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Resumen

En la primera parte de esta tesis se resuelve el hamiltoniano efectivo de la bicapa de grafeno
interactuando con campos magnéticos ortogonales a la superficie de este material. La mecánica
cuántica supersimétrica de segundo orden es usada para transformar el correspondiente problema
de valores propios en dos ecuaciones estacionarias unidimensionales de Schrödinger entrelazadas
cuyos potenciales se determinan eligiendo una o dos soluciones semilla. Funciones propias analíti-
cas exactas, así como los valores propios de energía asociados son encontrados. Se muestra que
para algunos perfiles magnéticos un subconjunto de tales niveles de energía estarán doblemente
degenerados. Varios tipos de campos magnéticos son abordados, generados a partir de potenciales
socios supersimétricos invariantes y no invariantes de forma. Se muestran las densidades y corrien-
tes de probabilidad para algunos de los estados ligados del hamiltoniano efectivo.

En la segunda parte de esta tesis, asumiendo que un campo magnético complejo es aplicado,
el hamiltoniano no hermítico de la monocapa de grafeno es estudiado. En este caso la mecánica
cuántica supersimétrica de primer orden se requiere para transformar el problema inicial en un
sistema de dos ecuaciones estacionarias unidimensionales de Schrödinger entrelazadas cuyos po-
tenciales socios SUSY complejos invariantes de forma son directamente calculados a través del
superpotencial. Soluciones analíticas para los estados ligados son obtenidas para varios perfiles
magnéticos y algunas cantidades físicas, como las densidades y corrientes de probabilidad para
los primeros estados ligados, son mostradas. Finalmente, una analogía con el grafeno deformado
no uniformemente nos permite asociar la parte no hermítica del hamiltoniano con una rotación de
pseudo-spin. Se formula también una posible interpretación clásica de la naturaleza compleja del
campo magnético.
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Abstract

In the first part of this thesis the effective Hamiltonian for bilayer graphene interacting with
magnetic fields orthogonal to the graphene surface is solved. The second-order supersymmetric
quantum mechanics is used to transform the associated eigenvalue problem into two intertwined
one-dimensional stationary Schrödinger equations whose potentials are determined by choosing
either one or two seed solutions. Exact analytic eigenfunctions and its associated energy eigenva-
lues are found. It is shown that for some magnetic profiles a subset of such energy levels will be
doubly degenerate. Several kinds of magnetic fields are addressed, generated either from shape-
invariant or non-shape-invariant supersymmetric partner potentials. The probability and current
densities for some bound states of the effective Hamiltonian are shown.

In the second part of this thesis, assuming complex magnetic field is applied, the monolayer
graphene non-hermitian Hamiltonian is studied. In this case the first-order supersymmetric quan-
tum mechanics is required to transform the initial problem into a system of two intertwined one-
dimensional stationary Schrödinger equations whose complex shape-invariant SUSY partner po-
tentials are directly calculated via the superpotential. Analytic solutions for the bound states are
obtained for several magnetic profiles, and some physical quantities as probability and current
densities for the first bound states are displayed. Finally, an analogy with the non-uniformly
strained graphene allows us to associate the non-hermitian part of the Hamiltonian with a pseudo-
spin rotation. A possible classical interpretation of the complex nature of the magnetic field is
formulated.
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Introduction

Life as we know it is based on carbon, whose chemical properties allow the existence of the so-
called allotropes; one of such forms of carbon is diamond, that has the highest hardness. Another
very important allotrope is the material known as graphene, which is a single layer of carbon
atoms arranged in a hexagonal two-dimensional lattice, while many stacked graphene layers form
the compound that we call graphite.

The thinness material ever known is graphene, which was isolated for the first time by Geim
and Novoselov in 2004 [Novoselov et al., 2004]. In the middle of the 20th century the name
graphene was not used, but a few graphene layers were observed in 1948 by Ruess and Vogt
[Ruess and Vogt, 1948]. The term graphene was used for the first time by Hanns-Peter Boehm,
and then this name reemerged in the literature at the end of the 20th century with the works of
Saito, Wang, among others [Saito et al., 1992; Wang et al., 2000]. The theoretical description of
graphene was first addressed by Wallace in 1947 [Wallace, 1947]. However, the theory of this
material in terms of a massless Dirac equation would be carried out separately by Semenoff and
by DiVincenzo and Mele in 1984 [DiVincenzo and Mele, 1984; Semenoff, 1984]. Graphene has a
lot of interesting properties, in particular its electronic properties have been widely analysed. For
example, the integer quantum Hall effect is due to the existence of the electronic Landau levels at
the Dirac point of a graphene layer placed in an external magnetic field [Gusynin and Sharapov,
2005; Novoselov et al., 2005; Zhang et al., 2005]. At low energies this effect indicates the presence
of massless chiral quasiparticles with a linear dispersion relation in the case of a single layer, also
known as monolayer graphene. In addition, it is possible to have two stacked graphene layers,
material which is called bilayer graphene, and the most common arrangement in nature is the
AB form or Bernal staking [Katsnelson, 2011]. For bilayer graphene the chiral quasiparticles are
massive, with a parabolic dispersion relation, and its description is not ruled by the Dirac-Weyl
equation (as in monolayer) but rather by an equation of second degree in the momentum.

The task of finding solutions to the equations describing the monolayer and bilayer graphene
is not easy, but in the free case there exist exact analytic solutions[McCann and Koshino, 2013].
Moreover, an important paper supplying this kind of solutions for monolayer graphene interacting
with external magnetic fields is [Kuru et al., 2009]. In that work the key idea is to use the first-order
supersymmetric quantum mechanics (SUSY QM) to transform the eigenvalue problem for the
Dirac-Weyl Hamiltonian describing the monolayer graphene in the magnetic field into two inter-
twined one-dimensional stationary Schrödinger equations whose potentials are shape-invariant.

Let us note that supersymetric quantum mechanics (SUSY QM) is a technique that intertwines
two Hamiltonians by means of a differential operator. This method has natural links with Darboux
transformation and factorization method [Andrianov et al., 1984; Nieto, 1984; Sukumar, 1985;
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Sukumar, 1985a,b, 1986, 1987]. The latter is an algebraic technique designed to deal with exactly
solvable potentials in non-relativistic quantum mechanics. Dirac was the first person who worked
out on this technique [Dirac, 1958]. Later on, Schrödinger addressed the subject for different
physical systems [Schrödinger, 1940, 1941]. Subsequently, Infeld and Hull gave a wide classifica-
tion of the potentials which are solvable through factorization [Infeld and Hull, 1951], and Witten
introduced the idea of isospectral pairs or supersymmetric partners [Witten, 1981]. It is worth
noting Mielnik’s contribution, who generalized the standard factorization of the harmonic oscillator
to find more general supersymmetric partners of this potential for a given factorization energy
[Mielnik, 1984]. The SUSY QM algorithm has been successfully applied to many quantum
systems; a collection of different works on the subject can be seen in [Aref'eva et al., 2004].
It is important to mention that nowadays this algorithm is of common use to address solvable
potentials and to obtain new supersymmetric partners, as well as the corresponding eigenfunctions.
In particular, we are going to apply the first and the second-order supersymmetric quantum mecha-
nics, which have been thoroughly studied in [Fernandez and Fernandez-Garcia, 2005].

In this thesis we will use in the first place the second-order SUSY QM to find exact analytic
solutions for the effective Hamiltonian of an electron in bilayer graphene placed in external magne-
tic fields. Since this method depends on the choice of two parameters, the so-called factorization
energies, we have a wide range of possibilities. We limit ourselves to select them as the energy
levels of an auxiliary solvable initial Hamiltonian, then we get its corresponding SUSY partner,
the eigenvectors and eigenvalues of the original problem and the associated magnetic profile.
Analogously, through the first-order SUSY QM we will work the effective Hamiltonian for mono-
layer graphene but considering a complex magnetic field, whose nature is supposed to be non-
physical. However, in the literature examples of complex quantities can be found that at first
glance do not seem to be physical but at the end, its real and imaginary parts acquire some physical
interpretation, such as complex refractive indexes [Hecht, 2002; Wang et al., 2008], Lee-Yang
zeros [Peng et al., 2015], among others. Thus, we will try to give an interpretation of the complex
magnetic field based on an analogy with the non-uniformly strained graphene.

In order to carry out the aforementioned work, this thesis is divided in six chapters: in the first
one a brief overview of graphene theory is given, in particular the process for deriving the effective
Hamiltonians that describes the monolayer and bilayer graphene and the modifications induced by
a magnetic field orthogonal to the graphene surface; in the second chapter, the first and second-
order supersymmetric quantum mechanics are described, and some examples of this algorithm
applied to the harmonic oscillator are shown; in the third chapter, we apply the second-order SUSY
QM to the effective Hamiltonian for bilayer, getting the auxiliary shape-invariant potentials, and
three specific examples are addressed: the shifted harmonic oscillator, the trigonometric Rosen-
Morse potential and the Eckart potential; chapter four deals with a first approximation to non-
shape-invariant potentials that results of applying the SUSY algorithm to bilayer graphene, and two
examples (the oscillator and the trigonometric Rose-Morse potential) are explored; in chapter five
we continue the analysis of non-shape-invariant potentials but employing the so-called confluent
algorithm of SUSY QM once again to the harmonic oscillator and the trigonometric Rosen-Morse
potential; finally, in chapter six we develop the first-order supersymmetric quantum mechanics
by assuming that the SUSY partner potentials are complex. Then this technique is used to find
solutions for monolayer graphene in a complex magnetic field and three examples are worked:
constant magnetic field, trigonometric singular well and exponentially decaying field. This thesis
ends up with our conclusions and the future outlook of this research line.



1

Chapter 1

A brief overview of graphene

The most spread image of graphene is what we call monolayer graphene, i.e., a two dimensional
hexagonal lattice of carbon atoms, see Figure 1.1. This hexagonal lattice is divided into two
triangular sublattices, A and B, such that an atom in the sublattice A is surrounded by three atoms
from sublattice B and vice versa [Katsnelson, 2011]. The distance to these nearest-neighbours is
given by the norm of the following three vectors (see Figure 1.2)

δ1 =
a

2

(
1√
3
, 1

)
, δ2 =

a

2

(
1√
3
,−1

)
, δ3 = a

(
− 1√

3
, 0

)
. (1.1)

A conventional unit cell is generated by the primitive lattice vectors

a1 =
a

2
(
√

3, 1), a2 =
a

2
(
√

3,−1), (1.2)

where a ≈ 2.46 Å is the distance between two adjacent unit cells. Note that a is different from
the length between adjacent carbon atoms al = a/

√
3 ≈ 1.42 Å[McCann and Koshino, 2013]. In

the study of crystal structures the reciprocal lattice plays an important role, and graphene is not the
exception. The reciprocal lattice vectors fulfil

a1 · b1 = a2 · b2 = 2π, a1 · b2 = a2 · b1 = 0, (1.3)

thus they are given by

b1 =
2π

a

(
1√
3
, 1

)
, b2 =

2π

a

(
1√
3
,−1

)
. (1.4)

Section 1.1

Tight-binding model

The tight-binding model provides a way to identify the Hamiltonian H that describes graphene
[Ashcroft and Mermin, 1976; Katsnelson, 2011; McCann and Koshino, 2013; Raza, 2012; Saito
et al., 1998]. The main idea is to find the matrix elements of H from the Bloch functions φ(k, r),
with k being the wave vector and r the vector position.

Let us begin by introducing some important concepts. A unit cell is invariant under translations
of the primitive lattice vectors, in the sense that another unit cell in the lattice is achieved from the
vectors a′1 and a′2 which are expressed in terms of a1 and a2 in the form

a′j = nj1a1 + nj2a2, j = 1, 2, (1.1.1)
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a

a1

a2

A B

Figure 1.1: Lattice structure of monolayer graphene. The atoms in sublattices A and B are represented as gray and
black circles, respectively. The lattice constant a, the primitive lattice vectors a1 and a2, as well as the associated unit
cell are drawn.

where nij are integers [Ashcroft and Mermin, 1976]. This implies that there are graphene wave
functions φ having to fulfil the same translational symmetry. Mathematically speaking, the previ-
ous condition is contained in the Bloch theorem

Tajφ = eik·ajφ. (1.1.2)

Natural solutions of equation (1.1.2) are the plane waves, but concerning numerical calculations,
experimental implementation, etcetera, they are difficult to work with since the fact that a generic
graphene wave function would be an infinite linear combination of such wave functions. So,
instead of plane waves we will work with the so-called Bloch functions

φ(k, r) =
1√
N

N∑
R

eik·Rϕj(r−R), j = 1, 2, . . . , n, (1.1.3)

where N is the number of unit cells, R is the position of an atom and n is the number of orbital
wave functions ϕj in an unit cell for fixed k. The Bloch theorem is fulfilled by the functions
defined in equation (1.1.3), i.e.,

φ(k, r + ρ) =
1√
N

N∑
R

eik·Rϕj(r + ρ−R)

=
1√
N

N∑
R−ρ

eik·ρeik·(R−ρ)ϕj (r− (R− ρ))

= eik·ρφj (k, r) .

(1.1.4)



1.1. TIGHT-BINDING MODEL 3

Therefore, the generic wave functions are linear combinations of the Bloch functions φj , thus
taking the form

Φi(k, r) =
n∑
j=1

Cij(k)φj(k, r), i = 1, . . . , n, (1.1.5)

with Cij being coefficients to be determined. According to quantum mechanics, the energy eigen-
values Ej of the operatorH can be calculated as the averages

Ej =
〈Φj|H|Φj〉
〈Φj|Φj〉

. (1.1.6)

Substituting equation (1.1.5) in (1.1.6), it is obtained that

Ej =

n∑
l,m=1

CjlCjm〈φl|H|φm〉

n∑
l,m=1

CjlCjm〈φl|φm〉
, (1.1.7)

where z denotes the complex conjugate of z ∈ C. We need to optimize the coefficients Cij to
minimize the energy, i.e., a partial derivative of Ej with respect to Cjl is taken, which leads to

∂Ej

∂Cjl

=
1

n∑
l,m=1

CjlCjm〈φl|φm〉

(
n∑

m=1

Cjm〈φl|H|φm〉 − Ej
n∑

m=1

Cjm〈φl|φm〉

)
. (1.1.8)

This equation was reached by considering that ∂Cjl/∂Cj,l′ = δl,l′ and taking into account equation
(1.1.7). Now, making equation (1.1.8) equal to zero, it can be seen that the factor inside the
parentheses must vanish, so that

n∑
m=1

Cjm〈φl|H|φm〉 = Ej

n∑
m=1

Cjm〈φl|φm〉. (1.1.9)

Since 〈φl|H|φm〉 and 〈φl|φm〉 are matrix elements, we can define the (n× n)-matrices

(H)ij = 〈φi|H|φj〉, (S)ij = 〈φi|φj〉, (1.1.10)

which are called transfer and overlap integral matrices, respectively [Saito et al., 1998]. Then,
because the index j is fixed in equation (1.1.9), the coefficients Cij can be seen as column vectors

Cj =


Cj1
Cj2

...
Cjn

 . (1.1.11)

The last two equations allow us to rewrite equation (1.1.9) as follows

(H− EjS)Cj = 0. (1.1.12)
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It is worth noticing that this equation has a non-trivial solution if the determinant of H − EjS
is equal to zero, otherwise there exists the inverse matrix (H − EjS)−1 which when multiplying
equation (1.1.12) leads to Cj = 0. Thus, we have arrived to the secular equation

det [H− EjS] = 0, (1.1.13)

whose n solutions are the energy eigenvalues of H. In the next two sections we will show how to
determine the matrix elements of equation (1.1.10) and to solve the secular equation for graphene.

Section 1.2

Effective Hamiltonian for monolayer graphene

Observing Figure 1.1 we can see two atoms A and B inside each unit cell. For our purposes the
number of orbitals taken into account is one per each atom, i.e., the conduction orbital. In a unit
cell there will be two orbitals, thus n = 2 and the Bloch functions (1.1.3) reduce to

φj(k, r) =
1√
N

N∑
m=1

eik·Rj,mϕj(r−Rj,m), j = A,B. (1.2.1)

Let us calculate the matrix elements of the (2× 2)-matricesH and S. We begin with the diagonal
elements

〈φj|H|φj〉 =
1

N

N∑
m,l=1

eik·(Rj,l−Rj,m)
〈
ϕj (r−Rj,m)

∣∣∣H∣∣∣ϕj (r−Rj,l)
〉
. (1.2.2)

In this equation the interaction among the jth-atom in the mth-unit cell and jth-atoms in the lth-
unit cells is considered. However, we are using the so-called nearest-neighbour approximation, in
other words, only self-interactions are taken into account, since the dominant contribution is due
to them [Katsnelson, 2011]. Then, equation (1.2.2) is reduced to

〈φj|H|φj〉 ≈
1

N

N∑
m=1

〈ϕj|H|ϕj〉. (1.2.3)

The average 〈ϕj|H|ϕj〉 = εj consists of the atomic energy of the free atom plus any graphene layer
potential [Saito et al., 1998], so, the diagonal elements turn out to be

(H)jj = εj. (1.2.4)

On the other hand, the off-diagonal elementsHAB are given by

〈φA|H|φB〉 =
1

N

N∑
m,l=1

eik·(RB,l−RA,m)
〈
ϕA (r−RA,m)

∣∣∣H∣∣∣ϕB (r−RB,l)
〉
. (1.2.5)

The previous equation takes into account interactions among a B-atom in the lth-unit cell and A-
atoms in themth-unit cells, but the principal contributions are due to the three nearestA-atoms, see
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δ1

δ2

δ3

A B

Figure 1.2: The nearest-neighbours for an atom B and its relative position vectors δl, whose norms are |δl| = al ≈
1.42 Å.

Figure 1.2 , whose relative position vectors δl are written in equation (1.1). So, the off-diagonal
elements reduce to

〈φA|H|φB〉 ≈
1

N

N∑
m=1

3∑
l=1

e−ik·δl
〈
ϕA (r−RB,l − δl)

∣∣∣H∣∣∣ϕB (r−RB,l)
〉

=
1

N

N∑
m=1

(−γ0)
[
e
iakx√

3 + e
−ia

2

(
kx√
3
+ky

)
+ e

−ia
2

(
kx√
3
−ky

)]

=
1

N

N∑
m=1

(−γ0)
[
e
iakx√

3 + 2e
−ia

2
kx√
3 cos

(a
2
ky

)]
= − 1

N

N∑
m=1

γ0h (k) ,

(1.2.6)

with γ0 = −
〈
ϕA (r−RB,l − δl)

∣∣∣H∣∣∣ϕB (r−RB,l)
〉

being the so-called in-plane hopping para-
meter, which is a positive quantity whose negative value is the covalent bond energy between two
adjacent carbon atoms. Meanwhile, h (k) is the sum of the phase factors e−ik·δl given by

h (k) = e
iakx√

3 + 2e
−ia

2
kx√
3 cos

(a
2
ky

)
. (1.2.7)

Therefore, the off-diagonal elements can be written as

(H)AB = −γ0h (k) . (1.2.8)

In a similar way, the diagonal elements of S are

〈φj|S|φj〉 =
1

N

N∑
m,l=1

eik·(Rj,l−Rj,m)
〈
ϕj (r−Rj,m)

∣∣∣ϕj (r−Rj,l)
〉

≈ 1

N

N∑
m=1

〈ϕj|ϕj〉 = 1,

(1.2.9)
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while the off-diagonal elements become

〈φA|S|φB〉 =
1

N

N∑
m,l=1

ei
~k·(RB,l−RA,m)

〈
ϕA (r−RA,m)

∣∣∣ϕB (r−RB,l)
〉

≈ 1

N

N∑
m=1

3∑
l=1

e−ik·δl
〈
ϕA (r−RB,l − δl)

∣∣∣ϕB (r−RB,l)
〉

=
1

N

N∑
m=1

s0

[
e
iakx√

3 + 2e
−ia

2
kx√
3 cos

(a
2
ky

)]
=

1

N

N∑
m=1

s0h (k) = s0h (k) .

(1.2.10)

The parameter s0 =
〈
ϕA (r−RB,l − δl)

∣∣∣ϕB (r−RB,l)
〉

is introduced to consider the possibility
of a non-zero overlap between the orbitals of adjacent atoms.

Explicitly, the matricesH and S turn out to be

H =

(
εA −γ0h (k)

−γ0h (k) εB

)
, S =

(
1 s0h (k)

s0h (k) 1

)
. (1.2.11)

Now, we can solve the associated secular equation (1.1.13) given by

det
[(

εA − E − (γ0 + Es0)h (k)

− (γ0 + Es0)h (k) εB − E

)]
= 0. (1.2.12)

This leads to a second degree equation for the energy(
1− s20|h|2

)
E2 −

(
εA + εB + 2γ0s0|h|2

)
E + εAεB − γ20 |h|2 = 0, (1.2.13)

whose solutions are

E± =
εA + εB + 2γ0s0|h|2 ±

√
(εA + εB)2 − 4εAεB + 4 [γ20 + s20εAεB + γ0s0 (εA + εB)] |h|2

2 (1− s20|h|2)
.

(1.2.14)
Since εj is the sum of the atomic energy for the free atom plus any graphene layer potential, from
now on we can consider them as the same for each carbon atom in the layer, i.e., εA = εB = ε.
Hence, the previous solutions reduce to

E± =
ε± γ0|h(k)|
1∓ s0|h(k)|

. (1.2.15)

The monolayer graphene energies E± depend on the wave vector k, hence the importance of the
reciprocal space emerges. In this space we can construct the so-called Brillouin zone from the
corresponding reciprocal lattice vectors b1 and b2 of equation (1.4). Figure 1.3 shows the Brillouin
zone for monolayer graphene, which is a hexagon whose vertexes are just the points where h (k)
vanishes. These are called Dirac points, two of which turn out to be not equivalent (they cannot be
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b1

b2

Γ

K+

K−

kx

ky

Figure 1.3: Reciprocal space. The Brillouin zone and the reciprocal lattice vectors b1 and b2 are shown. Some
important points, such as the center Γ and the Dirac points K±, are drawn.

connected through a reciprocal lattice vector) and are labeled as K±. To obtain them all we have to
do is to require equation (1.2.7) to be equal to zero. From that, it follows the system of equations

1 + 2 cos

(√
3akx
2

)
cos

(
aky
2

)
= 0,

−2 sin

(√
3akx
2

)
cos

(
aky
2

)
= 0.

(1.2.16)

Then, the components of the vector k must fulfil the conditions

kx =
2nπ√

3a
, ky =

2

a
arccos

(
(−1)n+1

2

)
, n ∈ Z. (1.2.17)

Despite there exist infinite values of kx and ky that solve equations (1.2.16), we retain only the
solutions for n = 0, 1 since their corresponding points in the reciprocal space are the vertexes
of the Brillouin zone, but some of them are connected by a reciprocal lattice vector. So, the two
non-equivalent Dirac points are K± = (0,±4π/3a).

Intrinsic graphene is the ideal model of this material, with one hundred percent purity and non-
stress in the layer. Monolayer, there is not any layer potential and we can think that the orbital
energy is the ground energy level, which means to take ε = 0. The values of the parameters γ0
and s0 often appear in the literature and they can differ depending on the authors; we take the
values given by [Saito et al., 1998], namely, γ0 = 3.033 eV and s0 = 0.129. If we plot the energy
(1.2.15) versus k, in the nearest-neighbour approximation for intrinsic graphene we observe that
close to the vertexes of the Brillouin zone the so-called Dirac cones appear, see Figure 1.4. In
Figure 1.5 a transversal section of the previous figure is as well displayed. It can be seen that in the
neighbourhood of the Dirac points the energy dispersion relation seems to be linear. This suggests
to make an approximation around the points K±. Let us take the function h (k) and expand it in
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Figure 1.4: Monolayer graphene energies E±. The Dirac cones are clearly displayed.

powers of k, retaining only linear terms. Thus:

h (k) ≈
√

3a

2
[i (kx −K−,x) + (ky −K−,y)] . (1.2.18)

Defining the momentum difference around the Dirac point K−, p = ~ (k−K−), the function
h (k) can be written as

h (k) ≈ i

√
3a

2~
(px − ipy) . (1.2.19)

Consequently, the matrixH in equation (1.2.11) acquires the form

H ≈
(

0 −iv0π
iv0π

† 0

)
, (1.2.20)

where π = px − ipy and v0 =
√

3γ0a/2~. The phase factors e±iπ/2 in the off-diagonal elements of
H can be removed through a unitary transformation U given by

U =

(
1 0
0 i

)
. (1.2.21)

Thus, the effective Hamiltonian for monolayer graphene reduces to

Hm = v0

(
0 π
π† 0

)
. (1.2.22)
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Figure 1.5: Energy spectrum as function of ky for monolayer graphene. The Dirac points are indicated as K±.

It is worth noticing that, due to the low momentum (low energy) approximation, the quantity
s0 |h (k)| is negligible. Thus, the overlap matrix S in equation (1.2.11) can be replaced by the unit
matrix, and the monolayer graphene energies (1.2.15) become

Em = ±v0|p|. (1.2.23)

This approximation is valid for energies fulfilling E � γ0, or equivalently for points in the
reciprocal space such that

√
3|p|a/2~ � 1. The positive energy is usually associated to electrons

and the negative one to holes. Moreover, the linear dependence between the energy and the
momentum and the lack of a mass factor means that electrons in monolayer graphene behave
as massless chiral particles. We must also point out that if the expansion of h (k) is done around
the point K+, it is obtained the transposed matrix ofH in equation (1.2.20), which tells us that the
physical results we can get from the effective Hamiltonians derived around the Dirac points K±
are equivalent.

Section 1.3

Effective Hamiltonian for bilayer graphene

Bilayer graphene is formed by two coupled monolayers placed one on top of the other, such that
the B1-atoms in the first layer are underneath the A2-atoms of the second layer, see Figure 1.6.
The second layer is rotated 60◦ with respect to the first one, the distance between them being
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3.48 Å [Razado-Colambo et al., 2018]. This configuration, known as Bernal stacking, is the most
common in nature. As can be seen in Figure 1.7, the unit cell for bilayer grphene is built from
the same primitive lattice vectors a1 and a2 of equation (1.2), but this time there are four atoms
inside each cell. Then, the number of orbitals per unit cell (considering one orbital per atom) is
n = 4 such that the integral and overlap matrices are now (4× 4). Thus, in the nearest-neighbour
approximation the diagonal elements ofH are

〈φj|H|φj〉 ≈
1

N

N∑
l=1

〈ϕj|H|ϕj〉 = εj, (1.3.1)

where εj = 〈ϕj|H|ϕj〉, j = A1, A2, B1, B2. Meanwhile, the off-diagonal elements describing the
interaction in a same layer can be arranged as

〈φA2|H|φB2〉 = 〈φA1|H|φB1〉 ≈
1

N

N∑
m=1

−γ0
[
e
iakx√

3 + 2e
−ia

2
kx√
3 cos

(a
2
ky

)]
= −γ0h (k) . (1.3.2)

On the other hand, the element representing the interaction between the B1 and the A2-atoms is

〈φB1|H|φA2〉 ≈
1

N

N∑
l=1

eik·δBA
〈
ϕB1 (r−RB1,l)

∣∣∣H∣∣∣ϕA2 (r−RB1,l − δBA)
〉

= γ1, (1.3.3)

where we have used that the relative position vector δBA is perpendicular to the graphene surface,
so that k · δBA = 0. We have defined as well the hopping parameter γ1 = 〈ϕB1|H|ϕA2〉, a positive
quantity whose value is 0.381 eV. Physically, the atoms that are exactly one above the other interact
through a Van der Waals-like force [Geim and Grigorieva, 2013], with γ1 being the energy due to
this force.

Now, we calculate the matrix element corresponding to the interaction between the A1 and
the B2-atoms. It is important to notice that the relative position vector δAB has the in-plane and
perpendicular components, but since k lies in the plane the scalar product k·δAB keeps only the in-
plane component of δAB. Since the distance between two carbon atoms in the graphene molecule
is supposed to be fixed, and given the bilayer configuration in the Bernal stacking, the in-plane
component of δAB is the same as one of the in-plane relative position vectors δl. As there are three
nearest-neighbour B2-atoms for each atom A1 we get

〈φA1|H|φB2〉 ≈
1

N

N∑
m=1

3∑
l=1

eik·δl
〈
ϕA1 (r−RA1,m)

∣∣∣H∣∣∣ϕB2 (r−RA1,m − δAB)
〉

=
1

N

N∑
m=1

−γ3
[
e
−iakx√

3 + 2e
ia
2
kx√
3 cos

(a
2
ky

)]
= −γ3h (k) .

(1.3.4)

The hopping parameter γ3 = −〈ϕA1|H|ϕB2〉 is a weak interaction energy (compared to the
covalent bond energy between carbon atoms) with value 0.38 eV [McCann and Koshino, 2013].
Analogously, the relative position vector δBB has an in-plane component equal to the negative of
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Figure 1.6: Structure of bilayer graphene. The A2 and B2-atoms are drawn as black and gray circles, respectively,
while the A1 and B1-atoms are the light gray and black circles. It is shown the lattice constant a and the hopping
parameters γj , j = 0, 1, 3, 4.

a vector δl. There are also three nearest-neighbour B2-atoms for each atom B1, so that

〈φB1|H|φB2〉 ≈
1

N

N∑
m=1

3∑
l=1

e−ik·δl
〈
ϕB1 (r−RB1,m)

∣∣∣H∣∣∣ϕB2 (r−RB1,m − δBB)
〉

=
1

N

N∑
m=1

γ4

[
e
iakx√

3 + 2e
−ia

2
kx√
3 cos

(a
2
ky

)]
= γ4h (k) ,

(1.3.5)

where the hopping parameter γ4 = 〈ϕB1|H|ϕB2〉 is an interaction energy even smaller than γ3,
since its value is approximately 0.14 eV.

Finally, the vector δAA has an in-plane component which is the same as the negative of an
in-plane relative position vector δl, and there are also three nearest-neighbour A2-atoms for each
atom A1. So, it is obtained that

〈φA1|H|φA2〉 ≈
1

N

N∑
m=1

3∑
l=1

e−ik·δl
〈
ϕA1 (r−RA1,m)

∣∣∣H∣∣∣ϕA2 (r−RA1,m − δAA)
〉

=
1

N

N∑
m=1

γ4

[
e
iakx√

3 + 2e
−ia

2
kx√
3 cos

(a
2
ky

)]
= γ4h (k) .

(1.3.6)

By collecting all the previous information, the HamiltonianH for bilayer graphene becomes

H =


εA1 −γ0h (k) γ4h (k) −γ3h (k)

−γ0h (k) εB1 γ1 γ4h (k)

γ4h (k) γ1 εA2 −γ0h (k)

−γ3h (k) γ4h (k) −γ0h (k) εB2

 . (1.3.7)
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Figure 1.7: Top view of bilayer graphene. The unit cell and the primitive lattice vectors a1 and a2 are traced.

The elements of the overlap matrix S are calculated analogously to the components of the whole
matrix H written above, just changing 〈ϕi|H|ϕj〉 by 〈ϕi|ϕj〉 and the corresponding parameters γj
by sj . Thus we arrive at

S =


1 s0h (k) s4h (k) s3h (k)

s0h (k) 1 s1 s4h (k)

s4h (k) s1 1 s0h (k)

s3h (k) s4h (k) s0h (k) 1

 . (1.3.8)

So far we have just applied the nearest-neighbour approximation. Since the unit cell for bilayer
graphene has the same primitive lattice vectors as the monolayer, the Brillouin zone is also the same
(see Figure 1.3). Therefore, we can focus our attention on the Dirac points K± and implement there
the low momentum (low energy) approximation, where the quantities sj|h (k) | are negligible, thus
reducing the overlap matrix S to the (4 × 4) unit matrix. In Figure 1.8 we can see that close to
the points K± the band energies have a quadratic dependence on ky, as we shall show analytically
later on. From the four energy bands two of them do not touch each other, they are separated in the
ky-axis by a gap approximately equal to the hopping parameter γ1. Such effect is a consequence of
the interlayer coupling in the so-called dimer sites B1 and A2, and in the Hamiltonian (1.3.7) it is
described by the matrix elements (H)23 and (H)32. The other two energy bands touch to each other
at the point of zero energy, corresponding to the non-dimer sites A1 and B2 whose interaction is a
low energy process since its associated matrix element (H)14 (and the transposed element (H)41)
provides terms in the graphene energy containing the factor γ3|h (k) | < γ1. This process is the
one occupying our interest, and we shall determine an effective Hamiltonian describing it.

For the purpose of calculating the bilayer graphene energy it is suitable to take the matrix ele-
ments of H which are proportional to γ3 or γ4 as zero, and the approximate form of h (k) given
in equation (1.2.19). These considerations for intrinsic graphene as well as the secular equation
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(1.1.13) leads us to four energy bands given by

E
(l)
± = ±1

2
γ1

(
1−

√
1 + 4

v20|p|2
γ21

)
,

E
(h)
± = ±1

2
γ1

(
1 +

√
1 + 4

v20|p|2
γ21

)
.

(1.3.9)

As we mentioned before, when |p| = 0 the energy bands E(h)
± are equal to ±γ1 while E(l)

± vanish,
the latter two being the ones corresponding to low energy processes. Considering that 2v0|p|/γ1 �
1, the electron energy bands take the form

Eb = ±v
2
0|p|2

γ1
= ±|p|

2

2m
, (1.3.10)

with the electron effective mass being m = γ1/2v
2
0 . As it can be seen, the electrons in bilayer

graphene behave as massive chiral particles.
On the other hand, if we take only the approximate form of h (k), the matrix in equation (1.3.7)

can be written as

H =


εA1 −iv0π iv4π iv3π

†

iv0π
† εB1 γ1 iv4π

−iv4π† γ1 εA2 −iv0π
−iv3π −iv4π† iv0π

† εB2

 , (1.3.11)

where we have defined vj =
√

3aγj/2~, j = 3, 4. In the same way as for monolayer graphene, it
is possible to find a unitary transformation that cancels the phase factor ±i in the elements of the
previous matrix. Its calculation is not hard, but it is tedious and it is not the aim of this work, thus
we do not give its explicit expression. Then, the matrixH we shall work with is

H =


εA1 v0π v4π v3π

†

v0π
† εB1 γ1 v4π

v4π
† γ1 εA2 v0π

v3π v4π
† v0π

† εB2

 . (1.3.12)

It must be stressed that the previous matrix is written in the basis A1, B1, A2, B2. However, it is
convenient to express it in the basis of non-dimer and dimer processes A1, B2, A2, B1, namely,

H =

(
hl u
u† hh

)
, (1.3.13)

where the block components are given by

hl =

(
εA1 v3π

†

v3π εB2

)
, hh =

(
εA2 γ1
γ1 εB1

)
, u =

(
v4π v0π
v0π

† v4π
†

)
. (1.3.14)

The block matrix form (1.3.13) leads to an eigenvalue equation whose column eigenvectors are
(θl, θh)

T . Explicitly, we obtain the following system of matrix equations

hlθl + uθh = Eθl,

u†θl + hhθh = Eθh.
(1.3.15)
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Figure 1.8: Energy bands for intrinsic bilayer graphene as function of ky . The Dirac points are indicated as K±.

From the second row it is possible to express the high energy component θh in terms of the low
energy one, i.e.,

θh = −(hh − E)−1u†θl, (1.3.16)

and substituting this result in the first row of equation (1.3.15) it is obtained[
hl − u (hh − E)−1 u†

]
θl = Eθl. (1.3.17)

Since we are considering the low energy regime, the matrix (hh − E)−1 can be approximated as
follows

(hh − E)−1 ≈ h−1h + Eh−2h , (1.3.18)

where the notation A−2 means that the inverse matrix of A is squared. Thus, equation (1.3.17) can
be written in the approximate form [

hl − uh−1h u†
]
θl ≈ ETθl, (1.3.19)

with T = 1 + uh−2h u†. Because we must ensure the normalization in the eigenvectors, defining
Θl = T

1
2 θl it can be seen that Θ†lΘl = θ†l Tθl = θ†l

(
1 + uh−2h u†

)
θl. Thus, the high energy
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component is approximately θh = −h−1h u†θl, and together with the fact that the matrix hh is
hermitian it is gotten that Θ†lΘ ≈ θ†l θl + θ†hθh. Therefore, equation (1.3.19) can be written as

T−
1
2

[
hl − uh−1h u†

]
T−

1
2 Θl ≈ EΘl. (1.3.20)

The previous equation means that an effective (2 × 2) Hamiltonian describing the low energy
process in terms of the high energy one can be defined as follows

Heff = T−
1
2

[
hl − uh−1h u†

]
T−

1
2 . (1.3.21)

Following the low energy approximation, it turns out that T−
1
2 ≈ 1 − uh−2h u†/2; recalling that

v4|p| < v3|p| � v0|p| � γ1. Hence, if only terms that are linear in the small parameters and
quadratic in the momentum are considered, the effective Hamiltonian takes the rough form

Heff ≈ v3

(
0 π†

π 0

)
− 1

γ1

(
2v0v4ππ

† v20π
2

v20
(
π†
)2

2v0v4π
†π

)
+ . . .

= −v
2
0

γ1

(
0 π2(
π†
)2

0

)
+ v3

(
0 π†

π 0

)
− 2v0v4

γ1

(
ππ† 0
0 π†π

)
+ . . .

(1.3.22)

The first term in the previous expansion is similar to the one obtained in the monolayer case, see
equation (1.2.22), but being quadratic in the momentum rather than linear. This anti-diagonal
matrix describes the low energy hopping between the non-dimer sites A1, B2 through the hopping
from A1 to B1 (characterized by the in-plane factor v0π), then a change of layer from B1 to A2
(giving the factor 1/γ1) and finally another in-plane hopping from A2 to B2. The other terms in
the expansion give rise to another phenomena for bilayer graphene, such as the trigonal warping,
electron-hole asymmetry and so on [McCann and Koshino, 2013], which for the moment are not of
our interest. Therefore, we shall take as the effective Hamiltonian for bilayer graphene the operator
matrix

Hb = − 1

2m

(
0 π2(
π†
)2

0

)
. (1.3.23)

In the next section we shall see how to introduce the effect of a magnetic field applied to
monolayer and bilayer graphene using the minimal coupling rule for the Hamiltonians (1.2.22)
and (1.3.23).

Section 1.4

Graphene interacting with external magnetic fields

Let us suppose that a magnetic field B perpendicular to the graphene surface is applied, which
varies only in one in-plane direction, e.g., B(x) = B(x)ez. Such assumptions are made for
simplicity; in fact, for more general magnetic fields applied to monolayer graphene we can recom-
mend [Díaz-Bautista, 2020; Díaz-Bautista et al., 2019; Le et al., 2018]. In agreement with the
minimal coupling rule, the magnetic field effect is considered in the Hamiltonian describing the
system by adding the term (e/c)A to the momentum p, where A is the vector potential associated
to B such that

B = ∇×A. (1.4.1)
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This equation implies that we can add the gradient of any scalar function to the vector potential A
and the resulting magnetic field remains unchanged, which is called gauge invariance. In particular,
here we will choose the Landau gauge which consists in taking the vector potential as A(x) =
A(x)ey and thereby

B(x) =
dA(x)

dx
. (1.4.2)

Subsection 1.4.1
Monolayer graphene

By applying now the minimal coupling rule to the effective Hamiltonian (1.2.22) for monolayer
graphene and recalling that π = px − ipy we get

Hm = v0

(
0 px − ipy − i ecA(x)

px + ipy + i e
c
A(x) 0

)
. (1.4.3)

It is worth noting that this Hamiltonian commutes with the momentum operator py along y-
direction, because the vector potential amplitude is only a function of x and the momentum
operators in different directions commute themselves. This suggests that there is a free motion
in y-direction, since the momentum in such direction is a conserved quantity. So, it is natural to
propose the next form for the eigenvectors of Hm,

Ψ(m)(x, y) = Neiky
(
ψ(1)(x)
iψ(0)(x)

)
, (1.4.4)

with N being a normalization factor while k is the wavenumber in y-direction. In quantum mecha-
nics the momentum operator in the coordinates representation is written as pj = −i~∂j , with
∂j = ∂/∂j, j = x, y. Thus the corresponding eigenvalue equation looks like

HmΨ(m)(x, y) = ~v0
(

0 −i∂x − ik − i e~cA(x)
−i∂x + ik + i e~cA(x) 0

)
Ψ(m)(x, y)

= EmΨ(m)(x, y).

(1.4.5)

This equation is equivalent to the coupled system of equations

L−1 ψ
(0)(x) =

[
d

dx
+ k +

e

c~
A(x)

]
ψ(0)(x) = Emψ(1)(x),

L+
1 ψ

(1)(x) =

[
− d

dx
+ k +

e

c~
A(x)

]
ψ(1)(x) = Emψ(0)(x),

(1.4.6)

where Em = Em/v0~. A straightforward way to decouple the previous system is to apply the
operator L+

1 to the first equation and L−1 to the second equation (1.4.6). This process leads us to
two second-order differential operators given by

L+
1 L
−
1 =

[
− d

dx
+ k +

e

c~
A(x)

] [
d

dx
+ k +

e

c~
A(x)

]
= − d2

dx2
+ k2 +

( e
c~
A(x)

)2
+ 2

ek

c~
A(x)− e

c~
A′(x)

= − d2

dx2
+
[
k +

e

c~
A(x)

]2
− e

c~
A′(x),

(1.4.7)
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L−1 L
+
1 =

[
d

dx
+ k +

e

c~
A(x)

] [
− d

dx
+ k +

e

c~
A(x)

]
= − d2

dx2
+ k2 +

( e
c~
A(x)

)2
+ 2

ek

c~
A(x) +

e

c~
A′(x)

= − d2

dx2
+
[
k +

e

c~
A(x)

]2
+

e

c~
A′(x),

(1.4.8)

with A′(x) = dA(x)/dx. Thus, the next two second-order differential equations must be fulfilled

L+
1 L
−
1 ψ

(0)(x) = E2mψ(0)(x),

L−1 L
+
1 ψ

(1)(x) = E2mψ(1)(x).
(1.4.9)

It is worth noticing that these equations are similar to the eigenvalue problems for two one-dimen-
sional Schrödinger-like Hamiltonians, provided that A(x) ∈ R. If we denote H0 as the product
L+
1 L
−
1 and H1 as L−1 L

+
1 , then the corresponding potentials become

V0(x) =
[
k +

e

c~
A(x)

]2
− e

c~
A′(x),

V1(x) =
[
k +

e

c~
A(x)

]2
+

e

c~
A′(x).

(1.4.10)

It must be stressed that, since our Hamiltonians Hj are the product of the operators L±1 , the
following relation must be satisfied

H1L
−
1 = L−1H0. (1.4.11)

This equation, called intertwining relation, together with the form for H0 and H1 of equations
(1.4.7) and (1.4.8), respectively, as well as the expression (1.4.6) for the first-order differential
operators L±1 , constitute the basic ingredients required to implement the first-order supersymmetric
quantum mechanics (SUSY QM). We shall discuss SUSY QM in the next chapter, in order to
obtain the eigenvalues Em and eigenvectors Ψ(x, y) ofHm. There are many papers in the literature
developing this idea and getting interesting results, see e.g. [Castillo-Celeita and Fernández, 2020;
Concha et al., 2018; Díaz-Bautista, 2020; Díaz-Bautista and Fernández, 2017; Díaz-Bautista et al.,
2019; Kuru et al., 2009; Le et al., 2018; Midya and Fernández, 2014; Milpas et al., 2011; Schulze-
Halberg and Roy, 2017].

As we mentioned previously, the magnetic field B(x) is supposed to be real. However, mathe-
matically speaking nothing forbids us to assume it is complex. In chapter 6 we shall address
this idea and explore its physical meaning, as well as to obtain exact solutions for the associated
eigenvalue equation.

Subsection 1.4.2
Bilayer graphene

If we apply now the minimal coupling rule to the effective Hamiltonian (1.3.23) for bilayer graphe-
ne, it turns out that

Hb = − 1

2m

(
0

[
px − ipy − i ecA(x)

]2[
px + ipy + i e

c
A(x)

]2
)
. (1.4.12)
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Analogously to the monolayer case, the Hamiltonian Hb commutes with the momentum opera-
tor py, allowing us to propose the corresponding eigenvector as

Ψ(b)(x, y) = Neiky
(
ψ(2)(x)
ψ(0)(x)

)
, (1.4.13)

with N being a normalization factor while k is the wavenumber in y-direction. Substituting this
expression in the eigenvalue equation for Hb, one gets the following coupled system of equations

L−2 ψ
(0)(x) =

[
d2

dx2
+ 2

(
k +

e

c~
A(x)

) d

dx
+
(
k +

e

c~
A(x)

)2
+

e

c~
A′(x)

]
ψ(0)(x) = Ebψ(2)(x),

L+
2 ψ

(2)(x) =

[
d2

dx2
− 2

(
k +

e

c~
A(x)

) d

dx
+
(
k +

e

c~
A(x)

)2
− e

c~
A′(x)

]
ψ(2)(x) = Ebψ(0)(x),

(1.4.14)
where Eb = 2mEb/~2. It is possible to decouple the previous system by applying L+

2 on the first
equation (1.4.14) and L−2 on the second one. The result turns out to be similar to equation (1.4.9),
which looks like

L+
2 L
−
2 ψ

(0)(x) = E2bψ(0)(x),

L−2 L
+
2 ψ

(2)(x) = E2bψ(2)(x).
(1.4.15)

Unlike the monolayer case, now the products of the operators L±2 of equation (1.4.15) are fourth-
order differential operators. Thus, the relation between such products and some one-dimensional
Schrödinger-like Hamiltonians is not simple to be established. Nevertheless, let us suppose that
there exist such Hamiltonians, denoted as H0 and H2, fulfilling an intertwining relation

H2L
−
2 = L−2H0. (1.4.16)

We shall explain later on how the second-order SUSY QM helps us to determine, using the previous
relation, the solutions of the system of equations (1.4.14). It is important to emphasize that the use
of this technique allows us to widen our options, in the sense that the operator L−2 is not necessarily
the square of the operator d/dx+k+(e/c~)A(x), but rather the product of two in general different
first-order differential operators.

We must mention as well that the auxiliary Schrödinger-like Hamiltonians Hj , j = 0, 1, 2, are
just mathematical tools, introduced to give a better idea on how to translate the system of equations
(1.4.6) and (1.4.14) to the SUSY QM language, hence they do not have physical meaning. For this
reason, they should not be confused neither with physical Hamiltonians such as Hm or Hb, which
describe an electron in monolayer or bilayer graphene, respectively, nor with those used to study
the interactions between an electron and other components of graphene [Schütt et al., 2011]. On
the other hand, in this work we are supposing that the magnetic field is externally applied either to
the monoloyer or to the bilayer graphene. Although such magnetic profiles could not be entirely
realized nowadays in the laboratory, there exist in the literature many papers about experimental
implementations of inhomogeneous magnetic fields for systems which are similar to graphene.
Some examples of this studies are those carried out through magnetic vortexes [Masir et al., 2011],
or performed using magnetic field spectroscopy devices [Schnez et al., 2009] and ferromagnetic
stripes [Matulis et al., 1994; Ramezani Masir et al., 2008]. Another point is that, despite graphene
immersed in crossed external electric and magnetic fields or deformed by strain are phenomena of
different physical nature, however their mathematical description is similar to the one presented
here [Castillo-Celeita et al., 2020; Naumis et al., 2017; Oliva-Leyva and Naumis, 2015].
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Chapter 2

Supersymmetric Quantum Mechanics

Supersymmetric quantum mechanics (SUSY QM) is a technique whose main goal is to generate
new Schrödinger-like Hamiltonians Hj , j = 1, 2, 3, . . . , their corresponding eigenvalues E (j) and
eigenfunctions ψ(j)(x) departing from an initial solvable Hamiltonian H0 for which we know in
advance the eigenvalues E (0) and eigenfunctions ψ(0)(x) [Fernandez and Fernandez-Garcia, 2005].
This is reached by assuming that the two Hamiltonians H0, Hj are intertwined through the jth-
order differential operators L±j , therefrom the technique is usually called jth-order SUSY QM. In
the next two sections we shall develop such a method but limit the discussion to the cases with
j = 1, 2, which will be useful to deal with the problem of an electron in monolayer or bilayer
graphene interacting with external magnetic fields.

Section 2.1

First-order supersymmetric quantum mechanics

Let us begin by considering two one-dimensional Schrödinger-like Hamiltonians

Hj = − d2

dx2
+ Vj(x), j = 0, 1, (2.1.1)

which are intertwined as follows
H1L

−
1 = L−1H0. (2.1.2)

The first-order differential intertwining operator L−1 is given by

L−1 =
d

dx
+ w(x), (2.1.3)

where the so-called superpotential w(x) is a real function to be determined. The constraint that the
superpotential w(x) and the potentials Vj must be real is not necessary for the algorithm to work.
Actually, w(x) could be complex; we shall address such a case later on.

Now, substituting the explicit form of Hj and L−1 in the intertwining relation (2.1.2) we obtain

H1L
−
1 = − d3

dx3
− w

d2

dx2
+ (V1 − 2w′)

d

dx
+ wV1 − w′′,

L−1H0 = − d3

dx3
− w

d2

dx2
+ V0

d

dx
+ wV0 + V ′0 .

(2.1.4)
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Comparing terms with the same powers of d/dx, the following equations are reached

V1 = V0 + 2w′,
wV1 − w′′ = wV0 + V ′0 .

(2.1.5)

If the first equation (2.1.5) is substituted in the second one, it appears the following differential
equation

2ww′ − w′′ = V ′0 . (2.1.6)

By integrating this expression it is obtained a particular case of the Riccati equation [Ince, 1956],
namely,

w′ − w2 + V0 − ε = 0, (2.1.7)

where ε is a constant called factorization energy. Thus, in terms of the superpotential the potentials
Vj can be written as

V0 = w2 − w′ + ε,

V1 = w2 + w′ + ε.
(2.1.8)

Although it is possible to solve the Riccati equation (2.1.7), in the context of SUSY QM it is
appropriate to make the change of variable

w = −u
′

u
, (2.1.9)

in order to arrive to the more familiar equation

− u′′ + V0u = εu. (2.1.10)

Said in words, u(x) is a formal eigenfunction of the initial Hamiltonian H0 associated to ε, and it
is called seed solution in the literature.

On the other hand, we can define another first-order differential operator,

L+
1 = − d

dx
+ w, (2.1.11)

which for w(x) real turns out to be the hermitian conjugate of L−1 . Two important products of both
operators are given by

L+
1 L
−
1 = − d2

dx2
+ w2 − w′,

L−1 L
+
1 = − d2

dx2
+ w2 + w′.

(2.1.12)

Due to equation (2.1.8), the Hamiltonians Hj become factorized by the operators L±1 as follows,

H0 = L+
1 L
−
1 + ε, H1 = L−1 L

+
1 + ε. (2.1.13)

As we mentioned before, it is supposed that H0 is a solvable Hamiltonian whose eigenvalues
E (0)n and eigenfunctions ψ(0)

n (x) are known, where n is a non-negative integer. Thus, we can
determine the eigenfunctions ψ(1)

n (x) of H1 from the relation

ψ(1)
n (x) =

L−1 ψ
(0)
n (x)√
E (0)n − ε

, (2.1.14)
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its corresponding eigenvalues being E (0)n . However, the spectrum of H1 could also contain the
factorization energy ε, since equation (2.1.13) implies that if a function ψ(1)

ε (provided it is square-
integrable) is in the kernel of the operator L+

1 then H1ψ
(1)
ε = εψ

(1)
ε . Moreover, from the first-order

differential equation L+
1 ψ

(1)
ε = 0 it follows that

dψ
(1)
ε

dx
= wψ(1)

ε , (2.1.15)

therefore
ψ(1)
ε (x) ∝ e

∫
w(x)dx =

1

u(x)
. (2.1.16)

Note that it is possible as well to get the eigenfunctions ψ(0)
n (x) from ψ

(1)
n (x) through the relation

ψ(0)
n (x) =

L+
1 ψ

(1)
n (x)√
E (0)n − ε

. (2.1.17)

As it can be seen, both the superpotential w(x) and the eigenfunction ψ(1)
ε (x) are inversely

proportional to the seed solution u(x), thus it must be nodeless. In order to ensure this requirement,
the factorization energy ε should take values below or equal to the ground state energy E (0)0 of H0

[Sukumar, 1985a,b].
Let us illustrate the first-order SUSY QM operation through the harmonic oscillator Hamilto-

nian

H0 = − d2

dx2
+ ω2x2, (2.1.18)

whose eigenvalues and eigenfunctions are given by

E (0)n = 2ω

(
n+

1

2

)
, ψ(0)

n (x) = cne
−ω x

2

2 Hn

(√
ωx
)
, (2.1.19)

with n being a non negative integer. For implementing the first-order SUSY QM it is necessary to
choose a seed solution u(x) associated to the factorization energy such that ε ≤ E (0)0 , for example,
let us take

ε = E (0)0 = ω, u(x) = ψ
(0)
0 (x) = c0e

−ω x
2

2 . (2.1.20)

Thus, equation (2.1.9) leads to the superpotential w = ωx, while the intertwining operator and the
SUSY partner Hamiltonian can be calculated using equations (2.1.3) and (2.1.8), respectively. We
get that

L−1 =
d

dx
+ ωx, H1 = − d2

dx2
+ ω2x2 + 2ω. (2.1.21)

The eigenvalues and eigenfunctions of H1 become

E (1)n = E (0)n+1, ψ(1)
n (x) = ψ(0)

n (x), n = 0, 1, 2, . . . (2.1.22)

It is important to notice that sp[H1] =
{

2ω
(
n+ 1

2

)
| n = 1, 2, . . .

}
, thus the factorization energy

ε = E (0)0 does not belong to that set since ψ(1)
ε (x) = eω

x2

2 is not square-integrable. Furthermore,
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Figure 2.1: Harmonic oscillator potential and its first-order SUSY partner. The factorization energy taken was ε =
E(0)0 , for this plot we choose ω = 1.

the eigenfunctions ψ(1)
n (x) of H1 have the same functional form (actually they are the same) than

the eigenfunctions of H0 because V0 and V1 are shape-invariant potentials [Bagchi, 2001; Cariñena
and Ramos, 2000; Dong, 2007; Sandhya et al., 2015], see Figure 2.1. Such a class of potentials
fulfil

V1(x, λ1) = V0(x, λ0) + C(λ1), (2.1.23)

where λj are labels representing the corresponding potential parameters, λ1 is a function of λ0 and
C(λ1) is an additive constant [Gangopadhyaya et al., 2018]. Equation (2.1.23) means that both
potentials have the same functional dependence of x, but they have different potential parameters.
In our example it turns out that V1(x, ω) = V0(x, ω) + 2ω, λ1 = λ0 = ω and thus it follows
equation (2.1.22).

Section 2.2

Second-order supersymmetric quantum mechanics

As we mentioned before, in the second-order SUSY QM [Andrianov et al., 1995, 1993; Fernandez,
2010, 2019; Samsonov, 1999] it is taken a second-order differential operator L−2 intertwining
two Schrödinger-like Hamiltonians with the same form as equation (2.1.1) for j = 0, 2. The
intertwining relation reads now

H2L
−
2 = L−2H0, (2.2.1)

with the intertwining operator being given by

L−2 =
d2

dx2
+ η(x)

d

dx
+ γ(x). (2.2.2)
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Substituting the explicit expressions of Hj and L−2 in equation (2.2.1), it turns out that

H2L
−
2 = − d4

dx4
− η d

3

dx3
+ [V2 − 2η′ − γ]

d2

dx2
+ [V2η − η′′ − 2γ′]

d

dx
+ V2γ − γ′′,

L−2H0 = − d4

dx4
− η d

3

dx3
+ [V0 − γ]

d2

dx2
+ [2V ′0 + ηV0]

d

dx
+ V ′′0 + ηV ′0 + γV0.

(2.2.3)

If we compare the terms with the same powers of d/dx, the following expressions are obtained

V2 = V0 + 2η′,

V2η − η′′ − 2γ′ = 2V ′0 + ηV0,

V2γ − γ′′ = V ′′0 + ηV ′0 + γV0.

(2.2.4)

By plugging the first row of the previous equation in the second one, we arrive at

γ′ = ηη′ − η′′

2
− V ′0 . (2.2.5)

Integrating this result, we get the function γ in terms of η

γ =
η2

2
− η′

2
− V0 + d, (2.2.6)

with d being a real constant.
On the other hand, if we insert the first row of equation (2.2.4) in the third one we can express

the second derivative of γ in the form

γ′′ = 2γη′ − V ′′0 − ηV ′0 . (2.2.7)

Taking now the derivative of equation (2.2.5), we have

γ′′ = (η′)
2

+ ηη′′ − η′′′

2
− V ′′0 . (2.2.8)

Substituting equations (2.2.8) and (2.2.6) in (2.2.7) it is obtained the third-order differential equa-
tion

2V0η
′ + ηV ′0 =

η′′′

2
− 2 (η′)

2 − ηη′′ + η2η′ + 2η′d. (2.2.9)

Multiplying the previous expression by η, then adding and subtracting η′η′′/2 and integrating the
result leads to the non-linear second-order differential equation

ηη′′

2
−
(
η′

2

)2

− η2η′ + η4

4
− η2V0 + η2d+ c = 0, (2.2.10)

with c being another real constant. In order to solve this equation, the following ansätz is proposed

η′ = η2 + 2βη − 2ε, (2.2.11)
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where β(x) and ε(x) are functions to be determined. Calculating the derivative of equation (2.2.11)
and its square it is found that

ηη′′

2
= η2η′ + β′η2 + βηη′ − ηε′,

−
(
η′

2

)2

= −η
4

4
− η3β +

(
ε− β2

)
η2 + 2εβη − ε2.

(2.2.12)

By plugging the two previous expressions into equation (2.2.10), it turns out that

β′η2 + βηη′ − ηε′ − η3β +
(
ε− β2

)
η2 + 2εβη − ε2 − η2V0 + η2d+ c = 0. (2.2.13)

If we substitute once again the ansätz (2.2.11) in order to eliminate η′ in the previous expressions
we arrive at (

β′ + β2 − V0 + ε+ d
)
η2 − ε′η + c− ε2 = 0. (2.2.14)

Since this equation has to be valid for an arbitrary η the coefficient of each power must vanish.
Therefore, we conclude that ε is a constant whose square is equal to c. Moreover, β satisfies the
Riccati equation

β′ + β2 = V0 − ε, (2.2.15)

where ε = d + ε. Nevertheless, in the context of SUSY QM it is better to make the change
β = u′(x)/u(x), hence the Riccati equation (2.2.15) transforms into

− u′′ + V0u = εu. (2.2.16)

Thus, u(x) is a solution of the stationary Schrödinger equation for H0 associated to the formal
eigenvalue ε, which is called seed solution in a similar way as for the first-order case. Since
ε = ±

√
c, in general there are two possible values for ε, namely, ε1 = d +

√
c, ε2 = d −

√
c, and

of course two associated seed solutions uj , j = 1, 2.
Analogously to the first-order SUSY QM, we define the hermitian conjugate of L−2 as follows

L+
2 =

(
L−2
)†

=
d2

dx2
− η d

dx
+ γ − η′. (2.2.17)

The product L+
2 L
−
2 turns out to be

L+
2 L
−
2 =

d4

dx4
+
(
2γ − η2 + η′

) d2

dx2
+ (η′′ + 2γ′ − 2ηη′)

d

dx
+ γ′′ − ηγ′ + γ2 − γη′. (2.2.18)

Due to equations (2.2.6), (2.2.7), (2.2.10), and given that d = (ε1 + ε2) /2, c = (ε1 − ε2)2 /4, the
previous product is reduced to

L+
2 L
−
2 =

d4

dx4
+ (ε1 + ε2 − 2V0)

d2

dx2
− 2V0

d

dx
+ V 2

0 − V ′′0 − V0 (ε1 + ε2) + ε1ε2. (2.2.19)

A straightforward calculation allows us to realize that this product is equal to the following second-
order polynomial in H0

L+
2 L
−
2 = (H0 − ε1) (H0 − ε2) . (2.2.20)
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On the other hand, the other product L−2 L
+
2 can be written as

L−2 L
+
2 =

d4

dx4
+
(
2γ − 3η′ − η2

) d2

dx2
+ (2γ′ − 3η′′ − 2ηη′)

d

dx
+ γ′′− η′′′+ ηγ′− γη′+ γ2− ηη′′.

(2.2.21)
Using equations (2.2.4), (2.2.6), (2.2.7), (2.2.9), (2.2.10), we obtain that

L−2 L
+
2 =

d4

dx4
+ (ε1 + ε2 − 2V2)

d2

dx2
− 2V2

d

dx
+ V 2

2 − V ′′2 − V2 (ε1 + ε2) + ε1ε2. (2.2.22)

Therefore
L−2 L

+
2 = (H2 − ε1) (H2 − ε2) . (2.2.23)

A consequence of equations (2.2.20) and (2.2.23) is that the eigenfunctions of the Hamiltonians
H0 and H2 are related as follows

ψ(0)
n (x) =

L+
2 ψ

(2)
n (x)√(

E (0)n − ε1
)(
E (0)n − ε2

) , ψ(2)
n (x) =

L−2 ψ
(0)
n (x)√(

E (0)n − ε1
)(
E (0)n − ε2

) . (2.2.24)

Finally, since c has to fulfil the law of trichotomy of the real numbers, the second-order SUSY
QM can be classified into three different cases: the real case when c > 0, the confluent case if
c = 0 and the complex case for c < 0. In what remains of this section we shall address each case
of this second-order SUSY QM classification.

Subsection 2.2.1
Real case

The most simple way to understand the second-order SUSY QM technique is through the real
case, where ε1 and ε2 are two real formal eigenvalues associated to the real seed solutions u1(x)
and u2(x), or equivalently to the Riccati solutions β1, β2. From the ansätz (2.2.11) we get two
equations

η′ = η2 + 2β1η − (ε1 − ε2) ,
η′ = η2 + 2β2η − (ε2 − ε1) ,

(2.2.25)

and substracting them the function η(x) is obtained

η =
ε1 − ε2
β1 − β2

. (2.2.26)

In terms of the seed solutions it turns out that

η = −(ε1 − ε2)u1u2
W (u1, u2)

, (2.2.27)

where W (f, g) = fg′ − f ′g is the Wronskian of f and g. Using the Schrödinger equation (2.2.16)
it is obtained the more useful form

η = −W
′ (u1, u2)

W (u1, u2)
. (2.2.28)
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To avoid singularities induced by the transformation, the Wronskian W (u1, u2) must not have
zeros in the appropriate x-domain.

As mentioned previously, the eigenfunctions of both Hamiltonians are linked through the
expressions given in equation (2.2.24). However, the spectrum of H2, Sp (H2), could contain
two extra levels as compared with Sp (H0), corresponding to the factorization energies ε1, ε2. This
depends on the normalizability of the formal eigenfunctions ψ(2)

ε1 (x), ψ(2)
ε2 (x) associated to these

factorization energies, and since (2.2.23) they are as well in the kernel of L+
2 thus they satisfy

ψ(2)
εj

′′ − ηψ(2)
εj

′
+ (γ − η′)ψ(2)

εj
= 0,

ψ(2)
εj

′′ − (V2 − εj)ψ(2)
εj

= 0.
(2.2.29)

Substituting ψ(2)
εj

′′
of the second row in the first one we arrive at

ηψ(2)
εj

′
= (γ − η′ + V2 − εj)ψ(2)

εj
. (2.2.30)

Using now equations (2.2.6), (2.2.4) and (2.2.11) it is obtained that

ηψ(2)
εj

′
= (η′ − βjη)ψ(2)

εj
. (2.2.31)

Expressed in terms of the seed solutions uj , this differential equation can be written as

ψ
(2)
εj

′

ψ
(2)
εj

=
η′

η
−
u′j
uj
, (2.2.32)

whose solution is given by
ψ(2)
εj
∝ η

uj
. (2.2.33)

An explicit form can be gotten if the expression for η in equation (2.2.27) is used, so that

ψ(2)
ε1
∝ u2
W (u1, u2)

, ψ(2)
ε2
∝ u1
W (u1, u2)

. (2.2.34)

The second-order SUSY algorithm offers a wider range of possibilities for modifying the
spectra than the first-order case. Nevertheless, there exist some constraints about which factoriza-
tion energies and their corresponding eigenfunctions can be chosen, arising from the fact that the
Wronskian of the seed solutions must be nodeless. A heuristic criterion helping us to identify
the appropriate seed solutions uj(x) is the following. Since L+

2 L
−
2 = (H0 − ε1) (H0 − ε2), any

average of this operator product must be positive definite on the corresponding Hilbert space, i.e.,

〈ψ(0)
n |L+

2 L
−
2 |ψ(0)

n 〉 = |L−2 |ψ(0)
n 〉|2 ≥ 0, (2.2.35)

which implies that (
E (0)n − ε1

) (
E (0)n − ε2

)
≥ 0. (2.2.36)

Thus, our prospective factorization energy range can be reduced to the next cases:

a) Both factorization energies are taken below the ground state, ε2 < ε1 < E (0)0 , their correspon-
ding seed solutions are chosen such that u1(x) is nodeless and u2(x) has one zero in the initial
x-domain, which guarantee that the Wronskian W (u1, u2) will be nodeless.
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b) Both factorization energies are placed between two consecutive bound state energies, E (0)j <

ε2 < ε1 < E (0)j+1. In order to make the Wronskian of the corresponding seed solutions to be
nodeless, we choose u1(x), u2(x) having j + 1, j + 2 zeros, respectively. In that way these
zeros are alternating thus making that W (u1, u2) will be nodeless.

c) Both factorization energies are equal to two consecutive bound state energies, ε2 = E (0)j ,
ε1 = E (0)j+1, and consequently u2(x) = ψ

(0)
j (x), u1(x) = ψ

(0)
j+1(x). It is worth noting that

although such seed solutions have j and j + 1 zeros inside the x-domain, respectively, they
vanish at both ends of such domain. These asymptotic zeros allow to show that W (u1, u2)
is nodeless in the full domain.

d) Finally, it is possible to choose one factorization energy as a bound state energy E (0)j and
the other one between E (0)j and the previous energy level, i.e., E (0)j−1 < ε2 < ε1 = E (0)j . The
seed solutions are chosen as u1(x) = ψ

(0)
j (x) and u2(x) with j + 1 zeros, thus making the

corresponding Wronskian to be nodeless.

Further details about these possibilities can be found in [Fernandez and Fernandez-Garcia, 2005];
an interesting work on SUSY QM applied to the Pöschl-Teller potential, in particular the cases
described above, is [Contreras-Astorga and Fernández C., 2008].

Now, let us explore the example of a real second-order SUSY QM transformation applied to
the harmonic oscillator Hamiltonian of equation (2.1.18). The general solution of the stationary
Schrödinger equation can be written as

u(x) = e−ω
x2

2

[
1F1

(
1

4
− ε

4ω
;
1

2
;ωx2

)
− 2xν

Γ
(
3
4
− ε

4ω

)
Γ
(
1
4
− ε

4ω

) 1F1

(
3

4
− ε

4ω
;
3

2
;ωx2

)]
, (2.2.37)

where ν is a real constant. Note that u(x) is nodeless for ε < ω and |ν| ≤ 1.
The second-order SUSY partner potential V2(x) of V0(x), obtained by taking the ground state of

H0 (see equation (2.1.20)) as the first seed solution, u1(x) = ψ
(0)
0 (x), and u2(x) as the expression

of equation (2.2.37) for zero energy, ε = 0, and ν = 1.1, is plotted in Figure 2.2. It is worth
noticing that the spectrum of H2 becomes Sp(H2) = {0, 3ω, 5ω, . . . }, in other words, we have
deleted the level with energy ω and replaced it with the zero energy level. This is a consequence
that the Wronskian in equation (2.2.34) is nodeless inside the x-domain, and it does not have
asymptotic zeros, thus leaving the square-integrability of ψ(2)

ε1 (x), ψ(2)
ε2 (x) to depend on u2(x),

ψ
(0)
0 (x), respectively.

Subsection 2.2.2
Confluent case

The main feature of this case is that the two factorization energies are equal, ε1 = ε2 = ε ∈ R,
so, there is only one seed solution u(x). On the other hand, the ansätz (2.2.11) leads to the next
equation for η

η′ = η2 + 2βη. (2.2.38)

Making the change of variable η = 1/y we arrive at

y′ + 2βy = −1. (2.2.39)
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Figure 2.2: Harmonic oscillator potential and its second-order SUSY partner in the real case. The factorization
energies were chosen as ε1 = ω, ε2 = 0, for ω = 1 and ν = 1.1.

This inhomogeneous first-order linear differential equation has a one-parametric family of solu-
tions given by

y(x;ω0) =

[
ω0 −

∫
e2
∫
βdxdx

]
e−2

∫
βdx. (2.2.40)

If we remember that β(x) is expressed in terms of u(x) as β(x) = u′(x)/u(x), it turns out that
u(x) ∝ e

∫
β(x)dx and thus the function η becomes

η(x;ω0) =
u2

ω0 −
∫ x
x0
u2(y)dy

= −w′(x)

w(x)
, (2.2.41)

with w(x) ≡ ω0 −
∫ x
x0
u2(y)dy. In order to avoid singularities in η(x), w(x) has to be nodeless.

Since w(x) is a decreasing monotonic function, we can select the seed solution in the following
way:

a) It is an eigenfunction of H0, u(x) = ψ
(0)
n . Thus, it is fulfilled that u(x → ±∞) = 0 and∫∞

−∞ u
2(y)dy = 1. It is suitable to choose x0 as the left end of the domain, then w(x) is

nodeless when ω0 ≥ 1 or ω0 ≤ 0.

b) It fulfils u(x → −∞) = 0 and I− =
∫ x0
−∞ u

2(y)dy < ∞. Since the seed solution u(x) is
a non-physical eigenfunction of H0, then u(x → ∞) does not converge and thus w(x →
∞) = −∞. Consequently, for ω0 ≤ −I− it is guaranteed that w(x) is nodeless.

c) It is such that u(x → ∞) = 0 and I+ =
∫∞
x0
u2(y)dy < ∞. Thus w(x → −∞) = ∞ and

the ω0-domain for which w(x) is nodeless is ω0 ≥ I+.
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Figure 2.3: Harmonic oscillator potential and its second-order SUSY partner in the confluent case. The factorization
energy was chosen as ε = 2ω, with ω = ν = 1, x0 = 0 and ω0 = 3.

Analogously to the real case, we can obtain the expression for the formal eigenfunction ψ(2)
ε of

H2 associated to the factorization energy ε. It is found that

ψ(2)
ε (x) ∝ η(x)

u(x)
=
u(x)

w(x)
. (2.2.42)

The factorization energy ε could belong to Sp (H2), depending on the square-integrability of ψ(2)
ε .

There exist two possibilities: i) if ω0 is exactly equal to one of the edges where w(x) is nodeless,
for example in the previous case c) ω0 = I+, then ψ(2)

ε (x) is not square-integrable and thus ε does
not belong to Sp (H2) (this will be called limit case); ii) when ω0 lies inside the nodeless domain
the eigenfunction ψ(2)

ε (x) of H2 is square-integrable and thus ε belongs to Sp (H2) (this will be
called the standard case).

As an example, let us take the initial harmonic oscillator Hamiltonian of equation (2.1.18) with
ω = 1. If we choose the factorization energy as ε = 2, whose corresponding seed solution u(x)
is obtained from equation (2.2.37) with ν = 1, the second-order SUSY partner potential V2(x)
of V0(x) looks like the plot of Figure 2.3. The remaining parameters are taken as x0 = 0 and
w0 = 3, the last lies inside the domain where w(x) is nodeless and ψ(2)

ε (x) is square integrable.
The spectrum of H2 is {ω, 2ω, 3ω, 5ω . . . }, i.e., a SUSY partner Hamiltonian containing a new
energy level above the ground state of H0 has been generated. This spectre manipulation can not
be carried out via the first-order SUSY technique, which highlights the difference between the
first-order case and the confluent second-order SUSY QM. Despite both seem to be equal, the
second-order transformation can be seen as an iteration procedure of two first-order singular ones.
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Figure 2.4: Harmonic oscillator potential and its second-order SUSY partner in the complex case. The factorization
energy is taken as ε1 = 1 + i, and ω = ν1 = 1.

Subsection 2.2.3
Complex case

Finally, the complex case of the second-order SUSY QM is called in this way since the two
factorization energies are complex. Although we can choose these factorization energies, in gene-
ral, as two arbitrary complex numbers, we will describe here just the algorithm leading to a SUSY
partner potential V2(x) which is real. The function η(x) can be calculated analogously to the real
case, see equation (2.2.26); as it should be real the conditions ε2 = ε1 and β2 = β1 are required.
Thus, we arrive at

η =
Im[ε1]

Im[β1]
. (2.2.43)

In terms of the seed solutions u1(x) and u2(x) = u1(x) the function η(x) is expressed as

η = −(ε1 − ε1) |u1|2

W (u1, u1)
. (2.2.44)

The Wronskian of the two seed solutions in the previous expression must be nodeless to ensure that
the potential V2(x) does not have added singularities. Since W ′ (u1, u1) / (ε1 − ε1) = |u1(x)|2 ≥
0, hence this normalized Wronskian is a non-decreasing monotonic function. Then, in order to
guarantee it will be nodeless it is sufficient that either of the following two limits are fulfilled

u1(x→∞) = 0 or u1(x→ −∞) = 0. (2.2.45)

As the formal eigenfunctions ψ(2)
εj (x) are given in equation (2.2.34), with the considerations taken

into account previously and due to the conditions (2.2.45), they are not square-integrable. Therefo-
re, the Hamiltonian H2 is isospectral to H0.
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As an example, let us take as seed solution the u1(x) equation (2.2.37) with ω = ν1 = 1,
associated to the factorization energy ε1 = 1 + i. The SUSY partner potentials V2 and V0 are
shown in Figure 2.4. As we mentioned before, both potentials have the same spectrum since
ψ

(2)
ε1 (x) and ψ(2)

ε1
(x) are not square-integrable.

We must mention that it is possible to choose the seed solutions associated to two in general
complex factorization energies, without requiring that ε2 = ε1 such that the SUSY partner potential
V2(x) is not singular. However, V2(x) turns out to be complex, thusH2 in general is non-hermitian,
which is not usually worked in SUSY QM. Despite this, in chapter 6 an effective complex magnetic
field applied to monolayer graphene will be considered, which will lead us to deal with a pair of
complex first-order SUSY partners potentials, and to determine some exact solutions for them.
The case of bilayer graphene under similar complex magnetic fields, which leads to analyze two
complex second-order SUSY partners potentials, is left for a future study.
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Chapter 3

Shape-invariant potentials

As we have seen in chapter 1, a lot of papers in the literature have addressed the effect of a magnetic
field applied to monolayer graphene, from which we obtain a system of equations that can be
solved using the first-order SUSY QM described in chapter 2. Here, we will implement the same
idea but for bilayer graphene, which leads us to the system of equations (1.4.14). However, the
operator L−2 appearing there turned out to be the square of the first-order differential operator
d/dx + k + (e/c~)A(x), which limits a lot the use of the second-order SUSY QM. In order to
surpass that restriction, and to apply in a straightforward way this technique, we will make two
assumptions:

a) L−2 will be a second-order differential intertwining operator which can be expressed in
general as a product of two different first-order differential operators, whose form is given
in equation (2.2.2). Substituting the expression (2.2.10) in (2.2.6), the function γ(x) will be
given by

γ =
η′

2
+
η2

4
− η′′

2η
+

(
η′

2η

)2

−
(
ε1 − ε2

2η

)2

. (3.1)

We can see that the first two terms in the previous formula correspond to those appering in the
system of equations (1.4.14), i.e., they are the terms necessary for the operator L−2 to have
a part which is the square of a first-order differential operator. Meanwhile, the remaining
terms are required for this operator to be a general second-order differential intertwining
operator of the form (2.2.2).

b) The vector potential amplitude A(x) giving rise to the external magnetic field B(x) applied
to bilayer graphene and the coefficient η(x) of the second term of L−2 are related as follows

η(x) = 2
(
k +

e

c~
A(x)

)
. (3.2)

Thus, the derivative of η(x) produces the magnetic field amplitude in the following way

η′(x) =
2e

c~
B(x). (3.3)

It is important to stress that the function η(x) depends on the parameters of the initial
potential V0. In turn, these parameters depend of the wavenumber k, and we should be
able to find such a dependence. However, in general this is not an easy calculation (see
appendix A).
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Therefore, the Hamiltonian (1.4.12) has been modified to the form

Hb = − 1

2m

(
0 Π2(

Π†
)2

0

)
+

~2

2m
f(x)σx, (3.4)

where Π = px − ipy − i(e/c)A(x), f(x) = (η′/2η)2 − η′′/2η − [(ε1 − ε2) /2η]2 and σx is a
Pauli matrix. Note that the second term in the previous Hamiltonian Hb could be associated to
spatially varying external potentials, large-distance hopping processes, etcetera [Castillo-Celeita
et al., 2020; Wu et al., 2012].

As a first approach to the problem, in this chapter we shall take some initial potentials V0(x)
for which we know the solution and then determine the magnetic field that must be applied to the
bilayer graphene for producing V0(x) as well as its SUSY partner potential V2(x), such that both
will be shape-invariant in the sense explained at the end of section 2.1. In order to carry out this
procedure, we choose the two factorization energies as the ground state and the first exited state
eigenvalues of the initial Hamiltonian, i.e.,

ε2 = E (0)0 , ε1 = E (0)1 , (3.5)

and the corresponding seed solutions are taken as

u2(x) = ψ
(0)
0 (x), u1(x) = ψ

(0)
1 (x). (3.6)

It can be seen that this choice of factorization energies belongs to the real case of the second-
order SUSY QM described in section 2.2. Thereby, the function η(x) is calculated via equation
(2.2.28), the corresponding magnetic field is obtained through equation (3.3), and the SUSY
partner potential V2(x) is determined from equation (2.2.4). Since we know in advance the eigen-
functions of the initial potential, and because V0(x), V2(x) are shape-invariant, then the eigenfunc-
tions ψ(2)

n (x) have the same functional form as ψ(0)
n (x) but with the corresponding parameters

change. Meanwhile, the formal eigenfunctions ψ(2)
ε1 (x), ψ(2)

ε2 (x) in equation (2.2.34) are not square
integrable. Thus, the spectrum of H2 has two energies less than Sp(H0). Comparing the system
of equations (1.4.14), including of course the assumptions a), b) and the action of the operators
(2.2.20) and (2.2.23) onto the eigenfunctions of the two intertwined Hamiltonians H0, H2, it is
possible to find the eigenvectors and eigenenergies of the electron (hole) in bilayer graphene as
follows

Ψ0,`(x, y) = eiky
(

0

ψ
(0)
` (x)

)
, E0 = 0, ` = 0, 1,

Ψn−1(x, y) =
eiky√

2

(
ψ

(2)
n−2(x)

ψ
(0)
n (x)

)
, En−1 = ± ~2

2m

√(
E (0)n − E (0)0

)(
E (0)n − E (0)1

)
,

(3.7)

with n ∈ {2, 3, 4, . . . }. Note that the positive energies correspond to electrons and the negatives
ones to holes. It is important to stress that the ground state eigenvectors have an extra index `
to indicate the double degeneracy of E0. This fact does not depend neither on the magnetic field
applied nor on the parameters of the auxiliar potentials.
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Figure 3.1: Harmonic oscillator potential, its shape-invariant SUSY partner and the associated constant magnetic
field. The parameter values taken are ω = k = 1.

In what follows, three different magnetic profiles will be analysed. Since the time-independent
matrix Hamiltonian describing bilayer graphene defines a time-dependent dynamic equation simi-
lar to the Dirac one, two important physical quantities will be explored, the probability and current
densities given by

ρ = Ψ†Ψ, J = − ~
m

[
Im
(
Ψ†jΨ

)
+

e

c~
A(x)Ψ†ςΨ

]
, (3.8)

where
jx = σx∂x + σy∂y, jy = σy∂x − σx∂y, ςl = εlmσm, (3.9)

with εlm being the Levi-Civita symbol in two dimensions and σl the Pauli matrices. Further details
about the current density expression are given in appendix B.

Finally, we must mention that all the parameters of the potentials arising in this chapter will be
real non-negative, unless otherwise indicated.

Section 3.1

Shifted harmonic oscillator potential

The first example to be considered is a shifted harmonic oscillator as the initial potential, which
can be written in the way

V0(x) =
ω2

4

(
x+

2κ

ω

)2

− ω

2
, (3.1.1)

whose eigenfunctions and eigenvalues are

ψ(0)
n (x) = cne

− ζ
2

2 Hn (ζ) , E (0)n = nω, (3.1.2)
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Figure 3.2: First electron energies as functions of k for bilayer graphene in a constant magnetic field with ω = 1.

with n being a non-negative integer, Hn(ζ) are the Hermite polynomials, ζ =
√
ω/2 (x+ 2κ/ω)

and cn is a normalization factor. Selecting the factorization energies and seed solutions as in
equations (3.5), (3.6), the relation (2.2.28) leads to the key function

η(x) = 2κ+ ωx. (3.1.3)

According to equation (3.2), and since the potential parameter κ and the wavenumber k in y-
direction are equal in this case (see appendix A), the vector potential becomes A(x) = xBey,
where ω = 2eB/c~. In turn, due to equation (3.3) the corresponding magnetic field B(x) = Bez
is constant.

On the other hand, from equation (2.2.4) the SUSY partner potential of V0(x) is expressed as

V2(x) =
ω2

4

(
x+

2κ

ω

)2

+
3ω

2
. (3.1.4)

This and the initial potential are shape-invariant, because V2(x) = V0(x) + 2ω. A plot of both
potentials can be seen in Figure 3.1. The eigenfunctions and eigenvalues of V2(x) become

ψ(2)
n (x) = cne

− ζ
2

2 Hn (ζ) , E (2)n = (n+ 2)ω. (3.1.5)

Thus, from equation (3.7) the electron (hole) energies in bilayer graphene under a constant
magnetic field are given by

En−1 = ±~2ω
2m

√
n(n− 1). (3.1.6)

Although the auxiliary potentials and their eigenfunctions depend on the wavenumber k, the energy
eigenvalues (3.1.6) do not. Since the square-integrability of the eigenfunctions (3.1.2) and (3.1.5)
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Figure 3.3: Probability (top) and current (bottom) densities for a constant magnetic field. The parameter values taken
are ω = k = 1. The ordering followed is the standard one, based on the spectrum of Hb.

does not impose any constraint on the parameters of the auxiliary potentials, the spectrum of Hb is
infinite discrete, as can be seen in Figure 3.2 where the first electron energies as functions of k are
shown. Furthermore, plots of the probability and current densities are displayed in Figure 3.3.

Section 3.2

Trigonometric Rosen-Morse potential

Let us consider now an initial trigonometric Rosen-Morse potential of the form

V0(x) = κ2 −D2 +D(D − µ) csc2 µx− 2Dκ cotµx, (3.2.1)

where 0 < µx < π. The corresponding eigenfunctions and eigenvalues are

ψ(0)
n (x) = cn(−1)−(s0+n)/2

(
ζ2 + 1

)−(s0+n)/2 ea0·arccot(ζ)P(−s0−n−ia0,−s0−n+ia0)
n (iζ),

E (0)n = κ2 −D2 + (D + nµ)2 − κ2D2

(D + nµ)2
,

(3.2.2)

with n being a non-negative integer, cn is a normalization factor, s0 = D/µ, a0 = −κD/µ(D +

nµ), ζ = cotµx and P
(α,β)
n are the pseudo Jacobi polynomials. It is worth mentioning that there

is an alternative expression for the eigenfunctions of the trigonometric Rosen-Morse potential in
terms of real orthogonal polynomials of a real argument, see [Compean and Kirchbach, 2005].
Choosing the two factorization energies as indicated previously, equation (2.2.28) leads us to

η(x) = (2D + µ)

(
κ

D + µ
− cotµx

)
, (3.2.3)
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Figure 3.4: Trigonometric Rosen-Morse potential, its shape-invariant SUSY partner and the trigonometric singular
well magnetic profile. The parameter values taken are D = 4, k = 9/5 and µ = 1.

where in this case the potential parameter κ in terms of the wavenumber k is given by

κ = 2

(
D + µ

2D + µ

)
k. (3.2.4)

We observe that κ(k) is linear in k. Thus, the vector potential is written as A(x) = −(B/µ) cotµx
ey with D + µ/2 = eB/c~µ. The associated magnetic field becomes B(x) = B csc2 µx ez, with
the magnetic profile B(x) being known typically as trigonometric singular well.

Taking into account the function η(x) in (3.2.3) and substituting it in equation (2.2.4) we get
that

V2(x) = κ2 −D2 + (D + 2µ)(D + µ) csc2 µx− 2Dκ cotµx. (3.2.5)

The initial potential (3.2.1) and the latter one are shape-invariant potentials, since V2(x, D̃, κ̃) =

V0(x,D, κ)+E (0)2 , with D̃ = D+2µ and κ̃ = Dκ/(D+2µ). A plot of these potentials is shown in
Figure 3.4. It is important to stress that we can find in the literature the trigonometric Rosen-Morse
potential expressed as V (x) = A(A− 1) csc2 x+ 2B cotx−A2 +B2/A2 [Gangopadhyaya et al.,
2018]. Since, this potential admits bound states for both B > 0 and B ≤ 0 [Junker, 2019], thus
the potential worked out here is obtained by taking B = −κA, and this selection is consistent with
the theory developed in the previous chapters. Therefore, the eigenfunctions and eigenvalues of V2
are given by

ψ(2)
n (x) = cn(−1)−(s2+n)/2

(
ζ2 + 1

)−(s2+n)/2 ea2·arccot(ζ)P(−s2−n−ia2,−s2−n+ia2)
n (iζ),

E (2)n = κ2 −D2 + (D + 2µ+ nµ)2 − κ2D2

(D + 2µ+ nµ)2
,

(3.2.6)

with s2 = s0 + 2 and a2 = −κD/µ(D + 2µ+ nµ).
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Figure 3.5: First electron energies for the trigonometric singular well magnetic profile as functions of k, with D = 4
and µ = 1.

Consequently, the electron (hole) energies for bilayer graphene in the trigonometric singular
well magnetic profile become

En−1 = ± ~2

2m

(
κ2 −D2 + (D + nµ)2 − κ2D2

(D + nµ)2

)√√√√1−
κ2 −D2 + (D + µ)2 − κ2D2

(D+µ)2

κ2 −D2 + (D + nµ)2 − κ2D2

(D+nµ)2

.

(3.2.7)
The square-integrability requirement does not impose any constraints on the parameters involved.
Thus, despite these eigenvalues depend on k this fact does not impose any restriction on the
spectrum which is infinite discrete, as it is seen in Figure 3.5 where the first electron energies
as functions of the wavenumber k are plotted. Finally, Figure 3.6 displays plots of the probability
and current densities for some eigenvectors, associated to the lowest electron eigenenergies.

Section 3.3

Eckart potential

The last example of this chapter is the Eckart potential, which is expressed in terms of hyperbolic
functions as follows

V0(x) = κ2 +D2 +D(D − µ)csch2µx− 2Dκ cothµx. (3.3.1)

The corresponding eigenfunctions and eigenvalues are

ψ(0)
n (x) = cn(ζ − 1)−(s0+n−a0)/2(ζ + 1)−(s0+n+a0)/2P(−s0−n+a0,−s0−n−a0)

n (ζ),

E (0)n = κ2 +D2 − (D + nµ)2 − κ2D2

(D + nµ)2
,

(3.3.2)
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Figure 3.6: Probability (top) and current (bottom) densities for a trigonometric singular well magnetic profile. The
parameter values taken are D = 4, k = 9/5 and µ = 1. The ordering followed is the standard one for the spectrum of
Hb.

where n is a non-negative integer, s0 = D/µ, a0 = κD/µ(D + nµ), ζ = cothµx and P
(α,β)
n is a

Jacobi polynomial. We choose now the factorization energies and seed solutions as in equations
(3.5), (3.6) in order to obtain (see equation (2.2.28))

η(x) = (2D + µ)

(
κ

D + µ
− cothµx

)
. (3.3.3)

Analogously to the previous case, the potential parameter κ is a linear function of the wavenumber
k, namely,

κ = 2

(
D + µ

2D + µ

)
k. (3.3.4)

Thus, the vector potential turns out to be A(x) = −(B/µ) cothµx ey with D + µ/2 = eB/c~µ.
The corresponding magnetic field B(x) = Bcsch2µx ez is called hyperbolic singular field.

The function η(x) of equation (3.3.3) leads to the SUSY partner potential of V0(x):

V2(x) = κ2 +D2 + (D + 2µ)(D + µ)csch2µx− 2Dκ cothµx. (3.3.5)

This potential and the initial one are shape-invariant, since V2(x, D̃, κ̃) = V0(x,D, κ)+E (0)2 , where
D̃ = D+2µ, κ̃ = κD/(D+2µ). Plots of V0(x), V2(x) and the hyperbolic singular field are shown
in Figure 3.7. The corresponding eigenfunctions and eigenvalues take the form,

ψ(2)
n (x) = cn(ζ − 1)−(s2+n−a2)/2(ζ + 1)−(s2+n+a2)/2P(−s2−n+a2,−s2−n−a2)

n (ζ),

E (2)n = κ2 +D2 − (D + 2µ+ nµ)2 − κ2D2

(D + 2µ+ nµ)2
,

(3.3.6)

with s2 = s0 + 2 and a2 = κD/µ(D + 2µ+ nµ).
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Figure 3.7: Eckart potential, its shape-invariant SUSY partner and the hyperbolic singular field. The parameter values
taken are D = 3, k = 105/4 and µ = 1.

Consequently, the electron (hole) energies for bilayer graphene in a hyperbolic singular field
can be written as

En−1 = ± ~2

2m

(
κ2 +D2 − (D + nµ)2 − κ2D2

(D + nµ)2

)√√√√1−
κ2 +D2 − (D + µ)2 − κ2D2

(D+µ)2

κ2 +D2 − (D + nµ)2 − κ2D2

(D+nµ)2

.

(3.3.7)
Unlike the previous examples, in this case the square-integrability requirement for the eigenfunc-
tions ψ(j)

n constrains the potential parameters in the way κ > D. Furthermore, the exponent of
the first factor in equations (3.3.2), (3.3.6) has to be positive while for the second factor it must be
negative. Hence, if the above restrictions are fulfilled the spectrum of Hb is finite discrete, since
the quantum number n has to satisfy that κ > (D+nµ)2/D. Figure 3.8 shows the lowest energies
as functions of k; it is worth noting that an enveloping quadratic polynomial E(k) = ak2 + bk + c
appears, whose parameters a, b, c can be written in terms of the potential parameters as follows

a = 4D(D + µ)/(2D + µ)2, b = −2µ− 4D2/(2D + µ), c = D(D + µ). (3.3.8)

The first derivative of this polynomial, evaluated at the left end point of intersection with En−1 is
directly proportional to the group velocity in y-direction while the second derivative is related to
the component [M ]2,2 of the effective mass tensor, i.e.,

vg =
1

~
dE(k)

dk
= v20

(
~
γ1

)
(2ak + b),

[M ]2,2 = ~2
(
d2E(k)

dk2

)−1
=
m

a
.

(3.3.9)
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Figure 3.8: First electron energies as functions of k for the hyperbolic singular field with D = 3 and µ = 1.

In Figure 3.9 it is displayed the probability and current densities for the two ground states and
the first two excited states. These physical quantities have interesting properties that, together with
some remarkable results, are going to be discussed in the next section.

Section 3.4

Discussion

We have addressed some examples where departing from an initial solvable potential, we have
obtained a SUSY partner potential and a magnetic field, which allows us to find exact analytic
solutions to the problem of an electron in bilayer graphene placed in the same magnetic field
obtained earlier. Although from an experimental view point the resulting magnetic profiles do not
seem to be easy to produce nowadays in the laboratory, in the literature there are experimental
studies that can be considered as the first step for designing experiments involving graphene in the
magnetic fields examined here, see also section 1.4.

As we mentioned at the beginning of this chapter, the ground state eigenvectors have an upper
element equal to zero, see equation (3.7). This is due to the fact that the seed solutions lie in
the kernel of the intertwining operator L−2 , and since we choose them as the ground and the first
excited state eigenfunctions of H0, thus from equation (2.2.24) such result follows immediately.

Another interesting fact is the existence of two orthogonal zero energy states, namely, the
double degeneracy of the ground state energy, which does not depend on the potential parameters,
of the wavenumber in y-direction of the magnetic amplitude, provided that the momentum of the
particle fulfils the low energy condition leading to the Hamiltonian (1.3.12). These zero energy
states are very important for bilayer graphene, since in the low energy approximation two energy
bands of graphene, one corresponding to electrons and the other to holes, touch each other at the
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Figure 3.9: Probability (top) and current (bottom) densities for the hyperbolic singular field. The parameter values
taken are D = 3, k = 105/4 and µ = 1. The ordering followed is the standard one for the spectrum of Hb.

Dirac point, see Figure 1.8. Concerning the energy eigenvalues of the electron (hole), we can see
that its principal quantum number n − 1 tells suggests us that the spectrum of the Hamiltonian
Hb in equation (3.4) can be ordered in the standard way by simply introducing a new index m =
n−1, n ∈ N. Consequently, the energy eigenvalues, as well as the probability and current densities
shown in this chapter follow the ordering given by m.

It is worth noting that, unlike monolayer graphene [Kuru et al., 2009], the magnetic field profile
is not equal to the SUSY partner potential at any point inside its domain, thus there are not direct
implications for the ‘kinematical’ classical momentum πy = ~(k+(e/c)A), nor for the probability
and current densities.

The enveloping quadratic curve for the energies of the Eckart potential divides the k-domain
into two parts: to the right of the curve there are bound states while to the left they transform into
scattering states whose group velocity is given by equation (3.3.9). Finally, we can see that the
parameters of the enveloping curve depend on D and µ, so in the limit D → 0 the group velocity
is constant but the effective mass diverges, while if D � µ the group velocity keeps linear in k but
the effective mass goes around m.
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Chapter 4

Non-shape-invariant potentials:
factorization energies as two consecutive

levels

Here we shall generalize the algorithm for bilayer graphene of the previous chapter, taking advanta-
ge of the assumptions given at the beginning which guarantee the direct use of the second-order
SUSY QM to solve the eigenvalue equation for the Hamiltonian Hb of equation (3.4). The factori-
zation energies will be chosen now as two consecutive eigenvalues of H0, i.e.,

ε1 = E (0)j+1, ε2 = E (0)j . (4.1)

Since when j = 0 this choice reduces to the shape-invariant case explored in the previous chapter
and in [Fernández C. et al., 2020; Fernández C and Martínez-Moreno, 2020] (see equation (3.5)),
from now on we will assume that j ≥ 1. The corresponding seed solutions are chosen as

u1(x) = ψ
(0)
j+1(x), u2(x) = ψ

(0)
j (x). (4.2)

We are still working on the real case of the second-order SUSY QM developed in section 2.2,
then the function η(x) is calculated from equation (2.2.28), the corresponding magnetic field is
obtained via (3.3) and the SUSY partner potential is determined from equation (2.2.4). Unlike the
case with j = 0, this time the auxiliary potentials are not shape-invariant. However, we can get the
eigenfunctions ψ(2)

n (x) of V2(x) through equation (2.2.24) while the functions ψ(2)
ε` (x) in (2.2.34)

are not square-integrable. Hence, the spectrum of the Hamiltonian H2 has two energy levels less
than the spectrum of H0. The eigenvectors of an electron (hole) in bilayer graphene in this case
can be written as

Ψn(x, y) =


eiky

(
0

ψ
(0)
n (x)

)
for n = j, j + 1,

eiky√
2

(
ψ

(2)
n (x)

ψ
(0)
n (x)

)
for n 6= j, j + 1,

(4.3)

and the energy eigenvalues are

En = ± ~2

2m

√(
E (0)n − E (0)j

)(
E (0)n − E (0)j+1

)
, (4.4)
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Figure 4.1: Supersymmetric partners of the harmonic oscillator potential, non-shape-invariant and shape-invariant
ones (top). Magnetic field B(x) of equation (4.1.1) and the corresponding one in the shape-invariant case (bottom).
The parameters taken are ω = κ = 1.

where n is a non-negative integer. It is important to stress that the index n supplies the standard
ordering for the eigenvalues of the initial auxiliary Hamiltonian, namely, E (0)n < E (0)n+1. Neverthe-
less, this property is not inherited by the electron (hole) energies in equation (4.4), i.e., En is not
necessarily less than En+1. It is still possible to determine the right index for getting the standard
ordering of the spectrum of Hb, but it will depend in general on the election of j and the potential
parameters.

In the next examples we shall fix j = 1, i.e., the factorization energies are chosen as the first and
second excited state energies of H0, and we will explore the way the magnetic field is deformed
as compared with the corresponding shape-invariant case. The probability and current densities
of equation (3.8) will be as well explored. All the parameters involved will be supposed to be
positive, unless otherwise indicated.

Section 4.1

Shifted harmonic oscillator

Let us take the shifted harmonic oscillator of equation (3.1.1) as the initial potential, whose
eigenfunctions and eigenvalues are given in equation (3.1.2). Choosing the factorization energies
and corresponding seed solutions as in equations (4.1 - 4.2) with j = 1, the function η(x) will be
obtained straightforwardly, thus the SUSY partner potential V2(x) and the corresponding magnetic
field turn out to be

V2(x) = VSI(ζ) + 4ω
2ζ2 − 1

(2ζ2 + 1)2
,

B(x) = BSI(ζ)

[
1 +

4ζ2 − 2

(2ζ2 + 1)2

]
,

(4.1.1)
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Figure 4.2: Parameter κ of the potential (top) and the first five electron energies (bottom) as functions of the
wavenumber k for the shifted harmonic oscillator with ω = 1.

where
VSI(ζ) =

ω

2
ζ2 +

3

2
ω,

BSI(ζ) =
c~ω
2e

,

(4.1.2)

with ζ =
√
ω/2(x+2κ/ω). A plot of the potentials V0(x), V2(x) and VSI(x) is displayed in Figure

4.1, which also shows B(x) and BSI(x). It is important to remember that the potential parameter
κ depends on the wavenumber k in y-direction in the way κ = k, see appendix A. A plot of this
parameter κ as function of the wavenumber k is shown in Figure 4.2.

The electron (hole) energies in bilayer graphene under the magnetic field (4.1.1) turn out to be

En = ±~2ω
2m

√
(n− 1)(n− 2), (4.1.3)

with n being a non-negative integer. Once again, the energies En do not have the standard ordering
that the auxiliary ones present. Nevertheless, in this case it is simple to determine the index that
will define the standard ordering of the electron (holes) energies. Indeed, for an arbitrary j these
energies are directly proportional to the square root of (n−j)(n−j−1), and the first j+1 of them
(for n = j, . . . , 0) are doubly degenerate growing energies associated to the pairs of eigenvectors
{(Ψj,Ψj+1) , (Ψj−1,Ψj+2) , . . . , (Ψ0,Ψ2j+1)}, where the first pair are the ground states, the second
are the first exited states and so on until the j-th excited states. The remaining eigenstates of the
Hamiltonian Hb constitute the set {Ψ2j+2,Ψ2j+3, . . . } associated to the non-degenerate electron
(hole) energies {E2j+2, E2j+3, . . . }, the first one being associated to the (j + 1)-th excited state
and so on. In particular, for the example worked here with j = 1 we have 2 twofold degenerate
energy levels corresponding to the ground state (n = 1, 2) and the first excited state (n = 0, 3),
which is remarkably different from the shape-invariant case where only the ground state energy
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Figure 4.3: Probability densities (top) and currents in y-direction (bottom) as functions of x. The index m defines the
standard ordering, while n is the quantum number for the initial harmonic oscillator potential. The parameters taken
are ω = κ = 1.

is twofold degenerate, see Figure 4.2. Finally, in Figure 4.3 the probability and current densities
for several bound states are shown, with only currents in y-direction being displayed since in the
x-direction they turn out to be zero.

Section 4.2

Trigonometric Rosen-Morse potential

The next example to be analyzed is the trigonometric Rosen-Morse potential of equation (3.2.1),
whose eigenfunctions and eigenvalues are given in equation (3.2.2). We take the factorization
energies as in equation (4.1) (see also [Domínguez-Hernández and Fernández C, 2011]), so the
SUSY partner potential and corresponding magnetic field become

V2(x) = VSI(ζ) + 8µ2
[
κ2 + (D + 2µ)2

]
× (1 + ζ2)(D + µ)(2D + 3µ)ζ2 − 2κ(2D + 3µ)ζ + 2κ2 − µ(D + µ)

[(D + 2µ)(2D + 3µ)ζ2 − 2κ(2D + 3µ)ζ2κ2 + µ(D + 2µ)]2
,

(4.2.1)

B(x) = BSI(ζ)

[
1 + 4µ

κ2 + (D + 2µ)2

2D + µ

× (D + µ)(2D + 3µ)ζ2 − 2κ(2D + 3µ)ζ + 2κ2 − µ(D + µ)

[(D + 2µ)(2D + 3µ)ζ2 − 2κ(2D + 3µ)ζ2κ2 + µ(D + 2µ)]2

]
,

(4.2.2)

with
VSI(ζ) = (D + µ)(D + 2µ)(1 + ζ2)− 2κDζ −D2 + κ2,

BSI(ζ) =
c~µ
2e

(2D + µ)(1 + ζ2),
(4.2.3)
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Figure 4.4: Supersymmetric partners of the trigonometric Rosen-Morse potential (top), non-shape-invariant and
shape-invariant ones. Magnetic field B(x) of equation (4.2.2) and the corresponding field in the shape-invariant
case (bottom). The parameters taken are D = 4, κ = −7 and µ = 1.

and ζ = cot(µx). Figure 4.4 displays plots of the potentials V0(x), V2(x), VSI(x), and the magnetic
fieldsB(x),BSI(x). In this case the wavenumber k is a rational function of the potential parameter
κ, depending as well on the other parameters D, µ, namely,

k =
κ(2D + 3µ)

2(D + µ)(D + 2µ)
· (D + µ)(D + 2µ)2 −Dκ2

(D + µ)(D + 2µ)− κ2
. (4.2.4)

The electron (hole) energies for bilayer graphene in the magnetic field (4.2.2) are given by

En = ± ~2

2m

√
(D + nµ)2 − κ2D2

(D + nµ)2
− (D + µ)2 +

κ2D2

(D + µ)2

×

√
(D + nµ)2 − κ2D2

(D + nµ)2
− (D + 2µ)2 +

κ2D2

(D + 2µ)2
.

(4.2.5)

Notice that such electron (hole) energies depend on κ, but this dependence does not imply any
further restriction on them. The standard ordering for the spectrum of the Hamiltonian Hb in this
case is more complicated to determine, because it depends on the potential parameters D, κ, µ and
the selection of j. We must mention also that the ground state energy is always doubly degenerate.
Furthermore, equation (4.2.4) leads to three solutions for κ(k), see Figure 4.5. However, let us
remember that in the low energy approximation the electron (hole) energy should be quadratic in
the momentum [McCann and Koshino, 2013]. Taking this into account, the appropriate solutions
κ(k) leading to the right energies can be identified. In Figure 4.5 it is shown as well a plot of the
first energies. The probability and current densities in y-direction are drawn in Figure 4.6 for the
lowest bound states, since the currents along x-direction are zero.
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Figure 4.5: The three solutions of the parameter κ (top) and the first five electron energies (bottom) as functions of
the wavenumber k for the trigonometric Rosen-Morse potential with D = 4, µ = 1.

Section 4.3

Discussion

The selection of factorization energies as two consecutive energy levels of Sp (H0), in particular
the examples worked in this chapter with the first and second excited state energies, produces non-
shape-invariant SUSY partner potentials and non-trivial magnetic fields. It is important to analyse
now the dependency of these magnetic fields on the wavenumber k in y-direction. Thus, since
from the very beginning of the algorithm construction for bilayer graphene k is fixed, the exact
solutions to the eigenvalue problem and the magnetic fields found here will depend on k, which
means that if this parameter changes the eigenvectors Ψn(x, y), the energy eigenvalues En and the
magnetic profiles B(x) will accordingly change.

On the other hand, some of the electron (hole) energies could be twofold degenerate. This
degeneracy depends on the potential parameters and j. However, in some special cases, as for
the harmonic oscillator potential of section 4.1, there exist j + 1 doubly degenerate eigenvalues,
and this fact does not depend neither on ω nor on k, but only on j. In other cases, as for the
trigonometric Rosen-Morse potential, there is only one doubly degenerate eigenvalue, namely,
the ground state energy. It must be said that the dependency of En on k in this case causes that
for n < j these eigenvalues show a rate of increase with respect to k which is bigger than the
corresponding rate for n > j + 1. In the example of section 4.2 the energy for n = 0 displays
such a behavior (see Figure 4.5), thus as the absolute value of k increases the eigenvalue that close
k = 0 was the second excited energy level can become greater than or equal to the subsequent
energy levels. Hence, the standard ordering of the spectrum of Hb can be modified, by changing
the potential parameters and j. To make clear this point, we show a plot of the energies En versus
the index n for the harmonic oscillator with j = 1 in Figure 4.7; it can be seen that the ground
state energy corresponds to n = 1, 2, while the first excited energy level corresponds to n = 0, 3,
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Figure 4.6: Probability densities (top) and currents in y-direction (bottom). The indexm defines the standard ordering,
while n is the quantum number for the trigonometric Rosen-Morse potential. The parameters taken areD = 4, κ = −7
and µ = 1.

the second excited energy level to n = 4 and so on. In other words, the new index m leading to the
standard ordering of the electron (holes) energies in this case is

m =


0, for n = 1, 2,

1, for n = 0, 3,

n− 2, for n ≥ 4.

(4.3.1)

On the other hand, for the trigonometric Rosen-Morse potential the corresponding energy plot
versus the index n appears in Figure 4.8, with the same parameter values used in the plots of section
4.2. We can see that for n = 1, 2 we get the ground state energy, for n = 3 the first excited energy
level, for n = 0 the second excited energy level and for n ≥ 4 the n − 1 excited energy level.
It is worth noting that if we change the value of k, for example to 9, the levels corresponding to
n = 0, 4 change their order: the level for n = 4 becomes the second excited energy and the level
for n = 0 becomes the third excited energy.
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Figure 4.7: First electron energies for the shifted harmonic oscillator potential: the index n defines the standard
ordering of Sp(H0). It can be seen the twofold degeneracy of the ground and the first exited state energy. The
parameters taken are ω = κ = 1.
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Figure 4.8: First electron energies for the trigonometric Rosen-Morse potential: the index n defines the standard
ordering of Sp(H0). It can be seen the twofold degeneracy of the ground state energy. The parameters taken are
D = 4, κ = −7 and µ = 1.
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Chapter 5

Non-shape-invariant potentials: confluent
algorithm

The characteristic feature of the confluent algorithm is that both factorization energies are equal,
i.e., ε1 = ε2 = ε [Fernández C and Salinas-Hernández, 2003; Fernández C. and Salinas-Hernández,
2005]. Then, there is a unique seed solution u(x) of the Schrödinger equation for the initial
Hamiltonian H0, [Fernández C and Roy, 2020], see also [Bermudez, 2016; Bermudez et al., 2012;
Contreras-Astorga and Schulze-Halberg, 2015a,b, 2017; Correa et al., 2015; Fernández C and
Salinas-Hernández, 2011; Grandati and Quesne, 2015; Mielnik et al., 2000; Schulze-Halberg and
Yesiltas, 2018]. In this chapter we will apply this algorithm to bilayer graphene, taking into account
the assumptions given at the beginning of chapter 3. In particular, we will take the factorization
energy as one of the bound state energies of the initial potential, namely,

ε = E (0)j , (5.1)

with j being a non-negative integer. The seed solution chosen will be the corresponding eigenfunc-
tion of H0, namely,

u(x) = ψ
(0)
j (x). (5.2)

The key function η(x, ω0) is calculated from equation (2.2.41), the magnetic field B(x;ω0) is
generated from equation (3.3) and the supersymmetric partner potential V2(x;ω0) is obtained via
the first equation (2.2.4), forming one-parametric families of functions characterized by ω0. It is
convenient to express the last equation as follows

V2(x;ω0) = V0(x;ω0) + 4
e

c~
B(x;ω0). (5.3)

The eigenfunction ψ(2)
ε (x) in equation (2.2.42) will be square-integrable if the parameter ω0 lies in

the intervals ω0 > 1 or ω0 < 0, while for ω0 = 0 or ω0 = 1 it will not be square-integrable anymore.
Therefore, we get two different cases: one in which the spectra of both auxiliary Hamiltonians are
equal, so the eigenvectors of the graphene Hamiltonian Hb are

Ψn(x, y) =
eiky√

2

(
ψ

(2)
n (x)

ψ
(0)
n (x)

)
, (5.4)

with n being a non-negative integer. The other case is such that the supersymmetric partner
Hamiltonian H2 has an energy level less than the initial Hamiltonian H0. Thus, the eigenvectors



CHAPTER 5. NON-SHAPE-INVARIANT POTENTIALS: CONFLUENT ALGORITHM 54

0

2

4

V(
x)

V0(x)
V2(x, 1)
V2(x, 0)

6 5 4 3 2 1 0 1 2
x [ ]

0.2

0.0

0.2

0.4

0.6

eB
/c

[
2 ]

B(x, 1)
B(x, 0)

Figure 5.1: Confluent SUSY partners of the shifted harmonic oscillator in the isospectral case V2(x;−1) and in the
limit case V2(x; 0) (top). Associated magnetic fields in both cases (bottom). The parameters were taken as ω = κ = 1.

Ψn(x, y) are now given by

Ψn(x, y) =


eiky

(
0

ψ
(0)
n (x)

)
, for n = j,

eiky√
2

(
ψ

(2)
n (x)

ψ
(0)
n (x)

)
, for n 6= j.

(5.5)

In both cases the eigenvalues of the electron (hole) in bilayer graphene turn out to be

En = ± ~2

2m

∣∣∣E (0)n − E
(0)
j

∣∣∣. (5.6)

Once again, the index n does not supply in general the standard ordering of the spectrum of Hb.
However, unlike the two previous cases, the two consecutive levels and in the shape-invariant case,
now the ground state energy is non-degenerate. In the next examples we shall calculate the key
integral of the function w(x) for an arbitrary j, but for making plots and some other calculations
we will take j = 0.

Section 5.1

Shifted harmonic oscillator

The first example to be addressed is the harmonic oscillator potential of equation (3.1.1), whose
eigenfunctions and eigenvalues are given in equation (3.1.2). By choosing the factorization energy
as ε = E (0)j and the seed solution as the corresponding eigenfunction of H0, the integral in w(x)
becomes ∫ x

−∞

[
ψ

(0)
j (y)

]2
dy =

Ij(x)

Ij(x→∞)
. (5.1.1)
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Figure 5.2: Potential parameter κ (top) and first electron energies for bilayer graphene (bottom) as functions of the
wavenumber k in the confluent case for the shifted harmonic oscillator potential with ω = 1.

Since the eigenfunction ψ(0)
j (x) is normalized, the function I(x) evaluated in the limit x → ∞ is

the square of the normalization factor of that eigenfunction. Thus, we have

Ij(x) =

b j
2
c∑

l,m=0

(−1)m+l22∗(j−m−l)−1

m!l!(j − 2m)!(j − 2l)!

{
Γ
(
j −m− l + 1

2

)
+ γ

(
j −m− l + 1

2
, ζ2
)
, ζ ≥ 0,

Γ
(
j −m− l + 1

2

)
− γ

(
j −m− l + 1

2
, ζ2
)
, ζ < 0,

(5.1.2)
with bxc being the floor function, Γ(x) the gamma function, γ(s, x) the lower incomplete gamma
function and ζ =

√
ω/2(x + 2κ/ω). In terms of j the function Ij(x) in the limit x → ∞ reduces

to

Ij(x→∞) =

b j
2
c∑

l,m=0

(−1)m+l22(j−m−l)

m!l!(j − 2m)!(j − 2l)!
Γ

(
j −m− l +

1

2

)
. (5.1.3)

From equation (5.1.1) we can calculate η(x;ω0) via equation (2.2.41) with j = 0, and then the
magnetic field B(x;ω0) through equation (3.3), which leads to

B(x;ω0) =
c~ω
e

{
e−2ζ

2

π[erfc(ζ)− 2 + 2ω0]2
− ζe−2ζ

2

√
π[erfc(ζ)− 2 + 2ω0]2

}
, (5.1.4)

where erfc(x) is the complementary error function. The SUSY partner potential V2(x;ω0) is gotten
using equation (5.3). Figure 5.1 shows plots of the SUSY partner potential of V0 for two different
values of the parameter ω0, −1 and 0, as well as the corresponding magnetic field in each case.

The electron (hole) energies for bilayer graphene under the magnetic field (5.1.4) take the form

En =
~2ω
2m

n, (5.1.5)
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Figure 5.3: Probability densities (top) and currents in y-direction (bottom) for some eigenstates of the bilayer graphene
Hamiltonian Hb in the case of the shifted harmonic oscillator. The index m supplies the standard ordering for the
spectrum of Hb. The parameters were chosen as ω = κ = 1.

with n being a non-negative integer. Notice that these electron (hole) energies are equidistant,
which is similar to what happens for the eigenvalues (3.1.2) of the auxiliary initial Hamiltonian.
Moreover, since the factorization energy was chosen as the ground state energy of H0, all these
eiegenvalues are non-degenerate. Nevertheless, if we would take j ≥ 1 the first j excited state
energies would be doubly degenerate. Note also that, if we follow the procedure described in
appendix A, we can find that in this case the potential parameter κ does not depend on the
wavenumber k. Hence, the energies En do not depend neither on κ nor on k, see Figure 5.2.
Lastly, the probability densities and currents are drawn in Figure 5.3, where only the currents in
y-direction are displayed since in x-direction they vanish.

Section 5.2

Trigonometric Rosen-Morse potential

Let us consider now the trigonometric Rosen-Morse potential (3.2.1), whose eigenfunctions and
eigenvalues are given in equation (3.2.2). Taking the factorization energy (5.1), the integral in
w(x) can be written as in equation (5.1.1), but now the function Ij(x) is not a piecewise continuous
function as for the shifted harmonic oscillator but rather a continuous function in the full domain.
It is expressed in terms of the hypergeometric function, the gamma function and some periodic
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Figure 5.4: Confluent supersymmetric partners for the trigonometric Rosen-Morse potential in the isospectral case
V2(x;−1) and in the limit case V2(x; 0) (top). Associated magnetic fields in both cases (bottom). The parameters
were taken as D = 2, κ = −2 and µ = 1.

functions, as can be seen in the result

Ij(x) =

j∑
l,m=0

(−1)m+l

(
j
m

)(
j
l

)
(l + q − p+ j)l(l + q − p+ j)m

Γ(l + 1− p)Γ(m+ 1− p)

×
[
e−i

p+q
2

[π−2θ(x)]e−i(p−q)θ(x) 2F1

(
q,m+ l + q − p; 1 + q;−ei2θ(x)

)
− Γ(1 + q)Γ(p− q −m− l + 1)

Γ(p+ 1−m− l)
e−i

p−q
2
π
]
,

(5.2.1)

where p = s+j+iaj , q = −s−j+iaj , s = D/µ, aj = −κD/µ(D+jµ), θ(x) = arctan(cot(µx))
and 2F1(a, b; c;x) is the hypergeometric function. In the limit x→∞ the function Ij(x) tends to

Ij(x→∞) =

j∑
l,m=0

(−1)l+m
(
j
l

)(
j
m

)
(1 + q − p+ j)l(1 + q − p+ j)m

Γ(l + 1− p)Γ(m+ 1− p)

× Γ(1 + q)Γ(p− q + 1− l −m)

Γ(p+ 1−m− l)

(
e−i(p+q)πei

p−q
2
π − e−i

p−q
2
π
)
.

(5.2.2)

Similarly to the previous case, from equations (2.2.41), (5.1.1) we can calculate η(x;ω0), but
substituting now the corresponding function Ij(x) (5.2.1) and its limit (5.2.2). The magnetic field
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Figure 5.5: Potential parameter κ (top) and first electron energies for bilayer graphene (bottom) as functions of the
wavenumber k in the confluent case for the trigonometric Rosen-Morse potential with D = 2 and µ = 1.

B(x;ω0) is determined from equation (3.3) for j = 0, which can be written as

B(x;ω0) =− 2q
c~
e
µ2Γ(1 + p)

(
1 + ei2θ(x)

)p−q {[
Γ(1 + q)Γ(p− q + 1)

× [1− i2ω0 sin(qπ)] e−i2qθ(x) − Γ(1 + p) 2F1

(
q, q − p; 1 + q; e−i2µx

) ]−2
×
[
qΓ(1 + p)

((
1− e−i2µx

)p−q − 2F1

(
q, q − p; 1 + q; e−i2µx

))
− p− q

1 + e−i2θ(x)

×
(
Γ(1 + p) 2F1

(
q, q − p; 1 + q; e−i2µx

)
− Γ(p− q + 1)Γ(1 + q)

× [1− i2ω0 sin(qπ)] e−i2qθ(x)
)

+ qΓ(p− q + 1)Γ(1 + q) [1− i2ω0 sin(qπ)] e−i2qθ(x)
]}
.

(5.2.3)
The non-shape-invariant SUSY partner potentials of V0(x) in two cases, for ω0 = −1 and ω0 = 0,
are shown in Figure 5.4, as well as the corresponding magnetic fields.

For these magnetic fields the electron (holes) energies for bilayer graphene are given by

En = ± ~2

2m

[
κ2 −D2 + (D + nµ)2 − κ2D2

(D + nµ)2

]
. (5.2.4)

Up to a factor, these energies are equal to the corresponding ones for the auxiliary potential (3.1.1).
Unlike the harmonic oscillator case, however, now there are not degenerate energy eigenvalues
(see Figure 5.5). Furthermore, a dependence of the electron (hole) energies on the wavenumber k
appears, due to the fact that κ and k are now related as follows

k = κ+
4

κ
. (5.2.5)

It is worth noticing that this equation is valid only for D = 2 and µ = 1, since the calculation
for arbitrary values of these parameters is difficult, see appendix A. By solving the previous
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Figure 5.6: Probability densities (top) and currents in y-direction (bottom) for some eigenstates of the bilayer graphene
Hamiltonian Hb in the case of the trigonometric Rosen-Morse potential. The index m supplies the standard ordering
for the spectrum of Hb. The parameters were chosen as D = 2, κ = −2 and µ = 1.

equation for κ(k), two different solutions will be obtained (see Figure 5.5). Even though both
are mathematically correct, physically the electron energies (5.2.4) must depend on each of these
solutions in a way that the quadratic dependence in the momentum remains valid. Consequently,
only in the domain (−4, 4) the ground state exists. Finally, the probability and currents densities
for some eigenfunctions are plotted in Figure 5.6. Since in x-direction the current becomes zero,
we show only the currents along y-direction.

Section 5.3

Discussion

The confluent algorithm produces quite interesting results, since it cannot be seen in general as
the iteration of two non-singular first-order SUSY transformations. One of them is the fact that
the magnetic field (5.1.4) for the harmonic oscillator potential is independent of the wavenumber
k, so we can modify k but B(x;ω0) remains unchanged. Since the eigenvectors Ψn(x, y) and
eigenvalues En of the bilayer graphene Hamiltonian Hb neither depend on k, in this case the
electron motion in x-direction is independent of the motion along y-direction, in contrast to what
happens for any other example of this and the previous chapters.

As we mentioned at section 5.1, in the harmonic oscillator case there are j twofold degenerate
energy eigenvalues, namely, the first j excited energies. However, unlike all previous cases, where
the zero energy was twofold degenerate, the ground state energy is now non-degenerate. This
means that only one particle can be placed in such energy, contrary to the case when deleting two
consecutive levels where two particles can be placed in the zero energy at the same time. Similarly,
when the results for the trigonometric Rosen-Morse potential are analyzed we see that the ground
state energy is non-degenerate, no matter the parameter values taken nor the factorization energy
choice. It is still possible to get degeneracy for some excited state energies, by selecting exceptional
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Figure 5.7: Electron energy levels versus the index n labelling the eigenvalues of H0 for the trigonometric Rosen-
Morse potential, when the factorization energy chosen is the second excited state energy. All these energies are
non-degenerate. The parameters were taken as D = 2, κ = −2 and µ = 1.
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Figure 5.8: Electron energy levels versus the index n labelling the eigenvalues of H0 for the harmonic oscillator,
when the factorization energy chosen is the second excited state energy. The first two excited state energies are
twofold degenerate. The parameters were taken as ω = κ = 1.

and specific combinations of the parameters and the value of j. In Figure 5.7 we show a plot of
the energy levels versus the index n for j = 2, where it is possible to see that any energy level is
non-degenerate. In order to clarify further this point, it has been shown also a plot of the electron
energies versus the quantum number n for the harmonic oscillator potential but taking now j = 2,
which supplies the standard ordering for the eigenvalues of the initial potential, see Figure 5.8.
It can be clearly seen the twofold degeneracy of the first two excited energy levels, and the non-
degenerate ground state energy located at n = j.
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Chapter 6

Monolayer graphene in complex magnetic
fields

Since the beginning of this thesis, at the end of subsection 1.4.1, we raised the problem of monola-
yer graphene in an external in general complex magnetic field B(x). Although the eigenvalue
problem associated to the monolayer graphene electron in this kind of fields can be mathematically
addressed, and sometimes solved explicitly, the nature of these magnetic profiles is supposed to be
in principle non-physical. However, in recent years some coherent effects of many-body quantum
systems due to complex magnetic fields have been detected, in an effective way [Peng et al., 2015].
Motivated by this fact, in this chapter we will solve theoretically and study the consequences of
applying a complex magnetic field to monolayer graphene, and the way this assumption modifies
the electron energies as well as the probability and current densities, as compared with the real
case. Furthermore, we will discuss a possible physical interpretation of this complex magnetic
field, by means of an analogy with non-uniformly strained graphene [Oliva-Leyva and Naumis,
2015].

With this in mind, first we need to address the first-order supersymmetric quantum mechanics
(SUSY QM) for two intertwined non-Hermitian Schrödinger Hamiltonians, which will helps us
to solve the eigenvalue problem for a graphene layer in a complex magnetic field. Thus, we will
find the corresponding energy eigenvalues and eigenvectors in order to solve finally some simple
examples, for specific complex magnetic profiles.

Section 6.1

SUSY QM for intertwined non-Hermitian Hamiltonians

As we can see in section 2.1, the first-order supersymmetric quantum mechanics is a technique in
which two one-dimensional Shcrödinger-like Hermitian Hamiltonians, as well as their eigenfunc-
tions and eigenvalues, are intertwined. In this section we will develop the analogous theory, but
now assuming that the two Hamiltonians are non-Hermitian,

H± = − d2

dx2
+ V ±(x), (6.1.1)

where V ±(x) ∈ C. Such operators will satisfy the intertwining relation

H+L− = L−H−, (6.1.2)
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with L− being a first-order differential intertwining operator of the form

L− =
d

dx
+ w(x). (6.1.3)

Note that in this case w(x) ∈ C, thus the Hermitian conjugate of L−, which is given by(
L−
)†

= − d

dx
+ w(x), (6.1.4)

is not appropriate for describing the complementary intertwining relation between the two Hamilto-
nians (6.1.1), as we shall see below. Let us substitute now the explicit form of the Hamiltonians
(6.1.1) and the intertwining operators (6.1.3) in equation (6.1.2) in order to obtain

H+L− = − d3

dx3
− w

d2

dx2
+
(
V + − 2w′

) d

dx
+ V +w − w′′,

L−H− = − d3

dx3
− w

d2

dx2
+ V −

d

dx
+ wV − + (V −)′.

(6.1.5)

By comparing the coefficients of the same powers in d/dx we obtain the next two equations

V + = V − + 2w′,

V +w − w′′ = wV − + (V −)′.
(6.1.6)

The first equation gives us a relation between both potentials; if we plug it in the second equation
and integrate the result, we arrive at a particular case of the Riccati equation [Ince, 1956],

w2 − w′ = V − − ε, (6.1.7)

where ε ∈ C is a constant called factorization energy. This equation can be transformed in a more
familiar one if we make the change w(x) = −u′(x)/u(x), leading to the Schrödinger equation

− u′′ + V −u = εu. (6.1.8)

Thus, u(x) is a formal eigenfunction of the Hamiltonian H− associated to the factorization energy
ε, which is called seed solution. From the first row of equation (6.1.6) and (6.1.7) it follows that

V − = w2 − w′ + ε,

V + = w2 + w′ + ε.
(6.1.9)

Up to this point, the complex first-order supersymmetric quantum mechanics is similar to the
real approach studied in section 2.1. Nevertheless, the products of L− and its Hermitian conjugate
(6.1.4) do not lead to the form of the potentials in equation (6.1.9), thus we cannot give a factorized
form of the Hamiltonians H± in terms of those operators. However, if we consider the operator

L+ = − d

dx
+ w(x), (6.1.10)

its products with the operator L− turn out to be

L+L− = − d2

dx2
+ w2 − w′,

L−L+ = − d2

dx2
+ w2 + w′.

(6.1.11)
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Hence, the Hamiltonians H± can be factorized in the way

H− = L+L− + ε, H+ = L−L+ + ε. (6.1.12)

From the last two equations it follows the complementary intertwining relation

H−L+ = L+H+. (6.1.13)

Let us suppose now that we can solve the Hamiltonian H−, in other words, the eigenvalues E−n
in general complex and its corresponding eigenfunctions ψ−n (x) are known. A consequence of the
intertwining relation (6.1.2) is thatL−ψ−n (x) is an eigenfunction ofH+ associated to the eigenvalue
E−n . In an analogous way, equation (6.1.13) implies that if ψ+

n (x) is an eigenfunction of H+, then
L+ψ+

n (x) is an eigenfunction of H−. Therefore, we can write

ψ+
n (x) =

L−ψ−n (x)√
E−n − ε

, ψ−n (x) =
L+ψ+

n (x)√
E−n − ε

. (6.1.14)

It is important to notice that the spectrum of the Hamiltonian H+ could contain the factorization
energy ε, if the corresponding eigenfunction ψ+

ε is square-integrable. In fact, equation (6.1.12)
implies that such eigenfunction belongs also to the kernel of L+, thus it is given by

ψ+
ε (x) ∝ e

∫
w(x)dx =

1

u(x)
. (6.1.15)

A paper where it is possible to see how the algorithm introduced here works is [Fernández C. and
González, 2015].

Section 6.2

Monolayer graphene in complex magnetic fields

The graphene HamiltonianHm describing an electron on the monolayer surface in a magnetic field
B(x) is given in equation (1.2.22). If we assume that the magnetic field is complex, in the Landau
gauge the vector potential A(x) can be written as

A(x) = A(x)eiθ ey, (6.2.1)

withA(x) being the norm of the vector potential and θ its argument. In agreement with the minimal
coupling rule, the Hamiltonian Hm turns out to be

Hm = v0

(
0 px − ipy − i ecA(x)eiθ

px + ipy + i e
c
A(x)eiθ 0

)
. (6.2.2)

As in the real case, this Hamiltonian commutes with the momentum in y-direction. So, it is natural
to propose the eigenvectors of the previous Hamiltonian as follows

Ψ(x, y) = Neiky
(
ψ+(x)
iψ−(x)

)
, (6.2.3)
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with N being a normalization factor, k is the wavenumber in y-direction and ψ±(x) are arbitrary
functions to be found. Since in the coordinate representation the momentum operator is given
by pj = −i~∂j , the eigenvalue equation HmΨ(x, y) = EΨ(x, y) leads us to the next system of
equations

L−ψ−(x) =

[
d

dx
+ k +

e

c~
A(x)eiθ

]
ψ−(x) = Eψ+(x),

L+ψ+(x) =

[
− d

dx
+ k +

e

c~
A(x)eiθ

]
ψ+(x) = Eψ−(x),

(6.2.4)

where E = E/~v0. It is important to realize that L+ is not the Hermitian conjugate of L−.
However, a straightforward way to decouple the previous system is to apply the operator L+ on the
first equation (6.2.4) and L− on the second one, thus we get

L+L−ψ−(x) =

[
− d2

dx2
+
[
k +

e

c~
A(x)eiθ

]2
− e

c~
A′(x)eiθ

]
ψ−(x) = E2ψ−(x),

L−L+ψ+(x) =

[
− d2

dx2
+
[
k +

e

c~
A(x)eiθ

]2
+

e

c~
A′(x)eiθ

]
ψ+(x) = E2ψ+(x).

(6.2.5)

The products L+L− and L−L+ are second-order differential operators satisfying the eigenvalue
equations (6.2.5). If we compare them with equation (6.1.11), we can associate the previous
products with the Hamiltonians H± of equation (6.1.1), which satisfy the intertwining relation
(6.1.2) and thus they can be factorized as in equation (6.1.12). Consequently, we obtain

ε = 0, w(x) = k +
e

c~
A(x)eiθ, (6.2.6)

V − = w2(x)− w′(x),

V + = w2(x) + w′(x).
(6.2.7)

Since the factorization energy is zero and we associate it to an eigenfunction of H−, ε = 0 is
the corresponding ground state eigenvalue of H−. The potentials V + and V − are typically shape-
invariant, in the sense explained in equation (2.1.23). Note that w′(x) is directly proportional to
the magnetic field amplitude as follows

w′(x) =
e

c~
B(x). (6.2.8)

Therefore, the eigenvectors Ψn(x, y) and its associated eigenvalues En are given by

Ψ0(x, y) = eiky
(

0
iψ−0 (x)

)
, E0 = 0,

Ψn(x, y) =
eiky√

2

(
ψ+
n−1(x)
iψ−n (x)

)
, En = ±~v0

√
E−n , n > 0.

(6.2.9)

In the examples of the next section we will explore two useful physical quantities: the probabili-
ty density, calculated as the product of an eigenvector and its Hermitian conjugate,

ρ = Ψ†Ψ, (6.2.10)
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Figure 6.1: Real (a) and imaginary (b) parts of the auxiliary potentials V ± and the constant magnetic field for |ω| =
k = 1 and θ = π/10.

and the current density, which for the monolayer graphene Hamiltonian Hm turns out to be

J = v0Ψ
†σΨ. (6.2.11)

Although the previous current density expression is similar to that of the real case presented in
[Kuru et al., 2009] or to the free case one of [Ferreira et al., 2011], now the continuity equation is
inhomogeneous, see appendix B, the inhomogeneous term being given by

2ev0
c~

Im[A(x)eiθ]Ψ†σyΨ. (6.2.12)

Section 6.3

Solvable cases

In this section we will take some magnetic profiles whose amplitude is the product of a complex
coefficient times a real function of x. Then, we will determine the corresponding superpotential
the auxiliary potentials and the solutions to the problem of an electron in the graphene layer under
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Figure 6.2: (a) Electron energies in the complex plane for the constant magnetic field with three different angles;
the common ground state is indicated by a red circle at the origin, and the remaining potential parameters are taken
as |ω| = k = 1. (b) Real (top) and imaginary (bottom) parts of the first energies as functions of k for |ω| = 1 and
θ = π/10.

the given complex magnetic field. It is worth noting that we will start solving first the auxiliary
potential V −, then from its eigenvalues and eigenfunctions the corresponding solutions of V +

will be found. All the potential real parameters will be supposed to be positive, unless otherwise
specified.

Subsection 6.3.1
Constant magnetic field

The first magnetic profile to be studied is constant, namely,

B(x) = Beiθ ez, B, θ ∈ R. (6.3.1)

In the Landau gauge the vector potential reads

A(x) = xBeiθ ey. (6.3.2)

Substituting this expression in equation (6.2.6) we get that

w(x) = k +
ωx

2
, (6.3.3)

with ω = (2eB/c~)eiθ. The resulting auxiliary potentials are

V −(x) =
ω2

4

(
x+

2k

ω

)2

− ω

2
,

V +(x) =
ω2

4

(
x+

2k

ω

)2

+
ω

2
,

(6.3.4)
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Figure 6.3: Probability densities (top), current densities in x-direction (middle) and in y-di-
rection (bottom) for a constant magnetic field. The potential parameters taken are |ω| = k = 1 and θ = π/10.

which are complex shifted harmonic oscillators, as it is seen in Figure 6.1 where their real and
imaginary parts are drawn. The associated eigenfunctions are given by

ψ±n (x) =

{
cne
− ζ

2

2 Hn(ζ), −π
2
< θ < π

2
,

cne
− ξ

2

2 Hn(ξ), π
2
< θ < 3π

2
,

(6.3.5)

where n is a non-negative integer, ζ =
√
ω/2(x+ 2k/ω), ξ =

√
−ω/2(x− 2k/ω) and Hn(ζ) is a

Hermite polynomial of degree n with complex argument [Fernández C. and González, 2015]; the
expression

√
ω represents to

√
|ω|eiθ/2 and

√
−ω to

√
|ω|ei(π−θ)/2. The corresponding eigenvalues

of the potentials (6.3.4) turn out to be

E−0 = 0, E−n = E+n−1 = ±nω, (6.3.6)

with n being a natural number, the upper sign is taken for−π/2 < θ < π/2 while the lower one for
π/2 < θ < 3π/2. Thus, the electron (hole) energies (6.2.9) for monolayer graphene in a complex
constant magnetic field can be written as follows

En = ±~v0
√
±nω, (6.3.7)

whose norms are exactly the same as the electron (hole) energies for the real case addressed in
[Kuru et al., 2009], but now they are rotated in the complex plane an angle θ/2 with respect to
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Figure 6.4: Real (top) and imaginary (bottom) parts of the auxiliary potentials V ± and the magnetic field for the
trigonometric singular well with |D| = 4, θ = π/10, k = −2 and µ = 1.

the real axis, see Figure 6.2(a). In that plot it can be seen also several concentric circumferences
centered at the origin, of radius R ∝

√
n|ω|, on which the energy En lies regardless of the angle

θ. Thus, notwithstanding its complex nature we can say that for a fixed angle θ the spectrum of
Hm is ordered in the standard way. Moreover, Sp(Hm) is infinite discrete, and its energies do not
depend on k. In Figure 6.2(b) it is shown the real and imaginary parts of the first electron energies
as functions of k. The square-integrability of Ψn(x, y) does not impose constrains to the norm
of ω, but only to its argument θ, as it is seen in equation (6.3.5). Furthermore, when θ = ±π/2
the eigenfunctions ψ±n (x) are not square-integrable, since the auxiliary potentials become repulsive
oscillators for which the HamiltonianHm does not have bound states [Bermudez and Fernández C.,
2013]. The probability and current densities are drawn in Figure 6.3 for the first four eigenstates.
Note that the ground state has a null current density, since as it is seen in equation (6.2.9) its upper
entry is zero.

Subsection 6.3.2
Trigonometric singular well

Now it is taken a trigonometric complex magnetic field in the form

B(x) = Beiθ csc2(µx) ez, B, θ, µ ∈ R. (6.3.8)

The associated vector potential becomes

A(x) = −Be
iθ

µ
cot(µx) ey. (6.3.9)

From equation (6.2.6) the following superpotential w(x) is obtained,

w(x) = k −D cot(µx), (6.3.10)
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Figure 6.5: (a) Electron energies in the complex plane for the trigonometric singular well with three different angles;
the common ground state is indicated by a red circle at the origin, and the remaining potential parameters are taken as
|D| = 4, k = −2 and µ = 1. (b) Real (top) and imaginary (bottom) parts of the first energies as functions of k for
|D| = 4, θ = π/10 and µ = 1.

with D = (eB/c~µ)eiθ. Thus, the auxiliary potentials become

V −(x) = D(D − µ) csc2(µx)− 2Dk cot(µx) + k2 −D2,

V +(x) = D(D + µ) csc2(µx)− 2Dk cot(µx) + k2 −D2,
(6.3.11)

whose form suggests to call them complex trigonometric Rosen-Morse potentials. In Figure 6.4
their real and imaginary parts are plotted. The corresponding eigenfunctions are given in terms of
Jacobi polynomials P(α,β)

n with complex argument and indexes, namely,

ψ±n (x) = cn(−1)−(s±+n)/2(1 + ζ2)−(s±+n)/2er±arccot(ζ)P(−s±−n−ir±,−s±−n+ir±)
n (iζ), (6.3.12)

where s− = D/µ, s+ = s−+1, r− = −kD/µ(D+nµ), r+ = −kD/µ(D+µ+nµ), ζ = cot(µx)
and n is a non-negative integer. The square-integrability requirement of these eigenfunctions limits
us to the right side of the complex plane, i.e., −π/2 < θ < π/2. The spectra of the Hamiltonians
H± are composed by the eigenvalues

E−0 = 0, E−n = E+n−1 = k2 −D2 + (D + nµ)2 − k2D2

(D + nµ)2
, (6.3.13)

with n ∈ N. Substituting them in equation (6.2.9) the electron (hole) energies turn out to be

En = ±~v0

√
k2 −D2 + (D + nµ)2 − k2D2

(D + nµ)2
. (6.3.14)

We must notice that now the norm of En is not equal to the real energy derived in [Kuru et al.,
2009], except by the case when θ = 0. Meanwhile, its argument Φn has a non-trivial dependence
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Figure 6.6: Probability densities (top), current densities in x-direction (middle) and in y-direction (bottom) for a
trigonometric singular well. The potential parameters are taken as |D| = 4, θ = π/10, k = −2 and µ = 1.

on θ and the potential parameters. The first electron energies in the complex plane are shown in
Figure 6.5(a). It can be observed also concentric ellipses centered at the origin, with the energy En
belonging to the ellipse whose semi-major axis is equal to the n-th energy in the real case. Thus,
analogously to the previous case this fact implies that for a fixed angle θ Sp(Hm) is ordered in
the standard way. However, this happens just in the interval (−k0, k0), where Im (E1(k0)) = 0.
Despite this, the spectrum ofHm is infinite discrete as can be observed in Figure 6.5(b). In addition,
plots of the probability and current densities are displayed in Figure 6.6 for the first four eigenstates.

Subsection 6.3.3
Exponentially decaying field

As our last example, let us analyse the exponentially decaying complex magnetic field

B(x) = Beiθe−µx ez, B ∈ R, (6.3.15)

whose vector potential is

A(x) = −B
µ
eiθe−µx ey. (6.3.16)
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Figure 6.7: Real (top) and imaginary (bottom) parts of the auxiliary potentials V ± and the exponentially decaying
magnetic field for |D| = 1, θ = π/10, k = 6 and µ = 1.

In agreement with equation (6.2.6) the superpotential is written as

w(x) = k −De−µx, (6.3.17)

with D = (eB/c~µ)eiθ. By substituting w(x) in equation (6.2.7) we get the auxiliary potentials

V −(x) = k2 +D2e−2µx − 2D
(
k +

µ

2

)
e−µx,

V +(x) = k2 +D2e−2µx − 2D
(
k − µ

2

)
e−µx,

(6.3.18)

which have the same form as the Morse potentials but with the parameter D being now complex.
The real and imaginary parts of V ±(x) are shown in Figure 6.7. They are exactly solvable
potentials with its eigenfunctions being given by

ψ±n (x) = cn(ζ)s±−ne−
ζ
2L2(s±−n)

n (ζ), (6.3.19)

where s− = k/µ, s+ = s− − 1, ζ = (2D/µ)eµx, n is a non-negative integer and Lλ
n(ζ) is an

associated Laguerre polynomial of complex argument. The square-integrability conditions imply
that −π/2 < θ < π/2 and k > nµ. The corresponding eigenvalues are

E−0 = 0, E−n = E+n−1 = k2 − (k − nµ)2, (6.3.20)

with n being a natural number. It is worth noticing that the spectra of the HamiltoniansH± are real
since, unlike the two previous examples, now they are pseudo-Hermitian operators [Mostafazadeh,
2002a,b]. Thereby, the energy eigenvalues for the electrons (holes) in monolayer graphene take
the form

En = ±~v0
√
k2 − (k − nµ)2. (6.3.21)
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Figure 6.8: (a) Electron energies in the complex plane for the exponentially decaying magnetic field with |D| = 1,
k = 6 and µ = 1. (b) Electron energies as functions of k for |D| = 1 and µ = 1.

In this instance the spectrum of Hm coincides exactly with the one for the real case addressed in
[Kuru et al., 2009]. Such spectrum is discrete but finite, since once the parameters k and µ are
fixed the condition k > nµ limits the number of square-integrable eigenfunctions and hence the
number of allowed electron energies, see Figure 6.8(a). In Figure 6.8(b) the energy levels En as
functions of k are shown, and an enveloping line is also shown whose slope v0 equals the average
y-velocity. This line separates the k-domain into two regions, one where there are bound states
and an other one where the scattering states arise. Finally, the probability and current densities are
plotted in Figure 6.9.

Section 6.4

Discussion

It is interesting to observe that there are some x-points for which the imaginary parts of eB(x)/c~
and V +(x) are equal, as it is shown in figures 6.1, 6.4 and 6.7. If we denote as χ one of these points,
in order to fulfill equation (6.1.9) it turns out that Im[w2(χ)] = 0, which implies that Re[w(χ)] = 0.
Let us recall now a classical ‘kinematical’ quantity, the momentum along y-direction given by
Πy = py + (e/c)A. Since the canonical momentum py is a constant of motion, it follows that
Re[Πy(χ)] = ~Re[w(χ)] = 0. It is worth noticing that the maximum of the ground state probability
density appears at one point χ, and the latter depends on the angle θ (see Figures 6.3, 6.6 and 6.9).

On the other hand, since the Hamiltonian (6.2.2) is non-hermitian, its eigenvalues are not
necessarily real. In fact, it can be written as

Hm = v0
[
σxpx + σy(py + (e/c)A(x)eiθ)

]
, (6.4.1)

or equivalently as
H = HR + iv0(e/c)σyA(x) sin θ, (6.4.2)
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Figure 6.9: Probability densities (top), current densities in x-direction (middle) and in y-direction (bottom) for an
exponentially decaying magnetic field. The potential parameters taken are |D| = 1, θ = π/10, k = 6 and µ = 1.

where HR = v0 [σxpx + σy (py + (e/c)|A(x)| cos θ)] is a hermitian operator whose eigenvalues
are real, which is similar to the Hamiltonian addressed in Kuru et al. [2009]. The second term in
equation (6.4.2) is an anti-hermitian operator whose eigenvalues are purely imaginary. In order
to understand the nature of this term, let us remember that the Dirac-Weyl equation in graphene
describes a massless pseudo-spin 1/2 particle, where pseudo-spin ‘up’ means that the electron is in
the sublattice B and ‘down’ in the sublattice A. By remembering the pseudo-spin ladder operators
S± = Sx ± iSy, it follows that the second term can be written as (ev0/c~) (S+ − S−)A(x) sin θ.
It induces pseudo-spin rotations, and it is analogous to the corresponding term that appears in the
Hamiltonian describing non-uniformly strained graphene (see Oliva-Leyva and Naumis [2015]).
By sticking to this analogy, in de Juan et al. [2013] this anti-hermitian operator is associated
to the layer curvature induced by strain, while in the case analyzed here the analogous term is
proportional to the imaginary part of the vector potential, but the point is to find a phenomenon
that could be associated with it. Then, since the Hamiltonian (6.4.2) is time-independent, the
time evolution of the total probability associated to an eigenstate has an exponential factor which
depends on the imaginary part of its eigenvalue En, namely,

PT (t) = 〈Ψn(t)|Ψn(t)〉 = e2
Im[En]

~ t〈Ψn(0)|Ψn(0)〉. (6.4.3)
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A small probability increase (decrease) occurs if the exponent fulfils 2(Im[En]/~)t � 1. This
happens for approximate times which are inversely proportional to the imaginary part of the energy
eigenvalue. Using the polar form En = |En|eiφn , for the first bound states it turns out that if
φn � 1 we obtain times which are long enough to guarantee the probability conservation, except
by small perturbations. Thus, the anti-hermitian term in the Hamiltonian (6.4.2) can be seen as a
perturbation describing the loss or gain of charger carriers in the graphene sublattices. Therefore,
one could revisit the graphene in a real magnetic field orthogonal to its surface, trying to model it
as a non-conservative system, due to the interaction of the pseudo-spin electron with the magnetic
field, through the exactly solvable non-hermitian Hamiltonian (6.2.2), and taking the expansion
of the eigenvalues En in powers of φn one could find the corresponding energy corrections (if
required). Furthermore, the probability and current densities will be modified, as compared with
the real case. It is worth noticing that, despite the Hamiltonian is non-hermitian, we cannot ensure
that its eigenvalues will be complex, as it was seen in the third example of the previous section
where the eigenvalues were real and the total probability for their corresponding eigenstates was
conserved.

Finally, we must mention an interesting case where the anti-hermitian term in the Hamiltonian
(6.4.2) cannot be considered as a perturbation around θ = 0: in the limit θ → π/2 our Hamiltonian
describes the free graphene Ferreira et al. [2011] plus an interaction term between the pseudo-spin
electron and a purely imaginary magnetic field. All the magnetic profiles discussed in section
6.3 will lead us to auxiliary potentials without bound states in this limit. However, for arguments
θ ≈ π/2 we will get auxiliary potentials with “weak” bound states, whose probability densities
have a pronounced maximum that diverges in the limit when θ tends to π/2.
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Conclusions

Throughout this work we have solved exactly, inside the tight-binding framework, the effective
Hamiltonians describing an electron in monolayer and bilayer graphene under magnetic fields
orthogonal to the graphene surface, finding explicit expressions for the bound states by means
of supersymmetric quantum mechanics. We have analysed different magnetic profiles in the
Landau gauge leading us to translationally invariant problems along y-direction. Thus, through the
minimal coupling rule the eigenvalues and eigenvectors of the graphene Hamiltonians Hm and Hb

in equations (6.2.2) and (3.4) will depend in general on the wavenumber k in y-direction. Although
supersymmetric quantum mechanics allows us to transform the eigenvalue problem of Hm and Hb

into two intertwined one-dimensional stationary Schrödinger-like equations, the corresponding
auxiliary potentials turn out to be expressed in terms of parameters that are not necessarily linear
in k. Moreover, the calculation of this k-dependence in general could be complicated, as it is
shown in appendix A. It is worth mentioning that the modification in the momentum induced by
the minimal coupling rule causes the inclusion of extra terms in the associated continuity equation
with respect to the free case displayed in [Ferreira et al., 2011]. For bilayer graphene this extra
term can be expressed as the divergence of a vector function which is included automatically in the
current density. On the other hand, for monolayer graphene if the magnetic field is real there is no
modification at all, but if it is complex although the current density is not changed with respect to
the free case the continuity equation becomes inhomogeneous, see appendix B.

Most of this thesis is focused on bilayer graphene and the use of second-order supersymmetric
quantum mechanics to find the solutions of the corresponding eigenvalue problem. To apply this
algorithm without restrictions two assumptions were made (see chapter 3) so that we could address
three important cases: the case where the auxiliary potentials are shape-invariant in the sense of
equation (2.1.23), which is analogous to the monolayer case worked in [Kuru et al., 2009]; the more
general case where two consecutive energy levels are chosen as factorization energies (see chapter
4); the confluent case of chapter 5. It is important to note that in contrast to the monolayer case,
for bilayer graphene there exists degeneracy in some of the bound state energies. Nevertheless,
this degeneracy depends on the election of factorization energies and potential parameters, so it is
possible that for a particular choice none of the bound state energies are degenerate. Furthermore,
since by construction the wavenumber k is fixed from the very beginning, thus in the non-shape-
invariant cases the generated magnetic field will depend on k, consequently if this parameter
changes the magnetic field is consistently modified, see sections 4.3 and 5.3.

On the other hand, when we consider a complex magnetic field (chapter 6) the Hamiltonian
Hm in equation (6.2.2) is expressed as the sum of a Hermitian term plus an anti-Hermitian one,
see equation (6.4.1), the last causing pseudo-spin rotations. Despite the complex nature of the
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problem, a possible physical interpretation as an effective complex magnetic field (that arises by
analogy with the non-uniformly strained graphene) could be that a real magnetic field with the same
magnitude as the complex one is applied to graphene, and the angle θ allows us to introduce in the
model a term describing the loss or gain of charge carriers, induced by the interaction between the
pseudo-spin electron and the magnetic field. There are important differences in the behaviour of
some physical quantities in the complex case with respect to the real case, as the probability and
current densities. In particular, the current density along x-direction becomes non-null, in contrast
to the result found in Kuru et al. [2009] for the real case. Furthermore, now the ground state
probability density acquires its maximum at the point where the imaginary parts of eB/~c and V +

turn out to be equal.
Finally, this work has an interesting future outlook:

• The second-order supersymmetric quantum mechanics allow us to choose the factorization
energies in many ways that are different from the cases worked here: both can be taken
below the ground state energy, between two adjacent energy levels or to be complex in
general, see [Fernandez and Fernandez-Garcia, 2005]. For sure they will generate exotic
auxiliary potentials (solvable) and associated magnetic profiles.

• A complex magnetic field could be introduced in the bilayer graphene effective Hamiltonian
Hb (3.4); this work requires more exploration and analysis.

• The use of supersymmetric quantum mechanics to solve the graphene effective Hamilto-
nians is not limited to this material. Other 2-D materials described as well by Dirac-like
Hamiltonians could be addressed with this technique, and exact analytic solutions could be
found.
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Appendix A

Relation among the potential parameters
and the wavenumber k

The different initial potentials that we have dealt with in this work depend on several parameters;
which in this appendix will be denoted as λ. Let us recall that we can determine the supersymmetric
partner potentials V0 and V2 if we know the key function η(x;λ), which is related with the magnetic
field as follows

B(x;λ) =
c~
2e
η′(x;λ). (A.1)

Since in the Landau gauge the associated vector potential is obtained as the integral of the magnetic
field,

A(x;λ) =

∫
B(x;λ)dx, (A.2)

when substituting equation (A.1) in the previous expression we get that

A(x;λ) =
c~
2e

[η(x;λ) + C(λ)] , (A.3)

where C(λ) is an integration constant, independent of x. NOte that the vector potential A(x;λ),
the function η(x;λ) and the wavenumber k are related through (see equation (3.2)),

k =
1

2

(
η(x;λ)− 2e

c~
A(x;λ)

)
, (A.4)

we can conclude that
k ∝ C(λ). (A.5)

This means that we just need to identify the constant C(λ) and to obtain then the relation among
the potential parameters λ and the wavenumber k. However, in general this is not an easy task
because the integral in equation (A.2) cannot be calculated in a simple way.





79

Appendix B

Continuity equation

Since the effective Hamiltonians for monolayer and bilayer graphene are modified via the minimal
coupling rule, thus the corresponding current densities could not have the same form that in the
free case discussed in [Ferreira et al., 2011]. Nevertheless, the right expressions can be determined
in the standard way, as it is carried out next.

Section B.1

Monolayer graphene

When a complex magnetic field is cosidered (see chapter 6), the minimal coupling rule applied to
the monolayer effective Hamiltonian leads to

Hm = ~v0
(

0 −i∂x − ∂y − i ec~A(x)eiθ

−i∂x + ∂y + i e
c~A(x)eiθ 0

)
, (B.1.1)

where pj = −i~∂j and the Landau gauge was taken. Assuming normalized wavevectors Ψ(x, y) =

(ψ+(x, y), ψ−(x, y))
T , with ψ±(x, y) being arbitrary wavefunctions, it turns out that

HmΨ = ~v0
(
−i∂xψ− − ∂yψ− − i ec~A(x)eiθψ−

−i∂xψ+ + ∂yψ
+ + i e

c~A(x)eiθψ+

)
. (B.1.2)

On the other hand, the dynamics of the system is ruled by

i~
∂Ψ

∂t
= HmΨ, (B.1.3)

then, the continuity equation is given by

∂ρ

∂t
+
i

~

[
Ψ† (HmΨ)− (HmΨ)†Ψ

]
= 0. (B.1.4)

If we work in more detail the second term of the previous equation, we get that the continuity
equation turns out to be

∂ρ

∂t
+ v0∇ ·

(
Ψ†σΨ

)
= 2v0Im

( e
c~
A(x)eiθ

)
Ψ†σyΨ, (B.1.5)

where σ is the vector whose components are the Pauli matrices. We can see that this continuity
equation is inhomogeneous, which is due to the Hamiltonian in equation (B.1.1) is non Hermitian.
Therefore, the current density takes the form

J = v0Ψ
†σΨ. (B.1.6)
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It is worth noticing that here we have used the Landau gauge, but if an arbitrary gauge is taken (just
keeping the magnetic field along z-direction), the operators off the diagonal of Hm will change to
−i∂x + (e/c~)Ax − ∂y − i(e/c~)Ay and −i∂x + (e/c~)Ax + ∂y + i(e/c~)Ay, with Ax, Ay ∈ C.
Despite the current density remains invariant, the right hand side of equation (B.1.5) will acquire
a new term given by 2v0Im [(e/c~)Ax] Ψ†σxΨ.

Section B.2

Bilayer graphene

In chapter 3 we made three assumptions allowing us to apply directly the second-order supersym-
metric quantum mechanics to bilayer graphene, thus we can write the bilayer Hamiltonian in the
following form

Hb = − 1

2m

(
0 Π2 − ~2f(

Π†
)2 − ~2f 0

)
, (B.2.1)

where Π = px − ipy − i(e/c)A and the Landau gauge was taken. Here we will consider that A
and f are two real functions depending on both coordinates x, y. Since pj = −i~∂j , assuming
normalized wavevectors Ψ(x, y) = (ψ2(x, y), ψ0(x, y)), with ψ2(x, y), ψ0(x, y) being arbitrary
wavefunctions, we get that

HΨ =− ~2

2m

(
∂x (−∂x + i∂y)ψ0 + ∂y (∂y + i∂x)ψ0 − 2

eA

c~
∂xψ0 + i2

eA

c~
∂yψ0

− ψ0∂x
eA

c~
+ iψ0∂y

eA

c~
− e2A2

c2~2
ψ0 − fψ0, ∂x (−∂x − i∂y)ψ2 + ∂y (∂y − i∂x)ψ2

+ 2
eA

c~
∂xψ2 + i2

eA

c~
∂yψ2 + ψ2∂x

eA

c~
+ iψ2∂y

eA

c~
− e2A2

c2~2
ψ2 − fψ2

)T
.

(B.2.2)

The dynamics is once again ruled by equation (B.1.3) but changing Hm by Hb, and the same
happens with equation (B.1.4). Thus, the second term of the latter equation in this case turns out
to be

−∇ · ~
m

{[
Im
(
Ψ†jxΨ

)
+
eA

c~
Ψ†σyΨ

]
ex +

[
Im
(
Ψ†jyΨ

)
− eA

c~
Ψ†σxΨ

]
ey

}
. (B.2.3)

Thus, the current density can be written as

J = − ~
m

[
Im
(
Ψ†jΨ

)
+
eA

c~
Ψ†ς Ψ

]
, (B.2.4)

where jx = σx∂x + σy∂y, jy = σy∂x − σx∂y, ςl = εlmσm, l,m = x, y, εlm is the 2-dim Levi-Civita
symbol and σm are the Pauli matrices.

It is worth noting that, since the Hamiltonian (B.2.1) is quadratic in the momentum, the current
density of the last equation is similar to one presented in [Sakurai, 1994]. Furthermore, for an
arbitrary gauge the operator Π will change to px + (e/c)Ax − ipy − i(e/c)Ay, hence the current
density will acquire an extra term given by (eAx/c~)Ψ†σΨ.
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