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RESUMEN

En este trabajo se aborda el Problema de Regulación utilizando Control por Bloques (CB)

y Modos DesUzantes (MD) para sistemas no lineales de fase no mínima con perturbación.

Comparado con soluciones de otros trabajos, en las soluciones aquí presentadas se presenta

una metodología más simple para el diseño de reguladores que puede aplicarse a sistemas

sin restricción en el grado relativo. Ademas, se logra la robustez ante perturbaciones que no

cumplen la condición de acoplamiento afectando al sistema.

Para la solución del problema establecido se consideran varios casos:

• Considerando la representación del sistema se divide en: a) Estructurado cuando en

el diseño se considera alguna estructura del sistema como la forma Controlable por

Bloques; b) sin estructura no se considera ninguna estructura especial para el diseño

del regulador, en este último caso el sistema puede estar en forma general o se puede

transformar a la forma Regular.

• Considerando el tipo de referencias para la salida se divide en: a) Caso no causal

cuando las referencias son generadas por un exosistema; b) Causal cuando las referen

cias son dadas como funciones del tiempo, en este caso no se tiene ningún exosistema.

• Considerando que las perturbaciones que afectan al sistema se divide en: a) El sistema

es afectado por perturbaciones que cumplen la condición de acoplamiento (CA); b) el

sistema es afectado por dos tipos de perturbaciones, las que cumplen tanto como las

que no cumplen la condición de acoplamiento.

Para el caso no causal de sistemas sin estructura con perturbaciones que cumplen la CA,

se define el problema de Regulación por MD Integrales y se proponen dos soluciones robustas.

Para sistemas estructurados se presentan dos soluciones: una para el caso de sistemas con
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RESUMEN

perturbaciones que cumplen la CA. La otra basada en Lyapunov HeMoign para cuando hay

perturbaciones que no cumplen tanto como las que cumplen la (
'

A

Para el caso no causal y estructurado, se define también una extensión al Problema de

Regulación en tiempo continuo para sistemas en tiempo discreto y se presenta una solución

para sistemas con perturbaciones que cumplen la CA.

Para la solución al problema de Regulación en el caso causal, se tiene que obtener refeten-

clas estables para la dinámica interna inestable del sistema. Para esto se utiliza un estimadof

adaptable el cuál sirve como un supuesto exosistema. UtiUzando los estados del estimador

dos métodos son empleados para obtener las referencias estables para la dinámica interna. El

primero esta basado en una solución a una ecuación diferencial lineal inestable. El segundo

utiliza System Center Method. El estimador adaptable también es utilizado para estimar

perturbaciones afectando a la dinámica interna.

Con las referencias estables dadas, se proponen tres soluciones al Problema de ftegiilación.

Dos son para sistemas con perturbaciones que cumplen la CA y la otra es para sistemas con

perturbaciones de los dos tipos antes mencionados.

También se presentan dos ejemplos de aplicación de los reguladores propuestos; Control

del par eléctrico de un motor de inducción, control de posición para el Pendubot,.
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ABSTRACT

T-ós work addresses the Shdmg Mode Ootpot Regulation (SMOR) problem for nonlinear

nonminñnqni pi__se árateme (NPS). The proposed solution is based on the Block Control (BC)

and SUding Mode (SM) techniques. In contrast with other works, we present an improved

method fbr the regulator design and the respectively solutions do not have constraint with

respect to the relative degree of the system. Moreover. robustness properties are achieved for

sysiem with matched and unmatched perturbations.

To establish the sofotions to SMOR problem, we consider three cases:

• With respect to the representation of the system. we divide the systems in two: a)

Structured when the BC is applied to the system; b) unstructured when we do not

ose the BC linearization. fat thi case the system can be expressed in general or Regular

farm

• Whh respect to the ootpot references we divide in: a) Noncausal case when the refer

ences are generated 6» an exosystem: b) Causal if the reference signal is an arbitrary

function of the time and there is no any exosystem.

• With respect to the perturbations affecting the system. we divide in: a) Systems with

matched perturbations: b) systems with both matched and unmatched perturbations

In the noncausal case, for unstructured systems with matched perturbation. we introduce

Integral SMOR Problem for systems with matched perturbations. Solution conditions are

derived for NPS in structured form and two solutions are presented.

Analogously to the SMOR problem in continuóos time we introduce Discrete-Time SM

Ootpot Regulation Problem for discrete time NPS with matched perturbations for the non

caosal case. Solution conditions are derived far NPS in structured form. The proposed

controller for Discrete-Time NPS presented in unstructured form far the noncausal case.

v



ABSTRACT

For structured systems, we present two solutions: The first one using BC technique is for

NPS with matched perturbations. And the second one based on Lyapunov Redesign is for

systems with unmatched perturbations.

To propose a solution in the causal case, we have to find stable references for the unstable

internal dynamics of the system. For that, we use an adaptive estimator which serves as a

kind of exosystem. Based on the states of the estimator, two methods are used to obtain

stable references for the internal dynamics. The first one is based on the solution of a linear

unstable differential equation. The second one is based on the System Center Method. The

adaptive estimator is used to achieve the estimation for unmatched perturbations affecting

the internal dynamics.

Once is given the stable references, we propose three solutions to SMOR problem. Two are

for systems with matched perturbations and the other one is for systems with both, matched

and unmatched perturbations.

As illustrative examples, we present the a Sliding Mode Sensorless Torque Regulator for

Induction Motor and position control for Pendubot.
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Chapter 1

Introduction

Roughly speaking, the classicalOutput Regulation problem [Isidori and Byrnes, 1990], consists

in designing a continuous state or error feedback controller such that the output of a system

tracks a reference signal in the presence of a known disturbance signal. The reference and

perturbations considered in the problem are generated by an exosystem. To improve classical

Output Regulation, two main research directions were proposed:

• to expand the class of perturbations affecting the dynamic system;

• to facilitate the design of the regulator.

To increase the class of perturbations considered in Output Regulation, several robust

nonUnear controllers were proposed to substitute the Unear state feedback presented by Isidori.

One of the most used is SUdingMode (SM) control that consists of the design of discontinuous

state feedback [Utkin, 1992b]. The SM control is recognized as an efficient tool to deal with

a complex nonUnear system in presence of an uncertainty, since its main advantages are:

• the possibility of decoupling the original system into two subsystems of lower dimensión

due to finite time convergence to a sUding manifold, and

• low sensitivity with respect to perturbations.

Thus, analogously to classical OR the SUding Mode Output Regulation (SMOR) was stated

in [Loukianov et al., 1999b]. The SMOR problem is defined as the problem of designing
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1. Introduction

• first, a sUding manifold which contents the steady state (center) manifold ,
and on which

the equiUbrium point of the closed loop system is asymptoticaUy stable, and the output

tracking error goes asymptoticaUy to zero;

• secondly, a discontinuous controUer which drives the state of the closed-loop system to

the designed sUding manifold

Moreover, the SM regulator provides

• robustness property to the system with respect to unknown matched perturbations, and

• semi-global stabilization while the classical regulator ensures only a local stabüity.

The last fact is due to linearization of the fuU system used in the classical OR while the

SM regulator design needs to Unearise only the reduced order süding mode equation [Utkin,

1992a].

To distinguish between different OR problems, we say that a system is in an unstructured

form when the system model does not present the internal dynamics in the expUcit form. On

the other hand, a structured system is when the internal dynamics are expressed in the expUcit

form. It can be noted that the last structured form presentation aüows to apply directly a

feedback Unearization technique, however that is only for minimum phase systems.

Also, to expand the problems to deal, we referred to as noncausal case problem if the

considered output reference signal is generated by an exosystem as in classical OR. And the

problem is referred to as causal case if the reference signal is an arbitrary function of the time,

that is, there is no any exosystem.

For dynamical nonUnear systems presented in the unstructured General or Regular form,

a SMOR problem solution for the noncausal case, in absence of plant model uncertainty, was

studied in [Loukianov et al., 1999b], and [Memon and Khalil, 2010], and considering a plant

model uncertainty in [Castillo-Toledo and Castro-Linares, 1995].

For the structured but minimum phase nonünear systems (noncausal case) a SMOR prob

lem solution using the Input-Output (1-0) Unearization, was presented in [ElmaU and Olgac,

1992]. The class of structured nonminimum phase systems, again in the noncausal case, was

studied in [Bonivento et al., 2001], however, that is only for nonünear systems with relative

degree one. A state feedback SM regulator have been designed in [Gopalswamy and Hedrick,

1993] for structured nonminimum phase systems but that is for the
caíse of constant output

reference (noncausal case).
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In the causal case, (structured) nonminimum phase systems have been studied in [Shtessel

et al., 2012] using the 1-0 linearization and SM techniques, taking an approximation of the

characteristic polynomial of an exosystem. Another approach based on an inverse model in

absence of perturbations, have been presented in [Zou and Devasia, 2004].

There are several results in the literature which deal with the Output Regulation problem

for nonlinear system with matched perturbations for example: [Elmali and Olgac, 1992] for

a minimum phase system, [Loukianov et al., 1999b], for the unstructured nonUnear system,

[Memon and Khalil, 2008] with a Lyapunov redesign approach, [Gopalswamy and Hedrick,

1993] for nonminimum phase, [Bonivento et al., 2001] for structured nonUnear nonminimum

phase systems with unitary relative degree, and, recently, in [Shtessel et al., 2012] for the

structured causal case. On the other hand, it is well known that the SM is a robust control

technique, however, that is only with respect to the matched perturbation [Drazenovich, 1969],

[Utkin, 1992a]. To overeóme this drawback, the robust nested Block Control technique (e.g.

[Huerta-Avila et al., 2007]) have been proposed for structured minimum phase systems to

design a sUding manifold on which unmatched perturbation effect, is rejected. To deal with

unmatched perturbations, also a control scheme based on Block Control and quasi-continuous

HOSM techniques was proposed in [Estrada and Fridman, 2008], however, in that work only

full relative degree systems are considered. In [CastiUo-Toledo and Castro-Linares, 1995],
it is proposed a solution where the matching condition is weakened and replaced by a new

condition that describes intrinsic structural invariance properties of the nominad and uncertain

system.

In this work, we consider that the output tracking problem for perturbed nonminimum

phase systems has two main challenges. The first one is the output tracking in presence of

the both matched and unmatched perturbations. The second one is the internal dynamics

stabiUzation. While for the classical and SM Output Regulation, there are several solutions,

the perturbed case was not completely studied. Moreover, we propose to use Block Control

FL approach. Comparing with the Input Output technique [Isidori, 1995] which is often used

in the regulation problem, the Block Control Unearization approach [Loukianov, 1998] is more

attractive since that allows directly place the poles of the system with the controller gains

introduced in the design. Additionally, in contrast with the Input Output, the Block Control

can be used for nonlinear MIMO systems with different relative degree with respect to output

vector components. Nevertheless, in the case of a nonminimum phase system, FL cannot

be appUed directly due to the unstable internal dynamics which are unobservable from the

output.
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1. Introduction

On the other hand, the standard SUding Mode discontinuous control can produce the

chattering phenomenon, that is generaUy characterized by small oscillations with finite fre

quency and ampUtude at the output of the system that can result harmful because it leads to

low control accuracy and high wear of mechanical parts. In order to overeóme the chattering

phenomenon, the High-Order SM concept was introduced by [Levant, 1993]. Recently, High-

Order SM (HOSM) controllers are most often preferred due to they keep the main advantages

of the standard SM control, moreover their control signal is a continuous function instead of

the standard discontinuous SM case, that feature aüows to HOSM reducing the chattering

effect on the output.

1.1 Thesis Objectives

The objectives stated in this work are the foUowing.

General Objective:

To propose a robust solution for the Output Regulation problem considering both matched

and unmatched perturbations for nonünear nonminimum phase systems with arbitrary relative

degree vector for the causal and noncausal cases.

Specific Objectives:

• To design a robust regulator for nonminimum phase systems (NPS) presented in the

unstructured form with matched perturbations for the noncausal case.

• To design a robust regulator for NPS presented in the structured form with both matched

and unmatched perturbations for the noncausal case.

• To design a robust regulator for NPS presented in the structured form with matched

perturbations for the causal case.

• To design a robust regulator for NPS presented in the structured form with both matched

and unmatched perturbations for the causal case.

• To design a robust regulator for Discrete-Time NPS presented in the unstructured form

for the noncausal case.

4



1J2. Contributions of this Work

1.2 Contributions of this Work

The foUowing contributions were made by this thesis in the fields of: robustness against

perturbations in both the causal and the noncausal cases, SM Regulator design, constraints

with respect to relative degree of the systems.

Robustness

We present solutions for the SMOR problem for nonminimum phase systems with both

perturbations, matched and unmatched. On Discrete Time dynamical systems, we present a

soratkm fcr the SMOR problem for iw»Tnmi*mnm phase svstems with matched perturbation,

SM Regulator design

We tlrfnw an iterative form to A-g-y» a suitable sfidmg mode surface using the Block

Control (BC) linearization. With the BC technique we increase the dass of nonlinear systems

whkh can be dealt. The Integral Sliding Mode Output Regulation Problem has been intro

duced. In tiñs approach compared to the classical solutions the steady state control needs

not to be calculated. Moreover, theDiscrete Time SMOR was defined and solved for discrete

time nonünear NMP systems.

Constraints on relative degree

Introdncing the BC Imearization in the regulator design, we relax the constraints of relative

degree unitary of the system, imposed in [Bonivento et aL, 2001] and equal relative degree

with respect to output vector components imposed in other works which use the Input Output

unearization

Causal and noncausal cases

Proposed solutions were presented for both cases: when the reference signal is generated

by a known exosystem, and also when there is no any exosystem. Considering a class of

arbitrary references.

5



1. Introduction

1.3 Thesis Organization

The rest of the document is organized as follows.

In Chapter 2 the main tools used during this work are introduced.

In Chapter 3 we address Sliding Mode Output Regulation problem for the noncausal case.

We first present the SMOR. problem. Secondly, we focus on NPS presented in the unstructured

form. In section 3.3, we propose a robust controller based on Integral SM control (ISMC)

for NPS in the general form, then conditions for the solution are presented and the robust

controller is designed. In Section 3.3, to simpüfy the design of ISMC, we present a solution for

SMOR problem for NPS presented in the unstructured Regular form. In Section 3.4, we focus

on NPS presented in the structured form. A robust SM regulator is designed for NPS with

matched perturbations in Section 3.4. Finally, in section 3.5 we present a solution based on

Lyapunov Redesign concepts for SMOR problem for NPS with both matched and unmatched

perturbations.

In Chapter 4 we address Sliding Mode Output Regulation problem for the causal case.

We first present the problem statement. In Section 4.1 we design a suitable sliding manifold

and introduce conditions for the solution of the stated problem. The SMOR problem is

solvable if there is a bounded solution for unstable internal dynamics. For that, we present

to approaches to find a bounded solution: the first one is using a linear differential equation

[Jeong and Utkin, 1999]. The second one is based on the System Center technique [Shtessel

and Shkolnikov, 1999]. For both of the above mentioned approaches we use an adaptive

estimator [Obregón-Pulido, 2003] to estimate the reference and its derivatives. In Section 4.2,

we present a solution for NPS with matched perturbations. In Section 4.3 a solution for NPS

with both matched and unmatched perturbations is proposed.

In Chapter 5 we present the Discrete-time Sliding Mode Output Regulation (DTSMOR)

problem for NPS, for the noncausal case. Firstly, in Section 5.2, analogously to continuous ver

sión (SMOR), we first present the DTSMOR problem for systems presented in the structured

form. Secondly, in Section 5.2 a sliding manifold is designed and the solvability conditions of

the DTSMOR are given. In section 5.2, the discrete time SM regulator is presented.

In Chapter 6 we show three examples of the proposed solutions presented in this work.

Firstly in Section 6 a second order SM sensorless torque regulator for Induction Motor is

presented. Then we continué in Section 6.2 with academic examples for the Robust SMRP

for systems with both matched and unmatched perturbations. In Section 6.3, a Discrete-time

Sliding Mode Regulator for Pendubot is presented.

6



1.3. Thesis Organization

Finally, in Chapter 7 the conclusions and the future work are presented.
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Chapter 2

Preliminaries

2.1 Classical State Feedback Output Regulation

The regulator problem, in the classical setup, consists in designing a continuous state or error

feedback controUer such that the output of a system tracks a reference signal possibly in

the presence of a disturbance signal. As first established in Isidori and Byrnes [Isidori and

Byrnes, 1990], themain condition for the solution of this problem via state-feedback or output-

feedback control is the solvabiUty of the so called regulator equations. If this equations are

solvable, under some standard assumptions, there exists a state-feedback or output-feedback

control law such that the closed-loop system is internally stable, and the tracking error will

asymptoticaUy approach to zero for all sufficiently small initial conditions of the plant and

sufficiently small reference inputs and/or disturbances. This section presents the classical

Output Regulation Problem as weU as its solution. The Unear output regulation problem

is a special case, and was completely solved based on the existence of a solution for a set of

algebraic matrix equations with the collective efforts of several researchers, including Davison,

Francis, and Wohnam, among others.

In order to formúlate the Output Regulation Problem formally, consider a system of the

form

i = f(x,w,u) (2.1)

w = s(w)

e =h(x,w)

9



with the state x(t) defined in a neighborhood U near the origin in Rn, the input space Rm

and the state w(t) defined in a neighborhood W near the origin Rq. Two scenarios can be

considered, depending on the available information as follows. Consider that the plant states

x and the exosystem states w are measured; that is, the controller has all the information

available. The nonlinear state feedback output regulation is stated as follows.

Given a nonlinear system of the form (2.1), determine, if possible, a control law u = a(x, w)

such that:

Spi The equilibrium point x = 0 of

x = f(x,0,a(x,0)) (2.2)

is asymptotically stable on the first approximation.

Rfi There exists a neighborhood W G U x Í2 near (0, 0) such that, for every initial condition

(x(0),w(0)) e Í2 the solution of

x = f(x,w, a(x,w))

w = s(w)

(2.3)

satisfies

lim e(í) = 0
í->oo

v ' (2.4)

The properties of the lineal approximation for the controlled plant play an important role in

the solution of the output regulation problem; henee, it is convenient to introduce a notation

where the parameters of this approximation appear explicit. Notice that the closed loop

system (2.3) can be formulated as:

x = (A + BK)x+(P + BL)w + xp(x,w)

w = Sw + ip(x, w)

where <p(x,w) and i_b(x,w) vanish in the origin along with its first order derivatives and

A, B, P, K, L, S are matrices defined by

A =

P =

L =

df
dx

dw

da

dw

0,0,0

0,0,0

0,0,0

B =

K =

S =

-df
du

da'

dx

ds_
dw

0,0,0

0,0,0

0,0,0

(2.5)

10



2.1. Classical State Feedback Output Regulation

for every w C f2<¡.

The necessary and sufficient conditions for the solution of the state feedback output reg

ulator are established in the following theorem.

Theorem 2.1. The state feedback output regulation problem has a solution if and only if

the pair (A, B) is stabilizable and there exists mappings such that ir(w) and u = c(w), with

7r(0) = 0 and c(0) = 0, both defined on a neighborhood í?o C &, from the origin such that:

di.
■ñ-s(w) = f(Tx-(w),w,a(TX-(w),w) (2.6)

0 = h(n(w),w)

for every w C í2q-

Proof: See [Isidori, 1995].

Once 7r(u;) and c(w) are known from equation (2.6), the classical control law which solves

the output regulation problem is:

a(x, w) = c(w) + K(x -

ir(w)) (2.7)

where K is a matrix such that (A + BK) is Hurwitz. The block diagram for the classical

control law is presented in Figure 2.1.

.

a> = j(a»)

a = c(a¡)+K(x- n(_eo)) x = f(x,ant,u)
e = h(x,a>)

Figure 2.1: Classical nonlinear output regulation problem

11



2.2 Block Control Linearization

Assume that the nonlinear system (2.1) can be represented (maybe after a transformation)

in the following Nonlinear Block Controllable (NBC) form:

¿i = h(xi) + Bi(xi)x2 + Dx(xi)w(t)

ii = fi(xi) + Bi(xi)xi+i + Di(xi)w(t), i = 2,...,r-l.

Xr
= fr(xr, Xr+l) + Br(xr, Xr+Í)u + DT(xr+i)w(t)

y
= h(x) = Xl

(2.8)

(2.9)

where the vector x is decomposed as x = (x\, .., xr)T , Xj
= (xi, ..., Xj)T, j = 2, ..., r, and x¿ is

a*i¿xl vector. The vector w is generated for an exosystem (2.1) rewritten in the following

equation

w = {(tu) (2.10)

In this case, to design a sliding manifold on which the tracking error e = y
—

q(w) tends

asymptotically to zero, according to the block control linearization we introduce the following

recursive nonlinear transformation [Luk'yanov and Utkin, 1981]:

zi
= xi := #i(zi)

z-l
= fi(xi) + Bj.(xi)x2 + D__(xr,w) + kixi := #2(a-i* a-2, w)

h(x2) + d2(x2,w) + k2$2(x2,w)

0

(2.11)

_3
= B3(x2)x3 + :=$3(x3,w)

Withd2(-) =E^ +^)

Zi+i
= Bí+i(xí)xí+i +

:=_>i+i(i-*+i.uO ¿ = 3,4,...,r- 1

fi(xi) + di(xi,w) + ki$i(xi,w)

0
(2.12)

where z¿ isavectorof new variables of dimensión ni xl, kt > 0, fi(xi) = J2 §ff/¿ + BjXj+i
j=i

•■
*

, Eij = [ 0 In^-m },EU1 e üK*«-ni)xni+1) j^^3jf /., Bi
= B{-\Bi, Bi+i —

Bi

Ei,i

is the indentity matrix d* = ¿ [H^j^l + ÜKM- The system (2.8)-(2.9) using the recur-
3=1

L J J

12



2.3. Super-Twisting Controller

sive transformation (2.11)-(2.12) can be represented in the following form:

¿i = -kizi + Zi

ii = -kiZi+E^Zi+u i = 2,...,r-l (2.13)

¿r = fr(z) + Br(z)u + dr(z,w)

where z = (z\, ..., Zr)T, fr(z) is a bounded function, rango Br = m and Br = Br-iBr. Finally,

the transformed system (2.13)-(2.14) wül be used to design an advisable manifold to solve the

SUding Mode Output Regulation Problem for nonUnear nonminimum phase systems.

2.3 Super-Twisting Controller

The main disadvantage of the standard SUding Mode is the chattering phenomenon, that is

characterized generally by small oscillations with finite frequency and ampUtude at the output

of the system that can result harmful to the svstem because it leads to low control accuracy

and high wear of mechanical parts. The chattering can be developed due to neglected fast

dynamics and to digital implementation issues.

In order to overeóme the chattering phenomenon, the high-order sUding mode concept

was introduced by [Levant, 1993]. Let us consider a smooth dynamic system with an output

function S ofclass Cr~l closed by some static or dynamic discontinuous feedback as in [Levant,

2001]. Then, the calculated time derivatives S. S.
...,

ST~1. are continuous functions of the

system state, where the set S = S =
...

= Sr~
*
= 0 is non-empty and consists locally of

FiUppov trajectories. The motion on the set above mentioned is said to exist in r-sUding

mode or rt-, order sUding mode. The r¡h derivative Sr is considered to be discontinuous or

non-existent. Therefore the high-order sUding mode removes the relative-degree restriction

and can practically eliminate the chattering problem.

There are several algorithms to realize HOSM. In particular, the 2„__¡ order sUding mode

controUers are used to zero outputs with relative degree two or to avoid chattering whüe

zeroing outputs with relative degree one. Among %__& order algorithms one can find the

sub-optimal controUer, the terminal sUding mode controUers, the twisting controUer and the

super-twisting controUer. In particular, the twisting algorithm forces the sUding variable S

of relative degree two in to the 2-sliding set, requiring knowledge of S. The super-twisting

algorithm does not require S, but the sUding variable has relative degree one. Therefore.

the super-twisting algorithm is nowadays preferable over the classical siding mode, since it

eliminates the chattering phenomenon.

13



The actual disadvantage of HOSM is that the stabiUty proofs are based on geometrical

methods, since the Lyapunov function proposal results in a difficult task, [Levant, 2005]. The

work presented in [Moreno and Osorio, 2008] proposes quadratic like Lyapunov functions
for

the super-twisting controUer, making possible to obtain an expUcit relation for the controUer

design parameters. In the foUowing Unes this analysis wül be revisited.

Let us consider the foUowing SISO nonUnear scalar system

& = f(t,(T) + u (2.14)

where f(t, a) is an unknown bounded perturbation term and globaüy bounded by |/(í, c)| <

¿lai1/2 for some constant 6 > 0. The super-twisting sUding mode controUer for perturbation

and chattering elimination is given by

u = -kw/\o\sign(o) + v

v = —k2sign(o). (215)

System (2.14) closed by control (2.15) results in

a = -fci y/\a\sign(o) + v + f(t, a)

i) = —k2sign(o). (2-16)

Proposing the foUowing candidate Lyapunov function:

V = 2k2\a\ + ^v2+^(kl\<r\1^sign(a)-v)2
= ?PS

where £T = ( \a\1l2sign(a) v J and

l/4fc2 + fc? -fci\

2 l -fci 2 )
Its time derivative along the solution of (2.16) results as foUows:

where

v ~

|-.i/a|*
W+

|ffi/a(«i«

fci/2fc2 + fc2 -fcA
Q ~~

2 V -fci 1 I
'

q[ = (2fc2 + ifc2 -¿fci).

It is considered the next assumption for the perturbation terms,

14



2.4. Robust High Order SUding Mode Differentiator

A. 1. The perturbation term f(t,a) in (2.16) is bounded by

|/(t--7)|<áiki|1//2 Si>0 (2.17)

If assumption A.l is satisfied, the expression for the derivative of the Lyapunov function

is reduced to

where „
..

- /2k2 + k2-(% + kl)6 -fci + 2<5\

V -fci + 2¿ 1 /"

In this case, if the controUer gains satisfy the foUowing relations

fcl>2¿' *2>fcl2(fc1-2-5)'
then, Q > 0, implying that the derivative of the Lyapunov function is negative definite.

2.4 Robust High Order Sliding Mode Differentiator

In order to estimate the derivatives for the arbitrary sinusoidal reference and/or perturbation

signal considered in Section 4.3 of this work, we propose to use a robust differentiator. The

fundamentáis of that are shown in this section.

Le* f(t) = fo(t) + v(t) be a signal consisting of a bounded noise n(í) with unknown

magnitude e, and of an unknown base signal fo(t), whose (fc + 1) derivative satisfies L >

|/(*+i) (í) | for a known constant L. The problem of estimating in real-time the derivatives

fo(t), fo(t), ■■-, fo (t) was shown to be solved by the recursive algorithm [Levant, 2003]

¡0 = vo, v0 = -AfcLVÍfc+D^ _ /(t)|*/(fc+D_íffn(_0 _

/(f)) + Zl

¿i = »i, V! = -Afe.iLVW).! - v0\^-iy^sign(z1 -

v0) -I- z2

■

(2-18)

¿k-i = Vk-u ffc-i = -XiL^Zk-i - vk-2\ll2sign(zk--__ -

-yfe_2) + zk

¿k = «fc, ffc = -XoLsign(zk
-

ffc-i).

The parameters being properly chosen, the following equalities are true in the absence of

input noises after a finite time of a transient process

2. = /00W í = 0,...,fc.

15



The Aj parameters are calculated recursively, i.e. once Ai,--- , Afc
— 1 are chosen for

the (fc - l)-th order differentiator, the only parameter that needs to be tuned for the fc-th

differentiator is Afc. In particular, the parameter Ao = 1.1, Ai = 1.5, A2 = 2, A3 = 3, A4 = o,

A5 = 8 are enough for the construction of differentiators up to the 5-th order.

The algorithm (2.18) can also be stated in a non-recursive form by substituting Vi in i>,-+i,

i = 0, . . .

,
fc —

1, which yields to

z0
= z1+ l0p\zo

- f(t)\k^k+1hign(z0 -

f(t))

¿j-! = Zj + Ij-ifPlzo
- f(t)\lk-iVlk+1hign(z0 - f(t)) for j = 1, . . .

,
fc - 1.

¿fc = lkP{k+1)sign(z0 - f(t)).

(2.19)

where p
= £,V(*+l) and the Z¡ gains can be calculated in the basis of the Aj's. A selection of

the k gains can be such that the matrix

-lo 1

(2.20)
-Zfc-i 0 •■• 1

-Zit 0 ••• 0

is Hurwitz. That is, given the set {ao, ■

.., ak}, Q» € C, of symmetric poles (with respect to

the real axis) lying in the open left half-plane of the complex plañe, the gains {Iq, . . .

, lk} are

such that

■ + ífc_is + lk = (s-a0)---(s- ak).sk + ¿os*"1 +

Thus, with the gains lj being properly chosen and in the absence of noise and discrete

sampling, (2.18) gives an exact estimate in finite-time of the first fc derivatives of f(t), which

implies that the estimation error dynamics

é0 = ei
- lop\eo\k^k+1hign(e0)

é,*_i = ej
- í^i^leol^)/^1)

éfc = /(fc+1)(t)-ZfcPfc+1«sn(e0)

éj-i = e-j
- Ij-ipP^o^^l^^sign(eo) for j = 1, . ,fc-l. (2.21)

where ej(t) = f*'(t) -

z¿(í), i = 0, . . .

, fc, goes to the origin e(t) = [eo • • • ek]T = 0 in finite-

time [Levant, 2003]. On the other hand, when either noise or sampling is present, (2.18) gives

the best possible asymptotical accuracy [Levant, 2003]. That is, on one hand, if the noise

magnitude is e, then for some constant yn the estimation error satisfies

ei = \zí
- f_f\ < wr(n-i+1)/(n+1)- i ■= 0, . . . ,n.
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2.5. Adaptive Estimator

On the other hand, given the constant sampling interval r in the absence of noise, then for

some constant v¡ the estimation error satisfies

ei = \zi-f^\<vMn-i+1\ i = 0,...,n.

The constants m and Vi depend exclusively on the parameters of the differentiator. This

means that the best accuracy is provided by this differentiator structure. However, to reduce

Hi and Vi, some manual tuning is still required, and trade-offs have to be made between fast

convergence and noise filtering.

Notice, that (2.18) is a continuous-time algorithm. However, the same accuracy can be

obtained, as pointed out in [Levant, 2011], by using Euler's discretization on (2.18) or (2.19)
and sampling with zero-order-hold on f(t). Let t_, t2, . .

., í<_i, U be the sampüng times

with U
-

íj_i =tí < t (with Ti's possible different, i.e. under variable sampüng rate). Then,

Euler's discretization gives

•

__
zi(U)

-

zj(U-i)
_

,

,
v ,, u

Zj «
~ = Vj(z(U-i),f(ti-i))
>i

or equivalently

Zj(ti) = zy(íi-i) + Vj(z(ti-_,), /(ti-i))7í. (2.22)

When the sampüng periods are constant or slowly changing, (2.22) can be replaced by

Zj(U) = Zj(U-i) + vi(z(ti-i),f(ti))Ti.

2.5 Adaptive Estimator

In this section we present the work developed by doctor Obregón in his doctoral thesis

[Obregon-Puüdo, 2003]. As an altemative to robust differentiator to estimate the deriva

tives of the arbitrary sinusoidal reference signal, we use an adaptive estimator which can

estimate the reference signal and his derivatives. Then the adaptive estimator serves as a

kind of exosystem. Here we assume that a sinusoidal signal could be generated for an un

known exosystem. Then an adaptive estimator is used to estimate the states and the frequency

parameter of the unknown exosystem.

Consider the signal

y(t) = Asin(at + <j>)

17



2. Preliminaries

that can be produced for an exosystem

W\

W2

0

—o
2

0

U'I

w2

(2.23)

y(t) =
Cllül + C2U-2

with unknown parameter (frecuency) a, then we can use the adaptive estimator to estimate

that parameter and the states of the exosystem.

Define the variables

Zl = W\
11*2 fcl fc2

Z2 =

T
Cl =

T
C2 =

T

where A, fci, k2 are constants used to scale the state w of the exosystem (2.23). Noting that

under this configuration, in order to estimate exactly the state variables wi u>2, the constants

ci, C2 are assumed to be known:

A. 2. The constant c\ and c2 are known.

Using the new variables the exosystem is rewritten as:

¿i ■= Xz2

a2
22

=

~TZ1
JL

y(t) = -r-Wi + k2W2

The following proposition shows the adaptive estimator and establish its stability conditions.

Proposition 2.2. [Obregón-Pulido, 2003] The estimator

6 = A6 + ¿(y-í/) (2.24)

6 = -^ + <(y-y) (2.25)

6 = -7íi(i/-y)

y
=

y6 + *2Í2

e = y-y

with a, X, C, A, fci, fc2 > 0, is such that limt^ett) = 0, **i -> Wi, & -.
x. Cs -> £ for

any initial conditions of (2.23).
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2.5. Adaptive Estimator

Proof. The proof is given in [Obregon-Puüdo, 2003]. D

In this work the adaptive estimator is used to estimate sinusoidal signals instead the state

variables tüi and vq. Thus, unlike to the work developed in [Obregon-Puüdo et al., 2010],

we do not have to know the valúes of the constants c- and c2. Those are considered design

parameters.
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Chapter 3

Sliding Mode Output Regulation

3.1 Introduction

In this chapter we present different solutions to the Sliding Mode output regulation problem

for nonUnear (NL) nonminimum phase (NP) systems.

Four designed regulators are proposed for the noncausal case where the reference tracking

profile is produced by an exosystem. In this case a bounded steady state for the internal

dynamics is computed using the Francis-Isidori-Byrnes equation.

3.2 Problem Statement

Consider the perturbed nonlinear system

x = f(x) + B(x)u + D(x)w(t) + g(x,t)

y
= h(x) (3.1)

where x e X C iZ" is the state vector, u € U C Rm is the control vector, y € V c RP is

the output vector. The vector field f(x) and the columns of B(x) and D(x) are smooth and

bounded mappings and /(O) = 0, h(0) = 0, RankB(x) = m for all x £ X. The vector g(x,t)

is the unmodeled disturbance vector of unknown perturbations.

The output tracking error is defined as

e = y
- q(w) (3.2)
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3. Sliding Mode Output Regulation

where w e W C R9 is a vector generated by the exosystem:

w = i(w). (3-3)

The problem to deal is controlling the output y of system (3.1), to achieve asymptotic tracking

of prescribed trajectories q(w), that is, the Z2J7it_>ooe(f). Moreover, to achieve asymptotic

rejection of the undesired disturbances w(t) generated by the exosystem (3.3) and finite time

rejection of arbitrary disturbance g(x, t) via SUding Mode control.

In this chapter we consider the foUowing assumptions:

A. 3. The state vectors x and w are available for measurement.

A. 4. The Jacobian matrix S = J-M oí the equilibrium point w = 0 has all eigenvalues on

the imaginary axis.

A. 5. The unknown perturbation g(x, t) satisfies the matching condition (Drazenovic, 1969)

There exist a vector j(x, t) € RJ" such that the following relation holds:

g(x,t) = B(x)j(x,t), 7 e Rm. (3.4)

Assumption A.3 is introduced because we focus our attention on the solvability of the

state feedback SM problem with the knowledge of x and w while the error feedback problem

can be solved by addtional design of a compensator or an observer. Assumption A.4 is from

classical output regulation theory. The last assumption A.5 it is common in a robust SM

control system design.

If the system (3.1) is a minimum phase then we can apply feedback Unearization technique

to achieve reference output tracking. In the case when the system is a nonminimum phase then

the feedback Unearization technique cannot be appUed directly due to the unstable internal

dynamics. To work with nonminimum phase system we consider that the plant model can be

expressed in two forms: structured and unstructured.

Definition 3.1. The system (3.1) where the internal dynamics are not expressed in explicit

form, is refered to as an unstructured system.

Definition 3.2. A system where the internal dynamics are expressed in explicit form, is

refered to as an structured system.
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3.2. Problem Statement

Tb illustrate definitions 1 and 2, we present the foUowing example. Consider a nonUnear

svstem expressed as:

¿i = xj + X2 + 13

¿2 = xi + X2 + 13 (3.5)

¿3 = xj + x| + X3 + bsu

y
= xi

In this case the system (3.5) is in unstructured general form. Also we can express the same

system (3.5) in the form:

X12 =

Xl

¿2

¿3 =
Xl + Xj + X3 + &3U

which is unstructured Regular form.

On the other hand, the system (3.5) can be presented as a structured one, that repre

sentation consists in two subsystems:

Íxi=xf + X2 + X3

[ ±3 = Xl + X_\ + X3 + bsu

{±2 = Xl + x2 + x3 (3.7)

The first subsystem (3.6) has block controUable form, the second subsystem (3.7) presents

the internal dynamics in expUcit form.

To solve the output tracking problem for nonminimum phase systems, there are two ways:

1. The first way is to deal directly with the system as unstructured one which does not

have the structure of nomninimum phase system explicitly. For example: in the general

form (3.1) or in Regular Form.

2. The second way is to deal with the system presented in the structured form. For example

the nonUnear Block ControUable Form.

Other classification used in this work is related to the reference signal for the output. That

classification is made to expand on the subject of control for nnnmirii.Tn.inri phase nonUnear

systems. Then we use the foUowing definitions:
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3. Sliding Mode Output Regulation

Definition 3.3. We referred to as noncausal case for the problem if the considered output

reference for the output is generated by an exosystem.

Definition 3.4. The problem is referred to as causal if the reference signal is an arbitrary

function of the time and there is no any exosystem.

In this work, for the structured system we deal both cases causal and noncausal while for

unstructured systems, we only address the noncausal case.

In the foUowing subsections we first show the classical Output Regulation, then the SMOR

problem is briefly showed.

A. Classical Output Regulation

For the nonlinear system (3.1) in absence of perturbation g(x,t), the Output Regulation

Problem presented in [Isidori and Byrnes, 1990] (See Section 2.1), the control action was

proposed as a state feedback in the form u = a(x,w) and the solvabiüty of the Output

Regulation Problem was stated in terms of the existence of a pair of mappings -k(w) and c(w)

with 7r(0) = 0 and c(0) = 0, which solves the partial differential equation (FIB equation)

ír^CH = /Mu-)) + Bc(w) + D(x)w (3.8)
ow

where n(w) is the steady state, and c(w) is the steady state input.

To compare between the Classical and Sliding Mode Output Regulation problems, we

present an example for a system presented in the unstructured form. Consider the following

nonlinear system:

¿i = x2 + x2 + xz (3.9)

±2 = Xl + X2 + X3

¿3 = X\ + x\ + x3 + b3u

y
= xi

where x¡, i = 1, 2, 3, are the state variables, y is the output and u is the input of the system.

The output tracking error is defined as:

£\
=

V
-

2/re/H (3.10)
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3.2. Problem Statement

where yre/
= qTw is the reference signal, the state vector w is generated by the exosystem:

_j = C(u>), w€FP (3.11)

The control objective is to design a control law such that the output tracking error (3.10)

goes asymptoticaUy to zero. We consider that the assumptions A.3 and A.4 hold. To make

less extensive this example we consider the system (3.9) is not perturbed, then we have

D(x)w(t) = 0 and g(x, t) = 0 in the general unstructured presentation of the system (3.1).

For this example, the system (3.9) can be represented as unstructured in general form as

..-(:).*

x = f(x) + Bu (3.12)

xf + X2 + X3

with£f=| 0 |,/(x)=| x§ + x3

Xl + x_ + x3

In order to apply the classical regulator design for the system (3.9) we define the steady

state error in the form

e = x —

n(w)

£ = [ ei £2 £3 J , £<
=

x¿
-

jtí(ii>), i = 1, 2, 3, v(w) = [ m(w) n2(w) n3(w) 1

Considering (3.12) the error dynamics are:

é = f(e, w) + B(e,w)u - ^j^íM (3.13)

where f(e, w) = f(e + *(w)) = f(x)x=e+x{w), B(e,w) = B(e + *(w)) = B(x)x=E+rK(v,).
We can also express the system (3.13) in the form:

éi = £?+e2+£3 + 2.T1ei + T2(w) + 7r2(t») + .T3(tü) sr^CW (3-14)

¿2 = ei+e2+e3 + Ti(tü) + jr2(tü)-r-7r3(u;) I^CH (3.15)

é3 = ei+£Í+£3 + 2jr2£2 + Tl(tü) + .T3(w) + .TÍ(tü) + 63U ir^C(f) (3.16)
ow

Note, the last part of equations (3.14)-(3.16) corresponds to the FIB equation. Considering
that 7r(u;) is a solution of (3.8), then the error dynamics (3.13) are reduced to:

¿1 = £? + e2 + £3 + 2-riei

¿2 =

£1 + £2 -f- £3

£3 =
£1 + £_ + e3 + 2-t2£2 + hu (3.17)
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3. Sliding Mode Output Regulation

Denoting A := \^§^\ ,
B := B(0), the Unearization of the system (3.17) at origin (0,0,0)

is expressed as

é- A£ + Bu + 4>(e,w) (3*18)

where the vector <j>(e,w) vanishes at the origin with its first order derivatives. Then, the

classical state feedback control input to achieve output regulation u = a(x, w) is defined in

the form

u = Ke + c(w)

where A" is a matrix such that (A + BK) is Hurwitz in the Unear approximation (3.18), and

c(w) is a solution to (3.8).

Sliding Mode Output Regulation for systems in unstructured general form

Using the SUdingMode Regulation approach, for the system presented in unstructured general

form (3.12) we can propose a sliding surface as

s = CTe

with C =

ci C2 1 The dynamics of s along the trajectories of the error variables

(3.13) are

s =

ci le% + e2 + e3 + 2iii£i + n2(w) + it2(w) + ir3(w) ¿—t(w) )

+C2 ( £l + £2 + £3 + 1Tl(w) + 1T2(w) + 1T3(w) 1- £(w) J

+£l + e\ + £3 + TTi(tí)) + TT3(w) + 27T2£2 + ^(w) + 63U - ^"'((ig),
dw

To determine the sUding mode dynamics of the error system (3.13) under the action of some

discontinuous sUding mode control, we use the equivalent control technique [Utkin et al.,

1999]. The equivalent control u^ is obtained by solving i = 0 for u, i.e.

u^
= -b^ci (e\ + e2 + £3 + 2ni£! + Tii(w) + n2(w) + ir3(w)

-

-^^^(w)j

-b3Xc2 (ei + £2 + £3 + 7Ti(tü) + it2(w) + n3(w)
-

-J*^**- CHJ

-6¡"
1 (ei + £_ + £3 + 7ri(u») + 7r3(u0 + 27r2£2 + A(w) War^J
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3.2. Problem Statement

Substituting ueq in the error dynamics (3.15) we obtain the sUding mode equation

i = P (/(£ + n(w)) - ^CM) (3-19)

where P = (l3 - B (Cr_?)_ Ct) . Or expressed using scalar equations as:

2 a r. 9/ \ / \ / \ dl.l(w) __.,
.

£i = ef -ciei + fc2£2 + 27ri£i-|-7ri(iü)-|-7r2(tu)-l--T3(u;) ^-
—-£(w)

£2
= fci£i + fc2£2 + 7ri(m) + tt2H + ir3(w) - —^ CM (3-20)

OTO

¿3 = -fcj^l í £? -

Cl£l + fc2£2 + 27Ti£i + 7T2(tü) + 1T2(w) + TT3(w) -

-^
''
£(w) J

-K^C. í fcl£l + *2£2 +TlH + **(«>) + 7T3("íi>) ***|**^C(U-) )
where fci = (1

—

ci) and fc2 = (1
-

C2).

Note that on the sliding manifold s = 0, the süding mode equation (3.20) does not depend

on J¿ C(w) and c(to). It wiU be shown later that we do not need to solve the FIB equation

(3.8) for c(w). In this case, the sUding mode equation just have two partial differential

equations, those are:

^ CM = 7ri(tu)2 + 7r2(u.) + 7r3(u;) (3.21)

dir2(u)) _., . . . . .

,
.

~ CM = iti(w) + n2(w) + ir3(w)

where ir3(w) is determined as a function of tti(w) and ir2(w). For this case when the system is

in the unstructured form, the SUding Mode Output Regulation problem reduces the order of

the partial differential equation (3.8). The variable ir3(w) can be computed from an algebraic

equation as a function of 7ri(u>) and ir2(w), that is implied in the equation (3.19). This fact

can be seen better with the system presented in unstructured Regular form.

Sliding Mode Output Regulation for systems in unstructured Regular form

Consider the system (3.12) presented as unstructured one in Regular Form, i.e.

¿12 = A11X12 -I- Ai2x3 + /i2(x) (3.22)

¿3 = A31X12 + A32X3 + B3u + f3(x).
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3. Sliding Mode Output Regulation

where xX2 = ( xi x2 ) An = í J Ai2 = I j /i2(x) = I
Q J-

^31

( 1 0 ) , A32 = 1, /3(x) = x% and B3 = b3.

To analyze the output error behavior we define the error vector £12
■=•

£1 £2 I • We can

represent the error dynamics of the system (3.22) as

£12
= An£i2 + Ai2£3 + AiiTTia + Ai2aT3 + /X2(£ + -T)

-

-^j^-CM (3*23)

¿3 — A3i£í2 + A32£3 + B3U + A31ÍT12 + A32-T3 + /3(£ + ir) ■■■j***-***—CM

xT

with <^=[*-M ^£l]J
Now, we define a sUding surface in the form

s2
=

e3 + Cfe12 (3-24)

where Ci = [ cu c2i 1 The dynamics of the sUding surface S2 on the trajectories of (3.23)

are

¿2 = A31E12 + A32£3 + hu + f3(e, 1T(w)) + A311T12 + A32.T3

+Cf (An£i2 + Ai2£3 + /X2(£, ir(w))) +Cl (A11-T12 + Al27T3)

and the equivalent control Ueq obtained as a solution of S2 ■= 0 is

Ueq
= -6J1 (A3i£i2 + A32£3 + f3(e, *"M))

-

63
X

(+A3i7ri2 + A32-T3)

-6¡"*tí[ (An£i2 + Ai2£3 + /i2(£, Hw)))
- b^C? (Amr12 + Aí2ir3) .

Substituting u^ in (3.23) then, the sUding mode equation is

¿12 = (Au
~ Ai2Cf) £12 + /i2(£ + *•(«;)) + AiiTria + Ai27r3 -

^¿ CM (3-25)

£3 = C{ (An - Ai2Cl) £12 + /l2(£, 7T(u;)) 4* Aii7Ti2 + Ai27T3 -

-|^- (_(w) (3.26)

we can see that the second equation (3.26) is Unear combination of the first one (3.25). For

the Regular Form of the reduced system the sliding mode equation is

£i
=

£i-Cii£i + (l-Ci2)£2 + 27ri£i-l-7riM2 + 'r2M + 'r3M faT^w)

é2 = (i_Cu)£l + (i_Cl2)£2-|-7ri(U;)-|-7r2(-a;) + 7r3M J_p"£M (3.27)
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3.3. Integral SM Regulation for Nonlinear NP Systems in Unstructured Form

or expressed in vectorial form

¿12 = (An - AnCl) £12 + /l2(£ + ir(w)) + A11.T12 + A12-T3 1** CM

At this point, we can see explicitly that the sliding mode equation is reduced and has a

reduced vector of partial differential equations —

g|*~. Considering that 7riM aa^ ■**(*») aie

solution of the partial differential equation (3.21), in other words, if

/l2(wM) + ^11^12 + Al27r3 = ¥-
CM

then the system (3.25)-(3.26) is reduced to

¿12 = (An - Ai2Cl) £12 + <p(e + ir(w)) (3.28)

where tp(e + n(w)) is a function which vanishes at the origin with its first order derivatives.

Now, cu and C12 are chosen to place the poles in a linearized approximation of (3.15), thus,

ümt_wo£i2 = Cle3 = 0.

It was shown that the sUding mode approach reduces the order of the partial differential

FIB equation (3.8) to be analyzed. Also, we show that the Regular form the sliding mode

equation is in expUcit form.

3.3 Integral SM Regulation for Nonlinear NP Systems in

Unstructured Form

In this section we present a solution for SUding Mode Output Regulation (SMOR) problem
for perturbed nonUnear systems presented in unstructured general and Regular forms, for the

noncausal case. This approach is an extensión of the work [Loukianov et al., 1999b].
To deal with the matched perturbations we first use the Integral SUding Mode technique

combined with second order SM Super-Twisting algorithm. On the proposed integral sliding
manifold the perturbation term g(x, t) is rejected. Moreover, the use of super-twisting algo

rithm allows to ensure chattering free sliding mode motion. Secondly, a sUding manifold which

contents the steady state manifold will be designed. On that manifold the output tracking

error tends to zero.

Consider the nonünear system

x = f(x) + B(x)u + D(x)w + g(x,t) (3.29)

y
= h(x) (3.30)
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3. Sliding Mode Output Regulation

where x e X c RY is the state vector, u£Í/C JF2m is the control vector, y £ V C R? is

the output vector. The vector field /(x) and the columns of B(x) and D(x) are smooth and

bounded mappings and /(O) = 0, h(Q) = 0, ñanfcB(x) = m for all i£l The vector g(x,t)

is the unmodeled disturbance vector of unknown matched perturbations (A.5), w € W C R

is a vector generated by the exosystem

w = f («■), £(0) = 0. (3*31)

The output tracking error is defined as the difference between the output of the system y,

and a reference yTef
= q(w) in the form

e = h(x) -

yref (3.32)

Consider that assumptions A.3, A.4 and A.5 hold. Denoting A :-=• \-¿\ ,
C := [gjL--,*, ,

B := B(Q), the following assumption is introduced:

A. 6. The pair {A, B} is stabilizable.

Assumption A.6 is clearly needed to stabilize locally sliding mode dynamics.

Following the Output Regulation theory [Isidori, 1995] and integral SM control technique

[Utkin et al., 1999], we consequently introduce a local center manifold [Isidori, 1995]

e(x, w) = 0, e~x- w(w) with -t(O) = 0 (3.33)

and define the control as a combination of two parts [Utkin et al., 1999]

u = tío + ui. (3.34)

Under the matched condition A.5 (3.4) for the perturbation g(x, t), substituting u (3.34) into

(3.30) results in

x = f(x) + B(x)u0 + D(x)w + B(x) (ux + j(x, t)) . (3.35)

Then the change of variables £ = x -

it(w) (3.33) transforms (3.35) and (3.32) in

é = f(£,w) + B(£,w)uo + B{£,w)[ui+i(£,w,t)]-rD(£,w)w-r?-t(w) (3.36)

e = h(e +K(w))-q(w) (3.37)

where f(e,w) = /(e + ir(to)) = f(x)x=e+n{w), B(e,w)
= B(e + *(w)) =

B(x)x=£+7r{w),

D(e,w) = D(£ + ttM) = D(x)x=e+n{w), -y(£,w,t)
= 7(e + 7rM,í) = l(x,t)x=e+<w) and

h(e,w) = h(e + ir(w)) = h{x)x=E+<w).
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3.3. Integral SM Regulation for Nonlinear NP Systems in Unstructured Form

The Integral Sliding Mode Regulation Problem (ISMR-problem) is defined as the problem

of finding smooth sUding functions a(e), o € 3?mand s(e), s6JT such that the following

conditions hold:

• (ISMS) (Integral Sliding Mode Stability). The state of the system (3.35) with a dis

continuous state feedback with SM super-twisting control ui(x,w) in the presence of

unknown matched perturbation g(x,t) = B(x)j(x,t), converges in finite time to the

sliding manifold

o-(e) = 0, a = (<ri, ..., omf (3.38)

In this case the unknown perturbation g(x,t) is rejected. That results in the following

integral SM equation which describes a motion on the manifold (3.38):

x = f(x) + B(x)uo + D(x)w (3.39)

Using the error variable £ the system (3.39) is

£=/(£, w) + B(£, w)uq + D(e, i_)w - ^M^u*) (3.40)
ow

• (SMS) (Sliding Mode Stability). The state of the system (3.39) with super-twisting

controUer uo(¿) converges in finite time to the sliding manifold

s(£) = 0, s = (si,...,sro)T (3.41)

which contains the steady-state (central) manifold (3.33), and the dynamics of the

closed-loop system tend asymptotically along the sliding manifold (3.41) to the steady-

state behavior.

• (S). The equilibrium £ = 0 of the sliding mode dynamics on o(e, z) = 0 (3.41) governed

by

x = f(x) + B(x)u0eq(e, w) + D(x)w (3.42)

or

é = f(E + ir(w)) + B(e + n(w))uoeq(e,w) + D(£ + n(w))w
-

r^™i£(w)
are asymptotically stable, where uoeg is the equivalent control calculated as a solution

for s = 0 [Utkin et al., 1999];
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3. Sliding Mode Output Regulation

• (R). There exists a neighborhood V0 C X xW of (0, 0) such that, for each initial condi

tion (x0, w0) € V0, the output tracking error (3.32) despite the presence of unknown
but

bounded matched perturbation g(x, t) goes asymptoticaUy to zero, i.e. limt-^3oe(t)
= 0.

In the foUowing subsection, a solution to Integral SUdingModeOutput Regulation problem

for nonUnear system considering the noncausal case wiU be presented.

ISMR Problem Solution

In this section, firstly a control law which ensures the requirements SMS and S wül be

designed, and then the ISMR-problem solvabüity conditions under which the requirement R

is satisfied, that wül be derived for a nonünear system described by (3.29) (3.31). In the

sequel, a SM regulator wül be developed for nonUnear systems.

Integral SM Controller Design (requirement ISMS)

To reject the bounded perturbation g(x, t) and to ensure the convergence of the state vector

to SM manifold <j(e) = 0 (which wül be shaped later), the Integral SM technique based

on the super-twisting algorithm is used. According to this phüosophy, we suppose that the

süding function s(e) is designed (see subsection 3.3), then the auxiUar süding function o(e) is

formulated as

t t

a(£) = s(£) -

Jg(s(t)) (f(e(r),w(T))) dr
-

jG(e(t)) (B(s(t),w(t))uo(t)) dr
o o

í t

-

jG(e(T))(D(e(T),w(T))w(T)))dT + jG(e(r))(^-^(w(r))^dT (3.43)

o o

where initial conditions for the integrators are set to —

s(£(0)) in order to the sliding mode to

occur from the initial time instant.

Using (3.43) and (3.36) the straightford calculation yields

b = G(e)B(e, w) [tti + 7(£, w, t)]

ds
where G(e) = —

, G(0) = E and rank[G(£)] = m, results in

° = Bi(e,w) [ui + i(e,w,t)]
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3.3. Integral SM Regulation for Nonlinear NP Systems in Unstructured Form

or

o = v + 7i(e,u»,t). (3-44)

where v — Bi(e,w)ui, v = (vi,...,vm), the matrix Bi(e,w) = G(e)B(e,w) is assumed to

be nonsingular, and ji(e,w,t) = _?i(e,u»)7(£,ui,t). FoUowing [Moreno and Osorio, 2008] we

assume

A. 7. The perturbation

||7l(£.v,t)U < Si\\e\\KSi > 0Mx,w) eXxW

andt>0.

Now, to enforce chattering-free SM motion on the auxiliary manifold a = 0 (3.43) a

super-twisting control algorithm is chosen, given by [Fridman and Levant, 2002]

Vi = -ku-y\oi\sign(oi) + voí,

¿oí = -k2isign(oi), i = í,...,m. (3.45)

System (3.44) closed-loop by (3.45) results in

di = -kuy/\oi\sign(<Ti) + voí + 7it(£, «-, t),

¿Oi = -k2isign(oi), i = í,...,m

where vq = (voi, . . .

, «_m)T- 71 = (711, . . .

, 7im)r, fci = (fcu,...,klm) and fc2 = (fc2i, ■ . .

, fc2m)-

Proposition 3.5. [Moreno and Osorio, 2008]: Using assumption A. 7 and under tiie following

conditions:

ku>26i, k2i > fci *_ _2gy i=l,...-m

the state of the closed-loop system converges to the sliding manifold o = 0 (3.43) in finite

time, ensuring the requirement (ISMSe¡).

On this manifold formally setting

ó* = 2?i(£, tu) [uu, -I- 7(£» «-, *)] = 0

one calculates

Uleq
= -l(e,w,t) (3.46)
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3. Sliding Mode Output Regulation

where uieq is refered to as the equivalent control [Utkin et al., 1999]. Substituting (3.46) in

(3.36), the full order integral SM dynamics on o = 0 governed by (3.39) or (3.40) are invariant

with respect to the perturbation 7(£,u>,t).

SM Regulator Design (requirement SMS)

To enforce now sliding mode on s(e) = 0 (3.41) the projection motion on s is first derived

using (3.40) of the form

s = G(e)(f(e,w) +D(e,w)w-^^-aw))+G(e)B(e,w)uo (3.47)

where rank[G(*)B(*)] = m Vx € X c Oí™ We choose the nominal control part, uo as

uo
= uoeg(£,w)

- [G(e)B(e,w)]~l (k3y/\\s\\sign(s) + fc4sj

where the equivalent control uo,ef.(*) is

dn(w)
uo,eg(£,u>) = -[G(e)B(e,w)]-LG(e) f(e,w) + D(e,w)w

■

dw
■-CM (3.48)

this uo,e-¡-(-) is calculated as a solution of á = 0, then substituting uo in (3.47) yields the

closed-loop system

s = —k3 ||s||2 sign(s)
— k^s.

It is easy to see that if k3 > 0 and fc4 > 0 then a sliding mode motion occurs on the nominal

manifold s(e) = 0 in finite time, then the requirement (SMS) is fulfilled.

SM Dynamics

Sliding motion on s(e) = 0 is described by (3.42) or using the error variable is

é = f(e,w) + B(e, w)uoeq(e,w) -\- D(e,w)w -

dir(w)
dw

CM (3.49)

Substituting (3.48) into (3.49) the sliding mode dynamics on s(e) = 0 result in the following

form:

é = P(e,w) f(e, w) + D(e, w)w
- ^^CM (3.50)

where the nonlinear projector operator P(e,w) = P(e + n(w)) = P(x)_=e+ff(_,) is defined as

P(£, w) = In- B(e, w) [G(e)B(e, w)}~1 G(e). (3.51)
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Lemma 3.6. Consider the operator (3.51). The condition

P(n(w)) /(xWI +dw^-^íH = 0 (3.52)

holds true if and only if there are mappings ix~(w) and X(w), such that

/(ttM) + D(n(w))w - ?^-Z(w) = B(n(w))X(w). (3.53)
ow

Proof. The operator P(-) is a projector operator along the subspace of range[B(-)] for each

point w over the subspace of fcer[_?(-)] i. e.

P(7rM)i?(7r(u;)) = (/„
- 2?(7rM) [G(0)fí(7rM)]_1 G(0)) B(n(w)) = 0 (3.54)

P(ttM)£ = £, VeeH ,N = {£€ Jtn|s(£) = 0}.

Thus, if condition (3.53) holds, then from (3.54) it follows that

P(n(w)) (/W-)) + D(,(w))w
-

*g^(«>) = P(^))B(n(w))X(w) = 0.

Therefore condition (3.52) is satisfied. Conversely, if condition (3.52) is satisfied, then

(/(ttM) + D(ttM)u, - ^CM)
must be in the range of B(i.(w)), i. e. must to satisfy the matching condition [Drazenovich,

1969]

f(i.(w)) + D(it(w))w
- ^$^CM = B(w(w))X(w) (3.55)

ow

for some vector X(w). □

Conditions for solution of the ISMR Problem

Define the sUding function s(e) as

s(e) = Ee = E(x
- it(w))

where E is a constant matrix of proper dimensión.
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3. Sliding Mode Output Regulation

On the other hand, using the a linear approximation, the system (3.36)-(3.37) that can

be represented as

C = ÁC + Bu + $(C,u) (3-56)

e = cc +MQ

A AÜ-nS + Do \
„_

í BQ

0 S I
~

\ 0
where £ = (e,w)T A =

#(C- «) = í
"''

] .
and the functions <f>(e, w, u), <f>w(w), 4>e(e, w) and its first derivatives

\ 4>w(u>) )
vanish at the origin.

ra/CO"
A =

dC J

■9*7

Su;

(0)

50 = B(0), D0 = D(0), S =

d<t>(w)
dw

C =

(0)

dh

L-9C
and Q =

(0)

(0)

The sliding mode dynamics (3.50) can be thus represented as

é = P0Ae + P0(An -nS + Da)w + <¡>s(e, w)

where <¡>a(e,w) and its first derivative vanish at the origin, Po =

Bo(EBo)~lE, is the Unear approximation of the nonUnear operator (3.51).

dP(Q
= /„

C=o

Proposition 3.7. [Loukianov et al, 1999b] Consider assumptions A.3 and A.4 hold. If there

exist Ck (k > 2) mapping x = it(w) with ir(0) = 0, defined in a neighborhoodW o/O satisfying

the following conditions:

f(i.{w)) + B(ir(w))X(w) + D(ir(w))w =
dir(w)
dw

CM

h(yx-(w))
—

q(w) = 0

then, the nonlinear ISMR problem is solvable.

Proof. The closed-loop system motion on this manifold can be described by

é = PoAe + Po(An-nS + Do)w-\-<i)s(e,w),

Ee = E(x -

ir(w)) = 0

w = Sw + <j>w(w)

e s= h(e -\- ir(w)) - q(w)
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3.3. Integral SM Regulation for Nonlinear NP Systems in Unstructured Form

\dP(0
= In — Bo(EBo) 1E is the linear approximationwhere C = (£) w)T and Po =

of the nonUnear operator (3.51); <¡>s(e,w) and <j>w(w), and its first derivatives vanish at the

origin.

The matrix E can be chosen (by assumption A.4) such that the (n
— m) eigenvalues of

PqA are in C~ while the others rn eigenvalues are equal to zero, [Utkin and Young, 1978].

We can easüy see that for sufficiently small initial state (£(0), w(0)), the condition (Sef) is

satisfied.

Now, if the partial differential equation (3.57) holds, then by Lemma 1 it foUows

P0(AZ7- US + D)w + (j)s(w) = P(t.(w)) /(ttM) + D(n(w))w
- ^pCM = 0

Therefore, under assumption A.6, the system (3.59) - (3.61) has a center manifold [Carr, 1981]

contained in the sUding manifold

<r(e) = 0, £ = 0 (3.62)

or in the original variables the graph of mappings

o(x - ir(w)) = 0, x = ttM (3.63)

which is locaUy invariant and attractive under the flow of (3.50). The restriction of this

flow to manifold (3.62) or (3.63) is a diffeomorphic copy of the flow of the exosystem (3.60).

Thus, limt-yoo£(t) = 0, and if condition (3.58) holds, then by continuity of h(e + i.(w)) (3.61),

e(t)
—

, 0 as t —> oo, i.e. condition (Ref) is satisfied. D

Remark 3.8. It is worth noting that in the case of the classical regulator, the steady state

input uss = X(w) is used in the construction of the controller,

u = K (x
-

t.(w)) + X(w)

where (A + BK) is a Hurwitz matrix, while in our present approach we need to find the

mapping n(w) which achieves the matching condition (3.55). The proposed SM controller

does not use directly the signal uss = X(w), but it is generated by the the controller (3.34)
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3. Sliding Mode Output Regulation

when the flow of the system is on the sliding manifold. Indeed, the sliding center manifold

(3.63) is rendered locally invariant by the effect of a suitable equivalent control which in the

steady state is equal to, indeed using (3.55) we have

f(x(w)) + D(n(w))w
- ^r*%ti;)dw

Uo,eq(0,w) = -[G(0)S(aTM)]-XG(0)

= - [G(0)S(7rH)]_1 G(0)B(ir(w))X(w)

= AM

and this manifold is annihilated by the error map e = h(x)
—

q(w) in a similar way taken

place in the classical regulator formulation.

Integral SM Regulation for Nonlinear NP Systems in Unstructured

Regular form

Consider the nonlinear system (3.29) under the following assumptions:

A. 8. The matrix B(x) has a block B2(xn,x2) such that rank[B2(xii,x2)\ = m Vx € X C \Rn

where B(-) = (Bi(-),B2(-))T x = (xn,x2)T, iu € Xx C 3tn-"\ x2 € X2 C »m

A. 9. The Pfaffian system

dxii-_?i(*)_?2-1(*)dx2=0

is completely integrable [Luk'yanov and Utkin, 1981] that is, there is a smooth solution to

xn = g(x2,c), g= (gi,...,gn-m)T

which can be presented by the Implicit Function Theorem into

g(xn,x2) = c, g
= (gi,...,gn-m)T

where c = (c_, .., cn_m)r is a vector of integration constants.

Under assumptions A.5, A.8 and A.9, the local diffeomorphism

p(xn,x2)

X2

x':=
Xl

x2

=
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reduces the original svstem into Regular form [Luk'yanov and Utkin, 1981]:

¿i = fi(x') + Di(x')w

¿2 = /2(x') + fl2(x')u +D2(xV + d2(x',t)

_> = £(w)

e = h(x') —

q(w)

(3.64)

(3.65)

(3.66)

where rank[2?2(x')] = m Vx' € X C 5Rn Note that the Regular form presents the external

matched perturbation d2(x',t) in expUcit form, affecting just to x2. That is very suitable for

the control design.

Let us now introduce the steady state for xi and x2 as 7ri(w) and n2(w), respectively.

Then, defining the steady state error

£ = x' — 7rM =

£l

£2

=

Xl

x2

-

iri(w)

1T2(w)
(3.67)

the dynamic equation for (3.67) with tracking error e can be obtained from (3.64) - (3.66) as

¿i = /i(£ + ■*(">)) + Di(e + ix(w))w
- 4~^CM

¿2 = B2(e + i.(w))u + d_(£, w, t)

e = h(e + ir(w))
—

q(w)

dw
(3.68)

(3.69)

(3.70)

where d_(£,w, t) = f2(e + n(w)) + £>2(£ + i.(w))w + g(e+ ix(w),t) *^—--CM- Where g2()

is the transformed g(t). The proposed sUding manifold is based in the integral sUding mode

philosophy

<r = S2(e) + C2, *S2(£)=£2-si(£i),

dsi
si(0) = 0,

de.lJ(0)

= Gi(ei)i0) = Ei,

where o = (tri ,-■■ , om)T Taking the derivative of the sUding function along the trajectories

of system (3.69) and replacing u = «o + ui results in the following expression:

<j = B2(e + 7r(-u-))u0 + B2(e + ir(w))ui + cH^^w, t) - Gi(ex) (f(e + n(w)) + Dx(e + n(w))w)

+ Cl(ei)(*2MÍW) + 6
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choosing £■> as

C2 = Gi(£i) (A(£ + irH) + Di(£ + w(w))w)
- Gi(£i) ^^M^m)

-

B2(e + *(«;))«<,,

with (¿(0) == -S2(£(0)), then the derivative of the süding function reduces to

b = v + é2(e,w,t)

with v = (¡vi, . . .

, vm)T = 2?2(£ + 7r(u;))ui. Applying the super-twisting algorithm:

Vi = -kuy/\<ü\sign(oi) + vXi (3.71)

vn
= -k2isign(oi),

with ui
= (vu, ■ ■ ■ ,vim)T fci = (fcn,...,fcim)T and k2 = (k2i, . . . ,k2m)T - the closed-loop

sUding mode function results in

bi = -kiiy/\tj¡\sign(oi) + vu + eu(e,w, t)

hi = -k2isign(oi), i = \,...,m,

where _>i
= (qh, .

.., Qim)T = d!__,(z,w,t). As in the general nonUnear case, it is possible to

show that there exist fci¿ > 0 and fc2t > 0 such that, an sliding mode occurs on the sUding

manifold ct = 0 in finite time. In this case, the dynamic of the nominal süding function is of

the foUowing form:

s2(e) = B2(e + ir(w))u0 + Qo(e, w)

with

f?0(£M = -Gi(ei)(fi(e + 7r(w)) + Di(e + 7:(w))w) +Gi(ei)(^^^))
Selecting the nominal control part, uq as

uo
=

u0,eq
- k3 [B2(-)]_1 (\/h_J\sign(s2) + fc4-ü0j (3.72)

where i¿o,etj is the equivalent control calculated as a solution of s-2 = 0 as

U0,eq
= - [B2(-)]-1 xQo(£, w).

Again, it is possible to show that there exist fc3 > 0 and fc4 > 0 such that after a finite time

an sUding mode occurs on the nominal manifold s(e) = 0 then the requirement (SMSef) is

fulfiUed, and the (n - m)th order sliding mode equation is given by

¿1 = /i(£i + 7ri(tu),si(£i) + 7r2M) (3.73)

+ Dt(ei + i.i(w), si(£i) + n2(w))w - nr~W)^(w).
ow
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3.3. Integral SM Regulation for Nonlinear NP Systems in Unstructured Form

To analyze the stabiUty of the sUding dynamics (3.73), the systems (3.68) - (3.70) and (3.65)
are represented in the form:

/ ¿i \
__

( An ili,\/£l\
+
/0 L/fll\w+f Me,w) \

V ¿2 / V A2i A22 / \ £2 / \B2 )U \ R2 ) \ ^2(£,w,u) /
w = Sw + <t>w(w)

t

e = C1E1 + C2e2 + (C1II1 + C2n2 -

Q)w

+ Me,*")-

Then, the sUding mode equation (3.73) can be rewritten as

¿1 = (An - Ai2i7i)£i + Riw + <f>u(Ei, w)

where Ri = An/7i + Ai2i72 -

77iS + Di and R2 = A2iV7i + A22Ü2 - Ü2S + D2, with Ay =

IS I B* = 92(0). ^ = \-^-\ , Di = di(0,0), Í7¿ = \-A ; the functions 0i(),
1.a***. J(o,o) \.dxJÍ(o.o) Ldwl(o)
4>2{)- dw(-), <M) and 0i«(') vanish at the origin with its first derivatives; and the constant

matrices S and Q are already defined in assumption (4) and equation (3.56) respectively. Now

the solvabüity conditions of the ISMR problem for the nonUnear system in Regular form wül

be presented.

Proposition 3.9. Under assumptions A.6, A.4, if there exists Ck (k > 2) mappings xi =

7ri(u/) and x2 = 7T2(wj), with iri(0) = 0 and ix-2(0) = 0, defined in neighborhood W of (0,0)

which satisfy the following conditions:

/íÍTiMi^MJ + Di^iM.-^M)1*, = i- g(u,) (3.74)

/i(7ri(u;),7r2M)-9M = 0 (3-75)

then, the ISMR problem for nonlinear systems in Regular form is solvable.

Proof. After sUding mode occurs, we have £2
= si(£i), and the motion of the closed-loop

system wül be governed by

¿1 = (Aii-Ai2Ei)Ei-\-Riw-\-<t>u(£i,w)

w = Sw + <¡>w(w)

e = h(ei + 7Ti(-_-), oi(zi) + ir2(w)) - q(w)
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3. Sliding Mode Output Regulation

were <¡>is(e\,w) vanishes at the origin with it first derivative. The matrix (An + Ai2Ei)

is Hurwitz by a proper choice of Ei and if condition (3.74) holds, then Rxw + <¡>is(zi,w) =

fi(i-i(w),iT2(w))+Di(iri(w),iT2(w))w £(w) = 0. Henee, under the property of center
ow

manifolds, we have £i(í) -. 0 =>• xi(í) -. ifi(w(t)), and £2(í) -*» 0 => X2(í) -* ir2(w(t)) with

t -» oo. Thus, the requirement (S) is fulfilled. So, by continuity, if condition (3^.75) holds,

then the output tracking error (3.66) converges to zero and condition (R) holds too. D

In the following sections, only structured nonminimum phase systems are considered.

3.4 SM Regulator for Nonlinear NP Systems in Structured

Form with MP

This section presents an approach to solve the SM output regulation problem for a class

of nonlinear nonminimum phase systems which are presented in the structured form. The

structured form can be expressed in the block controllable form with internal dynamics in

explicit manner. Based on decomposition block control technique and Sliding Mode control,

we propose a sliding manifold that contains a steady state manifold on that the residual

dynamics become asymptotically stable. To enforce the SM motion on the designed sliding

manifold a super-twisting SM algorithm is used. Only the noncausal case for the reference

is considered here. Moreover, we consider there are unknown matched perturbations (MP)

g(x, t) affecting the system.

This approach can be considered as an extensión of the work [Bonivento et al., 2001],

which solves the SMOR problem only for systems with relative degree one. The effectiveness

of the proposed methodology is verified via the design of a torque tracking controUer for an

induction motor presented as illustrative example in Chapter 6.

Consider the perturbed nonlinear system

x = f(x) + B(x)u + D(x)w(t) + g(x,t) (3.76)

y
= h(x)

which does not have a fuU relative degree vector and is a nonminimum phase system. The

output tracking error is defined as:

e = y
-

yref (3.77)
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3.4. SM Regulator for Nonlinear NP Systems in Structured With Matched Perturbations

where yref
= q(w), w contains known perturbations and reference signal, w and is produced

by the exosystem

w = CM. (3-78)

Then we assume that the system (3.76) under matching condition A.5 can be represented in

the foUowing NonUnear Block Controllable (NBC) form:

xi
= /i(xi) + _?i(xi)x2-l-Di(xi)u;(í)

Xi = fi(xi) + Bi(xi)xi+i+Di(xi)w(t), i = 2,..., r-l.

Xr = fr(x) + Br(x)(u + -r)-rDr(x)w(t) (3.79)

¿r+1 = /r+l(Xr,Xr+i)

y
= h(x) = xi

which contains unmatched known perturbations D(x)w and matched unknown perturbations

2?(x)7 and internal dynamics xr+i. The vector x is decomposed as x = (xi,..,xr,xr+i)T

Xj
= (xi, ...,Xj)T, j = 2, ...,r, where r is the relative degree and x¿ is a rij x 1. The elements

of fi(xi), Bí(xí)xí+i and jD-í(xí) are continuously differentiable functions of (i — í)th order,

i = l,...,r, with respect to all arguments in interval t € [0, oo), and all the derivatives are

bounded; the matrix fi-(*) in each block has full rank, that is

rankBi = ni Vx G X C 3?" (3.80)

The índices (n_, n2, ..., rv) define the structure ofthe subsystem (3.79) and satisfy the following

relation:
r+l

ni < n2 < ...
< rir = m, ¿2ni

~

n" (3.81)
<=i

The relation (3.81) means ríi = rij+i or n¡ < rij+i, therefore, we consider the plant with the

structure «i = n2 < ... < n- = m, that includes both cases.

Remark 3.10. For a nonminimum phase system, the internal dynamics xr+i are unstable.

In the foUowing section the problem to deal is presented.

Robust Sliding Mode Regulation Problem

The Robust Sliding Mode Regulation Problem is defined as the problem of finding a sliding

manifold o(x,w), o e RY1,

a{x,w) = 0 (3.82)
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3. Sliding Mode Output Regulation

o = (oi,...,om)T and design a Sliding Mode controUer u = (ui,...,um)T. where o(x, w)

and u are chosen to induce local asymptotic convergence of the state vector to the manifold

(3.82), such that the following conditions hold:

• (SMS) (Sliding Mode Stability). The state ofthe closed-loop system (3.76)-(3.78), with

the controller u, converges to the manifold (3.82) in a finite time,

• (S) The equilibrium (x, w) = (0, 0), when tr = 0 of the süding mode dynamics

x = f(x) + Bueq + Dw + g(x, t)

is asymptoticaUy stable in spite of the perturbation g(x,t), where ue9 is the equivalent

control defined as a solution of b = 0,

• (R) There exists a neighborhood V C X x W of (0,0) such that, for each initial con

dition (xo,wo) £ V. the output tracking error (3.77) goes asymptotically to zero, i.e.

Zzmt-Kx^í) = 0.

Block Control Linearization for Nonlinear Nonminimum Phase Systems

In order to design a sliding manifold o = 0 on which the tracking error e = y
—

yTef (3.77)

tends asymptotically to zero, we introduce the following recursive nonlinear transformation

[Luk'yanov and Utkin, 1981]:

zi
= e = xi

—

q(w) := &i(xi,w)

z2 = /i(xi) + Bi(xi)x2 + di(xi,w) + Ki(xi -

q(w))

:= _>_(xi,X2,ui), di = £>i(xi)u>
-

(dq/dw)£(w)

,
h(x2) -\- d2(x2, w) + K2$2(x2,w)

z3
= B3(x2)x3 +

0

9#2 3*?2
EOW2

OV2

~dxDlW + ~dw^W^
i=i

zí+i
= Bí+i(xí)x¿+i +

■■= &i+l(Xi+l,V>)

fi(xi) + ck(xi,w) + Kí$í(xí,w)

0

(3.83)

(3.84)

(3.85)

(3.86)

44



3.4. SM Regulator for Nonlinear NP Systems in Structured With Matched Perturbations

with i = 3,4, ...,r — 1, where Zi is a vector of new variables of dimensión ni x 1, Ki > 0,
t-l

Bi

Ei,i
, Ei¿ — I 0 Jn*+-.-n- */.(*<) = E [||/i + BjXj+i] +^fi, Bi = Bí-iBí, Bi+i =

Ei,i € J?(ní+i-n.)xn.+ii j^ is the indentity matrix, d¿ = ¿ \$£Djw] + HfCM-
j=i

•■
' J

The system (3.79) using the recursive transformation (3.83)-(3.86) can be represented in

the foUowing form:

where z = (zu ...,Zr)T, fr(z) =

¿i = —KiZi + z2

¿i = -KiZi + Ei_izi+i, i = 2, ...,r-l

¿t = fT(z) + BT(z)(u + 1) + dr(z,w)

Xr+l
= /r+l(^iXr+i,tü)

V-l

E[!I*/j+^+l]+S£/r

(3.87)

(3.88)

is a bounded function,

x=#-l

rank BT = m and Br = _?r_i_?r. Finally, the transformed system (3.87)-(3.88) wiU be used

to design an advisable manifold to solve the Sliding Mode Output Regulation Problem.

At this point we have a part of the system (3.87)-(3.88) linearized by the feedback lin

earization. Noting that a solution of the zero dynamics

Xr+l
= /r+l(0,Xr+i,U;)

is not stable.

Sliding Manifold Design

Denoting r/ := xr+i and rewriting fv(zr-i, zr, tj, w) := fr+i(z, tj, w) where z_—i
= (zi, ..., zr-i)T

we obtain

r) = fv(zr-i,zr,T),w). (3.89)

Considering that there exist a steady state for the internal dynamic t¡, in other words, we

assume:

A. 10. There exist a smooth mapping rjS3
= ir-q(w) with -t^(O) = 0 defined in a neighborhood

W° €\Wof the origin which is solution to the following equation

oír —

■¿j^CM
= fr, (0,Oh,(l.v,w)) . (3.90)

45



3. Sliding Mode Output Regulation

Defining zv
=

¡7
—

71", (iu). A linear approximation at origin of the dynamics of zn is

¿77T

zv
= AqZj, + Bvzr + At-iZt-i + A^w^w) + Dvw

-

-0-----CM + lM****, V,w) (3*91)

where _V_X = (zi,...,Zr-i)T A, = -^/,(0), A-_i = g-J-- /_(0), JS, = -^7,(0), A,
=

■¡£_-fr)(0)- Then, the following assumptions are introduced,

A. 11. Assume that function i¡> (z, tj, w) vanish at origin with its first order derivatives and

is bounded by %¡¡n(z,T),w) < /?||%||.

A. 12. The pair (Av, Bv) is controllable.

SM Controller Design

Considering zr as virtual control input to stabilize the residual dynamics 77, the vector z,. is

chosen of the form

zr = ar)(r},w), an(-q,w) = Knzn. (3.92)

Then we define a sUding variable o in the form

o = zr
-

a^(r\,w), ct= [oi,...,an-r]T (3.93)

with dynamics

b = fa(z,ri) + BT(z,rj)u (3.94)

where fa(z,v) = fr(z,xr+i) + BT(z,xr+i)'y + dr(z,xr+i,w)
-

Knzv(r¡,w),

U(z.r¡) = \ f*i(z,v) fci(z,n) ■•■ f<rn-r(z,-l) )■
Now, considering that

A.13. The perturbation term f<_r(z,rj) =fr+dr-áv, fa = (fi, ....,ftTn_.)T where the functions

f<Ti(z,r¡) in (3-94) are bounded by

\fai(z,v)\<SiWi\1//2 Si>0,i = l,...,nr. (3.95)

To achieve sliding mode motion on the manifold cr = 0 we use the super-twisting SM

control [Fridman and Levant, 2002]:

u = B~1(z,r))v, v = [vi, ...,vn-r]T

Vi = -knloil^sign^ + vn (3.96)

vn
= -ki2sign(oi), i = l,...,n-r.
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3.4. SM Regulator for Nonlinear NP Systems in Structured With Matched Perturbations

Stability of the SM equation

Theorem 3.11. Consider system (3.87) with control (3.96). Ifthe assumptions A.10, A.13

and the following conditions given in (Moreno et al., 2008) hold:

kn>2Si fci2>fca^f1+94/\ (3.97)
2 (kn

-

¿di)

then the overall system state converges to a sliding manifold where the output tracking error

zi asymptotically tends to zero.

Proof. The closed loop system (3.94)-(3.96) is:

o-i
= fai(z,xT+i) - fcn |<Ti|1/2 sign(oi) + vn,

vn = -ki2sign(oi), i = 1, ...,»v. (3.98)

Under condition (3.97) the overall system state converges to the manifold a = 0 and Zr =

-K^ in a finite time. On the manifold o = 0 and under assumption A.10 the SM dynamics

are governed by the reduced order system

¿i = -KiZi + z2

¿i = -KiZi + Ei.iZi+i, i = 2,...,r-2 (3.99)

¿r-l = --Kr-l^r-l ~

Kt,Zt_

zv
= (A, + B,iVT,)z, + Ar_izr_i + -M^M (3.100)

or rewritten in the form:

z = Áz + i>z (3.101)

where z = (¿V_i,z,)T, and
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3. Sliding Mode Output Regulation

A =

V

-Ki Im 0

0 -K2

0

ln.2 0

0

•'«B-2

0 0 0 —Kr-i

Ai A2 Ár_2 Ar-1

-#„

Note that we can choose the gains Ki, i = 1,2, ...,r
-

1,77, such that A is Hurwitz. The

perturbation term ip_¡ only contains the term tpi, then considering the constraint A.11 results

that

lililí < A ll'li (3-102)

for all t > 0 and aU z £ Jt"-1 with fr > 0 constant.

Let Q = QT > 0 and solving the Lyapunov equation PÁ + ÁTP = —Q for P. Then,

consider a candidate Lyapunov function in the form:

V(z) = zTPz

taking the derivatives of V(z) along the trajectories of (3.101) results

V(z) = -zTQz + 2zTP

< -Ami„(Q)||¿-||_ + 2Xmax(P)!3i \\z\\2

(3.103)

(3.104)

(3.105)

Now, as the perturbation term is vanishing bounded, and the matrix A is Hurwitz because

can be modified through the gains Ki, i = l,2,...,r
— 1,tj, then there exist a matrix Q such

that

Pi < Xmin(Q)/(2Xmax(P)) (3.106)

[Khalil, 1996], where X(N)min/max denotes the minimum/máximum eigenvalue of AT. Under

the last stated conditions and (3.106), the origin z = 0 is semiglobally stable. □

As an illustrative example a Second Order Sliding Mode Sensorless Torque Regulator for

Induction Motor is presented in section 6.
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3.5. SM Regulator for Nonlinear NP Systems in Structured Form with UP

3.5 SM Regulator for Nonlinear NP Systems in Structured

Form with UP

In Section 3.4 it was presented a solution for SM Output Regulation problem for systems

with matched perturbations. In this section we extend that result and present a robust

sUding mode controUer for nonlinear nonminimum phase systems subject to both unknown

matched and unmatched perturbations (UP). Based on Regulation and Lyapunov Redesign

theories we design a suitable süding manifold. On this manifold the perturbed dynamics are

stable namely they remain bounded whereas the output tracking error is bounded in spite of

the presence of external perturbations. To enforce the SM motion on the designed manifold a

super-twisting SM controller is used. The effectiveness ofthe proposed methodology is verified

via a simple example in the section 6.

Consider the perturbed nonlinear system

x = f(x) + B(x)u + D(x)w(t) + g(x,t) (3.107)

y
= h(x)

which does not have a full relative degree vector and is a nonminimum phase system. The

output tracking error is defined as:

e = y
- q(w) (3.108)

where w contains known perturbations and/or reference signal and is produced by the ex

osystem

w = CM. (3.109)

In this section it is considered a class of nonlinear systems (3.107) which can be presented

in the foUowing perturbed nonlinear block controllable form (NBC-form)

xi
= /i(xi) + -Bi(xi)x2-|-I>i(xi)u; + .?i(xi,í)

xí
= fi(xi) + Bi(xi)xi+i + Di(xi)(w)+gi(xi,t) (3.110)

xr
= fT(x) + BT(x)u + Dr(x)(w) + gr(x,t)

¿r+l = fr+i(x) + Dr+i(x)w + gr+i(x,t) (3.111)

y = h(x) = xi, i = 2,..., r-l.

where the vector x is decomposed as x = (xi, .., xT, xr+i)T, Xj = (x\_ ..., xf) , j = 2, ..., r, and

H is a n¿ x 1. The terms gj(xj, i), j = 1, ..., r + 1, are bounded unknown perturbations. The
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3. Sliding Mode Output Regulation

elements of fi(xi), B¿(xí)xí+i and A(x<) are continuously differentiable functions of (i
- l)th

order, i = 1, ...,r, with respect to aU arguments in interval t e [0,oo), and all the derivatives

are bounded; the matrix _?i() in each block has full rank, that is

rankBi = ni Vx e X c 3ín (3.112)

The Índices (ni,n2,...,nr) define the structure ofthe subsystem (3.110) and satisfy the fol

lowing relation:
r+l

ni < n2 < ...
< nr = m, ¿_]ni = n. (3.113)

<=i

The relation (3.113) means n¿ = n¿+i or m < rii+i, therefore, we consider the plant with the

structure ni
=
n2 < ... < nr = m, that includes both cases.

The control objective is to ensure ultimately bounded output tracking error e (3.108) in

spite of both, unknown matched and unmatched perturbations.

The used procedure to obtain a SUding Mode Regulator to achieve the control objective

is:

1. First, the nominal part of system (3.107) presented in NBC-form (3.110) is linearized ap

plying the block control technique [Loukianov, 1998] combined with Lyapunov redesign

approach [Khalil, 1996]; as result a standard sliding function s(x,w) is obtained.

2. Secondly, using the designed sliding variable s as a virtual control input in the residual

dynamics (3.111), a stabilizing control law for this subsystem is designed applying a

Lyapunov redesign approach;

3. Finally, a sliding manifold o(x, w) = 0 is formulated, on that the output tracking error

(3. 108) tends to a neighborhood V c X xW of zero in spite of the presence of unmatched

perturbations. Then, the SM super-twisting control algorithm is implemented to ensure

the designed manifold be attractive.

Block Linearizing Transformation with Lyapunov Redesign

In this section we present the linearization of the system. To simplify the notation we omit

the arguments of some functions when no confusión arises.

We define the first variable z\ as

zi = e = xi-q(w)~$i(xi,w) (3.114)
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the dynamics of zi are then given by

¿i = fi(xi,w) + Bi(xi)x2 + gi(xi,t)

where fi(xi,w) = /i(xi) + Di(x)w — ^gjj^CM Bud x2 is considered as a virtual control for

2_. Then, we can impose the desired dynamics (A'izi — pisigm(si)) for this block considering

the desired valué x2.d for x2 in the form

X2,_
= Bf(xi)(-fi(xi,w) +Kizi-pisigm(si)) (3.115)

si
= PlZl

where p*
= diag[pn, ..., #„<], p^ > 0, sigm(si) = [sigm(sn), ..., sigm(sini)]T for i = 1, 2, ..., r-

1, B_f = (BÍ[Bi)~lBl is the right pseudo-inverse matrix of JL?i, Bi(zi,u;) = .Bi(xi) _1=#-i ,

the matrix A'i is a Hurwitz , Pi is a positive defined solution of the Lyapunov equation

PiÁ-i + ATP* = -Qi, Qi>0 (3.116)

and sigm{sij) := sigm(e, Sy) for some real number e, ¿ = 1,2, ... ,r
— 1 and j = 1,2, ...,nj.

Where the continuously differentiable sigmoid function sigm(e, Síj) can approximate to the

sign function sign(sij), in particular the sigmoid function used in this work is sigm(e, s¡j) =

tanh(es,j), e defines the sigmoid function slope near to zero.

Now, defining

22
=
x2

-

x2,_(xi,u;) := $2(x2,w) (3.117)

the first block of (3.110) is then represented in the new variables zy and z2 as

¿i = KiZi -

pisigm(s{) + Bx(zi,w)z2 + _»i (zx ,w,t)

On the second step, using (3.110), (3.115) and (3.117), the dynamics for z2 are derived of

the form

¿2 = Í2(x2-,w) + B2(x2)x3 + g2(z2,u>,t) (3.118)

where 22
= (zi, z2)T f2(x2, w) = /2(x2) + D2(x2)w,

52(Z2,W,t) = [fl2(x2,í) -x2¡d(xi, u>)]_i=(fj--i X2=#-i

and again, we regard 13 as a virtual control for z2. Thus, choosing the desired dynamics for

2_ (simüar to the first step) as (K2z2
- p2sigm(s2)), the desired valué x3t¿ for X3 is asigned

simüar to (3.115) as:

x3,d
= B¿(x2)(-f2(x2,w) + K2z2-p2sigm{s2))

s2 = P2z2

51



3. Sliding Mode Output Regulation

where B2(z2,w) = B2(x2) L=(P-i X2=<j-.-i , K2 is a Hurwitz matrix, p2 > 0 and the matrix P2

is a positive defined solution of the Lyapunov equation

P2K2 + K%P2 = -Q2, Q2>0 (3119)

Defining

z3
=
x3- x3j_(x2, w) := $3(x3, w) (3.120)

the second transformed block is obtained in the new variables z\, z2 and z3 of the form

¿2 = K2z2 - p2sigm(s2) + B2(z2,w)z3 + g2(z2,w,t)

This procedure is iterated considering the ith new variable

Zi
=

Xi
-

xi¡d := $í(xí, w), i = 3,..., r-l, (3.121)

and the ith dynamics of the form

¿i = fi(-) + Bi()xi+i + Uzu ui, t) (3.122)

with gi(zi,w,t) = \gi(xi,t) -

^Id(*i-iM]_1=#-y.„)_^-*' > 7¿(0 = /¿(xí) + Dí(xí)w.

Then, the desired valué Xi+i.d for Xj+i is chosen as

Xi+14
= St(*)(-7¿(*) + ÜTi2;i-/OiS¿ffm(si))

Sí = ^z^i

where if¿ is a Hurwitz matrix, />i > 0 and the matrix P¿ is a positive defined solution of the

Lyapunov equation

PiKi + KjPi = -Qi, Qí>0 (3.123)

Defining

Zí+i
=

X-+1
-

xi+i¿ (3.124)

we obtain the ith dynamics of z¿ in the form

¿i = KiZi -

pisigm(si) + B2(zí,w)zí+i + cji(zi,w,t)
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and using the transformation (3.114), (3.117) and (3.121) the system (3.110)-(3.111) in the

new variables z = (zv ..., zr)T, can be represented of the form

¿i = KiZi - pisigm(si) + Bi(zi,w)z2 + gi(zi,w,t)

z¡ = KiZi - pisigm(si) + Bí(zí,w)zí+i + gi(z\, w, t) (3.125)

i = 2,..., r-l,

¿r = fr(z,xr+i,w) + Br(z,xr+i,w)u + gr(z,xr+i,w,t)

¿r+1 = /r+l(z,Xr+iM+ffr+i(z,Xr+i,t) (3.126)

where z¡
= (zi,...,Zj)T,j = 2,...,r- 1,

The natural choice of a süding variable is s = zr. However, a sliding motion on the manifold

s = 0 is not stable since the original system (3.110)-(3.111) is a nonminimum phase system.

Sliding Manifold Design

To stabilize the internal dynamics, the subsystem (3.126) is first represented as

V -= xT+i, fJI(zr-i,zr,r],w) := fr+i(z,xT+i,w), g,(z,n,í) := gr+i(z,xT+i,t)

we have r) = frj(zr-i,zr,r],w) + gv(z,r),t), now we obtain a linear approximation of the last

system f¡ at origin as

Tj = Ar,Tf + BvZr + D^W + 1pl(Zr, T), w) + gv(z, J], t) (3.127)

where A, = £¡ fv(0), Bv = *J**-/„(0), Dv = £-fv(0), Vi (0,0,0) = 0 and gv(z,r,,t) =

9r+l(z,Xr+l,t).

Considering zr as virtual control in (3.127), the state feedback control is chosen as

zr = ari(ri,w)

where 0,(77,10) is smooth mapping defined on Xnr+1 x W and a,(0, 0) = 0. The the following

assumptions are needed:

A. 14. The pair (A,, _?,) is controllable.

A. 15. There is a vector 7,() such that [Drazenovich, 1969]
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3. Sliding Mode Output Regulation

9r,(z,r),t) = Bv-yr,(z,ri,t)

and ||7,(z,T7,í)|| < ci, ci > 0.

A. 16. There exist a smooth mapping T)ss
= i.v(w) with 7r,(0) = 0 defined in a neighborhood

Wo CW of the origin that satisfied the following equation [Isidori and Byrnes, 1990]:

■^CM = /^(0,a,(7r,H,W),7r,M,u.)) (3.128)

In this way, we propose:

zr
= av(r,,w) (3.129)

0-7,(17, w) = Cr,(T]- t-v(w))
-

pvsigm(sr,)

Sr,
= Pr,Zv (3.130)

where z, := n
—

i-r,(w), C, is such that ií^,*=(A, + 5,(7,) is Hurwitz p, > 0 and the matrix

P, is a positive defined solution of the Lyapunov equation

PnKv + tfPr, = -Qv, Qv>0 (3.131)

In order to accomplish the desired valué (3.129) for zr we propose a sliding variable in the

form:

t7 = z--a,(r),u)), 0= [oi,...,onr_T (3.132)

taking the derivative of (3.132) considering dynamics (3.125), thus we have

b = fr(-) + Br(-)u + gr(-) -áv(-). (3.133)

To induce chattering-reduced sliding mode on a = 0 we use the super-twisting algorithm

[Levant, 2001]

u = B+(z,T])v, v=[vi,...,vnr]T

Vi
= -kn\oi\1'2 sign(oi) + vn (3.134)

vn
= -ki2sign(oi), z = l,...,n-,

the closed loop system (3.133)-(3.134) becomes

bi = fai(z, xr+i) - fcíi ki|1/2 sign(oi) + Vn

vn
= -ki2sign(cTi). i=l,„.,nr, (3.135)

54



3.5. SM Regulator for Nonünear NP Systems in Structured With Unmatched Perturbations

where /<*, = 7r + SV -<*,,/,, = (fa , fanr)T
We assume that

!/<*(*, xr+i)| < 6i |cTi|5 Si > 0 (3.136)

then, if equation (3.136) and the following conditions [Moreno and Osorio, 2008] hold

*-*>2* ^^m^é (3I37)

then the state of the system (3.133) converges to the manifold o = 0 in a finite time.

SM Dynamics

On the manifold «7 = 0 the SM dynamics are governed by equations

ii = Kizi -

Pisigm(si) + Bi(zi,w)z2+gi(zi,w,t)

¿i = KiZi- piSÍgm(si) + Bi(zi,w)zi+igi(zi,w,t) (3.138)

¿ = l,...,r-l

z,
= Kr,zv

-

Bvpvsigm(sr,) + gr, (z¡ , w, t)

which is the sUding mode equation considering the perturbation terms and the steady state

error z,. In order to make an analysis, we consider that each term cp¿ = —pisigm(si), i =

1,2, ...,r —

l,n, has two stages: a discontinuous one and a linear one. This is represented as

w»(-*(iíb) v »M*>m
(3.139)

[ -Pifa/m) «/ Pihih < yn

for some ¡Ui > 0.

Now we propose a candidate Lyapunov function V = $_l*< where V¡ = zfPiZi, i =

l,2...,r
—

1,77. In the first case (3.139), considering that p¿||-Sj||2 > Mx> the derivative of each

Vi is in the form:

Vi = -zJQíZí -

2pizfPi^í + 2zTpi9i + 2zJPíBíZí+i
< -zJQíZí -

2\\pi\\\\zTPi\\$^ + 2||zfPiJIlMI + 2\\zJPiBiZi+i\\

we consider the following assumption

A. 17. The perturbation terms are bounded ||&(z,í)|| < A¿(z,í), i = l,2...,r
-

1,77.
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3. Sliding Mode Output Regulation

Considering the inequality \\zjPíBíZí+i\\2 < ft,i||zi||_ + ft+i,2||z¡+i|l2 with ft,i,ft+i,2 > 0,

then we have

Vi < - IX^Qi) -

2ft,i] !|^||2 - 2||zfP.;|| _|ft|| -

Ai] + 2A+l,2|N+l||2

i = 1,2..., r-l. (3.140)

Note that the third term 2/3j+i,2 ||-Zt+i||2 can be associated with the terms of function V^+i,

i = 1, 2, ..., r
—

2, then we have

r— 1 r— 1

V < -J2lX^n(Qi)-2(Pi,l + Pi,2)]\\Zi\\2-2j2\\zlPi\\(\\Pi\\-Xi)
1 1

+2pra\\zn\\2 + % (3.141)

with Pip = 0, and the derivative of V,, is

P z

% =

-ZnQnZr, -2pr,Z^Pr,j^y + 2z^Pr,[gv(z, 77, t)+Í)i(Zr, T), w))

< -Ami„(Q-?)IKH2-2||z^P,||[||/9,||-A,] (3.142)

with A, = A, + A^,, ||7/)i|| < A^,, then (3.141) is

r-l r-l

V < -

J2 [Xmin(Qi) - 2 (fta + ft,2)] |N|2 - 2£ \\zjPi\\ [Pi -

Ai]
-

||zjp,|| [3||p,|| - 2A,1
1 1

-

[Am¿n(g*7)-2ft,2||C,||]||z,||2 (3.143)

then, the derivative of V is negative if Ami„(<2i) > (ft,i + ft>2), p¿ > A¿ for i = 1,2, ...,r
-

1,

XminiQr,) > 2ft.i2||C-7|| and 3/9, > 2A,.
For the second case (3.139) when Pi||s-;|| < y-i, we have

r-l r-l

V < -

X) [W<W ~ 2 (A.i + ft,2)] INI2 + 2Y,Hñ\\ [(-d/rk)\\zTPi\\ + Xi]
1 1

+2ft,2-Sr + %

and Vn is

Vfl = -z^Qnzv + 2z^Pv(-p2v/yr,)\\z^Pr,\\ + 2z^Pr,[gr,(z,r,,t) + rPi(zr,V,w)}

< -Ami„(g,)||z,||2 -

2\\z^Pn\\ [(pl/yr,) \\¿$Pn\\
-

A,]
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3.5. SM Regulator for Nonlinear NP Systems in Structured With Unmatched Perturbations

substituting Vv in V we have

r-l r-l

V < -

^ [Amin(Q.)
- 2 (ft,i + ft,2)] INI2 + 2 53 Hza-PiH [(-p2M)ll -¿.Pili + A¿]

i i

-

[Amin(Q,)
-

2fti2||C,||] ||z,||2 -

3||z£P,|| [(pl/yr,) ||z^P,||
-

A,] (3.144)

then, on a región where (Hz^PjH) > (Ai/i¿/p2) ,
i = 1, 2, ..., r - 1, 77, the derivative V is defined

negative if Amin(Qi) > (ft,i + ft,2), for i = 1,2, ...,r-l, and Amin(g,) > 2ft.,2||C,||. Then the

system (3.138) is ultimately bounded in presence of matched and unmatched perturbations

[Khalil, 2002].

To show the performance of this regulator some examples are shown in Section 6 for both

cases matched and unmatched perturbation. In order to show the performance of this regu

lator, we use non vanishing functions of the time in the simulations too, these perturbations

were not considered in the theoretical analysis.
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Chapter 4

SM Output Regulation Causal Case

In this section we present the SM Output Regulation for structured Nonminimum Phase Sys

tems, the main difference between those SM regulators presented in Chapter 3 for noncausal

case and these here presented for the causal case is that here we consider more general refer

ence signals and perturbations affecting the system, and we do not consider to have a known

exosystem, we deal with reference signals for the output and perturbations with arbitrary

sinusoidal form. In this case a solution of the Francis-Isidori-Byrnes (FIB) equation is not

computed instead that we use two approaches and the adaptive estimator (see Section 2.5)

to obtain a bounded solution for the unstable internal dynamics of nonminimum phase sys

tems and the derivatives of the reference signal. Moreover, we deal with both unmatched and

matched unknown perturbations affecting the nonlinear nonminimum phase system.

4.1 Problem Statement

Consider the perturbed nonlinear system

x = f(x) + B(x)u + g(x,t) (4.1)

y
= h(x)

where x e X c RT1 is the state vector, u e U C Rm is the control vector, y € V C RP is

the output vector. The vector field f(x) and the columns of B(x) are smooth and bounded

mappings. The vector g(x, t) presents unknown disturbances.
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SM Output Regulation Causal Case

Now, we consider systems (4.1) which can be expressed ín the perturbed block controUable

form:

Xl
= /i(xi)-rBi(xi)x2

ii = fi(2i) + Bí(xí)xi+\,i = 2,...,r-\.

XT
= fr(x) + Br(x)u-rgr(x,t) (4.2)

*r+l = fr+l(Xr,Xr+l) + 9r+l(t) (4-3)

y
= h(x)-Xl

where the vector x ís decomposed as x = (xi,..,xr,xr+i)T, 1/ = (xi,...,Xj)T, j = 2,...,r, and

Xi is a Tij x 1 vector, gr(x,t)
—

BXt ís a matched external perturbation. For the external

unknown perturbation gT+\(t) we consider the foUowing assumption:

A. 18. The unmatched perturbation gr+i(t) has sinusoidal shape, i.e.

gT+i(t) = Ag8ín(agt + <¡>g).

The output tracking «rror ís defined as

z\ *■= V
-

Vref(t) (4-4)

where yrel(t) = Amn(oct + rp) i.s an arbitrary sinusoidal reference signal with A,a,<p€ R.

We define tbe SM Output Regulation Problem for causal case as the problem of

finding a smooth sUding surface o, o 6 JT" and a controller u to render attractive the manifold

o = 0 such that

• (SMS) The state of the closed-loop system (3.76)-(3.78), with the controller u, converges

to the manifold (3.82) ín a finite time,

• (S) The equiUbrium x
—

0, when a = 0 of the sUding mode dynamics

i = f(x)-rBua, + g(x,t)

ís stable in spite of the perturbation g(x,t), where u^, ís the equivalent control defined

as a solution of b *= 0,

• (i?) There exists a neighborhood V C X ofthe origin such that, for each initial condition

(xo) € V . the output tracking error z\ ■=
y

-

yref{t) goes asymptoticaUy to zero, i.e.

limt^^z,(t) -**■* 0.
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4.1. Problem Statement

Block Control Linearization for Nonlinear Nonminimum Phase System»

To design a sliding manifold o = 0 we introduce the following recursive nonlinear transforma

tion [Luk'yanov and Utkin, 1981]:

zi = e = xi
-

yrt¡ := *i(xi,f)

Za = /l(*l) + Bi(Xi)x2 - d\(X\,t) + Ki(xi - vret)

:=02(xi,X2,t), d\=yrtf

h(*2)-¿>l(Í2) + K_&2(Z2,t)

0

#Vrx

Z3 = ¡h(Í2)X3 +

.= *3(*f3.f), con da() =^-

Zi+i = Bi+i(2i)xi+i +

:= ty+ifti+i)

fi(ii) + di{Jti) + Kt*i{*i)

0

(4.5)

(4.6)

(4.7)

(4.8)

with i = 3,4, ...,r - 1, where z-< ís a vector of new variables of dimensión n\ x 1, üf< > 0,

fi(ii) = ÍÍ[^f)-rB)x)+iU^tfi,Bi = Bi.iBi,BM= f ^.«[o/^L
jml

X. - J

^ £,^j j
L J

•Eu € J*"*»-"*)*"»-», /^,-n, ís the índentíty matrix, d, = -£j¡^.
According to the block control nonlinear transformation the system (4.2)-(4.3) can be

rewritten as:

¿i = -KiZi + Z2

¿i = -K{Zi + Ei,izi+\, i = 2, ...,r-\

Zt = fr(z) + BT(Z)U + gr(z,t)

Xr-r 1
= fr+l(z, XT+ 1 ) + gr+ 1 (t)

(4.9)

(4.10)

A. 19. The unknown perturbation gT(x,t) satisfies the matching condition (Drazenovic, 1969)

There exist a vector 7(x, t) € RF1 such that the following relation holds:

gr(x,t) = BT(x)i(x,t), 7É RT.
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4. SM Output Regulation Causal Case

Sliding Manifold Design

To stabüize the internal dynamics, we define

77 := xr+i, fr,(zr-i,Zr,r),t) := /r+i(z, xr+i, t), gn(t) := gT+i(t)

now the subsystem (4.10) is represented as 7) = /,(zr-i,zr,77, t) + g,(í), then we obtain its

linear approximation at origin as

r) = Avr¡ + _?,zr + A*_iz--_i + Bvx* + ipv(z, 77, t) + gr,(t) (4.12)

where x* is a known reference signal obtained as a desired valué for xr by the block control

linearization zr_i = (*_,.. .,_v_i)T- A, = £_-fr,(0), A-i = 31^7 fr,(0), Bv = ^fr,(0). The

following assumption is introduced

A. 20. The function ?/>_ (z, 77, t) vanishes at origin with its first order derivatives and is bounded

by% (z,n,t)< ft|z||.

Defining

z,
= 77-xr*+1(í) (4.13)

where x*+1 is a reference to be computed later. The dynamics of z, along the trajectories of

(4.10)-(4.12) are in the form

z,
= AvZj, + BnzT + Ar_i2r_i + Avx*+i + Bvx*

-

x*+1 + V,(z, 77, í) + gn(t) (4.14)

In this case, we consider to z, as a subsystem, where zr is considered as input. Since the

system is a nonminimum phase A, is a matrix with real part positive eigenvalues. On the

other hand, the vectors x* and x*+1 are considered references for xr and xr+i respectively,

the reference x*+1 will be obtained later in the chapter.

Consider the following assumption

A. 21. The pair (A,,B,) is controllable.

Following the SM technique a sliding variable o is proposed in the form

0 = Zr-Kr,Zr, (4.15)

where Kv is a matrix to design of dimensión tv+i x fk- and o =[ai a2 ... -Tnr]T The dynamics

of o along the trajectories of (4.9)-(4.10) are

b = f_7(z,r)) + Bru (4.16)
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4.1. Problem Statement

where f„(z,r¡) =fT(z) + Br(z)Xs + dr(z,t) -

#,,¿,(77, tu),

U(z,v) = ( Ui(z,n) f„2(z,ri) ■■■

/-*-„_,. (z, 77) ) complies

A. 22. The functions fai(z,rj) in (4-16) are bounded by

\fai(z,r¡)\<&i\°i\llf2 Si>0,i = l,...,nr. (4.17)

Ib induce chattering-free sUding mode on (4.15) we use the super-twisting algorithm [Frid

man and Levant, 2002]

u = B~x(z)v, v = [vi,...,vnr]T

Vi = -fcii|o-i|1/2s¿_<n(cri) + .Vji (4-18)

vn
= -ki2sign(ai), ¿=1,...,tit.

Assuming the conditions given in [Moreno and Osorio, 2008] hold:

I rar 7 1 5<-*.fcil +4(5? ,.
.

ka > 26i h2 >

^2{kn_26^ (4-19)

then the overaU system state converges to a sliding manifold o = 0 and zr =
—

íf,z,.

SM Dynamics

On the manifold o = 0, the süding mode equation is governed by

¿1 = — .K1Z1 + Z2

¿i = -KiZi + Ei,izi+i, i = 2,...,r-2 (4.20)

¿r-l = —Kr-lZr-l + ifjjZ,

¿r, = (A, + BvKr,)Zr, + A-_iZr_i + A,X^+i + Bnx*r
-

X*r+i + 1¡>r,(z, t) + 5,(t) (4.21)

In order to show the stabiUty of the süding mode equation (4.20)-(4.21), we first have to

find the reference x*+1(í) and analyse the resulting system. In the following subsections, we

consider two cases presented in the süding mode equation, specifically in the subsystem (4.21),

then we introduce the proposed solutions to both cases using different approaches. First let

us introduce the two considered cases:

Case 1: The subsystem (4.21) is not perturbed, namely g,(t) = 0;

Case 2: The subsystem (4.21) has unmatched unknown perturbation, which is a sinusoidal

shaped signal, that is g,(t) = Agsin(agt + <j>g).
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SM Output Regulation Causal Case

4.2 Case 1: Nonlinear NP Systems with Matched

Perturbation

Consider g,,(t) = 0. Assigning an arbitrary x*+1, such that

Ar+li;+1 + Br+Hr
"

K+\ = 0, (4.22)

under condition A.21 we can choose properly gains A',,, Ki, i = 1,2, ...r-l such that a solution

of the sliding mode equation (4.20)-(4.21) is asymptotically stable, consequently the output

tracking error z\ is too (See theorem 3.11).

However, due to the considered system is a nonminimum phase, the matrix Ar+i has

eigenvalues with positive real part, then an arbitrary reference x*+- in (4.22) will increase

and the control signal will be unbounded too.

Solvability Conditions for SMOR in the Causal Case

To achieve the stability of the closed loop system (4.9)-(4.18), we also need to give a bounded

reference x*+1 to the unstable internal dynamics xr+i* The mentioned bounded reference has

to be a stable solution for the unstable differential equation

¿;+i = Ar+ix*+l + Br+\x*. (4.23)

Considering the sliding mode equation (4.20)-(4.21), the SM Output Regulation problem in

the causal case is transformed in the problem of obtain a bounded solution x*+1 for the

unstable differential equation (4.23). In the following subsections, we present two approaches

to obtain a bounded reference x*+1.

Bounded Solution for Unstable Linear Differential Equations

In this subsection the basis of a first approach developed in [Jeong and Utkin, 1999] to obtain

a bounded reference xr+i is presented. Let us consider a linear system

t)(í) = Qr,(t) + Bu(t) (4.24)

where matrix Q has no eigenvalues on imaginary axis. When Q is stable, the solution satisfying
the initial condition is in the following form

77(<) = e^O) + í eQ{t~T)Bu(T)dT (4.25)
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4.2. Csm 1: NonUnear NP Systems with Matched Perturbation

which is bounded if the input u is bounded. If all eigenvalues of Q have positive real part,

the bounded solution satisfying the following boundary condition can also be obtained

n(T) = 0, t<T<oo (4.26)

Theorem 4.1. [Jeong and Utkin, 1999] The bounded solution rf of system (4-24) which

contents unstable modes, satisfying boundary condition (4-26) with T = constant is

/T eW-^Butfdr (4.27)

Proof. Differentiating (4.27) shows that it is indeed the solution of the unstable system (4.24).

/Te-^Bu^dr - e<* [0 - e^Bu^t)]

= <W(t) + Bu(t) (4.28)

The boundedness can be seen from the facts that, Q is unstable and t - r < 0. D

The bounded solution of the Unear system (4.24), either stable or unstable, can also be

represented with the derivatives of the input signal.

Theorem 4.2. Bounded Solution in Derivative Form. Suppose the matrix Q of the

linear system (4-24) has no imaginary axis eigenvalues, then a bounded solution rf(t) of the

system with boundary condition tf(oo) = 0 can be given in the following derivative form

oc

rf = -

^ g-<B+1Wn>(t) (4.29)
n=0

Proof. From (4.27) with T =
oo, integrating by parts

if(t) = - í eQ(l-T>Bu(T)dT

= Q-^'-^aBuÍT) \f - l°°Q-leQ^-T)Bú(T)dT
= -Q~lBu(t) - Q~2Bú(t) -

...

oc

= -£)Q-(n+1Wn)(t)
n=0
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4. SM Output Regulation Causal Case

It is important to note that for the nonminimum phase case, the nominal trajectory 77o

is noncausal (the integral (4.27) is defined from t to 00) and can be obtained through a

convolution integral (4.27). However, in order to avoid the noncausal condition, we can use

the bounded solution in derivative form (4.29) and use a robust differentiator, or the adaptive

estimator (see Section 2.5) to obtain the derivatives of the input u.

Let come back to the output regulation problem for systems without unmatched pertur

bation. When gT+i(t) = 0 then we can use the bounded solution (4.29) directly to obtain a

bounded reference for x*+1 (4.23). Replacing Q by Ar+i, B by Br+i and the input u by x* in

solution (4.29) the bounded output reference which satisfies the unstable equation (4.23) is:

00

x*+i
****-

-

£A;^BT+ix«n\t) (4.30)
n=0

In order to estimate the derivatives of the reference signal x* we use an adaptive estimator

(see subsection 2.5). For that, as the output reference signal yref is a sinusoidal shaped one,

we assume that x* has the same shape x* = Amrsin(art + 4>r).

SM Regulator and the Adaptive Estimator

In this section we estimate x* with the adaptive estimator (2.24), for that we propose an

estimator in the form:

6 = X£2+-(x*T-y)

6 = -^- + C(x;-y) (4.31)

6 = -7&K*-#)

(4.32)

where the output y

é = x* -

y (4.33)

is the estimated valué for x*, and é is the estimation error (4.33). Choosing o, X, C, 1, h, h>

0, we can modify the convergence of the estimator and the error é asymptotically goes to

zero, namely limt^ooéty) = 0. Moreover, the derivatives ofthe estimation y^n\t) tends to the
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4.2. Case 1: Nonlinear NP Systems with Matched Perturbation

derivatives of the x*^, n = 1, 2, ..., oo. Equation (4.30) is an infinite series but that could be

approximated taking a finite number of the series elements.

Then we can obtain the bounded reference signal for x*+í in the form:

x*r+i = -Ar^1B-+ixr(t) - A^Br+im
- A^Br+im

-

with this, if we substitute (4.34) in (4.21) we obtain

zr,
= (Ar, + B,rT,)z, + Aa-izV-i + ^(z, t)

then, the sUding mode equation can be presented as

Z = Áz + lpz

(4.34)

(4.35)

(4.36)

where z = (zr_i,zv)T, and A is

A =

(-Ki
0

'ni 0 0 \

-K2

0

A2

—Kr-i —K-q

V Ai Á2 ... Ar_2 Ar_i (A,
-

Br,Kr,) )
The perturbation term ips only contains the term t/>i, then considering the constraint A.11

results that ||V>z|| < Pi \\z\\ for all t > 0 and all z e 3?n_1 with fa > 0 constant.

We can choose the gains K such that A is Hurwitz, then using the proof of Theorem 3.11

presented in Section 3.4 the reduced order system is asymptotically stable (implies condition

(S)). Consequently, the output tracking error zi tends asymptotically to zero (condition (R))-

SM Regulator with System Center and Adaptive Estimator

In this section, we present another approach to solve the SM Output Regulation problem in

causal case. Based on the work [Gopalswamy and Hedrick, 1993] and using the extensions

given by [Shtessel and Shkolnikov, 1999], [Shtessel et al., 2012] we present an altemative form

using the adaptive estimator. The main idea is based on System Center approach [Shtessel,

1994]. As we mentioned before, the output regulation problem is transformed to obtain a

bounded reference x*+1 for xr+i. Here we present the System Center equation [Shtessel et al.,

2012] to obtain that reference.

System Center Design

Consider a linear system in the form

r¡
= Qri + 0 (4.37)
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4. SM Output Regulation Causal Case

where 6 is considered as an external input generated for an exosystem defined in the form

w = Sw (4.38)

6 = Dw (4.39)

where w G Rk, 0 G RP, k > p, and S G Rkxk

The Extended Method of Stable System Center [Shtessel et al., 2012] computes an es

timated r)b of a bounded solution 776 for the unstable equation (4.37) using the solution 7%

obtained of:

7>f + ck.1fjik-1) + ... + cif}¡l) + c-Tfe
= -

(Pfc-i^*-1) + ... + Pié + P0e) (4.40)

where fc is the order of the exosystem, and the output 0 as defined in equation (4.39). The

numbers co,ci, ...,Ck-i are choosen to provide desired eigenvalue placement of convergence

77b
—¥ 77b, and the matrices Pfc_i, ...Pi, Po G RP*P are given by:

Pfc-i = (I + ck-iQ-1 + ... + coQ-k)(I + pk-iQ'1 + -+PoQ-k)-I

Pfc-2 = cfc_2Q-1 + ... + coQ-(fc-1>-(Pfc-i + J)(pfe_2Q-1 + ...+poQ-(fe-1))

Pi = ciQ-1 + coQ-2-(Pk-i-rI)(jpiQ-í+poQ-2)

Po = coQ-1 -

(Pk-i + IfroQ'1 (4.41)

where the constants po, pi, ...,pk-i are the coefficients in the characteristic polynomial p(A) =

Afc + pk-iAfe_1 + ... + piA -H po of the exosystem (4.38).

Noting that in this approach, we need to know the coefficients po, Pi,--,Pk-i- It is

necessary then to estimate the characteristic polynomial and the state of an exosystem. Unlike

to the solution presented in [Shtessel et al., 2012], we use the adaptive estimator to obtain

the necessary characteristic polynomial for the estimation of 77b- We assume the exosystem

(4.38) has the form

i¿i

w2

0 = Dw

with characteristic polynomial Pfc(A) = A2 + a2 The presented adaptive estimator (4.31) can

use the known output 9 and estimate the frequency a (see section 2.5). Then we use the

estimator (4.43)
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4.3. Case 2: Nonünear NP Systems with Matched and Unmatched Perturbation

£l = x^+~(e-y)

6 = -^ + «o-í» (4-43)

¿3 = -7Él(0-0)

with ¿i, A, C, 7> •*i> Í2 > 0 as design parameters, the output of the estimator y is

y
=

jti + hb

is the estimation for 0, and f3 -t pxx2. Then we use the estimation á2 = <*3/_u to substitute

Po in the computation of Pfc_i, ...Pi,Po (4.41). Then we have a bounded estimated solution

■76 for x*+1 substituting this in (4.21), that equation results:

Z,
= (A, + B,A:,)z, + A-_iZ-_i + 1pr,(z, t).

Then, we obtain the sliding mode equation (4.36), which is asymptoticaUy stable.

A particular case for the SM Output Regulation is when the reference yref is constant.

For that case in [Gopalswamy and Hedrick, 1993] was shown that a bounded reference x*+1
for the internal dynamics can be obtained as a solution of the unstable differential equation

(4.23) with a change in the sign, i.e.

'-r+l
= -Ar+ix^+i

-

BT+ix*r. (4.44)

this is an asymptoticaUy stable system because of the negative sign in (4.44). This is seen as

we run the unstable parts backward in the time, and we should converge to a solution on a

stable manifold.

4.3 Case 2: Nonlinear NP Systems with Matched and

Unmatched Perturbation

Now, we consider the case when gr+i(t) / 0, in this case we consider that the perturbation

can be seen as an additional input affecting the unstable linear equation (4.23) in the form:

±*+i = Ar+ix^+j + Br+ix* + gT+i(t) (4.45)

for that problem, we also can use the bounded solution (4.29) considering an additional input

ffr+ií*) affecting to the subsystem (4.3).
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4. SM Output Regulation Causal Case

Solution to the SMORP for Nonlinear NP Systems with Unmatched

Perturbation

To overeóme the new case of the perturbed subsystem (4.21), we propose to use an observer

for the perturbation term gT+i(t) and add its estimation to the solution (4.29).

Now considering that the state x(í) is known (A.3) we use an observer based on robust

differentiator [Levant, 2003], to estimate the unknown unmatched perturbation term gr+i(t).

Based on the known nominal dynamic system for xr+i (4.3) the proposed observer is:

Xr+l
— /r+l(Xr,Xr+i) -t-ii|xr+i|sípn(xr+i) + fle (4.46)

i¡e = l2sign(xT+i)

where xr+i
=

xr+i
—

xr+i is the estimation error of the internal state, and ge is the estimation

for 3r+i- Considering conditions for the gains h, l2 presented in section 2.3, the error xr+i =

xr+i
—

xr+i is zero in a finite time, and the estimation ge(t) is equal to gT+i(t).

To rejects the perturbation term gr+i(t) and obtain a bounded reference x*+1 in the

perturbed subsystem (4.3), we add the estimation ge(t) in the solution (4.29).

Assuming that estimation ge and its derivatives ge,ge, 9e - n = 3,4, ...,oo, are available,

we can obtain a bounded reference x*+1 which satisfies the unstable equation (4.45) as:

oo

x*r+i =-y: (A;iri)Br+ix;M(t) + .^rv0) (4.47)
n=0

As the output reference yTe¡ and perturbation gT+i signals are a sinusoidal shaped ones

(A.18), namely x* = Amrsin(art + 4>r) and gr+i(t) = Agsin(agt + <f>g), we can estimate their

derivatives xt and ge n= 1, 2, ..., oo, using two adaptive estimators. The estimator for x*

is (4.31), and the estimator for gT+i is:

¿ig = Ai&s + ■£*-*■-(&•
- yi)

K2g

i2g = -M^-K^-^) (4.48)

where the output yi

&9 = -7i69(fle
-

y\)

2/1
=

Y^ig
+ hgÍ29

ég = 9e-y\ (4.49)
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4.3. Case 2: Nonlinear NP Systems with Matched and Unmatched Perturbation

is the estimation for gr+i based on the estimated valué ge(t). Choosing/xi, 71, C1-A1, hg, l2g >

0, we achieve limt^ooég^) = 0 [Obregon-Puüdo et al., 2010], and the derivatives of the esti

mation y[n) tends to the derivatives of the function ge(t), n = 1, 2, ..., 00.

Then we have a bounded reference signal for x*+1 which rejects the unmatched perturba

tion term gr+i(t) in the form:

x;+1 = -A-+11Br+ixr(t) - A;ll9e(t) - A;2iBr+iÍ(t) - Ar-+2!¿i(í) (4.50)

-

KliBr+M) - A;lMt)... (4.51)

SM Dynamics

Substituting (4.51) in (4.21) the sUding mode equation results

Zr,
= (Aq + Br,Kr¡)Z^ + Ar-iZV-i + lfa(z, t).

Then, we obtain the sliding mode equation (4.36), which is asymptoticaUy stable (see Theorem

3.11).
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Chapter 5

Discrete-Time SM Regulator for

Nonminimum Phase Systems

This chapter presents an approach to solve the output regulation problem for a class of non

Unear discrete-time nonminimum phase perturbed systems. Based on feedback linearization

Block Control technique and discrete-time süding mode (SM) control, we propose a süding

manifold on which the zero dynamics are stabilized. Td enforce the robust SM motion on

the designed manifold, a discrete-time super-twisting SM algorithm is implemented. The ef

fectiveness of the proposed methodology is verified in section 6 via the design of a position

tracking controUer for an under-actuated robotic system, the Pendubot.

5.1 Discrete-Time Classical Output Regulation Problem

Consider a nonlinear discrete-time SISO system

Xk+l
= f(xk,uk,wk)

Vk
= h(xk) (5.1)

where k G Z denotes the discrete time instants, with Z the set of the nonnegative integers.

The state vector x„ is defined on a neighborhood X of the origin of ü*1, uk G R is the input

vector, and yk G R is the vector of the output variables to be controlled. Here /(*, •), h() are

smooth vector fields of class CS0., with /(0,0) = 0, h(0) = 0. It is worth mentioning that
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5. Discrete-Time SM Regulator for Nonminimum Phase Systems

system (5.1) can also be considered as a sampled data system, in that case, xk =■: x(íjt), and

under the assumption of zero-order hold, Uk = u(tk), where tk = kS, with <5 as the sampüng

period.

The tracking error is defined as the difference between yk and a reference signal yT(wk) to

be tracked i.e.

ek
= yk~yT(wk)- (5*2)

The reference signal yT(wk) is assumed to be bounded, with bounded increments, and gener

ated by a given external system described by

tufc+i
= s(wk), wk G W C Rs

yl = yT(™k). (5-3)

with yT(wk) as a known variable.

The control problem is to design a controUer using full information, which enables to bring

the tracking error (5.2) to zero. Isidori et al., have proposed in [Isidori and Byrnes, 1990] a

solution to this problem in the continuous-time setting. We now consider this solution to

extend a versión for the discrete-time setting. The solution to the above mentioned problem

can be provided by a state feedback uk
= a(xk, wk), where the pair ofmappings xk = i.k(wk)

and uk
= ck(wk) solve the difference equations

*-fc+i(u>fc+i) = /(Tfc.Cfc) (5-4)

0 = h(nk)-yrk.

with 7rfe(0) = 0 and cfc(0) = 0.

In this section, we consider the system (5.1) which contents both the known wk and

unknown dk disturbance terms, namely

Xk+i
= f(xk,uk,u)k,dk) (5.5)

yk
= h(xk)

where dk = d(xk, k) represents internal and external disturbances.

The classical regulator uk = ck{wk) +kT(xk - T-k(wk)) with (A + bkT) Shur matrix, A =

|_=0, b= yL \x=o - ca-11 achieve only local stability of the system (5.5) around the tracking

trajectory in absence of the unknown perturbation dk.

To overeóme these problems and increase the stability región also as to achieve robustness

of the closed-loop system, we propose to apply SM control technique [Utkin et al., 1999]

combined with the block control (BC) feedback linearization one [Loukianov, 2002].
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5.2. Discrete-Time Sliding Mode Regulation Problem

5.2 Discrete-Time Sliding Mode Regulation Problem

Using the before estabüshed concepts for the continuous time setting, we propose an extensión

of the süding mode regulator problem (SMRP). In this case (discrete time), the SMRP is

defined as the problem of finding a sliding function ok(zk,wk) (with zk
=

xk
— nk(wk)) such

that the foUowing conditions hold:

SMS) The state of the closed-loop system (5.1), with the static discrete-time sUding mode

controller uk(zk,wk), makes the state error zk converges to the manifold ak
—

0 in a

finite time.

S) The equiUbrium x„
= 0 of the sUding mode dynamics under wk = 0 and dk = 0 :

Xk+l
= f(Xk,Ueq,k,0,0)<rk=0

is stable. The term ueq.k is the equivalent control obtained from Ok+i
= 0.

R) There exists a neighborhood Ví C X x W of (0, 0) such that, for each initial condition

(xq,wo) G Ví the output tracking error (5.2) goes asymptotically to zero, i. e.

Um efc
= 0.

k—>oo

As it is commonly in the SM control design, we introduce the following assumption.

A. 23. The unknown but bounded disturbance dk satisfies the matching condition [Drazen-

ovich, 1969].

Nonlinear Nonminimum Phase Discrete-time System

In this work, we consider a class of nonlinear SISO affine control systems (5.5), which can

be presented (possibly after an appropriate diffeomorphic transformation) in the regular form

[Luk'yanov and Utkin, 1981]:

zí,fe+i = fí(xU'X2,k) (5*6)

4,fc+i = f2(x'i,k.x'2.k) + b'2(x'i_k,x'2.k)uk + d'k (5.7)

where the part of subsystem (5.6) with subsystem (5.7) has NBC-form with respect to the

output yk
— xi_k, while the rest part of the subsystem (5.6) describes the residual dynamics
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5. Discrete-Time SM Regulator for Nonminimum Phase Systems

(subsystem (5.9):

xi,k+i
= fi(xi.k) + h(xi.k)x2.k

Xi,k+i
= /i(xi,fc,...,x¿ifc) + 6i(xii-c,...,Xi)fc)x¿+i;fc

Xr,k+l
= /r(Xfc, Xr+i,fc) + 6r(Xfc, Xr+^fc)Ufc + dfc,

i = 2,---,r-l

Xr+l,fe+l
= /r+l(Xfe,Xr+i,fc)

(5.8)

(5.9)

(5.10)

Vk
=

xx_k (5.11)

where Xfc
= (xi.k, . . . ,xr.k) G X C RJ1, dim(xr+i.k) = n

—

r where r is the relative degree,

moreover,

/l(*rl,fc+l*-r2,*+l) —

f
fi(xi,k) + bi(xitk)x2_k \

fr-l(xi,k, ■ ■ ■ ,Xr_l,fc) + br_i(xi,fc, . . . ,Xr_ijfc)xrifc

V /r+l(Xfc,Xr+i,fc) J

dk = d'k, /.(■) = /_(•), fcr(-) = &.(■),

and we assume

A. 24. fcj(-) -jé 0, i = 1, . . . ,r, Vx' G X C IT

Dynamics of many control plants, for example, electro-mechanical under- actuated sys

tems, can be presented (possible after a nonlinear transformation) in the form (5-8)- (5.11).

A solution of the zero dynamics

aV+l.fe+1
= fr+l(0,Xr+l,k)

is not required to be asymptotically stable, i. e., the system (5.8)- (5.11) can be a nonminimum

phase system. In this case, the direct implementation of the combined SM and BC method

cannot to stabilize the closed-loop system. Therefore, a special sliding manifold on which the

residual dynamics are stable, should be designed.
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5.2. Discrete-Time Sliding Mode Regulation Problem

Sliding Mode Manifold Design

Consider the subsystem (5.8). The sliding manifold design procedure consists of a step-by-

step construction of a new system with states Zi<k
=

x^fc
- xfk, i ■= 1, • • ■

, r, where xfk is the

desired valué for Xitk, which wiU be defined by such a construction.

We start by defining as new variable the tracking error (5.2)

zi,k
=

e* = xi,fc
- xffc

with xfk = yr(wk) the reference valué for x^, having dynamics

zitk+i
= h(xi,k) + Bi(xiik)x2¡k

- xftk+v (5.12)

In the system (5.12), X2,fc is viewed as a virtual control input used to impose the following

desired dynamics

zi,k+i
= kizhk. (5.13)

with \ki | < 1 to ensure the asymptotic stabiUty of (5.13). Therefore, on the basis of assumption

A.24, one determines the solution in X2,t for the equation

xí,k = bi1(xiík)(kizitk -

fi(xhk) + xf¡k+i)

which represents the reference behavior for X2,fc. Proceeding in the same way, one introduces

Z2,k
=

x2_k
— x\\k, having dynamics

^2,fc+l
= f2(Xl,k,X2.k) + &2(xi)fc,X2,fc)X3)„

- X^fe+1.

One imposes the desired dynamics

22,fc+i
= k2z2.k (5.14)

where |A_| < 1. By assumption A.24, the solution in X3,fc given by

xi,k = b21(xitk,x2ik)(k2z2¡k -

/2(xi,fc,X2,fc) + x_fc+i)

which is the reference valué for X3fc. Iterating these steps, one finally introduces the variable

Zr,k
= XTmk

—

XTk,

xfk = &,:2i(-)(A;r-lZr-l,k ~ /r-l(-) + xf_hk+i),

with dynamics

*T,fc+l
= /r(xfc,Xr+i) + 6r(xfc,Xr+l)ufc

+ dk~xfMV
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5. Discrete-Time SM Regulator for Nonminimum Phase Systems

It is worth mentioning that the new variables zi¡k, i
= 0, 1, -■ •

,r + 1 are determined by the

following nonlinear transformation:

Zl,k
=

xi.fc
- x\k = <¿>i(xi,fc,u;fc)

Z2,k
=

X2,fc
-

X2)fc

= ¥,2(Xl,fc,X2,fc,HVfc)

Z3,k
=

X3,fe
- X^fc

= ^3(xi,fc,X2,fc,X3>fc,'U;-c)

Zr_k
—

Xrifc Xrk

= fq(xi,k,X2,k, ■■ , Xr,k,U)k)

Zr+l,k
=

Xr+i_fc
—

Xr+1fc

= fr+l(xi,k,X2,k,--- ,Xr+l,k)- (5.15)

Now, for the the residual dynamics (5.9) we need the following assumption:

A. 25. There exist a smooth mapping xr+i;fc
= xf+lk(wk) with xf+lk(0) = 0 defined in a

neighborhood W° CW of the origin, such that

4+l,k+l(Wk+L) = fr+i(xixf+i.k(wk)) (5.16)

with xk= ( x¿lk x^2k ■ ■ ■ x^rk ) is part of the solution to the partial equation (5.4)
It is easy to check that, by means ofthis transformation zk

= ¡p(xk, wk)=(ipT ipf ■■ ■ <pj+i )
the system (5.8)- (5.9) is diffeomorphic to

zi,fc+i
= kizi_k + bi(zi_k)z2,k

Z2,k+l
= k2Z2ik + b2(Zl,k,Z2,k)z3_k

Zr-l,k+l
= fcr-lZr-l,fc + &r-l(zi,fc, ..., Zr-l,fc)zrifc

Zr.k+1
= fr(zk) + br(zk)uk - xfk+1 + dk (5.17)

zr+l,k+l
= fr+l(zi.k, ■■ , Zr+ijfe).

Having the system of the form (5.17), a natural choice of a sliding variable sk is sk = zr.k.

In this case, however, the zero dynamics of xr+i)fc or zr+iifc on the manifold sk
=

zT_k
= 0
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5.2. Discrete-Time Sliding Mode Regulation Problem

is considered to be unstable. Therefore, in order to stabiüze such dynamic, we propose to

formúlate the sUding manifold Ok = 0 of the following form:

<7„=0, O-fc = Sfc-t70,fc(zr+iifc,lüfc), (5.18)

where t7o,fc(zr+i,fc>w.O i*3 a smooth function to be selected with <ro,fc(0,0) = 0.

Sliding Mode Controller Design

Taking one step ahead of (5.18) results in

<->"fc+l
= fr(Zk) + br(zk)uk

+ dk~ X-fc+1
-

<70,fc+l

To induce a süding mode on ok
= 0 we discretize the super-twisting algorithm [Levant,

2001]. If the continuous time versión of this algorithm is just approximated by means of Euler

method, then, the control action will be as a modulated discontinuous signal. To avoid this

problem, we approximate the dynamics of the integral part of the super-twisting algorithm

(integral of the sign function) by Gao's [Gao et al., 1995] extensión of the reaching law [Hung

et al., 1993] for discrete-time systems, resulting in

Uk
= -kiiy/\~<Jk\sign(ok) + Ck (5-19)

Cfe+i = Cfc
- S(ki2y/\i7k\sign(ok) + <7iCfc)

with fcn > 0, A¡i2 > 0, qi > 0 and 1 + Sqi > 0, where 8 is the sampling period. It is possible

to show that there are fcn > 0 and fci2 > 0 such that the state vector of the closed-loop

system converges to the sliding manifold Ok
= 0 (5.18) in finite time. On this manifold we

have Sfc
=

oo,k, and the SM dynamics are governed by the reduced order system

zi,k+i
= hzi.k + bi(zi.k)z2,k

Z2,k+l
= k2Z2_k + h(zi,k> Z2_k)Z3_k

Zr_2,fc+1
= kr-2Z2,k + bT-2(zi,k,-,Zr-2,k)Zr-l,k

zr_i,fc+i
= fcr_izr_i,jt (5*20)

Zr+l,k+l
— Ar+lZr+itk + Br+lSk

+ 1p(Zl,k,---,ZT-l,k,ZT+l,k,'Wk) (5*21)

efc
=

zi,fc (5.22)
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5. Discrete-Time SM Regulator for Nonminimum Phase Systems

where

Ar+1 = ■___: , Br+i =

dzr+iyk lír+i,fc=o' dzr_k l«a.,jt=o

with ip(-) as a function that vanishes at the origin. Now, we assume

A. 26. The functions 6i(zi,fc) and bi(zij¡, -, Zi.k), i = 2, ..., r
— 2 are bounded.

A. 27. The pair {Ar+i,Br+i} is controllable.

Therefore, under the assumption A.27, by proper selecting the sUding manifold <7o,fc
■***-

kT+izT+i.k one can locally stabilize the residual dynamics (5.21) by asigning the matrix (Ar+i+

BT+ikr+i) be Schur. In this case, there exists a locally stable central manifold xr+itk
—

xrT+lk(wk) satisfying condition (5.16). Moreover, with the proper selection of fci,.. .,/lt_i,

under the assumption A.26 we have

lim zr_ifc
= 0

fc-+oo

where zr-i,k
= (zi.k z2k

■■■ z^_lk) , satisfying condition (S), and as a consequence

condition (R) is also satisfied.
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Chapter 6

Illustrative Examples

6.1 Second Order Sliding Mode Sensorless Torque Regulator

for Induction Motor

The developed methodology in section 3.4 is illustrated here via the design a torque tracking

controUer for an induction motor (IM). A dynamic model of an IM defined in the stationary

reference frame (a,fi) is described by

3 Lmnp T¡
o~tt Wa%

~

^bla>
~

T
_¿ tJf JUf Uf

-aipa
-

npWri_bb + aLmia

-aipb + npWri¡.a + aLmib (6-l)

-7¿o + a_8lpa + Tlpl3wr1¡)b + Ua/Vm

-■yib + afiípt, - nppwTi/;a + Ub/om

where i_ba and Vb are the rotor magnetic flux linkage components, ia and i-, are the stator

current components and wr is the mechanical rotor speed; Jr is the rotor moment of inertia,

Ti is the load torque, np is the number of pole pairs. Given full state measurements, the

control aim is to achieve the torque Te = 3L^y (i>aib
- i>bia) tracks a reference and to keep

the rotor flux magnitude tp = ip2 + ip% constant.

dwT

~dt

di¡)a

dt

dif>b

dt

dia

~dt

dib

~dt
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We define error variables as:

Zl=lf)- ij-ref y Z2=Te- Tref

applying the block control technique and introducing desired dynamics the error system can

be transformed in the form

¿i = -(fci+2a)zi + Z3 (6.2)

¿2 = f2 + buUa + bi2Ub

¿3 = /3 + *->2lU_ + b22Ub

7)1 = (1/Jr)(z2+Tre/-T0 (6.3)

with Z3
= 2ai¡)Te¡ + 2aLm (ipax2 + ipbx3) + fci-2-i, 771

=
wr. As an special case due to the stable

dynamics of the speed 771 in order to stabilize the dynamics of the speed and avoid the solving

of the corresponding FIB equations we introduce the steady state speed error as

£1
=

771
-

wss (6.4)

where w3S is an estimate of the rotor speed steady state valué. In this way, using (6.3) the

dynamics of the error variable (6.4) are obtained of the form

¿1 = (1/Jr)(z2 + Tref
- Ti) - éss (6.5)

Now we define the sliding variables 01 and a2 as

«-""i
=

Z2 + C/_.£i C4 > 0

cr2 =
z3

using (6.1), (6.2), (6.5), v = Bu and v = \ vi v2 the projection motion on the subspaces

01 and o2 can be written as

bi = /i+ui (6.6)

b2 = /3+W2 (6.7)

to achieve chattering free SM motion on the manifold 01
=

02
= 0 we use the super-twisting

algorithm:

vi = -fciiki|1/2sifln(tTi) + t;ii (6.8)

vn
= -ki2sign(cri)

V2 = -k2i\(T2\1/2sign(o2) + v2i (6.9)

v2i
= -k22sign{<72)
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6.1. Second Order SUding Mode Sensorless Torque Regulator for Induction Motor

under conditions similar to (3.95) and (3.97) the closed-loop system state converges to the

manifold ai = a2 = 0 in finite time.

The SM motion on this manifold is governed by

¿i = -(fci + 2a)zi (6.10)

z2 =

-c4£i (6.11)

then the flux error zi tends asymptoticaUy to zero, while the torque tracking error Z2 depends

on the speed steady state error £_.

The dynamics of the rotor speed error (6.5) can be represented on the manifold Z2
= —

C4£i

as

¿1 = (Z2 + Tref
- Tl)/Jr - 1¿ÍS = (-C4£l + Tref

~

Tt)/Jr
~ liss (6.12)

thus, we choose

Üss = (Tref
~

Ti) ¡JT + c5sign(£i)

then substituting (6.13) in (6.12) yields

¿i = -(c4/Jr)ei-c5sz3n(ei)

if C4 > 0 and C5 > 0 then the speed error £1 converges to zero in finite time

Simulations

A three-phase, four pole machine was simulated. The motor parameters used are: Ra = 14Í2,

Ls = 0.4, Lm = 0.377H, Rr = 10.117, Lr = 0A128H, Jr = OMKgm2, n-, = 2. The control

parameters used are: fcn = 2100, fci2 = 7220, k2i = 400, fc22 = 203, C4
= 0.3, C5

= 4. In this

simulation results we add unknown perturbations in the last two equations of (6.1), thus we

have:

di

-ir
= -jia + apipa + npPwT'ir<b-l-Ua/om + 0.1sin(t)

díih
— = -lib + aPlpb-npPWrlpa + Ub/Om +0.1cos(í)

The Figure 6.1 shows the reference tracking result of torque using the proposed controller.

The torque reference is proposed as a sinusoidal signal i.e. Tref = 1 + 0.2s¿n(7rt) and the load

torque is T¡ = 1 Nm. Figure 6.2 shows the rotor flux magnitude response. The rotor fluxes

magnitude reference is %ef = 0.15W&2. The rotor speed wT is shown in 6.3. As expected, wr

asymptotically reaches the designed variable wss and it remains bounded.

(6.13)

(6.14)
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Figure 6.1: a) Electrical torque Te (solid) and reference Tref (dotted) [Nm vs s]
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Figure 6.2: a) Rotor fluxes magnitude V response [ Wb2 vs s]; b) zoom of a)
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Figure 6.3: a) Motor speed wT (solid) and the integral variable wss (dotted) [rad/s vs s]; b)
zoom of a)

6.2 Robust SM Regulator for Perturbed Nonminimum Phase

System

In this section we present an example applying the proposed methodology shown in 3.5,

the unknown perturbations are considered of two types: vanishing and non-vanishing ones.

Consider a third order system modeled by the equations

¿i = X2 + 2sm(xi) -r* gi (x, t)

x2 = u + g2(x2,t)

x3
= xi+x2 + x3 + g3(x,t) (6.15)

y
= xi

and the exosystem

wi
=

w2

W2
=

-Wl (6.16)
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first, we define the error variable zi = xi
—

yref where yref
=

u>i, the dynamic of zi is given

by

¿i = x2 + 2sm(xi) + gi (x, t)
-

yref

then, we take x2 as a. virtual control for s_. Now, we impose the desired dynamics for this

block and the desired valué for X2 is X2,_
= — fcizi —

w2 + 2s¿n(xi)
—

pis¿577i(pizi) where

fci > 0, then following the iterative transformation (3.114)-(3.124) we define 22 = X2
—

x2td,

the dynamics for Z2 are

¿2 = u + g2(x,t) -

X2,d

now we define the sliding variable o =
Z2

-

a3, where a3
= c(x3

—

i.3(w)) -

p3sigm(p3z3)

with c > 0 and w3(w) = —102 is the steady state for X3, that was calculated solving the

Francis-Isidori-Byrnes equation (3.90). The super-twisting controller [Levant, 2001] is in the

form

u = —fcn \o\
'

sign(o) + vu

vu = -ki2sign(o) (6.17)

under conditions (3.97), when the sliding mode occurs on the manifold o = 0 then the

dynamics of the system are described by

ii = -fcizi + z2
-

pisigm(piz{) + gi(z,w, t)

z2 - a3(x3,w)

¿3 = (1 -

c)z3
-

p3sigm(p3z3) + g3(z, w, t) (6.18)

where z = [zi , Z2]T The selected control parameters are c = 65, fci = 20, fcn = 160, fci2 = 420.

For the first block in (6.18) we propose the Lyapunov candidate function Vi = z\pi and we

obtain pi as the solution of the Lyapunov equation 2fcipi = 1 which is scalar in this case. It

is easy to see that the result is pi = 0.0078. In the same way, for Z3 we propose the Lyapunov

candidate function V3 = z\p3 and p3
= 3 and p3

= 0.025. The simulations results are shown

in Figures 6.4-5, the first three ones show the results in the case when the perturbations are

non-vanishing, then gx(x,w,t) = 2sin(t) and g3(x,w,t) = 2cos(t) + 3sin(t). For the vanishing

case, the results are in the last two figures, and for that we define gi(x,w,t) = 1.5(x3 +w2),

g3(x, w, t) = 2.3(xi -wi). The output tracking performance is shown in Figure 6.4 and Figure
6.5 presents the output tracking error zx . Figure 6.6 shows the tracking error e3 = X3

- 7r3(u;)
and the variable Z2.
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6.2. Robust SM Regulator for Perturbed Nonminimum Phase System

Figure 6.4: Output xi (solid) and reference signal w\ (dotted), under non-vanishing pertur
bation.
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Figure 6.5: Error z%, under non-vanishing perturbation.

In Figure 6.7 we present the result for the output tracking error when the system is under

vanishing perturbation. For this case we change the gains c = 6 and fci = 2. FinaUy, in Figure

6.8 we present the steady state error for x3 and the variable z2.
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6.3 Discrete-Time Sliding Mode Regulator for Pendubot

ln this section, we apply the proposed control scheme presented in the section 5 to a discrete

versión of the Pendubot [Spong and Vidyasagar, 1989] which is set as a nonUnear affine

discrete-time system. This model was obtained in [Rivera et al., 2010] by means of the

Symplectic Euler method outlined in [Stem and Desbrun, 2006]:

a-i.fc+i
=

xitk + Sx3ik + 6 (63.fcP1.fc + b3ikUk)

X2,k+1
=

X2,k + SX4lk + S2(bi,kP2,k + í>4,fcUfc)

3-3.A-+1
=

^3,fc + <-*(63,fcPl,fc + b3lkUk)

Xi,k+l
=

X4,fc + <5(&4,fcP2,fc + &4,fcWfc) (6.19)

Vk =

X2,k-

where xiik
= Xi(k6), i = 1,2,3,4, 63,fc = 63(3.2,**). 64,fc = 64(x2,fc), pi,fc = pi(xfc), P2,fc = Pi(xk),

Xfc
= x(kS). Please refer to [Rivera et al., 2010] for the detailed description of the parameters.

This model will be used for the control law design

Figure 6.6: a) Error e3¡ b) variable Z2- Under non-vanishing perturbation.
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Figure 6.7: Error £_, under vanishing perturbation.

Discrete-time SM Regulator for Pendubot

To represent the system (6.19) to the regular form, we define a nonlinear transformation

xu = (íijk.Í2jk,Í3jfc-í-igk)r = ^(xk) oí the following form:

Xljc
=

Xljc
-

Hjc-lKjc-l1^^

X2Jc
=

X_¿
-

ÓX4jc

X3Jt
=

X3jc
-

¡Hjc-ib^^Xijc

xijc
=

xiM. (6.20)

i:

Figure 6.8: Error e3 and variable z_a under vanishing perturbation.
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The discrete-time model of the Pendubot (6.19) is now represented in the new variables Xfc

by taking one step ahead in (6.20) in the regular form

zi,fc+i
=

Xl,k + (Pk-i
-

Pk)(x2,k + 2<5x4ifc) + <5x3,fc

+ <5263,fc(pi,fc -P2,k)

X2,k+l
=

X2,jfc + 5x4>fc

X3,k+l
=

X3¿ + (Pk-1
-

Pk)x4,k + Sb3,k(Pl,k
-

P2,k)

X4,*;+l
=

X4,fc + 6bijc(p2,k + Uk)

yk
=

x2.k

where pfc
= 63ifc6^, 63)fc = 63(x2>fc), 64,fc = 64(x2,fc), pi.fc = pi(xfc), P2,fe = P2(xfc).

Now, the steady-state for system (6.19), xTk = (xik,X2k,x_\k,xTAk)T will be determined.

For that, we consider the following exosystem that will genérate a sinusoidal shape output

reference signal:

wi,fc+i
= cos(at5)u>i.fc -I- sm(a6)w2_k

u¡2,k+i
= -

sin(a<5)u>i,fc -I- cos(a<5)u,2,fc, (6*21)

where a is the frequency of the generated signals and if the initial conditions are chosen as

toi ,0
—

u)2¡o, then, the amplitude is i/^iui.o-
The steady state for the output is assigned as x2k

=
w2_k- Making use of a natural

steady-state constraint given in [J. et al., 2008], that states that, the sum of the two angles,

qi and q2 equals 7r/2, one can easily determine the steady-state for Xi.t as x\ k = i. ¡2 —

xá¡ k-

Finally, the steady-state valúes for X3.fc and X4,fc can be determined by using the first two

equations in (6.19), in the form of difference equations, i. e., x\ fc+1
= (x\ k+1

-

xrlk)/5 and

xi,k+l
=

(x2,k+l
~~

x2.k)/°-

Transforming xk through the diffeomorphism (6.20) results in the steady state vector

xk
~

\xl.k>x2,k>x3,k'x4:.k)
■

—<p 7- » f i — ir r

xl,k
—

xl,k
~

°3,k~l°4,k-lX2,k
=r „r s r

x2,k
~

X2,k
~

ox4,fc

x3,k
=

x3,k
~

b3)k-lb^k-lX4,k

xlk = x\,k- (6-22)

where bT3k = b3(xT2k), br4k = 64(x_>fc).
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6.3. Discrete-Time Sliding Mode Regulator for Pendubot

Now, we introduce the error variable vector zk = xk- xk, and taking one step ahead on

Zfc, yields in the following error system:

zfc+i-*=0(zfc,x£) (6.23)

where (/>(■) = (¿i(-),<k(-), &>(•)- «MOf with

<t>i,k(-) =

zijk + x[.k + (pk-l
-

Pfc)(z2,fc + X^fc)

-I- 2<5(pfc_i -

pfc)(z4,fc + x\k)

+ 6(z3,k + Í3,r,fc) + Ck,

<f>2,k(-) =

z2¿ + X_\k + <$(z4.fc + X/__>r.k)
-

X_fc+1

4>3,k(-) =

Z3,fc + x5ifc + (pfc_i-pfc)(z41fc-)-x5)fc)

+ &b3,k(pi,k
-

P2,k)
-

xT3ik+i,

04,fc(-) =

24)fc + X^fc + ¿64.fcP2.fc -^.fc+l + *64>fcUfc.

and cit = S2b3tk(pitk —

p2.fc)
—

x\ k+v We can see that the part of error system (6.23) has the

BC form, therefore, to design a sliding manifold we first apply the BC technique. Define a

new variable £2,*;
=

Z2,fc, and taking one step ahead we have

£2,k+l
=

£2,k + X2,k + &x\k + <5z4.fc
-

X_)fc+i

Considering z4_^ as virtual control, we formúlate its desired valué zf k as

4,k = -(V-5) (*2,r,fc + íx^ + fc2£2fc -

xT2k+i)

to induce the desired dynamics fc2£2fc with |fc2| < 1 for £2fc. Defining now a new error variable

£4.fc
=

Z4.fc
— zfk, and taking a step ahead yields

■*-4,fc+i
=

z^k + x\k + ¿64.fcP2.fe
-

xr4k+i + Sb^kUk

+(V*5)Kfc+i+Kfe+i)

+(1/6) (k2E2Mi
-

xr2<k+2)

For the residual dynamics, we also define £i.fc
=

zi.fc and £3.fc
=

Z3.t. Then, the system

(6.23) is represented in the new variables as

£i,fe+i
= V'lO) (6*24)

£2,fe+l
= Í>2(-)

£3,k+l
= ^3(0

£4,fe+i
= il>4(-) + Sh,kUk (6*25)
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^i(-) = £i,k+xrhk + (pk-i-Pk)(£2,k + xT2ik)

+26(pk-i
-

Pk)(£4,k
~ (1/S)

(x_ifc + fc2£2fc-X_)fc+i))

+6(E3.k + x3¡k) + <5263,fc(pi,fc -

p2,fc)

!fT
~Xl,k+V

Í>2(-) =

£2,fc + XT2k + áx4,r,fc + (5(£4,fc + z£fc)
-Td,
X2,fc+1*

Í>3(-) =

£3,k + X3,k + (Pfe-1
-

Pk)(£4,k + z\k)

+(pk-i - Pk)(xl,k)

+6b3¡k(pi,k -P2,k)
-

x3,k+ii

1p4(-) =

£4,fc
- (!/<->) (X2,fe + Sx4,k + k2£2k)

-(Ví) (-^.fe+l)

+*4,fe + ¿64.fcp2.fc

+(l/-5)(x^fc+1-x_)A.+2)

+(fc2/(5)(£2,fc -I- x^fc + 5x\.k
-

xr2Mi)

+k2(£4,k
- (!/<*) (x2.k + <^4,fc))

+k2(£4,k
- (1/S) (k2£2k

-

x2_k+i))

Now, we regard the system (6.25) in the form £fc+i
= (£fc+i-£fc+i) with

1 1 \T
£fc+i

=

\£l,k+li£2,k+l,E3,k+l)

£k+\
= (£4,fc+l) *

Also we have

£k+l
= V^fe, Xk) + l(Ek, X2tk)uk

where where .>(■) = W1(-),4>2(-))T with ^(.) = (tfi(0,fc(-).lk(0)T ^2(0 = -M") and

7(0 = (71(0,72(0)T - 7*(0 = (0,0, 0)r 72(*) = -564,fe, pk = (pk-i-pk), andp3,fe =Pi,fc-P2,fe.

Now, one defines the sliding manifold as follows:

Ok
= 0, (Tfc

=

£4,fc + fcl£l,fc + fc3£3,fe (6*26)
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6.3. Discrete-Time Sliding Mode Regulator for Pendubot

with parametrs fci and fc3. To forcé the states of the system (6.25) to the sliding manifold

(6.26) one make use of the proposed discrete-time super-twisting controller

«fc = -PiVWk\si9n(<7k) + Ck

Cfc+i = Cfc ~ S(p2\Aak\sign(ok) + gCfc)

When the sUding mode occurs on ok = 0, one can calcúlate £4 fc from (6.26) as

£4,k
= ~ki£i,k

-

k3e3ik. (6.27)

Then, by replacing (6.27) in the three first equations of (6.25) yields to the follwing SM

equation:

4+1 = 4>k (6-28)

v>fc = ^(4.4.4)k=o*

The parameters fci, k2 and k3 should stabilize the sliding mode dynamics (6.28). For a proper

choice of such constant parameters one can linearize the SM equation (6.28) as

ek+i
= Asm(«;)£fc

where Agm(/t) = di_bk/dEk |_i=o, with k = (fci,fc2,fc3). To choose the design parameters, a

polynomial with desired poles is proposed as Pd(z) = (z — Ai)(z
—

A2)(z
— A3). The coefficients

of the characteristic equation that results from the matrix Asm are equalized with the ones

related with Pd(z), i. e., det(zl
—

Asm) = Pd(z)- So, in such manner one can find expUcit

relations for n. In this case Zwnfc_i.00£fc = 0, accomplishing with the control objective.

Simulations

In order to show the effectiveness of the control methodology here proposed, simulations

have been carried out. The nominal valúes of the parameters of the Pendubot are defined

as foUows: mi = 0.8293, m2 = 0.3402, Zi = 0.2032, lcX = 0.1551, lc2 = 0.1635125, g = 9.81,

Ii = 0.00595035, 12 = 0.00043001254, ¿¿1
= 0.00545, p,2 = 0.00047. The constant parameters

used in the control law are Ai = 0.9941 + 0.0030J, A2 = 0.9941 -

0.0030J and A3 = 0.9978.

The vector « depends on the different valúes assigned to S and therefore it is only shown

for the particular valué of 6 = 0.001, resulting in fci = 3710.0, fc2 = 0.037281, fc3 = 103.17.

The controUer gains are selected as pi
= 3, p2 = 1 and q

= 2. The parameters used in the
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exosystem (6.21) are a = 0.3, tui.o
=

W2,o
— 0.09 and the reference signal is given by tU2,fc- It

is

worth mentioning that the Pendubot has been simulated as a continuous time system, in order

to consider a more realistic condition. In Figure 6.9 is shown the output X2,fc performance.

We can observe that the angle X2,fc tends asymptotically to the reference.

ao so 100

Figure 6.9: a) Angle X2.it (solid) and reference signal w2,k (dotted) [rad vs s]; b) zoom of a)

In Figure 6.10 is shown the residual dynamics xi and X3. We can see that those variables

become stable.

90 100

10 20 30 40 BO 60 70 80 80 100

Figure 6.10: a) Angle xi.fc performance [rad vs s]; b)speed X3.fc [(rad/s) vs s]
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Chapter 7

Conclusions and Future Work

7.1 Conclusions

Solutions for Sliding Mode Output Regulation problem for nonlinear nonminimum phase (NP)

systems with both matched and unmatched perturbations have been presented. The causal

and noncausal cases for the reference signals are considered in the presented solutions. The

presented solutions can be applied to the systems with arbitrary relative degree vector.

The Integral SUding Mode Output Regulation Problem for NP perturbed nonlinear sys

tems presented in the unstructured General and Regular forms has been introduced for the

noncausal case, and the solvability conditions are derived.

Two robust regulators designed based on the block control linearization for a class of NP

nonünear systems presented in structured form have been proposed for the noncausal case. In

the first regulator design the matched perturbation is rejected while in the second one both

matched and unmatched perturbations are rejected.

Three robust regulators for NP perturbed nonlinear systems presented in structured form

have been proposed for the causal case. On one of these three regulators designs both matched

and unmatched perturbations are rejected, in the other two designs the matched perturbation

is rejected. Two approaches to obtain a bounded solution for unstable internal dynamics have

been presented.

Discrete-Time SM Output Regulation Problem for discrete time NP nonlinear systems pre

sented in structured form with matched perturbations has been introduced for the noncausal

case and the solvabiüty conditions are derived.
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7.2 Future Work

As future work, the foUowing topics are considered:

• The real time appUcation of the proposed regulators to induction motor and pendubot.

• To extend the Robust SM Output Regulation in the noncausal case for the problem

when only the output is available.

• To extend the Robust SM Output Regulation in the causal case for the problem when

only the output is available.

• To design a adaptive observer which generates the full steady state when only the output

is available for the noncausal case and the system has unknown perturbations.

• To design a adaptive observer which generates the full steady state when only the output

is available for the noncausal case and the system has unknown perturbations.

• To design a adaptive observer which generates the full steady state when only the output

is available for the noncausal case and the system has unknown perturbations.

• To design a adaptive observer which generates the full steady state when only the output

is available for the causal case and the system has unknown perturbations.
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