations we have

Q = −3(w + 1)ρa′ + aρ′

a2
− ε3(w + 1)a′δρ

a2

− ε
(δρ)′ − (w + 1)ρ

(
−∇2E′ −∇2v + 3Ψ′

)
a

+O(ε2), (2.63)

fi =
ε

a

[
wa(δρ),i +

(
(1 + w)ρa′ + (1 + w)aρ+ waρ′

)
v,i

]
+O(ε2). (2.64)

2.6.2 Fluid Equations for Dark Matter and Dark Energy

The Dark Energy in this work is defined to have a stress-energy tensor proportional to

the metric

TµνDE ≡ V g
µν , (2.65)

and by comparison with a perfect fluid stress-energy tensor, Eq.(2.22), we note that

V = ρΛ = −PΛ. (2.66)
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For simplicity from now on we will use the subscript Λ to denote Dark Energy as defined

by Eq(2.65), but this Dark Energy model is more general than a cosmological constant

model and if we had a spatially homogeneous and non time dependent vacuum energy

∇νV = 0, we would recover a Λ model with Λ = 8πGV .

Since in this Dark Energy model there are no particles flow, then the four-velocity

of a fluid element. As in regards of Eq.(2.58) we need a four-velocity direction to de-

compose the energy flow, we choose this to be the Dark Matter four-velocity introduced

in Eq.(2.51).

With all this in consideration we can obtain Q and fi for the particular cases of

Dark Matter and Dark Energy by putting the corresponding equation of state for each

type of fluid in Eqs.(2.63) and (2.64), namely

wDE = −1, wDM = 0. (2.67)

The above values are the standard ones, (see [30, 31]).

So we get the expressions for Dark Matter

QDM = −
(

3ρca
′ + aρ′c
a2

)
+ ε

(
−3a′δρc

a2
− (δρc)

′

a
+
ρc
a

(−∇2E′ −∇2v + 3Ψ′)

)
+O(ε2),

(2.68)

fDMi = ε
ρc
a

(a′v,i + av′,i) = ε
ρc
a

(av,i)
′ +O(ε2). (2.69)

The corresponding equations for Dark Energy are

QDE = −
ρ′Λ
a
− ε

δρ′Λ
a

+O(ε2), (2.70)

fDEi = −ε(ρ′Λv,i + δρΛ,i) +O(ε2). (2.71)

Where we have used the standard notation for Dark Matter density ρc and Dark Energy

density ρΛ.

2.6.3 Background Equations

Equating zero order perturbation terms of Eq.(2.59) and implementing Eq.(2.30) we

obtain the coupled background equations

ρ′Λ = aQ, (2.72)
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ρ′c = −aQ− 3ρcH, (2.73)

a′ = a2H. (2.74)

It is important to stress that since

Q = Q(ρΛ, ρc, a,H), (2.75)

no new degrees of freedom are added to the model.

We can also see from the background equations that

• Q > 0 implies an energy transference from Dark Matter to Dark Energy since

ρ′Λ ∝ Q.

• Q < 0 implies an energy transference from Dark Energy to Dark Matter since

ρ′c ∝ −Q.

• Q = 0 reduces to the Standard Cosmological Model (ΛCDM).

2.6.4 Models for Q

Choosing a particular model of Q from now on called the interacting function, deter-

mines the dynamics of the model and closes the equation system in order to solve it.

Next we present some models proposed in literature.

2.6.4.1 Constant interacting function

The simplest model we can propose is a constant interacting function

Q = Q0. (2.76)

Despite its simplicity it is not analytically solvable.
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2.6.4.2 Martinelli’s Model

The Martinelli’s model proposed in [11] reads

Q = −q0HρΛ, (2.77)

with q0 a dimensionless parameter and H the Hubble parameter.

This model has an analytical solution at the background level, supposing a reduced

model where the Universe is filled only with ρc and ρΛ

H2 =
8πG

3
(ρc + ρΛ). (2.78)

In that case we obtain

ρc = ρ0
ca
−3 + ρ0

Λ

q0

q0 − 3

(
a−3 − a−q0

)
, (2.79)

ρΛ = ρ0
Λa
−q0 , (2.80)

with ρ0
c , ρ

0
Λ the densities at the present time.

2.6.4.3 Wang’s Model

This model was proposed in [10] and the interaction has the functional form

Q = 3αH
ρcρΛ

ρc + ρΛ
, (2.81)

with α a linear function of the expansion factor given by α ≡ (α0 + αa(1− a)), H the

Hubble parameter and α0, αa dimensionless parameters.

This model also has analytical solution for the reduced model of Eq.(2.78) when

αa = 0, then α = α0. We obtain under this assumptions

ρΛ = A

(
A+Ba−3(1+α)

)− α
1+α

, (2.82)

ρc =

(
A+Ba−3(1+α)

)− 1
1+α

− ρΛ, (2.83)

where

A ≡ ρ0
Λ(ρ0

Λ + ρ0
c)
α, (2.84)

B ≡ ρ0
c(ρ

0
Λ + ρ0

c)
α, (2.85)

with ρ0
c , ρ

0
Λ densities at the present time.
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2.6.5 Effective Equation of State for the Interacting Dark Energy

We would like to introduce an indicator of the interacting Dark Energy dynamics. The

common equation of state for Dark Energy defined in Eq.(2.52) is not a good indicator

because it has no direct information about the Dark Energy density evolution. To solve

this issue consider the Friedmann equation for non-interacting Dark Energy

ρ′Λ + 3aH(1 + w)ρΛ = 0, (2.86)

where the prime denotes derivation respect to conformal time and w is the usual equa-

tion of state.

Solving for w and implementing the background equations (2.72), (2.73), and (2.74)

we obtain after some simple calculations

weff ≡ −1− Q

3HρΛ
. (2.87)

Note that weff is not a formal equation of state for Dark Energy as it mixes interacting

and non-interacting models, but it is used because it is proportional to ρ′Λ and therefore

it is a good indicator for the Dark Energy dynamics.

2.6.6 Linear Perturbation Equations

Taking first order perturbation terms of Eqs. (2.68), (2.69), (2.70) and (2.71) we obtain

δQDM = −3a′δρc
a2

− (δρc)
′

a
+
ρc
a

(−∇2E′ −∇2v + 3Ψ′), (2.88)

δfDMi =
ρc
a

(av,i)
′, (2.89)

δQDE = −
δρ′Λ
a
, (2.90)

δfDEi = −ρ′Λv,i − δρΛ,i, (2.91)

where the notation Q ≡ Q0 + δQ and fi ≡ fi,0 + δfi is employed and subscript zero

denotes background level.
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2.6.6.1 The Dark Matter Geodesic Model

We now must choose a particular model for fi as we can not infer it from the background

level, i. e., at linear perturbation level we have more degrees of freedom. The Dark

Matter Geodesic Model [32], states fDMi = 0. That means there is no net force applied

over the Dark Matter fluid so it follows geodesics. As we can see in Eq.(2.89), fDMi is

proportional to the time variation of fluid velocity v and therefore we can identify fi

with a force or at least proportional to it. So adopting this model, from Eq.(2.89) and

defining θi ≡ av,i we have

θ′i = 0. (2.92)

Also in synchronous gauge we can set θini = 0 so from Eq.(2.92) we infer

θi = 0, for all times. (2.93)

On the other hand if fDMi = 0 then Eq.(2.59) implies fDEi = 0, and from Eq.(2.91)

we obtain

aδρΛ,i = −θiρ′Λ. (2.94)

The statement of Eq.(2.93) implies from Eqs.(2.94) and (2.90)

δρΛ,i = 0, (2.95)

δQDE = 0. (2.96)

So in the Dark Matter Geodesic Model and in synchronous gauge the only remaining

equation for perturbations is Eq.(2.68) and reduces to

δQ ≡ δQDM = −3a′δρc
a2

− (δρc)
′

a
+
ρc
a

(−∇2E′ + 3Ψ′). (2.97)

We can rewrite Eq.(2.97) using Eqs.(2.73), (2.74) and introducing the definitions

δc ≡
δρc
ρc
, (2.98)

h ≡ 2(∇2E − 3Ψ). (2.99)

So we finally obtain the unique and reduced equation for linear perturbations in syn-

chronous gauge and in Dark Matter Geodesic Model

δ′c =
aQδc
ρc
− h′

2
. (2.100)
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2.6.7 Adiabatic Initial Conditions

In order to solve numerically the perturbation equation (2.100), we need to know about

initial conditions of primordial perturbations. In a first attempt let us assume that the

primordial perturbations can be described by only one degree of freedom and that the

Universe is compose with a mixture of non-interacting perfect fluids which background

quantities evolution is known. In that situation we can expand at first order for a

generic x component of the Universe

ρx(η,x) = ρx(η + δη(x)) ' ρx(η) + ρ′x(η)δη(x), (2.101)

px(η,x) = px(η + δη(x)) ' px(η) + p′x(η)δη(x), (2.102)

where as usual η is the conformal time and primes indicates derivative respect to η.

We can see in this expansion that the evolution of primordial perturbations is given

by a homogeneous cosmology plus an evolution proportional to the single degree of

freedom δη(x) that can be seen as a time shifting function and also proportional to the

known background quantities derivatives ρ′x and p′x.

The assumptiom of adiabatic initial conditions (2.101) and (2.102) led to the useful

relation for any x or y component of the Universe

δpx
ρx + px

=
δpy

ρy + py
. (2.103)

If we consider for example a Universe containing only photons, baryons, Cold Dark

Matter and neutrinos we can infer using that for non-relativistic species p� ρ and for

ultra-relativistic ones we have p = ρ/3 therefore we obtain using Eq.(2.103)

δb = δc =
3

4
δν =

3

4
δγ , (2.104)

where the generic dimensionless parameter δx ≡ δρ/ρx is used.

Moreover we can obtain the relation for the total perturbation

δptotal(η,x) = c2
s(η)δptotal(η,x), (2.105)

with cs the adiabatic sound speed of the total composed fluid which actually is a

weighted average over the different sound speeds of each component. The fact that

this adiabatic sound speed exists is the reason why Eqs.(2.101) and (2.102) are called

adiabatic initial conditions.
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2.7 Usage of Newtonian Gauge in this section

For pedagogical purposes this section will be derived in Newtonian Gauge where we

will explain the physics of CMB anisotropies in terms of potentials Ψ and φ.

One advantage of working in Newtonian Gauge is that the δGij Einstein equation

is
2

3

(
k

a

)2

(φ−Ψ) = 8πG
∑
x

(ρx + px)σx, (2.106)

with σx the anisotropic stress of a generic x component of the Universe. If we consider

that all components of the Universe can be modeled as a perfect fluid we will have

σx = 0 for all x, and as a consequence

φ = Ψ. (2.107)

If we focus on the radiation dominated era and replace Eq.(2.107) in Einstein equations,

one can find a second order differential equation for Ψ only and can show [33] that it

has two solutions; one decaying and one constant in time that reads in combination

with Eq.(2.104)

−2φ = −2Ψ = δtotal ' δγ = constant, (2.108)

therefore under all these assumptions the metric fluctuations are static. This holds even

in the matter domination era but in that case we would have δtotal ' δb = (3/4)δγ .

2.7.1 Power Spectrum and Transfer Functions

The theory of cosmological perturbations is a stochastic one, this means that for some

given fluctuations A(η,x) of a quantity in a given point there exists a probability distri-

bution that describes the situation. As long as we are dealing with linear perturbations

this probability can be considered to scale also linearly. And is well known that if

we suppose this probability distribution to be Gaussian it will remain Gaussian at all

times. In this sense the study of the evolution of the perturbations reduces to study

the evolution of its statistical averages that here will be denoted with angled brackets

〈 〉.
Now we introduce the two point and equal-time correlation function

〈A(η,x), A(η,x’)〉 ≡ ξ(η,x,x’) = ξ(η, |x− x’|), (2.109)

28
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where the last equality lies on the assumption of Statistical Homogeneity and Isotropy

that is expected to hold in the linearly perturbed Universe.

If A(η,x) is real and we use the same letter A to denote the fourier transform of A

we can obtain the relation

〈A(η,k), A(η,k’)〉 = δD(k− k’)PA(k), (2.110)

here δD is the Dirac delta function and SHI causes the correlation function vanish for

k 6= k’ and that PA is a function of k = |k|.
The function PA is called the Power Spectrum of A. Recall from Eq.(2.104) that

perturbations are strongly related, so we only need to specify one Power Spectrum in

order to know all the others

Pb = Pc =
9

16
Pν =

9

16
Pγ . (2.111)

In Newtonian gauge is common to define the Primordial Spectrum in terms of the

variable

R ≡ Ψ− 1

3

δρtotal
ρtotal + ptotal

, (2.112)

which describes the spatial curvature perturbation on one initial comoving hypersurface

and has the property of being conserved on scales comparable to the Hubble radius or

larger [34]. This is important because in an early stage of the Universe we can consider

that most Fourier modes of primordial perturbations are outside the Hubble radius.

Hence, the perturbations evaluated at some arbitrary time but on super-Hubble scales

reflect directly the mechanism responsible for the formation of perturbations in the

early Universe.

We can split the Power Spectrum of A in two parts

PA(k) =

[
A(η,k)

R(k)

]2

PR(k), (2.113)

where the function

A(η, k) ≡
[
A(η,k)

R(k)

]
, (2.114)

is known as the Transfer Function of A. Note that we have used the same letter for

the fluctuation A(η,k) and for the transfer function A(η, k), the difference is that the

former depends on k and the latter only on k.

These transfer functions describe the linear evolution of the perturbations and are

to be known in order to evolve the statistical averages of the diverse quantities.
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2.7.2 The CMB Power Spectrum

In a first instance we can consider a primordial and coupled system of baryons, electrons

and photons at a very early stage of the Universe. Electrons and baryons interact via

electromagnetic forces since they carry opposite electric charges, baryons and photons

principal interaction is the gravitational one. Meanwhile electrons and photons interact

via Thompson scattering, understood as the limit of Compton scattering when the

electrons are not relativistic and the photons have less energy than the rest mass of the

electron.

The Thomson scattering rate with respect to conformal time is

Γ = σTaneχe, (2.115)

with σT the Thomson scattering surface, a the expansion factor, ne the electron number

density and χe the ionized electron fraction. Note that ne ∼ 1/a3 due to the dilution

and that χe ∼ 1 at high energies. Then, at the recombination epoch when the electrons

and nuclei begin to form atoms χe → 0. For this reasons Thomson scattering becomes

inefficient and photon decouple from the system.

Some useful parameters are defined below.

The optical depth that represents the opacity of the Universe at a given time when

seen today (η0)

τ(η) ≡
∫ η0

η
dηΓ(η). (2.116)

The visibility function gives the probability that a CMB photon seen today experi-

enced its last scattering at time η

g(η) ≡ −τ ′e−τ . (2.117)

The diffusion length λd can be known through the mean free-path of photons rmfp =

Γ−1, then the comoving distance they travel between ηini and η is approximately

rd '
[∫ η

ηini

dηΓr2
mfp

] 1
2

=

[∫ η

ηini

dηΓ−1

] 1
2

, (2.118)

Then the diffusion length can be computed

λd = ard. (2.119)
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The sound horizon at decoupling ds(ηdec) is the distance traveled by a wavefront

between some initial time in the primordial Universe and the time of photon decoupling

ds = a

∫ η

ηini

csdη, (2.120)

with cs the sound speed in the photon-baryon fluid. Note that two points on the last

scattering surface separated this distance should be partially correlated since density

wave have propagated from one point to the other. This will be important when

studying the features of CMB power spectrum at angular scales corresponding at sound

speed at decoupling.

2.7.3 CMB anisotropies

At a first look the CMB radiation seems to be the same in all directions. Decades after

its discovering irregularities were measured from looking at different directions, which

were hard to detect because they are of order 10−4K. This anisotropies are important

because they contain information about decoupling epoch.

In order to study these anisotropies, first consider again the primordial and coupled

system of photons, baryons and electrons in the very early Universe. In this scenario

the highly coupled system can be considered in thermal equilibrium, so the phase space

distribution of photons corresponds to the Bose-Einstein distribution

f(η,x,p) =
1

e
p

T (η,x) − 1
. (2.121)

Expanding at first order in perturbations f = f + δf we can obtain

f(η, p) =
1

e
p

T (η) − 1
(2.122)

δf =
df

d log p

δT (η,x)

T (η)
. (2.123)

From the above expressions we see that is feasible to characterize CMB anisotropies at

first order in perturbations with the function

Θ(η,x) ≡ δT (η,x)

T (η)
. (2.124)
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Note that we observe in practice the temperature in a given direction n̂, at actual time

η = η0 and at a fixed location x = o, so we can consider in local spherical coordinates

Θobs = Θ(η0, o, n̂) = Θ(n̂) = Θ(θ, φ). (2.125)

Therefore expanding in spherical harmonics Y `
m(θ, φ) is feasible

Θobs(θ, φ) =
∑
`

∑
m

a`mY
`
m(θ, φ). (2.126)

Then, the coefficients a`m give information about anisotropies on various scales.

In the Fourier space the dependency Θobs = Θ(η, k, n̂) can be changed to Θobs(η, k, θ).

Recall that in a Fourier transform we perform a decomposition in plane waves and at

that level all that matters is the product k ·n = kcosθ at the local point of observation.

Also the plane waves carry azimuthal symmetry, so we can perform the expansion

Θobs(η, k, θ) =
∑
`

(−i)`(2`+ 1)Θ`(η, k)P`(cosθ). (2.127)

Using the above expansions and some relations between spherical harmonics and Leg-

endre polynomials we can obtain

a`m = (−i)`
∫
d3k

2π2
Y`m(θ, φ)Θ2

` (η, k). (2.128)

Defining now the radiation angular power spectrum C` is straightforward with the aid

of orthogonality relations of spherical harmonics and it is convenient to put it in terms

of the primordial spectrum PR(k)

C` ≡
〈
|a`m|2

〉
=

1

2π2

∫
dk

k
Θ2
` (η0, k)PR(k), (2.129)

where the angled brackets denote statistical average, i.e., an average over all possible

observers in the Universe. The independence of the angular power spectrum on the

index m comes from the fact that we can only study radiation that comes to the Earth

ignoring all remaining information from radiation arriving other locations, so all we can

do is an average over index m. Furthermore, the statistical results require rotational

invariance, so the power spectrum only depends on index `, telling us about the angular

scales in the anisotropies. Roughly speaking the index ` gives us information of a scale

180◦/`. Note that the term associated to ` = 0 is a constant because of the spherical

harmonics’s properties and as a consequence statistically is not important. Meanwhile
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` = 1 gives the difference in temperature from opposite sides of the sky and is believed

to arise from the relative motion between the Earth and the CMB radiation causing

a Doppler effect. So the CMB angular power spectrum is often reported from ` > 2

since the other values do not carry intrinsic information about the cosmic background

radiation.

2.7.4 Physics of the CMB Power Spectrum

In this section we will make a descriptive discussion of the physical phenomena that

the CMB power spectrum contains, in order to obtain the physical information of our

results. For further information and intermediate steps see for example [33].

Recall that for a generic function we have

dF (η,x, n̂)

dη
= F ′ +

dxi
dη

∂F

∂xi
+
dni
dη

∂F

∂ni
. (2.130)

If we consider photons traveling approximately in a straight line dni
dη ≈ 0 and at the

speed of light along our line of sight n̂. We then have dxi
dη = n̂ and the above expression

reduces to
dF (η,x, n̂)

dη
= F ′ + n̂ · ∇F. (2.131)

In the Newtonian gauge, choosing F (η,x, n̂) = e−τ(η)(Θ(η,x, n̂) + Ψ(η,x)), with τ(η)

the optical depth defined in Eq.(2.116) and integrating along the line of sight we can

obtain with aid of the visibility function g defined in Eq.(2.117)

(Θ + Ψ) |obs=
∫ η0

ηini

dη

(
g(Θ0 + Ψ + n̂ · vb) + e−τ (φ′ + Ψ′)

)
, (2.132)

with Θ0 the monopole contribution to temperature anisotropies (the average of Θ over

all directions n̂) and vb the velocity of baryons (that in the highly coupled regime equals

the velocity of photons).

Assuming the instantaneous decoupling approximation, where all photons decouple

precisely at the time ηdec, we can replace the visibility function with a Dirac Delta and

the the exponential with a Heaviside function and obtain

Θ |obs= (Θ0 + Ψ) |dec +n̂ · vb |dec +

∫ η0

ηdec

dη(φ′ + Ψ′), (2.133)
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where we have neglected the Ψ|obs in the left hand side of the above expression, since

it contributes only with a minimal correction to the anisotropies and in practice it is

not measurable.

We can perform a similar analysis in the Fourier space and compute the contribu-

tions of each term to the power spectrum C`, obtaining the three following contributions

CSW` ∼ 〈|Θ0 + Ψ|2〉 at (η, k) '
(
ηdec,

`

η0 − ηdec

)
, (2.134)

CDoppler` ∼ 〈|θb|2〉 at (η, k) '
(
ηdec,

`

η0 − ηdec

)
, (2.135)

CISW` ∼ 〈|φ′ + Ψ′|2〉 for all (η, k) '
(
ηdec,

`

η0 − η

)
, (2.136)

note that the power spectrum approximately encodes information for a subtended angle

on the last scattering surface θ = π/`, which corresponds to a physical scale θdang,

with dang the diameter angular distance previously defined. For photons traveling in

a radial trajectory toward us, the diameter angular distance simplifies a lot. And this

corresponds to a wavenumber k such that

πa(ηdec)

k
= θdang =

π

`
a(ηdec)

∫ η0

ηdec

dη =
π

`
a(ηdec)(η0 − ηdec), (2.137)

from where follows the relation k ' `
η0−η .

This contributions are often called the Sachs-Wolfe (SW), the Doppler and the

Integrated Sachs-Wolfe (ISW) contributions respectively.

2.7.4.1 The Sachs-Wolfe Contribution

This term essentially depends on the value of Θ0 |dec and Ψ |dec on one point on the last

scattering surface at the instantaneous decoupling time ηdec. We can interpret Θ0 |dec
as an intrinsic temperature and Ψ |dec as a gravitational Doppler shift.

We now turn our attention to the Θ0 |dec term.

In the highly coupled regime the electrons, baryons and photons form an effective

single fluid with adiabatic sound speed

cs =
δpγ + δpb + δpe
δργ + δρb + δρe

' δpγ
δργ + δρb

, (2.138)
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since δpe, δpb � δpγ . We can further simplify this expression considering local values of

temperature. We know from thermodynamics that ρb ∝ T 3 and ργ ∝ T 4, this implies

δγ = 4
3δb. So we obtain

c2
s =

1

3(1 +X)
, X ≡ ρb

ργ
. (2.139)

It is possible to derive and equation of motion for Θ0 in the tightly-coupled regime

Θ′′0 +
X ′

1 +X
Θ′0 + k2c2

sΘ0 = −k
2

3
Ψ +

X ′

1 +X
φ′ + φ′′. (2.140)

Eq.(2.140) is very illustrative because without need of solving it we can infer qualita-

tively the behavior of Θ0(k). First we note that if X were constant in time and if we

did not have gravitational perturbations (φ = Ψ = 0) this equation would reduce to

that of a harmonic oscillator with solution

Θ0 = Θinicos(kcsη + ϕ). (2.141)

Now it is convenient to recall Eq.(2.120) where we defined the sound horizon, for the

case of a constant sound speed this reduces to ds = acsη. So, the condition kcsη � 1

corresponds to λ � ds, for the physical wavelength λ = 2πa/k. This is important

because we conclude for ks (the corresponding wavenumber of ds), that Θ0 is approx-

imately constant for k < ks since the cosine argument is negligible and then it begins

to oscillate for k > ks.

Another important characteristic is that we can find the equilibrium point or zero-

point of oscillation by putting in a first approach Θ′′0 = Θ′0 = φ′ = φ′′ = 0 in Eq.(2.140)

finding

Θequilibrium
0 ' −(1 +X)Ψ. (2.142)

We can find in the literature [33] that the fluctuation Ψ(k)→ 0 as k increases. Also we

know from Eq.(2.108) that for early stages of the Universe where η � 1 and therefore

kcsη � 1, the metric fluctuations are frozen. Then Ψ can be considered constant for

k < ks.

If we now take the SW contribution to the power spectrum (Θ0 + Ψ) |dec we can

see that there are three principal regions of evolution of this sum of functions.

• Region I (k < ks). In this region both Ψ and Θ0 are constant so (Θ0 + Ψ) |dec is

constant. This region is often called the Sachs-Wolfe Plateau.
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• Region II (k ≈ ks). Here Θ0 begins to oscillate. The first peak is enhanced by

gravitational forces that favor the formation of over-densities and a subsequent

negative peak in the temperature fluctuations (Recall −2Ψ = δtot ' δb = 3
4δγ =

3Θ0). We also have to add the contribution of the changing zero-point of oscilla-

tions −(1 +X)Ψ that vanishes as k increases, this contributes only to odd-peaks

since they are all negatives, and reduces even-peaks as they carry opposite sign.

• Region III (k � ks). This region is characterized by the fact that since k is large,

then λ is small. And in a extreme situation this wavelength could be comparable

to the microscopic scales on the primordial plasma. And in that case we could

not apply a fluid description of the system. So Eq.(2.140) does not hold in this

region. But we can infer that as frecuency is large, since λ is small, the more

cycles made, the more damping experienced. This damping is governed by the

diffusion length λd defined in Eq.(2.119) and can be proved that the envelope of

peaks is proportional to e−(k/kd)2
, with kd the corresponding wavenumber of λd.

So damping effect is greater for k large.

2.7.4.2 The Doppler Contribution

This is the contribution to the power spectrum of standard Doppler effect and it is

related to 〈|θb|2〉 at decoupling. We can prove that this contribution is proportional to

Θ′0 and then from basic acoustic oscillation theory we know that if Θ0 oscillates then

Θ′0 will also oscillate but with a different phase. We can split this contribution in the

regions

• Region I (k < ks). We know that in this region Θ′0 = 0 since Θ0 is constant.

Therefore the Doppler contribution is null in this region.

• Region II (k > ks). This contribution oscillates out of phase respect to Θ0.

2.7.4.3 The Integrated Sachs-Wolfe Contribution

We know that this contribution depends strongly in the temporal variation of the metric

fluctuations φ′ and Ψ′. This quantities are principally important when the Universe

changes its expansion rate, for example in the radiation-matter equality epoch or more

recently in the matter-Dark Energy equality epoch. This in practice means that the
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first transition will have a contribution to the power spectrum about the first peak

and the second transition will affect small values of ` causing a tilt in the Sachs-Wolfe

plateau.

2.7.5 Parameter dependence in the CMB Power Spectrum

It is common to define the Primordial spectrum as

PR(k) ≡ As
(
k

k∗

)ns−1

, (2.143)

with As the spectrum amplitude, k∗ an arbitrary fixed wavenumber scale and ns the

spectral index or tilt of the spectrum.

We can choose a six parameter basis in analogy to ΛCDM model. There are several

options but assuming a flat Universe we will choose the parameter basis

{As, ns, ΩΛ, Ωm, Ωb, τreio}, (2.144)

with τreio the optical depth at reionization.

Now we can identify the principal characteristics of the CMB Power Spectrum in

the ΛCDM model and relate them to the corresponding parameters of the basis.

I. Global Amplitude → As.

II. Global tilt → ns.

III. First peak scale → ΩΛ, Ωm, Ωb.

IV. Ratio of odd-even peaks → Ωb.

V. Amplitude of first peaks → Ωm.

VI. Damping envelope → ΩΛ, Ωm, Ωb.

VII. Sachs-Wolfe plateau tilting → ΩΛ.

VIII. Amplitude for ` > 40 → τreio.

This will become important when we analyze the CMB Power Spectrum for the inter-

acting model, where we will have and extended basis depending on the parameters of

a particular interacting model.
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2.7.6 Parameter Basis in the Interacting Models

We have to add to the ΛCDM parameter basis the corresponding parameters of each

interacting model.

Recall interacting functions definitions Eqs.(2.76), (2.77), (2.81). Then, we will

have the following parameter basis for the interacting models

• For Constant interacting model {As, ns, ΩΛ, Ωm, Ωb, τreio, Q0}

• For Martinelli’s interacting model {As, ns, ΩΛ, Ωm, Ωb, τreio, q0}

• For Wang’s interacting model {As, ns, ΩΛ, Ωm, Ωb, τreio, α0, αa}

2.8 The Matter Power Spectrum

We can characterize the fluctuations in matter density at position x relative to the

average density ρ with the dimensionless function

δ(x) ≡ ρ(x)− ρ
ρ

. (2.145)

The Matter Power Spectrum is understood as the Fourier transform of the auto-

correlation function ξ, defined by

ξ(r) ≡
〈
δ(x)δ(x′)

〉
, (2.146)

where angled brackets stands for average over all space and r = |x − x′|. So we have

the relation for the Matter Power Spectrum P (k)

ξ(r) =

∫
d3k

(2π)3
P (k)eik·(x−x

′). (2.147)

In this sense if ξ(r) gives the probability of finding matter given a distance r, then the

Matter Power Spectrum decomposes this probability into characteristic lengths L, with

k ≈ 2π/L.

If δ̃(k) is the Fourier transform of δ(k), we find the useful relation averaging over

Fourier space 〈
δ̃(k)δ̃(k′)

〉
= (2π)3P (k)δ3(k− k′), (2.148)

where δ3 is the Dirac Delta function.
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Metodology

Here we present in Fig.(3.1) the global procedure carried out in this work. Subsequent

sections expand the information about each stage.

3.1 The Cosmic Linear Anisotropy Solving System (CLASS)

3.1.1 Overview of CLASS

CLASS is a free provided and C language based program whose purpose consists in com-

puting some background quantities, thermodynamical quantities, perturbation transfer

functions, and finally power spectra for a given set of cosmological parameters. Here

we present a brief overview, but further information can be found in the CLASS official

manual [9]. This task is done basically in ten steps associated to one of the ten modules

(modulename.c).

1. Set input parameter values. (input.c)

2. Compute the evolution of cosmological background quantities. (background.c)

3. Compute the evolution of thermodynamical quantities. (thermodynamics.c)

4. Compute the evolution of source functions by integrating over all perturbations.

(perturbations.c)

5. Compute the primordial spectra. (primordial.c)

6. Compute non-linear corrections at small redshift.(nonlinear.c)

39



3. METODOLOGY

Figure 3.1: Metodology - Block diagram containing the general procedure of this work.
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3.2 Implementing the Dark Energy- Dark Matter Model in CLASS

7. Compute transfer functions in harmonic space. (transfer.c)

8. Compute the observable power spectra C` by convolving the primordial spec-

tra and the harmonic transfer functions and compute matter power spectrum

P (k) by multiplying the primordial spectra and the appropriate source functions.

(spectra.c)

9. Compute the lensed CMB spectra. (lensing.c)

10. Write results in files. (output.c)

3.2 Implementing the Dark Energy- Dark Matter Model

in CLASS

CLASS classifies parameters in three general cases

• {A}, which can be expressed directly as functions of some parameters {B}

• {B}, which need to be integrated over conformal time through first order differ-

ential equations.

• {C} , which also need to be integrated but are not used to compute {A}

For example for ΛCDM model

• {A} = {ρi(a), pi(a), H(a), ..., }.

• {B} = {a}.

• {C} = {t, ..., }

Another example is extended cosmology with a scalar field φ

• {A} = {ρi(a), pi(a), H(a), ..., V (φ), ..., }

• {B} = {a, φ}

The last example is important because in this work we followed the structure of a

cosmology with a scalar field φ, making the identifications

• V −→ Q,
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• φ −→ ρΛ,int, ρc,int,

since we noticed that Q is an {A} parameter and ρΛ, ρc are {B} parameters in the

interacting model. We can explicitly see this in the background equations (2.72), (2.73)

and (2.74).

3.2.1 The shooting method

The shooting method in numerical analysis is a method that changes a boundary value

problem to an initial conditions problem. It suits our situation because we know which

are the present values of density parameters Ω0
c and Ω0

Λ, but initial conditions are in

general not known. In that sense we have fixed values for Ω0
c and Ω0

Λ which can be seen

as targets and we are looking for initial values that evolved via numerical integration

hit the targets. The process can be divided in the following steps.

• CLASS code reads as inputs the values of targets and some proposed values that

we named in the code omega0l prop and omega0m prop. They are also known as

shooting parameters.

• CLASS needs functions that relate the initial conditions ρinic and ρiniΛ with their

respective shooting parameter. A standard proposal is to use the solution for

ΛCDM,

ρiniΛ = Ω0
Λ,propH

2
0 , (3.1)

ρinic = Ω0
c,propH

2
0

(
a0

aini

)3

. (3.2)

If analytical solutions for a particular interacting model at background level are

known, they would be a better choice. But in general this does not happen.

• Initial conditions are computed given the shooting parameters.

• The code integrates numerically the background equations given the initial con-

ditions of the previous step.

• CLASS checks if the numerical solution hits the targets at present time. If so,

shooting process is complete; if not the shooting parameters are slightly changed

and the process is repeated.
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3.3 Modifying CLASS Code

In the next subsections we will present modifications of the input, background and per-

turbations modules, there are another modifications as definitions of internal variables

or indexes, internal checkings of physical congruence for computed quantities, screen

warnings to the user, among others. But here we present only the essential parts of the

modification of the code.

3.3.1 Modifying Input Module

CLASS has an archive with extension .ini which contains a complete set of input

parameters for a given cosmology. We had to modify this module in order to input the

parameters of our model, that we called int parameters. We also defined a parameter

Ωint ≡ Ωc + ΩΛ, (3.3)

that we used as a target instead of ΩΛ.

First we added the targets and shooting parameters of our model to the existing list of

shooting and target parameters in CLASS.

1 char ∗ const t a rg e t names t r i ng s [ ] = {”100∗ t h e t a s ” , ”Omega dcdmdr” , ”

omega dcdmdr” , ”Omega scf ” , ”Omega ini dcdm” ,

2 ” omega ini dcdm ” , ” sigma8” , ”Omega int” , ”omega0m target” } ;

3 char ∗ const unknown namestrings [ ] = {”h” , ”Omega ini dcdm” , ”

Omega ini dcdm” , ” s c f s h o o t i n g p a r a m e t e r ” ,

4 ”Omega dcdmdr” , ”omega dcdmdr” , ”A s” , ” omega0l prop ” , ”omega0m prop” } ;

Then we added the instruction to read them in the archive with extension .ini.

1 c l a s s c a l l ( pa r s e r r ead doub l e ( pfc , ”Omega int” ,&param5,& f l ag5 , errmsg ) ,

2 errmsg , errmsg ) ;

3 c l a s s c a l l ( pa r s e r r ead doub l e ( pfc , ” omega0c target ” ,&param4,& f l ag4 , errmsg ) ,

4 errmsg , errmsg ) ;

An important feature of CLASS is that we can choose the contribution of some com-

ponent as free parameter. We can do this by putting for example Ωint < 0 and in that

case CLASS takes Ωint as unspecified and uses it to fulfill the closure relation

∑
i∈{all species}

Ωi = 1. (3.4)
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This can be done with an internal checking named class test, here flag1 refers to

Dark Energy as a cosmological constant, flag2 refers to Dark Energy as a fluid with

some equation of state, and our case flag5 refers to the interacting Dark Energy. The

following instruction states that one of this options must be left unspecified in order to

fulfill the closure relation.

1 c l a s s t e s t ( ( f l a g 1 == TRUE ) && ( f l a g 2 == TRUE ) && ( ( f l a g 5 == FALSE )

| | ( param5 >= 0 . ) ) , errmsg ,

2 ” In input f i l e , e i t h e r Omega Lambda or Omega fld must be l e f t un spec i f i ed ,

except i f Omega int i s s e t and <0.0 , in which case the c o n t r i b u t i o n

from the i n t e r a c t i n g f l u i d w i l l be the f r e e parameter . ” ) ;

3

If we put for example 0 ≤ Ωint < 1 this will be simply added to the total density

parameter. But if we set it negative, it will be used as free parameter.

1 i f ( ( f l a g 5 == TRUE ) && ( param5 >= 0 . ) ) {
2 pba−>Omega0 int = param5 ;

3 Omega tot += pba−>Omega0 int ;

4 }
5 e l s e i f ( ( f l a g 5 == TRUE ) && ( param5 < 0 . ) ) {
6 // F i l l up with i n t e r a c t i n g f l u i d

7 pba−>Omega0 int = 1 . − pba−>Omega0 k − Omega tot ;

8 i f ( i nput ve rbose > 0) p r i n t f ( ” −> matched budget equat ions by

9 ad ju s t i ng Omega int = %e\n” , pba−>Omega0 int ) ;

The following definition of Omega0 int is important because we are taking this as

a target with shooting parameter omega0l prop. This can be seen explicitly in the

following instruction where the difference between targets and numerical quantities are

made. If this difference in close enough to zero the shooting is completed, if not the

shooting process repeats. 1

1 case Omega int :

2 output [ i ] = ( ba . background table [ ( ba . b t s i z e −1)∗ba . b g s i z e+ba .

i n d e x b g r h o c i n t ]+ba . background table [ ( ba . b t s i z e −1)∗ba . b g s i z e+ba .

i n d e x b g r h o l i n t ] ) /( ba . H0∗ba . H0)−ba . Omega0 int ;

3 break ;

4 case omega0m target :

5 output [ i ] = ( ba . background table [ ( ba . b t s i z e −1)∗ba . b g s i z e

6 +ba . i n d e x b g r h o c i n t ] ) /( ba . H0∗ba . H0)−ba . omega0m target ;

7 break ;

1Note for example that an internal way to call the computed ρc is

(ba.background table[(ba.bt size-1)*ba.bg size+ba.index bg rho c int]).

44



3.3 Modifying CLASS Code

The rest of the modifications in the input module only read in the .ini file the param-

eters needed for our model.

• int parameters: Includes the parameters for a particular interacting model and

shooting parameters.

• int parameters size: Defines the number of parameters.

1 i f ( pba−>Omega0 int != 0 . ) {
2 c l a s s c a l l ( p a r s e r r e a d l i s t o f d o u b l e s ( pfc , ” in t paramete r s ” ,

3 &(pba−>i n t p a r a m e t e r s s i z e ) ,&(pba−>i n t paramete r s ) ,& f l ag1 , errmsg ) ,

4 errmsg , errmsg ) ;

5

6 c l a s s r e a d d o u b l e ( ” omega0l prop ” , pba−>i n t paramete r s [ 1 ] ) ;

7 c l a s s r e a d d o u b l e ( ”omega0m prop” , pba−>i n t paramete r s [ 2 ] ) ;

8 c l a s s r e a d i n t ( ” i n t p a r a m e t e r s s i z e ” , pba−>i n t p a r a m e t e r s s i z e ) ;

9

10 }

We added the feature of choosing in the .ini file the pre-programmed interacting

models by defining a readable string called "interacting function".

1 c l a s s c a l l ( p a r s e r r e a d s t r i n g ( pfc , ” i n t e r a c t i n g f u n c t i o n ” ,& s t r ing3 ,& f l ag5 ,

errmsg ) ,

2 errmsg , errmsg ) ;

3 i f ( f l a g 5 == TRUE ) {
4 i f ( ( s t r s t r ( s t r ing3 , ” constant ” ) != NULL) | |
5 ( s t r s t r ( s t r ing3 , ”CONSTANT” ) != NULL) ) {
6 pba−>i n t e r a c t i n g f u n c t i o n = constant ;}
7

8 e l s e i f ( ( s t r s t r ( s t r ing3 , ”wang” ) != NULL) | |
9 ( s t r s t r ( s t r ing1 , ”WANG” ) != NULL) ) {

10 pba−>i n t e r a c t i n g f u n c t i o n = wang ;}
11

12 e l s e i f ( ( s t r s t r ( s t r ing3 , ” m a r t i n e l l i ” ) != NULL) | |
13 ( s t r s t r ( s t r ing1 , ”MARTINELLI” ) != NULL) ) {
14 pba−>i n t e r a c t i n g f u n c t i o n = m a r t i n e l l i ;}
15

16 e l s e i f ( ( s t r s t r ( s t r ing3 , ”parab” ) != NULL) | |
17 ( s t r s t r ( s t r ing1 , ”PARAB” ) != NULL) ) {
18 pba−>i n t e r a c t i n g f u n c t i o n = parab ;}
19

20 e l s e {
21 c l a s s s t o p ( errmsg , ” incomprehens ib l e input ’%s ’ f o r the f i e l d

45



3. METODOLOGY

22 ’ i n t e r a c t i n g func t i on ’ ” , s t r i n g 3 ) ;}
23 }

3.3.2 Modifying Background Module

The principal aim of modifying this module is to implement the background equations

of the Interacting Model. As we mentioned above, we followed the structure of a

cosmology with a scalar field. The first step is to define a flag, that when is active

indicates the presence of our interacting fluid. For the scalar field the flag was “scf”, in

our case we used “int” which stands for the interacting fluid. When this flag is active

the definition of the functions of our model is made.

1 i f ( pba−>h a s i n t == TRUE )

2 {
3 r h o l i n t = pvecback B [ pba−>i n d e x b i r h o l i n t ] ; // value o f

i n t e r a c t i n g Dark Energy dens i ty , i n d i c a t i n g i t i s a {B} parameter .

4 r h o c i n t = pvecback B [ pba−>i n d e x b i r h o c i n t ] ; // value o f

i n t e r a c t i n g Dark Matter dens i ty , i n d i c a t i n g i t i s a {B} parameter .

5 H aux=s q r t ( rho tot−pba−>K/a/a ) ; // value o f Hubble parameter H, K i s the

s p a t i a l curvature .

6 pvecback [ pba−>i ndex bg Q int ]= Q int ( pba , r h o l i n t , r h o c i n t , a , H aux ) ;

// value o f i n t e r a c t i n g parameter Q de f ined as {A} parameter .

7 r h o t o t += pvecback [ pba−>i n d e x b g r h o l i n t ]+pvecback [ pba−>
i n d e x b g r h o c i n t ] ; //Adds our d e n s i t i e s to the t o t a l dens i ty .

8 p to t += −pvecback [ pba−>i n d e x b g r h o l i n t ] ; //Adds the c o n t r i b u t i o n o f

i n t e r a c t i n g Dark Energy to t o t a l p r e s su r e .

Next we added the background equations (2.72), (2.73), where the notation d[y] stands

for a derivative with respect to conformal time.

1 i f ( pba−>h a s i n t == TRUE ) {
2 dy [ pba−>i n d e x b i r h o c i n t ]=−y [ pba−>i n d e x b i a ]∗ pvecback [ pba−>

i ndex bg Q int ]−3.∗y [ pba−>i n d e x b i r h o c i n t ]∗ y [ pba−>i n d e x b i a ]∗
pvecback [ pba−>index bg H ] ;

3 dy [ pba−>i n d e x b i r h o l i n t ]=y [ pba−>i n d e x b i a ]∗ pvecback [ pba−>
i ndex bg Q int ] ;

4 }

In order to integrate, the initial conditions are needed: for Martinelli’s interacting

function the analytical solutions (2.79),(2.80) were implemented; for Wang’s interacting

function, the analytical solutions (2.82), (2.83) were also implemented assuming αa = 0,

but we found that replacing α0 → α0 + αa the initial conditions worked better for the
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general case in which αa 6= 0 . If there were no analytical solutions available, we used

those for ΛCDM. Recall that these initial conditions only work as a starting point for

the shooting method already discussed.

1 i f ( pba−>h a s i n t == TRUE ) {
2 switch ( pba−>i n t e r a c t i n g f u n c t i o n ) {
3 case constant :

4 int Q0 = pba−>i n t paramete r s [ 0 ] ;

5 omega0l prop = pba−>i n t paramete r s [ 1 ] ;

6 omega0m prop = pba−>i n t paramete r s [ 2 ] ;

7 pvecback in t eg ra t i on [ pba−>i n d e x b i r h o l i n t ]=

8 omega0l prop∗pba−>H0∗pba−>H0 ;

9 pvecback in t eg ra t i on [ pba−>i n d e x b i r h o c i n t ]=

10 ( omega0m prop ) ∗pba−>H0∗pba−>H0∗pow( pba−>a today /a , 3 ) ;

11 break ;

12 case wang :

13 a lpha 0 = pba−>i n t paramete r s [ 0 ] ;

14 omega0l prop = pba−>i n t paramete r s [ 1 ] ;

15 omega0m prop = pba−>i n t paramete r s [ 2 ] ;

16 a lpha a = pba−>i n t paramete r s [ 3 ] ;

17 A=omega0l prop∗pba−>H0∗pba−>H0∗pow( omega0l prop∗pba−>H0∗
18 pba−>H0+omega0m prop∗pba−>H0∗pba−>H0 , a lpha 0+alpha a ) ;

19 B=omega0m prop∗pba−>H0∗pba−>H0∗pow( omega0l prop∗pba−>H0∗
20 pba−>H0+omega0m prop∗pba−>H0∗pba−>H0 , a lpha 0+alpha a ) ;

21 pvecback in t eg ra t i on [ pba−>i n d e x b i r h o l i n t ]=

22 A∗pow ( (A+B∗(pow( a ,−3∗(1+ alpha 0+alpha a ) ) ) ) ,−( a lpha 0+alpha a ) /

23 (1+ alpha 0+alpha a ) ) ;

24 pvecback in t eg ra t i on [ pba−>i n d e x b i r h o c i n t ]=

25 pow ( (A+B∗(pow( a ,−3∗(1+ alpha 0+alpha a ) ) ) ) ,1/(1+ alpha 0+alpha a ) )−
26 A∗pow ( (A+B∗(pow( a ,−3∗(1+ alpha 0+alpha a ) ) ) ) ,−( a lpha 0+alpha a ) /

27 (1+ alpha 0+alpha a ) ) ;

28 break ;

29 case m a r t i n e l l i :

30 q0 = pba−>i n t paramete r s [ 0 ] ;

31 omega0l prop = pba−>i n t paramete r s [ 1 ] ;

32 omega0m prop = pba−>i n t paramete r s [ 2 ] ;

33 pvecback in t eg ra t i on [ pba−>i n d e x b i r h o l i n t ]=

34 omega0l prop∗pba−>H0∗pba−>H0∗pow(a,−q0 ) ;

35 pvecback in t eg ra t i on [ pba−>i n d e x b i r h o c i n t ]=

36 omega0m prop∗pba−>H0∗pba−>H0∗pow(a ,−3)+

37 omega0l prop∗pba−>H0∗pba−>H0∗( q0 /( q0−3) ) ∗(pow( a ,−3)−pow(a,−q0 ) ) ;

38 break ;

39 }
40
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Implementing new interacting Q models is now easy, we only have to define the pa-

rameters for each particular model and associate them to an input of int parameters.

We introduced here the Constant, Martinelli’s and Wang’s interacting functions via

equations (2.77) and (2.81).

1 double Q int ( s t r u c t background ∗pba , double r h o l i n t , double r h o c i n t ,

double a , double H aux )

2 {
3 switch ( pba−>i n t e r a c t i n g f u n c t i o n ) {
4 case constant :

5 {
6 double int Q0 = pba−>i n t paramete r s [ 0 ] ;

7 re turn int Q0 ;

8 break ;

9 }
10 case m a r t i n e l l i :

11 {
12 double q0=pba−>i n t paramete r s [ 0 ] ;

13 re turn −q0∗H aux∗ r h o l i n t ;

14 break ;

15 }
16 case wang :

17 {
18 double a lpha 0=pba−>i n t paramete r s [ 0 ] , a lpha a=pba−>i n t paramete r s [ 3 ] ;

19 re turn 3∗( a lpha 0+alpha a ∗(1−a ) ) ∗H aux∗ r h o l i n t ∗ r h o c i n t /( r h o l i n t+

r h o c i n t ) ;

20 break ;

21 }
22

23 }
24 }
25

26

3.3.3 Modifying the Perturbations Module

First we have to introduce Eq.(2.98) and then we have to add the contribution of our

model to the perturbations frame of CLASS.

1 i f ( pba−>h a s i n t == TRUE ) {
2 ppw−>d e l t a r h o i n t = ppw−>pvecback [ pba−>i n d e x b g r h o c i n t ]∗ y [ ppw−>pv−>

i n d e x p t d e l t a i n t ] ;

3 ppw−>d e l t a r h o += ppw−>d e l t a r h o i n t ;

4 ppw−>r h o p l u s p t o t += ppw−>pvecback [ pba−>i n d e x b g r h o i n t ] ;
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5 }

Next we introduced the perturbation equation Eq.(2.100) for the interacting model.

It is important to remember that this equation is only valid in the synchronous gauge

and for the Dark Matter Geodesic Model. 1

1 i f ( pba−>h a s i n t == TRUE ) {
2 dy [ pv−>i n d e x p t d e l t a i n t ] =

3 −m e t r i c c o n t i n u i t y+a∗y [ pv−>i n d e x p t d e l t a i n t ]∗ pvecback [ pba−>
i ndex bg Q int ] / pvecback [ pba−>i n d e x b g r h o c i n t ] ;

4 }

In order to evolve the perturbations, initial conditions are needed. We used those

from Eq.(2.104).

1 i f ( pba−>h a s i n t == TRUE ) {
2 ppw−>pv−>y [ ppw−>pv−>i n d e x p t d e l t a i n t ] =

3 3 . / 4 .∗ppw−>pv−>y [ ppw−>pv−>i n d e x p t d e l t a g ] ;

4 }

3.4 Running CLASS

Running CLASS is simple, we only have to define all the needed cosmological param-

eters in the .ini file, open a terminal on the PC, go to the directory where CLASS is

stored and give the following instruction in the terminal

1 . / c l a s s archivename . i n i

Immediately the terminal will display information about the realization of the different

stages of the code, some cosmological information and, if succeeded, the route and name

where the output data will be stored. We present here and example of this display for

one particular execution of CLASS

1 Reading input parameters

2 Computing unknown input parameters

3 Stage 1 : background

4 omega int shoot ing −0.000592495

5 omega0m target shoot ing −0.00113418

6 −> found ’ omega0l prop = 2.430682 e−02 ’

7 −> found ’ omega0m prop = 4.635692 e−01 ’

1Note that metric continuity stands for h′

2
with h the trace of perturbations matrix defined in

Eq.(2.99).
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8 Shooting completed us ing 9 func t i on e v a l u a t i o n s

9 −> matched budget equat ions by ad ju s t i ng Omega int = 9.516329 e−01

10 Running CLASS ve r s i on v2 . 9 . 0

11 Computing background

12 −> age = 12.268000 Gyr

13 −> conformal age = 11778.827269 Mpc

14 −> pba−>Nef f = 3.046000

15 D e t a i l s o f i n t e r a c t i n g model :

16 −> Omega int = 0.951633 , wished 0.951633

17 −> parameters : [Q0 ] =

18 [ 0 . 0 0 0 , 0 . 024 , 0 . 4 6 4 ]

19 −> r a d i a t i o n / matter e q u a l i t y at z = 5582.473812

20 cor re spond ing to conformal time = 68.768535 Mpc

21 −−−−−−−−−−−−−−−−−−−−−−−−−−−− Budget equat ion −−−−−−−−−−−−−−−−−−−−−−−
22 −−−> N o n r e l a t i v i s t i c Spec i e s

23 −> Bayrons Omega = 0.0482754 , omega =

0.022032

24 −> Cold Dark Matter Omega = 1e−10 , omega =

4.56381 e−11

25 −−−> R e l a t i v i s t i c Spec i e s

26 −> Photons Omega = 5.41867 e−05 , omega =

2.47298 e−05

27 −> Ultra−r e l a t i v i s t i c r e l i c s Omega = 3.74847 e−05 , omega =

1.71073 e−05

28 −−−> Other Content

29 −> I n t e r a c t i n g Model Omega = 0.951633 , omega =

0.434307

30 −−−> Total budgets

31 Radiat ion Omega = 9.16714 e−05 , omega =

4.18371 e−05

32 Non−r e l a t i v i s t i c Omega = 0.0482754 , omega =

0.022032

33 Other Content ( I n t e r a c t i n g Model ) Omega = 0.951633

, omega = 0.434307

34 TOTAL Omega = 1 , omega =

0.456381

35 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
36 Computing thermodynamics with Y He=0.2453

37 −> recombinat ion at z = 1094.732512 (max o f v i s i b i l i t y func t i on )

38 cor re spond ing to conformal time = 243.875895 Mpc

39 with comoving sound hor i zon = 126.261515 Mpc

40 angular diameter d i s t ance = 10.527160 Mpc

41 and sound hor i zon ang le 100∗ t h e t a s = 1.094599

42 Thomson o p t i c a l depth c r o s s e s one at z ∗ = 1090.750887

43 g iv ing an ang le 100∗ the ta ∗ = 1.097121
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44 −> baryon drag s tops at z = 1064.885804

45 cor re spond ing to conformal time = 248.645600 Mpc

46 with comoving sound hor i zon r s = 128.426224 Mpc

47 −> r e i o n i z a t i o n with o p t i c a l depth = 0.073403

48 cor re spond ing to conformal time = 3366.950072 Mpc

49 Computing sourc e s

50 Computing pr imord ia l spe c t ra ( a n a l y t i c spectrum )

51 Computing l i n e a r Four i e r spec t ra .

52 −> sigma8 =1.19135 f o r t o t a l matter ( computed t i l l k = 1.00203 h/Mpc)

53 No non−l i n e a r spec t ra reques ted . Nonl inear c a l c u l a t i o n s skipped .

54 Computing t r a n s f e r s

55 Computing unlensed harmonic spec t ra

56 Computing l en sed spec t ra ( f a s t mode)

57 Writing output f i l e s in output /pruebacambmpk00 . . .

The archives that are stored containing all the output data are under this configuration:

• background.dat Contains the data related to background quantities like

{ρc, ρΛ, ρb, H, dlum, dang, Q...}.

• cl.dat Contains the CMB power spectrum C`.

• cllensed.dat Contains the lensed CMB power spectrum.

• pk.dat Contains the matter power spectrum P (k).

• parameters.ini A complete list of cosmological parameters introduced in the

.ini archive.

• unusedparameters.dat The unused cosmological parameters.

3.4.1 Commentary about Standard Cosmology parameter Basis

It is important to remark that from the ΛCDM parameter basis {As, ns, ΩΛ, Ωm, Ωb, τreio}
we kept fixed all the six parameters. In Table(3.1) we present a summary of this fixed

values extracted from the .ini file. This values were fixed for all interacting models.

Parameter As ns Ωb ΩΛ Ωm τreio

Value 2.215×10−9 0.9619 0.04827 0.6889 0.260666759 0.073403

Table 3.1: ΛCDM fixed parameter basis
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3.5 Plotting the Numerical Output and Regions of Valid-

ity for the Interacting Model Parameters

When we obtained the final version of the modified CLASS, we immediately noticed

that for some values of the interacting parameters we obtained negative values for

some densities. We then found a specific range for the parameters of each interacting

model where the interaction between Dark Matter and Dark Energy keeps positive the

corresponding energy densities ρc and ρΛ. If we put values outside these regions, the

output of CLASS gives warnings when finding a negative value for some energy density

and then the program stops abruptly. Some authors noticed this behavior [35, 36]. They

argue that interacting models like the one presented in this work break the weak energy

condition and we verified that this in fact occurs for extreme values of the interacting

parameters. This is understandable since we propose an energy exchange between Dark

Energy and Dark Matter so we can not put arbitrary values for the parameters of the

model or the energy densities could become negative. For this reason and in order to

avoid this issue we found the following regions of validity reported in Table(3.2), for the

interacting parameters where the weak energy condition holds through all evolution of

the Universe. Finally we plotted the numerical output data varying each interacting

parameter inside its region of validity.

Interacting function Parameter with region of validity

Constant −4× 10102 Mpc−5 ≤ Q0 ≤ 4× 10102 Mpc−5

Martinelli −21 ≤ q0 ≤ 0.8

Wang −0.99 ≤ α0, αa ≤ 6.3

Table 3.2: Interacting model parameters and their region of validity.
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Results

We present in this chapter plots of the numerical output of CLASS with the imple-

mented Dark Energy-Dark Matter model. For details of the modifications of the CLASS

code and a complete list of cosmological parameters, please see the Methodology chap-

ter.

4.1 Comparison with Analytic Results

It is extremely important to check that the numerical integration performed by the

modified CLASS code is correct. In order to verify this important topic we found in

the literature the analytical solutions for Martinelli’s and Wang’s interacting models

Eqs.(2.79) and (2.82) respectively. These analytical solutions can be found for a re-

duced model of the Universe where are only exist the interacting Dark Energy and

Dark Matter. In that case with the Friedmann equation closes the differential equation

system and we can be solve analytically. Despite the simplicity of the constant inter-

acting function we did not find an analytical solution for the reduced model. Note that

CLASS considers a more realistic scenario where also are considered ultra-relativistic

species and baryons. Therefore a comparison between the reduced analytical solution

and the CLASS output is not formally exact.

In Figs. (4.1) to (4.4) we present the comparison of the analytical and numerical

densities ρc and ρΛ with the corresponding percentage difference between them, finding

that despite the already commented limitations the analytical solution agrees well with

the numerical output of CLASS with a maximal percentage difference of 0.35%. We
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considered that this result is enough to conclude that the numerical integrations carried

out by the CLASS code are correct since the analytical and numerical solutions are

completely independent and have variations of less than 0.35%. This is important

because we can now implement new models for the interacting function Q, even if they

do not have a reduced analytical solution and we would know that numerical integration

will be correct.

30 25 20 15 10 5 0

0

1

2

3

4

c
[M

pc
4 ]

1e147

c, CLASS

c, Analytic

30 25 20 15 10 5 0
ln(a)

0.275

0.300

0.325

0.350

0.375

%

( c, CLASS/ c, analytic 1) * 100

c comparison for Martinelli's interacting function q0 = 0.2 and Analytical Solution

Figure 4.1: ρc comparison - Between numerical CLASS output and analytical model

defined in Eqs.(2.79) and (2.80).

4.2 Ω’s for the Interacting Models

In this section we plot the Ω density parameters for radiation Ωr, interacting Dark

Energy ΩΛ and matter Ωm. Where Ωm contains the contribution of baryons Ωb and

interacting Dark Matter Ωc versus the expansion factor a.

In Fig.(4.5) we present the density parameters Ω for the case of a constant interact-

ing function Q = Q0. Recall from the background equation in the constant interacting

model Eq.(2.72) that Q0 > 0 directly implies ρ′Λ > 0 and therefore we will have a sub-

sequent positive contribution to Ω′Λ. We can see this effect in Fig.(4.5), at the epoch

when Dark Energy increases, the ΩΛ lines with Q0 > 0 have a greater slope than the
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Figure 4.2: ρΛ comparison - Between numerical CLASS output and analytical model

defined in Eqs.(2.79) and (2.80).
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defined in Eqs.(2.82) and (2.83).
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Figure 4.4: ρΛ comparison - Between numerical CLASS output and analytical model

defined in Eqs.(2.82) and (2.83).

ΛCDM reference. In fact they tend to be vertical. The reason behind this feature

is that we kept fixed the parameter Ω0
Λ, which has to be reached with greater slope,

causing that the ΩΛ lines with Q0 > 0 are below the ΛCDM reference line. This means

that despite the ρ′Λ increasing there is less content of Dark Energy respect to ΛCDM

for ln(a) < 0. We can also see in Fig.(4.5) that this lack of Dark Energy is reflected

in an increment of Ωm respect to ΛCDM model, since the Ωm lines for Q0 > 0 are

above the respective ΛCDM line for all ln(a) < 0. This enhanced Dark Matter causes

radiation-matter equality to happen earlier and a later matter-Dark Energy time of

equality respect to ΛCDM as we can see in Fig.(4.5). The case Q0 < 0 can be thought

in an analogous but opposite way.

In Fig.(4.6) for the Martinelli’s interacting model Q = −q0HρΛ we noticed that Q

and q0 carry opposite sign, since the Hubble parameter H and the energy density ρΛ

are positive definite. For this interacting model, the minus in the definition makes in

a similar analysis to the Constant interacting case q0 > 0 favors an increase of Dark

Energy in the Universe. This causes a later matter-radiation equality and an earlier

matter-Dark Energy equality respect to ΛCDM model. For q0 < 0 we can observe in

Fig.(4.6) the inverse situation, matter-radiation equality happens earlier and matter-
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Figure 4.5: Ω ’s for Constant Interacting Model - Solid line for ΛCDM, (

) for Q0 = −2.7 × 10102Mpc−5, ( ) for Q0 = 2.7 × 10102Mpc−5 and ( ) for

Q0 = 4× 10102Mpc−5, with Q0 defined in Eq.(2.76).

Dark Energy happens later than in the ΛCDM model. In Figs.(4.7), (4.8) we plot the

corresponding Ω’s for Wang’s interacting model

Q = 3(α0 + αa(1− a))H
ρcρΛ

ρc + ρΛ
,

keeping fixed one of the two parameters to see their individual effect. From the above

definition we see that both parameters α0 and αa have the same sign as Q. So we verify

in each figure that occurs the same case as in the constant interacting function already

discussed. Positive parameters α0 and αa cause a matter-radiation equality to happen

earlier and a matter-Dark Energy equality to happen later than in the ΛCDM model.

Negative values of the parameters have the contary effect.

In general we notice a change in time of density parameter equalities, this will

become important in the following discussions especially when analyzing the Power

Spectra for the different interacting models.
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Figure 4.6: Ω ’s for Martinelli’s Interacting Model - Solid line for ΛCDM, ( )

for q0 = 0.8, ( ) for q0 = 0.6 and ( ) for q0 = −0.8, with q0 defined in Eq.(2.77).
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Figure 4.7: Ω ’s for Wang’s Interacting Model - Solid line for ΛCDM, and in this

figure α0 = 0.3 is fixed, while ( ) stands for αa = −0.9, ( ) for αa = −0.6 and (

) for αa = 0.9, with α0 and αa defined in Eq.(2.81).
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Figure 4.8: Ω ’s for Wang’s Interacting Model - Solid line for ΛCDM, and in this

figure αa = 0.3 is fixed, while ( ) stands for α0 = −0.6, ( ) for α0 = 0.9 and (

) for α0 = −0.9, with α0 and αa defined in Eq.(2.81).

4.3 Hubble Parameter for the Interacting Models

In Fig.(4.9) we show CLASS’s output corresponding to the Hubble parameter H vs.

redshift z, in the interval z ∈ [0, 5] since it is a reasonable observable interval. We see

that the interacting model affects notably the Hubble parameter. We see that lines

for interacting parameters that augment ρ′Λ present an increase in the value of the

Hubble parameter , meanwhile lines with a decrease in value of the Hubble parameter

are those which enhance ρ′m. We plotted for Constant and Martinelli’s interacting

functions parameters with different sign, then we observed in Fig.(4.9) that the cases

Q0 > 0 and q0 < 0 increase the Hubble parameter respect to the ΛCDM reference

line and the opposite cases are below this reference line. The situation for Wang’s

model having two parameters is a bit different, we chose plotting a pair of parameters

with different sign. The particular choice of the plotted parameters for Wang’s model

resulted in a smaller Hubble parameter for each z > 0 with respect to ΛCDM model.

In general we notice that the cases Q0, α0, αa < 0 and q0 > 0 for the different

interacting models tend to flattened the obtained curve in Fig.(4.9). All this cases

contribute to an increment of ρ′m and as already discussed a consequent enhancement
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of Dark Energy. This essentially means that this enhancement of Dark Energy tends

to the de Sitter Universe [37] where the Hubble parameter is constant.
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Figure 4.9: Hubble parameter - H for different interacting models with H defined in

Eq.(2.29).

4.4 CMB Power Spectrum for the Interacting Models

In this section we present the CLASS output relative to the CMB power spectrum for

the different interacting models, in each figure we vary the parameters of the corre-

sponding model in order to see their effects on the CMB power spectrum.1

In Fig.(4.10) we observe the CMB power spectrum for constant interacting function,

for different values of the parameter Q0. We proceed now to analyze the resulting CMB

power spectrum related to the above effects for constant interacting function.

• Global Amplitude. We note that global amplitude does not change since the

amplitude of the primordial spectrum As is kept fixed.

1Please, note that we have plotted `(` + 1)C`/2π versus `. Also notice that the horizontal axis of

figures has two different scales, for ` < 100 the scale is logarithmic and for ` > 0 the scale is lineal.

The reason of plotting this way is that for the first `’s we can observe the Sachs-Wolfe plateau which

we have discussed in theory of the CMB power spectrum.
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• Global tilt. Global tilt has no changes in the interacting model.

• First peak scale. We note that the first peak scale changes by only a tiny value.

• Amplitude of first peaks. We notice that the amplitude of the first peaks change

depending on the value of Q0. We think this has a simple physical explanation:

we note in Fig.(4.10) that power spectra with Q0 < 0 have a greater amplitude

of their first peaks with respect to ΛCDM reference spectrum. This effect is due

the fact that for Q0 < 0 radiation-matter equality takes place later, expanding in

time the radiation domination era during which the gravitational enhancements

are higher respect to those in a matter dominated Universe. The case Q0 > 0 can

be explained in an analogous and opposite situation where the radiation-matter

equality happens earlier.

• Ratio of odd to even peaks. We see that the ratio of odd-even peaks changes for

the constant interacting function. For Q0 < 0 the amplitude of the second peak

is bigger than the third and for Q0 > 0 occurs the contrary situation. Since we

know Q0 > 0 favors the quantity of Dark Matter this means that if Dark Matter

is enhanced the amplitude of the second peak reduces.

• Damping envelope. This envelope is considered to cover the peaks approximately

from the third one. We see from Fig.(4.10) that the amplitude from the third peak

and above do not change considerably, they are only displaced in the horizontal

` scale. We know from the theory that this envelope depends strongly on the

diffusion length of photons at decoupling and the interacting model does not

affect this quantity.

• Sachs-Wolfe plateau tilting. We notice for ` < 100 with aid of the horizontal

logarithmic scale that the Sachs-Wolfe plateau slope changes depending on the

value of Q0. We can see in Fig.(4.10) that the tilting of the plateau increases for

Q0 < 0, we have discussed this phenomena in the theory chapter concluding that

the duration of Dark Energy domination makes greater the tilting, and indeed this

is the case for Q0 < 0. We already discussed that matter-Dark Energy equality

happens earlier, making the Dark Energy domination epoch longer. Contrary,

the case Q0 > 0 causes a reduced Dark Energy domination era and therefore the

plateau tilting is less pronounced.
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• Amplitude for ` > 40. We do not expect a change in this feature of the CMB

power spectrum since we kept fixed all parameters related to the optical reion-

ization depth.
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Figure 4.10: CMB Power Spectrum for Constant Interacting Model - Comparison

between different values of Q0, ΛCDM and Plack 2018 data, with Q0 defined in Eq.(2.76).

In Fig.(4.11) we see the corresponding CMB power spectrum for the Martinelli’s

interacting function. We only find a trivial difference from the case of the constant

interacting model. From the definition of the Martinelli’s interacting function it carries

an extra minus sign. This causes that now the peaks for q0 > 0 are enhanced in

amplitude. So the cases Q0 < 0 for constant interacting function and q0 > 0 for

Martinelli’s model are essentially equivalent.

In Figs.(4.12) and (4.13) we present the CMB power spectrum obtained for the

Wang’s interacting model keeping one of the parameters α0 or αa fixed respectively. We

note that the effects produced in these figures are analogue to the constant interacting

function, the cases Q0 < 0 and α0 < 0 or αa < 0 produce similar effects and can be

explained in a similar way already discussed.
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Figure 4.11: CMB Power Spectrum for Martinelli’s Interacting Model - Com-

parison between different values of q0, ΛCDM and Plack 2018 data, with q0 defined in

Eq.(2.77).

500 1000 1500 2000 2500 3000100 101 102

0

1000

2000

3000

4000

5000

6000

7000

(
+

1)
C

TT
/2

[
K

2 ]

CDM
a = 0.6
a = 0.3
a = 0
TT  Planck

CMB Power Spectrum For Wang's Interacting Function, 0 = 0.3

Figure 4.12: CMB Power Spectrum for Wang’s Interacting Model - Comparison

between different values of αa (α0 is kept at 0.3), ΛCDM and Planck 2018 data, with α0

and αa defined in Eq.(2.81).
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Figure 4.13: CMB Power Spectrum for Wang’s Interacting Model - Comparison

between different values of α0 (αa is kept at 0.3), ΛCDM and Planck 2018 data, with α0

and αa defined in Eq.(2.81).

4.5 The Matter Power Spectrum for the Interacting Mod-

els

In this section we present the CLASS’s output corresponding to the Matter Power

Spectrum for the different interacting models.

In Fig.(4.14) we can see that the global maxima of the spectrum at k = keq moves

horizontally in the k axis depending on the value of the parameter Q0. We observe

that for Q0 < 0 this maxima move towards smaller values of k and as Q0 gets positive

this moves to greater values of k with respect to the ΛCDM model. We remember

that Q0 < 0 implies a later radiation-matter time of equality, so we find that if aeq

increases then keq in the matter power spectrum reduces its value. Also for k > keq the

oscillations’ amplitude increase as Q0 becomes more negative, we see a similar effect

in the CMB power spectrum where for negative Q0 the amplitude of the anisotropies

increase. This is clear for us, we know from the theory that perturbations for all the

components of the Universe are strongly coupled in some regimes.

In Fig.(4.15) we see the corresponding Matter Power spectrum for Martinelli’s in-
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Figure 4.14: Matter Power Spectrum for Constant Interacting Model - Com-

parison between different values of Q0 and ΛCDM, with Q0 defined in Eq.(2.76).

teracting model, again the cases Q0 < 0 in the constant interacting model and q0 > 0

are practically equivalent.

In Figs.(4.16) and (4.17) we present the Matter Power Spectrum for Wang’s inter-

acting model. We see similar effects to the case of the Constant interacting function

when we kept fixed one parameter of Wang’s model and allow the other to vary. Re-

spectively the more negative α0 or αa < 0 the more oscillations we find for k > keq and

also keq reduces its value.

4.6 Effective Equation of State for the Interacting Models

In Fig.(4.18) we present the effective equation of state for the interacting Dark Energy,

we recall here that it is not a formal equation of state but it is an indicator of the

dynamics of Dark Energy since it is proportional to ρ′Λ. We defined in Eq.(2.87) this

effective equation of state weff ≡ −1− Q
3HρΛ

, finding it proportional to the interacting

function Q and inversely proportional to the factor HρΛ. This is important because we

can define interacting models having the form Q = 3HρΛχ, with χ = χ(a, ρc, ρΛ, ...) in

order to do keep the same degrees of freedom to the model. In this case, the effective
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Figure 4.15: Matter Power Spectrum for Martinelli’s Interacting Model - Com-

parison between different values of q0 and ΛCDM, with q0 defined in Eq.(2.77).
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Figure 4.16: Matter Power Spectrum for Wang’s Interacting Model - Comparison

between different values of αa (α0 is kept at 0.3) and ΛCDM, with α0 and αa defined in

Eq.(2.81).
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Figure 4.17: Matter Power Spectrum for Wang’s Interacting Model - Comparison

between different values of α0 (αa is kept at 0.3) and ΛCDM, with α0 and αa defined in

Eq.(2.81).

equation of state reduces to weff = −1− χ and we have a huge freedom to model the

form of this effective equation of state. Some authors [38] have found effective equations

of state but do not have a theoretical model, hence the interacting model could be an

interesting proposal in order to explain these results.
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Figure 4.18: Effective equation of state for interacting Dark Energy - Comparison

between different Weff defined in Eq.(2.87).
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Conclusions

In this work we build the conceptual and computational tools to study models with

interaction between Dark Matter and Dark Energy. Some of these models might re-

duce the tensions in the measurements of the Hubble constant in a future work. The

implementation of new interacting models is now easy and we have reported how to do

it in some simple steps. So in a practical amount of time we can obtain wide numeri-

cal cosmological information at background and at first level in perturbations theory.

We checked that the numerical integration were carried correctly by comparing with

analytic solutions, finding a maximal percentage difference of 0.35%. This numeri-

cal information can be now subjected to experimental tests and have been compared

with the corresponding ΛCDM results finding notable differences that make suitable

the model to a posterior parameter fitting. Each studied interacting model had specific

parameters for which we have found regions of validity where they satisfy the weak con-

dition of energy. We obtained the evolution of the density parameters Ω by finding that

in the interacting scenario, the time of equality for matter-radiation and the posterior

matter-Dark Energy in fact changed depending on the sign and value of the interacting

function Q. We found that the case Q > 0 increased ρ′Λ and contra-intuitively en-

hanced ρc in order to reach the fixed parameters ΩLambda and Ωc at present time. This

increment of ρc caused an earlier matter-radiation equality and a later matter-Dark

Energy time of equality. So the particular model parameters that favored a positive Q

presented this behavior. The case Q < 0 was found to be directly the opposite. These

changes in equality times affected the posterior results.

We obtained the matter and CMB Power Spectrum for the different models. We
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analyzed in the CMB power spectrum the following characteristics in the interacting

model. The global amplitude and global tilt of the spectrum were not changed, since

we kept fixed the parameters As and ns that govern them and the interacting scenario

did not induce any change. The scale of the first peak changed but only by a little

amount of a few `’s. The amplitude of the first peaks changed and we found that they

were enhanced for Q < 0, the reason is that the radiation-matter equality happens

later for Q < 0 with respect to the ΛCDM one, this causes an extension in time of the

radiation dominated era where the gravitational enhancement effects are more present

than in a matter-dominated Universe. The ratio of odd-even peaks changed: we found

that the Dark Matter density increases for Q > 0 and at the same time the amplitude

of the second peak reduces. So the more Dark Matter present in the Universe, the

more reduced the second peak becomes. The damping envelope of all CMB power

spectrum were not changed in the interacting models, nor the amplitude for large `

where possible reionization effects could be present. The Sachs-Wolfe plateau tilting

for ` < 100 notably changes in the interacting scenario, for Q < 0 the tilting increases,

meaning that an extension in time of Dark Energy domination favored the tilting of

the plateau. In regard to the matter Power Spectrum we observed that the maximum

of the spectrum at k = keq gets displaced horizontally in the k axis depending on the

value and sign of the interacting function Q. The more negative Q, the smaller keq,

so we concluded that if aeq the value of the expansion factor at the time of radiation-

matter augment then the corresponding keq reduces. For the case Q > 0 the contrary

effect takes place. Another observed effect was that for k > keq the more negative Q,

the more oscillations found in the matter power spectrum and more amplitude in the

corresponding CMB power spectrum.

Some proposals have been made in this area of study, in principle we analyze here

the models proposed by Wang [10] and Martinelli [11]. Wang’s model was proposed to

explain the discrepancy found in the measurement of the 21-cm brightness temperature

performed by the EDGES team [39], respect to the value predicted by ΛCDM model.

There they found a non-trivial constrain on the parameters of the Wang’s model, that

fitted the experimental results. We found that the values of these fitted parameters are

inside our region of validity for Wang’s model. On the other hand, for the Martinelli’s

model they conclude that the no-interaction scenario is compatible at a 95% confidence

level in all their parameter estimations. So, the pursuit of a good interaction model
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that agrees well with all possible observational data remains open. In this line, our

work represents a good opportunity in the area of the interacting scenario, because our

basic idea is to give the bases and tools to propose and test new models, i.e., we are

not restricted to one particular model.

This work opens the possibility to study models that reproduce a weff as the one

found in [38]. The model proposed here can be designed to cross the phantom divide

for weff = −1, we already know that an interacting function of the type Q = 3ρΛHχ

will lead us to an effective equation of state for the Dark Energy weff = −1 − χ,

then we have the freedom of choosing χ in a particular and desired way. We also still

need to explore the different models using MontePython [12] and therefore to constrain

the parameters of a given interacting model. This task generally requires less work

than modifying CLASS code, the principal difference is that the former requires more

computational power than the later. Therefore we still have a wide panorama to explore

in this dark interacting sector.

One of the limitations of this work is that we did not include a microscopic ex-

planation for the energy exchange, since we are interested in directly compare it with

observations and then in a posterior analysis determine the viability of a deeper the-

oretical analysis. This work is based on a macroscopic energy exchange between the

Dark Matter and Dark Energy, this allowed us to obtain the Power Spectra for the

matter and for the CMB, but we did not begin from a Lagrangian formulation. An-

other limitation is that we can find in the literature interacting models that break the

weak energy condition [35, 36]. We found that this indeed happens but for extreme

values of the interacting parameters, to solve this issue we found regions of validity for

the interacting parameters where the weak energy condition holds. These regions were

easy to estimate, the CLASS code automatically stops if any non-positive value of some

density is found. Another possible issue is that some particular interacting models, for

example [40], once constrained with observational data trivial values of the parameters

were preferred. But all this conclusions are subjected to one particular model, here we

have the opportunity of exploring new ones.

We are in a good position to study interacting models given the tools created. The

proposal in this thesis is to study one of the many variations of the ΛCDM model and

we have explored this option by finding the corresponding matter and CMB Power

Spectrum. And principally important we have the basis for new posterior explorations
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5. CONCLUSIONS

in the dark interacting sector. We obtained a viable way to modify a standard model like

the ΛCDM one, by adding new features to some cosmological components of the model.

Following the rules of General Relativity we have now the possibility of obtaining data

ready to be compared with the latest observations, we also gained insights in how this

proposal affects essential characteristics of the Universe like times of equality between

different components and how this information is contained in the Power Spectra that

carry the fingerprints of the real Universe when measured. So we have tested in a

theoretical way a possible version of the Universe, where the assumed components

Dark Matter and Dark Energy interact, but of course only observations will dictate if

this idea is viable or not.
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