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Abstract

In this work, we present the implementation of a variational density fitting methodology that
uses iterative linear algebra for solving the associated system of linear equations within the
ADFT framework. It is well known that most difficulties with this system arise from the fact
that the coefficient matrix is in general ill-conditioned and, due to finite precision round-off
errors, it may not be positive definite. The dimensionality, given by the number of auxiliary
functions, also poses a challenge in terms of memory and time demand since the coefficient
matrix is dense. The methodology presented is based on a preconditioned Krylov subspace
method called MINRES able to deal with indefinite ill-conditioned equation systems. To assess
its potential, it has been combined with double asymptotic electron repulsion integral expan-
sions as implemented in the deMon2k package. A numerical study on a set of problems with
up to 130,000 auxiliary functions shows its effectiveness to alleviate the above mentioned prob-
lematic. A comparison with the default methodology used in deMon2k based on a truncated
eigenvalue decomposition of the coefficient matrix indicates that the proposed method exhibits
excellent robustness and scalability when implemented in a parallel setting. Moreover, the im-
plementation of the MINRES algorithm has been adapted to response property calculations
such as polarizabilities, hyperpolarizabilities and nuclear spin-spin coupling constants. With
this development the linear algebra bottleneck associated to the density fitting is eliminated. It
is important to note that this bottleneck was twofold, namely in terms of computational as well
as RAM demand. Both problems were overcome with the here presented adaptation and imple-
mentation of the Krylov subspace method MINRES. Illustrative examples of nanosystems and
microbiological relevant structures have been used to test the MINRES implementation.
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Resumen

En este trabajo, presentamos la implementación de una metodologı́a de ajuste de densidad
variacional que utiliza un procedimiento iterativo de álgebra lineal para resolver los sistemas
de ecuaciones lineales asociados dentro del marco de la teorı́a del funcional auxiliar. Es bien
sabido que la mayorı́a de las dificultades con estos sistemas surgen del hecho de que la matriz
de coeficientes está en general mal condicionada y, debido a errores de redondeo de precisión
finita, puede no ser definida positiva. La dimensionalidad, dada por el número de funciones
auxiliares, también plantea un desafı́o en términos de demanda de memoria y tiempo ya que la
matriz de coeficientes es densa. La metodologı́a presentada se basa en un método de Krylov
precondicionado llamado MINRES capaz de lidiar con sistemas de ecuaciones indefinidas y mal
condicionados. Para evaluar su potencial, se ha combinado con expansion asintótica doble para
las integrales de repulsión electrónica dentro del código deMon2k. Un estudio numérico sobre
un conjunto de problemas con hasta 130,000 funciones auxiliares muestra su eficacia para mit-
igar la problemática antes mencionada. Una comparación con la metodologı́a predeterminada
utilizada en deMon2k basada en una descomposición truncada de valores propios de la matriz
de coeficientes, indica que el método propuesto exhibe una excelente robustez y escalabilidad
cuando se implementa en un entorno computacional paralelo. Además, la implementación del
algoritmo MINRES se ha adaptado a los cálculos de propiedades de respuesta como polariz-
abilidades, hiperpolarizabilidades y constantes de acoplamiento espı́n-espı́n nuclear. Con este
desarrollo se elimina el cuello de botella del álgebra lineal asociado al ajuste de la densidad. Es
importante señalar que este cuello de botella era doble, a saber, en términos de demanda com-
putacional y RAM. Ambos problemas fueron resuletos con la adaptación e implementación
aquı́ presentada del algorithmo MINRES. Ejemplos ilustrativos de nanosistemas y estructuras
microbiológicas relevantes fueron utilizadas para probar la implementación de MINRES.
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1.1 Introduction

With the rise of the variational fitting of the Coulomb[1–10] and Fock[11–16] potential in combina-
tion with localized resolution-of-the identity post Hartree-Fock approaches[17–23], the calcula-
tion of four-center electron repulsion integrals (ERIs) might become obsolete in ab initio quan-
tum chemistry methods based on the linear combination of Gaussian type orbitals (LCGTO)
approximation. However, such a fundamental change in ab initio LCGTO approaches requires
numerically stable implementations of the algorithms associated with the variational fitting.
Moreover, these algorithms must also offer attractive perspectives for growing system sizes.
Although, there is little doubt that for currently accessible system sizes three-center ERI imple-
mentations outperform their four-center counterparts, it is not yet clear that a numerically stable
variational fitting approach will outperform four-center ERI based implementations of any sys-
tem size. The main concern is the linear algebra associated with the variational fitting of the
Coulomb potential. In its original formulation[3], a linear equation system with dimension equal
to the number of auxiliary functions in the molecule has to be solved; the corresponding coef-
ficient matrix, herein called Coulomb matrix, is supposed to be positive definite. However, due
to finite precision arithmetic errors, it can become slightly indefinite and ill-conditioned. Aux-
iliary function sets that contain functions with small exponents and high angular momentum
index seem the cause of this difficulty.

At this point it is important to note that the variational fitting of the Fock potential is less prob-
lematic due to its intrinsic local nature. As a result, localized molecular orbitals (MOs) are often
used for the variational fitting of the Fock potential [13–16]. In principle, this also opens the pos-
sibility of a variational fitting of the Coulomb potential with localized MOs. The downside of
such an approach is its increased computational work demand because a fitting equation system
has to be solved for each occupied MO. In particular, the scalability of the parallelization of the
variational fitting of the Coulomb potential might be jeopardized. As a computational attractive
alternative ad-hoc partitioning approaches for the fitting of the Coulomb potential have been
suggested in the literature[24–30]. Unfortunately, the variational nature of the Coulomb potential
fitting is not guaranteed in these approaches. If this nature is of concern, e.g. for the calculation
of exchange-correlation contributions with the auxiliary density[31–34], computing the solution
of the equation system, either for the full molecule or for each occupied orbital, is unavoidable.
To circumvent the numerical and computational difficulties associated with the solution of the
fitting equation system for the full system, a BFGS quasi-Newton approach[35] was adapted for
the variational fitting of the Coulomb potential in our groups a few years ago[36]. Unfortunately,
this approach fails if the Coulomb matrix is not positive definite. As already mentioned this is
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for larger auxiliary function sets more the rule than the exception. Therefore, an initial trun-
cated eigenvalue decomposition (TED) of the Coulomb matrix was applied prior to the iterative
quasi-Newton calculation of the density fitting coefficients. Even though, the TED has to be
computed only once, it represents a critical computational bottleneck when calculating systems
with tens of thousands of auxiliary functions. In order to overcome this computational bottle-
neck, we suggest in this work the use of MINRES[37,38] for the iterative solution of the fitting
equation systems. MINRES is a Krylov subspace based method designed for solving symmet-
ric indefinite equation systems. Thus, the positive definiteness of the Coulomb matrix is not
required. Experience in different fields shows that Krylov methods are effective, robust and
efficient; these conditions are essential to any numerical algorithm used inside self-consistent
field (SCF) calculations.

The main purpose of this work is to show that the MINRES algorithm, parallelized in a suit-
able form, leads to a low memory and low scaling (only matrix-vector operations are needed)
implementation for the iterative density fitting. In particular, the reduced memory demand of
MINRES in combination with its improved performance due to newly developed asymptotic in-
tegral expansions for two-center ERIs opens up new possibilities for first-principles nanoscale
calculations. Illustrative examples for energy calculations, structure optimizations and response
property calculations of large molecules with nanometric extensions are presented.

The thesis is organized as follows. In Chapter 2 the revision of quantum chemistry fundamen-
tals with a particular focus on the Kohn-Sham formalism is presented. In the following chapter
we derive the auxiliary density functional theory formalism as a very efficient alternative to the
Kohn-Sham methodology. In Chapter 4 the use of iterative solvers for the density fitting equa-
tion systems is reviewed. Special attention is given to Krylov subspace methods. The details
of our MINRES adaption to self-consistent field (SCF) and perturbation theory calculations are
outlined and the corresponding implementation details are discussed. The validation of our
MINRES implementations are shown in Chapter 5 accompanied by relevant benchmark calcu-
lations. Finally, Chapter 6 presents the conclusions and perspectives of this thesis.
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1.2 Objectives

The main objective of this work is to contribute to the development of a scalable all-electron
first principles methodology for the calculation of large molecular systems with hundreds of
thousands of auxiliary functions and tens of thousands of basis functions. With double-zeta
valence plus polarization (DZVP) basis sets and automatically generated GEN-A2* auxiliary
function sets this will allow first-principles calculations of nanosystems with around 10,000
atoms. In deMon2k, the main bottlenecks in such calculations are in the moment the linear
algebra tasks arising from the variational fitting of the Coulomb potential. In order to eliminate
these bottlenecks, the following specific objectives are addressed:

• Implementation of the MINRES iterative algorithm inside deMon2k for solving linear
equation systems.

• Development and implementation of the double asymptotic expansion for the two-center
ERIs appearing in the matrix-vector multiplication of MINRES.

• Implementation of MINRES for SCF energy calculations in deMon2k.

• Implementation of MINRES for all available response property calculations such as Fukui
functions, polarizabilities, hyperpolarizabilities and nuclear spin-spin coupling constants.

• Development and implementation of an efficient and scalable parallel version of MINRES
for variational density fitting.

These objectives are accompanied by corresponding validation and benchmark calculations for
the systems specified in Table 1.1 along with their average sizes.

Table 1.1: Average diameters and lengths in nm of the studied systems in this thesis.

Fullerenes Diameter Water clusters Diameter Zeolites Length Amylose units Length DNA units Length Oligothiophene Length

C20 0.3 (H2O)50 1.3 MFI-1 1.3 8 2.5 4 1.1 100 units 35.0

C60 0.7 (H2O)100 1.6 MFI-2 2.5 16 5.0 8 2.4

C180 1.2 (H2O)200 2.0 MFI-3 3.8 32 9.8 16 5.1

C240 1.4 (H2O)300 2.4 MFI-4 5.0 48 14.3

C540 2.2 (H2O)400 2.7 64 19.8

C720 2.6 (H2O)500 3.0

C960 3.0

4



2
Quantum Chemistry Fundamentals

Contents
2.1 The Schrödinger Equation . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.2 Density Functional Theory . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.3 Kohn-Sham Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

5



6



2.1 The Schrödinger Equation

One of the cornerstones of quantum physics is the Schrödinger equation, which describes the
evolution of a system in terms of quantum mechanics. This was a challenge proposed by Debye
to Schrödinger in 1925[39], in order to develop a wave equation that could describe matter. In
1926[40], this led to the most general form of the famous equation, namely, the time-dependent
Schrödinger equation

i} @

@t
 (x, t) = Ĥ  (x, t), (2.1)

where  is a function that completely describes the state of a system and is called the wave
function  (x1,x2,...,xn,t), and the xi, i = 1, ..., n, are the spatial coordinates of all n particles,
that constitute the system. In Eq. (2.1), t is the time variable and Ĥ is the Hamilton operator.

The classical analogy to Eq. (2.1) is the Hamiltonian in Hamilton mechanics, which predicts
how a classical system propagates in the future given its current configuration. If the Hamilton
operator does not explicitly depend on t and the system does not change with time, it is said
that the system is in a stationary state. Hence, for stationary solutions, the time-dependent
wave function reduces to a time-independent wave function,  (x1, x2,..., xn), that satisfies the
equation

Ĥ (x) = E (x). (2.2)

For an isolated system with N electrons and M nuclei the explicit form of the non-relativistic
Hamilton operator in atomic units is given by

Ĥ = �1

2

NX

i

r2
i �

MX

A

r2
A

2MA
�

MX

A

NX

i

ZA

|ri �A|+

NX

i

NX

j>i

1

|ri � rj|
+

MX

A

MX

B>A

ZAZB

|A�B| , (2.3)

where r, A and B denote the spatial coordinates of the electrons and nuclei, respectively. The
atomic mass of nucleus A is MA and its charge ZA. The terms on the right hand side of Eq. (2.3)
are the following: The first two terms are the kinetic energies of the N electrons and M nuclei,
respectively. The last three terms are the potential part of the Hamilton operator in form of elec-
trostatic particle-particle interactions. The electrostatic attraction between the N electrons and
the M nuclei, the electrostatic repulsion between the electrons, and the electrostatic repulsion
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between the nuclei[41]. Therefore, Eq. (2.3) can also be expressed as

Ĥ = T̂e + T̂n + V̂ne + V̂ee + V̂nn. (2.4)

The term V̂ne couples electronic and nuclear motions, making the solution of Eq. (2.2) more
complicated. The so-called Born-Oppenheimer approximation[42] states that due to the mass
difference (more than 3 orders of magnitude) between the electrons and nuclei, the latter can
be spatially fixed. Semi-classically, this means that the nuclear movement can be neglected on
the timescale of electronic transitions. In such a semi-classical framework, the electrons follow
the nuclear motion adiabatically without relaxation time[43]. Born and Oppenheimer showed
that an effective separation of electronic and nuclear motions can be performed without affect-
ing the accuracy of the solution for many cases[44]. Using the adiabatic approximation[45,46],
the following quasi-separable ansatz, restricting ourselves for simplicity to only one electronic
state, can be used for Eq. (2.2)

 (x,R) =  (x;R) ·⇥(R). (2.5)

In Eq. (2.5) the electronic wave function,  (x;R), has a parametric dependency from the
nuclear coordinates and ⇥ is the nuclear wave function. Applying the corresponding electronic
and nuclear operators, T̂e, and T̂n, respectively, to this wave function yields

T̂e (x,R) = T̂e (x;R)⇥(R) = ⇥(R)T̂e (x;R), (2.6)

T̂n (x,R) = T̂n (x;R)⇥(R). (2.7)

In the asymptotic limit 1/MA ! 0 8 MA ! 1 the nuclear configuration can be assumed
frozen for the solution of the electronic problem. Therefore, Eq. (2.7) can be expressed as

T̂n (x;R) = �
MX

A

1

2MA

h
 (x;R)r2

A⇥(R) +⇥(R)⇠⇠⇠⇠⇠⇠⇠: Ĉn
r2

A (x;R)+

2⇠⇠⇠⇠⇠⇠⇠: Ĉn
rA (x;R) ·rA⇥(R)

i
,

where Ĉn denotes the adiabatic correction operator that absorbs, after the electronic expectation
values are calculated, the second and third term. Because the adiabatic correction is most often
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negligible[47] Eq. (2.7) simplifies in the Born-Oppenheimer approximation to

T̂n (x;R) = � (x;R)

MX

A

1

2MA
r2

A⇥(R). (2.8)

Now substituting Eq. (2.5) into Eq. (2.2) and using approximation (2.8) yields

[T̂e + V̂ee + V̂ne + V̂nn] (x;R)

 (x;R)
+

T̂n⇥(R)

⇥(R)
= E. (2.9)

Thus, the first term of the left hand side can only be a function of R:

[T̂e + V̂ee + V̂ne + V̂nn] (x;R)

 (x;R)
= E(R). (2.10)

Rearrangement of Eq. (2.10) yields the electronic Schrödinger equation:

[T̂e + V̂ee + V̂ne + V̂nn] (x;R) = E(R) (x;R)

Ĥe (x;R) = E(R) (x;R).
(2.11)

Note that the nuclear repulsion energy, V̂nn, was incorporated into the electronic Hamilton op-
erator because it contributes to the potential energy for the nuclei. Technically, the nuclear
repulsion energy is calculated analytically by classical electrostatic repulsion between nuclear
point charges. The solutions of the electronic Schrödinger equation form a set of orthogonalized
eigenfunctions,  (x;R), with corresponding eigenvalues E(R). For each solution there will be
a corresponding nuclear Schrödinger equation. For the electronic ground state, the nuclear
Schrödinger equation is given by:

[T̂n + E0(R)]⇥(R) = E⇥(R)

Ĥn⇥(R) = E⇥(R),
(2.12)

where E0(R) is the ground state electronic energy for the (fixed) nuclear configuration R, i.e. a
point of the corresponding ground state potential energy surface (PES).

The usual procedure to solve Eq. (2.12) is to solve first Eq. (2.11), then substituting the elec-
tronic energy into the nuclear Schrödinger equation and solve it. According to Eqs. (2.11) and
(2.12) the solution of the electronic Schrödinger equation represents the potential in which the
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nuclear wave function can be propagated. This is the basis for the so-called Born-Oppenheimer
molecular dynamics (BOMD) approaches that have become very popular over recent years[48].
In BOMD, the motions of the nuclei on the PES are usually solved using Newtonian mechanics
in order to permit on-the-fly BOMD simulations. Note that each electronic state will give rise
to an own PES, and that crossing between two surfaces is not allowed by the adiabatic theo-
rem[45]. Because our focus is on the solution of the electronic Schrödinger equation, we drop
the electronic index e of the electronic Hamilton operator as well as the parametric dependency
of the electronic wave function on R.

Even with the Born-Oppenheimer approximation, the Schrödinger equation cannot be solved
analytically for a system with two or more electrons in general. Thus, only approximate so-
lutions are available for most chemical systems of interest. Several approaches have been de-
veloped for this purpose[49,50], the most relevant being the ones based on the Rayleigh-Ritz
variational method[51,52]. The variational principle in ab initio quantum mechanics states that
any approximate wave function will always have an energy expectation value that is above, the
ground state energy[53,54]

E [ t] � E [ 0]. (2.13)

In Eq. (2.13),  t and  0 denote trial and ground state wave functions, respectively. The varia-
tional method allows to approximate a solution to the Schrödinger equation for many-electron
systems, nevertheless the task is rather complicated. For an N electron system,  depends on
3N spatial coordinates. Thus, even for very simple molecules the number of variables becomes
large. Therefore, a more pragmatic methodology for solving this problem is needed.

2.2 Density Functional Theory

Due to the difficulties for obtaining solutions of the electronic Schrödinger equation in many-
electron systems, Thomas[55] and Fermi[56] suggested the use of the electronic density ⇢(r)
rather than the wave function,  (r1, r2, ..., rn), to calculate atomic properties. Further work by
Dirac[57] as well as Wigner and Seitz[58,59] improved the model by introducing a local expression
for the exchange potential. Although these methods do not yield results with chemical accu-
racy[60], Slater introduced the idea of approximating Fock exchange in the Hartree-Fock method
by an average local potential based on the free-electron gas model[61]. The result was an ex-
change potential expressed solely in terms of ⇢(r). To improve the quality of this approximation
an adjustable, semiempirical parameter ↵ was introduced which led to the X↵ methodology of
Slater and Johnson[62]. This method raised the hope that an approximated methodology based
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on ⇢(r) instead of (r1, r2, ..., rn) could indeed be accurate enough to calculate molecules. The
main advantage of such a methodology arises from the fact that the electronic density ⇢(r) de-
pends only on 3 instead of 3N spatial variables. It can be expressed as a measurable observable
only depending on spatial coordinates

⇢(r) = N

Z
...

Z
 

⇤
(r, r2, ..., rN)  (r, r2, ..., rN) dr2 . . . drN. (2.14)

For the sake of clarity in our discussion we omit spin dependency. Strictly speaking ⇢(r) is
a probability density, but calling it the electron density is common practice. It represents the
probability that one electron is within the volume element dr whereas the other N-1 electrons
are in arbitrary positions. Clearly, ⇢(r) is a non-negative function of only three spatial variables
which vanishes at infinity and integrates to the total number of electrons[41]

⇢(r) � 0 8 r,

lim
r!1

⇢(r) = 0,
Z
⇢(r) dr = N.

(2.15)

A rigorous formulation for an ab initio theory based solely on ⇢(r) was first given by Hohenberg
and Kohn in 1964, giving rise to the well known Density Functional Theory (DFT)[63]. The
Hohenberg and Kohn formulation is based on two theorems:

First Hohenberg-Kohn theorem: The external potential v(r) is a unique functional of the
electron density ⇢(r), apart from a trivial additive constant.

To proof the first Hohenberg-Kohn theorem we assume that there exist two external potentials
v(r) and v0(r) differing by more than a constant but which both give rise to the same electron
density ⇢(r). These two potentials are part of two Hamilton operators which only differ in the
external potential, Ĥ = T̂ + V̂ee + v̂ and Ĥ 0

= T̂ + V̂ee + v̂0. Assuming non-degenerated
ground states, the two Hamilton operators Ĥ and Ĥ 0 yield two different ground state wave
functions,  (r1, r2, ..., rn) and 0

(r1, r2, ..., rn), and corresponding ground state energies, E0 6=
E0
0, respectively. Thus, (r) and 0

(r) are different, and we can use 0
(r) as trial wave function

for Ĥ [64]. By virtue of the variational principle, we find in Dirac’s notation[65]

E0 = h |Ĥ| i < h 0|Ĥ| 0i = h 0|Ĥ 0
+ v̂ � v̂0| 0i = h 0|Ĥ 0| 0i+ h 0|v̂ � v̂0| 0i. (2.16)
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Similarly, taking  (r) as the trial wave function for Ĥ 0 yields

E 0
0 = h 0|Ĥ 0| 0i < h |Ĥ 0| i = h |Ĥ + v̂0 � v̂| i = h |Ĥ| i+ h |v̂0 � v̂| i. (2.17)

Eqs. (2.16) and (2.17) can be rewritten as

E0 < E 0
0 +

Z h
v(r)� v0(r)

i
⇢(r) dr, (2.18)

and
E 0

0 < E0 +

Z h
v0(r)� v(r)

i
⇢(r) dr. (2.19)

Adding Eqs. (2.18) and (2.19) yields

E0 + E 0
0 < E 0

0 + E0. (2.20)

This proves by reductio ad absurdum that it is impossible to have two different v(r) potentials
that yield the same ground state electron density, or, in other words, that the ground state density
is uniquely determined by the external potential v(r) for a non-degenerated quantum mechanical
system. The following mapping can be defined based on the first Hohenberg-Kohn theorem

⇢(r)$ N, v(r)$ Ĥ 7!  [⇢] 7! E[⇢]. (2.21)

The consequence of the one-to-one correspondence between the electronic density ⇢(r) and
the external potential v(r) is that the wave function and energy are functionals of the density.
Since the wave function is a functional of the ground state density, the expectation value of any
observable Ô is also a unique functional of the density

hÔi = h [⇢(r)] | Ô |  [⇢(r)] = O[⇢(r)]. (2.22)

Hence all ground state properties for a non-degenerated system are entirely determined by the
ground state electronic density. Among these observables is the ground state energy, the expec-
tation value of the Hamilton operator, which is of great importance. Therefore, the ground-state
wave function and the corresponding energy related to a potential v(r) can be expressed as a
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functional of ⇢(r)

E[⇢(r)] = h [⇢(r)]|Ĥ [⇢(r)]i = Te[⇢(r)] + Vee[⇢(r)] +

Z
v(r)⇢(r)dr. (2.23)

To obtain a more convenient form of Eq. (2.23), we introduce the universal Hohenberg-Kohn
functional F [⇢(r)] as[63]

F [⇢(r)] = Te[⇢(r)] + Vee[⇢(r)]. (2.24)

Thus, the energy can be written in the form

E[⇢(r)] = F [⇢(r)] +

Z
⇢(r) v(r) dr. (2.25)

The term universal arises because F [⇢(r)] does not depend on the external potential v(r). It
is the same for atoms, molecules and solids as well as model systems and, therefore, it is a
universal functional of ⇢(r) [66].

Based on the first Hohenberg-Kohn theorem, the variational energy principle can be used to
obtain the ground state density as proven by the following theorem:

Second Hohenberg-Kohn theorem: The ground state density ⇢(r) can be determined from the
ground state energy functional E[⇢(r)] via the variational energy principle by variation of the
density only.

The ground state energy E0 which is a functional of the density is given as

E0 = E[⇢0(r)] = h [⇢0(r)] | Ĥ |  [⇢0(r)]i. (2.26)

For a trial density ⇢t(r), such that
R
⇢t(r)dr = N and ⇢t(r) � 0, it follows from the first

Hohenberg-Kohn theorem that this trial density determines the corresponding external poten-
tial vt(r) and via the resulting Hamilton operator the trial wave function  t[⇢t(r)]. From the
variational energy principle follows

E[⇢t(r)] = h t[⇢t(r)] | Ĥ |  t[⇢t(r)]i � E[⇢0(r)] = E0 (2.27)

Thus, the ground state energy, E0, and density, ⇢0(r), can be obtained by minimization of the
functional E[⇢(r)] of Eq. (2.23) for arbitrary variations of the density. Unfortunately the univer-

13



sal Hohenberg-Kohn functional F [⇢(r)] remains to be unknown. Although the Hohenberg-Kohn
theorem establishes the fact that the wave function and energy are functionals of the ground state
electronic density, it does not, however, prescribe the explicit dependencies of  and E from
⇢(r).

2.3 Kohn-Sham Methodology

As can be seen from the proof of the first Hohenberg-Kohn theorem, the functional F [⇢] is
independent of the external potential v(r) and holds for any number of particles. For this reason,
it is called the universal Hohenberg-Kohn functional. If the exact universal functional F [⇢] was
known, DFT would be an exact formulation. However, accurate implementations of DFT are
far from easy to achieve because of the unfortunate fact that F [⇢] is hard to approximate in a
close form[66]. From its appearance in the Hohenberg-Kohn theorem, the universal functional
F [⇢] is defined as the expectation value of the Hamilton operator without the external potential.
For this reason, F [⇢] is given by the sum of the electronic kinetic energy and electron-electron
interactions

F [⇢] = T [⇢] + Vee[⇢] = T [⇢] + J [⇢] + V nc
ee [⇢], (2.28)

where T [⇢] is the kinetic energy functional and Vee[⇢] is a functional that accounts for the
electron-electron interaction energy. Vee[⇢] can be split into J [⇢], the classical Coulomb in-
teraction, and V nc

ee [⇢], that collects all non-classical electron-electron interaction, known as
exchange-correlation energy. Among these functionals only J [⇢] is known, while the explicit
form of the other two contributions remains unknown.

A practical solution for the determination of the kinetic energy was provided by Kohn and
Sham[67]. They proposed a fictitious system of non-interacting particles that generates the same
density as the corresponding system of interacting particles. Their very clever idea was to
realize that, if we are not able to accurately determine the kinetic energy through an explicit
functional, we should be a bit less ambitious and concentrate on computing as much as we can
of the true kinetic energy exactly. We then have to deal with the remainder in an approximate
manner. This is based on decomposing T [⇢] into a part that represents the kinetic energy of a
non-interacting system of electrons, Ts[⇢], and a remainder, Tc[⇢],

T [⇢] = Ts[⇢] + Tc[⇢]. (2.29)

The subscripts s and c stand for single-particle and correlation, respectively[68]. In the non-
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interacting system, the total kinetic energy Ts[⇢] is just the sum of the single-particle kinetic
energies

Ts[⇢] = h [⇢]|T̂ | [⇢]i

=

occX

i

h i|T̂ | ii, (2.30)

where  [⇢] is the Slater determinant[69] forming the density ⇢(r), and  i(r) are the single-
particle orbitals of the non-interacting system. The energy functional can be rewritten using
Eqs. (2.28) and (2.29) as

E[⇢] = Ts[⇢] +

Z
v(r) ⇢(r) dr+ J [⇢] + V nc

ee [⇢] + Tc[⇢]

= Ts[⇢] + V [⇢] + J [⇢] + Exc[⇢], (2.31)

where
V [⇢] =

Z
v(r) ⇢(r) dr, (2.32)

and Exc[⇢] is the exchange-correlation functional that contains Tc[⇢] and V nc
ee [⇢]. Eq. (2.31) is

formally exact but Exc[⇢] remains unknown. Since Ts[⇢] is not an explicit functional of ⇢(r),
Eq. (2.31) cannot be directly minimized. However, Kohn and Sham suggested a scheme where
the minimization is carried out in an indirect form. To this end, Kohn and Sham related the
minimization condition for a fully interacting system with that of a non-interacting system. For
the fully interacting system, the minimization condition is given by

�E[⇢]

�⇢(r)
=
�Ts[⇢]

�⇢(r)
+
�V [⇢]

�⇢(r)
+
�J [⇢]

�⇢(r)
+
�Exc[⇢]

�⇢(r)

=
�Ts[⇢]

�⇢(r)
+ v(r) + vH(r) + vxc(r) ⌘ 0. (2.33)

The term �V [⇢]
�⇢(r) yields the external potential v(r). The term �J [⇢]

�⇢(r) the Hartree (Coulomb) potential,
vH(r), and, once an explicit form for Exc[⇢] is chosen, the term �Exc[⇢]

�⇢(r) yields the exchange-
correlation potential, vxc(r).

Consider now a system of non-interacting particles moving in a potential vs(r). The minimiza-
tion condition is simply
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�Es[⇢s]

�⇢s(r)
=
�Ts[⇢s]

�⇢s(r)
+
�Vs[⇢s]

�⇢s(r)

=
�Ts[⇢s]

�⇢s(r)
+ vs(r) ⌘ 0, (2.34)

since there are no Hartree and exchange-correlation terms in the absence of interactions. Com-
paring Eq. (2.33) with Eq. (2.34) we find that both minimization have the same solution,
⇢s(r) ⌘ ⇢(r), if vs(r) is chosen to be

�Vs[⇢]

�⇢(r)
=
�V [⇢]

�⇢(r)
+
�J [⇢]

�⇢(r)
+
�Exc[⇢]

�⇢(r)
, (2.35)

i.e.
vs(r) ⌘ v(r) + vH(r) + vxc(r). (2.36)

Consequently, one can calculate the density of the interacting system in the external potential
v(r) by solving the equation of a non-interacting system in the potential vs(r). To this end,
Kohn and Sham represented the non-interacting wave function as a single Slater determinant
and obtained Ts[⇢] through the Kohn-Sham orbitals  i(r) in the same way as in Eq. (2.30).
Solving the set of single-particle Schrödinger like equations

"
� 1

2
r2

+ vs(r)

#
 i(r) = "i  i(r), (2.37)

yields orbitals that produce, by choosing vs(r) according to Eq. (2.36), the density ⇢(r) of the
original system

⇢(r) = ⇢s(r) =
NX

i

| i(r)|2. (2.38)

Eq. (2.37) are the celebrated Kohn-Sham equations. Since both vH(r) and vxc(r) depend on
⇢(r), which depends on the  i(r), which in turn depend on vs(r), the problem of solving the
Kohn-Sham equation is a nonlinear one.

As described above, the Kohn-Sham method eliminates the unknown kinetic energy functional
by introducing orbitals of a fictitious non-interacting reference system. However, the exchange-
correlation energy functional is still unknown. In fact, the quality of any DFT calculation using
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the Kohn-Sham method is determined mainly by the approximation used for the evaluation of
Exc[⇢]. Different types of approximations for Exc[⇢] have been used, e.g. the Local Density
Approximation (LDA) in which the Dirac exchange[57] is combined with a fit to the homoge-
neous electron gas correlation, like the one proposed by Vosko, Wilk and Nusair (VWN)[70].
More sophisticated approaches include the Generalized Gradient Approximations (GGA)[71,72]

like the Becke, Lee, Yang and Parr (BLYP)[73–76] and Perdew, Burke and Ernzerhof (PBE)[77]

functionals or hybrid functionals, which include the exact exchange energy[78] like B3LYP. The
development of these, and many others, highly accurate density functional approximations have
resulted in an exponentially growing attention to DFT, to the point where Kohn-Sham DFT has
become the standard tool in electronic structure theory calculations[54].
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3.1 LCGTO Approximation

The Kohn-Sham single particle equations, Eq. (2.37), given in the previous section, represent
a complicated system of coupled integro-differential equations (the kinetic energy operator is a
differential operator, while the Coulomb contribution is expressed through an integral operator).
Therefore, it is necessary to find a computationally efficient way of solving these equations. In
principle, a purely numerical approach to solve these equations is possible and a few benchmark
calculations for atoms and small molecules using such a technique are available[79]. However,
numerical procedures are much too demanding for routine applications and other techniques
are required. Almost all applications of Kohn-Sham DFT to finite systems make use of the
linear combination of atomic orbitals (LCAO) expansion of the Kohn-Sham molecular orbitals,
a scheme introduced by Mulliken and adapted by Roothaan. In LCAO the molecular orbitals
(MOs),  i(r), are expanded as a linear combination of atomic orbitals

 i(r) =

X

µ

cµi µ(r). (3.1)

Within the LCAO approximation, the Kohn-Sham equations, can be obtained by varying the
LCAO Kohn-Sham energy expression subject to the MO orthonormality constraint

h i| ji = �ij, (3.2)

where �ij is the Kronecker delta. In Eq. (3.1), µ(r) represents an atomic orbital or, more
general, a basis function, and cµi is a molecular orbital coefficient. In deMon2k[48,80–82] the
basis functions are atom-centered (contracted) Gaussian type orbitals (GTO), hence the work-
ing ansatz for deMon2k is known as linear combination of Gaussian type orbitals (LCGTO)
approximation. An unnormalized Cartesian GTO is given by[83]

µ(r) = (x� Ax)
ax(y � Ay)

ay(z � Az)
az

KX

k

dke
⇣k(r�A)2 . (3.3)

A basis function is completely defined by its atomic center A, its angular momentum vector
a = (ax, ay, az), the degree of contraction K, the contraction coefficients dk and the orbital
exponents ⇣k. All these parameters remain constant for a given geometry. Thus only the molec-
ular orbital coefficients are the variational parameters for which Eq. (2.31) is minimized. Using
the explicit form for all the known terms in Eq. (2.31) and assuming a closed-shell system (the
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extension to the open-shell formalism is straightforward[84–86]) yields

E = �
occX

i

h i|r2 ii �
X

A

Z
ZA

|r�A| ⇢(r) dr+
1

2

ZZ
⇢(r1)⇢(r2)

|r1 � r2|
dr1dr2 + Exc[⇢], (3.4)

where the upper index occ refers to all doubly occupied spatial orbitals in the closed-shell
system. The corresponding LCGTO expansion of the electronic density is given by

⇢(r) = 2

occX

i

| i(r)|2 = 2

occX

i

X

µ,⌫

cµic⌫iµ(r)⌫(r) =
X

µ,⌫

Pµ⌫µ(r)⌫(r). (3.5)

Here Pµ⌫ is an element of the closed-shell density matrix defined as

Pµ⌫ = 2

occX

i

cµic⌫i. (3.6)

Using the above expansion for the Kohn-Sham orbitals, Eq. (3.1), and the density, Eq. (3.5),
the Kohn-Sham energy expression, Eq. (3.4), can be rewritten as

E = �1

2

X

µ,⌫

Pµ⌫hµ|r2⌫i �
X

µ,⌫

X

A

Pµ⌫

*
µ

�����
ZA

|r�A|

�����⌫
+
+

1

2

X

µ,⌫

X

�,⌧

Pµ⌫P�⌧

ZZ
µ(r1)⌫(r1)�(r2)⌧(r2)

|r1 � r2|
dr1dr2 + Exc[⇢]. (3.7)

The first two-terms of Eq. (3.7) represent the one-electron energy, often named the core energy.
The third term is the electronic repulsion energy, hence the integrals appearing in it are named
electron repulsion integrals (ERIs). To ease notation, we introduce the core Hamilton matrix,
H, with elements

Hµ⌫ = �1

2
hµ|r2⌫i �

X

A

*
µ

�����
ZA

|r�A|

�����⌫
+
, (3.8)

and a shorthand notation for the electron repulsion integrals

hµ⌫||�⌧i =
ZZ

µ(r1)⌫(r1)�(r2)⌧(r2)

|r1 � r2|
dr1dr2. (3.9)

In this ERI notation the double vertical bar represents the two-electron operator 1/|r1 � r2|. It
also separates the functions that depend on the electronic coordinate r1 (in the bra), from those
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that depend on the electronic coordinate r2 (in the ket). Analog notations will be used for other
types of ERIs throughout the text. With these shorthand notations we can rewrite Eq. (3.7) as

E =

X

µ,⌫

Pµ⌫Hµ⌫ +
1

2

X

µ,⌫

X

�,⌧

Pµ⌫P�⌧ hµ⌫||�⌧i+ Exc[⇢]. (3.10)

To derive the Kohn-Sham equations, we minimize the energy expression in Eq. (3.10) with
respect to the molecular orbitals coefficients under the constraint of MO orthonormality, Eq.
(3.2), which we can write in the form

h i| ji =
X

µ,⌫

cµiSµ⌫c⌫j = �ij. (3.11)

Imposing these constraints to the LCGTO energy expression leads to the Lagrange function

L = E � 2

allX

i,j

�ij

 
X

µ,⌫

cµi Sµ⌫ c⌫j � �ij

!
. (3.12)

The variation of the Lagrange function,

@L

@cµi
=

@E

@cµi
� 4

X

j

X

⌫

Sµ⌫c⌫j�ji

= 4

X

⌫

 
Hµ⌫ +

X

�,⌧

P�⌧ hµ⌫k�⌧i+ hµ|vxc[⇢]|⌫i
!
c⌫i � 4

allX

j

X

⌫

Sµ⌫c⌫j�ji, (3.13)

must vanish at a stationary point. To obtain Eq. (3.13) the variation of Exc[⇢] was performed
using the chain rule

@Exc[⇢]

@cµi
=

Z
�Exc[⇢]

�⇢(r)

@⇢(r)

@cµi
dr = 4

X

⌫

c⌫i

Z
vxc[⇢; r]µ(r) ⌫(r) dr. (3.14)

At this point it is convenient to define the Kohn-Sham matrix K. This matrix represents the
variation of the energy with respect to density matrix elements and its elements are given by

Kµ⌫ ⌘
@E

@Pµ⌫
= Hµ⌫ +

X

�,⌧

P�⌧ h�⌧kµ⌫i+ hµ|vxc[⇢]|⌫i. (3.15)
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Substitution of the Eq. (3.15) into Eq. (3.13) under the minimization condition

@L

@cµi
= 0 8 cµi, (3.16)

yields X

⌫

Kµ⌫c⌫i =
X

⌫

X

j

Sµ⌫c⌫j�ji 8 i. (3.17)

Eq. (3.17) is a generalized eigenvalue equation[87]. There exists one equation of the form of Eq.
(3.17) for each molecular orbital. Collecting all equations into a single matrix equation yields

Kc = Sc� (3.18)

This set of equations has the same form as the famous Roothaan-Hall equations[88,89] appearing
in Hartree-Fock theory. Here, c = (c1, c2, ..., cocc, ..., call), is a squared matrix composed from
all occupied, occ, and unoccupied, uno, molecular orbital coefficient vectors. It is important
to note that Eq. (3.18) is a nonlinear generalized eigenvalue equation because the Kohn-Sham
matrix depends on, at least, the occupied subspace of c. Therefore, Eq. (3.18) has to be solved
iteratively starting from an educated guess for c. It is important to note that K is invariant
under separate orthogonal transformations of the occupied and unoccupied subspaces of c. This
property follows from the fact that the electronic density (and hence, also the density matrix) is
invariant to such orthogonal transformations

P = 2 coccc
T
occ

= 2 coccUoccU
T
occc

T
occ. (3.19)

Thus, the rotations between the occupied and the unoccupied subspaces are responsible for the
change of K between two iterations of the self-consistent field (SCF) procedure. It follows that,
at convergence, the Lagrange multiplier matrix " must have, in general, the following block
diagonal form:

" =

 
�occ 0

0 �uno

!
. (3.20)
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Therefore, we can choose to work in the molecular orbital representation cU where U is a
block-diagonal orthogonal matrix

U =

 
Uocc 0

0 Uuno

!
, (3.21)

such that " = U
T�U is a strictly diagonal matrix. Such molecular orbital representation is

called canonical. From now on we will assume that c are the canonical MO coefficients and,
therefore, " is a diagonal matrix collecting the corresponding MO energies.

In order to determine the computational demand for the described LCGTO Kohn-Sham method-
ology, we now analyze the formal scaling of the individual terms in the energy expression, Eq.
(3.10), and Kohn-Sham matrix, Eq. (3.15), calculation. The computation of the core Hamilton
matrix H scales formally quadratic with the number of basis functions, Nbas. The same scal-
ing is observed for the computation of the overlap matrix S. Both matrices, H and S, remain
constant during the whole SCF procedure and, therefore, are computed only once and stored.
The Coulomb term introduces a formal N4

bas scaling into the energy calculation. The exchange-
correlation contribution has a formal N2

bas ⇥G scaling, whereas G is the number of grid points
necessary for the numerical integration needed to compute the exchange-correlation contribu-
tion. From the above discussion follows immediately that the calculation of the Coulomb re-
pulsion energy represents the computationally most demanding task in Eqs. (3.10) and (3.15).
In the next section, we show how the introduction of the variational fitting of the Coulomb
potential reduces the formal scaling of this term using auxiliary functions.

3.2 Variational Fitting of the Coulomb Potential

A very popular technique to reduce the formal scaling of computing the Coulomb potential is the
so-called variational fitting of the Coulomb potential. This technique was introduced by Dunlap
et al [2–5], inspired by a former work of Sambe and Felton[90]. It was originally introduced in the
deMon-KS[91] and DGauss[92] programs more than 30 years ago. This formulation is equivalent
to the application of the so-called resolution of the identity (RI)[6,93] for the Coulomb integrals
used in other programs like Gaussian and Turbomole. A more extensive discussion of the
influence of the variational fitting technique on electronic structure calculations can be found
in the literature[8,94]. The variational approximation of the Coulomb potential, as implemented
in deMon2k, is based on the minimization of the following positive semi-definite second-order
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fitting error

E2 =
1

2

ZZ
[⇢(r1)� ⇢̃(r1)][⇢(r2)� ⇢̃(r2)]

|r1 � r2|
dr1dr2 � 0. (3.22)

In deMon2k the approximated density, ⇢̃(r), is expanded as a linear combination of atom cen-
tered primitive Hermite-Gaussian auxiliary functions[95,96], k̄(r),

⇢̃(r) =
X

k̄

xk̄k̄(r). (3.23)

An unnormalized primitive Hermite-Gaussian auxiliary function, k̄(r), centered on atom A with
exponent ⇣k̄ has the following form

k̄(r) =
⇣ @

@Ax

⌘k̄x ⇣ @

@Ay

⌘k̄y ⇣ @

@Az

⌘k̄z
e�⇣k̄(r�A)2 . (3.24)

As for the GTO basis functions, all parameters appearing in Eq. (3.24) remain constant during
an electronic structure calculation unless the geometry of the molecule is changed. In deMon2k
the auxiliary functions are grouped into s, spd, spdfg and spdfghi sets sharing the same exponent
within each set[97,98]. In the automatic generation of auxiliary functions[99], indicated by the
abbreviation GEN in deMon2k, the exponent range for the auxiliary function sets is determined
by the smallest, ⇣min, and largest, ⇣max, primitive Gaussian exponent of the basis set used.
Specially developed integral recurrence relations[95,100] ensure maximum performance in the
analytic molecular integral calculations with these auxiliary function sets. Expanding ⇢(r) and
⇢̃(r) in Eq. (3.22) yields

E2 =
1

2

X

µ,⌫

X

�,⌧

Pµ⌫P�⌧ hµ⌫k�⌧i �
X

µ,⌫

X

k̄

Pµ⌫hµ⌫kk̄ixk̄ +
1

2

X

k̄,l̄

xk̄hk̄kl̄ixl̄. (3.25)

Since E2 is positive semi-definite[101] the following inequality holds

1

2

X

µ,⌫

X

�,⌧

Pµ⌫P�⌧ hµ⌫k�⌧i �
X

µ,⌫

X

k̄

Pµ⌫hµ⌫kk̄ixk̄ �
1

2

X

k̄,l̄

xk̄hk̄kl̄ixl̄. (3.26)

Note that the equality holds only when ⇢(r) equals ⇢̃(r). Thus, the true Coulomb repulsion
energy provides an upper bound to any approximated one. In this context it is worth to point out
a common misconception in the literature regarding variationally density fitting. It exists several
works in which auxiliary function sets are “optimized” in order to reproduce the total energy
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corresponding to calculations without fitting[102–104]. However, such an approach is as useful as
optimizing basis sets for total rather than relative energies. Instead, variational density fitting
approaches should be understood as own methodologies and their quality should be judged
according to their accuracy in the calculation of relative energies, i.e. atomization energies, as
it is common for basis sets. With the inequality from Eq. (3.26) we can write a new variational
energy expression that incorporates the variational fitting of the Coulomb potential

E =

X

µ,⌫

Pµ⌫Hµ⌫ +

X

µ,⌫

X

k̄

Pµ⌫hµ⌫kk̄ixk̄ �
1

2

X

k̄,l̄

xk̄hk̄kl̄ixl̄ + Exc[⇢]. (3.27)

For short we call this the Kohn-Sham DFT approach. The BASIS[105] option of the VXCTYPE
keyword in deMon2k triggers the use of this energy expression. Minimizing E2 with respect to
xm̄ yields

@E2
@xm̄

= �
X

µ,⌫

Pµ⌫hµ⌫km̄i+
X

l̄

xl̄hl̄km̄i ⌘ 0 8 m̄. (3.28)

The linear equation system in Eq. (3.28) can be written in short form as

Gx = J (3.29)

where G is the Coulomb matrix defined as

G =

0

BBBB@

h1̄k1̄i h1̄k2̄i . . . h1̄km̄i
h2̄k1̄i h2̄k2̄i . . . h2̄km̄i

...
... . . . ...

hm̄k1̄i hm̄k2̄i . . . hm̄km̄i

1

CCCCA
, (3.30)

and J is the Coulomb vector given by

J =

0

BBBBBBB@

P
µ,⌫

Pµ⌫hµ⌫k1̄i
P
µ,⌫

Pµ⌫hµ⌫k2̄i
...

P
µ,⌫

Pµ⌫hµ⌫km̄i

1

CCCCCCCA

. (3.31)
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The fitting coefficients are collected in the vector x. A straightforward solution of Eq. (3.29) is
obtained by the inversion of the Coulomb matrix G

x = G
�1
J. (3.32)

However, the G matrix, although formally positive definite, can become in finite precision
number models numerically indefinite with small negative eigenvalues. Such ill-conditioning
arises commonly due to large auxiliary function sets. Normalization of the auxiliary functions
with respect to the Coulomb norm

hk̄kk̄i = 1 8 k̄, (3.33)

improves slightly the numerical stability of G, nevertheless, it can still be ill-conditioned. To
overcome this numerical instability a truncated eigenvalue decomposition (TED) of G is per-
formed in deMon2k. Once the positive definiteness of G is ensured, Eq. (3.29) is solved by a
numerically robust quasi-Newton method[36]. Although, the TED is performed only one time
at the beginning of a calculation the involved diagonalization of the G matrix can become a
critical computational bottleneck if more than hundred thousand auxiliary functions are used.

Once the fitting equation system, Eq. (3.29) has been solved for a particular density, the Kohn-
Sham matrix, K, can be obtained by varying Eq. (3.27) with respect to density matrix elements

Kµ⌫ = Hµ⌫ +

X

k̄

hµ⌫||k̄i xk̄ + hµ|vxc[⇢]|⌫i. (3.34)

Thus, the four-center ERIs, have been substituted by three and two-center ERIs in the expres-
sions for the energy, Eq. (3.27), and Kohn-Sham matrix elements, Eq. (3.34). Because the
Kohn-Sham density changes with each SCF step, the density fitting must be performed in each
SCF step. With the Kohn-Sham and auxiliary density at hand the Kohn-Sham matrix can be
calculated. Diagonalization of the Kohn-Sham matrix yields new molecular orbital coefficients
from which a new density matrix and in turn a new Coulomb vector can be calculated. The new
auxiliary density is then obtained by solving the fitting equation system, Eq. (3.29). This proce-
dure is repeated in each SCF cycle until energy convergence is achieved. Due to the variational
fitting of the Coulomb potential, the computational bottleneck for medium sized systems shifts
to the numberical integration of the exhange-correlation energy and potential.

28



3.3 Auxiliary Density Functional Theory

The use of auxiliary functions for the calculation of the exchange-correlation potential has
a long history in DFT methods[90,106]. In programs like deMon-KS[91] or DGAUSS[92] the
exchange-correlation potential is expanded in Cartesian Gaussian functions as proposed by
Sambe and Felton[90]. The expansion coefficients are obtained by a least squares fit on a
small grid. A serious drawback of this approximation is that neither the fit nor the energy
expression are variational and, therefore, reliable forces (and higher order derivatives) cannot
be obtained[107,108]. As an alternative to this approach the direct use of the auxiliary density
⇢̃(r), obtained from the variational fitting of the Coulomb potential, for the calculation of the
exchange-correlation energy and potentials[31–33,109–111] has been suggested. The resulting ap-
proximation was named Auxiliary Density Functional Theory (ADFT) and is triggered by the
AUXIS[105] option of the VXCTYPE keyword in deMon2k[112]. If the auxiliary density is used
for the evaluation of the exchange-correlation potential it is desirable that it is positive definite,
⇢̃(r) � 0, and integrates to the number of electrons of the system,

R
⇢̃(r)dr = N . The nor-

malization to the number of electrons can be included as a constraint in the fitting equations.
However, even without this constraint the number of electrons is conserved to high accuracy.
The introduction of the positive semi-definiteness for ⇢̃(r) is less straightforward. Fortunately,
regions where ⇢̃(r) < 0 are rather small and usually occur when ⇢(r) ⇡ 0

[113]. Therefore,
screening of these points does not impact the accuracy of the methodology[32]. The energy
expression in ADFT takes the form

E =

X

µ,⌫

Pµ⌫Hµ⌫ +

X

µ,⌫

X

k̄

Pµ⌫hµ⌫kk̄ixk̄ �
1

2

X

k̄,l̄

xk̄hk̄kl̄ixl̄ + Exc[⇢̃]. (3.35)

The ADFT approach is the default method for calculating the exchange-correlation contribu-
tions in deMon2k. The variation of this energy expression with respect to density matrix ele-
ments yields the corresponding Kohn-Sham elements

Kµ⌫ = Hµ⌫ +

X

k̄

hµ⌫kk̄ixk̄ +
@Exc[⇢̃]

@Pµ⌫
(3.36)

The last term of Eq. (3.36) can be evaluated in a similar way as in Eq. (3.14)

@Exc[⇢̃]

@Pµ⌫
=

Z
�Exc[⇢̃(r)]

�⇢̃(r)

@⇢̃(r)

@Pµ⌫
dr =

X

k̄

@xk̄

@Pµ⌫

Z
vxc[⇢̃; r] k̄(r) dr, (3.37)
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with
vxc[⇢̃; r] ⌘

�Exc[⇢̃]

�⇢̃(r)
. (3.38)

The derivatives of the Coulomb fitting coefficients are obtained using Eqs. (3.31) and (3.32) to
yield

@xk̄

@Pµ⌫
=

X

l̄

G�1
k̄l̄
hl̄kµ⌫i. (3.39)

Inserting Eq. (3.39) into Eq. (3.37) yields

@Exc[⇢̃]

@Pµ⌫
=

X

k̄,l̄

hµ⌫kk̄iG�1
k̄1̄
hl̄|vxc[⇢̃]i. (3.40)

To simplify the notation, we now introduce the exchange-correlation fitting coefficient vector z
with the following elements

zk̄ =
X

l̄

G�1
k̄l̄
hl̄|vxc[⇢̃]i. (3.41)

The expression for the Kohn-Sham matrix elements can, thus, be rewritten in the form

Kµ⌫ = Hµ⌫ +

X

k̄

hµ⌫kk̄i(xk̄ + zk̄). (3.42)

It is important to note that z is spin-dependent and accounts for the difference between the ↵ and
� Kohn-Sham matrices in open-shell calculations. For the actual calculation of the exchange-
correlation fitting coefficient, zk̄, we reformulate Eq. (3.41) as an inhomogeneous equation
system of the form

Gz = L, (3.43)

with

L =

0

BBBB@

hvxc[⇢̃]|1̄i
hvxc[⇢̃]|2̄i

...
hvxc[⇢̃]|m̄i

1

CCCCA
. (3.44)

Here L is the exchange-correlation vector and z collects the exchange-correlation coefficients.
In deMon2k a preconditioned conjugate gradient iterative solver for Eq. (3.43) was proposed
by Domı́nguez-Soria[36]. This conjugate gradient algorithm uses the quasi-Newton updated
Coulomb matrix for the iterative solution of the Coulomb fitting equation system, Eq. (3.28),
as preconditioner. In order to keep the approach variational, ⇢̃(r) must be taken unaltered
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from the solution of Eq. (3.32) to calculate vxc[⇢̃]. However, this is not mandatory for the
calculation of the Coulomb contribution. Therefore, two sets of Coulomb fitting coefficients are
generally available in a deMon2k calculation, one set is obtained directly from Eq. (3.32) and
is used for the evaluation of the exchange-correlation potential in order to keep the calculation
variational whereas the other set results from SCF convergence and acceleration techniques,
such as auxiliary density mixing[112] and DIIS[112,114,115], and is used for the calculation of the
approximated two-electron Coulomb energy and the corresponding potential.

31



32



4
Variational Density Fitting with Krylov

Subspace Methods

Contents
4.1 Methods for solving linear equation systems in deMon2k . . . . . . . . . 35

4.2 Density fitting with the MINRES algorithm . . . . . . . . . . . . . . . . . 43

4.3 Preconditioning of the MINRES algorithm . . . . . . . . . . . . . . . . . 49

4.4 Double asymptotic expansion of two-center ERIs inside MINRES . . . . 58

4.5 Perturbation theory with MINRES . . . . . . . . . . . . . . . . . . . . . 61

33



34



4.1 Methods for solving linear equation systems in deMon2k

4.1.1 Iterative methods for solving linear equation systems

Due to the reduced scaling of the analytical and numerical molecular integral calculation in
ADFT, the linear algebra operations associated with matrix multiplications and diagonaliza-
tions become computational bottlenecks already for medium sized systems with only a few
thousand basis functions. In this respect, it is important to note that density fitting introduces
additional linear algebra steps, namely, for the solution of the inhomogeneous fitting equa-
tion systems, which contribute substantially to this bottleneck. In particular, the TED of the
Coulomb matrix requires the diagonalization of a dense matrix that is one-order of magnitude
larger than the corresponding Kohn-Sham matrix in the SCF. Although, this diagonalization
has to be performed only once in the current standard deMon2k fitting algorithm, it represents
for larger systems a notable bottleneck and renders calculations of auxiliary function set sizes
above 100,000 impossible on many common available computer architectures. To circumvent
this bottleneck partitioning schemes for the variational density fitting have been proposed in
the literature[24,25,27,29,116]. However, such approaches compromise the inequality relation of
Eq. (3.26) and, thus, the variational nature of the fit. In this work, we present a new iterative
approach for the variational density fitting. It is based on MINRES[37,38], a Krylov subspace
method that only requires matrix-vector multiplications. The matrix, here the Coulomb ma-
trix G, is calculated on-the-fly using standard recurrence relations and newly developed double
asymptotic expansions for two-center electron repulsion integrals (ERIs). This greatly reduces
the RAM demand of the algorithm and, therefore, permits density fitting with hundreds of thou-
sands of auxiliary functions. Special attention is given to the preconditioning and stopping
criteria of MINRES for the density fitting.

We will use MINRES to solve Eqs. (3.29) and (3.43), given by

Gx = J, (4.1)

and
Gz = L, (4.2)

where G is a dense and large coefficient matrix, called the Coulomb matrix, J is the right hand
side Coulomb vector and x is the solution vector which contains the Coulomb fitting coeffi-
cients. Similar, in Eq. (4.2) L denotes the exchange-correlation vector that is obtained by
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numerical integration and the z vector collects the exchange-correlation fitting coefficients. It is
important to mention that this equation is solved only if the AUXIS option for the VXCTYPE
keyword is triggered. In case of open-shell calculations, both equation systems have to be solved
twice, one time for the ↵ spin manifold and another time for the � spin manifold. Thus, we have
Coulomb coefficient vectors x↵ and x

� and corresponding exchange-correlation vectors z↵ and
z
� in deMon2k open-shell calculations. Although both equation systems are equally important

for ADFT SCF calculations, we will focus here our discussion for clarity of presentation only
on the Coulomb fitting equation system, Eq. (4.1). Because both equation systems have the
same coefficients matrix G the here developed insight can be straightforward transfered to the
solution of Eq. (4.2).

The methods for computing the solution x in Eq. (4.1) fall into two main categories: Direct
methods and iterative methods. The direct methods consist in obtaining the inverse matrix G�1

by means of a diagonalization, LU decomposition or any other appropriate approach and calcu-
late the solution as

x = G
�1

J. (4.3)

Obviously, this approach assumes that G�1 exists within the underlying finite precision number
model. As already discussed, this is by no means always the case for density fitting equation
systems. Therefore, a proper conditioning of G, e.g. by TED, is usually needed. The standard
approach in deMon2k to solve Eq. (4.1) consists of an initial TED of the G matrix in order to
ensure the existence of its inverse, G�1. This step involves the diagonalization of G. The so
conditioned G matrix is positive definite and properly conditioned for the used finite precision
number model. Its inverse, either in full or diagonal form, is used as initial guess for the pro-
posed quasi-Newton method by Domı́nguez-Soria et al. [36] previously developed in our research
groups. During this iterative procedure an inverse BFGS update[117–120] of G�1 is performed.
This ensures the positive definiteness of G and adapts G�1 to changed molecular structure pa-
rameters. This algorithm relies on the fact that the solution of the Eq. (4.1) is equivalent to the
minimization of the quadratic function, F (x), defined as

F (x) =
1

2

X

k̄,l̄

Gk̄l̄xk̄xl̄ �
X

k̄

Jk̄xk̄. (4.4)
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To find a minimum of F (x) we expand it as

F (x+�x) =
1

2

X

k̄,l̄

Gk̄l̄(xk̄ +�xk̄)(xl̄ +�xl̄)�
X

k̄

Jk̄(xk̄ +�xk̄). (4.5)

The variation of F (x+�x) with respect to the step �x yields

@F (x+�x)

@�xk̄

=

X

l̄

Gk̄l̄(xl̄ +�xl̄)� Jk̄ ⌘ 0 8 k̄. (4.6)

The corresponding second derivative,

@2F (x+�x)

@�xk̄@�xl̄

= Gk̄l̄, (4.7)

ensures the minimization of F (x + �x) by Eq. (4.6) due to the positive definite nature of G.
For the step direction then follows

X

l̄

Gk̄l̄�xl̄ = �rk̄ ) �xl̄ = �
X

k̄

G�1
l̄k̄
rk̄. (4.8)

Here we introduce the residual vector, r, with elements

rk̄ =
X

l̄

Gk̄l̄xl̄ � Jk̄. (4.9)

The step formula, Eq. (4.8), shows that the residual takes the role of the gradient and the
Coulomb matrix represents the Hessian in the minimization of F (�x). In quasi-Newton meth-
ods, the Hessian, here denoted by G, is approximated by a symmetric positive definite matrix,
which is updated at each iterative step[121]. The update to the inverse of the G matrix, denoted
here by G

�1
upd, is performed by vector-vector and matrix-vector multiplications and, therefore,

possess a formal quadratic scaling. This update acts directly on the G
�1 originally obtained

from the TED as follows

G
�1
upd = G

�1
old +

✓
1 +

�T
G

�1
old�

�T�

◆
��T

�T�
� ��T

G
�1
old +G

�1
old��

T

�T�
, (4.10)

with � = x � x
old and � = r � r

old. Here the superscript “old” denotes quantities from the
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previous iteration cycles. With the approximated Hessian matrix at hand the next step direction
is calculated by

�x = �G�1
updr. (4.11)

After the step direction has been calculated a line search along this direction is performed.
Because F (x) is a convex quadratic function the line search parameter ↵ can be computed
analytically. Thus, we find as “new” fitting coefficient vector

xnew
k̄ = xk̄ + ↵�xk̄ with min

↵>0
F (x+�x). (4.12)

For the calculation of ↵ we insert Eq. (4.12) into Eq. (4.4) and derive with respect to the ↵
parameter

dF (x+ ↵�x)

d↵
=

X

k̄,l̄

Gk̄l̄�xk̄xl̄ + ↵
X

k̄,l̄

Gk̄l̄�xk̄�xl̄ �
X

k̄

Jk̄�xk̄ ⌘ 0. (4.13)

Thus, it follows

↵
X

k̄,l̄

Gk̄l̄�xk̄�xl̄ =

X

k̄

 
Jk̄ �

X

l̄

Gk̄l̄xl̄

!
�xk̄

= �
X

k̄

rk̄�xk̄, (4.14)

and further

↵ = �

P

k̄

rk̄�xk̄

P

k̄,l̄

Gk̄l̄�xk̄�xl̄

. (4.15)

With the determination of the ↵ parameter a new set of Coulomb fitting coefficients, x, is gener-
ated according to Eq. (4.12). With these coefficients, a new residual is calculated and based on
its norm, the iteration is stopped by a convergence criterium or continued with a new iteration
step. For the sake of clarity and simplicity we will denote the updated inverse matrix, G�1

upd, as
G

�1 for the exchange-correlation coefficients calculation discussion. Once the quasi-Newton
iterations for solving Eq. (4.1) are converged, the resulting updated G�1 matrix can be used as
preconditioner for a conjugate gradient (CG) algorithm[35] to solve Eq. (4.2).

The CG algorithm is an iterative Krylov subspace method for a linear equation system with
a symmetric, positive definite coefficients matrix, here G. Similar to the just derived quasi-
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Newton approach the CG algorithm relies on the fact that the solution of Eq. (4.2) is equivalent
to the minimization of the quadratic function

F (z) =
1

2
z
T
Gz� L

T
z. (4.16)

This particular form of Krylov subspace methods is also called quadratic programming. To
proceed, we now calculate the gradient of F (z) which has the form

rF (z) = Gz� L = r. (4.17)

As in Eq. (4.9), we can identify this gradient with the residual of the corresponding equation
system, here given by Eq. (4.2). The Hessian matrix calculated as

r⌦rTF (z) = G. (4.18)

is again the symmetric, positive definite coefficient matrix. This guarantees the existence of
a unique minimum for the quadratic function, which in turn translates to a unique bounded
solution of the equation system. Therefore, this minimum can be searched by the minimization
along conjugated gradient directions. To this end, a one-dimensional analytic line search along
these directions is performed. Thus, the new exchange-correlation coefficients can be obtained
as

znewk̄ = zk̄ + ↵�zk̄. (4.19)

The line search parameter ↵ is obtained analogously as in Eq. (4.15) now given by

↵ = �

P

k̄

rk̄�zk̄
P

k̄,l̄

Gk̄l̄�zk̄�zl̄
, (4.20)

Different to the calculation of the Coulomb fitting coefficients, the step direction, �z, is ob-
tained by a CG rather than a quasi-Newton step as

�zk̄ = �sk̄ + ��zoldk̄ , (4.21)

where sk̄ is an element of the preconditioned (with the updated inverse G matrix) residual given
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by
sk̄ =

X

l̄

G�1
k̄l̄
rl̄. (4.22)

In Eq. (4.22), rl̄ is an element of the residual of Eq. (4.2) calculated as

rl̄ =
X

k̄

Gl̄k̄zk̄ � Ll̄. (4.23)

Finally, the conjugate gradient parameter � is calculated in terms of the residual vectors as

� = �

P

k̄

rk̄sk̄
P

k̄

rold
k̄
sold
k̄

. (4.24)

This value is set to zero at the first iteration step. Thus, the preconditioned equation system is
solved solely in terms of the residuals of Eq. (4.2) and the updated inverse G matrix obtained
originally from the TED and subsequently updated by the quasi-Newton iterations for the cal-
culation of the Coulomb fitting coefficients. Therefore, no explicit matrix transformations are
necessary. Because the TED of the G matrix is central to the current standard density fitting
approach in deMon2k we analyze it in more detail in the next subsection.

4.1.2 Truncated eigenvalue decomposition

The truncated eigenvalue decomposition (TED) of the G matrix is based on

G = Q⇤Q
T (4.25)

where Q is an orthogonal matrix that collects the eigenvectors of G, q1,q2, ...,qNaux , and ⇤

is diagonal whose entries are the eigenvalues of G, �1  �2  . . .  �Naux . With these
eigenvalues the conditioning of the G matrix can be analyzed by a quantity called the condition
number, (G), which is defined in numerical analysis as

(G) =
|�max(G)|
|�min(G)| , (4.26)

where �max and �min represent the largest and smallest absolute eigenvalues of G, respectively.
As Eq. (4.26) shows (G) measures the range of the eigenvalue spectrum of the matrix G. In
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particular, small absolute eigenvalues yield large (G). Such large condition numbers usually
indicate that the matrix inversion is numerically unstable. Furthermore, the condition number
is also used in sensitivity analysis as a measurement for the stability of an equation system
solution. A linear equation system with a coefficient matrix that has a small condition number is
said to be well-conditioned, whereas one with large condition number is called ill-conditioned.
The condition number is a specific property of the problem. In the here studied systems, the G
matrix is large, dense and usually ill-conditioned. To analyze the effect of TED on the density
fitting, we assume that G is nonsingular. Then, it is easy to show that the solution of Eq. (4.3)
can be expressed in terms of the eigenvectors, q`, of Eq. (4.25) as follows

x =

NauxX

`=1

c`q`, c` =
q
T
` J

�`
, ` = 1, . . . , Naux. (4.27)

This expansion shows that potentially large coefficients c`, due to small eigenvalues, may con-
taminate the solution with numerical noise. In fact, ||x||2 =

PN
`=1 c

2
` can be arbitrarily large. To

avoid this contamination the summation in Eq. (4.27) might be started at some index ` = t+ 1

given by a threshold ✏ (default setting in deMon2k is 10�6) on the magnitude of the eigenvalues
of G. This is the underlying idea of the TED currently used in deMon2k. As an example, Fig-
ure 4.1 depicts the eigenvalue decomposition of the G matrix for the C60 fullerene employing
the PBE functional[77], DZVP basis set[122] and GEN-A2* auxiliary function set[99]. As this fig-
ure shows, choosing ✏ could be problematic from the physical point of view, more specifically
the meaning of the inequality in Eq. (3.22) and, thus, the variational nature of the fitting, could
be lost.

In particular, a relatively large value of ✏ could give a poor representation of E2, Eq. (3.22),
whereas a too small value of ✏ could produce artificial fluctuations that violate the nonnegativity
property of Eq. (3.22). In Figure 4.1, the black lines show the numerically stable behaviour of
some eigenvalues whereas the red lines show the most problematic ones (|c`| > 50) in terms of
the coefficients, c`. Furthermore, from the fact that ✏ for our case was the deMon2k default value
of 10�6 it can be seen from Figure 4.1 that the problematic eigenvalues are eliminated along-
side with some reasonable well behaved ones. Therefore, the TED may appreciably change the
chosen auxiliary function set.

Besides these algorithmic problems of TED, the necessary diagonalization of the G matrix
introduces also a severe computational bottleneck due to the cubic scaling of this linear al-
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gebra step. In fact, for large systems with auxiliary function dimensions above 100, 000 this
step becomes impossible on many current hardware architectures and, therefore, renders such
calculations impossible.

Figure 4.1: Eigenvalue decomposition of G. Absolute values of c` coefficients in
Eq. (4.27) as a function of log10 |�`| for the discussed C60 fullerene.
The red lines show the highest fluctuations in the systems due to small-
est eigenvalues

4.1.3 Krylov subspace methods
After we have identified the TED of the G matrix as the critical computational bottleneck for
large scale variational density fitting, we now turn to alternative approaches. To this end, we will
now explore Krylov methods[123] that use matrix-vector product subspaces for solving linear
equation systems. Because the solution is found by a residual minimization in this subspace
the conditioning of the coefficient matrix is less critical in these methods. The Krylov space is
formed as

K(G, r(0), k) = span{r(0),Gr
(0), . . . ,Gk�1

r
(0)}, (4.28)
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where k denotes the coefficient matrix power and r is the residual vector defined as

r = Gx� J. (4.29)

The Krylov method avoids matrix-matrix operations. Instead, it works with the resulting vectors
of the linear subspace spanned by the images of the residual r under the powers of the G matrix.
A serious problem of Krylov methods is linear dependency due to the power iteration in Eq.
(4.28). To overcome this problem, methods that rely on Krylov subspaces frequently involve an
orthogonalization process such as Lanczos[124] (for symmetric cases) or Arnoldi iterations[125]

(for nonsymetric cases). Common Krylov subspace methods are Conjugate Gradient[126] (CG),
GMRES[127] (generalized minimal residual), BiCGSTAB[128] (biconjugate gradient stabilized),
MINRES[37,38] and EN[129] (Eirola-Nevanlinna algorithm), to name a few. Since these methods
rely on the Krylov basis, it is evident that the method converges at most in n iterations where
n is the equation system size. However, in the presence of rounding errors this statement does
not hold. Moreover, in practice n can be very large, and the iterative process reaches sufficient
accuracy already far earlier. In general, the convergence of Krylov methods is straightforward
dependent on the condition number of the associated coefficient matrix. Thus, a large condition
number can result in very slow convergence even with a good preconditioner. Nevertheless,
Krylov methods have been successfully applied to many different fields. However, for density
fitting they were so far not used.

4.2 Density fitting with the MINRES algorithm

Although, the Coulomb matrix, G, is formally positive definite it becomes in practical appli-
cations indefinite due to finite precision round-off errors as already discussed. Therefore, we
choose here the MINRES[130] algorithm which is a Krylov subspace based method designed
for solving symmetric indefinite equation systems. As a result, the positive definiteness of the
Coulomb matrix is no longer required which eliminates the need for the initial TED of G. MIN-
RES is based on the minimization of the residual norm at each iteration over the affine space
x
(0)

+K(G, r(0), k)

min
x2x(0)+K(G,r(0),k)

||Gx� J ||, (4.30)
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where x
(0) is an initial approximation, r(0) = Gx

(0) � J is the corresponding residual; k stands
for the iteration counter and || · || represents the Euclidean norm. Finally, K(G, r(0), k), the
Krylov subspace of dimension k associated with G, J and x

(0), is formally defined according
to Eq. (4.28) as

K(G, r(0), k) = span{r(0),Gr
(0), . . . ,Gk�1

r
(0)}.

The Lanczos process[124] provides a more practical representation of K(G, r(0), k) in terms of
an orthonormal basis. At MINRES iteration k we have

GV
(k)

= V
(k+1)

T
(k), (4.31)

where T
(k) is a (k + 1)⇥ k tridiagonal matrix defined by the ↵ and � values obtained from the

Lanczos procedure shown in Scheme 4.1.

T
(k)

=

0

BBBBBBBBBBBB@

↵1 �2 0 0 · · · 0

�2 ↵2 �3 0 · · · 0

0 �3 ↵3 �4 · · · 0

... . . . . . . . . .
�k�1 ↵k�1 �k

0 �k ↵k

0 · · · 0 �k+1

1

CCCCCCCCCCCCA

(4.32)

Scheme 4.1: Algorithm to generate a new Lanczos vector.

Lanczos step

Initialize: v(0)
= 0,v(1)

= J/||J||, �1 = ||J||

For k = 1, 2, · · · do

↵k = v
(k)T

Gv
(k)

v
(k+1)  Gv

(k) � ↵kv
(k) � �kv(k�1)

�k+1 = ||v(k+1)||

if �k+1 = 0 Exit

v
(k+1)  v

(k+1)/�k+1

End For
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Superscripts in parentheses denote MINRES iterations. For the calculation of the ↵k and �k
elements in T

(k) we assume, according to the Lanczos process[124], that the Coulomb matrix G

can be brought into tridiagonal form by the following orthogonal transformation

T = V
T
GV. (4.33)

Because V is an orthogonal transformation matrix it provides an orthogonal basis, i.e. its col-
umn vectors are orthonormal to each other and span a corresponding vector space. To obtain
the ↵k and �k elements of T we solve GV = VT. Taking the kth column, which is equivalent
to the kth dimension of the Krylov subspace and, thus, the kth MINRES iteration, of GV yields

[GV]ik =

X

j

GijVjk =

X

j

VijTjk 8 i. (4.34)

By applying the tridiagonal form of T follows

[GV]ik = Vi(k�1)T(k�1)k + VikTkk + Vi(k+1)T(k+1)k 8 i. (4.35)

Identifying the T elements in Eq. (4.35) with the ↵ and � entries in T
(k), i.e. setting T(k�1)k =

�k, Tkk = ↵k and T(k+1)k = �k+1 we obtain

[GV]ik = Vi(k�1)�k + Vik↵k + Vi(k+1)�k+1 8 i. (4.36)

During the MINRES iterations this equation can be expressed by the following vector equation

Gv
(k)

= �kv
(k�1)

+ ↵kv
(k)

+ �k+1v
(k+1). (4.37)

The here appearing v
(k) vectors are the orthonormal column vectors of the V matrix in Eq.

(4.33) that are successively collected during the MINRES iterations. Reformulation of Eq.
(4.37) yields as recurrence relation for the successive calculation of the v

(k) vectors as

�k+1v
(k+1)

= (G� ↵kE)v
(k) � �kv(k�1). (4.38)
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To determine ↵k we multiply Eq. (4.37) from the left with v
(k)T and explore the orthonormality

between the v
(k) vectors as

v
(k)T

Gv
(k)

= �k⇠⇠⇠⇠⇠⇠⇠:0

v
(k)T

v
(k�1)

+ ↵k⇠⇠⇠⇠⇠:1

v
(k)T

v
(k)

+ �k+1⇠⇠⇠⇠⇠⇠⇠:0

v
(k)T

v
(k+1)

= ↵k. (4.39)

The iterative construction of the Krylov subspace starts with setting x
(0)

= 0, �1 = ||r(0)|| =
||J||, v(0)

= 0 and �1v(1)
= r

(0)
= J. The associated LanczosStep to each MINRES iteration

k yields ↵k and �k+1 according to Eqs. (4.39) and (4.38). Hence ↵k gives the component of
Gv

(k) along v
(k) and �k+1 normalizes v(k+1). Thus, we have T

(k), as given in Eq. (4.32), and
V

(k)
= (v

(1),v(2), ...,v(k)
) at hand. The orthonormal column vector in V

(k) span K(G, r(0), k),
i.e.

span{r(0),Gr
(0), . . . ,Gk�1

r
(0)} = span{v(1),v(2) . . . ,v(k)}. (4.40)

Note that in exact arithmetic the Krylov subspace construction finishes when �k+1 = 0. A very
detailed algorithmic description of MINRES[37] and LanczosStep are given in appendix A. For
further explanation and example, of the LanczosStep see appendix B.

The new approximation for x is written as

x = x
(0)

+V
(k)
y; (4.41)

substituting the above expression in Eq. (4.30) and considering x
(0)

= 0 gives the condition to
obtain y, which consists in minimizing

min
y

||Gx
(0)

+GV
(k)
y � J|| = min

y
||GV

(k)
y � J|| (4.42)

over all y 2 Rk. To proceed we now substitute GV
(k) according to Eq. (4.31) by V

(k+1)
T

(k)

and expand J in terms of the first orthogonal vector v(1) in V
(k+1) as

J = �1v
(1). (4.43)

This yields

min
y

||V(k+1)
T

(k)
y � �1v(1)|| = min

y
||V(k+1)

(T
(k)
y � �1e1)||. (4.44)
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Thus, the final form of the least-square minimization problem in each MINRES iteration is
given by

min
y

||T(k)
y � �1e1||, (4.45)

with e1 being the first canonical vector in Rk+1, which is e1 = (1, 0, 0, ..., 0)T . This is an over-
constrained system of k + 1 equations for k unknowns. Because of the tridiagonal structure
of the matrix T

(k), the minimization problem of Eq. (4.45) is equivalent to the solution of the
inhomogeneous equation system (see also proposition 6.9 in [131])

R
(k)
y = �1Q

(k)T
e1, (4.46)

where Q(k) and R
(k) are the (k+1)⇥(k+1) orthogonal and (k+1)⇥k upper triangular matrix

from the QR decomposition of T(k), respectively (see appendix C for an illustrative introduction
to QR decomposition).

To proceed we express Q(k)T as a successive product of Givens rotation[124] matrices

Q
(k)T

= ⌦
(1)
⌦

(2)
⌦

(3) · · ·⌦(k), (4.47)

where ⌦
(k) is given by

⌦
(k)

=

2

64
E

(k�1)
0 0

0 ck sk

0 �sk ck

3

75 . (4.48)

With this structure of Q(k) we find for the QR decomposition of T(k)

T
(k)

= Q
(k)
R

(k) ) R
(k)

= Q
(k)T

T
(k). (4.49)
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Enforcing R
(k) to be upper triangular yields

R
(k)

=

 
R

0

!
= Q

(k)T

0

BBBB@

T(k�1)
0

�k

0 �k ↵k

0 0 �k+1

1

CCCCA

= ⌦
(1)
⌦

(2)
⌦

(3) · · ·⌦(k)

0

BBBB@

T(k�1)
0

�k

0 �k ↵k

0 0 �k+1

1

CCCCA

= ⌦
(1)
⌦

(2)
⌦

(3) · · ·

0

BBBB@

E(k�1)
0 0

0 0

0 0 ck sk

0 0 �sk ck

1

CCCCA

0

BBBB@

T(k�1)
0

�k

0 �k ↵k

0 0 �k+1

1

CCCCA
. (4.50)

Therefore, we obtain as condition for the annihilation of the �k+1 entry in T
(k)

� sk↵k + ck�k+1 = 0. (4.51)

Together with the corresponding normalization,

s2k + c2k = 1, (4.52)

follows
sk =

�k+1q
↵2
k + �2

k+1

, ^ ck =
↵kq

↵2
k + �2

k+1

. (4.53)

In this way, the k+1 � entries below the diagonal of T(k) are annihilated by the k rotations
with the ⌦ matrices forming Q

(k)T . Note that the ⌦ matrix dimensions formally change during
the MINRES iterations according to the dimension changes in T

(k). However, in the practical
implementation this is of no concern because only the sk and ck are calculated in each MINRES
step. For a mathematical consistent QR decomposition with successively applied rotations see
appendix D.
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Additional MINRES stopping criteria in deMon2k
The intrinsic stopping criteria of MINRES is given in the LanczosStep when �k+1 = 0. It is
important to mention that if �k+1 becomes close to zero, there is no need to perform another
Givens rotation. Hence, the associated angles from two successive rotations will be below a
certain tolerance, TOL. This is another indicator that the MINRES algorithm has converged.

In deMon2k we also permit MINRES convergence directly through the residual. To this end, it
is important to note that solving Eq. (4.1) in the context of the SCF methodology amounts for
solving a sequence of equation systems

Gx = J
(i), i = 1, . . . , I (4.54)

in which the right hand sides J(i) change slowly between consecutive SCF iterations. MINRES
makes use of the null vector as initial approximation; thus, we reformulate Eq. (4.54) as the
equivalent sequence

x
(0)

= 0, Gd = J
(i) �Gx

(i�1), x
(i)

= x
(i�1)

+ d, i = 1, . . . , I. (4.55)

Each system is approximately solved subject to satisfy at least one of the following conditions
in terms of the residual norm approximation

||r(k)||  ||G|| ||d(k)||TOL, ||r(k)||  1p
N

TOL, (4.56)

where TOL = 1.0⇥ 10
�7 is the default value. In case of an open-shell calculation two residual

norms are calculated, ||r(k)↵ || and ||r(k)� ||, and their sum must fulfill the same stopping criteria of
Eq. (4.56). It is important to remark that the TOL value for MINRES is fixed through the whole
SCF procedure. With these settings, well converged SCF solutions can be obtained over a wide
range of the potential energy surface.

4.3 Preconditioning of the MINRES algorithm

In the context of density fitting with large auxiliary function sets, G is usually ill-conditioned
(typical condition numbers range from 10

9 to 10
16). This typically results in slow convergence

of the MINRES algorithm because the number of iterations taken by MINRES to achieve con-
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vergence is closely related to the number of distinct eigenvalues of the coefficient matrix. Al-
though in theory, Krylov methods are guaranteed to reach convergence, their convergence rate
is often so slow that stagnation is observed. To overcome this problem Krylov subspace meth-
ods make use of a preconditioner also referred to as accelerators. Because the convergence of
Krylov methods is directly proportional to the number of distinct eigenvalues of the coefficient
matrix, here the Coulomb matrix G, preconditioning clusters these eigenvalues. Thus, the per-
fect preconditioner is G�1 which clusters all eigenvalues of G to 1. Preconditioning a Krylov
subspace method transforms the original problem of Eq. (4.1) into a presumably better condi-
tioned one. It is worth to mention that the development of preconditioners is a large research
area[132–135] and a variety of methods have been proposed such as relaxation-type methods, in-
complete LU decompositions and approximate inverse methods. Moreover, the preconditioning
of Krylov methods is very specific to the problem. Therefore, no general type of preconditioning
exists. Most popular preconditioners are nonsingular matrices M that approximate G reason-
ably well; the rationale being that the product M�1

G will have a more favourable eigenvalue
distribution than G. Then Eq. (4.1) is replaced by the equivalent system

M
�1
Gx = M

�1
J. (4.57)

Obviously, the perfect preconditioner is M = G since the eigenvalues of M�1
G are all equal

to 1, and any iterative method applied to M
�1

G will converge in one iteration.

Different to the TED approach in deMon2k the (approximate) inversion of the G matrix is not
an option for the MINRES preconditioner due to the associated CPU time and RAM demand.
Therefore, a more pragmatic approach for the preconditioning of MINRES is used. It builds
on the atomic block structure of the G matrix. First, a block diagonal matrix B is formed
from the atomic blocks of G. Second, since B may contain indefinite blocks due to the linear
dependency in large auxiliary function sets, it is replaced by its associated modified Cholesky
decomposition[136]

M = P
T
(B+�B)P = LDL

T . (4.58)

In Eq. (4.58) P is a permutation matrix, L is unit lower triangular and D is block diagonal
with diagonal blocks of dimension 1 or 2. The matrix �B is a small perturbation that makes
M sufficiently positive definite[137–142] and reasonably well conditioned. Therefore, if atomic
blocks of B become indefinite, ||�B|| must not be larger than

min{||�B|| : B+�B is positive definite.} (4.59)
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The algorithm computes (not explicitly) the �B matrix to ensure that if �min(B) < � then
�min(B+�B) ⇡ �, where � is a real and small positive value.

In general the algorithm works as follows. First a symmetric indefinite decomposition is per-
formed using the bounded Bunch-Kaufman (BBK) pivoting for the block B as

P
T
BP = LD̃L

T
, (4.60)

where the right hand side of Eq. (4.60) has the following form

LD̃L
T
=

0

BB@

1 0 0 · · ·
L21 1 0 · · ·
L31 L32 1

. . .

1

CCA

0

BB@

D̃1 0 0 · · ·
0 D̃2 0 · · ·
0 0 D̃3

. . .

1

CCA

0

BB@

1 L21 L31 · · ·
0 1 L32 · · ·
0 0 1

. . .

1

CCA . (4.61)

The following recursive relations apply for D̃ and L

D̃i = Bii �
i�1X

j=1

L2
ijD̃j, (4.62)

Lij =
1

D̃j

 
Bij �

j�1X

k=1

LikLjkD̃k

!
8 i > j. (4.63)

When a pivot, D̃i in Eq. (4.62) is small (⇠ 10
�9), the BBK pivoting strategy is used in order to

overcome this instability and continue with the symmetric indefinite decomposition. Inside de-
Mon2k, this procedure is carried out by the DSYTRF RK and DSYTRS 3 LAPACK[143] library
routines. Next, the algorithm computes D = D̃+�D̃ block by block, where D̃ corresponds to
the block diagonal matrix of the decomposition in Eq. (4.60), and �D̃ is a small perturbation
of the indefinite block diagonal matrix, D̃, obtained as the minimum Frobenius norm such that
�min(D̃+�D̃) � � using the Higham theorem[136].
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Scheme 4.2: Modified Cholesky decomposition

Compute the symmetric indefinite decomposition P
T
BP = LDL

T using the BBK pivoting strategy

For each block D̃ of D do

if D̃ is a 1⇥ 1 block, d̃, then

if d̃ < � then d̃ = �

else if D̃ is a 2⇥ 2 block, then compute its eigenvalue decomposition ⇤ = U
T
D̃U,

where ⇤ = diag(�1,�2)

if �1 < � then �1 = �

if �2 < � then �2 = �

Build the new block as D̃ = U⇤U
T

end if

end for

As Scheme 4.2 shows the perturbation matrix �B is not explicitly calculated. Instead, the
diagonal blocks of D with dimension 1 or 2 from the indefinite decomposition of B are directly
modified according to Scheme 4.2. In our deMon2k implementation the threshold � is set to
10

�9. Here, the updated D̃ blocks are the key to success to fulfill the condition in Eq. (4.59).
It is worth to mention, that the modified Cholesky decomposition has been recently applied to
second order electron propagator calculations employing density fitting[144] and the variational
fitting of Fock exchange[145]. Therefore, MINRES is applied to the preconditioned system in
Eq. (4.57), and the matrix-vector product w = M

�1
Gv

(k) is computed in two steps

v = Gv
(k), LDL

T
w = v. (4.64)

Thus, the product M�1
G is never computed or stored; the second step in Eq. (4.64) involves

only forward and backward substitutions. The forward substitution for an atomic block of
dimension m is carried out as follows

LDy = v. (4.65)

Eq. (4.65) is given in element-wise form as

`011y1 = v1

`021y1 + `022y2 = v2
...

... . . . ...
`0m1y1 + `0m2y2 + · · · + `0mmym = vm

(4.66)
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where the matrix elements of L0 are the L matrix elements scaled (on-the-fly) by the diagonal
elements of D.
Thus, the auxiliary vector y is straightforward obtained using the forward substitution formulas

y1 =
v1
`011

,

y2 =
v2 � `021x1

`022
,

...

ym =

vm �
m�1P
i=1

`0mixi

`0mm

. (4.67)

Because LT is upper triangular (transpose of L), w can be obtained by the backward substitution
of

L
T
w = y, (4.68)

in the following form

wm =
ym
`mm

wm�1 =
ym�1 � `(m�1)mym

`(m�1)(m�1)

...

w1 =

y1 �
mP
j=2

`1jyj

`11
. (4.69)

In order to demonstrate the effect of preconditioning on the eigenvalue clustering we present in
Figure 4.2 the eigenvalue distribution of G and M

�1
G for C60 employing the PBE/DZVP/GEN-

A2* methodology. In this example G has dimension 5580⇥5580 and its eigenvalue distribution
is shown in the upper part of Figure 4.2. By preconditioning with an atomic block diagonal
inverse, M�1, calculated by the modified Cholesky decomposition, the lower eigenvalue spec-
trum in Figure 4.2 is obtained. An obvious discretization of the eigenvalue spectrum above 10
is observed. Thus, the number of distinct eigenvalues is reduced, which in turn will accelerate
the convergence of MINRES.
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Figure 4.2: Eigenvalues of G (top) and M�1G (bottom) for the C60 fullerene.

In order to illustrate the effect of the preconditioner on the MINRES performance, Figure 4.3
shows the number of MINRES iterations for the initial SCF cycle in deMon2k without and with
preconditioning for the C60 fullerene. In this example G has a condition number of 4.25⇥ 10

16

and 14 negative eigenvalues; J corresponds to the first right hand side in the SCF cycle, i.e. the
Coulomb vector built from the tight-binding start density[146]. The initial approximation was
x
(0)

= 0. The iteration was stopped when ||r(k)||  TOL ||J|| with TOL = 10
�7. From Figure

4.3 it is straightforward to see how MINRES converges through a plateau (pink dashed line)
when the preconditioner is not used. On the other hand, preconditioned MINRES (pMINRES)
converges faster because the plateau extension is smaller and reaches the stopping criterium
after around 200 iterations.
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Figure 4.3: Norm of the scaled residual ||r(k)||/||J|| for the C60 fullerene as a function of the
number of MINRES iterations. See text for further details.

Although the modified Cholesky (ModChol) decomposition preconditioner served well for most
of our benchmark calculations, we found some systems where MINRES significantly altered the
SCF convergence. Therefore, we developed a second type of preconditioning based on the TED
of the atomic blocks of G. The underlying idea is that TED eliminates numerical instabilities of
ill-conditioned matrices. Thus, a TED based inversion of atomic blocks of G should be partic-
ularly beneficial if these blocks are ill-conditioned. To validate this TED based preconditioner,
we took the same system from the example of Figure 4.3 and we tested the TED preconditioner.
In Figure 4.4, the norm of the scaled residuals without using any preconditioner (dashed pink
line) compared with both preconditioners (blue line for ModChol and red line for TED) are
depicted versus the number of MINRES iterations.
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Figure 4.4: Norm of the scaled residual ||r(k)||/||J|| for the C60 fullerene as a func-
tion of the number of MINRES iterations for different preconditioners.
See text for further details.

From Figure 4.4 it is obvious to see that for this basis set and auxiliary function set combination,
the effect of the preconditioners is identical. Nevertheless, we experienced that for molecular
assemblies, such as water clusters (see also Chapter 5), the number of SCF cycles was increased
by a factor of 3 using the modified Cholesky decomposition preconditioner compared to current
standard density fitting implementation in deMon2k. It is worth to mention that these systems
present a linear dependency of truncated Coulomb matrix eigenvalues, NTE , that arises from
the molecular assembly of the structure. Hence, the same calculations were performed using the
TED preconditioner inside the MINRES algorithm. With the TED preconditioner in MINRES
the SCF convergence was reached in the same number of cycles as with the deMon2k standard
density fitting implementation based on the explicit diagonalization of the Coulomb matrix.
This underlines once again the importance of the preconditioner for MINRES.

To compare the TED and ModChol preconditioning of MINRES under extreme conditions, we
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performed single point energy calculations for a benzene molecule employing the PBE/DZVP/
GEN-A4* level of theory. The here used GEN-A4* auxiliary function set is prone to linear
dependencies, even in atomic blocks, due to the dense spacing of auxiliary functions. Figure
4.5 compares the MINRES convergence in the first SCF cycle of this benzene calculation with
the two preconditioners, ModChol and TED. As Figure 4.5 shows MINRES with the ModChol
preconditioner fails to converge in the first SCF cycle. The scaled residual norm stays almost
constant at 107 during the MINRES iterations. On the other hand, if the TED preconditioner is
used, the convergence for the first SCF cycle is achieved in less than 100 iterations. Thus, TED
eliminates from the preconditioner spurious eigenvalues and eigenvectors which can hamper
the convergence of MINRES completely. Due to the superior performance of the TED precon-
ditioner in terms of MINRES and SCF convergence, we implemented TED preconditioning as
the default for MINRES in deMon2k.

Figure 4.5: Norm of the scaled residual ||r(k)||/||J|| for the benzene molecule as
a function of the number of MINRES iterations for different precondi-
tioners. See text for further details.

Because the computational work per iteration for preconditioned and standard MINRES is es-
sentially the same (one product of G with a vector), preconditioning yields substantial CPU
time savings at a very small cost in memory.
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4.4 Double asymptotic expansion of two-center ERIs inside

MINRES
From a computational point of view the matrix-vector multiplication in each MINRES iteration
represents the critical bottleneck of the algorithm. This is particularly true for our quantum
chemical MINRES implementation because we must recalculate the G matrix on-the-fly in
each MINRES iteration in order to keep memory use to a minimum. Because G is dense,
the solution of Eqs. (4.1) and (4.2) with MINRES scale formally quadratic with respect to
the number of auxiliary functions. The quadratic scaling is dominated by the on-the-fly two-
center ERI calculation for the G matrix elements. To overcome this performance bottleneck
we extended the double asymptotic ERI expansion[147] to the two-center ERIs that form the G
matrix elements. For the variational fitting of the Coulomb potential in deMon2k atom centered
primitive Hermite Gaussians, denoted by Latin letters with a bar, are used as auxiliary functions.
They are grouped together in sets with common exponents[99]. With these functions an element
of the Coulomb matrix is given as

Gc̄d̄ = hc̄||d̄i =
ZZ

c̄(r)d̄(r 0
)

|r� r 0| dr dr
0. (4.70)

This two-electron two-center ERI can be written as a one-electron integral by

hc̄||d̄i =
Z

c̄(r)�d̄(r)dr. (4.71)

The here introduced electrostatic potential, �d̄(r), of the primitive Hermite Gaussian auxiliary
function d̄(r) is defined as

�d̄(r) =

Z
d̄(r0)

|r� r 0|dr
0. (4.72)

Based on the asymptotic expansion of the Boys function, we find as asymptotic expansion for
this potential [95,147]

�d̄(r) ⇠
✓
⇡

⇣d̄

◆3/2✓ @

@Dx

◆d̄x ✓ @

@Dy

◆d̄y ✓ @

@Dz

◆d̄z
1

|r�D| . (4.73)

Using this asymptotic expansion and the operator definition

ÂD(d̄) =

✓
@

@Dx

◆d̄x ✓ @

@Dy

◆d̄y ✓ @

@Dz

◆d̄z
1

|r�D| ,

58



we obtain as asymptotic expansion for the Coulomb matrix elements defined in Eq. (4.70) and
(4.71)

hc̄||d̄i ⇠
✓
⇡

⇣D

◆3/2

hc̄|ÂD(d̄)i. (4.74)

Thus, the first asymptotic expansion of the hc̄||d̄i ERI yields a nuclear attraction like integral at
nucleus D where the asymptotically expanded auxiliary function potential, �d̄(r), is centered.
Because c̄(r) is a primitive Hermite Gaussian function the nuclear attraction integral in Eq.
(4.74) can be rewritten as

hc̄|ÂD(d̄)i = bDC(c̄) bDD(d̄)hs̄|ÂD(0)i,

= bDC(c̄) bDD(d̄)
2⇡

⇣c̄
F0

⇥
⇣c̄(C�D)

2
⇤
. (4.75)

Here F0 is the zeroth-order Boys function[83], and, bDC and bDD denote the operators

bDC(c̄) ⌘
✓

@

@Cx

◆c̄x ✓ @

@Cy

◆c̄y ✓ @

@Cz

◆c̄z

,

bDD(d̄) ⌘
✓

@

@Dx

◆d̄x ✓ @

@Dy

◆d̄y ✓ @

@Dz

◆d̄z

.

Applying once again the asymptotic expansion of the Boys function in Eq. (4.75) yields as
double asymptotic expansion for the two-electron two-center ERIs of the Coulomb matrix

hc̄||d̄i ⇠
✓
⇡

⇣c̄

◆3/2✓ ⇡
⇣d̄

◆3/2

bDC(c̄) bDD(d̄)
1

|C�D|

= (�1)d̄
✓
⇡

⇣c̄

◆3/2✓ ⇡
⇣d̄

◆3/2

bDC(c̄+ d̄)
1

|C�D|

= (�1)c̄
✓
⇡

⇣c̄

◆3/2✓ ⇡
⇣d̄

◆3/2

bDD(c̄+ d̄)
1

|C�D| . (4.76)

Within the double asymptotic expansion of hc̄||d̄i the auxiliary function shells of atoms can be
collected together. As a result, the corresponding matrix-vector multiplication scales with the
number of atoms rather than auxiliary functions.
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Figure 4.6: Timings for 1 MINRES matrix-vector multiplication using the DI-
RECT (red bars), ASYMPTOTIC (dark green and blue bars) and
MIXED (light green and blue bars) approaches for the calculation of
two-center ERIs.

With the double asymptotic expansion of the two-center ERIs, the matrix-vector product in
MINRES can be divided into near-field and far-field multiplications. The latter scales with the
number of atoms rather than auxiliary functions. Thus, a significant performance improvement
can be expected. To this end, we benchmarked the MINRES matrix-vector multiplications for
a set of linear n-alkane chains with 500 to 1000 carbon atoms employing the PBE/DZVP/GEN-
A2* methodology. The timings for 24 core runs of three different matrix-vector multiplications
approaches are depicted in Figure 4.6. The DIRECT approach (red bars in Figure 4.6) refers
to MINRES matrix-vector multiplications with on-the-fly calculated G matrix elements. For
the largest system, C1000H2002, with more than 130,000 auxiliary functions a single matrix-
vector multiplication takes around 90 seconds with the DIRECT approach. This time can be
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substantially reduced with the ASYMPTOTIC approach for the matrix-vector multiplication
in MINRES. Here, the near-field ERIs (dark blue bar in Figure 4.6) are calculated on-the-fly
with standard recurrence relations, whereas the far-field ERIs (dark green bar in Figure 4.6) are
calculated with the double asymptotic ERI expansion. As a result, the time for a matrix-vector
multiplication in MINRES is reduced to less than 5 seconds. It is worthy of note that most of this
time is spent for the calculation of the far-field two center ERIs (dark green bar in Figure 4.6)
which is a marked difference to the corresponding calculation of three-center ERIs. This also
explains why the MIXED (light green and blue bars in Figure 4.6) approach, in which the near-
field two-center ERIs are stored in RAM rather than being recalculated on-the-fly, shows only
little improvement over the ASYMPTOTIC one for the MINRES matrix-vector multiplications.

4.5 Perturbation theory with MINRES

Many molecular properties are obtained as (higher order) perturbations of the molecular energy
with respect to corresponding perturbation parameters. The associated perturbation problem
has usually to be solved iteratively due to the large size of the equation systems involved. In
Kohn-Sham DFT the coupled perturbed Kohn-Sham (CPKS)[148–151] method is used for this
purpose. Recently, there have been many efforts to reduce the computational complexity of
CPKS methods by several authors[152–161]. A computational attractive alternative to CPKS is
auxiliary density perturbation theory (ADPT). ADPT is based on self-consistent perturbation
(SCF) theory[162] applied to ADFT. It has proven to be robust and efficient for the calculation of
response properties such as polarizabilities[163,164], Fukui functions[165,166], vibrational frequen-
cies[167] and nuclear spin-spin coupling constants[168]. The basic idea of ADPT is to develop
the molecular response through the auxiliary density instead of the orbital density. As a conse-
quence, the response of the density matrix is substituted by the response of the Coulomb and
exchange-correlation fitting coefficients.

In the original ADPT implementation in deMon2k[169] the response matrix R was built and
inverted in order to solve the ADPT equation system. The computational bottleneck of this
approach is not the O(N3

aux) matrix inversion but rather the O(N4
) building of R. To avoid this

bottleneck, one may choose to solve the ADPT equations by an iterative procedure similar to
the MINRES algorithm used for solving the variational Coulomb fitting equation systems. The
iterative procedure chosen for this purpose was the Eirola-Nevanlinna (EN) algorithm[129] be-
cause it is well suited for large nonsymmetrical indefinite linear equation systems. To proceed
we first derive the ADPT equation systems and discuss their solution with the EN algorithm.

61



Throughout the following discussion, the perturbed quantities are denoted by � superscripts
enclosed in parentheses; small Greek letters, µ and ⌫, denote atomic orbitals and small Latin let-
ters with a bar, k̄ and l̄, denote auxiliary functions. According to McWeeny’s[162] self-consistent
perturbation (SCP) theory an element of the dynamic first-order perturbed density matrix is
given by

P (�)
µ⌫ (!) = 2

occX

i

unoX

a

K(�)
ai (!)

✏i � ✏a � !
cµac⌫i +

occX

i

unoX

a

K(�)
ia (!)

✏i � ✏a + !
cµic⌫a, (4.77)

where the ✏i correspond to the occupied MO energies and the ✏a to the unoccupied MO energies.
The K(�)

(!) is the molecular orbital representation of the perturbed Kohn-Sham matrix whose
elements are given by

K(�)
ia (!) =

X

µ,⌫

cµi K
(�)
µ⌫ (!) c⌫a. (4.78)

The perturbed ADFT Kohn-Sham matrix elements are given by

K(�)
µ⌫ (!) = H(�)

µ⌫ +

X

k̄

hµ⌫||k̄i
⇣
x(�)

k̄
(!) + z(�)

k̄
(!)
⌘
. (4.79)

The here appearing perturbed core Hamilton matrix elements, H(�)
µ⌫ , depend on the particu-

lar perturbation being studied. The perturbed fitting coefficients, x(�)
(!), and the perturbed

exchange-correlation fitting coefficients, z(�)(!), must be computed in order to obtain P
(�)

(!).
To this end, ADPT takes advantage of the perturbed Coulomb fitting equation systems which,
for perturbation-independent basis and auxiliary functions, takes the form

X

l̄

Gk̄l̄ x
(�)

l̄
(!) =

X

µ,⌫

hk̄||µ⌫iP (�)
µ⌫ (!). (4.80)

Inserting Eq. (4.77) into Eq. (4.80) yields

X

l̄

Gk̄l̄x
(�)

l̄
(!) = 2

X

µ,⌫

occX

i

unoX

a

K(�)
ai (!)

!ia � !
cµac⌫ihµ⌫k|k̄i+

2

X

µ,⌫

occX

i

unoX

a

K(�)
ia (!)

!ia + !
cµic⌫ahµ⌫k|k̄i. (4.81)
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Here we have introduced !ia = ✏i � ✏a. The right hand side of Eq. (4.81) can be further
simplified by performing the sum over the AOs and using the symmetry of the ERIs and the
perturbed Kohn-Sham matrix

X

l̄

Gk̄l̄x
(�)

l̄
(!) = 4

occX

i

unoX

a

K(�)
ia (!)

!ia

!2
ia � !2

hia||k̄i. (4.82)

Note that this simplification holds only for LDA and GGA[170]. To proceed further, we now
expand K(�)

ia (!) according to Eqs. (4.78) and (4.79)

X

l̄

Gk̄l̄x
(�)

l̄
(!) = 4

occX

i

unoX

a

H(�)
ia

!ia

!2
ia � !2

hia||k̄i+

4

X

l̄

occX

i

unoX

a

hl̄||iai !ia

!2
ia � !2

hia||k̄i
h
x(�)

l̄
(!) + z(�)

l̄
(!)
i
, (4.83)

where the H(�)
ia are elements of the perturbed core Hamilton matrix in MO representation

H(�)
ia =

X

µ,⌫

cµiH
(�)
µ⌫ c⌫a. (4.84)

Collecting all terms that depend on the perturbed density fitting coefficients on the left side
transforms Eq. (4.83) into

X

l̄

Gk̄l̄x
(�)

l̄
(!)� 4

X

l̄

Ak̄l̄(!)
h
x(�)

l̄
(!) + z(�)

l̄
(!)
i
= 4 b(�)k (!), (4.85)

where

Ak̄l̄(!) =
occX

i

unoX

a

hk̄||iai !ia

!2
ia � !2

hia||l̄i, (4.86)

is an element of the Coulomb response matrix, A(!), and

b(�)
k̄

(!) =
occX

i

unoX

a

H(�)
ia

!ia

!2
ia � !2

hia||k̄i, (4.87)

is an element of the perturbation vector b(�)
(!). The perturbed exchange-correlation fitting
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coefficients in Eq. (4.85) can be expressed as

z(�)
l̄

(!) =
X

k̄,m̄

G�1
l̄k̄
Fk̄m̄x

(�)
m̄ (4.88)

with the ADPT kernel matrix defined by

Fk̄m̄ = hk̄|fxc[⇢̃]|m̄i. (4.89)

Here fxc is the exchange-correlation kernel that corresponds to the functional derivative of the
exchange-correlation potential vxc[⇢̃; r]. Finally, inserting Eqs. (4.86), (4.87) and (4.88) into
(4.85) yields the following linear equation system in matrix form

R(!)x(�)
(!) = b

(�)
(!), (4.90)

where R(!) is the response matrix given by

R(!) = 1
4G�A(!)(E+G

�1
F). (4.91)

In order to solve the equation system in Eq. (4.90) a version of the Eirola-Nevanlinna (EN2)[129]

algorithm has been implemented in deMon2k[163]. This algorithm solves iteratively Eq. (4.90).
Afterwards, the obtained Coulomb perturbed fitting coefficients vector, x(�), is used to obtain
the exchange-correlation fitting coefficients vector, z(�), Eq. (4.88), simply by matrix-vector
products. The EN2 algorithm is also a Krylov subspace method. Its pseudocode is shown in
Figure 4.7.

To avoid the explicit calculation of the response matrix a direct variant of the EN2 algorithm
is implemented in deMon2k. This method is triggered by the DIRECT[105] option of the ADP-
TYPE keyword. Hence, it avoids the explicit calculation and storage of the A and F matrices.
Instead, it directly calculates the actions of these matrices on trial vectors. Taking as example
the multiplication of the Coulomb response matrix, Eq. (4.86), with a trial vector of perturbed
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Coulomb fitting coefficients yields
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=
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!ia

!2
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c�ic⌧ah�⌧ ||l̄ix(�)

l̄
. (4.92)

Figure 4.7: Pseudocode for the Eirola-Nevanlinna iterative algorithm (EN2) for
solving nonsymmetric linear equation systems.

In Eq. (4.92) the expansion of the molecular three-center ERIs into their atomic counterparts
avoids the O(N4

) AO to MO ERI transformation. As a result, a low-order scaling algorithm for
currently accessible system sizes, i.e. molecules with less than 100,000 auxiliary functions, is
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obtained. Whereas the direct EN2 variant is the method of choice for large molecules its con-
ventional counterpart triggered by ADPTYPE CONVENTIONAL[105], can be computationally
superior for small systems with less than 50,000 auxiliary functions. In this system size range
the unfavourable scaling of the A matrix calculation can be compensated by the fact that this
matrix has only to be computed one time, independent of how many perturbations have to be
calculated. Thus, the conventional EN2 algorithm becomes particularly advantageous for the
calculation of many perturbations for a fixed molecular structure like for second analytic ADFT
energy derivatives and nuclear spin-spin coupling constants, to name a few.

As a Krylov subspace method, the EN2 also uses a preconditioner (H0, in Figure 4.7) in or-
der to accelerate its convergence. Instead of inverting the R matrix, which would be the perfect
preconditioner for this equation system, G�1 is used as preconditioner. With this implemen-
tation, only two actions (matrix-vector products) of the R matrix are needed (Figure 4.7 lines
7 and 9, for the first action and lines 10 and 12 for the second one). This algorithm does not
update the inverse matrix explicitly as the BFGS algorithm, instead only the actions of those
updates are carried through the vectors u and c (lines 8-14 in Figure 4.7). Furthermore, to avoid
memory overflow these u and c vectors are kept and discarded after m steps of the algorithm.
In deMon2k m = 15 is used. Due to its low memory demand and the good convergence perfor-
mance the EN2 is the method of choice for the solution of the ADPT equation system. Never-
theless, the current implementation still requires explicitly G

�1, which limits treatable systems
sizes on many HPC architectures to around 100,000 auxiliary functions. To demonstrate how
this limitation can be lifted by the use of MINRES within the EN2 algorithm, we now discuss
the action of A on a trial vector of perturbed Coulomb fitting coefficients, Eq. (4.92), step by
step. To this end, we first rewrite Eq. (4.92) as

ak̄(!) =
X

µ,⌫

hk̄||µ⌫i
occX

i

unoX

a

cµic⌫a
!ia

!2
ia � !2

X

�,⌧

c�ic⌧a
X

l̄

h�⌧ ||l̄ix(�)
l̄

. (4.93)

To proceed, we define the matrix Q with elements

Q�⌧ =

X

l̄

h�⌧ ||l̄ix(�)
l̄

. (4.94)

The sum in Eq. (4.94) resembles the one appearing in the Kohn-Sham matrix construction, Eq.
(3.34), for the direct SCF procedure. Therefore, integral screening and double asymptotic ERI
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expansions can be used to obtain an asymptotic O(Nbas) scaling for the calculation of the Q
matrix elements. Substituting Eq. (4.94) into Eq. (4.93) yields

ak̄(!) =
X

µ,⌫

hk̄||µ⌫i
occX

i

unoX

a

cµic⌫a
!ia

!2
ia � !2

X

�,⌧

c�iQ�⌧c⌧a. (4.95)

The transformation of Q into MO representation yields

Qia =

X

�,⌧

c�iQ�⌧c⌧a. (4.96)

Although these matrix multiplications introduce a cubic scaling step, it is in practical applica-
tions most often not noticeable. The reason lies in its implementation with optimized BLAS
routines that perform close to peak performance and, thus, hide these steps[171]. Then, the re-
sulting Qia elements are scaled with the corresponding MO energy differences

Q0
ia(!) =

Qiawia

w2
ia � w2

. (4.97)

Substituting Eq. (4.97) into Eq. (4.93) gives the following expression

ak̄(!) =
X

µ,⌫

hk̄||µ⌫i
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i

unoX

a

cµiQ
0
ia(!)c⌫a. (4.98)

Next, the Q0
ia(!) matrix elements are transformed into AO representation

Tµ⌫(!) =
occX

i

unoX

a

cµiQ
0
ia(!)c⌫a. (4.99)

For this step the same comments as for Eq. (4.96) hold. By inserting Eq. (4.99) into Eq. (4.98),
it follows that

ak̄(!) =
X

µ,⌫

hk̄||µ⌫iTµ⌫(!). (4.100)

This equation is algebraically identical to the one for the calculation of the Coulomb vector J
according to Eq. (3.31). Integral screening and double asymptotic expansions for three-center
ERIs can be used to reduce the scaling from O(N3

bas) to O(Nbas). As this discussion shows
the direct action of A(!) on a test vector can be calculated in a nearly linear scaling approach
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without the explicit use of G�1.

Similarly, the third term in Eq. (4.91) can be expanded as

a0k̄(!) =
X

m̄,n̄

Ak̄m̄(!)G
�1
m̄n̄

X

l̄

hn̄|fxc[⇢̃]|l̄ix(�)

l̄
. (4.101)

For the efficient calculation of this term a vector q is defined with elements

qn̄ =

X

l̄

hn̄|fxc[⇢̃]|l̄ix(�)

l̄
= hn̄|fxc[⇢̃]|�̃i, (4.102)

where �̃ is given by
�̃(r) =

X

l̄

l̄(r) x(�)

l̄
. (4.103)

This step involves the computation of a vector with the size of the auxiliary function set over the
grid. Thus, the formal scaling is expected to be O(Naux ⇥ Ngrid). This scaling can be further
reduced by grid screening techniques. Introducing the q vector into Eq. (4.101) yields

a0k̄(!) =
X

m̄,n̄

Ak̄m̄G
�1
m̄n̄qn̄. (4.104)

The next step is the multiplication of the q vector with the inverse of the Coulomb matrix, i.e.
q
0
= G

�1
q. In the current ADPT implementation in deMon2k the G

�1 matrix needed for this
operation is read from disk were it was stored in the corresponding TED step. However, if MIN-
RES is used in the SCF the TED step is avoided and G

�1 is at this point of the calculation not
available. Therefore, we reformulate the multiplication of q with G

�1 in form of the following
linear equation system

Gq
0
= q, (4.105)

which we solve with the here developed MINRES algorithm. Once q
0 is at hand Eq. (4.101)

can be simplified to
a0k̄(!) =

X

l̄

Ak̄l̄(!)q
0
l̄. (4.106)

The multiplication of the A(!) matrix with the q
0 vector is calculated according to the previ-

ously described action algorithm for the Coulomb response matrix.

Finally, the first term of Eq. (4.91) yields in the action algorithm the multiplication of the
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Coulomb matrix G with a trial vector of perturbed Coulomb fitting coefficients. This matrix-
vector product is always calculated on-the-fly and it can be performed in the three different
forms already discussed in Section 4.4. In conclusion, the here obtained action algorithm for
the response matrix R on a trial vector of Coulomb fitting coefficients is nearly linear scaling
and free of G�1 operations.

Therefore, the only G
�1 operations left are the preconditioning steps in the EN2 algorithm.

They are given by the H0 = G
�1 multiplications in line 7 and 10 of the EN2 pseudocode in

Figure 4.8. Those are
r
0
= H0r! r

0
= G

�1
r, (4.107)

and
⇠0 = H0⇠ ! ⇠0 = G

�1⇠. (4.108)

In the new EN2 + MINRES (see Figure 4.8) implementation these matrix multiplications are
reformulated into the linear equation systems

Gr
0
= r (4.109)

and
G⇠0 = ⇠ (4.110)

that are solved by the here developed MINRES algorithm (see Figure 4.8).

Thus, MINRES is called three times, two times for preconditioning, Eqs. (4.109) and (4.110),
as shown in Figure 4.8 and one time to solve iteratively Eq. (4.88) as

Gz
(�)

= Fx
(�). (4.111)

This concludes our description of the new EN2 + MINRES algorithm that is free of G�1 opera-
tions. With this thesis the new EN2 + MINRES algorithm was also implemented in deMon2k for
the calculation of polarizabilities and hyperpolarizabilities, Fukui functions and nuclear spin-
spin coupling constants. Illustrative examples of its application are shown in the next chapter.
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Figure 4.8: Pseudocode for the Eirola-Nevanlinna EN2 + MINRES iterative algo-
rithm for solving nonsymmetric linear equation systems.
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5.1 Energy calculations

To assess the performance of the new MINRES fitting approach, we performed single point
energy calculations of systems with systematically increasing sizes[130] using three benchmark
sets. The first benchmark set consists of 7 fullerene cages ranging from 20 to 960 carbon
atoms, the second of 6 water clusters containing 50 to 500 water molecules and the third set
consists of saturated MFI zeolites containing 1 to 4 unit cells. The calculations were con-
ducted with the iterative MINRES algorithm using three options: DIRECT, ASYMPTOTIC
and MIXED. The MINRES timings are compared with the default TED based approach[35,36]

currently implemented in deMon2k. The methodology used for these benchmark calculations
was PBE/DZVP/GEN-A2*. The calculations of the fullerene and water clusters were performed
using 24 Intel(R) Xeon(R) CPU E5-2650 v4 @ 2.20GHz cores with 4 GB of RAM per core.
For the zeolite calculations 96 cores with the same specification were used. The results of
these single point energy calculations will be presented and discussed in the following three
subsections.

5.1.1 Fullerenes

Table 5.1 lists for the fullerene benchmark set the total density fitting and single point SCF
timings (in seconds) for the TED as well as the MINRES DIRECT, ASYMPTOTIC and MIXED
density fitting approaches.

Table 5.1: Number of auxiliary functions, Naux, CPU timings for the density fitting and single point
SCF energy calculations using the listed density fitting approaches as well as the number
of truncated eigenvalues in TED, NTE , for the systems in the fullerene benchmark set. All
calculations were performed with the PBE/DZVP/GEN-A2* methodology on a 24 core board.

System Naux

Total density fitting timings [s] Total SCF timings [s]
NTE

TED DIRECT ASYMPTOTIC MIXED TED DIRECT ASYMPTOTIC MIXED

C20 1860 1.7 14.8 29.19 20.4 8.2 21.0 35.5 26.7 163

C60 5580 61.6 43.7 53.7 17.7 116.3 97.2 115.7 71.2 590

C180 16740 1573.1 566.5 506.8 134.9 2185.8 1170.7 1109.9 738.7 2212

C240 22320 3694.4 1032.9 556.5 206.2 4687.6 2011.4 1533.9 1187.0 2794

C540 50220 43150.6 6885.6 2586.0 1450.2 47492.3 11699.7 7401.5 6275.7 6625

C720 66960 103841.7 13823.7 4148.1 2740.6 112594.3 22647.7 12965.5 11062.4 8796

C960 89280 255725.4 26665.1 7386.6 5665.9 274767.2 44616.4 25239.4 23634.8 12024

The total fitting timings are plotted in Figure 5.1 versus the number of auxiliary functions, Naux,

73



given in the second column of Table 5.1. As Table 5.1 shows the MINRES density fitting CPU
times are smaller than the corresponding TED timings from C60 on. Such a crossover is ex-
pected because of the different formal scalings of TED and MINRES with respect to system
size. Whereas TED shows a cubic scaling (red dots in Figure 5.1) due to the one-time diagonal-
ization of the Coulomb matrix G, MINRES possesses a formal quadratic scaling (blue stars in
Figure 5.1) due to the matrix-vector multiplications. As Table 5.1 shows this crossover appears
for the here presented MINRES implementation at C60 in the fullerene benchmark set.

Figure 5.1: CPU time for density fitting as a function of the number of auxil-
iary functions for the fullerenes. inset depicts different MINRES ap-
proaches. To guide the eye the individual data points are connected by
lines. See text for further details.

The quadratic scaling of MINRES can be further reduced with the ASYMPTOTIC (purple
squares in the inset of Figure 5.1) and MIXED (green diamonds in the inset of Figure 5.1)
MINRES versions. For the largest system, C960, the density fitting time for the ASYMPTOTIC
and MIXED MINRES is roughly 3 and 5 times faster than for the DIRECT MINRES as Table
5.1 shows. In comparison to the standard TED implementation speed up factors of more than
10, 35 and 45 are obtained with the DIRECT, ASYMPTOTIC and MIXED MINRES versions,
respectively. This dramatic reduction in the density fitting timings also affects significantly the
single point SCF timings as Table 5.1 shows. The ASYMPTOTIC and MIXED single point
SCF times for C960 are by more than one order of magnitude smaller than the corresponding
TED timing. Moreover, the density fitting with the MIXED MINRES approach requires roughly
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25% of the total single point SCF timing whereas the corresponding TED fraction is over 90%.
An interesting detail in the density fitting timings of Table 5.1 is found for C20 and C60. Here
MINRES DIRECT is slightly faster than MINRES ASYMPTOTIC. Although the differences
are only 15 and 10 s for C20 and C60. This behaviour is not expected at first glance. The reason
lies in the nonexistence of far-field ERIs in C20 and C60. Thus, the observed difference reflects
the overhead due to the near-field vs. far-field ERI decision process in the ASYMPTOTIC (and
MIXED) approach that is not needed for MINRES DIRECT. Finally, it is also important to
mention that the converged TED and MINRES total energies differ slightly according to the
number of truncated eigenvalues, NTE in Table 5.1, in TED. For the here studied fullerenes this
difference is a few µHartree for the smaller systems and increases to around 1 mHartree for the
largest one (see Table E.1 in appendix E for energy differences and number of SCF cycles).

The enormous improvement of the computational performance employing the iterative MIN-
RES algorithm for solving the fitting equation system is also rooted in its good parallelization.
To analyze this in more detail we have studied the scaling of the MINRES density fitting for the
C540 fullerene with respect to the number of cores in parallel runs. To this end we performed
single point PBE/DZVP/GEN-A2* energy calculations for this fullerene using 12, 24, 48 and
96 Intel(R) Xeon(R) CPU E5-2650 v4 @ 2.20GHz cores with 4 GB of RAM per core. The
obtained scaling of the reciprocal CPU time with respect to the number of cores is depicted in
Figure 5.2 (blue stars) and compared with the corresponding ideal scaling (red dots). As this
figure shows, the monotonically increasing trend of the MINRES acceleration by parallelization
is close to the ideal scaling (red dots).

Figure 5.2: Reciprocal CPU time as a function of the number
of cores for the C540 fullerene. The data points are
connected to guide the eye.

75



This graph shows the good parallelization for the implemented MINRES algorithm due to its
matrix-vector product based algorithmic structure.

5.1.2 Water clusters

To study the performance of MINRES density fitting for assemblies of molecules we run bench-
mark calculations on water clusters. Thus, our second test set consists of 6 water clusters con-
taining 50 to 500 water molecules. Again we performed single point energy calculations with
the already discussed methodology, i.e. PBE/DZVP/GEN-A2*. Table 5.2 lists for this water
cluster benchmark set the total density fitting and single point SCF timings (in seconds) for the
TED as well as the MINRES DIRECT, ASYMPTOTIC and MIXED approaches.

Table 5.2: Number of auxiliary functions, Naux, CPU timings for the density fitting and single point
SCF energy calculations using the listed density fitting approaches as well as the number of
truncated eigenvalues in TED, NTE , for the water cluster benchmark set. All calculations
were performed with the PBE/DZVP/GEN-A2* methodology on a 24 core board.

System Naux

Total density fitting timings [s] Total SCF timings [s]
NTE

TED DIRECT ASYMPTOTIC MIXED TED DIRECT ASYMPTOTIC MIXED

(H2O)50 6850 127.8 187.9 144.6 54.2 200.7 260.8 217.0 126.1 100

(H2O)100 13700 959.0 957.6 480.7 203.1 1227.3 1240.6 830.9 484.2 200

(H2O)200 27400 7340.7 4048.6 1426.0 1003.1 8694.9 6695.8 4112.9 3640.2 401

(H2O)300 41100 24651.1 10081.6 3187.9 2519.3 28194.8 17676.3 10667.0 9648.0 601

(H2O)400 54800 59771.5 19634.9 5196.4 5025.8 67029.2 35611.9 22079.7 21422.6 803

(H2O)500 68500 118926.1 32414.4 8266.8 8260.9 132543.7 63514.7 37311.7 36637.5 1002

The fitting timings are plotted in Figure 5.3 with respect to the number of auxiliary functions,
Naux, given in the second column of Table 5.2. As Table 5.2 shows the MINRES MIXED
density fitting CPU times are always smaller than the corresponding TED timings. The reason
is the larger number of auxiliary functions in the smallest water cluster, (H2O)50, compared to
the smallest fullerene, C20. Thus, the crossover between the TED and MINRES MIXED density
fitting is already passed by the smallest water cluster in Table 5.2.
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Figure 5.3: CPU time for density fitting as a function of the number of auxiliary
functions for the water clusters. inset depicts different MINRES ap-
proaches. To guide the eye the individual data points are connected by
lines. See text for further details.

The TED timings (red dots in Figure 5.3) show again the expected cubic scaling. The den-
sity fitting CPU times using MINRES DIRECT given in column 4 of Table 5.2 are dominated
by the matrix-vector product. Their scaling of N2.2

aux with respect to the number of auxiliary
functions is best observed from the inset of Figure 5.3 (blue stars). Also, the scaling reduc-
tion by the ASYMPTOTIC (purple squares) and MIXED (green diamonds) MINRES versions
is clearly visible from this figure inset. The difference between these two versions is for the
water clusters smaller than for the fullerenes. In fact, for the largest water cluster this differ-
ence becomes negligible. Again the speed-up of the density fitting by MINRES accelerates the
corresponding single point SCF calculations, albeit with a more moderate factor of around 4
for the largest water cluster, (H2O)500. Because all water clusters in Table 5.2 possess far-field
ERIs the ASYMPTOTIC and MIXED MINRES fittings are always faster than their DIRECT
counterpart.

The comparison of the fullerenes and water cluster results (Table 5.1 and 5.2) reveals some
interesting details. Although, the number of auxiliary functions of C20 is considerably smaller
than for the (H2O)50 cluster, C20 has more truncated eigenvalues. This shows that the altering of
the auxiliary function set by TED is system dependent and in this particular case very different
for a molecule in comparison to an assembly of molecules. The assembly structure of the water
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clusters is also the reason for the almost perfect correlation between NTE and cluster size in
Table 5.2. This indicates that the system type has a profound impact on the structure of the G
matrix. Despite these very different G matrix structures, MINRES reliably reduces the scaling
of the density fitting (see Figures 5.1 and 5.3) and, therefore, accelerates single point SCF
calculations significantly.

The here obtained results for molecular assemblies are of particular interest for the future de-
velopment of a truly linear scaling quantum chemistry methodology on the basis of ADFT.
By eliminating the linear algebra bottlenecks associated to density fitting only the transfor-
mation and diagonalization of the Kohn-Sham matrix remain as higher order scaling steps in
Roothaan-Hall ADFT SCF iterations. To overcome this bottleneck the pseudodiagonalization
of the Kohn-Sham matrix can be used. In this approach SCF convergence is reached by anni-
hilation of the occupied-virtual blocks of the Kohn-Sham matrix in MO representation[172]. To
make the method linear scaling MO localization must be enforced. Thus, molecular assemblies
with their natural local electronic structure are ideal test systems for such an approach. In fact,
the development of an ADFT SCF based on MINRES density fitting and Kohn-Sham matrix
pseudodiagonalization is a straightforward extension of the work developed in this thesis.

5.1.3 Zeolite structures

Besides its superior computational performance MINRES also reduces substantially the mem-
ory demand for the density fitting. To study this in more detail we performed single point energy
calculations of hydrogen saturated MFI zeolite cutouts consisting of 1 to 4 unit cells[130]. The
total density fitting timings for the TED and MINRES alongside with the memory demand per
core and the number of truncated eigenvalues, NTE , are listed in Table 5.3.

Table 5.3: Number of auxiliary functions, Naux, CPU timings and RAM demand per core for the listed
density fitting approaches as well as the number of truncated eigenvalues in TED, NTE ,
for the hydrogen saturated MFI zeolite cutouts. The calculations were performed with the
PBE/DZVP/GEN-A2* methodology employing 96 cores.

System Naux

Total density fitting timings [s] RAM per core [GB]
NTE

TED DIRECT ASYMPTOTIC MIXED TED DIRECT ASYMPTOTIC MIXED

MFI-1 33608 3613.8 3999.3 1790.8 988.7 0.13 0.04 0.04 0.07 736

MFI-2 66512 26610.6 18194.4 5714.7 4818.8 0.52 0.08 0.08 0.15 1575

MFI-3 99416 89800.1 47012.6 12551.5 13455.6 1.15 0.12 0.12 0.24 2415

MFI-4 132320 207549.0 90143.7 20769.0 26196.7 2.03 0.16 0.16 0.32 3256
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The total CPU density fitting timings as a function of the number of auxiliary functions, Naux,
are graphically illustrated in Figure 5.4.

Figure 5.4: CPU time for density fitting as a function of the number of auxiliary
functions for the zeolite cutouts. inset depicts different MINRES ap-
proaches. To guide the eye the individual data points are connected by
lines. See text for further details.

As Table 5.3 and Figure 5.4 show the density fitting timings for the MFI zeolite cutouts are also
considerably reduced by the MINRES approaches compared to TED. Qualitatively, a similar
picture as for the fullerenes and water clusters was obtained. A remarkable difference, however,
is observed for the density fitting with the ASYMPTOTIC and MIXED MINRES approaches.
Whereas in all other systems the MIXED MINRES is always faster than the ASYMPTOTIC
one, we find for the MFI cutouts a crossover at the trimer (MFI-3 in Table 5.3) with around
100,000 auxiliary functions. A more detailed analysis of this behaviour revealed that on the
here used hardware architecture the direct calculation of two-center ERIs in the ASYMPTOTIC
MINRES accesses mainly CPU cache which is faster than RAM access. Thus, the direct calcu-
lation of two-center ERIs becomes faster than their loading from RAM. The CPU timings for
the single point SCF energy calculations are also reduced by MINRES compared to TED for
the MFI zeolite cutouts. For the largest system, MFI-4, speed up factors of 2 and 4 for the single
point energy calculations are obtained with MINRES DIRECT and MINRES ASYMPTOTIC
or MIXED, respectively.
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Table 5.3 also compares the RAM demand for TED and MINRES density fitting. Because our
MINRES implementation requires only the storage of vectors rather than matrices, the RAM
demand is considerably reduced compared to TED. This holds even for MINRES MIXED that
stores near-field two-center ERIs. By construction, the RAM demand for MINRES DIRECT
and ASYMPTOTIC is identical and scales linear with the number of auxiliary functions as
Table 5.3 shows. This allows MINRES density fitting with hundreds of thousands to millions
of auxiliary functions on current computer architectures.

5.1.4 Alkanes

To investigate the MINRES performance also for larger basis sets we performed 24 core parallel
benchmark calculations on n-alkane chains ranging from C100H202 to C300H602 employing aug-
cc-pVTZ basis sets in combination with GEN-A2* auxiliary function sets. As Figure 5.5 shows
the crossover between MINRES and TED is at the C150H302 n-alkane with around 16,000 basis
and 27,000 auxiliary functions. For these systems ASYMPTOTIC MINRES scales clearly sub-
quadratic, N1.4, with respect to the number of auxiliary functions.

Figure 5.5: CPU density fitting timings versus the number of auxiliary functions for n-alkane chains em-
ploying the PBE/aug-cc-pVTZ/GEN-A2* level of theory using 24 cores. MINRES timings
refer to the ASYMPTOTIC approach for the calculation of the two-center ERIs.

In conclusion, the implementation of the Krylov subspace MINRES algorithm for the solution
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of the inhomogeneous fitting equation system in deMon2k has removed the computational bot-
tleneck for the variational fitting of the Coulomb potential. Because MINRES also resolves the
numerical problems of the density fitting arising from finite precision arithmetic a robust and
reliable fitting implementation is achieved. The comparison of the different MINRES variants,
DIRECT, ASYMPTOTIC and MIXED, showed that MINRES ASYMPTOTIC is the method
of choice. It combines superbly computational performance with a low memory demand. As
a result, subquadratic scaling with respect to the number of auxiliary functions in combination
with excellent parallel scalability is achieved. The key to success is the use of the blocked
atomic preconditioners which improve significantly the MINRES convergence. All our larger
test calculations showed improved computational performance with respect to the TED imple-
mentation. Even for systems with over 100,000 auxiliary functions the CPU time for the density
fitting with MINRES was negligible compared to the total time for the single point energy cal-
culation.

5.2 Structure optimizations

After we have analyzed the performance of MINRES in single point SCF energy calculations,
we now turn to structure optimizations. The fundamental difference between TED and MIN-
RES in structure optimization is the G�1 matrix usage for the calculation. For TED, this matrix
is calculated at the beginning of SCF procedure and it is updated by a quasi-Newton method
throughout all optimization steps. On the other hand, MINRES solves iteratively the associated
equation system every time this is needed in each optimization step. To further discuss this, we
optimized a heme (porphyrin with an iron ion acting as a tetradentate ligand) organic system
with 48 atoms using 24 cores. Using the PBE/DZVP/GEN-A2* level of theory this translates to
561 orbitals and 3,400 auxiliary functions. The optimization thresholds were the default ones in
deMon2k and the optimization was performed using internal redundant coordinates. Although
this is a small molecule the use of TED fitting fails in the optimization due to the failed con-
vergence in the solution of the fitting equation, Eq. (4.1), at optimization step 27. Analyzing
the TED in more detail, we found that 191 eigenvalues were truncated from the G

�1 matrix
at the beginning of the optimization. In Figure 5.6 the structure is depicted alongside with the
energies (in a.u., red dots) and maximum absolute gradient components (MAG, in a.u./Bohr,
blue stars) at each optimization step.
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Figure 5.6: Heme structure optimization step energies (red dots) and maximum absolute gra-
dient components (blue stars) vs the number of optimization steps from a failed
structure optimization using TED (top) and a successful structure optimization
using MINRES (bottom), respectively. The optimizations were performed using
the PBE/DZVP/GEN-A2* methodology. The points are connected to guide the
eye.

As can be seen from Figure 5.6 (top) at step 4 of the optimization with TED fitting, a peak in the
energy as well as in the maximum gradient component occurs. In the corresponding MINRES
optimization this peak is not occurring. This already demonstrates that the two optimization
paths differ in an early stage. The breaking of the TED optimization is mainly due to the use of
the same G�1 obtained at the beginning of the SCF for the initial structure. In more detail, the G
matrix is geometry dependent, therefore, G changes during structure optimization, giving rise
to a different eigenvalue spectrum when using TED fitting. This eigenvalue spectrum inside the
TED can give a different number of truncated eigenvalues, NTE , which can have less or more
truncated eigenvalues. Analyzing in detail optimization step 27 using TED fitting, we found 186
truncated eigenvalues for this structure, whereas the initial structure had 191 truncated eigen-
values. On the other hand, if the optimization is carried out using the MINRES algorithm, as
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shown in Figure 5.6 (bottom), it yields a smoother optimization convergence. Thus, the use of
the correct G matrix for each geometry point on the PES yields a smoother optimization profile.

Taking advantage of the good parallel scaling of MINRES, we tested its performance for the
structure optimization for larger molecules. Our first example is the optimization of the C720

fullerene from the test set in Section 5.1.1 using the same PBE/DZVP/GEN-A2* level of theory,
and the default optimization thresholds of deMon2k. The optimization was again performed in
internal redundant coordinates. For the optimization of this fullerene, 160 Intel(R) Xeon(R)
CPU E5-2667 v4 @ 3.20GHz cores with 3 GB in RAM per core were used. This system has
10,800 basis functions and 66,960 auxiliary functions which makes the structural optimization
quite a challenge. The molecular structure alongside with the relative energies in a.u. (red
squares) and MAG in a.u./Bohr (blue stars) are depicted in Figure 5.7. From this Figure, a
smooth convergence for the optimization of this system can be seen. At the step 68 the structure
was optimized.

Figure 5.7: C720 fullerene structure optimization relative energies (red squares) and maxi-
mum absolute gradient component (blue stars) vs the number of optimization
steps from a successful structure optimization using the MINRES approach. The
PBE/DZVP/GEN-A2* methodology was used. The points are connected to guide
the eye.

Because of the excellent performance in the optimization for large systems with large auxiliary
function sets we took a third system to test the MINRES algorithm in optimizations. An oligoth-
iophene with 100 thiophene units (Figure 5.8) was optimized using the VWN/DZVP/GEN-A2*
level of theory and a tolerance of 10�4 a.u. in the root mean squared forces optimization thresh-
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old. This kind of system is of great technological interest due to its importance in semiconductor
electronics and data processing[173–176]. In this respect, oligothiophenes represent a particular at-
tractive group of compounds because of their stability in air and easy handling in several organic
solvents[177,178]. Moreover, they can be rather straightforward chemically altered by many stan-
dard reactions for heteroaromatics[179]. Therefore, oligothiophenes have attracted considerable
attention in materials science as part of thin-film organic transistors and organic photovoltaic
cells[180,181]. Some other properties related to these systems and their unusual electrical and op-
tical behaviour have been intensively investigated in the past few years, too. Of special interest
are electroluminescence[182–184], photoconductivity and electrical conductivity[185–187].

Figure 5.8: Optimized planar oligothiophene containing 100 thiophene units. The optimiza-
tion was performed in Cartesian coordinates. White, grey and yellow colors are
hydrogen, carbon and sulfur atoms, respectively.

All this shows that large oligothiophenes are of considerable interest to nanoscience. In order
to test our MINRES implementation for structure optimization we optimized a 100 thiophene
units containing oligothiophene. This molecule contains 702 atoms and its length is roughly 35
nm. The optimizations were carried out without any symmetry constraints but using two kinds
of coordinated systems for the optimizer. In particular, we used Cartesian and internal redun-
dant coordinates for these optimizations. In both cases the initial start structure was assumed
planar. This planarity was conserved in the Cartesian optimization as the corresponding opti-
mized structure in Figure 5.8 shows. On the other hand, the optimization of the oligothiophene
in internal redundant coordinates converged to a curved structure as shown in Figure 5.9. The
energy difference between these two structures is only 0.4 kcal/mol with the planar structure
being lower in energy. At this stage of this study is still unclear if both optimized structures
are indeed minima. This demonstrates the challenge of nanosystem structure optimization in
terms of accuracy and diversity of the potential energy surface. It also underlines the need for
corresponding frequency analyses if true minimum structures are sought.
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Figure 5.9: Optimized curved oligothiophene containing 100 thiophene units. The optimiza-
tion was performed using internal redundant coordinates. White, grey and yellow
colors are hydrogen, carbon and sulfur atoms, respectively.

5.3 Polarizabilities

In order to test the MINRES implementation for response property calculations with the ADPT
approach, we performed static and dynamic polarizability calculations for a series of molecules.
Experimental structures were used in this validation. The average polarizability and anisotropic
polarizability are obtained by the following formulas, calculated in the principal axes system of
the polarizability tensor.

↵̄(!) =
1

3
(↵xx(!) + ↵yy(!) + ↵xx(!)) (5.1)

and

|�↵(!)|2 = 1

2
[(↵xx(!)� ↵yy(!))

2
+ (↵xx(!)� ↵zz(!))

2
+ (↵yy(!)� ↵zz(!))

2
]. (5.2)

The static and dynamical polarizabilities, ↵, and anisotropic polarizabilities, �↵, of these sys-
tems were already obtained with TED density fitting by Carmona[188]. Therefore, we used these
data as a theoretical reference for our MINRES calculations in Table 5.4 and 5.5. The level of
theory for these calculations was PBE/TZVP-FIP1[189,190] /GEN-A2*. It is worth of noticing
that the TED calculations that Carmona presented in his thesis were not performed using the
EN2 algorithm. Instead, they refer to direct analytic solutions of the ADPT response equation
system, Eq. (4.90), with an explicit TED of the response matrix.

In Table 5.4 the static average polarizabilities, ↵̄, and the anisotropic polarizabilities, |�↵̄|, in
a.u. are compared between the TED approach and the EN2 + MINRES solver of this work. As
reference, we also list corresponding experimental results in the last two columns of Table 5.4.
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Table 5.4: Comparison of static GGA ADPT polarizabilities and polarizability anisotropies in a.u. of
small molecules. The theoretical results were obtained with MINRES and TED density fit-
ting using PBE/TZVP-FIP1/GEN-A2* level of theory. For all calculations the experimental
structures were used.

This work Ref. [188] Exp.

Molecule ↵̄ |�↵̄| ↵̄ |�↵̄| ↵̄ |�↵̄|

HF 5.88 1.20 5.88 1.20 5.40b 1.35c

CH4 17.10 17.12 17.27d

C2H2 23.15 12.80 23.28 12.74 22.68d 11.83e

CH3F 17.31 1.30a 17.51 1.50a 17.32d 1.41f

HCl 17.64a 2.09 17.59a 2.11 17.54g 1.47h

H2S 24.27 0.32a 24.28 0.24a 24.66i 0.67j

CH2F2 18.40 1.99 18.40 2.00 18.20d 1.70f

OCS 33.86 25.41 33.91 25.46 34.33d 26.26e

SO2 25.66 13.41 25.63 13.32 25.49k 12.98k

CHF3 19.63 1.45a 19.59 1.29a 18.69d 1.46f

CF4 19.92 19.95 19.53d

CS2 53.98 55.45 53.93 53.34 55.38d 57.38e

MAE 2.2% 14.9% 2.3% 17.4%

aCalculated dynamic values at � = 632.8 nm. bStatic value from refractive index dispersion [191]. cStatic value from molecular beam electric

resonance [192]. dStatic value from refractive index dispersion [193]. eDeduced from static estimates [194]. fDynamic values (� = 632.8

nm) from Ref [195]. gDepolarized light scattering at experimental � = 632.8 nm [196]. hStatic value from molecular beam electric resonance

[193]. iExtrapolated static value from dispersion of dynamic mean polarizability [197]. jDynamic value from Kerr effect at (� = 632.8 nm)

[198]. kStatic value from refractive index and Rayleigh scattering dispersion [197].

From Table 5.4 it is important to note that the mean absolute error (MAE) in percentage, of
the two different theoretical approaches compared to experimental data is in the same range of
2% for the static polarizability. Therefore, our implementation gives a good agreement with
the experiment and slightly improves the anisotropic polarizabilities compared to TED density
fitting, lowering the corresponding MAE from 17.4% to 14.9%.

Furthermore, in Table 5.5 the dynamical polarizabilities for another test set are compared. The
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calculations were performed with the same methodology, i.e. PBE/TZVP-FIP1/GEN-A2*. The
table compares the EN2 + MINRES dynamic polarizabilities and anisotropic polarizabilites of
this work with those from TED density fitting and experimental references.

Table 5.5: Comparison of dynamic GGA ADPT polarizabilities and polarizability anisotropies in a.u.
for small molecules. The theoretical results were obtained using the PBE/TZVP-FIP1/GEN-
A2* level of theory with MINRES and TED density fitting employing the experimental wave-
lengths. For all calculations the experimental structures were used.

This Work Ref. [188] Exp.

Molecule ↵̄ |�↵̄| ↵̄ |�↵̄| ↵̄ |�↵̄|

NH3 15.07 2.55 15.05 2.48 14.98a 1.94a

H2O 10.40 0.19 10.38 0.25 9.92b 0.66b

N2 11.80 5.24 11.90 5.31 11.92a 4.70a

CO 13.59 3.56 13.62 3.56 13.34a 3.59a

NO 11.83 5.81 12.00 5.79 11.74a 5.70a

O2 10.58 7.30 10.64 7.27 10.78a 7.42a

N2O 19.77 19.50 19.78 19.53 20.24a 19.97a

CO2 17.72 13.77 17.74 13.83 17.75a 14.17a

Cl2 30.54 15.68 30.53 15.70 31.11a 17.54a

C2H4 28.73 13.01 28.72 13.10 28.48a 12.21c

C2H6 29.99 4.67 30.01 4.67 30.16a 5.20a

C6H6 72.17 40.79 72.27 40.56 70.18a 37.93a

MAE 1.6% 13.2% 1.6% 12.3%

aDepolarized light scattering at � = 632.8 nm [196]. bDepolarization ratio from Rayleigh scattering at � = 514.5 nm [199]. c Depolarized

light scattering at � = 632.8 nm [197].

In the last row of Table 5.5 the MAE in percentage is given. In this case, the MAE for the
dynamic polarizability is 1.6% compared to experiment whereas the anisotropic dynamical po-
larizabilities are in the range of 13% and 12% using EN2 + MINRES and TED, respectively.
Thus, the MINRES anisotropic dynamical polarizabilities show a slightly larger deviation from
experiment than those obtained with the TED density fitting. We attribute this to the TED of the
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response matrix R used by Carmona[188]. This can hide pathological large Coulomb response
matrix elements due to too small energy gaps between occupied and unoccupied GGA MO
manifolds[164], see Eq. (4.86). These large Coulomb response matrix contributions can make
the R matrix ill-conditioned. Whereas in TED the corresponding small absolute eigenvalues of
R are eliminated, they persists inside the MINRES solution.

To conclude our validation of the new EN2 + MINRES implementation for polarizability cal-
culations, we present in Table 5.6 hyperpolarizability results for some small molecules. Again,
we compare with results from Carmona[188] and corresponding experimental data. For these
calculations the PBE/TZVP-FIP1/GEN-A2* level of theory was used. The listed dynamical
polarizabilities in Table 5.6 refer to the second harmonic generation (SHG) with !1 = !2 = !.
To facilitate direct comparison with experimental data we performed all calculations in the
so-called EFISH (electric-field-induced second harmonic) orientation. In this orientation the
permanent dipole moment of the molecule is aligned along the z component of the external
field. The average hyperpolarizability is calculated by the following expression

�̄(!3;!1,!2) ⌘ �̄(!) =
1

5

x,y,zX

i

[�zii(!) + �izi(!) + �iiz(!)] . (5.3)

Table 5.6: Comparison of static and dynamic GGA ADPT average hyperpolarizabilities, �̄ (in a.u.),
of small molecules using MINRES and TED density fitting. The theoretical results were
obtained using PBE/TZVP-FIP1/GEN-A2* level of theory.

This Work Ref. [188] Exp.

Molecule �̄ �̄(!) �̄ �̄(!) �̄(!)

CH3OH -46.44 -60.34 -46.75 -61.05 -35.0± 2.1a

CH3F -55.57 -67.06 -57.54 -69.19 -57.0± 4.2b

CH3Cl -4.21 -6.11 -3.06 -4.44 13.3± 1.4c

CHF3 -35.84 -35.58 -31.34 -36.09 -25.2± 0.9b

CF3Cl -81.11 -86.43 -71.60 -82.55 -69.2 ± 2.8b

CHCl3 -12.06 -16.65 -13.76 -18.20 1.2 ± 2.6c

CFCl3 -39.04 -36.32 -36.35 -37.44 -30.9 ± 9.6c

MAE 207% 275% 194% 258%

aDynamic value at � = 694.3 nm [200]. bDynamic value at � = 694.3 nm [201]. cDynamic value at � = 694.3 nm [202].

The dynamical polarizabilities in Table 5.6 were calculated at ! = 694.3 nm. All calcula-
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tions used analytically evaluated exchange-correlation kernels[203] and finite difference kernel
derivatives[204]. As can be seen from Table 5.6, the calculated hyperpolarizabilities show much
larger deviations from the experimental data than the previously discussed polarizabilities. The
main reason are the previously described pathologies in the GGA functional that at the current
level of knowledge can only be overcome by the use of hybrid functionals[170]. Therefore, we
discourage GGA hyperpolarizability calculations.

5.3.1 Fullerene and Amylose Polarizabilities

As has been seen, MINRES density fitting is well suited for response property calculations of
small systems. Because we have optimized the full set of fullerenes from section 5 using the
PBE/DZVP/GEN-A2* level of theory, we decided to calculate their polarizabilities. We can di-
rectly compare with the published results from Mejı́a et al. [163] where the VWN/DZVP/GEN-A2
level of theory was used. Between these two methodologies there is a huge difference in terms
of the number of auxiliary functions used. For the biggest fullerene C960, Mejı́a et al. reported
14,400 basis functions and more than 32,000 auxiliary functions. However, with our methodol-
ogy the same fullerene has the same number of basis functions whereas the auxiliary functions
dimension grows to 89,280. Undoubtedly, this is a challenging task! Figure 5.10 compares
the static DZVP polarizabilities per atom from Mejı́a et al. [163] using VWN/DZVP/GEN-A2
(red dots) with our PBE/DZVP/GEN-A2* results (blue stars). As this graphic reveals both cal-
culations show similar trends The main difference is a slightly higher polarizability per atom
with PBE/GEN-A2*. We attribute this mainly to the extended auxiliary function set used in
our calculations. All polarizability calculations were performed with a residual tolerance in the
EN2 algorithm of 5.0 ⇥ 10

�6 and the default TOL for MINRES of 10�7 in the residual norm
approximation.

89



Figure 5.10: Polarizability per carbon atom for icosahedral fullerenes
from C60 to C960 using PBE/DZVP/GEN-A2* and
VWN/DZVP/GEN-A2 levels of theory. To guide the eye
the individual data points are connected by lines.

In order to test large system polarizability calculations with MINRES density fitting employing
augmented basis sets we calculated the average static polarizabilities of amylose systems with 8
to 64 units of ↵-D-glucose with the PW86[72]/EPR-III[205]/GEN-A2* methodology. The results
were compared with the ones obtained with the current TED density fitting implementation.
The structures of these compounds were built using the SWEET tool[206]. In fact, it is important
to mention that the largest system shown here has over 1,300 atoms, 28,275 basis functions and
more than 112,000 auxiliary functions. The geometry for this system is depicted in Figure 5.11.

Figure 5.11: Amylose chain containing 64 ↵-D-glucose units.

In this case the PW86 functional is used because it is another GGA functional for which ana-
lytic kernel evaluation[203] is available in deMon2k. The obtained average static polarizability
values for these systems are given in Table 5.7 and they are plotted as polarizability per atom in
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Figure 5.12 for a direct comparison between MINRES and TED density fitting as function of
the number of atoms, Natom. Also in Table 5.7 the number of ↵-D-glucose units, the number
of atoms Natom, the number of auxiliary functions, Naux and the number of basis functions,
Nbas, for each amylose, are given. The red dots in Figure 5.12 correspond to the calculations
performed with the current ADPT methodology using TED density fitting and the inverse of the
Coulomb matrix as preconditioner for the EN2 algorithm. The blue stars correspond to the new
EN2 + MINRES algorithm (see Figure 4.8) performed after a SCF calculation with MINRES
density fitting. Thus, these calculations are free of any G

�1 operation.

Table 5.7: Number of ↵-D-glucose units and atoms, Natom, for each amylose system alongside with
the number of auxiliary functions, Naux as well as the number of basis functions, Nbas. The
calculated average static polarizabilities (in a.u.) are obtained with the PW86/EPR-III/GEN-
A2* methodology employing MINRES and TED density fitting.

Glucose units Natom Naux Nbas ↵̄MINRES ↵̄TED

8 171 14168 3579 786.2 786.2

16 339 28152 7107 1570.4 1570.5

32 675 56120 14163 3140.6 -

48 1011 84088 21219 4730.0 -

64 1347 112056 28275 6307.6 -

From Table 5.7 it can be observed that the average static polarizabilities for the amyloses con-
taining 8 and 16 ↵-D-glucose units are in excellent agreement between the two response prop-
erty methodologies, MINRES (blue stars in Figure 5.12) and TED (red dots in Figure 5.12),
respectively. However, the polarizabilities for the 32, 48 and 64 unit amyloses were impossible
to calculate with the TED methodology, because of the memory demand needed by this density
fitting approach. The polarizability calculations were performed with 96 Intel(R) Xeon(R) CPU
E5-2650 v4 @ 2.20GHz cores with 4 GB of RAM per core. Our new MINRES implementation
overcomes this problem as Table 5.7 shows.
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Figure 5.12: Comparison between MINRES (blue stars) and TED (red dots) calculated av-
erage static polarizabilities per atom vs the number of atoms, Natom, for the
amylose chains containing up to 64 ↵-D-glucose units. To guide the eye, the
individual data points are connected by lines.

As Figure 5.12 shows, the polarizability per atom grows monotonically, although with a reduc-
tion of the slope with increasing system size. Compared to the fullerenes in Figure 5.10 the
polarizability per atom of the amylose structures is by a factor of 3 to 4 smaller and increases
much less with system size. We attribute this to a missing ⇡-system delocalized over the full
molecule. Moreover, the differences in the polarizability per atom are small compared to the
ones for the fullerenes, thus, a strong cooperative effect is not observed for the amyloses. The
largest amylose system is about 20 nm long and its diameter is around 1.2 nm. The here pre-
sented results demonstrate that first-principles response property calculations for nanostructures
can be performed employing moderate computational architectures with the newly developed
mathematical framework for density fitting.

5.3.2 DNA Polarizabilities

In order to test the possibility to apply the newly developed EN2 + MINRES algorithm for the
solution of ADPT equation systems of microbiologically relevant systems, we calculated the
polarizabilities of deoxyribonucleic acid (DNA) double strands. To this end, we studied 3 DNA
fragments containing 4, 8 and 16 adenine-thymine base pairs, respectively. These structures
are shown in Figures 5.13 as compound a, b and c, respectively. The structures were generated
with the Accelrys Discovery Studio Client in the DNA B-strand conformation with both ends
capped with hydroxyl groups. The phosphate groups were protonated in order to obtain neutral
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systems.

Figure 5.13: Ball and stick representation of the DNA double strand in the B-strand conformation with
4 (a), 8 (b) and 16 (c) adenine-thymine base pairs. The colors of the atoms are gray for
carbon, blue for nitrogen, orange for phosphorus and white for hydrogens, respectively.
For each structure the coordinated axes with their corresponding normalized polarizability
tensor components are plotted.

Aiming to test MINRES density fitting also for LDA, the polarizabilities of these systems were
calculated with the VWN/DZVP/GEN-A2* methodology using 96 Intel(R) Xeon(R) CPU E5-
2650 v4 @ 2.20GHz cores with 4 GB of RAM per core. Table 5.8 lists the obtained average
static polarizabilities with MINRES and TED density fitting alongside with the number of base
pairs, the number of atoms, Natom, the number of auxiliary functions, Naux, and the number
of basis functions, Nbas. The averaged polarizability per atom for these systems from the TED
(red dots) and MINRES (blue stars) approaches are compared in Figure 5.14.
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Table 5.8: Number of adenine-thymine base pairs and atoms, Natom, for each DNA fragment alongside
with the number of auxiliary functions, Naux, as well as the number of basis functions, Nbas.
The calculated average static polarizabilities in a.u. obtained with the VWN/DZVP/GEN-
A2* methodology are compared using the MINRES and TED approach for density fitting.

Base pairs Natom Naux Nbas ↵̄MINRES ↵̄TED

4 260 17208 2904 1326.7 1326.7

8 524 35020 5896 2659.6 -

16 1052 70644 11880 5305.8 -

From Table 5.8 it can be seen that the average static polarizabilities for the DNA fragment con-
taining 4 base pairs are the same for response property calculations with MINRES and TED
density fitting. However, once again the polarizabilities for the 8 and 16 base pair DNA frag-
ments were impossible to calculate with the TED approach due to the memory demand needed
for the Coulomb matrix inversion. On the other hand, with the MINRES approach these calcula-
tions were possible. In Figure 5.14 the red dot is the calculated polarizability per atom using the
TED density fitting methodology. It is in perfect agreement to the one obtained with MINRES.
As Table 5.8 shows, the polarizability increases linearly with the length of the DNA fragments.
Interestingly, the polarizability per atom is larger for smaller fragments than for larger ones.
As a result, a negative slope for the average polarizability per atom with respect to the DNA
fragment size is observed in Figure 5.14. This result is in qualitative agreement with recent
experimental reports from the literature[207,208]. In fact, it explains why DNA molecules do not
behave as rod-shaped objects in the dielectrophoresis process and why their polarization is more
related to the counter-ion cloud fluctuation than to their structure. In order to gain more insight,
in Figure 5.13 the polarizability tensor components are depicted, too. These tensor components
are normalized to their largest value. Looking at the tensor components from Figure 5.13, it is
possible to see that the largest contribution corresponds to the ↵xx component for the 4 units
fragment, whereas for the 8 and 16 units the largest value switches to the ↵yy component. Thus,
the polarizability tensor does not reflect the geometrical anisotropy of the systems. Neverthe-
less, the average polarizability as an extensive quantity grows with the molecular size as Table
5.8 shows. In fact, polarizabilities of DNA systems have been recently studied extensively
by several authors[209–217] using theoretical and experimental methodologies. In particular, a
frequency-dependent calculation of the dielectric polarizability in solution, based on molecular
dynamics simulation has been recently reported[218]. In here, the authors propose that the co-
and counter-ion diffusion, in response to the ion concentration gradients associated with the de-
formation of the electric double layer (EDL), effectively reduces the polarization. Additionally,
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Jung and coworkers explain that there is also a cross-over frequency where the polarizability
is roughly independent of the ion diffusion coefficient in terms of the solvent quality. These
studies have been reported in the literature a few years ago for this kind of system in aqueous
salt solutions[219–221]. Although our polarizability calculations are size extensive, the changes in
the polarizability per atom for the amyloses and DNA fragments are too small to draw definite
conclusions about cooperative or anti-cooperative effects in these systems. Therefore, further
studies that go beyond the scope of this thesis, namely to show the effect of MINRES density
fitting in response property calculations, are needed.

Figure 5.14: Comparison between MINRES (blue stars) and TED (red dots) cal-
culated average static polarizabilities per atom in a.u. for the DNA
fragments versus the number of atoms.

In any case, it is important to underline that the largest DNA strand, depicted in Figure 5.13c,
has the molecular formula C320H402O188N112P30 with a total of 1,052 atoms. This biological
system contains 11,880 basis functions and more than 70,000 auxiliary functions. The system
size is roughly 5.2 nm long, thus, lying at the nanoscale. Therefore, these results clearly show
that the here developed scheme for density fitting can be applied efficiently to microbiologically
relevant systems.

5.4 Nuclear spin-spin coupling constants

Nuclear magnetic resonance (NMR) spectroscopy is a powerful tool for the determination of
the electronic structure and nuclear configuration of molecules. It is of paramount importance
in areas such as biochemistry and organometallic chemistry as well as inorganic and organic
chemistry as a whole. The chemical shifts (magnetic shieldings) and the indirect nuclear spin-
spin coupling constants (NSSCCs) are the spectroscopic parameters measured in high resolution
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NMR experiments. In many cases they provide sufficient information for an accurate structure
assignment. However, with increasing system complexity the interpretation of these data can
become complicated even for an expert spectroscopist. Undoubtedly, the reliable theoretical
prediction of NMR parameters could significantly ease this interpretation work.

Because NSSCCs depend strongly on the electron density between the pair of coupling nu-
clear spins they provide information on the chemical bonds as well as of the coupling nuclei,
complementing the information obtained from the chemical shifts. Unfortunately, the working
equations for NSSCC calculations are more complicated as for the chemical shielding, which
also increases the complexity in these calculations. Many years ago, Ramsey proposed[222–226]

four individual mechanisms that are together responsible for the measured NSSCCs. These
are the Fermi-contact (FC), spin-dipole (SD), paramagnetic spin-orbit (PSO) and diamagnetic
spin-orbit (DSO) contributions. The FC and SD contributions arise from a spin polarization of
the closed shell density, also named spin magnetization, due to a nuclear spin magnetic moment
perturbation. The resulting magnetic field interacts with another nuclear spin magnetic moment
which yields the coupling between these two nuclear spins. The PSO and DSO contributions
arise from a current density in the electron cloud due to the presence of a nuclear spin moment.
As a result, a change in the magnetic field associated to the electron distribution occurs which
interacts with another nuclear magnetic spin moment. This constitutes the nuclear spin-spin
coupling mechanism for the PSO and DSO terms.

For ADFT NSSCC calculations we augment the ADFT energy expression, Eq. (3.35), by the
PSO, DSO, FC and SD terms. This yields

E =
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For a detailed derivation of this energy expression we refer the interested reader to [227].

In Eq. (5.4) P↵��
µ⌫ denotes elements of the spin density matrix

P↵��
µ⌫ = P↵

µ⌫ � P �
µ⌫ ,

that arise from the spin polarization of the closed-shell density due to the FC and SD operators.
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Differentiating the ADFT energy expression in Eq. (5.4) with respect to the Cartesian compo-
nents of the nuclear magnetic dipole moments of nuclei P and Q yields the (reduced) nuclear
spin-spin coupling tensor KPQ with elements

KP�Q⌘ =
@2E

@µP�
@µQ⌘

. (5.5)

Here � and ⌘ denote Cartesian components x, y and z. Evaluating this second energy derivative
yields

KP�Q⌘ =

X

µ,⌫

P↵��(�),FC
µ⌫ H(⌘),FC

µ⌫ +

zX

!=x

X

µ,⌫

P↵��(�),SD
µ⌫,! H(⌘),SD

µ⌫,! +

X

µ,⌫

P (�),PSO
µ⌫ H(⌘),PSO

µ⌫ +

X

µ,⌫

Pµ⌫H
(�⌘),DSO
µ⌫ . (5.6)

The � and ⌘ superscripts enclosed in parentheses in Eq. (5.6) indicate differentiation with re-
spect to µP�

or µQ⌘ , respectively. To avoid cluttering of notation we will avoid from now on
the explicit notation of the nuclear centers and assume that � always refers to nucleus P and
⌘ to nucleus Q. The sum over Cartesian coordinates in the SD term of Eq. (5.6) arises from
the orientation of the spin quantization axis along the x, y and z axes of the coordinate system.
Because our focus is here on the calculation of the perturbed density matrix elements we will
not further discuss the calculation of the perturbed operator matrix elements in Eq. (5.6). We
refer the interested reader to [168].

The perturbed density matrix elements in Eq. (5.6) can be calculated according to McWeeny’s
SCP. Assuming perturbation independent basis and auxiliary functions, we find as generic ex-
pression for the perturbed spin density matrix elements

P �(�),X
µ⌫ = 2

occX

i

unoX

a

K�(�),X
ia

✏�i � ✏�a
(c�µac

�
⌫i + s c�µic

�
⌫a), (5.7)

where the X superscript represents FC, SD or PSO contributions, while � denotes either the ↵
or � spin component. The scaling factor s is -1 for the imaginary PSO perturbation operator
and 1 otherwise. The K�(�),X

ia denotes a perturbed spin Kohn-Sham matrix element in MO
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representation. It is given by

K�(�),X
ia =

X

µ,⌫

c�µiK
(�),X
µ⌫ c�⌫a, (5.8)

where the K(�),X
µ⌫ matrix elements are given by

K(�),X
µ⌫ = H(�),X

µ⌫ +

X

k̄

hµ⌫kk̄i
h
x(�),X
k̄

+ z(�),X
k̄

i
. (5.9)

The first term in Eq. (5.9) is the perturbed core Hamiltonian for the X contribution. The
exchange-correlation perturbed fitting coefficients are

z(�),X
k̄

=

X

l̄,m̄

G�1
k̄l̄
hl̄|fxc[⇢̃]|m̄ix(�),X

m̄ . (5.10)

The similarity between these equations and the ones from the already discussed response prop-
erty calculations is obvious. Thus, the EN2 + MINRES algorithm can be used for direct ADPT
calculation of NSSCCs.

To test this new implementation, we took three amylose systems (8, 16 and 32 units) from
section 5.3.1 and calculated selected nuclear spin-spin couplings in these systems. The cal-
culations were performed with 24 cores using the PBE/DZVP/GEN-A2 level of theory. The
structures of these systems are depicted in Figure 5.15. This Figure also shows the atoms for
which nuclear spin-spin couplings are calculated. The thresholds for the ADPT solutions were
the same as in the polarizability calculations, i.e. 5.0 ⇥ 10

�6 for the EN2 residual tolerance
and 10

�7 in the approximated MINRES residual norm. The calculated NSSCC comparison is
shown in Table 5.9. All values are given in Hz. The � columns in Table 5.9 list the differ-
ences in the NSSCC values from the TED and EN2 + MINRES calculations. As these columns
show the calculated NSSCCs from TED and MINRES density fitting are in general very similar.
Noticeable differences are only found for the Fermi-Contact (FC) term. However, they are still
well below the intrinsic accuracy of GGA calculated NSSCCs which is in the range of 3 to 5 Hz.

In the first column of Table 5.9 the NSSCC contribution is listed for the specified atom pairs.
The following columns give the corresponding values for each contribution in Hz. Also, the
absolute difference,�, between the coupling constants from the two different density fittings is
given in Hz. This data structure is used for each of the three amylose systems in Table 5.9.
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In general, the obtained results with TED and MINRES are the same. It is worth noticing,
that the FC contribution in Table 5.9 is the one that changes most from one methodology to
another. Nevertheless, the differences are in the range of tenths of Hz, at most. For all other
contributions the use of any of these methodologies leads to the same result. This further shows
the stability and robust performance of MINRES inside deMon2k, making it suitable for NMR
property calculations such as NSSCCs despite the system complexity or the number of auxiliary
functions used.

Figure 5.15: Amylose systems with 8 (top), 16 (middle) and 32 (bottom) units,
respectively. The atomic symbols (H1, H5, C12 and O4) indicate the
four centers for which nuclear spin-spin couplings are calculated. The
atomic color code is: hydrogen (white), carbon (gray) and oxygen
(red).
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Table 5.9: NSSCC contributions calculated using the PBE/DZVP/GEN-A2 level of theory for three
amylose structures containing 8, 16 and 32 units, respectively, using the TED and EN2 +
MINRES approaches. The calculated values are shown in Hz alongside with their absolute
differences �.

Atom pair 8 Units amylose 16 Units amylose 32 Units amylose

H1-O4 TED MINRES � TED MINRES � TED MINRES �

FC -36.69 -36.82 0.13 -36.70 -37.01 0.31 -30.84 -31.08 0.24

SD 0.83 0.93 0.10 0.83 0.86 0.03 0.55 0.54 0.01

DSO -0.10 -0.10 0.00 -0.10 -0.10 0.00 -0.15 -0.15 0.00

PSO -9.35 -9.35 0.00 -9.35 -9.35 0.00 -9.42 -9.42 0.00

Total -45.31 -45.35 0.04 -45.32 -45.60 0.28 -39.86 -40.11 0.25

H1-H5

FC 8.26 8.23 0.03 8.26 8.19 0.07 20.08 20.04 0.04

SD 0.25 0.26 0.01 0.25 0.26 0.01 0.01 0.01 0.00

DSO 0.69 0.69 0.00 0.69 0.69 0.00 -1.67 -1.67 0.00

PSO -0.78 -0.78 0.00 -0.78 -0.78 0.00 2.10 2.10 0.00

Total 8.43 8.41 0.02 8.42 8.36 0.06 20.52 20.48 0.04

H1-C12

FC -0.45 -0.31 0.14 -0.45 -0.27 0.18 -2.64 -2.50 0.14

SD -0.02 -0.02 0.00 -0.02 -0.02 0.00 -0.03 -0.03 0.00

DSO -0.06 -0.06 0.00 -0.06 -0.06 0.00 -0.01 -0.01 0.00

PSO 0.12 0.12 0.00 0.12 0.12 0.00 -0.14 -0.14 0.00

Total -0.41 -0.26 0.15 -0.41 -0.23 0.18 -2.83 -2.68 0.15

O4-H5

FC -1.87 -2.06 0.19 -1.86 -1.96 0.10 -16.93 -16.89 0.04

SD 0.14 0.14 0.00 0.14 0.14 0.00 0.12 0.12 0.00

DSO 0.01 0.01 0.00 0.01 0.01 0.00 -0.01 -0.01 0.00

PSO -0.26 -0.26 0.00 -0.26 -0.26 0.00 0.08 0.08 0.00

Total -1.98 -2.17 0.19 -1.97 -2.08 0.11 -16.74 -16.70 0.04

O4-C12

FC 16.85 16.92 0.07 16.84 16.89 0.05 21.63 21.65 0.02

SD -1.83 -1.83 0.00 -1.83 -1.83 0.00 -1.12 -1.12 0.00

DSO -0.07 -0.07 0.00 -0.07 -0.07 0.00 -0.08 -0.08 0.00

PSO -0.65 -0.65 0.00 -0.65 -0.65 0.00 2.57 2.57 0.00

Total 14.29 14.36 0.07 14.29 14.34 0.05 23.00 23.02 0.02

H5-C12

FC 175.07 174.98 0.09 175.05 174.95 0.10 204.81 204.75 0.06

SD 0.22 0.22 0.00 0.22 0.22 0.00 0.30 0.30 0.00

DSO 0.61 0.61 0.00 0.61 0.61 0.00 0.56 0.56 0.00

PSO -0.80 -0.80 0.00 -0.80 -0.80 0.00 -1.07 -1.07 0.00

Total 175.11 175.01 0.10 175.09 174.99 0.10 204.61 204.53 0.08
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6.1 Conclusions

From the results obtained in this thesis the following conclusions can be drawn:

• The implementation of the Krylov subspace MINRES algorithm for the solution of the
inhomogeneous fitting equation system in deMon2k has removed the computational bot-
tleneck for the variational fitting of the Coulomb potential. Because MINRES also re-
solves the numerical problems of the density fitting arising from finite precision arith-
metic a robust and reliable fitting implementation is achieved. The comparison of the dif-
ferent MINRES variants, DIRECT, ASYMPTOTIC and MIXED, showed that MINRES
ASYMPTOTIC is the method of choice. It combines superb computational performance
with a low memory demand. As a result, subquadratic scaling with respect to the num-
ber of auxiliary functions in combination with excellent parallel scalability is achieved.
The key to success is the use of blocked atomic preconditioners in the form of modified
Cholesky or truncated eigenvalue decomposed (TED) atomic blocks. Both atomic block
preconditioners improve significantly the MINRES convergence. In this work, all our
larger test calculations showed improved computational performance with respect to the
TED density fitting implementation. Moreover, speed up factors of 4 in single point en-
ergy calculations for systems with over 100,000 auxiliary functions were obtained using
the density fitting with MINRES compared to the standard TED approach.

• The parallel scaling of MINRES is close to ideal due to the matrix-vector multiplications.
This yields, in combination with the double asymptotic expansion of the two-center ERIs,
a straightforward parallel implementation of the MINRES algorithm.

• The modified Cholesky preconditioner is well suited for atomic blocks of the Coulomb
matrix that become indefinite. A particular convenience of this approach is that we can
work with the full rank of the matrix. However, TED preconditioner has proven to be as
good as modified Cholesky for medium size auxiliary function sets like GEN-A2 or GEN-
A2* and even better when large auxiliary function sets such as GEN-A3* and GEN-A4*
are used where modified Cholesky decomposition-based preconditioners fail.

• Structural optimizations were possible for large systems like fullerenes with up to 960
atoms using the PBE/DZVP/GEN-A2* methodology. This is a breakthrough because
with the current implementation of deMon2k this type of structure optimizations were
not possible due to the large auxiliary function set dimensions. Moreover, the geometry
optimization of an oligothiophene system consisting of 100 thiophene units with a lateral
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extension of 35 nm was possible to be performed with the new MINRES implementation
at the VWN/DZVP/GEN-A2* level of theory. Unexpectedly, this optimization yielded
two distinct results when performed in Cartesian or internal redundant coordinates. Al-
though the geometries of these minima are obviously different, their energy separation at
the VWN/DZVP/GEN-A2* level of theory is below 0.5 kcal/mol. This demonstrates the
challenge of nanosystem structure optimization in terms of accuracy and diversity of the
potential energy surface.

• The static and dynamic polarizabilities obtained with the EN2 + MINRES algorithm
showed no significant deviation from the ADPT implemented years ago using the TED of
the response matrix for the solution of the ADPT equation system. On the other hand, the
hyperpolarizability calculations showed larger deviations compared to the polarizabilities.
We attribute this to the TED of the response matrix in the older ADPT implementation
that can hide certain pathologies of the underlying GGA functional.

• The optimized fullerene structures were used to obtain their polarizabilities using the
GEN-A2* auxiliary function set. These results show a slightly higher polarizability per
atom than the ones already reported using the GEN-A2 auxiliary function set. Although
different functionals were used in these calculations, we attribute this difference mainly
to the extended auxiliary function set in our calculations. Moreover, the EN2 + MIN-
RES algorithm also permitted us to calculate the polarizabilities of amyloses and DNA
fragments with GEN-A2* auxiliary function sets. For these systems, where we could
compare TED and MINRES density fitting, we found in all cases excellent agreements
between these approaches. However, the polarizabilities of the larger amyloses and DNA
fragments were only accessible by the newly developed EN2 + MINRES algorithm be-
cause of its greatly reduced RAM demand. In this respect, it is important to note that
the largest amylose system contains more than 1,300 atoms, 28,275 basis functions and
112,056 auxiliary functions. Although the main aim of these polarizability calculations
was to validate EN2 + MINRES algorithm and to explore its potentiality for large scale
polarizability calculations, the obtained results are also of scientific interest. Whereas
the studied fullerenes show a strong continuous increase of the polarizability per atom
with system size, the amyloses show only a moderate increase. Moreover, it seems that
amylose polarizability per atom reaches already a saturation for the largest studied sys-
tem with 64 glucose units. On the other hand, the polarizability per atom of the DNA
fragments decreases with system size and, therefore, shows just the opposite trend as for
the fullerenes and amyloses.
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• NSSCCs between selected atoms of three amyloses were calculated with PBE/DZVP/
GEN-A2 level of theory using TED and MINRES density fitting approaches. The differ-
ences between both approaches is less than 1 Hz for all compared NSSCC contributions.
These differences are well below the intrinsic accuracy of GGA functionals for spin-spin
coupling constants which is around 3 to 5 Hz.

• Finally, it is important to remark, that the sizes of the largest systems studied in this thesis
by ab initio methodologies, namely the C960 fullerene, the oligothiophene containing 100
thiophene units, the amylose with 64 glucose units and the DNA fragment with 16 base
pairs, are all at the nanometric length scale with dimensions in the range of 3, 35, 20 and
5 nm, respectively.

6.2 Perspectives

Based on the achievements presented in this thesis the following new research topics can be
explored:

• In this work we showed how the TED of the Coulomb matrix can be substituted through-
out the deMon2k program, i.e. in the SCF energy calculation, the structure optimization
and finally in perturbative response calculations for polarizabilities, hyperpolarizabili-
ties and nuclear spin-spin coupling constants. With this development the linear alge-
bra bottleneck associated to the density fitting is eliminated. It is important to note that
this bottleneck was twofold, namely in terms of computational as well as random access
memory (RAM) demand. Both problems were overcome with the here presented adapta-
tion and implementation of the Krylov subspace method MINRES. As a result, only the
Kohn-Sham or Fock matrix transformations and diagonalizations in Roothaan-Hall type
SCF approaches remain as limiting steps for massively parallel large scale first-principles
ADFT calculations. In large scale (more than 1000 atoms) parallel deMon2k calculations
these linear algebra steps account for more than 50% of the CPU time and introduce a
dominant cubic scaling. Again, they are also critical in terms of RAM allocation. How-
ever, according to Stewart[172], the Kohn-Sham matrix diagonalization is not a prerequisite
for obtaining a self-consistent density matrix through a SCF procedure. Instead, a self-
consistent density matrix, i.e. SCF convergence, can also be obtained by the annihilation
of all MO Kohn-Sham matrix elements that connect occupied and virtual molecular or-
bitals. This method is called pseudodiagonalization (PD) and is applicable, at least in
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principle, in the framework of localized MOs. Thus, the PD algorithm seems promis-
ing to tackle the twofold bottleneck of Roothaan-Hall type SCF approaches. Preliminary
work in our laboratories has shown that ADFT SCF convergence can be reached with a
modified PD algorithm and that the orbital localization is kept during the PD ADFT SCF
procedure. Further work in this direction is currently underway in our laboratories.

• The here developed MINRES density fitting approach can be further enhanced if a ge-
ometry inspection is performed. Thus, the preconditioner could be built on top of this
information will be optimal for each case of study. Likewise, it could be also possible
to build a hybrid preconditioner as a mixture between an atomic and a molecular one.
Hence, the preconditioner will contain more information about the molecular structure
and the MINRES algorithm will converge in fewer iterations. This will be of particular
importance for response calculations with MINRES density fitting that still suffer from
slower MINRES convergence.

• Last but not least, the newly developed MINRES density fitting approach is currently
implemented by several research groups into special property branches of deMon2k in-
cluding analytic second ADFT energy derivatives and time-dependent ADFT, to name a
few.
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Schemes A1, A2 and A3 show the MINRES iterative algorithm alongside its dependencies as
implemented in deMon2k.

Scheme A.1: Algorithm MINRES for solving Gx = J. It estimates � = ||r(k)||,  = ||Gr(k)||, � =
||x(k)||, A = ||G|| and  = cond(G).

MINRES ( G, J, maxit ) �! x, �,  , �, ||G||, 

�1 = ||J||, v
(0)

= 0, �1v(1)
= J, �0 = ⌧0 = �1, �0 = 0,  = 1

�(1)1 = �min = 0, c0 = �1, s0 = 0, d
(0)

= d
(�1)

= x
(0)

= 0, k = 1

while no stopping condition is true

LanczosStep ( G, v(k), v(k�1), �k )! ↵k, �k+1, v(k+1)

�(2)k = ck�1�
(1)
k + sk�1↵k, �(1)k = sk�1�

(1)
k � ck�1↵k

✏(1)k+1 = sk�1�k+1, �(1)k+1 = �ck�1�k+1

SymOrtho ( �(1)k , �k+1 )! ck, sk, �
(2)
k

⌧k = ck�k�1, �k = sk�k�1,  k�1 = �k�1

q
[�(1)k ]2 + [�(1)k+1]

2

if k = 1 Ak =
p
↵2
1 + �2

2 else Ak = max

n
Ak�1,

q
�2
k + ↵2

k + �2
k+1

o
end

if �(2)k 6= 0,

d
(k)

=

⇣
v
(k) � �(2)k d

(k�1) � ✏(1)k d
(k�2)

⌘
/�(2)k , x

(k)
= x

(k�1)
+ ⌧kd(k), �k = ||x(k)||

�min = min

n
�min, �(2)k

o
,  = Ak/�min

end

k  k + 1

end

x = x
(k), � = �k,  = �k

q
[�(1)k+1]

2 + [�(1)k+2]
2, � = �k, A = Ak

end

Scheme A.2: Algorithm LanczosStep to generate a new Lanczos vector.

LanczosStep ( G, v(k), v(k�1), �k )! ↵k, �k+1, v(k+1)

p
(k)

= Gv
(k), ↵k = [v

(k)
]
T
p
(k), p

(k)  p
(k) � ↵kv

(k)

v
(k+1)

= p
(k) � �kv(k�1), �k+1 = ||v(k+1)||

if �k+1 6= 0, v
(k+1)  v

(k+1)/�k+1 end
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Scheme A.3: Algorithm SymOrtho performing a Givens rotation.

SymOrtho ( a, b )! c, s, r

if b = 0

s = 0, r = |a|, if a = 0, c = 1 else c = sign(a) end

elseif a = 0

c = 0, s = sign(b), r = |b|

elseif |b| � |a|

⌧ = a/b, s = sign(b)/
p
1 + ⌧ 2, c = s⌧, r = b/s

elseif |a| > |b|

⌧ = b/a, c = sign(a)/
p
1 + ⌧ 2, s = c⌧, r = a/c

end
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Lanczos algorithm

As an example for the Lanczos iteration algorithm take the 3⇥3 symmetric matrix A as follows

A =

0

B@
1 0 1

0 1 1

1 1 0

1

CA . (B.1)

We now use the Lanczos algorithm to construct the orthogonal basis that transforms A into
tridiagonal form. To this end, we initialize the Lanczos iterations for k = 0 with

v
(0)

= 0 and �0 = 1. (B.2)

For k = 1 we set

v
(1)

=

0

B@
1

0

0

1

CA and �1 = 1, (B.3)

which yields for ↵1 in the first Lanczos step (k = 1)

↵1 = v
(1)T

Av
(1)

= (1, 0, 0)

0

B@
1 0 1

0 1 1

1 1 0

1

CA

0

B@
1

0

0

1

CA = (1, 0, 0)

0

B@
1

0

1

1

CA = 1. (B.4)

For the second orthogonal vector follows

v
(2)

= Av
(1) � ↵1v

(1) � �1v(0)

=

0

B@
1 0 1

0 1 1

1 1 0

1

CA

0

B@
1

0

0

1

CA� 1

0

B@
1

0

0

1

CA =

0

B@
1

0

1

1

CA�

0

B@
1

0

0

1

CA =

0

B@
0

0

1

1

CA. (B.5)

The corresponding �2 is calculated as the norm of v(2) and, therefore, its value is 1. With this
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calculation the first Lanczos step is finished. In the second Lanczos step (k = 2), we first
calculate ↵2 as

↵2 = v
(2)T

Av
(2)

= (0, 0, 1)

0

B@
1 0 1

0 1 1

1 1 0

1

CA

0

B@
0

0

1

1

CA = (0, 0, 1)

0

B@
1

1

0

1

CA = 0. (B.6)

With this ↵2 value, the third orthogonal vector is calculated as

v
(3)

= Av
(2) � ↵2v

(2) � �1v(1)

=

0

B@
1 0 1

0 1 1

1 1 0

1

CA

0
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0

0

1

1

CA� 0� 1

0

B@
1
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1

CA =
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1

1

0

1

CA�

0

B@
1

0

0

1

CA =

0

B@
0

1

0

1

CA. (B.7)

Because the norm of v(3) is 1, �3 is 1, too. This concludes the second Lanczos step. In the third
Lanczos step (k = 3), we first calculate ↵3 as

↵3 = v
(3)T

Av
(3)

= (0, 1, 0)

0

B@
1 0 1

0 1 1

1 1 0

1

CA

0

B@
0

1

0

1

CA = (0, 1, 0)

0

B@
0

1

1

1

CA = 1. (B.8)

With this ↵3 the new orthogonal vector is the null vector with a corresponding vanishing �.
Thus, the Lanczos iterations are converged. Collecting the orthogonal v vectors in the V matrix
and the obtained ↵ and � values in the T matrix yields

V =

0

B@
1 0 0

0 0 1

0 1 0

1

CA and T =

0

B@
1 1 0

1 0 1

0 1 1

1

CA . (B.9)

Note that the tridiagonal matrix T has the correct form. The obtained matrices can be used to
calculate the A matrix by

A = VTV
T , (B.10)
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which confirms the results from the Lanczos iterations

A =

0

B@
1 0 0

0 0 1

0 1 0

1

CA

0

B@
1 1 0

1 0 1

0 1 1

1

CA

0

B@
1 0 0

0 0 1

0 1 0

1

CA =

0

B@
1 0 1

0 1 1

1 1 0

1

CA . (B.11)
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QR decomposition

The QR decomposition (also called QR factorization) of a real squared matrix A is given by

A = QR (C.1)

where Q is an orthogonal matrix (QT
Q = E) and R is an upper triangular matrix.

To calculate the QR factorization of A we first construct an orthonormal basis by Gram-
Schmidt[228] orthogonalization. To this end, we express A in terms of its column vectors as

A = (a1, a2, a3, · · · , an) (C.2)

With these column vectors the Gram-Schmidt orthogonalization is given by

u1 = a1, q1 =
u1

ku1k
u2 = a2 �

a2 · u1

ku1k
u1, q2 =

u2

ku2k
u3 = a3 �

a3 · u1

ku1k
u1 �

a3 · u2

ku2k
u2, q3 =

u3

ku3k
...

un = an �
n�1X

i=1

an · ui

kuik
ui, qn =

un

kunk
, (C.3)

The resulting orthonormal q vectors build the Q matrix as

Q = (q1,q2,q3, · · · ,qn). (C.4)

To calculate the R matrix from Eq. (C.1) we explore the orthonormality of Q, i.e. QT
Q = E.

Thus, it follows

R = Q
T
A =

0

BBBB@

q
T
1

q
T
2
...
q
T
n

1

CCCCA

⇣
a1 a2 · · · an

⌘
=

0

BBBBB@

q
T
1 · a1 q

T
1 · a2 . . . q

T
1 · an

0 q
T
2 · a2 . . . q

T
2 · an

0 0
. . . ...

...
...

... q
T
n · an

1

CCCCCA
. (C.5)
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Here we have used the fact that qT
i · aj = 0 8 i > j.

As example, consider the following matrix

A =

0

B@
1 1 0

1 0 1

0 1 1

1

CA . (C.6)

Performing the Gram-Schmidt procedure, we obtain

u1 = a1 =

0

B@
1

1

0

1

CA

q1 =
u1

||u1||
=

0

B@

1p
2
1p
2

0

1

CA ,

u2 = a2 � (a2 · q1)q1 =

0

B@

1
2

�1
2

1

1

CA ,

q2 =
u2

||u2||
=

0

BB@

1p
6

� 1p
6

2p
6

1

CCA ,

u3 = a3 � (a3 · q1)q1 � (a3 · q2)q2,

q3 =
u3

||u3||
=

0

BB@

� 1p
3

1p
3
1p
3

1

CCA . (C.7)

Thus the Q and R matrices are obtained as

Q = [q1|q2|q3] =

0

BB@

1p
2

1p
6
� 1p

3
1p
2
� 1p

6
1p
3

0
2p
6

1p
3

1

CCA , (C.8)
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R =

0

B@
q
T
1 · a1 q

T
1 · a2 q

T
1 · a3

0 q
T
2 · a2 q

T
2 · a3

0 0 q
T
3 · a3

1

CA =

0

BB@

2p
2

1p
2

1p
2

0
3p
6

1p
6

0 0
2p
3

1

CCA . (C.9)
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D
Successive QR decomposition by

Givens rotations
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Instead of performing QR decomposition of a matrix A in one step as described in appendix C,
it can be also performed successively, e.g. by a sequence of Givens rotations. Such an approach
is particularly advantageous if the A matrix itself is stepwise constructed as in MINRES. A
Givens rotation can be used to annihilate a specific matrix (or vector) element in the form

 
c s

�s c

! 
a1

a2

!
=

 
r

0

!
, (D.1)

From the conditions,

ca1 + s · a2 ⌘ r ^ �sa1 + ca2 ⌘ 0, (D.2)

and the normalization condition for c (cosine) and s (sine),

c2 + s2 = 1, (D.3)

follows
r =

q
a21 + a22, c =

a1
r

and s =
a2
r
. (D.4)

As an example, we now apply successive Givens rotation to the matrix

A =

0

BBBB@

1 �1 4

1 4 �2
1 4 2

1 �1 0

1

CCCCA
(D.5)

In order to transform it into a triangular form.

We start by eliminating a41 through a31. Thus, we find

r =
q

a231 + a241 =
p
12 + 12 =

p
2, c =

a31
r

=
1p
2

and s =
a41
r

=
1p
2
. (D.6)
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Thus, the first Givens rotation matrix has the following form

⌦
(1)

=

0

BBBB@

E
0 0

0 0

0 0 c s

0 0 �s c

1

CCCCA
=

0

BBBB@

1 0 0 0

0 1 0 0

0 0 1/
p
2 1/

p
2

0 0 �1/
p
2 1/

p
2

1

CCCCA
. (D.7)

Applying this rotation matrix to the coefficient matrix A we obtain the first rotated matrix, A(1),
given by

A
(1)

= ⌦
(1)
A =

0

BBBB@

1 �1 4

1 4 �2p
2 3/

p
2

p
2

0 �5/
p
2 �

p
2

1

CCCCA
. (D.8)

The next rotation eliminates a(1)31 through a(1)21 . Thus, we find

r =

q
a(1)

2

21 + a(1)
2

31 =
p
1 + 2 =

p
3, c =

a(1)21

r
=

1p
3
, and s =

a(1)31

r
=

p
2p
3
. (D.9)

Hence, the second Givens rotation has the following form

⌦
(2)

=

0

BBBB@

1 0 0 0

0 1/
p
3

p
2/
p
3 0

0 �
p
2/
p
3 1/

p
3 0

0 0 0 1

1

CCCCA
. (D.10)

Again, applying this rotation matrix to the coefficient matrix A
(1) we obtained a second rotated

matrix, A(2) which is given by

A
(2)

= ⌦
(2)
A

(1)
=

0

BBBB@

1 �1 4p
3 7/

p
3 0

0 �5/
p
6
p
6

0 �5/
p
2 �

p
2

1

CCCCA
. (D.11)
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The third rotation will eliminate a21 through a11, Thus, we find

r =

q
a(2)

2

11 + a(2)
2

21 =
p
1 + 3 = 2, c =

a(2)11

r
=

1

2
, and s =

a(2)21

r
=

p
3

2
. (D.12)

This gives us the third rotation matrix in the following form

⌦
(3)

=

0

BBBB@

1/2
p
3/2 0 0

�
p
3/2 1/2 0 0

0 0 1 0

0 0 0 1

1

CCCCA
. (D.13)

Applying ⌦
(3) to A

(2) we obtain A
(3) as follows

A
(3)

= ⌦
(3)
A

(2)
=

0

BBBB@

2 3 2

0 5/
p
3 �2

p
3

0 �5/
p
6
p
6

0 �5/
p
2 �

p
2

1

CCCCA
. (D.14)

Now we need to eliminate the subdiagonal rows from the second column. Eliminating a(3)42

through a(3)32 gives us

r =

q
a(3)

2

32 + a(3)
2

42 =

q
(�5/

p
6)2 + (�5/

p
2)2 = 10/

p
6,

c =
a(3)32

r
= �1

2
, and s =

a(3)42

r
= �
p
3

2
. (D.15)

Therefore, the fourth rotation matrix is given by

⌦
(4)

=

0

BBBB@

1 0 0 0

0 1 0 0

0 0 �1/2 �
p
3/2

0 0
p
3/2 �1/2

1

CCCCA
. (D.16)
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The fourth times rotated matrix, A(4), is obtained as

A
(4)

= ⌦
(4)
A

(3)
=

0

BBBB@

2 3 2

0 5/
p
3 �2

p
3

0 10/
p
6 0

0 0 2
p
2

1

CCCCA
. (D.17)

To eliminate a(4)32 through a(4)22 we find

r =

q
a(4)

2

22 + a(4)
2

32 =

q
(5/
p
3)2 + (10/

p
6)2 = 5,

c =
a(4)22

r
=

1p
3
, and s =

a(4)32

r
=

2p
6
. (D.18)

Therefore, the fifth rotation matrix is given by

⌦
(5)

=

0

BBBB@

1 0 0 0

0 1/
p
3 2/

p
6 0

0 �2/
p
6 1/

p
3 0

0 0 0 1

1

CCCCA
. (D.19)

The A
(5) matrix is obtained as follows

A
(5)

= ⌦
(5)
A

(4)
=

0

BBBB@

2 3 2

0 5 �2
0 0 2

p
2

0 0 2
p
2

1

CCCCA
. (D.20)

Ultimately, in order to eliminate the last element, a(5)43 through a(5)33 we find

r =

q
a(5)

2

33 + a(5)
2

43 =

q
(2
p
2)2 + (2

p
2)2 = 4,

c =
a(5)33

r
=

1p
2
, and s =

a(5)43

r
=

1p
2
. (D.21)
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Thus, the sixth rotation matrix is given by

⌦
(6)

=

0

BBBB@

1 0 0 0

0 1 0 0

0 0 1/
p
2 1/

p
2

0 0 �1/
p
2 1/

p
2

1

CCCCA
. (D.22)

Finally, the A
(6) in triangular form is obtained as

A
(6)

= ⌦
(6)
A

(5)
=

0

BBBB@

2 3 2

0 5 �2
0 0 4

0 0 0

1

CCCCA
⌘ R. (D.23)

The Q matrix of the full decomposition is formed by the transpose of the successively applied
rotations through the following product

Q =
�
⌦

(6)
⌦

(5)
⌦

(4)
⌦

(3)
⌦

(2)
⌦

(1)
�T

, (D.24)

which yields the following explicit form of the orthogonal matrix

Q =

0

BBBB@

1/2 �1/2 1/2 �1/2
1/2 1/2 �1/2 �1/2
1/2 1/2 1/2 1/2

1/2 �1/2 �1/2 1/2

1

CCCCA
. (D.25)
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E
Energy differences and SCF cycles for

benchmark calculations
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Table E.1: Absolute energy differences in a.u. with respect to TED standard approach and number of
TED and MINRES SCF cycles for single point energy calculations of the fullerene bench-
mark set.

System
Absolute energy difference Number of SCF cycles

DIRECT ASYMPTOTIC MIXED TED DIRECT ASYMPTOTIC MIXED

C20 8.78E-05 8.77E-05 8.77E-05 13 13 13 13

C60 1.35E-05 1.34E-05 1.36E-05 11 11 13 11

C180 1.81E-03 1.82E-03 1.81E-03 14 14 14 14

C240 2.67E-03 2.68E-03 2.67E-03 14 14 14 14

C540 6.34E-03 6.34E-03 6.34E-03 13 15 15 15

C720 8.63E-03 8.63E-03 8.64E-03 15 16 16 15

C960 9.67E-03 9.68E-03 9.68E-03 16 15 15 15

Table E.2: Absolute energy differences in a.u. with respect to TED standard approach and number
of TED and MINRES SCF cycles for single point energy calculations of the water cluster
benchmark set.

System
Absolute energy difference Number of SCF cycles

DIRECT ASYMPTOTIC MIXED TED DIRECT ASYMPTOTIC MIXED

(H2O)50 2.87E-03 2.87E-03 2.87E-03 13 13 13 13

(H2O)100 5.15E-03 5.15E-03 5.15E-03 14 15 20 15

(H2O)200 8.94E-03 8.94E-03 8.94E-03 15 35 36 35

(H2O)300 1.27E-02 1.27E-02 1.17E-02 15 38 38 36

(H2O)400 1.58E-02 1.58E-02 1.58E-02 15 39 41 41

(H2O)500 1.91E-02 1.91E-02 1.91E-02 16 43 40 39

Table E.3: Absolute energy differences in a.u. with respect to TED standard approach and number of
TED and MINRES SCF cycles for single point energy calculations of the zeolite benchmark
set.

System
Absolute energy difference Number of SCF cycles

DIRECT ASYMPTOTIC MIXED TED DIRECT ASYMPTOTIC MIXED

MFI-1 4.53E-03 4.50E-03 4.52E-03 13 14 15 14

MFI-2 9.90E-03 9.69E-03 9.61E-03 14 15 15 15

MFI-3 1.77E-02 1.77E-02 1.76E-02 14 17 17 17

MFI-4 2.19E-02 2.19E-02 2.19E-02 16 17 17 17
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Chem. Phys. 131, 124102 (2009).

[37] C. Paige, M. Saunders, SIAM J. Numer. Anal. 12, 617 (1975).

[38] S. Choi, C. Paige, M. Saunders, SIAM J. Sci. Comput. 33, 1810 (2011).

[39] J. Mehra, H. Rechenberg, The Historical Development of Quantum Theory, Vol. 5: Erwin
Schrödinger and the Rise of Wave Mechanics. Part 2: The creation of Wave Mechanics,
Early Response and Applications 1925-1926, Spinger-Verlag (1987).

[40] E. Schrödinger, Phys. Rev. 28, 1049 (1926).

[41] W. Koch, M. C. Holthausen, A Chemist’s Guide to Density Functional Theory, John
Wiley & Sons (2001).

[42] M. Born, R. Oppenheimer, Ann. Phys. 389, 457 (1927).

[43] P. W. Atkins, R. S. Friedman, Molecular Quantum Mechanics, Oxford University Press
(2011).

[44] D. J. Griffiths, Introduction to Quantum Mechanics, Pearson (2005).

[45] M. Born, V. Fock, Z. Phys. A 51, 165 (1928).

[46] N. C. Handy, A. M. Lee, Chem. Phys. Lett. 252, 425 (1996).

[47] W. Kolos, L. Wolniewicz, J. Chem. Phys. 41, 3663 (1964).

[48] G. Geudtner, P. Calaminici, J. Carmona-Espı́ndola, J. M. del Campo, V. D. Domı́nguez-
Soria, R. F. Moreno, G. U. Gamboa, A. Goursot, A. M. Köster, J. U. Reveles, T. Mineva,
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ory Comput. 11, 1493 (2015).

[164] J. N. Pedroza-Montero, F. A. Delesma-Dı́az, R. I. Delgado-Venegas, P. Calaminici, A. M.
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