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Roig Garcés and Dr.  Miguel Á ngel Pérez Angón for their helpful comments and 
suggestions. 

 
I want to appreciate my family and friends for all the support and the words of 

encouragement.  My deepest gratitude to my parents, Zaida and Miguel Á ngel, 
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En la búsqueda de una explicación para las masas de neutrinos, muchas propuestas 
teóricas consideran nuevos estados pesados de neutrinos que implican una matriz 
de mezcla de tres neutrinos no unitaria, produciendo nuevos efectos en la probabilidad 
de oscilaciones. Si estos efectos fueran medibles, se podr´ıa tener evidencia indirecta 
de nueva f´ısica. 

 
En este trabajo estudiamos una propuesta experimental y obtenemos su sensibilidad 
a neutrinos ligeros, considerando tanto interacción neutrino-nucleón como neutrino- 
electrón.  Usando los resultados de neutrinos estériles ligeros y el formalismo de 
la no-unitariedad (en la aproximación de distancia cero) calculamos la sensibilidad 
esperada a uno de los elementos de la matriz de mezcla no-unitaria. Estos cálculos 
se  realizaron  tanto  para  el  caso  de  la  interacción  neutrino-nucleón  como  para 
neutrino-electrón. 



Abstract 

4 

 

 

 
 

In the search for an explanation of the neutrino mass, many theoretical proposals 
consider new heavy neutrinos states that imply that a three neutrino mixing 
matrix is non-unitary. This would lead to new effects on the oscillation probability 
that, if measurable, could be indirect evidence of new physics. 

 
In this work, we will study an experimental proposal and obtain its sensitivity 
to light sterile neutrinos for neutrino-nucleon and neutrino-electron interaction. 
Using the light sterile neutrino results and the non-unitary formalism (in the zero-
distance approximation) we compute the expected future sensitivity to an element 
of the non-unitary oscillation matrix. We perform these computations both for the 
neutrino-nucleon and the neutrino-electron interaction case. 
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Introduction 

 
As scientists, we search for models or theories that can describe, with good accuracy, 
the observed data in the experiments. In this sense, one of the most essential and 
successful models in physics is the Standard Model (SM). The SM describes three 

of four interactions: electromagnetic, weak, and strong force, with the SU(3)c 

SU(2)L U(1)Y as their symmetry group.  The SM was born in ’60-’70s by the 
work of many important physicists like Feynman, Tomonaga, Schwinger, and 
many others. They formulated quantum electrodynamics (QED). After some years 
Sheldon Glashow [8], Steven Weinberg [30], and Abdus Salam [27] unified the 
electrodynamics with weak interaction in the Electro-Weak theory (E-W). Another 
essential contribution to SM is the quark model by Gell-Mann, which is the first 
step to the quantum chromodynamics theory (QCD). All these theories compose the 
SM and are the most consistent models due to their prediction level and the accuracy 
with the experimental observations. 

 
One of the most important SM predictions is the existence of a boson that gives 
mass to all the fermions. The scalar, known as the Higgs boson, also gives mass 

to the Z and W± bosons through the Higgs mechanism.  The  Z and W±  bosons 
are a consequence of the gauge structure of the SM. In 2012, in the Large Hadron 
Collider, the Higgs boson was successfully discovered [18] [1]. With this discovery, 
the SM gained even more reliability in their prediction and their accuracy. We 
discuss the SM with more details in the next section. 

 
Although the SM is currently the most reliable model, it does not mean that it 
is a perfect model or a fundamental theory that describes everything. The SM 
has many problems that the model cannot answer. One of the problems of the 
SM that we can notice immediately is that, as we said in the first paragraph, the 
SM only describes 3 out of 4 fundamental forces but what happens with gravity? 
In history have been many attempts to create a quantum field theory of gravity. 
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In other words, we want to find a particle associated with the gravity force. 
However, all these attempts have failed because the gravity is not renormalizable, 
which means that the theory has divergences that do not have physical sense. The 
incompatibility of gravity with a quantum field theory is one of the problems of 
SM, but theories like loop quantum gravity (LQG) [26] and string theory [28] try 
to describe it. 

 
Besides the lack of a quantum field theory to the gravity, there are many other 
problems in the SM. A few examples are the asymmetry of the matter in the 
universe [11], the dark matter [11], the hierarchy problem [4], and the nature of 
the neutrino mass . In this work, we focus our attention on the nature of the 
neutrino mass. 

 
Therefore, the SM is far from being a perfect model. These problems suggest that 
we need an extension of SM to complement it. As we said above, we focus on the 
neutrino mass. This problem began when the measurement of atmospheric 
neutrinos did not match with the result predicted by SM. This was solved with the 
mechanism of neutrino oscillation that allows passing from one neutrino flavor to 
another. It should be noted that only three neutrino flavors have been discovered 
(electron, muon, and tau flavor), and the oscillation of these three neutrino flavors 
are described by the Pontecorvo-Maki-Nakagawa-Sakata (PMNS) matrix. 

 
The confirmation of the neutrino oscillation did not arrive until 2002, when the 
Super-Kamiokande collaboration and Sudbury Neutrino Observatory (SNO) had 
enough experimental data to support the neutrino oscillation theory. For this 
confirmation, in 2015, Takaaki Kajita [12] and McDonald [19] were recognized 
with the physics Nobel prize. The discovery of neutrino oscillation has consequences 
on our understanding of neutrino. The oscillation process requires that the neutrinos 
have mass, and in the SM, the neutrino is a massless particle. The neutrino 
oscillation evidence shows that the neutrino has mass but we do not know their 
values and their nature. 

 
There are many extensions of SM to try to describe the mass of neutrino. These 
extensions use either Dirac and Majorana mass terms. Where Dirac mass is the mass 
of all charged fermions and Majorana mass is the mass of the particles that are 
their antiparticles and chargeless. Majorana mass terms are used in the seesaw 
mechanism, one of the most important SM extensions. The seesaw mechanism used 
neutral heavy leptons with Majorana mass as a messenger to transport mass to the 
active neutrinos. This work will use the effects of these neutral heavy leptons that 
can appear in a non-unitary oscillation matrix. 
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Currently, there are many experiments to try to detect new neutrino or indirect 
evidence of them.    For this reason, we focus on a proposed experiment with a 
new neutrino source using Kaon decays [5], [16] to get constraints for light- sterile 
neutrino and for the neutral heavy leptons. In chapter 2, we describe the SM 
content. Then in chapter 3, we talk about of neutrino oscillations and the types 
of neutrino experiments. We dedicate chapter 4 to explaining the non- unitary 
oscillation matrix formalism and describing one important effect called the zero-
length effect. Chapter 5 is devoted to describing our attempt to replicate the results 
of [5], using some approximations, to get similar results as a test of our 
computations. We also used the neutrino-electron scattering to get original 
constraints. In chapter 6 we get the light sterile constraints and the heavy leptons 
constraints. Finally, in chapter 7, we give the conclusions and perspectives to 
improve the constraints. 
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Chapter 2 

Standard model 

The standard model of elementary particle physics studies three of four fundamental 
forces: strong, weak, and electromagnetic force. Gauge theories describe these 
forces with two essential ingredients: quantum field theories and an internal 
symmetry that governs its dynamics [23]. The quantum field theories that belong 
to the SM are the Quantum Chromodynamics (QCD) and the Electro-weak interaction, 
which is the unification of weak interaction and Quantum Electrodynamics (QED). 
The symmetry groups that accompany the quantum field theories are SU(3)c 
SU(2)L U(1)Y, where the label c is the charge color label, and L means that the 
weak force only interacts with particles with left chirality. Finally, the Y means 
the hypercharge. The generators of these symmetry groups are the carries of the 3 
fundamental forces, which are known as bosons. For the case of SU(3)c, the eight 
generators are the gluons that transport the strong force. The four generators of 

SU(2)L ⊗ U(1)Y are the Ai   (with i = 1, 2, 3), and Bµ [25]. After the Spontaneous 

symmetry breaking, the boson A3  and Bµ mix to get the Z0 and Aµ. The mixing 
of A1 and A2 gives us the boson W±. All these bosons transport the force to all 

µ µ 

the particles in the SM. The SM has 12 fundamental fermions divided into leptons 
and quarks, which we will discuss in the next section. 

 

2.1 The SM particle content 

As we have seen above, the SM particles are divided into bosons and fermions. 
The bosons are the particles that transport the different forces to the fermions 
and obey the Bose-Einstein statistics. This statistics allows the bosons to be in 
the same quantum state than another boson.   On the other hand, the fermions obey 
the Fermi-Dirac statistics. In other words, the fermions can not occupy the same 
quantum state that another fermion. This restriction is known as the Pauli exclusion 
principle. As we said, the fermions are divided into leptons and quarks. 



Chapter 2 Standard Model 

11 

 

 

 

In the lepton section, there are only 6 fermions (and their respective antiparticles). 

They are: electron (e), electron neutrino (νe), muon (µ), muon neutrino (νµ), tau ( 
τ), tau neutrino (ντ). We can see some parameters of these leptons in the table (2.1). 

 
 
 
 
 
 

 Leptons 
Particles Q mass [GeV] IW3 

First family 
Electron (e) -1 0.511 x 103

 − 1 
2 

Electron neutrino (νe) 0 <10−9
 + 1 2 

Second family 
Muon (µ) -1 105.658x10−3

 − 1 
2 

Muon neutrino (νµ) 0 <10−9
 + 1 2 

Third family 
Tau (τ) -1 1.777 − 1 

2 

Tau neutrino (ντ) 0 <10−9
 + 1 2 

 

 
Table 2.1: The fundamental leptons are divided in their respective family, where 
Q is the electric charge and IW3 is the third component of weak isospin. All the 
information is in accordance with the particle data group (PDG) [29]. 

 
 
 

 
The electron, muon, and tau have the same electric charge and quantum numbers, 

such as weak isospin. The only difference between these three particles is the 
mass.  The muon is approximately 200 times heavier than the electron and the 
tau is heavier than the muon. Family by family, the charged leptons have more 
mass than the lepton of the previous family. The quarks fulfill this feature too. 
Another important feature is that the neutrino does not have an electric charge, 
and for this reason, the neutrino can not take part in electromagnetic interaction 
only in the Weak interaction. 
In the case of the quark, there are 6 fermions (and their respective antiparticles). 
They are up (u), down (d), charm (c), strange (s), top (t), bottom (b) and, as well 
as in the case of leptons, the quarks are divided into families as shown in the 
table (2.2). We notice that the electric charge is a fraction of the electric charge of 
the electron. Also, an important feature is that the quarks are the only fermions that 
have a color charge, and for this reason, the quark takes part in the strong 
interaction. 
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 Quarks 
Particles Q mass [GeV] IW

3
 

First family 
Up (u) + 2 3 2.2 x 10−3

 + 1 2 

Down (d) − 1 
3 4.7 × 10−3

 − 1 
2 

Second family 
Muon Charm(c) + 2 

3 1.27 + 1 
2 

Strange (s) − 1 
3 96 × 10−3

 − 1 
2 

Third family 
Top (t) + 2 

3 173.21 + 1 
2 

Bottom (b) − 1 
3 4.18 − 1 

2 

 

 
Table 2.2: The quarks are divided in their respective family, where Q is the electric 
charge and IW3 is the third component of weak isospin, all the information is in 
accordance with particle data group (PDG) [29]. 

 
 

 

Figure 2.1: A box of the standard model and their principal particles [31]. 

 
 

 
These fermions and bosons are the fundamental particles of the standard model. 

They are depicted in fig. (2.1). However, these fundamental fermions are not all 
the particles that exist. Some particles, like the baryons and mesons, are made up 
of these fundamental particles. The baryons are composed of three quarks, some 
of the common baryons are the proton and neutron. In contrast, the mesons are 
formed by one quark and one anti-quark like the pion and the kaon. All these 
composed particles made of quarks are called Hadrons and, as we can see, are 
massive particles. 
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1 0 

    

    

 

2.1.1 Dynamics of spin 1/2 particles 

All the leptons have spin one half while all the bosons have integers number of 
spin. This feature is important because the description of a particle with spin 1 
without interaction (free particle) is given by Dirac equation 

 

(ih̄ γµ∂u − mc)ψ = 0, (2.1) 

or in natural units  
(iγµ∂u − m)ψ = 0. (2.2) 

This equation of motion comes out of the Lagrangian density [25] 
 

LDirac = ψ̄(iγµ∂u − m)ψ. (2.3) 

Where  
ψ¯ ≡ γ0ψ†, (2.4) 

and the γ represent the four gamma matrices, which are: 

 
γ0 = 

 
0   1

 

(2.5) 

 
 

γi = 
0 σi 

−σi 0 

 
. (2.6) 

 

This representation of the γ matrices is called the Weyl or chiral representation, 
also σi refers to the Pauli matrices, is well known that Pauli matrices are 2 × 2, 
therefore the γ matrices have 4 × 4 dimension. For the aforementioned ψ must 
have 1 × 4 dimension. It is called spinor and in the chiral representation is: 

ψ = 
ψL . (2.7) 
ψR 

 

2.2 Introduction to the electro-Weak theory 

The Weak theory and the QED were described as not related theories. However, 
the physicist noticed that we could unify both theories using the combination of 
spontaneous symmetry breaking with a local gauge. This combination is called 

the Higgs mechanism [13]. The Higgs mechanism broke the U(1) symmetry. 
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µ 

Z0 

µ 

√= 

A sin θw cos θw B 

√
2 

µ µ 2 

 

After this, the bosons (Ai  and Bµ) are combined to get the physical fields as 
follow: 

 
W± =

 1 
(A1 ∓ iA2 ) with mass mw = g

ν 
, (2.8) 

µ = √ 
1 

g2 + g′2 

(gA3 − g′Bµ) with mass mz = 
q

g2 + g′2, (2.9) 

A   =
 1 

(g′ A3 + gB ) with mass m 
 

 

= 0. (2.10) 

µ √
g2 + g′2 µ µ A 

 

After the Higgs mechanism, the bosons W±, Z0 get mass. Also, the coupling 
constants are related to the mixing weak angle: 

 
 

gg′
 

= √
g2 + g′2 

 
 

 

 
, (2.11) 

cos θw   g 
, (2.12) 

g2 + g′2 

sin θw 
g′ 

= √
g2 + g′2 

. (2.13) 

 

We can rewrite the equations (2.9) and (2.10) in terms of the mixing weak angle, 
using the equations (2.11-2.13), 

 
 

Z0
      

= 

  
cos θw − sin θw

     
A3

     

. (2.14)
 

 

We observe that the coupling of all the bosons is described by the electron charge 
and the weak mixing angle. We can separate the couplings of the charged bosons 

and put only the Lagrangian of the interaction between fermions and W±. The 
Lagrangian takes the next form : 

 

g2 
µ−  + 

 

LW = 
m2   

JW   JµW . (2.15) 
 W 

e 
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W 

µ 

The equation (2.15) is called the charged current interaction (CC) and the current 

Jµ− is given by [14]: 

Jl†  = ∑ ν̄ f γµ(1 − γ5) f . (2.16) 
f 
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 F 
J ) 

EM 

EM 

 

We can write the Lagrangian to the Z0 interaction as well as in the CC case, 
 

g2 
µ µZ 

 

LZ = 
2m2 

JZ J 

4G   
 

 
 

 
 

, (2.17) 

!2 
 

 
= √

2
 ∑ f¯γµ(T3 sin2 θwQ) f f . (2.18) 

Where T3 is the third component of weak isospin and Q is the electric charge. The 
equation (2.17) is called the neutral current interaction (NC). Sometimes is useful to 
put these two contributions in terms of the currents. We define the neutral current 
weak interaction as: 

Jµa = ∑ f¯γµTa f . (2.19) 
f 

 

And the sum of the CC and NC interaction in terms of the currents is: 

4G 
LW + LZ = √

2
 (Jµ1)2 + (J µ2)2 + (Jµ3 — sin2 θw µ 2

   

. (2.20) 

 

Where Jµ is the electromagnetic current.   In figs.   (2.2) and (2.3), we can see 

examples of CC and NC interactions, respectively. 

F − 

Z 
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νµ 

 
ν 

µ− 

 
 
 
 

e− 

Figure 2.2: Example of CC interaction 

 

νe 
νe 

 

 

Z0 

 
 

 

e− e− 

Figure 2.3: Example of NC interaction 

 

 
W− 
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Chapter 3 

Neutrino oscillation 

 
Pontecorvo was the first to postulate neutrino oscillations in the late 1950s as 
an analogy to kaon oscillations. However, since this proposal was previous to the 
SM, the proposed oscillation was from neutrino to anti-neutrino in the first family of 
fermions. The physicist had to wait for a more precise theory until the electro-weak 
unification appeared. With this theory, it was easier to describe the neutrino 
oscillation as a consequence of considering the leptonic charge current as a 
superposition of massive neutrinos. Certain conditions are required, like that the 
energies and momentum of the particles in the neutrino production process are 
not measured with a degree of accuracy, allowing the determination of the massive 
neutrino emitted [7]. In other words, we can write a neutrino flavor state in terms 
of a sum of massive neutrinos states with a certain weight. In this chapter, we will 
present a brief summary of the neutrino oscillation formalism. 

 

3.1 Oscillation probability 

To start our discussion on neutrino oscillations, we can define a neutrino state with 
a flavor α as a superposition of the called massive neutrinos that we can write 
as follow: 

|να⟩ = ∑ Uα
∗
k |νk⟩, (3.1) 

where Uα
∗
κ is a rotation operator. The massive neutrinos and the flavor states obey 

the unitary conditions 

 

⟨νk|νj⟩ =δkj, (3.2) 

⟨να|νβ⟩ =δαβ. 
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dt 

k 

α 

| ⟩ 

k 

 

Currently, we only know three flavor states; therefore, we know that we have three 
massive states. If we find more than three neutrino states, they probably are sterile. 
The sterile states do not participate in the weak interaction. The massive states are 
eigenstates of the Hamiltonian, so the massive neutrino satisfies the Schrö dinger 
equation, 

i 
 d 

|νk(t)⟩ = Ĥ |νk⟩. (3.3) 

And its temporal evolution is: 

|νk(t)⟩ = e−iEkt|νk⟩. (3.4) 

We can obtain the temporal evolution of flavor state as follows: 

|να⟩ = ∑ Uα
∗
k e−iEk t|νk⟩. (3.5) 

Considering that a massive neutrino is a superposition of flavor states, we can 
use the conjugate operator U to obtain: 

|νk⟩ = ∑ Uαk|να⟩. (3.6) 

And inserting this last equation in the (3.5) we have: 

να(t)  = ∑ 
β=e,µ,τ 

 

∑ Uα
∗
k  e

iEktUβk

! 

|νβ⟩. (3.7) 

Obtaining the temporal evolution of a given flavor state as a superposition of all 
the flavor states. To get the probability we need the projection of the flavor states: 

Aνα −→νβ  = ⟨νβ|να⟩. (3.8) 

Using equations (3.6) and (3.8), we get the probability amplitude: 
 

Aν −→ν = ∑ U∗ Uβk e−iEkt. (3.9) 

α β αk 
k 

And the probability is written as: 
 

Pν −→ν (t) = ∑ U∗ UβkUαjU
∗

 e−i(Ek −Ej )t. (3.10) 

α β  αk βj 
k,j 

 

We use now the dispersion relation: 
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E = 
q
(mc2) + (pc)2. (3.11) 
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≈ | |k 

E 

2E 

2E 

2E 

 

That in the ultrarelativistic approximation becomes 

E = |→p|. (3.12) 

Other form to approximate the dispersion relation is using the Taylor series: 

m2 
E →p  +    k . 

|→p| 

Using this result with the ultrarelativistic approximation, we obtain the following 
result: 

 
 

Therefore, 

m2 

Ek ≈ E + 
2 

k . (3.13) 

∆m2
 

Ek − Ej ≈ kj . (3.14) 

Using this energy difference in Eq. (3.5), we have 

Pνα −→νβ (t) = ∑ 
k,j 

Uα
∗
kUβk Uαj Uβ

∗
j e

−i( 
∆m2 

)t. (3.15) 

It is important to note that neutrino oscillation experiments don’t measure time 
evolution. The parameter that the experiment can control and know is the distance, 
L, between the source of neutrinos and the detector. If we assume that neutrinos 

propagate nearly at the speed of light, we can approximate L = t, and the probability 
will be: 

Pνα −→νβ (t) = ∑ 
k,j 

Uα
∗
kUβk Uαj Uβ

∗
j e−i( 

∆m2 L ). (3.16) 

We can also define the oscillation phase as: 

Φph = − 
∆m2 L 

. (3.17) 
2E 

An important observation is that neutrino oscillation needs neutrino masses different 
from zero to produce the oscillation. The relevant parameters in an experiment 
are the distance between source and detector and the source energy. An important 
property of Operator U is: 

 
UU† = 1, (3.18) 

another form of the above identity is: 
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∑ UαkUβ
∗

k  = δαβ. (3.19) 
k 
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e osc 

∆m2 

  kj  

/ 

  jk  

sin2 
  kj  

| 

2 

 

These properties allow us to put the probability in a useful way: 

 
Pνα −→νβ 

 
(L, E) = 

 

∑ Uαk 

k 

|2|Uβk |2 + 2 Re 

"

 

 

∑ 
i>j 

 
Uα

∗
kUβk 

 
Uαj 

 
Uβ

∗
j 

 
−2πi( L

L )

# 

. (3.20) 

 

Where Losc is: 

Losc =
 4πE 

. (3.21) 
kj 

Using the square of (3.19) it is obtained: 

∑ |Uαk |
2|Uβk |

2  = δαβ − 2 ∑ Re(Uα
∗
kUβkUαjUβ

∗
j). (3.22) 

k k>j 
 

with this result we can put the oscillation probability in terms of real and imaginary 
part of the multiplication of four operators U: 

 
Pν −→ν (L, E) = δ — 2 

"

 
 

∑ Re(U∗ U 
 
kU jU∗ ) 

# "

1 − cos 
 

∆m2  L 
!# 

α β αβ 

" 
k>j 

αk β α βj 

# 

2E 
 

∆m2 L 
!
 

+ 2 ∑ 
k>j 

Im(Uα
∗
kUβk Uαj Uβ

∗
j) sin 

  kj  

2E 
, (3.23) 

 

with trigonometric properties, we have: 

" 
 

   

# 
∆m2 L 

! 

α β αβ 

" 

k>j αk β α βj 

# 

4E  
∆m2 L 

!
 

+ 2 ∑ 
k>j 

Im(Uα
∗
kUβk Uαj Uβ

∗
j) sin   kj  

2E 
. (3.24) 

 

It has two cases, the first one is when α = β it is called transition probability. 

The second case is when α = β usually called survival probability. The survival 
probability is: 

Pν −→ν (L, E) = 1 − 4 ∑ | U 
 
k | | U 

j |
2 
 
sin 2 

 
∆m2 L 

!
 

 

 

Pν −→ν (L, E) = δ — 4 ∑ Re(U∗ U 

4E 

kU jU∗ ) 
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.
 
(3.25) 

α α α α 
k>j 

An easy way to approximate the neutrino oscillation is using only two flavors 
of neutrinos. This approximation is called the “two neutrino mixing” limit case. 
Despite we have three neutrino flavors, it is a good approximation to use only 
two of them because many experiments are not sensitive to the three-neutrino 
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21 

— sin θ cos θ 

  kj  

 
∆m

cos 

 
∆m

cos 

 
∆m2sin 

 
∆m2sin 

( 12 22 11 21) 
21 

2E 

α α α β E 

21 
!# 2 

" 

−

 

21 

!# 

21 

! 

21 

! 

 

mixing. Therefore, we can use an effective model in order to analyze the data 
with the two-neutrino mixing limit. In this effective model, the operator U is a 
2x2 matrix 

 

U = 

   
cos θ sin θ 

   

, (3.26) 

we realize that only have one squared mass difference: 

∆m2 ≡ ∆m2 . (3.27) 

If we can calculate the transition probability using this limit, the only term that 
survives in Eq. ((3.24)) is the real part because in this approximation the operator 
U does not have an imaginary part, then we have: 

 

 
Pν −→ν (L, E) = −2 "∑ Re(U∗ U 

 
kU jU∗ ) 

# "

1 − cos 
 

∆m2  L 
!# 

α β 
k>j 

αk β α βj 2E 

2  U∗ U  U  U∗ 

"

1 cos  

  
∆m2

 L 
!# 

,

 

 

= 2 sin2 θ cos2 θ 1 
L 

2E 

= 
1 

sin2 
2 (2θ) 

"

1 − 

2  L 
,
 

 

2E 

 

= sin2 

 
(2θ) 

2 
L 

. (3.28) 
4E 

 

The survival probability is 

 
Pν −→ν ( 

 

L, E) = 

 

1 − Pν −→ν ( 

 

L, E) = 

 
1 − sin2 

 
(2θ) 

2 
L 

. (3.29) 
4 

 

= − − 

, 
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ν −→ν ( )⟩ = 
2

 
2 

21 

2 
⟩ α β E 

When compared with an experimental result, this theoretical probability must 
take into account that the energy resolution of the detector is finite. A first approximation 
to consider the energy resolution is the average oscillation probability: 

 
P L, E 

1 
sin2 

   
θ 

   "

1 cos  

  
∆m2

 
L 
! # 

, (3.30) ⟨ — ⟨ 
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2   
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⟨Pν −→ν (L, E)⟩ = 
2 

sin 
21 

2 
⟩ − 
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2   
σL/E 

 

where 

 
∆m2 L 

!
 

 

∆m2 L 
!

 
 

" 
1 

  
∆m2

 
 

 2
# 

 

 

 

Where σL/E is the standard deviation and is proportiona to < L/E >. In general 
we could write as: 

σL/E = 0.2 < L/E > . (3.32) 

And we will have the probability: 

1 2  

    
θ 

   " 

 

∆m2 L 
!

 
 

" 
1 

  
∆m2

 
 

 2
## 

 

 

α β E 
(3.33) 

These results are important because the oscillation probability of the sterile neutrino 
can approximate the two neutrino mixing. As we said above this is an effective 
model because only uses two flavors, the Standard Model has three flavors of 
neutrinos that have been observed. One of the most common parametrizations of 
the oscillation matrix is the Pontecorvo–Maki–Nakagawa–Sakata matrix (PMNS 
matrix): 

 
c12c13 s12c13 s13e−iδCP  

−s12c23 − c12s23s13e 
iδCP c12c23 − s12s23s13e 

1δCP s23c13  . (3.34) 

s12s23 − c12c23s13eiδCP −c12s23 − s12c23s13eiδCP c23s13 

Where sij = sin θij and cij = cos θij and δCP is the CP-violating phase. Although the 

PMNS matrix is the one that best agrees with the experimental evidence, in 
many extensions of the standard model, sterile neutrinos are added, and the 
PMNS might not be the end of the story for the description of the neutrino oscillation. 

 

3.2 Types of neutrino oscillation experiments 

We can classify the oscillation experiments into two types. One of them measures 
transition probabilities between different neutrino flavors. This kind of experiments 
is called appearance experiments. The second type is called the disappearance 
experiments and measures the survival probabilities. If the distance between the 
neutrino source and the detector is too small with respect to the neutrino energy, 

. (3.31) 

2 
. 

⟨cos ⟩ = cos ⟨ 
exp 

1 − cos ⟨ exp 
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2E 
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We will not have any oscillation. As it is known, the ∆m2 is a Lorentz invariant 
and it is fixed. We can design an experiment sensitive to ∆m2 with the right choice 
of values for the ratio L/E. We say that an experiment is sensitive to ∆m2 when 

∆m2 L 

2E 
∼ 1. (3.36) 

Because of this, we can classify the experiments by its L/E average value. For 
example: 

 
1. Short BaseLine experiments (SBL): 

there are two different short baseLine experiments: Reactor SBL and Accelerator 
SBL 

 
(a) Reactor SBL: 

In this type of experiment, that use reactor anti-neutrinos, the range of 
the ratio L/E and the sensitivity to ∆m2 are: 

 

L 
≤ 10 m/MeV =⇒ ∆m2 ≥ 0.1eV2. (3.37) 

 

Commonly, the distance between the source and detector is around 
10m. 

(b) Accelerator SBL: 
In these experiments, with beams of neutrinos produced by the decay 
of kaons, pions and muons, the range of the ratio L/E and the sensitivity 
to ∆m2 are: 

L 
≤ 1km/GeV =⇒ ∆m2 ≥ 1eV2. (3.38) 

 

This ratio of L/E can be obtained either with neutrino energies of the 
order of 1 GeV and baselines L ≈ 1km or with the pion decay at rest, 
with L ≈ 10m. 

2. Long-Baseline experiments (LBL): 
In these experiments, the order of magnitude of L is bigger than the short 
baseline. Again, we have reactor and accelerator experiments: 

 
(a) Reactor LBL: 

In this case L 103m, the range of the ratio L/E and the sensitivity to 
∆m2 are: 

L 
≤ 103m/MeV =⇒ ∆m2 ≥ 10−3eV2. (3.39) 
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(b) Accelerator LBL: 
These accelerators produce muon neutrino from the decay in flight of 
pions and kaons. In this case, L      102      103km and the range of the ratio 
L/E and the sensitivity to ∆m2 are: 

L 
≤ 103km/GeV =⇒ ∆m2 ≥ 10−3eV2. (3.40) 

 

3. Very Long-Baseline experiments (VLB) 
In this kind of experiments, the distance is larger than the LBL and SBL. 

(a) Reactor VLB 
In this case, L 100km and the range of the ratio L/E and the sensitivity 
to ∆m2 are: 

L 

E 

(b) Accelerator VLB: 

≤ 105m/MeV =⇒ ∆m2 ≥ 10−5eV2. (3.41) 

The order of magnitude is thousands of kilometers, the range of the 
ratio L/E and the sensitivity to ∆m2 are: 

L 
≤ 104km/GeV =⇒ ∆m2 ≥ 10−4eV2. (3.42) 

 

There are several neutrino oscillation experiments like MiniBooNE, Icarus, JSNS, 
etc. For this reason, it is important that we have a way to classify these experiments. 
This classification helps us to understand the properties of the experiment and 
gives us important information, such as sensitivity. In the next chapters, we will 
work with a neutrino oscillation experiment with L = 1km (Long baseline) with 

a sensitivity around ∆m2 > 0.1. 
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Chapter 4 

The non-unitary neutrino mixing 
matrix 

 
Currently, only three neutrino flavors have been observed. However, many theories 
beyond the standard model postulate the existence of heavy gauge singlet neutrinos, 
which ones can not participate in the weak interaction. If heavy neutrinos exist, 
they will modify the oscillation probability because the mixing matrix is not only 
the 3 3 matrix. We have new states with which the oscillation matrix is non- 
unitary. The new structure of this matrix would be evidence of new physics 
beyond the Standard Model. Another scenario is that of light sterile neutrinos, 
which leads to different phenomenological consequences. 

 
 

4.1 New neutrino candidates 

Before discussing the non-unitary formalism, it is relevant to mention the possible 
candidates of new neutrinos. Historically, Pontecorvo was the first to propose 
neutrinos that do not contribute to the weak interaction [3]. It was the first 
attempt to describe a new type of neutrino.  Neutrino masses can emerge from 
a lepton number violation dimension-five operator 5. We know that in the 
Standard Model, the neutrino is a massless particle.  Still, when we consider that 
it can be massive, we can add a Dirac or Majorana mass term in all the possible 
extensions of the Standard Model. In general, all the massive fermions in the 
Standard Model have Dirac mass terms and only neutral fermions can have 
Majorana mass terms. For this description, the neutrino can have both Dirac and 
Majorana mass terms. We can express the Dirac mass couple left and right- 
handed fields as follows [9]: 

mDψ̄LψR + h.c. (4.1) 
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Where mD is the Dirac mass, ψL and ψR are left and right-handed Weyl spinor 
fields. And the Majorana mass term is [9] 

 
mMψ̄c ψL, ψc = Cψ̄T . (4.2) 

Where mM is the Majorana mass and C is the charge conjugation matrix. Another 

important feature is how large the neutrino mass is. This type of neutrino could 
help to explain current neutrino oscillation anomalies by taking part in it [6]. 
Another option on which we focus in this thesis is the neutral heavy leptons. 
Their possible role as messengers of neutrino mass generation in the seesaw 
mechanism is the strongest motivation to study this type of neutrinos. 

 

 
4.2 The formalism 

We can describe the above candidates in the next non-unitary formalism. The 
most general matrix with three light neutrinos and n-3 neutral heavy leptons is 
[6] [10]: 

Un×n = 

  
N S

  

. (4.3) 

Where N is the 3 3 matrix in the light neutrino sector, and S depends on the coupling 
parameter of the extra isosinglets states. In this matrix, we can factorize the 
parameter associated with the heavy leptons from those describing oscillation 
of the light neutrinos. In other words, put the submatrix U in terms of a multiplication of 
two matrices. It is possible, but not the only way, to write N in terms of: 

 

 
N = N 

 
NPU = 

α11 0 0 
α21 α22 0 
α31 α32 α33 

 
U. (4.4) 

 

Where U is the PMNS matrix, and NNP is the matrix characterizing the unitary 
violation and the new physics. The definition of the components of the matrix 
are: 

 

α11 = c1nc1n−1c1n−2 · · · c14 

α22 = c2nc2n−1c2n−2 · · · c24 (4.5) 

α33 = c3nc3n−1c3n−2 · · · c34, 
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(4.6) 

 

α 
α 

  ij  

=  
11 

α11α21 
2 
22 + |α 21 |

2 α 22 α3
∗

2 + α 21 α3
∗

1 
 . (4.8) 

N∗ N N N∗   ij  
∑ 
j>i 

33 

 

where cij = cos θij. The off-diagonal terms are: 

α21  = c2nc2n−1 · · · c25η24η̄14 + c2n · · · c26η25η̄15c14 + · · · + η2n η̄1nc1n−1c1n−2 · · · c14, 

α32  =c3nc3n−1 · · · c35η34η̄24 + c3n · · · c36η35η̄35c24 + · · · + η3n η̄2nc2n−1c2n−2 · · · c24, 
 

α31  =c3nc3n−1 · · · c35η34η̄14c24 + c3n · · · c36η35c25η̄15c14 + · · · 

+ η3nc2n η̄1nc1n−1c1n−2 · · · c14. 

Where ηij = e−iφij sin θij this term contains the CP violation phase. Then we realize 

that the diagonal terms are bigger than the off-diagonal terms. We need the 
conjugate transpose of N: 

 
 

NP†
 

α11 α2
∗

1 α3
∗

1  

N =  0 α22 α3
∗

2 . (4.7) 
0 0 α33 

 

And we can obtain the following equation: 

 
NN† =NNPUU†  NNP†

 

  
α2 α11α2

∗
1 α11α3

∗
1  

α11α31 α22α32 + α31α2
∗

1 
2  + |α31|2 + |α32|2

 

 

It is observed that the unitary condition (3.19) for the oscillation matrix is different 
in the scheme of this formalism (4.8). Therefore the oscillation probability is not the 
equation (3.24). The new probability in this formalism is [21]: 

 
3 P = N∗ N 

 
N N∗ − 4 

3 

Re 
h
  N∗ N 

 
N  N∗ 

i 
sin2 

 
∆m2 L 

!
  (4.9) 

αβ ∑ 
i,j 

αi βi αj βj ∑ 
j>i 

3 

 

αj βj αi βi 

h i 
 

    

4Eν 

 
∆m2 L 

!
 

 

 

 

This equation is similar to equation (3.24) but in this case, the probability depends 

+ 2 αj βj αi βi 2Eν 
Im sin . 
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on the matrix N and not on U. An important case is when L = 0 known as a zero 
distance effect: 

3 

Pαβ  = ∑ Nα
∗
i Nβi Nαj Nβ

∗
j. (4.10) 

i,j 
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We can calculate the zero-distance probabilities of all oscillation using equations 
(4.4) and (4.7) 

3 

Pµe  = ∑ Nµ
∗
i Nei Nµj Ne

∗
j  = (Nµ

∗
1 Ne1 + Nµ

∗
2 Ne2 + Nµ

∗
3 Ne3) (Nµ1 Ne

∗
1 + Nµ2 Ne

∗
2 + Nµ3 Ne

∗
3) 

i,j 

= α2
∗

1α11 × α21α11  = α2   |α21|2 (4.11) 
 

3 

Pee = ∑ Ne
∗
i Nei Nej Ne

∗
j = (Ne

∗
1 Ne1 + Ne

∗
2 Ne2 + Ne

∗
3 Ne3)

2
 

i,j 

= (α2 )2 = α4 (4.12) 

 

3 

Pµµ  = ∑ Nµ
∗
i Nµi Nµj Nµ

∗
j  = (Nµ

∗
1 Nµ1 + Nµ

∗
2 Nµ2 + Nµ

∗
3 Nµ3)

2
 

i,j 

= (|α21|2 + α2 )2 (4.13) 

 

3 

Peτ  = ∑ Ne
∗
i Nτi Nej Nτ

∗
j  = (Ne

∗
1 Nτ1 + Ne

∗
2 Nτ2 + Ne

∗
3 Nτ3) (Ne1 Nτ

∗
1 + Ne2 Nτ

∗
2 + Ne3 Nτ

∗
3) 

i,j 

= α11α31 × α11α3
∗

1  = α2   |α31|2 (4.14) 
 

3 

Pµτ  = ∑ Nµ
∗
i Nτi Nµj Nτ

∗
j  = (Nµ

∗
1 Nτ1 + Nµ

∗
2 Nτ2 + Nµ

∗
3 Nτ3) (Nµ1 Nτ

∗
1 + Nµ2 Nτ

∗
2 + Nµ3 Nτ

∗
3) 

i,j 

= (α2
∗

1α31 + α22α32) × (α21α3
∗

1 + α22α3
∗

2) 

= |α21|2|α31|2 + α2   |α32|2 + α22α32α21α3
∗

1 + α22α3
∗

2α2
∗

1α31 

2 |α32|2. (4.15) 

In the last line, we ignore the cubic terms. The complete calculation is in appendix 
A. As we see, in the approximation of zero-distance (short baseline), the probabilities 
are more straightforward than the general case. In the context of the short baseline 
approximation, it is helpful  to put the  oscillation probabilities in  terms of the 
reported experimental parameters to estimate, approximately, the oscillation angle. 
For this reason, we will use the light-sterile neutrino in the following limit: 

∆mijL 

4E 
>> 1 (4.16) 

 

⟨sin 

2 
1

 

4E 
⟩ = 

2 
. (4.17) 
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2 

2 

2 

11 

22 

11 

T1× V3 

 1×1 

     =  
  . (4.25) 

νµ Uµ1 Uµ2 Uµ3 Uµ4 νµ 

 

Then, the oscillation probability is [22]: 

 

Pee = 2 − 
1 

[sin2(2θee)]e f f (4.18) 

Pµµ = 1 − 
1 

[sin2(2θµµ)]e f f (4.19) 

Pµe = 
1 

[sin2(2θµe)]e f f . (4.20) 

Using the above equation and the probability oscillation in the zero-distance effect, 
we can relate the light-sterile neutrino limit to the massive limit in a smooth way as 
follows 

 

[sin2(2θee)]e f f = 2(1 − α4 ) (4.21) 

[sin2(2θµµ)]e f f = 2 
h

1 − (|α21|2 + α2 )2

i 
(4.22) 

[sin2(2θµe)]e f f = 2α2 |α21|2. (4.23) 
 

As we see, the zero-distance is just an approximation of the oscillation probability 
in the non-unitary formalism. The most general probability in this formalism is 
equation (4.9). However, these results (equations (4.19)-(4.22)) give us a lower 
bound of new physics because, with this approximation, we get values of the 
components of the NP matrix. With this, we know in which range of values we 
are sensitive to new physics in these experiments. 

 

 
4.3 3+1 case 

The easiest case to analyze is with only 1 neutral heavy lepton. In this case, the U 
matrix is: 

U4×4 = 

  
N3×3 S3×1 

    

. (4.24) 

Other form to write the mixing matrix is [17]: 
 

 
νe 

 
Ue1 Ue2 Ue3 Ue4 

  
νe  

 

ντ  
 

 

Uτ1 Uτ2 Uτ3 Uτ4
 ντ  

  
νs Us1 Us2 Us3 Us4 νs 
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Then, using equations (4.5) and (4.6), we can find the components NNP matrix 

α11 = c14, 

α22 = c24, 

α33 = c34, 

α21  = η24η̄14, 

α32  = η34η̄24, 

α31  = η34c24η̄14. 

It is important to see that this result is general, in contrast to the zero-distance effect 
that we saw in the previous section. This simple case gives us a general look at 
the framework with new neutrinos and its possible consequences. 
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Chapter 5 

Non-unitary future tests at a new 
neutrino source 

 
After discussing the neutrino oscillations in the non-unitary formalism, we can now 
focus on a new proposed experiment, described in the references [5],[16]. The 
experimental setup uses tagged kaons to produce neutrinos. This neutrino source is 

attractive because it will provide pure flavor νe beams. The objective of this new 
idea is to discover signs of new physics like sterile neutrinos or massive neutrinos 
using the electron neutrino or muon neutrino that comes from the following decays: 

 

 
K+ −→ e+νeπ0 (5.1) 

K+ −→ µ+νµ (5.2) 

K+ −→ µ+νµπ0. (5.3) 

This experimental proposal uses kaon decay to obtain the neutrino events using 
the three channels above. Specifically, this experiment focuses on the signal obtained 
from the survival probability of electron neutrinos (νe νe). Also, the distance 

between the detector and the source is L = 1km and the detector has one kt of 
liquid argon. We will use these parameters in the next section to reproduce the 
results of this proposed experiment. Although we want to replicate the results, 
we will use some approximations to facilitate the calculations. 

 
5.1 A First approximation 

It is challenging to compute the flux and cross-section for all the channels, including 
the experimental details. To have a first approximation to this problem and make 
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∝ (E E 

ν 

E ≈ 

    ν     

Eν
∗2 cos2 θ 

 

it more accessible, we will focus only on Eq. (5.1). Moreover, we will consider 
only the two-body decay: 

 

π+ −→ e+νe. (5.4) 

We will compare the events rate of Eq. (5.2) with the one reported in reference 
[5] and conclude that there is reasonable agreement. The most relevant parts of 
computing the neutrino events are the neutrino flux, the differential cross-section, 
and the oscillation probability. 

 

 
5.1.1 Neutrino flux 

The pion decay process is due to incident protons on a target. Therefore, the 
neutrino flux depends on proton and the pion energy as follows: 

 

λ(Eν) ≡ 
dE

 
d2 N 
d cos θ p 

− π )
 
5 Eπ Eν 

, (5.5) 
cos θ∗ 

ν 

 

in accordance with refs. [19],[15]. Where Ep is the energy of the incident proton, Eν 

is the neutrino energy, Eπ is the energy of the pion, and cos θ∗ is the relative angle of 
pion and the neutrino in the rest frame of the pion. We can put the energy of the pion 
and cos θ∗ in terms of variables that we know well. 

 

  mπEν  
π E∗(1 + cos θ∗) 

 

(5.6) 

 

 
cos ≈ 

s

1 −  
E2   

  
1
 — 1

   

, (5.7) 

 
 

where  mπ  is  the  pion  mass  and  Eν
∗   is  neutrino  energy  in  the  rest  frame  of  the 

pion.   The neutrino energy in the rest frame of pion is easy to compute with 
the  relativistic  kinematic  of  a  process  1  −→  2  (appendix  B),  the  result  is  Eν

∗   ≈ 
29.8MeV. In this analysis the detector will be aligned with the neutrino flux, in 
other words, θ = 0. We substitute eqs. (5.6)and (5.7) in Eq. (5.8), we get: 

 

θ∗ 
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mπ Eν  

  5 mπ E
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λ(Eν) ∝ Ep − 
2Eν

∗ 2Eν
∗ 
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dT 
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F 

gL + gR 

1 − 
E

 — gRgLme 
E2

 

 

 

 
 

Figure 5.1: The Normalized flux using equation (5.8). 

 
We can see the flux shape in Fig. (5.1). For the part of the oscillation probability, 

we will use the approximation of two neutrinos Eq. (3.29) and we are interested 
in the survival probability. 

 
5.1.2 Cross-section 

As we already mentioned, to get the neutrino events rate, we also need to compute 
the corresponding cross-section. In this work, we will use two different processes 
and, in consequence, two different cross-sections. The first one is the electron 
neutrino-nucleon scattering, and the second one is the electron neutrino-electron 
scattering. In both cases, we use the same neutrino flux, given in Eq. (5.8). For the 
case of neutrino-nucleon, we get the values for its cross-section from refs. [20], 
[24]. For the case of neutrino-electron scattering, the analytical expression is well- 
known, in particular, we take the differential cross-section from ref. [22] 

dσ 2meG2   
     

2 
 

 

 

2

 
T  

  2 

 

 

 T 
!

 
 

There T is the recoil energy of the electron, gL, gR are the coupling constants and 

GF is the Fermi constant. 

gL = −0.7225 

gR = −0.2296 

π ν 
, (5.9) 

ν 
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GF = 1.166 × 10−5GeV−2. 
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To obtain the total cross-section, we integrate with respect to T, from 0 to T′
 

2meG2 
2  ′ 2  

 
 

 

 

 

T′     3 Eν T′2 2 Eν 

σ = 

with 

F [g T 
π 

— gR 1 
E

 3 
 

2E2
 

— gRgLme 2Eν + gR 
3 

], (5.10) 

T′ = 
m2 

ν . (5.11) 
 

e + 2Eν 

We can see that the Eq. (5.10) only depends on neutrino energy. The differential 
neutrino events is 

 

dN 

dEν 
∝ σλ(Eν) (5.12) 

N ∝ 

∫ 

σλ(Eν)dEν. (5.13) 

We can compute the expected neutrino events rate using the neutrino flux, cross- 
section, and oscillation probability already discussed here. We should first confirm 
that the expected number of events in the absence of oscillations coincide with the 
reported values in the literature. Afterward, we can compute the expected events 
rate for a given oscillation probability with fixed values for the corresponding 

parameters, ∆m2, and oscillation angle. In the next section, we will discuss how 
to compute the events number with and without oscillation and perform a χ2 
analysis to get the expected future sensitivity to this kind of new physics. We should 
stress that ref. [5] uses a nucleon-neutrino interaction. Here we will also consider 
the case of a neutrino-electron interaction. 

 
5.2 Computing the neutrino number of events 

Using the information described in the previous chapters, we have computed the 
neutrino events numerically. Afterward, we computed the expected sensitivity to 
the oscillation mixing angle for high values of ∆m2 values. As a first step, we created 

a grid with two vectors: The first vector is the sin2 2θ with values ranging from 0.01 
to 1 and the second vector is the ∆m2 with values ranging from 0.01 eV2

 

to 100 eV2. In our case, equation (5.8), the neutrino flux, has Ep = 20GeV and has 

a physical limit in Eν = 8.5405GeV for both processes. 

We have confirmed that our expected differential number of events, that takes 
into account neutrino flux and cross-section, is in reasonable agreement with the 
reported literature. However, since we can not reproduce all the experimental 

L 

ν 
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details, we have to fix a total normalization, Norm(λ(Eν)), to the reported expected 
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number of events in the experimental proposal. We can define the differential 
number of events as: 

dN 
 

 

dEν = targets yr σλ(Eν)/Norm(λ(Eν)) (5.14) 

N = 
∫   

targets yr σλ(Eν)/Norm(λ(Eν))dEν, (5.15) 

where yr refers to the years that detector would work, one year in this case. We can 
compute the number of targets considering a detector with one kt of Argon. For 
the case of neutrino-electron scattering, the targets are the electrons, and for the 
neutrino-nucleon case, the targets are the argon nucleons 

Targetse = 1.206 × 1032 (5.16) 

Targetsnucleons = 1.507 × 1031. (5.17) 

We compute the expected neutrino events without oscillation probability and 
normalize the result for the neutrino-nucleon case to Nexp = 1568 events [5]. 

For the results on neutrino-electron scattering, we will assume that it would be 
possible to construct an upgraded version of the detector, with 10 kt of argon. This 
is necessary in this case because, otherwise, the statistics will not be enough to 
obtain a reasonable constraint. 

 
Once we have fixed the normalizations for both neutrino-nucleon and neutrino- 
electron interactions, we can include the oscillation probability for a given region 
of ∆m2 and sin2 2θ. Finally, we integrate the oscillation probability times the new 

neutrino events rate. This will allow us to get χ2 value with the next formula 
 

χ2 = 
(Nexp − Ntheo )

2 

, (5.18) 
Nexp + (Ntheo ∗ σexp)2

 

 

where σexp is the systematic error in percent. Since we are considering an experimental 
proposal that has not taken events yet, we will assume that in the future it will 
measure the SM prediction, Nexp = 1568 events. In this way we can have a 

forecast for the sensitivity of the future experiment to this kind of new physics. 
Ntheo stands for theoretical prediction of the expected number of events for given 
values of ∆m2 and sin2 2θ. After computing the χ2 function, we can plot the values 

of ∆m2 and sin2 2θ for which ∆χ2 < 9.21 to have the 99% Confidence Level (CL). 
By showing this curve in a two-dimensional plot, we will see the sensitivity of 
the experiment in the plane ∆m2       sin2 2θ. For this work, we will use two different 
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test values for the systematic error σsyst = 2% and σsyst = 5%. 
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We would expect that our results of neutrino-nucleon interaction will be similar 
to ref. [5], while the results of neutrino-electron interaction will be less restrictive 
since the expected number of events will be lower. 

 

5.3 Expected sensitivity for the non-unitary case 

After obtaining an expression for the χ2 function, we can compute the expected 
sensitivity for the non-unitary test in this experimental proposal. We will first 
present the expected sensitivity to the light sterile neutrino case, both for the 
neutrino-nucleon and for the neutrino-electron interaction. The light sterile results 
will be useful to compare them with those already reported in the literature [5]. 
Moreover, using equation (4.21) and the sensitivity to the light sterile neutrino case, 
we can obtain the expected sensitivity for the non-unitary case. That is, we will get 
the results for the term α11 of the NNP matrix. 

 
5.3.1 Light sterile neutrino results 

With the computations that we have described up to now, we can compute the 
values of the χ2 function, eq. (5.18) for the case of light sterile neutrinos. We 
show in Figs. (5.2) and (5.3) the sensitivity to the parameters for the case of 
neutrino-nucleon interaction for the case of a future systematic error of 2% and 5 
%. For neutrino-electron interaction case, we see the corresponding sensitivity in 
the Figs. (5.4) and (5.5). Again for a systematic error of 2 % and 5 %, respectively. 
We can notice that for the case of neutrino-nucleon scattering there is a reasonable 
agreement with the previous result reported in literature [5] 

 
Since we are interested in applying these results to the non-unitary case, we pay 
special attention to the region where ∆m2 > 20eV2. In this region, the sensitivity 

to sin2 2θ is basically constant. We can get the constraints on light sterile neutrinos 
from these plots. In the case of neutrino-nucleon interaction the constraints for 
each systematic error (2% and 5 %) are: 

 

[sin2(2θee)] ≤ 0.16 (5.19) 

[sin2(2θee)] ≤ 0.29. (5.20) 

At 99 % CL for each systematic error, respectively. The constraints that we get 
from ref [5] for each systematic error are: [sin2(2θee)] 0.11 and [sin2(2θee)] 
0.26, respectively. Therefore we see that our results are in reasonable accordance 
with them. 
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Figure 5.2: The sensitivity in ∆m2-sin2 2θ plane with 2% of systematic error in the 
nucleon-neutrino interaction. 

 
 
 
 
 
 

 

Figure 5.4: The sensitivity in ∆m2-sin2 2θ plane with 2% of systematic error in the 
neutrino-electron interaction. 
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Figure 5.3: The sensitivity in ∆m2-sin2 2θ plane with 5% of systematic error in the 
nucleon-neutrino interaction. 

 
 
 
 
 
 

 

Figure 5.5: The sensitivity in ∆m2-sin2 2θ plane with 5% of systematic error in the 
neutrino interaction. 
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The results in the case of neutrino-electron interaction are: 

[sin2(2θee)] ≤ 0.5 (5.21) 

[sin2(2θee)] ≤ 0.53. (5.22) 

Again at 99 % CL for each systematic error, respectively. As we expected, the 
neutrino-electron interaction will be less accurate since the cross-section is smaller 
in comparison with the case of neutrino-nucleon interaction. 

 
5.3.2 Non-unitary expected sensitivity 

We link the results on light sterile neutrinos with the non-unitary case using the eqs. 
(4.21), as we observe, we only have information of the electron survival probability 
(e          e). For this reason, we only get the constraints for α11 of the NNP matrix in 
both cases. In the case of neutrino-nucleon interaction, we have the constraints 
are: 

 

2   ≥ 0.959 (5.23) 
2   ≥ 0.925, (5.24) 

 

at 99% CL for each systematic error, respectively. In the case of neutrino-electron 
interaction, the constraints of α11 are: 

2   ≥ 0.866 (5.25) 
2   ≥ 0.857, (5.26) 

 

again, at 99% CL. We can compare these constraints with those reported for α11 

in ref. [6], using data from NOMAD experiments. Their constrain is α2  ≥ 0.989 
at 90 % CL. The NOMAD experiments are based on neutrino-nucleon interaction and 
their constraints are similar to the ones expected from the experiment that we 
are studying here. Therefore, this experimental proposal will be also useful to study 
the type of new physics that considers the effects of neutral heavy leptons on 
neutrino oscillation. 

α 

α 

α 

α 
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Chapter 6 

Conclusions 

The neutrino oscillation data suggest that it is necessary to have an extension of 
SM. One of the explanations for the neutrino mass is the neutral heavy lepton. These 
neutral heavy leptons could act as a messenger to give mass to the active neutrinos. 
Therefore, they could be the answer for the nature of the neutrino mass. We hope 
that using the non-unitary oscillation formalism provides a theory that predicts 
anomalies in the oscillation probability that could be measured in the future 
experiments. 

 
For this reason, we introduced the oscillation probability using the non-unitary 
matrix Eq. (4.10). We described one of the most important effects using the zero-
distance case (4.21). In this picture, the zero-distance effect predicts that the 

survival probability is different from one if L = 0. This effect is a consequence 

of the  neutral  heavy lepton  with  light  neutrino states.   We put  this  formalism 
in the context of a new proposed experiment [16]. We studied the sensitivity to 
sin2 2θ in this experiment, focusing on high values of ∆m2 (more than 20 eV2 ). To 

replicate the result of ref. [5] we used some approximations described in chapter 
5 to get a similar result. Afterward, we add a new result taking into account the 
neutrino-electron scattering, this last interaction is one of the original results in the 
work. 

 

The sensitivity to sin2 2θ and ∆m2 was useful to obtain the expected sensitivities for 

the diagonal non-unitary parameter α11. We introduce the expected sensitivity to 
this component of the NP matrix in eqs. (5.23 -5.26). Our forecast for α11 is in 
reasonable accordance with the literature, for instance, ref. [6]. 

 
As a perspective of this work, there is a lot of room for improvements that will 
lead to a more robust result. The first point that we can consider is to use a more 
accurate neutrino flux for the kaon decay [2]. Due to lack of time, this information 
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Chapter 6 Conclusions 

 

is not added to this work. We have obtained the sensitivity for α11 component 
of NP matrix, but what happens with the remaining components? We need to 
compute the other channels that could be measured in the proposed experimental 
array. For example, α22 and α21 are related to the survival probability of the muon 

neutrino. In this case, we need to estimate the sensitivity to sin2 2θµµ and ∆m2 in 
consequence, we need more computations to get the sensitivity to more elements 
of the NP matrix. As we observe, there are many issues that we can do in future 
to improve our work, and we need to wait for future experiments to get more 
data and have enough evidence to conclude if these extensions are the next step 
in the search for new physics. 
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Appendix A 

Neutrino probabilities in the 
non-unitary case for the zero-distance 
effect 

 
In the case of very short distances, the oscillation probabilities in the non-unitary 
case will be constant and given by Eq. (4.10). To compute explicitly these probabilities, 
we start from the components of matrix N using the following equation 

Nαβ = ∑ NNPUκβ. (A.1) 
κ 

The explicit form for every component is: 

Nej =α11U1j 

N∗
ej  =α11U1

∗
j 

Nµj =α21U1j + α22U2j (A.2) 

N∗
µj  =α2

∗
1U1

∗
j + α22U2

∗
j 

Nτi =α31U1i + α32U2i  + α33U3i 

N∗
τi  =α3

∗
1U1

∗
i + α3

∗
2U2

∗
i + α33U3

∗
i. 

Using these expression and the unitary condition (Eq. (3.19)) for the U matrix, we 
will obtain the corresponding probabilities: 

3 3 3 

Pee  = ∑ Ne
∗
i Nei Nej Ne

∗
j  = ∑(α11U1

∗
i × U1iU1

∗
i ) ∑(α11U1j × α11U1

∗
j) 

i,j i j 

3 3 
= α4   ∑(U1iU

∗ ) ∑(U1jU
∗ ) 

11  1i  1j 
i  j 

4 
11 = α 
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11 

22 22 22 

11 

22 

∑ U1iU1i + α22 ∑ U2iU2i ∑ U1jU1j + α22 ∑ U2jU2j 
2 

 

 

3 3 3 

Pµe  = ∑ Nµ
∗
i Nei Nµj Ne

∗
j  = ∑[α11U1

∗
i ][α21U1i + α22U2i ] ∑[α11U1j][α2

∗
1U1

∗
j + α22U2

∗
j] 

i,j i j 

3 3 

= ∑[α11U1
∗
i α21U1i ] ∑[α11U1jα2

∗
1U1

∗
j] 

i j 

= (α11α21)(α11α2
∗

1) = α2
 |α21|2

 

 

3 

Pµµ  = ∑ Nµ
∗
i Nµi Nµj Nµ

∗
j 

i,j 

3 3 

= ∑[α2
∗

1U1
∗
i + α22U2

∗
i ][α21U1i + α22U2i ] ∑[α21U1j + α22U2j][α2

∗
1U1

∗
j + α22U2

∗
j] 

i 

3 3 
2 ∗ 2 ∗ 

j 

# " 3 
∗ 2 

3 
∗ 

# 

i 

= (|α21|2 + α2 

i 

)(|α21|2 + α2 

j j 

) = (|α21|2 + α2 )2 

 

3 

Peτ  = ∑ Ne
∗
i Nτi Nej Nτ

∗
j 

i,j 

3 3 

= ∑[α11U1
∗
i ][α31U1i + α32U2i + α33U3i ] ∑[α11U1i ][α3

∗
1U1

∗
j + α3

∗
2U2

∗
j + α33U3

∗
j] 

i j 

3 3 

= α11α32 ∑ U1
∗
iU1i × α11α3

∗
2 ∑ U1jU1

∗
j  = α2   |α32|2

 

i j 
 

3 

Pµτ  = ∑ Nµ
∗
i Nτi Nµj Nτ

∗
j 

i,j 

3 3 

= ∑[α2
∗

1U1
∗
i + α22U2

∗
i ][α31U1i + α32U2i + α33U3i ] ∑[α21U1j + α22U2j] 

i j 

× [α3
∗

1U1
∗
i + α3

∗
2U2

∗
i + α33U3

∗
i ] 

3 3 3 3 

=[α2
∗

1α31 ∑ U1
∗
iU1i + α22α32 ∑ U2

∗
iU2i ][α21α3

∗
1 ∑ U1jU1

∗
j + α22α3

∗
2 ∑ U2jU2

∗
i ] 

i i j j 

=(α2
∗

1α31 + α22α32) × (α21α3
∗

1 + α22α3
∗

2) 

=|α21|2|α31|2 + α2   |α32|2 + α22α32α21α3
∗

1 + α22α3
∗

2α2
∗

1α31 

= |α21| |α21| 

" 
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Appendix B 

Kinematics of 1 −→ 2 process 

In this appendix, we briefly explain the kinematics involved in describing a process 
of type 1−→ 2 in the rest frame. The process that we want to describe is 

π+ −→ µ+νµ. (B.1) 

The first step is to define the 4-momentum of all the particles: 
 

Pµ = (mπ, 0) (B.2) 

From 3-momentum conservation, the sum of the 3-momentum of muon and muon 
neutrino must be zero. The 4-momentum of muon is 

 
µ 

muon = 
 

Eµ, →p
  

(B.3) 

 

and the 4-momentum of the muon neutrino is 
 

Pµ = (Eν, −→p) . (B.4) 

We remember the mandelstam variable, t, is 

t =
 

Pµ − Pµ 
  2 

=
 

Pµ 
  2 

(B.5) 
 

where subscript i refers to the initial state and f is the final state. in our case this 
becomes 

 
P

µ  2 
=

 
Pµ − Pµ

 2
 

 
 
P

µ 
 2 

= (Pµ)2 + (Pµ)2 − 2PµP . (B.6) 

P 

muon π ν π µν 
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π 

π 

 
Pµ

 2 
= m2 

muon muon muon 

ν ν ν 

π 

 

 

We compute the squared 4-momentum as follows 
 
 

π π 

(Pµ )2 = E2 − |→p|2  = m2 

P
µ 

Pµν = mπ Eν 

(Pµ)2 = E2 − |→p|2  = m2  = 0. 

As we can see we neglected the neutrino mass. By replacing the above results in 
Eq. (B.6) we have 

2 
muon 

E 
= m2 

m2 

— 2mπEν 
— m2

 

 
 29.8MeV (B.7) 

ν 
= 

2m 
muon = 
π 

where mπ = 134.9766MeV and mmuon = 105.658MeV 

m 
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