
 

Centro de Investigación y de Estudios Avanzados 
del 

Instituto Politécnico Nacional 
 

 
 

DEPARTAMENTO DE FÍSICA 
 
 
 

T-Dualidad para modelos sigma lineales 
normados dos dimensionales con torsión 

 
Tesis que presenta 

 

Jorge Gabriel León Bonilla 
 

para obtener el Grado de  
 
 

Maestro en Ciencias  
 
 

en la Especialidad de 
 
 
 

Física 
 
 

  Directores de tesis: 

 
 
Dr. Héctor Hugo García Compeán 
Dra. Nana Geraldine Cabo Bizet 
 

 
 

 
Ciudad de México 

 
Noviembre, 2021 

 



 

CENTRO DE INVESTIGACION Y DE ESTUDIOS AVANZADOS  
DEL INSTITUTO POLITECNICO NACIONAL  

 
 

PHYSICS DEPARTMENT 
 
 
 

“T-duality for gauged linear sigma models in 
two dimensions with torsion” 

 
 
 

Thesis submitted by 
 
 
 

Jorge Gabriel León Bonilla 
 
 
 

In order to obtain the  
 
 

Master of Science 
 
 

degree, speciality in 
 
 

Physics 
 
 
 

    Supervisors:  Dr. Héctor Hugo García Compeán 
 Dra. Nana Geraldine Cabo Bizet 
  
 

 
 

Mexico City November, 2021. 



Abstract

Abstract
Applying the T-duality algorithm to a gauged lineal sigma model in two dimensions
with supersymmetry (2,2) and torsion given by the semi-chiral fields representation
and we obtained the dual model. Using these results we describe the geometry and
torsion associated.

Resumen
Aplicamos el algoritmo de dualidad-T a un modelo sigma lineal normado en dos
dimensiones con supersimetŕıa (2,2) y con torsión por medio de la representación de
los campos semi-quirales se obtuvo el modelo dual. Usando los resultados se encontró
la geometŕıa y la torsión asociada.
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Chapter 1

Introduction

Before the 1990s, string theorists believed that there were five distinct superstring
theories, but research has shown that these five were not so different, that these are
related by dualities. The relation between different string theories is shown in the
figure (1.1), where the symmetry map of superstring theories that relates type IIA
with IIB and heterotic string theory HE with HO is, in general, an Abelian or non-
Abelian T-duality. Another map is given by S-duality, which relates SUGRA n = 11
with HE and type IIA and Ω-duality that relates type I and IIB. This means that
duality relations connect different limits [1].

Figure 1.1: Sketch of duality in string theory.

In the paper [1] Y. Lozano et al. (1994), showed that Buscher’s Abelian T-duality
transformation rules can be recovered by performing a canonical transformation, first
suggested by Giveon et al. (1989), see [2]. Furthermore, in paper [3], Giveon and
Roček, (1994), proposed the general method for sigma models in non-Abelian T-
duality.
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In 2000 Hori and Vafa [4] studied the relation between mirror symmetry and T-
duality, where for the first time they found an Abelian T-dual model of a gauged
linear sigma model (GLSM). However, Cabo et al. (2017), found the generalization
for a non-Abelian T-duality in GLSM [5].

The motivation of the present work was given by Roček et al. [6], who studied
a broad class of two dimensional gauged linear sigma models (GLSMs) off-shell with
N = (2, 2) supersymmetry that flow to nonlinear sigma models (NLSMs) on non-
compact geometries with torsion. These models require to use chiral, twisted chiral,
and semichiral multiplets to construct a new N = (2, 2) vector multiplet [7].

This thesis work is focused on the study of GLSM’s with torsion, their Abelian T-
duality and the background geometry. It would be interesting to study them because
one can find a new point of view, for this GLSM with torsion that might give us more
information about the mirror symmetry for these models.

The organization of this thesis is as follows: In the second chapter, we review su-
persymmetry N = (2, 2) and introduce the semi-vector multiplet given in [7]. More-
over, we define this GLSM with symmetry group U(1) with the semi-vector multiplet
and explain the cases given by this vector multiplet. Also, we discuss the method
given by Giveon et al. (1994) [3] for making the Abelian T-duality. In the third
chapter, we review the target space geometry and rewrite the Lagrangians in bosonic
and fermionic terms for GLSM chiral and twisted chiral multiplets. In the fourth
chapter, we find the dual Lagrangias for both cases using the general fixing of the
symmetry. In the fifth chapter, we compute the scalar potential for two possible cases
and analyze their geometry. In the sixth chapter, we finish obtaining the background
geometry for each model, where we find the metric and torsion. Finally, in the last
chapter, we give the conclusions and remarks.
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Chapter 2

Supersymmetry

On this chapter we review the N = (2, 2) supersymmetry in 2D and their representa-
tions. Therefore, we provide a systematic way to obtain the GLSM Lagrangians and
a method to do Abelian T-duality.

2.1 N = (2, 2) supersymmetry in 2D

Let us consider a field theory in d = 2 dimensions with space-time coordinates: x0 as
time coordinate and x1 as space coordinate [8]. We take the flat Minkowski metric

η =

(
1 0
0 −1

)
. (2.1)

We introduce the four fermionic coordinates θ± and θ̄±, where the ± index denotes
chirality under Lorentz transformation [8], [9]. This coordinates anti-commute as
we review in the appendix A. The N = (2, 2) superspace is the space with the
coordinates: x0, x1, θ±, θ̄± [8]. Furthermore, we define in this superspace a set of
differential operators given in [8], [10] as

D± =
∂

∂θ±
− iθ̄±∂±, (2.2)

D̄± = − ∂

∂θ̄±
+ iθ±∂±, (2.3)

Here ∂± are differentiations by x± := x0 ± x1

∂± =
∂

∂x±
=

1

2

(
∂

∂x0
± ∂

∂x1

)
, (2.4)

which obey the following relation

{D±, D̄±} = 2i∂±±. (2.5)
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The most general, linear, SUSY-invariant, constraints one can impose are chiral
superfield Φ and anti-chiral Φ̄ that are defined in [8] as

D̄±Φ = 0, (2.6)

D±Φ̄ = 0. (2.7)

For twisted chiral χ and anti-twisted chiral χ̄, which are defined in [8], we have

D̄+χ = D−χ = 0, (2.8)

D+χ̄ = D̄−χ̄ = 0. (2.9)

These are supersymmetric representations that only occur in d = 2 dimensions.
As well as their dual complex linear superfields [8], [11] we have

D̄+D̄−Σ = D+D−Σ̄ = 0, (2.10)

while for twisted linear superfields it is know

D̄+D−Σ̃ = D+D̄−
¯̃Σ = 0. (2.11)

This kind of fields have been extensively studied. Moreover, there is new kind of
fields, the left, and right semi-chiral superfields, defined in [7], [11] as

D̄+XL = D+X̄L = 0, D̄−XR = D−X̄R = 0. (2.12)

These are the semi-chiral multiplets that contain 3 scalars, 4 Weyl fermions, 1
chiral vector, which are physical and auxiliary fields [7].

2.2 Vector multiplets

Motivated by the fact that σ-models always admit a local description in N = (2, 2)
superspace in terms of complex chiral superfields ϕi, twisted chiral superfields χj and
semichiral superfields (XA

L , XA
R) [7], the most general description of a Lagrange density

with N = (2, 2) supersymmetry [12] can be written as:

K = K(ϕ, ϕ̄, χ, χ̄,XL, X̄L,XR, X̄R). (2.13)

The isometries acting on a Kähler manifold, correspond to changes in the chiral
superfields Φ or twisted chiral superfields χ. We assume U(1) isometry away from a
fixed point so that the choice of coordinates give us the Killing vectors:

kϕ = i(∂ϕ − ∂ϕ̄), kχ = i(∂χ − ∂χ̄). (2.14)
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We obtain new isometries from the mixing of chiral and twisted chiral superfields,
that were discover in [11], [13],

kϕχ = kϕ − kχ, (2.15)

kLR = i(∂L − ∂R̄ − ∂R + ∂R̄), (2.16)

if the vector field has a component along kϕ, kχ or kϕχ, we can (locally) redefine X to
eliminate any component along the new vector field kLR.

The isometries corresponding to the invariant Lagrange density (2.13) can be
promoted to local gauge symmetries. In general, the isometries act on the coordinates
under local transformations with some constant parameter λ as [7]

δz = [λk, z] , (2.17)

where z is ϕ, χ,XR, etc. Now, the parameter λ fulfills a local parameter Λ, that
follows the constraints for all the fields in the form

δgΦ = iΛ ⇒ D̄±Λ = 0,

δgΦ̄ = −iΛ̄ ⇒ D±Λ̄ = 0,

δgχ = iΛ̃ ⇒ D̄+Λ̃ = D−Λ̃ = 0,

δgχ̄ = −i ¯̃Λ ⇒ D+
¯̃Λ = D̄−

¯̃Λ = 0,

δgXL = iΛL ⇒ D̄+ΛL = 0,

δgX̄L = −iΛ̄L ⇒ D+Λ̄L = 0,

δgXR = iΛR ⇒ D̄−ΛR = 0,

δgX̄R = −iΛ̄R ⇒ D−Λ̄R = 0.

(2.18)

Under the local transformation given by the isometries, we introduce the vector
multiplets, for each killing vector. For kϕ, kχ and kϕχ, respectively:

δgV
Φ = i(Λ̄− Λ), (2.19)

δgV
χ = i( ¯̃Λ− Λ̃), (2.20)

δgV
′
= Λ̄ + Λ + ¯̃Λ + Λ̃, (2.21)

(2.22)

for kL, kR and kLR, we have

δgVL = i(Λ̄L − ΛL), (2.23)

δgVR = i(Λ̄R − ΛR), (2.24)

δgV′ = Λ̄R + ΛR + Λ̄L + ΛL. (2.25)
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In the case for semichiral fields it is more convenient to introduce the complex
combinations [11] given by the gauge transformations (2.23), (2.24) and (2.25):

V =
1

2

(
V′ + i

(
VL + VR

))
, (2.26)

Ṽ =
1

2

(
V′ + i

(
VL − VR

))
, (2.27)

with gauge transformations

δV = ΛL − ΛR, δV = ΛL − Λ̄R. (2.28)

2.3 Gauging

Since the isometry acts in the semi-chiral fields, we want to promote λ to a pair of left
and right semi-chiral gauge parameters [7], [11]. We have seen it in the previous sec-
tion, introducing the real vector multiplet ΛL and ΛR, where the gauge transformation
for these fields are in [11] and are given by

XL → eiQLΛLXL, XR → eiQRΛRXR. (2.29)

The gauge transformation of the vector multiplets are given from (2.23) to (2.25),
where VL,R are real, but V and Ṽ are complex by definition in the equations (2.26)
and (2.27).

2.4 Field strenghts

Likewise in the chiral and twisted chiral case, we introduce the field strength that
comes from the multiplets. The following complex field-strengths are full gauge in-
variant [7], [11]

F = D̄+D̄−V, F̄ = −D+D−V̄, (2.30)

F̃ = D̄+D−Ṽ, ¯̃F = −D+D̄−
¯̃V. (2.31)

where F and F̃ are chiral fields and twisted chiral fields, respectively. Thus, we can
define the fields in 2d with N = (2, 2) flat space with Lorentzian signature. The
algebra of N = (2, 2) spinor derivatives are on (2.5). We called V and Ṽ semichiral
vector multiplet (SVM), if we constrain these we obtain the constrain semichiral
vector multiplet (CSVM). The CSVM is obtained by constraining one of these field
strengths (but not both) to vanish [6]:

F = 0, F̃ = 0. (2.32)

Given the two field strengths from equation (2.31), we can write down the kinetic
action for the SVM, this is in [6] and is given by
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LSVM = − 1

2e2

∫
d4θ
(
¯̃FF̃− F̄F

)
. (2.33)

Now, the kinetic action for SVM is constrained by adding chiral Φ and semichiral
χ Lagrange multipliers [6], as follows

LCSVM =− 1

2e2

∫
d4θ
(
¯̃FF̃− F̄F

)
+ i

(∫
d2θΦF+ c.c.

)
+ i

(∫
d2θχF̃+ c.c.

)
.

(2.34)

The constraint implies (locally) that V or Ṽ is pure gauge. It is also possible to
add Fayet-Iliopoulos (FI) terms, with the form

LFI = it

(∫
d2θ̃F̃+ c.c.

)
+ is

(∫
d2θF+ c.c.

)
. (2.35)

Here, the D-term can be written as t = 1
2
(ξ − i θ

2π
) and s = 1

2
(ξ̃ − i θ̃

2π
), where ξ, ξ̃

are real FI parameters and θ, θ̃ are the topological theta angles.

2.5 GLSM with vector multiplets

In order to give a kinetic term, we consider an equal number of left and right semi-
chiral fields, with couplings between them [6]. It takes the form

LMatter =

∫
d4θ
[
aX̄LXL + bX̄RXR +

(
cX̄LXR + c.c.

)
+ (dXLXR + c.c.)

]
, (2.36)

where a, b are real and c, d are complex parameters. The parameters c, d are not
both zero [6]. As well as a, b ̸= 0 can be scaled to ±1, also, the parameters can’t
be absorbed by redefining the fields. The requirement of a positive definite kinetic
term imposes minor conditions on the signs of a, b and the range of the remaining
parameters.

Semi-chiral models typically have fewer (rigid) flavor symmetries than models for
chiral fields [6]. For instance, c, d = 0, has no U(1) isometries. In the special case
c = 0 there is a U(1) isometry acting by

XL → eiqλXL, XR → e−iqλXR, (2.37)

where λ is a real parameter. In the special case d = 0 there is a U(1) isometry acting
by

XL → eiqλXL, XR → eiqλXR, (2.38)
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More generally, if (XL,XR) are valued in the Lie algebra of a group G, one can
write a linear sigma model with an isometry if they are either in a representation
(R, R̄) or (R,R) of G.

Then we have two cases of interest in models with isometries, where d = 0 or
c = 0. In fact, these two cases are equivalent due to semichiral-semichiral duality
[12]. Finally, the requirement of a positive definite kinetic term imposes |a|= |b|= 1
and d = β > 1|β ∈ R in (2.36) give us the follow cases.

When the isometry acts on (2.37), the gauge-invariant matter Lagrangian is given
by

LMatter =

∫
d4θ
[
X̄Le

QVLXL + X̄Re
−QVRXR + β

(
XLe

−iQVXR + c.c.
)]
, (2.39)

and when the isometry acts as (2.38), the gauge-invariant matter Lagrangian goes as

LMatter =

∫
d4θ
[
X̄Le

QVLXL + X̄Re
QVRXR + α

(
XLe

iQ ¯̃VXR + c.c.
)]
. (2.40)

Then, the general Lagrangian with semi-chiral fields and CVSM is given by

L = LCSVM + LFI + LMatter

= − 1

2e2

∫
d4θ
(
¯̃FF̃− F̄F

)
+ i

(∫
d2θΦF+ c.c.

)
+ i

(∫
d2θ̃χF̃+ c.c.

)
+ it

(∫
d2θ̃F̃+ c.c.

)
+ is

(∫
d2θF+ c.c.

)
+

∫
d4θ
[
X̄LXL + X̄RXR + α (XLXR + c.c.)

]
.

(2.41)

Here we consider a pair of semi-chiral fields with opposite charges, coupled to the
SVM and constrained by F = 0 or F̃ = 0, but not both [6]. This leaves us two cases
to analyze their dualities.

2.6 T-duality in GLSM’s

In general, duality means an exact quantum equivalence between two theories T and
T ′ such that both represent only one theory, albeit in different guises [3], [14]. The
symmetry known as T-duality can be described employing a gauge theory, obtained
by gauging the global symmetry T-duality group to a local one and adding Lagrange
multipliers [3]. The global group can be Abelian or non-Abelian.

Given a symmetry groupG, if a theory is invariant underG, this theory is adequate
to carry out a T-duality [1]. In particular, the Lagrangian in the equation (2.41) is
invariant under the action of U(1) global group.
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The general method (algorithm) for T-duality is described in the work by Giveon
and Roček [3] for some global symmetry group G, this transformation proceeds in
few steps:

1. One gauges the isometry group, thus introducing a gauge field V = VaTa, where
Ta are the generators, and adding a Lagrange multiplier field Ψ. Integrating
over the field Ψ constrains the gauged field V to be pure gauge with vanishing
field-strength obtaining back the original model.

2. If we integrate out the gauge field V this leads to the dual model, as we can see
in the figure (2.1).

Figure 2.1: Scheme of the T-Duality process.

With these steps, we can work out the mapping between the operators and vari-
ables from the original to the dual model. Unfortunately, there are some problems
with non-Abelian T-duality when it is compared with Abelian T-duality. In the case
of Abelian T-duality, as we see in figure (2.1), we can recover the original model from
the dual model [3]. However, in the non-Abelian duality, it is not always possible
to obtain back the original theory, as the dual theory may loose the original global
symmetry [3].

2.7 Example for Abelian T-duality for GLSM

We begin with the example of a simple GLSM of (anti)chiral fields with U(1) global
symmetry and employ the duality algorithm described in the last section in order to
obtain the dual model.
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We implement T-duality for a (2, 2) GLSM with gauge group U(1) given by [4],
that has a vector superfield field V0, two chiral superfields Φ1 and Φ2 with equal
charges Q1 and Q2 under the U(1) gauge group. The global symmetry can be gauged
by adding the vector superfield V , and the Lagrange multipliers Ψ and Ψ̄ to the
GLSM Lagrangian. This yield us

LU(1) =

∫
d4θ
(
Φ̄1e

2Q0V0+2QVΦ1 + Φ̄2e
2Q0,2V0Φ2

)
+

∫
d4θ

(
− 1

2e2
Σ̄0Σ0 +ΨΣ+ Ψ̄Σ̄

)
+

1

2

(
−t
∫
d2θ̃Σ0 + c.c.

)
.

(2.42)

Here Σ is the gauge field strength associated to the gauged field V , Σ = D+D−V .
The next step is to proceed to the integration of the gauge field to obtain the dual
model, we search the equation of motion by doing δL

δV
= 0. Employing the definition

for the twisted field strength in the equation (2.8) and integrating by parts the terms
with the Lagrange multipliers, we have

Φ̄1e
2Q0V0+2QVΦ1 =

Λ+ Λ̄

2Q
, (2.43)

where Λ is given by

Λ =
1

2
D̄+D−Ψ. (2.44)

Now, from equation (2.43) will obtain V and we eliminate it from the Lagrangian
(2.42) to get

LU(1),dual =

∫
d4θ

(
−Λ + Λ̄

2Q
ln

(
Λ + Λ̄

2Q

)
− Λ + Λ̄

2Q
ln
(
Φ̄1e

2Q0V0Φ1

))
+

∫
d4θ

(
Φ̄2e

2Q0,2V0Φ2 −
1

2e2
Σ̄0Σ0

)
+

1

2

(
−t
∫
d2θ̃Σ0 + c.c.

)
.

(2.45)

Next, we can work out the second term in (2.45), integrating by parts and using the
definition of the gauge twisted chiral strength, as follows,

I =

∫
d4

Λ + Λ̄

2Q
ln
(
Φ̄1e

2Q0V0Φ1

)
=

∫
dθ+dθ−dθ̄−dθ̄+

Λ + Λ̄

2Q

(
2Q0V0 + ln

(
Φ̄1Φ1

))
=

∫
dθ+dθ−dθ̄−dθ̄+

Q0

Q
(Λ + Λ̄)V0

=
Q0

Q

(∫
dθ+dθ̄−ΣΛ +

∫
dθ−dθ̄+Σ̄Λ̄

)
.

(2.46)
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Then we obtain the dual Lagrangian

LU(1),dual =

∫
d4θ

(
−Λ + Λ̄

2Q
ln

(
Λ + Λ̄

2Q

)
+ Φ̄2e

2Q0,2V0Φ2 −
1

2e2
Σ̄0Σ0

)
− 1

2

(∫
dθ̃Σ0(

Q0

Q
Λ− t) +

∫
d ¯̃θΣ̄0(

Q0

Q
Λ̄− t̄)

)
.

(2.47)

The can be expanded in terms of auxiliary, fermionic and scalar components of the
superfields Φ2,Λ,Σ0. From this Lagrangian, we can obtain the equations of motion
as well as the scalar potential. The supersymmetric vacua of this potential will lead
to the dual target space.

In the same way that we find the dual Lagrangian for an extra U(1) global sym-
metry, we can make it for multiple U(1) global symmetries with N chiral superfields
and particular charges.

13



Chapter 3

Target space geometry

Here, we review the tools to obtain the target space geometry from a sigma model
depending on the commutator’s kernel of the complex forms J±. Moreover, we discuss
the method to leave chiral and twisted-chiral Lagrangians in terms of the bosonic
components to use it later.

3.1 Geometry for sigma models

The geometry of the target space in each sigma model is different, it depends on the
supersymmetry N and its dimension d [15]. This situation can be summarized by the
following table

SUSY (1,1) (2,2) (2,2)
E = g +B g,B g g,B
Geometry Riemannian Kähler Bihermitean

Table 3.1: The geometries of sigma models [15].

where we denote the left- and right-moving sectors by N = (p, q). We focus in the
case N = (2, 2) in d = 2, where the background space is flat and may contain an
antisymmetric b-field given by the semi-chiral representation [6].

In the paper [15] Lindstrom et al. reduced from N = (2, 2) to N = (1, 1), this
leaves a non-linear sigma model, such that it is easy to identify the metric and b-field
of the target space. They shown that the metric and b-field are non-linear functions
of second derivatives of the Kähler potential K, so they wrote the complex structures
J± and the 2-form Ω in canonical coordinates (q, P, z, z′), with the definition of the
Kähler potential as K = K(q, P, z, z′). Finally, they obtained J± by doing a change
of coordinates, from the canonical coordinates to the basis
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
XA

L

XA′
R

ϕA

χA′

 , (3.1)

where we use the same collective notation like [15], where A ≡ {α, ᾱ}, A′ ≡ {α′, ᾱ′},
A ≡ {a, ā} and A′ ≡ {a′, ā′}. These fields carry indices

Φα, Φ̄ᾱ, α = 1, ..., dc , χα′
, χ̄ᾱ′

, α′ = 1, ..., dt,

Xa
L, X̄ā

L, a = 1, ..., ds , Xa′

R , X̄ā′

R , a
′ = 1, ..., ds.

(3.2)

such that their dimension is given by the number of the superfields, we have ds, dc
and dt for left and right semi-chiral, twisted chiral and chiral, respectively. In a basis
where the coordinates are arranged as (3.1), we introduce the notation suppressing
the index structure for the matrices,

K−1
AB = (KBA)

−1, (3.3)

C =JK −KJ =

(
0 2iK

−2iK 0

)
,

A =JK +KJ =

(
2iK 0
0 −2iK

)
.

(3.4)

where, e.g., KAB is the matrix of second derivatives along L-, R-, t- and c-directions,
which are left, right semichiral, twisted chiral and chiral, respectively. The complex
structures and the 2-form are completely determined given the generalized Kähler
potential K by

J+ =


Js 0 0 0

K−1
RLCLL K−1

RLJsKLR K−1
RLCLc K−1

RLCLt

0 0 Jc 0
0 0 0 Jt
,

 (3.5)

and

J− =


K−1

LRJsKRL K−1
LRCRR K−1

LRCRc K−1
LRALt

0 Js 0 0
0 0 Jc 0
0 0 0 Jt

 . (3.6)

These matrices have been taken from the paper [15], and the matrices Js, Jc and Jt
are given by

J =

(
i 0
0 −i

)
. (3.7)
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3.2 General Kähler Geometry

We have the special case for bihermitian geometry where the metric g and torsion b
[15] are given by

g = Ω[J+, J−], b = {J+, J−} (3.8)

We start analyzing the geometry of the original model. The following conditions
are obtained from the equations (3.5), (3.6) and (3.8)

• J+ and J− are almost complex structures, i.e; J2
± = −1.

• They are integrable, i.e; Nijenhuis tensor vanishes.

• The metric is hermitean with respect to both complex structures: JT
±gJ± = g.

• J ’s are covariantly constant with respect to a torsionful connection: ∇±J
± = 0

Given the above, our original model in (2.41) represents a bihermitean target space
geometry with a b-field, and result from requiring invariance of the action (2.39) and
(2.40) under the transformations as well as the closure of the algebra (2.17). The
closure is only achieved on-shell, however. Only under the special condition that the
two complex structures commute does the algebra close off-shell. In that case, there
is a manifestly N = (2, 2) action for the model given in terms of chiral and twisted
chiral N = (2, 2) superfields.

The general form to obtain J± are given in the equation (3.5) and (3.6), but we
just gave the form to obtain the metric and the b-field in the case of the bihermitian
geometry that is a particular case when ker[J+, J−] = ∅ [6], [15].

In the general case when we have the condition ker[J+, J−] ̸= ∅, we apply a similar
method [15]. First, we obtain the forms J± with the equations (3.5) and (3.6). The
second step is to find the metric g, but the equation given in (3.8) is just for the
bihermitian metric. For general Kähler geometry the metric [15] is given by

g =


gAB gAB′ gAB gAB′

gA′B gA′B′ gA′B gA′B′

gAB gAB′ gAB gAB′

gA′B gA′B′ gA′B gA′B′

 , (3.9)

where the definition of the Poisson structure Ω determines all the components, except
along the kernel [15] (

gAB gAB′

gA′B gA′B′

)
. (3.10)

These components can be obtained by solving the partial differential equation
(PDE) [15], in the canonical coordinates (q, P, z, z′)

Jλ
+µJ

σ
+νJ

γ
+ρ(dω+)λσγ = −Jλ

−µJ
σ
−νJ

γ
−ρ(dω−)λσγ (3.11)

However, some components on (3.10) can be obtained using the symmetry of g and
anti-symmetry of b on E = 1

2
(g + b).
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3.3 Target space geometry from Kähler potential

In the previous section, we talked about how the geometry can be understood in these
sigma models, where we have a special form of the metric and the b-field but we did
not mention how to obtain these. Starting from a given function of the form of (2.13)
we obtain the Lagrangian

L =

∫
d4θK(X̄i,Xi; Φ, Φ̄;χ, χ̄), (3.12)

where the functionK is known as the generalized Kähler potential and besides obeying
mild conditions for the metric g to be positive definite [15], it is otherwise arbitrary.
The function E = 1

2
(g + b) is completely determined by these functions, as

ELL =CLLK
−1
LRJsKRL

ELR =JsKLRJs + CLLK
−1
LRJsCRR

ELc =KLc + JsKLcJc + CLLK
−1
LRCRc

ELt =−KLt − JsKLtJt + CLLK
−1
LRARt

ERL =−KRLJsK
−1
LRJsKRL

ERR =−KRLJsK
−1
LRCRR

ERc =KRc −KRLJsK
−1
LRCRc

ERt =−KRt −KRLJsK
−1
LRARt

EcL =CcLK
−1
LRJsKRL

EcR =JcKcRJs + CcLK
−1
LRCRR

Ecc =Kcc + JcKccJc + CcLK
−1
LRCRc

Ect =−Kct − JcKctJt + CcLK
−1
LRARt

EtL =CtLK
−1
LRJsKRL

EtR =JtKtRJs + CtLK
−1
LRCRR

Etc =Ktc + JtKtcJc + CtLK
1
LRCRc

Ett =−Ktt − JtKttJt + CtLK
−1
LRARt

(3.13)

where we take K,C and A as in the equations (3.3) and (3.4). From this, the metric
g and anti-symmetric b-field may be in terms of non-linear second derivatives of K.

3.4 Kähler for chiral fields

The last set of equations describes a general Lagrange density (2.41), but the partic-
ular case where K is a function of chiral and anti-chiral superfields is on the book of
supersymmetry and supergravity [9]. We find that the Lagrangian can be written in
terms of the Kähler potential and its derivatives. It lets us write the Lagrangian in
terms of their geometry.

17



The most general Lagrangian that can be built from chrial superfiels Φi, for i =
1, 2, . . . , n [9] is

L =

∫
d2θ d2θ̄ K

(
Φi,Φ+j

)
+

[∫
d2θ P (Φi) + h.c.

]
, (3.14)

where P is a holomorphic function (i.e. only is function of Φi). K is a function that
depends on n holomorphic and anti-holomorphic variables Φi and Φ̄i,respectively,
with power series expansions in terms of chrial superfields Φi:

K(Φ,Φ+) =
∑

ci1···iN ,j1···jNΦ
i1 · · ·ΦiNΦ+j1 · · ·Φ+jM , (3.15)

P (Φ) =
∑

gi1···iNΦ
i1 · · ·ΦiN . (3.16)

To find the component Lagrangian, we must expand K and P in terms of the θ
variables. For the superpotential P , we have the expansion

P (Φ) = P (A) +
√
2θχi∂P (A)

∂Ai
+ θθ

{
F i∂P (A)

∂Ai
− 1

2
χiχj ∂

2P (A)

∂Ai∂Aj

}
. (3.17)

The θ expansion of K(Φ,Φ+) can be obtained from the monomial:

KNM = Φi1 · · ·ΦiNΦ+j1 · · ·Φ+jM . (3.18)

This expression simplifies the notation of a Kähler manifold [9], where:

gij∗ =
∂

∂Ai

∂

∂A∗jK|, (3.19)

gij∗,k =
∂

∂Ak
gij∗ = gmj∗Γ

m
ik, (3.20)

gij∗,k∗ =
∂

∂A∗k gij∗ = gim∗Γ
m∗
j∗k∗. (3.21)

Moreover, the Lagrangian in terms of the metric, superpotential and auxiliary
fields is

L =gij∗F
iF j∗ +

1

4
gij∗,kl∗χ

iχkχ̄j∗χ̄l∗

− F i

(
1

2
gim∗Γm∗

j∗k∗χ̄
j∗χ̄k∗ − ∂P

∂Ai

)
− F i∗

(
1

2
gmi∗Γ

m
jkχ

jχk − ∂P̄

∂Āi∗

)
− gij∗∂mA

i∂mAj∗ − igij∗χ̄
j∗σ̄mDmχ

i

− 1

2

∂2P

∂Ai∂Aj
χiχj − 1

2

∂2P

∂Āi∗∂Āj∗
χ̄i∗χ̄j∗ ,

(3.22)
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where the auxiliary fields are given by

F i = gij
∗
(
1

2
gkj∗Γ

k
mlχ

mχl − ∂P̄

∂Āj∗

)
. (3.23)

3.5 Kähler for twisted-chiral fields

In the paper of Cabo et al [16], they used the same methods given in [9] to find the
Lagrangian in terms of their geometry. The general Lagrangian that we can build
with twisted-chiral superfields Ψµ, for i = 1, 2, . . . , n [9] is

L =

∫
d2θ̃ d2¯̃θ K

(
Ψµ, Ψ̄µ

)
+

(∫
d2θ̃ W (Ψµ) + c.c.

)
, (3.24)

where W is a holomorphic function (i.e. it is only a function of Ψµ). K is a function
that depends on n holomorphic and anti-holomorphic variables Ψµ and Ψ̄µ, respec-
tively, with power series expansions in terms of twisted-chiral superfields Ψi:

K
(
Ψµ, Ψ̄µ

)
=
∑
i,j

∑
µ1,···,µi,ν1,···,νj

kµ1···µiν1···νjΨ
µ1 · · ·ΨµiΨν1 · · ·Ψνj , (3.25)

W (Ψµ) =
∑
i

∑
µ1,···,µi

pµ1···µi
Ψµ1 · · ·Ψµi . (3.26)

The expansion in θ let us rewrite the Lagrangian in terms of the following variables

gµν̄ =
∂

∂ψµψ̄ν
k, k =

∑
ij

kij (3.27)

∂

∂ψρ
gµν̄ = gσν̄Γ

σ
µρ. (3.28)

Finally the Lagrangian can be written as

L = GµḠν̄gµν̄ −
1

2
Gµ
(
¯̃χ
ν̄ ¯̃χ

ρ̄
gµσ̄Γ

σ̄
ν̄ρ̄ − 2∂µW

)
− 1

2
Ḡµ̄
(
χ̃νχ̃ρgµσ̄Γ

σ
νρ − 2∂µ̄W

)
+

1

4
χ̃µχ̃ν ¯̃χ

ρ̄ ¯̃χ
σ̄
∂ν∂barσgµρ̄ −

(
∂mψ

µ∂mψ̄ν̄
)
gµν̄ − i¯̃χ

µ̄
σ̄mgνµ̄Dmχ̃

ν

− 1

2
(∂µ∂νW )χ̃αµχ̃ν

α − 1

2

(
∂µ̄∂ν̄W̄

)
¯̃χ
µ̄

α̇
¯̃χ
α̇ν̄
,

(3.29)

where the auxiliary fields can be integrated using the Euler-Lagrange equations, thus
giving us

Ḡν̄ =
1

2
gµν̄
(
¯̃χ
θ̄ ¯̃χ

ρ̄
gµσ̄Γ

σ̄
θ̄ρ̄ − 2∂µW

)
, (3.30)
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Gν =
1

2
gνµ̄
(
χ̃θχ̃ρgµ̄σΓ

σ
θρ − 2∂µ̄W̄

)
. (3.31)

This leads to the Lagrangian in terms of fermionic and bosonic components, where it
is easy to compute the scalar potential, just taking the bosonic terms in (3.22) and
(3.29).
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Chapter 4

Abelian T-Duality for GLSM in
N = (2, 2) with Torsion

In this chapter, we compute the dual Lagrangian for both cases F = 0 and F̃ = 0,
using the method given in chapter 2 and doing a gauge fixing to the original fields to
obtain the dual Lagrangian.

4.1 Cases for the field strength

We found the matter Lagrangian with the semi-chiral representation when isometry
acts on these superfields in the equations (2.39) and (2.40), then we have two cases
to analyze : F = 0 and F̃ = 0.

The method that we follow to do the Abelian T-duality is gauging the field X and
add a viewer field that preserves the U(1) symmetry. We use the definition for the
vector multiplets (2.26) and (2.27) to rewrite VL and VR as

VR = i(V− Ṽ) = i( ¯̃V− V̄) (4.1)

VL = i( ¯̃V− V) = i(V̄− Ṽ). (4.2)

4.1.1 Case F = 0

The first case is for F = 0, we choose the gauge V = 0, this gives us the condition

VR = VL ≡ V, (4.3)

where we observe that V is the usual vector multiplet. Then, the Lagrangian becomes
invariant under gauge group U(1) with the same charge,
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LF=0 =

∫
d4θ

[
− 1

2e2
Σ̄Σ + X̄Le

QV0XL + X̄Re
−QV0XR

+ β(XLXR + c.c.)] + it

∫
d4θ̃Σ0 + c.c.

(4.4)

We obtain the equation of motion for Φ in (2.41), then it sets F = 0, using (4.3) let
us F̃ = Σ. Eventually, we promote the global symmetry to a local one by introducing
a vector superfield V1 for the fields XL,R to implement T-duality, but we fix the gauge
to remove the phase transformation of X2,LR, where we use the gauging given in
(2.29). This is invariant under the residual, chiral, gauge symmetry, that in this case
is written as

δV = i
(
Λ̄− Λ

)
, XL → eiQΛXL, XR → e−iQΛXR. (4.5)

Then, the Lagrangian becomes

LF=0 =

∫
d4θ
[
X̄1,Le

Q0V0+QV1X1,L + X̄1,Re
−(Q0V0+QV1)X1,R + β(X1,LX1,R + c.c.)

]
+

∫
d4θ
[
X̄2,Le

Q0V0X2,L + X̄2,Re
−Q0V0X2,R + β2(X2.LX2,R + c.c.)

]
+

∫
d4θΨΣ1 +

∫
d4θΨ̄Σ̄1 +

∫
d4θ − 1

2e2
Σ̄0Σ0 + it

∫
d4θ̃Σ0 + c.c.

(4.6)

where Ψ is an unconstrained superfield. Σ1 is the fields strength associated to V1.
Integratiing Ψ, one gets a pure vector superfield V1 and returns to the original La-
grangian. As we discussed before the field strength corresponds to F̃ = Σ, this is a
function of derivatives of V1 as

Σ1 =
1

2
D̄+D−V1 Σ̄1 =

1

2
D̄−D+V1. (4.7)

Then, the Lagrange multiplier is

LLM1 =

∫
d4θΨΣ1 +

∫
d4θΨ̄Σ̄1

=
1

2

∫
d4θΨD̄+D−V1 +

1

2

∫
d4θΨ̄D̄−D+V1

=
1

2

∫
d4θV1D̄+D−Ψ+

1

2

∫
d4θV1D̄−D+Ψ̄.

(4.8)

and the variation of the whole Lagrangian (4.6) will be

Q
[
X̄1,Le

Q0V0+QV1X1,L − X̄1,Re
−(Q0V0+QV1)X1,R

]
+

1

2

(
Υ+ Ῡ

)
= 0, (4.9)
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where Υ = 1
2
D̄+D−Ψ and Ῡ = 1

2
D̄−D+Ψ̄. If we multiply by eQV1 , we obtain a second-

degree equation and hence, two real solutions, they are

V1 =
ln
(√

g2 + 16LR− g
)

Q
− ln(2L)

Q
, (4.10)

V1 =
ln
(√

g2 + 16LR + g
)

Q
− ln(2L)

Q
, (4.11)

where g = 1
2Q

(
Υ+ Ῡ

)
, L = X̄1,Le

Q0V0X1,L and R = X̄1,Re
−Q0V0X1,R. Now, we will

find the dual Lagrangian. We compute the kinetic Lagrangian in terms of the dual
fields, to get

Lk =

∫
d4θ
[
X̄1,Le

Q0V0+QV1X1,L + X̄1,Re
−(Q0V0+QV1)X1,R + β(X1,LX1,R + c.c.)

]
=

∫
d4θ

[
1

2Q

(
Υ+ Ῡ

)
+ 2X̄1,Le

Q0V0+QV1X1,L + β(X1,LX1,R + c.c.)

]
=

∫
d4θ
[
2X̄1,Le

Q0V0+QV1X1,L

]
= 2

∫
d4θLeQV1

=2

∫
d4θL exp

[
ln
(√

g2 + 16LR± g
)
− ln(2L)

]
=

∫
d4θ
√
g2 + 16LR

(4.12)

For the Lagrange multipliers, by using the definition of V1 in (4.10) and (4.11),
we obtain the follow

LLM =
1

2

∫
d4θV1D̄+D−Ψ+

1

2

∫
d4θV1D̄−D+Ψ̄

=

∫
d4θV1Υ+

∫
d4θV1Ῡ

=

∫
d4θV1

(
Υ+ Ῡ

)
=

∫
d4θ

 ln
(√

g2 + 4LR± g
)

Q
− ln(2L)

Q

(Υ+ Ῡ
)

=
1

Q

∫
d4θ
(
ln
(√

g2 + 4LR± g
)
− ln(2L)

) (
Υ+ Ῡ

)
=

1

Q

∫
d4θ ln

(√
g2 + 4LR± g

) (
Υ+ Ῡ

)
− C1

=2

∫
d4θ ln

(√
g2 + 4LR± g

)
g − C1,

(4.13)
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where

C1 =− 1

Q

∫
d4θ (ln(2L))

(
Υ+ Ῡ

)
=− 1

Q

∫
d4θ
(
ln
(
2X̄Le

Q0V0XL

)) (
Υ+ Ῡ

)
=− 1

Q

∫
d4θ
(
ln
(
2X̄LXL

)
+ ln

(
eQ0V0

)) (
Υ+ Ῡ

)
=− 1

Q

∫
d4θ
(
ln
(
2X̄LXL

)) (
Υ+ Ῡ

)
− Q0

2Q

∫
d4θV0

(
Υ+ Ῡ

)
.

(4.14)

The first term in (4.14) can be obtained integrating by parts and using the relations
(2.12), to obtain

− 1

Q

∫
d4θ
(
ln
(
2X̄LXL

)) (
Υ+ Ῡ

)
=− 1

Q

∫
dθ−dθ̄−

(
Υ+ Ῡ

)
D̄+D+

(
ln
(
2X̄LXL

))
= − 1

Q

∫
dθ−dθ̄−

(
Υ+ Ῡ

) D̄+D+

(
X̄LXL

)
X̄LXL

= 0.

(4.15)

Similary the second term in (4.14) can be integrated by parts again, to get

−Q0

Q

∫
d4θV0

(
Υ+ Ῡ

)
= −Q0

Q

∫
d4θV0

(
1

2
D̄+D−Ψ+

1

2
D̄−D+Ψ̄

)
= −Q0

2Q

∫
d4θ
(
ΨD̄+D−V0 + Ψ̄D̄−D+V0

)
=
Q0

2Q

[∫
dθ+dθ̄−ΥD̄+D−V0 +

∫
dθ̄+dθ−ῩD̄−D+V0

]
=
Q0

Q

[∫
dθ+dθ̄−ΥΣ0 +

∫
dθ̄+dθ−ῩΣ̄0

]
.

(4.16)

Then, the first term in (4.12) is zero, because we have only chiral fields, and thus, the
Lagrangian (4.6) becomes

LF=0,dual =

∫
d4θ
[√

g2 + 4LR + 2g ln
(√

g2 + 4LR± g
)]

−
∫
d4θ

1

2e2
Σ̄0Σ0

+

∫
d4θ
[
X̄2,Le

Q0V0X2,L + X̄2,Re
−Q0V0X2,R + β(X2.LX2,R + c.c.)

]
+

∫
dθ+dθ̄−

(
Q0

Q
Υ+ it

)
Σ0 +

∫
dθ̄+dθ−

(
Q0

Q
Ῡ− it̄

)
Σ̄0.

(4.17)
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4.1.2 Case F̃ = 0

In the second case, we take the Lagrangian (2.41) with the term of matter (2.40),
coupling semi-chiral fields to the SVM constrained by the equation of motion of χ
on (2.41) sets F̃ = 0 and Ṽ = 0. The corresponding vector multiplet V is invariant
under the residual, twisted chiral, gauge symmetry

δgṼ = i
(
¯̃Λ− Λ̃

)
, XL → eiQΛ̃XL, XR → e−iQ ¯̃ΛXR. (4.18)

Then, the gauge theory with matter effectively reduces to a gauge theory of semi-
chiral fields coupled to the twisted vector multiplet, where Ṽ = Ṽ †. Thus, the gauge
invariant field strength is given by

Θ = D̄+D̄−Ṽ , Θ̄ = D−D+Ṽ . (4.19)

Now, as in the last case, we can add a viewer field and a Lagrange multiplier for our
field strength, that looks like

LF̃=0 =

∫
d4θ
[
X̄1,Le

Q0Ṽ0+QṼ1X1,L + X̄1,Re
Q0Ṽ0+QṼ1X1,R + α

(
X1,Le

Q0Ṽ0+QṼ1X1,R + c.c.
)]

+

∫
d4θ
[
X̄L,2e

Q0Ṽ0XL,2 + X̄R,2e
Q0Ṽ0XR,2 + α2

(
XL,2e

QṼ0XR,2 + c.c.
)]

+
1

2e2

∫
d4θ
(
Θ̄0Θ0

)
+ i

(∫
d4θΨ̃Θ1 + c.c.

)
+ is

(∫
d2θΘ0 + c.c.

)
.

(4.20)

Here, Ψ̃ is an unconstrained superfield and Θ1 is the field strength associated to V1.
By integrating out Ψ̃ one gets a pure vector superfield V1 and returns to the original
Lagrangian. Furthermore, integrating by parts the Lagrange multipliers using the
definition on (4.19), gives

LLM,2 =

∫
d4θΨ̃Θ1 +

∫
d4θ ¯̃ΨΘ̄1

=

∫
d4θΨ̃D̄+D̄−Ṽ1 +

∫
d4θ ¯̃ΨD−D+Ṽ1

=

∫
d4θṼ1D̄+D̄−Ψ̃ +

∫
d4θṼ1D−D+

¯̃Ψ.

(4.21)

Then, the equation of motion is given as

QeQṼ1

[
X̄1,Le

Q0Ṽ0X1,L + X̄1,Re
Q0Ṽ0X1,R + α

(
X1,Le

Q0Ṽ0X1,R + c.c.
)]

+
1

2

(
Υ̃ + ¯̃Υ

)
= 0,

(4.22)

where Υ̃ = D̄+D̄−Ψ̃ and ¯̃Υ = D−D+
¯̃Ψ. Therefore, the solution to V1 becomes
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Ṽ1 =− 1

Q
ln
[
X̄1,Le

Q0Ṽ0X1,L + X̄1,Re
Q0Ṽ0X1,R + α

(
X1,Le

Q0Ṽ0X1,R + c.c.
)]

+
1

Q
ln

(
Υ̃ + ¯̃Υ

2Q

)
.

(4.23)

As in the first case by using this solution for the gauge field V1, in the first term
of the Lagrangian (4.20), the kinetic term reduce to

Lk,2 =

∫
d4θ
[
X̄1,Le

Q0Ṽ0+QṼ1)X1,L + X̄1,Re
Q0Ṽ0+QṼ1X1,R + α

(
X1,Le

Q0Ṽ0+QṼ1X1,R + c.c.
)]

=− 1

2Q

∫
d4θ
(
Υ̃ + ¯̃Υ

)
.

(4.24)

Next, for Lagrange multipliers we get

LLM,2 =

∫
d4θV1D̄+D̄−Ψ̃ +

∫
d4θV1D−D+

¯̃Ψ

=

∫
d4θV1

(
Υ̃ + ¯̃Υ

)
=

∫
d4θ

(
−Q0Ṽ0 +K

Q
+

1

Q
ln

(
Υ̃ + ¯̃Υ

2Q

))(
Υ̃ + ¯̃Υ

)
= −

∫
d4θ

Q0Ṽ0 +K

Q

(
Υ̃ + ¯̃Υ

)
+

1

Q

∫
d4θ ln

(
Υ̃ + ¯̃Υ

2Q

)(
Υ̃ + ¯̃Υ

)
,

(4.25)

where
K = ln

(
X̄1,LX1,L + X̄1,RX1,R + α (X1,LX1,R + c.c.)

)
. (4.26)

In (4.25) we can integrate the first term by parts in the same manner as in (4.16),
such that it becomes

−
∫
d4θ

Q0Ṽ0
Q

(
Υ̃ + ¯̃Υ

)
= −Q0

Q

∫
d4θṼ0

(
Υ̃ + ¯̃Υ

)
= −

(
Q0

2Q

∫
d4θṼ0D̄+D̄−Ψ̃ +

∫
d4θṼ0D−D+

¯̃Ψ

)
=

(
Q0

2Q

∫
dθ+dθ̄−Υ̃D̄+D̄−Ṽ0 +

∫
dθ̄+dθ− ¯̃ΥD−D+Ṽ0

)
=

(
Q0

Q

∫
dθ+dθ̄−Υ̃Θ0 +

∫
dθ̄+dθ− ¯̃ΥΘ̄0

)
.

(4.27)
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Henceforth (4.25), becomes

LLM,2 = −
∫
d4θ

Q0Ṽ0 +K

Q

(
Υ̃ + ¯̃Υ

)
+

1

Q

∫
d4θ ln

(
Υ̃ + ¯̃Υ

2Q

)(
Υ̃ + ¯̃Υ

)
=

1

Q

∫
d4θ ln

(
Υ̃ + ¯̃Υ

2Q

)(
Υ̃ + ¯̃Υ

)
+
Q0

Q

(∫
dθ+dθ̄−Υ̃Θ0 +

∫
dθ̄+dθ− ¯̃ΥΘ̄0

)
− 1

Q

∫
d4θK

(
Υ̃ + ¯̃Υ

)
.

(4.28)

Finally the dual Lagrangian can be written as

LF̃=0 =
1

Q

∫
d4θ ln

(
Υ̃ + ¯̃Υ

2Q

)(
Υ̃ + ¯̃Υ

)
+

1

2e2

∫
d4θ
(
Θ̄0Θ0

)
− 1

Q

∫
d4θK

(
Υ̃ + ¯̃Υ

)
+

∫
d4θ
[
X̄L,2e

Q0Ṽ0XL,2 + X̄R,2e
Q0Ṽ0XR,2 + α

(
XL,2e

QṼ0XR,2 + c.c.
)]

+

∫
d2θ

(
Q0

16Q
Υ̃ + is

)
Θ0 +

∫
d2θ

(
Q0

16Q
¯̃Υ− is̄

)
Θ̄0.

(4.29)

4.1.3 Fixing gauge symmetry

Furthermore, with this result it is possible to fix the gauge as in the paper [3], letting
both Lagrangians (4.17) and (4.29) in terms of the dual fields. To do so, we start
from the terms in (4.17) and (4.29), which do not depend on the original fields, so
they can be eliminated by this method. We begin with the F = 0 case, where we can
find one term which depends of the original fields in (4.17), we called it an extra term√

g2 + 4LR, (4.30)

where g = 1
2Q

(
Υ+ Ῡ

)
, L = X̄Le

Q0V0XL, R = X̄Re
−Q0V0XR. Here, we omitted the

index 1 in the semi-chiral fields. We know from the transformation of these fields,
giving by (4.5), that the LR term under this symmetry is given by

LR =
(
X̄LXL

) (
X̄RXR

)
→
(
eiQΛXLe

−iQΛ̄X̄L

)(
e−iQΛXRe

iQΛ̄X̄R

)
= eiQΛ−iQΛ̄−iQΛ+iQΛ̄

(
XLX̄L

) (
XRX̄R

)
=
(
XLX̄L

) (
XRX̄R

)
.

(4.31)

This term is invariant under U(1) transformation as we expected. Nevertheless, these
are strange kinds of fields that do not let us gauge away semi-chiral fields [6], [11].

27



One cannot use them to go to a unitary gauge, so, we need think in partial gauge
fixing [6]. Nonetheless, we can keep all the fields of the CSVM; such that we can
choose a unitary gauge, e.g., XR = XL = 1 [6]. This let us the extra term equal to
(4.30). (

2 +
1

Q

)(√
g2 + 4LR± g

)
, (4.32)

In the second case, the extra term is given by

T = ln
(
X̄LXL + X̄RXR + α

(
XLXR + X̄LX̄R

))
, (4.33)

Thus, by using the rules of transformation in (4.18), we obtain

s = X̄LXL + X̄RXR + α
(
XLXR + X̄LX̄R

)
→ e−iQ ¯̃ΛX̄Le

iQΛ̃XL + eiQΛ̃X̄Re
−iQ ¯̃ΛXR

+ α
(
eiQΛ̃XLe

−iQ ¯̃ΛXR + eiQ
¯̃ΛX̄Le

iQΛ̃X̄R

)
= eiQΛ̃−iQ ¯̃ΛX̄LXL + eiQΛ̃−iQ ¯̃ΛX̄RXR

+ α
(
eiQΛ̃−iQ ¯̃ΛXLXR + eiQ

¯̃Λ+iQΛ̃X̄LX̄R

)
= eiQ(Λ̃− ¯̃Λ)X̄LXL + eiQ(Λ̃− ¯̃Λ)X̄RXR

+ α
(
eiQ(Λ̃− ¯̃Λ)XLXR + eiQ(− ¯̃Λ+Λ̃)X̄LX̄R

)
= eiQ(Λ̃− ¯̃Λ)

(
X̄LXL + X̄RXR

+α
(
XLXR + X̄LX̄R

))
,

(4.34)

so, we can choose an unitary global fixing s = 1, then substituting in the equation
(4.33) give us T = 0.

4.2 T-dual model and gauge fixing

We have seen in the last section that the extra term of the Lagrangian (4.17) can
not be fixed at all, we can keep all the fields of the CSVM and choose a unitary
gauged or apply a CSVM and not fix the fields to a unitary gauged [3], in this case
we choose apply a CSVM and not fix the fields to a unitary gauged. For the second
Lagrangian (4.29) can be fix to 1 all the term in the logarithm, which leave us T = 0
in (4.33). Furthermore, this allows us to simplify both Lagrangians and leave us the
dual Lagrangian in terms of dual fields and the field that preserves the symmetry.
For the first case, we have that the dual Lagrangian is

28



LF=0,dual =

∫
d4θ
[√

g2 + 4LR + 2g ln
(√

g2 + 4LR± g
)]

−
∫
d4θ

1

2e2
Σ̄0Σ0

+

∫
d4θ
[
X̄2,Le

Q0V0X2,L + X̄2,Re
−Q0V0X2,R + β(X2.LX2,R + c.c.)

]
+

∫
dθ+dθ̄−

(
Q0

Q
Υ+ it

)
Σ0 +

∫
dθ̄+dθ−

(
Q0

Q
Ῡ− it̄

)
Σ̄0.

(4.35)

For the second case we obtain the Lagrangian in (4.29) without the K term that
is eliminated when we fix the gauge, letting us to

LF̃=0,dual =2

∫
d4θ ln

(
Υ̃ + ¯̃Υ

2Q

)(
Υ̃ + ¯̃Υ

2Q

)
+

1

2e2

∫
d4θ
(
Θ̄0Θ0

)
+

∫
d4θ
[
X̄L,2e

Q0Ṽ0XL,2 + X̄R,2e
Q0Ṽ0XR,2 + α2

(
XL,2e

QṼ0XR,2 + c.c.
)]

+

∫
d2θ

(
Q0

16Q
Υ̃ + is

)
Θ0 +

∫
d2θ

(
Q0

16Q
¯̃Υ− is̄

)
Θ̄0,

(4.36)

where Υ̃, ¯̃Υ are twisted chiral and anti-twisted chiral, respectively.
Let us compare now with the dual model for chiral and twisted chiral fields without

torsion, we can observe that this dual Lagrangians seem so similar to the dual chiral
and twisted chiral Lagrangians given in [16] with extra terms. That makes sense
because we must have some extra term given by the semi-chiral fields.
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Chapter 5

Scalar potential of the GLSM’s
with torsion

In this chapter we start by obtaining the T-dual Lagrangian for a GLSM with semi-
chiral superfields. We apply the method given in [9], [16], writing the Lagrangian
in terms of the Kähler potential and its derivatives. Furthermore, we separate the
Lagrangian in the bosonic and the fermionic components, so that the bosonic part
contains the classical scalar potential U .

5.1 Case F = 0

We separate the problem; the semi-chiral Kähler potential that preserves the sym-
metry U(1) and the part of the extra term, but we omitted the part given by the
combination of the semi-chiral with the dual fields, we let it for future work. In the
appendix B and C, we do a SUSY reduction from N = (2, 2) to N = 0. This method
gives us the potential of one part of Kähler term and for the superpotential in the
Lagrangian (4.35) as∫

d4θ
[
X̄2,Le

Q0V0X2,L + X̄2,Re
−Q0V0X2,R + β(X2.LX2,R + c.c.)

]
+

∫
dθ+dθ̄−

(
Q0

Q
Υ+ it

)
Σ0 +

∫
dθ̄+dθ−

(
Q0

Q
Ῡ− it̄

)
Σ̄0

−
∫
d4θ

1

2e2
Σ̄0Σ0

.

(5.1)

The above Lagrangian give us the potential same potential as the given in (C.4),
but we take the special case when F =M = 0, this let us

U = 2e2(µ2 − r2)
2 +

β2

2(β2 − 1)
|σ̃|2|X2|2 (5.2)
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where µ2 ≡ −
(
X̄LXL − X̄RXR

)
, r2 = −2Re{t} and |X|2= XµXνgµν . At this point

we can use the method in the appendix B to make the SUSY reduction, we redefine
the Lagrangian using the equation (B.8) as

∫
d4θ
[√

g2 + 4LR + 2g ln
(√

g2 + 4LR± g
)]

=

∫
D+D−

[
Q+Q−

(√
g2 + 4LR + 2g ln

(√
g2 + 4LR± g

))]
|

= h(X1, X̄1, g|, ḡ|) = h

(5.3)

where g| and X1 denote the dual field and the original fields with all the fermionic
coordinates set to zero. This analysis allow us rewrite the potential as

U = 2e2(µ2 − r2)
2 +

β2

2(β2 − 1)
|σ̃0|2|X|2+h (5.4)

The geometry for this scalar potential, can be obtained by using the method
presented on [17], [18], with this aim analyze each branch and take the D-term as
t = 1

2
(ξ − i θ

2π
). We have:

• For σ̃0 ̸= 0 and µ2 ̸= 0 the SUSY is broken and there is no moduli space.

• This potential has SUSY vacua at σ̃0 = 0 and µ2 ̸= 0, this implies that there
are three subsets of vacua:

– First, where X1 = 0 and 2e2(µ2 − r2)
2 + h(g,X1 = 0) = 0.

– second, while µ2 = 0 and 2e2r22 + h(g,X1) = 0.

– third, while g = 0 and 2e2(µ2 − r2)
2 + h(g = 0, X1) = 0.

• On the Higgs branch, we take σ0 = 0 and µ2 = 0, then we have

MF=0 = {2e2r22 + h(g,X1) = 0}/U(1). (5.5)

5.2 Case F̃ = 0

Starting with the metric that has been obtained using the equation (3.27), we just
take the Kähler potential given by the twisted-chiral and twisted anti-chiral parts of
the Lagrangian, in this case (4.36)

gαβ,F̃=0 =

(
1

2Q(ỹ+
¯
ỹ)

0

0 1
2e2

)
, (5.6)

which inverse is
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gαβF̃=0
=

(
2Q(ỹ + ¯̃y) 0

0 2e2

)
, (5.7)

where we take the bosonic terms of the chiral Υ̃ and anti-chiral ¯̃Υ fields to be ỹ, ¯̃y,
respectively.

The non zero Christoffel symbols are computed from equations (3.30) and (3.31),
they are

Γ1
1,1 = Γ̄1

1,1 = − 1

2(ỹ + ¯̃y)
. (5.8)

As well as in the first case, we obtain the potential using the Lagrangian (3.29), where
we just take the bosonic terms, then, we obtain

U =
80Q0

Q2

(
10

e2
− 1

)
|i Q
Q0

s+ ỹ|2+6Q

(
Q0σ̃0
2Q

)2

(ỹ + ¯̃y). (5.9)

In this case, as above, the semi-chiral fields contribute to the scalar potential as

U =
80Q0

Q2

(
10

e2
− 1

)
|i Q
Q0

s+ ỹ|2+6Q

(
Q0σ̃0
2Q

)2

(ỹ + ¯̃y)

− 2e2
(
µ2
1 + µ2

2 −
1

2
µ2
3

)
,

(5.10)

where the µi are defined in (B.22). Then, we can analyze the geometry vacua, the

analysis is the same as the previous. We take the D-term as s = 1
2
(ξ̃ − i θ̃

2π
) and

x̃ = µ2
2 − 1

2
µ2
3, the cases are:

• For σ̃0 ̸= 0 and µ1 ̸= 0 the SUSY is broken and there is no moduli space.

• This potential has SUSY vacua at σ̃0 = 0 and µ1 ̸= 0, this implies that there
are four subsets of vacua:

– where y = 0 and 80Q0

Q2

(
10
e2

− 1
)
|i Q

Q0
s|2−2e2(µ2

1 + x) = 0,

– where µ1 = 0 and |i Q
Q0
s+ ỹ|2−2e2x̃ = 0

– where µ2 = 0 and |i Q
Q0
s+ ỹ|2−2e2

(
µ2
1 − 1

2
µ2
3

)
= 0.

– while µ3 = 0 and |i Q
Q0
s+ ỹ|2−2e2 (µ2

1 + µ2
2) = 0.

• On the Higgs branch we take σ0 = 0 and µ1 = 0, then we have

MF̃=0 = {|i Q
Q0

s+ ỹ|2−2e2x = 0}/U(1). (5.11)

We have obtained the locus given the scalar potential for each case. This is an
important result because it represents the SUSY vacuum geometry in the dual theory.
With this analysis we cannot see the torsion, with the study presented in next chapter
we will see its origin.
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Chapter 6

Geometry of the GLSM’s with
torsion

In this chapter, we analyze the target space geometry of the original model. Besides,
using the same method given in [6], [15], we compute the geometry of the dual target
space given the classical scalar potential in both Lagrangians (4.35) and (4.36).

6.1 Original model

The structure of the moduli space of the GLSM’s, which involves SVM and CSVM,
is very different, so we analyze them separately.

We start as in the paper [6], by reducing partially the N = (2, 2) superspace
to N = (1, 1) superspace. The Lagrangian is given by L = LSVM + LFI + Lmatter,
where each term of it are (2.34), (2.35) and (2.39), respectively. The superspace
reduction allows us to identify the metric g and b-field easily. Here, we denote as D±
the gauge covariant derivatives on the language N = (1, 1) and the basic multiplets
are described by the unconstrained bosonic and fermionic superfields, and the vector
multiplet with superfield strength f . From the reduction, we obtain the Lagrangian:

L = LSVM +

∫
D+D−

[
1

2
(gµν + bµν)D+X

µD−X
ν + 2iσI(µI − rI)

]
, (6.1)

where the indexes are I = 1, 2, 3, LSVM is given in (B.13), Xµ = (XL, X̄L, XR, X̄R),
we define rI as r1 = 2Re(s), r2 = −2Re(t), r3 = Im(s + t). The functions µI are
given in terms of the bosonic part of the semi-chiral superfields as

µ1 ≡ X̄LXL + X̄RXR + α2

(
XLXR + X̄LX̄R

)
, (6.2)

µ2 ≡ −
(
X̄LXL − X̄RXR

)
, (6.3)

µ2 ≡ −iα2

2

(
XLXR − X̄LX̄R

)
. (6.4)
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and g, b are the flat-space metric and b-field, setting (a = b = 1, d = α2). In this
basis one has

J+ =


i 0 0 0
0 −i 0 0
0 2i

β
i 0

−2i
β

0 0 −i

 , J− =


i 0 0 2i

β

0 −i −2i
β

0

0 0 i 0
0 0 0 −i

 . (6.5)

and

g = 4


0 1 1

β
0

1 0 0 1
β

1
β

0 0 1

0 1
β

1 0

 , b = 2

(
2

β
− β

)
0 0 1 0
0 0 0 1
−1 0 0 0
0 −1 0 0

 , (6.6)

Finally, reducing to N = 0 components and integrating out the auxiliary fields as
in appendix B, we obtain the following scalar potential

U = 2e2
[
(µ1 − r1)

2 + (µ2 − r2)
2 + (µ3 − r3)

2
]
+ β2

(
|σ|2+ 1

β2 − 1
|σ̃|2
)

1

2
|X|2, (6.7)

where |X|2≡ gµνX
µXν , with g as in (6.6) and from the appendix C we see that

σ = F|, σ̃ = F̃| are the complex scalars fields of the SVM.
There are two branches: the Coulomb branch and the Higgs branch:

1. The Coulomb branch is parametrized by the VEVs of σ and σ̃ and by XL =
XR = 0. This branch exists only for r1 = r2 = r3 = 0.

2. The Higgs branch is given by σ = σ̃ = 0, and the space of solutions to

µI = rI , (6.8)

modulo U(1) gauge transformations.

In this simple model with a single pair of semichiral fields, the Higgs branch is
a point. We can obtain something more interesting when we consider GLSMs with
opposite charges coupled to the CSVM with a twisted mass and FI parameters. This
Lagrangian is given by

L = LSVM + LΦ;M + LFI + Lmatter, (6.9)

where each term is given by (2.33), (B.14), (2.35) and (2.39), respectively. The only
FI parameter is t = 1

2
(ξ− i θ

2π
), the FI parameter s given in (2.35) can be set to s = 0

by a shift in Φ. In terms the N = (1, 1) superspace, the CSVM F = M corresponds
to setting

σ1 = 2Re(M),

σ3 = f − 4 Im(M),
(6.10)
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while F̃ = M̃ corresponds to setting

σ2 = 2Re(M̃),

σ3 = −f + 4 Im(M̃).
(6.11)

Now, using the Lagrangian in (6.1), taking Lgauge as the action for the standard
vector and substituting on (6.1) the equations (6.10) and (6.11), these gives

L =Lgauge +

∫
D+D−

(
1

2
(gµν + bµν)D+X

µD−X
ν + 2iσ2(µ2 − ξ)

+ 2i (fµ3 + 2µ1Re(M)− 4µ3 Im(M))) .

(6.12)

Finally, reducing to N = 0 using the set of equations (C.1) in (6.12) leads to
(C.2), where integrating out the auxiliary fields DI in (C.2) gives the same potential
as (6.7).

For the case where F = M one must set D1 = D3 = 0 and σ = M in (C.2) and
integrate out the auxiliary field D2 to obtain

U = 2e2(µ2 + ξ)2 + β2

(
|M |2+ 1

β2 − 1
|σ̃|2
)

1

2
|X|2. (6.13)

As the SVM case we analize the different cases for SUSY vacua, which depends
on the values of the parameters ξ and M :

1. For M ̸= 0 and ξ ̸= 0 supersymmetry is broken and there is no moduli space.

2. For M ̸= 0 and ξ = 0 there is only the Coulomb branch paramaterized by σ̃,
and XL = XR = 0.

3. For M = 0 there can be two branches.

(a) The Higgs branch, given by σ̃ = 0 and the space of solutions to

|XL|2−|XR|2= ξ, (6.14)

modulo gauge transformations.

(b) For ξ = 0 there is also a Coulomb branch, parametrized by the VEV of σ̃
and XL = XR = 0.

The case where F̃ = M̃ is analogous. Then, we take a shift in χ and set t = 0,

thus, we take s = 1
2
(ξ̃ − i θ̃

2π
) , then one must set D2 = D3 = 0 and σ̃ = M̃ in (C.2)

and integrate out the auxiliary field D1 to obtain

Ũ = 2e2(µ1 − ξ̃)2 + β2

(
|σ|2+ 1

β2 − 1
|M̃ |2

)
1

2
|X|2. (6.15)

This depends on the values of the parameters ξ̃ and M̃ .
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1. For M̃ ̸= 0 and ξ̃ ̸= 0 supersymmetry is broken and there is no moduli space.

2. For M̃ ̸= 0 and ξ̃ = 0 there is only the Coulomb branch paramaterized by σ,
and XL = XR = 0.

3. For M̃ = 0 there can be two branches.

(a) The Higgs branch, given by σ = 0 and the space of solutions to

|XL|2+|XR|2+β
(
XLXR + X̄LX̄R

)
= ξ̃, (6.16)

modulo gauge transformations.

(b) For ξ̃ = 0 there is also a Coulomb branch, parametrized by the VEV of σ
and XL = XR = 0.

We focus on the Higgs branch that is a non-compact generalized Kähler manifold
whose geometric structure depends on data such as the number of multiplets and
their charges.

6.2 Model with two pairs semi-chiral fields

Consider the Lagrangian (4.6), which have two pairs of semi-chiral fields (X̄R, X̄L, X̄2,R, X̄2,L)
with charges (1,−1, 1,−1), respectively. As discussed, the low-energy dynamics on
the Higgs branch is given by a NLSM as in the Appendix B and C, we can do a SUSY
reduction and adding these fields in a summation as

Lk =

∫
d4θ
[
X̄1,Le

Q0V0+QV1X1,L + X̄1,Re
−(Q0V0+QV1)X1,R + β1(X1,LX1,R + c.c.)

]
+

∫
d4θ
[
X̄2,Le

Q0V0X2,L + X̄2,Re
−Q0V0X2,R + β2(X2.LX2,R + c.c.)

]
=

∫
d4θ

2∑
i=1

[
X̄i,Le

Q0V0+QV1Xi,L + X̄i,Re
−(Q0V0+QV1)Xi,R + βi(Xi,LXi,R + c.c.)

]
,

(6.17)

we get the same Higgs branch as in (6.14), but with the sum of these fields

M = {
2∑

i=1

|Xi,L|2−|Xi,R|2= ξ}/U(1). (6.18)

Topologically, this space coincides with the conifold, which admits a Calabi-Yau
metric with SU(2) × SU(2) × U(1) symmetry and can be realized as a GLSM for
chiral fields with charges (1,−1, 1,−1).
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6.3 Case F = 0

Let us in this section to analyze the dual model geometry for the gauge given by
F = 0.

In previous section we followed the method given in the paper [6], were they started
from the objects (J±, g, b), which they used to completely describe the geometry of the
target space, but using the scalar potential instead of (J±, g, b). They analyzed the
geometry using the parametrized potential, giving the different branches. We apply
the same method in this chapter, but the full expressions for (J±, g, b) are lengthy
and not particularly enlightening. Then we just show the value of the H-field

H =

 32Re{ϕ}

Q2
(
32Re{XL}+ (2Re{ϕ})2

Q2

)3/2
−6(Re{ϕ}) (64|XL|2Q2 + 8(2Re{Φ})2)

Q4
(
16|XL|2+ (2Re{ϕ})2

Q2

)5/2
 (dϕ ∧ dXL ∧ dXR

+dϕ̄ ∧ dXL ∧ dXR

)
+ c.c.+O(

1

β1
,
1

β2
).

(6.19)

In this model we start from a conifold to this geometry. This model realizes a family
of generalized Kähler structures, but we leave a careful study of this case for future
work.

6.4 Case F̃ = 0

Let us analyze in this section the dual model geometry for the gauge given by F̃ = 0.
In this case we followed the method given in the paper [6], were they started from

the objects (J±, g, b), where the forms J± are given by the equations (3.5) and (3.6),
we apply the Kähler potential in (4.36) to give us

J+ =



i 0 0 0 0 0 0 0
0 −i 0 0 0 0 0 0

0 2ieQV

α2
i 0 0 0 0 0

−2ieQV

α2
0 0 −i 0 0 0 0

0 0 0 0 i 0 0 0
0 0 0 0 0 −i 0 0
0 0 0 0 0 0 i 0
0 0 0 0 0 0 0 −i


(6.20)

and
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J− =



i 0 0 2ie−QV

α2
0 0 0 0

0 −i −2ie−QV

α2
0 0 0 0 0

0 0 i 0 0 0 0 0
0 0 0 −i 0 0 0 0
0 0 0 0 i 0 0 0
0 0 0 0 0 −i 0 0
0 0 0 0 0 0 −i 0
0 0 0 0 0 0 0 i


. (6.21)

As we mentioned in chapter 3, the metric in the generalized Kähler case cannot be
obtained using the equations in (3.8). The part of the metric that we can determinate
is given by

g =



0 4eQV0 4
β2

0

4eQV0 0 0 4
β2

4
β2

0 0 4e−QV0

0 4
β2

4e−QV0 0
0

0
g1,1 g1,2 g1,3 g1,4
g2,1 g2,2 g2,3 g2,4
g3,1 g3,2 g3,3 g3,4
g4,1 g4,2 g4,3 g4,4


, (6.22)

while the part of the co-kernel we cannot determinate is denoted by ga,b with a, b =
1, 2, 3, 4. Furthermore, we can obtain the torsion b. The set of equations (3.13), where
E = 1

2
(g + b) is given by

E =


ELL ELR ELc ELt

ERL ERR ERc ERt

EcL EcR Ecc Ect

EtL EtR Etc Ett.

 . (6.23)

Using the set of equations (3.13) and the equation above we can obtain the fol-
lowing matrix

E =



0 2eQV0 4
β2

− β2 0

2eQV0 0 0 4
β2

− β2
β2 0 0 2e−QV0

0 β2 2e−QV0 0
0

0
0 s1 0 0
s1 0 0 0
0 0 0 1

e2

0 0 1
e2

0


, (6.24)

where
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s2 = − 1

Q2g̃|
. (6.25)

Finally the b-field is easy to obtain from E = 1
2
(g + b) as

b =


0 0 4

β2
− 2β2 0

0 0 0 4
β2

− 2β2
2β2 − 4

β2
0 0 0

0 2β2 − 4
β2

0 0
0

0 S0

 , (6.26)

where

S0 =


−g1,1 1

e2
− g1,2 −g1,3 −g1,4

1
e2
− g2,1 −g2,2 −g2,3 −g2,4
−g3,1 −g3,2 −g3,3 2s2 − g3,4
−g4,1 −g4,2 2s2 − g4,3 −g4,4

 . (6.27)

We know that the metric g is symmetric and the b-field is anti-symmetric, so, we
use this fact to find the value on the co-kernel region G = ga,b. From the fact that
the metric is symmetric we have ga,b = gb,a in the equations (6.27) and (6.22), where
a, b = 1, 2, 3, 4. Then we can obtain more information about S0 in (6.27) and G = ga,b
using that the b-field is anti-symmetric, then ga,b = −gb,a in (6.27) where for a ̸= b
the components ga,b are zero except for

1

e2
− g1,2 = − 1

e2
+ g2,1,

2s2 − g4,3 = −2s2 + g3,4.

This gives us g3,4 = 2s2 and g1,2 =
1
e2
, then the matrices will be

g =



0 4eQV0 4
α2

0

4eQV0 0 0 4
α2

4
α2

0 0 4e−QV0

0 4
α2

4e−QV0 0
0

0
g1,1

1
e2

0 0
1
e2

g2,2 0 0
0 0 g3,3 s2
0 0 s2 g4,4


, (6.28)
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b =



0 0 4
α2

− 2α2 0

0 0 0 4
α2

− 2α2

2α2 − 4
α2

0 0 0

0 2α2 − 4
α2

0 0
0

0
−g1,1 0 0 0
0 −g2,2 0
0 0 −g3,3 0
0 0 0 −g4,4


,

(6.29)
and as 2-form the b-field is

b = s

(
4

α2

− 2α2

)
(dXL ∧ dXR + dXL ∧ dXR) . (6.30)

As we have seen in chapter 5 when we reduced to N = 0, it is easy observed that
we have a scalar potential for twisted chiral and chiral superfields, for each case.
The term that gave us more information is the term of the CSVM in the appendix
C.1, which disappears when we made the T-duality, but due the spectator semi-shiral
superfields (X2,R,X2,L) the torsion is preserved.

40



Chapter 7

Conclusions and Remarks

We have described T-duality for a GLSM for a general Lagrangian with CVSM [6].
We divide the analysis by the cases F = 0 and F̃ = 0. Besides we use the method
given in [3] to promote the global symmetry to local, by gauging the fields, and with
the subsequent addition of the Lagrangian multipliers. Integrating the Lagrange
multiplier fields one goes to the original model. Integrating out the vector multiplet
we have found the T-dual GLSM’s with torsion. We have also found the geometry of
these models with the analysis of each branch and, finally, we have found the metric
g and the b-field.

The T-dual Lagrangian for the gauge fixing F̃ = 0 is (4.36) which is easy to obtain
by applying the method for T-duality and fixing the partially gauge to a unitary
gauge. But for the case of the gauge fixing F = 0 it cannot be possible to (4.35), due
to that we choose the gauge F = 0. In addition to using the method for T-duality, we
need to make a global gauge fixing so that we may keep all the fields of the CSVM.

In chapter 5 we have obtained the geometry for each branch of vacua in the dual
theory. In the Higgs branch if we take ξ > 0, the geometry has the structure of
MF=0 = {2e2r22 + h(g,X1) = 0}/U(1) and MF̃=0 = {|i Q

Q0
s + ỹ|2−2e2(µ2

2 − 1
2
µ2
3) =

0}/U(1), respectively, for both cases. Moreover, in chapter 6 we have obtained the g
metric and the b-field for the original model [6], which for the SVM is a point on the
Higgs branch, but for the CSVM gives us a Kähler geometry M = {µ2+ξ = 0}/U(1).
We have also described the model with two expectator superfields, which leads to the
conifold with torsion. We can compare (6.6) with the kernel of the semi-chiral part
given the b-fields in the case F̃ = 0 in (6.29). Furthermore, in the case F̃ = 0, which
is equal in the kernel for semi-chiral fields, we see how the semi-chiral fields gives
us the anti-symmetric part of E explicitly. In the case F = 0, we observe that the
explicitly form of the metric and b-field are lengthy, but we emphasize that the H-field
is non-zero.

In the case β → ∞ the endpoint of the flow is a NLSM on a Calabi-Yau; this
type of model is an string theory. In general, the study of the topologically version
of NLSMs with H-flux is a good approach to a realistic theory [19], [20].

For future work we leave to obtain the solution for the general case of the metric
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given the PDE in (3.11) [15], and applying it to the general case with ds, dc and dt
fields [6], [15]. Another problem left opened is the T-dual model in the general case
[6], without gauge fixing, and also to explore the mirror symmetry using the existence
of the b-field [21].

42



Appendix A

Notation

The convention that we use for this work is the usual notation given in [9] and [8].
For the integrals in Grassman variables over the superspace we use

∫
dθ =

∫
dθ̄ =

∫
dθθ̄ =

∫
dθ̄θ = 0, (A.1)∫

dθαθβ = δαβ ,

∫
dθ̄α̇θ̄

β̇ = δβ̇α̇, (A.2)∫
d2θθ2 =

∫
d2θ̄θ̄2 (A.3)∫

d4θ2θ̄2 = 1, (A.4)

where the differential form in terms of the grassman variables are

d2θ = −dθαdθβϵαβ, (A.5)

d2θ̄ = −dθ̄α̇dθ̄β̇ϵ
α̇β̇, (A.6)

d4θ = d2θd2θ̄, (A.7)

and the anticommutation relations are

{θα, θ̄β̇} = {θα, θβ} = {θ̄α̇, θ̄β̇} = 0. (A.8)

Furthermore, we take the functions A = A(θ±, θ̄±, xµ), which depend of the coor-
dinates of superspace, evaluated all θ’s in zero. We use the following notation

A|= A(θ± = 0, θ̄± = 0, xµ), (A.9)

but in special cases where we just evaluated some θ coordinates, we write it explicitly.
For example A|θ±=0= A(θ± = 0, θ̄±, xµ).
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Appendix B

SUSY Reduction

B.1 Reduction from N = (2, 2) to N = (1, 1)

To determine the scalar potential given the Lagrangian (2.36) for CVSM, we start by
doing the reduction from SUSY (2, 2) to (1, 1) for the SVM. It is more convenient to
work in the covariant approach [6], rather than writing the derivatives with a phase [4].
We take as gauge-covariant derivatives: ∇±, ∇̄±. We then write the gauge-covariant
derivatives, in terms of N = (1, 1) by

∇± =
1

2
(D± − iQ±) , ∇̄± =

1

2
(D± + iQ±) , (B.1)

where D± and Q± are gauge-covariant fermionic derivatives and the gauge-covariant
generators, respectively. These fermionic derivatives satisfy the algebra of (1, 1)

{D±,D±} = iD±±, {D+,D−} = f, (B.2)

where D±± is the gauge-covariant space derivative and f is the (1, 1) field strength.
The gauge-invariant field strength related to the vector multiplet V is defined by

Σ = i{∇̄+,∇−}, which is a twisted chiral field. The reduction to (1, 1) is given by

Σ|= 1

2
(σ + if), (B.3)

where σ is a real bosonic superfield. The non-manifest SUSY acts by

{Q+,D−} = −σ, {Q−,D+} = σ, (B.4)

and obeys the algebra

{Q+,Q−} = f. (B.5)

For the twisted vector multiplet Ṽ we take as field strength Θ = i{∇̄+, ∇̄−}, which
is chiral. The reduction to (1, 1) is given in terms of a bosonic superfield σ′ and f ,
given by
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θ|= 1

2
(σ′ + if), (B.6)

which obeys the algebra

{Q+,D−} = σ′, {Q−,D+} = −σ′, {Q+,Q−} = −f. (B.7)

Furthermore, the form to reduce a Lagrangian from N = (2, 2) superspace to
N = (1, 1) is ∫

d4θK =

∫
D+D− (Q+Q−K) |θ̄±−θ±=0 (B.8)

and F -terms reduce by ∫
d2U(Φ) =

∫
D+D−U(ϕ). (B.9)

B.2 Lagrangian for SVM

In chapter 2, we have explained that there are two cases of interest, therefore there are
two gauge-invariant field strengths in the SVM: F = i{∇̄+, ∇̄−} and F̄ = i{∇̄+,∇−}.
But, in terms of the N = (1, 1) fields, the SVM consists of three real bosonic super-
fields {σi|i = 1, 2, 3} and the vector multiplet f , given by

σ1 =
(
F+ F̄

)
|, σ1 =

(
F̃+ ¯̃F

)
|,

σ3 =i
(
F− F̄− F̃+ ¯̃F

)
|,

f =− i
(
F− F̄+ F̃− ¯̃F

)
|.

(B.10)

Solving for F| and F̃|, we obtain

F|= 1

2

(
σ1 +

i

2
(f − σ3)

)
, F̃|= 1

2

(
σ2 +

i

2
(f + σ3)

)
, (B.11)

which obey the following algebra

{Q+,D−} = −(σ1 + σ2),

{D+,Q−} = −(σ1 − σ2),

{Q+,Q−} = σ3.

(B.12)

The reduction on SUSY of the kinetic action SVM in (2.33), in the Abelian case,
gives
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LSVM,reduced =
1

2e2

∫
D+D−

(
1

2
D+fD−f +D+σ1D−σ1

+D+σ2D−σ2 +
1

2
D+σ3D−σ3

)
.

(B.13)

B.3 Twisted masses

It is possible to introduce twisted masses by gauging the flavor symmetry and setting
the associated field strength to a constant background. In semi-chiral models, we
have fewer flavor symmetries, but due to the enlarged gauge symmetry of the SVM
one may introduce a new kind of mass parameter, which does not require additional
flavor symmetries. This constrains the field strengths in the SVM not to vanish but
instead to be constant.

For the first case F, this can be imposed by

i

∫
d2θΦ (F−M) + c.c. (B.14)

Thus, integrating out Φ we set F = M , with D̄+D̄−V = M . Similarly, for the
chiral field strength F̃, one could constrain this to a constant F̃ = M̃ by the term

i

∫
d2θχ

(
F̃− M̃

)
+ c.c. (B.15)

B.4 Lagrangian CSVM

Given the reduction in terms of language (1, 1) we could rewrite the twisted mass
constraint (B.14) as

Lϕ =
i

2

∫
D+D− [ϕ (σ1 − 2Re(M) + i(f − σ3 − 4 Im(M)))] + c.c., (B.16)

where it is easy to follow from (B.11), that

• Constraining F = M corresponds to setting σ1 = 2Re(M) and σ3 = f −
4 Im(M).

• Constraining F̃ = M̃ corresponds to setting σ2 = 2Re(M̃) and σ3 = −f +
4 Im(M̃).
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B.5 Lagrangian Semi-chiral fields

Using the previous definition of semi-chiral fields, we have defined these by

∇̄+XL = ∇̄−XR = 0. (B.17)

From the gauge-covariant derivatives in terms of fermionic derivatives it is easy to see
the action of Q± on XL,R, which is simply defined as independent fermionic multiplets
Ψ±. Then, in (1, 1) language the semi-chiral multiplets consist of:

XL =XL|, Ψ− = Q−XL, X̄L = XL|, Ψ̄− = Q−X̄L|, (B.18)

XR =XR|, Ψ+ = Q+XR, X̄R = XR|, Ψ̄+ = Q+X̄R|. (B.19)

Then, the action in (2.39) can be reduced as

Lmatter =

∫
D+D−

[
Q+Q−(X̄LXL + X̄RXR + β(XLXR + c.c.))

]
|. (B.20)

Using the equations in (B.18) and (B.19) in the above Lagrangian, we finally
integrate out the auxiliary superfields Ψ±. This gives

Lmatter =

∫
D+D−

(
1

2
(gµν + bµν)D+X

µD−X
ν + 2iσIµI

)
. (B.21)

where g and b are the flat-space metric and b-field of the ungauged case, respectively
, and

µ1 ≡ X̄LXL + X̄RXR + β(XLXR + X̄LX̄R)

µ2 ≡ −
(
X̄LXL − X̄RXR

)
µ3 ≡ −iβ

2

(
XLXR + X̄LX̄R

) (B.22)
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Appendix C

Scalar potential CSVM

C.1 Reduction from N = (1, 1) to N = 0

To compute the scalar potential in a GLSM one may reduce to N = 0 components.
The reduction of a bosonic (1, 1) to N = 0 components is given by

X = X|, ψ± = D±X|, g = D+D−X|,
X̄ = X̄|, ψ̄± = D±X̄|, ḡ = D+D−X̄|.

(C.1)

where we set the remaining N = (1, 1) Grassman variables to zero. It is easy to
reduce the Lagrangian (B.21) to N = 0 components and integrate out the remaining
auxiliary fields. The lowest scalars are given by:

• F and F̃ by σ and σ̃, respectively.

• the auxiliary scalars by DI = D+D−σI |.

• and the auxiliary scalars in the semi-chiral multiplet by gL,R = D+D−XL,R.

Integrating out gL,R we obtain the Lagrangian

L =− 1

2e2

(
D2

1 +D2
2 +

1

2
D2

3

)
− β2

(
|σ|2+ 1

β2 − 1
|σ̃|2
)

1

2
|X|2

+ 2i
(
X̄LD1XL − X̄RD1XR − βXLD1XR + βX̄LD1X̄R

)
− 2i

(
X̄LD2XL + X̄RD2XR

)
− β

(
XLD3XR + X̄LD3X̄R

)
+ ...

(C.2)

where |X|2> 0 and the ellipses represent kinetic and fermionic terms that do not
contribute to the scalar potential.
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C.2 Scalar potential CSVM by cases

The scalar potential associated to the SVM can be obtained by integrating out DI ’s,
this is given by

U =2e2(µ1 − r1)
2 + 2e2(µ2 − r2)

2 + 2e2(µ3 − r3)
2

+ β

(
|σ|2+ 1

β2 − 1
|σ̃|
)
,

(C.3)

where µI are defined in (B.22).
In the case F̃ = 0, for the constrained SVM with F =M one must setD1 = D3 = 0

and σ =M in (C.2). To obtain the scalar potential one must integrate out D2. In the
other case, for the constrained SVM with F̃ = M̃ is obtained by setting D2 = D3 = 0
and σ̃ = M̃ in (C.2), leading to the scalar potential

U = 2e2(µ2 − r2)
2 + β2

(
|M |2+ 1

β2 − 1
|σ̃|2
)

1

2
|X|2 (C.4)

and

Ũ = 2e2(µ1 − r1)
2 + β2

(
|σ|2+ 1

β2 − 1
|M̃ |2

)
1

2
|X|2, (C.5)

respectively.
Finally, the case of equal charges and a CSVM with F =M :

U = 2e2(µ′
2 − r2)

2 + α2

(
1

α2 − 1
|M |2+|σ̃|2

)
1

2
|X|2 (C.6)

where |X|2 is contracted with the corresponding flat-space metric and µ′
2 = X̄LXL +

X̄RXR + α(X̄LXR + c.c.).
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