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Jordi Soĺıs López

Advisor

PhD. Tonatiuh Matos Chassin

Mexico city, Mexico.
January 21, 2022





A mis padres



Agradecimientos

A mi asesor Dr. Tonatiuh Matos Chassin por todo su apoyo y enseñanza.
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Resumen

Desde la primera mitad del siglo pasado se empezaron a encontrar inconsistencias entre las
predicciones teóricas y las observaciones astronómicas que dieron lugar a la introducción de un
nuevo tipo de materia en el universo, la materia oscura. Se han propuesto diferentes modelos de
materia oscura o de teoŕıas gravitacionales alternativas para evitar la introducción de este tipo
de materia. El modelo más popular, simple y exitoso hasta el momento es el modelo de materia
oscura fŕıa, en éste, la materia oscura está compuesta de part́ıculas masivas no relativistas que
interactúan débilmente con la materia ordinaria. Aunque este modelo ha sido muy exitoso a
nivel cosmológico, a nivel galáctico tiene algunos problemas, uno de los cuales, conocido como el
problema de los planos de galaxias satélite, es estudiado en este trabajo a través de un modelo
alternativo conocido como materia oscura de campo escalar.

Este modelo de materia oscura ha sido capaz de ajustar las observaciones cosmológicas
al mismo nivel que el modelo estándar y ha podido resolver de manera natural muchas de las
dificultades a escalas astronómicas que el modelo estándar no ha podido por lo que ha empezado
a ganar mucha atención en la comunidad cient́ıfica.

En este trabajo revisamos los problemas abiertos del modelo de materia oscura fŕıa a escala
astronómica, dando especial atención al problema de los planos de galaxias satélite, posterior-
mente se revisan los aspectos generales del modelo de materia oscura de campo escalar, para
después estudiar una visión alternativa del modelo donde los halos galácticos de materia oscura
ahora están compuestos por estados excitados axialmente simétricos. Finalmente este tipo de
halos se propone para explicar algunos de los aspectos del problema de los planos de galaxias
satélite como es la distribución anisotrópica de las galaxias satélites que orbitan alrededor de
nuestra Vı́a Láctea.
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Abstract

From the first half of the last century, inconsistencies began to be found between theoretical
predictions and astronomical observations that led to the introduction of a new type of matter in
the universe, dark matter. Different models of dark matter or alternative gravitational theories
to avoid the introduction of this type of matter have been proposed. The most popular, simple,
and successful model so far is the cold dark matter model, in which dark matter is composed
of massive non-relativistic particles that weakly interact with ordinary matter. Although this
model has been very successful at the cosmological level, at the galactic level it has some
problems, one of which, known as the planes of satellite galaxies problem, is studied in this
work through an alternative model known as scalar field dark matter.

This dark matter model has been able to adjust the cosmological observations to the same
level as the standard model, and it has been able to naturally solve many of the difficulties on
astronomical scales that the standard model has not, which is why it has started to gain a lot
of attention in the scientific community.

In this work we review the open problems of the cold dark matter model on an astronomical
scale, paying special attention to the planes of satellite galaxies problem, later we review the
general aspects of the scalar field dark matter model, and then study an alternative vision of the
model where the galactic dark matter halos are now composed of axially symmetrical excited
states. Finally, this type of halos is proposed to explain some of the aspects of the planes of
satellite galaxies problem, such as the anisotropic distribution of satellite galaxies orbiting our
Milky Way.
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Chapter 1

Introduction

The standard cosmological model Λ cold dark matter (ΛCDM) and the cosmological obser-
vations are consistent with a universe consisting of ∼ 68.4% dark energy, ∼ 26.6% cold dark
matter and ∼ 4.9 % baryons (all particles of the Standard Model of Elemental Particles). In
this model, the dark energy is modeled as a constant Λ in the Einstein equations, and the dark
matter as non-relativistic, collisionless (cold) particles that interact only gravitationally. dark
matter is the main topic of this work.

Dark matter and dark energy are two types of exotic matter that, although together make
more than 90% of the universe, have not been directly detected yet, and their nature and
behaviour are not fully understand. Dark energy is the name given to a kind of matter (or
mechanism) responsible of an accelerating expansion of the universe, while dark matter is a
kind of matter that is not visible (does not interact with electromagnetic fields -dark-) but
is necessary to explain cosmological and astrophysical observations as we will discuss in the
following section.

1.1 Dark matter

First hints that something was not been matching between theory expectations and observations
were given since the beginning of the last century, with the realization that to match the observed
velocity dispersion of Milky Way stars with the modeled one, a nonvisible matter had to be
present in the galaxy. Later, with the observation of galaxy clusters, the problem became more
evident, Fritz Zwicky estimated the mass and velocity dispersion of the galaxies belonging to the
Coma cluster, observed and predicted velocity dispersion mismatched by one order of magnitude
and implied a excessive large mass-to-light ratio of the galaxies within the cluster [Zwicky, 1937].
A missmatch between galaxy masses inferred from the dynamics and the predicted by models
in the Virgo cluster were also found.

Not only in galaxy clusters but in the galaxies them selves, dark matter was perceived by
means of the rotation curves (the circular velocity of the stars within a galaxy as a function
of its galactocentric distance). As well as on the galaxy clusters, in the beginning of the XIX
century, the first measurements of the circular velocity of stars within the Andromeda a.k.a.
Messier 31 (M31) galaxy were made. Later on rotation curve measurements of others spiral
galaxies were made, all of those showing almost flat rotation curves at large radii, the circular

1



Figure 1.1 Andromeda (M31) galaxy rotation curve a flat tail is observed at large radii (r >
20kpc) instead of a keplerian tail.

velocities of stars at large radii were larger than the expected by a stellar disk. In Figure 1.1
the Andromeda galaxy rotation curve is plotted, a flat tail is observed at large radii instead of
the expected keplerian fall.

In the 60’s and 70’s with the coming of radio astronomy, it was possible to measure the
21cm spectral line of hydrogen emission in galaxies (the change of hyper fine states of hydrogen
electrons in the ground state) and hence the rotation curves of galaxies. The photometry
measurements of M31 improved as well [Rubin and Ford, 1970], by comparing the scale length
of an exponential stellar disk of the photometric fit and the 21 cm rotation curve Freeman [1970]
noted the lack of matter in this galaxy (and in others later) and that the distribution of this
matter had to be very different from the exponential distribution of a stellar disk.

To explain this missing (non-visible) matter some candidates where proposed. Massive
compact objects with low or null luminosity like Jupiter-like planets, brown, red and white
dwarf stars, black holes and neutron stars, among others. Although this massive astronomic
compact halo objects (MACHOs) are the most obvious and reasonable candidates, MACHOs
can be only a few contribution of the dark matter in the universe [J. Hegyi and A. Olive, 1983].
Non-baryonic objects have been proposed too, for example the primordial black holes, black
holes formed before the big bang nucleo synthesis, because of the low formation rate, they could
not be sufficient to describe all dark matter in the universe.

The favorite candidate for the nonbaryonic dark matter is the cold dark matter model in
which dark matter consist on weak-interacting massive particles (WIMPs), these particles are
collisionless, weakly selfinteractive, and weakly and gravitationally interactive with baryons.
Unfortunately the attempts to detect WIMPs directly or indirectly [Gaskins, 2016] have no suc-
cessful results, and a large range of parameters thought to be detectable has not been measured.

Cold dark matter N -body simulations of structure formation are successful in reproducing
the observed structure pattern of clusters of galaxies, filaments and voids [White et al., 1987].
The structures grow bottom-up hierarchically, the small over densities collapse first and then
they merge to form larger objects. Simulations also show that the density profiles of the halos
have self-similar shapes [Navarro et al., 1997, Wang et al., 2020], all the density profiles fit the
universal Navarro-Frenk-White (NFW) profile at all scales [Navarro et al., 1997], the profile is
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proportional to r−1 (‘cuspy’) at small radii, and decays as r−3 for large radii.
Besides the already mentioned rotation curves of galaxies and the observations in galaxy

clusters, without the dark matter component in the universe, it is difficult to explain:

• The observed anisotropies in the cosmic microwave background radiation [Peebles, 1982,
Springel et al., 2005].

• The large-scale structure formation in the universe [White et al., 1987, Springel et al.,
2005].

• The galactic formation process [Springel et al., 2005].

• The interaction in the galaxy cluster pair 1E0657-56 (the Bullet cluster): The collision
of two galaxy clusters leads to a separation of stellar matter (the galaxies, behaving as
collisionless particles and detected trough optical images), and the x-ray emitting plasma
clouds (slowed down by ram pressure, and detected by X-ray imaging). As the X-ray
plasma is the dominant visible (baryonic) matter, the gravitational potential should trace
its distribution with lensing reconstructions.

The lensing reconstruction of Clowe et al. [2006] pointed that the potential traced the
distribution of another collisionless matter. There where a displacement between the peaks
of the reconstructed gravitational potential and the brightest cluster galaxies and an offset
of the the peaks of the reconstructed gravitational potential and the plasma clouds [see
Figure 1 of Clowe et al., 2006], so the presence of another source of gravitational potential
in the system (dark matter ) was needed.

• Other micro-lensing observations in galactic clusters, like the observation of ringlike struc-
tures [Jee et al., 2007].

Although Λ cold dark matter describes observations well at cosmological scales (∼ 1 to
∼ 15000 Mpc), it is in apparent conflict with some observations on small scales (< 1 Mpc) some
examples are:

• The core-cusp problem: The best candidates to study the internal structure of dark matter
halos are the dark matter dominated galaxies, where the uncertainty of the mass-to-light
ratio of the baryonic matter to account for their mass contribution is not a problem. The
dwarf spiral galaxies are dark matter dominated from distances of 1 kpc. The problem
is that their rotation curves indicate the presence of a constant dark matter density in
the center of galaxies ρ ∼ r0 (a core) [Moore, 1994, Flores and Primack, 1994], it has
actually a logarithmic inner slope on the order α = −0.2 [Oh et al., 2011, de Blok et al.,
2003], while the halos of cold dark matter simulations present a cusp density in the center
ρ ∼ r−1[Dubinski and Carlberg, 1991, Navarro et al., 1997] (α = −0.2). Although better
resolution simulations have been made [for example Navarro et al., 2010, Stadel et al.,
2009], all of them still show the cusp central density at small radii.

• The missing satellites problem: The number of subhalos (halos that host dwarf galaxies)
of Milky Way-like halos predicted by cold dark matter simulations is much larger than
the observed number of satellite galaxies of the Milky Way [Klypin et al., 1999, Moore
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et al., 1999]. The Milky Way galaxy halo should contain O(103) satellite galaxies with
mass ∼ 108M� while in the Local Group only O(10) are actually seen.

• The “too big to fail” problem [Boylan-Kolchin et al., 2011, 2012]: “The most massive
satellites should be “too big to fail” at forming galaxies if the lower-mass satellites are
capable of doing so” [Bullock and Boylan-Kolchin, 2017]. The subhalos of Milky Way-like
halos in Λ cold dark matter simulations are too dense to host galaxies like the bright
(LV > 105L�) dwarf satellites observed in the Milky Way . There should be at least ten
subhalos (bright satellites) in the Milky Way with circular velocities v > 25 km/s, while
the Milky Way satellites have 12 km/s < v < 25 km/s. The same problem is also observed
with non satellite galaxies of the Milky Way in the Local Group [Papastergis, E. et al.,
2015] and in the satellites of the Andromeda galaxy [Tollerud et al., 2014].

• The diversity of dwarf galaxy rotation curve shapes [Santos-Santos et al., 2020]: There is a
great diversity in dwarf galaxies rotation curves with the same maximum circular velocity
vmax, this diversity goes from fast rising rotation curves to slow rising rotation curves .
The observation of this great diversity contrasts with the expected identical cold dark
matter rotation curves for galaxies with the same vmax resulting from self-similar NFW
profiles of cold dark matter simulations. This problem is also related with the core-cusp
problem, in the low rising rotation curves there is a lack of matter in the galaxy center
that is associated with a core dark matter density.

• The relations between baryonic properties and kinematic properties like the baryonic
Tully-Fisher relation or the radial acceleration relation.

The baryonic Tully-Fisher relation Mb = Av4
f (A = 47 ± 6 M�km−4s4) is obtained from

data of gas-rich galaxies, the baryonic mass Mb is the sum of the stellar and gas contri-
butions and is related to the flat circular velocity vf (the velocity at which the rotation
curve tends to become flat) to the fourth power. This relation is a prediction of MOND
(see below) but it is not obtained in the Λ cold dark matter model, in this theory the
predicted power is 3 [McGaugh, 2012].

Another prediction of MOND, not obtained in the Λ cold dark matter model is the radial
acceleration relation that is obtained from data of elliptic, spiral, dwarf spheroidal and
irregular galaxies, here, a correlation between gobs the observed acceleration traced by the
rotation curves and gb the acceleration due to the observed distribution of baryons is found

gobs = gb

(
1− e−

√
gb/g†

)−1

[Lelli et al., 2017].

• The planes of satellite galaxies problem: there is an anisotropic distribution of satellite
galaxies in the Milky Way , Andromeda and Cen A galaxy systems, satellites appear to
be distributed and co-orbiting within planes. This will be addressed in detail in Section
1.2.

To help solving the cold dark matter issues several alternatives have been proposed, some
examples are:

• Warm dark matter [Colin et al., 2000, Narayanan et al., 2000, Abazajian et al., 2001]: In
this model the warmions are particles with light mass mWDM ∼ 1keV/c2 that could be
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for example massive neutrinos, sterile neutrinos, gravitinos, majorons (pseudo-Goldstone
bosons), shadow-world neutrinos or mirror-world neutrinos [Sommer-Larsen and Dolgov,
2001]. One difference between warm dark matter and cold dark matter is that warmons
suppress the power spectrum at small scales limiting the substructure formation and acting
like cold dark matter at large scales.

• Nonthermally produced WIMPs [Lin et al., 2001]: When WIMPS have this origin, the
power spectrum is also dumped at small scales that will imply less substructure and less
cuspy halo cores and thus making WIMPS still good dark matter candidates.

• Self-interacting cold dark matter [Spergel and Steinhardt, 2000, Rocha et al., 2013]: In this
scenario, dark particles are still cold and nondissipative but now they have self-interactions
that could be attractive or repulsive, with a large scattering cross section (much larger
than the dark matter annihilation cross section) and the particle mass goes from 1 MeV
to 10 GeV. This model predict spherical cores in halos and a lower number of satellites.

• Feedback effects of baryonic matter on the halo profile [Governato et al., 2010, Garrison-
Kimmel et al., 2013]: To explain the too-big-to-fail problem, adding dynamical effects
of supernova feedback to the numerical simulation has been proposed, unfortunately, the
number of supernovae necessary to decrease the core densities is too large to be able to
solve the problem.

• Ultra light boson particles: This model will be addressed in detail in Section 1.1.1

Instead of adding an unknown type of matter, the modification of the gravitational law has
also been studied. For example:

• Modified Newtonian dynamics (MOND): The aim of this phenomenological theory is to
modify the Newtonian dynamics in the limit of small accelerations a � a0 to no longer
require the existence of dark matter , here a0 ∼ 1.2× 10−10m/s2 is a constant introduced
in this model to modify the acceleration a respect to the newtonian acceleration aN as
a ≈ √aNa0 so the acceleration of a test particle due to the presence of a body of mass
M at a distance r would be a2 = MGa0r

−2, to recover the Newtonian limit of high
accelerations a� a0 the introduction of a function µ(a/a0) is necessary, this function has
to be µ(a/a0) ≈ 1 for a � a0 and µ(a/a0) ≈ a/a0 for a � a0, the disadvantage is that
the functional form of µ(a/a0) has to be put in by hand [Milgrom, 1983a,b,c, 2002].

1.1.1 Scalar Field Dark Matter

An alternative model to cold dark matter that started in the 90’s proposed by Sin [1994], Ji and
Sin [1994] and Lee and Koh [1996] is the Scalar Field Dark Matter . Although it began in those
years it was not until 1999 with Guzmán et al. [1999], and after, in the 2000’s with Guzmán and
Matos [2000], Matos et al. [2000], Matos and Ureña-López [2000], Sahni and Wang [2000], Hu
et al. [2000], Matos and Ureña-López [2001], Arbey et al. [2001, 2002] and Arbey et al. [2003]
that the first systematic studies of this model began.

This model has been rediscovered or/and appeared under various names, like Fuzzy Dark
Matter [Hu et al., 2000], Quintessential Dark Matter [Arbey et al., 2001], Wave Dark Matter
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[Bray, 2010, Schive et al., 2014a], ultra-light Dark Matter [Hui et al., 2017], ultralight axionic
particles [Membrado et al., 1989] and Bose-Einstein condensate dark matter [Böhmer and Harko,
2007] among others. Here the most general and descriptive name: Scalar Field Dark Matter will
be used [for reviews of SFDM, see Magaña and Matos, 2012, Suárez et al., 2014, Rindler-Daller
and Shapiro, 2014, Marsh, 2016, Niemeyer, 2020].

The scalar field dark matter model assumes the dark matter in the universe is comprised
of ultralight spinless boson particles. At cosmological scales it was first analyzed in Matos
and Ureña-López [2000], the boson mass µ is one of the free parameters of the model and
determines the cut-off scale of the mass power spectrum. The mass has to be ultra-light to
mimic the behavior of the cold dark matter model at cosmological scales, this is, it would have
the same mass power spectrum [Matos and Ureña-López, 2001] and the same cosmic microwave
background (CMB) temperature power spectrum [Hlozek et al., 2015]. Due to the success at
large scales (> 1 Mpc) of the Λ cold dark matter , any correct theory of the description of the
universe must differ only at small (< 1 Mpc) scales.

The scalar field dark matter is an ultra-light complex (or real) scalar field Φ minimally
coupled to gravity, and interacting only gravitationally with baryonic matter. The equation of
motion of such a scalar field is the Klein-Gordon equation

�Φ +
dV (Φ)

d|Φ|2
Φ = 0

where the potential V (Φ) accounts for the self-interactions of the scalar field, and the d’Alambert
operator is defined as � = ∇µ∇µ = ∇µg

µν∇ν , here∇m is the covariant derivative and the metric
tensor gµν is the solution of the Einstein field equations

Gµν =
8πG

c4
Tµν

where Gµν is the Einstein tensor, Tµν the energy momentum tensor and G the gravitational
constant.

The scalar field potential usually is assumed to be of the form

V (Φ) =
µ2c2

~2
|Φ|2 +

Λ

2
|Φ|4

when the autointeraction Λ = 0 it is called the free field case or fuzzy dark matter .
In the cosmological treatment, a flat, homogeneous and isotropic universe is assumed using

the Friedman-Lemaitre-Robertson-Walker (FLRW) metric

ds2 = −c2dt2 + a2(t)
(
dr2 + r2dΩ2

)
where a is the scale factor and dΩ2 = dθ2 + sin2 θdφ2.

To model the evolution of the universe the presence of baryons, radiation (and neutrinos),
dark energy and dark matter is required, the dark matter is modeled with a scalar field, dark
energy with a cosmological constant Λ or a scalar field (quintessence), and the rest of ingredients
as perfect fluids with different equations of state.

The Einstein equations with the FLRW metric become the Friedman equations, these to-
gether with the Klein-Gordon equation and the continuity equations of the rest of perfect fluids
dictate the evolution of the universe:
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Figure 1.2 Evolution of the density parameters as function of the scale factor.

Ḣ = −4πG

c4

(
Φ̇2 +

4

3
ργ + ρb

)
1 = ΩDM + Ωγ + Ωb + ΩΛ

Φ̈ = −3HΦ̇− dV (Φ)

dΦ
(1.1)

ρ̇i = −3H(ρi + Pi)

where Ωi are the energy densities defined as Ωi = 8πG
3c4

ρi
H2 , ρi and Pi are the density and pressure

of dark matter (DM), baryons (b), radiation and neutrinos (γ), each satisfying different equation
of state ω = P/ρ.

The system (1.1) is solved using as boundary conditions the energy densities observed today
Ωi0. In Figure 1.2 the dimensionless energy densities are plotted as function of the scale factor.
The standard cosmological evolution is recovered.

Analyzing the evolution of the perturbations gives the essential differences with the cold dark
matter model. First, the evolution of the dark matter density contrast being almost the same
as the cold dark matter one except at a < 10−4 where small differences are observed [Matos and
Ureña-López, 2000]. Second, the scalar field Jeans length provides a cut-off of the mass power
spectrum at small scales as long as the boson mass be ultra-light µ ≈ O(10−24) ∼ O(10−22) eV/c2

[Hu et al., 2000, Matos and Ureña-López, 2001, Marsh and Ferreira, 2010, Harko, 2011a, Magaña
et al., 2012] reducing the abundance of low mass subhalos and being more consistent with the
amount of satellite galaxies observed in the Local Group.

Another difference with the cold dark matter model is the central density distribution in
scalar field dark matter halos. The scalar field dark matter model could solve the cusp-core
problem [Hu et al., 2000, Harko, 2011b, Su and Chen, 2011, Robles and Matos, 2012, Robles
et al., 2018]. Fitting the rotation curves of low-surface-brightness galaxies a core in the dark
matter central profile with logarithmic slope α = −0.27 is found Robles and Matos [2012].
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The early cosmological scalar field dark matter-only simulation of Woo and Chiueh [2009]
found cusps in central galactic regions, similar to the cold dark matter ones. Later, better cos-
mological dark matter-only simulations of structure formation [Schive et al., 2014a,b, Schwabe
et al., 2016, Veltmaat and Niemeyer, 2016, Mocz et al., 2017, Levkov et al., 2018, Hopkins, 2019,
Mocz et al., 2019, 2020] revealed early-forming cores in the dark matter density profile resulting
from the Heisenberg uncertainty principle. The resulting halos consisted thus of a central core,
a.k.a soliton [Chavanis, 2011, Marsh and Pop, 2015, Chen et al., 2017, Levkov et al., 2018],
surrounded by an NFW-like envelope generated by a quantum interference pattern.

The cosmological simulation of Schive et al. [2014a] shows a direct comparison between the
cold dark matter and the scalar field dark matter models at large scales, and this was done
by running both simulations with the same cosmological parameters. In their Figure 1, they
intentionally suppress the high k-modes in their cold dark matter plot to see only the large-scale
modes. Almost the same pattern of filaments and voids is observed for both models.

The Einstein-Klein-Gordon system in the weak field and non-relativistic limits (the Newto-
nian limit) becomes the Gross-Pitaevskii-Poisson system [Suárez and Chavanis, 2015]:

i~
∂Ψ

∂t
= − ~2

2µ
∇2Ψ + µVΨ + Λ|Ψ|2Ψ, (1.2)

∇2V = 4πG|Ψ|2 (1.3)

where Ψ(~x, t) is the order parameter, V (~x, t) the self-gravitational potential (the potential pro-
duced by the dark matter density |Ψ|2 itself) and the short-range autointeraction

Λ =
2π~2a

µ

is related with the scattering length a of the bosons. When there is no self-interaction Λ = 0,
the system becomes the Schrödinger-Poisson system. So at galactic scales the dark matter is
ruled by the Gross-Pitaevskii-Poisson system.

Boson stars [Ruffini and Bonazzola, 1969] are the stationary Ψ(t, ~x) = e−
iEt
~ Φ(~x) solutions of

the Schrödinger-Poisson system (relativistic boson stars are stationary solutions of the Einstein-
Klein-Gordon system) and describe a system of self-gravitating bosons all in the ground state.
The total mass of the Bose-Einstein condensate goes as

M ∼ m2
P

µ

where the plank mass is defined as

m2
p =

~c
G
.

For a system of bosons of µ ∼ 1 GeV/c2 the mass is extremely small M ∼ 10−19M� but for
ultra-light particles µ ∼ 10−22 eV/c2 this mass is M = 1012M�, adequate for astronomical
objects, in particular, it is interesting to model dark matter halos.

When the auto-interaction Λ is considered, the total mass and size of the configuration are
highly increased, even for small values of Λ [Colpi et al., 1986, Lee and Koh, 1996, Lesgourgues
et al., 2002] (see Figure 1.3 where the total mass N doubles the mass of the non auto-interactive
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Figure 1.3 Boson star, ground state equilibrium solution of the Gross-Pitaevskii-Poisson system
with Φ(0) = 1 and Λ = 0 (left panel) or Λ = 0.8 (right panel) fixed. The order parameter
Φ100, the dimensionless gravitational potential V̂ = V/c2, the dimensionless energy eigen-value
Ê100 = E100/(µc

2) and the dimensionless enclosed mass N = µM/m2
P at the dimensionless

radius r̂ = µcr/~ are plotted.

case Λ = 0 when Λ = 0.8). The auto-interaction may be repulsive Λ > 0 (a > 0) or attractive
Λ < 0 (a < 0) in which case there is a bound in the mass M of the configuration for an
equilibrium state to exist [Chavanis, 2011].

The stationary spherically symmetric Gross-Pitaevskii-Poisson (as well as the Schrödinger-
Poisson ) system, with fixed Λ, scalar field amplitude Φ(0) and specific boundary conditions of
the scalar field and gravitational potential, is solved as an eigenvalue problem, with eigenvalues
E and V (0). The ground state Φ100(r) is the solution for which the wave function has zero nodes,
and the excited states Φn00 solutions with n−1 nodes. In figure 1.3 the ground state equilibrium
solution of the Gross-Pitaevskii-Poisson system is plotted for both the non-interactive Λ = 0
and the auto-interactive Λ = 0.8 cases with fixed value of the amplitude at Φ(0) = 1.

In the scalar field dark matter model the dark matter halos are then self-gravitating Bose-
Einstein condensates spanning over galactic scales because of the assumed ultralight mass that
also gives a galactic-scale de Broglie wavelength that leads to quantum-like phenomena at this
scale.

The non-relativistic Schrödinger-Poisson system was first used in Sin [1994] describing the
macroscopic wave function of galactic halos to fit rotation curves , Sin obtained a particle mass
µ = 3× 10−23 eV/c2, nevertheless this was done using spherical excited states (Φ500) that later
turn out to be unstable, excited states settle down onto the ground-state equilibrium config-
uration [Guzmán and Ureña López, 2004]. Only the ground-state equilibrium configuration is
stable under radial and non-radial perturbations [Bernal and Guzmán, 2006].

Dark matter halos modeled as the stationary states of the Gross-Pitaevskii-Poisson system
have been used to fit the universal rotation curves [Persic et al., 1996] of large high and low-
luminosity spiral galaxies resulting in a boson particle mass in the range µ = 4 × 10−24 eV/c2

to µ = 1.6 × 10−23 eV/c2 [Arbey et al., 2001], and then, considering repulsive autointeraction
Lesgourgues et al. [2002] show that the mass could go further to µ ∼ 1 eV/c2 when Λ is in the
range [1, 10−4]. Lora et al. [2012] also modeled halos as the ground state of the Gross-Pitaevskii-
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Poisson system in dwarf galaxies to demonstrate that a mass of the scalar field 3×10−23 eV/c2 <
µ < 1 × 10−22 explain the distribution of globular clusters in Fornax and the longevity of the
cold clump in Ursa Minor.

Using the Thomas Fermi approximation (that becomes exact for large number of parti-
cles), stationary states have been also used to fit low-surface-brightness galaxies rotation curves
[Böhmer and Harko, 2007] and dwarf disk galaxies rotation curves [Arbey et al., 2003, Böhmer
and Harko, 2007]. In Silverman and Mallett [2002] the rotation curves of Andromeda (a
large spiral galaxy) and M33 (a dwarf spiral galaxy) were fitted obtaining a particle mass
µ = 10−24 − 10−23 eV/c2.

The dwarf spheroidal (dSph) galaxies are highly dark matter dominated systems and allow
to compare the dark matter profiles with stellar kinematical data through a Jeans analysis. In
Schive et al. [2014a] they use the velocity dispersion measurements of the Milky Way’s dSph
satellite galaxy Fornax and the core+NFW-tail fitted profile of their simulation

ρ =

{
ρsol

(1+(r/rsol)2)8
for r < rε

ρNFW

(1+(r/rs))2(r/rs)
for r > rε

to find a scalar field dark matter particle mass µ = 8.0+1.8
−2.0 × 10−23 eV/c2. Marsh and Pop

[2015] use another method, they fit the slopes of the mass profiles of two dSph: Fornax and
Sculptor, and they find a upper bound of the particle mass µ < 1.1 × 10−22 eV/c2 and the
result that there is no bound in the parameters of the NFW-tail part of the profile implying
a preference of the data to cores. With two ultra-faint galaxies of the Local Group: Draco II
and Triangulum II Calabrese and Spergel [2016], find a particle mass µ = 5.6 × 10−22 eV/c2

for Draco and µ = 3.8 × 10−22 eV/c2 for Triangulum using the measurements of the half-light
mass M1/2. Chen et al. [2017] made a Jeans analysis fitting 8 dSph Milky Way satellite galaxies
individually and then fitting all 8 simultaneously finding µ = 1.18+0.28

−0.24 × 10−22 eV/c2.
Nevertheless later an unbiased Jeans analysis on Fornax and Sculptor Milky Way satellite

galaxies fitting the velocity dispersion (averaged with the luminosity) of sub populations of stars
within the dwarf galaxies gave an upper bound of µ < 4×10−23 eV/c2 [González-Morales et al.,
2017].

Analysis with other types of dark matter dominated galaxies has also been done, for example,
with Dragonfly 44 ultra-diffuse galaxy Wasserman et al. [2019] obtained a particle mass of µ =
3× 10−22 eV/c2, and with the dwarf irregular Antlia II Milky Way satellite galaxy Broadhurst
et al. [2020] found a boson mass of µ = 1.1× 10−22 eV/c2.

In [Matos and Ureña López, 2007] a related idea that was proposed for the first time: the
mixed states (a.k.a. multistates), in which a complete galaxy halo in the scalar field dark matter
scenario is described by the gravitational co-existence of different spherically symmetric eigen-
states. Each state is described by a Schrödinger equation and the gravitational potential evolves
with the Poisson equation sourced by contribution of all states. When all boson particles are in
one state the system reduces to the usual Schrödinger-Poisson system. Matos and Ureña López
[2007] consider the multistate configuration composed of the ground state Φ100 and the first
spherically symmetric excited state Φ200, they realized that the first peak in the rotation curve
due to this multistate is set by the ground state and the size of the halo is set by the excited
state. The excited state produce another peak at larger radii that delays the Keplerian fall of
the rotation curve . This configurations are stable always that the mass ratio between the mass
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Table 1.1 Summary of the properties of the dwarf galaxies.
Name gas content luminosity mass MV found

L� M� mag

dIrr gas-rich < 109 -16 to -13.0 in field
BCD gas-rich < 109 MB > −18 in field
dE gas-poor ∼ 109− ∼ 107 ∼ 107− ∼ 109 -18 to -14.0 in galaxy clusters

dSph gas-poor ∼ 107− ∼ 105 ∼ 105− ∼ 107 -17 to -8 as satellites
UFD gas-poor ∼ 105− ∼ 103 ∼ 102− ∼ 105 -8.0 to -1.5 as satellites

of the excited state and the ground state N200/N100 is less than 1.1 [Ureña López and Bernal,
2010].

Recently, Guzmán and Ureña López [2020] showed a general method to find axisymmetric
multistate configurations, this method encompasses the single states (the usual Newtonian bo-
son stars), the spherical multistates of [Matos and Ureña López, 2007], the Newtonian l-boson
stars [Alcubierre et al., 2018], and they present the new axi-symmetric multistates. Further-
more, Guzmán and Ureña López [2020] show a possible formation process of this axi-symmetric
configurations by the collision of single states. The simplest of the multistate axi-symmetric
configurations consisting on the ground state Φ100 and the dipolar state Φ210 is stable [Guzmán,
2021].

The multistate scenario is just beginning and will be the center of attention in this work.

1.2 Planes of satellite galaxies problem

There are two giant galaxies (galaxies with stellar mass M∗ ∼ 1010M�) in the Local Group (at
distance < 1.5Mpc), our own, the Milky Way and the Andromeda galaxies, both having a set
of small dwarf galaxies (M∗ ≤ 109M�) gravitationally bounded to them. The giant galaxies
are called host galaxies while their gravitationally bounded dwarf galaxies are called satellite
galaxies. There are also field dwarf galaxies, galaxies that are not gravitationally bounded to a
host. In Figures 1.4, 1.7 and 1.11 the satellites of the two host galaxies in the Local Group are
plotted.

Dwarf galaxies are defined as galaxies with stellar masses M∗ ≤ 109M�, or with circular
velocities below 100 km/s, or with magnitude in the V band MV ≤ −17 mag (or MB ≤ −16 mag
in the blue band). There are two groups of dwarf galaxies: gas-rich galaxies with ongoing star
formation and gas-poor galaxies with old stellar populations. The former includes blue compact
dwarfs (BCDs) and dwarf irregular galaxies (dIrrs), and they are mostly field dwarf galaxies. The
latter includes dwarf elliptical galaxies (dEs), dwarf spheroidals (dSphs) and ultrafaint dwarfs
(UFDs), and they are mostly satellite galaxies of spiral and elliptical galaxies or members of
galaxy clusters (see Table 1.1).

Given their stellar mass, dwarf galaxies in the Local Group are classified in three classes: the
bright dwarfs with M∗/M� = O(107) − O(109), the classical dwarfs with M∗/M� = O(105) −
O(107), and the ultra-faint dwarfs with M∗/M� = O(102)−O(105).

Although cosmological simulations with the standard cold dark matter model predict that
satellites must be isotropically distributed in the host halo and with random motions (in a Milky

11



Way-like galaxy should have ∼ 500 sub-halos within 500kpc), in the Milky Way system this does
not happen. In Figure 1.7 all classical and ultra-faint Milky Way satellites are plotted, beside
the lack of satellites, it is evident the anisotropic distribution, all satellites are close to the polar
axis and there is an empty zone, although there exists also a zone where the satellites might
be obscured by the Milky Way stellar disc because our position inside the galaxy (see Figure
11 in Bullock and Boylan-Kolchin [2017]), this obscured zone does not cover all the empty area
where not even ultra-faint satellites have been discovered.

Since the seventy’s it has been realized that Milky Way satellites appear to be in an
anisotropic disc-like planar structure [Lynden-Bell, 1976], in those years there were no pre-
dictions of structure formation with cosmological simulations in cold dark matter , it was until
2005 with cosmological simulations results in hand that Kroupa et al. [2005] make the first
study of the distribution of the 16 then-known Milky Way satellites, by fitting the positions
of N satellites, N = 3, 4, ..., 16. Kroupa et al. found that satellites lay in a disk-like structure
perpendicular to the Milky Way stellar disc and that satellites could not come from an isotropic
distribution even when they remove from the sample three satellites that were known to be
kinematically related. Kroupa et al. also obtained the first hints that the satellites where co-
orbiting, with the few (four) available measurements of the satellite’s orbital poles being almost
parallel with the vector normal to the fitted plane.

Once that the proper motion measurements of the classical satellites were available, it was
possible to find the galactocentric velocities of the satellites and hence, their angular momenta.
In Figure 1.5 (see also Figure 1 in Metz et al. [2008]) the orbital pole (angular momentum
direction) of the classical Milky Way satellites is plotted in galactocentric spherical coordinates.

Metz et al. [2008] used the currently available proper motion measurements of 8 classical
satellites to obtain the orbital poles, and they realized that most of these satellites co-orbit
in a planar disk-like structure. This is, the mean direction of the satellites’ orbital poles (l =
177◦, b = −9.4◦) were almost parallel with the normal to the fitted plane for the 11 Milky Way
satellites (l = 157.3◦, b = −12.7◦)[Metz et al., 2007, 2008], see Figure 1.6 where an edge-on
view of the plane of a posterior fit by Lipnicky and Chakrabarti [2017] of the Classical satellites
is shown. The flattened structures of the simulated cold dark matter sub-halos did not show
that behaviour, instead the sub-halos tended to disperse Metz et al. [2008]. Later on Pawlowski
and Kroupa [2013] used the proper motions of all 11 classical satellites and came to the same
conclusion (with 8 of the 11 satellites co-orbiting within the plane).

There is a richer structure because not only satellites, but globular clusters (30 objects)
form a similar disk plane (see Figure 5 in Pawlowski et al. [2012]) with normal vector (l =
144◦, b = −4.3◦) closely aligned with the disk of satellites, furthermore, the normal vectors
of seven streams of stars and gas closely align with the disk of satellites normal vector too
[Pawlowski et al., 2012]. This richer structure around the Milky Way is called the vast polar
structure (VPOS).

Because of the lack of satellites around the Milky Way (there were only 11 known bright
satellites called the classical satellites, see Figure 1.4), people start looking (searching for stellar
over-densities) for less luminous satellites. Since 2005, with the Sloan Digital Sky Survey (SDSS)
[York et al., 2000] sixteen fainter Milky Way satellite galaxies have been discovered. This
galaxies are fainter than the faintest classical Milky Way satellites (Ursa Minor and Draco), so
they were called ultra-faint satellites. In Figure 1.7 all the Milky Way satellites are plotted in
galactocentric coordinates.
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Figure 1.4 The Milky Way Classical satellites. Upper left: 3D plot of in galactocentric Cartesian
coordinates The horizontal line represents the stellar disk of the Milky Way. Upper right:
projection in the xz and yz planes in galactocentric cartesian coordinates of the 3D distribution.
Bottom: aitoff projection in latitude b and longitude l galactocentric spherical coordinates of the
3D distribution. In color scale the distance from the galactic center to the satellite is plotted.
Data from Pawlowski and Kroupa [2013]
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Figure 1.5 Mollweide (left panel) and Lambert (right panel) projections in latitude b and lon-
gitude l galactocentric spherical coordinates of the orbital poles (angular momentum direction)
of the Milky Way classical satellites. Data from Pawlowski and Kroupa [2013]

Figure 1.6 Left: Fitted plane of the Milky Way classical satellites made by Lipnicky and
Chakrabarti [2017], the dotted lines are the rms height of the plane, the sample is the same
as in Figure 1.4 but rotated an angle ϕ = 158◦, rotated coordinate is xp = x cosϕ + y sinϕ so
that the plane is viewed edge-on. Middle: same fit but now plotting the ultra-faint satellites of
Figure 1.7 too. Right: same fit but now plotting the new satellite candidates of Figure 1.8 too.
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Figure 1.7 Same as in Figure 1.4 but for the Milky Way Classical + ultra-faint satellites. Data
from Pawlowski et al. [2013].
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With 11 classical plus 13 currently known ultra-faint Milky Way satellites, Kroupa, P. et al.
[2010] fitted the positions of the galaxies and found that even with the addition of the new
satellites, a disk-like structure is still preserved, with a normal vector pointing to (l = 156.4◦, b =
−2.2◦) and a 57.8 kpc thickness. Furthermore the ultra-faint satellites fitted independently
define a very similar (less thick and more inclined) plane to the classical satellites one with a
normal vector pointing to (l = 151.4◦, b = 9.1◦) [Kroupa, P. et al., 2010].

The SDSS covers only the north galactic region, so new surveys began to explore beyond the
SDSS footprint, specifically on the southern galactic hemisphere. More than 20 objects have
been discovered: star clusters, unconfirmed dwarf galaxy candidates, and unclassified objects.
In Table 1.2 the name, distance from the galactic center (rMW ), and galactocentric coordinates
(x, y, z) of all the Milky Way satellites together with the new discovered objects are written, and
in Figure 1.8 are plotted in galactocentric coordinates. With the addition of 11 new satellite
candidates to the known Milky Way satellite data, Pawlowski et al. [2015] found a similar plane
with normal pointing to (l = 164◦, b = −6.9◦) and a width of 61.8 kpc, and thinner 42.6 kpc, if
4 outliers are removed from the fitting sample, hence this new objects are consistent to be part
of the VPOS.

More recently, the Gaia Collaboration in its Data Release 2 (DR2) [Gaia Collaboration, 2018]
independently measured the proper motion of the 11 classical Milky Way satellites, Pawlowski
and Kroupa [2020] combined it with the old data to find the best measurements of the orbital
poles, in Figure 1.9 the orbital poles with the combined sample are plotted, compare with Figure
1.5 error bars are now considerably smaller, specifically the ones from Sextans and Carina dwarfs,
Carina’s orbital pole now pointing so much closer to the orbital pole cluster around l ∼ 180◦

consisting of LMC, Draco, Ursa Minor, SMC, Leo II, Fornax and Sculptor (counter orbiting
l ∼ 180◦ out of phase). The mean direction of the 7 most concentrated orbital poles points at
(l = 179.5◦, b = −9◦) Pawlowski and Kroupa [2020] close to the direction of the normal to the
fitted plane for the 11 Milky Way satellites (l = 157.3◦, b = −12.7◦)[Metz et al., 2007, 2008].
This result confirms that classical Milky Way satellites co-orbit close to the plane formed by
their positions increasing the tension with the cold dark matter model simulations where only
less than 0.1 % of the systems [Pawlowski and Kroupa, 2020] have that much satellite orbital
poles as aligned as the Milky Way has.

In figure 1.10 a compilation of all normal vector directions to the fitted planes of Milky Way
satellites made by different authors is plotted. The directions of the average orbital pole of the
7, 6, and 5 most concentrated orbital poles are also shown.

Since 2006, it was realized that in the Andromeda system something similar was occurring, 9
of the then-known 15 Andromeda satellites were aligned in an almost polar (l = 107.1◦, b = 6.9◦)
plane [Koch and Grebel, 2006]. In Metz et al. [2007] using two fitting algorithms and two
different data sets the similar conclusion was found a thin (18.8kpc width) plane with 8 galaxies
but not in a polar direction (l = 168◦, b = −26.7◦), and then adding a sample of 11 more dwarf
galaxies [Metz et al., 2009]. Metz et al. [2007] also gave the first hint to a kinematic correlation
of satellites in the Andromeda system.

Later on, with a better sample of 27 satellites of the PAndAS 1 database, it was confirmed
that 13 satellites were aligned in a thin (of ∼ 14 kpc width) and extensive (400 kpc diameter)
plane [Ibata et al., 2013], the Great Plane of Andromeda (GPoA), they were not only aligned but

1Pan-Andromeda Archaeological Survey
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Figure 1.8 Same as in Figure 1.4 but for the Milky Way Classical + ultra-faint satellites + new
satellite candidates. Compare with Figure 1.7, new objects fill the southern galactic hemisphere
mostly at 90◦ < l < 120◦. Data from [Pawlowski et al., 2015] see also Table 1.2.

Figure 1.9 Same as in Figure 1.5 but with the data of Gaia DR2. Data from Pawlowski and
Kroupa [2020]
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Figure 1.10 Red star markers are the normal of the fitted plane of the positions of the Milky
Way satellites on galactocentric longitude l and latitude b. Results by 1: Metz et al. [2008],
2: Kroupa, P. et al. [2010], UFD 2: Kroupa, P. et al. [2010] considering the ultra faint dwarf
satellites in the fit, 3: Pawlowski et al. [2012], 4: Pawlowski et al. [2015]. Markers with error
bars are the directions of the average orbital pole of the 7 (blue), 6 (magenta) and 5 (green)
most concentrated orbital poles [Pawlowski and Kroupa, 2020].

their motions were non-isotropic, they all appeared to have their orbital poles almost parallel
indicating that the satellites in the plane structure were rotating [Ibata et al., 2013], see Figure
2 of Ibata et al. [2013] where the satellites and the plane are plotted.

The satellite distribution in the Andromeda system doesn’t look as anisotropic as the Milky
way’s, because the GPoA only consists of almost half of the total known satellites, only a part
of the satellites is anisotropic, one could ask your self if the whole group of Milky Way satellites
something similar could be happening. Indeed, but only from 2 to 6 of the 27 classical and
ultra-faint Milky Way satellites could be part of an isotropic distribution [Pawlowski, 2016]
with a very high confidence.

In a posterior study of Conn et al. [2013], the authors found a more thin (∼ 12 kpc width)
plane disc of 15 satellites, along with very interesting asymmetries, the plane is perpendicular
to the Milky Way stellar disc, is viewed edge-on from the Milky Way and is orthogonal to the
Milky Way VPOS.

Beside the 2 already mentioned planes in the Local Group, the VPOS and the GPoA,
Pawlowski et al. [2013] found that there are two more dwarf galaxy planes in the Local Group,
one with 9 field dwarf galaxies and the other one with 5 (see Figure 9 in Pawlowski et al. [2013])
with only one non-satellite galaxy of the Local Group not belonging to either.

Some possible explanations of the planes of satellites problem within the cold dark matter
frame have been proposed, for instance, that the alignment of satellites is due to the accretion
of dwarf galaxies along filaments, or due to the accretion of dwarf galaxies in groups (see for
example Pawlowski [2018] and references therein) but these explanations do not completely
solve the problem or have inconsistencies.

One viable process in which a spatially and kinematically correlated system like the VPOS
and GPoA systems could form, is the formation of galaxies in gas-rich tidal tails formed by
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Figure 1.11 Same as in Figure 1.4 but for the Andromeda (M31) satellites. Data from Pawlowski
et al. [2013].
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the interaction of galaxies [Pawlowski, M. S. et al., 2011], the problem is that, in the cold dark
matter model this tidal dwarf galaxies are dark matter free galaxies opposite to the observed dark
matter dominated Milky Way dSph satellites. There are works studying tidal dwarf galaxies in
alternative dark matter models, for example Foot and Silagadze [2013].

Other possibility is that the Milky Way and Andromeda are atypical galaxies in which this
unexpected coherent distribution of dwarfs happens. Nevertheless, in addition to the Local
Group there exists another group within the Local Volume (volume at distance < 10Mpc), the
Centaurus Group, in which the Cen A subgroup, a set of 31 satellites interacts gravitationally
with the elliptical galaxy Centaurus A (Cen A), displays similar behaviours. Having three
systems so close together with the same behaviours makes that explanation insufficient.

First the anisotropy of the distribution of satellites in the Cen A subgroup was discovered, 27
of the then-known 29 Cen A satellites were found to lie in two almost parallel planes (see Figure
1 in Müller et al. [2016]) one with 346 kpc major axis, 73 kpc minor axis and 77 kpc width;
the second one with 250 kpc major axis, 46 kpc minor axis and 55.7kpc width [Tully et al.,
2015], in Figure 1.12 the Cen A satellites are plotted, colored in red, blue and grey meaning
that they belong to plane 1, 2, or not belonging to neither, respectively. But with the later
discovery of more satellites it turn out to be just one 69kpc wide and 309kpc major axis long
planar structure orthogonal to the dust plane [Müller et al., 2016].

Later in 2018 the coherent motion of satellites and planetary nebulae was discovered. Back
then with the current knowledge of 31 Cen A satellites of which 16 had measured line-of-sight
(LoS) velocities Müller et al. [2018] find that 14 out of the 16 satellites could be co-rotating
within the plane. The probability of finding such a system in cosmological simulations was 0.1%
and 0.5 % for the Millenium-II [Boylan-Kolchin et al., 2009] a DM-only N -body simulation and
for the Illustris [Vogelsberger et al., 2014] a dark matter plus gas physics, star formation and
feedback simulation, respectively.

Recently Müller et al. [2021] studied the Cen A system with the addition of more discovered
satellites, adding a total of 28 to their analysis, and they state that the probability of finding
such a system in the Illustris cosmological simulation was 0.2% with the exception that in the
simulations those structures are not long lived.

Noticing that now three galaxies, Cen A, Milky Way, and M31, of two different types (two
spirals and one elliptical) show the same phenomenon (see Figure 1 on Pawlowski [2018]),
indicates the possible need of an alternative explanation based on different dark matter models.

In this work, the possibility that multistate equilibrium configurations of an ultra light
bosonic scalar field, considered as dark matter halos, could explain this observation due to the
anisotropic (axially symmetric) mass density of the halo is explored. In these axisymmetric
halos, there are regions where the mass density is higher, or equivalently local minimums of
the halo gravitational potential that will influence the trajectories of particles and structures
within the halo, and make them distribute in a non-isotropic manner. Explaining the observed
anisotropic distribution of satellites and might eventually explain the coherent motion of satellite
galaxies in the Milky Way, Andromeda and Centaurus A systems.
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Figure 1.12 The CenA satellites. Upper left: 3D plot of in galactocentric Cartesian coordinates.
Upper right: projection in the xz and yz planes in galactocentric cartesian coordinates of the 3D
distribution. Satellites are colored in red, blue and grey meaning that they belong to plane 1, 2,
or not belonging to neither, respectively. Bottom: aitoff projection in latitude b and longitude
l galactocentric spherical coordinates of the 3D distribution. In color scale the distance from
the galactic center to the satellite is plotted. Data adapted from Müller et al. [2018].
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Table 1.2: Milky Way satellites and satellite galaxy can-
didates. Distance from the center of the Milky Way
(rMW) and galactocentric Cartesian coordinates (columns
3,4,5). Data from Pawlowski et al. [2015]

Name rMW x y z Type
(kpc) (kpc) (kpc) (kpc)

Sagittarius 18.4 17.1 2.5 -6.4
Large Magellanic Cloud (LMC) 50.0 -0.6 -41.8 -27.5
Small Magellanic Cloud (SMC) 61.2 16.5 -38.5 -44.7

Draco 75.9 -4.4 62.2 43.2
Ursa Minor 77.8 -22.2 52.0 53.5

Sculptor 86.0 -5.2 -9.8 -85.3 Classical
Sextans I 89.0 -36.7 -56.9 57.8

Carina 106.8 -25.1 -95.9 -39.8
Fornax 149.3 -41.3 -51.0 -134.1
Leo II 235.9 -77.3 -58.3 215.2
Leo I 257.4 -123.6 -119.3 191.7

Canis Major 13.4 -11.9 -6.2 -1.0
Segue I 27.9 -19.4 -9.5 17.7

Ursa Major II 38.0 -30.6 11.6 19.2
Bootes II 39.5 6.6 -1.7 38.9
Segue II 40.8 -31.8 13.9 -21.4

Willman 1 42.9 -27.7 7.6 31.8
Coma Berenices 44.9 -10.6 -4.3 43.4

Bootes III 45.8 1.3 6.9 45.3
Bootes I 64.0 14.8 -0.8 62.2 ultra-faint

Ursa Major I 101.6 -61.1 19.8 78.7
Hercules 126.1 84.1 50.7 79.1
Leo IV 154.8 -15.1 -84.8 128.6

Canes Venatici II 160.6 -16.5 18.6 158.7
Leo V 178.6 -21.5 -91.9 151.7

Pisces II 181.1 14.9 121.7 -133.3
Canes Venatici I 217.5 2.1 37.0 214.3

Kim I 19.1 -2.7 14.4 -12.3 Star Cluster
Kim II (Ind I) 98.9 67.5 -17.3 -70.2

Ret II 33.0 -9.7 -20.4 -24.1
Lae 2 (Tri II) 36.6 -29.8 17.4 -12.2

Hor II 80.0 -9.6 -48.7 -62.7
Hor I 83.5 -7.2 -48.0 -67.9
Phe II 88.1 28.7 -27.2 -78.8 Unclassified
Eri III 91.2 -4.3 -46.0 -78.7
Grus 1 116.4 50.6 -23.0 -102.2
Pic I 121.9 -28.1 -88.2 -79.2

Continued on next page
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Table 1.2 – Continued from previous page
Name rMW x y z Type

(kpc) (kpc) (kpc) (kpc)

Tuc II 59.2 24.4 -20.4 -49.9
Hydra II 129.0 40.8 -102.4 66.8 Unconfirmed

Pegasus III 203.1 44.3 143.5 -136.8 dwarf galaxy
Eri II 365.0 -86.2 -211.4 -284.7
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Chapter 2

Multistate scalar field dark matter

A system of self-gravitating spinless bosons in the Newtonian and non-relativistic limits is
ruled by the Gross-Pitaevskii-Poisson system, in which the order parameter Ψ describes the
macroscopic Bose-Einstein condensate , in the special case of null auto-interaction the Gross-
Pitaevskii-Poisson reduces to the Schrödinger-Poisson system. When not all boson particles
are in the ground state, each state is described by its own Gross-Pitaevskii equation and is
gravitationally coupled among the rest through the Poisson equation, resulting in a more general
Schrödinger-Poisson system [Matos and Ureña López, 2007, Ureña López and Bernal, 2010]:

i~
∂Ψnlm

∂t
= − ~2

2µ
∇2Ψnlm + µVΨnlm, (2.1)

∇2V = 4πG
∑
nlm

|Ψnlm|2 (2.2)

where the wave function of each state is Ψnlm(~x, t), and V (~x, t) is the gravitational potential
sourced by the mass density

ρ =
∑
|Ψnlm|2.

If dimensionless stationary states

Ψnlm(t, r, θ, ϕ) =
µc2

~
√

4πG
eiEnlmt/~Φnlm(r, θ, φ) (2.3)

are considered, it becomes

∇2Φnlm −
2µ

~2
(µV + Enlm)Φnlm = 0, (2.4a)

∇2V =
µ2c4

~2

∑
nlm

|Φnlm|2, (2.4b)

the harmonic time-dependence (2.3) of the wave function makes the mass density

ρ =
µ2c4

4πG~2

∑
nlm

|Φnlm|2

time independent and hence the gravitational potential time independent too.
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If the redefinitions V̂ ≡ V/c2, Ênlm ≡ Enlm

µc2
and µ̂ ≡ µc/~ are made then equations (2.4)

become a fully dimensionless, scale-free, system for the quantities Φnlm and V̂ :

∇̂2Φnlm − 2(V̂ + Ênlm)Φnlm = 0, (2.5a)

∇̂2V̂ =
∑
nlm

|Φnlm|2, (2.5b)

The constant µ̂ has units of length−1 and makes the coordinates and the Laplace operator
dimensionless: r̂ = µ̂r and ∇̂2 = 1

µ̂2
∇2.

The enclosed mass at radius r is

M(r) =
c2

Gµ̂
N(r̂) (2.6)

where N =
∑

n,l,mNnlm is the dimensionless enclosed mass, and the number of particles Nnlm

of each state is

Nnlm =

∫
|Φnlm|2r̂2dr̂dΩ.

The Schrödinger-Poisson system (2.5) is invariant under the scaling property(
r̂,Φnlm, V̂ , Ênlm, N

)
→
(
r̂/λ, λ2Φnlm, λ

2V̂ , λ2Ênlm, λN
)

(2.7)

for any real parameter λ (see e.g. Guzmán and Ureña López [2004]).
When only a single state is considered there are two free parameters for our model, the

particle mass µ and the scaling parameter λ, but whenever more states are considered, extra
free parameters appear, those could be, for example, the ratio between wave function amplitudes

ζ ≡ ψ100(0)

ψnlm(0)

or the ratio between total masses

η =
N100(r)|r→∞
Nnlm(r)|r→∞

Using this λ parameter, it is possible to construct an infinite number of solutions of the
Schrödinger-Poisson system once one solution is known.

The Compton length of the boson particle is

LC =
~
µc

=
1

µ̂
,

and establishes the typical length scale of the configurations, it is useful to fix units in terms of
a mass scale as

LC = 0.1pc

(
10−22eV

µc2

)
,

From equation (2.6) the mass scale of the configurations is
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MC =
c2

Gµ̂
=
m2
P

µ
=

(
10−22eV

µc2

)
1012M�, (2.8)

as mentioned in the introduction, for ultra-light particles this mass is adequate for astronomical
objects, like dark matter halos, for example, for µ = 10−24 eV/c2 this mass is MC = 1014M�.

The physical mass of each multipolar contribution of a multistate configuration is obtained
considering the scaling property

Mnlm =
√
λNnlmMC .

The circular velocity vh of a particle under an external axi-symmetric potential V (r, θ) is

v2
h = r

∂V

∂r

∣∣∣∣
θ=π/2

this relation can be written in dimensionless variables

v̂2
h =

v2
h

c2
= r̂

∂V̂

∂r̂

∣∣∣∣
θ=π/2

,

in the special case of the Schrödinger-Poisson system, this circular velocity will also follow a
scaling property

v̂h →
√
λv̂h

that will allow us to fit the rotation curves of galaxies.
In what follows dimensionless variables will be used and the ˆ symbol will be dropped for

simplicity.
Several cases for the multistate Schrödinger-Poisson system (2.5) can be considered:

1. The simplest possibility is to consider a single state, when all boson particles are in the
same state Φnlm, with n taking only one value 1, 2, ..., and also for l and m taking one of
its possible values l = 0, 1, .., n− 1 and m = −l,−l+ 1, ..., l. In this case there is only one
Schrodinger equation (2.5a) and only one term in the right hand side of Equation (2.5b).
It happens that in the single state case only the ground state Φ100 is stable [Guzmán and
Ureña López, 2004].

2. Newtonian l-boson stars, configurations where the dark matter density in the right hand
side of Equation (2.5b) is of the form

∑l
m=−l |Φnlm|2 with fixed n and l. This configurations

are spherically symmetric because of the Unsöld’s theorem
∑l

m=−l Y
m
l (θ, φ)Y m∗

l (θ, φ) =
2l+1
4π

.

3. Multistates, configurations where boson particles are in many different sates. A specific
configuration (called from now on multiSFDM) where some particles are in the ground
state and some in only one other excited state will be used in this work only. The dark
matter density in the right hand side of Equation (2.5b) is then of the form |Φ100|2+|Φnlm|2,
with fixed n, l and m (this numbers can take the values n = 2, 3, ...; l = 0, 1, .., n− 1; and
m = −l,−l + 1, ..., l), and there is one Schrödinger equation (2.5a) for each state, one for
the ground state and one for the excited state.
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In the scalar field dark matter model a galaxy halo is modeled as a boson gas in the ground
state, a galactic-size boson star. The idea now is that the halo should be described with a
collection of states. The number of states and the particular value of the n, l,m parameters in
the multistate configuration should depend on the process of evolution and formation of the
galaxy interested to model, so in general these parameters should not be able to be set in a
general way for all types of galaxies.

2.1 General method for the construction of bound solu-

tions

In this section the general framework of Guzmán and Ureña López [2020] to search for stationary
solutions of multistate wave functions of the Schrödinger-Poisson system of equations (2.5) is
reproduced in detail.

First the following expression in spherical coordinates for the stationary wave function is
assumed

Φnlm(r, θ, ϕ) =
√

4πrlψnlm(r)Y m
l (θ, ϕ), (2.9)

next, the gravitational potential V is expanded as

V (r, θ, φ) =
√

4π
∑
l,m

Vlm(r)rlY m
l (θ, φ) (2.10)

where Y m
l (θ, φ) are the spherical harmonics and (n, l,m) can only take the values

n = 1, 2, 3, ...

l = 1, 2, ..., n− 1

m = −l,−l + 1,−l + 2, ..., l − 2, l − 1, l.

The Laplacian operates in functions expanded in this form as:

∇2F (r, θ, φ) =
√

4π
∑
l,m

Y m
l (θ, φ)rl∇2

rl
Flm(r)

where F is a generic function that could be V or Φnlm and Flm are the radial functions in the
expansion in spherical harmonics, and the l-Laplacian operator is defined as

∇2
rl
≡ d2

dr2
+

2(l + 1)

r

d

dr
.

The multiplication of two spherical harmonics can be written in terms of a third as

Y m1
l1

(θ, φ)Y m2
l2

(θ, φ) =
∑
l,m

Gl1,l2,l
m1,m2,m

Y m
l (θ, φ)

where

Gl1,l2,l
m1,m2,m

=

√
(2l1 + 1)(2l2 + 1)

4π(2l + 1)
〈l1, 0, l2, 0|l, 0〉 〈l1,m1, l2,m2|l,m〉
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are the Gaunt coefficients, as l’s and m’s are integers the last equation is equivalent to

Gl1,l2,l
m1,m2,m

=

∫
4π

Y m1
l1

(Ω)Y m2
l2

(Ω)Y m∗
l (Ω)dΩ (2.11)

the Gaunt coefficients are nonzero when

|l1 − l2| ≤ l ≤ l1 + l2, (2.12a)

m = m1 +m2, (2.12b)

l1 + l2 + l is even. (2.12c)

Poisson equation

Using equations (2.9, 2.10) Poisson equation (2.5b) becomes

∑
lm

Y m
l r

l∇rlVlm =
√

4π
∑
l1m1

r2l1ψ2
n1l1m1

Y m1
l1

(−1)m1Y −m1
l1

=
√

4π
∑
l1m1

(−1)m1r2l1ψ2
n1l1m1

∑
l2m2

Gl1l1l2
m1,−m1,m2

Y m2
l2

because of condition (2.12b) m2 = 0, and then∑
lm

Y m
l r

l∇rlVlm =
√

4π
∑
l2

∑
l1m1

(−1)m1Gl1l1l2
m1,−m1,0

r2l1ψ2
n1l1m1

Y 0
l2

using the linear independence of the spherical harmonics, each (l,m) in the left side is equal to
each (l2,m2 = 0) in the right side of the previous equation so

rl∇rlVl0 =
√

4π
∑
l1m1

(−1)m1Gl1l1l
m1,−m1,0

r2l1ψ2
n1l1m1

(2.13)

this is the final expression of the Poisson equation and shows that the gravitational potential
V thus does not have azimuthal angle φ dependence.

Schrödinger equation

Using equation (2.9) in the Schrödinger equation (2.5a)

∇2
rl
ψnlm(r) = 2(V + Λ|Ψnlm|2 − Enml)ψnlm

= 2

(
√

4π
∑
l1m1

Vl1m1r
l1Y m1

l1
+ 4πΛr2lψ2

nlmY
m
l (−1)mY −ml − Enml

)
ψnlm

= 2

(
√

4π
∑
l1m1

rl1Vl1m1Y
m1
l1

+ 4πΛ(−1)mr2lψ2
nlm

∑
l2,m2

Gl,l,l2
m,−m,m2

Y m2
l2
− Enlm

)
ψnlm
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then multiplying both sides of the equation by Y m
l Y

m∗
l and integrating all the equation over

the solid angle Ω, and using (2.11) results in

∇2
rl
ψnlm(r) = 2

(
√

4π
∑
l1m1

Gl1,l,l
m1,m,m

rl1Vl1m1 + 4πΛ(−1)mr2lψ2
nlm

∑
l2,m2

Gl,l,l2
m,−m,m2

Gl2,l,l
m2,m,m

− Enlm

)
ψnlm

the condition (2.12b) implies that both m2 and m1 are zero.

∇2
rl
ψnlm(r) = 2

(
√

4π
∑
l1

Gl1,l,l
0,m,mr

l1Vl10 + 4πΛ(−1)mr2lψ2
nlm

∑
l2

Gl,l,l2
m,−m,0G

l2,l,l
0,m,m − Enlm

)
ψnlm

(2.14)
the relation (2.14) is the final expression of the stationary Schrödinger equation.

Schrödinger-Poisson system

In summary the Schrödinger-Poisson system is now composed of equations (2.13) and (2.14)

∇2
rl
Vl0(r) =

√
4π

rl

∑
n1,l1,m1

(−1)m1Gl1,l1,l
m1,−m1,0

r2l1ψ2
n1l1m1

(2.15a)

∇2
rl
ψnlm(r) = 2

(
√

4π
∑
l1

Gl1,l,l
0,m,mr

l1Vl10

+ 4πΛ(−1)mr2lψ2
nlm

∑
l2

Gl,l,l2
m,−m,0G

l2,l,l
0,m,m − Enlm

)
ψnlm. (2.15b)

the Gaunt coefficients are nonzero when

|l1 − l2| ≤ l ≤ l1 + l2,

m = m1 +m2,

l1 + l2 + l is even.

As said before, a specific configuration composed of only two states, the ground state and
one excited state will be only used in this work.

2.2 multiSFDM case (100, 21m)

The multiSFDM case (Ψ100,Ψ21m) occurs when the source terms in the Poisson equation (2.15a)
are ψ100 and ψ21m, in this case the equation is

∇2
rl
Vl0(r) =

√
4π

rl

(
(−1)0G0,0,l

0,0,0r
0ψ2

100 + (−1)mG1,1,l
m,−m,0r

2ψ2
211

)
=

√
4π

rl

(
G0,0,l

0,0,0ψ
2
100 + (−1)mG1,1,l

m,−m,0r
2ψ2

211

)
(2.16)
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because of (2.12a) the first coefficient G0,0,l
0,0,0 is non-zero only for l = 0, and the second coefficient

G1,1,l
m,−m,0 is non-zero only for 0 ≤ l ≤ 2, and because of (2.12c), l can only take the values

l = 0, 2.
Therefore, there are going to be only two terms in the gravitational potential expansion V00

and V20, and thus two equations (2.16):

∇2
r0
V00(r) =

√
4π

r0

(
G0,0,0

0,0,0ψ
2
100 + (−1)mG1,1,0

m,−m,0r
2ψ2

211

)
(2.17a)

∇2
r2
V20(r) =

√
4π

r2
(−1)mG1,1,2

m,−m,0r
2ψ2

211 (2.17b)

but G0,0,0
0,0,0 = 1√

4π
, (−1)mG1,1,0

m,−m,0 = 1√
4π

for m = 0,±1 and

(−1)mG1,1,2
m,−m,0 =

{
1√
5π
, for m = 0

− 1
2
√

5π
, for m = ±1

Thus the system (2.17) becomes

∇2
r0
V00(r) = ψ2

100 + r2ψ2
21m,

∇2
r2
V20(r) = Cψ2

21m, (2.18)

where the constant

C =

{
2√
5
, for m = 0

− 1√
5
, for m = ±1

(2.19)

The Schrödinger equations for states ψ100 and ψ21m are found from Equation (2.15b):

∇2
rl
ψ100(r) = 2

(
√

4π
∑
l1

Gl1,0,0
0,0,0 r

l1Vl10 − E100

)
ψ100

∇2
rl
ψ21m(r) = 2

(
√

4π
∑
l1

Gl1,1,1
0,m,mr

l1Vl10 − E21m

)
ψ21m

in the first equation condition (2.12a) tells l1 = 0, and in the second equation condition (2.12a)
tells l1 = 0, 1, 2 but condition (2.12c) restrict to the values l1 = 0, 2 thus:

∇2
rl
ψ100(r) = 2

(√
4πG0,0,0

0,0,0r
0V00 − E100

)
ψ100

∇2
rl
ψ21m(r) = 2

(√
4π
(
G0,1,1

0,m,mr
0V00 +G2,1,1

0,m,mr
2V20

)
− E21m

)
ψ21m

but G0,0,0
0,0,0 = G0,1,1

0,m,m = 1√
4π

, and

G2,1,1
0,m,m =

{
1√
5π
, for m = 0

− 1
2
√

5π
, for m = ±1

so finally the system becomes

∇2
r0
ψ100(r) = 2(V00 − E100)ψ100,

∇2
r1
ψ21m(r) = 2(V00 + Cr2V20 − E21m)ψ21m (2.20)

where C is the same constant that appears in equation (2.19).
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Final boson star-like system

In summary, the equations of motion for the multiSFDM case (100, 21m) are (2.18) and (2.20):

∇2
r0
ψ100(r) = 2(V00 − E100)ψ100,

∇2
r1
ψ21m(r) = 2(V00 + Cr2V20 − E21m)ψ21m,

∇2
r0
V00(r) = ψ2

100 + r2ψ2
21m,

∇2
r2
V20(r) = Cψ2

21m, (2.21)

where the constant

C =

{
2√
5
, for m = 0

− 1√
5
, for m = ±1.

To solve this system of four second-order ordinary differential equations, the auxiliary func-
tions P0, P2, F1 and F2 have to be introduced to reduce the order of the equations. The system
(2.21) becomes a set of eight first-order ordinary differential equations

dψ100

dr
= F1, (2.22a)

dF1

dr
= 2(V00 − E100)r2ψ100, (2.22b)

dψ21m

dr
= F2, (2.22c)

dF2

dr
= −4

r
F2 + 2(V00 + Cr2V20 − E21m)ψ21m, (2.22d)

dV00

dr
=

P0

r2
, (2.22e)

dP0

dr
= r2ψ2

100 + r4ψ2
21m, (2.22f)

dV20

dr
= P2, (2.22g)

dP2

dr
= −6

r
P2 + Cψ2

21m. (2.22h)

The system (2.22) with the following boundary conditions

ψ100(rf ) = 0,
dψ100

dr

∣∣∣∣
r=0

= 0,

ψ21m(rf ) = 0,
dψ21m

dr

∣∣∣∣
r=0

= 0,

V00(rf ) = −NT

rf
, P0(rf ) = NT ,

V20(rf ) = 0, P2(0) = 0,

becomes a boundary value problem that is solved using the shooting method. Here NT is the
total mass enclosed by the boundary radius r = rf , NT = N(rf ).
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The boundary conditions on ψ100 and ψ21m mean that the system is isolated and the condi-
tions on their derivatives allow regularity at the origin. The boundary condition on V00 recovers
the Keplerian fall of the potential, the boundary condition on V20 means that at large distances,
the mass density would look spherically symmetric hence the non-spherically symmetric part of
the potential should be vanished. From equation (2.22f) one can see that P0(r) is actually the
enclosed mass N(r) so the boundary condition in P0 ensure us a finite mass of the halo.

To solve the equations, the central value ψ100(0) = 1 is fixed to find the eigen-values E100

and E21m and the initial values V00(0), V20(0), ψ21m(0) of the bound multiSFDM configuration.
The system is solved in a fixed range of r ∈ (0, rf ) and the boundary value NT is varied to

find a family of solutions.
The circular velocity vh of a particle due to the potential V in terms of the auxiliary functions

and the radial functions in the expansion of the potential is given by

v2
h =

P0

r
− r2

C
(rP2 + 2V20) , (2.23)

this expression will be usefull to fit rotation curves of galaxies in Chapter 4.

2.2.1 multiSFDM case (100, 210)

The first possibility for the multiSFDM case (Ψ100,Ψ21m) is the configuration with m = 0.
In Table 2.1 the different quantities that characterize each of the solutions of the family

are shown: the total mass of the configuration NT (that is used as the solution identifier
within the family); the energy eigen-values of the ground state E100 and the excited state
E210; the total energy of the configuration ET = (E100N100 + E210N210)/NT ; and the mass
ratio η = N210(rf )/N100(rf ) and amplitude ratio ζ = ψ100(0)/ψ210(0) between states of the
configuration.

In Figure 2.1 the functions ψ100(r), ψ210(r), V00(r), V20(r), E100, E210, N(r), and, the total
energy ET are plotted for the family of solutions found.

In Figure 2.2 the projections in the (x, z) plane of the mass density ρ = |Φ100|2 + |Φ210|2 as
function of the (x, y, z) cartesian coordinates are shown for all the solutions in the family. The
figure begins in the upper left panel with the solution with NT = 2.0, where the monopole term
ψ100 dominates over the dipole term ψ210, and ends in the bottom right panel with the solution
with NT = 5.5 where the opposite happens.

2.2.2 multiSFDM case (100, 211)

The second possibility for the multiSFDM case (Ψ100,Ψ21m) is the configuration with m = 1.
Table 2.2 is the analogous of Table 2.1 but now for the solutions found in the multiSFDM

case (Ψ100,Ψ211). In Figure 2.3 the functions ψ100(r), ψ211(r), V00(r), V20(r), E100, E211, N(r),
and, the total energy ET are plotted for the family of solutions found. One difference with the
m = 0 case is that the dipole contribution to the gravitational potential is now positive. In
Figure 2.4 the density plots of the mass density ρ = |Φ100|2 + |Φ211|2 as function of the (x, y, z)
cartesian coordinates are ploted for all the solutions in the family. The figure begins in the upper
left panel with the solution with NT = 2.7, where the monopole term ψ100 dominates over the
dipole term ψ211, and ends in the bottom right panel with the solution with NT = 4.1 where the
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Figure 2.1 Family of solutions of the multiSFDM (Ψ100,Ψ210). First row: the ground state radial
function ψ100 (left panel) and the excited state radial function ψ210 (right). Second row: first
function V00 (left) and second function V20 (bottom panel) in the expansion of the potential V .
Third row: energy eigen-values of the ground (left) and excited (right) states. Last row: total
energy (left) and total enclosed mass at radius r. In color scale, the total mass NT of each of
the solutions in the family is shown.
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Figure 2.2 Projection in the (x, z) plane of the mass density as function of the (x, y, z) cartesian
coordinates for the multiSFDM (Ψ100,Ψ210) family of solutions. The progression from the
solution with NT = 2.0 in the top left panel where the monopole term ψ100 dominates over the
dipole term ψ210 to the bottom right panel the solution with NT = 5.5 where the excited state
ψ210 dominates is shown. In color scale the mass density is shown. In the bottom of each density
plot, a plot of the ground state and excited state densities as function of the radial coordinate
is shown.
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Figure 2.3 Same as in Figure 2.1 but now for the multiSFDM (Ψ100,Ψ211) family of solutions.
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Table 2.1. multiSFDM (100, 210). Total mass of the configuration (column 1), gravitational
potential at the origin (2),energy eigen-values of the ground (3) and excited state (4), total

energy of the configuration (5), mass ratio between states of the configuration
η = N210(rf )/N100(rf ) (6) and amplitude ratio between states of the configuration

ζ = ψ100(0)/ψ210(0) (7).

NT V00(0) E100 E210 ET η ζ
(1) (2) (3) (4) (5) (6) (7)

2.1 -1.340 -0.691 -0.400 -0.69 0.01 37.27
2.3 -1.348 -0.692 -0.400 -0.66 0.14 7.70
2.5 -1.504 -0.839 -0.540 -0.77 0.29 5.01
2.7 -1.519 -0.843 -0.538 -0.74 0.48 3.73
3.0 -1.723 -1.032 -0.721 -0.90 0.71 2.93
3.5 -1.979 -1.251 -0.925 -1.07 1.27 2.02
4.0 -2.288 -1.511 -1.160 -1.28 1.97 1.47
4.3 -2.492 -1.679 -1.314 -1.42 2.50 1.25
4.5 -2.638 -1.798 -1.422 -1.52 2.90 1.12
5.0 -3.043 -2.125 -1.715 -1.79 4.12 0.87
5.5 -3.507 -2.488 -2.040 -2.11 5.83 0.67

opposite happens. This is an axi-symmetric configuration, the three-dimensional mass density
is thus a donut-like shape given by the (211) state with a spherical shape in the center given by
the (100) contribution.

The third possibility for the multiSFDM case (Ψ100,Ψ21m) is the configuration with m = −1.
The equation of motion are the same as the m = 1 case, the only difference is the direction of
the azimuthal rotation in the wave function, ϕ→ −ϕ that gives no change in the mass density
which is the relevant physical quantity. This case will not be considered then.

2.3 multiSFDM case (100,200)

The multiSFDM case (Ψ100,Ψ200) occurs when the source terms in the Poisson equation are
ψ100 and ψ200, in this case the Poisson equation (2.15a) is

∇2
rl
Vl0(r) =

√
4π

rl

∑
n1,l1,m1

(−1)m1Gl1,l1,l
m1,−m1,0

r2l1ψ2
n1l1m1

=

√
4π

rl

(
(−1)0G0,0,l

0,0,0r
0ψ2

100 + (−1)0G0,0,l
0,0,0r

0ψ2
200

)
=

√
4π

rl
G0,0,l

0,0,0

(
ψ2

100 + ψ2
200

)
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Table 2.2. multiSFDM (100, 211). Total mass of the configuration (column 1), gravitational
potential at the origin (2), energy eigen-values of the ground (3) and excited state (4), total

energy of the configuration (5), mass ratio between states of the configuration
η = N210(rf )/N100(rf ) (6) and amplitude ratio between states of the configuration

ζ = ψ100(0)/ψ210(0) (7).

NT V00(0) E100 E210 ET η ζ
(1) (2) (3) (4) (5) (6) (7)

2.70 -1.590 -0.914 -0.594 -0.81 0.46 3.81
2.80 -1.632 -0.952 -0.627 -0.84 0.54 3.46
2.90 -1.677 -0.991 -0.661 -0.86 0.63 3.16
3.00 -1.722 -1.031 -0.695 -0.89 0.72 2.91
3.10 -1.769 -1.071 -0.730 -0.92 0.82 2.69
3.20 -1.817 -1.113 -0.766 -0.95 0.92 2.50
3.30 -1.867 -1.156 -0.802 -0.98 1.03 2.33
3.40 -1.919 -1.200 -0.840 -1.01 1.14 2.17
3.50 -1.971 -1.246 -0.878 -1.04 1.25 2.04
3.60 -2.026 -1.292 -0.918 -1.08 1.38 1.91
3.70 -2.082 -1.339 -0.958 -1.11 1.51 1.80
3.80 -2.139 -1.388 -0.999 -1.15 1.64 1.70
3.90 -2.199 -1.438 -1.041 -1.18 1.78 1.60
4.10 -2.322 -1.542 -1.128 -1.26 2.09 1.43

37



Figure 2.4 Projection in the (x, z) plane of the mass density as function of the (x, y, z) cartesian
coordinates for the multiSFDM (Ψ100,Ψ211) family of solutions. The progression from the
solution with NT = 2.7 in the top left panel where the monopole term ψ100 dominates over the
dipole term ψ211 to the bottom right panel the solution with NT = 4.1 where the excited state
ψ211 dominates is shown. In color scale the mass density is shown. In the bottom of each density
plot, a plot of the ground state and excited state densities as function of the radial coordinate
is shown.

38



because of condition (2.12a) l can only take the value zero, the only non-zero Gaunt coefficient
is G0,0,0

0,0,0 = 1/
√

4π. The only term in the potential expansion will be the monopole term, a
spherically symmetric potential, the Poisson equation reduces to

∇2
r0
V00(r) = ψ2

100 + ψ2
200.

The Schrödinger equations (2.15b) for the ground and excited states are

∇2
r0
ψ100(r) = 2

(
√

4π
∑
l1

Gl1,0,0
0,0,0 r

l1Vl10 − E100

)
ψ100,

∇2
r0
ψ200(r) = 2

(
√

4π
∑
l1

Gl1,0,0
0,0,0 r

l1Vl10 − E200

)
ψ200.

again, condition (2.12a) tells that l1 can only take the value l1 = 0. The Schrödinger equations
finally become

∇2
r0
ψ100(r) = 2(V00 − E100)ψ100,

∇2
r0
ψ200(r) = 2(V00 − E200)ψ200.

The general system (2.15) thus reduces to the spherically symmetric case in Matos and Ureña
López [2007], Ureña López and Bernal [2010] where they first propose the spherically symmetric
multistates:

∇2
r0
ψ100(r) = 2(V00 − E100)ψ100,

∇2
r0
ψ200(r) = 2(V00 − E200)ψ200,

∇2
r0
V00(r) = ψ2

100 + ψ2
200,

where the gravitational potential is simply

V (r, θ) =
√

4πV00(r)Y00(θ, φ) = V00(r)

and the circular velocity

v2
h =

P0

r
. (2.24)

In Ureña López and Bernal [2010], these multistate configurations were shown to be stable
only when N200(rf )/N100(rf ) < 1.1 so only with this kind of solutions are considered here. Once
again the total mass NT is used as a solution identifier within the family. In Table 2.3 the
energy eigen-values, the total energy, and the mass and amplitude ratios for each solution in
the family are written.

39



Table 2.3: Same as in Table 2.1 but now using state ψ200.

NT V00(0) E100 E200 ET η ζ
(1) (2) (3) (4) (5) (6) (7)
2.18 -1.392 -0.737 -0.337 -0.71 0.07 6.00
2.30 -1.408 -0.745 -0.341 -0.70 0.14 4.11
2.40 -1.436 -0.766 -0.359 -0.70 0.20 3.37
2.50 -1.465 -0.788 -0.377 -0.70 0.27 2.90
2.60 -1.496 -0.811 -0.395 -0.71 0.34 2.56
2.66 -1.520 -0.830 -0.412 -0.72 0.38 2.41
2.70 -1.527 -0.834 -0.414 -0.71 0.41 2.31
2.75 -1.538 -0.840 -0.418 -0.71 0.45 2.20
2.94 -1.631 -0.917 -0.486 -0.76 0.59 1.89
2.97 -1.613 -0.896 -0.463 -0.73 0.62 1.84
3.10 -1.649 -0.925 -0.491 -0.75 0.71 1.75
3.30 -1.722 -0.977 -0.532 -0.77 0.88 1.54
3.50 -1.800 -1.032 -0.575 -0.80 1.07 1.37

The corresponding wave functions, potential, energy eigenvalues, total energy and enclosed
mass are also plotted for the family of solutions in Figure 2.5.
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Figure 2.5 Family of solutions of the multiSFDM (Ψ100,Ψ200). First row: The wave function of
the ground state ψ100 (left panel), and the excited state ψ200 (right). Second row: the potential
V (left) and the total energy of the configuration (right). Third row: the energy eigen-values of
the ground (left) and excited (right) states. Bottom row: the enclosed mass as function of the
radius. In color scale, the total mass NT of each of the solutions in the family is shown.
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Chapter 3

Satellites

3.1 Model

To explain the anisotropic distribution of satellites observed in the Milky Way , M31 and Cen
A systems, a model with four major assumptions is proposed:

• The gravitational potential of the host galaxy is dominated by the dark matter .

• The dark matter halo will be a stationary multiSFDM configuration.

• The satellites are assumed to behave as test particles orbiting around the halo.

• The non-relativistic and weak field regimes hold, which is valid at galactic scales.

Under these conditions the resulting scalar field is the order parameter of the Gross-Pitaevskii-
Poisson system (2.1), that rules the dynamics of a condensate of bosons in coherent states Ψnlm

[Guzmán and Ureña López, 2020].
For the dark matter halo, solutions with the spherical Ψ100 and first dipolar Ψ210 contribu-

tions will be considered, the multiSFDM (Ψ100,Ψ210) configuration. This configuration is only
chosen for three reasons: first, that this is the simplest non-spherically symmetric multistate
configuration after the spherical (Ψ100,Ψ200) equilibrium configuration, second, the resulting
two blobs associated to the dipolar (210)-mode are expected to pull test particles toward the
poles to broke the isotropy, and third, in Guzmán and Ureña López [2020] a possible mechanism
for the formation of such structures has been envisioned.

In Chapter 2 a full family of solutions in the multiSFDM (Ψ100,Ψ210) configuration was
found, nevertheless, in this chapter only two solutions are going to be considered and used as
workhorse examples. The first one (that from now on will be called dipole-dominated ) where
the dipolar contribution is larger than the monopole contribution, such that the mass ratio
between the spherical and dipolar masses is η = 0.36 and it has energy eigenvalues E100 =
1.8 and E210 = 1.42. In the second one, the opposite happens, the spherical ground state
contribution is larger than the dipolar with a mass ratio η = 3, from now on this configuration
will be called monopole-dominated and has energy eigenvalues E100 = 0.84 and E210 = 0.54.
A projection in the xz plane of the mass density ρ(x, y, z) of both configurations is shown
in Figure 3.1, in dimensionless and scale-free quantities. A projection along the z−axis of
the individual contribution to the mass density of each state in the configuration is showed
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Figure 3.1 Mass density ρ(x, y, z) = |Ψ100|2 + |Ψ210|2 of both multiSFDM (Ψ100,Ψ210) configura-
tions used in this Chapter. In the left panel, the monopole-dominated configuration with mass
ratio between states η = 3 is shown. In the right panel, the dipole-dominated configuration
in which the mass ratio between the spherical and dipolar contributions is η = 0.36 is shown.
At the top of each panel a density plot of the projection on the xz−plane of the mass density
is shown in dimensionless units, whereas at the bottom the projection along the z−axis of the
individual contributions to the mass density of each state in the multiSFDM configuration:
|Ψ100|2 and |Ψ210|2 are shown.

to note that although in the 2D density plot it appears that only the dominant mutipole is
plotted, the nondominant contribution is present. In Figure 3.2 the 3D density plot of the
monopole-dominated configuration mass density is plotted, the individual contributions to the
mass density of the ground and excited states (|Ψ100|2 and |Ψ210|2) are plotted too. The main
difference between both is the notorious presence of the dipole blobs in the dipole-dominated
configuration.

The gravitational potential V (ρ, z) due to both multiSFDM (Ψ100,Ψ210) configurations is
plotted in Figure 3.3, figure shows a density plot of the projection on the ρz-plane of the potential
and the projection along the ρ-axis for fixed values of the z coordinate, namely z = 0, 2.5, in this
projections two things can be noted: for the monopole-dominated configuration the potential
wells produced by the dipole contribution (located at z ≈ 2.5) are half deep than the produced
by the monopole configuration, whereas in the dipole-dominated case they are almost equally
deep.

Using the scaling property written in relation (2.7), appropriate galactic size scales are
obtained assuming a particle mass of µ = 10−25eV/c2, corresponding to µ̂ = 15.65/kpc, and a
scaling parameter λ ' 10−3. For example, from equation (2.8), the halo mass scale is MC =
1012M�. From hereafter, the latter will be the fiducial values for the physical examples studied
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Figure 3.2 Three-dimensional density plot of the mass density ρ(x, y, z) = |Ψ100|2 + |Ψ210|2 of
the multiSFDM (Ψ100,Ψ210) monopole-dominated configuration. In the left panel the total
mass density is plotted. In the middle (right) panel, the individual contribution to the mass
density of the ground (excited) state |Ψ100|2 (|Ψ210|2) is plotted. The y < 0 part of the density
is not showed for a better appreciation of the inner part.

Figure 3.3 Gravitational potential V (ρ, z) due to both multiSFDM (Ψ100,Ψ210) configurations
used in this Chapter. In the left panel, the potential due to the monopole-dominated config-
uration with mass ratio between states η = 3 is shown. In the right panel, the potential due to
the dipole-dominated configuration in which the mass ratio between the spherical and dipolar
contributions is η = 0.36 is shown. At the top of each panel a density plot of the projection
on the ρz-plane of the potential in dimensionless units is shown, whereas at the bottom the
projection along the ρ-axis of the potential is shown for fixed values of the z coordinate, namely
z = 0, 2.5.
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Figure 3.4 Histograms of the initial distribution of the 105 test particles in fiducial (µ =
10−25eV/c2) units. In the left panel the uniform distribution in the radial r coordinate, and in
the right panel the distribution of the polar θ coordinate that allows a uniform distribution of
particles over the sphere.

below.

3.2 Analysis of test particle trajectories

Now the motion of test particles within the gravitational potential V (x) of equation (2.1) will
be studied. The Lagrangian per unit mass of a particle under an axi-symmetric potential V (r, θ)
is

L =
1

2
(ṙ2 + r2 sin2 θφ̇2 + r2θ̇2)− V (r, θ)

the Euler-Lagrange equations are then

r̈ = rθ̇2 − ∂Veff
∂r

d

dt

(
r2θ̇
)

= −∂Veff
∂θ

where the effective potential

Veff =
L2

2r2 sin2 θ
+ V (r, θ)

where L is the angular momentum per unit mass.
The trajectories of 105 test particles with initial positions randomly chosen from an uniform

distribution over the radius interval (0, R = 4] are integrated, in Figure 3.4 histograms showing
the initial uniform distribution of particles at radial position and the distribution of particles
in the polar θ coordinate that allows a uniform distribution of particles over the sphere are
plotted. In the left panel of Figure 3.5, the 3D initial positions of the test particles are plotted
in cartesian coordinates (x, y, z).

The initial speed of the particles is also randomly chosen from a uniform distribution over
the interval (0, vmax = avesc], where vesc is the escape velocity of a particle at radius R = 4.
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Figure 3.5 Spatial distribution of 105 test particles in cartesian (x, y, z) galactocentric coordi-
nates at initial time (left panel), and after 20τs (right panel). At the top the position of test
particles for the monopole-dominated configuration with η = 3 is shown. At the bottom the
position particles for the dipolar dominated case η = 0.36 is shown.
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Four specific values of the fraction a of the escape velocity are used, namely a = 1/4, 1/2, 3/4
and 1. The direction of the initial velocities are uniformly distributed in the unit sphere.

The total time of evolution for all test particles is 20τs where τs is the time scale defined as
the time it takes a test particle, initially located on the equatorial plane θ = π/2 at a distance
λµ̂r = 4 from the origin, with an initial velocity equal to a quarter its escape velocity, to
complete an orbit. In physical units, this time scale takes is of the order of Giga years.

As the effective radius of dwarf Milky Way satellite galaxies is ∼ 2 kpc and satellites are at
distances ∼ 20 kpc to 260 kpc from the galactic center, satellite galaxies can not be considered
as test particles, however the motion of test particles can indicate where the non-gravitationally
dominating structures under the influence of a dark matter halo potential accumulate with a
certain likelihood in the asymptotic time, so the regions where the test particles accumulate the
most, will also be those regions where a single particle has the bigger likelihood to reside.

3.3 Results for the vmax = vesc/2 case

3.3.1 Positions

In the right panel of Figure 3.5 the spatial distribution of particles after evolving during 20τs are
shown for the monopole and dipole-dominated configurations. The density blobs associated to
the dipolar contribution to the density ρ210, afect the initially spherically symmetric distribution
of particles until at final evolution time t = 20τs the particles follow a full axi-symmetric
distribution, the particles concentrate mainly around the equatorial plane of the configuration
and along the z−axis.

Monopole-dominated configuration

In this configuration, after the evolution time t = 20τs the test particles distribute in a star-
like shape at large radii (see the upper right panel of Figure 3.5), but most of them remain
concentrated around the center within a sphere of radius . 200kpc (see the bottom left panel
of Figure 3.6).

In Figure 3.6 histograms of the radial position r and polar angle θ position of all test particles
at initial time (first row) and after the evolution time (second and third rows) are shown. In the
histograms of the final evolution time, the test particles are filtered by distance to distinguish
between those particles within a distance of the order of the galaxy size r ∈ (0, 30)kpc (second
row) from those at distances corresponding to satellite galaxies distances r ∈ (30, 300)kpc (third
row). In the former case, particles distribute close to isotropically at the equator θ = π/2 (at
the stellar disc plane z = 0). In the later case, the test particles distribute anisotropically at
three preferential angles θ = 0, π/2 and π, thus particles with random initial conditions will
accumulate with bigger probability near these angles.

Dipole-dominated configuration

In this configuration, after the evolution time, although the particles distribute anisotropically,
the anisotropy is not that enhanced as in the monopole-dominated configuration (see the
bottom right panel of Figure 3.5). Figure 3.7 is the analogous of Figure 3.6, there are important
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Figure 3.6 First row: Histograms of the positions (r and θ coordinates) of the 105 test particles
at initial time for the monopole-dominated configuration. Second and third rows: Histograms
of the positions after a 20τs time of evolution. The data is filtered by distances, in the second
row only the particles at short distances r ∈ (0, 30)kpc appear and in the third row only the
particles at r ∈ (30, 300)kpc appear. All physical distances are calculated using the fiducial
(µ = 10−25eV/c2) units.
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Figure 3.7 Histograms of the positions (r and θ coordinates) of the 105 test particles after a 20τs
time of evolution for the dipole-dominated configuration. The data is filtered by distances, in
the first row only the particles at short distances r ∈ (0, 30)kpc appear and in the second row
only the particles at r ∈ (30, 280)kpc appear.

differences in the radial distribution, in this configuration, the test particles do not accumulate
near the origin because of the sub dominating monopolar contribution, and there is a peak
concentration around 150 kpc due to the influence of the dominating dipolar contribution.

There are important differences in the polar angle distribution too, at small distances r <
30kpc, there are now two peaks close to θ = π/4 and θ = 3π/4 and a decrease in the equatorial
plane θ = π/2. At large distances (30 < r < 280) the peaks at θ = 0, π are not as sharp as in
the monopole-dominated scenario and there is no peak in the equatorial plane.

3.3.2 Orbital poles

The direction of the angular momentum a.k.a orbital pole is defined as

l =
L

|L|
=

x× dx
dt∣∣x× dx
dt

∣∣ ,
in spherical coordinates (θl, φl):

l =

sin θl cosφl
sin θl sinφl

cos θl


As mentioned in the introduction, the orbital poles of the Milky Way classical satellites are

pointing almost in the same direction, and almost parallel to the normal vector of the plane
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defined by its current positions (see Figure 1.10), indicating that satellites are co-rotating within
that plane.

In Figures 3.8 and 3.9 the orbital poles of the test particles at distances in the range
r ∈ (30, 300) kpc at the final evolution time t = 20τs for both monopole and dipole-dominated
configurations are plotted, in the upper panel the polar θl and azimuthal φl angles of the orbital
poles are plotted, and in the bottom panel, the longitude l and latitude b of the orbital poles
are plotted. The Milky Way classical satellites orbital poles calculated from the velocity mea-
surements of Pawlowski and Kroupa [2013] are also plotted for comparison. In both cases, the
orbital poles distribute around θl = π/2 (or b = 0◦), the dispersion being wider for the dipole-
dominated configuration. The major difference is in the azimuthal angle, in the monopole-
dominated configuration there are regions around φl = 0, π/2, π, 3π/2 (or l = 0◦, 90◦, 180◦, 270◦)
where orbital poles accumulate the most, which would in turn be more compatible with the
data points of the Milky Way satellite galaxies, for which the mean direction of the seven most
concentrated orbital poles points at (l = 179.5◦, b = −9◦) Pawlowski and Kroupa [2020]. Note
that these four preferential azimuthal angles in fact are only two: φl = 0, π/2, because the other
ones φl = π, 3π/2 correspond to particles rotating in the opposite direction, as occurs in the
Milky Way system, with Sculptor rotating in the opposite direction (l = 0) of the rest (Fornax,
LMC, SMC, Ursa Minor Carina, Draco and Leo II) at l = 180.

In Figure 3.10 the time evolution of the orbital poles of all the test particles for the
monopole-dominated configuration are shown. The figure starts in the upper left panel with
a snapshot at t = 0 and follow with snapshots every 4τs until t = 20τs, the distribution of
orbital poles tends to be stationary after 4τs, for this reason, a time lapse of 20τs is considered
as asymptotic time. For the monopole-dominated configuration τs ' 1.8 Gyr, which implies
that after 7.2 Gyr the orbital poles distribution would become nearly stationary.

Figure 3.11 is similar to Figure 3.10 but now the progression starts with a snapshot at t = 0
and follow with snapshots every 0.25τs until t = τs, to show now that the orbital poles start to
accumulate around π/2 at earliest times.

3.4 Plane trajectories.

So far nothing has been said about the geometric properties of the test particles trajectories, in
this section the torsion of the curves will be studied. If the torsion of a curve with is zero, then
this curve belongs to a fixed plane. To know whether or not the trajectories become planar, the
torsion at each time step t of the trajectory x(t) of each test particle is tracked. The torsion
can be calculated as

τ(t) =

(
dx
dt
× d2x

dt2

)
· d3x
dt3∣∣dx

dt
× d2x

dt2

∣∣2 .

In the top panel of Figure 3.12 the histogram of the values of τ of all test particles at
initial time is plotted, and in the bottom panel the histograms of τ(20τs) for the monopole and
dipole-dominated configurations are shown. Due to the randomness of the initial conditions,
the initial distribution of τ has a peak at τ = 0 but there is also a considerable amount of
particles with trajectories with high values of τ , however during the evolution, the torsion of all
particles tends to smaller values, until a sharp peak near zero is found for both configurations.
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Figure 3.8 Polar angle θl and azimuthal angle φl (upper panel) and longitude l and latitude b
(bottom panel) in galactocentric coordinates of the orbital poles (angular momentum) of the
test particles that after t = 20τs are in a distance range r ∈ (30, 300)kpc, for the monopole-
dominated configuration. The red markers are the orbital poles of the Milky Way classical
satellites (calculated from the velocity data of Pawlowski and Kroupa [2013]). For the bottom
panel, in color scale the galactocentric distance of the test particles is plotted.
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Figure 3.9 Same as in Figure 3.8 but now for the dipole-dominated configuration.
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Figure 3.10 Snapshots of the angular poles for all the test particles under the potential of the
monopole-dominated configuration. The progression shows snapshots every 4τs. Red markers
are the orbital poles of the Milky Way classical satellites.

Figure 3.11 Same as in Figure 3.10 but now the progresion shows snapshots every 0.25τs.
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Figure 3.12 Snapshots of the histograms of all the 104 test particles torsions τ(t). In the top
the distribution of values at initial time τ(0) is shown, and in the bottom the result at the
asymptotic time τ(20τs) is shown for the monopole (in the left) and dipole-dominated (right)
configurations.
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A curve is plane if it has zero torsion at all points, or in the case of a parametrized trajectory,
at all times. As the evolution of τ(t) for each test particle is not tracked separately, it can only
be said that particles tend to stay in close to planar trajectories.

This result toghether with the result that the test particles orbital poles accumulate near
θl = π/2 tells that in the multiSFDM (Ψ100,Ψ210) configurations test particles tend corotate in
planar polar orbits.

3.5 Results for the vmax = vesc/4, 3vesc/4, vesc cases

So far, the results with the test particle initial speeds bounded at vmax = vesc/2 have been
the main attention points. In this section, the results still with random direction of the test
particles initial velocity but now with different bounds on the initial speed, specifically vmax =
vesc/4, 3vesc/4 and vmax = vesc will be presented to complete and contrast with the already
analyzed vesc/2 case.

The polar and azimuthal (θl, φl) angles of all the 105 test particles orbital poles after the
t = 20τs evolution time are plotted in Figure 3.13. From the left to the right panels, the four
different runs are plotted in increasing speed bound, for both monopole and dipole-dominated
configurations. Notice that for the 2 lower bounded speed runs vmax = vesc/4, vesc/2 the test
particles orbital poles show a clear accumulation around θ = π/2 for both monopole and dipole-
dominated configurations, whereas for the 2 higher bounded speed runs vmax = 3vesc/4, vesc the
orbital poles distribution is nearly isotropical in both configurations. The dependency of the

Figure 3.13 Polar θl and azimuthal φl angles of the 105 test particles orbital poles after an
evolution time t = 20τs. From left to right panels the vmax = vesc/4, vesc/2, 3vesc/4 and vmax =
vesc runs are plotted. In the upper panel the results correspond to the monopole-dominated
configuration whereas in the bottom those of the dipole-dominated configuration. The red
markers are the orbital poles of the Milky Way classical satellites calculated from the velocity
data of Pawlowski and Kroupa [2013].

anisotropy in the orbital poles for different initial speed bounds thus adds an extra parameter
to the analysis of specific galaxy system observations.
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3.6 Disc stability

A dark matter halo should be able to host a disc-like structure as the observed in disc or
spiral galaxies. It is important that the proposed axi-symmetric halo does not destroy the disc
structure due to the potential wells produced by the dipole component.

To model a stellar disc hosted in a multiSFDM (Ψ100,Ψ210) halo four major assumptions are
stated:

• The gravitational potential of the galaxy is dominated by the dark matter .

• The dark matter halo will be a stationary multiSFDM configuration.

• The disc stars are approximated as test particles orbiting inside the halo.

• The interaction between particles is neglected.

A set of 104 test particles initially distributed in a double exponential disc with dimensionless
scale length ad = 1/3 and extension R ∼ 1 is evolved in time. Each test particle is assigned
with an initial velocity

v(0) = vh(r, θ)φ̂

where vh(r, θ) is the circular velocity due to the multiSFDM (Ψ100,Ψ210) halo of a particle located
at (r, θ) (Equation 2.23). In the top left panel of Figure 3.14 a histogram of the initial radial
distribution of test particles is plotted and in the top panel of Figure 3.15, the 3 dimensional
plot of the test particle positions in galactocentric cartesian coordinates (x, y, z) is shown.

In the top right panel of Figure 3.14 a histogram of the radial distribution of test particles
after evolving during a time t = 20τs under the influence of the monopole-dominated con-
figuration potential is shown and in the bottom right panel the positions in heliocentric (l, b)
coordinates are plotted. The main characteristic to note is that the disc is not destroyed, the
disk-like shape is preserved but with a larger scale length and a larger thickness (as seen in the
3D plot in Figure 3.15) due to the attraction produced by the blobs of the dipolar component.

The opposite happens in the dipole-dominated configuration, the disc is destroyed, given
the deep potential wells in the z-axis produced by the dipolar component.

Andromeda galaxy system do not have satellites with polar orbits, satellites are at θ ≈ 45◦

from the disc plane. The found polar orbits could be aplied to Andromeda supposing that the
dark matter halo symmetry axis does not correspond to the stellar disc symmetry axis, for that
a time evolution run with a disc tilted with respect to the dark matter equatorial plane was
made, unfortunally tilted discs are distroyed by the axial position of the potential minima of
the dipolar contribution in both configurations.

3.7 Control run

In order to check the differential equations system solver and to compare with the results
obtained with the multiSFDM (Ψ100,Ψ210) configurations, a control run with the same number
of test particles and the same initial conditions was made. In this control run, the system of
test particles was evolved under the influence of the potential due to an equilibrium solution
of the Schrödinger-Poisson system, a newtonian boson star. The ground state solution Ψ100,
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Figure 3.14 Upper panel: Histogram of the set of 104 test particles in a double exponential disc
distribution at initial time (left panel) and at final evolution time (right) under the influence of
the monopole-dominated configuration potential. Bottom panel: Plot of the positions of the
104 test particles in heliocentric (l, b) coordinates.

characterized with initial amplitude Ψ100(0) = 1 and total mass NT = 2 was used as the dark
matter halo, this solution is plotted in Figure 1.3 in Chapter 1.

The top panel of Figure 3.16 show the initial and test particle positions in cartesian co-
ordinates (x, y, z) and after a time evolution of t = 20τs, while the middle panel shows the
histograms at t = 20τs of the (r, θ) coordinates of the test particles, the spherically symmet-
ric boson star potential keeps the particles spherically distributed, but the radial distribution
changes with a larger amount of particles at 0 < r ≤ 100 kpc.

The orbital poles stay spherically distributed as well during the entire evolution as shown
in the bottom panel of Figure 3.16 where the orbital poles of all the test particles are plotted
at t = 20τs in two different projections.

This behaviuor would be spected in any spherical halo, in particular a Navarro-Frenk-White
halo, given the symmetry of the particles position and velocities as well as the potential itself,
only if triaxiality is considered the results could differ.

3.8 Tri-axial Navarro-Frenk-White potential

The Navarro-Frenk-White profile is based on spherical average of the resulting halos in the cold
dark matter N -body simulations, although the halos are visible not spherical, for that reason a
triaxial model would describe better the non-sphericity in the density profiles.

One could think that the non-sphericity in the cold dark matter simulations halos could
give the same results than the multiSFDM (Ψ100,Ψ210) halos. Therefore in this section a non-
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Figure 3.15 Upper panel: Set of 104 test particles in a double exponential disc distribution at
initial time seen at two different perspectives. The initial characteristic radius of the disc is
∼ 30kpc. Bottom panel: Test particles distribution after evolving during t = 20τs under the
influence of the monopole-dominated configuration potential, the radius is now ∼ 50kpc.
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Figure 3.16 Top panel: 3D plot of the initial test particle positions (left) and the final (right)
particle positions after evolving t = 20τs under the boson star potential. Middle panel: His-
tograms at final evolution of the (r, θ) spherical coordinates of the test particles after a t = 20τs
evolution. Bottom panel: scatter plot of the orbital poles at final evolution time in spherical
(l, b) (left) and (r, θ) (right) coordinates.
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spherically symmetric Navarro-Frenk-White halo whose mass density could resemble that of a
multiSFDM (Ψ100,Ψ210) halo is studied. The density profile has the same functional form of
the usual Navarro-Frenk-White halo [Jing and Suto, 2002]:

ρ(x, y, z) =
ρ0

(%/rs)(1 + %/rs)2
(3.1)

with the triaxiality given by the modification of the radial coordinate to an ellipsoidal one:

%2 = α2

(
x2

α2
+
y2

β2
+
z2

δ2

)
here rs is the scale length, ρ0 the characteristic density and α, β, γ are the axis lengths.

For the halo to resemble the multiSFDM (Ψ100,Ψ210) monopole-dominated configuration
the distortion only along two directions was made, so that the triaxiality shows an oblate halo
α = β = 0.5 and δ = 1. Density plots of the projection on the xy and xz planes of the mass
density are shown in Figure 3.17.

Figure 3.17 Tri-axial Navarro-Frenk-White mass density ρ(x, y, z). In the left panel a density
plot of the projection on the xy−plane of the mass density is shown, and in the right panel, the
projection on the xz−plane.

For this halo a similar procedure than in the multiSFDM (Ψ100,Ψ210) configurations is fol-
lowed, a set of 105 test particles with random initial positions, random initial velocity direction,
and random initial speed bounded at vmax = vesc/2 is evolved in time under the influence of the
gravitational potential sourced by the mass density of equation (3.1), the density plot of the
projection on the ρz-plane of the potential is shown in Figure 3.18.

In Figure 3.19 the test particles initial positions and the position after evolving during
t = 20τs are plotted in galactocentric cartesian coordinates.

Instead Figure 3.20 show the histograms of the radial r and polar θ spherical coordinates at
initial time in the upper panel for all test particles and the coordinates of the particles that at
final evolution time are in the 30 ≤ r ≤ 300 kpc, i.e. at satellite distances, in the bottom panel.

The θ histogram resembles the histogram of the dipole-dominated multiSFDM (Ψ100,Ψ210)
configuration (Figure 3.7), without the two picks in the poles θ = 0, π. Although there is
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Figure 3.18 Projection on the ρz-plane of the tri-axial Navarro-Frenk-White potential
V (x, y, z)/c2.

Figure 3.19 3D plot of the positions at t = 0 (left panel), and at t = 20τs (right panel) of the
105 test particles evolving under the triaxial Navarro-Frenk-White gravitational potential.
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Figure 3.20 Top panel: Histograms of the initial (r, θ) positions of the 105 test particles. Bottom
panel: Histograms of the radial and polar positions of the test particles within 30 and 300 kpc
after a 20τs evolution under the triaxial Navarro-Frenk-White potential.

Figure 3.21 Polar angle θl and azimuthal angle φl (left panel) and longitude l and latitude b
(right panel) in galactocentric coordinates of the orbital poles of the test particles that after a
20τs time evolution under the triaxial Navarro-Frenk-White potential are in a distance interval
30kpc ≤ r ≤ 300kpc.
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an anisotropy level in the particle distribution it is not as high than the observed in both
multiSFDM (Ψ100,Ψ210) configurations.

Another important thing needed to compare is the orbital poles distribution, this configu-
ration show a completely different behaviour than the multiSFDM (Ψ100,Ψ210) configurations,
the scatter plot in Figure 3.21 of the polar and azimuthal angles of the test particles at the end
of the evolution time shows that the orbital poles do not concentrate near θ = π/2 (as in the
case of dipole-dominated ), nor in clusters around (θ = π/2, φ = π/2) or (θ = π/2, φ = π) (as
in the monopole-dominated scenario), instead they appear isotropically distributed (compare
Figure 3.21 with the upper left panel on Figure 3.10).

Although the triaxial Navarro-Frenk-White profile used in this section is axisymmetric and
comparable with the multiSFDM (Ψ100,Ψ210) configurations, the results are not as promising
to explain the anisotropic behaviour of the Milky Way (or M31) satellites as the multiSFDM
(Ψ100,Ψ210) model, since the potential do not include the minimums far from the galactic plane
produced by the (2,1,0) mode as the multiSFDM (Ψ100,Ψ210) halos do.
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Chapter 4

Rotation Curves

At galactic scales any dark matter model has to be able to explain the observed rotation curves
of galaxies. To verify whether the multiSFDM configurations are consistent with the Milky Way
rotation curve, a simple model of a galaxy consisting of three components:

• A stellar disc,

• a spherical bulge,

• a dark matter halo in multiSFDM configuration

is assumed. Other components as the spiral arms, HI gas disc, bars, or the central super-massive
black hole will not be considered. The circular velocity of a star due to these components is

v(r) =
√
v2
h + v2

d + v2
b (4.1)

where the subscripts (h, d, b) stand for halo, (stellar) disc, and bulge, respectively.

Stellar disc

To model the Milky Way stellar disc, the disc width and the spiral arms will be neglected, to
end up with a razor-thin exponential disc profile whose surface mass density Σd in cylindrical
coordinates (ρ, ϕ, z) is given by

Σd(ρ) = Σ0e
−ρ/ad ,

where Σ0 is the surface mass density at the origin (the galactic center), and ad is the disc scale
length. The total mass of the disc is the surface integral of Σd:

Md =

∫ 2π

0

∫ ∞
0

Σd(ρ)ρdρdϕ = 2πΣ0a
2
d

The squared circular velocity due to this density profile is [Freeman, 1970]

v2
d =

GMdy
2

2ad

(
I0

(y
2

)
K0

(y
2

)
− I1

(y
2

)
K1

(y
2

))
, (4.2)

where In and Kn are the modified Bessel functions of the first and second kind, respectively,
evaluated at y/2 were y is defined as y ≡ ρ/ad.
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Bulge

The central galaxy bulge is assumed to be spherically symmetric and thus is modeled using an
exponential density profile [de Vaucouleurs, 1958, Sofue et al., 2009], in spherical coordinates
(r, θ, φ) is given by:

ρb(r) = ρ0e
−r/ab ,

where ρ0 is the central density and ab is the bulge scale length.
The squared circular velocity due to this profile is

v2
b =

GM(r)

r
(4.3)

where

M(r) =

∫ 2π

0

∫ π

0

∫ r

0

ρb(r)r
2dr sin(θ)dθdϕ = Mb

(
1−

(
1 +

r

ab
+

r2

2a2
b

)
e−r/ab

)
.

is the enclosed mass at radius r and Mb is the total mass of the bulge, related to the central
density by ρ0 = Mb/(8πa

3
d).

Dark matter halo

To model the dark matter halo, the multiSFDM (Ψ100,Ψ210) and multiSFDM (Ψ100,Ψ200) con-
figurations will be used, for these there are two parameters to fit, namely λ and µ̂. The circular
velocity of a particle due to these axi-symmetric halos is given by

vh = cλ

√
ρ
∂V

∂ρ

∣∣∣∣
z=0

, (4.4)

where V is the self gravitational potential produced by the Bose-Einstein condensate in the
approximation of equation (2.10). Here the usual expression for the circular velocity of an

axi-symmetric potential

√
ρ ∂V

∂ρ

∣∣∣
z=0

has to be multiplied by λ because of the scaling property

vh → λvh in the Schrödinger-Poisson system.

Finally, equations (4.2,4.3,4.2) have to be substituted in equation (4.1) to complete the infor-
mation of the model. A total of six parameters to fit is obtained, namely (µ̂, λ,Md, ad,Mb, ab).

The circular velocity measurements of the Milky Way stars from Sofue [2012] data are fitted
using the Markov Chain Monte Carlo (MCMC) method, sampling the parameter space from
uniform priors. A total of 104 steps with 30 % burn-in and 300 walkers are used to sample
the parameter space. The posterior parameters and the 1σ and 2σ confidence levels were
calculated using the Lmfit [Newville et al., 2014] and Emcee [Foreman-Mackey et al., 2013]
Python packages.

In the top panel of Figure 4.1 the fits of the Milky Way rotation curve for all solutions in
the multiSFDM (Ψ100,Ψ210) family are plotted, and in the bottom panel with the multiSFDM
(Ψ100,Ψ200) family.
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Figure 4.1 Fit of the Milky Way rotation curve for all solutions in the multiSFDM (Ψ100,Ψ210)
family (upper panel) and for the multiSFDM (Ψ100,Ψ200) family (bottom panel). Data points
and error bars (blue) are taken from Sofue [2012].
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Table 4.1 Mean value, 1σ and 2σ spread of the parameters of the Milky Way MCMC fit. Columns
3-5 for the dipole-dominated configuration. Columns 6-8 for the monopole-dominated con-
figuration.

dipole-dominated monopole-dominated
Name Units Mean 1σ 2σ Mean 1σ 2σ

(1) (2) (3) (4) (5) (6) (7) (8)
λ 10−3 0.94 0.3 0.64 0.59 0.19 0.39
µ̂ 1/kpc 70.733 44.141 68.744 59.868 39.485 67.336
µc2 10−25 eV 4.5228 2.8225 4.3957 3.8281 2.5248 4.3056
Md 1010M� 6.7594 0.3385 0.7177 6.7494 0.3484 0.7438
ad kpc 3.1269 0.1199 0.2491 3.1265 0.1207 0.2521
Mb 1010M� 0.9737 0.0454 0.0909 0.9733 0.0453 0.0904
ab kpc 0.1353 0.0118 0.0237 0.1354 0.0119 0.0238

In Figure 4.2 only the contributions of the stellar disc and bulge are plotted to note that
the dark matter contribution acts principally in the outer regions of the galaxy, flattening the
rotation curve at radii r > 50 kpc. These fits show that the multiSFDM configurations allow
fitting galaxy rotation curves .

Figure 4.2 The Milky Way rotation curve (blue solid line) without the dark matter contribution.

As the fitting parameters have a low variation (< 10%) within the family, only for the par-
ticular cases of the monopole-dominated and dipole-dominated configurations, the posterior
parameters and the 1σ and 2σ confidence levels are shown in Table 4.1. A stellar disc mass
Md = (6.7±0.3)×1010M� and scale length ad = (3.12±0.12) kpc are found for both configura-
tions, similarly the bulge mass Mb = (9.7± 0.4)× 109M� and scale length ab = 135± 12pc are
obtained for both configurations, being in agreement with results from fittings with Navarro-
Frenk-White halos [see, for example, Maleki et al., 2020].

On the top panel of Figure 4.3 the fit of the total rotation curve is plotted along with the
contribution of the disc and bulge for the monopole-dominated configuration and in Figure
4.4 for the dipole-dominated configuration. On the bottom panel of Figure 4.3 and Figure 4.4
the posterior parameters of the MCMC fit are plotted in a triangle plot for the monopole and
dipole-dominated configurations respectively.
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Figure 4.3 Top panel: Fit of the Milky Way rotation curve (blue solid line), the disc (red dotted
line) and bulge (black continuous line) are modeled with exponential profiles and the dark
matter halo (green dash-dotted line) with the monopole-dominated multiSFDM (Ψ100,Ψ210)
configuration η = 0.36. The contribution of disc and bulge without dark matter is plotted with
the orange dashed line. The green dash-dotted vertical line represent the stellar disc scale length
ad. Data points and error bars (red) are taken from Sofue [2012]. Bottom panel: Triangle plot
of the 1D and 2D posterior parameters. Here µ̂ is in 1/kpc units, λ in 10−3 dimensions, ad, ab
in kpc units, and Md,Mb in 1010M� units.
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Figure 4.4 Same as in Figure 4.3 but now for the dipole-dominated configuration η = 3.
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Chapter 5

Conclusions

In this work the scalar field dark matter model was studied, this dark matter model behave
at large scales as the standard cold dark matter model, but at galactic scales, distances <
1 Mpc the results have substantial differences. In this model the halo is a self-gravitating Bose-
Einstein condensate ruled by the Gross-Pitaevskii-Poisson equations, usually only the ground
state equilibrium solution is considered, but now multiple states equilibrium solutions, the
multiSFDM, are proposed to solve the small-scale problems of cold dark matter .

When more than multiple self-gravitating scalar fields of the same mass, or equivalently,
multiple states of a scalar field, are considered, the usual Gross-Pitaevskii-Poisson system be-
comes a variant Gross-Pitaevskii-Poisson system with multiple Gross-Pitaevskii equations and
a Poisson equation sourced by the sum of the densities of all scalar fields. In Chapter 2, fami-
lies of equilibrium solutions are found in the case of multiSFDM (Ψ100,Ψ210) , (Ψ100,Ψ200) and
(Ψ100,Ψ211) configurations.

To explain the anisotropic distribution of satellite galaxies observed in the Milky Way , M31
and Cen A systems, two particular solutions of the multiSFDM (Ψ100,Ψ210) configuration with
different density-mode domination, namely, the monopole-dominated and dipole-dominated
were tasted as dark matter halos. In Chapter 3 a set of 105 test particles with random initial
velocities and positions were evolved under the potential of both halos, in the asymptotic time,
the test particles distributed anisotropically, with high concentrations at the poles and the
equatorial plane of the system, a result in contrast with the one obtained if the single-state
configuration consisting only in the ground state Ψ100 is considered, where particles remain
spherically distributed, changing only the radial distribution.

Not only the position distribution of galaxy satellites is anisotropic, the satellites seem to be
co-rotating in a plane made by its current positions, to that purpose, the test particles angular
momentum directions (orbital poles) were analyzed. The monopole-dominated configuration
obtained the best results, the orbital poles of the test particles that, in the asymptotic time
were located at satellite galaxies distances (30 kpc ≤ r ≤ 300 kpc), accumulate at preferential
regions around the polar angle θl = π/2 (or b = 0◦) and the azimuthal angle φl = π, 3π/2 (or
l = 180◦, 270◦) compatible with the data points of the Milky Way satellite galaxies, for which
the mean direction of the seven most concentrated (Fornax, LMC, SMC, Ursa Minor Carina,
Draco and Leo II) orbital poles points at (l = 179.5◦, b = −9◦) Pawlowski and Kroupa [2020].
Then a single particle, interpreted as a satellite galaxy hosted by a galaxy with a multiSFDM
(Ψ100,Ψ210) dark matter halo, farther than 30 kpc from the galactic origin, would be more likely
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to have a polar flat orbit.
The analysis is supported by the consistency check of the multiSFDM (Ψ100,Ψ210) solutions

with the stability of disc distributions. Through a set of test particles initially placed in a
double exponential thin disc distribution perpendicular to the axis of the dipole, and with initial
circular velocities, the time evolution under the monopole and dipole-dominated configurations
was studied. In the monopole-dominated configuration the disk-like shape was preserved in
the asymptotic time but with a wider and larger disc. Unfortunately, in the dipole-dominated
configuration, the deeper potential wells given by the density blobs destroyed the disc-like
distribution. As not all galaxy systems mentioned have satellites with polar orbits, Andromeda
for one case where the satellites are at θ ≈ 45◦, a time evolution with a disc tilted with respect
to the equatorial plane was also run, in this way the results of the polar orbits could be applied
to Andromeda supposing that the dark matter halo symmetry axis does not correspond to
the stellar disc symmetry axis, unfortunately tilted discs are destroyed in both configurations.
Nevertheless, these results are valid in the long-term, which means that eventually the observed
polar angles of Andromeda satellites should approach θ = π/2 as time evolves.

The motion of test particles traveling on top of a spherical symmetric ground state solution
(Ψ100) of the Schrödinger-Poisson system as a control case was studied too, under a spherical
potential, test particles with this general initial conditions preserve the spherical symmetry in
both positions and orbital poles in the asymptotic time.

In order to check if a non-spherical cold dark matter halo could give similar results to
the multiSFDM (Ψ100,Ψ210) configurations, in Section 3.8 a run with a triaxial Navarro-Frenk-
White profile distorted along two directions to resemble the monopole-dominated configuration
was carried. In this axi-symmetric potential an in-homogeneous distribution of particles at
asymptotic time is found, but unlike the multiSFDM (Ψ100,Ψ210) configurations, the isotropy
in the orbital poles is preserved.

In Chapter 4 the consistency of the multiSFDM solutions with the Milky Way rotation curve
was checked obtaining similar fits with the multiSFDM (Ψ100,Ψ210) and (Ψ100,Ψ200) families of
solutions, a scalar field particle mass µc2 ∼ 10−25eV was obtained, the fiducial mass used in the
test particle simulations. A simple mass model with stellar razor-thin disc, spherical exponential
bulge and multiSFDM halo was proposed, obtaining a stellar disc mass of (6.7± 0.3)× 1010M�
with length scale ad = (3.12 ± 0.12) kpc, and a stellar bulge mass of (9.7 ± 0.4) × 109M� with
length scale ab = (0.13± 0.01) kpc.

The test particle trajectories in two sample configurations with different mass ratio η between
modes have been studied, nevertheless there is a continuous universe of solutions with different
η for whose effects may vary, and thus potentially useful to study each particular galaxy sys-
tem. Furthermore, beside the two-states equilibrium solutions of the Gross-Pitaevskii-Poisson
equations considered here, there is a even larger universe of multistate configurations with dif-
ferent excited states or different number of excited states to explore, implying that the ultralight
bosonic scalar field dark matter model has potential to explain the plane of satellites problem
in the known cases of the Milky Way , Andromeda and Cen A or even different small-scale
problems to come.
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