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Resumen

Considerando materiales dieléctricos no homogéneos, bajo la aproximación de guiado
débil, establecemos una analoǵıa entre el estudio de gúıas de onda y el de potenciales
exactamente solubles en mecánica cuántica.

En concreto, partiendo de las ecuaciones de Maxwell mostramos que el campo eléctrico
en una gúıa de ondas obedece una ecuación diferencial de segundo orden que está en
correspondencia con la ecuación de Schrödinger para un pozo de potencial.

Con el propósito de explorar el alcance de dicha analoǵıa, presentamos el estudio
detallado de un oscilador truncado y su correspondiente gúıa de ondas.

Además, en el contexto de la mecánica cuántica supersimétrica, usamos la analoǵıa
para diseñar gúıas de onda cuyo ı́ndice de refracción es exactamente soluble, con lo que
se obtienen constantes de propagación hechas a la medida.





Abstract

For non-homogeneous dielectric materials and electromagnetic waves propagating in such
media under the weakly guided condition, we study the properties of electromagnetic
waveguides in connection with the exact solutions of some potential-wells in quantum
mechanics.

To be concrete, departing from the Maxwell equations we arrive at the differential
equation that is satisfied by the electric fields in the waveguide, and show that such
equation is associated with the eigenvalue problem of a properly defined potential-well in
quantum mechanics.

As an immediate example of the applicability of the model, we discuss in detail
the connection between the guided modes of a waveguide characterized by a parabolic
refractive index and the solutions of the eigenvalue problem of a truncated oscillator.

We take full advantage of such analogy by applying the supersymmetric formulation
of quantum mechanics to design waveguides that admit exactly solvable guided modes,
the propagation constants of which are defined under prescription.
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Introduction

The study of light and its propagation through different media has been in the mind of
physicists for as long as the study of nature goes. Even before Newton’s and Huygen’s
debate about the nature of light, phenomena like reflection and refraction have captivated
scholars and amateurs. Light have always presented subtleties to the human eye; illusions
of finding a body of water in the middle of desert or misjudging the position of a fish
swimming close to the surface of a tank are two examples of that. As an intangible entity,
light is difficult to experiment with. Our knowledge of its behavior, both macroscopic
and microscopic, is therefore a success by itself. However, more than a curiosity, light
represents a very useful tool in our modern way of life. Its role in communications makes
light essential for our society so that refining our knowledge of its nature and behavior
opens the possibility to find new practical applications.

Light has different physical properties like amplitude, frequency, phase shifts and
polarization. These properties encode information, the simplest example is a light bulb
with configurations on/off that represent active or passive states of a given device. On
the other hand, the properties of light may be conserved along its journey through a
waveguide; the more clear the information is transmitted the better is the code received
by the interpreter. Sending information from one end to another of the waveguide with
minimum losses we speak of light in a guided mode. Such modes are characterized by a
propagation constant, which measures the slope of the light ray with respect to the axis
of the waveguide.

The study of waveguides and their modes is the subject of a big number of research
papers, sientific monographs and academic books in optics. The novelty of the present
work is the method employed to investigate the propagation of light since we implement
approaches from quantum mechanics to the design of optical waveguides. Indeed, we study
refractive indices of non-homogenous media through the analogy that can be established
between waveguides and quantum wells.

The work addresses two types of problem, direct and inverse: 1) the direct problem
consists of finding the propagation constants of guided modes provided a refractive index.
2) the inverse problem determines the refractive index admitting a set of propagation
constants that are provided under prescription.
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For the direct problem we will study an optical waveguide with parabolic dependence
nprq “ r2, where r is the distance from the axis of the waveguide to any point. Using the
Maxwell equations we establish an analogy with a two-dimensional short-range oscillator-
like system. The adjective “short-range” stands for a phenomenon that takes place only in
a certain region of space. Consider for example a dielectric charged cylinder. Suppose non-
uniform charge density and therefore a potential V p~rq that depends of the position vector
~r. Outside the cylindrical body of radius a there is a cover of uncharged homogenous
material with constant potential V prq “ const. We have two distinguishable regions.
Region I defines the domain where V prq varies continually and region II the domain
where V prq is constant. We say that the potential is of short-range because the region
where it varies is bounded. The point r “ a is called cutoff and determines the position
at which the potential changes abruptly its behavior.

For the inverse problem we departure from a constant refractive index, defined over
the whole real axis. An example would be provided by a system as large as it can be
considered unbounded. Although the constant refractive index has analytic solution, we
instead solve the analogous problem of a quantum free particle and then come back with
solutions to the original problem. The free particle does not admit bounded modes.
Using Darboux transformations, within the frame of quantum supersymmetry, we take
the solutions of the quantum free particle potential to generate new refractive indices with
as many propagation constants as we desire.

The work is organized as follows: In Chapter 1 we address a one-dimensional short-
range oscillator. We study this system in depth. Following exact methods (solving the
differential equation analytically) and the WKB approximation we find the bound states.
Besides, with the exact solutions at hand we explore as well the scattering and resonant
states of the system, making special emphasis on the role played by the wave number
and the transmission coefficient. In Chapter 2 we study the two-dimensional version
of the system of Chapter 1. We solve the bound states problem, and use the exact
solutions to analyze scattering and resonant states. We analyze as well the probability
density current which, contrary to the one-dimensional case, changes its flow in magnitude
and direction. In Chapter we 3 use the Maxwell equations for an inhomogeneous non-
magnetic dielectric medium to obtain the electric field satisfying the vectorial Helmholtz
equation. We identify the transition from such equation onto a scalar Helmholtz equation
for each scalar component of the field. Finally, the paraxial approximation gives place to a
Schrödinger-like equation for the components of the field known as the paraxial Helmholtz
equation. By comparison with the Schrödinger equation of the two-dimensional harmonic
oscillator, we establish a quantum-classical analogy between an optical waveguide and a
quantum well, which leads immediately to the propagation constants and guided modes.
We also explore the problem of finding the propagation constants through an approximate
method called the “quasi-plane approach”. This method turns out to be similar to the
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WKB approximation. Finally, in Chapter 4 we present a summary of the process of
producing Hermitian and non-Hermitian potentials with real spectra, given that we know
the solutions of a previous one. Although this technique was developed within the context
of quantum mechanics, the analogy established in section 3 permits the application of the
Darboux-transformations to generate propagation constants on demand.

We conclude the manuscript with a series of conclusions and perspectives in chapter
5. A very short appendix includes technical details about Laplacian operators.
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Chapter 1

One dimensional case

Before solving the two dimensional short range potential we are interested in, it is
appropriate to study first a one dimensional case. The insight gained by doing this
will be useful in the next chapters, both as a guide of the challenges to be faced and as
a reference for future comparison. We proceed by characterizing a piecewise potential
over three different regions of the real line with a cutoff, and solving the corresponding
Schrödinger equation. Continuity conditions are imposed to obtain a set of equations
that determine the eigenstates, depending on the “kinetic” parameter k. As we shall see,
k encodes information about the energy with respect to the height of the potential at
the cutoff. This determines whether the particles may or may not be “trapped” by the
potential under study.

1.1 Generalities

The potential of the one-dimensional oscillator is V pxq “ x2, with x P p´8,8q. The
general solution reads

ψpxq “ e´
x2

2

„

A M

ˆ

1´ 2E

4
,
1

2
;x2

˙

`B xM

ˆ

1´ 2E

4
`

1

2
,
3

2
;x2

˙

, (1.1)

where

Mpα, β; zq ”
8
ÿ

n“0

pαqn
pβqn

zn

z!
(1.2)

is the confluent hypergeometric (Kummer) function, also denoted as 1F1pa, b; zq [1].

We know that Mpα, β, zq reduces to a polynomial if α “ ´n, with n a positive integer
(provided that β is not a negative integer). The degree of this polynomial is precisely n.
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If α ‰ ´n then Mpα, β, zq is a convergent series for all x. If α ‰ ´n the series Mpα, β, zq
has the asymptotic behavior

lim
|z|Ñ8

Mpα, β, zq “ ezzpα´βq. (1.3)

Therefore, if α1 ”
1´2E

4
and α2 ”

1´2E
4
` 1

2
are not negative integers, the function (1.1)

has the asymptotic behavior

limxÑ8 ψpxq “ limxÑ8 e
´x2

2

”

A x
1
2
´Eex

2
`B xpx´

3
2
´Eex

2
q

ı

“ psome polynomialqe
x2

2 .
(1.4)

If α1 “ ´n, we have

ψpxq “ A e´
x2

2 M

ˆ

´n,
1

2
;x2

˙

“ A e´
x2

2 p´1qn
n!

p2nq!
H2npxq (1.5)

and

E “ p2nq `
1

2
. (1.6)

Hereafter Hjpxq stands for the Hermite polynomials [2]. In this case the solution is

proportional to e´
x2

2 H2npxq, which is an even function.
If α2 “ ´n, then

ψpxq “ e´
x2

2 B xM

ˆ

1´ 2E

4
`

1

2
,
3

2
;x2

˙

“ Be´
x2

2 p´1qn
n!

p2n` 1q!2
H2n`1pxq, (1.7)

and

E “ p2n` 1q `
1

2
. (1.8)

In this case the solution is proportional to e´
x2

2 H2n`1pxq, which is an odd function. Notice
that α1 “ ´n corresponds to even solutions while α2 “ ´n refers to odd solutions.
Condensing these expressions for the energy of even and odd functions in one single
expression we get:

E “ n`
1

2
; n “ 0, 1, 2, ... (1.9)

Another consequence of the quantization is the rising of a set of functions that form an
orthogonal basis. Any continuous or piece-wise continuous function defined in p´8,8q
may be expanded in terms of such basis [2]. This set of functions can be equipped with
the inner product

pφ1, φ2q ”

ż 8

´8

φ˚1pxqφ2pxqe
´x2dx. (1.10)
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In consequence a notion of orthogonality [2] can be associated to the Hermite polynomials:

pHjpxq, Hipxqq ”

ż 8

´8

H˚
j pxqHipxqe

´x2dx “ 2jπ
1
2 j!δji, (1.11)

as well as a norm

|Hjpxq|“
b

pHjpxq, Hjpxqq. (1.12)

For a discussion of orthogonality of solutions related to a Sturm-Liouville problem see [2],
and [3] for a more detailed discussion of orthogonality and completeness.

1.2 Solution to the piecewise Schrödinger equation

The solutions of the Schrödinger equation are, in principle, all we need to represent the
quantum states of a system, the dynamics of which is ruled by a given Hamiltonian.
In the case of short-range one-dimensional potentials the analytical solutions provide
the information we need to make predictions. However, solving the same problem via
approximate methods gives additional information about either the limiting form of
solutions or the stability of eigenvalues. In the following we present the exact solution
to the problem, from which we analyze bound, scattering and resonant states. Moving
forward, next we apply the Wentzel-Kramers-Brillouin (WKB) method to address the
search of bound states.

1.2.1 Analytical solution

The time dependent Schrödinger equation for a one-dimensional system reads

´
~2

2m

d2

dq2
Ψpq, tq ` Ṽ pqqΨpq, tq “ i~

B

Bt
Ψpq, tq, (1.13)

where q stands for position, t for time and Ṽ pqq for the potential of the system (the reason
for the tilde notation will be cleared shortly). Assuming a harmonic dependence of time
we write

Ψpq, tq ” ψpqqe´i
E
~ t, (1.14)

where E is a constant to be determined. Substituting in (1.13) we get the stationary
Schrödinger equation

´
~2

2m

d2

dq2
ψ ` Ṽ pqqψ “ Eψ, (1.15)
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where

Ṽ pqq “

$

’

&

’

%

1

2
mω2q2, |q| ď ã

1

2
mω2ã2, |q| ą ã

,

/

.

/

-

. (1.16)

(a) (b)

Figure 1.1: (a) Potential of a harmonic oscillator. (b) Potential of the Short-range
oscillator, see eq. (1.18).

Here ~ is the reduced Planck constant, q is the spatial coordinate, ã is the specific
value of q where the potential becomes constant, m is the mass of a particle interacting
with the potential, ω is the natural frequency of the quantum harmonic oscillator and E
its energy. Let x “

a

mω
~ q, a “

a

mω
~ ã and E “ E

~ω , then (1.15) turns into

´
1

2

d2

dx2
ψ `

1

2
V pxqψ “ Eψ. (1.17)

where

V pxq “

#

x2, |x| ď a

a2, |x| ą a
, (1.18)

Eq. (1.17) is referred to as dimensionless Schrödinger equation. Potential (1.18) consists
of three regions, see figure 1.1. In regions I p´8 ă x ă ´aq and III pa ă x ă 8q the
potential is constant. These regions represent a physical situation where the interaction
no longer influences the dynamics of the system. Region II p´a ă x ă aq is called the
interaction zone, and represents the domain where the influence of the potential is signif-
icant. This redefinition of physical quantities is helpful when performing large amounts
of calculations, so we will not drag constants in the sequel. It is also helpful to plot our
results using scaled quantities since, otherwise, we would deal with magnitudes as small
as the scale of ~ (=1.05 10´34Js) squared, which can be very cumbersome when operating
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and plotting. One possible downside to such redefinitions could be that unit analysis of
physical quantities is not immediate, but it suffices to change them back through their
definitions for such analysis to be available again.

‚ Region I: x ă ´a

In this region V pxq “ a2. Therefore (1.17) reads

´
1

2

d2

dx2
ψpxq `

1

2
a2ψpxq “ Eψpxq. (1.19)

The solution of this equation follows immediatly:

ψpxq “ A1e
ikx
`B1e

´ikx; k ”
?

2E ´ a2. (1.20)

Notice that, whether 2E is shorter or larger than a2, it will determine if ψpxq is a real
exponential function or a complex one.

‚ Region II: ´a ă x ă a

In this region V pxq “ x2. Equation (1.17) then reads

´
1

2

d2

dx2
ψ `

1

2
x2ψ “ Eψ. (1.21)

The appropriate change of dependent and independent variables reduces this equation

to a confluent hypergeometric one. Let the solution be of the form ψpxq “ upxqe´
x2

2 .
Substituting it into (1.21) we arrive at

d2

dx2
upxq ´ 2x

d

dx
upxq ` p2E ´ 1qupxq “ 0. (1.22)

Now let ξ ” x2, then one gets

ξ
d2

dξ2
upξq `

ˆ

1

2
´ ξ

˙

d

dξ
upξq `

ˆ

2E ´ 1

4

˙

upξq “ 0 (1.23)

which is the confluent hypergeometric equation, the general solution of which is well
known [4]:

upξq “ A M

ˆ

1´ 2E

4
,
1

2
; ξ

˙

`B ξ
1
2M

ˆ

1´ 2E

4
`

1

2
,
3

2
; ξ

˙

, (1.24)
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where A and B are arbitrary constants. Therefore, the complete solution for equation
(1.21) in terms of x is:

ψpxq “ e´
x2

2

„

A M

ˆ

1´ 2E

4
,
1

2
;x2

˙

`B xM

ˆ

1´ 2E

4
`

1

2
,
3

2
;x2

˙

. (1.25)

‚ Region III : x ą a

In this case we also have

ψ “ A3e
ikx
`B3e

´ikx; k “
?

2E ´ a2. (1.26)

We have found the solutions to the Schrödinger equations along the whole space, now we
proceed to find the unknown coefficients through the continuity conditions that both, ψ
and dψ

dx
must fulfill.

1.3 Continuity conditions for the 1-D short range

oscillator

The conditions that any solution of the Schrödinger equation must satisfy are as follows:

‚ Continuity at all points.

‚ Continuity of their derivatives at all points.

Let ψj and φj be two independent solutions for region j, and Aj,Bj be the corresponding
arbitrary coefficients. We can summarize the continuity conditions as follows:

˝ Continuity at x “ ´a:

A1ψ1p´aq `B1φ1p´aq “ A2ψ2p´aq `B2φ2p´aq
A1ψ

1

1p´aq `B1φ1
1p´aq “ A2ψ2

1p´aq `B2φ2
1p´aq

(1.27)

˝ Continuity at x “ a:

A2ψ2paq `B2φ2paq “ A3ψ3paq `B3φ3paq
A2ψ

1

2paq `B2φ2
1paq “ A3ψ3

1paq `B3φ3
1paq

(1.28)

where (
1

) stands for derivative with respect to x. We can write these sets equations as
the matrix equations:

ˆ

ψ1 φ1

ψ
1

1 φ
1

1

˙ ˇ

ˇ

ˇ

ˇ

x“´a

ˆ

A1

B1

˙

“

ˆ

ψ2 φ2

ψ
1

2 φ
1

2

˙ ˇ

ˇ

ˇ

ˇ

x“´a

ˆ

A2

B2

˙

(1.29)
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and
ˆ

ψ2 φ2

ψ
1

2 φ
1

2

˙ ˇ

ˇ

ˇ

ˇ

x“a

ˆ

A2

B2

˙

“

ˆ

ψ3 φ3

ψ
1

3 φ
1

3

˙ ˇ

ˇ

ˇ

ˇ

x“a

ˆ

A3

B3

˙

. (1.30)

We can simplify further if we rename the matrices acting on the coefficient vectors as
M1,M2, N1, N2 respectively:

M1

ˆ

A1

B1

˙

“M2

ˆ

A2

B2

˙

, N1

ˆ

A2

B2

˙

“ N2

ˆ

A3

B3

˙

. (1.31)

It is simple to express the region 3 coefficients in terms of those of region 1:

ˆ

A3

B3

˙

“ N´1
2 N1

ˆ

A2

B2

˙

“ N´1
2 N1M

´1
2 M1

ˆ

A1

B1

˙

. (1.32)

Then
ˆ

A3

B3

˙

“M

ˆ

A1

B1

˙

; M ” N´1
2 N1M

´1
2 M1. (1.33)

In other words

A3 “ m1,1A1 `m1,2B1 ; B3 “ m2,1A1 `m2,2B1, (1.34)

where mij ” the ij-th element of M. As we shall see in detail in the sequel, it is justified
to set B3 “ 0. Then, equation (1.34) reads

A3 “ m1,1A1 `m1,2B1, 0 “ m2,1A1 `m2,2B1. (1.35)

It may be shown that the matrix M is of determinant equal to 1, and therefore unitary
(see complement N III of [5]). Using this fact, (1.35) yields

m2,2A3 “ A1. (1.36)

The latter result is useful to construct the transmission coefficient T . Indeed, the flux
density of particles per time unit [6]

j̃ψpqq ”
~

2mi

ˆ

ψ˚pqq
d

dx
ψpqq ´ ψpqq

d

dx
ψ˚pqq

˙

. (1.37)

Expressing qin terms of x we define a dimensionless current density

jψpxq ” ´
i

2

ˆ

ψ˚pxq
d

dx
ψ ´ ψ

d

dx
ψ˚pxq

˙

. (1.38)
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The transmission coefficient T is defined as follows

T ”

ˇ

ˇ

ˇ

ˇ

ˇ

jψ3

jψ1

ˇ

ˇ

ˇ

ˇ

ˇ

“

ˇ

ˇ

ˇ

ˇ

ˇ

A3

A1

ˇ

ˇ

ˇ

ˇ

ˇ

2

“

ˇ

ˇ

ˇ

ˇ

ˇ

1

m2,2

ˇ

ˇ

ˇ

ˇ

ˇ

2

. (1.39)

As we shall see (1.39) contains the information needed to fully describe the system.
Analyzing the character of k we shall see that bound, scattering, and resonant states
flow naturally out of T .Let us go back to Equation (1.19) and rewrite it as

´
d2

dx2
ψ “ k2ψ. (1.40)

From a mathematical point of view, this is an eigenvalue equation with no constraints on
k. The possibilities for k are three:

‚ k is pure imaginary (bound states).

‚ k is pure real number (scattering states).

‚ k is complex (resonant states).

1.3.1 Bound states

Let k be pure imaginary k “ iκ. Then

?
2E ´ a2 “ iκ “ñ 2E ă a2 and κ “

a

|2E ´ a2|. (1.41)

This inequality defines an upper bound for the energy values which is half the height of
the potential well. Substituting k “ iκ in the solutions for region I (equation 1.20) and
region III (equation 1.26) we get

ψ “ A1e
´κx

`B1e
κx; x ă a, (1.42)

and
ψ “ A3e

´κx
`B3e

κx; x ą a. (1.43)

In order for ψ to be physically admissible, we impose the boundary condition
limxÑ˘8 ψ “ 0; which in turn fixes the values of A1 and B3 equal to zero. Going back to
(1.39) we observe that A1 “ 0 implies a pole of T, and so, m2,2 has a zero. Let us take
the height of the well as a2 “ 20. Numerical solutions to the equation

m2,2pEq “ 0 (1.44)
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Energy values
E0 “ 0.5 E5 “ 5.499870551
E1 “ 1.499999994 E6 “ 6.49921014
E2 “ 2.499999873 E7 “ 7.495971211
E3 “ 3.499998269 E8 “ 8.482032284
E4 “ 4.499982932 E9 “ 9.423779007

Table 1.1: Numerical solutions for equation (1.44) with a “
?

20

are shown in Table 1.1. The set of solutions is discrete as expected. All energy values are
less than 10p“ a2

2
q as they should. It is also of interest that the numerical values of E are

almost identical to those found for the harmonic oscillator V pxq “ x2, see equation(see
equation (1.9)). In Figure 1.2 we show a comparison between some of the solutions for
the short-range oscillator against the solutions for the harmonic oscillator. The plots are
superimposed due to them being practically identical. This fact is in agreement with the
values of the energy being practically the same.

Figure 1.2: Comparison of the first four normalized bound states for a short-range well of height a2 “ 20
vs those of a conventional well, for energies (a) E “ 0.5, (b) E “ 1.5, (c) E “ 2.5, (d) E “ 3.5. The two
plots appear superimposed on each other due to them being almost identical.
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1.3.2 Scattering states

Now, let k be a real number. Then k2 P R`. In consequence

2E ´ a2
ą 0. (1.45)

In this case, the energy is unbounded from above. Now, k is a real number. Therefore, the
solutions corresponding to region I and region III are a linear combination of complex
exponential functions. Taking into account that these functions represent ingoing (e´ikx)
and outgoing waves (eikx) we make the assumption that our system consists only of
scattering of particles incident from the left of the well (i.e. no particles are incident
from the right). Therefore, B3 “ 0 in equation (1.26), which leads us again to (1.35) and
(1.39). This time there is no special conditions over m2,2, the transmission coefficient is

therefore a function of the continuous variable E P pa
2

2
,`8q. For a2 “ 20, the behavior

of the transmission coefficient plot is shown in figure (1.3).
The plot of T reveals there some values of E such that T pEq “ 1. Since T measures

how many particles come out compared to how many go in, when a stream of particles
with any of these energies hits the well from the left, it is guaranteed that the totality of
them will come out heading right, no particle will be reflected and the transmission will
be total.These energies are known as transparencies. Table 1.2 refers to transparencies
present between energies E “ 10 and E “ 20.

(a) (b)

Figure 1.3: (a) Transmission coefficient for the cutoff value a “
?

20. (b) Zoom in of the
plot presented in (a)

1.3.3 Resonances and changes in the continuity equation

Let k “ kr ` i ki be a non-trivial complex number (i.e. ki is not zero). We will pay
attention to how this changes the behavior of the probability density ρ “ |Ψpx, tq|2. The
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Transparencies
E1 “ 10.21 E5 “ 16.40
E2 “ 11.59 E6 “ 18.24
E3 “ 13.08 E7 “ 20.21
E4 “ 14.68

Table 1.2: Numerical values of the energy between E “ 10 and E “ 20 that result in
transparencies for a well of height a “

?
20

time dependence of ρ is determined by the evolution operator Û ,

ÛΨpx, tq ” e´iĤtΨpx, 0q, (1.46)

where Ψpx, 0q “ ψpxq. For an eigenfunction ψpxq of Ĥ with eigenvalue E, the action of
Û reduces to

ÛΨpx, tq “ e´iĤtψpxq “ e´iEtψpxq. (1.47)

Therefore, if E isa real then the probability density reads

ρ “ |e´iEtψpxq|2 “ |ψpxq|2. (1.48)

However, for k “ kr ` i ki, we have pkr ` i kiq
2
“ 2pEr ` i Eiq ´ a

2, so that

k2
r ´ k

2
i “ 2Er ´ a

2 and krki “ Ei. (1.49)

In this case, E is also a non-trivial complex number and (1.48) reads instead

ρpx, tq “ |e´iEtψpxq|2 “ |e´ipEr`i Eiqtψpxq|2 “ |e´i Ertψpxq|2e2Eit “ |ψpxq|2e2Eit. (1.50)

From (1.49) we notice that for bound states (ki “ 0) and for scattering states (kr “ 0)
the imaginary part of the energy Ei “ 0. In those cases equation (1.50) loses its
time dependence and the stationary case is recovered. However, for non-trivial complex
energies, we have found that ρ is no longer stationary. The probability density increases
or decreases exponentially. If Ei is positive, at the limit t Ñ 8 the probability density
should diverge at any position. This makes no physical sense. Therefore, if we are to give
any meaning to complex energies, Ei must be negative, which produces the probability
density to decrease as time goes by (see figure 1.4). In turn, in light of (1.49), the sign of
kr is the opposite of that of ki.

We notice as well the change that takes place in the solutions (1.20) and (1.26). The
solution in region 1 now reads

ψ1 “ A1e
ipkr`ikiqx `B1e

´ipkr`ikiqx “ A1e
´kixeikrx `B1e

kixe´ikrx, (1.51)
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Figure 1.4: (a) Probability density distribution ρ along space of a resonant state with k “ 0.422´0.486.
(b) Time evolution of the state shown in (a) for t “ 0, 1, 2 (from top to bottom); ρ decreases over time
everywhere in space.

while for region 3 one has

ψ3 “ A3e
ipkr`ikiqx `B3e

´ipkr`ikiqx “ A3e
´kixeikrx `B3e

kixe´ikrx. (1.52)

To find further information about k we shall assume now that there are no incoming
waves, neither from the left nor from the right. Therefore we set A1 “ 0 and B3 “ 0:

ψ1 “ B1e
kixe´ikrx, ψ3 “ A3e

´kixeikrx. (1.53)

With these expressions in mind we use (1.38) to find the probability density current for
regions 1 and 3,

j1 “ |B1|
2e2kixp´krq, j3 “ |A3|

2e´2kixpkrq. (1.54)

In order to make sense with our assumption of purely outgoing waves, j1 be negative
while j3 should be positive. This means that kr ą 0. Since the real part of k is positive,
from the discussion following (1.48) it follows that the imaginary part of k is negative,
i.e. ki ă 0. Notice that the setting of A1 “ 0 in (1.53) leads again to condition (1.44).
In conclusion, the values of k P C located in the 4th quadrant of the complex plane such
that satisfy being poles of T lead to the physical phenomena of purely outgoing waves.
Therefore, for these energies the potential is working as a source of particles moving away
from its core. This is essentially the resonance phenomena, which is a well fit model
for decaying systems like radioactive atoms, or the modeling of scattering off a potential
which absorbed some of the incident particles, kept them inside for a period of time, and
then released them after the original source had been turned off. Table (1.3) presents the
resonant energies of a short-range oscillator potential with height a2 “ 20.
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The values of k “ kr ` iki that satisfy (1.44) in the fourth quadrant correspond to
the purely outgoing wave solution (1.53). This set is discrete and that there seems to be
an infinite amount of them. We present in Table 1.3 the first ten values of k (and their
corresponding energies).

kr ` i ki Er ` i Ei
k1 0.42219´ i 0.48681 9.97063´ i 0.20553
k2 1.70080´ i 0.51925 11.31155´ i 0.88314
k3 2.41611´ i 0.54743 12.76895´ i 1.32266
k4 3.00351´ i 0.57212 14.34687´ i 1.71836
k5 3.52816´ i 0.59411 16.04747´ i 2.09611
k6 4.01505´ i 0.61401 17.87180´ i 2.46528
k7 4.47668´ i 0.63230 19.82043´ i 2.83060
k8 4.92023´ i 0.64929 21.89354´ i 3.19465
k9 5.35023´ i 0.66524 24.09120´ i 3.55918
k10 5.76972´ i 0.68030 26.41343´ i 3.92514

Table 1.3: k and E values corresponding to purely outgoing waves solutions for a2 “ 20.

We point out that the last 7 energies presented in Table 1.3 barely display a pattern
in their real part. This pattern goes as En

r « En´1
r ` 2. An analogous pattern on the real

part of k can barely be noticed too. This other pattern would behave knr « kn´1
r ` 0.5.

The search for a prediction of such an approximate behavior seems interesting and might
be the subject of following studies in a near future.

1.4 Approximate method

Let us study our system through an approximate method now. We will use the WKB
approach to quantum potentials. This method, born in the first era of quantum mechanics
is most useful in the search of eigenvalues for bound states of the system rather than on
the search of the exact form of the solution.

1.4.1 WKB solution for bound states

The stationary Schrödinger equation reads

´
~2

2m
∇2ψ ` V ψ “ Eψ. (1.55)
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The WKB method proposes ψ to be of the form

ψpr, θq “ e
i
~S, (1.56)

where S is a function of the position Spr, θq to be determined. Substituting in (1.55) and
rearranging we get

p∇Sq2

2m
´

i~
2m

∇2S ` V “ E. (1.57)

We shall assume that the system is in such a state that the following is true:
ˇ

ˇ

ˇ

ˇ

p∇Sq2

2m

ˇ

ˇ

ˇ

ˇ

"

ˇ

ˇ

ˇ

ˇ

i~
2m

∇2S

ˇ

ˇ

ˇ

ˇ

. (1.58)

With this in mind, we may dismiss the second term in (1.57), giving

∇S ¨∇S
2m

` V « E. (1.59)

We can recognize that if we set ∇Spxq “ ppxq ”
a

2mpE ´ V pxqq “, the momentum
of the particle, then (1.59) gets fulfilled since it would be exactly the expression of the
total mechanical energy of a classical particle. From this observation a semi-classical
approximation is born, in which quantum problems can be solved by introducing quantum
corrections to the classic result. This corrected result would be used to compute the wave
function along with its eigenvalues.

To explore the physical meaning of the condition (1.58). To be more clear we’ll write
it for a one dimensional system:

ˇ

ˇ

ˇ

ˇ

`

dS
dx

˘2

2m

ˇ

ˇ

ˇ

ˇ

"

ˇ

ˇ

ˇ

ˇ

i~
2m

d2S

dx2

ˇ

ˇ

ˇ

ˇ

.
(1.60)

As we stated above, under this condition

dS

dx
« ppxq.

(1.61)

Substituting (1.61) in (1.60) we get
ˇ

ˇ

ˇ

ˇ

p2pxq

2m

ˇ

ˇ

ˇ

ˇ

"

ˇ

ˇ

ˇ

ˇ

i~
2m

dppxq

dx

ˇ

ˇ

ˇ

ˇ

“

ˇ

ˇ

ˇ

ˇ

i~
2m

ˆ

´

c

m

2pE ´ V pxqq

dV pxq

dx

˙
ˇ

ˇ

ˇ

ˇ

“

ˇ

ˇ

ˇ

ˇ

i~
2m

mF

ppxq

ˇ

ˇ

ˇ

ˇ

(1.62)
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where we have used a relation from Newtonian mechanics, associating a force F with the
potential V pxq through F “ ´dV pxq

dx
. This expression makes it clear that the semi-classical

approximation is valid in those regions where, either the force acting over the particle is
weak, i.e. V pxq varies slowly or the classical momentum is large. Notice that this last
condition makes the WKB approximation not valid near the classical turning points where
E « V pxq Ø ppxq « 0.

Let S be expanded in a power series of i~

S “ S0 ` i~S1 ` pi~q2S2 ` ¨ ¨ ¨ (1.63)

By expanding S as a series of powers of ~ we make it evident that we will get quantum
corrections with each successive power of ~ considered. Introducing this series in (1.57) we
get a corresponding set of equations. As long as (1.58) is fulfilled these set of equations
will determine the wave function. In most cases it is sufficient to work only with the
zeroth and first order approximations. As a first approach we will only work with these
two (order 0 and order 1). The set of differential equations obtained is

|∇S0|
2

2m
` V “ E, ∇S0 ¨∇S1 ´

1

2
∇2S0 “ 0. (1.64)

Our focus is on the 1-dimensional short range oscillator. Being that the case we will solve
the one-dimensional version of (1.64). That is,

1

2m

ˇ

ˇ

ˇ

ˇ

dS0

dx

ˇ

ˇ

ˇ

ˇ

2

` V “ E,
dS0

dx

dS1

dx
´

1

2

d2S0

dx2
“ 0. (1.65)

These equations can be easily integrated and we obtain

S0 “ ˘

ż r

ppxq dx` C, S1 “ ´ ln

˜

1
a

ppxq

¸

, (1.66)

where C is an arbitrary constant that comes with the indefinite integral of ppxq.
The solution for ψ is then

ψ “ exp
“

p i~qpS0 ` i~S1q
‰

“ exp

„

˘p i~q
ş

ppxq dx` C ` ln

ˆ

1?
ppxq

˙

“
1

a

ppxq
exp

„

˘
i

~

ˆ
ż

ppxq dx` C

˙

.
(1.67)
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For a given bounded energy, any one-dimensional potential well is divided in three regions.
Let x1,2 be turning points, that is they are such that ppxq “ 0. The values of ppxq satisfy

ppxq “

$

’

’

’

&

’

’

’

%

ip̃pxq ” i
a

2mpV pxq ´ Eq , x ă x1

a

2mpE ´ V pxqq , x1 ă x ă x2

ip̃pxq ” i
a

2mpV pxq ´ Eq , x ą x2

(1.68)

Notice that, in their respective domains, ppxq ą 0 and p̃pxq ą 0. Then, according to
(1.67), the general solution for each region reads

ψpxq “

$

’

’

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

’

’

%

A1
1

a

p̃pxq
exp

„

1

~

ˆ
ż x1

x

p̃pxq dx

˙

` A2
1

a

p̃pxq
exp

„

´
1

~

ˆ
ż x1

x

p̃pxq dx

˙

, x ă x1

N cos

ˆ
ż

ppxqdx` α

˙

, x1 ă x ă x2

B1
1

a

p̃pxq
exp

„

1

~

ˆ
ż x

x2

p̃pxq dx

˙

`B2
1

a

p̃pxq
exp

„

´
1

~

ˆ
ż x

x2

p̃pxq dx

˙

, x ą x2

(1.69)

where Ai, Bi, N and α are constants to be determined through boundary conditions. Since
we are focused on bound states, we need to make sure the wave function is an acceptable
physical state. Therefore, A1 “ 0, B1 “ 0. The function ψpxq now reads

ψpxq “

$

’

’

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

’

’

%

A2
1

a

p̃pxq
exp

„

´
1

~

ˆ
ż x1

x

p̃pxq dx

˙

, x ă x1

N cos

ˆ
ż

ppxqdx` α

˙

, x1 ă x ă x2

B2
1

a

p̃pxq
exp

„

´
1

~

ˆ
ż x

x2

p̃pxq dx

˙

, x ą x2

(1.70)

Since the WKB approximation is not valid close to the turning points we cannot use this
formulas to sew the solution across the turning points by using continuity conditions.
However, a set of connection formulas exist that allow us to link the outside of the well
with the inside. The connection formulas establish that, assuming we know for sure
the asymptotic behavior of the wave function on one side of the turning point, then we
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can be sure that the wave function has a matching behavior on the other side. This
correspondences work only in the direction specified. To know more in more detail about
the connection formulas and its derivation we refer the reader to [7].

The following two sets of equations are read as follows: What is on the left of the
arrow is the expression of ψ far away to the left of the turning point. What is on the
right of the arrow is the expression of ψ far away to the right of the turning point. The
direction of the arrow states which asymptotic expression of the wave function determines
with certainty its asymptotic form on the other side of the turning point. For the turning
point x “ x1 we have

ψpxq “ A?
p̃pxq

exp

„

´1
~

ż x1

x

p̃pxq dx



“ñ ψpxq “ 2A?
ppxq

cos

ˆ

1
~

ż x

x1

ppxq dx´
π

4

˙

;

ψpxq “ A sin η?
p̃pxq

exp

„

1
~

ż x1

x

p̃pxq dx



ð“ ψpxq “ A?
ppxq

cos

ˆ

1
~

ż x

x1

ppxq dx´
π

4
` η

˙

,

(1.71)
while for the turning point x “ x2 it results

ψpxq “ 2A?
ppxq

cos

ˆ

1
~

ż x2

x

ppxq dx´
π

4

˙

ð“ A?
p̃pxq

exp

„

´1
~

ż x

x2

p̃pxq dx



;

ψpxq “ A?
ppxq

cos

ˆ

1
~

ż x2

x

ppxq dx´
π

4
` η

˙

“ñ
A sin η?
p̃pxq

exp

„

1
~

ż x

x2

p̃pxq dx



.
(1.72)

According to the connection formulas (1.71) and (1.72), the first line of (1.70) implies
that in the region px1 ă x ă x2q ψ has the form

ψ “ A cos

ˆ
ż x

x1

ppxqdx´
π

4

˙

, x1 ă x ă x2. (1.73)

On the other hand, through the connection formulas again, the third line of (1.70) forces
ψ in the same region px1 ă x ă x2q to be of the form

ψ “ B cos

ˆ
ż x2

x

ppxqdx´
π

4

˙

, x1 ă x ă x2. (1.74)

Let us focus on (1.74) and look for the conditions in which it matches equation (1.73).
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By adding a zero inside the argument of the cosine we get

ψ “ B cos

ˆ
ż x2

x

ppxqdx`

ˆ
ż x

x1

ppxqdx´

ż x

x1

ppxqdx

˙

´
π

4

˙

“ B cos

ˆ
ż x2

x1

ppxqdx´

ż x

x1

ppxqdx´
π

4

˙

“ B cos

ˆ
ż x2

x1

ppxqdx´

ż x

x1

ppxqdx´
π

2
`
π

4

˙

“ B cos

ˆ
ż x2

x1

ppxqdx´
π

2
´

ż x

x1

ppxqdx`
π

4

˙

“ B cos

ˆ
ż x2

x1

ppxqdx´
π

2

˙

cos

ˆ

´

ż x

x1

ppxqdx`
π

4

˙

´B sin

ˆ

´

ż x

x1

ppxqdx`
π

4

˙

sin

ˆ
ż x2

x1

ppxqdx´
π

2

˙

, x1 ă x ă x2

(1.75)

For this to have the form of (1.73) it should be true that

ż x2

x1

ppxq dx “

ˆ

n`
1

2

˙

π, n “ 0, 1, 2, ... (1.76)

With this in mind we go back to (1.75) and find

ψ “ B cos pnπq cos

ˆ
ż x

x1

ppxq dx´
π

4

˙

“ p´1qnB cos

ˆ
ż x

x1

ppxq dx´
π

4

˙

. (1.77)

Comparing (1.77) with (1.73) we conclude that the connection formulas are in agreement
as long as

ż x2

x1

ppxqdx “

ˆ

n`
1

2

˙

π, A “ p´1qnB (1.78)

This equation is the quantization condition for the WKB method. We would like
to point out that this condition was derived from the connection formulas under the
assumption that the WKB applicability condition (1.58) holds. We will show with an
example how effective it can be to find the eigenvalues of the harmonic oscillator short
range potential.
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1.5 WKB quantization of the 1-dimensional short

range oscillator

In this section we are going to apply the WKB quantization formula (1.78) to a specific
potential. This formula reads

ż x2

x1

p dx “ π~
ˆ

n`
1

2

˙

. (1.79)

The one-dimensional short range quantum harmonic oscillator potential V pxq reads

V pxq “

#

1
2
mω2x2, |x| ă a

1
2
mω2a2, |x| ě a

(1.80)

Therefore the momentum inside the well is

ppxq “
a

2mpE ´ V pxqq “
?

2mE ´m2ω2x2. (1.81)

In turn, the left side of (1.79) reads
ż x2

x1

ppx1q dx1 “

ż x2

x1

?
2mE ´m2ω2x12 dx1 “

ż x2

x1

?
a` cx12 dx1

“
2cx
?
a` cx12

4c

ˇ

ˇ

ˇ

x“x2

x“x1
`

4a

8

ż x2

x1

dx1
?
a` cx12

dx1

“ 1
2
x
?
a` cx12

ˇ

ˇ

ˇ

x“x2

x“x1
` 1

2
a
´

´1?
´c
arcsin

´

2cx1?
´4ac

¯¯ ˇ

ˇ

ˇ

x“x2

x“x1
,

(1.82)

where a ” 2mE, c ” ´m2ω2. In the last two lines we used results from [8] (pgs. 94, 95).
By substituting the definitions of a and c we have

ż x2

x1

ppx1q dx1 “ 1
2
x
?

2mE ´m2ω2x2

ˇ

ˇ

ˇ

x“x2

x“x1

`1
2
p2mEq

ˆ

´1?
m2ω2

arcsin

ˆ

2p´m2ω2q?
´4p2mEqp´m2ω2q

x

˙˙

ˇ

ˇ

ˇ

x“x2

x“x1

“ 1
2
x
?

2mE ´m2ω2x2

ˇ

ˇ

ˇ

x“x2

x“x1
`
`

´E
ω

˘

arcsin

ˆ

b

mω2

2E
x

˙

ˇ

ˇ

ˇ

x“x2

x“x1
.

(1.83)
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Now, x1 and x2 are turning points i.e. points where p2 “ 2mE ´m2ω2 “ 0. Therefore,

?
2mE ´m2ω2x2

ˇ

ˇ

ˇ

x“x1,x2
“ 0, x1,2 ” ˘

c

2E

mω2
. (1.84)

With this in mind, (1.83) results in

ż x2

x1

ppx1q dx1 “
`

´E
ω

˘

arcsin

ˆ

b

mω2

2E

b

2E
mω2

˙

´ arcsin

ˆ

b

mω2

2E

´

´

b

2E
mω2

¯

˙

“
`

´E
ω

˘

parcsinp1q ´ arcsinp´1qq “
`

´E
ω

˘ `

π
2
´ 3π

2

˘

“
`

Eπ
ω

˘

(1.85)

Combining (1.85) with (1.79) we finally get

E “

ˆ

n`
1

2

˙

~ω (1.86)

As we can see, the WKB quantization formula yielded exactly the quantization of the
energy corresponding to a conventional oscillator, i.e an oscillator whose potential
dependence goes as 1

2
mω2x2 all along the real line.

Up to this moment we have found the bound states energy values for a short range
one-dimensional oscillator through two different methods. On one hand we solved the
Schrödinger equation for the three regions arising due to the potential joints. On the
first and third regions the potential is constant and we have as solutions Bessel equations.
Inside the well the solution to the squared dependence of the potential is a product of two
functions: a Gaussian dependence and a linear combination of Hypergeometric Functions.
The matching of these conditions gives place to a transcendental equation which we solved
numerically.

On the other hand we have the WKB method just presented This method is designed
to be applied to potentials which divide the domain in three regions, which is our
case. Although the method clearly shows that the solution in the classical forbidden
regions is asymptotically evanescent, the WKB quantization condition matches exactly
the quantization of the conventional harmonic oscillator which is a potential that does
not acknowledge the short range action of the potential. This leads us to infer that the
conventional oscillator is good enough to predict the energies of the more realistic, short
range potential; at least as good as the WKB method. However, the exact solution for
the three regions found by us and the actual matching of them, result in numerical values
that differ with the other methods’ values in a degree of 10´2. Although a difference so
small might be not relevant for most applications, a more subtle phenomena would benefit
greatly of more precise results to compare with finer experimental measurements.
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Chapter 2

Solving the 2-D short-range
oscillator potential

For the solving of the two-dimensional version of the system addressed in Chapter 1
we shall follow a similar path to that already used. However, a second dimension adds
complexity to the mathematical structure so that some caution is necessary. From now
on, any symbol that may have appeared in the previous chapter holds its own meaning.
Let the potential V pr1q be defined as

V pr1q “

"

1
2
mω2r12; r1 ď a1

a12; r1 ą a1
(2.1)

where r1 is the polar radial coordinate, m is the mass of the incident particle and ω
is the harmonic oscillator natural frequency. See Figure 2.1 for a three-dimensional
representation of this potential.

In polar coordinates, the Laplacian operator reads

∇12ψ “
B2ψ

Br12
`

1

r1
Bψ

Br1
`

1

r12
B2ψ

Bθ2
, (2.2)

where θ is the polar coordinate. The stationary Schrödinger equation for the 2-dimensional
harmonic oscillator reads

´
~2

2m

ˆ

B2ψ

Br12
`

1

r1
Bψ

Br1
`

1

r12
B2ψ

Bθ2

˙

`
1

2
mω2r

12ψ “ E
1

ψ, (2.3)

where E 1 is the energy. We define dimensionless variables just as in the one-dimensional
system. Using

r ”

c

mω

~
r
1

; E ”
E
1

~ω
, (2.4)
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(a) (b)

Figure 2.1: (a) Three dimensional representation of a short-range 2-dimensional harmonic
potential. (b) Plot of the short-range square dependence of V prqwith respect to r P p0,8q.

the dimensionless Schrödinger equation reads ∇2ψ ` p2E ´ V prqqψ “ 0, explicitly

´
1

2

ˆ

B2ψ

Br2
`

1

r

Bψ

Br
`

1

r2

B2ψ

Bθ2

˙

`
1

2
V prqψ “ Eψ. (2.5)

where the dimensionless potential V prq is defined as

V prq “

"

r2; r ď a
a2; r ą a

(2.6)

A differential equation defined over a given set of variables admits separable solutions
whenever [9]:

‚ The factors comprising the solution lead to ordinary differential equations (ODE),
each on its own independent variable.

‚ At least one of such ODE is linked with a Sturm-Liouville problem.

‚ At least one of the independent variables is constained in a finite interval.

The differential equation (2.5)-(2.6) satisfies teh above criteria, so we propose the solution:

ψpr, θq “ RprqΘpθq. (2.7)

Substituting (2.7) into (2.5), and dividing the result by ψ, we arrive at the relationship

ˆ

1

R

d2R

dr2
`

1

R

1

r

dR

dr
´ V prq ` 2E

˙

r2
“ ´

1

Θ

d2Θ

dθ2
. (2.8)
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Notice that the left- and the right-hand side of (2.8) depend on independent variables.
Therefore, they must be equal to a constant l2. Thus, we write

´
1

Θ

d2Θ

dθ2
“ l2, (2.9)

and
ˆ

1

R

d2R

dr2
`

1

R

1

r

dR

dr
´ V prq ` 2E

˙

r2
“ l2. (2.10)

The solution to the former equation is easily found to be

Θpθq “ B1e
ilθ
`B2e

´ilθ, (2.11)

where B1 and B2 are constants to be determined.
Before solving the radial equation (2.10) we will show that the continuity conditions

of this two dimensional system reduce to continuity conditions for the one dimensional
case, the radial coordinate.

2.1 Continuity conditions in polar coordinates

The continuity conditions required by the solution of the Schrödinger equation are

ψăpr, θq|r“a “ ψąpr, θq|r“a, ∇ψăpr, θq|r“a “ ∇ψąpr, θq|r“a. (2.12)

The subscript ă stands for the function within the well (r ă a) while ą refers to the
function outside the well (r ą a). Writing explicitly the gradient in polar coordinates,
∇ψ ” Bψ

Br
r̂ ` 1

r
Bψ
Bθ

, we find

ΘpθqRăprq
ˇ

ˇ

ˇ

r“a
“ ΘpθqRąprq

ˇ

ˇ

ˇ

r“a
, (2.13)

Θpθq
dRăprq

dr

ˇ

ˇ

ˇ

ˇ

r“a

“ Θpθq
dRąprq

dr

ˇ

ˇ

ˇ

ˇ

r“a

,
Ră
a

dΘ

dθ

ˇ

ˇ

ˇ

ˇ

r“a

“
Rą
a

dΘ

dθ

ˇ

ˇ

ˇ

ˇ

r“a

. (2.14)

As the continuity conditions do not depend on θ we cancel the factors Θpθq and dΘ
dθ

from
both sides of these equations. Therefore, the continuity conditions (2.12) can be stated
in terms of the radial function as follows.

Răprq|r“a “ Rąprq|r“a,
dRăprq

dr
prq

ˇ

ˇ

ˇ

r“a
“
dRąprq

dr

ˇ

ˇ

ˇ

r“a
. (2.15)

Once the Schrödinger equation is solved within and without the well, equations (2.15)
will adjust the corresponding coefficients so the solution“gets glued” in such a way that
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both, it and its derivative are continuous. The reducing of continuity conditions for ψpr, θq
to the continuity of Rprq allows to continue the analysis of the stationary system taking
into account the behavior of Rprq only. This is possible due to the symmetry of the
potential, which essentially allows the separability of variables.

2.2 Solution to the piece-wise radial equation

As stated in chapter 1, solving a problem by approximate methods (even if we are able to
solve it in closed form) can be a nurturing exercise. In the following we will solve the two-
dimensional harmonic oscillator in closed form. The analytic expressions will naturally
give bound, scattering and resonant states. Afterwards, we will revisit the case of bound
states applying the WKB method.

2.2.1 Analytical solution

‚ Within the well pr ă aq

The potential is given as a piece-wise function of r. Therefore, Rprq will be also a
piece-wise function. In the domain 0 ă r ă a, V prq “ r2. Therefore the equation to be
solved is

r2R2 ` rR1 ´ pr4
´ 2Er2

` l2qR “ 0, (2.16)

where the prime (1) stands for derivative with respect to r. Dividing by r2 we get

R2 `
1

r
R1 ` p´r2

` 2E ´
l2

r2
qR “ 0. (2.17)

As in the one-dimensional case, we first define a new variable ξ as follows

ξ ” r2. (2.18)

In terms of ξ, our differential equation reads

ξ
d2R

dξ2
pξq `

dR

dξ
pξq ´

l2

4ξ
Rpξq `

2E ´ ξ

4
Rpξq “ 0. (2.19)

Now we propose Rpξq to have the form

Rpξq “ e´pξ ξq upξq, (2.20)
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where p and q are constants such that uprq satisfies a confluent hypergeometric equation.
Taking the first and second derivative of (2.20), and substituting them into equation
(2.19), we get

ξ
d2u

dξ2
`p2q`1´2pξq

du

dξ
`

„

ξ´1
p´
l2

4
` q2

q `

ˆ

2E

4
´ pp2q ` 1q

˙

` ξpp2
´

1

4
q



u “ 0. (2.21)

Making

p “
1

2
; q “

l

2
, (2.22)

eq. (2.21) takes the form

ξ
d2u

dξ2
` pγ ´ ξq

du

dξ
´ αu “ 0, (2.23)

where γ ” l ` 1 and ´α ” E
2
´ l

2
´ 1

2
.

On the other hand, in order to get single-valued (2.11), the parameter l must take
integer values. The latter implies that γp“ l ` 1q takes integer values as well, denoting
again the Kummer function as Mpα, γ; ξq. Unlike the one-dimensional version of the
problem, the pair of solutions

Mpα, γ; ξq, ξ1´γMp1` α ´ γ, 2´ γ; ξq, (2.24)

is not enough since one of them is not well defined for γ an integer number [4]. From
the theory of hypergeometric equations we know that the appropiate pair of solutions
depends on whether γ is shorter, equal or larger than 1. Therefore, the solution of (2.23)
will depend on the profile of l.

˝ Case l ą 0

In this case γ ą 1. Thus, the general solution of equation (2.23) reads

upξq “ AMpα, γ; ξq `B Upα, γ; ξq, (2.25)

where A and B are arbitrary constants, and Upα, γ; ξq is the Tricomi function (also called
Hypergeometric Function of the second kind).

Taking into account that ξ “ r2, the solution for the radial function is

Rprq “ e´
r2

2 rluprq

“ Ae´
r2

2 rlMp1
2
p1` l ´ Eq, 1` l; r2q `B e´

r2

2 rlUp1
2
p1` l ´ Eq, 1` l; r2q.

(2.26)
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Before going further we need to make sure Rprq does not diverge at r “ 0. Recall that for
positive integer values of γ ą 1 the behavior of Mpα, γ; ξq and Upα, γ; ξq close to r “ 0
are, respectively [10]

lim
ξÑ0

Mpα, γ; ξq “ 1 , lim
ξÑ0

Upα, γ; ξq „ ξ1´γ. (2.27)

As ξ “ r2 and l ą 0, then the behavior of the first and second solutions near r “ 0 turns
out to be

limrÑ0 e
´ r2

2 rlMp1
2
p1` l ´ Eq, 1` l; r2q “ rl,

limrÑ0 e
´ r2

2 rlUp1
2
p1` l ´ Eq, 1` l; r2q “ prlqpr2q1´pl`1q “ r´l.

(2.28)

Therefore, the only physically admissible solution in this case is

Rprq “ Rlprq “ e´
r2

2 rlM

ˆ

1

2
p1` l ´ Eq , 1` l; r2

˙

. (2.29)

˝ Case l “ 0
If l “ 0 then γ “ 1. The two independent solutions for equation (2.23) are again

Mpα, γ, ξq and Upα, γ, ξq. In this case, close to r “ 0 [10]

lim
rÑ0

Mpα, γ; ξq “ 1 ; lim
rÑ0

Upα, γ; ξq „ ´
1

Γpαq
lnpξq (2.30)

To analyze the behavior of the complete solution Rprq remember that ξ “ r2 and l “ 0.
Then the behavior of the first and second solutions near r “ 0 is

limrÑ0 e
´ r2

2 pr0qMp1
2
p1´ Eq, 1; r2q “ p1qp1qp1q “ 1,

limrÑ0 e
´ r2

2 pr0qUp1
2
p1´ Eq, 1; r2q “ ´ 1

Γp 1
2
p1´Eqq

lnpr2q.
(2.31)

In this case, the second solution is not admissible. Then

R0 “ e´
r2

2 M

ˆ

1

2
p1´ Eq, 1; r2

˙

. (2.32)

˝ Case l ă 0
l ă 0 ñ γ ă 1. In this case the function Mpα, γ; ξq is not well defined, but

ξ1´γMp1 ` α ´ γ, 2 ´ γ; ξq is well defined instead. Upα, γ; ξq still works as a second
independent solution, therefore, for l ă 0 we have

ξ1´γMp1` α ´ γ, 2´ γ; ξq , Upα, γ; ξq. (2.33)
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The behavior of these solutions near ξ “ 0 is as follows

lim
ξÑ0

ξ1´γMp1` α ´ γ, 2´ γ; ξq “ ξ1´γ
p1q , lim

ξÑ0
Upα, γ; ξq „

Γp1´ γq

Γp1` α ´ γq
. (2.34)

Considering ξ “ r2, one has

limrÑ0 e
´ r2

2 r´lMp1
2
p1´ l ´ Eq,´l ` 1; r2q “ r´l “ r|l| Ñ 0,

limrÑ0 e
´ r2

2 rlUp1
2
p1´ l ´ Eq, 1´ l; r2q “ rlpconstantq Ñ r´|l|.

(2.35)

Then, the physically acceptable function is

Rlprq “ e´
r2

2 r´lM

ˆ

1

2
p1´ l ´ Eq,´l ` 1; r2

˙

“ e´
r2

2 r|l|M

ˆ

1

2
p1` |l| ´ Eq, |l| ` 1; r2

˙

.

(2.36)
Notice how we wrote in the last equation ´l as |l|. We did this on purpose to show the
“symmetry” of the solution Rprq for l ă 0 compared with the case l ą 0 (equation (2.29)).

This symmetry under change of sign of l is a consequence of l appearing as l2 in the
radial equation (2.17). It becomes clear that whether l is shorter, equal or larger than
0, for all integer values of l the only acceptable solution for Rprq is that given by the
Kummer function Mpα, β; zq. We conclude that for every l the solution within the well
is given by

Rlprq “ e´
r2

2 r|l|M

ˆ

1

2
p1` |l| ´ Eq, 1` |l|; r2

˙

. (2.37)

By writing |l|, both cases, positive and negative values of l are covered by the same
expression.

2.2.2 The two dimensional harmonics oscillator

As pointed out earlier in the reminder of the one-dimensional harmonic oscillator, the
Kummer function is either a polynomial or a convergent series. If α ” 1

2
p1 ` |l| ´ Eq is

not a negative integer, the Kummer function is a series that behaves asymptotically as

limzÑ8Mpα, β, zq “ ezzpα´βq,

limrÑ8Mp
1
2
p1` |l| ´ Eq, 1` |l|, r2q “ er

2
r´p1`|l|`Eq,

limrÑ8Rprq “ e´
r2

2 r|l|
´

er
2
r´p1`|l|`Eq

¯

“
`

r´p1`Eq
˘

e
r2

2 Ñ 8,

(2.38)
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which is not a suitable behavior for a physical state. Therefore α must be a negative
integer α “ ´n. In this case the Kummer function is a polynomial and the asymptotic
behavior of Rprq results in

lim
rÑ8

Rprq “ psome polynomialq e´
r2

2 . (2.39)

Now the solution has an appropriate behavior to be a physical state. As a consequence,

´n “ 1
2
p1` |l| ´ Eq ñ E “ 2n` |l| ` 1. (2.40)

Substituting α “ ´n in the confluent hypergeometric equation (2.23) we get the associated
Laguerre equation, the solutions of which are the associated Laguerre polynomials

Mp´n, 1` |l|; r2
q “

|l|!n!

p|l| ` nq!
L|l|n pr

2
q; |l| ď n, (2.41)

with
E “ 2n` |l| ` 1 “ m` 1; m ” 2n` |l|. (2.42)

As indicated above, the set of solutions can be equipped with the inner product

pφ1pξq, φ2pξqq ”

ż 8

0

φ˚1pξqφ2pξqe
´ξξ|l|dξ. (2.43)

As consequence, the notion of orthogonality for the associated Laguerre polynomials is
introduced as follows

pL
|l|
j pξq, L

|l|
i pξqq ”

ż 8

´8

L
|l|
j pξqL

|l|
i pξqe

´ξξ|l|dξ “
pj ` |l|q!

j!
δji. (2.44)

Consistently, for the norm we write

|L
|l|
j |“

c

´

L
|l|
j , L

|l|
j

¯

. (2.45)

As we can see, the energy E is defined by two parameters (n, l) that take different integer
values to sum m. Since these parameters determine also the state ψ, then two or more
states may have the same energy. The amount of different states belonging to the same
energy is better calculated by solving the problem in cartesian coordinates.

Proposing the solution in the form Rpx, yq “ XpxqY pyq, and V px, yq “ x2 ` y2,
together with the Laplacian in Cartesian coordinates, the two dimensional Schrödinger
equation can be separated into two Schrödinger equations, each associated with a one-
dimensional harmonic oscillator depending on only of the variables. Thus, the complete
solution

ψpx, yq “ A e´x
2

HnxpxqHnypyq, (2.46)
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and

E “ Ex ` Ey “ pnx `
1

2
q ` pny `

1

2
q “ nx ` ny ` 1 ” m` 1. (2.47)

Given a fixed m there are m ` 1 pairs pnx, nyq that satisfy (2.47), see Table 2.1. Since
a change of coordinates does not affect the dynamical behavior of a physical system, the
degeneration of the two dimensional harmonic oscillator is degpEmq “ m` 1.

nx 0 1 2 ... m
ny m m´ 1 m´ 2 ... 1

Table 2.1: Pairs of pnx, nyq that added equal m.

Once again we refer the reader to [2] for a discussion of orthogonality of solutions
related to a Sturm-Liouville problem and to [3] for a more detailed discussion of orthog-
onality and completeness.

2.2.3 Solution outside the well r ą a

Outside the well, the potential has the form V prq “ a2. Therefore equation (2.10) reads

ˆ

1

R

d2R

dr2
`

1

R

1

r

dR

dr
` k2

˙

r2
“ l2, (2.48)

where k2 “ 2E ´ a2. Let y “ kr. By expressing (2.49) in terms of y we get the Bessel
equation:

d2R

dy2
`

1

y

dR

dy
`

ˆ

1´
l2

y2

˙

Rpyq “ 0. (2.49)

The solutions corresponding to this equation depend on k. As indicated above, there are
three possibilities:

‚ k is pure imaginary

‚ k is real

‚ k is complex
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2.2.3.1 Bound states

If k “ iκ with κ P R, we get

´κ2 “ k2 “ 2E ´ a2 ă 0 ñ E ă a2. (2.50)

The values of the energy are bounded by half the height of the potential well. Substituting
k “ iκ in (2.49), and making x “ κr, we have a differential equation for R in terms of x:

d2R

dx2
`

1

x

dR

dx
´

ˆ

1`
l2

x2

˙

Rpxq “ 0, (2.51)

the solutions of which are the modified Bessel functions Ipκrq and Kpκrq. Therefore,

Rąprq “ CIlpκrq `DKlpκrq, (2.52)

where C and D are arbitrary constants. Bound states correspond to solutions that
vanish asymptotically. Thus, we need to pay attention to the behavior of the solutions at
r Ñ 8 [11]

lim
rÑ8

Ilpκrq “
eκr
?
r
, lim

rÑ8
Klpκrq “

e´κr
?
r
. (2.53)

Note that Ilpκrq diverges while Klpκrq goes to zero. Therefore, we discard Ilpκrq, so the
solution outside the interaction region is

Rąprq “ CKlpκrq, (2.54)

where C is a normalization constant. This leads to the following continuity conditions:

ARlpaq “ CKlpκaq, AR
1

lpaq “ CK
1

lpκaq, (2.55)

where (’) stands for derivative with respect to r and A is a normalization constant. These
equations can be written as a matrix equation:

ˆ

Rlprq ´Klpκaq
R
1

lprq ´K
1

lpκaq

˙ˆ

A
C

˙

“

ˆ

0
0

˙

. (2.56)

As A ‰ 0 and C ‰ 0, the matrix on the left-hand side must be non-singular, which means

det

ˆ

Rlpaq ´Klpκaq

R
1

lpaq ´K
1

lpκaq

˙

“ 0. (2.57)

For a and l fixed, this equation defines a discrete set of energies, each of them associated
to a physical state of a particle captured by the potential well. In Table (2.2) we present
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numerical solutions to (2.57) for a2 “ 20. We notice that odd and even values of the
energy appear with even or odd values of |l|. Besides, just as in the one-dimensional case,
the energy values are almost dentical to those of the two-dimensional oscillator (V prq “ r2

for 0 ă r ă 8). Recall that the latter is

ψconvprq “ pRconvq
`

ei|l|θ
˘

“

˜
d

n!

πpn` |l|q!

¸

r|l|e´
r2

2 L|l|n pr
2
qeilθ. (2.58)

It would not be a surprise if the radial profile of the solutions coincide in both cases. As
examples, we present in Figure 2.2 the profile of Rprq compared with the solution of the
two-dimensional oscillator for l “ 0, 1, 2, 3, and quantum number n “ 1 Ø E “ 4. As
expected, the plots of both functions appear superimposed one over the other, differing
only at scales of 10´10 around the cutoff r “ a.

Figure 2.2: Profile comparison between bound states solutions of the two-dimensional short range
oscillator vs those of the conventional oscillator potential, for values l “ 0, 1, 3,n “ 1 Ø E “ 4. The plots
of both systems are so similar to each other that their plots appear superimposed.
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8.96279 8.96752 8.97883 8.99051 8.99773
7.99163 7.99390 7.99700 7.99999

6.99816 6.99848 6.99999 6.99999
5.99968 5.9999 5.99999

4.99995 4.99999 4.99999
3.99999 3.99999

2.99999 2.99999
1.99999

0.99999

|l|=0 |l|=1 |l|=2 |l|=3 |l|=4 |l|=5 |l|=6 |l|=7 |l|=8

Table 2.2: Numerical solutions for energy values corresponding to admitted values of l.
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Figure 2.3: Normalized radial distribution of probability corresponding to the values shown in Table 2.2.
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2.2.3.2 Time evolution of a superposition of bound states

The time evolution of a quantum state is given by the evolution operator U defined as [5]

ψp~r, tq “ Ûψp~rq ” e´
i
~ Ĥtψp~rq (2.59)

It is well known [5] that for the eigenfunctions ψp~rq of the Hamiltonian Ĥ with eigen-
energy E, the action of U reduces to

Ûψp~rq “ e´
i
~Etψp~rq. (2.60)

For the probability density we find

|ψp~r, tq|2 “ |e´
i
~Etψp~rq|2 “ |ψp~rq|2. (2.61)

The probability density of one eigen-state does not change with time and it only depends
on r. However, we can get a dynamic behavior of the probability density by considering
ψp~rq as a superposition of two eigenfunctions. Let

ψsp~rq “ A1ψ1p~rq ` A2ψ2p~rq, (2.62)

where ψ1p~rq and ψ2p~rq are eigenfunctions with eigenvalues E1 and E2, respectively. Then,

Ψsp~r, tq “ Ûψp~rq “ e´
i
~E1tA1ψ1p~rq ` e

´ i
~E2tA2ψ2p~rq, (2.63)

which leads to the probability density

ρspr, tq “ |A1ψ1p~rq|
2 ` |A2ψ2p~rq|

2 ` 2 Re
“

A1ψ1p~rqA2ψ
˚
2 p~rq e

ipE2´E1qt
‰

(2.64)

In order to have a graphical representation of how this superposition evolves over the time
we fix θ “ 0. That is, ψjp~rq “ ψjprqe

ipθ“0q “ ψjprq. Thus, we are focusing on the radial
profile of the probability density since ψj P R. Then

ρspr, tq “ |A1ψ1prq|
2 ` |A2ψ2prq|

2 ` 2A1 ψ1prqA2 ψ2prq cos rpE2 ´ E1qts . (2.65)

In this case the probability density depends on t (as long as E1 ‰ E2). The coefficients
A1 and A2 weight the contribution of the states in the superposition. We choose them
such that ψs is a balanced superposition A1 “ A2 “

1?
2
. In Figure 2.4a we show the

probability density at t “ 0 for a balanced superposition A1 “ A2 “

b

1
2
, while Figure

2.4b presents the time evolution of ρptq for t “ 0, π
4
, π

2
, 3π

4
, π. In Figure 2.5a and 2.5b we

present the time evolution of a superposition of ψ1 and ψ2 for two cases of unbalanced
weights.
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Figure 2.4: (a) Radial profile of the probability density ρspr, t “ 0q of a balanced

superposition ψs with A1 “ A2 “

b

1
2
, and (b) its subsequent time evolution for

t “ 0, π
4
, π

2
, 3π

4
, π.
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0.06
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Figure 2.5: Time evolution of the radial profile of the probability density ρs of two

unbalanced superpositions ψs with weights (a) A1 “

b

3
4
, A2 “

b

1
4
, and (b) A1 “

b

1
4
,

A2 “

b

3
4

respectively; for t “ 0, π
4
, π

2
, 3π

4
, π.

2.2.3.3 Scattering states

We now consider the case of k real.

0 ă k2
“ 2E ´ a2

ñ E ą
a2

2
. (2.66)

E is clearly positive, unbounded, and greater than a2

2
, which is the least upper bound for

bound states. Therefore k “ leads to scattering states. Using x ” kr, the radial equation
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(2.49) for region II (r ą a) reads

d2R

dx2
`

1

x

dR

dx
`

ˆ

1´
l2

x2

˙

Rpxq “ 0. (2.67)

The solutions to this equation are the Bessel functions of first and second kind,
Jlpkrq, Nlpkrq.

1 Therefore, the general solution to the radial equation in this region is

Rąprq “ C1Jlpkrq ` C2Nlpkrq. (2.68)

2.2.3.4 Boundary condition for scattering states

In every scattering system there is a chance that the particle might not get scattered by
the potential in the interaction region but goes into the interaction region. On the other
hand, the scattered particles come out in a superposition of Jlpkrq and Nlpkrq. However,
it can be shown that, due to the radial symmetry of the system, at long distances the
scattered waves behave like eikr?

r
. Let

zprq ” r
1
2Rprq Ñ Rprq “ r´

1
2 zprq (2.69)

By substitution in the radial equation (2.10) we get a differential equation for zprq:

z
2

prq `

ˆ

2E ´ V prq ´
l2 ´ 1

4

r2

˙

zprq “ 0 (2.70)

At the asymptotic limit r Ñ 8, we have 1{r2 Ñ 0 and V prq “ a2. Then,

z
2

8prq `
`

2E ´ a2
˘

z8prq “ 0. (2.71)

Therefore

z8prq “ feikr `De´ikr, R8prq “ f
eikr
?
r
`D

e´ikr
?
r
, (2.72)

with f and D arbitrary coefficients. As we assumed no incoming waves, we set D “ 0.
The asymptotic form of the wave function is

lim
rÑ8

ψ8pr, θq Ñ fpθq
eikr
?
r
. (2.73)

where fpθq is called the scattering amplitude. Therefore, outside the interaction region,
the wave function has the asymptotic boundary form

lim
rÑ8

ψ8pr, θq Ñ eikr cos θ
` fpθq

eikr
?
r
. (2.74)

1Nlpxq is also called the Newmann function.
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The first term accounts for the unscattered particles while the second term stands for the
scattered ones.

Expanding the incident wave in terms of Bessel functions [4] we get

lim
rÑ8

ψpr, θq Ñ
ÿ

n

inJnpkrqe
inθ
` fpθq

eikr
?
r
. (2.75)

Taking into account the asymptotic behavior of the Bessel function Jlpkrq [11], we write

lim
rÑ8

ψpr, θq Ñ́
ÿ

n

in
c

2

πkr
cos

´

kr ´
nπ

2
´
π

4

¯

einθ ` fpθq
eikr
?
r
, (2.76)

and expanding further the cosine as a sum of exponentials we arrive at

limrÑ8 ψpr, θq Ñ
ř

n i
n

c

2

πkr

ˆ

1

2

˙

`

eipkr´
nπ
2
´π

4
q ` e´ipkr´

nπ
2
´π

4
q
˘

einθ ` fpθq
eikr
?
r
.

So that

limrÑ8 ψpr, θq Ñ
e´ikr
?
r

˜

ř

n i
n

c

1

2πk
e´ip´

nπ
2
´π

4
qeinθ

¸

`
eikr
?
r

˜

ř

n i
n

c

1

2πk
eip´

nπ
2
´π

4
qeinθ ` fpθq

¸

.

(2.77)

On the other side, taking into account the assymptotic behavior of Jlpkrq and Nlpkrq, the
exact solution

ψpr, θq “
ÿ

n

pC1Jnpkrq ` C2Nnpkrqq e
inθ (2.78)

behaves as

ψpr, θq “
ÿ

n

C1

c

2

πkr
cos

´

kr ´
nπ

2
´
π

4

¯

` C2

c

2

πkr
sin

´

kr ´
nπ

2
´
π

4

¯

einθ. (2.79)

Now, expanding the cosine and sine functions in terms of exponential functions and
associating factors of e˘ikr we find

ψpr, θq “ e´ikr?
r

´

ř

n

b

1
2πk
e´ip´

nπ
2
´π

4
qpC1 ´

1
i
C2qe

inθ
¯

` eikr?
r

´

ř

n

b

1
2πk
eip´

nπ
2
´π

4
qpC1 `

1
i
C2qe

inθ
¯

.
(2.80)
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Comparing this asymptotic behavior with the asymptotic boundary condition (2.77) we
find

C1 “ in ´ iC2, fpθq “
ÿ

n

c

1

2πk
e´ip

nπ
2
`π

4
qeinθpC1 ´ iC2 ´ i

n
q. (2.81)

Substituting the former in the latter, f can be written in terms of C2 as

fpθq “

c

2

πk
e´

π
4

ÿ

n

i´pn`1qC2e
inθ. (2.82)

Now, denoting the derivative with respect to r with a prime (’), the continuity conditions
(2.15) demand

ARlpkrq “ C1Jlpkrq ` C2Nlpkrq, AR
1

lpkrq “ C1J
1

l pkrq ` C2N
1

l pkrq, (2.83)

with A an arbitrary coefficient that can be eliminated to give

C1 “ C2
W pNlpkaq, Rlpaqq

W pRlpaq, Jlpkaqq
. (2.84)

Combining this expression with the first one in (2.81) we find

C2 “ in
ˆ

W pNlpkaq, Rlpaqq

W pRlpaq, Jlpaqq
` i

˙´1

. (2.85)

Therefore, (2.82) reads

fpθq “

b

2
πk
e´i

π
4

ř

n

ˆ

i
W pNlpkaq, Rlpaqq

W pRlpaq, Jlpkaq
´ 1

˙´1

einθ

“

b

2
πk
e´i

π
4

ř

n

W pRlpaq, Jlpkaqq

W pH
p1q
l pkaq, Rlpaqq

einθ
(2.86)

Here H
p1q
l pxq is the Hankel function of first kind H

p1q
l pxq ” Jlpxq ` iNlpxq. The steps to

go from the former to the latter involve the use of properties of determinants.
In practice, the physical quantity that is actually measured is the differential scattering

cross section dσpθq
dθ

, defined as
dσpθq

dθ
” |fpθq|2. (2.87)

The nature of this definition will be explored below. In Figure 2.6 we present the behavior
of (2.87) for ´π

2
ă θ ă π

2
, and corresponding to the height a2 “ 20, for the scattering

energy: E “ 11. This plots reveals the scattering is locally maximized with global
maximum at θ “ 0, which corresponds to the straightforward direction.
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Figure 2.6: Differential scattering cross section dσ
dθ pθq for fixed energy E “ 11 and height a2 “ 20;θ P

p´Pi
2 ,

Pi
2 q

2.2.3.5 Relation between fpθq and the differential scattering cross-section

In this section clarify the physical meaning of the differential scattering cross section
dσ
dθ

. First, consider the spatial description illustrated in Figure 2.7. At the top left we

Figure 2.7: Spatial scattering of two adjacent particles due to a potential V prq.

have pictured a physical detector, located at a large distance as an infinitesimal arc ds
1

covering the angle dθ. In a time interval dt
1

, the number of particles that will go through
the detector are those situated at a distance no further than dr “ v dt, where v is the
mean speed of the particle flux.

Defining ψsc as the scattered wave function and considering ρ “ |ψsc|
2, the number of
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particles scattered into the area dA is

dn “ ρ dA “ |ψsc|
2dr

1

ds
1

(2.88)

where dr
1

and ds
1

are the differential distances that limit the differential area dA. We
now write

dr “

c

mω

~
dr

1

, dt “ ωdt
1

ds
1

” r
1

dθ “

c

~
mω

rdθ (2.89)

so that

v
1

“
dr

1

dt1
“

c

~ω
m

dr

dt
“

c

~ω
m
v, ds

1

” r
1

dθ “

c

~
mω

rdθ (2.90)

and

ds
1

” r
1

dθ “

c

~
mω

rdθ, (2.91)

where v ” dr
dt

is the dimensionless speed. Furthermore, the De-Broigle length λ and wave
number k can be expressed free of units

λ ”

c

mω

~
λ
1

; k ”

c

~
mω

k
1

(2.92)

so that
p
1

“ ~k1 ; mv
1

“ ~k1 . (2.93)

Then

m

c

~ω
m
v “ ~

c

mω

~
k; v “ k. (2.94)

Having (2.91) in mind we can write (2.88) in terms of the dimensionless variables tr, s, vu
to find

dn “ |ψsc|
2
´

v
1

dt
1
¯´

r
1

dθ
¯

“ |ψsc|
2

˜

c

~ω
m
vdt

1

¸˜

c

~
mω

rdθ

¸

. (2.95)

Thus
dn

dt1
“ |ψsc|

2

c

~ω
m

c

~
mω

vr dθ. (2.96)

We have obtained an expression for the number of particles per time interval. Now, we

want to compute how is this rate compared with the incident flux of particles |
Ñ́
j
1

inc|. Again,
using definitions (2.4) it is straightforward to show

|
Ñ́
j
1

| “

c

~ω
m
|
Ñ́
j |,

Ñ́
j ” ´ i

2
pψ˚∇ψ ´ ψ∇ψ˚q. (2.97)
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where ψ˚ denotes the complex conjugate of ψ and
Ñ́
jinc is the dimensionless probability

density current. Then, the differential cross-section is defined as

dσ
1

”
dn{dt

1

|
Ñ́
j
1

inc|

“
|ψsc|

2
b

~ω
m

b

~
mω

vr dθ
b

~ω
m
|
Ñ́
jinc|

“
|ψsc|

2
b

~
mω

vr dθ

|
Ñ́
jinc|

. (2.98)

Given the incident wave function ψinc “ eikr cospθq, we have

|
Ñ́
jinc| “ k. (2.99)

In turn, the differential cross-section reads

dσ
1

“
|ψsc|2

?
~
mω

vr dθ

k
“ |ψsc|

2
b

~
mω

r dθ. (2.100)

where we used equation (2.94) to cancel k with v. At this point, we define the
dimensionless differential scattering cross-section by

dσ ”

c

mω

~
dσ

1

“
|ψsc|

2 vr dθ

k
“ |ψsc|

2 r dθ (2.101)

Given that

|ψsc|
2 “

ˇ

ˇ

ˇ

ˇ

fpθq
?
r
eikr

ˇ

ˇ

ˇ

ˇ

2

“
|fpθq|2

r
(2.102)

then it follows from (2.101),
dσ

dθ
“ |fpθq|2 (2.103)

which is the relation between the differential scattering cross-section and the scattering
amplitude fpθq presented in equation (2.87). In Figure 2.8 we present the scattering
pattern of a plane wave of energy E “ 80 tnat is scattered by the potential V prq “ r2.

Figure 2.6 shows that global maximum of the scattering amplitude is reached at the
straightforward direction (θ “ 0). Fig. 2.8 shows the probability density of the complete
function, which involves scattered and unscattered particles. Notice that, at some angles
the probability density has local maxima. Besides, the straightforward direction θ “ 0
presents a deep minimum.

2.2.3.6 Phase shift of a scattered state and optical theorem

We now revisit the concept of phase shift. In the scattering processes, the particle is
either scattered or it goes right through the scatterer without being deflected. In both
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Figure 2.8: Probability density of a plane wave carrying an energy E “ 80 being scattered by a potential
V prq “ r2. Bright areas represent larger values.

cases a phase shift takes place. To see this we write the solution to the radial equation
outside the well (2.49) as Rl “ C1Jlpkrq ` C2Nlpkrq. Then

limrÑ8Rl “ C1

c

2

πkr
cos

`

kr ´ lπ
2
´ π

4

˘

` C2

c

2

πkr
sin

`

kr ´ lπ
2
´ π

4

˘

. (2.104)

Defining C1 ” C cospδlq, C2 ” ´C sinpδlq,
C2

C1
“ ´ tanpδlq; (2.104) becomes

lim
rÑ8

Rl “ C1

c

2

πkr

”

cos
´

kr ´ l
π

2
´
π

4

¯

´ tanpδlq sin
´

kr ´ l
π

2
´
π

4

¯ı

, (2.105)

or equivalently

lim
rÑ8

Rl “ C

c

2

πkr
cos

´

kr ´ l
π

2
´
π

4
` δl

¯

. (2.106)

In absence of scatterer, the solution for all r would be

Rl “ C1Jlpkrq ` C2Nlpkrq. (2.107)

Then

lim
rÑ8

Rl “ C1
kr

2

l

` C2
kr

2

´l

, (2.108)

and the boundary condition at origin must be Rlp0q “ 0, which would imply C2 “ 0.
Then tanpδlq “ 0 Ø δl “ 0. In other words, the presence of a scatterer leads to phase
shifts δl ‰ 0. The complete wave function outside the well is

ψIIpr, θq “ eikr cos θ
`Rąprq “

ÿ

l

ilJlpkrqe
ilθ
` fpθq

eikr
?
r
. (2.109)
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More precisely, the asymptotic behavior is

limrÑ8 ψIIpr, θq “
ř

l

il
c

2

πkr

`

cospkr ´ lπ
2
´ π

4
q
˘

eilθ ` fpθq
eikr
?
r

“
ř

l

il
c

2

πkr

ˆ

eipkr´l
π
2
´π

4
q ` ieipkr´l

π
2
´π

4
q

2

˙

eilθ ` fpθq
eikr
?
r
.

(2.110)

On the other hand,one gets (2.106) holds for r Ñ 8. Using it to write the full wave
function ψIIpr, θq one gets

limrÑ8 ψIIpr, θq “
ř

l

Cl

c

2

πkr
cos

`

kr ´ lπ
2
´ π

4
` δl

˘

eilθ

“
ř

l

Cl

c

2

πkr
eilθ

ˆ

eipkr´l
π
2
´π

4
`δlq ` eipkr´l

π
2
´π

4
`δlq

2

˙

.

(2.111)

Equating (2.110) with (2.111), and factorizing e˘ikr, we find

Cl “ ileiδl , fpθq “

c

1

2πk
e´i

π
4

ÿ

l

`

e2iδl ´ 1
˘

eilθ, (2.112)

which can be rewritten as follows

fpθq “

c

1

2πk
e´i

π
4

ÿ

l

p2i sinpδlqq e
iδleilθ. (2.113)

Then the total scattering cross-section σ is given by

σtotal ”

ż 2π

0

σpθqdθ “

ż 2π

0

|f |2dθ “
4

2πk

ÿ

n

ÿ

l

`

i sin δne
iδn
˘ `

´i sin δle
´iδl

˘

ż 2π

0

eipn´lqθdθ
loooooomoooooon

2π δnl

“ 4
k

ř

l sin
2pδlq; δnl ” Kronecker delta

(2.114)
Equation (2.114) is known as the optical theorem, this shows that for δ “ nπ

2
; with n

integer, the total scattering is maximized.

2.2.3.7 Total scattering maximization

In search of an expression determining the energies that maximize σtotal we proceed to
write the continuity conditions for ψ in terms of its phase shift

ARlpaq “ Cl pJlpkaq ´ tanpδlqNlpkaqq , AR
1

lpaq “ Cl

´

J
1

l pkaq ´ tanpδlqN
1

l pkaq
¯

.

(2.115)
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These lead to

tanpδlq “ ´
JlpkaqR

1

lpaq ´RlJ
1

l pkaq

RlN
1

l pkaq ´NlpkaqR
1

lpaq
. (2.116)

Considering:

δl “ nπ
2
ðñ tanpδlq Ñ 8, and NlpkaqR

1

lpaq ´RlN
1

l pkaq “ 0, (2.117)

or, in terms of a Wronskian:

W pNlpkaq, Rlpaqq “ 0, (2.118)

the solutions define a discreet set of energies. These are the energy values that maximize
σtotal. In Figure 2.12 we present both tanpδlq and σtotal for a2 “ 20 and l “ 1. We would
like to point out that σtotal is maximized at the energies for which tanpδ1q Ñ 8 ô δ1 “

nπ
2

;
with n an integer. We also present a table with the energy values where the divergence
of tanpδ1q takes place.

Divergences of tanpδlq
10.1022
10.8366
13.8175
26.1781˚

186.138˚

Figure 2.9: tanpδ1q (blue) and σtotal (purple) as a function of the energy E. The table shows the first
energy values for which tanpδ1q diverges. These values are also those which maximize σtotal (˚Not shown
in figure for visual clarity).

2.3 Resonances

We have already seen the consequences of k being a pure imaginary number or k being
a pure real number. To exhaust the possibilities of k we allow now k to have non-trivial
real and imaginary parts k “ kr ` iki. Let us gauge what physical implications does this
value of k carry.
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2.3.1 Time dependence of probability and current density for a
2-dimensional short range potential

Recall that Ψpr, tq is determined by the evolution operator as

Ψpr, tq “ ÛΨpr, 0q “ e´i
Ĥt
~ Ψpr, 0q, (2.119)

where Ψpr, 0q ” ψprq. When ψprq is an eigenfunction of V prq with eigenvalue E the action
of Û reduces to

Ψpr, tq “ e´i
Et
~ ψprq. (2.120)

When k is a non-trivial complex number there is a non-trivial E “ Er ` iEi related to it.

pkr ` ikiq
2
“ 2pEr ` iEiq ´ a

2, (2.121)

then k2
r ´k

2
i “ 2Er´a

2 and krki “ Ei. Let Ĥ be such that E “ Er` iEi is an eigenvalue,
the probability density reads

ρ ” |Ψpr, tq|2 “ |e´i
Et
~ Ψpr, 0q|2 “ e´i

pEr`iEiqt

~ |Ψpr, 0q|2 “ e
2Eit

~ |Ψpr, 0q|2. (2.122)

From the last equation we can see that complex energies give rise to ρ not being stationary
anymore, but a function of time. Observe as well that Ei cannot be positive, since in that
case, the probability density would increase over time over the whole space. Therefore,
Ei must be negative. In consequence, the last of equations (2.121) implies that kr and ki
are of opposite sign.

2.3.1.1 Probability density current for radially symmetrical 2-D short range
potentials

Recall the general definition of the probability density current

~jψ ”
~

2mi
pψpx

1

q
˚∇ψpx1q ´ ψpx1q∇ψpx1q˚q. (2.123)

Contrary to the use of adimensional variables used previously, in this subsection we shall
keep the physical constants explicitly. Previously we could define appropiate adimensional
variables due to knowing the explicit form of the potential (V prq “ 1

2
mω2r2). In the

present calculations we want to keep the potential V prq as general as possible. Defining
the probability density velocity as

~vψ ”
~j

ρ
“

~j

ψψ˚
“

~
2mi

ˆ

∇ψ
ψ
´

∇ψ˚

ψ˚

˙

, (2.124)
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we notice that it would be useful to know the form of
∇ψ
ψ

. We recall that, due to the

radial symmetry of the potential, ψpr, θq reads

ψpr, θq “ Rprq eilθ. (2.125)

We recall too the nabla operator in polar coordinates

∇ ”
B

Br
r̂ `

1

r

B

Bθ
θ̂. (2.126)

With these in mind we find

∇ψ
ψ
“
R1

R
r̂ ` il

1

r
θ̂ “

R1˚

R˚
r̂ ´ il

1

r
θ̂. (2.127)

where R1 stands for the derivative of R with respect to r. Susbtituting (2.127) in (2.124)
we get

~v “
~
m

ˆ

Im

ˆ

R1

R

˙

r̂ `
l

r
θ̂

˙

. (2.128)

Notice that for bound states and scattering states Rprq is real. Therefore the radial
component of ~jψ is zero, and ~jψ only spins around with a speed proportional to l

r
. Let us

pay attention to the region outside the well. We express the solution for r ą a in terms
of the Hankel functions as

Rprq “ C1Jlpkrq ` C2Nlpkrq “
1

2

´

pC1 ´ iC2qH
p1q
l pkrq ` pC1 ` iC2qH

p2q
l pkrq

¯

(2.129)

For a moment, let us assume there are only outgoing waves, that is

C1 ` iC2 “ 0. (2.130)

Then
R1

R
“
k d
dr
H
p1q
l prq

H
p1q
l prq

“ k
d

dr
ln

´

H
p1q
l prq

¯

. (2.131)

At the assymptotic regime

limrÑ8
R1

R
“ k

d

dr
ln

˜

c

2

πr
eipr´l

π
2
´π

4
q

¸

“ k
d

dr

`

ipr ´ lπ
2
´ π

4
q ´ 1

2
lnpxq ` 1

2
lnp 2

π
q
˘

“ pkr ` ikiqi´
1
2r
,

(2.132)
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this reveals that

lim
rÑ8

Im

ˆ

R1

R

˙

“ kr. (2.133)

With this in mind, we take the limit of equation (2.128) and find

lim
rÑ8

~v “
~
m

lim
rÑ8

ˆ

Im

ˆ

R1

R

˙

r̂ `
l

r
θ̂

˙

“
~
m
kr r̂. (2.134)

Since this expression was obtained bu assuming only outgoing waves, kr has to be of a
positive nature in order to have ~v pointing outwards. Since we already found that kr and
ki are of opposite signs, it is certain that ki is negative. We can conclude then, that non-
trivial values of k laying in the 4 th quadrant of the Complex plane correspond naturally to
a physical situation where only outgoing waves are present. This situation can represent
for example, a potential well that had been bombarded with incoming particles, trapped
them for a period of time, and then expelled them long after the bombarding source had
been turned off. This kind of phenomena where only outgoing waves are present are called
resonances. We make special emphasis that result (2.134) is valid for any scatterer as long
as it is short-range (constant after some cutoff value r “ a) and radially symmetric.

Since Rprq P R for bound states and scattering states, then the radial component of ~j
is zero and ~j flows parallel to θ̂. E doesn’t figure at all and the behavior of ~j is determined
only by l. Figure (2.10a) represents the vector field ~j for any of these state with angular
number l “ 1. Figure (2.10b) shows the analogue case for l “ ´1. Notice how the arrows
indicate that for l “ ´1, ~j flows in the opposite direction, a fact expected from (2.128).
The background intensity stands for the magnitude of ~j. Notice too the rapid decay of
|~j| 9 1

r
. These plots for ~j show that, although equation (2.51) depends on l only as its

square l2, the actual states corresponding to l and ´l are different by nature. Therefore,
despite having the same energy, these states are totally different. This is basically the
notion of degeneration discussed in the reminder of the two dimensional oscillator.

Figure (2.11a) shows the behavior of ~j for the resonant state k “ 2.07807´ i 0.53121
with l “ 1. Notice that unlike bound states and resonant states, the behavior of ~j isn’t
purely angular. Notice too that the magnitude of ~j has a constant asymptotic behavior,
a fact know from equation (2.133). This is reflects the fact that the probability density
at any point decreases over time. We notice as well there’s an interesting interference
pattern within the well, one that hadn’t been apparent from the analytical expression.
The presence of this pattern for ~j supports the interpretation of resonant states consisting
of trapped particles which are “bouncing” back and forth inside the well for a period of
time that might be long after the source of particles has been turned off.
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(a) (b)

Figure 2.10: The probability density current of stationary states for a well with cutoff
a “

?
20 and angular parameters (a) l “ 1 and (b) l “ ´1. Notice that for positive values

of l the flow of ~j is counter-clockwise while for negative values it is clock-wise. (Bright
areas correspond to higher values)

(a) (b)

Figure 2.11: (a) Probability density current corresponding to a resonant state for l “ 1,
a “

?
20 and k “ 2.07807´i 0.53121. (b) Zoom out of (a): The probability density current

is clearly non-circular and of constant magnitude far away from the well, in agreement
with equation (2.134). (Bright areas correspond to higher values)
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2.3.1.2 Purely-outgoing waves condition implications

We saw in the previous subsection that the purely outgoing waves condition requires
coefficients C1 and C2 to satisfy

0 “ C1 ` iC2,
C1

C2

“ ´i. (2.135)

From equation (2.129) Rprq reads

Rprq “
1

2
pC1 ´ iC2qH

p1q
l pkrq. (2.136)

If we combine (2.135) with (2.84) we find that the purely outgoing waves condition leads
to

W pNlpkaq, Rlpaqq

W pRlpaq, Jlpkaqq
“ ´i. (2.137)

The values of k that satisfy this equation correspond to the purely outgoing wave
solution (2.135). The set of k values that satisfy this condition is discrete and that there
seems to be an infinite amount of them. We present in figure (2.12) the first three values
of k (and their corresponding energies) that satisfy (2.137) for l “ 1, a “

?
20. We

also present the probability density plot corresponding to k1; bright areas correspond to
higher values. We observe that we have some stationary waves of finite height inside the
well. However, as we go beyond r “ a the probability density spikes up evidenced by
the brightest areas barely beyond the well boundary r “ a. The spike up is due to the
probability density leaking out from the interaction region as time goes on.

kr ` i ki Er ` i Ei
k1 2.07807´ i 0.53121 12.0181´ i 0.551944
k2 3.26843´ i 0.58238 15.1717´ i 0.951735
k3 4.24562´ i 0.622788 18.8187´ i 1.32206

Figure 2.12: The table shows k and E values corresponding to purely outgoing waves solutions for
l “ 1 and a2 “ 20. Probability density corresponding to the first resonant state for l “ 1, a “

?
20:

E “ 12.0181´ i 0.551944.
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2.4 Energy quantization for a two dimensional radial

potential using the WKB method

In this section we will use an approximate method to compute the solution of the
stationary Schrödinger equation. There is literature dealing with a generalized WKB
method for approximating the solutions of quantum wells in two or three dimensions,
e.g. (Van Horn and Salpeter(2010) and Shirnov and Nurlygayanov (1975). However,
we will sort our way to use the one dimensional WKB approximation theory explained
above to solve our two dimensional system. The stationary Schrödinger equation in polar
coordinates reads

´
~2

2m
∇2ψpr, θq ` V ψ “ Eψ. (2.138)

After separating variables through the ansatz ψ “ Rprqeilθ, we get

R2prq `
1

r
R1prq ´

l2

r2
Rprq `

ˆ

2m

~2

˙

pE ´ V prqqRprq “ 0, (2.139)

where (’) denotes derivative with respect to r.

Let Rprq “ r´
1
2uprq, equation (2.139) turns into

u2 `

ˆˆ

2m

~2

˙

pE ´ V prqq ´

ˆ

l2 ´ 1
4

r2

˙˙

u “ 0 (2.140)

Here it is where we introduce our WKB hypothesis. Let u ” ei
S
~ . Upon substitution in

(2.140) we find

i

~
S2 ´

1

~2
S 1 2

`
2mE

~2
´

ˆ

2m

~2

˙ˆ

V prq `

ˆ

~2

2m

˙ˆ

l2 ´ 1
4

r2

˙˙

looooooooooooooooomooooooooooooooooon

Vef

“ 0. (2.141)

Multiplying by p´ ~2
2m
q,

1

2m
S 12 ´

i~
2m

S2 ` Vef “ E. (2.142)

We have defined an effective potential Vef . This equation has exactly the same form as
equation (1.57) with Vef playing the role of V . Therefore, (it seems at first) there is no
problem in following the theory of the 1-D WKB approximation presented before, with
uprq in the place of ψpxq, Vef prq instead of V pxq and r P p0,8q in the place of x P p´8,8q.
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Figure 2.13: Potentials V prq(blue), Vef prq (purple), and a bound energy (golden) that defines two
classical turning points (l ‰ 0).

We focus our attention on bound states of the effective potential

Vef prq “

$

’

’

’

&

’

’

’

%

V prq `

ˆ

~2

2m

˙ˆ

l2 ´ 1
4

r2

˙

, 0 ă r ă a

V paq `

ˆ

~2

2m

˙ˆ

l2 ´ 1
4

a2

˙

, r ě a.

(2.143)

where

V prq “

$

&

%

1
2
mω2r2, 0 ă r ă a

1
2
mω2a2, r ě a

(2.144)

The energy of a bound state is that which does not exceed Vef pr Ñ 8q. That is

E ă Vef pr Ñ 8q

E ă V pr Ñ 8q ` 0
E ă V paq
E ă 1

2
mω2a2

(2.145)

For l ‰ 0 there are two points r “ r1,2 such that V pr1,2q “ E. These are the turning
points for the effective potential. The case l “ 0 presents a different situation, which
has only one classical turning point. From (2.143) we can see that in the case l “ 0 the
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Figure 2.14: (a) Potentials V prq (top) Vef and for l “ 0 (bottom). (b) Zoom in of (a).
Notice that the case l “ 0 has no returning point close to the origin.

potential decreases infinitely as r Ñ 0 with no turning point (See figure 2.14). Therefore,
the formulas obtained by the 1-dimensional WKB method above does not apply. From
now on, we’ll work with the assumption l ‰ 0.

Let

pef pxq ”

$

’

’

’

&

’

’

’

%

ip̃ef pxq ” i
a

2mpVef pxq ´ Eq , r ă r1

a

2mpE ´ Vef pxqq , r1 ă r ă r2

ip̃ef pxq ” i
a

2mpVef pxq ´ Eq , r ą r2

(2.146)

the domain of this effective potential gets subdivided in three regions 0 ă r ď r1,
r1 ă r ă r2 and r2 ď r. Analogous to the 1-dimensional case, for the solution to be
physically acceptable, uprq for the regions inside and outside the potential well reads

upxq “

$

’

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

’

%

A2
1

a

p̃ef prq
exp

„

´
1

~

ˆ
ż r1

r

p̃ef prq dr

˙

, r ă r1

N cos

ˆ
ż

pef dr ` α

˙

, r1 ă r ă r2

B2
1

a

p̃ef prq
exp

„

´
1

~

ˆ
ż r

r2

p̃ef prq dr

˙

, r ą r2

(2.147)

Appealing to the connection formulas (1.71) and (1.72) again, and proceeding as showed
in the 1-dimensional derivation, the quantization condition for Vef prq reads

1

~

ż r2

r1

pef prq dr `
π

2
“ πpn` 1q. (2.148)
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Therefore

πpn` 1
2
q “

1

~

ż r2

r1

pef “

ż r2

r1

dr

d

2mE

~2
´
m2ω2r2

~2
´
l2

r2
`

1
4

r2

“

ż y2

y1

dy

2y

a

Ay2 `By ` C,

(2.149)

where A ” ´m2ω2

~2 , B ” 2mE
~2 , C ” ´l2 ` 1

4
.

From the tables presented in [8] (pgs. 94´ 97) we get to a simple expression:

π

ˆ

n`
1

2

˙

“
B
?
´C ` 2C

?
´A

2
?
AC

. (2.150)

Having in mind the definitions

A ” ´m2ω2

~2 , B ” 2mE
~2 , C ” ´l2 ` 1

4
, (2.151)

eq. (2.150) can be simplified to get a discretization equation for E

πn “ π

¨

˚

˝

`

2mE
~2

˘

b

l2 ´ 1
4
` 2p´l2 ` 1

4
q

b

m2ω2

~2

4
b

p´m2ω2

~2 qp´l
2 ` 1

4
q

˛

‹

‚

. (2.152)

Then
E

~ω
“ 2n` 1`

c

l2 ´
1

4
. (2.153)

Note that this quantization result has the same functional form for the energies as the
one found when we solved the problem by finding the exact solutions. However, there
is a substantial difference. In (2.153) a term (`1

4
) adding to l2 is present. Perhaps for

l " 1 this term can be ignored but not for lower values of l. This “failure” has been noted
before by many authors. The first one was Langer (1937) when he studied the connection
formulas for a three dimensional radial problem. The three dimensional radial problem
poses the same issue of a wrong eigenvalue prediction, arising also from the centrifugal
term of the effective potential. Until then, the solution to finding the correct value for
E was to make an unfounded substitution by hand. To be more clear, the 2-dimensional
equivalent (which is our case) of what they did was to replace (l2´ 1

4
) for l2, and it worked.

In his paper Langer noticed that the source of the issue was that the effective potential
grows out of proportion as the turning point nearest to the origin is close enough. In that
case, the WKB approximation requisite (1.58) no longer gets fulfilled, therefore giving
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inaccurate results. The way he solved the problem was to make a change of variables
r “ ex, u “ e

x
2 v. This shows that the point r “ 0 is now mapped unto the point

x Ñ ´8. In this manner the issue is avoided and previously unfounded substitution is
found.

In the book Semiclassical Physics (1997) pgs. 76, 78, M. Brack and R. K. Bhaduri talk
about the Langer corrections in two and three dimensions. In particular they mention that
Langer’s correction works for l “ 0 in the 3-dimensional case but not in the 2-dimensional
one. They mention that other authors made further mappings along the Langer mapping
in other to demonstrate that even for l “ 0 the substitution l2 ´ 1

4
Ñ l2 is valid and that

the correct energy values are

E “ p2n` 1` lq ~ω. (2.154)
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Chapter 3

Electromagnetic waveguides

In order to establish a connection between quantum states and optical waves we shall
study a system whose description resembles that of a short range potential well. In the
following pages we will study the propagation of waves within a cylindrical dielectric
fiber (waveguide, for short) under certain conditions, those which will take us from the
Maxwell equations onto a Schrödinger-like equation. An optical waveguide consists of a
large slim dielectrical material called “the core”, through which a wave will propagate
due to total internal refraction. This material is surrounded by a covering with a lower
refractive index than the core. This covering is called “the clad”. A waveguide’s length
is too large compared to its width, so much that they can be modelled as infinitely large.
They can have an arbitrary shape cross-section, but the most common type is a circular
cross-section, see figure (3.1).

Figure 3.1: Cylindrical waveguide corresponding to a circular cross-section. The core
(inner) radius is of length“ a, while the clad (outer) radius is of length “ b.
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3.1 The Helmholtz equation for optical fibers

The Maxwell equations for a inhomogeneous dielectric media read

∇ ¨ ~Dp~r, tq “ 0, B

Bt
~Dp~r, tq “ ∇ˆ ~Hp~r, tq,

∇ ¨ ~Bp~r, tq “ 0, ´ B

Bt
~Bp~r, tq “ ∇ˆ ~Ep~r, tq,

(3.1)

with constitutive relations

~Dp~r, tq “ ε0εp~rq ~Ep~r, tq, ~Bp~r, tq “ µ0
~Hp~r, tq. (3.2)

Let ~Ep~r, tq “ ~Ep~rqe´iωt, with the aid of

∇ˆ
´

∇ˆ ~Ep~rq
¯

“ ∇
´

∇ ¨ ~Ep~rq
¯

´∇2 ~Ep~rq, (3.3)

the Maxwell equations can be worked out to find

∇2 ~Ep~rq ` εp~rq
loomoon

n2p~rq

k2
0
~Ep~rq `∇

ˆ

1

εp~rq
∇εp~rq ¨ ~Ep~rq

˙

“ 0, (3.4)

where it has been pointed out the well-known relation between the dielectric permittivity
and the refractive index εp~rq “ n2p~rq. k0 stands for the wave number in the clad where
the refractive index is n0.

We restrict our analysis to fibers such that ε varies slowly enough to allow the third
term of (3.4) to be dismissed. In that case,

∇2 ~Ep~rq ` k2
0nprq

2 ~Ep~rq “ 0. (3.5)

This equation is known as the (vectorial) Helmholtz equation. It is our starting point for
what is going to be a useful way to study quantum potentials with classical experiments.
In quantum mechanics the information of the system is encoded in the wave function,
which is a scalar quantity. If we are looking for an analogy with optic fibers it is only
natural that we search for a scalar function to compare with. The form of equation (3.5)
makes us wonder if the operator ∇2 could somehow act on each scalar component of
~E, therefore inheriting its current form. In appendix A we present an observation on
Laplacians and under what conditions is it possible to manipulate them in this way.

As pointed out, if we expand ~E in Cartesian components, equation (3.6) implies that
each component obeys

∇2Up~rq ` k2
0nprq

2Up~rq “ 0; ~r “ pr, φ, zq. (3.6)

60



3.2 The paraxial approximation

Since we are interested in waves whose amplitude depends weakly on z, we assume that,
within a distance of ∆z “ λ,

|∆U | ! |U |,

|
`

B

Bz
U
˘

∆z| ! |U |,

|
`

B

Bz
U
˘

λ| ! |U |.

(3.7)

ˇ

ˇ

ˇ

ˇ

ˆ

B

Bz
U

˙ ˇ

ˇ

ˇ

ˇ

! |
U

λ

ˇ

ˇ

ˇ

ˇ

, and

ˇ

ˇ

ˇ

ˇ

ˆ

B

Bz
U

˙ˇ

ˇ

ˇ

ˇ

!

ˇ

ˇ

ˇ

ˇ

U
k

2π

ˇ

ˇ

ˇ

ˇ

. (3.8)

In a similar form,
ˇ

ˇ

ˇ

´

B2

Bz2
U
¯ˇ

ˇ

ˇ
!

ˇ

ˇ

k
2π

B

Bz
U
ˇ

ˇ . (3.9)

Let us assume a harmonic profile on z: U “ upr, φ, zqeik0n0z, where upr, φ, zq is a slow
varying function of z. Substituting this in equation (3.6) we arrive to

∇2
Tupr, φ, zq `

B2

Bz2
upr, φ, zq ` 2ik0n0

B

Bz
upr, φ, zq ` k2

0pnprq
2 ´ n2

0qupr, φ, zq “ 0,

∇2
T ” ∇2ψ “ 1

r
B

Br

`

r Bψ
Br

˘

` 1
r2
Bψ
B2φ
,

(3.10)

where ∇2
T is called the transverse Laplacian. Using (3.9) to dismiss the second term in

equation (3.10), it reads

∇2
Tupr, φ, zq ` 2ik0n0

B

Bz
upr, φ, zq ` k2

0pnprq
2
´ n2

0qupr, φ, zq “ 0. (3.11)

It is well known that the paraxial approximation (3.8) is valid in the weakly guiding
regime, where the refractive index is nearly constant, i.e.

n2
prq ” n2

0 `∆nprq; ∆nprq ! 1. (3.12)

Then, for a refractive index characterized by a parabolic profile given by

n2prq “ n2
0p1´ ω

2r2q, ω2r2 ! 1, (3.13)

we identify ∆nprq ” ´n2
0ω

2r2. Applying (3.13) in (3.11) we get

1

2n0k2
0

∇2
Tupr, φ, zq ´

n2
0ω

2r2

2n0

upr, φ, zq “ ´i

ˆ

1

k0

˙

Bupr, φ, zq

Bz
. (3.14)
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Pay close attention to the left and right sides of this equation. The Laplacian of a function
is essentially a second derivative. therefore, on the left side we’ve got the Laplacian of a
function being summed with a term involving the function weighted with a polynomial,
while on the right side we’ve got a first derivative with respect to an independient variable
z. This is essentially a Shcrödinger equation. At this stage, we propose u has the form
u “ ψprqe´iβk0z. Substituting this expression in (3.14) along with (3.13) we find

∇2
Tψ ´ k

2
0n

2
0ω

2r2ψ “ ´2βk2
0n0ψ, (3.15)

which can be rewritten as

´
1

2k2
0n0

∇2
Tψ `

1

2
n0ω

2r2ψ “ βψ. (3.16)

3.3 Classical-Quantum analogy for a stratified fiber

Equation (3.16) leads us to think of stablishing an analogy between optical fibers with a
parabolic refractive index and short range quantum wells. Consider the following solutions
to the parabolic refractive index fiber and the quantum harmonic oscillator respectively:

Electric : ´ 1
2k20n0

∇2
rψprq `

1
2
n0ω

2r2ψprq “ βψprq;

Quantum : ´ ~2
2m

∇2
rψprq `

1
2
mω2r2ψprq “ Eψprq.

(3.17)

Comparing these expressions we notice that we have arrived at the exact same equation
if we realize that electric quantities are playing the role of quantum ones. In particular
β is playing the role of E. Therefore the solution ψ and β seeked for the waveguide is
exactly that of the short-range oscillator, see eq. (2.3), with β Ø E.

Furthermore ,we can follow the steps following eq. (2.3) and define an adimensional
variable and a redefinition of the refractive index as it was done in (2.5) and (2.6). Being
an optic fiber with a cilindrical cross section, the boundary is set at r “ a as in the short-
range oscillator and the boundary analysis of (2.12) is valid here too. The requirements
for physical admissibility presented in (2.28), (2.31), and (2.35) apply here as well.

This leads us to the Kummer function being the final expression for our solution as
in (2.29) i.e.

3.3.1 Solution to the paraxial approximation

ψprq “ e´
r2

2 r|l|M

ˆ

1

2
p1` |l| ´Bq, 1` |l|; r2

˙

; r “
a

k0n0ωr, B “
βk0

ω
. (3.18)
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We would like to make a pause here to emphasize something. In chapter 2 we realized
that the radial profile of the solutions of the short-range problem were not appreciably
distinguishable. We noticed it too how similar the energy values are compared to those
arising from the conventional potential. Analogous comparisons were made in chapter 1,
where the short-range version of the problem had eigenfunctions and eigenvalues so similar
to the conventional version of the problem that they are practically indistinguishable.
Taking advantage of the classical-quantum analogy, this leads us to think that it is
reasonable to adopt (3.20) as the solution of the waveguide, even though the functional
form of solution (3.20) corresponds to an unbounded interaction region and not to a short-
range interaction. Along the same lines, we proceed to quantize the propagation constant
β as we did in chapter 2, by demanding the first argument of the Kummer function to be
equal to a negative integer.

As seen in equation (2.40) in the reminder of the Quantum Harmonic Oscillator, we
know that in order for ψ to be a physical state (guided inside the fiber) we should demand

´n “
1

2
p1` |l| ´Bq; n “ 0, 1, 2, ... (3.19)

B “ 2n` 1` |l|, and β “ p2n` 1` |l|q
ω

k0

. (3.20)

Therefore, for guided modes the complete solution Upr, φ, zq reads

Upr, φ, zq “ eik0pn0´βqzψprqeilφ (3.21)

3.4 The quasi-plane wave approach

In this section we’ll follow an approximate method that seeks to approximate the problem
to the much simpler one of a plane wave, but allowing its amplitude and phase to depend
of r. The justification of this method rests in the assumption that the waves travel almost
parallel to the axis of the guide, which leads to the assumption that the wave is locally
plane. This method is pretty similar to the WKB approximations discussed in chapters 1
and 2. However, in those discussions, it was the method which provided us of the varying
phase S, while in this method, S is proposed of a certain form and then developed further.
For more details of this approach see [12].

As seen in the previous section of this work, the three Cartesian components of ~E
satisfy equation (3.6) i.e.

∇2Up~rq ` k2
0nprq

2Up~rq “ 0; ~r “ pr, φ, zq; U ” Ej j “ x, y, z . (3.22)
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Suppose U to be of the form

Upr, φ, zq “ αpr, φ, zqe´ik0Spr,φ,zq, (3.23)

where αpr, φ, zq and Spr, φ, zq are slowly varying real functions with respect to λ0 ”
2π
k0

.
Under this hypothesis, Spr, φ, zq satisfies approximately the Eikonal equation from optic
physics

|∇S|2« n2, (3.24)

as well as the fact that the light rays travel in the direction of ∇S. Let

k0Spr, φ, zq ” k0sprq ` lφ` βk0z. (3.25)

Substituting this in (3.23) and in (3.24) we get respectively,

Upr, φ, zq “ αpr, φ, zqe´ipk0sprq`lφ`βk0zq, (3.26)

and
ˆ

k0
d

dr
sprq

˙2

`

ˆ

l

r

˙2

` pβk0q
2
“ n2

prqk2
0. (3.27)

Then
pkrq

2
` pkφq

2
` pkzq

2
“ n2

prqk2
0, (3.28)

where we have defined kr ” k0
ds
dr

, kφ ”
l
r
, kz ” k0β. From this we get an expression for

the unknown quantity sprq

k0sprq “

ż

krdr “

ż

˘

d

n2prqk2
0 ´

ˆ

l

r

˙2

´ pβk0q
2dr. (3.29)

Since kr appears squared in (3.28) we can discard the minus sign of the square root
without any loss of generality. From equation (3.13) we substitute the value of n2prq in
(3.29) to get

ż

krdr “

ż

d

pn2
0 ´ n

2
0ω

2r2qk2
0 ´

ˆ

l

r

˙2

´ pβk0q
2dr

“

ż

dr

r

b

´n2
0ω

2k2
0r

4 ` pn2
0 ´ β

2q k2
0r

2 ´ l2.

(3.30)

In simplified form

ż

krdr “

ż

dr

r

?
Ar4 `Br2 ` C; A ” ´n2

0ω
2k2

0; B ”
`

n2
0 ´ β

2
˘

k2
0; C ” ´l2. (3.31)
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Notice that B ą 0 by necessity. Otherwise, the radicand would be negative for all values
of β. We shall define another variable to carry out the integration more clearly. Let
y ” r2, then

ż

krdr “
ş

dy
2y

a

Ay2 `By ` C; y ” r2 ; dr
r
“

dy
2y
. (3.32)

The solution to this integral can be found in tables. Its expression depends on the
character of the coefficients A,B,C. Since A ă 0, B ą 0 and C ă 0, the corresponding
expression in our case is

ż

krpyqdy “ 1
2

ż

dy

y

a

Ay2 `By ` C

“ 1
2

a

Ay2 `By ` C ` B
4

´

´1?
´A

¯

arcsin
´

2Ay`B
?
B2´4AC

¯

`C
2

´

1?
´C

¯

arcsin
´

By`2C

|y|
?
B2´4AC

¯

.

(3.33)

with the conditions
1. A ă 0
2. C ă 0
3. B2 ´ 4AC ą 0
4.

?
B2 ´ 4AC ą |2Ay `B|

(3.34)

Conditions 1 and 2 are already satisfied. For the case l “ 0 (C “ 0) the result (3.33)
changes in the factor following 1

2
C. However, the presence of precisely the factor 1

2
C

nullifies that change, making (3.33) still valid for l “ 0.
Condition 4 can be explored in two ways. The first one is to develop the absolute

value in its two possibilities (|x| “ ˘x) and find that there exist two numbers y1 and y2

(roots of Ay2 ` By ` C “ 0) that bound the domain of y : y1 ă y ă y2. The second one
is to take the square of it to find that Ay2`By`C ą 0 is satisfied within those bounds.

Condition 3 guarantees that B2 ´ 4AC ą 0 i.e. there are always two points
y1,2 “

1
2A
p´B ˘

?
B2 ´ 4ACq. On the other hand, by substituting the values of A,B

and C we find a bound for β,

β2
ă n2

0 ´
1

k0

2n0ω|l|. (3.35)

Likewise, since the upper bound for β2 must be non-negative, we get a bound for |l| too.

0 ă n2
0 ´

1

k0

2n0ω|l|, |l| ď
k0n0

2ω
. (3.36)

The modes of the fiber are determined by imposing the self-consistency condition that
the wave reproduces itself after one helical period of travel between r1 and r2 and back.
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The azimuthal path length corresponding to an angle 2π must correspond to a multiple
of 2π phase shift, i.e. kφ2πr “ 2πl; l “ 0, 1, 2, .... This condition is evidently satisfied
since kφ “

l
r
. Furthermore, the radial round-trip path length must correspond to a phase

shift equal to an integer multiple of 2π:

2

ż r2

r1

krdr “ 2πm; m “ 0, 1, 2, ... (3.37)

The value m “ 0 corresponds to the integral equaling zero, which can only happen in the
case y1 “ y2. For this to be true we would require that

?
B2 ´ 4AC “ 0, which would

technically be a violation of condition 3. To sort this issue, remember that condition
3. ensures there are two values along the radial direction between which the quasi-
plane bounces off. In the limit where this return points are very close to each other
i.e. y1 Ñ y2 ñ

?
B2 ´ 4AC Ñ 0. Then, we are in the presence of a quasi-plane wave

with a wave vector ~k “ pkr, kφ, kzq that has no radial component i.e. kr “ 0. This
wave does not bounce along the radial direction, it rather exists confined to a fixed value
r0 “

?
y1 “

?
y2. This self-consistency condition provides the characteristic equation

from which the propagation constants βlm of the modes are determined.From (3.32) and
(3.33), we see that, in terms of y, (3.37) reads

πm “

ż r2

r1

krdr “
1

2

ż y2

y1

krpyqdy

“

ˆ

1

2

˙

˜

a

Ay2 `By ` C `

ˆ

B

2

˙
ż

dy
a

Ay2 `By ` C
` C

ż

dy

y
a

Ay2 `By ` C

¸

ˇ

ˇ

ˇ

ˇ

y2

y1

.

(3.38)
Thus

πm “
1

2

a

Ay2 `By ` C

ˇ

ˇ

ˇ

ˇ

y2

y1

`
B

4

´

´1?
´A

arcsin
´

2Ay`B
?
B2´4AC

¯¯

ˇ

ˇ

ˇ

ˇ

y2

y1

`
C

2

´

1?
´C

arcsin
´

By`2C

|y|
?
B2´4AC

¯¯

ˇ

ˇ

ˇ

ˇ

y2

y1

,

(3.39)

where y1,2 ”
1

2A

`

´B ˘
?
B2 ´ 4AC

˘

. Then

πm “
B
?
´C ` 2C

?
´A

2
?
AC

, (3.40)

where

A ” ´n2
0ω

2k2
0, B ”

`

n2
0 ´ β

2
˘

k2
0, C ” ´l2. (3.41)
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So that

πm “ π

ˆ

pn2
0 ´ β

2qk2
0|l| ´ 2l2n0ωk0

4n0ωk0|l|

˙

, (3.42)

and

β “ ˘n0

c

1´ 2
ω

k0n0

p|l| ` 2mq. (3.43)

In order for β to be real the radicand of the previous expression must be non-negative.
This stablishes a bound for m:

0 ď 1´ 2
ω

k0n0

p|l| ` 2mq, m ď
1

2

ˆ

n0k0

2ω
´ |l|

˙

. (3.44)

Given a fixed number l, equation (3.43) gives a finite discrete set of values for β. Let us
explore a little further the expression for β. Let x ” ´2 ω

k0n0
p|l| ` 2mq. From (3.44) we’ve

got

1` x ě 0 ñ 1 ě |x|. (3.45)

Therefore, we can make use of the Taylor series for
?

1` x

?
1` x “ 1`

1

2
x´

1

8
x2
`

1

16
x3
´ ¨ ¨ ¨ (3.46)

Note that if the physical conditions were such as to let us dismiss the third term and
beyond, then we could approximate β to a more insightful expression. That is, if
1 " | 2ω

k0n0
p|l| ` 2mq |, then

β « n0 ´
ω

k0

p|l| ` 2mq; m “ 0, 1, 2, ... |l| “ 0, 1, 2, ... (3.47)

Up to this point we have found that the solution for the quasi-plane approximation is

U “ αe´ik0sprqe´ilφe´iβk0z, (3.48)

with β given by (3.47).

3.5 Comparison between the paraxial approximation

against the quasi-plane picture

Let us compare the two solutions found for the optical fiber, in particular the propagation
constant i.e the coefficient that comes with the z dependence.
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‚ Paraxial propagation constant

By means of the paraxial approximation we found

Upr, φ, zq “ ψprqeik0pn0´βqzeilφ. (3.49)

In this case the propagation constant is

k0pn0 ´ βq “ k0

´

n0 ´ p2n` 1` |l|q ω
k0

¯

“ k0n0 ´ p2n` |l| ` 1qω;

|l| “ 0, 1, 2, ..., n “ 0, 1, 2, ...
(3.50)

‚ Quasi-planar propagation constant

On the other hand, the quasi-plane approach gave us

U “ αe´ik0sprqe´ilφe´iβk0z, (3.51)

with propagation constant

k0β “ k0pn0 ´
ω
k0
p|l| ` 2mqq “ k0n0 ´ p2m` |l|qω,

|l| “ 0, 1, 2, ... m “ 0, 1, 2, ...
(3.52)

At first glance the functional form of (3.50) and (3.52) are basically the same. However,
there is a fundamental difference: All values of β from one approach can be matched with
the other approach by an appropriate selection of l, n and m with one exception. For l “ 0
and n “ 0 in (3.50) the (+1) gives as a result k0n0´ω, while for l “ 0 and m “ 0 in (3.52)
the propagation constant is equal to k0n0. It appears that the paraxial approximation
gives us an extra lower level that is not accessible through the quasi-plane approach. The
non-agreement of the propagation constants obtained by different methods is no reason
to worry. As stated before, solving the problem by an approximate method is an exercise
to compare the results found through a simpler method against those found through the
complexity of an analytical solution. If any conclusion can be made about this discrepancy
is that, for the approximate result (3.52) to resemble the analytical result (3.50), a strong
approximation had to be made (3.46)-(3.47), one that is not clear to hold for every value
of l and m. Therefore, in the case of the two-dimensional short-range oscillator, the
quasi-plane approximation proves insufficient where the exact method prevails.
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Chapter 4

Balanced gain-and-loss waveguides

In this chapter we will study a one dimensional fiber assuming its refractive index npxq
is a continuous and derivable function of the position x. We will take advantage of the
analogy between optical wave guides and quantum systems described in chapter 2. A
more general way to establish this analogy for an arbitrary potential V pxq is obtained by
comparing

„

´
1

2k2
0n˚

d2

dx2
´ npxq ` n˚



Epxq “ εEpxq; Epxq :“ Eypx, zq|z“0 (4.1)

with
„

´
~2

2m

d2

dx2
` V pxq



ψpxq “ Eψpxq. (4.2)

We get the identification [13]

k2
0 ÐÑ

mw

~
, r´npxq ` n˚sn˚ ÐÑ

V pxq

~w
, εn˚ ÐÑ

E
~w

, (4.3)

where ω is any reference value of frequency in terms of which the energy of the quantum
system can be measured. Then, the Eypx, zq “ Epxq exppik0εn˚zq may be associated
with the solutions ψpx, tq “ ψpxq exppiEt{~q of the related Schrödinger equation, where
z Ø t

a

ω~{m. The link between (4.1) and (4.2) is even more clear after introducing the

changes xÑ χ{
`

k0

?
2
˘

and xÑ χ
a

~{p2mωq, which gives

„

´
d2

dχ2
` p´npχq ` n˚qn˚



Epχq “ εn˚Epχq,

„

´
d2

dχ2
` Vpχq



ψpχq “ Ẽψpχq (4.4)

where ~ωχ “ V and ~ωẼ “ E . In the following we will take full advantage of the
above mathematical relationship, providing solutions to the paraxial Helmholtz equation
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from the space of solutions of the quantum mechanical problem. The objective is to
provide refractive indices on demand locating propagating constants inherited from the
solutions to the quantum version of the problem while producing balanced wave-loss
guides. Keeping this in mind we will apply teh Darboux method [14] as it has been
developed in supersymmetric (Susy) quantum Mechanics [15] to deform the eigenfunctions
of a given refractive index into the eigenfunctions of another one. The approach is useful
to add a concrete number of eigenvalues to the propagation constants of npxq, through a
process of transforming npxq and Epxq into new functions. The application of this method
once adds a single value ε corresponding to the first order Susy (Darboux) transformation.
Applied twice it will add a second eigenvalue. In such a case we would be working with
a 2nd order Susy transformation. By performing this process k´times we will have
k additional eigenvalues at the expense of transforming npxq k´ times. The Darboux
method has been elegantly summarized in the finite-difference algorithm for higher order
supersymmetry introduced in [16]. A concise summary is presented next.

4.1 Supersymmetric finite-difference algorithm

We briefly revisit the generalities of the finite-difference algorithm for higher order
supersymmetry, the complete details of this rich procedure can be consulted in [16]. Let
fkpx; εq :“ fkpx; ε1, ε2, , εk1, εq, with k ě 1, the Darboux transformation of an exactly
solvable potential Vk1px; εk1q produces a new potential Vkpx; εq in the form

Vkpx; εq “ Vk´1 px; εk´1q ` 2β1kpx; εq, k “ 1, 2, . . . , (4.5)

where βkpx; εq, usually called the superpotential, is solution of the Riccati equation with
the initial potential Vk´1,

´β1kpx; εq ` β2
kpx; εq “ Vk´1 px; εk´1q ´ ε, (4.6)

and ε is a constant to be determined.Let β be of the form

βkpx; εq “ ´
d

dx
lnupkqpx; εq. (4.7)

This transformation linearizes equation (4.6) by providing the eigenvalue problem

´u2pkqpx; εq ` Vk´1 px; εk´1qupkqpx; εq “ εupkqpx; εq, k “ 1, 2, . . . , (4.8)

where f 1pxq “
df
dx

. Thus, the superpotential 4.7 may be constructed from the
eigenfunctions ukpx; εq of Vk´1px; εk´1q that belong to the eigenvalue ε (usually called
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factorization constant). The “transformation functions” uk are not required to be square-
integrable in DompVk1q, since they are just a mathematical tool to find β. The finite-
difference algorithm [16] states that the solutions of (4.6) are the result of a finite-difference
operation performed on βk1,

βkpx; εq “ ´βk´1 px; εk´1q ´
εk´1 ´ ε

βk´1 px, εk´1q ´ βk´1px; εq
. (4.9)

The superpotentials βk built at each step are guaranteed to solve the Riccati equation
(4.6) and are linked to the eigenvalue problem (4.8), which is defined by the potential
of the previous step Vk1 through the new factorization constant ε. In turn, the solutions
ψpkqpx; εq of the new eigenvalue equation

´ψ2pkqpx; εq ` Vkpx; εqψpkqpx; εq “ Eψpkqpx; εq, k “ 1, 2, . . . , (4.10)

are obtained as the Darboux-deformation of the previous ones

N´1
pkqψpkqpx; εq “ ψ1pk´1q px; εk´1q ` βkpx; εqψpk´1q px; εk´1q , (4.11)

where N´1
k stands for normalization. An intersting fact arising from the method is the

recognition of an additional solution to equation (4.10), which is not included in the
transformation (4.11), given by the expression

ψMpkqpx; εq “ NM
pkqu

´1
pkqpx; εq “ NM

pkq exp

„
ż

βkpx; εqdx



. (4.12)

The above function was introduced by Mielnik [16], it is known as missing state and
satisfies (4.10). Thus, if (4.12) is square-integrable in DompVkq, then ε must be added to
the set of eigenvalues of Vk.

4.2 Adding propagation constants under prescription

Our interest is in generating refractive indices npxq with exact solutions to the paraxial
Helmholtz equation (4.1). The finite-difference algorithm for higher order supersymmetry
described above provides an elegant way to achieve this goal. The key step is to have
an already known exactly solvable refractive index n0pxq, the point-spectrum of which is
inherited to another refractive index n1px; εq, defined by the Darboux transformation

p´n1px; εq ` n1,˚q
n1,˚

n0,˚

“ ´n0pxq ` n0,˚ `

?
2

k0n0,˚

β11px; εq (4.13)
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where the superpotential β1px; εq is solution of the nonlinear Riccati equation

´

?
2

k0

β11px; εq ` β2
1px; εq “ n0,˚ r´n0pxq ` n0,˚ ´ εs . (4.14)

where ε is still yet to be determined. To simplify notation, without loss of generality,
hereafter we make nk,˚ “ n0,˚ :“ n˚, with k “ 1, 2, ... As pointed out in equation (4.8),
the transformation β1 ” ´

d
dx
lnpu1px; εqq leads to u1px; εq satisfying an eigenvalue equation

that determines both u1px; εq and ε,

´u2px; εq ` V0px; εqupx; εq “ εupx; εq. (4.15)

where f 1pxq ” df
dx

. We insist, that the function u need not be a physical solution, so the
eigenvalue ε is not fixed in any sense. It is free for us to choose.

The new refractive index (4.13) defines its own paraxial Helmholtz equation

„

´
1

2k2
0n˚

d2

dx2
´ n1px; εq ` n˚



Ep1qpx; εq “ εEp1qpx; εq. (4.16)

Since n1px; εq is a new refractive index, it defines its own guided modes. However, it is not
necessary to solve the eigenvalue equation itself, since the solutions to n1pxq are related
to those of n0pxq by the “deformation”

N´1
p1qEp1qpx; εq “ E 1p0qpxq ` β1px, εqEp0qpxq. (4.17)

where f 1pxq ” df
dx

and N1 stands for normalization. The set of eigenvalues of n1pxq are
exactly those of n0pxq, or it may also include the factorization constant ε. In such case,
the corresponding eigenfunction is called a “Missing state” and is expressed as

EM
p1qpx; εq “ NM

p1q exp

„
ż

β1px; εqdx



. (4.18)

So, if n0pxq had N guided modes, after the first Susy step we have a new potential
n1px; εq that has N ` 1 levels where the extra eigenvalue ε is free for us to choose as long
as it is a solution of equation (4.15). This procedure can be repeated as many times as
needed. Since each step can provide a single additional “energy”, if we seek to have at
hand k guided modes, we can repeat the process k´ times. It is conventional in this
supersymmetric approach to include the new eigenvalue below the lowest eigenvalue of
the previous point-spectrum. This obeys the fact that the oscillation theorem prevents
the construction of regular superpotentials βk if the factorization constant ε is above the
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lowest propagation constant of nk´1. indeed, the real and imaginary parts of (4.14) give
place to the nonlinear differential equation

„

´
1

2k2
0n˚

d2

dx2
´ n0pxq ` n˚



αpx; εq “ εαpx; εq ´
1

2k2
0n˚

λ2

α3px; εq
, λ P R (4.19)

which we will deduce next.

4.2.1 Balanced gain and loss waveguides

In contraposition to the method exposed up to this point there is a Darboux-deformation
method that produces complex valued refractive indices parting from real valued ones.
This can be done by the method introduced in [17]. Equations (4.16)-(4.18) are still valid.
The eigenvalues arising from it will be real and the additional value ε can be incorporated
at any position of the point-spectrum [19]. Let β ” βR` iβI with βR and βI real functions,

β1R ` β
2
R ´ β

2
I ` ε´ V “ 0,

´β1I ` 2βIβR “ 0.
(4.20)

From the second line we immediately get

d

dx
ln βI “ 2βR. (4.21)

This last equation suggest the ansatz

βRpxq ” ´
d

dx
lnαpxq, (4.22)

with αpxq a function to be determined. In terms of αpxq the imaginary part of β reads

βIpxq “
λ

α2pxq
. (4.23)

To get real functions βR and βI it will be enough to consider α and λ real. Substituting
(4.22), and (4.23) in (4.14) yields the nonlinear differential equation

„

´
1

2k2
0n˚

d2

dx2
´ n0pxq ` n˚



αpx; εq “ εαpx; εq ´
1

2k2
0n˚

λ2

α3px; εq
, λ P R, (4.24)
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which is named after Ermakov [20]. Note that (4.24) coincides with the paraxial Helmholtz
equation (4.5) when λ “ 0. The solutions to the Ermakov eqution is the nonlinear
superposition

αpx; εq “
“

au2
p1q;1px; εq ` bup1q;1px; εqup1q;2px; εq ` cu2

p1q;2px; εq
‰

1
2 , (4.25)

where up1q;1 and up1q;2 are two-linearly independent solutions of (4.1) for with ε “ ε. The
α-function is real-valued and free of zeros in Dom n0 if the set ta, b, cu is composited by
positive numbers fulfilling

b2
´ 4ac “ ´4

λ2

W 2
0

, (4.26)

where W0 “ W
`

up1q;1, up1q;2
˘

“ const is the Wronskian of up1q;1 and up1q;2. Using (4.25),
the complex-valued superpotential acquires a simple form

β1px; εq “ ´
1

2

d

dx
ln vpx; εq ` i

λ

vpx; εq
“ ´

„

v1px; εq ´ i2λ

2vpx; εq



, (4.27)

where
vpx; εq “ au2

p1q;1px; εq ` bup1q;1px; εqup1q;2px; εq ` cu2
p1q;2px; εq. (4.28)

Then, the Darboux transformation gives the complex-valued refractive index

n1px; εq “ n0pxq `
1

k2
0n˚

d

dx

„

v1px; εq ´ i2λ

2vpx; εq



. (4.29)

On the other hand, it may be shown that the imaginary part of n1 satisfies the condition
of zero total area [49]:

ż

R
Imn1px; εqdx “ ´

λ

k2
0n˚

1

vpx; εq

ˇ

ˇ

ˇ

ˇ

`8

´8

“ 0, (4.30)

so the total optical power is conserved. Equation (4.30) implies a balanced interplay
between gain and loss that does not depend on any symmetry of either Im n1px; εq or Re
n1px; εq. In contraposition to conventional supersymmetric approaches, the factorization
energy ε can be positioned at any place in the spectrum of n1 [19]. Besides, the missing
state (4.18), now written as

EM
p1qpx; εq “

NM
p∞q

a

vpx; εq
exp

„

iλ

ż

v´1
px; εqdx



, (4.31)

is such that its real and imaginary parts are even and odd functions, respectively.
We would like to emphasize that the non-linear superposition (4.28) marks a distance
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with conventional supersymmetric approaches. Indeed, we have already shown [21]
that the superpotential (4.27) can be also written in the conventional logarithmic form
βpx; εq “ ´ d

dx
lnwpx; εq, where the coefficients of the linear superposition

wpx; εq “ aup1q,1px, εq `

ˆ

b

2
´ i

λ

W0

˙

up1q,2px, εq, (4.32)

are ruled by the constraint (4.26), with a and b complex numbers in general. Clearly,
such a concrete combination of coefficients permits n1 to satisfy the condition of zero
total area, which defines it as a balanced gain-and-loss refractive index.

4.2.2 Bi-orthogonality

The solutions of the paraxial Helmholtz equation (4.1), with n1px; eq given in (4.29), are
obtainable from (4.30). However, while EM

p1q and all the TE modes Ep1q are normalizable,

they form a peculiar set since EM
p1q is orthogonal to all the Ep1q but these last are not

mutually orthogonal [22] (such property is not a problem in the Hermitian case since
all the new functions satisfy the conventional oscillation theorems). Nevertheless, the
eigenfunctions of n1 satisfy some properties of interlacing of zeros that permit the study
of the related systems as if they were Hermitian [23]. In this context, the biorthogonal set
formed by the eigenstates Ep1q of n1, together with the eigenstates Ẽp1q of the complex-
conjugated refractive index, written nC1 , provide an extended space of states where all the
basis elements are bi-orthonormal [22] [24] [25]. Indeed, the bi-product

´

Ẽp1q;m, Ep1q;n

¯

“

ż

R
ẼC
p1q;mpx; εqEp1q;npx; εqdx (4.33)

is equal to zero if n ‰ m and serves to define the bi-norm ||Ep1q;n|| “ ||Ẽp1q;n|| if n “ m [22].

Having two possible normalizations at our disposal, the conventional norm
Ep1q
||Ep1q||

and the

bi-norm
Ep1q

||Ep1q||B
we have to take into account that the real and imaginary parts of the

TE modes Ep1q, we have to take into account that the real and imaginary parts of the
TE modes Ep1q behave qualitatively equal in both normalizations, but their bi-normalized
values are usually larger than those obtained with the conventional normalization. Such
a difference is reduced as the excitation of the mode increases [25]. Besides, note that
the notions of bi-product and bi-norm introduced above coincide with the conventional
definitions if λ “ 0.

4.2.3 PT´symmetric case

The expression (4.29) represents a wide family of balanced gain´and´loss refractive
indices. A very interesting subset of such family is integrated by the so called parity´time
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(PT) symmetric refractive indices. Recalling that invariance under parity and time
reversal transformations requires npxq “ n˚x in quantum mechanics [26], we realize that the
effective refractive index n0pxq should be parity-invariant n0pxq “ n0p´xq to facilitate the
construction of PT´symmetric refractive indices n1px; εq. On the other hand, assuming
real´valued transformation functions up1q;1 and up1q;2, we may take b “ 0 in (4.28) to
obtain the quadratic form

vPT px; εq “ au2
p1q;1px; εq ` cu2

p1q;2px; εq. (4.34)

The straightforward calculation shows that using this function in (4.29) one gets a complex
valued graded index that is PT-symmetric. Note that b “ 0 implies ac “ λ2

|W 2
0 |

in (4.26),

where |W0| stands for the modulus of W0. Then (4.29) yields

nPT pxq “ n0pxq `
1

2k20n˚

d2

dx2
ln

´

u2
p1q;1px; εq ` u2

p1q;2px; εq
¯

´i |W0|

k20n˚

´

u2
p1q;1px; εq ` u2

p1q;2px; εq
¯´1

.
(4.35)

4.2.4 Recovering the real valued case

As indicated above, if “ 0 the superpotential (4.27) is reduced to its Hermitian
configuration, which produces real-valued indices only. Revisiting the constraint (4.26) we
see that “ 0 implies b2 “ 4ac, and thus b “ ˘2

?
ac. We obtain the linear superpositions

α˘ “
?
aup1q;1 ˘

?
cup1q;2, so we arrive at the conventional superpotentials

βRpx; ε;˘q “ ´
d

dx
ln
“?
aup1q;1px; εq ˘

?
cup1q;2px; εq

‰

, (4.36)

where a and c are such that β is free of singularities in Dom n0. Therefore, from (4.13)
one has the two-parametric family of real-valued graded indices

nRpx; ε;˘q “ n0pxq `
1

k2
0n˚

d2

dx2
ln
“?
aup1q;1px; εq ˘

?
cup1q;2px; εq

‰

. (4.37)

4.2.5 Applications

4.2.5.1 Adding guided modes one at a time

The fundamental solutions of the paraxial Helmholtz equation for n0 “ 0 are well known (
From now on, for the sake of simplicity, the expressions of the refractive index profiles are
considered up to the additive constant n˚). For positive factorization constants ε “ k2 ą 0
we write u1 “ eikpx´x0q with W0 “ ´i2k. However the above expressions yield sinusoidal
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refractive indices n1 [22],which are out of the scope of this work. Here we make k “ iκ to
get negative factorization constants ε “ ´κ2, therefore

vpx;κq “ ae2κpx´x0q ` ce´2κpx´x0q ` b, b2
´ 4ac “ ´λ2

{κ2. (4.38)

To simplify our example let us make a “ c. Then vpx; kq “ 2a coshr2κpx ´ x0qs, with
b2 “ 4a2 ´ λ2

κ2
. The superpotential (4.27) takes the form

β1px;κq “ ´

«

κ sinh r2κ px´ x0qs ´ i
λ
2a

cosh r2κ px´ x0qs `
b

2a

ff

, b2
“ 4a2

´
λ2

κ2
, (4.39)

so the refractive-index (4.29) is in this case

n1px;κq “
p2κq2

`

1` b
2a

cosh r2κ px´ x0qs
˘

` iλ
a
p2κq sinh r2κ px´ x0qs

2k2
0n˚

`

cosh r2κ px´ x0qs `
b

2a

˘2 . (4.40)

The complex-valued graded refractive index (4.39) allows the presence of only one guided
TE mode, obtained from (4.18) in the form

EM
p1qpx;κq “

NM
p1q

b

cosh r2κ px´ x0qs `
b

2a

exp

"

´
i

4a
arctan

ˆˆ

b

2a
´ 1

˙

tanh rκ px´ x0qs

˙*

.

(4.41)
Following the indications of the previous section, let us make λ “ 0 and b “ 2a in (4.38)
and (4.39) to get

βRpx;κq “ ´κ tanh rκ px´ x0qs , nRpx;κq “
2κ2

2k2
0n˚ cosh2

rκ px´ x0qs
, (4.42)

which are the well known expressions for the cosh-like refractive index. The function
nrpx; kqq is depicted in figure (4.1a) for a representative propagation constant ε, which
may be located at any position ε1 “ ´κ

2
1 since it is the only one eigenvalue.

For b “ 0 and a “ λ
2κ

the formulae (4.38) and (4.39) give rise to the PT-symmetric
expressions

βPT px;κq “ ´

ˆ

κ sinh r2κ px´ x0qs ´ iκ

cosh r2κ px´ x0qs

˙

, nPT px;κq “
p2κq2 p1` i sinh r2κ px´ x0qsq

2k2
0n˚ cosh2

r2κ px´ x0qs

(4.43)
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(a) (b)

Figure 4.1: (a) Cosh-like refractive index (4.42) for κ “ 2{3. (b) Parity-time symmetric
refractive index (4.43) for κ “ 1{2. In both cases x0 “ 0, k0 “

1?
2n˚

, and the horizontal
axis is mounted on n˚. These graded refractive indices admit the presence of only one
guide TE mode of propagation constant ε “ ´4{9 and ε “ ´1{4. In both cases the real
part is in blue while the imaginary part is in red.

The PT-symmetric refractive index (4.42) is shown in figure (4.1b) for a representative
propagation constant ε. As in the previous case, this eigenvalue can be positioned at will
in the negative part of the real axis.

If we repeat the procedure, assuming now that n1px;κ1q has already been fixed, the
finite difference algorithm provides an immediate potential

β2 px;κ1, κq “ ´β1 px;κ1q `
2k2

0n˚ pκ
2
1 ´ κ

2q

β1 px;κ1q ´ β1px;κq
, (4.44)

where κ1 and β1px;κ1q have been fixed in the previous step. Deciding the concrete value
of κ, as well as the analytical form of β1px;κq in (4.38), the above equation provides the
new refractive index

n2 px;κ1, κq “ n1 px;κ1q ´
1

k2
0n˚

β12 px;κ1, κq “ ´
d

dx

„

2 pκ2
1 ´ κ

2q

β1 px;κ1q ´ β1px;κq



, (4.45)

where we have used (4.13) with n0pxq “ 0.
At the present stage, we have incorporated two propagation constants, so the point-

spectrum of n2px;1 , κq is composited by the eigevalues ε1 “ κ2
1, and ε “ ´κ. However,

some caution is necessary if the first step was addressed to produce nRpx;κ1q and we are
looking for a second real-valued refractive index nRpx;κ1, κq. In such a case, the inequality
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(a) (b)

Figure 4.2: Real-valued refractive index nRpx;κ1;κq with symmetric (a) and non-
symmetric (b) profile, see eq. (4.46). The point-spectrum is composited by only two
propagation constants tε, ε1u, explicitly t´p1.9q2,´4u, t´ 9

16
,´4u, t´1,´4u, for curves in

blue, purple and red, respectively. In (b) the points px0, x1q are p0.2,´1q, p´1, 2q, p2,´0.5q,
following the color code indicated above.

ε ă ε1 must be satisfied in order to obtain regular functions nRpx;κ1, κq. Besides, in such
caes, it may be shown [16] that it is better to combine the two different real-valued
superpotentials βRpx;κ;˘q. The case “`” is reported in equation (4.41), the case “´”
corresponds to the complementary expression βRpx;κ;´q “ ´κ cothrκpx ´ x0qs. We,
therefore, arrive at the real-valued graded index

nR px;κ1, κq “
2 pκ2

1 ´ κ
2q
`

κ2
1 csch2

rκ1 px´ x1qs ` κ
2 sech2

rκ px´ x0qs
˘

p´κ1 coth rκ1 px´ x1qs ` κ tanh rκ px´ x0qsq
2 . (4.46)

The behavior of nRpx;κ1;κq is shown in figure (4.2) for different spectra {ε, ε1} and
constants x0 and x1.

Remarkably, ε and ε1 characterize the global profile of the function (4.45). Indeed,
for κ1 " κ1 and x0 “ x1 “ 0, the refractive index nRpx;κ1;κq acquires a bell-shaped form.
However, a valley arrises at the top of such curve if κ “ κ1´ρ with 0 ď ρ ! 1.The dent is
more pronounced as ρÑ 0, separating the initial bell-like curve into a pair of bell-shaped
ones. At the very limit, the new curves have moved in opposite directions toward the
domain edges ˘8. Quite interestingly, actual waveguides are manufactured by including
such dent, sometimes for reducing the internal mechanical stress due to the gradient of
dopant concentration, and sometimes for reducing the multimode dispersion [27], pp 83.

Having this in mind, figure (4.3) shows the exploration of the parameters that
characterize nRpx;κ1;κq addressed to produce different dent configurations in the
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(a) (b) (c)

Figure 4.3: The real-valued refractive index nRpx;κ1;κq may be produced with a
dent if κ “ κ1 ´ ρ, with 0 ď 1, in eq. (4.46). This may be symmetrical (a) or
asymmetrical (b). Both cases correspond to the point-spectra t´κ2

1,´κ
2u, where κ1

and κ “ 0.55, 0.6, 0.65, 0.7, 0.75, top to bottom curves as they are viewed at x “ 0,
respectively. In (b), the same curves are evaluated with x1 “ 0,´0.2,´0.4,´0.6,´0.8. In
(c) the spectrum is fixed, with κ1 “ 1 and κ “ 0.55. The displacement x1 takes the values
indicated in (b). The dents in (a)-(b), as well as the deformations (c), are deliberately
produced in the manufacture of actual refractive indices, see for instance [27].

refractive index. These may be completely symmetrical like in figure (4.3a) or
asymmetrical, as it is shown in fig. (4.3b). For 1 ą κ, local deformations may be produced
by tuning the displacement parameters x0 and x1 see figure (4.3c).

The ordering problem suffered by the propagation constants in the construction of
nRpx;κ1;κq is easily avoided by considering any superpotential (4.38) with λ ‰ 0 in either
of the two steps. For instance, like in the previous example, assume that nRpx;κ1 has
been fixed in the first step. To include the second eigenvalue ε this time we use the
complex-valued superpotential βPT px;κq introduced in (4.42). The new refractive index
(4.44) is now complex-valued, given by

n2 px;κ1, κq “
2 pκ2

1 ´ κ
2q f px;κ1, κq

g2 px;κ1, κq
, (4.47)

where

f px;κ1, κq “ ´κ
2
1 sech2

pκ1xq ` 2κ2 sech2
p2κxq ` i2κ2 tanhp2κxq sechp2κxq (4.48)

and
g px;κ1, κq “ ´κ1 tanh pκ1xq ` κ tanhp2κxq ´ iκ sechp2κxq. (4.49)

In (4.47) and (4.48) we have omitted the displacement constants x0 and x1 for the sake
of simplicity. As nRpx;κ1q is parity-invariant nRpx;κ1q “ nRp´x;κ1q, the parameters
of n2px;κ1, κq in (4.46) can be managed to obtain a PT-symmetric refractive index
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(a) (b)

Figure 4.4: PT-symmetric version of the complex-valued refractive index n1px, κ1, κq
introduced in eq, (4.47). In contrast with the real-valued case nRpx, κ1, κq, the propagation
constants can be added in arbitrary order to the point-spectrum tε, ε1u. Nevertheless,
although the PT-symmetry is preserved, the profile of n1px;κ1, κq is affected by the change
ε1 Ø ε. The point-spectrum is t´p1.9q2,´4u. In both cases x0 “ x1 “ 0, with the real
and imaginary parts in blue and red, respectively.

nPT px;κ1;κq. The result is shown in figure (4.4a) for the process in which we add first
ε1 and then ε with ε1 ą ε. The reversed process is shown in figure (4.4b). Note that,
although the profile of nPT px;κ1;κq changes, the PT-symmetry is preserved under the
change ε1 Ø ε. The same expression (4.46) gives rise to refractive indices that are not
invariant under parity-time transformations, as it is exhibited in figure (4.5).

We have already mentioned that the procedure may be repeated at will. At the
k-th step, the method provides a set of superpotentials βk that are available for the
finite-difference algorithm, addressed to elaborate the step k ` 1. The case considered
in this section takes the null function n0pxq “ 0 as the initial refractive index. The
propagation constants are added one at a time in order to arrive at the point-spectrum
{ε1, ε2, ..., εk´1, εk} , which may be decided under prescription. The refractive indices
constructed in this form admit k guided TE modes, generated from the initial missing
state EM

p1qpx; εq, via the rule (4.18). These modes obey the bi-product introduced above,
which also defines a proper bi-norm that coincides with the conventional norm if λ “ 0.

4.2.5.2 Manipulating a set of guided modes at once

To complete the revision of immediate applications, consider the cosh-like refractive index.

n0px,mq “
mpm` 1qκ2

cosh2
pκxq

, m “ 1, 2, . . . (4.50)

81



(a) (b)

Figure 4.5: Same as in Figure (4.4), with x0 “ ´0.5 and x1 “ 0. In this case, the
complex-valued refractive index n1px;κ1, κq is not invariant under PT-transformations.

Potentials V pxq “ ´n0px,mq form the subset of transparent Pöschl-Teller potentials in
quantum mechanics. The solutions of the Schrödinger equation for the entire family are
well known [28] [29] [33], including resonances and anti-bound states [30] [31]. Our interest
in n0px,mq obeys the fact that this refractive index admits exactly m guided TE modes,
defined by the quadratic rule [28] [29] [33].

εm,` “ ´κ
2
pm´ `q2, ` “ 0, 1, . . . ,m´ 1, m “ fixed (4.51)

The finite-difference algorithm will provide k additional eigenvalues at the kth iteration,
so the spectrum of nkpx,m; kq is composited by two finite subsets tεiu Y tεm,lu, with
i “ 1, 2, ..., k. As we have shown in the previous section, depending on the 1-step
superpotentials βlpx,m; εq and the factorization constants ε, the new eigenvalues εi may
be positioned at arbitrary places of the initial spectrum {εm,lu.

The fundamental basis of solutions is in this case provided by the functions [28] [29]

u1px;κq “ pcoshκxqm`1
2F1

`

a, b, 1
2
;´ sinh2 κx

˘

,
u2px;κq “ psinhκxqpcoshκxqm`1

2F1

`

a` 1
2
, b` 1

2
, 3

2
;´ sinh2 κx

˘

,
(4.52)

where

a “
m` 1

2
´

a

|ε|

2κ
, b “

m` 1

2
`

a

|ε|

2κ
. (4.53)

To construct the complex-valued superpotential [32], a first function vpx;κq is easily
achieved by noticing that the hypergeometric function 2F1 is reduced to the identity
if a “ 0. From (4.53) we immediately realize that |ε| “ κ2pm`1q2 produces such a result.
Remarkably, the latter value is in correspondence with the spectral rule (4.51) l “ ´1.
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(a) (b) (c)

Figure 4.6: Complex-valued cosh-like refractive indices n1px,m;κq exhibiting PT-
symmetry. The point-spectrum is finite, including the eigenvalues indicated in captions.
The spectral distribution is given by εm,l “ ´κ

2pm´ lq2 with ` “ 0, 1, ...,m´1 and m ě 1
denoting the number of eigenvalues in the initial spectrum. In all cases εM is located at
´κ2pm` 1q2.

Thus, we are in position of adding the eigenvalue ε “ εm,´1 to the initial spectrum tεm,lu.
The resulting refractive index n1px;m;κq, obtained from Eq. (4.29), may be chosen to
be either real, complex-valued or PT-symmetric. In figure (4.6) we have depicted the
case in which n1px,m;κq exhibits PT-symmetry. In fig. (4.6a) we started with n0px, 1q,
which admits only one guided TE mode, the one associated with ε1,0. The spectrum
of the resulting refractive indexn1px, 1;κq is therefore integrated by εM “ ´p2κq2 and
ε1,0 “ ´κ2. fig. (4.6b) considers the initial spectrum ε2,0 “ ´p2κq2,ε2,1 “ ´κ2, and
includes the missing state εM “ ´p3κq2. Similarly for fig. (4.6a). The configuration
where the new refractive index is not PT-symmetric is shown in fig. (4.7).

(a)
(b) (c)

Figure 4.7: Same as in figure (4.6), with non-PT symmetry.
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Chapter 5

Conclusions and Perspectives

We studied deeply the short-range version of the Quantum Harmonic Oscillator in one
and two dimensions. In both cases, the fact that the potential “stops” after a cutoff
value continued by a free particle potential in the rest of the domain gives rise to the
appearance of a kinetic parameter (the wave number) k that encodes the difference of the
energy value with respect to the constant potential height. It also let us derive general
results that apply to any scatterer of the short-range kind:

‚ In one dimension, the behavior of the system is completely defined by m2,2, the 2-2
entry of the matrix that relates the input with the output, independently of V pxq.

‚ The transmission coefficient is inversely proportionate to m2,2 independently of
V pxq.

‚ For the one dimensional case, bound states, scattering states and resonant states
arise from spanning k around the Complex plane, letting it be pure imaginary, pure
real or a mix of both respectively.

‚ In two dimensions, the behavior of the system is completely defined by the quotient
C2

C1
of the coefficients that accompany the solutions outside the well, independently

of V prq.

‚ In a two dimensional radially symmetric potential the probability density current
has an angular component proportional to the angular quantum number l and a
radial component proportional to the imaginary part of R1

R
.

‚ For bound states and scattering states, Rprq P R. By the previous conclusion, ~jψ
only “spins” around, but it does not flow radially.
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‚ For resonant states ~jψ has a non-zero radial component. Furthermore, at r Ñ 8,
~jψ tends to be only radial and proportional to the real part of k.

‚ Analogue to the one dimensional case, bound states, scattering states and resonant
states arise from spanning k around the Complex plane, letting it be pure imaginary,
pure real or a mix of both respectively.

The actual form of V prq within the well comes into play when one desires to obtain the
specific energies for a determined scatterer. For our case V prq has a squared dependence on
the position while the position doesn’t exceed the cut-off value a. Through the continuity
and boundary conditions the values of Rpaq are useful to determine the specific energies
in each phenomena explored.

For the bound states we found that the energy values are practically the same that
in the conventional system (V prq “ r2 for all r). We also found that the profile of the
solutions for our system are practically identical to those of the conventional system. This
happens both in the one and two dimensional cases. This shows that the predictions of
the conventional system and its solutions are good enough approximations.

For scattering states we found that there are quantities that quantify the amount
of scattering that takes place. For the one dimensional case this is the transmission
coefficient T , while for the two dimensional case it is the total scattering section σ. In
both cases there are particular energy values that guarantee the most scattering possible.

For resonant states we found that there could be a physical situation of purely
outgoing waves, the one which would be related to non-trivial complex values of the
energy. However, these states do not conserve probability since they have a time decay,
which means that the probability density of finding the particle in any position decreases
with time.

The study of this short-range potential has proven useful to put to the test how ac-
curate ideal potential models are compared to a more earth-grounded potential. Several
general results came out of it due to having a short range, which would be unknown to
us from the study of only ideal potentials. Although a short-range potential implies solv-
ing the Schrödinger equations in more regions, and with a bit more difficulty, they have
their own richness and the future study of these is not only complementary to others but
interesting and of great applicability too.

We parted from Maxwell equations for a inhomogeneous non-magnetic dielectric
medium and through reasonable approximations we managed to find a Schrödinger-like
equation for the amplitude of the components of the electric field. In particular, for
a cylindrical waveguide with a squared dependence of the refractive index the paraxial
Helmholtz equation takes the exact form of the stationary Shcrödinger equation for a 2-
dimensional oscillator. This mathematical resemblance allowed us to establish a classical-
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quantum analogy that allowed us to study a classical system in terms of a quantum
one. This analogy was crucial for us to get the propagation constants of the waveguide.
Previously, in our study of the 2-dimensional oscillator we found out that short-range
potentials’ bounded states are practically identical as their whole range counterpart.
This knowledge benefited greatly the analogous problem of a cladded waveguide, since it
allowed us to find the propagation constants with no need of dealing with any boundary
conditions at the core/clad boundary.

A quantum-classical analogy was established between the paraxial Helmholtz equa-
tion for a squared profile refractive index and the 2-dimensional oscillator stationary
Shcrödinger equation. However, this analogy is not exclusive of squared law indices/wells,
indeed it can be established for other refractive indices and potentials but care should be
taken that the refractive indices and potentials share the same functional form. In our
case, both of them had a radial squared dependence and one cutoff point. For instance,
an 1-dimensional analogy between resonant states of a quantum well and leaky modes of
a graded index slab has been analyzed in [13].

We have provided new exactly solvable models for optical waveguiding. Applying
the supersymmetric finite-difference algorithm, we have generated a wide family of
refractive indices whose point-spectrum can be designed under prescription. The family
includes refractive indices in both, the real- and complex-valued configurations, the
latter admitting all-real eigenvalues (propagation constants) in their point-spectrum. We
have shown that the spectral distribution may be organized in arbitrary form if it is
constructed adding one at a time the eigenvalues such that complex-valued superpotentials
are included. The result is relevant since such a property seems to be unnoticed in optical
supersymmetry until the present work, although we have already reported this possibility
in quantum mechanics.

One of the main results presented in this work shows that the index-profile strongly
depends on the factorization constants that are incorporated. In particular, adding two of
them, either in a single step or in a twice iterated movement, one may produce a dent over
the top of the profile that is in complete agreement with actual manufacture of refractive
indices. The phenomenon is not exclusive of the real-valued indices so produced since it is
also admissible in the complex-valued case for the real part of the PT-symmetric refractive
indices, see Fig 2. Considering that in the manufacture and evaluation of optical fibers,
the measurement of the index profile is one of the most important steps , our results may
be useful to analyze the data obtained from such measurements.

Another global result shows that refractive indices admitting a given number of guided
TE modes, like the sech-like ones, can be deformed to admit an additional guided mode,
the propagation of which can be positioned anywhere in the point-spectrum of the initial
refractive index. In addition, the new indices are not required to be PT-symmetric to
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allow all-real eigenvalues in their point-spectrum. The transition from these results to the
time-dependent case is straightforward, where PT-symmetric structures find interesting
applications.

We have addressed the investigation to obtain guided TE modes in the new
waveguiding-structures. This is the reason for which we started from initial refractive
indices admitting no leaky modes. In previous works we have studied such possibility
by analyzing the resonances of the initial structure. It is viable to construct the
supersymmetric partners by using resonances of the initial system , a technique
implemented also in the cosh-like case and for soliton-like models . However, the
transformation of resonances and/or using resonances is elaborated, so it will be analyzed
elsewhere. An important point to notice is that, although generated from transparent
refractive indices, the new structures presented here lack this property as a consequence
of the non-Hermiticity (the clear exception is the real-valued case, since it is well known
that supersymmetry leaves transparency invariant for such systems). Insights on the
matter have been presented by the PT-symmetry community and will be considered for
future progress of our model.

In the present work two lines of study were explored through a quantum-classical
analogy. On one hand, we studied a concrete 2-dimensional piece-wise refractive index
and found its solution; on the other hand we parted from a 1-dimensional smooth refractive
index and found new indexes which are exactly solvable. A natural step to move forward
would be to join the insights gained from these and apply them in a hybrid problem.
We pose the following question: How can we generalize the SUSY Darboux-deformation
method to 2-dimensional systems? Even more, how should the method be adjusted to be
applicable not only to smooth refractive indexes, but to abruptly varying indices as well?

A first step into the subject could be a 1-dimensional step-index potential. In chapter 4
we showed what we can do parting from the general solution of a constant refractive index;
this solution being associated to a single parameter κ. In a step-index though, there would
be two parameters κ1, κ2 (one for each step). Therefore, the Darboux-transformation
starts with two parameters already in the first iteration...

As a second step, we would try and adjust the method previously developed to
varying short-range potentials, like the short-range 1-dimensional oscillator analyzed in
the first chapter of this work. Even better weould be to be able to solve the 1-dimensional
Coulombian potential (r´2). This would be of great use in a third step...

As a third step, a cylindrical step-index waveguide could follow. Since a cylindrical
system can be reduced to solving the radial aspect of the problem only, we would have
at hand another 1-dimensional system, with the additional challenge of dealing with the
effective potential that comes as a result of the separability of the radial and angular
variables. As a result the effective potential would include a centrifugal barrier that
depends of a term proportional to r´2, but, of course, this would pose no problem since
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that is a problem that would have already been solved.
There is plenty to be done as a follow up of this work. Following this line of research,

our understanding of the quantum-classical analogy will go deeper. If we are capable of
distinguishing the scope of it, then transitioning smoothly from quantum phenomena to
electrical phenomena will provide a great tool for future research in both areas of the
physical studies.
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Appendix A

A note on the differences of vectorial
and scalar Laplacian operators.

The operator ∇2 that appears on the right hand side of (3.3) is a vectorial operator,
therefore different by nature from its scalar “brother”. In fact, identity (3.3) is sometimes
taken as the definition of the vectorial operator ∇2. Now, if these operators are naturally
different, why are they denoted by the same symbol? The answer is most probably
because it turns out that in the case that a vector ~A is expanded in the Cartesian basis
as ~A “ Axî` Ay ĵ ` Azk̂ then it is true that

∇2 ~A “ ∇2Axî`∇2Ay ĵ `∇2Azk̂, (A.1)

which would not be so trivial in the case of cylindrical or spherical basis. Here, the ∇2

appearing on the right hand side is the scalar operator which appears in the Schrödinger
equation, for example. When expressed in Cartesian coordinates (x, y, z), this operator
reads

∇2ψ “
B2ψ

Bx2
`
B2ψ

By2
`
B2ψ

Bz2
. (A.2)

On the other hand, when it is expressed in cylindrical coordinates (r, φ, z), it reads

∇2ψ “
1

r

B

Br

ˆ

r
Bψ

Br

˙

`
1

r2

B2ψ

B2φ
`
B2ψ

Bz2
. (A.3)

We will use expression (A.1) for the vectorial operator ∇2 in (3.5) and, since we are
dealing with a cylindrical symmetric problem, we shall use expression (A.3) for the scalar
operator ∇2. We will write the subindexes v and s to distinguish vectorial and scalar
operators and cart. and cyl. to indicate which basis or coordinates are being used.

∇2
vcart.

~E “ ∇2
scyl.

Expr, φ, zq̂i`∇2
scyl.

Eypr, φ, zqĵ `∇2
scyl.

Ezpr, φ, zqẑ. (A.4)
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[9] M. L. Procopio, Estudio teórico y experimental de la correlación espacial de fotones
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the Pöschl-Teller potential: Ladder operators and SUSY partners, Phys. Lett. A 380
(2016) 1600.

[31] O. Civitarese and M. Gadella, Coherent Gamow states for the hyperbolic Pöschl-
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