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Thesis overview

Resumen

En este trabajo, presentamos un modelo de evolución biológica en el espacio de los números
p-ádicos, el cual es una versión no arquimediana del modelo clásico de Eigen-Schuster. El
modelo de Eigen-Schuster fue introducido originalmente por Manfred Eigen [10], y posterior-
mente fue desarrollado considerablemente en conjunto con Peter Schuster y otros, [11, 26, 25].

El modelo de Eigen-Schuster describe el comportamiento cualitativo de la evolución
de macromoléculas biológicas (secuencias), tales como cadenas de ADN monocatenario y
moléculas de ARN. Después de mucha investigación, se encontró que el modelo es útil para
describir otros fenómenos, tales como la evolución del lenguaje natural, virus con altas tasas
de mutación y la evolución de la reproducción sexual, ver [22].

Al principio, Eigen introdujo el modelo para estudiar la dinámica de evolución de especies
qúımicas dentro de un reactor qúımico. La dinámica del modelo considera los tres princi-
pales ingredientes para la existencia de la evolución: replicación (reproducción), mutación y
selección.

Bajo ciertas hipótesis, el mecanismo de mutación-selección impone un ĺımite en la lon-
gitud de un genoma para evitar la pérdida de información, y por lo tanto, la existencia
de la evolución. Dentro de este modelo, los genomas con una larga longitud son incapaces
de replicarse a śı mismos con una tasa de fidelidad lo suficientemente alta. Tal ĺımite es
conocido como el umbral de error. Un problema abierto importante de la teoŕıa es dar una
explicación satisfactoria a la paradoja de Eigen, es decir, explicar la existencia de sistemas
vivos complejos.

Nuestro trabajo está organizado como sigue. En el Caṕıtulo 1, revisamos el modelo
clásico de Eigen-Schuster. Consideramos un sistema de n especies moleculares I1, I2, . . . , In
con la capacidad de autorreplicarse. Sea xi(t) ≥ 0 la concentración (población relativa)
de la especie Ii al tiempo t en el sistema. Denotamos Ai (respectivamente Di) la tasa de
replicación (respectivamente tasa de degradación) de la especie Ii y definimos Ei := Ai−Di,
la productividad de la especie Ii. El modelo de Eigen-Schuster está descrito por el siguiente

5
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sistema de ecuaciones diferenciales,

dxi
dt

= (AiQii −Di)xi +
∑
j 6=i

AjQjixj − Φ(t)xi i = 1, . . . , n,

donde Qij es la probabilidad que una molécula de la especie Ii se replique en una molécula
de la especie Ij y Φ(t) =

∑n
i=1 Eixi(t) es un flujo de evacuación que asegura que la población

total se mantiene constante.

No solo presentamos las principales ideas matemáticas, sino también simulaciones numéricas
que ilustran visualmente conceptos y retos de la teoŕıa. En particular, estudiamos el modelo
de Swetina-Schuster [26, 25], que da una descripción expĺıcita de los valores de Qij, y que
es ahora el punto de referencia para el estudio del umbral de error y los fenómenos ter-
modinámicos de transiciones de fase en modelos biológicos.

En el Caṕıtulo 2, introducimos los conceptos principales y los resultados de la teoŕıa del
análisis p-ádico. Enunciamos, sin demostración, un conjunto de proposiciones y teoremas
que rápidamente introducen al lector no especializado en el tema. Nuestro trabajo es au-
tocontenido, hasta un nivel razonable. Pusimos nuestro mejor esfuerzo en incluir todos los
resultados necesarios para el estudio del modelo p-ádico del modelo de Eigen-Schuster, los
cuales referenciamos en el caṕıtulo subsecuente cuando sea necesario para hacer la lectura
más fácil de seguir. Además, presentamos algunas representaciones gráficas de la bola Zp en
el plano euclidiano, y mostramos algunos ejemplos de cómo graficar funciones de Zp a R y
su visualización en R3.

En el Caṕıtulo 3, comenzamos revisando el modelo p-ádico de Eigen-Schuster, el cual
fue introducido por Zuñiga-Galindo en [31]. En este trabajo, un genoma (secuencia) es
representado por un número p-ádico,

x = x−kp
−k + x−k+1p

−k+1 + . . .+ x0 + x1p+ . . . , xj ∈ {0, . . . , p− 1}, j = −k, . . . .

Luego, la longitud del genoma puede crecer arbitrariamente. Asumimos la existencia de una
medida de mutación Q : R+ → R+ tal que

∫
Qp Q(|x|p)dx = 1 donde dx es la medida de Haar

normalizada del grupo (Qp,+). Adicionalmente, asumimos que el paisaje de aptitud está
dado por una función de prueba radial.

En este modelo, la concentración X(x, t) de la secuencia x al tiempo t está controlada
por la siguiente ecuación de evolución:

∂X(x, t)

∂t
= Q(|x|p) ∗ {f(|x|p)X(x, t)} − Φ(t)X(x, t) x ∈ Qp, t ∈ R+

donde Φ(t) =
∫
Qp f(|y|p)X(y, t)dy es un flujo de evacuación. El término

Q(|x|p) ∗ {f(|x|p)X(x, t)} =

∫
Qp
Q(|x− y|p)f(|y|p)X(y, t)dy
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representa la tasa a la cual las secuencias mutan a la secuencia x.

Siguiendo el trabajo de [31], mostramos que bajo ciertas hipótesis, podemos recuperar
una versión ultramétrica del modelo clásico de Eigen-Schuster, i.e., mostramos un esquema
de discretización para el modelo p-ádico que recupera un sistema análogo ultramétrico del
caso clásico. Estudiamos la paradoja de Eigen en el contexto p-ádico. En particular, bajo
ciertas hipótesis, la paradoja de Eigen no ocurre.

Después de esto, nos restringimos a estudiar la ecuación del replicador p-ádica para
una medida de mutación soportada en la bola unitaria Zp. Usando hipótesis razonables,
mostramos la existencia de una solución separable en un subespacio propio cerrado VL ⊂
L2(Zp,C) al problema de Cauchy,

X : Zp × R+ → R, X(·, t) ∈ VL ∩ L2(Zp,R), X(x, ·) ∈ C1(R+,R)
∂X(x,t)
∂t

= WX(x, t)− Φ(t)X(x, t), x ∈ Zp, t ∈ R+

X(x, 0) = X0 ∈ VL ∩ L2(Zp,R).

donde W : L2(Zp,C)→ L2(Zp,C) está dado por

(Wϕ)(x) =

∫
Zp
Q(|x− y|p)f(|y|p)ϕ(y)dy,

y

Φ(t) =

∫
Zp
f(|y|p)X(y, t)dy.

Finalmente, discutimos diferentes técnicas de la teoŕıa del análisis funcional no lineal, y
cómo se pueden aplicar al estudio de la existencia de las cuasiespecies, en otras palabras, los
estados estacionarios de la ecuación del replicador p-ádica.

En el Apéndice A y el Apéndice B, incluimos el código necesario para realizar las simu-
laciones numéricas y las gráficas que aparecen a lo largo de este trabajo.
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Overview

In this work, we present a model of biological evolution in the space of p-adic numbers, which
is a non-Archimedean version of the classical Eigen-Schuster model. The Eigen-Schuster
model was originally introduced by Manfred Eigen [10], and then developed considerably
together with Peter Schuster and others, [11, 26, 25].

The Eigen-Schuster model describes the qualitative behaviour of evolution of biological
macromolecules (sequences), such as single stranded DNA and RNA molecules. After ex-
tensive research, the model has found to be useful to describe other phenomena, such as
the evolution of natural language, high-mutation-rate viruses and the evolution of sexual
reproduction, see [22].

Eigen first introduced the model to study the evolutionary dynamics of chemical species
inside a chemical reactor. The model dynamics consider the three main ingredients for the
existence of evolution: replication (reproduction), mutation and selection.

Under certain hypothesis, the mutation-selection mechanism places a limit on the length
of a genome to avoid the loss of information, and therefore, the existence of evolution. Within
this model, genomes with a large length are unable to replicate themselves with high enough
fidelity. Such limit is known as the error-threshold. An important open problem of the
theory is to provide a suitable explanation to the so called Eigen paradox, that is, to explain
the existence of complex living systems.

Our work is organized as follows. In Chapter 1, we review the classical Eigen-Schuster
model. Consider a system of n molecular species I1, I2, . . . , In with the capacity of self-
replication. Let xi(t) ≥ 0 be the concentration (relative population) of the species Ii at time
t in the system. Denote Ai (respectively Di) the replication rate (respectively degradation
rate) of the species Ii and define Ei := Ai − Di, the productivity of the species Ii. The
Eigen-Schuster model is described by the following system of differential equations,

dxi
dt

= (AiQii −Di)xi +
∑
j 6=i

AjQjixj − Φ(t)xi i = 1, . . . , n,

where Qij is the probability that a molecule of species Ii replicates to a molecule of species Ij
and Φ(t) =

∑n
i=1Eixi(t) is an evacuation flux that assures that the total population remains

constant.

We not only present the main mathematical ideas but also numerical simulations that
visually illustrate concepts and challenges of the theory. In particular, we study the Swetina-
Schuster model [26, 25], that gives an explicit description for the values of Qij, and it is now
a point of reference for the study of the error-threshold and the thermodynamic phenomena
of phase transitions in biological models.

In Chapter 2, we introduce the main concepts and results of the theory of p-adic analy-
sis. We state, without proof, a set of propositions and theorems that rapidly introduce the



CONTENTS 9

non-specialist reader into the subject. Our work is self-contained, up to a reasonable degree.
We tried our best to include all the needed results for the study of the p-adic Eigen-Schuster
model, which we reference in the subsequent chapters when needed to make the read easier
to follow.

In Chapter 3, we start by reviewing the p-adic Eigen-Schuster model, which was intro-
duced by Zuñiga-Galindo in [31]. In this work, a genome (sequence) is represented by a
p-adic number,

x = x−kp
−k + x−k+1p

−k+1 + . . .+ x0 + x1p+ . . . , xj ∈ {0, . . . , p− 1}, j = −k, . . . .

Thus, the genome length can grow arbitrarily. We assume the existence of a mutation
measure Q : R+ → R+ such that

∫
Qp Q(|x|p)dx = 1 where dx is the normalized Haar

measure of the group (Qp,+). Additionally, we assume that the fitness landscape is given
by a radial test function. In this model the concentration X(x, t) of the sequence x at the
time t is controlled by the following evolution equation:

∂X(x, t)

∂t
= Q(|x|p) ∗ {f(|x|p)X(x, t)} − Φ(t)X(x, t) x ∈ Qp, t ∈ R+

where Φ(t) =
∫
Qp f(|y|p)X(y, t)dy is an evacuation flux. The term

Q(|x|p) ∗ {f(|x|p)X(x, t)} =

∫
Qp
Q(|x− y|p)f(|y|p)X(y, t)dy

represents the rate at which the sequences are mutating into sequence x.

Following [31], we show that under certain hypothesis, we can recover an ultrametric
version of the classical Eigen-Schuster model, i.e., we show a discretization scheme for the
p-adic model that recovers an ultrametric analogous system to the classical case. We study
the so called Eigen paradox in the p-adic setting. In particular, under certain hypothesis,
we show that the Eigen paradox does not occur.

After that, we restrict ourselves to study the p-adic replicator equation for a mutation
measure supported in the unit ball Zp. Using reasonable hypothesis, we show the existence
of a separable solution in a proper closed subspace VL ⊂ L2(Zp,C) to the Cauchy problem,

X : Zp × R+ → R, X(·, t) ∈ VL ∩ L2(Zp,R), X(x, ·) ∈ C1(R+,R)
∂X(x,t)
∂t

= WX(x, t)− Φ(t)X(x, t), x ∈ Zp, t ∈ R+

X(x, 0) = X0 ∈ VL ∩ L2(Zp,R).

where W : L2(Zp,C)→ L2(Zp,C) is given by

(Wϕ)(x) =

∫
Zp
Q(|x− y|p)f(|y|p)ϕ(y)dy,
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and

Φ(t) =

∫
Zp
f(|y|p)X(y, t)dy.

We discuss different techniques from the theory of Nonlinear Functional Analysis, and how
they can be applied to study the existence of quasispecies, in other words, the steady states
of the p-adic replicator equation.

Finally, we present some graphical representations of the ball Zp in the Euclidean plane
R2, and we show some examples of how to plot functions from Zp to R and their visualization
in R3.

In Appendix A and Appendix B, we include the code needed to perform the numerical
simulations and plots that appear throughout this work.



Chapter 1

Classical molecular evolution models

In this chapter we review the classical ideas and rsults of molecular evolution models following
[18].

1.1 Replication and selection

Let us consider a system of n molecular species I1, I2, . . . , In with the capacity of self-
replication. Let xi(t) ≥ 0 be the concentration (relative population) of the species Ii at
time t in the system. We denote Ai (respectively Di) the replication rate (respectively
degradation rate) of the species Ii. Molecular degradation is a consequence of interaction
between molecules either by radiation or collision, however we will assume that the degrada-
tion rates are constant for simplicity. Finally, let us define Ei := Ai −Di as the productivity
of the species Ii.

1.1.1 Simple replication

Let us begin studying the simplest model of a kinetic reaction:

µ∗ + Ii
Ai−→ 2Ii Replication

Ii
Di−→ µ Degradation

where µ∗ denotes highly energetic monomers (quantity that we will assume constant w.r.t
time) and µ denotes the products of molecular degradation. In this model there are no
interactions between different species. Thus, we have the following dynamical equation for
the concentration of species Ii:

dxi
dt

= (Ai −Di)xi = Eixi i = 1, . . . , n. (1.1)

If we assume that the values Ei are constant then the solutions of this system are as follows:

xi(t) = xi(0) exp(Eit) i = 1, . . . , n.

11



12 CHAPTER 1. CLASSICAL MOLECULAR EVOLUTION MODELS

If Ei > 0 the population of the species Ii will grow exponentially. On the contrary, if Ei < 0
the corresponding species will disappear. This result does not correspond to the biological
concept of selection because there is no selection mechanism.

1.1.2 Replication and selection

We now introduce a term in system (1.1) that plays the role of a selection mechanism, an
evacuation flux Φ(t) that keeps the total population constant:

n∑
i=1

xi(t) = 1. (1.2)

The evacuation flux is an artificial mechanism that mimics natural selection. We refer to
this constraint as the CP (constant population) condition. If we assume that the evacuation
flux is proportional to the concentration of the species Ii then our system can be described
by the following dynamical equations:

dxi
dt

= (Ei − Φ(t))xi i = 1, . . . , n. (1.3)

If we sum all the equations and we use the CP condition (1.2) we obtain the following:

0 =
n∑
i=1

dxi
dt

=
n∑
i=1

(Ei − Φ(t))xi,

i.e.,

Φ(t) =
n∑
i=1

Eixi(t), (1.4)

which means that the evacuation flux is the mean productivity. We also conclude that the
system (1.3) is non-linear because the flux depends on all concentrations. Here we also as-
sume that Ei is constant.

The system (1.3) can be solved using a change of variables. Later on, we solve a more
general case, now we only study the steady states. First, if we assume the mean productivity
reaches a steady state Φ∗ = limt→∞Φ(t), then the steady state of the i-th equation is given
by xi = 0 or Ei = Φ∗. Assuming Ei 6= Ej for i 6= j then the asymptotic value of the
mean productivity equals the productivity of only one species. Thus, we have the following
possibilities for the fixed points

u∗k = (0, 0, . . . , 1, . . . , 0)︸ ︷︷ ︸
k−th position

, with k = 1, . . . , n.

Clearly u∗0 = (0, . . . , 0) is also a fixed point, however we have no interest in this point since
it does not satisfy (1.2).
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If we set Fi(t, x) := (Ei − Φ(t))xi(t), where x := (x1, . . . , xn), we have

∂Fi
∂xj

(t, x) =

{
Ei −

∑
k 6=iEkxk − 2Eixi i = j.

−Ejxi i 6= j.

Then, the Jacobian matrix at the point u∗k is:

J(u∗k) =



E1 − Ek 0
... 0

... 0

0 E2 − Ek
... 0

... 0
...

...
. . .

...
... 0

−E1 −E2
... −Ek

... −En
...

...
...

...
. . . 0

0 0 0 0 0 En − Ek


,

and its characteristic polynomial is:

P (λ) = (Ek − λ)
∏
m 6=k

(Em − Ek − λ).

Thus, the eigenvalues are λm = Em − Ek and λk = −Ek. Here, the eigenvalues are real and
the fixed point u∗k is (locally) stable if the eigenvalues are negative (in general if their real
part is), but this occurs if and only if Ek > Em for all m 6= k, i.e. only the fittest survives.

1.2 The Eigen-Schuster model

An essential ingredient for evolution is mutation which leads to diversity, and which is
subjected to a selection process. Let us introduce a matrix Q = [qij] where qij is the
probability that a molecule of species Ii mutates to a molecule of species Ij as a result of an
erroneous replication. Now the kinetic reactions are of the following form:

µ∗ + Ii
AiQii−−−→ 2Ii (Replication without errors)

µ∗ + Ii
AiQij−−−→ Ii + Ij 6=i (Replication with errors)

Ii
Di−→ µ (Degradation)

Furthermore,
n∑
j=1

Qij = 1,

i.e., the matrix Q is a stochastic matrix. Now our system of differential equations becomes

dxi
dt

= (AiQii −Di)xi +
∑
j 6=i

AjQjixj − Φ(t)xi i = 1, . . . , n. (1.5)
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In this new setting, the evacuation flux still satisfies (1.4), and thus the system (1.5) can
be rewritten as:

dxi
dt

=
n∑
j=1

Wijxj − Φ(t)xi i = 1, . . . , n, (1.6)

where Wii = AiQii −Di, are known as selective values. The values Wij = AjQji with j 6= i
are known as mutation values. The system (1.6) is the Eigen-Schuster model. In the partic-
ular case where Q is the identity matrix, the system (1.6) reduces to (1.3).

Now, we assume the existence of a master sequence Ik, that is Ak > Aj for k 6= j. For the
next examples we fix n = 4, D1 = D2 = D3 = D4 = 0 and A1 = A2 = A3 = 1, A4 = 6. We
also fix x(0) = (1, 0, 0, 0)T . We consider two stochastic matrices, a matrix Q1 with “small
mutation error” and another matrix Q2 with “large mutation error”:

Q1 =


0.995 0.00167 0.00167 0.00167
0.001 0.997 0.001 0.001

0.00267 0.00267 0.992 0.00267
0.00333 0.00333 0.00333 0.99

 , Q2 =


0.343 0.441 0.189 0.027
0.149 0.396 0.351 0.104
0.0741 0.307 0.424 0.195
0.0593 0.278 0.435 0.227

 . (1.7)

As we can see in Figure 1.1, in the case of a high-fidelity replication, a selection process
occurs and only the master sequence survives, which is the case of the survival of the fittest.
If the error in the replication is large, the selective advantage of the master sequence gets
lost and the system converges to a steady state where all sequences survive. For more details
about this numerical simulation and the simulations below, see Section 1.3.

1.2.1 Solving the Eigen-Schuster system

Now, following [14] we analyse the solutions to the system (1.6). In [28], the authors get the
same results using different techniques. The term which corresponds to the sum over i 6= j
in (1.5) is known as backflow. Originally, Eigen assumed that the error coefficients Wij with
j 6= i were much smaller than the selective values Wii. Moreover, Eigen also assumed that
the backflow was also sufficiently small to analyse the behaviour of the system [10]. Here we
do not make such assumptions except when we wish to show some asymptotic property of
the solution.

We define ψ(t) :=
∫ t

0
Φ(s)ds. Making the following change of variables:

xk(t) = yk(t) exp(−ψ(t)), (1.8)

the system (1.6) becomes

dyi
dt

=
n∑
j=1

Wijyj. (1.9)

Although we are assuming that the valuesWij are constant, even if they were time-dependent,
the last equation would be linear. Thus, the change of variables transforms the system (1.6)
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which is non-linear to a linear system if the values Wij do not depend on the concentrations.

By the constraint CP (1.2), we have 1 =
∑

i xi = exp(−ψ)
∑

i yi, and consequently

n∑
i=1

yi = exp(ψ).

Then, the solutions of (1.6) can be written as

xk(t) =
yk(t)∑
i yi(t)

, (1.10)

where yi is a solution of (1.9). Notice that the equation (1.10) is valid even if the values
Wij are not constant. In the case in which all the values Wij are constant, finding solutions
to (1.9) becomes a problem of finding eigenvalues. Let us assume that the matrix W is
not singular. We also assume that all of its eigenvalues are different, in which case all the
eigenvectors are uniquely determined, and the general solution is obtained in the following
way.

First, we write (1.9) in matrix form as dy
dt

= Wy. Now, using the hypothesis about the
eigenvalues of W we can write W = PDP−1 where D is a diagonal matrix and P is the
matrix which has as columns the eigenvectors of W . Changing variables as z = P−1y we
get dz

dt
= Dz which is a decoupled system whose solutions are zi(t) = ci exp(λit). Now we

set c := (c1, c2, . . . , cn)T . If we evaluate the solution at zero we get c = P−1x(0). Thus, the
general solution is

xi(t) =

∑n
j=1 Pij exp(λjt)

∑n
k=1 P

−1
jk xk(0)∑n

l=1

∑n
j=1 Plj exp(λjt)

∑n
k=1 P

−1
jk xk(0)

, i = 1, . . . , n. (1.11)

In the general case, we may have complex eigenvalues, which means that the solutions would
oscillate in time.

If W is a symmetric matrix then all of its eigenvalues are real. In particular, if the set
of eigenvalues is ordered, say λ1 > λ2 > . . . > λn then as t→∞ the solution of the system
converges to a steady state equal to the eigenvector of the largest eigenvalue. Eigen described
this situation as an optimization process. Moreover, by the Perron-Frobenius theorem 1, the
constraints of the system tell us that this is the only steady-state with physical meaning and
this state does not depend on the initial conditions.

This steady-state is known as quasispecies because in the presence of error in the repli-
cation process instead of having the survival of the fittest, the selection process gives a cloud
of coupled mutants as a result. The term quasispecies is used instead of the term species,

1The Perron-Frobenius theorem states that if A is a positive matrix then it has an eigenvalue λ0 which is
positive and λ0 > |λr| for any other eigenvalue λr of A. Moreover this is the only eigenvalue whose associated
eigenvector has only positive entries. [3, 21]
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which in biology is considered as an organism with a unique genotype and which in general,
it reproduces with high-fidelity, giving place to almost-exact copies of its progenitor.

It is of interest to know approximations to the eigenvalues and eigenvectors of W . In
[14], assuming Wij � Wii and that all of the diagonal values Wii are distinct, the following
approximations are obtained by the means of perturbation theory:

λi ≈ Wii +
∑
j 6=i

WijWji

Wii −Wjj

, (1.12)

Pij ≈ δi,j +
Wij

Wii −Wjj

, i 6= j. (1.13)

In [28], the authors get the solution of (1.6) using integral methods and similar expressions
to (1.12) and (1.13). In the appendix of this work a summary of the perturbation theory of
matrices is included.

1.2.2 The Swetina-Schuster matrix

We now discuss some ideas originally introduced and developed by Jörg Swetina and Peter
Schuster in [26] and later in [25]. After making some considerations based on experimental
evidence, they propose to model the replication of chains of polynucleotides only consid-
ering mutations of the type purine-purine and pyrimidine-pyrimidine. After making these
considerations, we can represent a polynucleotide as a sequence of some fixed length ν, such
that each entry has an element of the alphabet of nucleotides (A,G,U,C). Thus, we end up
with a set of 4ν distinct sequences. However, this set can be partitioned in 2ν subsets with
2ν elements and these 2ν elements form a ν-cube. We restrict ourselves to this case, and
we consider by simplicity that the sequences are words of length ν written in the binary
alphabet {0, 1}.

During the replication of the DNA or RNA genome, different types of mutations can
occur: point mutations, insertions, deletions and recombination. Here, we consider only
point mutations, which is the mutational event where one base change for another. In the
context of binary sequences, a point mutation means that at some position an entry with a
value of 0 (resp. 1) changes its value to 1 (resp. 0) due to an erroneous replication process.
Furthermore, we assume that the event of a point mutation in one position is independent
of the event of a point mutation in another position. Additionally, we assume that the
probability that a mutation occurs in a specific position is the same for all the entries and
it is given by u := 1 − q where q is the probability that a specific entry is copied correctly.
Under these assumptions we have that the mutation matrix Q is given by:

Qij = qν−dij(1− q)dij = udij(1− u)ν−dij , (1.14)

where dij = dH(Ii, Ij) is the Hamming distance between the sequences Ii and Ij. The
Hamming distance between two sequences is defined as the number of positions at which
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the corresponding entries are different. In the literature, this mutation matrix is known as
Swetina-Schuster matrix. In Figure 1.2 we can see different steady-states that the system
converges to for different values of u.

On the other hand, we can consider the dependency of the eigenvector corresponding to
the largest eigenvalue as a function of u, specially when we have a master sequence that has
a large selective advantage. In Figure 1.3 we can see the results of a simulation. For more
details about the analysis of the eigenvalues of these type of matrices under more general
conditions than those we assumed at the beginning of this section see [24].

Now, suppose ν = 7 and that I1 is a master sequence. Since ν = 7 , we have a system
of n = 27 = 128 equations. Let us assume that all the sequences, except I1, have the same
replication rate. Moreover, suppose that all degradation rates are equal to zero. In Figure
1.4 we can observe how the mutants group themselves in ν+1 = 8 classes. On a first thought,
the assumption of the same replication rates for all the sequences Ij, with j = 2, . . . , 128,
appears to play a role in this phenomenom. Indeed, in the next section we study a model
that allows us to reduce the dimension of our system from 2ν equations to ν + 1 equations
using the assumptions described in this example.

1.2.3 A model for high dimensions ν > 3

For ν relatively large the number of sequences n = 2ν restricts strongly the numerical
analysis of the system. We group the sequences into classes which will drastically decrease
the dimension of the problem. The class Γ0 contains only the master sequence. The class
Γ1 contains all the

(
ν
1

)
1-error mutants. The class Γ2 contains all the

(
ν
2

)
2-error mutants.

In general, the class Γk contains all the
(
ν
k

)
k-error mutants. In addition, we assume the

following:

• all the degradation rates are equal D1 = . . . = D2ν = D; therefore they do not have
any influence on the quasispecies;

• all the replication rates are equal inside a class, i.e. Ai = A′k for all Ii ∈ Γk.

With these assumptions, we change variables as

yk(t) =
∑
Ii∈Γk

xi(t). (1.15)

We also need an expression for the entries of matrix Q′ which describes mutations from one
class into another. Using [26], the probability that class Γl mutates into class Γk is

Q′lk =
m∑
j=0

(
v−l

j+ 1
2

(|l−k|−(l−k))

)(
l

j+ 1
2

(|l−k|+(l−k))

)
qν−2j−|l−k|(1− q)2j+|l−k|, (1.16)

where m = d1
2
(min l + k, 2ν − (l + k)−|l−k|)e. Notice that indices are interchanged, in our

work Q′ equals Q′T in [26]. A direct calculation shows that the system of equations becomes

dyi
dt

= (A′iQ
′
ii −D)yi +

∑
i 6=k

A′kQ
′
kiyk − Φ′yi, i = 0, . . . , ν, (1.17)
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and Φ = Φ′. We emphasize that (1.14) is a symmetric matrix, but (1.16) is not.

Let us perform a numerical simulation using the matrix (1.14), assuming there is a master
sequence I1. We use ν = 7, which give a system of n = 27 = 128 equations. In Figure 1.4,
we observe how the mutants group themselves in ν + 1 = 8 classes.

The important thing about having a model that drastically reduces the dimension is that
we can test the approximations that are obtained by the means of perturbation methods.
Moreover, we can analyse the steady states of the system as a function of the parameter u.
For instance, in sequences of length ν = 20 we have a similar behaviour as in the previous
cases, see Figure 1.5.

1.2.4 The fitness landscape and the error-threshold

We now consider a function that assigns to each sequence a fitness value (productivity),
the fitness landscape. In a naive way, one can say that this function is a “mountain range”
over the space of sequences, see Figure 1.6 and Figure 1.7. This idea was introduced by
Sewall Wright. In this terminology, the quasispecies equation describes the movement of a
population of sequences through this mountain range. The quasispecies “feels” gradients in
the mountain range, and it tries to reach local or global peaks [22].

Suppose there is a master sequence given by the sequence Im. The fitness landscape that
corresponds to the case where there is a master sequence is called single-peaked landscape.
We denote the productivity of all the sequences except the master as

Φ−(t) =

∑n
j 6=mEjxj(t)∑n
j 6=m xj(t)

=

∑n
j=1Ejxj(t)− Emxm(t)

1− xm(t)
. (1.18)

Then, the concentration of the master sequence is

xm(t) =
Φ(t)− Φ−(t)

Em − Φ−
. (1.19)

In the selective equilibrium, assuming that the selective values of the rest of sequences are
really small, we have

x∗m =
Wmm − Φ∗−
Em − Φ∗−

. (1.20)

This formula implies that Qmm decreases, that the role of the mutant sequences is impor-
tant, and that Φ− grows until it reaches the selective value of the master sequence. When
this occurs, the population of the master sequences becomes extinct and the information
that it carried gets lost. When this error catastrophe occurs the value of Qmm is called
error-threshold, usually denoted as Qc. By taking x∗m = 0, we get

Qc =
Dm + Φ∗−

Am
=:

1

Θ
, (1.21)
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where Θ is the superiority of the master sequence. Eigen and Schuster disscused the pos-
sibility of measuring the value Θ in lab experiments, which can provide information about
the error-threshold of some type of chain. For instance, this parameter has been measured
in viruses such as the bacteriophage Qβ and influenza viruses. In fact, it is known that
viruses form viral quasispecies that are close to the error-threshold as a survival mecha-
nism to immune systems. Some vaccines have been designed to increase the mutation rate
of a virus, causing them an error catastrophe and therefore their infectious capacity gets lost.

In particular, in the Swetina-Schuster matrix-model Qmm = qν , in the error-threshold we
have

νc = − log Θ

log q
≈ log Θ

1− q
, (1.22)

where the last approximation is for q ≈ 1. This condition imposes a constraint to the length
of the sequences such that the master sequences does not become extinct. However, to have
complex organisms, it is necessary to code more information in long genomic sequences using
high-fidelity replication mechanisms. Biologically speaking, this is possible due to enzymes
and the necessary information to create them is stored in large length genomes, but as we
have seen before, the length of sequences is bounded. Thus, we have reached Eigen’s paradox:
there are no large genomes without enzymes, there are no enzymes without large genomes.

1.2.5 Maynard-Smith’s Ansatz

In equation (1.22) in order to calculate the error-threshold we need to have some experimen-
tal value for Θ or we need an estimate of Φ∗−. We now show another way to get an estimate
of the error − threshold, using Maynard-Smith’s ansatz .

Let us consider all sequences of length ν. We also assume that we have a unique master
sequence Im with a replication rate a and that the probability that it replicates correctly
given by Q = qν . Thus, 1−Q is the probability that the master sequence replicates into some
mutant. We assume that the replication rate for all mutant sequences is 1. Then we make
the change of variables y =

∑
j 6=m xj, and we denote Q′ the probability that y replicates to

xm. For simplicity, Dm = Dy = 0. Therefore, we end up with a system of two equations of
the following form:

dxm
dt

= aQxm +Q′y − Φxm (1.23)

dy

dt
= a(1−Q)xm + (1−Q′)y − Φy, (1.24)

where Φ = axm + y. Now, assuming that we have a sufficiently large value of ν such that Q′

approaches zero and using the constraint xm + y = 1 the system takes the form

dxm
dt

= xm(aQ− 1− xm(a− 1)). (1.25)
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By a direct computation, involving a stability analysis, one verifies that if aQ < 1, then xm
converges to zero as t → ∞, i.e., the fittest sequence cannot survive. On the contrary, if
aQ > 1, then xm converges to

x∗m =
aQ− 1

a− 1
, (1.26)

that is, the error-threshold take us to the inequality aqν > 1. If q ≈ 1, we get:

ν <
log a

1− q
=

log a

u
. (1.27)

If we consider this last inequality as fixing the length ν, then we see that the mutation rate
must obey

u <
log a

ν
, (1.28)

to ensure the survival of the information contained in the master sequence.

Finally, we present some numerical simulations of the error-threshold. Using the inequal-
ity in (1.28), taking a = 10 and ν = 50, the error-threshold occurs at uc = 0.046 . . .. In
Figure 1.8 we observe this phenomenon for ν = 50 and in Figure 1.9 for ν = 80. In the later
case, uc = 0.028 . . ..

If we ask ourselves, what happens if there are “two master sequences” (two-peaked land-
scape)? The answer is quite interesting, see Figures 1.10 and 1.11. The estimation of the
error-threshold is far more complicated than in the previous setting, for more details see [25].

Finally, Figure 1.11 shows the distribution of the quasispecies on top of the fitness land-
scape as a function of the parameter u, for ν = 50. Although there are three sequences with
a higher replication rate, the system still behaves as a two-peaked landscape mainly because
of the fact that the classes of 49 and 50 error mutants are close in the Hamming distance.
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1.3 Numerical simulations

During the chapter, we presented several numerical examples to illustrate the behaviour
of the Eigen-Schuster system. We use the Runge–Kutta–Fehlberg method, also known as
RKF45, to compute numerical solutions of the ODE system. The RKF45 method might
not be the most appropriate method to solve this type of systems as they are considered
rigid, however it is sufficient for our purposes.

We used the implementation of the RKF45 method for the Maxima CAS [19, 20, 30],
written by P. J. Papasotiriou. The code together with its technical documentation can be
found in [23] . For information about the RKF45 method, see Section 5.5 in [4].

Some of the simulations were performed with the aid of numerical algebra techniques. We
used the dgeev routine, which is part of the lapack library implementation for the Maxima
language. Additionally, we utilized the routine eigs to compute eigenvalues of matrices in
GNU/Octave [9].

We emphazise that as we described in this chapter, there are two approaches to compute
the quasispecies. On one hand, we can opt for numerical integration of the ODE system up
to a large enough time. This approach is suggested on the Swetina-Schuster work [26, 25].
It is a reasonable approach, as we can analyze the evolution in time.

On the other hand, in the more theoretical oriented work by Jones, Enns and Rangnekar
[14], it was brought to our attention how the physical meaning of the quasispecies is in
agreement with the eigenvector associated to the largest eigenvalue, as a consequence of the
Perron-Frobenius theorem. In this setting, our approach is to use numerical linear algebra
routines to compute directly the eigenvector associated to the largest eingevalue and nor-
malize it, such that its entries add up to one.

In Figure 1.3 and Figure 1.8 both approaches are compared. We observe that the linear
algebra approach seems more accurate. In Figure 1.9 and Figure 1.10 the linear algebra
approach was followed, due to the sharpness of the obtained results.
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1.3.1 Figures of numerical simulations.

(a)

(b)

Figure 1.1: Graph (a) corresponds to the matrix Q1, (b) corresponds to matrix Q2, see Eq.
1.7 .
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(a) (b)

(c) (d)

Figure 1.2: Numerical integration of the model with a Swetina-Schuster matrix. The con-
stants are A1 = 5, A2 = 3, A3 = 2, A4 = . . . = A8 = 1.1, D1 = . . . = D8 = 1.0 and
x1(0) = 0.1, x2(0) = 0.2, x3(0) = 0.7, x4(0) = . . . = x8(0) = 0. In: (a) u = 0.05, (b) u = 0.2,
(c) u = 0.35, (d) u = 0.50
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(a)
(b)

(c)

Figure 1.3: Steady-states as a function of u. The chosen values are A1 = 10, A2 = . . . = A8 =
1, and every Di = 0. In (a) the simulation was made using the command eigs in Octave, in
(b) the graph was obtained by numerical integration of the system using the method rkf45

in Maxima and the quasispecies was taken as the state of the system at the time t = 15. In
(c) we include the graph of the same simulation from [26] for comparison purposes.
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Figure 1.4: Numerical integration of the model with a Swetina-Schuster matrix. The values
are u = 0.3, A1 = 10, A2 = . . . = A128 = 1, Di = 0 for all i = 1, . . . , 128.

Figure 1.5: Numerical integration of the model with a modified Swetina-Schuster matrix,
see 1.16. The values are u = 0.15, A′0 = 10, A′2 = . . . = A′20 = 1, D′i = 0 for all i = 0, . . . , 20.
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Figure 1.6: Space of binary sequences of length 5 [25].
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(a)

(b)

Figure 1.7: Fitness landscape for the sequences of Figure 1.3 using the enumeration proposed
in [25], see Figure 1.6. The fitness values are normalized using the maximum norm. The
curve represents the distribution of the quasispecies in the steady-state.
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(a) (b)

(c)

Figure 1.8: Error-threshold for ν = 50. The constant values are A0 = 10, A1 = 1, . . . , A50 =
1, D = 0. In (a) the simulation was carried on using dgeev from the lapack library. In (b)
the system was solved using rkf45. In (c) we show the graph of the simulation in (a) using
a logarithmic scale.
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Figure 1.9: Error-threshold for ν = 80. The chosen values for the constants are A0 =
10, A1 = 1, . . . , A80 = 1, D = 0. Here we have uc = .028 . . ..

Figure 1.10: Error-threshold for ν = 50. The chosen values for the constants are A0 =
10, A1 = 1, . . . , A48 = 1, A49 = 9.9, A50 = 10, D = 0.
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(a) (b)

(c) (d)

Figure 1.11: Fitness landscape and distribution of the quasispecies for different values of u.
Here ν = 50, and the constant values are A0 = 10, A1 = 1, . . . , A48 = 1, A49 = 9.9, A50 =
10, D = 0.



Chapter 2

p-adic analysis: Essential ideas

In this chapter we follow closely the references [1, 29].

2.1 The field of p-adic numbers

Let us start by recalling a few basic definitions.

Definition 2.1. Let F be a field. An absolute value (or norm) on F is a map | · | : F →
R+ ∪ {0}, which satisfies:

(i) |x| = 0 ⇐⇒ x = 0;

(ii) (∀x, y ∈ F)|xy| = |x||y|;

(iii) (∀x, y ∈ F)|x+ y| ≤ |x|+ |y| (triangle inequality).

The absolute value is called non-Archimedean or ultrametric if additionally, | · | satisfies

(iii’) (∀x, y ∈ F)|x+ y| ≤ max{|x|, |y|} (strong triangle inequality).

Notice that (iii′) implies (iii). A field F together with an absolute value (norm) is called
normed field. A field F with a non-Archimedean absolute value is called non-Archimedean
field.

Example 2.2. Let F be a field. Then,

|x|trivial =

{
1 x 6= 0

0 x = 0.

defines an absolute valued which is called the trivial absolute value.

Example 2.3. The standard absolute value over the field of rational numbers Q, that is

|x| =

{
x x ≥ 0

−x x < 0.

31
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Using an absolute value | · | we can induce a metric d(x, y) = |x − y|. In this case
we can regard the field F as a metric space. It can be shown that a metric induced by a
non-Archimedean absolute value is also non-Archimedean, i.e., it satisfies the strong triangle
inequality,

(∀x, y, z ∈ F) d(x, z) ≤ max{d(x, y), d(y, z)} . (2.1)

Such a metric is known as as an ultrametric. There are surprising properties of non-
Archimedean absolute values.

2.1 Proposition (Prop. 1.2.6, [1]). Let F be a non-Archimedean field. Then, for x, y ∈ F

|x| 6= |y| =⇒ |x+ y| = max{|x|, |y|}.

Thus, any triangle in an ultrametric space is isosceles and the length of its base does not
exceed the lengths of the sides.

Moreover, remembering that for any field F we have a map from Z to F defined by

n 7→


1 + 1 + . . .+ 1︸ ︷︷ ︸

n

n > 0

0 n = 0

−(1 + 1 + . . .+ 1︸ ︷︷ ︸
−n

) n < 0

We have the following.

2.2 Theorem (Thm. 2.2.4, [13]). Let A ⊂ F be the image of Z in F. An absolute vale | · | on
F is non-Archimedean if and only if |a| ≤ 1 for all a ∈ A. In particular, an absolute value
on Q is non-Archimedean if and only if |n| ≤ 1 for every n ∈ Z.

This last theorem explains the difference between Archimedean and non-Archimedean
absolute values.

Definition 2.4. Let p be a prime number. The p-adic order, denoted ordp(x), of a rational
number x ∈ Q is defined as:

(i) If x ∈ Z \ {0}, then ordp(x) equals the highest power of p which divides x.

(ii) If x = a/b with a, b ∈ Z, then ordp(x) = ordp(a)− ordp(b).

(iii) We set ordp(0) = +∞.

Remark 2.5. Notice that in part (ii), the p-adic order of a rational number x depends solely
on x. If we write x = (ac)/(bc) then ordp(a) − ordp(b) = ordp(ac) − ordp(bc). This follows
from the fact that ordp(xy) = ordp(x) + ordp(y).

Now, we define a map | · |p : Q→ R as follows:

|x|p = p−ordp(x) (2.2)

We observe that, by definition, |0|p = 0 since ordp(0) = +∞. Moreover, the function | · |p
can take only a discrete set of values, namely, {pγ : γ ∈ Z} ∪ {0}.
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2.3 Theorem (Thm. 1.3.1, p. 7, [1]). The map | · |p is a non-Archimedean absolute value
on the field of rational numbers Q.

Definition 2.6. We say that two absolute values | · |1 and | · |2 on a normed field F are
equivalent if they induce equivalent metrics. In this case, we write | · |1 ∼ | · |2

Remark 2.7. If p1, p2 are two distinct primer numbers, then |·|p1 and |·|p2 are not equivalent.
To see this, consider the sequence xn = (p1/p2)n. Then, |xn|p1 = p−n1 → 0 as n → ∞. On
the contrary, |xn|p2 = pn2 →∞ as n→∞.

A detailed study of equivalence of absolute values and properties of non-Archimedean
norms can be found in [2, 13] and [15]. Now, we state a famous result, proved by Alexander
Ostrowski. The proof can be found, for instance, in [16], p. 3.

2.4 Theorem (Ostrowski). Every non-trivial absolute value on the rational numbers is
equivalent to either the standard real absolute value or a p-adic absolute value.

It can be proven, that the field of rational numbers is not complete with respect to any of
its non-trivial norms, see Lemma 3.2.3, p. 63, in [13]. Thus, the next step is knowing how to
construct a completion. On this direction, a great reference is [2]. Particularly, section 2.1
develops the theory of the completion of a field with respect to an absolute value and then,
it is applied to the construction of the field of p-adic numbers. We summarize the results in
the following theorem.

2.5 Theorem (Thm. 1.3, Thm. 1.4, [2]).

(i) Given a field F and an absolute value | · | on F, there exists a field F̂ (unique up to a

congruence), called the completion of F with respect to | · |, such that F̂ is a complete
field with respect to the metric induced by an absolute value extending | · |, and F is

dense in F̂.

(ii) Denote by |F| the image of F in R under the function | · |. If | · | is a non-Archimedean

absolute value on F, then |F| = |F̂|.

Now, we formally introduce the field of p-adic numbers.

Definition 2.8. The completion of the field Q of rational numbers with respect to | · |p is
called the field of p-adic numbers and it is denoted by Qp. We also use | · |p to denote the
extension of | · |p to Qp.

Remark 2.9. Notice that the last theorem says that the p-adic absolute value extended to
Qp takes the same values as | · |p over Q, namely, {pγ : γ ∈ Z} ∪ {0}.

2.6 Theorem (Thm. 2.1, [2]).

Qp = {x = pγ
∞∑
k=0

xkp
k; γ ∈ Z, xi ∈ {0, 1, . . . , p− 1}, x0 6= 0} ∪ {0}.

and |x|p = p−γ for x ∈ Qp \{0}, |0|p = 0. With respect to this representation, the coefficients
xk are unique.
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Definition 2.10. The series

x = pγ
∞∑
k=0

xkp
k. (2.3)

is called the canonical representation of x. The integer γ = γ(x) is called the p-adic order
of x. Finally, we define ordp(0) = +∞.

Definition 2.11. By means of (2.3), the fractional part {x}p of a p-adic number x ∈ Qp is
defined as

{x}p :=

{
0 if γ(x) ≤ 0 or x = 0,

pγ
∑|γ|−1

k=0 xkp
k if γ(x) < 0.

(2.4)

The integer part [x]p of a p-adic number x ∈ Qp is defined as{
x if γ(x) or x = 0,

pγ
∑∞

k=|γ| xkp
k if γ(x) < 0.

(2.5)

Definition 2.12. The elements of the set Zp := {x ∈ Qn
p ; |x|p ≤ 1}, are called p-adic

integers. The group of units of Zp is Z×p := {x ∈ Qn
p ; |x|p = 1}.

Using canonical representations, Zp consists of p-adic numbers of the form:

x =
∞∑
k=0

xkp
k. (2.6)

Moreover, the following holds.

2.7 Proposition (Prop. 1.7.1, Prop 1.7.2, [1]).

(i) Zp is a subring of Qp.

(ii) A p-adic integer x ∈ Zp has a multiplicative inverse element in Zp if and only if in
(2.6) x0 6= 0. Equivalently, x ∈ Zp is invertible if and only if x ∈ Z×p .

(iii) If x ∈ Qp \ {0}, then x = pmu, m ∈ Z and u ∈ Z×p .

2.2 The topology of p-adic numbers

As it was previously mentioned, we can induce a metric using an absolute value over a field.
With respect to the metric ρp(x, y) = |x− y|p for x, y ∈ Qp, Qp is a complete metric space.
Since | · |p is non-Archimedean, the corresponding metric satisfies the strong triangle inequal-
ity (2.1), thus, it is an ultrametric.

Since the p-adic norm takes a discrete set of values {pγ; γ ∈ Z} ∪ {0}, we only need to
consider balls of radius r = pγ, γ ∈ Z. We denote by Bγ(a) = {x ∈ Qp; |x − a|p ≤ pγ}
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the closed p−adic ball centered at a ∈ Qp of radius pγ. Also, we denote by Sγ(a) = {x ∈
Qp; |x− a|p = pγ} the p-adic sphere centered at a ∈ Qn

p of radius pγ. For the sake of brevity,
we just use the power to denote the radius of the balls. Lastly, we set Bγ := Bγ(0) and
Sγ := Sγ(0).

On a short notice, the fact that the p-adic norm takes a discrete set of values in R, implies
that

{x ∈ Qp; |x− a|p < pγ} = {x ∈ Qp; |x− a|p ≤ pγ−1} = Bγ−1(a).

This justifies why we just set the notation for the balls Bγ(a) using ‘≤’. From here, we
already see that the topology of Qp is quite different from the usual topology of R. We
summarize the main topological properties of Qp in the following theorem.

2.8 Theorem.

(i) Bγ(a), Sγ(a) are open and closed sets in the topology of Qp.

(ii) If b ∈ Bγ(a), then Bγ(a) = Bγ(b), i.e., any point of the ball Bγ(a) is its center.

(iii) Any two balls in Qp are either disjoint or one is contained in the other.

(iv) The boundary of any ball Bγ(a) is the empty set.

(v) The set of balls of Qp is countable.

(vi) Every open set in Qp is a union of at most of a countable set of disjoint balls.

(vii) The Heine-Borel property is valid in Qp, i.e., a set K ⊂ Qp is compact if and only if it
is closed and bounded in Qp.

(viii) Every ball Bγ(a) and every sphere is compact. Consequently, Qp is a locally compact
space.

(ix) The space Qp is totally disconnected.

(x) Qp is homeomorphic to a Cantor-like set of R.

Proof. See Sections 1.8 and 1.9 in [1].

2.3 Integration in Qp

A locally compact group is a topological group that is locally compact as a topological space.
It is a well-known result that a locally compact group possesses a non-zero left-invariant outer
Radon measure, that is, a locally finite Borel measure µ such that

1. µ(A) = infU⊃A µ(U) holds for every A ∈ B, where the infimum is taken over all open
sets U containing A and B denotes the σ-algebra of Borel sets.

2. µ(A) = supK⊂A µ(K) holds for every A ∈ B that is open or satisfies µ(A) <∞, where
the supremum is taken over all compact sets K contained in A.
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In the case the group is an Abelian group, then the non-zero left-invariant outer Radon
measure is also right-invariant. A left-invariant and right-invariant measure is simply called
invariant. To be precise, the following holds.

2.9 Theorem (Thm. 1.3.4., [8] ). Let (G,+) be a locally compact Abelian group. There
exists a non-zero invariant outer Radon measure µHaar on G, called a Haar measure of G,
that is, µHaar(x+E) = µHaar(E) for every Borel set. It is uniquely determined up to positive
multiples. The corresponding integral is called a Haar-integral.

Since (Qp,+) is a locally compact Abelian group, then there exists the additive Haar
measure, which is a positive measure µHaar which is invariant under shifts. We denote the
Haar measure by dx, then µHaar(U) =

∫
U
dx. The invariance under shifts property can be

written as
∫
U
dx =

∫
a+U

dx. Alternatively, we denote this fact as d(x + a) = dx, a ∈ Qp. If
the measure dx is normalized by the condition∫

Zp
dx = 1,

then dx is unique. Now, we state an important result of the Haar integral on (Qp,+).

2.10 Proposition (Prop. 3.2.1, [1] ). For a ∈ Qp \ {0}, we have

d(xa) = |a|pdx.

Alternatively, ∫
aU

dx = |a|p
∫
U

dx.

Integral Constraints∫
Br
dx = pr r ∈ Z∫

Sr
dx = pr(1− p−1) r ∈ Z∫

Zp\{0} |x|
s
pdx = 1−p−1

1−p−1−s s ∈ C,Re(s) > −1

Table 2.1: Some useful p-adic integrals.

2.4 Fourier analysis in Qp

Definition 2.13. The function

χp(x) := exp 2πi{x}p

is called the standard additive character of (Qp,+).

It verifies that
χp : (Qp,+)→ (S1, ·)

is a continuous homomorphism from (Qp,+) into the complex unit circle considered as a
multiplicative group. The following properties hold true:
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1. |χp(x)| = 1 for x ∈ Qp.

2. χp(x+ y) = χp(x)χp(y) for x, y ∈ Qp.

3. χp(x) = χp(x)−1 = χp(−x) for x ∈ Qp and the bar means complex conjugate.

4. χp(x) 6≡ 1 for x ∈ Qp \ Zp.

Now, we can introduce the Fourier transform.

Definition 2.14. For a function f ∈ L1(Qp), its Fourier transform is the function f̂ defined
by

f̂(ξ) =

∫
Qp
f(x)χp(x · ξ)dx.

We also denote the Fourier transform of f by Fx→ξf,F(f).

Analogously to the classical case, the Fourier transform in the p-adic space also satisfies
the following properties.

2.11 Theorem (Thm. 1.1, Thm. 1.6, Thm. 1.8, [27]). Let f, g ∈ L1(Qp), then:

(i) ‖f̂‖∞ ≤ ‖f‖1.

(ii) f̂ is uniformly continuous.

(iii) (Riemman-Lebesgue Theorem) f̂(ξ)→ 0 as |ξ|p →∞.

(iv) f̂ ∗ g = f̂ ĝ.

The following are some important Fourier transforms.

∫
Br

χp(ξ · x)dx =

{
pr if |ξ|p ≤ p−r

0 if |ξ|p ≥ p−r+1
(2.7)

∫
Sr

χp(ξ · x)dx =


pr(1− p−1) if |ξ|p ≤ p−r

−pr−1 if |ξ|p = p−r−1

0 if |ξ|p ≥ p−r+2

(2.8)

Now, we state the following proposition.

2.12 Proposition (Ex. 8, p. 43, [29]). Let f : R+ → C be a function such that
∑∞

r=0 |f(p−r)|p−r <
∞. Then ∫

Qp
f(|x|p)χp(ξ · x)dx =

1− p−1

|ξ|p

∞∑
r=0

f

(
p−r

|ξ|p

)
p−r − 1

|ξ|p
f

(
p

|ξ|p

)
,

for ξ 6= 0, in the sense of improper integrals.
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Remark 2.15. In the above proposition, if f ∈ L1(Qp,C), then for any fixed ξ 6= 0, then
f(|x|p)χp(ξ · x) is integrable with respect to x and so, the above formula holds true. In
particular, the above proposition says that the Fourier transform of a radial real-valued and
integrable function is real-valued.

Now, we would like to extend the Fourier transform to the space L2(Qp). In order to do
this, we need the following result.

2.13 Theorem (Thm. 2.1, [27] ). If f ∈ L1(Qp) ∩ L2(Qp) then ‖f̂‖2 = ‖f‖2.

A consequence of this theorem is that the map f → f̂ is a linear L2-isometry from the
dense subspace L1(Qp) ∩ L2(Qp) to L2(Qp). Therefore, we can extent the Fourier transform
to the whole L2 space and it is an isometry. Moreover, we have the following result, which
is analogous to the classical Plancherel’s Theorem.

2.14 Theorem (Thm. 2.3, [27] ). The Fourier transform is unitary on L2(Qp).

With this construction, there is a generalization of the convolution theorem (see Thm.
2.11 (iv)).

2.15 Theorem (Thm. 2.7., [27] ). Let f ∈ L1(Qp) and g ∈ L2(Qp), then

f̂ ∗ g = f̂ ĝ a.e.

2.5 The space of test functions.

Definition 2.16. A complex-valued function ϕ defined on an open set V ⊂ Qp is called
locally constant on V if for any x ∈ V there exists and integer l(x) ∈ Z such that

ϕ(x+ x′) = ϕ(x), x ∈ Bl(x), x ∈ V.

The characteristic function of the ball Br(a) constitutes an example of a locally constant
function.

Remark 2.17. We denote by Ω the characteristic function of the unit interval [0, 1] ⊂ R.
Considering Ω as a radial function from Qp to R+, we can write characteristic functions of
p-adic balls. Indeed,

Ω(p−r|x− a|p) = 1 ⇐⇒ |x− a|p ≤ pr

⇐⇒ x ∈ Br(a)

In particular, Ω(| · |p) is the characteristic function of the unit ball in Qp.

A direct consequence of the definition is that any locally constant function is continuous.
Moreover, the following holds.

2.16 Lemma (Lemma 4.2.1, [1] ). Let ϕ be a locally constant function, and let K be a
compact subset of Qp. Then there exists l ∈ Z such that

ϕ(x+ x′) = ϕ(x), x′ ∈ Bl, x ∈ K.
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We denote by D(Qp) the Bruhat-Schwartz space of test functions in Qp which consists of
all locally constant functions with compact support. According to the lemma above, there
exists l ∈ Z such that

ϕ(x+ x′) = ϕ(x), x′ ∈ Bl, x ∈ Qp.

The largest of such numbers l = l(ϕ) is called the parameter of constancy of the function ϕ.

2.17 Proposition (Prop. 4.3.3, [1] ). The space of test functions D(Qp) is dense in Lp(Qp),
1 ≤ p <∞.

Because of Remark 2.17, if ϕ(x) = Ω(p−r|x|p), using equation (2.7) we have the formula
ϕ̂(ξ) = prΩ(pr|ξ|p). This, together with the following proposition, facilitates the calculation
of Fourier transforms of test functions.

2.18 Proposition (Prop. 4.8.5, [1] ). If ϕ ∈ D(Qp), a ∈ Q×p and b ∈ Qp then,

F(ϕ(ax+ b))(ξ) = |a|−1
p χp(−

b

a
ξ)F(ϕ(x))(

ξ

a
)

2.6 p-adic wavelets

We now introduce the Kozyrev wavelet basis of the space L2(Qp,C), which was introduced
by Sergei Kozyrev in [17].

Ψrjn(x) = p
−r
2 χp(p

r−1jx)Ω(|prx− n|p). (2.9)

where r ∈ Z, j ∈ {1, . . . , p− 1} and n runs trough a system of representatives of Qp/Zp.

2.19 Theorem (Thm. 2, [17] ). The Kozyrev wavelet basis {Ψrjn} is an orthonormal basis
of the space L2(Qp,C). Here, r ∈ Z, j ∈ {1, . . . , p− 1} and the group Qp/Zp is parametrized
by n =

∑m
k=1 nkp

−k and ni ∈ {0, . . . , p− 1}.

Using Proposition 2.18, we can compute the Fourier transform of an element of the
Kozyrev wavelet basis and we get

Ψ̂rjn(ξ) = p
r
2χp(p

rn(ξ + jpr−1))Ω(|p−rξ + jp−1|p). (2.10)

On the other hand, an important property of the Kozyrev wavelets, which follows from
a direct computation using formula (2.7) is the following:

2.20 Proposition. Let Ψrjn be as in formula (2.9). Then,∫
Qp

Ψrjn(x)dx = 0.

We fix a function a : R+ → R and define the pseudo-differential operator

A : D → C(Qp,C) ∩ L2(Qp)

ϕ 7→ Aϕ,

where (Aϕ)(x) := F−1
ξ→x{a(|ξ|p)Fx→ξϕ} and C(Qp,C) denotes the set of complex-valued

continuous functions defined on Qp. The following theorem holds.
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2.21 Theorem. The set of functions {Ψrjn} consists of eigenvectors of the operator A:

AΨrjn = a(p1−r)Ψrnj (2.11)

Proof. Indeed,

(Aϕ)(x) = F−1
ξ→x{a(|ξ|p)Ψ̂rjn(ξ)}

= p
r
2

∫
Qp
χp(−x · ξ)a(|ξ|p)χp(prn(ξ + jpr−1))Ω(|p−rξ + jp−1|p)dξ

= p
r
2χp(jp

−1n)

∫
Qp
χp(p

−rnξ − x · ξ)a(|ξ|p)Ω(|p−rξ + jp−1|p)dξ

= p
−r
2 a(p1−r)χp(jp

r−1x)

∫
Zp
χp(u(n− prx))du

= p
−r
2 a(p1−r)χp(jp

r−1x)Ω(|prx− n|p),

where the forth equality follows changing variables as u = p−rξ + jp−1. Therefore, AΨrjn =
a(p1−r)Ψrnj.

2.7 Visualization of p-adic numbers.

In this section, we review some ideas aimed at the graphical representation of the p-adic
numbers. We follow the work by Chistyakov [5]. We begin by stating a few definitions.

Definition 2.18. Given n ∈ Z and m ∈ N ∪ {∞}, we define the complex valued functions

χ
(m)
n (·) on Qp by the formula,

χ(m)
n (x) = exp

(
2πi

p

m∑
k=0

xn−kp
−k

)
for x ∈ Qp. (2.12)

where xn is the nth coefficient in the expansion of x into its canonical series 2.3.

Definition 2.19. For every s ∈ D ≡ {z ∈ Z; |z| < 1} and ∀m ∈ N ∪ {∞}, we define a

continuous mapping Γ
(m)
s : Qp → C by setting

Γ(m)
s =

1− sγ(x)

1− s
+

∞∑
n=γ(x)

snχ(m)
n (x) =: [Γ(m)

s ](x) + {Γ(m)
s }(x), for x ∈ Qp, (2.13)

where γ(x) is the p-adic order of x. Also, [Γ
(m)
s ](x) =

∑∞
n=0 s

nχ
(m)
n (x) is the “integral part”

of Γ
(m)
s (x) and {Γ(m)

s (x)} = Γ
(m)
s (x)− [Γ

(m)
s ](x) is the “fractional part” of Γ

(m)
s (x).

An important fact about the map Γ
(m)
s is that its image is self-similar for m <∞, in the

following sense. We set Un
y := Γ

(m)
s

(
{x ∈ Qp; |x− y|p ≤ p−n}

)
, that is, Un

y is the image of

the ball pnZp, n ∈ Z under Γ
(m)
s . Then, every Un

y can be obtained as the union of pm sets U0
ỹ
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by motions of the plane C (shifts and rotations) and a scaling transformation. See equations
(16), (17) and (18) in [5] .

Next, we define the number:

∆(m)
s := inf{|Γ(m)

s (x)− Γ(m)
s (y)|;∀x, y ∈ Qp, |x− y|p = 1}.

Now, if |x− y|p = 1, then {x}p = {y}p. Thus,

|χ(m)
0 (x)− χ(m)

0 (y)| = | exp

(
2πi

p
(x0 + x−1p

−1 + . . .+ x−mp
−m)

)
− exp

(
2πi

p
(y0 + x−1p

−1 + . . .+ x−mp
−m)

)
|

= | exp

(
2πi

p
x0

)
− exp

(
2πi

p
y0

)
|

≥ 2 sin

(
π

p

)
.

Using the triangle inequality,

∆
(m)
s

2
≥ sin

(
π

p

)
− |s|

1− |s|
.

From here, we have that ∆
(m)
s > 0 for |s| < s0 = sin(π/p)/(1 + sin(π/p).

The following theorem gives a sufficient condition to have that Γ
(m)
s is an embedding.

2.22 Theorem (Thm. 6, [5] ). Let s and m be such that ∆
(m)
s > 0; then Γ

(m)
s is a Lipschitz

isometry from
(
Qp, | · |− log(|s|)

p

)
into (C, | · |) and therefore, Γ

(m)
s is an embedding.

Remark 2.20.

1. If | · |∗ is a non-Archimedean absolute value on a field F, then for any α > 0, | · |α∗
defines a non-Archimedean absolute value on F equivalent to | · |∗. For this reason, we

can consider the isometry from
(
Qp, | · |− log(|s|)

p

)
into (C, | · |).

2. A Lipschitz isometry is a Lipschitz map which is a homeomorphism onto its image,
and its inverse is also a Lipschitz map.

The map

ρ : Qp → R+

∞∑
j=γ(x)

xjp
j 7→

∑
j=γ(x)

xjp
−j−1

is known as the Monna map. This map satisfies the following properties.
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2.23 Lemma (Section 1.9.4, [1] ). The map ρ satisfies the following properties.

1. The map is surjective but not one-to-one.

2. ρ satisfies the Hölder’s inequality:

|ρ(x)− ρ(y)| ≤ |x− y|p x, y ∈ Qp.

3. The following identities hold.

ρ(pγx) = p−γρ(x), x ∈ Qp

ρ(a+ x) = ρ(a) + ρ(x) a ∈ Qp/Zp, x ∈ Zp

4. For the map ρ and for a ∈ Qp/Zp and m, k ∈ Z we have

ρ : pma+ pkZp → p−mρ(a) + [0, pk], ρ : Qp \ {pma+ pkZp} → R+ \ {p−mρ(a) + [0, pk]}

up to a finite set of points.

5. The map ρ transforms the Haar measure on Qp to the Lebesgue measure on R+.

The Monna map plays a key role in the understanding of the Kozyrev wavelet basis in
[17], since for p = 2 it relates the Haar wavelet basis to the Kozyrev wavelet basis.

Finally, we present some graphical representations of Z2 and Z3 in the complex plane,
together with the graph of the Monna map restricted to the unit ball. This map sets a nice
example of a function that it is not locally constant, which is important to test as the future
goal of our project is to use the graphical routine for representation of the numerical solution
of our equation, which might be neither radial or locally constant.
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(a)

(b)

Figure 2.1: Graph (a) corresponds to an embedding of Z2 in the plane. The parameters are
m = 0, s = (2i)/3. Graph (b) corresponds to an embedding of Z3 in the plane. (m = 0, s =
1/2).
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(a)

(b)

Figure 2.2: Graph (a) corresponds to the image of Z2 under the Monna map. Graph (b)
corresponds to the image of Z3 under the Monna map.



Chapter 3

Non-Archimedean models

We now introduce the p-adic version of the Eigen-Schuster model which was developed by
Zúñiga-Galindo. We follow closely reference [31]. First of all, we would like to point out
that the downside of the classical Eigen-Schuster model is the Eigen paradox which imposes
an upper-bound for the length of the sequences (replicators). This is a limitation of the
model because it is not able to explain the appearance and evolution of more complex living
organisms. We will see that under certain hypothesis and conditions, in the p-adic model
the classical Eigen’s paradox does not occur.

In this p-adic model, each sequence corresponds to a p-adic number

x = x−mp
−m + x−m+1p

−m+1 + . . .+ x0 + x1p+ . . .

where the digits xi belong to the set {0, . . . , p − 1}. Thus, in this model the sequences are
words of arbitrary length written in the alphabet 0, 1, . . . , p− 1. The space of all sequences
is (Qp, | · |p)which is an infinite set. The concentration of a sequence x ∈ Qp at the time
t ≥ 0 is denoted X(x, t). This is a real number between zero and one. We assume that the
total concentration remains constant for t ≥ 0, that is,∫

Qp
X(x, t)dx = 1 for t ≥ 0.

We assume the existence of a mutation measure Q : R+ → R+ such that
∫
Qp Q(|x|p)dx = 1

where dx is the normalized Haar measure of the group (Qp,+). Thus, the probability that
a sequence x mutates into a sequence belonging to the set B is given by

∫
B
Q(|x − y|p)dy.

Moreover, we assume that the fitness landscape is given by a test function f : Qp → R+,
i.e. f is a locally constant function with compact support. In this model the concentration
X(x, t) of the sequence x at the time t is controlled by the following evolution equation:

∂X(x, t)

∂t
= Q(|x|p) ∗ {f(|x|p)X(x, t)} − Φ(t)X(x, t) x ∈ Qp, t ∈ R+, (3.1)

where Φ(t) =
∫
Qp f(|y|p)X(y, t)dy. The term

Q(|x|p) ∗ {f(|x|p)X(x, t)} =

∫
Qp
Q(|x− y|p)f(|y|p)X(y, t)dy

45
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represents the rate at which the sequences are mutating into sequence x.

We set

(Wϕ)(x) := Q(|x|p) ∗ {f(|x|p)ϕ(x)} =

∫
Qp
Q(|x− y|p)f(|y|p)ϕ(y)dy.

Because of the Young’s inequality for the convolution1, if 1 ≤ ρ ≤ ∞ we have that

W : Lρ(Qp,C) −→ Lρ(Qp,C)

ϕ 7−→Wϕ

is a well-defined continuous operator. We can rewrite (3.1) as:

∂X(x, t)

∂t
= WX(x, t)− Φ(t)X(x, t) x ∈ Qp, t ∈ R+. (3.2)

3.1 An ultrametric version of the classical replicator

equation

We now proceed to derive a discretization of equation (3.2) that agrees with the Eigen model
in an ultrametric space formed by finite p-adic sequences.

Remark 3.1. In the following, D := D(Qp,C) denotes the C-vector space of Bruhat-
Schwartz (test functions) and DR := D(Qp,R) the R-vector space of test functions. Also, we
denote by Ω(p−r|x− a|p) the characteristic function of the ball Br(a).

Let us fix M ∈ N and consider the additive group G−MM := p−MZp/pMZp with the
following system of representatives:

I = I−Mp
−M + I−M+1 + . . .+ I0 + . . .+ IM−1p

M−1 (3.3)

where Ij ∈ {0, 1, . . . , p−1} for all −M ≤ j ≤M−1. We denote D−MM the R-vector subspace
of DR spanned by the functions Ω(pM |x − I|p) with I ∈ G−MM . Because of the ultrametric
property, the balls B−M(I), B−M(J) are disjoint if I 6= J and thus

Ω(pM |x− I|p)Ω(pM |x− J |p) = 0 if I 6= J.

Consequently, these characteristic functions are linearly independent and therefore any ϕ ∈
D−MM can be written as follows:

ϕ(x) =
∑

I∈G−MM

ϕ(I)Ω(pM |x− I|p) ϕ(I) ∈ R

1Let f ∈ Lρ(Qnp ) and g ∈ Lµ(Qnp ) where 1 ≤ ρ ≤ ∞ and 1
ρ + 1

µ ≥ 1. Then f ∗ g ∈ Lr(Qnp ) where
1
r = 1

ρ + 1
µ − 1 and it holds ‖f ∗ g‖r ≤ ‖f‖ρ‖g‖µ. See Theorem 5.2.2 in [1].
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Thus, the linear dimension ofD−MM is #G−MM = p2M . Let us assume thatQ(|x|p), f(|x|p), X(x, t) ∈
D−MM for every t ≥ 0. Then

Q(|x|p) =
1

CM

∑
I∈G−MM

Q(|I|p)Ω(pM |x− I|p), CM = p−M
∑

I∈G−MM

Q(|I|p),

f(|x|p) =
∑

I∈G−MM

f(|I|p)Ω(pM |x− I|p),

X(x, t) =
∑

I∈G−MM

X(I, t)Ω(pM |x− I|p).

The constant CM is a normalization constant to ensure
∫
Qp Q(|x|p)dx = 1. Notice that

because of the fact Ω(pM |x− I|p)Ω(pM |x− J |p) = 0 for I 6= J we have that

f(|x|p)X(x, t) =
∑

I∈G−MM

f(|I|p)X(I, t)Ω(pM |x− I|p)

Thus,

WX(x, t) = (
1

CM

∑
K∈G−MM

Q(|K|p)Ω(pM |x−K|p)) ∗ (
∑

I∈G−MM

f(|I|p)X(I, t)Ω(pM |x− I|p))

= { 1

CM

∑
K∈G−MM

∑
I∈G−MM

Q(|K|p)f(|I|p)X(I, t)}Ω(pM |x−K|p) ∗ Ω(pM |x− I|p)

= { 1

CM

∑
K∈G−MM

∑
I∈G−MM

Q(|K|p)f(|I|p)X(I, t)}p−MΩ(pM |x− (I +K)|p)

=
1

C

∑
J∈G−MM

∑
I∈G−MM

Q(|J − I|p)f(|I|p)X(I, t)}Ω(pM |x− J |p)

with C =
∑

I∈G−MM
Q(|I|p). Notice that∫

Qp
f(|x|p)X(x, t)dx = p−M

∑
I∈G−MM

f(|I|p)X(I, t)

Therefore

∂X(x, t)

∂t
− {WX(x, t)− Φ(t)X(x, t)} =

∑
J∈G−MM

dX(J, t)

dt
Ω(pM |x− J |p)

− { 1

C

∑
J∈G−MM

∑
I∈G−MM

Q(|J − I|p)f(|I|p)X(I, t)}Ω(pM |x− J |p)

−

p−M ∑
I∈G−MM

f(|I|p)X(I, t)

 ∑
J∈G−MM

X(J, t)Ω(pM |x− J |p)}

= 0.
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Setting ΦM(t) = p−M
∑

I∈G−MM
f(|I|p)X(I, t) and using the fact that Ω(pM |x−J |p), J ∈ G−MM

are R-linearly independent we get

dX(J, t)

dt
=

1

C

∑
I∈G−MM

Q(|J − I|p)f(|I|p)X(I, t)− ΦM(t)X(J, t), J ∈ G−MM , (3.4)

which is the Eigen model on G−MM .

3.2 The error-threshold

3.2.1 The Maynard-Smith ansatz

We now proceed to apply the Maynard-Smith ansatz to the p-adic replicator model. First,
we fix a sequence I of the form (3.3). Then, we divide the space of sequences into two disjoint
sets:

Qp = [I + pMZp] t [Qp \ I + pMZp]
and we assume that:

f |I+pMZp ≡ a, f |Qp\I+pMZpb, a > b.

Notice that instead of having ‘a master sequence’, I+pMZp is more like a ‘cloud of mutants’
that coincide with I up to the digit IM−1 and thus this class contains the fittest sequences. Let
X(x, t) be the concentration of I+pMZp and let Y (x, t) be the concentration of Qp\[I+pMZp].
If q := q(M,Q) denotes the probability that a sequence in I+pMZp mutates into a sequence
in Qp\[I+pMZp] and r := r(M,Q) denotes the probability that a sequence in Qp\[I+pMZp]
mutates into a sequence in I + pMZp then these populations obey the following system of
equations:

∂X(x, t)

∂t
= a(1− q)X(x, t) + brY (x, t)− Φ(t)X(x, t)

∂Y (x, t)

∂t
= aqX(x, t) + b(1− r)Y (x, t)− Φ(t)Y (x, t)

In this case, the CP condition translates to:∫
Qp
X(x, t)dx+

∫
Qp
Y (x, t)dx = 1 for all t ≥ 0,

and

Φ(t) = a

∫
I+pMZp

X(x, t)dx+ b

∫
Qp\I+pMZp

Y (x, t)dx.

Let us suppose that for M sufficiently large, r(M,Q) is negligible and therefore the system
simplifies to:

∂X(x, t)

∂t
= a(1− q)X(x, t)− Φ(t)X(x, t),

∂Y (x, t)

∂t
= aqX(x, t) + bY (x, t)− Φ(t)Y (x, t).
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Taking Z(x, t) = X(x,t)
Y (x,t)

we get:

∂Z(x, t)

∂t
= Z(x, t){a(1− q)− aqZ(x, t)− b.}

If the concentration Z(x, t) achieves a steady concentration Z̄(x) over the time, we must
have

Z̄(x) =
a(1− q)− b

aq
.

To ensure the survival of the fittest group of sequences, we must have Z̄(x) > 0 which implies

1− q > b

a
.

Setting s = 1− b
a
∈ (0, 1) the error threshold is given by

q < s. (3.5)

which is the classical condition determining the error threshold.

3.2.2 Some remarks

If we take x ∈ pMZp and y ∈ Qp \ pMZp, because of the ultrametric property we must have
|x− y|p = |y|p and thus,

q(M,Q) =

∫
I+pMZp

∫
Qp\I+pMZp

Q(|x− y|p)dydx

=

∫
pM

∫
Qp\pMZp

Q(|x− y|p)dydx

=

∫
pM

∫
Qp\pMZp

Q(|y|p)dydx

= p−M
∫
Qp\pMZp

Q(|y|p)dydx

= p−M
∫

suppQ∩[Qp\pMZp]

Q(|y|p)dydx.

Analogously,

r(M,Q) =

∫
Qp\I+pMZp

∫
I+pMZp

Q(|x− y|p)dxdy

=

∫
Qp\pMZp

∫
pM
Q(|x− y|p)dxdy

=

∫
Qp\pMZp

∫
pM
Q(|y|p)dxdy

= p−M
∫
Qp\pMZp

Q(|y|p)dy

= p−M
∫

suppQ∩[Qp\pMZp]

Q(|y|p)dy,
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which implies that q is independent of I and moreover r = r(M,Q) = q.

3.3 Two families of mutation measures

3.3.1 A class of mutation measures supported in the unit ball

Now we take α ≥ 0 and consider

Q(|x|p;α) =
|x|αpΩ(|x|p)
Z(α)

with

Z(α) =

∫
Zp
|x|αpdx =

1− p−1

1− p−1−α

Notice that the uniform distribution is a particular case of the above family of mutation
measures when α = 0. Proceeding in a similar way, we fix a sequence I ∈ Zp and divide
the space of sequences Zp into two subsets: I + pMZp and Zp \ [I + pMZp] for some positive
integer M and we compute the probability that a sequence in the set I + pMZp mutates into
a sequence belonging to the set Zp \ [I + pMZp]:

q(α) =
1

Z(α)

∫
I+pMZp

∫
Zp\I+pMZp

|x− y|αpdydx

=
1

Z(α)

∫
I+pMZp

∫
Zp\I+pMZp

|(x− I)− (y − I)|αpdydx

=
1

Z(α)

∫
pMZp

∫
Zp\pMZp

|x− y|αpdydx

=
1

Z(α)

∫
pMZp

∫
Zp\pMZp

|y|αpdydx

=
p−M

Z(α)

∫
Zp\pMZp

|y|αpdydx

We now fix HM a system of representatives of Zp/pMZp, thus we can write Zp = tJ∈HMJ +
pMZp. Then

q(α) =
p−M

Z(α)

∫
Zp\pMZp

|y|αpdydx

=
p−2M

Z(α)

∑
J∈HM

|J |αp .

In addition,

q(α) >
p−2M

Z(α)
|pM−1|αp =

p−2M−(M−1)α

Z(α)
>
p−2M−Mα

Z(α)
> p−2M−Mα.
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If M can grow and α is fixed then the condition (3.5) is satisfied if p−2M−Mα < q(α) < s
which implies

M >
− ln s

(2 + α) ln p
, s ∈ (0, 1).

3.3.2 Mutation measures of Gibbs type

Let us suppose that we have a mutation measure of the following form

e−βE(|x|p)

Z(β,E)

with β > 0, E : R+ → R+ and Z(β,E) =
∫
Qp e

−βE(|x|p)dx. A Gibbs measure is a natural

choice when dealing with infinite systems. We now assume that E(|x|p) = |x|αp , α > 0. No-
tice that for sufficiently large β > 0, because of the rapid decay exp(−β·) the most probable
mutations are those corresponding to sequences which are close to “the master sequence” I
in the p-adic norm, and thus they belong to a ball of type I + pMZp.

With these assumptions, the probability that a sequence x ∈ Qp mutates into a sequence
into a Borel subset B ⊂ Qp is given by

P (x,B;α, β) =
1

C

∫
B

e−β|x−y|
α
p dy,

where C(α, β) := C is a normalization constant such that

1

C

∫
Qp
e−β|x−y|

α
p dy = 1

Similarly to the previous cases, the probability that a sequence x mutates into a sequence
belonging to Qp \ [I + pMZp] is P (x,Qp \ [I + pMZp];α, β) and the probability that any
sequence from the ball I + pMZp mutates into a sequence in Qp \ [I + pMZp] is

q(M,α, β) :=
1

C

∫
I+pMZp

∫
Qp\I+pMZp

e−β|x−y|
α
p dy
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Thus,

q(M,α, β) =
1

C

∫
I+pMZp

∫
Qp\I+pMZp

e−β|(x−I)−(y−I)|αp dy

=
1

C

∫
pMZp

∫
Qp\pMZp

e−β|x−y|
α
p dy

=
1

C

∫
pMZp

∫
Qp\pMZp

e−β|y|
α
p dy

=
p−M

C

∫
Qp\pMZp

e−β|y|
α
p dy

=
p−M

C

∫
t∞j=−M+1Sj

e−β|y|
α
p dy

=
p−M

C

∞∑
j=−M+1

∫
|y|p=pj

e−β|y|
α
p dy

>
p−M

C

∫
|y|p=p−M+1

e−β|y|
α
p dy

=
p−2M+1(1− p−1)

C
e−βp

(−M+1)α

=
p−2M(p− 1)

C
e−βp

(−M+1)α

.

Using this inequality, in order to avoid the error threshold we must have

p−2M(p− 1)

C
e−βp

(−M+1)α

< q(M,α, β) < s,

which implies that

M >
−(βpα + ln s)

2 ln p
+

ln p−1
C

2 ln p
.

3.4 The Cauchy problem for the p-adic replicator equa-

tion for a mutation measure supported in the unit

ball.

We recall that the p-adic replicator equation (3.2) which controls the evolution of the con-
centration X(x, t) of the sequence x at the time time t is given by

∂X(x, t)

∂t
= (Wϕ)(x)− Φ(t)X(x, t), x ∈ Qp, t ∈ R+,

where Φ(t) =
∫
Qp f(|y|p)X(y, t)dy and the operator W := W(Q, f), W : Lρ(Qp) → Lρ(Qp)

is defined as

(Wϕ)(x) := (Q ∗ (fϕ))(x) =

∫
Qp
Q(|x− y|p)f(|y|p)ϕ(y)dy.
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In this section we study the Cauchy problem for the p-adic replicator equation, assuming
that the mutation measure Q is a square-integrable function supported in the unit ball Zp.

3.4.1 The operator W for a mutation measure supported in the
unit ball.

Let us assume that Q : R+ → R+ is a square-integrable mutation measure supported in
the unit ball Zp, that is, suppQ ⊆ Zp,

∫
Zp Q

2(|x|p)dx < ∞ and
∫
Zp Q(|x|p)dx = 1. We also

assume that the fitness function f is a test function with supp f ⊆ Zp of the following form.
Fix a positive integer L and consider the additive group GL := Zp/pLZp having the following
system of representatives:

I = I0 + I1p+ . . .+ IL−1p
L−1, Ij ∈ {0, . . . , p− 1}, j = 0, . . . , L− 1.

We assume that f can be written as

f(|x|p) =
∑
I∈GL

f(|I|p)Ω(pL|x− I|p). (3.6)

We set Q : L2(Zp,C)→ L2(Zp,C), with

(Qϕ)(x) := (Q ∗ ϕ)(x) =

∫
Zp
Q(|x− y|p)ϕ(y)dy, ϕ ∈ L2(Zp,C), (3.7)

i.e., Q is a convolution operator. Notice that the convolution is well-defined due to the fact
that Zp is an additive group. For x ∈ Qp \Zp let Q(x) = 0. Then Q ∈ L1(Qp,R)∩L2(Qp,R).
The operator Q has a natural extension Q′ : L2(Qp,C) → L2(Qp,C) given by (Q′ϕ)(x) :=
(Q ∗ ϕ)(x) =

∫
Qp Q(|x− y|p)ϕ(y)dy.

Extending a function ϕ ∈ L2(Zp,C) as zero outside the ball Zp, we have a natural
embedding L2(Zp,C) ↪→ L2(Qp,C) and the following holds true:

Q′|L2(Zp,C) ≡ Q (3.8)

Indeed, for any ϕ ∈ L2(Zp,C) and any x ∈ Zp,

(Q′ϕ)(x) =

∫
Qp
Q(|x− y|p)ϕ(y)dy

=

∫
Zp
Q(|x− y|p)ϕ(y)dy +

∫
Qp\Zp

Q(|x− y|p)ϕ(y)dy

=

∫
Zp
Q(|x− y|p)ϕ(y)dy

= (Qϕ)(x).

We observe that the first three equalities also hold for x ∈ Qp \ Zp. Moreover, since for any
x ∈ Qp \ Zp and y ∈ Zp we have |x − y|p = |x|p, then Q(|x − y|p) = 0, see Proposition
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2.1. Thus, the ultrametric property of the p-adic norm implies that the support of Q′ϕ as a
function from Qp to C is contained in Zp.

Now, using Theorem 2.15 and the fact that Q ∈ L1(Qp,R)∩L2(Qp,R) we have that, for
any ϕ ∈ L2(Qp,C)

(Q′ϕ)(x) =

∫
Qp
Q(|x− y|p)ϕ(y)dy = F−1

ξ→x{Q̂(|ξ|p)Fx→ξϕ},

since the Fourier transform of a radial real-valued function is also a radial and real-valued
function (see Prop. 2.12). Therefore, the operator Q′ is a pseudodifferential operator with

symbol Q̂(| · |p).

According to Theorem 2.19 and Theorem 2.21, we know that the Kozyrev wavelet basis
K := {Ψrjn} is an orthonormal basis of L2(Qp,C) consisting of eigenfunctions of the operator
Q′. Explicitely, we have that

Q′Ψrjn = Q̂(p1−r)Ψrjn.

In particular, for each Kozyrev wavelet Ψrjn ∈ K supported in the ball Zp, because of the
equivalence in (3.8) we have

QΨrjn = Q̂(p1−r)Ψrjn. (3.9)

We observe that Wϕ = Q′Mfϕ = Q′(fϕ), where Mf is the multiplication operator with
symbol f . Then, if we restrict the operator W to the space L2(Zp,C), we have W = QMf

and therefore W : L2(Zp,C) → L2(Zp,C). Indeed, since fϕ ∈ L2(Zp,C), for ϕ ∈ L2(Zp,C)
and x ∈ Zp we have

(Wϕ)(x) =

∫
Zp
Q(|x− y|p)f(|y|p)ϕ(y)dy (3.10)

For the rest of the chapter, we think of W as its restriction to the space L2(Zp), with its
action given by the formula (3.10) above.

The operator W is a compact operator from L2(Zp,C) to L2(Zp,C). To see this, notice
that W is an integral operator with integral kernel KW(x, y) := Q(|x − y|p)f(|y|p). Since
f ∈ DR and Q ∈ L1(Zp,R) ∩ L2(Zp,R) we have that KW ∈ L2(Zp × Zp). Indeed, using
Fubini’s Theorem and the fact that Zp is an additive group we have∫

Z2
p

K2
W(x, y)d(x, y) =

∫
Zp

∫
Zp
Q2(|x− y|p)f 2(|y|p)dxdy

=

∫
Zp
f 2(|y|p)

(∫
Zp
Q2(|x− y|p)dx

)
dy

= ‖f‖2‖Q‖2.
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Therefore, using a standard result from functional analysis 2 we conclude that W is compact.
Moreover, using the same argument we see that W is also compact as an operator from
L2(Zp,R) to L2(Zp,R). We will make use of this fact later.

Remark 3.2. The operator W is not symmetric. Both Q and Mf are bounded operators.
As we have shown, Q is unitarily equivalent to a multiplication operator with real-valued
symbol, which implies it is self-adjoint. From W = QMf , we conclude W∗ = M∗

fQ
∗ =

MfQ 6= QMf . Thus, the standard spectral theory for compact self-adjoint operators cannot
be applied.

We denote DL the C-vector subspace of D spanned by the set of functions

{Ω(pL| · −I|p)}, I ∈ GL,

which is finite dimensional. On the other hand, we set

ΛI := {rnj; supp Ψrnj ⊆ I + pLZp},
KL,I := span{Ψrnj ∈ K; rnj ∈ ΛI},

KL :=
⊕
I∈GL

KL,I ,

VL := DL ⊕KL, (3.11)

where the closure is taken in the sense of L2(Zp,C). Thus, KL,I , KI and VL are closed

subspaces. For short, by Ψ
(I)
rjn we mean Ψrjn ∈ K with rjn ∈ ΛI .

Remark 3.3. The zero mean property of the elements of the Kozyrev wavelet basis implies
that the inner product 〈Ω(pL| · −I|p),Ψ

(J)
rjn〉 = 0 for any I, J ∈ GL. Therefore, DL ⊥ KL.

Because of formula (3.6), and the fact that for I 6= J the balls I + pLZp and J + pLZp
are disjoint, we have that

MfΨ
(I)
rnj =

(∑
J∈GL

f(|J |p)Ω(pL| · −J |p)

)
Ψ

(I)
rnj = f(|I|p)Ψ

(I)
rnj.

Thus, using (3.9) we have

WΨ
(I)
rjn = Q̂(p1−r)f(|I|p)Ψ

(I)
rjn. (3.12)

2Proposition: If (X,Ω, µ) is a measure space and k ∈ L2(X × X,Ω × Ω, µ × µ), then (Kf)(x) =∫
k(x, y)f(y)dµ(y), is a compact operator and ‖K‖ ≤ ‖k‖2. See Prop. II 4.7, p. 43, [6].



56 CHAPTER 3. NON-ARCHIMEDEAN MODELS

Now, we show that DL is a W-invariant subspace. We have that

W(Ω(pL| · −I|p))(x) =

∫
Zp
Q(|x− y|p)

(∑
J∈GL

f(|J |p)Ω(pL|y − J |p)

)
Ω(pL|y − I|p)dy

= f(|I|p)
∫
Zp
Q(|x− y|p)Ω(pL|y − I|p)dy

= f(|I|p)
∫
I+pLZp

Q(|x− y|p)dy

=

{
qf(|I|p) if x ∈ I + pLZp
p−Lf(|I|p)Q(|I − J |p) if x ∈ J + pLZp

where q :=
∫
pLZp Q(|z|p)dz, which implies that

W(Ω(pL| · −I|p)) = qf(|I|p)Ω(pL| · −I|p) +
∑
J 6=I

p−Lf(|I|p)Q(|I − J |p)Ω(pL| · −J |p) ∈ DL.

We observe that W acts on DL as finite linear transformation. Thus, we can represented as
a matrix [W]. The above formula imply that

[W]JI =

{
qf(|I|p) J = I

p−Lf(|I|p)Q(|I − J |p) J 6= I
(3.13)

In analogy of the classical case, we assume that the “master sequence” is the sequence of ze-
roes (the p-adic number zero). Then, in the case of high fidelity replication, for large enough
L, the mutation measure Q is “concentrated” in the ball pLZp, whereas it takes small values
in the spheres S0, S−1, . . . , S−L+1. In other words, Q as a function from R+ to R+ has a
“high peak” in the interval [0, p−L].

With this in mind, we argue that q ≈ 1. Therefore, [W]II ≈ f(|I|p) � [W]JI ≈
p−Lf(|I|p). From now on, we assume that all the eigenvalues of [W] are distinct and that
the matrix W is non-singular. Therefore, there exists a basis {ϕI}I∈GL of DL consisting of
eigenvectors of the matrix [W], i.e.,

[W]ϕI = λIϕI , λI ∈ C. (3.14)

Notice that the hypothesis that the eigenvalues of [W] are different is also used in the clas-
sical case, see Subsection 1.2.1, and reference [14]. Moreover, the matrix [W] is positive.
Thus, as a consequence of the Perron-Frobenius theorem, we know there is a real and posi-
tive eigenvalue, with a unique associated eigenvector that is positive, and it is the eigenvalue
with largest absolute value.

According to Remark 3.3, we have that DL ⊥ KL. After the change of basis of the
subspace DL, we do not necessarily have that 〈ϕI ,Ψ(J)

rjn〉 = 0. However, from DL ⊥ KL and
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the fact that the set of wavelets ∪I∈GL{Ψ
(I)
rnj} are an orthonormal basis of KL we have that

for any h ∈ VL there exist unique coefficients {c̃I} and {c(I)
rjn} such that

h =
∑
I∈GL

c̃IϕI +
∑
I∈GL

∑
rnj∈ΛL

c
(I)
rjnΨ

(I)
rnj.

3.4.2 The Cauchy problem for a mutation measure supported in
the unit ball.

In this subsection, we study a Cauchy problem for a mutation measure supported in the unit
ball. We assume a set of hypothesis that introduce in the previous subsection. Summarizing:

1. Q : R+ → R+ is a square-integrable mutation measure supported in the unit ball Zp,
that is, suppQ ⊆ Zp,

∫
Zp Q

2(|x|p)dx <∞ and
∫
Zp Q(|x|p)dx = 1.

2. W : L2(Zp,C)→ L2(Zp,C) is the operator defined by (3.10).

3. f ∈ DL is given by formula (3.6).

4. VL be the closed subspace of L2(Zp,C) defined by (3.11).

5. The eigenvalues of the matrix [W] are distinct. Thus, we assume that Eq. (3.14) holds.

The Cauchy problem for the p-adic replicator equation we solve is as follows.
X : Zp × R+ → R, X(·, t) ∈ VL ∩ L2(Zp,R), X(x, ·) ∈ C1(R+,R)
∂X(x,t)
∂t

= WX(x, t)− Φ(t)X(x, t), x ∈ Zp, t ∈ R+

X(x, 0) = X0 ∈ VL ∩ L2(Zp,R),

(3.15)

where

Φ(t) =

∫
Zp
f(|y|p)X(y, t)dy. (3.16)

We recall that we impose some constraints toX(x, t), namely, for every t ∈ R+ and x ∈ Zp
we have X(x, t) ∈ [0, 1], this is, X(x, t) is the concentration of the sequence x at the time t.
Finally, we also assume that the total population remains constant, i.e.,

∫
Zp X(x, t)dx = 1

for every t ∈ R+.

After the change of variables X(x, t) = Y (x, t) exp(−
∫ t

0
Φ(s)ds), (3.15) becomes

Y : Zp × R+ → R, Y (·, t) ∈ VL ∩ L2(Zp,R), Y (x, ·) ∈ C1(R+,R)
∂Y (x,t)
∂t

= WY (x, t), x ∈ Zp, t ∈ R+

Y (x, 0) = X0 ∈ VL ∩ L2(Zp,R).

(3.17)
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Indeed, using a well-known result 3, since X(x, t) ≤ 1, f ∈ L1(Zp,R) and X(x, ·) ∈
C1(R+,R), we have that Φ is a continuous function on [0, t]. Therefore, the Fundamen-
tal Theorem of Calculus implies that exp(−

∫ t
0

Φ(s)ds) is differentiable, and consequently

∂X(x, t)

∂t
=
∂Y

∂t
exp(−

∫ t

0

Φ(s)ds)− Φ(t)Y (x, t) exp(−
∫ t

0

Φ(s)ds)

=
∂Y

∂t
exp(−

∫ t

0

Φ(s)ds)− Φ(t)X(x, t)

=
∂Y

∂t
exp(−

∫ t

0

Φ(s)ds)− Φ(t) exp(−
∫ t

0

Φ(s)ds)WY (x, t) +
∂X(x, t)

∂t
.

Moreover, if Y (x, t) is a solution of (3.17) then

1 =

∫
Zp
X(x, t)dx = exp(−

∫ t

0

Φ(s)ds)

∫
Zp
Y (x, t)dx,

which implies that

X(x, t) =
Y (x, t)∫

Zp Y (x, t)dx
. (3.18)

Thus, if we have a solution of (3.17), then we have a solution to (3.15).

3.4.3 A separable solution to the Cauchy problem of the p-adic
replicator equation

We proceed to solve (3.17) by the method of separation of variables. First, we look for a
complex-valued solution Ỹ (x, t) of (3.17). We assume that Ỹ (x, t) = C(t)U(x). Then, after
substituting in (3.17) we have

d

dt
C(t)U(x) = C(t)W(U(x)).

Since we are interested in nontrivial solutions, assuming that C(t) 6= 0 and U(x) 6= 0, then

dC
dt

(t)

C(t)
=

WU(x)

U(x)
.

Since the LHS only depends on t and the RHS only depends on x, the above equation implies
the existence of constant λ such that

dC
dt

(t)

C(t)
= λ =

WU(x)

U(x)
. (3.19)

3Theorem: Let (Ω,F , µ) be a measure space. Suppose that g : Ω × [a, b] → C(−∞ < a < b < ∞) and
that g(·, t) : Ω→ C is integrable for each t ∈ [a, b]. Let G(t) =

∫
Ω
g(x, t)dµ(x) and suppose that there exists

h ∈ L1(µ) such that |g(x, t)| ≤ h(x) for all x, t. If g(x, ·) is continuous for each x, then G is continuous. See
Thm. 2.27, [12] .
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The first equality is just an ODE, whereas the second equality implies that λU = WU ,
therefore, λ must be an eigenvalue of the operator W with eigenfunction U . Substituting
the expression for the eigenvalues (see equations (3.12) and (3.14)) into the left-hand side of
(3.19) we get the following equations:{

d
dt
C

(I)
rjn(t) = Q̂(p1−r)f(|I|p)C

(I)
rjn(t) corresponding to Ψ

(I)
rjn.

d
dt
C̃I(t) = λIC̃I(t) corresponding to ϕI .

(3.20)

The corresponding solutions are given by{
C

(I)
rjn(t) = C

(I)
rjn(0) exp

(
Q̂(p1−r)f(|I|p)t

)
corresponding to Ψ

(I)
rjn.

C̃I(t) = C̃I(0) exp (λIt) corresponding to ϕI .
(3.21)

Now, using the linearity of the equation and the superposition principle, we have a
solution

Ỹ (x, t) =
∑
I∈GL

C̃I(t)ϕI +
∑
I∈GL

∑
rnj∈ΛL

C
(I)
rjn(t)Ψ

(I)
rnj.

Using the initial condition Y (0, t) = X0 we have that

X0 =
∑
I∈GL

C̃I(0)ϕI +
∑
I∈GL

∑
rnj∈ΛL

C
(I)
rjn(0)Ψ

(I)
rnj.

Taking the inner product with Ψ
(I)
rnj we obtain,

C
(I)
rjn(0) = 〈X0,Ψ

(I)
rnj〉.

The coefficients of the orthogonal projection of X0 into DL in the basis {Ω(pL| · −I|p)}I∈GL
are easy to obtain using the inner product. On the other hand, let P be the of change of basis
matrix of DL which takes {Ω(pL| · −I|p)}I∈GL to {ϕI}I∈GL , i.e, the matrix whose columns
are the coordinate vectors {ϕI}I∈GL in terms of {Ω(pL| · −I|p)}I∈GL . Then we get

C̃I(0) =
∑
J∈GL

P−1
IJ 〈X0,Ω(pL| · −J |p)〉,

where P−1
IJ is the IJ entry of the inverse of P . Since we are looking for real-valued solutions

of the equation, the solution Y (x, t) we are looking for is the real part of Ỹ (x, t).

Finally, we compute the solution to the Cauchy problem (3.15). By using (3.18), the
solution of the Cauchy problem (3.15) is given by

X(x, t) =
Y (x, t)∫

Zp Y (x, t)dx
.

On the other hand, an asymptotic analysis of the solution X(x, t) of the Cauchy problem
(3.15) requires considerable analysis of the eigenvalues of the matrix [W], see (3.13). Roughly
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speaking, considering a high fidelity replication rate, we expect its largest eigenvalue to be
close to the largest of the values {f(|I|p)}I∈GL , see the approximations (1.12) and compare
with (3.13).

Due to the inequality ‖Q̂‖∞ ≤ ‖Q‖1 = 1 (see Thm. 2.11) and the expression (3.12)
for the eigenvalues corresponding to Kozyrev wavelets , we suspect that the dominant term
in time in the expression for Y (x, t) is the one corresponding to the largest eigenvector of
[W], which by the Perron-Frobenius theorem has positive entries with respect to the basis
{Ω(pL| · −I|p)}I∈GL of DL, and this result agrees with the physical interpretation of the
model. However, this remains to be studied.

The Cauchy problem for the p-adic replicator equation in the space L2(Zp,R)
X : Zp × R+ → R, X(·, t) ∈ L2(Zp,R), X(x, ·) ∈ C1(R+,R)
∂X(x,t)
∂t

= WX(x, t)− Φ(t)X(x, t), x ∈ Zp, t ∈ R+

X(x, 0) = X0 ∈ L2(Zp,R),

(3.22)

is still an open problem.

3.4.4 The existence of the quasispecies

In Section 1.2, the existence of the quasispecies, i.e., the steady state of the system (1.6),
was justified using the Perron-Frobenius theorem. Recalling, the Perron-Frobenius theo-
rem states that if A is a positive matrix then it has an eigenvalue λ0 which is positive and
λ0 > |λr| for any other eigenvalue λr of A. Moreover this is the only eigenvalue whose asso-
ciated eigenvector has only positive entries (see [3, 21]).

We wish to show that this remains true in the p-adic model, in the setting of the Cauchy
problem (3.22). Motivated by the classical case, the hope is to use an analogous procedure
to conclude that there exist a non-negative function which satisfies suitable hypothesis that
is an eigenvector of the operator W. This can be achieved using a generalization of the
Perron-Frobenius theorem to Banach spaces that is known as the Krein-Rutman theorem.
Before stating this result, we need to write a few definitions.

Definition 3.4. Let X be a Banach space. By a cone K ⊂ X, we understand a convex
closed set such that λK ⊂ K for all λ ≥ 0 and K ∩ (−K) = {0}. We say that a cone is
total if K −K = X.

Definition 3.5. Let X be a Banach space, K ⊂ X a cone and T : X → X a linear bounded
operator. We say that T is positive if T K ⊂ K.

Now, we state the Krein-Rutman theorem, which we use below to argue the existence of
the quasispecies.

3.1 Theorem (Thm. 19.2, [7] ). Let X be a Banach space, K ⊂ X a total cone and
T : X → X a linear and compact positive operator with r(T ) > 0. Then r(T ) is an
eigenvalue with a positive eigenvector.



3.4. THE CAUCHY PROBLEM IN THE UNIT BALL. 61

As we have showed before, W is a compact operator on L2(Zp,R). Moreover, notice
that Q, f are real valued functions, and the eigenvalues of W are real (as an operator on
L2(Zp,C)). Also, its eigenfunctions are elements of the Kozyrev wavelet basis. Taking the
real part from both sides of (3.12), we have

WRe(Ψ
(I)
rjn) = f(|I|p)Q̂(p1−r)Re(Ψ

(I)
rjn).

Therefore, r(W) > 0 on the space L2(Zp,R), since it has non-trivial eigenvalues. Consider
L2

+ := {ϕ ∈ L2(Zp,R);ϕ ≥ 0µHaar-a.e.} and set K := L2
+ for short. Then K is a total cone.

Indeed, for any positive constants α, β > 0, and any ϕ, ψ ∈ K we have that αϕ+ βψ ∈ K.

Moreover, if we take a sequence {ϕn} ⊂ K such that ϕn
L2(Zp,R)−−−−−→ ϕ, we know that con-

vergence in the space L2(Zp,R) implies the convergence µHaar-a.e. of a subsequence {ϕnj}j.
Then ϕnj(x) → ϕ(x) µHaar-a.e., which implies that ϕ(x) ≥ 0 µHaar-a.e. Finally, since

DR ⊂ K −K, we have that K −K = L2(Zp,R).

Applying the Krein-Rutman theorem to our operator acting on L2(Zp,R), we conclude
there must exist a positive eigenvector associated to r(W), which is the eigenvector we would
expect to be the steady-state of the system, because of the physical meaning.

There is a sharper result in the theory of Nonlinear Functional Analysis, that resembles
closely the Perron-Frobenius theorem in finite dimensions.

Definition 3.6. Let X be a Banach space and let K ⊂ X be a cone with non-empty interior.
Denote by Ko the interior of the cone K. We say that a bounded linear operator T : X → X
is strongly positive if T K ⊂ Ko.

3.2 Theorem (Thm. 19.3, [7] ). Let X be a Banach space, K ⊂ X a cone with Ko 6= ∅,
T : X → X a compact linear and strongly positive operator. Then we have

1. r(T ) > 0, r(T ) is a simple eigenvalue with an eigenvector v ∈ Ko and there is no other
eigenvalue with a positive eigenvector.

2. |λ| < r(T ) for all eigenvalues λ 6= r(T ).

Sadly, our cone L2
+ has empty interior. We can see how big is the role that the topol-

ogy plays in infinite dimensions. In Example 19.4 of the book [7], an integral operator
T : C([0, 1], ‖ · ‖∞)→ C([0, 1], ‖ · ‖∞) with a particular integral kernel is studied. The cone
K is given by C+([0, 1]) := {x ∈ C([0, 1], ‖ · ‖∞);x(t) ≥ 0, t ∈ [0, 1]}, and it has non-empty
interior.

In the mentioned example, the operator T is compact and positive but not strongly pos-
itive. However, using the order topology (see Section 19.6, [7] ), a Banach space Xe together
with a cone Ke are constructed, where e ∈ C+([0, 1]) is a suitable element that plays a key
role in the construction. It turns out that Ke is a cone with non-empty interior, T : Xe → Xe

is compact, and T Ke ⊂ Ke
o. Then, the theorem above can be applied.
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It is not known to the author if such a construction is possible in the p-adic setting.
In different books of functional analysis, the compacity of bounded integral operators on
the Banach space C([0, 1], ‖ · ‖∞) with a continuous integral kernel k ∈ C([0, 1] × [0, 1]) is
proved using the Arzelà-Ascoli theorem. Motivated by this, it is in our belief that studying
the Eigen-Schuster model on Zp is of great interest as perhaps, the same method could be
applied to get a sharper result with respect to the existence of the quasispecies.

Let CR(Zp) := CR(Zp, ‖ · ‖∞) we denote the space of real-valued continuous functions on
Zp with the uniform norm. We now consider the operator

W : CR(Zp) −→ CR(Zp)

ϕ 7−→ (Wϕ)(x) :=

∫
Zp
Q(|x− y|p)f(|y|p)ϕ(y)dy,

where Q, f ∈ CR(Zp). Also, we assume that f is a nonnegative function and that Q is a
mutation measure on Zp, that is,

∫
Zp
Q(|x|p)dx = 1 and Q(x) ≥ 0 for all x ∈ Zp. Notice that

as before, Wϕ = Q ∗ (fϕ). The convolution is possible since (Zp,+) is a group.

As before, our integral kernel is given by KW(x, y) = Q(|x− y|p)f(|y|p) ∈ CR(Zp × Zp).
We claim that W is a compact operator. Indeed, take a bounded set A ⊂ CR(Zp), i.e., there
exists M > 0 such that ‖ϕ‖∞ ≤M for all ϕ ∈ A. Then

(∀ϕ ∈ A)(∀x ∈ Zp)|(Wϕ)(x)| ≤M max
x,y∈Z2

p

KW(x, y)

This implies that W(A) is bounded. Moreover, since KW ∈ CR(Z2
p) and Z2

p is compact, it
follows that KW is uniformly continuous. In particular, for any y ∈ Zp we have

(∀ε > 0)(∃L ∈ N)(∀x1, x2 ∈ Zp) |x1 − x2|p ≤ p−L =⇒ |KW(x1, y)−KW(x2, y)| < ε

M
.

Therefore,

(∀ε > 0)(∃L ∈ N)(∀ϕ ∈ A)(∀x1, x2 ∈ Zp) |x1−x2|p ≤ p−L =⇒ |(Wϕ)(x1)− (Wϕ)(x2)| < ε.

We conclude that W(A) is uniformly equicontinuous. Then, the Arzelà-Ascoli theorem 4

implies that W(A) is relatively compact. This tell us that W sends bounded sets to rela-
tively compact sets, thus, it is compact.

On the other hand, we set C+
R (Zp) := {ϕ ∈ CR(Zp);ϕ(x) ≥ 0, x ∈ Zp}. This is a cone with

non-empty interior. However, we only have that WC+
R (Zp) ⊂ C+

R (Zp), so the sharp version
of the Krein-Rutman theorem cannot be applied directly. The question about whether is
possible to make the described construction or not remains open. Perhaps this construction
holds not in the general case, but for a particular family of mutation measures.

4Theorem (Arzelà-Ascoli): Let X be a compact Hausdorff space. If F is an equicontinuous, pointwise
bounded subset of C(X), then F is totally bounded in the uniform metric, and the closure of F in C(X) is
compact. See Thm 4.43, [12] .



Chapter 4

Conclusions

In this work, we presented a summary of the classical theory of the Eigen-Schuster model.
In particular, we reviewed the so called Eigen paradox. After that, we reviewed some of
the ideas concerning the p-adic version of the Eigen-Schuster model, as it was introduced by
Zuñiga-Galindo in [31].

Under reasonable hypothesis, we found a real-valued separable solution to the Cauchy
problem 3.15 in a closed subspace of L2(Zp,C). However, several questions remain open,
namely, the asymptotic behaviour of the solution, and the existence and unicity of a solution
in a more general setting. This task seems by no means, easy to accomplish, as most of the
known theory for differential equations is not applicable, due to the fact that the operator
W is not self-adjoint and the equation being nonlinear.

The main problems to solve for the future development of the project are:

1. Software with full support for the visualization of functions from Qp to R or C and its
applications to the visualizaton of solutions expressed in terms of the Kozyrev wavelet
basis.

2. Numerical methods for the Cauchy problem of the p-adic replicator equation.

Both of these would allow us to understand qualitative properties of the solution and its
asymptotic behaviour.
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Appendix A

Code for the Eigen-Schuster model
simulations.

/*

evdynamics

A Maxima package to study evolutionary dynamics

Author: Emmanuel Roque

License: GNU GPLv3, https://www.gnu.org/licenses/gpl-3.0.en.html

*/

load("rkfun.fasl")$

load(interpol)$

load(distrib)$

load(rkf45)$

load(lapack)$

load(operatingsystem)$

make_ode_fun(name_eq,eq,list_vars)::=buildq([name_eq,eq,list_vars],

name_eq(splice(list_vars)):=block(

[],

mode_declare(list_vars,float),

eq

)

)$

/*This will be helpful for debugging or comparison purposes

64
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In the future it might support returning eqs in a specific format, like Octave’s

*/

gen_W_matrix(Qmatrix,rep_rate,degr_rate):=block(

[W%, dim:length(rep_rate)],

local(W%),

W%[i,j]:=if is(i=j) then rep_rate[i]*Qmatrix[i][i]-degr_rate[i]

else rep_rate[j]*Qmatrix[j][i],

genmatrix(W%,dim,dim)

)$

gen_eqs(Qmatrix,rep_rate,degr_rate,[options]):=block(

[Wmatrix,W%, dim:length(rep_rate),vars,xx%,xx,E%,stx,x,wrtf,eqs],

local(W%,x),

W%[i,j]:=if is(i=j) then rep_rate[i]*Qmatrix[i][i]-degr_rate[i]

else rep_rate[j]*Qmatrix[j][i],

Wmatrix:genmatrix(W%,dim,dim),

stx:assoc(’syntax,options,’maxima),

if is(stx=’maxima) then(

xx%:makelist(concat(x,i),i,1,dim),

xx:transpose(matrix(xx%)),

E%:list_matrix_entries(Wmatrix.xx),

makelist(E%[i]-((rep_rate-degr_rate).xx)*xx%[i],i,1,dim)

) elseif is(stx=’octave) then(

xx%:makelist(x(i),i,1,dim),

xx:transpose(matrix(xx%)),

E%:list_matrix_entries(Wmatrix.xx),

eqs:expand(makelist(E%[i]-((rep_rate-degr_rate).xx)*xx%[i],i,1,dim)),

wrtf:assoc(’file_name,options,’eqsf),

write_data(eqs,sconcat(string(wrtf),".tmp"),semicolon),

system(sconcat("./eqsformatting.sh ",string(wrtf))),

delete_file(sconcat(string(wrtf),".tmp")),

return(’done)

)

else error("Syntax is not valid")

)$

solve_eigen_model(Qmatrix,rep_rate,degr_rate,x00,t0,tf,[options]):=block(

[Wmatrix,W%, dim:length(rep_rate),vars,xx%,xx,eqs,E%,

fun_eq,mthd,stp%,abstol],

local(W%),

W%[i,j]:=if is(i=j) then rep_rate[i]*Qmatrix[i][i]-degr_rate[i]

else rep_rate[j]*Qmatrix[j][i],

Wmatrix:genmatrix(W%,dim,dim),



66 APPENDIX A. CODE FOR THE EIGEN-SCHUSTER MODEL SIMULATIONS.

xx%:makelist(concat(x,i),i,1,dim),

xx:transpose(matrix(xx%)),

E%:list_matrix_entries(Wmatrix.xx),

eqs:makelist(E%[i]-((rep_rate-degr_rate).xx)*xx%[i],i,1,dim),

vars:append([t],xx%),

mthd:assoc(’method,options,’rkfun),

abstol:assoc(’absolute_tolerance,options,1e-6),

if is(mthd=’rkfun) then (

fun_eq:makelist(concat(fun,i),i,1,dim),

stp%:assoc(’step_size,options,0.1),

for i:1 thru dim do apply(make_ode_fun,[concat(fun,i),eqs[i],vars]),

map(compile,fun_eq),

rkfun(fun_eq,xx%,x00,[t,t0,tf,stp%])

) elseif is(mthd=’rkf45) then rkf45(eqs,xx%,x00,[t,t0,tf],

’absolute_tolerance=abstol)

else error("The method is not valid")

)$

plot_evolution(sol,[options]):=block(

[dim:length(first(sol))-1,lbl,yr],

lbl:assoc(’print_labels,options,false),

yr:assoc(’yrange,options,[0,1]),

if lbl then

wxdraw2d(

makelist(

[

yrange=yr,

color=mod(i-1,12),

key=sconcat("x",i-1),

points_joined=true,

point_type=dot,

points(makelist([p[1],p[i]],p,sol))

],

i,2,dim+1

)

)

else

wxdraw2d(

makelist(

[

yrange=yr,

color=mod(i-1,12),

points_joined=true,

point_type=dot,

points(makelist([p[1],p[i]],p,sol))
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],

i,2,dim+1

)

)

)$

avg_fitness(sol,rep_rate,deg_rate):=block(

[space_sol],

space_sol:map(lambda([e],rest(e,1)),sol),

list_matrix_entries((rep_rate-deg_rate).transpose(apply(’matrix,space_sol)))

)$

/*The weighted concentrations approach does not seem helpful but let’s

leave it here for the moment */

weighted_concentrations(fitness,space_sol):=map(lambda([e],e*fitness),space_sol)$

fitness_landscape_evolution(eths,fit,[options]):=block(

[lngf:length(fit),lngspsol:length(eths),frs,

weigthedc,wss,plot_fitness,avgfitness,fit_aux,space_sol%,uval],

space_sol%:map(rest,eths),

uval:map(first,eths),

/*How much frames do we want in the animation*/

frs:assoc(’frames,options,lngspsol),

if is(frs>lngspsol) then error("Number of frames to plot can’t be greater

than the length of the list of solutions"),

/*Do we want to use weighted concentrations?*/

weigthedc:assoc(’weights,options,false),

/*Do we want to plot the fitness values? */

plot_fitness:assoc(’plot_fitness_values,options,false),

/*Do we want to plot the avg fitness?*/

avgfitness:assoc(’avg_fitness,options,makelist(0,j,1,frs)),

if weigthedc then wss:weighted_concentrations(fit,space_sol%)

else wss:space_sol%,

if plot_fitness then(

ymax:lreduce(max,fit),

fit_aux:fit/ymax,

with_slider_draw(

k, makelist(j,j,1,frs),

xrange=[1,lngf],

yrange=[0,1],

title=sconcat("u=",float(uval[k])),

points_joined=impulses,line_width=4,color=blue,
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points(fit_aux),

line_width=1,

color=red,

points_joined=false,

point_type=square,

points(wss[k]),

explicit(cspline(wss[k]),x,1,lngf),

color=green,

explicit(avgfitness[k],x,1,lngf)

)

)

else

with_slider_draw(

k, makelist(j,j,1,frs),

xrange=[1,lngf],

/*ymax=1 if we are not plotting fitness values*/

yrange=[0,1],

title=sconcat("u=",float(uval[k])),

color=red,

points_joined=false,

point_type=square,

points(wss[k]),

explicit(cspline(wss[k]),x,1,lngf)

/*explicit(avgfitness[k],x,1,lngf)

No longer makes sense since it can be larger than 1

*/

)

)$

/*Binary sequences of length L, this is an option using recursion

p

binary_sequences(n):=if is(n>1) then

apply(append,makelist(map(lambda([e],append([k],e)),

binary_sequences(n-1)),k,[0,1])) else [[0],[1]]$

*/

binary_sequences(n)::=buildq([n,%aux:makelist(concat(i,k),k,1,n),

%aux2:makelist([0,1],k,1,n),

%aux3:join(makelist(concat(i,k),k,1,n),

makelist([0,1],k,1,n))],create_list(%aux,splice(%aux3)))$

hamming(L1,L2):=lsum(i,i,mod(L1+L2,2))$

binary_sequences_ordered(n%):=block(
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[LL:binary_sequences(n%),hh%:[]],

for i:0 thru n%+1 do

hh%:append(hh%,sort(sublist(LL,lambda([x],is(n1s(x)=i))),’ordergreatp)),

return(hh%)

)$

n1s(ss):=lsum(e,e,ss)$

chop(expr,[options]):=block(

[abstlr:assoc(’absolute_tolerance,options,1.0*10^(-12))],

scanmap(lambda([x],if is(numberp(x)) then (if is(abs(x)<abstlr)

then 0.0 else x) else x),expr))$

/*Further details about how to combine mutants into classes according to

their Hamming distance to the

master sequence can be found in [1]

*/

generate_mutation_matrix(u,n%,[options]):=block(

[seq,cmbd,ord%],local(ham,HH),

ord%:assoc(’order,options,’hamming),

/*combine mutants by distance?*/

cmbd:assoc(’combine_mutants,options,true),

if not cmbd then(

if is(u=0) or is(u=0.0) then return(diagmatrix(2^n%,1))

elseif is(u=1) or is(u=1.0) then return(genmatrix(lambda([i,j],

if is(i+j=2^n%+1) then 1.0 else 0.0),2^n%,2^n%))

else(

if is(ord%=’natural) then seq:binary_sequences(n%) elseif is(ord%=’hamming)

then seq:binary_sequences_ordered(n%)

else error("Order is not valid"),

ham[i,j]:=lsum(k,k,mod(seq[i]+seq[j],2)),

HH[i,j]:=if is(i>j) then float(u^ham[i,j]*(1-u)^(n%-ham[i,j]))

elseif is(j>i) then HH[j,i] elseif is(i=j) then float((1-u)^n%),

genmatrix(HH,2^n%,2^n%)

)

) else (

if is(u=0) or is(u=0.0) then return(diagmatrix(n%+1,1)) else(

HH[l,k]:=sum((1-u)^(n%-2*j-abs(l-k))*(u)^(2*j+abs(l-k))*

binomial(n%-(l-1),j+(abs(l-k)-(l-k))/2)*binomial(l-1,j+(abs(l-k)+l-k)/2),

j,0,ceiling((min(l+k-2,2*n%-(l+k-2))-abs(l-k))/2)),

genmatrix(HH,n%+1,n%+1)

)

)

)$
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steady_state(u,A,D,N,[options]):=block(

[L,rgt,lft,eq,cmbd],

/*combine mutants by distance?*/

cmbd:assoc(’combine_mutants,options,true),

if not cmbd then

[L,rgt,lft]:dgeev(gen_W_matrix(generate_mutation_matrix(u,N,

’combine_mutants=’false),A,D),true,false)

else

[L,rgt,lft]:dgeev(gen_W_matrix(generate_mutation_matrix(u,N),A,D),true,false),

eq:abs(first(args(transpose(col(rgt,1))))),

eq/lsum(x,x,eq)

)$

error_threshold(A%,D%,N%,u0,uf,[options]):=block(

[nop,ert,cmbd],

ert:uf-u0,

nop:assoc(’number_of_steps,options,100),

cmbd:assoc(’combine_mutants,options,true),

if not cmbd then

makelist(cons(u0+ert*j/nop,steady_state(u0+ert*j/nop,A%,D%,N%,

’combine_mutants=’false)),j,0,nop)

else

makelist(cons(u0+ert*j/nop,steady_state(u0+ert*j/nop,A%,D%,N%)),j,0,nop)

)$

/*error_threshold(A,D,N,u0,uf,[options]):=block(

[nos,ert,cmbd,lst],

ert:uf-u0,

nos:assoc(’number_of_steps,options,ert/100),

cmbd:assoc(’combine_mutants,options,true),

if not cmbd then

lst:makelist(cons(ert*j/nos,steady_state(ert*j/nos,A,D,N,

’combine_mutants=’false)),j,1,nos)

else

lst:makelist(cons(ert*j/nos,steady_state(ert*j/nos,A,D,N)),j,1,nos),

lst

)$*/

log__(r):=if is(r<=0) then 0 elseif r>0 then log(r)$

plot_error_threshold(ertshld,[options]):=block(

[lscl:assoc(’log_scale,options,false),n%:length(first(ertshld)),lbl],

lbl:assoc(’print_labels,options,false),

if is(lscl=false) then if lbl then
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wxdraw2d(

makelist(

[yrange=[0,1],

color=mod(i-1,12),

key=sconcat("x",i-1),

points_joined=true,

point_type=dot,

points(makelist([p[1],p[i]],p,ertshld))

],

i,makelist(k,k,2,n%)

)

)

else(

wxdraw2d(

makelist(

[yrange=[0,1],

points_joined=true,

point_type=dot,

points(makelist([p[1],p[i]],p,ertshld))

],

i,makelist(k,k,2,n%)

)

)

)

else(

if lbl then

wxdraw2d(

makelist(

[yrange=[-20,0],

color=mod(i-1,12),

key=sconcat("x",i-1),

points_joined=true,

point_type=dot,

points(makelist([p[1],log__(p[i])],p,ertshld))

],

i,makelist(k,k,2,n%)

)

) else

wxdraw2d(

makelist(

[yrange=[-20,0],

points_joined=true,

point_type=dot,

points(makelist([p[1],log__(p[i])],p,ertshld))
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],

i,makelist(k,k,2,n%)

)

)

)

)$



Appendix B

Code for the graphical representation
of p-adic numbers

/*

pgraphics

A Maxima package to graph p-adic numbers

Author: Emmanuel Roque

License: GNU GPLv3, https://www.gnu.org/licenses/gpl-3.0.en.html

*/

/* WARNING: Temporary solution. Might break things.

We use tellsimp to simplify

inf+k to inf

for k an integer

*/

matchdeclare(yy,integerp)$

tellsimp(inf+yy,inf)$

/* Since the complex parameter ’s’ we use have norm

less than 1, we follow the convention

s^inf=0

*/

73
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matchdeclare(aa,numberp)$

tellsimp(aa^inf,0)$

/* This function generates all possible sequences with

entries in 0,...,p-1 of length LL.

pp must be a prime number.

The output can be thought as the canonical representatives of

Z_p/(p^L Z_p), L >0. */

gen_p_seq(LL,pp)::=buildq(

[LL,%aux:makelist(concat(i,k),k,1,LL),

%aux2:join(makelist(concat(i,k),k,1,LL),

makelist(makelist(j,j,0,pp-1),k,1,LL))],

create_list(%aux,splice(%aux2))

)$

/*

Auxiliar order.

The input xx must be a list of length LL as the lists

in the output of gen_p_seq. It returns the index of the

first non-zero entry of xx, wich corresponds to

the first non-zero coefficient xx.

*/

auxord(xx):=if zeromatrixp(xx) then inf

else first(sublist_indices(xx,lambda([e],is(e>0))))-1$

/*

We can generate sequences in some ball of radius p^k by a dilatation.

k must be an integer.

*/

add_korder(xx,kk,pp):=cons(auxord(xx)+kk,[xx])$



75

/* For practicality, the next function generates,

in some sense, the canonical representatives of

(p^k Z_p )/(p^k+L Z_p)

*/

genkL_ball(kk,LL%,pp%):=block(

[auxseq:gen_p_seq(LL%,pp%)],

map(lambda([e],add_korder(e,kk,pp%)),auxseq)

)$

/* Just for the sake of completeness

here is a function to compute the p-adic order

of a list xx. We won’t use it much.

*/

orderp(xx,p):=first(xx)$

/* Now, we implement the homeomorphism Gamma_m described in [2]

with m=0 for simplicity

*/

gamma0p(xxn,s,LL,pp):=block(

[oo,xx],

/*

The p-adic order (oo) can be computed directly, it should

run faster this way.

*/

oo:first(xxn),

xx:second(xxn),

/*Note: Currently, this throws an error for [inf,[0,...,0]]

*/

(1-s^oo)/(1-s)+sum(s^n*exp(2*%pi*%i*xx[n+1]/pp),n,oo,LL-1)

)$

/*

Usually we will work with functions with support on Zp.

For practicality, let us have a specific command for this.

*/
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Zp_domain(s,LL,pp):=block(

/*We first remove the zero element and then we add its image

under gamma by hand */

[AA:rest(genkL_ball(0,LL,pp)),dd],

dd:cons(1/(1-s),map(lambda([e],gamma0p(e,s,LL,pp)),AA)),

[map(realpart,dd),map(imagpart,dd)]

)$

/*

For fast evaluation of radial functions,

let us take as input a list as in the output of genkL_ball

and return the norms in this order as outputs.

*/

kL_ball_norms(kk,LL,pp):=block(

[AA:genkL_ball(0,LL,pp)],

map(lambda([e],(1/pp)^e),map(first,AA))

)$

/*

Particular case for Zp

*/

Zp_norms(LL,pp):=kL_ball_norms(0,LL,pp)$

/* Visualization of Monna map

See Section 1.9.4 of [1]

*/

Monna_map(xxn,LL,pp):=block(

[oo,xx],

/*

The p-adic order (oo) can be computed directly, it should

run faster this way.

*/

oo:first(xxn),

xx:second(xxn),

/*Note: Currently, this throws an error for [inf,[0,...,0]]

*/
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sum(pp^(-n-1)*xx[n+1],n,oo,LL-1)

)$

/*

[1] S. Albeverio, A. Yu. Khrennikov, V.M. Shelkovich -Theory of

p-adic Distributions: Linear and Nonlinear Models.

[2] D.V. Chistyakov - Fractal Geometry for images of continuous

embeddings of p-adic numbers and solenoids into Euclidean

spaces.

*/
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