;@é

i e

& i*

i
U

PN
e

Fary

i
o :AJ|.
o

ey

Ve




Ov- 790 S5
D 70 (4



Centro de Investigacion y de Estudios Avanzados
del Instituto Politécnico Nacional
Unidad Guadalajara

Regulacion Robusta por Modos
Deslizantes de Sistemas no Lineales de
Fase no Minima

Tesis que presenta:

Marcos Israel Galicia Cueva
para obtener el grado de:

Doctor en Ciencias CINVI‘ESTAV
l"v‘;'

ADQUIS'CION
LIEROS

en la especialidad de:

Ingenieria Eléctrica
Directores de Tesis

Dr. Alexander Georgievich Loukianov
Dr. Jorge Rivera Dominguez

CINVESTAY del IPN Unidad Guadalajara, Guadalajara, Jalisco, Diciembre de 2013.



CLASW.. _CTOoODe9s
ADQUIS.. OT -39l- sS|
FECHA: 24 -L0-204
PROCED.._ __Dcw.-201Y4
$




Regulacion Robusta por Modos
Deslizantes de Sistemas no Lineales de
Fase no Minima

Tesis de Doctorado en Ciencias
Ingenieria Eléctrica

Por:
Marcos Israel Galicia Cueva
Maestro en Ciencias en Ingenieria Eléctrica

CINVESTAV del IPN -- Unidad Guadalajara 2007-2009

Becario de CONACYT, expediente no. 34472

Directores de Tesis
Dr. Alexander Georgievich Loukianov
Dr. Jorge Rivera Dominguez

CINVESTAV del IPN Unidad Guadalajara, Diciembre de 2013.



Centro de Investigacién y de Estudios Avanzados

del Instituto Politécnico Nacional

Unidad Guadalajara

Robust Sliding Mode Regulation of
Nonminimum Phase Nonlinear Systems

A thesis presented by-
M. Sc. Marcos Israel Galicia Cueva

to obtain the degree of:
Doctor in Science

in the subject of:
Electrical Engineering

Thesis Advisors:
Dr. Alexander Georgievich Loukianov
Dr. Jorge Rivera Dominguez

CINVESTAY del IPN Unidad Guadalajara, Guadalajara, Jalisco, December 2013



Robust Sliding Mode Regulation of
Nonminimum Phase Nonlinear Systems

Doctor of Science Thesis
In Electrical Engineering

By:
Marcos Israel Galicia Cueva

Master of Science in Electrical Engineering
Universidad de Guadalajara 2007-2009

Scholarship granted by CONACYT, No. 34472

Thesis Advisors:
Dr. Alexander Georgievich Loukianov
Dr. Jorge Rivera Dominguez

CINVESTAY del IPN Unidad Guadalajara, December, 2013.



Contents

Contents i
RESUMEN iii
ABSTRACT v
AGRADECIMIENTOS vii
1 Introduction 1
1.1 Thesis Objectives 4
1.2 Contributions of this Work 5
1.3 Thesis Organization 6
2 Preliminaries
2.1 Classical State Feedback Output Regulation 9
2.2 Block Control Linearization 12
2.3 Super-Twisting Controller 13
2.4 Robust High Order Sliding Mode Differentiator 15
2.5 Adaptive Estimator 17
3 Sliding Mode Output Regulation 21
3.1 Introduction . 21
3.2 Problem Statement 21
3.3 Integral SM Regulation for Nonlinear NP Systems in Unstructured Form . 29
3.4 SM Regulator for Nonlinear NP Systems in Structured Form with MP 42

3.5 SM Regulator for Nonlinear NP Systems in Structured Form with UP 49



CONTENTS

SM Output Regulation Causal Case

4.1 Problem Statement

4.2 Case 1: Nonlinear NP Systems with Matched Perturbation

4.3 Case 2: Nonlinear NP Systems with Matched and Unmatched Perturbation

Discrete-Time SM Regulator for Nonminimum Phase Systems
5.1 Discrete-Time Classical Output Regulation Problem
5.2 Discrete-Time Sliding Mode Regulation Problem

Illustrative Examples

6.1 Second Order Sliding Mode Sensorless Torque Regulator for Induction Motor
6.2 Robust SM Regulator for Perturbed Nonminimum Phase System

6.3 Discrete-Time Sliding Mode Regulator for Pendubot

Conclusions and Future Work
7.1 Conclusions
7.2 Future Work

Bibliography

A

Publications

ii

59
59
64
69

73
73
75

81
81
85
88

95
95
96

97

101



RESUMEN

En este trabajo se aborda el Problema de Regulacién utilizando Control por Bloques (CB)
y Modos Deslizantes (MD) para sistemas no lineales de fase no minima con perturbacién.
Comparado con soluciones de otros trabajos, en las soluciones aqui presentadas se presenta
una metodologia mds simple para el disefio de reguladores que puede aplicarse a sistemas
sin restriccién en el grado relativo. Ademsds, se logra la robustez ante perturbaciones que no
cumplen la condicién de acoplamiento afectando al sistema.

Para la solucién del problema establecido se consideran varios casos:

e Considerando la representacién del sistema se divide en: a) Estructurado cuando en
el disefio se considera alguna estructura del sistema como la forma Controlable por
Bloques; b) sin estructura no se considera ninguna estructura especial para el disefio
del regulador, en este tltimo caso el sistema puede estar en forma general o se puede
transformar a la forma Regular.

e Considerando el tipo de referencias para la salida se divide en: a) Caso no causal
cuando las referencias son generadas por un exosistema; b) Causal cuando las referen-
cias son dadas como funciones del tiempo, en este caso no se tiene ningin exosistema.

e Considerando que las perturbaciones que afectan al sistema se divide en: a) El sistema
es afectado por perturbaciones que cumplen la condicién de acoplamiento (CA); b) el
sistema es afectado por dos tipos de perturbaciones, las que cumplen tanto como las
que no cumplen la condicién de acoplamiento.

Para el caso no causal de sistemas sin estructura con perturbaciones que cumplen la CA,
se define el problema de Regulacién por MD Integrales y se proponen dos soluciones robustas.
Para sistemas estructurados se presentan dos soluciones: una para el caso de sistemas con
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RESUMEN

pettutbaciones que cumplen la CA. La otra basada en Lyapunov Hedesign pata cuando hay
perturbaciones que no cumplen tanto como las que cumplen la CA.

Pata el caso no causal y estructurado, se define también tna extension al Problema de
Regulacién en tiempo continuo pars sistemas en tiempo discteto y se presenta tna solucion
para sistemas con perturbaciones que cumplen la CA.

Para la solucién al problema de Regulacién en el caso causal, se tiene que obtener refetens
cias estables para la dindmica interna inestable del sistema. Pata esto se utiliza un estitnador
adaptable el cudl sirve como un supuesto exosistema. Utilizando los estados del estitmador
dos métodos son empleados para obtener las referencias estables para la dindmica interna. El
primero esta basado en una solucién s una ecuacién diferencial lineal inestable. El segundo
utiliza Systern Center Method. El estimador adaptable también es utilizado pata estithat
perturbaciones afectando a la dinamica interna.

Con las referencias estables dadas, se proponen tres soluciones al Ptoblemn de Reglacion.
Dos son para sistemas con perturbaciones que cumplen la CA y la otta es pata sistemas con
perturbaciones de los dos tipos antes mencionados.

También se presentan dos ejemplos de aplicacion de los teguladores propuestos: Comtrol
del par eléctrico de un motor de induceién, control de posicion para el Pendubot.



ABSTRACT

This work addresses the Sliding Mode Output Regulation (SMOR) problem for nonlinear
nonminimum phase systems (NPS). The proposed solution is based on the Block Control (BC)
and Shding Mode (SM) techniques. In contrast with other works, we present an improved
method for the regulator design and the respectively solutions do not have constraint with
respect to the relative degree of the system. Moreover, robustness properties are achieved for
system with matched and unmatched perturbations.

To establish the solutions to SMOR problem, we consider three cases:

o With respect to the representation of the system, we divide the systems in two: a)
Structured when the BC is applied to the system; b) unstructured when we do not
use the BC Linearization. In thi case the system can be expressed in general or Regular
form.

e With respect to the output references we divide in: a) Noncausal case when the refer-
ences are generated for an exosystem: b) Causal if the reference signal is an arbitrary
function of the time and there is no any exosystem.

e With respect to the perturbations affecting the system. we divide in: a) Systems with
matched perturbations: b) systems with both matched and unmatched perturbations

In the noncausal case. for unstructured systems with matched perturbation, we introduce
Integral SMOR Problem for systems with matched perturbations. Solution conditions are
derived for NPS in structured form and two solutions are presented.

Analogously to the SMOR problem in continuous time we introduce Discrete-Time SM
Output Regulation Problem for discrete time NPS with matched perturbations for the non
causal case. Solution conditions are derived for NPS in structured form. The proposed
controller for Discrete-Time NPS presented in unstructured form for the noncausal case.

v



ABSTRACT

For structured systems, we present two solutions: The first one using BC technique is for
NPS with matched perturbations. And the second one based on Lyapunov Redesign is for
systems with unmatched perturbations.

To propose a solution in the causal case, we have to find stable references for the unstable
internal dynamics of the system. For that, we use an adaptive estimator which serves as a
kind of exosystem. Based on the states of the estimator, two methods are used to obtain
stable references for the internal dynamics. The first one is based on the solution of a linear
unstable differential equation. The second one is based on the System Center Method. The
adaptive estimator is used to achieve the estimation for unmatched perturbations affecting
the internal dynamics.

Once is given the stable references, we propose three solutions to SMOR problem. Two are
for systems with matched perturbations and the other one is for systems with both, matched
and unmatched perturbations.

As illustrative examples, we present the a Sliding Mode Sensorless Torque Regulator for
Induction Motor and position control for Pendubot.
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Chapter 1

Introduction

Roughly speaking, the classical Output Regulation problem [Isidori and Byrnes, 1990], consists
in designing a continuous state or error feedback controller such that the output of a system
tracks a reference signal in the presence of a known disturbance signal. The reference and
perturbations considered in the problem are generated by an exosystem. To improve classical
Output Regulation, two main research directions were proposed:

o to expand the class of perturbations affecting the dynamic system,;

e to facilitate the design of the regulator.

To increase the class of perturbations considered in Output Regulation, several robust
nonlinear controllers were proposed to substitute the linear state feedback presented by Isidori.
One of the most used is Sliding Mode (SM) control that consists of the design of discontinuous
state feedback [Utkin, 1992b]. The SM control is recognized as an efficient tool to deal with
a complex nonlinear system in presence of an uncertainty, since its main advantages are:

o the possibility of decoupling the original system into two subsystems of lower dimension
due to finite time convergence to a sliding manifold, and

e low sensitivity with respect to perturbations.

Thus, analogously to classical OR. the Sliding Mode Output Regulation (SMOR) was stated
in [Loukianov et al., 1999b]. The SMOR problem is defined as the problem of designing

1
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o first, a sliding manifold which contents the steady state (center) manifold , and on which
the equilibrium point of the closed loop system is asymptotically stable, and the output
tracking error goes asymptotically to zero;

o secondly, a discontinuous controller which drives the state of the closed-loop system to
the designed sliding manifold

Moreover, the SM regulator provides
e robustness property to the system with respect to unknown matched perturbations, and
o semi-global stabilization while the classical regulator ensures only a local stability.

The last fact is due to linearization of the full system used in the classical OR while the
SM regulator design needs to linearise only the reduced order sliding mode equation [Utkin,
1992a).

To distinguish between different OR problems, we say that a system is in an unstructured
form when the system model does not present the internal dynamics in the explicit form. On
the other hand, a structured system is when the internal dynamics are expressed in the explicit
form. It can be noted that the last structured form presentation allows to apply directly a
feedback linearization technique, however that is only for minimum phase systems.

Also, to expand the problems to deal, we referred to as noncausal case problem if the
considered output reference signal is generated by an exosystem as in classical OR. And the
problem is referred to as causal case if the reference signal is an arbitrary function of the time,
that is, there is no any exosystem.

For dynamical nonlinear systems presented in the unstructured General or Regular form,
a SMOR problem solution for the noncausal case, in absence of plant model uncertainty, was
studied in [Loukianov et al., 1999b], and [Memon and Khalil, 2010], and considering a plant
model uncertainty in [Castillo-Toledo and Castro-Linares, 1995].

For the structured but minimum phase nonlinear systems (noncausal case) a SMOR prob-
lem solution using the Input-Output (I-O) linearization, was presented in [Elmali and Olgac,
1992]. The class of structured nonminimum phase systems, again in the noncausal case, was
studied in [Bonivento et al., 2001], however, that is only for nonlinear systems with relative
degree one. A state feedback SM regulator have been designed in [Gopalswamy and Hedrick,
1993] for structured nonminimum phase systems but that is for the case of constant output

reference (noncausal case).



In the causal case, (structured) nonminimum phase systems have been studied in [Shtessel
et al., 2012] using the I-O linearization and SM techniques, taking an approximation of the
characteristic polynomial of an exosystem. Another approach based on an inverse model in
absence of perturbations, have been presented in [Zou and Devasia, 2004)].

There are several results in the literature which deal with the Output Regulation problem
for nonlinear system with matched perturbations for example: [Elmali and Olgac, 1992] for
a minimum phase system, [Loukianov et al., 1999b], for the unstructured nonlinear system,
[Memon and Khalil, 2008] with a Lyapunov redesign approach, [Gopalswamy and Hedrick,
1993] for nonminimum phase, [Bonivento et al., 2001] for structured nonlinear nonminimum
phase systems with unitary relative degree, and, recently, in [Shtessel et al., 2012] for the
structured causal case. On the other hand, it is well known that the SM is a robust control
technique, however, that is only with respect to the matched perturbation [Drazenovich, 1969],
[Utkin, 1992a]. To overcome this drawback, the robust nested Block Control technique (e.g.
[Huerta-Avila et al., 2007]) have been proposed for structured minimum phase systems to
design a sliding manifold on which unmatched perturbation effect, is rejected. To deal with
unmatched perturbations, also a control scheme based on Block Control and quasi-continuous
HOSM techniques was proposed in [Estrada and Fridman, 2008], however, in that work only
full relative degree systems are considered. In [Castillo-Toledo and Castro-Linares, 1995),
it is proposed a solution where the matching condition is weakened and replaced by a new
condition that describes intrinsic structural invariance properties of the nominal and uncertain
system.

In this work, we consider that the output tracking problem for perturbed nonminimum
phase systems has two main challenges. The first one is the output tracking in presence of
the both matched and unmatched perturbations. The second one is the internal dynamics
stabilization. While for the classical and SM Output Regulation, there are several solutions,
the perturbed case was not completely studied. Moreover, we propose to use Block Control
FL approach. Comparing with the Input Output technique [Isidori, 1995] which is often used
in the regulation problem, the Block Control linearization approach [Loukianov, 1998] is more
attractive since that allows directly place the poles of the system with the controller gains
introduced in the design. Additionally, in contrast with the Input Output, the Block Control
can be used for nonlinear MIMO systems with different relative degree with respect to output
vector components. Nevertheless, in the case of a nonminimum phase system, FL cannot

be applied directly due to the unstable internal dynamics which are unobservable from the
output.
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On the other hand, the standard Sliding Mode discontinuous control can produce the
chattering phenomenon, that is generally characterized by small oscillations with finite fre-
quency and amplitude at the output of the system that can result harmful because it leads to
low control accuracy and high wear of mechanical parts. In order to overcome the chattering
phenomenon, the High-Order SM concept was introduced by [Levant, 1993]. Recently, High-
Order SM (HOSM) controllers are most often preferred due to they keep the main advantages
of the standard SM control, moreover their control signal is a continuous function instead of
the standard discontinuous SM case, that feature allows to HOSM reducing the chattering
effect on the output.

1.1 Thesis Objectives

The objectives stated in this work are the following.
General Objective:

To propose a robust solution for the Qutput Regulation problem considering both matched
and unmatched perturbations for nonlinear nonminimum phase systems with arbitrary relative
degree vector for the causal and noncausal cases.

Specific Objectives:

e To design a robust regulator for nonminimum phase systems (NPS) presented in the
unstructured form with matched perturbations for the noncausal case.

e To design a robust regulator for NPS presented in the structured form with both matched

and unmatched perturbations for the noncausal case.

e To design a robust regulator for NPS presented in the structured form with matched
perturbations for the causal case.

e To design a robust regulator for NPS presented in the structured form with both matched
and unmatched perturbations for the causal case.

e To design a robust regulator for Discrete-Time NPS presented in the unstructured form

for the noncausal case.



1.2. Contributions of this Work

1.2 Contributions of this Work

The following contributions were made by this thesis in the fields of: robustness against
perturbations in both the causal and the noncausal cases, SM Regulator design, constraints
with respect to relative degree of the systems.

Robustness

We present solutions for the SMOR problem for nonminimmm phase systems with both
perturbations, matched and unmatched. On Discrete Time dynamical systems, we present a
solation for the SMOR problem for nonminimum phase systems with matched perturbation.

SM Regulator design

We define an iterative form to design a suitable sliding mode surface using the Block
Control (BC) linearization. With the BC technique we increase the class of nonlinear systems
duced. In this approach compared to the classical solutions the steady state control needs
not to be calculated. Moreover, the Discrete Time SMOR was defined and solved for discrete
time nonlinear NMP systems.

Constraints on relative degree

Introducing the BC linearization in the regulator design, we relax the constraints of relative
degree unitary of the system, imposed in [Bonivento et al, 2001] and equal relative degree
with respect to output vector components imposed in other works which use the Input Output
linearization.

Causal and noncausal cases
Proposed solutions were presented for both cases: when the reference signal is generated

by a known exosystem, and also when there is no any exosystem. Considering a class of
arbitrary references.
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1.3 Thesis Organization

The rest of the document is organized as follows.

In Chapter 2 the main tools used during this work are introduced.

In Chapter 3 we address Sliding Mode Output Regulation problem for the noncausal case.
We first present the SMOR problem. Secondly, we focus on NPS presented in the unstructured
form. In section 3.3, we propose a robust controller based on Integral SM control (ISMC)
for NPS in the general form, then conditions for the solution are presented and the robust
controller is designed. In Section 3.3, to simplify the design of ISMC, we present a solution for
SMOR problem for NPS presented in the unstructured Regular form. In Section 3.4, we focus
on NPS presented in the structured form. A robust SM regulator is designed for NPS with
matched perturbations in Section 3.4. Finally, in section 3.5 we present a solution based on
Lyapunov Redesign concepts for SMOR. problem for NPS with both matched and unmatched
perturbations.

In Chapter 4 we address Sliding Mode Output Regulation problem for the causal case.
We first present the problem statement. In Section 4.1 we design a suitable sliding manifold
and introduce conditions for the solution of the stated problem. The SMOR problem is
solvable if there is a bounded solution for unstable internal dynamics. For that, we present
to approaches to find a bounded solution: the first one is using a linear differential equation
[Jeong and Utkin, 1999]. The second one is based on the System Center technique [Shtessel
and Shkolnikov, 1999]. For both of the above mentioned approaches we use an adaptive
estimator [Obregon-Pulido, 2003] to estimate the reference and its derivatives. In Section 4.2,
we present a solution for NPS with matched perturbations. In Section 4.3 a solution for NPS
with both matched and unmatched perturbations is proposed.

In Chapter 5 we present the Discrete-time Sliding Mode Output Regulation (DTSMOR)
problem for NPS, for the noncausal case. Firstly, in Section 5.2, analogously to continuous ver-
sion (SMOR), we first present the DTSMOR problem for systems presented in the structured
form. Secondly, in Section 5.2 a sliding manifold is designed and the solvability conditions of
the DTSMOR are given. In section 5.2, the discrete time SM regulator is presented.

In Chapter 6 we show three examples of the proposed solutions presented in this work.
Firstly in Section 6 a second order SM sensorless torque regulator for Induction Motor is
presented. Then we continue in Section 6.2 with academic examples for the Robust SMRP
for systems with both matched and unmatched perturbations. In Section 6.3, a Discrete-time
Sliding Mode Regulator for Pendubot is presented.

6
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Finally, in Chapter 7 the conclusions and the future work are presented.



Chapter 2

Preliminaries

2.1 Classical State Feedback Output Regulation

The regulator problem, in the classical setup, consists in designing a continuous state or error
feedback controller such that the output of a system tracks a reference signal possibly in
the presence of a disturbance signal. As first established in Isidori and Byrnes [Isidori and
Byrnes, 1990], the main condition for the solution of this problem via state-feedback or output-
feedback control is the solvability of the so called regulator equations. If this equations are
solvable, under some standard assumptions, there exists a state-feedback or output-feedback
control law such that the closed-loop system is internally stable, and the tracking error will
asymptotically approach to zero for all sufficiently small initial conditions of the plant and
sufficiently small reference inputs and/or disturbances. This section presents the classical
Output Regulation Problem as well as its solution. The linear output regulation problem
is a special case, and was completely solved based on the existence of a solution for a set of
algebraic matrix equations with the collective efforts of several researchers, including Davison,
Francis, and Wohnam, among others.

In order to formulate the Output Regulation Problem formally, consider a system of the
form

z = f(z,w,u) (2.1)
w = s(w)
e =h(z,w)

9



2. PRELIMINARIES

with the state z(t) defined in a neighborhood U near the origin in R™, the input space R™
and the state w(t) defined in a neighborhood W near the origin R9. Two scenarios can be
considered, depending on the available information as follows. Consider that the plant states
z and the exosystem states w are measured; that is, the controller has all the information
available. The nonlinear state feedback output regulation is stated as follows.

Given a nonlinear system of the form (2.1), determine, if possible, a control law u = a(z, w)
such that:

Srr The equilibrium point z = 0 of
i = f(2,0,a(z,0)) (2.2)
is asymptotically stable on the first approximation.

Rpy There exists a neighborhood W € U x 12 near (0,0) such that, for every initial condition
(z(0),w(0)) € £2 the solution of

z = f(a:,w,a(:c,w)) (23)
w = s(w)
satisfies
tl_l}r(x’lo e(t)=0 (2.4)

The properties of the lineal approximation for the controlled plant play an important role in
the solution of the output regulation problem; hence, it is convenient to introduce a notation
where the parameters of this approximation appear explicit. Notice that the closed loop
system (2.3) can be formulated as:

z

(A+ BK)z + (P+ BL)w + ¢(z,w)
w = Sw+Y(z,w)

where ¢(z,w) and 1(z,w) vanish in the origin along with its first order derivatives and
A,B,P /K, L,S are matrices defined by

A= [af - He [af - (2.5)

Oz | 0,0,0 Ou | 0,0,0

Of ] [aa]
P = | —=— K = | —
[3“’_ 0,0,0 Oz 0,0,0

o] Os
[aw_ 0,0,0 ow | 0,0,0

10



2.1. Classical State Feedback Output Regulation

for every w C (2.

The necessary and sufficient conditions for the solution of the state feedback output reg-
ulator are established in the following theorem.

Theorem 2.1. The state feedback output regulation problem has a solution if and only if
the pair (A, B) is stabilizable and there exists mappings such that m(w) and v = c(w), with

w(0) = 0 and ¢(0) =0, both defined on a neighborhood 2y C £2, from the origin such that:

f(m(w), w, a(m(w), w) (2.6)
0 = h(r(w),w)

EamiC)

for every w C (2.
Proof: See [Isidori, 1995).

Once 7(w) and c¢(w) are known from equation (2.6), the classical control law which solves
the output regulation problem is:

a(z,w) = c(w) + K(z — w(w)) (2.7

where K is a matrix such that (A + BK) is Hurwitz. The block diagram for the classical
control law is presented in Figure 2.1.

4;) = 5(w)

u=c(w)+K(x- () — ;c=f(x,az,t,u) e = h(x,®)

Figure 2.1: Classical nonlinear output regulation problem

1



2. PRELIMINARIES

2.2 Block Control Linearization

Assume that the nonlinear system (2.1) can be represented (maybe after a transformation)
in the following Nonlinear Block Controllable (NBC) form:

&1 = fi(z1) + Bi(z1)z2 + Di(z1)w(t)

i = fi(&%)+ Bi(@)ziz1 + Di@)w(t), i=2,..,r— 1. (2.8)

&r = [fr(Zr, Tr41) + Br(Zr, Tr1)u + Dp(Try1)w(2) (2.9)
y = h(z)=m

where the vector z is decomposed as = = (z1,..,27)7, Zj = (z1,...,2;)T, = 2,...,7, and z; is
a n; x 1 vector. The vector w is generated for an exosystem (2.1) rewritten in the following
equation

W = €(w) (2.10)

In this case, to design a sliding manifold on which the tracking error e = y — g(w) tends
asymptotically to zero, according to the block control linearization we introduce the following
recursive nonlinear transformation [Luk’yanov and Utkin, 1981]:

21 = z1 := P1(z1) (2.11)
z2 = fi(z1) + Bi(z1)z2 + Di(z1, w) + k171 := Pa(71, T2, W),
F2(Z2) + da(Z2, w) + kP2 (T2, w)

23 = B3(52)$3 + |: 0 = ¢3(:E3,'w)
2 86, a¢2
with da(-) Zl a—— E(w)
= i(Ti) + di(Fi, w) + ki Di(Zs,
zit1 = Bit1(Zi)Tir1 + fi(@) + i 1(1))) (@) } (2.12)

= ¢i+l(ji+1;w) i1=3,4,..,r—1,

where z; is a vector of new variables of dimension n; x1, k; > 0, fi(@) = E [ f] + Bz |+

_ . N B;
%fi, B;=B;_1B;, Biy1 = [ E-11 ], E = [ 0 Injpy—ny ], E; € R("i+1—m)xm+1,  —
i,

;
is the indentity matrix d; = 3. |2%iDjw| + 92: ¢ (w). The system (2.8)-(2.9) using the recur-
= &

12



2.3. Super-Twisting Controller

sive transformation (2.11)-(2.12) can be represented in the following form:

2z = -khz1+ 2
5 = _kizl' + Ei,lzi+lv 1=2,..,r— 1 (2'13)
z = [fr(2) + Be(z)u+de(2,w)

where z = (2, ..., z,)T, f,.(z) is a bounded function, rango B, = m and B, = B,_,B,. Finally,
the transformed system (2.13)-(2.14) will be used to design an advisable manifold to solve the
Sliding Mode Output Regulation Problem for nonlinear nonminimum phase systems.

2.3 Super-Twisting Controller

The main disadvantage of the standard Sliding Mode is the chattering phenomenon, that is
characterized generally by small oscillations with finite frequency and amplitude at the output
of the system that can result harmful to the system because it leads to low control accuracy
and high wear of mechanical parts. The chattering can be developed due to neglected fast
dynamics and to digital implementation issues.

In order to overcome the chattering phenomenon, the high-order sliding mode concept
was introduced by [Levant, 1993]. Let us consider a smooth dynamic system with an output
function S of class C™! closed by some static or dynamic discontinuous feedback as in [Levant,
2001]. Then, the calculated time derivatives S, S, ...,S™"1, are continuous functions of the
system state, where the set § = § = ... = §"~! = 0 is non-empty and consists locally of
Filippov trajectories. The motion on the set above mentioned is said to exist in r-sliding
mode or ry, order sliding mode. The ry, derivative S” is considered to be discontinuous or
non-existent. Therefore the high-order sliding mode removes the relative-degree restriction
and can practically eliminate the chattering problem.

There are several algorithms to realize HOSM. In particular, the 2,4 order sliding mode
controllers are used to zero outputs with relative degree two or to avoid chattering while
zeroing outputs with relative degree one. Among 2,4 order algorithms one can find the
sub-optimal controller, the terminal sliding mode controllers, the twisting controller and the
super-twisting controller. In particular, the twisting algorithm forces the sliding variable S
of relative degree two in to the 2-sliding set, requiring knowledge of S. The super-twisting
algorithm does not require S, but the sliding variable has relative degree one. Therefore.
the super-twisting algorithm is nowadays preferable over the classical siding mode, since it
eliminates the chattering phenomenon.
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2. PRELIMINARIES

The actual disadvantage of HOSM is that the stability proofs are based on geometrical
methods, since the Lyapunov function proposal results in a difficult task, [Levant, 2005]. The
work presented in [Moreno and Osorio, 2008] proposes quadratic like Lyapunov functions for
the super-twisting controller, making possible to obtain an explicit relation for the controller
design parameters. In the following lines this analysis will be revisited.

Let us consider the following SISO nonlinear scalar system

6=f(to)+u (2.14)

where f(t,0) is an unknown bounded perturbation term and globally bounded by |f(t,0)| <
8|o|1/2 for some constant § > 0. The super-twisting sliding mode controller for perturbation
and chattering elimination is given by

u = —ki/|o|sign(o) +v
v = —kasign(o). (2.15)

System (2.14) closed by control (2.15) results in

6 = —kiv/|o|sign(o) +v+ f(t,0)
v = —kasign(o). (2.16)

Proposing the following candidate Lyapunov function:
1 1
V = 2ko|+ Evz + §(k1|a|l/2sign(a) —v)?
= £7P¢

where ¢7 = (|a|1/2sign(a) v) and

P=l(4k2+k¥ —kl)

2 -k 2
Its time derivative along the solution of (2.16) results as follows:
s T f(t, o) 7
V - | 1/2,5 Q£+ I 1/2| {
where

Q—kl (2k2+k% —k1>
T2\ -k 1 /)’

& = Gt —bh).
It is considered the next assumption for the perturbation terms,

14



2.4. Robust High Order Sliding Mode Differentiator

A. 1. The perturbation term f(t,o) in (2.16) is bounded by

|f(t,0)| < &ilos| Y2 & >0 (2.17)

If assumption A.1 is satisfied, the expression for the derivative of the Lyapunov function
is reduced to

k15
- 2|01/2|£ Qg

he
where 5= 2k; + k — (42 + k1)é —k1+26>
- —k1+26 1 '
In this case, if the controller gains satisfy the following relations
50k; + 462
k1 > 25, kz > klm,

then, @ > 0, implying that the derivative of the Lyapunov function is negative definite.

2.4 Robust High Order Sliding Mode Differentiator

In order to estimate the derivatives for the arbitrary sinusoidal reference and/or perturbation
signal considered in Section 4.3 of this work, we propose to use a robust differentiator. The
fundamentals of that are shown in this section.

Let f(t) = fo(t) + n(t) be a signal consisting of a bounded noise 7(t) with unknown
magnitude ¢, and of an unknown base signal fo(t), whose (k + 1) derivative satisfies L >
|f*+1(t)| for a known constant L. The problem of estimating in real-time the derivatives
fo(t), fo(@), ..., fék) (t) was shown to be solved by the recursive algorithm [Levant, 2003]

f0=w, vo = — ML/ 40|20 — f(8)[/E N sign(zo - (1)) + 21
Z =, vy = = N1 LY B 21 — oKD/ K)sign(z; — vg) + 2,
: (2-18)
21 = V-1, Vk-1 = —MLY2|2k 1 — vp_o|2sign(zk_1 — vk_3) + 2k
Zr = g, v = —AoLsign(zx — vg—1).
The parameters being properly chosen, the following equalities are true in the absence of
input noises after a finite time of a transient process

2= i=o0,.. .k

15
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The \; parameters are calculated recursively, i.e. once Aj,---,\ — 1 are chosen for
the (k — 1)-th order differentiator, the only parameter that needs to be tuned for the k-th
differentiator is A\¢. In particular, the parameter A\g = 1.1, A\; = 1.5, Ao =2, A3 =3, Ag =5,
A5 = 8 are enough for the construction of differentiators up to the 5-th order.

The algorithm (2.18) can also be stated in a non-recursive form by substituting v; in vit1,
1=0,...,k — 1, which yields to

20 = 21 + loplzo — f(t)* F+Vsign(zo — £(t))
zio1 = zj + i_1p9|z0 — F()| B9/ *+Dsign(zg — f(t)) for j=1,...,k— 1. (2:19)
4 = lkp(k'*'l)sign(zo - f@@).

where p = LY/(+1) and the I; gains can be calculated in the basis of the A;’s. A selection of
the I; gains can be such that the matrix

~fg 1 =+ O
=3 - (2.20)
tpy O = 1
I 0 --- 0
is Hurwitz. That is, given the set {ay,..., ok}, a; € C, of symmetric poles (with respect to

the real axis) lying in the open left half-plane of the complex plane, the gains {lo,...,lc} are
such that
s 4los* bt s+l = (s — ag) -+ (5 — ).

Thus, with the gains [; being properly chosen and in the absence of noise and discrete
sampling, (2.18) gives an exact estimate in finite-time of the first k& derivatives of f(t), which
implies that the estimation error dynamics

éo = e1 — lopleol*/ "V sign(eq)
éj_l =e€; — lj_lpi|eol(k‘j)/(k+1)sign(eo) for J =1,..., k-1 (2.21)
& = FED () — Lep**sign(eo)

where e;(t) = f(t) — z(t), i = 0,...,k, goes to the origin e(t) = [eo---ex]” = 0 in finite-
time [Levant, 2003]. On the other hand, when either noise or sampling is present, (2.18) gives
the best possible asymptotical accuracy [Levant, 2003]. That is, on one hand, if the noise

magnitude is €, then for some constant p; the estimation error satisfies
e = |z — f] < e/ D =0, n.
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On the other hand, given the constant sampling interval T in the absence of noise, then for
some constant v; the estimation error satisfies

e = |z - féi)l Sur-it) =0, n.

The constants u; and v; depend exclusively on the parameters of the differentiator. This
means that the best accuracy is provided by this differentiator structure. However, to reduce
p; and v;, some manual tuning is still required, and trade-offs have to be made between fast
convergence and noise filtering.

Notice, that (2.18) is a continuous-time algorithm. However, the same accuracy can be
obtained, as pointed out in [Levant, 2011], by using Euler’s discretization on (2.18) or (2.19)
and sampling with zero—order-hold on f(t). Let t1, t2, ..., ti—1, t; be the sampling times
with ¢; — ¢;_1 = 7y < 7 (with 7;’s possible different, i.e. under variable sampling rate). Then,

Euler’s discretization gives
: 2i(t;) — zi(i—
g B A ), f6)
1
or equivalently
zj(t:i) = zj(ti-1) + vi(z(ti-1), f(ti-1))7. (2.22)

When the sampling periods are constant or slowly changing, (2.22) can be replaced by

zj(ti) = 2zj(ti-1) + vj(2(ti-1), f(t:)) 7.

2.5 Adaptive Estimator

In this section we present the work developed by doctor Obregon in his doctoral thesis
[Obregon-Pulido, 2003]. As an alternative to robust differentiator to estimate the deriva-
tives of the arbitrary sinusoidal reference signal, we use an adaptive estimator which can
estimate the reference signal and his derivatives. Then the adaptive estimator serves as a
kind of exosystem. Here we assume that a sinusoidal signal could be generated for an un-
known exosystem. Then an adaptive estimator is used to estimate the states and the frequency
parameter of the unknown exosystem.
Consider the signal
y(t) = Asin(at + ¢)

17
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that can be produced for an exosystem

s 0 1||wm (2.23)
g -a? 0 wy
y(t) = caw +cw

with unknown parameter (frecuency) a, then we can use the adaptive estimator to estimate
that parameter and the states of the exosystem.
Define the variables

2] =uy 22=ﬂ C1='k_1 C2=ﬁ

A A A
where A, k1, k2 are constants used to scale the state w of the exosystem (2.23). Noting that
under this configuration, in order to estimate exactly the state variables w; wg, the constants

c1, ¢z are assumed to be known:

A. 2. The constant c; and cg are known.

Using the new variables the exosystem is rewritten as:

5.1 = AZz
z of z
2 = —¥Z2
A

k
y(t) = 71w1+k2W2

The following proposition shows the adaptive estimator and establish its stability conditions.

Proposition 2.2. [Obregon-Pulido, 2003] The estimator

; A
L = )\€2+E(y—@) (2.24)
b = 284y (2:25)
& = -1ay-9)

i = La+hg

e = y-9§

with o, A, ¢, A, k1, k2 > 0, is such that limi00e(t) =0, & — wi, & — %2‘ & — %’ for

any initial conditions of (2.23).
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Proof. The proof is given in [Obregon-Pulido, 2003]. a

In this work the adaptive estimator is used to estimate sinusoidal signals instead the state
variables w; and wp. Thus, unlike to the work developed in [Obregon-Pulido et al., 2010],
we do not have to know the values of the constants ¢; and c2. Those are considered design

parameters.
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Chapter 3

Sliding Mode Output Regulation

3.1 Introduction

In this chapter we present different solutions to the Sliding Mode output regulation problem
for nonlinear (NL) nonminimum phase (NP) systems.

Four designed regulators are proposed for the noncausal case where the reference tracking
profile is produced by an exosystem. In this case a bounded steady state for the internal
dynamics is computed using the Francis-Isidori-Byrnes equation.

3.2 Problem Statement

Consider the perturbed nonlinear system

¢ = f(z)+ B(z)u+ D(z)w(t) + g(=,1)

y = h) (3.1)
where £ € X C R" is the state vector, u € U C R™ is the control vector, y € V C RP is
the output vector. The vector field f(z) and the columns of B(z) and D(z) are smooth and
bounded mappings and f(0) = 0, ~(0) = 0, RankB(z) = m for all £ € X. The vector g(z,t)

is the unmodeled disturbance vector of unknown perturbations.
The output tracking error is defined as

e=y—q(w) (3.2)
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3. SLIDING MODE OuTPUT REGULATION

where w € W C RY is a vector generated by the exosystem:
W = E(w). (33)

The problem to deal is controlling the output y of system (3.1), to achieve asymptotic tracking
of prescribed trajectories g(w), that is, the lim;_,..e(t). Moreover, to achieve asymptotic
rejection of the undesired disturbances w(t) generated by the exosystem (3.3) and finite time
rejection of arbitrary disturbance g(z,t) via Sliding Mode control.

In this chapter we consider the following assumptions:

A. 3. The state vectors T and w are available for measurement.

A. 4. The Jacobian matriz S = [%%] © at the equilibrium point w = 0 has all eigenvalues on

the imaginary azis.

A.5. The unknown perturbation g(z.t) satisfies the matching condition (Drazenovic, 1969)
There exist a vector y(z,t) € R™ such that the following relation holds:

9(z,t) = B(z)(z,t), 7€ R™ (3.4)

Assumption A.3 is introduced because we focus our attention on the solvability of the
state feedback SM problem with the knowledge of £ and w while the error feedback problem
can be solved by addtional design of a compensator or an observer. Assumption A .4 is from
classical output regulation theory. The last assumption A.5 it is common in a robust SM
control system design.

If the system (3.1) is a minimum phase then we can apply feedback linearization technique
to achieve reference output tracking. In the case when the system is a nonminimum phase then
the feedback linearization technique cannot be applied directly due to the unstable internal
dynamics. To work with nonminimum phase system we consider that the plant model can be
expressed in two forms: structured and unstructured.

Definition 3.1. The system (3.1) where the internal dynamics are not expressed in explicit

form, is refered to as an unstructured system.

Definition 3.2. A system where the internal dynamics are expressed in explicit form, is

refered to as an structured system.
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3.2. Problem Statement

To illustrate definitions 1 and 2, we present the following example. Consider a nonlinear
system expressed as:

#) = 34T+ 73

I3 = T1+T2+73 (3-5)
3 = zl+x§+za+b3u

y = n

In this case the system (3.5) is in unstructured general form. Also we can express the same
system (3.5) in the form:
. [ I ]
T2 = .
z2

I3 = I1+I§+$3+b3u

which is unstructured Regular form.
On the other hand, the system (3.5) can be presented as a structured one, that repre-
sentation consists in two subsystems:

-‘?1 = I% +z2+ 73 (3.6)
::3=::1+z§+:3+b3u
{t2=z1+22+73 (3.7)

The first subsystem (3.6) has block controllable form, the second subsystem (3.7) presents
the internal dynamics in explicit form.
To solve the output tracking problem for nonminimum phase systems, there are two ways:

1. The first way is to deal directly with the system as unstructured one which does not
have the structure of nonminimum phase system explicitly. For example: in the general
form (3.1) or in Regular Form.

2. The second way is to deal with the system presented in the structured form. For example
the nonlinear Block Controllable Form.

Other classification used in this work is related to the reference signal for the output. That
classification is made to expand on the subject of control for nonminimum phase nonlinear
systems. Then we use the following definitions:
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Definition 3.3. We referred to as noncausal case for the problem if the considered output

reference for the output is generated by an exosystem.

Definition 3.4. The problem is referred to as causal if the reference signal is an arbitrary

function of the time and there is no any ezxosystem.

In this work, for the structured system we deal both cases causal and noncausal while for
unstructured systems, we only address the noncausal case.

In the following subsections we first show the classical Output Regulation, then the SMOR
problem is briefly showed.

A. Classical Output Regulation

For the nonlinear system (3.1) in absence of perturbation g(z,t), the Output Regulation
Problem presented in [Isidori and Byrnes, 1990] (See Section 2.1), the control action was
proposed as a state feedback in the form u = a(z,w) and the solvability of the Output
Regulation Problem was stated in terms of the existence of a pair of mappings 7(w) and c(w)
with m(0) = 0 and ¢(0) = 0, which solves the partial differential equation (FIB equation)

o (w)
ow

§(w) = f(n(w)) + Be(w) + D(z)w (3-8)

where m(w) is the steady state, and c(w) is the steady state input.
To compare between the Classical and Sliding Mode Output Regulation problems, we
present an example for a system presented in the unstructured form. Consider the following

nonlinear system:

& = 22412413 (3.9)
T3 = T1+ o+ 23
I3 = :cl+z§+:r,3+b3u

Yy = n

where z;, i = 1,2, 3, are the state variables, y is the output and u is the input of the system.

The output tracking error is defined as:

a=y- yref(w) (3.10)
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whereynf=quisthereferenoesigna.l,thestatevect.orwisgenerabedbytheexosystem:
w=¢w), weR? (3.11)

The control objective is to design a control law such that the output tracking error (3.10)
goes asymptotically to zero. We consider that the assumptions A.3 and A.4 hold. To make
less extensive this example we consider the system (3.9) is not perturbed, then we have
D(z)w(t) =0 and g(z,t) = 0 in the general unstructured presentation of the system (3.1).

For this example, the system (3.9) can be represented as unstructured in general form as

z = f(z)+Bu (3.12)
0 2 +1+ 13
withB=| 0 |, f(z)=| 22 +z3
b3 Il+I§+x3

In order to apply the classical regulator design for the system (3.9) we define the steady
state error in the form
e=z— w(w)
T
E= [ €1 €2 €3 ] € =1 —mi(w), 1 =1,2,3, n(w) = [ m(w) m(w) w3(w) ]
Considering (3.12) the error dynamics are:

¢ = 1(e,w) + Ble, whu - T () (3.13)

where f(e,w) = f(¢ + 7(w)) = f(2)r=c+(w)» B(e,w) = B(e + 7(w)) = B(T)scx(w)-
We can also express the system (3.13) in the form:

b = dterten+me + )+ mw) + wsw) - T2 g(y) (3.14)
€2 = e1+e2+e3+m(w)+ ma(w) + m3(w) — %6( ) (3.15)

€3 = e1+65+e3+ 2mer + m(w) + m3(w) + 72 (w) + bzu — %&(w) (3.16)

Note, the last part of equations (3.14)-(3.16) corresponds to the FIB equation. Considering
that 7(w) is a solution of (3.8), then the error dynamics (3.13) are reduced to:

£ = €%+€2+€3+27l'151
€2 = €1+e3+¢3
€3 = €1+ €§ + €3 + 2m9e9 + b3u (3.17)
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3. SLIDING MODE OUTPUT REGULATION

Denoting A := [ggi_wl]

is expressed as

o B = B(0), the linearization of the system (3.17) at origin (0,0,0)

é = Ae + Bu + ¢(e,w) (3-18)

where the vector ¢(c,w) vanishes at the origin with its first order derivatives. Then, the
classical state feedback control input to achieve output regulation u = a(z,w) is defined in
the form

u = Ke + c¢(w)

where K is a matrix such that (A + BK) is Hurwitz in the linear approximation (3.18), and
¢(w) is a solution to (3.8).

Sliding Mode Output Regulation for systems in unstructured general form

Using the Sliding Mode Regulation approach, for the system presented in unstructured general
form (3.12) we can propose a sliding surface as

s=CTe

T
with C = [ caa ¢ 1 ] The dynamics of s along the trajectories of the error variables
(3.13) are

$ = (Ef+ez+€3+27r151+1r%(w)+7r2(w)+7r3(w) 31r1(w)£( ))

+c2 (61 + €2 + €3 + m(w) + mo(w) + m3(w) — 2(W)f( ))

oms (w)

+e1+ E% + &3 + m(w) + m3(w) + 2mees + ﬂ%('w) + b3u —

£(w)-

To determine the sliding mode dynamics of the error system (3.13) under the action of some
discontinuous sliding mode control, we use the equivalent control technique [Utkin et al.,
1999]. The equivalent control u., is obtained by solving § = 0 for u, i.e.

om (w
uq = —byle (E% + €2 + €3 4 2mer + T (w) + mo(w) + T3(w) — 61_1(11)_5(1”))

—b3_162 (61 + &9 + €3+ m(w) + me(w) + m3(w) — 37T2(‘w)€( ))
_bgl (51 + €2 + e3 4+ m (w) + T3(w) + 2mag2 + m3(w) — Bﬂs(W)‘E( ))
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Substituting ueq in the error dynamics (3.15) we obtain the sliding mode equation

=P(f(€+1r(w)) 20 ew)) (3.19)

where P = (13 -B (CTB)"1 CT) . Or expressed using scalar equations as:

& = 6‘% — 161 + kogg + 2mer + wf(w) + 1rz('w) + 1r3(w) om (w) f( )
€2 = kiey + keea + m(w) + mo(w) + m3(w) — aﬂ;"(”w)f (w) (3.20)
€3 = —b;;lq (Eg — c1€1 + koeg + 2me; + 7r1"’("’) + ma(w) + m3(w) — l(w)f( ))

ble (klel+kzez+m(w)+1r2<w)+1r3(w) O72() ))

where ky = (1 — ¢1) and k2 = (1 — ¢2).

Note that on the sliding manifold s = 0, the sliding mode equation (3.20) does not depend
on a—’%‘i’lg (w) and ¢(w). It will be shown later that we do not need to solve the FIB equation
(3.8) for c(w). In this case, the sliding mode equation just have two partial differential
equations, those are:

61r1 ('w)

———=¢(w) m(w)? + mo(w) + m3(w) (3.21)

61r2('w) Oma() ¢ 1)

m (w) + m2(w) + 73(w)

where 73(w) is determined as a function of 7 (w) and mz(w). For this case when the system is
in the unstructured form, the Sliding Mode Output Regulation problem reduces the order of
the partial differential equation (3.8). The variable 73(w) can be computed from an algebraic
equation as a function of 7 (w) and 72(w), that is implied in the equation (3.19). This fact
can be seen better with the system presented in unstructured Regular form.

Sliding Mode Output Regulation for systems in unstructured Regular form

Consider the system (3.12) presented as unstructured one in Regular Form, i.e.

Z12 Anziz + A2z + fr2(z) (3.22)

A31712 + A30z3 + B3u + f3(:l:).

I3
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T 01 1 o3 -
Whel‘e:'-'12=(:c1 :cz) An = (1 1) Ap = (1> fm(-"-‘):(o1 )’A‘”_

(1 0 ),A32=1, f3(z) = 23 and B3 = b3.

To analyze the output error behavior we define the error vector €12 = [ €1 €2 ] We can
represent the error dynamics of the system (3.22) as

om2 (w)

€12 Apierz + Araez + Anmiz + Arems + fra(e + 1) — ———€(w) (3.23)

. m3(w)
g3 = Asie12+ Asgez + Bau+ Agima + Apmz + fa(e + ) — —aw_f(w)

with ang‘gw) = 81:;5;0) BWBZSD)

Now, we define a sliding surface in the form
sp=e3+Clen (3-24)

T .
where C; = [ c11 co1 ] The dynamics of the sliding surface s, on the trajectories of (3.23)
are
$9 = Asie12+ Axnez+bsu+ fi(e, m(w)) + Asimz + Aszamy
+CT (A11512 + Ajoe3 + f12(€, 1r(w))) + C{ (A117l'12 + A127r;;)

and the equivalent control ue, obtained as a solution of 3, =0 is
Ueg = —b3'(Asier2 + Ases+ fa(e, m(w))) — b3 (+Azmiz + Asams)
—b:;lCT (A11€12 + A12e3 + fia(e, m(w))) — bEICT (A11m12 + A1273) .
Substituting ueq in (3.23) then, the sliding mode equation is

amyg (w)

b1z = (A1 — A12CT) 12 + fra(e + m(w)) + Anmig + Arams — ———€(w)  (3.25)

g3 = CJ [(Au — A12CT) e12 + fra(e, m(w)) + Auimiz + Aroms — 6 12(w)£( )|(3-26)

we can see that the second equation (3.26) is linear combination of the first one (3.25). For
the Regular Form of the reduced system the sliding mode equation is

& = Erf —cner + (1 — cig)eg + 2mer + 7r1(w)2 + 7rg(’lv) + 7|'3(w) - ?ﬂa—l,su'lg(w)
gy = (1—cn)er+ (1 — cra)en + m(w) + mo(w) + m3(w) — a”;i"’)g(w) (3.27)
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or expressed in vectorial form
oma(w
€12 = (An — A1CY) €12 + fia(e + m(w)) + Anma + Argms — —:;w(—)ﬁ(w)

At this point, we can see explicitly that the sliding mode equation is reduced and has a
reduced vector of partial differential equations ﬂfﬁ@ﬂ Considering that m(w) and my(w) are
solution of the partial differential equation (3.21), in other words, if

Omyo(w
fiz(m(w)) + Anmig + Arpms = %ﬁ(w)
then the system (3.25)-(3.26) is reduced to
€12 = (A1 — A12CT) €12 + o(e + m(w)) (3-28)

where (e + 7(w)) is a function which vanishes at the origin with its first order derivatives.
Now, c1; and ¢)2 are chosen to place the poles in a linearized approximation of (3.15), thus,
l.imt_mo €12 = ClT63 =0.

It was shown that the sliding mode approach reduces the order of the partial differential
FIB equation (3.8) to be analyzed. Also, we show that the Regular form the sliding mode
equation is in explicit form.

3.3 Integral SM Regulation for Nonlinear NP Systems in
Unstructured Form

In this section we present a solution for Sliding Mode Output Regulation (SMOR) problem
for perturbed nonlinear systems presented in unstructured general and Regular forms, for the
noncausal case. This approach is an extension of the work [Loukianov et al., 1999b].

To deal with the matched perturbations we first use the Integral Sliding Mode technique
combined with second order SM Super-Twisting algorithm. On the proposed integral sliding
manifold the perturbation term g(z,t) is rejected. Moreover, the use of super-twisting algo-
rithm allows to ensure chattering free sliding mode motion. Secondly, a sliding manifold which
contents the steady state manifold will be designed. On that manifold the output tracking
error tends to zero.

Consider the nonlinear system

f(z) + B(z)u + D(z)w + g(z,t) (3.29)
h(z) (3.30)

T

Y
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3. SLIDING MODE OUTPUT REGULATION

where € X C R™ is the state vector, u € U C R™ is the control vector, y € V C RP is
the output vector. The vector field f(z) and the columns of B(z) and D(z) are smooth and
bounded mappings and f(0) = 0, h(0) = 0, RankB(z) = m for all z € X. The vector g(z,t)
is the unmodeled disturbance vector of unknown matched perturbations (A.5), w € W C R?
is a vector generated by the exosystem

w=¢&(w), £(0)=0. (3.31)

The output tracking error is defined as the difference between the output of the system y,

and a reference yrey = g(w) in the form
e =h(z) — Yres (3.32)

Consider that assumptions A.3, A.4 and A.5 hold. Denoting A := [%ﬁ] o’ C = 2] ©°
B := B(0), the following assumption is introduced:

A. 6. The pair {A, B} is stabilizable.

Assumption A.6 is clearly needed to stabilize locally sliding mode dynamics.
Following the Output Regulation theory [Isidori, 1995] and integral SM control technique
[Utkin et al., 1999], we consequently introduce a local center manifold [Isidori, 1995]

e(z,w)=0, e =z —m(w) with 7(0) =0 (3.33)
and define the control as a combination of two parts [Utkin et al., 1999]
u = up + u3. (3.34)

Under the matched condition A.5 (3.4) for the perturbation g(z,t), substituting « (3.34) into
(3.30) results in
& = f(z) + B(z)uo + D(z)w + B(z) (u1 +(z 1)) - (3.35)

Then the change of variables e = £ — 7(w) (3.33) transforms (3.35) and (3.32) in

15

f(e,w) + B(e,w)ug + B(e,w) [u1 + v(e, w, t)] + D(e, w)w — Z—Zﬂw) (3.36)
e = h(e+7(w))— qw) (3.37)
where f(e,w) = f(e + 7(w)) = f(T)z=etn(w) B, w) = B(e + m(w)) = B(%)z—ctn(w)s

D(e,w) = D(e + n(w)) = D(I)z=e+7r(w)v ¥(e,w,t) = y(e+ m(w),t) = (=, t)z=e+1r(w) and
h(e,w) = h(e + m(w)) = h(m)z=e+7r(w)'
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The Integral Sliding Mode Regulation Problem (ISMR-problem) is defined as the problem
of finding smooth sliding functions o(¢), & € ®™and s(¢), s € R™ such that the following
conditions hold:

e (ISMS) (Integral Sliding Mode Stability). The state of the system (3.35) with a dis-
continuous state feedback with SM super-twisting control u;(z,w) in the presence of
unknown matched perturbation g(z,t) = B(z)¥(z,t), converges in finite time to the
sliding manifold

o(€)=0, o=(01,.y0m)7 (3.38)

In this case the unknown perturbation g(z,t) is rejected. That results in the following
integral SM equation which describes a motion on the manifold (3.38):

z = f(z) + B(x)up + D(z)w (3.39)

Using the error variable € the system (3.39) is

€ = f(e,w) + B(e,w)ug + D(e, w)w — 31(;5:0) ¢(w) (3.40)

e (SMS) (Sliding Mode Stability). The state of the system (3.39) with super-twisting
controller up(e) converges in finite time to the sliding manifold

s(€) =0, s=(51,,5m)¥ (3.41)

which contains the steady-state (central) manifold (3.33), and the dynamics of the
closed-loop system tend asymptotically along the sliding manifold (3.41) to the steady-
state behavior.

e (S). The equilibrium € = 0 of the sliding mode dynamics on o(g, 2) = 0 (3.41) governed
by
& = f(z) + B()ugeq(e, w) + D(z)w (3.42)

or

€ = f(e+m(w))+ B(e + m(w))ugeq(e, w) + D(e + m(w))w — %{(w)

are asymptotically stable, where ugeq is the equivalent control calculated as a solution
for $ = 0 [Utkin et al., 1999];
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3. SLIDING MODE OUTPUT REGULATION

e (R). There exists a neighborhood Vo C X x W of (0,0) such that, for each initial condi-
tion (o, wo) € Vo, the output tracking error (3.32) despite the presence of unknown but
bounded matched perturbation g(z,t) goes asymptotically to zero, i.e. limy_so0e(t) = 0.

In the following subsection, a solution to Integral Sliding Mode Output Regulation problem

for nonlinear system considering the noncausal case will be presented.

ISMR Problem Solution

In this section, firstly a control law which ensures the requirements SMS and S will be
designed, and then the ISMR-problem solvability conditions under which the requirement R
is satisfied, that will be derived for a nonlinear system described by (3.29) (3.31). In the
sequel, a SM regulator will be developed for nonlinear systems.

Integral SM Controller Design (requirement I.SM.S)

To reject the bounded perturbation g(z,t) and to ensure the convergence of the state vector
to SM manifold o(¢) = 0 (which will be shaped later), the Integral SM technique based
on the super-twisting algorithm is used. According to this philosophy, we suppose that the
sliding function s(¢) is designed (see subsection 3.3), then the auxiliar sliding function o(¢) is
formulated as

oe) = s(e)~ [ Gle(r) (Fletr), wir))) dr - / G(e(r)) (B(e(r), w(r))uo(r)) dr
0 0

t t
- [etet) e ummn i+ [ e (Gewrn)ar G
0 0

where initial conditions for the integrators are set to —s(¢(0)) in order to the sliding mode to
occur from the initial time instant.
Using (3.43) and (3.36) the straightford calculation yields

o= G(E)B(E, 'U)) [ul + 'Y(E’ w, t)]
where G(g) = %, G(0) = X' and rank[G(g)] = m, results in
0= Bl(E,’U)) ['U-l + '7(57wat)]
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3.3. Integral SM Regulation for Nonlinear NP Systems in Unstructured Form

6=v+m(s,wt). (3.44)

where v = B(g,w)u;, v = (v, ...,Up), the matrix B;(e,w) = G(¢)B(e,w) is assumed to
be nonsingular, and 7 (¢, w,t) = B (e, w)y(s, w,t). Following [Moreno and Osorio, 2008] we
assume

A. 7. The perturbation
lva(e, w, )|l < dullell?, 8 > 0,V(z,w) € X x W

andt>0.

Now, to enforce chattering-free SM motion on the auxiliary manifold o = 0 (3.43) a
super-twisting control algorithm is chosen, given by [Fridman and Levant, 2002]

v = —ki/|oi|sign(o;) + voi,
f)m — -—kz"s‘ign(a'i), 1= 1, wey M. (3'45)

System (3.44) closed-loop by (3.45) results in

0; = —kli\/ |a,-|si_qn(a,-) + voi + '715(51 w, t);
voi = —kaisign(oi), i=1,..,m

where vp = (vo1, - - -, %m)T- M = (N1, - -, Mm) 75 k1 = (k11,. k1) and k2 = (K21, ..., kam)-

Proposition 3.5. [Moreno and Osorio, 2008]: Using assumption A.7 and under the following

conditions:
56, + 46'{’ i
2(kyi — 261)°

the state of the closed-loop system converges to the sliding manifold o = 0 (3.43) in finite

k1i > 261, koi > k1 l,...,m

time, ensuring the requirement (ISMS,;).
On this manifold formally setting
o= Bl(55 'll.)) [uleq + 7(Eyw,t)] =0

one calculates
Ueq = —(€, w, 1) (3.46)
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where u;e, is refered to as the equivalent control [Utkin et al., 1999]. Substituting (3.46) in
(3.36), the full order integral SM dynamics on o = 0 governed by (3.39) or (3.40) are invariant
with respect to the perturbation (e, w,t).

SM Regulator Design (requirement SMS)

To enforce now sliding mode on s(e) = 0 (3.41) the projection motion on s is first derived
using (3.40) of the form

- 6t

where rank[G(-)B(:)] = m Vz € X C R" We choose the nominal control part, up as

Uy = Ugeq(e,w) — [G(e)B(e, w)] ! (kg\/”_s_szgn(s +k4s)

a’;&:") w)) + G(e)Ble, w)uo (3.47)

where the equivalent control ug eq(-) is

or(w)

voeqlew) = —[G(e)B(e,w)] L Gle) [f(s,w>+D<s,w)w— fw )] (3.48)

this ugeq(-) is calculated as a solution of § = 0, then substituting uo in (3.47) yields the
closed-loop system
§=—ks ||s||% sign(s) — kas.

It is easy to see that if k3 > 0 and k4 > 0 then a sliding mode motion occurs on the nominal
manifold s(¢) = 0 in finite time, then the requirement (SMS) is fulfilled.

SM Dynamics

Sliding motion on s(¢) = 0 is described by (3.42) or using the error variable is

€ = f(e,w)+ B(e,w)ugeq(e, w) + D(e,w)w — 67(,;5:”) &(w) (3.49)
Substituting (3.48) into (3.49) the sliding mode dynamics on s(¢) = 0 result in the following

form:
om(w)

ow

where the nonlinear projector operator P(e,w) = P(e + m(w)) = P(Z)z=¢4n(w) is defined as

¢ = Plew) | f(evw) + Dlewpw - ) (3.50)

P(e,w) = I, — B(e,w) [G(e) B(e,w)] "} G(e). (3.51)
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Lemma 3.6. Consider the operator (8.51). The condition

Pl(w) | 1(xw) + D)o - Ze(w)| =0 (3.52)

holds true if and only if there are mappings w(w) and A(w), such that

or(w)
ow

f(x(w)) + D(x(w))w — §(w) = B(m(w))A(w). (3.53)

Proof. The operator P(-) is a projector operator along the subspace of range[B(-)] for each

point w over the subspace of ker[B(-)] i. e.

P(r()B(x(w) = (I~ Br(w))[GOBrw) " G(0)) Br(w) =0 (354
P(n(w))e = ¢, Ve e R R = {e € R"|s(e) = 0}.

Thus, if condition (3.53) holds, then from (3.54) it follows that

Platw) (n(w) + Din(u))w - Z5e(w)) = Pln(w) Br(u))Aw) =0

Therefore condition (3.52) is satisfied. Conversely, if condition (3.52) is satisfied, then

(#nw)+ Drtupy - 2 ew))

must be in the range of B(m(w)), i. e. must to satisfy the matching condition [Drazenovich,

1969]

£lr(w)) + Dlr(w))w —~ 22 e(w) = Blr(w))\w) (3.55)

for some vector \(w). O

Conditions for solution of the ISMR Problem

Define the sliding function s(¢) as
s(e) = Xe = X(z — m(w))
where Y is a constant matrix of proper dimension.
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3. SLIDING MODE OUTPUT REGULATION

On the other hand, using the a linear approximation, the system (3.36)-(3.37) that can

be represented as

{ = A(+Bu+9((u) (3.56)
e = 0C+¢e(<)
where ¢ = (¢, w)T —=(A AH_I;S+D°) B=<B;)O) (_J'=(C CII—Q),
P(¢,u) = ( ¢f:,zu,;t) ) and the functions ¢(e, w,u), ¢u(w), Pe(€, w) and its first derivatives
w (W

vanish at the origin.

of (C)] 9¢(w) 6h
A=[— By = B(0), Do = D(0), S = |—— C=|w=| and Q@ =
¢ ow ] ¢ o
24
The sliding mode dynamics (3.50) can be thus represented as
¢ = PyAe + Py(AIl — IIS + Do)w + ¢s(e, w)
where ¢;(e,w) and its first derivative vanish at the origin, Py = [ag_éO] =1I, -
¢=0
By(XBy)~1X, is the linear approximation of the nonlinear operator (3.51).
Proposition 3.7. [Loukianov et al., 1999b] Consider assumptions A.3 and A.4 hold. If there
ezist C* (k > 2) mapping z = n(w) with 7(0) = 0, defined in a neighborhood W of 0 satisfying
the following conditions:
f(m(w)) + B(m(w))AM(w) + D(m(w))w £(w) (3.57)
h(m(w)) — g(w) = 0 (3.58)

61r('w)

then, the nonlinear ISMR problem is solvable.

Proof. The closed-loop system motion on this manifold can be described by

¢ = PyAe+ Po(AIl — I1S + Do)w + ¢s(e, w),

Ye = Y(z-7m(w))=0 (3.59)
W o= Sw+ ¢y(w) (3.60)
e = h(e+m(w) - gw) (3.61)
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3.3. Integral SM Regulation for Nonlinear NP Systems in Unstructured Form

9P (¢)
of the nonlinear operator (3.51); ¢s(e,w) and ¢y (w), and its first derivatives vanish at the

where ¢ = (¢,w)T and Py = [ = I, — Bo(£By)~1X is the linear approximation
origin.

The matrix X' can be chosen (by assumption A.4) such that the (n — m) eigenvalues of
PyA are in C~ while the others m eigenvalues are equal to zero, [Utkin and Young, 1978].
We can easily see that for sufficiently small initial state ((0), w(0)), the condition (Scy) is
satisfied.

Now, if the partial differential equation (3.57) holds, then by Lemma 1 it follows

Po(AIl — IS + Dyw + gy(w) = Plr(w)) [f(r(w)) + Dir(w)w - Zew)] =0

Therefore, under assumption A.6, the system (3.59) - (3.61) has a center manifold [Carr, 1981]
contained in the sliding manifold
o(e)=0,e=0 (3.62)

or in the original variables the graph of mappings
o(z —m(w)) =0, z =n(w) (3.63)

which is locally invariant and attractive under the flow of (3.50). The restriction of this
flow to manifold (3.62) or (3.63) is a diffeomorphic copy of the flow of the exosystem (3.60).
Thus, limy_0e(t) = 0, and if condition (3.58) holds, then by continuity of h(e + w(w)) (3.61),
e(t) = 0 as t — oo, i.e. condition (Ry) is satisfied. a

Remark 3.8. It is worth noting that in the case of the classical regulator, the steady state

input uss = AM(w) is used in the construction of the controller,
u=K (z— m(w)) + AMw)

where (A+ BK) 1is a Hurwitz matriz, while in our present approach we need to find the
mapping m(w) which achieves the matching condition (3.55). The proposed SM controller
does not use directly the signal ugs = Aw), but it is generated by the the controller (3.34)
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when the flow of the system is on the sliding manifold. Indeed, the sliding center manifold
(3.63) is rendered locally invariant by the effect of a suitable equivalent control which in the
steady state is equal to, indeed using (3.55) we have

woea08) = ~[COB(r(w)] ™ G0) |n(w) + Dixw)w - Ze(w)

— [G(0)B(r(w))] ™" G(0)B(w(w))A(w)
= Mw)

and this manifold is annihilated by the error map e = h(z) — g(w) in a similar way taken

place in the classical regulator formulation.

Integral SM Regulation for Nonlinear NP Systems in Unstructured
Regular form

Consider the nonlinear system (3.29) under the following assumptions:

A. 8. The matriz B(x) has a block By(z11,z2) such that rank[Ba(z11,22)] = mVz € X C ®*
where B(-) = (B1(+), B2(-))T z = (z11,22)T, z11 € X1 CR"™™, 23 € Xo C R™

A. 9. The Pfaffian system
dzy, — Bl(-)Bz_l(-)dzz =0

is completely integrable [Luk’yanov and Utkin, 1981] that is, there is a smooth solution to
e - . T
T = g($2ac)’ g= (gh veey g'n—m)
which can be presented by the Implicit Function Theorem into
g($11,$2) =, g = (gla ---,gn—m)T

where ¢ = (1, ..,cnm)T is a vector of integration constants.

Under assumptions A.5, A.8 and A.9, the local diffeomorphism

N N 9(z11,22)
' T )
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reduces the original system into Regular form [Luk’yanov and Utkin, 1981]:

# = fi(@')+ Di(z)w (3.64)

g2 = fo(z') + Ba(z')u + Da(z')w + da(2, t)

W = £(w) (3.65)
e = h(z') - qw) (3.66)

where rank[B;(z’)] = m ¥z’ € X C R Note that the Regular form presents the external
matched perturbation d2(z',t) in explicit form, affecting just to zo. That is very suitable for
the control design.

Let us now introduce the steady state for z; and z3 as m(w) and m2(w), respectively.
Then, defining the steady state error

o _|el_|1 7| _ m(w)
mtmxm=[2]-[2]-[ 2] -

the dynamic equation for (3.67) with tracking error e can be obtained from (3.64) - (3.66) as

& = hle+ )+ Dife+m(w)w - T2y (3.68)
€a = Bo(e+ m(w))u+dj(e, w,t) (3.69)
e = h(e+m(w)) —q(w) (3.70)

0
where d5 (e, w,t) = fa(e + m(w)) + Da(e + m(w))w + g(e + w(w), t) — %{(w). Where go(+)
is the transformed g(t). The proposed sliding manifold is based in the integral sliding mode

philosophy
o = 82(6) + (o, 32(6) =€9 — 31(61),
8s1
s1(0) = 0, [—] = Gi(e1)0) = 21,
661 (0) ()

where 0 = (01,...,0,)T Taking the derivative of the sliding function along the trajectories
of system (3.69) and replacing u = ug + u; results in the following expression:

6 = Ba(e+ m(w))ug + Ba(e + m(w))us + dy(e,w, t) — Gi(e1) (fi(e + m(w)) + Di(e + m(w))w)
+ m@o(lwk(ﬁ+@
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choosing (; as
b = Gilen) (le+ @)+ Dile+n(w)w) — Ga(er) ( Zele(w)) — Bage + m(u),
with (2(0) = —s2(£(0)), then the derivative of the sliding function reduces to

0 =v+dy(e,w,t)

with v = (v1, . ..,Um)T = Ba(e + m(w))u;. Applying the super-twisting algorithm:

vi = —kuv|oilsign(oi) + v (3.71)
v = —kaisign(o:),

with », = (vi1,-. -, lllm)T ky = (k11,.- - klm)T and k2 = (ka1,-.., kzm)T- the closed-loop
sliding mode function results in

oi = —ku/|oi|sign(o:) +v1i + o1i(e, w, 1)
i = —koysign(oi), i=1,...,m,

where 01 = (011, ---,01m)7 = d5(2,w,t). As in the general nonlinear case, it is possible to
show that there exist k;; > 0 and ko; > 0 such that, an sliding mode occurs on the sliding
manifold o = 0 in finite time. In this case, the dynamic of the nominal sliding function is of
the following form:
$2(€) = Ba(e + m(w))uo + eo(e, w)
with
om (w)
eolew) = ~Gifer) (fale +n(w)) + Die + m(w))w) + Galer) (T e(w)

Selecting the nominal control part, ug as

U = Uo.eg = ks [Bo ()] (VTsallsign(ss) + kavo (3.72)
where ug ¢4 is the equivalent control calculated as a solution of s = 0 as

Uo,eqg = — [32(')]—1 o0(e, w).

Again, it is possible to show that there exist k3 > 0 and k4 > 0 such that after a finite time
an sliding mode occurs on the nominal manifold s(¢) = 0 then the requirement (SMS,f) is
fulfilled, and the (n — m)th order sliding mode equation is given by

€1 = filer+ m(w), s1(e1) + mo(w)) (3.73)
+ Di(e1 + m(w), s1(e1) + mo(w))w — &f(w).
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To analyze the stability of the sliding dynamics (3.73), the systems (3.68) - (3.70) and (3.65)
are represented in the form:

& An A 151 0 Ry $1(e, w)
(4) = (o a) (2) (5 )=+ (&) ()

W = Sw+ ¢y(w)
¢
e = Cie1+ Caez + (G111 + CoIl; — Q)w
+  ¢e(e, w).

Then, the sliding mode equation (3.73) can be rewritten as
é1 = (An — A2Z1)e1 + Riw + d1s(e1, w)

where Ry = A1 Il + AyeIly — II1S + Dy and Re = A1 ITy + Aol — IS + D,, with A.‘j —
afi 8h om; ]
' L3 B, = A e = | . :
aﬂ-‘i](o,o) 2 = g2(0), C; [ az.i](o,o)' D; = d;(0,0), IT; [ 6'w](o)’ the functions ¢;(-),
?2(:), dw(-), de(-) and ¢15(-) vanish at the origin with its first derivatives; and the constant
matrices S and Q are already defined in assumption (4) and equation (3.56) respectively. Now
the solvability conditions of the ISMR problem for the nonlinear system in Regular form will

be presented.

Proposition 3.9. Under assumptions A.6, A.4, if there exists C* (k > 2) mappings z; =
m(w) and 3 = ma(w), with m(0) = 0 and 72(0) = 0, defined in neighborhood W of (0,0)
which satisfy the following conditions:

fulm ), (@) + Da(m(w), ma(uhw = 22y (3.74)

h(m (w), m2(w)) — q(w) 0 (3.75)

then, the ISMR problem for nonlinear systems in Regular form is solvable.

Proof. After sliding mode occurs, we have 2 = sj(e1), and the motion of the closed-loop

system will be governed by
£&1 = (An —Ap)a + Riw+ ¢1s(e1,w)
w = Sw+ ¢u(w)

e = h(e1 +m(w),01(z1) + m2(w)) — g(w)

41



3. SLIDING MODE OUTPUT REGULATION

were ¢15(€1,w) vanishes at the origin with it first derivative. The matrix (A1 + A2 1)
is Hurwitz by a proper choice of X and if condition (3.74) holds, then Ryw + ¢1s(z1,w) =

oy (w
fu(ma (1), ma(u)) + s (m (), ma(a) o — 222

manifolds, we have ¢;(t) — 0 = z1(t) = 7r1('w(t)), and ez(t) = 0 = z2(t) > ma(w(t)) with

&(w) = 0. Hence, under the property of center

t — oo. Thus, the requirement (S) is fulfilled. So, by continuity, if condition (3.75) holds,

then the output tracking error (3.66) converges to zero and condition (R) holds too. O

In the following sections, only structured nonminimum phase systems are considered.

3.4 SM Regulator for Nonlinear NP Systems in Structured
Form with MP

This section presents an approach to solve the SM output regulation problem for a class
of nonlinear nonminimum phase systems which are presented in the structured form. The
structured form can be expressed in the block controllable form with internal dynamics in
explicit manner. Based on decomposition block control technique and Sliding Mode control,
we propose a sliding manifold that contains a steady state manifold on that the residual
dynamics become asymptotically stable. To enforce the SM motion on the designed sliding
manifold a super-twisting SM algorithm is used. Only the noncausal case for the reference
is considered here. Moreover, we consider there are unknown matched perturbations (MP)
g(z,t) affecting the system. .

This approach can be considered as an extension of the work [Bonivento et al., 2001],
which solves the SMOR problem only for systems with relative degree one. The effectiveness
of the proposed methodology is verified via the design of a torque tracking controller for an
induction motor presented as illustrative example in Chapter 6.

Consider the perturbed nonlinear system

f(z) + B(z)u + D(z)w(t) + 9(z, t) (3.76)
h(z)

I

)

which does not have a full relative degree vector and is a nonminimum phase system. The

output tracking error is defined as:
€=Y = Yref (3.77)
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where y,ey = g(w), w contains known perturbations and reference signal, w and is produced
by the exosystem

W = £(w). (3.78)

Then we assume that the system (3.76) under matching condition A.5 can be represented in
the following Nonlinear Block Controllable (NBC) form:

&1 = fi(z1) + Bi(z1)z2 + Di(z1)w(t)

& = fi(Z)+ Bi(Zi)ziy1 + Di(Ti)w(t), i=2,..,r— 1

& = fr(z)+ Br(z)(u +7) + Dr(z)w(t) (3.79)

Erp1 = fr41(Zr, Tren)
y = h(z)=m

which contains unmatched known perturbations D(z)w and matched unknown perturbations
B(z)y and internal dynamics z,4;. The vector z is decomposed as z = (z1, .., Zr, Tr+1)T
Z; = (z1, ...,a:j)T, j=2,...,r, where r is the relative degree and z; is a n; X 1. The elements
of fi(Z:), Bi(Zi)zi+1 and D;(Z;) are continuously differentiable functions of (i — 1)th order,

i =1,..,r, with respect to all arguments in interval ¢ € [0,00), and all the derivatives are
bounded; the matrix B;(-) in each block has full rank, that is

rankB;=n; Ve X CR" (3.80)
The indices (n3, ng, ..., ny) define the structure of the subsystem (3.79) and satisfy the following
relation:
r+1
m<n<..<n,=m, Zn,-:n. (3.81)
i=1

The relation (3.81) means n; = ni41 or n; < ni;1, therefore, we consider the plant with the
structure n; = ny < ... < n, = m, that includes both cases.

Remark 3.10. For a nonminimum phase system, the internal dynamics z,41 are unstable.

In the following section the problem to deal is presented.

Robust Sliding Mode Regulation Problem

The Robust Sliding Mode Regulation Problem is defined as the problem of finding a sliding
manifold o(z,w), o € R™,
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3. SLIDING MODE OUTPUT REGULATION

o = (01,...,0m)T and design a Sliding Mode controller u = (uy,...,un,)T. where o(z,w)
and u are chosen to induce local asymptotic convergence of the state vector to the manifold
(3.82), such that the following conditions hold:

e (SMS) (Sliding Mode Stability). The state of the closed-loop system (3.76)-(3.78), with
the controller u, converges to the manifold (3.82) in a finite time,

e (S) The equilibrium (z,w) = (0,0), when o = 0 of the sliding mode dynamics
&= f(2) + Bueg + Dw + g(a,1)

is asymptotically stable in spite of the perturbation g(z,t), where ueq is the equivalent
control defined as a solution of 6 = 0,

¢ (R) There exists a neighborhood V' C X x W of (0,0) such that, for each initial con-
dition (zp,wg) € V. the output tracking error (3.77) goes asymptotically to zero, i.e.
limi00e(t) = 0.

Block Control Linearization for Nonlinear Nonminimum Phase Systems

In order to design a sliding manifold o = 0 on which the tracking error e = y — y,.5 (3.77)
tends asymptotically to zero, we introduce the following recursive nonlinear transformation
[Luk’yanov and Utkin, 1981]:

z1 =e =1 — q(w) := P1(z1,w) (3.83)
2o = fi(z1) + Bi(z1)z2 + di(z1, w) + Ki(z1 — q(w)) (3.84)
= Py(x1,22,w), di = Di(z1)w — (9g/0w)é(w)

23 = B3(Z2)x3 + fa(Z2) + da(Z2, w) + K2®a(Z2, w) J

0
2
0P oP
= @383, w), con dy() =Y ZEDw + 5 2E(w) (3.85)
=1

Ziy1 = Bip1(Z)zin + s

_ [ Fi(@:) + di(&i,w) + Ki®i(Zi, w) (3.86)

= @i 1(Tiy1, w)
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3.4. SM Regulator for Nonlinear NP Systems in Structured With Matched Perturbations

with i = 3,4,...,7r — 1, where z; is a vector of new variables of dimension n; x 1, K; > 0,
. i-1 . ) _ - - B,
fi®:) = 21 [%fj +Bj$j+1] +8%if,, Bi=B;_1B;, By = [ Ei ],Ei,l = [ 0 Ingyy—ni |5
= i,1
; (ni1—n) X041 ; ; ; : _ i o ) o,
Eiz€R s In;y1—n; is the indentity matrix, d; = ) M;Djw + Sté(w).
Jj=1

The system (3.79) using the recursive transformation (3.83)-(3.86) can be represented in
the following form:

L = —-Kin+2z
3 = —-Kizi+Ejj1ziqq, i=2,..,7—1 (3.87)
= fr(2)+ B (2)(u+7)+ dre(z,w)
g1 = fr(z,zrg1,w) (3.88)
- r—1
where z = (21, ..., 2)7, fr(2) = [E [%%lfj + sz,-+1] + -g%—fr} is a bounded function,
J=1 r=9"1

rank B, = m and B, = B,_1B,. Finally, the transformed system (3.87)-(3.88) will be used
to design an advisable manifold to solve the Sliding Mode Output Regulation Problem.

At this point we have a part of the system (3.87)-(3.88) linearized by the feedback lin-
earization. Noting that a solution of the zero dynamics

:tr+1 = fr+1 (07 Tr+1, ’UJ)

is not stable.

Sliding Manifold Design

Denoting 7) := 4 and rewriting fp(Zr—1, 2, 7, w) := fr+1(2,m,w) where Z_1 = (21, ..., zr—1)T
we obtain
7" = fn(fr—l,zr,ﬂ,w)- (389)

Considering that there exist a steady state for the internal dynamic 7, in other words, we

assume:

A. 10. There ezist a smooth mapping 1ss = mp(w) with 1,(0) = 0 defined in a neighborhood
W° € W of the origin which is solution to the following equation

omy

Bw E(w) = f_n (0,a,7(7r.,,,'w)) . (3.90)
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3. SLIDING MODE OUTPUT REGULATION

Defining z; = n — my(w). A linear approximation at origin of the dynamics of z, is
. - 2
Zp = Apzn + Bpzr + Ar_1Zr—1 + Apmyp(w) + Dyw — -a%'E(w) + Py(z,n,w) (3.91)

Whe-l'e Zr—1 = (Zl,...,Zr_l)T A’I] = %ﬁ](o)’ A'r—l = B%fn(o)y B11 = B%T‘fn(o)v D"I =
-&— fn(0). Then, the following assumptions are introduced,

A. 11. Assume that function ¥, (Z,n,w) vanish at origin with its first order derivatives and

is bounded by ¥, (Z,1,w) < B zy]|-

A. 12. The pair (Ay, By) is controllable.

SM Controller Design

Considering 2, as virtual control input to stabilize the residual dynamics 7, the vector 2z, is
chosen of the form

2z = ap(n,w), an(n,w) = Kyzy. (3.92)
Then we define a sliding variable ¢ in the form
o=z —an(n,w), o=]loi,.., an_T]T (3.93)
with dynamics
& = fo(2,1) + Br(2,n)u (3.94)

where fo‘(za T') = ﬁ'(za $r+1) + B"‘(Z7x1‘+1)'7 + dr(za :L'r+1,’LU) - an'n(ﬂ,w),
foesm) = ( for(am) for(em) - foui(zm) )-

Now, considering that

A. 13. The perturbation term fy(2,7) =fr+dr—6n, fo = (fo1,-, fon,)T where the functions
foi(z,m) in (8.94) are bounded by
|foi(zm)| < Siloil /2 6> 0,i=1,...m.. (3.95)

To achieve sliding mode motion on the manifold ¢ = 0 we use the super-twisting SM
control [Fridman and Levant, 2002]:

v = Bl (z,nv, v=I[viyerVner]”
vi = —ki |Ui|1/2 sign(a;) + via (3.96)
v;1 = —kigsign(o;), i=1,..,n—T.
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3.4. SM Regulator for Nonlinear NP Systems in Structured With Matched Perturbations

Stability of the SM equation

Theorem 3.11. Consider system (3.87) with control (3.96). If the assumptions A.10, A.13
and the following conditions given in (Moreno et al., 2008) hold:

56;ki1 + 45%

ba> 25 ko> kag et
1

(3.97)

then the overall system state converges to a sliding manifold where the output tracking error

21 asymptotically tends to zero.

Proof. The closed loop system (3.94)-(3.96) is:

0i = foi(2, Zr41) — ki |0'i|1/2 sign(o;) + vi1,

i1 = —kigsign(oi), i=1,...,n,. (3.98)

Under condition (3.97) the overall system state converges to the manifold o = 0 and 2, =
~Ky2, in a finite time. On the manifold o0 = 0 and under assumption A.10 the SM dynamics

are governed by the reduced order system

2 = —-Kizi+ 2z

z = —Kizi+E;12i41, 1=2,..,7 —2 (3.99)
Zr—1 = —Krz1— Kjzy

2y = (Ap+ ByKp)zg+ Ar1Z1 + 1(z,w) (3.100)

or rewritten in the form:

5= Az+9; (3.101)

where Z = (Z_l,z,,)T, and

47



3. SLIDING MODE OUTPUT REGULATION

(_K, I, o .. 0 w
0 -K; I, 0
_ 0 0
A=
Inp, 0
0 0 .. 0 -—K- ~K,
\ 4 A ... A A (A)-BK,) )

Note that we can choose the gains Kj, i = 1,2,...,7 — 1,7, such that A is Hurwitz. The
perturbation term 4); only contains the term ;, then considering the constraint A.11 results

that
1Yzl < Ba Il (3.102)

for all t > 0 and all z € R"~! with $; > 0 constant.
Let @ = QT > 0 and solving the Lyapunov equation PA + ATP = —Q for P. Then,

consider a candidate Lyapunov function in the form:
V(z) =z Pz (3.103)
taking the derivatives of V(Z) along the trajectories of (3.101) results

V(z) = —2TQz+2.TP (3.104)

_)\mm(Q)"‘E”% + 2Amaz(P)ﬂ1"2”2 (3.105)

IN

Now, as the perturbation term is vanishing bounded, and the matrix A is Hurwitz because
can be modified through the gains Kj, i = 1,2,...,7 — 1,7, then there exist a matrix Q such
that

B1 < Amin(Q)/(2Amaz(P)) (3.106)

[Khalil, 1996], where A(N)min/maz denotes the minimum/mazimum eigenvalue of N. Under

the last stated conditions and (3.106), the origin z = 0 is semiglobally stable. O

As an illustrative example a Second Order Sliding Mode Sensorless Torque Regulator for
Induction Motor is presented in section 6.
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3.5 SM Regulator for Nonlinear NP Systems in Structured
Form with UP

In Section 3.4 it was presented a solution for SM Output Regulation problem for systems
with matched perturbations. In this section we extend that result and present a robust
sliding mode controller for nonlinear nonminimum phase systems subject to both unknown
matched and unmatched perturbations (UP). Based on Regulation and Lyapunov Redesign
theories we design a suitable sliding manifold. On this manifold the perturbed dynamics are
stable namely they remain bounded whereas the output tracking error is bounded in spite of
the presence of external perturbations. To enforce the SM motion on the designed manifold a
super-twisting SM controller is used. The effectiveness of the proposed methodology is verified
via a simple example in the section 6.

Consider the perturbed nonlinear system

f(z) + B(z)u + D(z)w(t) + g(z,t) (3.107)
y = h(z)

z

which does not have a full relative degree vector and is a nonminimum phase system. The
output tracking error is defined as:
e=y—q(w) (3.108)
where w contains known perturbations and/or reference signal and is produced by the ex-
osystem
w = £(w). (3.109)
In this section it is considered a class of nonlinear systems (3.107) which can be presented
in the following perturbed nonlinear block controllable form (NBC-form)

z; = fi(z1) + Bi(z1)z2 + Di(z1)w + g1(z1, t)

&; = fi(Z:)+ Bi(Zi)zi+1 + Di(Z:i)(w) + 9i(Zi, ) (3.110)
i, = fr(z)+ Br(z)u+ Dr(z)(w) + gr(x,t)
Er41 = fre1(2) + Dra(z)w + gria1(a,t) (3.111)

y = hliz)=z1, i=2,.,7—1

where the vector z is decomposed as = = (1, ..,:l:r,wr+1)T, zZ;= (z1, ---,l'j)T1 j=2,..,7 and
z; is a n; X 1. The terms g;(Z;,t), j = 1,...,r + 1, are bounded unknown perturbations. The
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3. SLIDING MODE OUTPUT REGULATION

elements of f;(Z;), Bi(Zi)zi+1 and D;(Z;) are continuously differentiable functions of (i — 1)th
order, i = 1,...,7, with respect to all arguments in interval ¢ € [0, 00), and all the derivatives
are bounded; the matrix B;(-) in each block has full rank, that is

rankB;=n; Ve X CR" (3.112)

The indices (ni,ng,...,n,) define the structure of the subsystem (3.110) and satisfy the fol-

lowing relation:
r+1

n<ny<..<n.=m, Zni =n. (3.113)
i=1

The relation (3.113) means n; = n;41 or n; < n;+1, therefore, we consider the plant with the
structure n; = ng < ... < n, = m, that includes both cases.

The control objective is to ensure ultimately bounded output tracking error e (3.108) in
spite of both, unknown matched and unmatched perturbations.

The used procedure to obtain a Sliding Mode Regulator to achieve the control objective
is:

1. First, the nominal part of system (3.107) presented in NBC-form (3.110) is linearized ap-
plying the block control technique [Loukianov, 1998] combined with Lyapunov redesign
approach [Khalil, 1996]; as result a standard sliding function s(z,w) is obtained.

2. Secondly, using the designed sliding variable s as a virtual control input in the residual
dynamics (3.111), a stabilizing control law for this subsystem is designed applying a
Lyapunov redesign approach;

3. Finally, a sliding manifold o(z,w) = 0 is formulated, on that the output tracking error
(3.108) tends to a neighborhood V' € X xW of zero in spite of the presence of unmatched
perturbations. Then, the SM super-twisting control algorithm is implemented to ensure
the designed manifold be attractive.

Block Linearizing Transformation with Lyapunov Redesign

In this section we present the linearization of the system. To simplify the notation we omit
the arguments of some functions when no confusion arises.
‘We define the first variable z; as

21 =e= 11 — q(w) := P1(1,w) (3.114)
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the dynamics of z; are then given by

# = fi(z1,w) + Bi(z1)z2 + g1 (21, 1)
where fi(z1,w) = fi(z1) + D1(z)w — 2“!%25(1») and z, is considered as a virtual control for
z1. Then, we can impose the desired dynamics (K;z; — p1sigm(s;)) for this block considering
the desired value z3 4 for z3 in the form

224 = B (z1) (-fi(z1,w) + K121 — prsigm(s1)) (3-115)
8 = Plzl
where p; = diag[pi1, -.-, pin,], pi, > 0, sigm(s;) = [sigm(si1), ..., sigm(sin,)]¥ fori=1,2,...,7—
1, B} = (BTB))"'BY is the right pseudo-inverse matrix of By, Bi(21,w) = Bi(z1) s=871
the matrix K, is a Hurwitz , P, is a positive defined solution of the Lyapunov equation

PKi+KIPi=-Q1, @1 >0 (3.116)

and sigm(si;j) := sigm(e, s;;) for some real number ¢, i = 1,2,...,7r—1and j = 1,2,...,n;.
Where the continuously differentiable sigmoid function sigm(e, s;j) can approximate to the
sign function sign(s;;), in particular the sigmoid function used in this work is sigm(e, si;) =
tanh(es;j), € defines the sigmoid function slope near to zero.

Now, defining
29 = Iy — Iz,d(zl, w) = ¢2(iz,‘w) (3.117)

the first block of (3.110) is then represented in the new variables 2; and 2; as
z1 = K121 — ppsigm(s1) + Bi(z1,w)22 + g1(z1, w, )

On the second step, using (3.110), (3.115) and (3.117), the dynamics for 2; are derived of
the form
3 = fa(Z2,w) + Ba(Z2)z3 + g2(22, w, t) (3.118)

where 2, = (z1,22)7  fa(Z2, w) = fo(Z2) + Da(Z2)w,
92(22, w,t) = [92(%2,t) — T2,4(T1, W), _po1 4,0

and again, we regard 3 as a virtual control for z3. Thus, choosing the desired dynamics for
2 (similar to the first step) as (K222 — pasigm(sz)), the desired value x3 4 for z3 is asigned
similar to (3.115) as:

234 = BF(Z2) (—fo(Z2, w) + K2z — p2sigm(sz))

82

Pz
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where By(Z2, w) = Ba(Z2) ‘ sy =y, =B 1 K, is a Hurwitz matrix, p2 > 0 and the matrix P
is a positive defined solution of the Lyapunov equation

PKy + KIPy=—Q3, Q2 >0 (3.119)

Defining

23 = z3 — 23 4(Z2, w) := P3(Z3, w) (3.120)

the second transformed block is obtained in the new variables 27, 22 and z3 of the form
%y = Koz — pasigm(sz) + Ba(Z2,w)23 + §2(Z2, w, t)
This procedure is iterated considering the i** new variable

zi = — Ty g = Pi(Ti,w), 1=3,...,r—1, (3.121)

and the 5" dynamics of the form
4 = fi() + Bi()zis1 + Gi(Zi, w,1) (3.122)
with 5i(%, w, 1) = [9:(Zi, t) = #,0(@i-1,0)]5y g1 ... gimart» fil) = filZ:) + Di(Ze)w.

Then, the desired value ;1 4 for z;y; is chosen as

ziv1a = B () (-fi() + Kizi — pisigm(s;))

si = Pz

where K; is a Hurwitz matrix, p; > 0 and the matrix P; is a positive defined solution of the
Lyapunov equation

PK;+KIP,=-Q;, Q>0 (3.123)
Defining
Zit1 = Titl — Titl,d (3.124)

we obtain the i** dynamics of z; in the form

2i=Kiz; — pisigm(si) + B2(2,-,w)zi+1 + ﬁi(Zi,w,t)
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and using the transformation (3.114), (3.117) and (3.121) the system (3.110)-(3.111) in the
new variables z = (z,, ..., z,-)T, can be represented of the form

21 = Kz — prsigm(sy) + Bi(z1,w)22 + g1(21,w, )

% = Kz — pisigm(s;) + Bi(Zi, w)zi+1 + §i(Zi, w, ) (3.125)
i = 2,.,7r—1,

= [fr(2,2r41,w) + Br(2, Tri1, WU + Gr (2, Tri1, w, t)

Try1 = fre1(2, Tre1, w) + gr41(2, T4, t) (3.126)

where z; = (2, ...,zj)T,j =2,..,r—1,
The natural choice of a sliding variable is s = z,,. However, a sliding motion on the manifold
s = 0 is not stable since the original system (3.110)-(3.111) is a nonminimum phase system.

Sliding Manifold Design
To stabilize the internal dynamics, the subsystem (3.126) is first represented as
N = Zr41, fn(zr—l, Zr, M, 'ID) = fr+1(2,$,-+1,’UJ), g‘l’l(zan’ t) = g1'+1(z’$1'+17t)

we have 9) = fy(Z-1, 2r,m,w) + g(2,7,t), now we obtain a linear approximation of the last
system 7} at origin as

1 = Apn + Byzr + Dyw + 9¥1(Zr, n,w) + gn(2,1,t) (3.127)

where Ay = £ f7(0), By = 52 f3(0), Dy = £ £2(0), ¥1(0,0,0) = 0 and gy(2,7,t) =
9r+1(2, Tr41,1)-
Considering 2, as virtual control in (3.127), the state feedback control is chosen as

2 = ay(n, w)

where a)(n, w) is smooth mapping defined on X" +1 x W and ay,(0,0) = 0. The the following
assumptions are needed:

A. 14. The pair (A, By) is controllable.

A. 15. There is a vector v, (-) such that [Drazenovich, 1969]
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gfl(za 777 t) = Bﬂ’)"’](z’ 77) t)
and "’Y’I](zvnat)” <ec,c>0.

A. 16. There exist a smooth mapping 1ss = Ty(w) with 7,(0) = 0 defined in a neighborhood
Wo C W of the origin that satisfied the following equation [Isidori and Byrnes, 1990]:

O ) = 12(0, an(ra(aw), ), (), ) (3.128)
In this way, we propose:
zr = ag(nw) (3.129)
an(mw) = Cy(n—my(w)) — pysigm(sy)
sy = Ppz (3.130)

where 2z, :=n — my(w), Cy is such that K,=(4, + B,Cy) is Hurwitz p, > 0 and the matrix
P, is a positive defined solution of the Lyapunov equation

PyKy+ K Py=—Qp, Qp>0 (3.131)

In order to accomplish the desired value (3.129) for z, we propose a sliding variable in the
form:
o=z —op(n,w), o=lo, ey O, )T (3.132)

taking the derivative of (3.132) considering dynamics (3.125), thus we have
6= fr(-) + Br()u+ 3r(-) —6iy(-). (3.133)

To induce chattering-reduced sliding mode on o = 0 we use the super-twisting algorithm
[Levant, 2001]

u = Bf(z,n)v, v=[v1,...,v5]"
v = —kaloi|'/? sign(o:) +va (3.134)
Un = —kigsign(oi), i=1,..,n,

the closed loop system (3.133)-(3.134) becomes

6i = foilz Tr1) — ki |oi|/? sign(o:) +va

1 = —kigsign(oi). i=1,..,n, (3.135)
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where fg = f—r + gr - d” ’ fa = (fa‘ly ""’fdﬂr)T
We assume that

\foi(2, 1) < iloil 2 6 >0 (3.136)

then, if equation (3.136) and the following conditions [Moreno and Osorio, 2008] hold

50;ki1 + 462
1l i k|.2 >kﬂ2(ki1—261) (3 3 )

then the state of the system (3.133) converges to the manifold ¢ = 0 in a finite time.
SM Dynamics
On the manifold 0 = 0 the SM dynamics are governed by equations

z2 = Kiz — p1sigm(s1) + Bi(z1,w)22 + §1(Zi, w, t)

% = Kizi — pisigm(si) + Bi(%i, w)2i115:(%, w, t) (3.138)

i=1,.,r—1

Zy = Kpzy — Bypysigm(sy) + gn(Zi, w,t)

which is the sliding mode equation considering the perturbation terms and the steady state
error zp. In order to make an analysis, we consider that each term ¢; = —p;sigm(s;), i =
1,2,...,,7 — 1,7, has two stages: a discontinuous one and a linear one. This is represented as

—p; | ; Msillo > w;
%:{ p'z(“""";) if pillsile > -
—pi(si/m) if pillsillz < ps

for some p; > 0.

Now we propose a candidate Lyapunov function V = Y V; where V; = ziT Pz, i =
1,2...,7 —1,7n. In the first case (3.139), considering that p;||s;||2 > pi, the derivative of each
V; is in the form:

Vi=—2TQiz - 2Piz?Pi"%'2'“ +22F P,g; + 22T P,B;2; 11
< -2l Qizi — 2“/’1’"”“?5"11%521{ +2||zT Pil|l|gill + 2/l 27 PiBizisall

we consider the following assumption
A. 17. The perturbation terms are bounded ||g;(z,t)| < Xi(z,t), i =1,2....,7 — 1, 7.
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3. SLIDING MODE OUTPUT REGULATION

Considering the inequality |27 P;B;zit1|l2 < Bi1l|2ill3 + Bi+1,2l|2i+1]13 with Bi1, Biz1,2 > 0,

then we have

Vi < = Pmin(@i) = 2Bia] llz:l% = 227 Pl [llpell — Xl + 2Bivazll 2 |2
i=1,2...,r—1. (3.140)

Note that the third term 28;1 2|[2;+1(|? can be associated with the terms of function Vit

1=1,2,...,7 — 2, then we have

r—1

r—1
Vo< = Donin(Q3) =2 (Bia + Bi2)l llzill® — 2 127 Bl (loill — M)
1 1
+2Br2||zqlI* + V3 (3.141)

with 812 = 0, and the derivative of V;, is

. P,z _
Vo = -2, Quzq— 207 P"HPZ_z:II +22; Py [9n(2,m,t) + $1(Zr, 1, 0)]
< Amin(@n)llznll? = 2025 Byl [lpnll - 3] (3.142)

with Ay = Ay + Ay, |91 < Ay, then (3.141) is

r—1 r—1

VoS =3 Doin(@) = 2B+ Bi) 2~ 23 127 Pullloe = A = =B [3llll — 25,
1 1

— Pmin(@n) — 2B,2[Cy 1] || 252 (3.143)

then, the derivative of V is negative if Amin(Qs) > (Bi1 + Bi2), pi > Aifori=1,2,...,r -1,
Amin(Qn) > 267,2||Cyl| and 3p, > 23,
For the second case (3.139) when p;|s;|| < pi, we have

r—1

r—1
Vo< =) Poin(@i) = 2(Bix + Bi2)] lzill? + 2D 127 Bill [(—p3 /i) |27 Pill + i)
1 1
+20Br22r + Vyl
and V,, is

‘./1; = —Z?;ann + 2z7:;1P,,(-—pf]/p,.,7)||zZ"P,,|| + 2217)-‘P7I [gﬂ(z, Tl,t) + wl(iﬁ Ul w)]
~Amin(Q@u)llzall® = 21z Pyl [(62/bi) 125 Pull = %]

IA
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substituting V; in V we have

r-1

r-1
V < =3 Dinl@) = 2B + B2l a2 +2 3 5P [(—p2/ms) =Pl + N]
1 1
= Donin(@0) = 28:2l1Cl 20l = 31T Poll [ (03/1n) 1Byl = ] (3:144)

then, on a region where (||z7 P;||) > (Aipi/p?), i = 1,2,...,r — 1,7, the derivative V is defined
negative if Amin(Qi) > (Bi1 + Bi2), fori = 1,2,...,7—1, and Amin(Qn) > 206r,2||Cy||. Then the
system (3.138) is ultimately bounded in presence of matched and unmatched perturbations
[Khalil, 2002].

To show the performance of this regulator some examples are shown in Section 6 for both
cases matched and unmatched perturbation. In order to show the performance of this regu-
lator, we use non vanishing functions of the time in the simulations too, these perturbations
were not considered in the theoretical analysis.
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Chapter 4

SM Output Regulation Causal Case

In this section we present the SM Output Regulation for structured Nonminimum Phase Sys-
tems, the main difference between those SM regulators presented in Chapter 3 for noncausal
case and these here presented for the causal case is that here we consider more general refer-
ence signals and perturbations affecting the system, and we do not consider to have a known
exosystem, we deal with reference signals for the output and perturbations with arbitrary
sinusoidal form. In this case a solution of the Francis-Isidori-Byrnes (FIB) equation is not
computed instead that we use two approaches and the adaptive estimator (see Section 2.5)
to obtain a bounded solution for the unstable internal dynamics of nonminimum phase sys-
tems and the derivatives of the reference signal. Moreover, we deal with both unmatched and
matched unknown perturbations affecting the nonlinear nonminimum phase system.

4.1 Problem Statement

Consider the perturbed nonlinear system
i = f(z)+ B(@)u+g(z,t) (4.1)
y = h(z)

where £ € X C R" is the state vector, u € U C R™ is the control vector, y € V C RP is
the output vector. The vector field f(z) and the columns of B(x) are smooth and bounded
mappings. The vector g(z,t) presents unknown disturbances.
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SM OutpuT REGULATION CAUSAL CASE

Now, we consider systems (4.1) which can be expressed in the perturbed block controllable
form:
i1 = fi(z1) + Bi(z1)z2
2y = fi(Z)+ By(Zi)xiv1, i=2,...,7— L.
& = fr(z)+ Br(z)u+ gr(x,t) (4.2)
Fry1 = Jra1(Zr, Tr1) + gr4a(t) (4.3)
y = hlz)=m

where the vector z is decomposed as r = (z,,..,z,,z”l)T, £ = (n1, ...,:cj)T, j=2,..rand
z; is a n; x 1 vector, g,(z,t) = B), is a matched external perturbation. For the external
unknown perturbation g,41(t) we consider the following assumption:

A. 18. The unmatched perturbation gr4+1(t) has sinusoidal shape, i.e.

gr+1(t) = Agsin(ayt + ¢y).
The output tracking error is defined as
21 =Y = Yref (t) (4.4)

where y,.s(t) = Asin(at + ¢) is an arbitrary sinusoidal reference signal with A,a.¢ € R.

We define the SM Output Regulation Problem for causal case as the problem of
finding a smooth sliding surface o, 0 € ™ and a controller u to render attractive the manifold
o = 0 such that

o (SMS) The state of the closed-loop system (3.76)-(3.78), with the controller u, converges
to the manifold (3.82) in a finite time,

e (S) The equilibrium z = 0, when o = 0 of the sliding mode dynamics
i = f(x) + Buey + g(z,t)

is stable in spite of the perturbation g(z.t), where u,, is the equivalent control defined
as a solution of 6 = 0,

o (R) There exists a neighborhood V' C X of the origin such that, for each initial condition
(zo) € V. the output tracking error z; = y — yr.s(t) goes asymptotically to zero, i.e.
limy . 21(t) = 0.



4.1. Problem Statement

Block Control Linearization for Nonlinear Nonminimum Phase Systems

To design a sliding manifold o = 0 we introduce the following recursive nonlinear transforma-

tion [Luk’yanov and Utkin, 1981):

21 S €=TI1 = Yref = P1(z1,t) (4.5)
2 = fi(z1) + Bi(z1)x2 — d1(21,t) + K1(21 = Yres) (4.6)
= Pg(z1,72,t), di = ey

3= Balta)za + [ J2(@2) - ) + Kiba(ou
= P3(23,t), con dy() = %L (4.7)
241 = B (Z)zi01 + [ hilg)+ dt(i:)) +Kd(z) (48)

= Pp1(Z441)

with i = 3,4,...,7 — 1, where z is a vector of new variables of dimension n; x 1, K; > 0,
- i-1 x = B
(%) = 121 [%;’;f: + Bﬂjﬂ] +%§ffn By=B, 1B, Biy1 = [ E:l ], E,;= [ 0 In,yn, ],

Eiy € ROwi=m)mar [ is the indentity matrix, dy = 4L,
According to the block control nonlinear transformation the system (4.2)-(4.3) can be

rewritten as:
4
4
P

-i'r+l

-Kiz1 + 2

-Kizi+ Eiyzi4q, i=2,...,7r—-1 (4.9)
Fr(2) + Br(2)u + gr(2,)

fr1(2,Zr41) + gr41(2) (4.10)

A.19. The unknown perturbation gr(z,t) satisfies the matching condition (Drazenovic, 1969)
There exist a vector y(z,t) € R™ such that the following relation holds:

9r(z,t) = By(z)y(z,t), v€ R (4.11)
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4. SM OutrPUT REGULATION CAUSAL CASE

Sliding Manifold Design
To stabilize the internal dynamics, we define
N = ZTr41, fn(zr—l; Zr, 'I7,t) = fr+1(z; $1-+1,t), gﬂ(t) = gT+1(t)

now the subsystem (4.10) is represented as 1) = fy(Z,—1,2r,7,t) + gn(t), then we obtain its

linear approximation at origin as
N = Apn+ Bpzr + Ar_1Zr—1 + Bpzy + ¥(Z,1,t) + g5 (2) (4.12)

where z} is a known reference signal obtained as a desired value for x, by the block control
linearization Z_1 = (21, ..., zr-1)T- A, = %fn(O), A= %fn(O), B, = B%'fn(o)- The
following assumption is introduced

A. 20. The function ¢, (Z,n,t) vanishes at origin with its first order derivatives and is bounded
by ¥, (2,7,t) < B|2].
Defining
zy=n—z741(t) (4.13)
where z7, ; is a reference to be computed later. The dynamics of z, along the trajectories of
(4.10)-(4.12) are in the form

Zy = Apzg + Bpze + Ar_1Zr—1 + AgTr g + Bpxy — Tp g + Pn(Z,m,t) + gn(t) (4.14)

In this case, we consider to 2, as a subsystem, where z. is considered as input. Since the
system is a nonminimum phase A, is a matrix with real part positive eigenvalues. On the
other hand, the vectors z; and z; ., are considered references for z, and z,; respectively,
the reference z;,; will be obtained later in the chapter.

Consider the following assumption

A. 21. The pair (Ay, By) is controllable.
Following the SM technique a sliding variable o is proposed in the form
0 =z — Kpzy (4.15)

where K, is a matrix to design of dimension n,4+1 Xn, and 0 = [01 02 ... 05,]7 The dynamics
of o along the trajectories of (4.9)-(4.10) are

& = fo(2,m) + Bru (4.16)
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4.1. Problem Statement

where f,(2,1) =fr(2) + Br(2)As + dr(2,t) - Kotn(n,w),
fo(z,m) = ( for(z,m) for(zm) -+ fon.(2,m) ) complies

A. 22. The functions fqi(z,71) in (4.16) are bounded by
foi(z,m)| < 8ilos|/” 6 >0,i=1,..,n,. (4.17)

To induce chattering-free sliding mode on (4.15) we use the super-twisting algorithm [Frid-
man and Levant, 2002]

u = B l(z)v, v=[v1,.,n)T
vi = —ki |a.-|1/2 sign(o;) + vi1 (4.18)
Ui = —kigsign(oi), i=1,..,n,.

Assuming the conditions given in [Moreno and Osorio, 2008] hold:

56;ki1 + 45%

ki > 26; io > kil mm/———= 4.19
i1 > 20; kiz > ki3 o — 260) (4.19)
then the overall system state converges to a sliding manifold o = 0 and 2, = —K,z,.
SM Dynamics
On the manifold o = 0, the sliding mode equation is governed by
2 = —-Kiz1+2
zi = —-Kizi+ FEij12i41, 1=2,..,71—2 (4.20)
1 = —Kraze1+ Kyz

Zy = (Ap+ ByKn)zg+ Ar1Zr—1+ AnZ7yy + Byzp — drpq + ¥n(2,1) + 99(t) (4.21)

In order to show the stability of the sliding mode equation (4.20)-(4.21), we first have to
find the reference z} ,(t) and analyse the resulting system. In the following subsections, we
consider two cases presented in the sliding mode equation, specifically in the subsystem (4.21),
then we introduce the proposed solutions to both cases using different approaches. First let
us introduce the two considered cases:

Case 1: The subsystem (4.21) is not perturbed, namely g,(t) = 0;

Case 2: The subsystem (4.21) has unmatched unknown perturbation, which is a sinusoidal
shaped signal, that is g,(t) = Agsin(agt + ¢,).
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SM OuTpPUT REGULATION CAUSAL CASE

4.2 Case 1: Nonlinear NP Systems with Matched
Perturbation

Consider gy(t) = 0. Assigning an arbitrary zy,,, such that
Ar+1x:+1 + Br+1z: = i;_‘,l = 0, (4-22)

under condition A.21 we can choose properly gains Ky, K;, i = 1,2, ...r—1 such that a solution
of the sliding mode equation (4.20)-(4.21) is asymptotically stable, consequently the output
tracking error z) is too (See theorem 3.11).

However, due to the considered system is a nonminimum phase, the matrix A, has
eigenvalues with positive real part, then an arbitrary reference zy,, in (4.22) will increase
and the control signal will be unbounded too.

Solvability Conditions for SMOR in the Causal Case

To achieve the stability of the closed loop system (4.9)-(4.18), we also need to give a bounded
reference z, ., to the unstable internal dynamics z,;1. The mentioned bounded reference has
to be a stable solution for the unstable differential equation

g1 = Arn1%74) + Bray. (4.23)

Considering the sliding mode equation (4.20)-(4.21), the SM Output Regulation problem in
the causal case is transformed in the problem of obtain a bounded solution z},, for the
unstable differential equation (4.23). In the following subsections, we present two approaches
to obtain a bounded reference z; .

Bounded Solution for Unstable Linear Differential Equations

In this subsection the basis of a first approach developed in [Jeong and Utkin, 1999] to obtain
a bounded reference z, is presented. Let us consider a linear system

7(t) = Qn(t) + Bu(t) (4.24)

where matrix Q has no eigenvalues on imaginary axis. When Q is stable, the solution satisfying
the initial condition is in the following form

o0 = @90 + | ' 9= Bu(r)dr (4.5}
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4.2. Case 1: Nonlinear NP Systems with Matched Perturbation

which is bounded if the input u is bounded. If all eigenvalues of Q have positive real part,
the bounded solution satisfying the following boundary condition can also be obtained

9(T)=0, t<T< o0 (4.26)

Theorem 4.1. [Jeong and Utkin, 1999] The bounded solution 1° of system (4.24) which
contents unstable modes, satisfying boundary condition (4.26) with T = constant is

n°(t) = - /t ’ e?-") Bu(r)dr (4.27)

Proof. Differentiating (4.27) shows that it is indeed the solution of the unstable system (4.24).
7(t)° = —-Qe¥ / ’ e~ Bu(r)dr — ¥ [0 — e~ Bu(t)]

= Qn°(t) +t Bu(t) (4.28)

The boundedness can be seen from the facts that, Q is unstable and t — 7 < 0. O

The bounded solution of the linear system (4.24), either stable or unstable, can also be
represented with the derivatives of the input signal.

Theorem 4.2. Bounded Solution in Derivative Form. Suppose the matriz Q of the
linear system (4.24) has no imaginary azis eigenvalues, then a bounded solution n°(t) of the
system with boundary condition 11°(00) = 0 can be given in the following derivative form

n°=-Y Q ™VBu) (4.29)
n=0
Proof. From (4.27) with T = oo, integrating by parts

) = - / ~ Q-1 Buy(r)dr
! o0
= QleRmBur) 2 - [ Qe Bu(r)ar
t
—Q7'Bu(t) — Q72Bu(t) — ...

oo
= ZQ'("“)Bu(")(t)
n=0
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4. SM OUTPUT REGULATION CAUSAL CASE

It is important to note that for the nonminimum phase case, the nominal trajectory 7°
is noncausal (the integral (4.27) is defined from ¢ to co) and can be obtained through a
convolution integral (4.27). However, in order to avoid the noncausal condition, we can use
the bounded solution in derivative form (4.29) and use a robust differentiator, or the adaptive
estimator (see Section 2.5) to obtain the derivatives of the input .

Let come back to the output regulation problem for systems without unmatched pertur-
bation. When gr41(t) = 0 then we can use the bounded solution (4.29) directly to obtain a
bounded reference for 7, (4.23). Replacing Q by A,41, B by By41 and the input u by z7 in
solution (4.29) the bounded output reference which satisfies the unstable equation (4.23) is:

Zh = —ZA,,ET By zi™(t) (4.30)
n=0

In order to estimate the derivatives of the reference signal z; we use an adaptive estimator
(see subsection 2.5). For that, as the output reference signal y,es is a sinusoidal shaped one,
we assume that x; has the same shape z} = Ap,-sin(oyt + ¢r).

SM Regulator and the Adaptive Estimator

In this section we estimate z} with the adaptive estimator (2.24), for that we propose an
estimator in the form:

b = Mati@-9)

& "5153 218 1 ¢(az - g) (431)
53 = _’YEI( Tr — @)
(4.32)
where the output §
9t) = %1& + L&
€ = 79 (4.33)

is the estimated value for z, and € is the estimation error (4.33). Choosing o, A, ¢, 7, h, lo >
0, we can modify the convergence of the estimator and the error é asymptotically goes to
zero, namely lim;_,o0€(t) = 0. Moreover, the derivatives of the estimation (™ (t) tends to the
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4.2. Case 1: Nonlinear NP Systems with Matched Perturbation

derivatives of the :c:("), n=1,2,...,00. Equation (4.30) is an infinite series but that could be
approximated taking a finite number of the series elements.
Then we can obtain the bounded reference signal for z}, in the form:

x:+1 = _Ar_-ﬁl-1Br+1$r(t) - A:ElBr+1§(t) - A;.E1Br+1'§(t) o (4'34)
with this, if we substitute (4.34) in (4.21) we obtain
2y = (Ay + ByKy)zn + Ar—1Zr-1 + ¥n(Z,1) (4.35)
then, the sliding mode equation can be presented as
where Z = (2,_1,2,)7, and 4 is
-K; I,, 0 ... 0
e 0 Ky I, O
! 0 o _Kr—l —Kﬂ
A A ... Ao A1 (Ay- BoKy)

The perturbation term 1)z only contains the term v;, then considering the constraint A.11
results that ||4z|| < 81 ||z|| for all ¢ > 0 and all Z € R"! with B; > 0 constant.

We can choose the gains K; such that A is Hurwitz, then using the proof of Theorem 3.11
presented in Section 3.4 the reduced order system is asymptotically stable (implies condition
(S)). Consequently, the output tracking error z; tends asymptotically to zero (condition (R)).

SM Regulator with System Center and Adaptive Estimator

In this section, we present another approach to solve the SM Output Regulation problem in
causal case. Based on the work [Gopalswamy and Hedrick, 1993] and using the extensions
given by [Shtessel and Shkolnikov, 1999], [Shtessel et al., 2012] we present an alternative form
using the adaptive estimator. The main idea is based on System Center approach [Shtessel,
1994]. As we mentioned before, the output regulation problem is transformed to obtain a
bounded reference z} , , for z,.;. Here we present the System Center equation [Shtessel et al.,
2012] to obtain that reference.

System Center Design
Consider a linear system in the form
n=Qn+0 (4.37)
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4. SM OutPUT REGULATION CAUSAL CASE

where @ is considered as an external input generated for an exosystem defined in the form

w = Sw (4.38)
0 = Dw (4.39)

where w € R¥, § € RP, k > p, and S € Rk*¥
The Extended Method of Stable System Center [Shtessel et al., 2012] computes an es-

timated 7 of a bounded solution 7, for the unstable equation (4.37) using the solution 7j
obtained of:

ﬁgk) + ck_1ﬁ§k_1) + ...+ clﬁgl) + coffp = — (Pk_le(k_l) + ...+ Plé + Poo) (4.40)

where k is the order of the exosystem, and the output 6 as defined in equation (4.39). The
numbers ¢, ¢y, ..., Ck—1 are choosen to provide desired eigenvalue placement of convergence
b = T, and the matrices P_1,...P;, Py € RP*P are given by:

Poi = (I+c1Q7 '+ .. +c0Q@ I +pp1Q7 + ..+ Q) = I
Py = 2@ 4.+ Q@ * D — (Pt + D(pr2Q7 + ... + po@~*D)

P = aQ'+cQ 72— (Po1+ D(@1Q 7 +poQ72)
Py = cQ ' — (Pe1+I)poQ! (4.41)

where the constants p, pi1, ..., px—1 are the coefficients in the characteristic polynomial p(\) =
Xf 4 pr_1 A5~ 4 4 p1 A + po of the exosystem (4.38).

Noting that in this approach, we need to know the coefficients pg, pi,...,px_1. It is
necessary then to estimate the characteristic polynomial and the state of an exosystem. Unlike
to the solution presented in [Shtessel et al., 2012], we use the adaptive estimator to obtain
the necessary characteristic polynomial for the estimation of 7,. We assume the exosystem

(4.38) has the form
’u'jl _ 0 1 w1
o B -a?2 0 wo

0 = Duw
with characteristic polynomial pg(\) = A2 + a? The presented adaptive estimator (4.31) can

(4.42)

use the known output § and estimate the frequency o (see section 2.5). Then we use the
estimator (4.43)
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4.3. Case 2: Nonlinear NP Systems with Matched and Unmatched Perturbation

b = da+i0-9)
b = -8 0-g) (443)
& = —1&0-19)

with p, A, ¢, 7, &1, la > 0 as design parameters, the output of the estimator § is

. h
y = X51+l2£2

is the estimation for 6, and £3 — pa?. Then we use the estimation &% = £3/u to substitute
Po in the computation of P;_y,...P;, Py (4.41). Then we have a bounded estimated solution
7 for 7, substituting this in (4.21), that equation results:

in = (A + ByKy)zm + Ar—1Zr-1 + P (2, 1).

Then, we obtain the sliding mode equation (4.36), which is asymptotically stable.

A particular case for the SM Output Regulation is when the reference yy. ¢ is constant.
For that case in [Gopalswamy and Hedrick, 1993] was shown that a bounded reference 7,
for the internal dynamics can be obtained as a solution of the unstable differential equation
(4.23) with a change in the sign, i.e.

=% * *
&ry1 = —Ar2ry — Braal (4.44)

this is an asymptotically stable system because of the negative sign in (4.44). This is seen as
we run the unstable parts backward in the time, and we should converge to a solution on a

stable manifold.

4.3 Case 2: Nonlinear NP Systems with Matched and
Unmatched Perturbation

Now, we consider the case when g,1(t) # 0, in this case we consider that the perturbation
can be seen as an additional input affecting the unstable linear equation (4.23) in the form:

&1 = Arn1Zr gy + Brazr + gra(t) (4.45)

for that problem, we also can use the bounded solution (4.29) considering an additional input
gr+1(t) affecting to the subsystem (4.3).
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4. SM OutpPUT REGULATION CAUSAL CASE

Solution to the SMORP for Nonlinear NP Systems with Unmatched
Perturbation

To overcome the new case of the perturbed subsystem (4.21), we propose to use an observer
for the perturbation term g,1(¢) and add its estimation to the solution (4.29).

Now considering that the state z(t) is known (A.3) we use an observer based on robust
differentiator [Levant, 2003], to estimate the unknown unmatched perturbation term g, (t).
Based on the known nominal dynamic system for z,41 (4.3) the proposed observer is:

-':\Er+1 = fr+1(Zr; Tri1) + l1|Zr41]8ign(Zr41) + e (4.46)
ge = lasign(Zr4+1)

where Z,11 = Ty41 — £r41 is the estimation error of the internal state, and g, is the estimation
for g,4+1. Considering conditions for the gains [, ls presented in section 2.3, the error Z,; =
Zp41 — Lr41 1S zero in a finite time, and the estimation g.(t) is equal to gr+1(2).

To rejects the perturbation term g,.1(t) and obtain a bounded reference z;,; in the
perturbed subsystem (4.3), we add the estimation ge(t) in the solution (4.29).

Assuming that estimation g, and its derivatives ge, ge, g,ﬂ_"). n = 3,4,...,00, are available,
we can obtain a bounded reference z;,; which satisfies the unstable equation (4.45) as:

gha=-3 (A;(’;”’ Brazi™ () + A7) gg">) (4.47)

n=0
As the output reference y,.; and perturbation g,,; signals are a sinusoidal shaped ones
(A.18), namely z; = Aprsin(art + ¢r) and gri1(t) = Agsin(agt + ¢y), we can estimate their
derivatives x:(n) and g,(,”) n=1,2,...,00, using two adaptive estimators. The estimator for z}
is (4.31), and the estimator for g,+1 is:

: A 5
flg = A1£2g + E(ge = yl)

g
by = _Elil;fag +Ci(ge — %) (4.48)
f3g = —mlig(ge — 1)
where the output {3
) l
n = /\Lfé'lg + 12g§29
ég = Ge — gl (449)



4.3. Case 2: Nonlinear NP Systems with Matched and Unmatched Perturbation

is the estimation for g, ,; based on the estimated value ge(t). Choosing u1, 71, C1, A1, lig, log >
0, we achieve lim;_,o0€4(t) = 0 [Obregon-Pulido et al., 2010], and the derivatives of the esti-
mation g§") tends to the derivatives of the function ge(t), n = 1,2, ..., co.

Then we have a bounded reference signal for Ty, which rejects the unmatched perturba-
tion term g,,(¢) in the form:

Tr1 = —ArBrawe(t) — Arhge(t) — ATl Brag(t) — AT () (4.50)
AT Brag(t) — AZY G (8)... (4.51)

SM Dynamics
Substituting (4.51) in (4.21) the sliding mode equation results
z-'r] = (An + BnKn)zn +Ar1Z 1+ "/)11(51 t)-

Then, we obtain the sliding mode equation (4.36), which is asymptotically stable (see Theorem
3.11).
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Chapter 5

Discrete-Time SM Regulator for

Nonminimum Phase Systems

This chapter presents an approach to solve the output regulation problem for a class of non-
linear discrete-time nonminimum phase perturbed systems. Based on feedback linearization
Block Control technique and discrete-time sliding mode (SM) control, we propose a sliding
manifold on which the zero dynamics are stabilized. To enforce the robust SM motion on
the designed manifold, a discrete-time super-twisting SM algorithm is implemented. The ef-
fectiveness of the proposed methodology is verified in section 6 via the design of a position
tracking controller for an under-actuated robotic system, the Pendubot.

5.1 Discrete-Time Classical Output Regulation Problem

Consider a nonlinear discrete-time SISO system

f(zk, ug, wi)
h(zx) (5.1)

Tk+1

Yr

where k € Z denotes the discrete time instants, with Z the set of the nonnegative integers.
The state vector z; is defined on a neighborhood X of the origin of R", ux € R is the input
vector, and yx € R is the vector of the output variables to be controlled. Here f(-,-), h(-) are

smooth vector fields of class [t.oo)r With £(0,0) = 0, A(0) = 0. It is worth mentioning that
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5. DiISCRETE-TIME SM REGULATOR FOR NONMINIMUM PHASE SYSTEMS

system (5.1) can also be considered as a sampled data system, in that case, zy ~ z(tx), and
under the assumption of zero-order hold, ux = u(tx), where t = kd, with § as the sampling
period.

The tracking error is defined as the difference between yx and a reference signal y,(w) to
be tracked i.e.

ex = Yk — Y (wk). (5.2)

The reference signal y” (wg) is assumed to be bounded, with bounded increments, and gener-
ated by a given external system described by

witr = s(wg), wp € WCR
y" (w), (5.3)

Yk
with y"(wg) as a known variable.
The control problem is to design a controller using full information, which enables to bring
the tracking error (5.2) to zero. Isidori et al., have proposed in [Isidori and Byrnes, 1990] a
solution to this problem in the continuous-time setting. We now consider this solution to
extend a version for the discrete-time setting. The solution to the above mentioned problem
can be provided by a state feedback ux = a(z, wk), where the pair of mappings zx = mk(wx)
and ux = ¢x(wy) solve the difference equations

Tet1(We+1) = f(me, ck) (54)
0 = h(m)— ¥k
with m(0) = 0 and ¢x(0) = 0.
In this section, we consider the system (5.1) which contents both the known wj and
unknown di, disturbance terms, namely
Try1 = f(Tk, Wi, Wk, d) (5.5)
h(zk)

Yk

where di = d(zx, k) represents internal and external disturbances.

The classical regulator ui = cx(wy) +k7T (zx — mk(wk)) with (A + bkT) Shur matrix, A =
gﬁ |z=0, b = gﬁ |e=0 , can achieve only local stability of the system (5.5) around the tracking
trajectory in absence of the unknown perturbation dj.

To overcome these problems and increase the stability region also as to achieve robustness
of the closed-loop system, we propose to apply SM control technique [Utkin et al., 1999)
combined with the block control (BC) feedback linearization one [Loukianov, 2002].
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5.2 Discrete-Time Sliding Mode Regulation Problem

Using the before established concepts for the continuous time setting, we propose an extension
of the sliding mode regulator problem (SMRP). In this case (discrete time), the SMRP is
defined as the problem of finding a sliding function ok (zk,wy) (with 2, = zx — m(wg)) such
that the following conditions hold:

SMS) The state of the closed-loop system (5.1), with the static discrete-time sliding mode
controller uk(zk,wy), makes the state error z; converges to the manifold o = 0 in a
finite time.

S) The equilibrium z; = 0 of the sliding mode dynamics under wy =0 and dy =0 :
Tk41 = f(xkaueq,k;oa O)O’k=0
is stable. The term u,q is the equivalent control obtained from o1 = 0.

R) There exists a neighborhood Vi € X x W of (0,0) such that, for each initial condition
(zo,wo) € V1 the output tracking error (5.2) goes asymptotically to zero, i. e.

lim e = 0.
k—o0
As it is commonly in the SM control design, we introduce the following assumption.

A. 23. The unknown but bounded disturbance dy, satisfies the matching condition [Drazen-
ovich, 1969].

Nonlinear Nonminimum Phase Discrete-time System

In this work, we consider a class of nonlinear SISO affine control systems (5.5), which can
be presented (possibly after an appropriate diffeomorphic transformation) in the regular form
[Luk’yanov and Utkin, 1981]:

ey = (e Tok) (5.6)

Thper = fa(@) g Tog) + 05(2) ko 2o )k + d (6.7)

where the part of subsystem (5.6) with subsystem (5.7) has NBC-form with respect to the
output yx = 1k, while the rest part of the subsystem (5.6) describes the residual dynamics
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(subsystem (5.9):

Tip+1 = fi(®rk) +bi(zie)Tok (5.8)
Tikr1 = fi(Zres- o Tik) F0i(Trky -, Tik)Tiv1k
Trkt1 =  [r(Zky Tryrk) + 0r(Tk, Tr ) uk + di, (5.9)

i = 2,---,r—1

Trp1h+1 = Sre1(Zr, Trivk) (5.10)
Yk = T1k (5.11)
where Z = (T1,...,2rk)T € X C R", dim(zy4+1%) = n — r where 7 is the relative degree,

moreover,

f1(z1k) + bi(z k) T2k

@ 15 To ) =
Gkl fr—l(ml,k,---,xr-l,k)+br—1($1,k,~--,zr—l,k)xr,k

fre1(Zx, Tryak)

d = d, f,()) = f5(), b (") = B3(),

and we assume

A.24. b()#0,i=1,...,r, Vo' € X CR"

Dynamics of many control plants, for example, electro-mechanical under- actuated sys-
tems, can be presented (possible after a nonlinear transformation) in the form (5.8)- (5.11).

A solution of the zero dynamics

Try1 k41 = fr41(0, Zry1 k)

is not required to be asymptotically stable, i. e., the system (5.8)- (5.11) can be a nonminimum
phase system. In this case, the direct implementation of the combined SM and BC method
cannot to stabilize the closed-loop system. Therefore, a special sliding manifold on which the
residual dynamics are stable, should be designed.
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5.2. Discrete-Time Sliding Mode Regulation Problem

Sliding Mode Manifold Design

Consider the subsystem (5.8). The sliding manifold design procedure consists of a step-by—
step construction of a new system with states zix = Zix — 2y, i = 1,--- 7, where zf, is the
desired value for z;x, which will be defined by such a construction.

We start by defining as new variable the tracking error (5.2)

21k =€ =Tk — 221,15
with :::‘1’,,c = y"(wy) the reference value for z; x, having dynamics
2141 = f1(@1k) + Bi(T1k) T2k — Trgsr- (5.12)

In the system (5.12), zo is viewed as a virtual control input used to impose the following
desired dynamics
21 k+1 = k121 k- (5.13)

with |k;| < 1 to ensure the asymptotic stability of (5.13). Therefore, on the basis of assumption
A .24, one determines the solution in z3j for the equation

23y, = b7 (z1k) (krz1k — fi(1k) + TEeqn)

which represents the reference behavior for x3 ;. Proceeding in the same way, one introduces
2k =Tok — zg,k, having dynamics

Zok+1 = f2(T1 e Tok) + b2(T1 ke, T2 k) T3k — TG g1
One imposes the desired dynamics
z2k+1 = kazo (5.14)
where |k2| < 1. By assumption A.24, the solution in z3 given by
2d = by (@15, Tak) (k222 — fo(T ks T2) + T £ 11)

which is the reference value for z3 . Iterating these steps, one finally introduces the variable
Zrk = Trk — Thy,
= d
zg,k = br—l1(')(kr—lzr—1,k = fr1() + 3r—1,k+1),

with dynamics

Zretr = fr(Zk Tre1) + br (T, Tre1 )uk

d
+ dp— Trk+1-
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It is worth mentioning that the new variables z;x, i = 0,1,--- ,7 + 1 are determined by the
following nonlinear transformation:

2k = Tig— 25 = @1(T1r, wk)
Zok = Tok— Thp

= pa(T1,k, T2,k, Wk)
Z3k = Tgp—Th

= ©3(T1,k, T2k, T3 k> Wk)

Zrk = Tk — T
= @o(Trk, T2 ks » Trk, Wk)
Zr+lk = ZTr4lk — 1';‘-.’_1,]0
= Or+1(T1k T2k > TriLk)- (5.15)

Now, for the the residual dynamics (5.9) we need the following assumption:

A. 25. There exist a smooth mapping T,ry1x = l‘f.,.l,k(’wk) with -""‘ri+1,k(0) = 0 defined in a

neighborhood W° C W of the origin, such that

~d ,d
-’Bg+1,k+1('wk+1) = fr+1($k,$r+1,k(wk)) (5.16)
with Zf = (2], 27, - €7k )T is part of the solution to the partial equation (5.4)
It is easy to check that, by means of this transformation 2, = (zk, wk)=(¢7 ¢ -+ ¢L,)

the system (5.8)- (5.9) is diffeomorphic to

2ipr1 = kizig +bi(z16) 20k

22 k41 koza k + ba(21k, 22.%) 23,4

Zr—1k+1 = kr—1zr_1k +0r_1(21ks o Zr—1k) 2k
Zrier = fr(2k) + br(2k)us — -'E‘ri,k+1 + di (5.17)
Zrprhtr = fre1(2ip, e s Zraik)-

Having the system of the form (5.17), a natural choice of a sliding variable sy, is s = Zr k.

In this case, however, the zero dynamics of .14 or Zr41,k on the manifold sy = 2., = 0
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is considered to be unstable. Therefore, in order to stabilize such dynamic, we propose to
formulate the sliding manifold o} = 0 of the following form:

or =0, ok = sk — 0ok(2r+1,k Wk), (5.18)

where 0g k(2r41,k, wk) is a smooth function to be selected with og x(0,0) = 0.

Sliding Mode Controller Design
Taking one step ahead of (5.18) results in

Ok+1 = fr(2k) + br(zk)uk
+ dp— -’"g,k+1 — 00,k+1
To induce a sliding mode on ox = 0 we discretize the super-twisting algorithm [Levant,
2001]. If the continuous time version of this algorithm is just approximated by means of Euler
method, then, the control action will be as a modulated discontinuous signal. To avoid this
problem, we approximate the dynamics of the integral part of the super-twisting algorithm
(integral of the sign function) by Gao’s [Gao et al., 1995] extension of the reaching law [Hung
et al., 1993] for discrete-time systems, resulting in

up = —kuv/|ok|sign(ox) + Ck (5.19)

Get1 = Gk — 0(k12/|ok|sign(ok) + qik)
with k13 > 0, k12 > 0, g1 > 0 and 1+ d¢g; > 0, where ¢ is the sampling period. It is possible
to show that there are k;;1 > 0 and ki2 > 0 such that the state vector of the closed-loop

system converges to the sliding manifold ox = 0 (5.18) in finite time. On this manifold we
have sk = op, and the SM dynamics are governed by the reduced order system

Zig+1 = kizig +bi(zie) 22k

Zzok+1 = kazok + ba(z1k, 22k) 23k

Zr_og+1 = kr—222k +br_2(21k, - Zr—2,k)Zr—1k
Zr-1k+1 = kr-1Zr-1k (5.20)
Zry1ksl = Art1Zri1k + Briisk
+ Y21k - - -5 Zr—1ks Zr+1 ks Wk) (5.21)
e = 2k (5.22)
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where _ _
of of

By =
O0zri1k zr+1,k=01 i

A1 =
T az‘r,k zr k=0

with (-) as a function that vanishes at the origin. Now, we assume
A. 26. The functions by(21) and bj(z1k, .., Zik), =2, ...,7 — 2 are bounded.

A. 27. The pair {Ar+1, Br+1} is controllable.

Therefore, under the assumption A.27, by proper selecting the sliding manifold og ) =
kr412r41,% one can locally stabilize the residual dynamics (5.21) by asigning the matrix (A,41+
Byt1kr4+1) be Schur. In this case, there exists a locally stable central manifold Trylk =
77,1 k(wk) satisfying condition (5.16). Moreover, with the proper selection of ki,...,k._1,
under the assumption A.26 we have

lim Z,_1 =0
k—o0

where Z_1; = (z{'k z2T e zz"_lyk )T, satisfying condition (S), and as a consequence
condition (R) is also satisfied.
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Chapter 6

Illustrative Examples

6.1 Second Order Sliding Mode Sensorless Torque Regulator

for Induction Motor

The developed methodology in section 3.4 is illustrated here via the design a torque tracking
controller for an induction motor (IM). A dynamic model of an IM defined in the stationary
reference frame (a, 3) is described by

% = gljj:";;p (Yatb — Vbia) — %

% = —ae — npw; P + almia

% = —ayp + npwra + aLmip (61)
% = —7iq + aPpe + npPwrty + Ua/Om

%i—b = —7ip + afp — NpBwr + Up/Om

where 1), and v are the rotor magnetic flux linkage components, i, and 4 are the stator
current components and w, is the mechanical rotor speed; J, is the rotor moment of inertia,
T; is the load torque, n, is the number of pole pairs. Given full state measurements, the
control aim is to achieve the torque T, = uT'i‘Efl (¥aib — Ybia) tracks a reference and to keep
the rotor flux magnitude ¥ = 92 + ) constant.
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We define error variables as:
2=%—"Yref Y 22 =T — Tres

applying the block control technique and introducing desired dynamics the error system can

be transformed in the form

z21 = —(k14+2a)z1+ 23 (6.2)
2 = fa+buua+bioup
zZ3 = f3+baua+ boup
m = (1/Jr)(z2 + Tres — T0) (6.3)

with 23 = 2a¢ref 4+ 2aLm (YaT2 + Ypx3) + k121, |1 = wy. As an special case due to the stable
dynamics of the speed 7; in order to stabilize the dynamics of the speed and avoid the solving
of the corresponding FIB equations we introduce the steady state speed error as

51 - —] 771 —_ 11)38 (6.4)

where ;, is an estimate of the rotor speed steady state value. In this way, using (6.3) the
dynamics of the error variable (6.4) are obtained of the form

€1 = (1/)(22 + Tres — T1) — tbss (6.5)
Now we define the sliding variables o; and o9 as
o1 = 22+c4€ cs >0
o2 = 23

T
using (6.1), (6.2), (6.5), v =Bu and v = [ v vg ] the projection motion on the subspaces

o1 and o9 can be written as

61 = h+wn (6.6)
62 = fytuv (6.7)
to achieve chattering free SM motion on the manifold o1 = 02 = 0 we use the super-twisting
algorithm:
v, = —kn |¢'r1|1/2 sign(o1) + v (6.8)
11 = —kiasign(oy)
v = —kn |¢72|1/2 sign(o2) + va1 (6.9)
V21 = —koasign(oz)
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under conditions similar to (3.95) and (3.97) the closed-loop system state converges to the
manifold o; = 03 = 0 in finite time.
The SM motion on this manifold is governed by

Z = —(k1+2a)z1 (6.10)
29 = —C4€1 (6.11)

then the flux error z; tends asymptotically to zero, while the torque tracking error z; depends
on the speed steady state error ¢;.

The dynamics of the rotor speed error (6.5) can be represented on the manifold 2 = —c4e;

€1 = (22 + Tyef — T1)/Jr — Wss = (—cae1 + Treg — T1) /Iy — tss (6.12)
thus, we choose
Wss = (Tres — Ti) /Jr + cssign(er) (6.13)
then substituting (6.13) in (6.12) yields
€1 = —(ca/Jr)e1 — cssign(er) (6.14)

if ¢4 > 0 and c5 > 0 then the speed error €; converges to zero in finite time.

Simulations

A three-phase, four pole machine was simulated. The motor parameters used are: R; = 142,
L, =04, L, = 0.377H, R, = 10.12, L, = 0.4128H, J, = 0.01Kgm?, n, = 2. The control
parameters used are: kj; = 2100, k13 = 7220, ko3 = 400, kog = 203, ¢4 = 0.3, c5 = 4. In this
simulation results we add unknown perturbations in the last two equations of (6.1), thus we

have:
di .
% = —Yia+ aBa + npfwrp + ta/om + 0.1sin(t)
di
% = —7is+ aBys — npBwrhe + up/om + 0.1cos(t)

The Figure 6.1 shows the reference tracking result of torque using the proposed controller.
The torque reference is proposed as a sinusoidal signal i.e. Tyy = 1+ 0.2sin(7t) and the load
torque is T; = 1 Nm. Figure 6.2 shows the rotor flux magnitude response. The rotor fluxes
magnitude reference is ¥,.; = 0.15Wb2. The rotor speed w, is shown in 6.3. As expected, w;,
asymptotically reaches the designed variable 1, and it remains bounded.
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Figure 6.1: a) Electrical torque T, (solid) and reference Tys (dotted) [Nm vs s
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Figure 6.2: a) Rotor fluxes magnitude ¥ response [ Wb? vs s|; b) zoom of a)
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") b)

™ S

Figure 6.3: a) Motor speed w, (solid) and the integral variable 1,5 (dotted) [rad/s vs s]; b)

zoom of a)

6.2 Robust SM Regulator for Perturbed Nonminimum Phase
System

In this section we present an example applying the proposed methodology shown in 3.5,
the unknown perturbations are considered of two types: vanishing and non-vanishing ones.
Consider a third order system modeled by the equations

£ = xz2+ 2sin(z1) + g1(z,t)
To = u+ ga(za,t)
T3 = =z +z2+ 23+ g3(z,t) (6.15)
Yy = 0
and the exosystem
w = w2
Wy = —wy (6.16)
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first, we define the error variable z) = 21 — Yy Where y,.y = w;, the dynamic of 2, is given
by
Z21=1x9+ 25i'n.(zl) + g1(:z:,t) - g'ref

then, we take x5 as a virtual control for z;. Now, we impose the desired dynamics for this
block and the desired value for z is Z3 4 = —k121 — wa + 2sin(z1) — p1sigm(p121) where
k1 > 0, then following the iterative transformation (3.114)-(3.124) we define 23 = z2 — z9 4,

the dynamics for z; are
Z=u+g2(z,t) — Ta,4

now we define the sliding variable 0 = 23 — a3, where az = c(z3 — m3(w)) — p3sigm(psz3)
with ¢ > 0 and m3(w) = —ws is the steady state for z3, that was calculated solving the
Francis-Isidori-Byrnes equation (3.90). The super-twisting controller [Levant, 2001] is in the
form

u —k11 |a|1/2 sign(o) + v11

—kiasign(o) (6.17)

11

under conditions (3.97), when the sliding mode occurs on the manifold ¢ = 0 then the
dynamics of the system are described by

21 = —kiz1+ 2z — p1sigm(pr21) + g1(2, w, t)
z = az(z3,w)
23 = (1-c)z3 — pasigm(psz3) + g3(z, w,t) (6.18)

where z = [21, z]7 The selected control parameters are ¢ = 65, k1 = 20, k11 = 160, k1o = 420.
For the first block in (6.18) we propose the Lyapunov candidate function V; = 2{p; and we
obtain p; as the solution of the Lyapunov equation 2k;p; = 1 which is scalar in this case. It
is easy to see that the result is p; = 0.0078. In the same way, for 23 we propose the Lyapunov
candidate function V3 = 22p3 and p3 = 3 and p3 = 0.025. The simulations results are shown
in Figures 6.4-5, the first three ones show the results in the case when the perturbations are
non-vanishing, then g, (z,w,t) = 2sin(t) and gs(z,w,t) = 2cos(t) + 3sin(t). For the vanishing
case, the results are in the last two figures, and for that we define g; (z, w,t) = 1.5(z3 + wa),
93(z, w,t) = 2.3(z1 —w1). The output tracking performance is shown in Figure 6.4 and Figure
6.5 presents the output tracking error z;. Figure 6.6 shows the tracking error e3 = x3 — 3(w)
and the variable z5.
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Figure 6.5: Error z;, under non-vanishing perturbation.

In Figure 6.7 we present the result for the output tracking error when the system is under
vanishing perturbation. For this case we change the gains ¢ = 6 and k; = 2. Finally, in Figure
6.8 we present the steady state error for z3 and the variable z,.

87



6.

ILLUSTRATIVE EXAMPLES

6.3 Discrete-Time Sliding Mode Regulator for Pendubot

In this section, we apply the proposed control scheme presented in the section 5 to a discrete
version of the Pendubot [Spong and Vidyasagar, 1989] which is set as a nonlinear affine
discrete-time system. This model was obtained in [Rivera et al., 2010] by means of the
Symplectic Euler method outlined in [Stern and Desbrun, 2006]:

T1,k+1
T2,k+1
T3,k+1
T4,k+1

Yk

1k + 623k + 62 (b3 kP k + by kui)

Dok + 04k + 6% (bakPok + bakuk)

T3,k + 6(b3kP1k + b3 kuk)

T4k + 0(ba P2k + bakur) (6.19)

.Tz‘k.

where zix = zi(k6), i = 1,2,3,4, b3k = ba(z2,k), bak = ba(2k), Prk = P1(2k), P2k = P2(Tk),
zp, = z(kd). Please refer to [Rivera et al., 2010] for the detailed description of the parameters.

This model will be used for the control law design

Figure 6.6: a) Error e3; b) variable z;. Under non-vanishing perturbation.
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Figure 6.7: Error 2;, under vanishing perturbation.

Discrete-time SM Regulator for Pendubot

To represent the system (6.19) to the regular form, we define a nonlinear transformation
Zk = (214> T2ks T34 Z4.k)T = ¥(zi) of the following form:
Fixe = Tix—bak-1bip 172k
Zop = Tok—O0Tax
T3k = Zagx—bax-1bgp_1Tax

Tax = Tak. (6.20)
a)
: -1
i N
1 2 v »
- -
)
b A i b
0 1] 10 * E.J o » » -
Tirne (sw0)
b)
o
> ~00|
; -
~190|
“200|
h : W W CIE W % ®
Tine (sec)

Figure 6.8: Error e3 and variable 2;, under vanishing perturbation.
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The discrete-time model of the Pendubot (6.19) is now represented in the new variables T
by taking one step ahead in (6.20) in the regular form

Tik+r = Zrk+ (0r—1— k) (Z2k + 20Z4 k) + 6Z3k
+ 6%b3k(PLr — P2k)
Tok+1 = Zok+0Zak
Tsk1 = Zak+ (Pk—1— Pk)Zak + b3k (Prk — Pok)
Tgp+1 = ZTag+ Obak(Pok + uk)
Ye = Tok

where p = b3 kb, b3k = b3(Z2k), bak = ba(Z2k), Prk = P1(Zk), Dok = P2(Zk)-

Now, the steady-state for system (6.19), = = (z{’k,zg,k,zg,k,zz,k)T will be determined.
For that, we consider the following exosystem that will generate a sinusoidal shape output
reference signal:

wik+1 = cos(ad)wyk + sin(ad)wsk

— sin(ad)wy  + cos(ad)wak, (6.21)

W2 k+1

where « is the frequency of the generated signals and if the initial conditions are chosen as
w0 = Wa,0, then, the amplitude is \/iwl,o.

The steady state for the output is assigned as z5; = wpk. Making use of a natural
steady-state constraint given in [J. et al., 2008], that states that, the sum of the two angles,
q1 and g2 equals 7/2, one can easily determine the steady-state for x} as Tk = /2 — T k-
Finally, the steady-state values for z3; and x4 can be determined by using the first two
equations in (6.19), in the form of difference equations, i. e., 23 ;,; = (2] x41 — ¥714)/0 and
T4 k1 = (T ps1 — T2 4)/6-

Transforming z}, through the diffeomorphism (6.20) results in the steady state vector
Th = (2] o Top T Tap)

Flp = i —b5r_1bik1%0k

Top = Top—0Thp

Tip = The—B3k-1bax 1%ak

Ty = Ty (6.22)

where b3 , = b3(z5 ), by, = ba(2 1)-
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Now, we introduce the error variable vector zy = Zy — Z},, and taking one step ahead on
2k, yields in the following error system:

zk11 = (2K, T) (6.23)
where ¢(-) = ($1(-), ¢2(-), #3(-), ¢4(-))T with

¢1.() = 21k + Tk + (Pk—1 — pr)(22k + T3 1)

+ 26(pk—1— pr)(2ak + Ty )

+ O(z3k + Z3rk) + Cis
b2k(") = zok +Tpy + 6(2ak + Tayrk) — Tp k4
$3k() = 23k + T3k + (Pk—1 — pk) (2% + Th)

+ b3 k(PLk — Pok) — T3 kst
bak(-) = Zzak+Eyp+ ObarPok — Typyq + Obagur.

and G = 6253,;‘(131,;: —D2k) — Z] p+1- We can see that the part of error system (6.23) has the
BC form, therefore, to design a sliding manifold we first apply the BC technique. Define a
new variable €3 ;. = 23k, and taking one step ahead we have

E2k+1 = E2k + Tk + 0Ty p + 024k — T i1
Considering z4 . as virtual control, we formulate its desired value zg,k as
2k = —(1/8) (Zark + 05 4 + koeok — T3 411)
to induce the desired dynamics koeor, with |k2| < 1 for e9k. Defining now a new error variable
E4k = 24k — zf’k, and taking a step ahead yields
€4kl = 2zak +Typ+ ObgrPok — Typy + Obakuk
+(1/8) (Z5 k41 + 0% k41)
+(1/6) (k22,641 — T3 k42)

For the residual dynamics, we also define €1 = 21 and e3x = z3%. Then, the system
(6.23) is represented in the new variables as

e1kr1 = ¥1(0) (6.24)
e2k+1 = YP2()
e3k+1 = ¥3()
eakt1 = Pal-) + Obyruk (6.25)
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() = ek + 21+ (k-1 — k) (E2,k + T3 )
+20(pr-1 — pr)(€ak — (1/0)
(B35 + kogak — Topi1))
+0(eak + Z5 1) + 62b3k(PLk — Pok)
—Z1 k415

Ya(-) = €2k +Top+0Tark + 0(ak + Zg,k)
-fg,kﬂ,

¥s() = esk+Z5x+ (-1 — Pk)(Ea + 261)
+(pk-1 — px) (T4 )
+0b3 k (P1,k — Pok) — T3 k10

Va(-) = eak— (1/9) (Tox + 0T + koeak)
—(1/8) (-2 k41)
+Z k + ObykP2k
+(1/6)(Z2 k11 — T k42)
+(k2/0)(e2,k + T3k + 0T4k — T3 p41)
+ha(ea — (1/8) (T3 + 024 1))
+ka(eak — (1/8) (k2e2k — Z5 41))

Now, we regard the system (6.25) in the form x4y = (€},,¢2 _H)T with
1 T
€kt1 = (51,k+1152,k+1753,k+1)
i1 = (Eaps)-
Also we have
ek+1 = Y(eg, Tg) + v(ek, To k) uk
where where ¥(-) = (¥'(),%*(:))" with () = (¥1(:),%2(-),¥3())T %*() = ¢a(-) and

() = ()T () = (0,0,0)T 4%(-) = 8ba, Pk = (ok—1— pk), and Pak = P1k—Pak-
Now, one defines the sliding manifold as follows:

ok =0, o =ea + kie1,k + k3eak (6.26)
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with parametrs k) and k3. To force the states of the system (6.25) to the sliding manifold
(6.26) one make use of the proposed discrete-time super-twisting controller

ur = —p1V/|ok|sign(ok) + Ck
Ck — 0(p2V/ |ok|sign(ox) + ¢Ck)

When the sliding mode occurs on o3 = 0, one can calculate £44 from (6.26) as

Ce+1

eak = —kierk — kaez. (6.27)

Then, by replacing (6.27) in the three first equations of (6.25) yields to the follwing SM
equation:

kr1 = Yk (6.28)

¢k 1/’1(611:’5%’52) Idk=0 .

The parameters k;, k; and k3 should stabilize the sliding mode dynamics (6.28). For a proper
choice of such constant parameters one can linearize the SM equation (6.28) as

Eks1 = Asm(K)ek

where Agn,(k) = azpk/aa}: |z'1‘=0, with k = (ki1,k2,k3). To choose the design parameters, a
polynomial with desired poles is proposed as pg(z) = (z— A1)(z— A2)(2 — A3). The coefficients
of the characteristic equation that results from the matrix A, are equalized with the ones
related with pg(z), i. e., det(z] — Asm) = pa(z). So, in such manner one can find explicit
relations for . In this case limy_,o.€x = 0, accomplishing with the control objective.

Simulations

In order to show the effectiveness of the control methodology here proposed, simulations
have been carried out. The nominal values of the parameters of the Pendubot are defined
as follows: m; = 0.8293, my = 0.3402, I, = 0.2032, Iy = 0.1551, I = 0.1635125, g = 9.81,
I, = 0.00595035, I, = 0.00043001254, px; = 0.00545, ug = 0.00047. The constant parameters
used in the control law are A\; = 0.9941 + 0.0030j, A2 = 0.9941 — 0.00305 and A3 = 0.9978.
The vector x depends on the different values assigned to § and therefore it is only shown
for the particular value of § = 0.001, resulting in k; = 3710.0, k = 0.037281, k3 = 103.17.
The controller gains are selected as p; = 3, po = 1 and ¢ = 2. The parameters used in the
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6.

ILLUSTRATIVE EXAMPLES

exosystem (6.21) are a = 0.3, wy,0 = w0 = 0.09 and the reference signal is given by wo ;. It is
worth mentioning that the Pendubot has been simulated as a continuous time system, in order
to consider a more realistic condition. In Figure 6.9 is shown the output z;; performance.
We can observe that the angle x5 tends asymptotically to the reference.

=) b)

o 20 40 60 80 100 o 1 2 3 a

Figure 6.9: a) Angle z, 1 (solid) and reference signal wp ) (dotted) [rad vs s]; b) zoom of a)

In Figure 6.10 is shown the residual dynamics z; and z3. We can see that those variables

become stable.

) 10 20 3o 40 50 60 70 80 0 100

Figure 6.10: a) Angle z; x performance [rad vs s|; b)speed z3x [(rad/s) vs s
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Chapter 7

Conclusions and Future Work

7.1 Conclusions

Solutions for Sliding Mode Output Regulation problem for nonlinear nonminimum phase (NP)
systems with both matched and unmatched perturbations have been presented. The causal
and noncausal cases for the reference signals are considered in the presented solutions. The
presented solutions can be applied to the systems with arbitrary relative degree vector.

The Integral Sliding Mode Output Regulation Problem for NP perturbed nonlinear sys-
tems presented in the unstructured General and Regular forms has been introduced for the
noncausal case, and the solvability conditions are derived.

Two robust regulators designed based on the block control linearization for a class of NP
nonlinear systems presented in structured form have been proposed for the noncausal case. In
the first regulator design the matched perturbation is rejected while in the second one both
matched and unmatched perturbations are rejected.

Three robust regulators for NP perturbed nonlinear systems presented in structured form
have been proposed for the causal case. On one of these three regulators designs both matched
and unmatched perturbations are rejected, in the other two designs the matched perturbation
is rejected. Two approaches to obtain a bounded solution for unstable internal dynamics have
been presented.

Discrete-Time SM Output Regulation Problem for discrete time NP nonlinear systems pre-

sented in structured form with matched perturbations has been introduced for the noncausal
case and the solvability conditions are derived.
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7. CONCLUSIONS AND FUTURE WORK

7.2 Future Work

As future work, the following topics are considered:
o The real time application of the proposed regulators to induction motor and pendubot.

e To extend the Robust SM Output Regulation in the noncausal case for the problem
when only the output is available.

e To extend the Robust SM Output Regulation in the causal case for the problem when
only the output is available.

o To design a adaptive observer which generates the full steady state when only the output
is available for the noncausal case and the system has unknown perturbations.

e To design a adaptive observer which generates the full steady state when only the output
is available for the noncausal case and the system has unknown perturbations.

e To design a adaptive observer which generates the full steady state when only the output
is available for the noncausal case and the system has unknown perturbations.

e To design a adaptive observer which generates the full steady state when only the output
is available for the causal case and the system has unknown perturbations.
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