

Centro de Investigación y de Estudios Avanzados del

Instituto Politécnico Nacional

DEPARTAMENTO DE FÍSICA

Simulated Quantum Annealing y SVD para el

unfolding de decaimientos 𝜏 → 𝜋𝜋0𝜈

Tesis que presenta

Carlos Pegueros Denis

para obtener el Grado de

Maestro en Ciencias

en la Especialidad de

Física

 Director de tesis:

Dr. Eduard De La Cruz Burelo

Ciudad de México

Noviembre, 2021

CENTRO DE INVESTIGACION Y DE ESTUDIOS AVANZADOS

DEL INSTITUTO POLITECNICO NACIONAL

PHYSICS DEPARTMENT

“Simulated Quantum Annealing and SVD as

unfolding techniques for 𝜏 → 𝜋𝜋0𝜈 decays”

Thesis submitted by

Carlos Pegueros Denis

In order to obtain the

Master of Science

degree, speciality in

Physics

 Supervisor: Dr. Eduard De la Cruz Burelo

Mexico City November, 2021.

Este trabajo está dedicado a todos mis amigos y familiares que me

acompañaron y apoyaron en esta etapa tan importante de mi vida; a

Maricarmen por toda su paciencia, su amor e invaluables lecciones; a mi

asesor, mis sinodales y profesores que me compartieron de su tiempo y su

experiencia y a todas las personas con las que coincidí y de las que

procuré siempre llevarme algún aprendizaje.

i

Contents

Contents ii

1 Introduction 1
1.1 A problem in High Energy Physics . 1

1.2 Quantum Computers. “Nature isn’t classical, dammit” 3

1.3 The Present Work . 3

Formulating the Unfolding Problem 5

2 Unfolding as a Maths Problem 6
2.1 Probability in Particle Physics . 6

Probability 101 . 6

What to “expect” from probability? . 7

Experiments are discrete . 8

2.2 Mathematical foundation of the unfolding problem 9

3 The Inverse Problem 13
3.1 A simple example . 13

3.2 Continuous Inverse Problem . 14

3.3 Discrete Inverse Problem . 15

3.4 General Solution to the Inverse Problem 15

4 Solving via SVD 17
4.1 Singular Value Decomposition . 17

4.2 As a Solution to the Least Squares Problem 17

4.3 As a Solution to the Unfolding Problem . 18

Important Remarks . 20

5 Solving via Quantum Annealing 22
5.1 Quantum Annealing . 22

5.2 As a Solution to the Least Squares Problem 24

5.3 As a Solution to the Unfolding Problem . 25

Important Remarks . 26

ii

Computational Experiment 27

6 The �→ ��0� Decay 28
6.1 About . 28

6.2 Data Selection . 29

First Stage: With Cuts . 30

Second Stage: With Boosted Decision Trees 36

7 Unfolding 42
7.1 Computing the Response Matrix . 42

7.2 On the Weak Set . 45

7.3 On the Strict Set . 47

8 Conclusions 50
8.1 Future Work . 50

8.2 Discussion and Final Remarks . 51

Appendix 53

A Simulated Quantum Annealing 54

B Steering File for the �→ ��0� reconstruction 57

C Decision Trees and Ensembles 67
C.1 Decision Trees . 67

C.2 Boosting . 68

Gradient Boosted Decision Trees . 69

Bibliography 71

iii

List of Figures

1.2 The unfolding procedure. 2

1.1 Histograms of a physical observable as predicted by the theory (True) and as

seen by the detector (Measured). Barswith borders are plotted to showexplicitly

that these graphs are histograms, but only the outline will be presented for the

rest of this work for the sake of a cleaner presentation. 2

3.1 The response matrix of the simple example. 13

3.2 a) The “Measured” histogram to unfold n and the “True” result - to find. b)

The result of '−1n . 13

4.1 SVD of a matrix X . 17

5.1 The annealing procedure in terms of magnetic fields. 24

5.2 An illustration of the quantum annealing process. 24

5.3 Examples to show the encoding schema of the quantum annealing. 26

6.1 Some physics processes that are possible at

√
B = 10.58 [GeV] with their

cross-sections. For a more comprehensive list, see [5], table 18. 28

6.2 Quasi Feynman Diagram of the �→ ��>� decay. 29

6.3 Illustration of the thrust axis of an electron-positron collision. 31

6.4 Illustration of how the thrust angle and its cosine is measured. 34

6.5 Histograms of the reconstructed invariant mass (measured) and the true

invariant mass (matchedMC) of the ��0
. 37

6.6 Histograms of the reconstructed invariant mass (measured) and the true

invariant mass (matchedMC). 37

6.7 Feature importances of the GradientBoostingClassifier. 39

6.8 Left: Decision Function in terms of the probability with the Punzi threshold

where ((·) stands for signal and �(·) stands for background. Right: Output of

the BDT in terms of the log(odds) with the Punzi critical value. 40

6.9 Top: reconstructed invariant mass for the output of the weak classifier (left)

and the strict classifier (right). Bottom: Monte Carlo invariant mass for the

output of the weak classifier (left) and the strict classifier (right). 41

7.1 Response matrix of the �→ ��0� decay in terms of amount of events migrated. 43

7.2 Illustration where 1000 events were generated with an invariant mass of 0.77

[GeV] and a) 100% of the events are measured so the efficiency is 100%, and b)

only 83% are measured, so the efficiency is 83%. 43

7.3 Histograms (and its pull plot) used tobuild the responsematrix of the �→ ��0�
decay. 44

7.4 Left: result of the SQA unfolding on the weak set. Right: error matrix. 45

7.5 Absolute values of 38 when performing SVD on the weak set. 46

7.6 Left: result of the SVD unfolding on the weak set. Right: error matrix. 46

7.7 Weak set split into signal and background. 46

7.8 Unfolding signal and background splits of the weak set. 46

7.9 Up: Absolute values of 38 when performing SVD on the strict set. Down: a

zoomed-in version. 47

7.10 Left: result of the SVD unfolding on the strict set. Right: unfolded error matrix. 47

iv

7.11 Results of the SQAunfoldingperformedon the strict setwith different parameters. 48

7.12 Correlation matrices of the SQA results on the strict set. 49

A.1 Illustration of the Simulated Quantum Annealing with n=9 spins in a grid and

P replicas. 55

C.1 An classification problem with a Decision Tree with a max depth of 1. 67

C.2 An classification problem with a Decision Tree with a max depth of 2. 68

C.3 Prediction of the first Decision Tree in the GBDT. 69

C.4 Illustration of the Gradient Boosted Decision Trees algorithm. 70

List of Tables

6.1 Decay modes of the �− lepton. Decay modes of the �+ are the same after

applying charge conjugation. 29

6.2 Some possible decays of the �−. 30

7.1 Quantitative results of the SQA strict unfolding. 48

v

Abstract

Even though there has been an exponential increase in the development of computing resources in the

last decades, the interest of solving even more complex problems has driven human kind to pursue the

development of the so called "quantum computers". This new technology is of interest particularly to High

Energy Physics because it is an area full of highly-demanding computing problems that could benefit from

the quantum speed-up and one of them is the unfolding problem, which consists of removing the distortions

induced to measurements by imperfect detectors.

In this work, a quantum algorithm called Quantum Annealing is explored as unfolding technique for the

�→ ��0� decays via Monte Carlo simulations and the results are compared with a classic SVD algorithm.

The quantity to unfold is the ��0
invariant mass after going through a simulated version of the Belle II

detector. Finally, discussion around the results is presented to explore the viability and benefits to expect

from a real quantum computer and directions for future work are provided.

Resumen

Apesar de que en las últimas décadas se ha visto un crecimiento exponencial en la capacidad de procesamiento

de cómputo, el interés por resolver problemas cada vez más complicados ha llevado a la humanidad a

perseguir el desarrollo de las llamadas "computadoras cuánticas". Particularmente, el área de Física de

Altas Energías tiene problemas computacionalmente demandantes que se podrían ver beneficiados por esta

tecnología y uno de ellos es el unfolding, que consiste en limpiar las mediciones de las distorsiones inducidas

por el detector.

En este trabajo, se explora el álgoritmo cuántico Quantum Annealing cómo técnica de unfolding en los

decaimientos � → ��0� a través de una simulación Monte Carlo y se comparan los resultados con un

algoritmo clásico basado en SVD. La cantidad de interés es la masa invariante del par ��0
y el aparato de

medición simulado es el detector Belle II. Finalmente, a partir de los resultados se presenta una discusión

sobre la viabilidad y los beneficios que se podrían obtener con una computadora cuántica funcional y se

indican futuros caminos por explorar.

vi

2: The Standard Model of Particle Physics

[1] [2] is a theory that describes the exis-

tence of all the known elementary parti-

cles and their interactions with three of

the four fundamental forces.

3: A histogram is a graphical display of

frequency distributions.

Introduction 1
1.1 A problem in High Energy
Physics 1
1.2 Quantum Computers. “Nature
isn’t classical, dammit” 3
1.3 The Present Work 3

1.1 A problem in High Energy Physics

Since the discovery of the electron back in 1897 by J. J. Thomson’s experi-

ment on cathode rays
1

1: By observing that cathode rays emit-

ted by a hot filament could be deflected

by a magnet, Thomson deduced that they

should carry electric charge and by ob-

serving the direction of the curvature, it

seemed that the rays were, in fact, streams

of particles.

, our theoretical knowledge of the building blocks

of the universe (what we call now “Elementary Particles”) has vastly
increased with the development of Quantum Mechanics and Special

Relativity. Moreover, with the massive amount of new technologies that

were engineered in the 20th century, we have been able to perform more

and more sophisticated experiments, which have allowed us to ask more

complex questions to probe the existence of new physics or to challenge

the model that best describes the interactions between elementary parti-

cles, which is arguably one of the most accurate theories in the history of

humankind: the Standard Model of Particle Physics
2
.

This field of physics is called “High Energy Physics” (or just “Particle
Physics”) because experiments are performed by filling big sophisticated

machines (called “particle accelerators”) with a large number of particles

and splitting them into two beams which are accelerated to the highest

possible energy in two opposite directions. These beams are then brought

into collision and their interaction produces particles that then transform

into multiple other particles in a spontaneous process that is called a

“decay”. Whatever comes out, is recorded by all themeasurement devices

distributed in the accelerator and stored for further analysis in the hopes

of finding new particles or collisions with interesting properties. From all

the possible collisions, or “events”, that may be produced, usually only a

few of themmeet the requirements defined bywhat is called “interesting”

and these events are given the name of “signal”, while the rest of the

events are called “background”.

Measurements of physical observables performed by these experiments

are often distorted by various effects related to the technological limi-

tations of the measurement devices, such as a finite resolution, limited

acceptance, limited efficiency, etc. As these observables are, for practical

reasons, then reconstructed and analyzed as histograms
3
of the observed

event counts called “the reconstructed signal”, the differences between

the ideal histogram described by the theory and the measured histogram

gathered from the experiment can be described by the following three

effects and are illustrated in figure 1.1:

Detector effects As some event properties such as energies and scat-

tering angles are measured with finite precision, events may be

reconstructed in the wrong bin (that is, with the wrong value) or

may get lost when building the histogram for analysis.

Statistical fluctuations As the measurements are given by counting

the amount of times we observe a given value when repeating

an experiment several times, these quantities are in fact random

1

1 Introduction 2

4: This is partly true as it is possible to

“fold” the true signal to get an estimate

of how the prediction would look like if

measured in a real-life scenario, which is

usually more convenient.

5: For example, a typical analysis of

generic �0�̄0
events would require about

2.55 TB of data that needs to be shared

among several collaborators physically lo-

cated in different parts of the world.

Figure 1.2: The unfolding procedure.

variables given by a probability distribution which unavoidably

include variations.

Background noise Similar events to the signal may be produced in the

background by other processes. Some of these events may be too

similar to be distinguished and may end up being part of the

reconstructed histogram.

Figure 1.1: Histograms of a physical ob-

servable as predicted by the theory (True)

and as seen by the detector (Measured).

Bars with borders are plotted to show ex-

plicitly that these graphs are histograms,

but only the outline will be presented for

the rest of thiswork for the sakeof a cleaner

presentation.

The process of attempting to remove these effects from the reconstructed

signal in order to recover the true signal (that is, the signal as predicted by

the theory) is known as “unfolding”. It is illustrated in figure 1.2 and is

of interest because of at least four reasons. Firstly, the beauty of scientific

research relies (partly) on its nature of unceasingly looking for the truth,

whichmakes a distorted histogram an unpleasant and unsatisfying result.

Secondly, as the undesired effects depend on the measurement device

(that is, the experiment that took the measurement), it is necessary to

find the true signal if the measurements taken by different experiments

want to be compared. Thirdly, unfolded histograms are required if the

result is meant to be compared to the predictions made by one or several

theoretical models
4
. Finally, if one particular histogram wants to be

compared with the prediction of a new theory that was released several

years after the measurement was taken, then both the whole data set

containing the measurement and the information of the resolution effects

of the detector need to be preserved,which is virtually impossible because

of the tremendous amount of storage devices it would require
5
.

The unfolding problem is a challenging task to be solved by hand; luckily,

the exponential growth of computational power in the last century has

allowed us to develop many techniques based on software algorithms to

help us tackle this problem. In fact, High Energy Physics is an area full

of data-intensive computing because of the large amount of data that

needs to be processed and even though we have now developed several

techniques such as parallel processing or networks of supercomputers

to make these tasks more manageable, it is a promising area to look

for applications where quantum computers can help to accelerate the

calculations to have a huge impact on the way research is performed.

1 Introduction 3

6: “Nature isn’t classical, dammit, and if

you want to make a simulation of nature,

you’d better make it quantum mechanical,

and by golly it’s a wonderful problem,

because it doesn’t look so easy.” – Richard

Feynman

7: On a more technical language, a qubit

is any normalized state of a two-level

quantum-mechanical system.

8: Actually, there are already some imple-

mentations that can solve small problems

made by private companies. See D-Wave,

for example.

9: More on this on chapter 6.

1.2 Quantum Computers. “Nature isn’t
classical, dammit”

Since Richard Feynman’s 1982 seminal paper [3] proposing the idea of

using computers governed by the rules of quantummechanics to perform

simulations of the physical world
6
, there has been a growing interest

in developing these kind of devices and it is now a very active area of

research around the world.

This new type of computers, which we now call “quantum computers”,
rely on two properties of quantum mechanics to speed up calculations

and open a new way of designing algorithms: entanglement and su-

perposition. In its most general form, a quantum computer must be

able to prepare an arbitrary quantum state consisting of one or more

qubits which then is transformed so that it evolves to output the solution

of a problem when the quantum system is observed. A qubit can be

understood as the quantum version of a bit
7
which, as opposite to its

classical counterpart, can be in the states of 0 and 1 at the same time and

“collapses” to one of them with a given probability when measured.

Despite the immense effort to bring Feynman’s idea to life, scientists

have encountered many challenges in its physical realization due to the

delicate nature intrinsic in manipulating quantum systems, leaving us

still years (probably decades or even more) away from having functional

quantum computers of general purpose. Nevertheless, there is a select

group of problems that can be solvedwith a very specific kind of quantum

computers called “quantum annealers” which are easier to build and,

ideally, only a few years ahead
8
, making them a promising technology

for the near-term future of the quantum era.

The excitement of the footprint that this coming technology could leave

in the way we understand the universe, has led researchers to start

thinking of several applications that could motivate the development

of quantum computers and High Energy Physics being an area where

demanding tasks in terms of processing power form the day-to-day of

experimentalists, it represents an important playgroundwhere new ideas

can be put to test, as is the case of this work.

1.3 The Present Work

In this work, a proposal made by Cormier, Di Sipio and Wittek of using a

quantumannealer to solve the unfolding problem [4] [4]: Cormier et al. (2019), ‘Unfolding

measurement distributions via quantum

annealing’

is explored in amore

realistic scenario given by computational simulations of the �→ ��0�
decay folded with the effects of the Belle II detector [5] [6] and its results

are compared with a more traditional approach that does not require

quantum computers. The observable to unfold is the ��0
invariant mass

and this physics process was chosen because it is a pedagogical exercise

used traditionally by the Belle II Collaboration as an introduction to the

tools used for data analysis due to its rich content in physics such as

resonances, �0
reconstruction, discrimination between charged pions

and leptons, etc
9
, but, in the end, this choice is arbitrary as it is not the

main focus of this work.

1 Introduction 4

On chapter 1, a description of the unfolding problem and a brief overview

of quantum computing and quantum annealing were presented. Then,

the first half of this work serves as an introduction of the concepts needed

to understand the process and the results of the �→ ��0� computational

experiment.

Chapter 2 is aimed at giving a brief introduction on probability concepts

required to lay the mathematical foundations of the unfolding problem

as a more general kind of problem called the inverse problem. On

chapter 3, the inverse problem is explored in order to depict the intuition

behind the difficulties of its resolution, which are then required to assess

possible solutions. Chapters 4 and 5 introduce the two main approaches

explored in this work to solve the unfolding problem: Singular Value

Decomposition (SVD) and Quantum Annealing (QA), respectively. A

brief overview on their foundations is given along with some important

remarks to be considered on their application.

The second half of this work then focuses on how the computational

experiment was carried out.

Chapter 6 gives an introduction on the physics of the decay chosen for

the experiment, explains the nature of the data used in the simulations

and explains the rationale behind how the “signal” and “background”

were selected and reconstructed from data. The analysis framework used

for the reconstruction is called basf2 [7] and is developed by the Belle II

Collaboration under the GNU Lesser General Public License at [8].

On chapter 7, it is explained how the distortion effects induced by the

simulated Belle II detector were characterized to then show the unfolding

results for SVD and Quantum Annealing on a noisy data set and on a

cleaner data set.

Chapter 8 presents the conclusions of this work along with discussion

around the results and the possible future work.

The code to replicate the unfolding and the rest of this work is available

under the MIT License at [9].

Formulating the Unfolding Problem

5

1: This is called “the frequentist interpre-

tation.”

2: For instance, the energy of an electron

resulting from the beta decay of a radioac-

tive nuclei.

Unfolding as a Maths Problem 2
2.1 Probability in Particle Physics 6

Probability 101 6
What to “expect” from probabil-

ity? 7
Experiments are discrete . . . 8

2.2 Mathematical foundation of the
unfolding problem 9

This section is heavily based on Chapter 1 and Chapter 11 of [10] by G.

Cowan and starts by doing a brief recap of some probability concepts

that are required to understand the unfolding problem, which is then

formulated in the familiar terms of an equation and its unknowns.

2.1 Probability in Particle Physics

Probability 101

Carrying out experiments is vital for the development of any scientific

discipline, but most of the times the outcomes cannot be predicted with

complete certainty and are subject to unpredictable variations upon

repetition of the experiment under the very same conditions.

Systems with such characteristic are said to be random and experiments

in Particle Physics are not an exception. In fact, their randomness comes

not only from the imperfections of the measurement devices (which is

a feature existing in all kinds of experiments), but also to the apparent

quantumness inherent in Nature.

The degree of randomness is quantified with the concept of probability
and even though a formal description can be found on any standard book,

for the purposes of this work it can be interpreted as a limiting relative

frequency
1
. That is, given a set (called sample space containing all the

possible outcomes of an experiment, the probability %(�) of observing
the outcome � (where � is a subset of () is given by the fraction of

times that � is observed in the limit that the measurement is repeated an

infinite amount of times:

%(�) = lim

=→∞
number of occurrences of outcome � in = measurements

=
(2.1)

For any two mutually exclusive subsets � and �, the probability of

observing � or � is given by the probability assigned to its union and is

the sum of the two corresponding probabilities:

%(� ∪ �) = %(�) + %(�) (2.2)

A variable, say G, that takes a specific value of the set (is called a

random variable. An example of such variables would be the outcome

of an experiment in Particle Physics
2
and, considering G a continuous

variable, the probability of observing a value within an infinitesimal

6

2 Unfolding as a Maths Problem 7

3: Equation (2.5) is called “Bayes’ Theo-

rem”.

4: As the energy is a random variable,

there is no single value but instead a set

of possible outcomes, so that question be-

comes non-sense.

interval [G, G + 3G] is given by the probability density function (p.d.f)

5 (G):

probability to observe G in the interval [G + 3G] = 5 (G)3G (2.3)

And it is normalized such that the total probability (that is, the probability

of observing any outcome) is one:∫
(

5 (G)3G = 1 (2.4)

For two subsets �, � of (, one can define the conditional probability
%(�|�) as the probability of observing the subset � given that � has

already been observed as
3
:

%(�|�) = %(� ∩ �)
%(�) =

%(�|�)%(�)
%(�) (2.5)

And another important definition is the law of total probabilitywhich

breaks up the probability of � to occur as the sum of probabilities of �

occurring given that each possible condition for � to occur also occurs:

%(�) =
∑
8

%(�|�8)%(�8) (2.6)

What to “expect” from probability?

As the randomness that forces us to adopt a statistical description when

describing results of experiments also prevents us from asking questions

like “What is the energy of an electron from a beta decay?”
4
, we need to

adopt a sensible approach asking questions like “What is the most likely

energy to be observed from an electron in a beta decay?”. Intuitively, this

quantity can be understood as the arithmetic average and is defined as

the expectation value of G:

�[G] =
∫
(

G 5 (G)3G (2.7)

And another question of interest would be “Howwidely are the observed

energies spread about the mean value?” which, mathematically speaking,

can be defined as the variance �2
:

�2 = �[(G − �[G])2] (2.8)

When generalized to two or more different random variables {G, H}, the
variance is now defined as the covariance:

2>E[G, H] = �[(G − �[G])(H − �[H])]
= �[GH] − �[G]�[H]

(2.9)

2 Unfolding as a Maths Problem 8

Which, when generalized for a set of = different random variables

x = {G1 , G2 , ...}, can be defined as a matrix 2>E[x] which is called

covariance matrix or error matrix:

2>E[x] = �[(x − �[x])(x − �[x]))] (2.10)

It is worth noting that:

1. Every element of the covariance matrix is the covariance between

just two variables 2>E[G8 , G 9] and by its definition in equation (2.9),

the covariance matrix is diagonal if G8 and G 9 are independent as

�[G8G 9] = �[G8]�[G 9] (see equation (2.7)).

2. The covariance can be interpreted as a measure of how two random

variables vary together in average (i.e. how much one variable

“goes up/down” when the other “goes up/down”).

3. The covariancematrix contains all the information about the spread

of the variables, which means that:

I When they are all independent, the square root of the elements

in the main diagonal can be interpreted as a confidence

interval G8 ± �8 of where we expect to find most of the values

when performing an experiment.

I When they are not independent, the covariance matrix still

contains all the information about the spread of the expected

outcome, but it cannot be interpreted as a confidence interval

in a single parameter.

A useful property of the covariance matrix that will be used in the follow-

ing chapter is that of a variable after undergoing a linear transformation

�:

y = �x =⇒ 2>E(y) = �2>E(x)�) (2.11)

Experiments are discrete

Probability in the frequentist interpretation as described in this section is

particularly useful in Particle Physics because physical observables are

measured by electronic devices that translate changes in its components

into digital signals to be processed by computers, which then count the

amount of times a value is observed. As digital signals are discrete, the

set (of possible outcomes of the experiment is discrete as well, so G

would no longer be a continuous variable.

The way of relating this set of observations of the new discrete set

{G1 , G2 , ..., G=} to the continuous description we have already presented,

is to display them graphically as a histogram. A histogram is a graph

where the G axis is divided into < subintervals called bins, each of

a defined width �G8 . The number of times =8 that a value of G in the

subinterval/bin 8 is observed, is given by the vertical axis of the histogram.

The total area of the histogram represents the amount of times a given

experiment was repeated and, when normalized to one and considering

the limit of zero bin width and an infinite amount of observations (that

2 Unfolding as a Maths Problem 9

5: Note that " and # do not have to be

necessarily equal.

is, the continuous limit of the discrete G), the histogram of G corresponds

to the p.d.f. 5 (G).

Transforming the description of this section for continuous variables

to discrete variables is straightforward by just replacing integrals with

sums.

2.2 Mathematical foundation of the unfolding
problem

As predictions in High Energy Physics are given by Quantum Field

Theory (which inherits the randomness of QuantumMechanics), phys-

ical observables must be treated as random variables, which makes

histograms pretty convenient as they can be mapped directly to the

probability distributions produced by theory as a means of hypothesis

test.

For this section, let us consider an arbitrary physical observable denoted

by the random variable H distributed according to the p.d.f. 5true(H)
whose functional form is not known a priori. As described in chapter 1,

several physical effects introduced by the measurement techniques result

in the observation not of H, but of a slightly different variable which we

will call G.

H = true value of the physical observable (which we do not know)

G = observed value of the physical observable

(2.12)

And to consider the limited resolution of the electronic equipment that

make up the measurement devices (that is, the possibility of an event

passing through the detector completely undetected), we will define the

probability of an event being measured as &(H):

&(H) = %(detecting an event with true value H) (2.13)

Remembering that we are not observing individual values of G but

histograms of G, to consider a more realistic scenario G needs to be

promoted to a discrete variable containing the number of occurrences

for each bin. Considering an histogram of # bins, we will call this new

set of variables n = {=1 , =2 , ..., =# }, but now we are forced to promote

H to a discrete variable as well to put observations and predictions on

the same ground. For an histogam of " bins, we will call this new set of

variables m = {<1 , <2 , ..., <"} 5 :

m = the true number of entries per bin (the prediction)

n = the actual number of entries observed per bin (data)

(2.14)

2 Unfolding as a Maths Problem 10

6: It is not possible to observe, say, 1.5

events. Either you observe 1 or 2.

And the probability of finding the value of H in bin 9 is given by the

integral over that bin:

? 9 =

∫
bin 9

5true(H)3H (2.15)

Now,m is not only a set of discrete variables, but a set of discrete random

variables as it is the result of performing a statistical analysis on the

observations, so it does not make sense to talk about a model predicting

a concrete value for each <8 and, instead, what we can predict are its

expectations values, which will be denoted by the Greek letter �.

- = {�1 , �2 , ..., �"} where �8 = �[<8] (2.16)

Again, to put observations and predictions on the same ground, we need

to consider expectation values of n as well which will be called �8 .

. = {�1 , �2 , ..., �# } where �8 = �[=8] (2.17)

In Particle Physics, it is reasonable to consider the number of occurrences

=8 as a random variable distributed by a Poisson distribution (due to the

fact that the amount of observations must be an integer value
6
) as in

equation (2.18) and make the following assumptions:

1. Because of the the large amount of data collected, it is assumed

that the number of occurrences observed in bin 8 is already the

value of �8 .
2. It is assumed that every event is observed independently of each

other, so there is no correlation between the elements of . and

the covariance matrix is diagonal. For a Poisson distribution, the

variances are then given by the expected values �2[�8] = �[�8]

%(=8 , �8) =
�=8
8
4−�8

=8 !
(2.18)

Note that equation (2.18) is the p.d.f. of each bin element =8 with ex-

pectation value �8 and that the p.d.f. of n can then be obtained just by

normalizing the complete histogram. What we want when unfolding is

to obtain the p.d.f. of - by removing the effects of the detector to then

infer the p.d.f. of m.

Defining the expectation value of the total number of events found in a

bin 8 as the proportion of events found in that bin from the total amount

of events expected to be produced by the experiment �tot:

�8 = �tot?8 (2.19)

Where ?8 = %(event observed in bin i).

2 Unfolding as a Maths Problem 11

By using the law of total probability (2.6) for ?8 and considering the limit

of infinitesimally small bins, we can relate the quantities we have with

the following equation:

�8 = �C>C

∫
3H %

(
observed

in bin i

��� true value H and

event detected

)
︸ ︷︷ ︸

spreading effect

&(H) 5true(H)

= �C>C

∫
bin i

3G

∫
3H B(G |H)&(H)︸ ︷︷ ︸

response of the detector

5true(H)

= �C>C

∫
bin i

3G

∫
3H'(G, H) 5true(H)

(2.20)

Where we have defined:

I A spread function B(G |H) as the conditional p.d.f. for a detected

event to be observed in bin 8

I A response function '(G, H) = B(G |H)&(H) as the probability to

observe G (including the limited efficiency and the spreading

effects) given that the true value was H.

Comparing last line of equation (2.20) with equation (2.19), we see that

the p.d.f. of the true values 5true(H) has been “folded” with the response

function to result in the p.d.f. of the measured values 5meas(G):

5meas(G) =
∫

'(G, H) 5true(H)3H (2.21)

Replacing the integral in H with a sum over the more realistic discrete

bins and multiplying both numerator and denominator by �9 , we can get

an expression for �8 in terms of a simple product:

�8 =
"∑
9=1

∫
bin i

3G
∫
bin j

3H'(G, H) 5true(H)
(�9/�tot)

�9

=

"∑
9=1

'8 9�9

(2.22)

where we will denote ' as the response matrix given by:

'8 9 =

∫
bin i

3G
∫
bin j

3H'(G, H) 5true(H)∫
bin j

3H 5true(H)

=
%

(
observed in bin i and true value in bin j

)
%

(
true value in bin j

)
= %(observed in bin j | true value in bin j)

(2.23)

2 Unfolding as a Maths Problem 12

7: An example on how to obtain the re-

sponse matrix will be explained in the last

part of this work.

Where we can note that every element '8 9 in the response matrix is just

the conditional probability of finding an event with measured value G in

bin 8 given that the true value H should have been found in bin 9. This

frequentist interpretation of the response matrix is well-suited for High

Energy Physics as one way to find each element '8 9 is by performing a

simulation of the physical experiment and counting the amount of events

that should have been observed in bin 9, but were observed in bin 8 after

going through the simulated detector.
7

A more convenient way of writing equation (2.22) is in terms of the

column vectors ., -:

. = '- (2.24)

The unfolding problem is now described in two versions:

1. The continuous version where we need to solve the integral equa-

tion (2.21) for 5true(H).
2. The discrete versionwhich is described by equation (2.24) where

we need to invert matrix ' to find the value of -.

In any case, the result of performing the unfolding will be called an
estimator for the desired quantity as it is an estimation of the true value.

Estimators will be denoted with a hat:

-̂ = estimator for the true value of - (2.25)

This problem belongs to a more general class of problems called the
inverse problem and even though looking harmless, there are many

challenges not easy to overcome for its resolution.

1: We pay special attention to the discrete

inverse problem as that is the one concern-

ing this work.

Figure 3.1: The response matrix of the

simple example.

2: An example on how the response ma-

trix can be computed will be left for the

last part of this work.

The Inverse Problem 3
3.1 A simple example 13
3.2 Continuous Inverse Problem 14
3.3 Discrete Inverse Problem . . 15
3.4 General Solution to the Inverse
Problem 15

This chapter aims to present a general overview of the inverse problem

to understand why it is not a trivial problem to solve and the issues that

need to be addressed when trying to propose a solution.

Firstly, based on Chapter 11 of [10], intuition will be given with a simple

example that shows what happens if the most naive solution to the

discrete inverse problem is attempted
1
. Then (heavily based on [11])

a mathematical explanation, both for the continuous and discrete case,

will be provided and a general approach to avoid these issues will be

presented.

3.1 A simple example

To motivate the study of the inverse problem, let us see what happens

when trying to naively solve equation (2.24) for - by inverting the

response matrix.

That is, the estimator for -will be given by:

-̂ = '−1. (3.1)

The first problem that arises is the fact that there is no guarantee that
the response matrix is invertible. This could happen if, for example,

the matrix is not squared (if we would expect more/less bins in one

histogram than in the other), or if the matrix happens to be singular. For

now, the response matrix was chosen to be squared and invertible to

depict the issues of the unfolding, but we will come back to this general

case in section 3.4.

Let us consider a detector that is characterized by the response matrix

shown in figure 3.1
2
, that the measured histogram n is shown as the gray

plot in figure 3.2a and the goal would be to obtain the true histogram -
(shown in red in the same figure).

(a) True and Measured histograms (b) The Unfolded histogram

Figure 3.2: a) The “Measured” histogram

to unfold n and the “True” result - to find.

b) The result of '−1n

13

3 The Inverse Problem 14

3: A particular case is when the Kernel

function (B, C) is function of the differ-

ence between B and C:

6(B) =
∫ 1

0
ℎ(B − C) 5 (C)3C

In that case, the direct/inverse problem is

known as a convolution/deconvolution.

As mentioned in section 2.2, it will be assumed that the measured data n
is already the estimator for .:

.̂ = n (3.2)

So, replacing . in equation (3.1) with its estimator (3.2), the unfolded

histogram is given by equation (3.3) and is shown as the histogram in

figure 3.2b.

-̂ = '−1n (3.3)

From this result, we notice that the unfolded histogram is nothing like

the True histogram that we were expecting. Not only its shape is different

as the unfolded histogram appears to be oscillating, but the oscillations

are considerably larger than the expected values on the True histogram

(check the differente in the y-axis scale).

In order to understand why this is happening and why alternative

solutions are needed, it is illustrative to understand the continuous

inverse problem.

3.2 Continuous Inverse Problem

The unfolding problem was given by equation (2.21) and has the general

form of a Fredholm Integral equation of the first kind:

6(B) =
∫ 1

0

 (B, C) 5 (C)3C (3.4)

Solving equation (3.4) for 6(B) given (B, C) and 5 (C) is known as the

direct problem and solving for 5 (C) given (B, C) and 6(B) is known as

the inverse problem 3
.

Defining 5? as:

5?(C) = sin (2�?C), ? = 1, 2, ... (3.5)

The Riemann-Lebesgue lemma states that for any arbitrary kernel (B, C)
integrable on an interval [0, 1]:

6?(B) =
∫ 1

0

 (B, C) 5?(C)3C → 0 for ? →∞ (3.6)

That is:

I The solution 6(B) to the direct problem will be “smoothed” and

high-frequency function will be mitigated. The lower the frequency,

the stronger the mitigation.

I The solution 5 (C) to the inverse problem will have the opposite

effect and high-frequency functions will be amplified. The higher

the frequency, the stronger the amplification.

3 The Inverse Problem 15

4: This is the approach followed in [4] and

[12] which are the core of this work, so it

will be the only one covered in this thesis.

In practice, for solving the inverse problem this means that even slight

perturbations on 6(B) could result in wild amplifications on 5 (C).

3.3 Discrete Inverse Problem

Going back to the example on section 3.1, we can relate the wild oscil-

lations on the unfolding result if we notice that the estimator used in

equation 3.2 is not correct as . ≠ n because of the background noise and

the statistical fluctuations as described in chapter 1.

If we denote these effects with the column vector #, developing equation

(3.3) shows how the result is polluted:

-̂ = '−1n = '−1(. + #) = - + '−1# (3.7)

If we were able to get an accurate expression for #, we could directly

remove its effects from equation (3.7). As that is never the case and,

moreover, statistical fluctuations can be understood as “slight high-

frequency perturbations” which get amplified by the Riemann-Lebesgue

lemma, huge oscillations in the previous example are expected.

3.4 General Solution to the Inverse Problem

Focusing now on the discrete case, the short example in the beginning of

this chapter and the more detailed understanding of the inverse problem

have served us to identify the main difficulties to overcome when solving

the inverse problem:

1. The response matrix R may not be invertible.

2. Even if R is invertible, the naive solution of inverting the matrix

will not work as we are still haunted by the statistical fluctuations

that unfold as wild oscillations.

A common approach to overcome both of these issues
4
can be explained

in two steps:

1. If the matrix is not invertible, instead of trying to solve the inverse

problem for an “exact” solution by trying to invert the response

matrix,we can instead look for a solution that is not exact, but “good

enough” and that looks quite similar to the unfolded histogram

we would be expecting.

2. To tame wild oscillations, one could use a Lagrange multiplier

to explicitly enforce a well-behaved histogram by looking for a

smooth solution of the inverse problem. That is, a solution whose

second order derivative is small.

In mathematical terms, a solution to the discrete inverse problem (which

in fact represents a solution to the unfolding problem) that includes these

two proposals can be posed as a linear least squares problem:

min

�

{
‖'- − .‖2

2
+ �‖�2-‖2

2

}
(3.8)

3 The Inverse Problem 16

5: The L2 norm for a vector:

x =

©«
G1

G2

.

.

.

G=

ª®®®®¬
Is defined as:

‖x‖2 =
√

=∑
:=1

|G: |2

6: This can be understood as a second-

order finite difference with a step ΔC = 1:

�2

C 5 (G)
ΔC2

=

5 (G+ΔC)− 5 (G)
ΔC − 5 (G)− 5 (G−ΔC)

ΔC

ΔC

=
5 (G + ΔC) − 2 5 (G) + 5 (G − ΔC)

ΔC2

= 5 (G + 1) − 2 5 (G) + 5 (G − 1)

Where:

I ‖·‖2 refers to the L2 norm
5
.

I �2
refers to the discrete Laplacian operator which takes the follow-

ing form
6
:

�2 =

©«

−2 1 0 0 0 ... 0

1 −2 1 0 0 ... 0

0 1 −2 1 0 ... 0

0 0 1 −2 1 ... 0

0 0 0 ...
. 0

0 0 0 ... 1 −2 1

0 0 0 ... 0 1 −2

ª®®®®®®®®®®¬
(3.9)

I The second term corresponds to the so called regularization term
which mitigates abrupt changes in the solution -.

I � is a scalar called the regularization weight which defines the

relative weight of this condition. It is a parameter that needs to be

chosen when solving the inverse problem.

This general idea of adding a regularization term to enforce some condi-

tions in the desired solution is called Tikhonov Regularization and we

can notice that this approach allows us to handle situations where - and

. have different amount of bins:

' ∈ ℝ<×= , - ∈ ℝ= , . ∈ ℝ<
(3.10)

That is, the case where the system of linear equations is overdetermined

(< > =) or underdetermined (< < =).

Several computational techniques can be applied to solve the unfolding

problem by solving (3.8), but the rest of this work will be focused on two:

Singular Value Decomposition (SVD) and Quantum Annealing.

Figure 4.1: SVD of a matrix X

Solving via SVD 4
4.1 Singular ValueDecomposition17
4.2 As a Solution to the Least
Squares Problem 17
4.3 As a Solution to the Unfolding
Problem 18

Important Remarks 20

This chapter is based on [12] and [13] to present an overview on the

Singular Value Decomposition (SVD) and how it can be used to solve

the inverse problem and, more specifically, the unfolding problem. In

the end, some important details to be considered for the computational

experiment presented later in this work are addressed.

4.1 Singular Value Decomposition

The Singular ValueDecomposition (SVD) is amatrix factorizationmethod

which can be used to perform pseudo-inverses of non-square matrices.

For any real valued matrix - ∈ ℝ=×<
, its SVD is given by:

- = *Σ+)
(4.1)

where:

I * ∈ ℝ=×=
is an orthogonal matrix whose columns are called “left

singular vectors”.

**) = *)* = � (4.2)

I + ∈ ℝ<×<
is an orthogonal matrix whose columns are called “right

singular vectors”.

++) = +)+ = � (4.3)

I Σ ∈ ℝ=×<
is a diagonalmatrixwith non-negativediagonal elements

B8 which are called “singular values” and, without loss of generality,

are ordered from largest to smallest.

Σ8 9 = 0 for 8 ≠ 9 , Σ88 ≡ B8 ≥ 0, B8 > B 9 for 8 > 9 (4.4)

The SVD of a matrix is unique and its definition can be extended to

complex valued matrices by replacing the transpose operation (·)) with

the complex conjugate transpose, but as the matrices in the unfolding are

real valued, only those will be covered in this work. A pictoric description

of the SVD factorization can be seen on figure 4.1.

4.2 As a Solution to the Least Squares Problem

The SVD factorization can be used directly to solve a linear least squares

problem in the shape:

min

G
‖�x − b‖2

2
(4.5)

by using the first order optimality condition.

17

4 Solving via SVD 18

1: In this case, Σ−1
is the pseudo-inverse

of Σ.

Given:

4 = ‖�x − b‖2
2

= (�x − b)) (�x − b)
= x)�)�x − 2x)�)b + b)b

(4.6)

Its minimum value of x will be given by the solution of:

%4

%x

���
xmin

= 2�)�xmin − 2�)b = 0

�)�xmin = �
)b

xmin = (�)�)−1�)b

(4.7)

Where we have used the fact that (�)�) is invertible if columns of A are

linearly independent.

The result of (4.7) is a common and well-known form of the pseudo-

inverse of the SVD factorization as defined in (4.1), but to make this result

clearer, we can develop using the SVD factorization of A:

xmin = (�)�)−1�)1

= (+Σ)��*)
��*Σ+

))−1+Σ)*)b

= (+Σ)Σ+))−1+Σ)*)b

(4.8)

Where we have used the fact that* is orthogonal. Developing the inverse

of the term inside the parenthesis
1
:

xmin = (+Σ)Σ+))−1+Σ)*)b

= (+))−1Σ−1
HHH(Σ))−1��+−1

�+ZZΣ
)*)b

= (+))−1Σ−1*)b

= +Σ−1*)b

(4.9)

Where, in the last line, we used the fact that + is orthogonal.

4.3 As a Solution to the Unfolding Problem

Using the SVD decomposition to solve the unfolding problem translates

to mapping the general solution with Tikhonov regularization of the

inverse problem (3.8) (which is written below for reference) to the general

shape (4.5) to then use the result of the previous section (4.9) to find the

histogram that best solves our problem.

min

�

{
‖'- − .‖2

2
+ �‖�2-‖2

2

}

4 Solving via SVD 19

2: Note that the notation has been

changed to keep it uniform throughout

this work:

I A in [12]→ R in here

I x→ -
I b→ .
I B→ #

I �→ �
I C→ �2

I Gini → -ini

I 1ini → .ini

3: In this case, the notation does not

change with respect to [12].

4: Which in this case would traduce in

finding the best fit for the bin with the

highest amount of events while overlook-

ing bins with very few events

5: Note that this is not explained the same

on [12], so notation varies.

The details of the approach can be found at [12] and the main idea is

summarised below
2
:

First, the covariance matrix N of the histogram to unfold . has to be

computed as it will be used in the procedure and the response matrix R

needs to be estimated by counting the bin migrations from a simulated

histogram -ini
to a folded histogram .ini

.

Then, as is common in optimization problems, unknowns - need to

be normalized to make sure all of them are taken on the same ground

without priorities and this is achieved by dividing them with the values

of the bins -ini
used to build the response matrix R and performing the

unfolding on the new scaled unknowns 8 (note that this procedure can

easily be undone by solving equation (4.10) for �9 once $ 9 is found)
3
:

$ 9 = �9/�ini, 9 (4.10)

Normalization is important as it prevents minimization techniques from

focusing on finding the minimum of the unknown that impacts the most

on the overall value while neglecting the rest
4
, but equations need to

be normalized as well so all of them are equally weighted and this can

be achieved in a similar fashion by multiplying by the inverse of N to

rescale R and . (which will be labeled as '̂ and .̂, respectively):

‖'8 − .‖2
2
→ ('8 − .))#−1('8 − .) (4.11)

So, after applying transformations (4.10) and (4.11) to the main equation

(3.8), the least squared problem to solve is now:

min

$

{
('̃8 − .̃))('̃8 − .̃) + �(�28))(�28)

}
(4.12)

And we can now use the fact that, for arbitrary vectors y and z:(HI)2

2

=

(
H

I

)) (
H

I

)
= H)H + I)I = ‖H‖2

2
+‖I‖2

2
(4.13)

To rewrite the argument of (4.12) in terms of a single matrix equation to

minimize:(
'̃√
��2

)
8 =

(
.̃
0

)
equivalent to

(
'̃�−2

√
�

)
�28 =

(
.̃
0

)
(4.14)

Which now can be solved using the result (4.9) in two steps following

the procedure of [12].

The first step is to solve for the case when � = 0, which is straightforward

as defining M and y as
5
:

'̃�−2 ≡ " , �28 ≡ y (4.15)

4 Solving via SVD 20

6: The i-th column of the vector d is the

coefficient in the decomposition of the

measured (and rescaled) histogram b̃ in

front of a basis function defined by the i-th

column of the rotation matrix U.

Allows to write the upper element of (4.14) in the shape of (4.5):

('̃�−2)�28 = .̃ =⇒ "y = .̃ (4.16)

Which, by using the SVD factorization of" = *Σ+)
, allows the direct

use of (4.9) to solve for ymin and then for 8min by inverting the relation

of (4.15):

ymin = +Σ
−1*) .̃ =⇒ 8min = �

−2+Σ−1*) .̃ (4.17)

The second step is to use the result of [14] (section 4) so the solution with

regularization (� ≠ 0) can be worked to be:

H
(�)
min,8

=
(*) .̃)8B8
B2

8
+ �

=⇒ 8(�)
min

= �−2+y(�)
min

(4.18)

Finally, for both cases with or without regularization (that is, for 8(�)
min

or 8min), the histogram of interest -min can be derived by undoing the

scaling (4.10) of 8min:

-min = -ini � 8min

or

-(�)
min

= -ini � 8(�)
min

(4.19)

Where � represents the element-wise product.

Important Remarks

One peculiarity of this unfolding technique is that [12] offers a way to

choose the regularization weight by plotting the log magnitude of the

coefficient 38 = (*) b̃)8 6
vs the index i and setting � to the square of

the k-th singular vector B: where k represents the number of significant

coefficients 38 with a significant amplitude (|38 | � 1).

Also, the covariance matrix 2>E(-min) of the resulting histogram can

be computed explicitly by using the error propagation technique of

(2.11) as equations (4.19) and (4.18) allow us to write -min as a linear

transformation of Imin for which the covariance matrix is calculated on

[12]:

2>E(-min) = -ini2>E($min)-)
ini

= -ini�
−2+2>E(I(�)

min
)+)(�−2))-)

ini

(4.20)

Where:

2>E(I(�)
min
)8: =

B2

8

(B2

8
+ �)2

�8: (4.21)

4 Solving via SVD 21

Note that this resulting covariancematrix will not necessarily be diagonal,

so there is no simple interpretation for its relation with the errors or the

confidence interval of the unfolded prediction. On [12], the square root

of the main diagonal is what is shown in the plots of the predictions as

erorr bars and that is the approach followed in this work as well.

For a broader discussion on the error interpretation, see [15].

1: The convention is to set the magnetic

field in the z-direction so that +1 represents

“up” and -1 represents “down”.

2: In many textbooks, the h constant is

split into the product of the magnetic mo-

ment of the spins � and the external mag-

netic field B as ℎ8 = ��8 .

3: The sign of J tells whether neighbors

prefer to align or anti-align. In this case,

a positive J indicates that they prefer to

align as that is the configuration with the

lowest energy.

Solving via Quantum Annealing 5
5.1 Quantum Annealing 22
5.2 As a Solution to the Least
Squares Problem 24
5.3 As a Solution to the Unfolding
Problem 25

Important Remarks 26

This chapter is based on [16] and [4] to present an overview on Quantum

Annealing (QA) and how it can be used to solve the inverse problem and,

more specifically, the unfolding problem. In the end, some important

details to be considered for the computational experiment presented

later in this work are addressed.

5.1 Quantum Annealing

Quantum Annealing is a technique proposed in 1998 [17] to solve binary

optimization problems by encoding them in a transverse Ising model

such that introducing quantum fluctuations to find the ground state of

its Hamiltonian translates to finding the optimal solution to a problem.

To begin with, “annealing” refers to a process of letting a system “cool

down” in order to improve its stability. In Classical Annealing, this

cooling down refers to a heat treatment where temperatures are varied

from high to low, while in Quantum Annealing it refers to the amount of

quantum fluctuations induced to the system.

The Ising model consists of discrete variables that represent magnetic

dipole moments of atomic spins that can be in one of two states (+1 or -1)

when aligned or anti-aligned with an external magnetic field
1
. The spins

are arranged in a graph, usually a lattice, allowing each spin to interact

primarily with its neighbors.

The Hamiltonian for a lattice of n spins {�̂I
1
, ..., �̂I=} has the following

shape:

�̂ = −
=∑
8=1

ℎ8 �̂
I
8 −

∑
8< 9

�8 9 �̂
I
8 �̂

I
9 (5.1)

Where:

I The first term represents the energy that arises from the interaction

of each spin with the external magnetic field and ℎ8 represents the

energy when the spin is aligned or anti-aligned
2
.

I The second term represents the interaction between neighboring

spins and �8 9 is the exchange energy between spin i and spin j such

that aligned spins contribute to a decrease in the energy of J while

anti-aligned spins increase it by J.
3

And a general state |Ψ〉 in the eigenbasis of �̂ is given by:

|Ψ〉 = |@0〉 ⊗ |@1〉 ⊗ ... ⊗ |@=〉 (5.2)

22

5 Solving via Quantum Annealing 23

4: They are heuristically considered im-

possible to solve, but no formal proof has

been given.

5: They can be optimization problems as

every optimization problem can be casted

to a decision problem if instead of asking

“What is theminimum/maximumvalue?”,

we ask “Is there avalue lower/greater than

X?”

6: “Adiabatically” is the physics argot for

“slow enough”.

7: Adiabatic process do not exist in real

life, but very slow processes are good ap-

proximations.

8: Any observable whose operator does

not commute with �̂I would work, but

using �̂G is the simplest.

Where:

|@8〉 =
{
|0〉 if spin is down

|1〉 if spin is up

(5.3)

The Ising Model is convenient for quantum computing as every spin can

be thought as a qubit due to it being a two-level system and it can be

translated to binary bits by replacing the Pauli operators �̂I
8
with new

operators @̂8 such that a bit is found when measured:

�̂I8 → @̂8 ≡
1 − �̂I

8

2

such that

@̂8 |0〉8 = 0|0〉8
@̂8 |1〉8 = 1|1〉8

(5.4)

This model is of special interest in computational complexity theory

because it belongs to a special kind of decision problemswhose resolution

is too complicated to be performed on classical computers called NP
(nondeterministic polynomial time) problems [18].

For short, in computational complexity theory there are four kinds of

decision problems:

I P: all problems solvable, deterministically, in polynomial time.

I NP: problems that are hard to solve
4
, but easy to test once a

solution candidate is given.

I NP-Hard: not necessarily decision problems
5
, but still considered

as difficult to solve as NP problems.

I NP-Complete: problems such that they can formulate any other

NP problem.

In fact, solving the Ising Model (that is, finding its ground state) in its full

3D form is anNP-Complete problem [18], so finding a feasibleway to solve

it in a reasonable amount of time,would be a huge improvement in today’s

technology and an indisputable supremacy of quantum computers.

Merging quantum computing with the annealing technique involves the

use of the adiabatic theorem, which states [19] that:

A physical system remains in its instantaneous eigenstate if a

given perturbation is acting on it slowly enough and if there

is a gap between the eigenvalue and the rest of the

Hamiltonian’s spectrum.

That is, if a quantum system starts on its ground state and evolves

adiabatically
6
such that it ends up being a completely different system,

it will be found in its new ground state.

This makes annealing doable on a quantum computer if it is capable of

booting on the ground state of a simple Hamiltonian that adiabatically
7

evolves such that its Hamiltonian is converted to the Ising Model of the

problem of interest. If the problem to solve has its solution as the ground

state of its Ising Hamiltonian, measuring the quantum system will result

with a high probability in the correct answer.

In practice, this is achieved by booting the quantum computer on the

ground state of a transverse magnetic field (let us say, in the x direction)
8

whose strength Γ(C) is slowly decreased while the magnetic field in the

5 Solving via Quantum Annealing 24

Time

Amplitude of the initial

magnetic fields

Amplitude of the z

magnetic fields

E
n
e
r
g
y

Figure 5.1: The annealing procedure in

terms of magnetic fields.

z direction is turned on at a similar pace such that, in the end, it becomes

the only magnetic field remaining (as shown in plot 5.1).

The whole process is depicted on figure 5.2 and will have the following

Hamiltonian:

�̂ = −Γ(C)
∑
8

�̂G9︸ ︷︷ ︸
�0

−
=∑
8=1

ℎ8 �̂
I
8 −

∑
8< 9

�8 9 �̂
I
8 �̂

I
9︸ ︷︷ ︸

�1

(5.5)

Figure 5.2:An illustration of the quantum

annealing process.

5.2 As a Solution to the Least Squares Problem

As solving the least squares problem is already an optimization problem,

it can be directly translated to a Quantum Annealing problem if it can be

posed as a binary optimization problem.

5 Solving via Quantum Annealing 25

The most interesting part of trying to solve a problem via Quantum

Annealing is how to cast it as a least squares problem (which involves

adding conditions, finding appropriate Lagrange multipliers, etc) as

it depends very specifically on the problem to solve. An extensive list

of examples can be found at [20] and the only common step is the

need to figure out how to encode the variables of interest as binary bits

@8 ∈ {0, 1}.

|G1〉 → |01010...0〉
|G2〉 → |11101...1〉

...

|G=〉 → |@0 , @1 , @2 , ..., @=〉

(5.6)

There are many encoding schemes and choosing the best one is usually

dependent on the problem as well, but for the unfolding problem this

is already given in [4]. The only thing left is to plug it on a quantum

computer to let Nature find the state with the lowest energy.

5.3 As a Solution to the Unfolding Problem

Using Quantum Annealing to solve the unfolding problem translates

to mapping the general solution with Tikhonov regularization of the

inverse problem (3.8) (which is written below for reference) to a binary

optimization problem to be plugged on a quantum computer.

min

�

{
‖'- − .‖2

2
+ �‖�2-‖2

2

}
The key to make this translation (as explained with more detailed in [4])

is to express the unfolded histogram as a proportional variation of the

histogram used to build the response matrix -ini
. These variations are

encoded in scaling parameters , � (both function of a user argument

called range) such that the resulting histogram can be expressed in terms

of n bits {@1 , ..., @=} that will turn on/off the variations when the values

are 1/0, respectively:

G8 = 8 + �8
=−1∑
9=0

2
9@=×8+9 (5.7)

Where:

I "i : is an offset that represents the value around which the propor-

tional variations are to be found. The default configuration [21] is

50% of the corresponding �ini

8
and is given by:

8 = (1 − scale)�ini

8 (5.8)

5 Solving via Quantum Annealing 26

sc
a
le
=
2

s
c
a
le
=
1/
2

weights

Figure 5.3: Examples to show the encod-

ing schema of the quantum annealing.

9: D-Wave offers access to its quantum

computers, but not in Mexico. Amazon

Web Services can serve as a proxy, but it

is a paid service.

10: Workarounds are possible when hav-

ing access to D-Wave’s devices as it offers

hybrid approaches.

I #i : is the value that will define the weight (�829) of each bit q when

doubled for every 9 (that is, when being multiple of 2
9
) and is given

by:

�8 =
2 × scale

2
=

�ini

8 (5.9)

To illustrate better the encoding schema, an example of an encoding with

4 bits of a bin i is shown in figure 5.3 for two different values of scale.

The scaling parameters are important as depending on how similar we

expect the unfolded histogram to be with respect to -ini
, we might need

to set lower or higher offsets and allow more or less variations with

respect to it. The schema overviewed here is proposed by the source code

of [4] (a Github repository can be found in the paper), though nothing

prevents us from defining new encoders.

Important Remarks

In contrast with the SVD unfolding, with Quantum Annealing there is

no simple way to find the covariance matrix of the resulting histograms,

which makes error prediction not doable.

For testing, this algorithm requires access to a real quantum computer

which is not possible by the time of writing this work
9
and that quantum

computer would need to have enough qubits to encode the histograms

to unfold, which is not the case of the current state-of-art devices
10
.

The approach to follow in this work is to use a Simulated Quantum

Annealing (SQA) [22] implementation provided by [23], which is a

classical algorithm that makes use of a Monte Carlo approach to mimic

the quantum fluctuations in the optimization process. More details on

appendix A.

To mimic what would be the variance to expect when measuring the

quantum state in a real quantum computer, the simulations are performed

several times and the mean value is presented as a result. Note that this

makes the variance presented on the annealing results uncomparable

with the variance computed by the SVD. More on chapter 8.

Computational Experiment

27

1: B is one of the so called "Mandelstam

variables" representing the invariant mass

of a decay, which in the case of 4−4+ is the
total energy squared.

2: 770 is the mass of the particle in MeV.

For convenience, this particlewill be called

only � for the rest of this document.

The �→ ��0� Decay 6
6.1 About 28
6.2 Data Selection 29

First Stage: With Cuts 30
Second Stage: With Boosted De-

cision Trees 36

6.1 About

As mentioned in chapter one, in real-life conditions it is virtually im-

possible to repeat a collision and get always the same result. This is

in part because statistical fluctuations, but also because the physics

of the collisions are governed by the probabilistic nature of Quantum

Mechanics.

Even if we make two particles collide several times under the exact same

conditions (this would require to accelerate the particles to always the

same energy and momentum before colliding), there are many possible

outcomes each occurring with a different probability, all given by the

Standard Model of Particle Physics and described at [24].

For example, if Belle II would like to produce the tau pair decay from the

annihilation of an electron and a positron in the energy range around√
B = 10.58 [GeV]

1
, the observed events would include not only the

desired �+�− decay, but many other possibilities as well (this is depicted

in figure 6.1).

1.11 nb

300 nb

3.69 nb

0.91 nb

Figure 6.1: Some physics processes that

are possible at

√
B = 10.58 [GeV]with their

cross-sections. For a more comprehensive

list, see [5], table 18.

In this work, the arbitrarily chosen decay to study is the �→ ��>� (its

data is available via the Belle II Collaboration) where the invariant mass

of the ��0
will be used as “signal”. In order to showcase the unfolding

techniques as straightforward as possible, data was taken from simulated

experiments and by the way they are run, their data is available in such a

way that we do not need to care about the background events coming

from the 4−4+ as we can already consider only tau decays, but these will

still be polluted by every other possible decay of the � which need to be

filtered out by some pre-processing that we will call data selection.

In this case, the events generated by the simulator will end up being

one of the possible decays of table 6.1 which we will call decay modes
and are identified by an integer. The decay of interest corresponds to

decay mode 4 in which the � decays into a rho meson �(770)2 which

then decays to ��0
as is illustrated in figure 6.2. This rho meson serves

28

6 The �→ ��0� Decay 29

Figure 6.2: Quasi Feynman Diagram of

the �→ ��>� decay.

as an intermediate particle for the process of interest and these particles

are called resonances.

It is worth noting on table 6.1 that there are some other decays that look

similar to the decay we are looking for. For example, the decay 21 where

the � produces the ��0� but with a companion photon which, if not

detected, could lead to confusing that decay with the one we are looking

for. A more problematic (as is more probable) decay is the mode 5 which

will result in a very similar process as the 01 can decay to ��0
[24], so we

will end up observing �→ ��0�0� which can be mistaked as our decay

if one �0
is not detected.

1 4−�� 15 0�− ̄0� 29 −�+�−�0�
2 �−�� 16 − 0�0� 30 −�0�0�0�
3 �−� 17 −�0�0� 31 0�−�+�−�
4 �−� 18 −�−�+� 32 �− ̄0�0�0�
5 0−

1
� 19 �− ̄0�0� 33 �− + −�0�

6 −� 20 ��−�0� 34 �− 0 ̄0�0�
7 ∗−� 21 �−�0�� 35 �−$�+�−�
8 �−�−�+�0� 22 − 0� 36 �−$�0�0�
9 �−�0�0�0� 23 �−4�0� 37 4−4−4+��
10 2�−�+2�0� 24 �−$�0� 38 51�−�
11 3�−2�+� 25 �−�+�−�� 39 −$�
12 3�−2�+�0� 26 �−�0�0�� 40 − 0�+�−�
13 2�−�+3�0� 27 −�� 41 − 0�0�0�
14 −�− +� 28 ∗−�� 42 �− + ̄0�−�

Table 6.1: Decay modes of the �− lepton.

Decay modes of the �+ are the same after

applying charge conjugation.

More on this will be discussed when explaining how events are filtered

and reconstructed.

6.2 Data Selection

For the purposes of this work (performing the unfolding), data was gath-

ered from the simulation campaigns carried out by the Data Production

6 The �→ ��0� Decay 30

3: “Triggers” are sensors placed inside the

Belle II detector that notify the rest of the

measurement devices when an important

physics process is observed so they can

turn on in time to perform their respective

measurements.

Table 6.2: Some possible decays of the �−.

Decay Mode Fraction

�− → Γ8/Γ
4−�̄4�� 17.83 ± .04%

�−�̄��� 17.41 ± .04%

�−�� 10.83 ± .06%

�−�0�� 25.52 ± .09%

.

group of the Belle II experiment. For short, the collection of data will be

called taupair data set and is identified by the following specs:

Campaign: MC13a

Beam Energies: 4S

Release: release-04-00-03

MC Event Types: taupair

These simulations are carried out by generators that have not been devel-

oped within Belle II but have been inherited from the HEP community

and the simulated effects of the detector response include simulations

of the triggers
3
, of the interaction of the MC particles with matter and

calorimeters. More details can be found on section 4 of [5].

As every � lepton can decay in multiple events (see table 6.2 for some

examples) and simulation campaigns are not specific enough to produce

events only of a certain type, some pre-processing is needed to filter out

most of the background events as possible. Two types of pre-processing

were applied:

1. It is possible to remove events where some measurements of

physical observables (such as energy of a particle, momentum, etc)

do notmatch the physical conditions (usually defined as thresholds)

expected from the signal. Filtering out events by conditions is

known as “applying cuts”.

2. Even after applying cuts to thedata, there is thepossibility that some

conditions that escape the human intuition can still be identified

to distinguish each type of event, so a machine learning classifier

called Boosted Decision Trees (BDT) was used to classify events

as signal and background.

Machine learning techniques like BDTs usually require splitting the data

set into two groups to assess the capacity of the model to generalize and

to prevent it from overfitting: one to train the classifier called “training

set”, and one to evaluate the model called “validation set”.

In a similar fashion, the rest of the data set was split into twomore groups.

One to mock the simulation which is used to prepare the unfolding

(identify the response matrix) and one to mock the real data to which the

unfolding techniques will be applied.

In summary, the whole taupair data set is split into three groups after

the cuts are applied:

I One group to train the BDT. This group corresponds to the 30% of

the taupair data set. This one will be called BDT set.
I One group to prepare the unfolding. This group corresponds to

the 30% as well and will be called preparing set.
I One group to apply the unfolding to. This group corresponds to

the remaining 40% and will be called unfolding set.

First Stage: With Cuts

In this section, the analysis on how the decay of interest is reconstructed

by cutting the datawith basf2will be presented. As this stage is necessary

to set up the unfolding problem but not the main content of this work,

6 The �→ ��0� Decay 31

Figure 6.3: Illustration of the thrust axis

of an electron-positron collision.

4: Their momenta can be inferred by the

tracks they leave behind and their en-

ergy can be measured by ECLs, which

is enough to identify the particle as the

dynamics are known.

6: For example, “electronID” will contain

the probability of that particle being an

electron.

only the important pieces of the code will be explained along with the

rationale behind, but the full code can be found on appendix B.

As in a � decay information is lost because neutrinos (�) cannot be
detected, the customary way to perform the reconstruction is to split

the event into two sides using a plane defined by the thrust axis (as

illustrated in figure 6.3), that are then used to reconstruct their mother

particles by going backwards in the physics process.

The thrust axis =̂thrust is defined as the axis such that the thrust +thrust

defined in equation (6.1) is maximum and it can be understood as the

direction (in the Center of Mass frame) in which most of the momentum

is concentrated.

+thrust =

∑
8 |pCM

i · =̂thrust |∑
8 |pCM

i |
(6.1)

After splitting the event, some particles will end up in one side and some

in the other side. The side with the decay of interest will be called signal
and other side will be called tag.

After loading all the data into a basf2 pipeline called “main”, particle

candidates need to be loaded. As charged particles and photons are the

easiest to identify directly by the measurements of the Electromagnetic

Calorimeters (ECL) clusters
4
, it is convenient to reconstruct them first.

Particle identification is done automatically by basf2 which translates

signals and quantities measured by the detectors into the most probable

particles and each one of them is stored in a given list of variables. The

naming of these lists (which will be used throughout the section) is

given by two parts separated by a colon: particle:label. The left-most

part corresponds to the type of particle and the right-most part to the

name with which the list is identified.

The particles reconstructed at this stage are:

I e-:all stores all the electron candidates

I mu-:all stores all the muon candidates

I pi+:all stores all the charged pion candidates

I gamma:all stores all the photon candidates

In basf2, these lists contain both particles and anti-particles and, up to this

point, the only difference between these lists is the mass hypothesis used

in the track fit
5

5: Track fitting is the process of deter-

mining the best estimate of the kinematic

variables describing the particle trajecto-

ries corresponding to each of the patterns

found.

, so we still need to correctly identify muon candidates

as muons, electron candidates as electrons, etc.

Listing 6.1: Code snippet to reconstruct

charged particles where ma stands for

“Modular Analysis”.

1 ma.fillParticleList("e-:all", "", path=main)

2 ma.fillParticleList("mu-:all", "", path=main)

3 ma.fillParticleList("pi+:all", "", path=main)

4 ma.fillParticleList("gamma:all", "", path=main)

After filling these lists, each particle candidate will have a property called

particleID (where “particle” can be one of the possible charged particles

available for direct reconstruction
6
) containing the probability of that

candidate being identified as that specific particle, which we will call

particle identification probability.

6 The �→ ��0� Decay 32

7: The branching ratio is of almost 98.8%

[24].

8: See [6] section 5.1.2.

9: See [6] section 7.3.4.2.

10: See [5] section 5.6.1.

11: See [5] section 5.5.4.

12: The “primary vertex” is the point in

space where the electron and the positron

came into contact with each other. The

variable dr gives the transverse distance,

while dz is the z-component of the point

of closest approach with respect to the

interaction point. The cut is based on [6]

section 12.1.

The first cut to be applied is for the list of photons as they will be used to

reconstruct neutral pions via the �0 → �� decay, which occurs most of

the time
7
.

This cut will restrict photon candidates gamma:all to:

I Those that fall within the angular acceptance of the detector

−0.866 < cos(�) < 0.9563 (where � corresponds to the polar

angle which should be in the range 17° < � < 150° 8
).

I Those that satisfy the typical minimum energy threshold � > 100

[MeV] used to reconstruct “good photons” (photons that do not

come from the background) in the electromagnetic calorimeter

placed in the barrel region
9
.

I Those that are produced by a neutral pion with a low-enough

energy so the angular separation between the photons could make

them overlap a bit when hitting the ECL clusters (that is, the ECL

clusters would not necessarily detect two hits as the two photons

could have been detected by almost the same pixel)
10
.

Listing 6.2: Code snippet with the cut

used to find photons coming from a �0
.

1 ma.cutAndCopyLists(

2 "gamma:looseForPi0", "gamma:all",

3 "E > 0.1 and -0.8660 < cosTheta < 0.9563

4 and clusterNHits > 1.5",

5 path=main

6)

These photons will then be used to reconstruct the neutral pion, con-

sidering a nominal mass around 134.97 [MeV][24], so the mass will be

constrained within a window of ±8 [MeV]. The amount of reconstructed

�0
and the amount of � used in the reconstruction by these cuts are

stored in variables called nPi0 and nPhotonsFromPi0, respectively.

Listing 6.3: Code snippet with the �0
re-

construction.

1 ma.reconstructDecay(

2 "pi0:fromLooseGammas -> gamma:looseForPi0 gamma:looseForPi0",

3 "0.115 < M < 0.152",

4 path=main,

5)

6 ma.cutAndCopyLists(

7 "gamma:pi0",

8 "gamma:looseForPi0",

9 "isDescendantOfList(pi0:fromLooseGammas) == 1",

10 path=main,

11)

12 variables.addAlias("nPhotonsFromPi0", "countInList(gamma:pi0)")

13 variables.addAlias("nPi0", "countInList(pi0:fromLooseGammas)")

To reconstruct the charged pions from the tracks that were loaded (that

is, to make sure we remove tracks from pi:all that could be electrons

or muons mistakenly labeled as pions), we can use the suggested cut

11 �/% < 0.8 which can accurately separate electrons from muons and

pions (but not muons from pions) based on the energy deposited in the

calorimeters � and the momentum of the particle %. To discriminate

muons, we can keep the tracks from which the reconstruction yields a

pion only with a probability greater than 50%.

Additionally, only tracks that originate from a region very close to the

primary vertex (a sensible cut is −3.0 < 3I < 3.0, 3A < 1.0) 12
will be

considered as this allows to filter charged particles originating from a �

6 The �→ ��0� Decay 33

decay from tracks that come from other particles with a longer lifetime.

This is not strictly necessary in this case as we are already using the

taupair data set, but is added for completeness.

These correctly reconstructedpionswill be stored in a list calledpi:pidsig.

In a similar way, cuts on the tracking variables and on particle identifi-

cation probabilities are applied to reconstruct electrons and muons and

they are stored in lists called e:pid andmu:pid, respectively. These are
not part of the decay of interest, but are used to count the amount of

tracks that were present in the event, both in the signal side and in the

tag side, as we will restrict the search to decays with one track on each

side, which is a topology called 1x1 prong.

Note that, in principle, we are only interested in the tau decay on the

signal side, but we need to add cuts to the tag side in order to reconstruct

a tau process. It could be any process, but as adding cuts inevitably filters

out some of them, looking for one track allows us to retain as much

events as possible as the tau decays to one charged particle around 85%

of the time [24].

Listing 6.4: Code snippet with the tracks

reconstruction.

1 # Reconstruct electrons

2 ma.cutAndCopyLists("e-:pid", "e-:all",

3 "electronID > 0.5 and -3.0 < dz < 3.0 and dr < 1.0",

4 path=main)

5

6 # Reconstruct muons

7 ma.cutAndCopyLists("mu-:pid", "mu-:all",

8 "muonID > 0.5 and -3.0 < dz < 3.0 and dr < 1.0",

9 path=main)

10

11 # Reconstruct pions for the 1prong tag

12 ma.cutAndCopyLists("pi+:pid", "pi+:all",

13 "pionID > 0.5 and -3.0 < dz < 3.0 and dr < 1.0",

14 path=main)

15

16 # Reconstruct pions for the signal (tau->pi+ pi0 nu)

17 variables.addAlias("EoverP",

18 "formula(ifNANgiveX(clusterE, -1)/p)")

19 ma.cutAndCopyLists("pi+:pidsig", "pi+:all",

20 "pionID > 0.5 and -3.0 < dz < 3.0 and dr < 1.0

21 and EoverP < 0.8 ",

22 path=main)

23

24 # Count the amount of tracks reconstructed

25 variables.addAlias("nGoodTracks", "formula(

26 countInList(pi+:pid) +

27 countInList(e+:pid) + countInList(mu+:pid))")

Up to this point, we can already apply two useful cuts to filter out a lot

of events that are not part of the decay we want to study:

I There must be one track on the signal side corresponding to the

pion, and we can limit ourselves to events with one more track on

the tag side.

I We can already remove events with no neutral pions.

Listing 6.5: Code snippet with the 1prong

cut with at least one �0
.

1 ma.applyEventCuts("nGoodTracks == 2", path=main)

2 ma.applyEventCuts("nPi0 > 0", path=main)

6 The �→ ��0� Decay 34

Thrust

Plane

Figure 6.4: Illustration of how the thrust

angle and its cosine is measured.

The amount of photons not coming from a�0
are also counted in a similar

fashion as with the "gamma:looseForPi0" and the amount is stored in

nGoodPhotons.

Listing6.6: Code snippetwith thephotons

filtering.

1 ma.cutAndCopyLists("gamma:notPi0", "gamma:all", "

2 E > 0.2 and clusterNHits > 1.5

3 and -0.8660 < cosTheta < 0.9563

4 and isDescendantOfList(pi0:fromLooseGammas) == 0

5 ", path=main)

6

7 variables.addAlias("nGoodPhotons", "countInList(gamma:notPi0)")

We can compute the thrust found on each side using basf2 and we can

now proceed to reconstruct the taus as we have already reconstructed all

of its children. Taus from signal side will be stored in:

tau+:sig -> pi+:pidsig pi0:fromLooseGammas

While taus of the tag side will be stored in

tau-:1prong

as a combination of all the taus that resulted in a track on the other side.

In here, it must be noted that neutrinos are not explicitly required in the

reconstruction as they are invisible to the detector.

Listing 6.7: Code snippet with � recon-

struction.

1 # Signal side

2 ma.reconstructDecay(

3 "tau+:sig -> pi+:pidsig pi0:fromLooseGammas", "", path=main)

4

5 # Tag side (1 prong)

6 ma.reconstructDecay("tau-:e -> e-:pid", "", path=main, dmID=11)

7 ma.reconstructDecay("tau-:pi -> pi-:pid", "", path=main, dmID=211)

8 ma.reconstructDecay("tau-:mu -> mu-:pid", "", path=main, dmID=13)

9

10 ma.copyLists("tau-:1prong", [

11 "tau-:e", "tau-:pi", "tau-:mu",

12], path=main)

These two taus all come from a virtual photon produced by the annihi-

lation of the electron and the positron, which will be reconstructed as

well.

ma.reconstructDecay("vpho -> tau+:sig tau-:1prong", "", path=main)

For the taus, a quality cut can be applied to check that both of them are

on different sides of the thrust axis. The variable track_1_x_track_2 will

contain the product of the cosines of the angle between the thrust axis

and the track on the tag side and on the signal side. The product will be

negative when both particles are on different sides of the thrust plane.

This is illustrated on figure 6.4.

Listing 6.8: Code snippet with the thrust

quality cuts applied to the virtual photon.

1 variables.addAlias(

2 "track_1_x_track_2",

3 "formula(

4 daughter(0, daughter(0, cosToThrustOfEvent))

5 * daughter(1, daughter(0,cosToThrustOfEvent))

6)",

7)

8

9 ma.applyCuts("vpho", "track_1_x_track_2 < 0", path=main)

6 The �→ ��0� Decay 35

13: As we are not reconstructing reso-

nances (nor neutrinos) directly, the invari-

ant mass of the � will be equal to the

invariant mass of the ��0
, which is the

variable of interest for the unfolding.

Similarly, for each particle we reconstructed (the photons, the pions, etc),

we know on what side of the decay they are expected, so we can apply a

similar cut to each of them.

Listing 6.9: Code snippet with the thrust

quality cuts applied to all the particles.

1 # Create copies of the list of photons not coming from the pi0 to

2 # operate

3 ma.copyList("gamma:1prong", "gamma:notPi0", path=main)

4 ma.copyList("gamma:1prongPi0", "gamma:notPi0", path=main)

5 ma.copyList("pi0:1prong", "pi0:fromLooseGammas", path=main)

6 ma.copyList("pi0:1prongPi0", "pi0:fromLooseGammas", path=main)

7

8 # Identify particles on the positive side of the thrust

9 positiveThrust = b2.create_path()

10 ma.applyCuts("gamma:1prong", "cosToThrustOfEvent > 0",

11 path=positiveThrust)

12 ma.applyCuts("gamma:1prongPi0", "cosToThrustOfEvent < 0",

13 path=positiveThrust)

14 ma.applyCuts("pi0:1prong", "cosToThrustOfEvent > 0",

15 path=positiveThrust)

16 ma.applyCuts("pi0:1prongPi0", "cosToThrustOfEvent < 0",

17 path=positiveThrust)

18

19 # Identify particles on the negative side of the thrust

20 negativeThrust = b2.create_path()

21 ma.applyCuts("gamma:1prong", "cosToThrustOfEvent < 0",

22 path=negativeThrust)

23 ma.applyCuts("gamma:1prongPi0", "cosToThrustOfEvent > 0",

24 path=negativeThrust)

25 ma.applyCuts("pi0:1prong", "cosToThrustOfEvent < 0",

26 path=negativeThrust)

27 ma.applyCuts("pi0:1prongPi0", "cosToThrustOfEvent > 0",

28 path=negativeThrust)

Finally, for every event that survived the cuts, several variables of every

reconstructed particle are stored to be used in the next stages of the

experiment. Important variables are:

Event Variables

1. thrust: the thrust as calculated with equation (6.1).

2. visibleEnergyOfEventCMS: the visible energy in the Center of

Mass frame.

3. tauPlusMCMode: the decay mode (labeled by the PDG) of the �+

as originated by the Monte Carlo generator. This variable is only

available on simulations.

4. tauMinusMCMode: the decay mode (labeled by the PDG) of the �−

as originated by the Monte Carlo generator. This variable is only

available on simulations.

5. track_sig_charge: the charge of the track on the signal side.

6. tau_sig_InvM: the invariant mass of the � on the signal side.
13

7. nPi0s_sig: the amount of �0
reconstructed on the signal side.

Variables Stored For All Particles

1. Kinematic Variables (both “measured” and MC in the lab and

Center of Mass frames)

a) ?� = (�, ?G, ?H, ?I): four momentum.

b) p: momentum magnitude.

6 The �→ ��0� Decay 36

14: For example, choosing better cuts for

the tag, choosing better thresholds for the

particleID probabilities, etc.

15: These labels are used with the same

meaning throughout the rest of the docu-

ment.

c) M: mass.

d) InvM: invariant mass.

e) pt: transverse momentum.

2. Thrust Variables

a) cosToThrustOfEvent: cosine of the angle between the parti-

cle’s trajectory and the thrust axis.

3. Simulation Variables

a) mcPDG: ID (as labeled by the PDG) of the particle generated by

the simulator. This variable is only available on simulations.

Variables Stored Only for Charged Particles

1. charge: charge of the reconstructed particle.

2. EoverP: the Energy (E) divided by themagnitude of theMomentum

(P).

3. Probabilities that the track matches a given particle.

a) kaonID

b) pionID

c) protonID

d) muonID

e) electronID

f) deuteronID

Variables Stored Only for the Photons

1. clusterE: energy measured by the cluster.

As mentioned in section 6.2, all the resulting events can still have entries

that represent background noise instead of signal but that escaped from

the cuts. So, before applying the unfolding techniques presented in this

work, a subset (called “BDT set”) is taken apart to train a BDT so the

unfolding is performed on a data set as clean as possible.

Note that in a real-life scenario, a more thorough study could be per-

formed to choosemore strict cuts
14

and perform a “better” reconstruction,

but (as mentioned in chapter 1) as the decay was chosen arbitrarily and

is not the main focus of this work, the cuts presented in here were

considered sufficient to set up the unfolding and to move on to the BDT

stage.

Second Stage: With Boosted Decision Trees

After reconstructing particles and events by cutting data with basf2, we

can assess how good the cuts performed by looking at the histograms of

the reconstructed invariant mass (as the detector would havemeasured it)

and the true invariantmass (as generated by theMonte Carlo simulations)

of the ��0
for events with one reconstructed �0

, labeled as measured

and matchedMC 15
, respectively, in figure 6.5.

We can notice the following things:

I Both histograms correctly contain the �(770) resonance in the 0.770

[GeV] region.

6 The �→ ��0� Decay 37

Figure 6.5: Histograms of the recon-

structed invariant mass (measured) and

the true invariant mass (matchedMC) of

the ��0
.

I The measured and reconstructed invariant masses differ mostly

in the region below the 1.0 [GeV] as the smearing caused by the

detector can be observed (and needs to be unfolded).

To explore possible causes, one approach is to make use of the simulation

variables tauDecayMode to identify what kind of decays make up the

background that we need to deal with.

Figure 6.6: Histograms of the reconstructed invariant mass (measured) and the true invariant mass (matchedMC).

On the vertical axis we can see the decay modes as labeled in table

6.1 and by checking their position on the horizontal axis, we can find

where those decays ended up, from which we can conclude that the

6 The �→ ��0� Decay 38

16: The component of momentum trans-

verse (i.e. perpendicular) to the beam line.

background events present in the invariant mass histograms come from

the 01 resonance (decayMode=5).

After checking the decay modes of the 01 [24], we can see that most of its

decays are to three pions like ��, �+�−�0
, �0�0�0

, etc, which are very

similar to the decay of interest in this work where the � decays to ��0
.

Particularly, the most resembling and problematic decay is:

0±
1
→ [�± → �±�0]�0

(6.2)

The conclusion is that this decay is too similar to the case where the 01 is

not present because if one �0
is either not detected or not reconstructed

correctly, the decays (�→ 01�) and (�→ ��) become indistinguishable.

This suggests that applying cuts based on physics principles is not enough

and an additional and slightly more sophisticated cleaning stage needs

to be performed.

The chosen approachwas to use aGradient BoostedDecision Tree (GBDT)

to solve a classification problem where each event can belong to one of

two categories: signal and background.

The category can be easily identified for each event by using the Event

Variables to check which of the following conditions is satisfied:

I Signal: if the � corresponding to the charge of the track on the

signal side decayed to a �.

((track_sig_charge == 1) and (tauPlusMCMode == 4))

or

((track_sig_charge == -1) and (tauMinusMCMode == 4))

I Background: if the � corresponding to the charge of the track on

the signal side decayed to something different than a �.

((track_sig_charge == 1) and (tauPlusMCMode != 4))

or

((track_sig_charge == -1) and (tauMinusMCMode != 4))

Note that this is equivalent to just using the negation of the previous

condition.

Let us not forget that difficulty arises when trying to classify the events

without access to the Event Variables corresponding to the Monte Carlo

simulations (in this case, tauPlusMCMode and tauMinusMCMode) as there

is no way of knowingwith full certainty what the decaymodewas, which

is why the GBDT needs to be trained to predict these categories with

other meaningful variables accessible on a real data set. The variables

chosen to be good for classification based on physics principles are:

I thrust and visibleEnergyOfEventCMS because we are trying to

discriminate between two different types of events, so the event

variables are usually a good choice.

I track_sig_EoverP because, asmentioned in section 3, the quantity

�/% is a good discriminator for charged particles. It works best for

electrons, but it was found to be a good parameter for the model.

I track_sig_pionID because the probability of the charged particle

being a pion is related to the decay mode.

6 The �→ ��0� Decay 39

17: More on Decision Trees can be found

on appendix C.

18: The “decision function” is just a fancy

name given to the output of the model. In

this case, it can be given in terms of odds

or probabilities.

I track_sig_pt because the transverse momentum
16

is usually

different depending on the amount of particles product in the

decay and howmassive they are. i.e. one particle will have a higher

transverse momentum than three.

I sig_gamma1_E and sig_gamma2_E because it could be possible

that photons coming from the background are being incorrectly

reconstructed as product of the �0
decay.

I track_sig_cosToThrustOfEvent because it is related to the thrust.

I neutral_sig_E and neutral_sig_M to identify which �0
s come

from a different decay mode.

As Machine Learning models’ ability to generalize depends on being

trainedwith samples not part of the data towhich it is going to be applied,

the BDT set (which corresponds to 30% of the taupair dataset) was split

in two halves; one to be used for training the model (called the training
set) and one to evaluate its performance (the test set).

Several models were triedwith different parameters, and the onewith the

best score when applied to the test set was an ensemble of 100 Decision

Trees with a max depth of 5 levels each and a restriction on the leaf nodes

to contain no less than 5% of the data, which correctly classified events

on the test set with an accuracy of 76.68%
17
.

GradientBoostingClassifier(n_estimators=100, max_depth=5,

min_samples_leaf=0.05)

The feature importances are shown in figure 6.7, from which we can

conclude that the variables mostly used to perform the classification are

the visible energy of the event, the energy of the reconstructed �0
, the

thrust and the transverse momentum of the track on the signal side.

Figure 6.7: Feature importances of theGra-

dientBoostingClassifier.

There are now two different approaches to make use of this model in our

signal/background classification problem:

1. Choose the class with the highest output given by the decision
function 18

. That is, the one with the highest odds or probability.

2. Set a clever threshold to define the minimum probability to assign

a given class, say “signal”.

6 The �→ ��0� Decay 40

The usual way is to go with option 1, which will be calledweak classifier,
and the benefits of going with option 2, which will be called strict
classifier, will be explored in more detail in chapter 7. For now, the

decision function (in terms of probabilities as it is more intuitive to

explain) for the training set and the test set will be plotted on the left of

figure 6.8, both for the signal and the background components in the

training and test sets, along with an option for the clever threshold to

give an idea of what to expect after using the GBDT.

Figure 6.8: Left: Decision Function in terms of the probability with the Punzi threshold where ((·) stands for signal and �(·) stands for
background. Right: Output of the BDT in terms of the log(odds) with the Punzi critical value.

The clever threshold is set according to the Punzi Criterion [25] with the

following hypotheses:

Null Hypothesis (N0) The data has no signal and only the background

is present

Alternative Hypothesis (N1) The �→ ��0� decay is present in the data

The significance level chosen to reject �0 is of five standard deviations

(0 = 5) which consists of choosing only the signal candidates with an

output of the decision value greater than the maximum of a so called

Merit Function (plotted on the right of figure 6.8), given by the integrated

efficiency & of signal that passes the cuts and the integrated amount of

background �:

Punzi Value =
&

0/2 +
√
�

(6.3)

The ideal cut was found to be when log(odds)= 1.466, which, when

using equation (C.2), translates to a minimum probability of % = 81.24%

plotted as a vertical dashed line on the left of figure 6.8.

The results (to which the unfolding will then be applied) are shown

on figure 6.9 with the signal and background isolated (both for the

reconstructed and the Monte Carlo invariant masses) so an assessment

on how well the classifiers are working can be done.

It is shown that the weak classifier still leaves a considerable amount of

background on the resulting histograms (which can be seen on the left

6 The �→ ��0� Decay 41

Figure 6.9: Top: reconstructed invariant mass for the output of the weak classifier (left) and the strict classifier (right). Bottom: Monte Carlo

invariant mass for the output of the weak classifier (left) and the strict classifier (right).

side), while the strict classifier results in much cleaner histograms (on the

right), though still not perfect and with less events. This is expected as

no Machine Learning model will have an accuracy of 100% and because

the strict classifier is setting a threshold lower than % = 100%.

1: After all, undoing bin migrations intro-

duces correlation between bins.

Unfolding 7
7.1 Computing the Response Ma-
trix 42
7.2 On the Weak Set 45
7.3 On the Strict Set 47

In this chapter, the main procedure to apply the unfolding techniques

revisited on chapters 4 and 5 to the decay proposed on chapter 6 as

found in the data set called “the unfolding set” in section 6.2 will be

presented.

First, an explanation on how the response matrix was computed will

be shown as it is the first step to test both of the unfolding techniques

presented in this work. Then, the unfolding will be performed on the

result of what was called the weak classifier to illustrate some issues

that may occur with noisy data and some peculiarities of each technique.

Finally, it will be performed on the result of the strict classifier to study

how much these issues can be mitigated.

For most experiments, the error matrix is assumed diagonal, which

means its elements can be interpreted as the variation expected to see

when repeating the experiment several times and can be conveniently

plotted as bars around each measurement, but this is not the case after

performing the unfolding.

Asmentioned in chapter 4, the SVD technique provides a way to compute

the unfolded error matrix, which is not expected to be diagonal
1
, which

means no easy interpretation can be given. Following the approach of

[12], the elements in the main diagonal are plotted as bars in the results,

but it is important to remark that it does not show the full information

of the variations as the off-diagonal elements can not be plotted and a

simple interpretation can not be given.

For the case of Quantum Annealing, we face the opposite case as there

is no technique provided to compute the unfolded error matrix (as was

mentioned in chapter 5). In [4], the unfolding was performed several

times on a quantum computer and the standard deviation (per bin) was

plotted as bars in the results, so a similar approach is considered here

and the simulation is performed several times to compute the correlation

matrix and the main diagonal is plotted in bars.

So, even though error bars are plotted for the results of both techniques,

they are not comparable as they represent different things. Moreover, as

neither of the resulting correlation matrices is expected to be diagonal,

they are fully shown for all the results.

7.1 Computing the Response Matrix

As a brief reminder, the response matrix represents the effects and distor-

tions (smearing, bin migration, etc) induced by the measurement device

(in this case, the Belle II detector) when performing an observation.

The response matrix in terms of amount of events migrated is shown in

figure 7.1 and was built using the histograms of figure 7.3. As mentioned

42

7 Unfolding 43

Figure 7.1: Response matrix of the � →
��0� decay in terms of amount of events

migrated.

2: The response matrix in terms of con-

ditional probabilities can be obtained by

normalizing the columns of the response

matrix in terms of events considering the

total amount of events generated at each

energy level.

3: From now on, the reconstructed invari-

ant mass with the effects of the detector

will be called the “measured” invariant

mass.

in section 2.2, the response matrix can be understood as the conditional

probability of finding an event in bin j when it should have beenmeasured

on bin i, but the matrix shown is in terms of the amount of events that

migrated from one bin to another and not in terms of the probability of

migration
2
. As the SVD unfolding technique requires using the response

matrix in terms of events and Simulated Quantum Annealing (SQA)

requires it in terms of probabilities, this normalization is performed

when carrying out the unfolding and it represents no difference in here

for the purpose of visualization as the only thing that would differ would

be the scale.

The events were taken from the preparing set and, as they were taken

from a simulation campaign of the Belle II experiment, events already

contain the effects of the detector, so after reconstructing the decay as

explained in section 6.2, it is available the invariant mass (which is the

variable of interest) of the �s both as generated by the simulator and as

“measured”
3
by the simulated detector.

Figure 7.2: Illustration where 1000 events

were generated with an invariant mass of

0.77 [GeV] and a) 100% of the events are

measured so the efficiency is 100%, and b)

only 83% are measured, so the efficiency

is 83%.

Note that the response matrix in this case does not include the efficiency

7 Unfolding 44

Figure 7.3:Histograms (and its pull plot)

used to build the response matrix of the

�→ ��0� decay.

of reconstruction (that is, missing events) because we are considering the

"True" histogram as the one built from the selected events and they have

a 1:1 correspondence with the "Measured" histogram as the invariant

mass of every event that passed the data selection stage is being matched

with a measured invariant mass. In other words, we are assuming an

unitary efficiency, but this is not the case in a real-life scenario and the

efficiencies of the detector need to be considered, which would result in

the columns of the response matrix not normalized but with a probability

less than 1. This is illustrated on figure 7.2.

As in a real experiment with real data there is no way to characterize

the background noise present in the signal, the approach followed

in this work is to build the response matrix supposing that a clean

signal (that is, free of background noise) was achieved by using the

reconstruction techniques explained in section 6.2. Even though in a

real-world application a more extensive and thorough study on the

background noise needs to be considered (specially as the unfolding

techniques based on SVD and Quantum Annealing rely on using a basis

model fromwhich variations will be estimated), we can see by comparing

the histograms to unfold (figure 6.9, or even the raw histogram on figure

6.5) with this basis model (figure 7.3) that it represents in good degree

the effects induced by the detector, making our decision suitable for

the purpose of this thesis which is to illustrate how (if) the presented

unfolding techniques work.

The true signal was achieved by replicating the same conditions (ex-

plained on section 14) expected to be fulfilled by the data after passing

through the BDT, but using the Monte Carlo variables directly, while the

counting was performed by filling a 2D histogramwith the true invariant

mass on one axis (chosen to be the x-axis) and the measured invariant

7 Unfolding 45

4: It is important to remember that this

comparison can be made on simula-

tions because the matchedMC histogram is

known. With real data, this is not possible.

mass on the other (chosen to be the y-axis).

By looking at the response matrix, we can conclude that the detector

has an almost diagonal response and we expect to see most of the

bin migrations in the region under the 1 [GeV]. This can also be seen

by looking at the pull plot of the histograms of figure 7.3 where the

skew is around the resonance, though there are events present in the

measurements but not in the MC simulations around the 1.6 [GeV] as

well.

7.2 On the Weak Set

The purpose of showing the results of the unfolding on the weak set is to

illustrate why there is the need to get a cleaner data set and not to explore

the unfolding techniques per se, so there will not be much attention on

how the hyperparameters were chosen (as opposite to section 7.3).

To assess the quality of the unfolding (that is, the resemblance of

the unfolded histogram to the matchedMC histogram), a two-sample

Kolmogorov-Smirnov test [26] is used requiring a confidence level of

 = 0.05 with the following hypotheses:

Null Hypothesis (N0) The two histograms are identical.

Alternative Hypothesis (N1) The histograms are not identical.

Simulated Quantum Annealing was performed 100 times with a regular-

ization parameter of 0.5, 4 bits to encode and a scale of 0.5. The results are

shown on the left of figure 7.4 and the full correlation matrix is shown

on the right. Qualitatively, it can be seen that the unfolded histogram

is similar to the matchedMC histogram
4
and, quantitatively, this can be

expressed by the probability that a given result (or a more significant

result) would occur under the null hypothesis. This probability is called

p-value and, by applying the Kolmogorov-Smirnov test, results in a value

of ? = 0.039 which is lower than , indicating that both histograms are

different and we can reject the null hypothesis (even though histograms

“look” similar).

Figure 7.4: Left: result of the SQA unfold-

ing on the weak set. Right: error matrix.

For the case of the SVD approach, it was performed with a regularization

parameter equivalent up to the fifth (k=5) 38 which could not be chosen

according to the general approach suggested on [12] as the amplitudes

of the coefficients did not decrease below 1 as can be seen on figure 7.5,

but was heuristically chosen as it yielded the best results. Qualitatively,

the results are similar to SQA’s in the sense that we do get an histogram

7 Unfolding 46

Figure 7.5: Absolute values of 38 when

performing SVD on the weak set.

5: The error matrix was not shown as it is

not the focus point to show the nuances of

unfolding noisy histograms.

similar to the matchedMC and, quantitatively, it resulted in the rejection

of the null hypothesis with a p-value of ? = 0.039 as well.

Figure 7.6: Left: result of the SVD unfold-

ing on the weak set. Right: error matrix.

Even though the results suggest that both techniques are comparable in

terms of accuracy, neither of them was able to correctly reconstruct the

true histogram as produced by the Monte Carlo simulation. To inspect

possible causes, the training set was split into signal and background

(remembering this is only possible with data coming from simulations)

and the unfolding was performed on each slice separately. The result of

the split is shown in figure 7.7 for both the Monte Carlo (on the left) and

the measured masses (on the right).

Figure 7.7:Weak set split into signal and

background.

After applying the unfolding techniques to the later histograms, it is

expected to reconstruct the former histograms and the results are shown

on figure 7.8
5
.

Figure 7.8: Unfolding signal and back-

ground splits of the weak set.

Again, from a qualitative point of view, both techniques yield similar

results, but after comparing its p-valueswe cannotice that SQAperformed

better for both signal and background with values of ? = 0.997 and

? = 0.0677, respectively. These are enough to say that there is chance

that both histograms could be the same, which does not happen with

SVD as its p-values are given by ? = 0.0002 and ? = 0.0115 for signal

and background, respectively.

7 Unfolding 47

Figure 7.9:Up:Absolute values of 38 when

performing SVD on the strict set. Down: a

zoomed-in version.

This suggests that the background noise is the main source of trouble

that produced the unsatisfactory results of figures 7.4 and 7.6 (specially

for the case of SQA), which motivates the following three approaches to

improve the results:

1. Build a responsematrix that includes this background noise instead

of using a response matrix free of background.

2. Keep using the same response matrix, but try to perform the

unfolding on a cleaner version of the invariant mass.

3. Keep using the same response matrix, but estimate the background

noise well enough to subtract it from the measured signal before

performing the unfolding.

In the end, all of these approaches reduce to having a very good knowl-

edge of the background noise that would be present on the data and,

additionally, approach 2 would require a very accurate classifier to filter

out background so a cleaner version of the signal can be used.

As finding a very good characterization of the background is very far from

trivial in any physics process and it would require studies that fall out of

the scope of this work (which is to illustrate the unfolding techniques),

approach 2 will be chosen and the unfolding will be performed on the

strict set which represents a cleaner version of the weak set.

In a real application, simulations are generated as the physicist thinks

Nature is going to behave andhe decideswhen the signal and background

are reliable enough to build a model, but because there are no weak or

strict data sets as there is only one data set measured, it is not possible to

know before hand if the simulations were accurate enough.

7.3 On the Strict Set

The results of the SVD unfolding when applied to the strict set are shown

in figure 7.10. By looking at the amplitudes of the 38 coefficients on

figure 7.9, we can notice that the approach to choose the regularization

parameter suggested in [12] will not work either as there is no coefficient

with a log amplitude lower than 1 (the dashed black line on the figure),

but there is a clear difference in the relative amplitudes between the first

coefficient and the rest.

With an heuristic approach, the best result was found to be when using

the second coefficient k=2 as it can be seen by visually inspecting the

Figure 7.10: Left: result of the SVD unfold-

ing on the strict set. Right: unfolded error

matrix.

7 Unfolding 48

Table 7.1: Quantitative results of the SQA

strict unfolding.

Result p-value

a 0.02170784069014051

b 0.011511738725894704

c 0.02170784069014051

d 0.011511738725894704

e 0.011511738725894704

f 0.011511738725894704

similarity between the unfolded results and the true MC mass in figure

7.10.

Qualitatively, we can see there are good results to unfold the � resonance

around 770 [MeV], though the regions before and after the main peak

look biased towards the model used to build the response matrix and the

background noise around the 1.1 [GeV] could not been unfolded correctly.

Quantitatively, the results the p-value is given by ? = 0.0217 suggesting

that both histograms are different.

By looking at the correlation matrix, we can see that the affected area is

primarily around the region where the bin migrations are taking place

which is surrounding the 770 [MeV].

Following to the results of the SQA, as there is no suggested approach to

choose the regularization weight (nor any of the other hyperparameters),

a grid search was performed to try different combinations which are

shown in figure 7.11.

Figure 7.11: Results of the SQA unfolding performed on the strict set with different parameters.

The most important parameters to change are the regularization weight

and the scaling used to perform the encoding, so the unfolding was

tried with regularization weights � = {0.05, 0.2, 0.7} and a scaling factor

scale={0.5, 1} from which similar results to that of SVD are observed as

the unfolding works better for the main peak while the regions where

the noise is present are highly biased towards the response model. The

results are shown quantitatively on table 7.1.

Choosing the best result is a complication inherent of the unfolding

problem. Even though none of them are likely to be equal according

to the Kolmogorov-Smirnov tests, if we were forced to choose one, we

could rank them by their p-values and the result would have to be “a” or

“c”, but this test can only be performed with simulated data as we know

a priori the matchedMC distribution that we are expecting to find. In a

real experiment, this histogram is not known and this comparison is not

possible.

7 Unfolding 49

What we can notice is that increasing the regularization weight and the

scale seem to have an impact on the variance as higher weights and higher

scales result in higher variance. Until this experiment can be reproduced

on a real quantum computer, it is not clear whether this variations are

due to the simulation method used in this work or due to the unfolding

technique per se.

Figure 7.12: Correlation matrices of the SQA results on the strict set.

For completeness, the full correlation matrices are shown on figure

7.12.

Conclusions 8
8.1 Future Work 50
8.2 Discussion and Final Remarks51

In this work, a computational experiment was performed to explore

how the (Simulated) Quantum Annealing technique would solve the

unfolding problem when compared against a more traditional Singular

Value Decomposition approach. The experiment used a simulated data

set of the � → ��0� decay (provided by the Belle II Collaboration) to

perform the unfolding on the ��0
invariant mass.

In this chapter, a direction on how this work can be expanded will be

presented and conclusions will be presented as a manner of discussion

about the results.

8.1 Future Work

The very first natural next step is to perform this same experiment on a

real quantum computer to see how well the simulations approximate the

real quantum annealing. By the time of developing this work, access to

a real device was not possible as there are not many working quantum

annealers and, without any agreement with the developing companies, a

significant budget is required. Yet, real quantum annealers are still in an

early stage of development and there are other difficulties that would

need to be addressed in order to run this work on a real device, such as

hownoisewould affect themeasurements and if real devices have enough

qubits to map a problem like this (problem known as “embedding”).

These points are out of the scope of this work, but more can be found at

D-Wave’s guide to use their solvers [16].

Another interesting next step would be to perform a similar experiment

but choosing a physics process with a steeply-falling spectrum and see

how SVD and QA perform. The physics process chosen in this work

resulted in a smooth histogram (that is, an histogram without abrupt

changes between adjacent bins), but as shown in [4], the results may vary

when that is not the case.

As SVD provides a way to compute the unfolded correlation matrix, a

contribution to the Quantum Annealing technique would be to see if it

is possible to perform a similar calculation and, as mentioned before, it

is even of more interest its interpretation and how (if) they relate to a

quantity of interest for experimentalists.

Regarding the results, the bias towards the base model is still an issue

that needs to be explored and it is not clear whether all techniques and

all experiments would have this same issue. For the techniques studied

in this work, an alternative scaling technique that is independent of the

model would be a possible solution that would need to be investigated

more in depth. If the bias would like to be reduced to improve this very

same experiment, the other approaches mentioned in section 7.2 could be

followed and either 1) a response matrix considering all the background

50

8 Conclusions 51

could be computed (that is, a response matrix based on the strict data set)

or 3) see how well the unfolding performs after subtracting a simulated

background to the measured data set.

8.2 Discussion and Final Remarks

The results presented in this work confirm that Quantum Annealing (at

least in its simulated version) yields comparable results to SVD when

used to solve a least squares problem to perform the unfolding, both on

the same histogram. Still, solving the unfolding has inherent problems

that are independent of the technique (plus the ones that are not) and that

still need to be addressed, so this section will focus on highlighting these

points and on whether quantum computers introduce any additional

benefit or not.

Starting with the hassles of the unfolding, choosing the regularization

weight remains an open question that belongs to any linear regression

problem. In this case, the method suggested in [12] for the SVD approach

did not work exactly as expected as no coefficients were found with an

amplitude lower than 1, but, still, lower amplitudes were found which

allowed to heuristically choose the best coefficient.

For the case of QA, the open question remains: how to choose the regu-

larization weight? The approach in this work was completely heuristic

and, as the main purpose was not to perform the unfolding per se, there

was no need to actually “choose” one weight nor one result.

Still, for both cases a quantitative result could be calculated using the

Kolmogorov-Smirnov test which, in principle, would allow us to choose

the best fit, but it is important to remember that this would not be possible

in a real application where the unfolded distribution is not known a

priori.

Referringparticularly toQA, this technique suffers from the sameproblem

that many Machine Learning techniques, which is how to choose the

hyper-parameters in general and not only the regularization weight. That

is, the amount of runs, the amount of qubits and the scale weight used in

the encoding (and, for the case of SQA, the amount of replicas). This is

something that needs to be investigate further if Quantum Annealing is

meant to be applied to solve a real problem.

Another point to discuss is how the errors transform after the unfolding.

SVD provides a way to compute the unfolded correlation matrix, but its

interpretation is not trivial. In contrast, theQA approach does not provide

a similar calculation, but a correlation matrix can be experimentally

measured. In the end, what would be of interest to an experimentalist

would be the confidence interval of how well these unfolded results are

believed to represent the real truedistribution.Neither of these techniques

provide a way for its calculation and it is still an open question. For a

more detailed discussion on the nuances of the interpretation of the

unfolded correlation matrix (for SVD and other “classic” techniques), the

reader is referred to [15].

In this particular experiment, it was found that the unfolded results are

going to be clearly biased towards the model used to build the response

8 Conclusions 52

1: For this particular case, a discussion

on how quantum annealing would per-

form against simulated quantum anneal-

ing, which is its classical counterpart, can

be found at [27], [28].

matrix. This can be due to the scaling technique used in the least squares

problems maps unknowns to proportional variations of the base model,

so the result is not expected to bemuch different. As a consequence, either

we need to remove the background noise on the histogram to unfold as

much as possible to make it similar to the base model, or the base model

needs to consider all the possible background effects expected to find in

the experiment. Both of these approaches require a good characterisation

of the background which is far from trivial and, if it could be achieved,

then the benefits of the unfolding may actually not be worth the effort

and it would not be necessary.

In the end, one of the most promising aspects of Quantum Computing is

to speed up calculations that would be practically impossible to perform

on classic computers. This experiment showed that performing the

unfolding via quantum annealing has the potential to yield results as

good as other classic methods and it showcases one of the many possible

ways qubits can be used to perform simulations/calculations, but realistic

expectations need to be set when talking about improvements on the

performance.

In any unfolding approach, what would benefit the most from a more

robust computational device would be the simulations to produce the

data and the computation of the response matrix. Once this step is done,

performing the unfolding is not a power-demanding task as, for example,

computing the SVD factorization of any matrix does not necessarily

represent a bottleneck that slows down the experiments. In principle, this

last step is already performed with classical computers, so a quantum

computer is not strictly required in this procedure, but that does not

mean it could not bring any benefit.

Nevertheless, to give an educated andmore serious opinion on howmuch

the unfolding could be accelerated with quantum computers, a whole

study would need to be carried out considering several things. To begin

with, a real quantum computer would be needed and, considering how

young this technology still is, the results would probably be tied to the

specific architecture of its quantumprocessingunit.Also, theperformance

would need to be measured with different tuning parameters (both for

the quantum computer setup and for the unfolding technique) and

considering different complexities of the problem ranging from a simple

unfolding to more complex matrices. This study was out of the scope of

this work as the limited access to real quantum annealers makes it costly

and impractical.

Until this technique is refined to run flawlessly in real quantum devices,

it is difficult to foresee a huge impact on the unfolding as an area of

research. Nevertheless, quantum computers are still several years or

maybe decades away from becoming a practical technology and finding

applications where they truly surpass their classic counterparts with a

gap wide enough to justify the effort and investment, is still an active

area of research
1
to which this work hopes to have contributed.

Appendix

53

A
Simulated Quantum Annealing

Simulated Quantum Annealing is a technique proposed in 2002 [22]

to compute the evolution of the Quantum Annealing Hamiltonian (5.5)

(written below for reference) using a Monte Carlo approach that takes

advantage of the Path Integral formulation.

�̂ = −Γ(C)
∑
8

�̂G9 −
=∑
8=1

ℎ8 �̂
I
8 −

∑
8< 9

�8 9 �̂
I
8 �̂

I
9

This Hamiltonian for n spins can be split into a potential energy term (U)

and a kinetic energy term (K) that do not commute [,*] ≠ 0:

* = −
=∑
8=1

ℎ8 �̂
I
8 −

∑
8< 9

�8 9 �̂
I
8 �̂

I
9 , = −Γ(C)

∑
8

�̂G9 (A.1)

So that, if we wanted to simulate how a system of n particles/spins

described by this Hamiltonian evolves with time starting from an initial

arbitrary state, Quantum StatisticalMechanics tells us [29] that we need to

compute the partition function Z which gives the probability of watching

a transition from one configuration to another one:

/ = Tr(4−��) (A.2)

Where, as usual, � = 1/:) where k is the Boltzmann Constant (which

will be set to 1) and T is the temperature of the system.

Developing (A.2) with the Quantum Annealing Hamiltonian by using

the Trotter product formula (which introduces an arbitrary scalar P):

/ =Tr(4−��)
=Tr(4−��/%)%

=Tr(4−�(+*)/%)% =
∑
B1

...
∑
B%

〈B1 |4−�(+*)/% |B2〉

× 〈B2 |4−�(+*)/% ...|B%〉〈B% |4−�(+*)/% |B1〉

(A.3)

To compute this partition function, the Path Integral formula is used to

divide the time interval of the whole annealing experiment into small

pieces. Once this is done, the Trotter product formula tells us that the

noncommutativity of the kinetic and potential energy operators can be

ignored 4−�(+*) ≈ 4−� 4−�* , obtaining an approximation /% to Z.

54

A Simulated Quantum Annealing 55

1: The full implementation can be found

at [23]. Note that [22] considers only the

interaction term for H, but it is straight-

forward to extend the result to the full

Hamiltonian (5.5).

The whole procedure can be found in detail in the appendix of [22], but

the result is found to be:

/ ≈ /% = �=/%
∑
B1

...
∑
B%

4−�3+1
/%)

(A.4)

Where:

�3+1 = −
%∑
:=1

(
=∑
8=1

ℎ8B
:
8 +

∑
8< 9

�8 9B
:
8 B

:
9 + �

⊥∑
8

B:8 B
:+1

8

)
(A.5)

�⊥ = −%)
2

ln tanh

Γ

%)
> 0 (A.6)

� =

(
1

2

sinh

2Γ

%)

)
1/2

(A.7)

Computing the partition function with the Path Integral formulation and

the Trotter formula resulted in a convenient interpretation to simulate

such a system with a Monte Carlo Metropolis approach because the

Trotter scalar P can now be interpreted as the amount of possible paths to

consider in the simulation (that is, the number of replicas of the original

Ising system to evolve) and the discretization of time is natural as time

steps are usually simulated with a loop (i.e. a for loop).

Figure A.1: Illustration of the Simulated

Quantum Annealing with n=9 spins in a

grid and P replicas.

Implementing the Simulated Quantum Annealing can now be reduced

to a couple of steps which are illustrated in figure A.1 and summarized

in algorithm 1
1
:

1. Define the initial state s which is going to be annealed and an

ambient temperature T.

2. Create P copies of the initial state that will simulate the many paths

it can take.

3. Set the evolution parameter of the simulation as the strength of

the transverse magnetic field Γ, which is going to go from ΓBC0AC to

Γ4=3 in discrete steps of size ΓBC4? .

4. For each value of Γ, try to flip = × % random spins by using the

following rule:

I If the spin flip leads to a state with a lower energy in its

corresponding replica, commit the spin flip.

I If the spin flip leads to a state with a higher energy in its

corresponding replica, compute the probability of transition

using the partition function (A.4) and decide whether to flip

A Simulated Quantum Annealing 56

or not using a Monte Carlo approach (i.e. compare with a

random number).

After performing these steps for every step ofΓ, the replicawith the lowest

energy is taken as the result and that is the output of the algorithm.

Algorithm 1: Pseudo-code of the Simulated Quantum Annealing

1 n← number of spins in the Ising system

2 P← number of Trotter replicas

3 T← ambient temperature

4 ΓBC0AC , Γ4=3← starting and ending transverse magnetic field strengths

5 ΓBC4? ← amount to decrease the transverse magnetic field at each time step

6 s← {B1 , B2 , ..., B=} initial state of n spins

7

8 function Metropolis(s , B8 , �) is
9 s′← configuration after spin B8 is flipped on s
10 Δ← �(s , �) − �(s′, �) /* Calculate the transition energy */

11 if Δ > 0 or 4Δ/) > rand() then
12 return s′ /* Move to new state */

13 else
14 return s /* Stay on the same state */

15 end
16 end
17

18 Y← {s1 , s2 , ..., sV} /* Create P copies of the initial state */

19

20 N← = × % /* Compute the amount of spins in all replicas */

21 for � ∈ [ΓBC0AC : ΓBC4? : Γ4=3] do
22 for N times do /* Try to flip N spins */

23 si , B 9 ← pick a random spin B 9 and its replica si
24 si ← Metropolis (si , B 9 , �)
25 end
26 end
27

28 BB>;DC8>= ← s with lowest energy in Y

B
Steering File for the �→ ��0� reconstruction

1 # ###

2 # Selection of 3%1 prong taupair decays with loose cuts

3 #

4 # l(h) nu nu

5 # |

6 # e+ e- -> tau+ tau-

7 # |

8 # pi+ l- l- nu

9 #

10 # Contributors:

11 # Eduard De La Cruz Burelo

12 # Carlos Pegueros

13 #

14 # last modified: June 2021

15 # ###

16

17 # !/usr/bin/env python3

18 # -*- coding: utf-8 -*-

19

20 include_ks_modes = False

21 include_HLT = True

22 include_L1 = False

23

24 import basf2 as b2

25 import modularAnalysis as ma

26 import vertex as vx

27 import sys

28 import variables.collections as vc

29 import variables.utils as vu

30 from variables import variables

31

32 default_output = "tau2pipi0"

33

34 b2.conditions.reset()

35 b2.conditions.prepend_globaltag("Legacy_IP_Information")

36 b2.conditions.append_globaltag("leptonid_Moriond2021_Official_v3")

37

38 ##

39 # Specify path to data sample and database

40 ##

41

42 main = b2.create_path()

43

44 # read input

45 arg_dataORmc = str(sys.argv[1])

46 arg_input = str(sys.argv[2])

47 arg_output = str(sys.argv[3])

57

B Steering File for the �→ ��0� reconstruction 58

48 if arg_dataORmc:

49 arg_output = default_output + ".root"

50

51 b2.B2INFO("CHECK: analysing MC, is this correct?")

52 b2.conditions.append_globaltag("leptonid_ICHEP2020_Official_v0")

53 ma.inputMdst("default", "%s" % arg_input, path=main)

54

55 ##

56 # create and fill the ParticleLists

57 ##

58 ma.fillParticleList("e-:all", "", path=main)

59 ma.fillParticleList("mu-:all", "", path=main)

60 ma.fillParticleList("pi+:all", "", path=main)

61 ma.fillParticleList("gamma:all", "", path=main)

62

63 gammaForPi0Cuts = "E > 0.1"

64 gammaForPi0Cuts += " and -0.8660 < cosTheta < 0.9563"

65 gammaForPi0Cuts += " and clusterNHits > 1.5"

66 ma.cutAndCopyLists("gamma:looseForPi0", "gamma:all", gammaForPi0Cuts, path=main)

67

68 ###

69 # pi0 reconstruction with loose photons

70 ###

71 ### photons from pi0s and pi0s

72 ma.reconstructDecay(

73 "pi0:fromLooseGammas -> gamma:looseForPi0 gamma:looseForPi0",

74 "0.115 < M < 0.152",

75 path=main,

76)

77 ma.cutAndCopyLists(

78 "gamma:pi0",

79 "gamma:looseForPi0",

80 "isDescendantOfList(pi0:fromLooseGammas) == 1",

81 path=main,

82)

83

84 variables.addAlias("nPhotonsFromPi0", "countInList(gamma:pi0)")

85 variables.addAlias("nPi0", "countInList(pi0:fromLooseGammas)")

86

87 ###

88 # track (not used for reconstruction of K_0S) and photon (not used for reconstruction of pi0) cuts

89 ###

90 trackCuts = "-3.0 < dz < 3.0 and dr < 1.0"

91

92 # reconstruct electrons

93 eIDCuts = "electronID > 0.5"

94 ma.cutAndCopyLists("e-:pid", "e-:all", f"{trackCuts} and {eIDCuts}", path=main)

95

96 # reconstruct muons

97 muIDCuts = "muonID > 0.5"

98 ma.cutAndCopyLists("mu-:pid", "mu-:all", f"{trackCuts} and {muIDCuts}", path=main)

99

100 # reconstuct pions for the 1prong tag

101 piIDCuts_tag = "pionID > 0.5"

102 ma.cutAndCopyLists("pi+:pid", "pi+:all", f"{trackCuts} and {piIDCuts_tag}", path=main)

103

104 # reconstruct pions for the signal (tau->pi+ pi0 nu)

105 variables.addAlias("EoverP", "formula(ifNANgiveX(clusterE, -1)/p)")

B Steering File for the �→ ��0� reconstruction 59

106 piIDCuts_signal = "EoverP < 0.8 and pionID > 0.5"

107 ma.cutAndCopyLists("pi+:pidsig", "pi+:all", f"{trackCuts} and {piIDCuts_signal}", path=main)

108 variables.addAlias("nGoodTracks", "formula(countInList(pi+:pid) + countInList(e+:pid) + countInList

(mu+:pid))")

109

110 ##

111 # event based cut - 2 tracks in event and at least one pi0

112 ##

113 ma.applyEventCuts("nGoodTracks == 2", path=main)

114 ma.applyEventCuts("nPi0 > 0", path=main)

115

116 gammaCuts = "E > 0.2"

117 gammaCuts += " and -0.8660 < cosTheta < 0.9563"

118 gammaCuts += " and clusterNHits > 1.5"

119 gammaCuts += " and isDescendantOfList(pi0:fromLooseGammas) == 0"

120 ma.cutAndCopyLists("gamma:notPi0", "gamma:all", gammaCuts, path=main)

121 variables.addAlias("nGoodPhotons", "countInList(gamma:notPi0)")

122

123 ###

124 # EventShape and EventKinematics modules

125 ###

126 particleList = ["pi+:pid", "pi0:fromLooseGammas", "gamma:notPi0"]

127

128 ma.buildEventShape(

129 particleList,

130 foxWolfram=False,

131 cleoCones=False,

132 jets=False,

133 harmonicMoments=False,

134 allMoments=False,

135 collisionAxis=False,

136 sphericity=False,

137 thrust=True,

138 path=main,

139)

140 ma.buildEventKinematics(particleList, path=main)

141

142 ###

143 ####

144 #### Tau -> pi pi0 nu_tau

145 ####

146 ###

147

148 ##

149 # Signal and tag sides

150 ###

151

152 # --- signal side

153 ma.reconstructDecay("tau+:sig -> pi+:pidsig pi0:fromLooseGammas", "", path=main)

154

155 # -- 1 prong side (tag)

156 ma.reconstructDecay("tau-:e -> e-:pid", "", path=main, dmID=11)

157 ma.reconstructDecay("tau-:pi -> pi-:pid", "", path=main, dmID=211)

158 ma.reconstructDecay("tau-:mu -> mu-:pid", "", path=main, dmID=13)

159

160 tau_1prongLists = [

161 "tau-:e",

162 "tau-:pi",

B Steering File for the �→ ��0� reconstruction 60

163 "tau-:mu",

164]

165

166 ma.copyLists("tau-:1prong", tau_1prongLists, path=main)

167

168 ma.reconstructDecay("vpho -> tau+:sig tau-:1prong", "", path=main)

169

170 variables.addAlias(

171 "dmID_1prong", "daughter(1, extraInfo(decayModeID))"

172) # reconstructed 1-prong decay mode

173

174 ##

175 # 2 tracks on the opposide sides

176 ##

177 variables.addAlias(

178 "track_1_x_track_2",

179 "formula(daughter(0, daughter(0, cosToThrustOfEvent))*daughter(1, daughter(0,cosToThrustOfEvent

)))",

180)

181

182 ma.applyCuts("vpho", "track_1_x_track_2 < 0", path=main)

183

184 ##

185 # number of photons and pi0 on 1-prong signal side and 1-prong tag side

186 # put requirements on the number of pi0s on 1-prong to choose the decay mode

187 ##

188

189 ma.copyList("gamma:1prong", "gamma:notPi0", path=main)

190 ma.copyList("gamma:1prongPi0", "gamma:notPi0", path=main)

191

192 ma.copyList("pi0:1prong", "pi0:fromLooseGammas", path=main)

193 ma.copyList("pi0:1prongPi0", "pi0:fromLooseGammas", path=main)

194

195 # 1-prong on positive or negative side of thrust axis

196 variables.addAlias(

197 "1prongInPosThrust",

198 "countInList(vpho, daughter(1, daughter(0,cosToThrustOfEvent)) > 0)",

199)

200 variables.addAlias(

201 "1prongInNegThrust",

202 "countInList(vpho, daughter(1, daughter(0,cosToThrustOfEvent)) < 0)",

203)

204

205 positiveThrust = b2.create_path()

206 negativeThrust = b2.create_path()

207

208 ma.applyCuts("gamma:1prong", "cosToThrustOfEvent > 0", path=positiveThrust)

209 ma.applyCuts("gamma:1prongPi0", "cosToThrustOfEvent < 0", path=positiveThrust)

210

211 ma.applyCuts("gamma:1prong", "cosToThrustOfEvent < 0", path=negativeThrust)

212 ma.applyCuts("gamma:1prongPi0", "cosToThrustOfEvent > 0", path=negativeThrust)

213

214 ma.applyCuts("pi0:1prong", "cosToThrustOfEvent > 0", path=positiveThrust)

215 ma.applyCuts("pi0:1prongPi0", "cosToThrustOfEvent < 0", path=positiveThrust)

216

217 ma.applyCuts("pi0:1prong", "cosToThrustOfEvent < 0", path=negativeThrust)

218 ma.applyCuts("pi0:1prongPi0", "cosToThrustOfEvent > 0", path=negativeThrust)

219

B Steering File for the �→ ��0� reconstruction 61

220 # take different paths if 1-prong in cosToThrustOfEvent > or < 0

221 sigThrustModule = main.add_module("VariableToReturnValue", variable="1prongInPosThrust")

222 sigThrustModule.if_value("> 0", positiveThrust, b2.AfterConditionPath.CONTINUE)

223 sigThrustModule = main.add_module("VariableToReturnValue", variable="1prongInNegThrust")

224 sigThrustModule.if_value("> 0", negativeThrust, b2.AfterConditionPath.CONTINUE)

225

226 # the number of photons and pi0s in 3prong and 1prong hemispheres

227 variables.addAlias("nPhotons_1prong", "nParticlesInList(gamma:1prong)")

228 variables.addAlias("nPhotons_sig", "nParticlesInList(gamma:1prongPi0)")

229

230 variables.addAlias("nPi0s_1prong", "nParticlesInList(pi0:1prong)")

231 variables.addAlias("nPi0s_sig", "nParticlesInList(pi0:1prongPi0)")

232

233 ##

234 # kinematics of 1-prong+Pi0 and 1-prong

235 ##

236 variables.addAlias("photonE_sig", "totalEnergyOfParticlesInList(gamma:1prongPi0)")

237 variables.addAlias("photonE_1prong", "totalEnergyOfParticlesInList(gamma:1prong)")

238

239 variables.addAlias(

240 "photonECMS_sig", "useCMSFrame(totalEnergyOfParticlesInList(gamma:1prongPi0))"

241)

242 variables.addAlias(

243 "photonECMS_1prong", "useCMSFrame(totalEnergyOfParticlesInList(gamma:1prong))"

244)

245

246 ma.cutAndCopyList("tau+:sigFromVpho", "tau+:sig", "isDescendantOfList(vpho)", path=main)

247 ma.cutAndCopyLists(

248 "tau-:1prongFromVpho", tau_1prongLists, "isDescendantOfList(vpho)", path=main

249)

250

251 variables.addAlias(

252 "ECMS_sig", "useCMSFrame(totalEnergyOfParticlesInList(tau+:sigFromVpho))"

253)

254 variables.addAlias(

255 "ECMS_1prong", "useCMSFrame(totalEnergyOfParticlesInList(tau-:1prongFromVpho))"

256)

257

258 variables.addAlias(

259 "ECMS_sig_photons",

260 "formula(useCMSFrame(totalEnergyOfParticlesInList(tau+:sigFromVpho)) + useCMSFrame(

totalEnergyOfParticlesInList(gamma:1prongPi0)) + useCMSFrame(totalEnergyOfParticlesInList(pi0:1

prongPi0)))",

261)

262

263 variables.addAlias(

264 "ECMS_sig_photons_pi0s",

265 "formula(useCMSFrame(totalEnergyOfParticlesInList(tau+:sigFromVpho)) + useCMSFrame(

totalEnergyOfParticlesInList(gamma:1prongPi0)))",

266)

267

268 variables.addAlias(

269 "ECMS_1prong_photons",

270 "formula(useCMSFrame(totalEnergyOfParticlesInList(tau-:1prongFromVpho)) + useCMSFrame(

totalEnergyOfParticlesInList(gamma:1prong)))",

271)

272

273 variables.addAlias("M_sig", "invMassInLists(tau+:sigFromVpho)")

B Steering File for the �→ ��0� reconstruction 62

274 variables.addAlias("M_1prong", "invMassInLists(tau-:1prongFromVpho)")

275

276 variables.addAlias("M_sig_photons", "invMassInLists(tau+:sigFromVpho, gamma:1prongPi0)")

277 variables.addAlias(

278 "M_1prong_photons", "invMassInLists(tau-:1prongFromVpho, gamma:1prong)"

279)

280

281 ##

282 # perform MC matching for MC samples

283 ##

284 if arg_dataORmc == "mc":

285 ma.matchMCTruth("vpho", path=main)

286 ma.labelTauPairMC(path=main)

287

288 ##

289 # PID corrections

290 ##

291

292 payload_elID_eff = "ParticleReweighting:electronID_eff_combination_09"

293 variables.addAlias(

294 "weight_elID_eff_tmp", f"extraInfo({payload_elID_eff}_data_MC_ratio)"

295)

296 variables.addAlias(

297 "weight_elID_eff_stat_up_tmp",

298 f"extraInfo({payload_elID_eff}_data_MC_uncertainty_stat_up)",

299)

300 variables.addAlias(

301 "weight_elID_eff_stat_dn_tmp",

302 f"extraInfo({payload_elID_eff}_data_MC_uncertainty_stat_dn)",

303)

304 variables.addAlias(

305 "weight_elID_eff_sys_up_tmp",

306 f"extraInfo({payload_elID_eff}_data_MC_uncertainty_sys_up)",

307)

308 variables.addAlias(

309 "weight_elID_eff_sys_dn_tmp",

310 f"extraInfo({payload_elID_eff}_data_MC_uncertainty_sys_dn)",

311)

312

313 payload_muID_eff = "ParticleReweighting:muonID_eff_combination_09"

314 variables.addAlias(

315 "weight_muID_eff_tmp", f"extraInfo({payload_muID_eff}_data_MC_ratio)"

316)

317 variables.addAlias(

318 "weight_muID_eff_stat_up_tmp",

319 f"extraInfo({payload_muID_eff}_data_MC_uncertainty_stat_up)",

320)

321 variables.addAlias(

322 "weight_muID_eff_stat_dn_tmp",

323 f"extraInfo({payload_muID_eff}_data_MC_uncertainty_stat_dn)",

324)

325 variables.addAlias(

326 "weight_muID_eff_sys_up_tmp",

327 f"extraInfo({payload_muID_eff}_data_MC_uncertainty_sys_up)",

328)

329 variables.addAlias(

330 "weight_muID_eff_sys_dn_tmp",

331 f"extraInfo({payload_muID_eff}_data_MC_uncertainty_sys_dn)",

B Steering File for the �→ ��0� reconstruction 63

332)

333

334 payload_elID_fake = "ParticleReweighting:electronID_misid_pi_combination_09"

335 variables.addAlias(

336 "weight_elID_fake_tmp", f"extraInfo({payload_elID_fake}_data_MC_ratio)"

337)

338 variables.addAlias(

339 "weight_elID_fake_stat_up_tmp",

340 f"extraInfo({payload_elID_fake}_data_MC_uncertainty_stat_up)",

341)

342 variables.addAlias(

343 "weight_elID_fake_stat_dn_tmp",

344 f"extraInfo({payload_elID_fake}_data_MC_uncertainty_stat_dn)",

345)

346 variables.addAlias(

347 "weight_elID_fake_sys_up_tmp",

348 f"extraInfo({payload_elID_fake}_data_MC_uncertainty_sys_up)",

349)

350 variables.addAlias(

351 "weight_elID_fake_sys_dn_tmp",

352 f"extraInfo({payload_elID_fake}_data_MC_uncertainty_sys_dn)",

353)

354

355 payload_muID_fake = "ParticleReweighting:muonID_misid_pi_combination_09"

356 variables.addAlias(

357 "weight_muID_fake_tmp", f"extraInfo({payload_muID_fake}_data_MC_ratio)"

358)

359 variables.addAlias(

360 "weight_muID_fake_stat_up_tmp",

361 f"extraInfo({payload_muID_fake}_data_MC_uncertainty_stat_up)",

362)

363 variables.addAlias(

364 "weight_muID_fake_stat_dn_tmp",

365 f"extraInfo({payload_muID_fake}_data_MC_uncertainty_stat_dn)",

366)

367 variables.addAlias(

368 "weight_muID_fake_sys_up_tmp",

369 f"extraInfo({payload_muID_fake}_data_MC_uncertainty_sys_up)",

370)

371 variables.addAlias(

372 "weight_muID_fake_sys_dn_tmp",

373 f"extraInfo({payload_muID_fake}_data_MC_uncertainty_sys_dn)",

374)

375

376 reweighter_el_eff = b2.register_module("ParticleWeighting")

377 reweighter_el_eff.set_name(f"ParticleWeighting_e+:tag_eff")

378 reweighter_el_eff.param("tableName", payload_elID_eff)

379 reweighter_el_eff.param("particleList", "e-:pid")

380 main.add_module(reweighter_el_eff)

381

382 reweighter_mu_eff = b2.register_module("ParticleWeighting")

383 reweighter_mu_eff.set_name(f"ParticleWeighting_mu+:tag_eff")

384 reweighter_mu_eff.param("tableName", payload_muID_eff)

385 reweighter_mu_eff.param("particleList", "mu-:pid")

386 main.add_module(reweighter_mu_eff)

387

388 reweighter_el_fake = b2.register_module("ParticleWeighting")

389 reweighter_el_fake.set_name(f"ParticleWeighting_e+:tag_fake")

B Steering File for the �→ ��0� reconstruction 64

390 reweighter_el_fake.param("tableName", payload_elID_fake)

391 reweighter_el_fake.param("particleList", "e-:pid")

392 main.add_module(reweighter_el_fake)

393

394 reweighter_mu_fake = b2.register_module("ParticleWeighting")

395 reweighter_mu_fake.set_name(f"ParticleWeighting_mu+:tag_fake")

396 reweighter_mu_fake.param("tableName", payload_muID_fake)

397 reweighter_mu_fake.param("particleList", "mu-:pid")

398 main.add_module(reweighter_mu_fake)

399

400 ###

401 # select the variables to be stored in the ntuple

402 ###

403 # CMS variables

404 variables.addAlias("E_CMS", "useCMSFrame(E)")

405 variables.addAlias("p_CMS", "useCMSFrame(p)")

406 variables.addAlias("px_CMS", "useCMSFrame(px)")

407 variables.addAlias("py_CMS", "useCMSFrame(py)")

408 variables.addAlias("pz_CMS", "useCMSFrame(pz)")

409 variables.addAlias("pt_CMS", "useCMSFrame(pt)")

410 variables.addAlias("theta_CMS", "useCMSFrame(theta)")

411 variables.addAlias("phi_CMS", "useCMSFrame(phi)")

412

413 # -- event based variables

414 eventVariables = [

415 "dmID_1prong",

416 "nGoodTracks",

417 "nGoodPhotons",

418 "nPhotons_sig",

419 "nPhotons_1prong",

420 "nPhotonsFromPi0",

421 "nPi0",

422 "nPi0s_sig",

423 "nPi0s_1prong",

424 "1prongInPosThrust",

425 "1prongInNegThrust",

426 "Ecms", "beamE",

427 "thrust",

428 "thrustAxisCosTheta",

429 "visibleEnergyOfEventCMS",

430 "totalPhotonsEnergyOfEvent",

431 "photonE_sig",

432 "photonECMS_sig",

433 "photonE_1prong",

434 "photonECMS_1prong",

435 "ECMS_sig",

436 "ECMS_sig_photons",

437 "ECMS_sig_photons_pi0s",

438 "ECMS_1prong",

439 "ECMS_1prong_photons",

440 "M_sig",

441 "M_sig_photons",

442 "M_1prong",

443 "M_1prong_photons",

444]

445

446 commonVariables = vc.kinematics + vc.inv_mass

447 commonVariables += ["theta", "cosTheta", "phi"]

B Steering File for the �→ ��0� reconstruction 65

448 commonVariables += [

449 "E_CMS",

450 "p_CMS",

451 "px_CMS",

452 "py_CMS",

453 "pz_CMS",

454 "pt_CMS",

455 "theta_CMS",

456 "phi_CMS",

457]

458 commonVariables += ["charge", "cosToThrustOfEvent"]

459

460 # -- tau candidate variables

461 tauVariables = vc.inv_mass # la podemos calcular, pero igual la pongo

462 # -- track level variables

463 ##

464 variables.addAlias("hasAncTau_P", "hasAncestor(-15,1)")

465 variables.addAlias("hasAncTau_M", "hasAncestor(15,1)")

466 variables.addAlias("isPDGEl", "matchedMCHasPDG(11)")

467 variables.addAlias("isPDGPi", "matchedMCHasPDG(211)")

468 trackVariables = ["clusterE", "EoverP"] + vc.pid + vc.track_hits + ["dz", "dr"]

469

470 # -- photon and pi0 variables

471 pi0Variables = vc.inv_mass # + [’rank’]

472

473 # -- MC specific info

474 if arg_dataORmc == "mc":

475 # -- event variables

476 eventVariables += [

477 "tauMinusMCMode",

478 "tauPlusMCMode",

479 "tauMinusMCProng",

480 "tauPlusMCProng",

481]

482

483 # -- common variables

484 commonVariables += vc.mc_variables + vc.mc_truth

485

486 variables.addAlias("mcE_CMS", "matchedMC(useCMSFrame(E))")

487 variables.addAlias("mcP_CMS", "matchedMC(useCMSFrame(p))")

488 variables.addAlias("mcPX_CMS", "matchedMC(useCMSFrame(px))")

489 variables.addAlias("mcPY_CMS", "matchedMC(useCMSFrame(py))")

490 variables.addAlias("mcPZ_CMS", "matchedMC(useCMSFrame(pz))")

491 variables.addAlias("mcPT_CMS", "matchedMC(useCMSFrame(pt))")

492 cms_mc_kinematics = [

493 "mcE_CMS",

494 "mcP_CMS",

495 "mcPX_CMS",

496 "mcPY_CMS",

497 "mcPZ_CMS",

498 "mcPT_CMS",

499]

500

501 tauVariables += vc.mc_variables

502 tauVariables += cms_mc_kinematics

503 tauVariables += [

504 "matchedMC(InvM)"

505]

B Steering File for the �→ ��0� reconstruction 66

506 trackVariables += cms_mc_kinematics

507

508 # (real) photon variables

509 gammaVariables = vc.kinematics + ["clusterE", "EoverP"] + ["dz", "dr"]

510

511 def get_unique_list(l):

512 return list(dict.fromkeys(l))

513

514 vphoVariableList = (

515 vu.create_aliases_for_selected(

516 list_of_variables=get_unique_list(eventVariables + ["cosTheta"]), decay_string="^vpho"

517)

518 + vu.create_aliases_for_selected(

519 list_of_variables=get_unique_list(commonVariables + tauVariables),

520 decay_string="vpho -> ^tau+ ^tau-",

521 prefix=["tau_sig", "tau_1prong"],

522)

523 + vu.create_aliases_for_selected(

524 list_of_variables=get_unique_list(commonVariables + ["dz", "dr", "

isSignalAcceptMissingNeutrino"]),

525 decay_string="vpho -> [tau+ -> pi- [^pi0 -> gamma gamma]] [tau- -> e-]",

526 prefix=["neutral_sig"],

527)

528 + vu.create_aliases_for_selected(

529 list_of_variables=get_unique_list(commonVariables + trackVariables + ["dz", "dr", "

isSignalAcceptMissingNeutrino"]),

530 decay_string="vpho -> [tau+ -> ^pi- [pi0 -> gamma gamma]] [tau- -> ^e-]",

531 prefix=["track_sig", "track_1prong"],

532)

533 + vu.create_aliases_for_selected(

534 list_of_variables=get_unique_list(gammaVariables),

535 decay_string="vpho -> [tau+ -> pi- [pi0 -> ^gamma ^gamma]] [tau- -> e-]",

536 prefix=["sig_gamma1", "sig_gamma2"],

537)

538)

539

540 ##

541 # Write flat ntuples

542 ##

543

544 ma.variablesToNtuple(

545 decayString="vpho",

546 variables=vphoVariableList,

547 filename=arg_output,

548 treename="tau1x1",

549 path=main,

550)

551

552 # Process the events

553 b2.process(main)

1: “Feature” is the name given to variables

in the machine learning argot.

C
Decision Trees and Ensembles

The purpose of this appendix is to give intuition on Decision Trees and an

ensemble technique called Gradient Boosted Decision Trees. The content

is based on [30] and a more formal description can be found at [31].

C.1 Decision Trees

Decision trees are built as a set of rules in the formof threshold conditions
for both classification and regression problems. These rules are stored

in nodes that are then combined in a hierarchical manner to make up a

binary tree. The first node in the structure is called the root node and

each subsequent node is called a leaf node.

When they are used to solve classification problems (as is the case of

this work), they try to look for the set of rules on a set of features
1

X = {G0 , G1 , ...} that can split best the data into the amount of classes

desired.

To illustrate the concept, a simple example is shown in figure C.1with only

two features and two classes that resembles a particle physics example:

signal and background.

Left Right

Figure C.1:An classification problemwith

a Decision Tree with a max depth of 1.

In this case, the rule on the root node is defined as a threshold on the G0

variable which is represented as a vertical line.

If the event to classify has a value for G0 that is lower than the threshold,

then it is classified as signal by moving one step forward in the left

direction. If the value is greater, it is classified as background by moving

one step forward in the right direction.

Whenever we add a new split node, the selected feature and the optimal

threshold are found bymaximizing the improvement in a quantity named

entropy or gini index that measures how mixed are the classes in the

67

C Decision Trees and Ensembles 68

nodes. The goal is to find splits such that both child nodes are as pure as

possible

The tree predicts the fraction of training points of each class that reached

that node, divided by the total number of training points that reached that

node. Those values can be interpreted as class assignment probabilities.

We can incrementally expand any leaf to refine the decision function. At

each step, the leaf focuses on a smaller sub-region of the space as shown

in figure C.2.

Left Right

Up Down

FigureC.2:An classification problemwith

a Decision Tree with a max depth of 2.

In this example, after two splits, we obtain pure leaves. i.e. in each leaf,

there is only one class, so the max depth here is equal to 2 and we do not

need to go deeper.

C.2 Boosting

Ensemble methods in Machine Learning consist of combining many sim-

ple base models to produce one optimal predictive model and Boosting

(from which Gradient Boosted Decision Trees get their name) is one of

them.

In Boosting, one often considers many homogeneous weak learners and

one’s output is fed as the input to the next one in a sequential way.

When used with trees, the weak learners are Decision Trees with a very

small max depth (i.e. 3, 5 or 8) where mistakes done by the first tree

model are corrected by the second tree model, and so on. The final model

is a weighted sum of all the trees.

In traditional boosting (AdaBoost), errors are corrected by re-weighting

samples at each step so that misclassified events are then given a higher

importance, but in Gradient Boosting, errors of one model are predicted

by the next model and subtracted from the prediction in order to reduce

the error to zero as much as possible.

One advantage of Boosting techniques is that every learner is expected

to under-fit individually as a result of it being shallow, but adding each

one of them results in an under-fitting reduction of the whole model.

C Decision Trees and Ensembles 69

Gradient Boosted Decision Trees

When using Gradient Boosted Decision Trees to solve a classification

problem (that is, to predict a target value H(x) that represents the proba-
bility of classification), it is more convenient to work with the logarithm

of the odds instead of the probabilities directly.

Odds are defined as the number of “successes” per “failure” and can be

translated to probabilities with a simple transformation:

odds =
successes

failures

=
?

1 − ? (C.1)

So, as the odds are defined in the interval (0,∞), they map to log-odds

on (−∞,∞) so that they can be used on regression equations without

worrying about additional restrictions:

log(odds) = log

(
?

1 − ?

)
∈ (−∞,∞) (C.2)

With this in mind, Gradient Boosted Trees can be described in the

following steps:

First, an initial prediction Ĥ is made by a naive probabilistic prediction

(the output will be the most frequent class).

Ĥ = Ĥ0 = log(odds) (C.3)

The prediction errors for this first step '1 which will be called residuals,
are then computed as a simple subtraction:

'̂1 = H − Ĥ0 (C.4)

where H is given in terms of the real log(>33B) and then it becomes the

target to predict for the first weak classifier:

Figure C.3: Prediction of the first Decision

Tree in the GBDT.

And this error is then subtracted to the original prediction (with a

multiplier � that works as a learning rate for the algorithm) to create a

new estimator:

Ĥ = Ĥ0 + �'̂1 ≡ Ĥ1 (C.5)

The residual is estimated again by a new tree in the chain.

'̂2 = H − Ĥ1 (C.6)

C Decision Trees and Ensembles 70

2: The Loss Function is usually defined as

a function of the predict probabilities, but

in this case we can make use of equation

(C.2) to go between one and the other.

And is added to the prediction.

Ĥ = Ĥ0 + �'̂1 + �'̂2 ≡ Ĥ2 (C.7)

And passed as the target of the next classifier and so on, so the final

prediction Ĥ for n estimators (as illustrated in figure C.4) becomes:

Ĥ = Ĥ0 + �'̂1 + �'̂2 + ... + �'̂= (C.8)

Figure C.4: Illustration of the Gradient Boosted Decision Trees algorithm.

This can be casted to an optimization/regression algorithm if we define

a Loss Function ! to be minimized as the negative log likelihood of the

data H as a function of the predicted log(odds) 2 :

!(H, log(odds)) = −H log(odds) + log(1 + 4 log(odds)) (C.9)

So that the gradient (or the derivative) to compute by each model can be

written as the residuals needed to improve the prediction yielded by the

previous model � = log(odds):

3!(H, �)
3�

=
3

3 log(odds)
(
−H log(odds) + log(1 + 4 log(odds))

)
= −H + 4 log(odds)

1 + 4 log(odds)

= −H + Ĥ
= −real + predicted ≡ −'

(C.10)

In the end, predictions are given in terms of the log(odds) and can be

easily translated to predicted probabilities ?̂ by solving equation (C.2)

for ?, that results in:

?̂ =
1

1 + 4−Ĥ
, where Ĥ = predicted log(odds) (C.11)

And the predicted class can now be the one with the highest probability

(or the highest log(odds)) predicted by the model.

Bibliography

Here are the references in citation order.

[1] Steven Weinberg. ‘A Model of Leptons’. In: Phys. Rev. Lett. 19 (1967), pp. 1264–1266. doi: 10.1103/

PhysRevLett.19.1264 (cited on page 1).

[2] A. Pais and S. B. Treiman. ‘How Many Charm Quantum Numbers are There?’ In: Phys. Rev. Lett. 35 (23

Dec. 1975), pp. 1556–1559. doi: 10.1103/PhysRevLett.35.1556 (cited on page 1).

[3] Richard P Feynman. ‘Simulating physics with computers’. In: International journal of theoretical physics
21.6/7 (1982), pp. 467–488 (cited on page 3).

[4] Kyle Cormier, Riccardo Di Sipio, and Peter Wittek. ‘Unfolding measurement distributions via quantum

annealing’. In: Journal of High Energy Physics 2019.11 (Nov. 2019). doi: 10.1007/jhep11(2019)128 (cited

on pages 3, 15, 22, 25, 26, 42, 50).

[5] E Kou et al. ‘The Belle II Physics Book’. In: Progress of Theoretical and Experimental Physics 2019.12 (Dec.

2019). 123C01. doi: 10.1093/ptep/ptz106 (cited on pages 3, 28, 30, 32).

[6] T. Abe et al. Belle II Technical Design Report. 2010 (cited on pages 3, 32).

[7] T. Kuhr et al. ‘The Belle II Core Software’. In: Computing and Software for Big Science 3.1 (Nov. 2018). doi:

10.1007/s41781-018-0017-9 (cited on page 4).

[8] The Belle II Collaboration. Belle II Analysis Software Framework (basf2). https://github.com/belle2/
basf2/. 2021 (cited on page 4).

[9] Carlos Pegueros. Unfolding Benchmark. https://github.com/peguerosdc/unfolding_benchmark.
2021 (cited on page 4).

[10] G. Cowan. Statistical data analysis. Oxford University Press, USA, 1998 (cited on pages 6, 13).

[11] Per Christian Hansen. Discrete Inverse Problems. Society for Industrial and Applied Mathematics, 2010

(cited on page 13).

[12] Andreas Höcker and Vakhtang Kartvelishvili. ‘SVD approach to data unfolding’. In:Nuclear Instruments
and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment
372.3 (1996), pp. 469–481. doi: https://doi.org/10.1016/0168-9002(95)01478-0 (cited on pages 15,

17, 19–21, 42, 45, 47, 51).

[13] Steven L. Brunton and J. Nathan Kutz. Data-Driven Science and Engineering. Cambridge University

Press, Jan. 2019 (cited on page 17).

[14] ‘25. Practical Analysis of Least Squares Problems’. In: Solving Least Squares Problems, pp. 180–198. doi:

10.1137/1.9781611971217.ch25 (cited on page 20).

[15] Mikael Kuusela. ‘Statistical Issues in Unfolding Methods for High Energy Physics’. In: 2012 (cited on

pages 21, 51).

[16] D-Wave. Solving Problems with D-Wave Solvers. https://docs.dwavesys.com/docs/latest/c_gs_3.
html. 2021 (cited on pages 22, 50).

[17] Tadashi Kadowaki and Hidetoshi Nishimori. ‘Quantum annealing in the transverse Ising model’. In:

Phys. Rev. E 58 (5 Nov. 1998), pp. 5355–5363. doi: 10.1103/PhysRevE.58.5355 (cited on page 22).

[18] Sorin Istrail. ‘Statistical Mechanics, Three-Dimensionality and NP-Completeness: I. Universality of

Intractability of the Partition Functions of the Ising Model Across Non-Planar Lattices’. In: 32nd ACM
Symposium on the Theory of Computing (STOC00). Portland, Oregon: ACM Press, 2000, pp. 87–96 (cited

on page 23).

[19] M. Born and V. Fock. ‘Beweis des Adiabatensatzes’. In: Zeitschrift für Physik 51.3-4 (Mar. 1928), pp. 165–

180. doi: 10.1007/bf01343193 (cited on page 23).

71

https://doi.org/10.1103/PhysRevLett.19.1264
https://doi.org/10.1103/PhysRevLett.19.1264
https://doi.org/10.1103/PhysRevLett.35.1556
https://doi.org/10.1007/jhep11(2019)128
https://doi.org/10.1093/ptep/ptz106
https://doi.org/10.1007/s41781-018-0017-9
https://github.com/belle2/basf2/
https://github.com/belle2/basf2/
https://github.com/peguerosdc/unfolding_benchmark
https://doi.org/https://doi.org/10.1016/0168-9002(95)01478-0
https://doi.org/10.1137/1.9781611971217.ch25
https://docs.dwavesys.com/docs/latest/c_gs_3.html
https://docs.dwavesys.com/docs/latest/c_gs_3.html
https://doi.org/10.1103/PhysRevE.58.5355
https://doi.org/10.1007/bf01343193

[20] Andrew Lucas. ‘Ising formulations of many NP problems’. In: Frontiers in Physics 2 (2014). doi:

10.3389/fphy.2014.00005 (cited on page 25).

[21] Kyle Cormier, Riccardo Di Sipio, and Peter Wittek. Unfolding as quantum annealing. https://github.
com/rdisipio/quantum_unfolding. 2019 (cited on page 25).

[22] Roman Marto ňák, Giuseppe E. Santoro, and Erio Tosatti. ‘Quantum annealing by the path-integral

Monte Carlo method: The two-dimensional random Ising model’. In: Phys. Rev. B 66 (9 Sept. 2002),

p. 094203. doi: 10.1103/PhysRevB.66.094203 (cited on pages 26, 54, 55).

[23] Shinya Morino. SQAOD. https://github.com/shinmorino/sqaod/. 2019 (cited on pages 26, 55).

[24] P.A. Zyla et al. ‘Review of Particle Physics’. In: PTEP 2020.8 (2020), p. 083C01. doi: 10.1093/ptep/

ptaa104 (cited on pages 28, 29, 32, 33, 38).

[25] Giovanni Punzi. ‘Sensitivity of searches for new signals and its optimization’. In: Proceedings of
PHYSTAT2003: Statistical Problems in Particle Physics, Astrophysics, and Cosmology (Sept. 2003) (cited on

page 40).

[26] Springer Verlag GmbH, European Mathematical Society. Kolmogorov–Smirnov test. Encyclopedia of
Mathematics. Website. URL: http://encyclopediaofmath.org/index.php?title=Kolmogorov%E2%

80%93Smirnov_test&oldid=22660. Accessed on 2021-10-27 (cited on page 45).

[27] Matthias Troyer. ‘Simulated annealing versus quantum annealing’. In: APS March Meeting Abstracts.
Vol. 2016. APS Meeting Abstracts. Jan. 2016, B13.001 (cited on page 52).

[28] Sei Suzuki. ‘A comparison of classical and quantum annealing dynamics’. In: Journal of Physics:
Conference Series 143 (Jan. 2009), p. 012002. doi: 10.1088/1742-6596/143/1/012002 (cited on page 52).

[29] W. Greiner et al. Thermodynamics and Statistical Mechanics. Classical theoretical physics. Springer-Verlag,
1995 (cited on page 54).

[30] Inria.Machine learning in Python with scikit-learn [MOOC]. https://www.fun-mooc.fr/en/courses/
machine-learning-python-scikit-learn/. 2021 (cited on page 67).

[31] Jerome H. Friedman. ‘Greedy function approximation: A gradient boosting machine.’ In: The Annals of
Statistics 29.5 (2001), pp. 1189–1232. doi: 10.1214/aos/1013203451 (cited on page 67).

72

https://doi.org/10.3389/fphy.2014.00005
https://github.com/rdisipio/quantum_unfolding
https://github.com/rdisipio/quantum_unfolding
https://doi.org/10.1103/PhysRevB.66.094203
https://github.com/shinmorino/sqaod/
https://doi.org/10.1093/ptep/ptaa104
https://doi.org/10.1093/ptep/ptaa104
http://encyclopediaofmath.org/index.php?title=Kolmogorov%E2%80%93Smirnov_test&oldid=22660
http://encyclopediaofmath.org/index.php?title=Kolmogorov%E2%80%93Smirnov_test&oldid=22660
https://doi.org/10.1088/1742-6596/143/1/012002
https://www.fun-mooc.fr/en/courses/machine-learning-python-scikit-learn/
https://www.fun-mooc.fr/en/courses/machine-learning-python-scikit-learn/
https://doi.org/10.1214/aos/1013203451

	Contents
	Introduction
	A problem in High Energy Physics
	Quantum Computers. ``Nature isn't classical, dammit''
	The Present Work

	Formulating the Unfolding Problem
	Unfolding as a Maths Problem
	Probability in Particle Physics
	Mathematical foundation of the unfolding problem

	The Inverse Problem
	A simple example
	Continuous Inverse Problem
	Discrete Inverse Problem
	General Solution to the Inverse Problem

	Solving via SVD
	Singular Value Decomposition
	As a Solution to the Least Squares Problem
	As a Solution to the Unfolding Problem

	Solving via Quantum Annealing
	Quantum Annealing
	As a Solution to the Least Squares Problem
	As a Solution to the Unfolding Problem

	Computational Experiment
	The 0 Decay
	About
	Data Selection

	Unfolding
	Computing the Response Matrix
	On the Weak Set
	On the Strict Set

	Conclusions
	Future Work
	Discussion and Final Remarks

	Appendix
	Simulated Quantum Annealing
	Steering File for the 0 reconstruction
	Decision Trees and Ensembles
	Decision Trees
	Boosting

	Bibliography

