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Resumen

Los agujeros negros pueden distinguirse de otros objetos compactos de-
bido a la presencia de un horizonte de eventos que desconecta causalmente
la region interna con el exterior. Sin embargo, hay objetos compactos que
no presentan horizonte (algunos incluso sin superficie), que pueden imi-
tar algunas caracteŕısticas observacionales de agujeros negros. Trabajos
recientes apuntan a que un objeto importante en este contexto, son las es-
trellas de Proca, ya que pueden imitar la sombra de un agujero negro bajo
condiciones espećıficas. Para obtener una forma de distinguir estos obje-
tos, se debe considerar otro enfoque. En este trabajo se estudia el problema
de acreción en dichos objetos por medio de un análisis de la evolución de
las propiedades magnetohidrodinámicas del disco de acreción, para encon-
trar diferencias cualitativas y cuantitativas en el comportamiento del flujo
de acreción de ambos objetos.

Abstract

Black holes can be distinguished from other compact objects due the
presence of an event horizon which causally disconnects the inner region
from the exterior. However, there are compact horizon-less objects (some
can even be surface-less) that can imitate some observational properties of
black holes. Recent works point out that an important object, regarding
these imitators, are Proca stars, as they can mimic the shadow of a black
hole under specific conditions. In order to obtain a way to distinguish
these objects, another approach must be considered. This work studies
the problem of accretion onto these compact objects through an analysis of
the evolution of magnetohydrodynamic properties from the accretion disk
in order to find qualitative and quantitative differences in the behaviour
of the accretion flow between both objects.
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1. Introduction

Recent observations of the compact object’s shadow at the center of the M87
galaxy by the Event Horizon Telescope Collaboration (EHTC) [9] and the first
detection of gravitational waves (GW) on 2015 by LIGO [1] allow for a new way
to study and gain insight about objects such as black holes(BHs), which arise
from Einstein’s general relativity (GR). These and other global collaborations
along with the new generation of detectors and telescopes, reaffirmed the value
of Einstein’s theory and opened the way for theories of gravity which needed
testing, such as nonlinear electrodynamics[10, 67], modified gravity [51], dark
matter [38, 70, 69] and even more fundamental theories and results [50, 104,
21].

However, although several observations have been made regarding the possi-
bility of black holes, it is not certain whether event horizons can be distinguished
by observations [6] and there are some other astrophysical and theoretical ob-
jects which fulfill the compactness requirement, and can act as ”horizonless”
BH mimickers [72]. These imitators exhibit a similar same behaviour, in the
astrophysical context, as spacetimes that represent black holes. Objects such
as wormholes [79], gravastars [28], boson stars [52], and more recently, Proca
stars[22], can be mistaken for a BH, as their observational signature would pro-
duce similar results due to their extreme gravity.

New studies from gravitational waves suggest that other compact objects,
of exotic nature, may be relevant to study in the case of inspiral binaries [126],
and that in some cases, the exotic nature adjusts better to the observations,
such as the signal from GW190521, which is highly consistent with numerical
simulated signals coming from a Proca star merger [22].

As for the shadow’s observation of M87[9], it is known that shadows cast by
BHs can also be degenerate [64] or theoretically equivalent to other compact ob-
jects. A recent analysis shows that static Proca stars can mimic a Schawrszchild
shadow [57]. These evidence raises more questions as if the massive object ob-
served by the EHT, really represents a Kerr BH.

One way to distinguish black holes from these objects is to study the near-
horizon related effects and to try to recreate the results obtained by the EHTC,
LIGO, and other observations, which will, at least, raise significant constraints
on the nature of the mimickers [63]. Work in this direction has been done for
wormholes [85], gravastars[29] and boson stars [91], which makes it possible to
tell the differences between such objects and BHs. However, there is not enough
information about Proca stars in this context, which is the aim of this work.
In contrast to boson stars and other compact objects, Proca stars are mostly
stable objects, which is an important characteristic in the context of mimickers
[108].
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Another useful approach to study compact objects is to analyze the effects
produced by the object’s geometry in their surroundings by means of an accre-
tion disk, which can be seen as an orbiting halo of matter [99]. This approach
has the particularity that the model can be extended to include as many inter-
actions as possible, such as magnetic fields, self-gravity, etc.[3].

Similarities between Proca stars and BHs have been also studied in the
context of gravitational lensing [57], however, the observational results are com-
pletely dependent on the angle of observation, which can produce an observa-
tional degeneration, causing the possible differences between both objects, to
not be apparent or directly visible. This result forces other approaches to be
studied in order to be able to distinguish between a Proca star and a black hole.

This work is organized as follows: Chapter 2 presents a brief introduction to
astrophysical observations and how these are obtained. The mathematical and
physical background to understand GRMHD equations, as well as the numerical
methods applied to solve them and analyse them, is contained on Chapter 3.
Chapter 4 introduces the compact objects that are relevant to this work and
establishes the physics behind them, while Chapter 5 contains a brief review of
the accretion processes relevant to the physics of compact objects. The essence
of this work is presented in Chapter 6, where the numerical results from this
work, as well as the procedure followed to obtain them, are discussed. Finally
the conclusions and future perspectives along this line of research are shown.
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2. Astrophysical Observations of Strong Grav-
ity

Since the first mention of general relativity, a variety of techniques have
been developed in order to observe and obtain information regarding phenomena
studied under this theory. These techniques are useful to confirm the predictions
from general relativity and to provide data used in the study of alternate theories
of gravity. This chapter describes the most relevant techniques and observables
studied in the context of Proca stars that are useful in this work.

2.1. Observations

2.1.1. Gravitational waves

The study of the strong regime of gravity consisted on observations of the
effects present in electromagnetic radiation due to the gravitational effects, how-
ever, in 2015, the first gravitational wave was observed by the Laser Interferom-
eter Gravitational-wave Observatory (LIGO), opening a new window into the
study of the universe. Since then, multiple observations of these waves have
been made.

Gravitational waves are oscillations of spacetime itself due to the accelera-
tion of massive objects. They can be defined as a low-frequency propagation
of spacetime distortions associated to mass and as such, they do not interact
with matter in a significant way, in contrast with electromagnetic waves, which
represent the propagation of the electromagnetic fields through spacetime and
usually are either absorbed or scattered by matter due to their typically higher
frequency (higher with respect to gravitational waves).

As gravitational waves interact weakly with matter, when they reach Earth,
they carry most of the information regarding the event that produced such ra-
diation. This results in a weaker, but cleaner signal than the ones obtained
from electromagnetic radiation, which is altered due to the numerous radiation
sources distributed over the intergalactic medium. Another important differ-
ence between electromagnetic and gravitational radiation can be found when
studying the theoretical foundations of both theories, specifically, the multipole
expansion, as for gravitational radiation, the quadrupole term is dominant [75].

Gravitational waves are characterized by two independent polarization modes,
which are related to the motion of the source, as well as the orientation, and in
the case of rotating systems, the polarization carries information about the axis
of rotation.
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The amplitude and frequency of the gravitational waves are key constraints
for the waves to be detected due to detector limitations. Such factors are de-
termined by the nature of the phenomena that produces the radiation.

Amplitude is directly related to the distance to the source and the intrinsic
strength of the interaction. On the other hand, frequency is related to the mass
of the source, however, this dependence is not the same for all systems, for
example, a simple self-gravitating system depends directly on the mass, while
for a binary system, it is the rate of change of the frequency which depends
on the mass, but not directly, instead through a function known as chirp mass
[112].

Typical sources of gravitational radiation involve [18, 76]:

Binary systems: Systems composed by two orbiting bodies. Such bodies
can be black holes, neutron or other compact stars.

Supernovas.

Individual rotating stars.

Supermassive black holes.

2.1.2. Shadows of compact objects

Another important observable in the study of compact objects, are the shad-
ows. The observation of the shadow of a compact object consists in studying
the deflection of light, produced by the gravitational influence of the object, and
is also known as gravitational lensing, which is a technique that has been used
widely in the last decades. Light, when subjected to gravitational influence,
propagates along null geodesics, which are not always straight paths due to the
spacetime curvature [34]. Around a black hole, these paths of light can often
create the optical effect of a shadow due to the fact that the central object ab-
sorbs all photons up until a certain radius, from where all photons escape and
can reach the observer, forming a dark inner region.

Shadows corresponding to different spacetimes can not always be distin-
guished, and this can be due to either theoretical effects, such as a mathematical
degeneration in the calculation of the shadow, as shown in [64], or observational
problems regarding resolution.

Shadows and light rings can also be present in ultra-compact objects, how-
ever, they are stable only for brief periods of time, making them easily distin-
guishable from black holes [24, 36]. Around some compact objects that present
no surface (such as boson and Proca stars), apparent shadows can appear due to
different astrophysical effects that take place in the environment. Even in black
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holes, these effects are usually important and modify the shape of the shadow
in a significant way. A full description of the problem requires to take into ac-
count general relativistic magnetohydrodynamics (GRMHD) and the radiative
processes that occur into the system.

The study of idealized shadows of compact objects makes two assumptions.
The first one consists in considering that there is no light nor matter between
the object and the observer, making the radiation travel unperturbed from
the source to the observation point. The second assumption consists in not
considering the effects from accretion related process around the object. The
first issue is usually improved by implementing ray tracing, such as discussed
in [95]. The second issue, as mentioned before, is studied by means of GRMHD
simulations.

The first observation of the shadow of a compact object took place in 2017
by the Event Horizon Telescope Collaboration [9]. This observation consisted
in mapping the compact object located at the center of the galaxy M87. The
results are consistent with the theoretical predictions of a Kerr black hole with
mass of (6.5 ± 0.7) × 109M⊙ rotating in clockwise direction, however, in order
to be certain about the nature of the compact object observed by the EHT, it
is necessary to explore all possibilities.

The other possibilities considered in the case of the object from M87, are
subdivided into three categories by the EHT collaboration [8]:

Black hole solutions from the standard Einstein equations that include
additional fields.

Black hole solutions from alternative or extended theories of gravity.

Compact objects that appear as black hole mimickers, usually stars com-
posed from exotic matter.

More observations and simulations are needed regarding these possibilities
in order to confirm the nature of the object.

2.2. Detectors and Telescopes

This section deals with a brief description of the detectors and techniques
(based on interferometry) that are commonly used in the study of gravity, specif-
ically, regarding the study of gravitational waves, (which are studied with the use
of laser interferometry, to detect the very small oscillations produced through
spacetime) and shadows of compact objects (which need very long baseline in-
terferometry in order to create images with enough resolution to distinguish
these objects from the intergalactic background).
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Figure 1: First panel: The first observation of the gravitational wave event
GW150914, showing the basic anatomy of a classical gravitational wave signal
as seen through the strain produced by each phase of the process. Left panel:
Diagram of the LIGO detector showing the signal from GW150914 in the fre-
quency domain [1].

2.2.1. Laser Interferometry

Interferometry consists in obtaining information through the observation of
interference patterns and is now the most relevant method to obtain information
about gravitational waves [96]. The first and most basic interferometer, known
as Michelson-Morley interferometer, consisted in a beam of coherent source of
light going through a beam splitter, which separates the beam into two orthog-
onal directions that return to the splitter after being reflected in a mirror. The
paths followed by the beams are in vacuum, such that when the beams return,
they will interfere without a change in phase, however, the final pattern can
show interference and this is due to one of the light rays being intercepted by
a signal. The phase difference that results in the interference pattern is related
to the length of the arms (or the distance that the photons travel). In order to
maximize the phase difference of a typical gravitational wave in a LIGO-type
interferometer, the length of each arm must be of approximately 750 km [75].

This, however, is not a realistic situation, and in order to solve the problem,
Fabry-Perot cavities are implemented. The interaction of gravitational waves
with Fabry-Perot cavities is discussed in [121]. This method consists in aligning
two parallel highly reflective mirrors such that they allow for light to travel
farther in a shorter distance. The implementation of these cavities allows LIGO-
type interferometers to maximize the phase difference with arms of only 4 km.

The laser beam present in the LIGO detector is produced by neodymium-
doped yttrium aluminum garnet (Nd : Y3Al5O12)crystals with a wavelength
of 1064-nm. This detectors use test masses to detect the spacetime vibrations
produced by gravitational waves. In order to reduce noise in the signals due to

9



Accretion onto Proca stars

tectonic and meteorologic effects, every component of the detector is mounted
into a stage that isolates vibrations [1].

2.2.2. Very Long Baseline Interferometry (VLBI)

During 2019, the Event Horizon Telescope Collaboration (EHTC) presented
the first observation of the shadow of a black hole [9]. The collaboration imple-
mented a technique known as very long baseline interferometry (VLBI), which
consists in separating each element of the detector by distances that do not allow
for communication in real time between each of the elements. This technique is
usually employed by using several telescopes or observatories, of common astro-
physical use, associated by a correlation function, in order to recreate a more
complete observation of the source. The data collected by each of these detec-
tors is then sent to a central computer in order to reconstruct the full picture
by studying each data set. [123]

In the case of the Event Horizon Telescope (EHT), the detectors are placed
around the planet. Each of these detectors is a telescope that is able to observe
in millimeter or sub-millimeter wavelength. The distribution and the wide range
of wavelengths of the detectors allow for a more complete survey of the astro-
physical environment and a sufficient quality in order to achieve the needed
resolution to study near-horizon details.

An astrophysical observation performed by an array such as the one de-
scribed here, is characterized by several factors such as [7]:

Angular resolution. It is a measure of the resolution of the observation,
a higher value allows for smaller details to appear in the reconstructed
image. The EHT shows an angular resolution of 38 µas in the observation
of M87, in contrast with the resolutions of mas obtained with a typical
VLBI array [123].

Atmospheric transparency. The location of the telescopes involved in the
array allows for a medium with sufficient transparency such that the obser-
vations are not affected by the atmosphere, as weather can be an important
factor regarding transparency.

Scattering and optically thin accretion disks. This factor is related to
the sources, as the wavelengths in which the observations are made are
sufficient enough as to distinguish the effects produced by near horizon
effects from the scattering produced by free electrons.

The observations made in 2017 by the EHTC, employed an array of eight
telescopes and it presented the first extension of VLBI of wavelengths up to

10



Accretion onto Proca stars

1.3 mm. The complete description about the array and instrumentation imple-
mented by the EHTC is described in [7].
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3. Numerical relativity and general relativistic
magnetohydrodynamics

The analysis of the phenomena described in section 2 is usually done by
employing either the covariant formalism, which allows for a geometric descrip-
tion of the problem, or with the use of computers, which receive a decomposed
spacetime to analyze dynamical effects in order to have a more intuitive notion
of the concept of time evolution by relying on the fact that 3D problems are
more efficiently solved than 4D. This is done by implementing a new formalism
which consists in solving the equations from general relativity using numerical
methods. In order to apply these algorithms and to study the temporal evolu-
tion, the spacetime must be separated into spatial and temporal components.
One of the most important and commonly used approaches to this problem is
known as the 3+1 formalism, briefly discussed in the next section.

By casting the set of governing equations from a given problem into the
formalism of 3+1 decomposition, more realistic cases can be studied, such as
the accretion process. This section presents how to cast the relevant equations
into this formalism while discussing the numerical methods needed to implement
this procedure in a working algorithm.

3.1. 3+1 formulation

The main goal of this formalism is to provide the means to establish Ein-
stein’s equations as a Cauchy problem in order to solve the system by specifying
initial data and using numerical methods to study the evolution. A discussion
of the Cauchy problem can be found in Appendix A.

The first step in order to implement this framework, is to define the concept
of foliation as done by [42, 74], applying the concept to a spacetime such that
it acquires physical meaning. Then a brief review of the constraints imposed by
the spacetime physical structure is presented in order to finally construct the
ADM evolution equations.

3.1.1. Foliations and hypersurfaces

Considering an n-dimensional manifold M, a foliation consists in slicing
the spacetime into hypersurfaces Σt with (n-1)-dimensions which is directly
related to an scalar, smooth field t̂ with non-vanishing gradient such that the
corresponding hypersurfaces associated to different values evaluated for the field

12
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Figure 2: Spacetime foliations (Left.) representing space-like hypersurfaces as-
sociated to different values of the parameter t. (Right.) Adjacent hypersurfaces
depicting the change in coordinates [74].

are non-intersecting:

∀p ∈ M∃ t ∈ R, s.t. t̂(p) = t

Σt ∩ Σt′ = ∅ ∀ t ̸= t′ s.t . M =
⋃
t∈R

Σt
(1)

A graphical representation of this foliations can be found in Figure 2 for
the special case where the parameter t is associated with the time coordinate.
Physical spacetimes may fulfill the definition given in eq. (1) as long as a
Cauchy surface exists. This is due to the fact that these spacetimes are globally
hyperbolic. Further discussion on this aspect is shown in Appendix A.

Information about the evolution of this slices can be found by analyzing
adjacent hypersurfaces. Consider foliations corresponding to a parameter t and
t + dt as shown in Figure 2. The geometry associated to a generic spacetime
can be determined by three factors, the three-dimensional metric, the lapse of
proper time and the shift vector [74].

Although it must be noted that the physical properties of the original space-
time remain, its mathematical structure is going to adjust itself in order to be
compatible with numerical simulations. When the original metric acts on the
hypersurface it produces an induced metric, denoted by γ and known as three-
dimensional metric, with elements given by γij . It allows to establish the notion
of length over every hypersurface.

In order to understand the role of the time lapse, consider a unitary vector
n̂, normal to a given slice Σt. This vector can be seen as the velocity from an
observer moving in the temporal direction t (eulerian or fiducial observer), how-
ever, this observer perceives a proper time τ which is different to the coordinate
time t. The lapse function α, acts as the ratio between the observer and the
coordinate temporal rates along an Eulerian world line: dτ = αdt [124]. It can
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be noted that this same vector n, projects objects into the hypersurfaces, such
that, for the specific case of the metric γ:

γµν = gµν + nµnν (2)

A vector t̂ can be defined which follows the flow of coordinate time world-
lines, following the definition of the lapse function and the fact that any vector
can be decomposed into the orthogonal and tangent projection:

tµ = αnµ + βµ (3)

Considering now the global time function t associated with a given foliation
(not to be confused with the vector defined in eq. (3)), its gradient must be
parallel to the orthogonal vector n̂, i.e., they must be related by a proportionality
constant which turns out to be α, then using eq. (3):

n̂ = −α∇t → t̂µn̂ν = −α → t̂µ∇µt = 1 → βµ = γµν t̂
ν (4)

With the discussion above, the three parameters γµν , α and βi, can be
understood looking at a system such as the one shown in Figure 2. The three-
dimensional metric can be understood in terms of a single foliation, as the
geometry of such slice, while the lapse and the shift vector, are associated to the
evolution for a given observer between adjacent slices, the first with the temporal
length and the second with the displacement vector over the hypersurfaces.

The line element of a spacetime generated under the slicing conditions men-
tioned above is given as:

ds2 = −
(
α2 − βiβ

i
)
dx02 + 2βidx

idx0 + γijdx
idxj (5)

In this coordinate system, the normal vector corresponding to the velocity mea-
sured by an eulerian observer is given by:

nµ = (−α, 0) , nµ =
(
1/α,−βi/α

)
(6)

An important property appears when considering this system, as the relation
between the determinants associated to the 4-dimensional metric and the spatial
metric, is given then by: √

−g = α
√
γ. (7)

It is important to mention that as the slicing is done in an arbitrary, non-
unique way, although α and βi are introduced in a way such that they are
coordinate independent, they take the role of gauge functions.
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3.2. General Relativistic Magnetohydrodynamics

General relativistic magnetohydrodynamics (GRMHD) consists in a frame-
work combining the concepts and equations from magnetohydrodynamics, which
consists in the study of fluids subjected to magnetic interactions, with the for-
malism from general relativity. Classical magnetohydrodynamics consists in a
set of conservation equations associated to the evolution of the fluid properties.
This is going to be reflected in the general relativistic generalization as no clear
distinction between space and time exist, although it can be mediated using the
3+1 formulation discussed previously.

This section consists in a brief introduction of the GRMHD equations, which
are re-expressed in a 3+1 conservative set of equations by following the Valencia
formulation.

3.2.1. GRMHD equations

The study of GRMHD arises from the need to analyze systems that can be
studied in the context of fluids, which is reflected in the matter contained in
the universe. The information regarding the content of matter in a spacetime is
contained in the stress-energy tensor. When considering a geometry with non-
trivial content of matter, the tensor Tµν contains all the information relevant
to the fluid contained in the spacetime.

In order to start this analysis, it is necessary to define a reference frame for
the study of the fluids. Usually in classical MHD, two approaches are considered.
The first, known as Lagrangian frame, consists in following an specific region of
the fluid, i.e., an observer co-moving with the fluid. The Eulerian reference frame
consists in fixing a point in space and time, and analizyng the flow circulating
through such point. The general relativistic generalizations are immediate for
the Lagrangian approach, however, the Eulerian case consists in an observer
following world-lines which remain orthogonal to the temporal hypersurfaces,
such as in the previous section. [12, 119]. The Lagrangian approach has been
widely used in 1-D problems, as it reduces numerical diffusion [44], however,
in order to maintain hyperbolicity, it must be studied with a tetrad formalism
[47]; it was first used in [78] in the context of gravitational collapse. Despite
this discussion, along this work, the Eulerian description is adopted.

The more general way to model an unmagnetized fluid, is to define an energy-
stress tensor as [44]:

Tµν = ρ(1 + ε)uµuν + (p− ζθ)hµν − 2ησµν + qµuν + qνuµ (8)

As for the variables involved in eq. (8), ρ represents the rest-mass density, ε
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the specific energy density, uµ the fluid velocity, p for the pressure and qν is
the energy flux. The viscosity of the system is given in terms of ζ and η, which
represent the bulk and shear viscosity respectively and θ = ∇µu

µ is the fluid
expansion. We also define the shear σµν and the projection tensor hµν :

hµν = gµν + uµuν , (9)

which is the same as eq. (3) for the spatial metric.

However, the most simple case, where the effects associated to energy loss
(such as viscosity, shear or heat), are neglected, is known as a perfect fluid
and it is the most common model used to study accretion. In this case, the
stress-energy tensor is expressed in terms of the enthalpy h, and is reduced to:

Tµν = ρ huµuν + p gµν , where h = 1 + ε+
p

ρ
. (10)

On the other hand, when dealing with a fluids that can interact with mag-
netic fields, the total stress-energy tensor is the sum of two components, the first
one, regarding the electromagnetic (EM) interaction, and the other, associated
to the hydrodynamic effects from the content of matter, such as in eq. (10).
By introducing the field tensor associated to EM as Fµν and its dual Fµν in a
reference frame associated to an Eulerian observer moving with velocity n, as:

Fµν = nµEν + nνEµ − εµνλδnλBδ, Fµν =
1

2
εµνλδFλδ, (11)

with E and B representing the electric and magnetic field respectively, and ε as
the anti-symmetric Levi-Civita tensor divided by the metric determinant.

It is possible to obtain a frame where every component of the electric field
vanishes, this is known as the ideal MHD approximation. The magnetic field b,
is then given by:

bµ = Fµνnν , b2 = bνb
ν . (12)

With this, the EM tensor takes the form:

Tµν
EM = FµλF ν

λ − 1

4
gµνFλδFλδ =

(
uµuν +

1

2
gµν
)
b2 − bµbν , (13)

and considering the matter tensor, given by eq. (10):

Tµν
GRMHD = Tµν

Matter + Tµν
EM = ρh∗uµuν + p∗gµν − bµbν

with p∗ = p+
b2

2
and h∗ = h+

b2

ρ

(14)

The new variables p∗ and h∗, are thus modified by the influence of the magnetic
field.
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The necessary variables to work in a GRHD analysis are related by an equa-
tion of state and evolved through conservation equations regarding the diver-
gence of the stress-energy tensor. The first set of equations are obtained directly
from the Bianchi identities, resulting in the conservation of the tensor Tµν , while
another equation is obtained from the divergence of the projection over the Eu-
lerian velocity, resulting in a continuity equation.

When considering GRMHD, another set of equations is introduced in the
form of the Maxwell equations, such that for GRMHD, we are left with the
following set of conservation laws:

Continuity equation: ∇µ (ρu
µ) = 0, (15)

Energy-momentum conservation: ∇µ (T
µν) = 0, (16)

Maxwell equations: ∇ν (Fµν) = 0, (17)

Equation of state: P = P (X,Y ) (18)

In order to numerically implement these equations, they must be expressed in
3+1 formulation, although other formulations have been explored which consider
hypersurfaces with different causal structures [94].

Starting from eq. (15), using also the definition for the Lorentz factor W for
an Eulerian observer with 3-velocity vi, W = (1 − v2)1/2 = −nµu

µ = αut and
eq. (7), the continuity equation can be expressed in 3+1 formulation as:

∇µ(ρ u
ν) =

1√
−g

∂ν
(√

−g ρ uν
)
= ∂t (

√
γ ρW ) + ∂i

(
α
√
γ ρWv̄i

)
= 0 (19)

where the advection velocity v̄i is introduced and defined in terms of the Eulerian
3-velocity vi (also known as the Valencia 3-velocity) or the fluid velocity ui, as
v̄i = vi − βi/α = ui/W .

The conservation of the stress-energy tensor equation can be further sim-
plified by projecting over the hypersurface with the help of the spatial metric.
Taking into account the fact that ∇νg

µν = 0 and the relation between the
covariant derivative and the Christoffel symbols Γα

βδ, this results in:

γiν∇µT
µν = ∂t

(
α
√
γ T t

i

)
+∂j

(
α
√
γ T j

i

)
−α

√
γTµν

(
∂µgνi + Γσ

µνgσi
)
= 0 (20)

A more useful form of these equations are obtained when contracting with a
vector nµ along the direction of the hypersurface and substracting the continuity
equation:
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∇µ (−nνT
µν − ρuµ) + Tµν∇νnµ = ∇µ

(
αT 0ν − ρuµ

)
+ Tµν∇νnµ = 0

↪→ ∂t
(
α
√
γ
(
ρut − αT 00

))
+ ∂i

(
α
√
γ
(
ρui − αT 0i

))
= α

√
γ Tµν∇νnµ

(21)

Eq. (21) represents an evolution equation with a source term. This source
term, reflect the exchange of energy and momentum throughout spacetime.

In order to rewrite Maxwell equations, it is important to remember that
the magnetic field Bµ is purely spatial, and that due to the anti-symmetric
properties of the tensor Fµν , there are no Christoffel symbols associated to the
covariant derivative, such that eq. (17) in 3+1 takes the form:

∂t (
√
γ Bµ) = ∂i

(
α
√
γ

W

(
uµBi − uiBµ

))
(22)

µ = 0 → ∂i
(√

γ Bi
)
= 0 (23)

µ ̸= 0 → ∂t
(√

γ Bi
)
= ∂j

(√
γ
(
v̄iBj − v̄jBi

))
(24)

Eq. (23) is known as the solenoidal or divergence constraint for the magnetic
field, which is an analogy of the divergence condition from Maxwell equations
that implies the non-existence of magnetic monopoles, numerically this con-
straint is special, as it must be implemented on its own. On the other hand,
eq. (24) represents an induction equation, which results in the evolution of the
magnetic field.

3.2.2. Valencia Formulation

The Valencia formulation [17, 13] consists in introducing a new set of dy-
namical variables, known as conserved variables, and expressing the conservation
equations (eqs. (15-17)) as a first order, flux-conservative system. This is done
in order to take advantage of the new system’s hyperbolicity, which allows for
the implementation of numerical techniques discussed in the following sections.

Due to the form of the previous equations (eqs. (29), (31) and (33-34)), it
is convenient to define the new set of variables [13]:

D = ρW, τ = ρh∗W 2 − p∗ −
(
αb0
)2 −D, b2 =

BiBi

W 2
+
(
Bivi

)2
Sj = ρh∗W 2vj − αb0bj , b0 =

WBivi
α

, bi =
Bi

W
+W (Bjvj)v̄

i

(25)

under these new variables, known as conserved variables, the system of equa-
tions defined before, takes the form:
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∂t (
√
γ D) + ∂i

(
α
√
γ Dv̄i

)
= 0 (26)

∂t (
√
γ Sj) + ∂i

[
α
√
γ

(
Sj v̄

j + p∗δij −
bjB

i

W

)]
= α

√
γTµν

(
∂µgνi + Γσ

µνgσi
)

(27)

∂t (
√
γτ) + ∂i

[
α
√
γ

(
τ v̄i + p∗vi − αb0

Bi

W

)]
= α

√
γ
(
Tµ0∂µlnα− TµνΓ0

µν

)
(28)

∂t
(√

γ Bi
)
+ ∂k

(
v̄iBj − v̄jBi

)
= 0 (29)

This choice of variables makes it possible for the system to be expressed as:

1√
−g

[
∂
√
γ F0(w)

∂x0
+

∂
√
−gFi(w)

∂xi

]
= s(w), (30)

where w represents the set of physical variables, which now are called prim-
itive variables. F0 and Fi represent the conserved fluxes, while s is associated
to the sources. These are given as:

F0(w) =


D
Sj

τ
Bk

 , Fi(w) =


Dṽi

Sj ṽ
i + pδij −

bjB
i

W

τ ṽi + pvi − αb0Bi

W
ṽiBk − ṽkBi

 ,

s(w) = Tµν


0(

∂gνj

∂xµ − Γδ
νµgδj

)
α
(
δ0ν

∂lnα
xµ − Γ0

νµ

)
0k


(31)

Finally, in order to close the system, an equation of state must be introduced.
This equation of state relates the primitive variables and from here, through
derivatives between these relations, several physical parameters are obtained,
an important quantity is the local sound velocity, denoted by cs, and given by:

c2s =

(
∂p

∂e

)
s

(32)

Usually the solutions to GRMHD equations present discontinuities or shocks
due to the non-linearity of the equations [93], however, by rewriting the conser-
vation equations as a flux-conservative system, we guarantee that in such shock
discontinuities, the Rankine-Hugoniot conditions are satisfied. This allows for
the development of High resolution shock capturing methods (HRSC), and allow
for the physical variables to be correctly modelled through the evolution.
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3.2.3. Hyperbolic structure and Riemann problem

The following discussion follows mainly [13, 101], the reader is directed to
these references for an extended treatment. These new equations fulfill the
necessary conditions in order to be considered as hyperbolic (Apendix A). The
fact that this approach only contains first derivatives, allows to obtain more
information about the underlying structure of the equations by expressing them
as a quasi-linear system, given by

AµA
B ∇µV

B = 0 (33)

where V represents the set of physical variables, labeled by the indices A and
B, which run through the k variables, while A are the k × k jacobian matrices
associated to the fluxes.

In the context of GRMHD, as was found in [13] (where more details about the
construction of the jacobian matrices can be found), the variables associated,
are given by V = (uµ, bµ, p, s) where s represents the specific entropy. By
obtaining the characteristic polynomial of this system, due to the structure
of the equation, the eigenvalues can be found and interpreted as the speed of
propagating waves. The complete procedure regarding this analysis for GRHD,
as well as the interpretation of eigenvalues as waves, is available in more detail
in chapter 4 of [101].

The characteristic equation for this configuration is given as

Aµ (ζµ − λξµ)R = AµϕµR = 0 (34)

where ζ and ξ represent an spacelike and a timelike vector respectively, i.e.,
they define an specific hypersurface. λ represents the eigenvalues and R their
associated eigenvectors.

Solving the system, results in 10 eigenvalues, however, two of them are elim-
inated by using the velocity invariants, which are considered as constraints,
uµu

µ = −1 and uµb
µ = 0. Thus, the solution to this equation, considering

propagation along the x-direction, is given by

det (Aµϕµ) = (ρh+ b2)a2A2N4 = 0 (35)

where

A = (ρh+ b2)a2 − B2, a =
W

a
(−λ+ αvx − βx),

N4 = ρh

(
1

c2s
− 1

)
a4 −

(
ρh+

b2

c2s

)
a2G+ B2G

B = bx − b0λ, G =
1

α2

[
−(λ+ βx)2 + α2γxx

]
(36)

The explicit dependence on the eigenvalues λ is encoded in the variable a,
then from eq. (35), if a = 0, there is a wave, known as entropic wave, if A = 0,
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two Alfven waves appear, while ifN4 = 0, the solution reflects four magnetosonic
waves, resulting in seven independent waves.

Entropic and Alfven solutions are given by

λe = αvi − βi, λa± =
bi ±

√
ρh+B2ui

b0 ±
√
ρh+B2u0

(37)

while for magnetosonic waves, solutions cannot be expressed analytically due to
the quartic character of the equation, but the waves can be separated into fast
and slow, with two solutions for each speed. The velocity for each wave can be
ordered in the following way:

λf− ≤ λa− ≤ λs− ≤ λe ≤ λs+ ≤ λa+ ≤ λf+ (38)

These solutions become relevant when trying to find the conserved fluxes
from eq. (30), as the numerical solutions are given in terms of these speeds.
They also play a fundamental role when determining the conditions necessary
for implementing a time-step during dynamical evolution.

3.3. Numerical Methods

In order to obtain a solution for the system, the finite volume formulation
is introduced. This allows for a suitable way to integrate the fluxes along a
region by decomposing it into numerical cells that form part of a grid. Inferring
the value of the fluxes along each cell and using the conservation equations,
the system evolution is found. This section deals with the numerical methods
needed in order to complete the procedure mentioned above by following the
ideas from [101] and [44].

3.3.1. Finite volume formulation and High resolution shock captur-
ing schemes

In order to obtain a discrete spatial domain, a 1-D spacetime is considered
(as the 3D generalization is trivial in this case), J intervals are created in the
form Ij = [xj−1/2, xj+1/2]. This interval represents a numerical cell of width
∆x = xj+1/2−xj−1/2. The numerical time intervals are given by [tn, tn+1], such
that the cell volume is given by V n

j = Ij × [tn, tn+1].

For a conservative and hyperbolic system without sources, of the form ∂tU+
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∂xF = 0, integrating over the volume of a cell V n
j , results in

∫ xj+1/2

xj−1/2

dxU(x, tn+1) =

∫ xj+1/2

xj−1/2

dxU(x, tn) +

∫ tn+1

tn
dt F [U(xj−1/2, t)]∫ tn+1

tn
dt F [U(xj+1/2, t)]

(39)

In order to find a more suitable form for this equation (which is the differential
equation in integral form), new variables are introduced:

Cell Volume Average Un
j =

1

∆x

∫ xj+1/2

xj−1/2

dxU(x, tn) (40)

Numerical Flux Fj±1/2 =
1

∆t

∫ tn+1

tn
dt F [U(xj±1/2, t)] (41)

such that eq. (39) takes the form:

Un+1
j = Un

j +
∆t

∆x

(
Fj−1/2 − Fj+1/2

)
(42)

The numerical methods that employ this decomposition technique are known
as finite volume methods. Eq. (42) implies that the fluxes should depend only
on neighboring cells, while the CFL condition constrains ∆t.

With these basic ideas, the problem from eq. (30), can be solved in the
following way.

Considering a region Ω of the 4-D manifold, enclosed within an hypersurface
which has spacelike and timelike boundaries given by Σt, Σt+∆t and by Σxi ,
Σxi+∆xi respectively, defining the faces of a cell.

Defining the average over a cell as:

F̄0 =

∫ x1+∆x1

x1

∫ x2+∆x2

x2

∫ x3+∆x3

x3

√
γ dx1dx2dx3 F0∫ x1+∆x1

x1

∫ x2+∆x2

x2

∫ x3+∆x3

x3

√
γ dx1dx2dx3

, (43)

.

Integration over Ω of eq. (30) yields:
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F̄0
t+∆t − F̄0

t =−

(∫
Σx1+∆x1

√
−g dx0dx2dx3F̂1 −

∫
Σx1

√
−g dx0dx2dx3F̂1

)

−

(∫
Σx2+∆x2

√
−g dx0dx1dx3F̂2 −

∫
Σx1

√
−g dx0dx1dx3F̂2

)

−

(∫
Σx3+∆x3

√
−g dx0dx1dx2F̂3 −

∫
Σx3

√
−g dx0dx1dx2F̂3

)

+

∫
Ω

dΩS

(44)

Eq. (44) represents that the change in time of the flux averaged through a
cell, is given in terms of the total fluxes calculated at the faces of said cell.

Remembering that, up to this point, the fluxes are given in terms of the
conserved variables, we do not have information about the evolution of the
physical variables. In order to recover the evolution of primitive variables from
the set of eqs. (25), it is useful to construct a new system in terms of τ , S2

and the definition of D. These, combined with eq. (30) form a new system of
equations, from where the primitive variables can be recovered by finding the
roots of such system.

The physical solution is continuous, not discrete, however, the solutions are
given in the discrete regime, so that they must be reconstructed. In order to
obtain this reconstruction, the fluxes must be calculated along each cell. This
is usually done using HRSC methods, which consist in solving a local Riemann
problem in every numerical cell.

A Riemann problem consists in an initial value problem where the initial
conditions are given by constant and discontinuous values, physically analogous
to the solution of a two-region system separated by a membrane. This solution
is given in terms of a left and a right state [101]. As shown in figure 3, disconti-
nuities can be found at the center of each numerical cell. This effect is associated
to the discreteness of the solution and it is not physical, however, by solving
a series of adjacent Riemann problems along the complete computational do-
main, it is possible to infer the physical solution. The constant value taken by
the discrete solution along a given cell is the average of the flux through such
cell.

The steps to follow in order to solve a problem with HRSC methods are:

1. Reconstruct left/right states at each cell boundary through a Riemann
problem.
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Figure 3: Riemann problem [101]

2. Solve the Riemann problem (via exact or approximate Riemann solvers).

3. Evolve in time through a time-update algorithm.

A brief discussion of each step, as well as some of the main methods used,
is contained in the following sections.

3.3.2. Reconstruction techniques

Usually the methods used to reconstruct the fluxes are variations from the
original Godunov method, which is a first order accuracy scheme that consists
in using left/right states as:

U(x, tn) =

{
Un
j x < xj+1/2

Un
j+1 x > xj+1/2

(45)

Supposing the temporal evolution to be self-similar (i.e. the shape does not
change, it is only re-scaled), the fluxes are easily calculated by combining eq.
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(45) with eqs. (40) and (41), such that:

Un+1
j =

{
Un
j − λ∆t

∆x (U
n
j − Un

j−1) λ > 0

Un
j − λ∆t

∆x (U
n
j+1 − Un

j ) λ < 0
(46)

Modern Gudonov methods aim to increase resolution in the calculation of
the left/right states, usually they have at least 2nd order of accuracy (while
the original method only worked up to 1st order) and a greater resolution in
discontinuities.

The reconstruction process then consists in finding a suitable way to find the
right and left states required by the Riemann problem from a given cell. For
a cell centered at xj , with its face located at xj+1/2, the reconstruction phase

consists in obtaining, for a set of integers k, UL,R
j+1/2 = UL,R

j+1/2({Uj+k}).

Two of the most used methods are known as the piecewise parabolic method
[33], which consists in reconstructing the states via a polynomial interpolation
with a parabola inside each cell, and the slope-limiter methods [127], which
consists in a direct extension of the first order Godunov method by introducing
a reformulation of eq. 46 and extrapolating in terms of a slope, several ways to
express this slope have been studied.

3.3.3. Riemann solvers

Solving exactly the Riemann problem, is computationally expensive, thus
approximate Riemann solvers, which although not being exact, work with a
very high accuracy in most cases. These solvers can be subdivided into com-
plete and incomplete depending on the number of waves that are considered
in the solution. The discussion in this work is focused on approximate incom-
plete solvers due to the simplicity of their computational implementation. An
extensive treatment of this subject is presented in [125].

One of the most commonly employed Riemann solvers is the Harten-Lax-Leer
(HLL) solver, first shown in [53]. This solver assumes that after the disconti-
nuity, only two waves are relevant. Each one of these, propagates in opposite
directions, with speeds given by λR and λL respectively. For waves with speeds
between the latter, which represent the slower and the fastest possible speeds,
the states are constant. This choice is represented in the fluxes as

FHLL =


FL x/t < λL
λRFL−λLFR+λLλR(UR−UL)

λR−λL
λL < x/t < λR

FR λR < x/t

(47)

The wave speeds are computed via solving the eigenvalue problem in the form
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from eq. 37 and the criteria for choosing the bounds for these speeds is given
by [37].

An special case for the HLL solver arises when considering λR = −λL =
λ. This case is known as Rusanov solver or total variation diminishing Lax-
Friedrichs flux. In this case, the fluxes are simplified to

FTV DLF =
1

2
(FL + FR)−

1

2
λ(UR − UL) (48)

This simplification has been applied to numerous problems providing good
results. The Black Hole Accretion Code (BHAC), which is the code used in this
work, employs both of this solvers.

3.3.4. Time update

One of the most common techniques in order to update the time period,
is known as method of lines [110], as it is an standard procedure used in the
context of numerical implementation of partial differential equations. It consists
in transforming the current system into an ordinary differential equation in time
that can be integrated. This is done by discretising the spatial part, while
leaving the temporal derivative as a continuous function. This new system
is now solved by using Euler step for first order accuracy and Runge-Kutta
methods for higher order.

3.4. GRMHD codes

In order gain insight about the behaviour of accretion processes, it is neces-
sary to solve the GRMHD equations for different spacetimes, however, doing this
is complicated due to the numerous effects present in such processes. In order
to do this, a number of numerical computational codes have been developed.

3.4.1. Computational implementation of GRMHD equations

The numerical codes consist on an integration of the flux equations, which,
in 3+1 formulation, take the form of an hyperbolic system of conservation laws
[46], given by eq. (44).

In order to implement these equations (or any other Cauchy problem) in a
numerical code, the spacetime must be discretised up to a certain resolution.
This is done as discussed for the 3+1 formulation, however, in the computational
domain, boundaries must be included. This is easier to understand graphically,
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Figure 4: Schematic discretisation of an hyperbolic Cauchy problem [101]

as can be shown in figure 4. The process of discretisation, although it allows for
numerical and computational methods to be implemented to solve the problem,
it also generates numerical errors which can be divided into three categories as
defined in [101]:

Machine precision error. Associated to rational numbers expressed up to
a finite figure.

Round off error. Accumulation of machine precision errors when perform-
ing mathematical operations.

Truncation error. Associated to the discretisation process.

• Local truncation error. Measured by the difference obtained when
applying the discretised operators to the exact solution.

• Global truncation error. Spatial norm of the local truncation error.

The truncation errors are important as they allow to define the order of
accuracy of the methods employed.

Convergence of the solution is also an important factor when dealing with
discretised systems. In order to guarantee convergence, a consistency condition
is introduced which is fulfilled when the truncation error goes to zero in the
continuum limit of the discretised problem [103]. The Lax equivalence theorem
implies that stability is a sufficient and necessary condition for the convergence
in these systems, as long as they fulfill the consistency condition. This stability
condition, however, must be imposed, and is done by means of the Courant-
Friedrichs-Lewy (CFL) condition, which ensures that the domain of the contin-
uum problem is contained into the numerical domain. Physically, this condition
implies that physical perturbations move through the domain slower than the
numerical velocity defined as λN = ∆x/∆t. The CFL constraint is usually given
in terms of a dimensionless parameter CCFL ≤ 1. This is used in practice to
constrain the timestep, which is done in order to ensure an stable evolution [35].
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Returning to the problem of implementig the equations, specifically, regard-
ing the constant t surfaces, if the variables follow a conservation equation from
one boundary of the cell to the other, they remain conserved during the evolu-
tion as long as there is no interference from the computational domain or the
sources. However, this is not the case for the magnetic field components, as
they also need to fulfill the divergence constraint (given by eq. (23)), which is
implemented manually.

There are two main methods to implement the divergence constraint, the
first one, usually known as flux-interpolated constrained transport (FCT) [55]
and the second one, known as constraint dampening or generalized lagrangian
multiplier (GLM) [39].

The FCT method consists in keeping to zero (at machine precision) the sum
of all the fluxes going through a specific cell, nullifying the divergence of the
magnetic field. On the other hand, the GLM method, aims, as the name implies,
to introduce a Lagrange multiplier associated to the divergence condition into
the conservation laws. Divergence errors are transported to the boundaries
at the speed of light, where it decays on a sufficiently small timescale, thus,
removing divergences and recovering an hyperbolic system.

The approach from eq. (44), allows to obtain the conserved variables from
F0 at each time step, however, in order to obtain the fluxes, the primitive
variables are also needed. These variables are obtained by solving (or inverting)
the equations for D, Sj and τ along with the use of the equations of state,
however, no explicit solutions can be found due to the non-linearity of the
algebraic system and thus, a numerical approach is required. [89]

Eq. (44) implies that all fluxes are calculated only at the edges of the cell. As
these flows are not necessarily continuous, an HRSC scheme (High Resolution
Shock capturing scheme, such as the ones discussed in section 3.1.2) is needed to
solve the system. As mentioned before, this schemes consist on using Riemann
solvers to compute the numerical fluxes between cells in order to capture possible
discontinuities. A review of the available codes using HSRC schemes is given in
[45].

Most GRMHD codes use finite-difference schemes in order to obtain approx-
imate solutions in a discretized space-time. The effectiveness of these schemes
is measured by the difference between exact and numerical solutions, which is
known as global error. As this error gets closer to zero, the convergence of the
method increases. On the other hand, locally, numerical and exact solutions
can also be compared, giving rise to the local or residual error, from which the
order of accuracy can be computed, helping to determine the convergence order
of the scheme. [44, 101]

Table 1 shows some of the HRSC codes used in GRMHD simulations, along
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with a brief description of their more relevnt features (a more complete list can
be found in [44]). Recently the EHT collaboration published a comparison of
these codes, testing their viability to solve the evolution of magnetized accretion
[97].

Code Description
HARM [48] HLL fluxes, constrained transport, 2D,

however, 3d version available as harm-3d
Implements AMR (Adaptive Mesh Refinement) and

BHAC [98] MPI (Message Passing Interface), constrained
transport and constrained dampening

Koral [105] Includes radiation with an M1 closure scheme [73, 106],
uses LF fluxes and FCT.

Athena ++ [120] AMR and MeshBlocks, uses FCT
Gmunu [27] LF, HLL and HLLE fluxes, instead of

hyperbolic equations, uses elliptic solutions.

Table 1: Some GRMHD numerical codes

This work uses the BHAC (Black Hole Accretion Code), developed in 2017.
It will be more thoroughly studied in section 6.2.

In order to obtain results which can verify the data provided by observations
from the theoretical point of view, the validity of the GRMHD approximations
implemented in the numerical codes must be analyzed, so that these are valid
in the experimental context (such as the EHT).

In the context of accretion, the relevant problem is that of a magnetized
torus (the description of which can be found in section 5.2). A comparison of
GRMHD codes performance regarding this specific problem can be found in
[97].

Magnetized accretion GMHRD codes consider ideal GRMHD (with the ex-
ception of Koral), this approximation includes the treatment of the accretion
plasma as a fluid. The sources that exist in the EHT regime, such as Sagi-
tarius A and M87, both are low-luminosity active galactic nuclei [77, 68] and
thus the accretion rate is low enough such that the flow forms an optically thin
and geometrically thick disk. This results in a collisionless plasma due to the
virial temperature, also known as radiatively inefficient accretion flow (RIAF).
The collisionless plasma contributions are small compared to its deviation from
a fluid in this case, thus allowing for an ideal GRMHD approximation to be
accurate in this regime [97, 25].

29



Accretion onto Proca stars

3.4.2. Black Hole Accretion Code (BHAC)

As shown in Table 1, the Black Hole Accretion code (BHAC) uses the frame-
work MPI-AMRVAC as one of its main features. [32] This framework is written
in Fortran 90 and is originally aimed at solving hyperbolic partial differential
equations with emphasis in shock related problems and conservation laws, al-
though it recently has been enabled to solve elliptic PDEs [66]. It exploits par-
allel computing by using MPI (Message Passing Interface) in order to exchange
information between computer nodes.

On the other hand, the adaptive mesh refinement method consists in adjust-
ing the accuracy in highly sensitive regions in order to obtain greater precision
and resolution. It is commonly employed in the analysis of hydrodynamics nu-
merical problems where turbulence is present. This provides well defined grid
boundaries and a simple data structure which is specially helpful to avoid unnec-
essary interpolations, thus, decreasing the computational costs. In the current
case, AMR is needed in order to simultaneously solve the dynamics for small
and large scales and to analyze the behaviour of the MRI instability.

BHAC employs the 3+1 spacetime decomposition technique and allows for
different Riemann solvers, such as the standard HLL and TVDLF, and a mod-
ified TVDLF solver, which was first described in [60] and applied to GRMHD
in [100].

The code allows for the implementation of different equations of state (EOS)
as long as the enthalpy can be analytically expressed in terms of density and
pressure. Currently, models for ideal gas, synge gas and isentropic flow equations
of state are implemented. Regarding the divergence constraint, BHAC employs
both GLM and FCT in order to clean divergences.

One of the main advantages of BHAC is the flexibility that it provides regard-
ing the addition of arbitrary spacetimes and coordinates. This is reflected in the
fact that numerical metrics can be implemented besides the commonly known
spacetimes. Currently, the code allows for the well known cartesian, Boyer-
Lindquist, Kerr-Schild systems, as well as for less known systems, such as modi-
fied Kerr-Schild [80], Hartle-Thorne [54] or Rezolla & Zhidenko parametrization
[102].

The documentation, the installation process and some tutorials for BHAC
can be found in https://bhac.science/, as the code is publicly available.
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4. Compact objects

Compact objects represent excellent tests of the strong regime of gravity
due to the extreme conditions in their vicinity which give rise to interesting and
unusual effects. The study of such effects by modern experiments has opened
a new age in gravitational physics. This section deals with the basic physical
properties of some of this objects, starting with the well-studied Schwarzchild
black hole, up to the novel Proca stars, as well as adressing some of their shared
features.

4.1. The physics of black holes and compact objects

In order for a massive object to be considered as compact, the necessary
condition is given by M/R ∼ 1, meaning that there is a great amount of mass
contained into a small radius. Some objects that are considered as compact are
neutron stars and black holes. However, extended theories of gravity allow for
some other objects of exotic nature to be considered along this criteria. These
stellar structures can (and should) be studied from different perspectives, as
they contain a rich combination of physics from different scales, from particle
and nuclear physics, up to gravitation and astrophysics.

There is a fundamental difference between a compact star and a black hole,
the latter presents an event horizon which acts as a boundary that causally
disconnects the inner region from the outside. This horizon is, in most cases,
enough to find observable differences when observing (directly or indirectly) a
compact object, however, there are some special cases when stars can produce
an apparent horizon due to hydro-dynamical effects produced by matter that
orbits around the center of gravity.

Black holes can be classified in terms of their mass. Primordial black holes
usually are found in the early universe with masses up to that the Sun, however,
up to now, their formation channels are not determined. The next class of black
holes are known as stellar, with masses between 2 − 50 M⊙, they are usually
formed by gravitational collapse of massive stars. Next, are intermediate mass
black holes, ranging from 50 − 105 M⊙ although it is not clear if these objects
can be formed. High-redshift black holes, with masses between 105 − 106 M⊙,
formed by collisions from super massive clouds. The final kind of black holes
that can be found, are known as supermassive black holes with higher masses
than 106 M⊙, they can be found in the center of most galaxies [23].

For isolated, generic, non-rotating stars, the spacetime can be modelled in
terms of two regions. The inner region contains the material, which can be un-
derstand as a fluid associated with the solution of Einstein equations regarding
the content of matter and the outer region, which usually represents an asymp-
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totically flat spacetime. The line element associated to these objects is given,
in Schwarzschild coordinates, as [92]:

ds2 = −eΦ(r)dt2 + eλ(r)dr2 + r2dΩ2 (49)

And their structure is determined by the Tolman-Oppenheimer-Volkoff (TOV)
equation, which constrains the pressure P(r) and the total mass (in terms of the
mass-energy density ρ(r))as:

dP (r)

dr
= −GM(r)ρ(r)

r2

(
1 +

P (r)

ρ(r)c2

)(
1 +

4πr3P (r)

M(r)c2

)(
1− 2GM(r)

c2r

)−1

(50)
The parameters associated to the fluid, such as the pressure and density, are
usually found in terms of the stress-energy tensor and can be obtained a more
fundamental way, through the action. The total mass of the star is obtained
through

M(r) =

∫
d3x

√
−g
(
2T 0

0 − Tµ
µ

)
= 4π

∫
dr r2ρ. (51)

When considering an arbitrary star, there is a critical mass at which further
gravitational collapse into a black hole is inevitable. For white dwarfs, for ex-
ample, this mass is known as the Chandrasekhar mass [26] and can be obtained
in terms of an equation of state for a relativistic Fermi gas formed by massive
particles. For a general fermionic star, this mass shows the limiting case when
the gravitational pull surpasses the degeneracy pressure produced by its con-
stituent particles, although for some stars, another forces can appear due to
the interactions (For neutron stars, for example, neutrons are affected by strong
nuclear force).

4.2. Schwarzschild Black Holes

This was the first solution to Einstein equations; it considers an static and
isotropic metric that can describe the exterior region of a compact object, al-
though it can be extended to other regions by means of coordinate transforma-
tions [129]. This solution, for an object with mass M, is given by

ds2 = −
(
1− 2GM

c2r

)
c2dt2 +

(
1− 2GM

c2r

)−1

dr2 + r2dΩ2 (52)

This solution is asymptotically flat due to the fact that when r → 0, eq.
(52) is equivalent to a Minkowskian spacetime.

There is also a clear divergence when r = rS = 2GM/c2, which is known as
the Schwarzschild radius. For objects where the surface is enclosed within this
radius, a black hole appears.
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This solution is not only important when working with black holes, but also
when studying compact stars, when solving for the external region, i.e., a region
with only empty space, due to Birkhoff’s theorem, the only solution that fulfills
the asymptotically flat condition is Schwarzschild metric [83].

The Schwarzschild solution is singular at two points, at r = rS and r = 0.
A singularity can be produced by the coordinates or can be inherent to the
geometry of spacetime. In order to determine the nature of the singularities
present in this solution, it is necessary to observe the behaviour of the coordinate
invariant quantities, for example, the contraction of the Riemann tensor

RαβµνR
αβµν ∼ 1

r6
, (53)

which presents the origin singularity, which can be regarded as an intrinsic
singularity. However, the singularity associated to the Schwarzschild radius is
not present. This indicates that the latter is an effect of the choice of coordinates
and thus, can be removed by a suitable choice of coordinates.

Schwarzschild solution can be extended by employing Eddington-Finkelstein
coordinates which consists in defining v = t + r and u = t − r. The choice of
either v or u allows to gain insight about the inner regions which correspond
to a black hole and a white hole respectively. On the other hand, the maximal
analytic extension of this spacetime is obtained when using the Kruskal-Szekeres
coordinates, where U = −e−

u
4M and V = e

v
4M . However, the new regions that

can be formed by this extensions are not present in astrophysical black holes.

A Schwarzschild black hole can also cast a shadow, which is given by the the
outermost orbit associated to null geodesics. The outer rim of this shadow is
defined, for an observer, by the critical impact parameter associated to photons.
For Schwarzschild metric, this is given by bph = 3

√
3GM

c2 . A detailed derivation
for this value is found in [59]. However, in a realistic astrophysical situation, an
accretion disk is present which deforms the photon ring and creates background
radiation although the size of the shadow is barely affected [87].

Schwarszchild black hole is the simplest black hole that can be found, as it
only depends on one parameter, the mass. Black holes, however, can present
other features, such as rotation. Rotating black holes are known as Kerr black
holes, and are described, in Boyer-Lindquist coordinates, by the following line
element:

ds2 = −
(
1− 2mr

Σ

)
dt2 − 4mra

sin2 θ

Σ
dtdϕ+

Σ

∆
dr2 +Σ dθ2

+

(
r2 + a2 +

2mra2 sin2 θ

Σ

)
sin2 θ dϕ2

with Σ = r2 + a2 cos2 θ, ∆ = r2 + a2 − 2mr and a =
J

M
.

(54)
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4.3. Boson stars

A boson star can be defined as a compact, regular object produced by the
gravitational collapse of clouds composed of bosonic particles with a sufficient
mass such that the gravitational collapse stops before becoming a black hole.
These particles have integer spin and follow the Bose-Einstein statistics. Their
formation channels have been studied in [115], where usually these stars could
be formed through collision or accumulation of these bosonic particles, however,
in order for an stable configuration to be achieved, the exceeding material must
be radiated away, and this is done through gravitational cooling.

Fermionic stars (such as neutron stars and white dwarfs) are supported
against gravity due to a degeneracy pressure associated to the fact that fermions
cannot occupy the same energy level, a phenomenon that is not present in bo-
son stars, thus stability is an important factor when studying boson stars [56].
Unstable boson stars can experience further collapse and transform into a black
hole or the bosonic particles can be dispersed into the interstellar medium, al-
though there is a possibility that the boson star can migrate into an stable
solution [114].

Regular time-independent solutions are, in principle, forbidden by a theorem
established by Derrick, however, in order for them to exist, an harmonic time
dependence can be established, resulting in temporal oscillations of a complex
scalar field [11]:

Φ(r, t) = e−iωtϕ(r) (55)

Boson stars then can be explained as a massive complex scalar field which
is minimally coupled with gravity through the action [111]:

S =

∫
dx4√−g

16πG

[
R+ 8πG

(
gµν∂µΦ

∗∂νΦ− V (|Φ|2)
)]

(56)

Due to the fact that boson stars emerge naturally when coupling a scalar field
with gravity, they represent a prediction that comes directly from general rela-
tivity.

The interaction potential V (|Φ|2) is important as it allows for different crit-
ical masses to appear due to the self-interaction terms. This potential can also
contain information about stability and properties such as charge and rotation.
Variation of this action results in a system composed by Einstein equations,
with an stress-energy tensor given by

Tµν(Φ) =
1

2
[∂µΦ

∗∂νΦ+ ∂µΦ∂νΦ
∗]− gµν√

−g
L(Φ), (57)
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and a Klein-Gordon equation governing the scalar fields:(
2+

dV (|Φ|2)
d|Φ|2

)
Φ = 0. (58)

This system, composed by Einstein and Klein-Gordon equations, is known as
Einstein-Klein-Gordon equations. It is also interesting to note that the solutions
are time-independent due to the fact that only the amplitude of the scalar field
is considered in the potential. For a real scalar field solution, time dependence
could appear resulting in a time-dependent metric solution.

The solution to this equations for an static, spherically symmetric metric, is
given by:

ds2 = −N(r)σ2(r)dt2 +
dr2

N(r)
+ r2(dθ2 + sin2 θdϕ2) (59)

It is important to note that although this metric is stationary due to the fact that
the equations only consider the amplitude of the field, this scalar field associated
to matter and the spacetime metric do not share the same symmetries.

The critical mass estimation for boson stars to be stable [62] shows that
this parameter is given by Mmax = 0.633M2

Pl/m, however, when considering
a potential terms of higher order (such as λ4), the available masses for boson
stars increase dramatically.

Establishing a similar system to the TOV equations from eq. (50) accompa-
nied by the Klein-Gordon equation, there are three equations that govern the
evolution of this system. Supposing a potential of the form V = −µ2|Φ|2, these
are given as:

m′(r) = 4πr2
(
N(r)ϕ′2(r) + µ2ϕ2(r) +

ω2ϕ2(r)

N(r)σ2(r)

)
σ′(r) = 8πσ(r)r

(
ϕ′2(r) +

ω2ϕ2(r)

N2(r)σ2(r)

)
ϕ′′(r) +

2ϕ′(r)

r
+

N ′(r)ϕ′(r)

N(r)
+

σ′(r)ϕ′(r)

σ(r)
− µ2ϕ(r)

N(r)
+

ω2ϕ(r)

N2(r)σ2(r)
= 0

(60)

These equations are integrated with suitable initial conditions in order to explore
other features such as their stability and evolution.

It is possible to generalize this results for a rotating boson star [130], where
the ansatz for the scalar field now takes the form

Φ(t, r, θ, ϕ) = ϕ(r)Ylm(θ, ϕ)e−iωt (61)

The appearance of the spherical harmonics in the scalar field description, pro-
duces different topologies for the boson stars, this can be related to the fact
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that simulations of spinning boson stars evolution result in instabilities most of
the time as shown in [107].

4.4. Proca Stars

Proca stars, as their scalar equivalents, are represented by regular and
asymptotically flat geometries, with the difference that they are formed by a
vector field of spin-1. Their mechanisms of formation are similar to that of
boson stars, clouds containing these massive vectorial particles collide and the
material starts clustering into the star up to the critical mass. The exceeding
material is radiated away through gravitational cooling [41]. When the star is
formed, it can either remain or turn to a stable state, it can collapse or it can
even get dispersed through the interstellar medium.

For spherically symmetric Proca stars, the line element in the most general
form is given in the same form as eq. (59). The Proca field is described by a
complex 1-form given by the potential A. The exterior derivative results in the
field strength tensor F = dA, such that by coupling this field to gravity and
without considering self-interactions, the action takes the form:

SProca =

∫
d4x

√
−g

(
R

16πG
− 1

4
FαβF̄αβ − 1

2
µ2AαÂα

)
(62)

A dynamical condition which appears when studying this action is the Lorentz
condition, given by ∇αAα = 0, which stops being an optional choice of gauge.

As for the explicit form of the potential, the same ansatz as in the boson star
case is applied (however, instead of a scalar, a 1-form) in terms of an harmonic
dependence.

A = [f(r)dt+ ig(r)dr] e−iωt (63)

This system is then determined through the Einstein equations and the Proca
equations:

Gαβ = 8πGTαβ

∇αFαβ = µ2Aβ
(64)

The energy momentum tensor associated to this action has the following form:

Tαβ = −Fσ(αF̄σ
β) −

1

4
gαβFστFστ + µ2

[
A(αĀβ) −

1

2
gαβAσĀσ

]
(65)

From the two Proca equations (for t and r),
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Figure 5: Parameter space of the Proca star solution [20].

d

dr

[
r2(f ′(r)− ωg(r)

σ(r)

]
=

µ2r2f(r)

σ(r)N(r)

ωg(r)− f ′(r) =
µ2σ2(r)N(r)g(r)

ω

(66)

On the other, hand, from Einstein equations:

m′(r) = 4πGr2
[
(f ′(r)− ωg(r))2

2σ2(r)
+

1

2
µ2

(
g2(r)N(r) +

f2(r)

N(r)σ2(r)

)]
σ′(r)

σ(r)
= 4πGrµ2

(
g2(r) +

f2(r)

N(r)σ2(r)

) (67)

The possible space of solutions given in terms of the parameters ω and µ are
shown in figure 5. Reducing the frequency of the field produces an increase in the
compactness of the solution up to a maximum value of ωmax = 0.875. Several
branches appear and the solutions continue spiraling through these different
branches up to a critical frequency. The only stable branch is the one that
connects ω = 1 with ωmax. Every solution that appears in branches beyond
this one develop instabilities [20] and eventually, it will either collapse into a
black hole or gain enough mass such that it returns to the stable branch.

Spherically symmetric Proca stars usually have maximum stable masses of
aroundMMax ≃ 1.058M2

Pl/µ. This value is increased when considering spinning
stars with respect to different integers of the harmonic index m [20]. In rotating
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Figure 6: Solution curves associated to values of m [20].

Proca stars, the line element changes into

ds2 = −e2F0(r,θ)dt2 + e2F1(r,θ)(dr2 + r2dθ2)

+e2F2(r,θ)r2 sin2 θ

(
dϕ− W (r, θ)

r
dt

)2

,
(68)

while the potential 1-form takes two extra functions in comparison with the
spherically symmetric case,

A =

(
H1(r, θ)

r
dr +H2(r, θ)dθ + iH3(r, θ) sin θdϕ+ iV (r, θ)dt

)
ei(mϕ−ωt)

(69)

Different values of m account for an integer harmonic index, each generates
a set of solution curves (the solution curve presented in figure 5 represents the
casem = 0). Figure 6 shows the relation between the total mass and the angular
momentum associated to the star, while the inset shows the equivalent to the
spherically symmetric case for different values of m.

As mentioned before, when increasing the harmonic index, the maximum
mass also increases and therefore, the associated frequency decreases. Another
important property of these bosonic stars, is that the parameter a = J/M is
not constrained to be < 1 as in the Kerr case, resulting in a bigger family of
solutions.

The stability of Proca solutions is studied in [109, 107]. For rotating boson
stars, anomalous structures emerge due to the influence of spherical harmonics,
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Figure 7: Time series and waveforms fitting the strain data of GW190521 [22].

while for Proca stars, the spheroidal nature prevails in every case. According
to some authors, the anomalous structures in the case of boson stars could be
responsible for the unstable evolution present in such objects [40].

4.5. Boson and Proca stars as black hole mimickers

In real astrophysical environments, Proca stars (and in general, boson stars
or other compact objects) can act as black hole mimickers by reproducing effects
that are only thought to be visible in black holes. This section presents a
brief review of some of these effects, with specific focus on gravitational wave
detection, shadows and simulations.

The observation by the LIGO-VIRGO collaboration of the event GW190521
[2] showed a final black hole merger with a total mass of M ∼ 142 M⊙. This is
the range of masses associated to intermediate black holes, which, as discussed in
section 4.1, have not been found up to this time. This fact raises questions about
the nature of the compact objects involved in this process. The inspiral phase
associated to this event falls out of the detector’s sensitivity, thus allowing for
other options to be explored instead of binary mergers, such as head-on collisions
of compact objects.

By means of Bayesian parameter estimation, the event GW190521 has been
compared with numerical simulations regarding different configurations of Proca
stars [22], showing a slightly preferred likelihood for the Proca models.

Figure 7 shows the strain data associated to the observation by the LIGO-
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Livingston detector along with two simulations of head-on collisions between
Proca stars (one where both stars have the same mass) , the binary black hole
merger originally reported and a head-on collision from black holes. The model
which adjusts better to this data is the unequal mass Proca collision simulation,
closely followed by the equal mass model, being both slightly preferred to the
models of binary black holes.

Another important fact regarding this work [22], is that the mass correspond-
ing to the boson particle associated to Proca stars was found to be of around
8.7× 10−13 eV , which is contained into the mass boundaries of ultra-light dark
matter [43]. Although a slight preference is shown towards Proca stars, future
observations of gravitational waves in these same regimes of mass are needed in
order to confirm or discard the possibility that Proca stars exist.

On the other hand, studies suggest that boson and Proca stars can also
produce surfaces that can be confused with shadows. But first, it is important
to note that apparent shadows from compact horizon-less objects can be pro-
duced either by theoretical degeneracy in the photon ring calculations or by
environmental or astrophysical effects.

Theoretical degeneration regarding the shadow of a black hole occurs when
different geometries produce the same critical impact parameter for null geodesics
without these geometries being isometric between them. The work presented
in [64] establishes the different conditions and configurations needed for this
degeneracy to occur:

For spherically symmetric configurations given in the generic form

ds2 = −V (r)A(r)dt2 +
dr2

B(r)V (r)
+ r2dΩ2, (70)

to be Schwarzschild-degenerate, there are two conditions that must be met. The
first condition is that the angle of observation must be the same in both cases
with respect to the observer, and the second condition implies that the impact
parameter λ associated to the shadow, must be given as

λ =

√
27M√
A(robs)

. (71)

where robs represents the radius associated to the observer position.

On the other hand, for generic stationary spacetimes to be Kerr-degenerate,
the line element must have the following form:

ds2 = − (∆− a2 sin2 θ)Σ̄

Σ2
dt2 +

Σ̄

A4∆
dr2 + Σ̂ dθ2

− 4amr sin2 θ

Σ2
Σ̂ dϕ dt+

[(r2 + a2)2 − a2∆sin2 θ]Σ̂

Σ2
sin2 θ dϕ2

(72)
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where ∆ and Σ are defined in the same way as for the Kerr spacetime in
eq. (54), and Σ̂ = r2A1 + a2 cos2 θ B1. The functions A1, B1 and A4, are free
functions that must only fulfill the asymptotic flatness conditions.

An analysis of the stability of ultra compact objects that produce light rings,
shows that horizon-less objects must present at least two light rings with one of
them being stable, however, under short timescales, these objects could present
instabilities making them unable to naturally mimic a BH [36].

Work has been done in the direction of analyzing situations where compact
objects can mimic black hole shadows through effects associated to its astro-
physical neighbourhood, such as accretion. Boson stars have been studied in
this context in [128], showing that they can imitate the behaviour of a Kerr
shadow without presenting a light ring by producing dark inner regions in the
initial accretion configuration. This idea was studied further in [91], where
GRMHD simulations and synthetic image reconstructions were performed in
order to establish a methodology to differentiate black holes from boson stars.

For Proca stars, it has been shown that some solutions can attain a maximum
angular velocity along the timelike ciruclar orbits, producing an inner edge that
can resemble the horizon of black hole [57]. By considering a modified potential
including a self-interaction term

V =
µP

2
A2 +

λP

4
A4 (73)

the authors study several configurations along the whole space of solutions which
could give rise to the effect described in the previous lines. However, when
considering self-interactions these solutions fall within a perturbatively unstable
regime, thus it is needed to assume λP = 0. A special solution, which is denoted
by the dot in figure 5, with the parameters

ω/µP ≃ 0.936, MµP = 0.925 (74)

has maximum angular velocity located at the radius RΩ, this acts as an analo-
gous of the innermost stable circular orbit (ISCO) in Schwarzschild black holes.
This is an stable solution that emulates a Schwarzschild shadow due to a cen-
trifugal barrier produced by the violation of the condition shown in eq. (75).

In the same work, the authors applied ray-tracing techniques in order to
reconstruct the path followed by light rays from the observers backwards to
the source by integrating the null geodesic equations. The results show a disk
with its inner surface located at the radius associated to the maximum angular
momentum RΩ = 6M , which is the same radius associated to Schwarzschild
ISCO.

The angle at which the simulations were made resemble the same angle
between the Earth and the source observed by the Event Horizon Telescope
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Figure 8: Comparison between lensing from Schwarzschild and Proca special
solution [57].

Collaboration (EHTC) [9]. The density and luminosity profile associated this
disk in the simulations shown in figure 8 are such that the maximum is shown in
the inner edge of the disk. Also, an image reconstructed with the same resolution
as the observations available within the limits of the EHTC is shown. In this
resolution, both shadows share great resemblance, however, when observing
from another angle, several differences are notable. This fact, however, raises
the question about how to differentiate black holes from other compact objects,
as the angle of observation cannot be chosen.

A good alternative to further study the hypothesis proposed by [57], is to
study Proca stars in the context of accretion by means of GRMHD simulations
in a similar way as has been done for scalar boson stars in [91]. This will allow
to determine if Proca stars can really mimic black holes in am ideal astrophysic
setup before exploring more complicated and realistic cases, such as a rotating
Proca star.
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5. Accretion

Accretion is a very physically rich process which combines the framework
from general relativity, electrodynamics and plasma physics. The process con-
sists in the astrophysical environment of a compact object being pulled into a
central gravitational well produced by the self-gravity of the object. When the
central object is a black hole, some of the matter is going to be captured into the
horizon, while the rest, stays in orbit around the object, producing an accretion
disk.

5.1. Accretion flows around compact objects

Accretion flows are present in a broad range of astrophysical systems and
scales, from galactic nuclei to binary systems of compact objects. Accretion is
one of the most efficient methods to obtain energy due to the wide variety of
processes that occur into the accreting material. The accreting gas is usually
conformed by electrons and ions which exist under the influence of magnetic
fields; this rich structure allows for interactions that make plausible for fluid
dynamics to be applied to this problem.

In an accretion scenario, bremsstrahlung and synchrotron radiation appear.
The radiated power for the first kind of radiation is around 1017 ergs/sec, while
for synchrotron, the power is several order of magnitudes higher, at around
1029 ergs/sec, although, when referring to black holes, most of this radiation
comes from near horizon zones [84].

Another type of radiation comes from Compton scattering, where the out-
going photons exert a force on the accreting gas, reducing the inflow into the
compact object and consequently the mass accretion rate. This force must be
balanced with the gravitational pull in order to obtain a system in hydro static
equilibrium. This limit is known as the Eddington limit. After the photon pres-
sure wins over gravity, the mass accretion rate starts to decrease until gravity
takes over, creating a self-regulated system [90].

Accretion flows can be classified according to their mass accretion rate into
cold and hot flows. This classification is also reflected on the optic properties
of the orbiting gas, as for cold flows, the gas is cooler and optically thick due to
the higher accretion rate and are usually found in active galactic nuclei (AGN)
and binary systems, while on the other hand, hot flows are the predominant
configurations for black holes. They present a lower accretion rate, forming an
optically thin disk with usually lower radiative efficiency [131].

The physics of accretion consists on studying the conservation equations
that are described by GRMHD coupled with equations describing the radiation
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processes that occur inside the flow [65]. There are multiple solutions to these
problems which consider different effects, the classical solution, which considers
spherical and radial accretion is known as Bondi accretion [19]. The general
relativistic generalization, which considers a polytropic equation of state, is
known as Michel accretion [82]. These solutions, however, do not consider the
influence of the magnetic fields associated to the accretion disc nor the angular
momentum from the parcels of material in the flow.

The first case where angular momentum transport was considered, consisted
on a cold accretion flow, known as the thin disk model, which is broadly studied
in several references [116, 90]. This model consists in matter orbiting around the
central object and getting closer to it by the loss of angular momentum due to
viscous dissipation. Usually this approximation is valid when considering below
Eddington limit systems. When approaching this limit, the thin disk becomes
a slim disk, becoming optically thicker.

The first hot flow model, consisted of hotter accreting material and intro-
duced a two-temperature plasma, considering the different temperatures of ions
and electrons, being the first ones much hotter than the latter [117]. This
model, although successful in describing some observations, was thermally un-
stable, however, these instabilities were fixed by introducing advection in the
model. In advection models, the energy is not radiated away from the plasma,
instead it is kept in the flow, heating it further [61].

Realistic astrophysical accretion flows rely heavily on the effects produced by
the magnetic fields, in fact, these fields are the ones responsible for the exchange
of angular momentum throughout the flow (magnetorotational instability). For
this reason, when modelling accretion problems, the initial magnetic field is
important.

In the presence of magnetic fields, there are two main models, the first,
known as the magnetically arrested disk (MAD) [86], consists in magnetic field
that gets trapped in the surrounding region of the compact object due to the
pressure produced by the accretion. As the field keeps accumulating around the
central object, it gets trapped and after reaching a special radius, the accre-
tion process gets disrupted. Inside this radius, the accretion flow stops being
continuous and is divided into shapeless parcels that continue its way towards
the central object by fighting against magnetic re-connections which reduce the
velocity of the infalling gas.

Before reaching the MAD limit, the system experiences standard and nor-
mal evolution (SANE), providing several structural differences [88]. During the
SANE, the magnetic fields do not influence the dynamics of the gas, instead
their only function is to transport angular momentum via the magnetorota-
tional instability (MRI), which is discussed in section 5.2.
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The SANE and MAD configurations are not exclusive to black holes, as
the behaviour is not dependent on the event horizon, the same treatment is
applicable to stars, and compact objects in general. By this premise, a natural
question arises regarding accretion in neutron stars or white dwarfs and if it
can be distinguished from the accretion in black holes or other compact objects.
The answer is that all of these cases present different luminosity due to the
predominance of different emission processes, and neutron stars usually reach
the MAD limit faster [71].

5.2. Magnetorotational instability

The MRI is the mechanism responsible for transporting angular momentum
in accretion flows [16]. Originally proposed in the context of accretion disks in
[14], one of the main results of considering the MRI is that the weak magnetic
fields combined with the rotation of the flows in which the fields are present, are
the generators of turbulence on this systems by giving rise to a time-growing
instability.

In order to understand the essence of the MRI, it is useful to take into account
the fact that the magnetic fields in the accretion flow can be seen as an analogous
system of a spring connecting two masses (these masses resemble two parcels
of the flow). A system like this, that rotates with respect to a central object,
is subject to a torque, which produces a linear instability when considering
deviations from circular orbits due to the reduction of angular velocity along
the radial direction. The parcel that orbits in the smaller radius decreases its
angular momentum due to the torque produced by the spring-like force, and as
a consequence, the parcel is sent into a lower orbital radius in order to account
for the loss of angular momentum.

Considering a fluid element into the accretion flow, in the presence of a
weak magnetic field with harmonic spatial dependence, the frequency ω follows
a relation given in terms of a quadratic equation for ω2, from where, in order
to preserve stability, the following condition must be met

dΩ2

dR
≥ 0. (75)

Flows that violate the condition shown in eq. (75) are prone to present
the magnetorotational instability. It is interesting to note that such instability
is attainable when the magnetic field is weak, which turns out to be the case
of most astrophysical flows. The calculations needed to obtain the previous
condition is shown in great detail on [15].
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5.3. Thick tori as initial condition

In astrophysical realistic scenarios, accretion is not spherical. Deviations
from the spherical regime arise when the centrifugal forces present in the accre-
tion process become dominant over the pressure gradients. However, circular
orbits are important in this context, as they are necessary to describe fluids
around a compact object.

Following [101], in these circular orbits for a generally rotating object with
stationary and axisymmetric Killing vectors ηµ and ξµ, there is no radial, nor
poloidal velocity, such that the four-velocity is given in terms of the angular
velocity and the Killing vector, as

uµ = ut(ηµ +Ω ξµ), with Ω =
uϕ

ut
. (76)

Through the normalization condition uµuµ = −1, the temporal component of
the velocity u can be written as

(ut)−2 = −(gtt + 2Ωgtϕ +Ω2gϕϕ), (77)

From the previous expression, the acceleration of the fluid can be found

aµ = uν∇νuµ = ∂µln|ut| −
Ω

1− Ωl
∂µl, (78)

where l represents the specific dimensionless angular momentum, which fulfills

l =
−uϕ

ut
, such that

l

1− Ωl
= utuϕ. (79)

Substituting the acceleration in the Euler equation (obtained for an ideal
fluid through the projection of the stress-energy tensor conservation shown in
eq. (16 by the use of the projector hµ

ν ):

uµ∇µuν +
1

ρh
hµ
ν∇µp = 0 → ∂µln|ut| −

Ω

1− Ωl
∂µl = − 1

ρh
∂µp (80)

By deriving this equation and contracting it with the Levi-Civita tensor, and,
due to the fact that for barotropic fluids, the enthalpy derivative is proportional
to the derivative of the pressure, the angular velocity must contain explicit
dependence on the angular momentum. This is known as the relativistic von
Zeipel theorem [5], which indicates that for flows circulating around geometries
such as the one described above, the surfaces of constant angular velocity and
constant angular momentum, are the same. Von Zeipel surfaces are cylinders in
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the newtonian regime, while for other, more general geometries, they are only
cylinders in the asymptotic limit.

This allows to define this quantities in terms of the metric functions as

l(r, θ) = −gtϕ + gϕϕΩ

gtt + gtϕΩ
and Ω(r, θ) = − gtϕ + gttl

gϕϕ + gtϕl
(81)

from where the equation that defines the von Zeipel cylinders can be found
to be

gttl + gtϕ(1 + Ωl) + Ωgϕϕ = 0 (82)

This theorem holds not only for black holes, but for any compact object that
can be written in terms of an stationary and axisymmetric line element.

By using this result, equation (80) can be integrated in terms of exact dif-
ferentials, such that the integration is path-independent, resulting in

W −Win = −
∫ p

0

dp′

ρh
= ln|ut| − ln|(ut)in| −

∫ l

lin

Ωdl′

1− Ωl′
(83)

where W represents the effective potential containing information about the
hydrodynamic effects, while the variables containing the subscript ”in”, repre-
sent the values associated to the state where there is no pressure.

The result found in eq. (83) shows that constant pressure surfaces are as-
sociated to constant angular momentum surfaces in the equatorial plane. Such
surfaces are known as equipotential and they usually present a cusp that marks
the inner edge of the toroidal disk. This cusp marks the inner edge of the disk,
which is associated to the point where pressure vanishes and is a characteristic
of this approach, independent of the angular momentum distribution [4].

It has also been proven that marginally stable disks appear when the angular
momentum is kept constant [113]. In this case, the cusp is located between the
marginally bound and the marginally stable orbits of a test particle orbiting
around the compact object. Under this configuration, the system is completely
determined when specifying the constant value of the angular momentum l0,
the position of the inner edge of the disk and an equation of state (remembering
that it must be barotropic for the von Zeipel theorem to hold). When these are
provided, the effective potential is determined as

W(r, θ) =
1

2
ln

(
g2tϕ − gttgϕϕ

gϕϕ + 2l0gtϕ + l20gtt

)
(84)

All of the accreting material is then enclosed into constant surfaces associated
to a specific value of W, with the boundary being defined by the surface Win.
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Figure 9: Keplerian angular momentum distribution for Schwarzschild space-
time, showing the position of the cusp and the center of the torus.

The choice of the inner edge of the disk is directly related to the shape of
the disk. By defining the parameter ∆W = Win −Wcusp, different possibilities
appear depending on the sign of this value. The first case consists in ∆W < 0,
where the torus is fully localized and in equilibrium, needing a higher energy
input than ∆W for accretion to start. On the other hand, when ∆W > 0, mass
is transferred through the edge of the disk.

In order to demonstrate the role that the effective potential W plays re-
garding the variables of the flow, it is useful to examine the illustrative and
commonly found example in the literature of a fluid with a polytropic equation
of state in the form p = KρΓ, in which case, integration of eq. (83) results in
[101]

ρ(r, θ) =

[(
Γ− 1

KΓ

)(
eWin−W(r,θ) − 1

)]1/(Γ−1)

. (85)

From eq. (85), it can be noted that the constant W surfaces are the same as the
constant density and pressure (related by the equation of state) surfaces. When
observing the surfaces that lay on the equation plane, locally, the minimum
of the effective potential corresponds to a maximal pressure/density and it is
known as the center of the torus. On the other hand, the maximum value
represents the cusp, which is not always present.

The study of thick tori as an initial condition for the problem of accretion
has been studied in the context of boson stars [81, 122], showing that anomalous
structures that are not present in black holes, can emerge, such as more than
one center. Up to this time, there is no such study for the case of Proca stars.
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Figure 10: Thick tori as initial condition. Left panel shows a 2D reconstruction,
while a 3D torus can be seen in the right panel.

Figure 10 shows the thick tori as initial condition in the study of the ac-
cretion problem, in this case, there is no cusp and the torus represents the
normalized density of the fluid, with the maximum shown in the center. The
compact object around at which the toroidal structure is formed is located at
r = 0. The variables associated to the fluid are then evolved through the
equations of magnetohydrodynamics defined in the previous sections, with the
magnetic field being responsible for the exchange of angular momentum (and
thus, the accretion of matter into the compact object) via the magnetorotational
instability.
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6. Numerical simulations of Accretion onto Proca
stars

This section consists in explaining the initial data setup of numerical simu-
lations needed to model the evolution of accretion onto Proca stars.

6.1. Physical configuration

As mentioned in section 4.5, the results obtained in [57] (shown in figure
8), do not consider astrophysical effects produced by the environment that sur-
rounds the hypothetical Proca star. This new approach, as the one shown in
[91], considers the effects of the surrounding material which accretes into the
central object. The process of accretion can then drastically affect the shadow
produced by the standard geodesic calculations due to the GRMHD effects that
take place due to the accreting material. By studying a 3D reconstruction of the
evolution due to the accretion, it would be possible to determine if the results
obtained in [57] are relevant enough as to continue the study of these objects.

The simplest configuration of a Proca star is given by the special Proca
solution from [20], which consists in considering F2(r, θ) = F1(r, θ) = F1(r) and
W (r, θ) = 0 in the metric element from eq. (68), while H2(r, θ) = H3(r, θ) = 0
in the potential ansatz from eq. (69). This makes it possible to remove the
angular dependence in the functions, resulting in a line element written in terms
of isotropic coordinates as

ds2 = −e2F0(r)dt2 + e2F1(r)
[
dr2 + r2(dθ2 + sin2 θdϕ2)

]
(86)

With respect to the parameter space conformed by the normalized ADM
mass and the frequency of the field, the characteristics associated to this special
solution, which represents a non-rotating system, are shown in figure 5.

In order to simulate the evolution of the accretion flows that surround
the Proca star, the numerical code BHAC is employed, which implements the
GRMHD equations (eqs. (15- 18)) together with the necessary conditions for
the MRI (discussed in section 5.2) to present itself, taking the thick tori from
section 5.3 as an initial condition.

As discussed in section 3.2.1, the equation of state must be specified in order
to fully characterize the system. On this account, the accreting plasma follows
the equation of state of an ideal gas with an adiabatic index γ = 4/3. The
temperature associated to the accretion disk obligates the electrons and ions
confined in the torus to move at relativistic velocities, which requires relativis-
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Figure 11: The quality factor along the θ direction is shown on the left panel.
Right panel shows the adaptive mesh refinement over each the grid.

tic corrections to be implemented in the equation of state [49]. However, recent
results show that when significant changes in velocity are not present, the equa-
tion of state can be approximated by an ideal gas with γ ≃ 1.44 [118], and thus,
modelling the accretion flow as a fluid with adiabatic index of γ = 4/3 does not
yield significant differences.

As for the properties of the plasma, the ratio between hydrodynamic pressure
and magnetic pressure, known as plasma-β takes a value of 100, showing that
the magnetic field is weak compared to the hydro-dynamical effects, which is
the required condition for the MRI to appear.

There must be a sufficient level of refinement throughout the numerical grid
in order for the MRI to be solved correctly due to the fact that each wavelength
up to the fastest growing mode must be captured in order to avoid numerical
dissipation that stops the accretion process. This can be quantified through
quality factors, given in terms of the wavelengths of the fastest growing mode
evaluated in a tetrad lagrangian frame that adopts the corresponding grid res-
olution [97].

For a given coordinate direction k, the quality factor Q(k) is given by

Q(k) =
λ(k)

∆x(k)
,

where λ(k) =
2πbµe

(k)
µ

Ω
√
ρh+ b2

and ∆x(k) = ∆kµe(k)µ

(87)
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Figure 12: Proca stars line element compared with Schwarszchild, left panel
shows the radial metric function grr, while the temporal metric function can be
seen on the right panel.

where ∆kµ = ∆kδµk is the distance between two adjacent cells in the grid

along the coordinate k and e
(k)
µ represents the tetrad basis vector associated

to k. The quality factor for the MRI associated to the θ-direction is shown in
figure 11 along with the refinement along the grid.

In order to work out the 3 + 1 decomposition of the line element discussed
in section 3.1, eq. (86) can be re-expressed into an areal system of coordinates
with the form

ds2 = −A(r)dt2 +B(r)dr2 + r2dΩ2

A(r) =e2F0(r
′), B(r) = [1 + r′∂r′F1(r

′)]
−2 (88)

This line element is asymptotically flat, such that at long distances, it resembles
the Schwarszchild metric, this behaviour is shown in 12. Direct comparison from
eq. (88 with eq. (5) shows that

βi = 0, α = eF0(r
′), γij = B(r)δri δ

r
j + r2

(
δθi δ

θ
j + sin2 θ δϕi δ

ϕ
j

)
(89)

As mentioned before, the code is constructed in such a way that accre-
tion starts with the thick tori condition (see section 5.3). For Proca and
Schwarszchild spacetimes, the effective potential associated to the hydro-dynamical
effects shown in eq. (84) is given by

Proca Star: W(r) =
1

2
ln

(
r2e2F0(r)

r2 − l20 e
2F0(r)

)
Schwarszchild: W(r) =

1

2
ln

(
r2(r − 2)

r3 − l20(r − 2)

) (90)

The free parameters needed to completely specify the initial conditions of
the problem are l0 and rin, as shown from eq. (83) in the case of constant
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angular momentum. The inner radius takes the value of rin = 18M while the
angular momentum is specified in such a way that the minimum value of the
potential is fixed at rm = 25M .

The previous choice of the parameters rin and l0 is associated to the fact
that Proca spacetime converges to a Schwarzschild line element far from the
origin as can be seen in figure 12, and thus, the initial condition is qualitatively
the same for both geometries, as can be seen in figure 13. This allows for the
differences in the evolution of the accreting material in both cases to appear
naturally without any previous bias.

6.2. Computational and numerical configuration

BHAC calculates the relevant variables for the accretion problem by using
the methods discussed in section 3.2.1. The code calculates the density and the
associated thermodynamic quantities such as pressure, entropy and enthalpy,
while also calculating dynamic variables such as the fluid velocities and the
Lorentz factor. Several other quantities are computed, such as magnetic fields,
the plasma beta, the mass accretion rate and the kinetic, thermal and electro-
magnetic energies, as well as the quality factor.

The simulation lasts 1472736 s ≃ 409hrs running in 8 CPUs. It takes place
into a grid with total resolution of 192× 96, three levels of refinement, an outer
boundary located at r = 2500M and a maximal radial spacing of ∼ 3M .

In order for the code to show an optimal resolution across all required regions
(near the horizon and the equatorial plane) of the grid, modified Kerr-Schild
(MKS) coordinates [80, 98] are employed, which consist on a coordinate trans-
formation of the form

rKS(s) = R0 + es, θKS(ϑ) = ϑ+
h

2
sin 2ϑ (91)

where s and ϑ represent the original standard spherical coordinates, and the
parameters R0 and h control the resolution associated to each region of the
ones mentioned above. In the current case, we consider R0 = 1.0 due to the fact
that we are interested in studying the regions where shadows are usually formed
in black holes and h = 0.0 as we are working with an spherically symmetric
configuration.

As mentioned before, the CFL condition, discussed in 3.4.1, must be manu-
ally implemented to guarantee an stable evolution [35]. And thus, in this work,
we employ a value of 0.7.
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Figure 13: 2D-Evolution of the flow at t = 0. The figures on the left side
represent a Schwarszchild black hole, while Proca stars are shown on the right.
The top row of each panel shows the density of the accretion flow in logarithmic
scale. The middle row represents the inverse of plasma-beta, while the lower
row shows the luminosity proxy.
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Figure 14: 2D-Evolution of the flow at t = 1000. The figures on the left side
represent a Schwarszchild black hole, while Proca stars are shown on the right.
The top row of each panel shows the density of the accretion flow in logarithmic
scale. The middle row represents the inverse of plasma-beta, while the lower
row shows the luminosity proxy.
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Figure 15: 2D-Evolution of the flow at t = 2500. The figures on the left side
represent a Schwarszchild black hole, while Proca stars are shown on the right.
The top row of each panel shows the density of the accretion flow in logarithmic
scale. The middle row represents the inverse of plasma-beta, while the lower
row shows the luminosity proxy.
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Figure 16: 2D-Evolution of the flow at t = 4000. The figures on the left side
represent a Schwarszchild black hole, while Proca stars are shown on the right.
The top row of each panel shows the density of the accretion flow in logarithmic
scale. The middle row represents the inverse of plasma-beta, while the lower
row shows the luminosity proxy.
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Figure 17: Density profile associated to accretion onto Proca stars. Left panel
shows the initial configuration associated to the tori condition, while the right
panel shows the density profile at t = 5000M .

6.3. Results

The top panels from figures 13-16 show the evolution of the logarithmic
density distribution originally shown in figure 10 for both Schwarzschild (left)
and Proca (right) spacetimes at four different temporal instants. The first set
shows the initial condition, the second one shows the evolution at t = 1000M ,
the third at t = 2500M and the last one shows t = 4000M . It can be seen that
since t ∼ 1000M , the accreting flow already presents substantial differences
regarding horizon-like effects, which in the Schwarzschild case, shows a small
funnel representing the material that is flowing into the horizon. On the other
hand, for a Proca star, the material accretes into the center through a more
chaotic process and in a slower way than for Schwarzschild, this is due to the
fact that matter is getting closer to the maximum value of angular velocity,
which as discussed on section 5.2, produces the accretion process to be stopped.

The maximum value of angular velocity, however, is displaced further into
the center of the object due to the angular momentum interchange produced by
the MRI and the related hydrodynamical effects, reaching a maximum value,
RGRMHD

Ω , around rmax = 4.238 M. In consequence, the accreting material is
halted around this radius preventing the flow to move forward into the center of
the star as can be seen from figure 17, which shows the density profile associated
to the matter that surrounds the Proca star.

Left panel from figure 17 shows the initial distribution of matter associated
to the tori condition, while the right panel shows the density profile at t = 5000
M, from where it can be observed that the material does not go into the center,
instead, it accumulates around rmax. This can produce the effect of a shadow
in some observations due to the fact that there is no baryionic matter into
the center and the Proca particles that conform the star do not interact with
electromagnetic radiation, creating an effective representation of a central dark
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region surrounded by the bright accreting material.

The middle panel from figures 13-16, represent the inverse of the plasma−β,
showing which regions are dominated by hydrodynamical pressure and which
ones by magnetic pressure. In this case, inside the torus, hydrodynamic pres-
sure is dominant along most of the evolution process in contrast to the effects
associated to the magnetic field.

The bottom panel from figures 13-16 represent the emission proxy associated
to thermal synchrotron radiation, as given in [97]. This is represented by the
emissivity j, which has the form

j =
ρ3

p2
e
−C

(
ρ2

Bp2

)1/3

(92)

where the constant C measures the radiation cutoff needed to resemble the
emission spectra from this sources. As discussed on [97], in order to model an
optically thin emission flow coming from a galactic center, which emits in the
milimeter wavelength band that the EHT observes, C = 0.2. This proxy is
useful regarding the reconstruction of synthetic optical observations.

Regarding the emission proxy from both astrophysical objects (Proca star
and Schwarzschild black hole), differences do not appear during the early stages
of the evolution, however, after the material gets further into the near-horizon
zone for the black hole, notable visual differences appear. This is due to two
principal reasons, the first one is that accretion into a black hole is characterized
(in this case) by a flow that is collimated when going through the horizon, this
material never stops emitting. The second reason is the fact that the material
from the Proca star does not cross rmax, creating an effective dark region absent
of synchrotron radiation.

This analysis shows that although Proca stars and Schwarzschild black holes
are fairly different when studied under the problem of accretion, Proca stars
can act as black hole mimickers in specific cases due to the fact that they
can present a dark inner region. The formation of this region is dependent
only on the existence of a maximal angular velocity, which as shown in [57],
occurs for several radii. This, in turn, depends directly on the parameters of
the solution to the Einstein-Proca system. This allows for the radius at which
the maximal angular velocity appears (RΩ) to be expressed in terms of the
amplitudes associated to the Proca field from eq. (63) (as shown in figure 18).

The effective size RL
Ω as seen by an observer can be estimated through the

impact parameter associated to photons calculated at the turning radius cor-
responding to the centrifugal barrier produced by the maximum value of the
angular velocity, given by

b(RΩ) =
RΩ

α(RΩ)
(93)

59



Accretion onto Proca stars

Figure 18: Radius of maximum angular velocity as a function of the Proca field
amplitude

Figure 17 shows that through GRMHD simulations, the radius RΩ is dis-
placed into an inner orbit, up to RGRMHD

Ω . This behaviour can be generalized
to different Proca stars by considering that the GRMHD effects manifest them-
selves through the complete branch of solutions which allow a maximal angular
velocity. This makes it possible to define a region of influence associated to
GRMHD effects through this set of solutions, as can be seen in figure 18, where
the radius of maximal velocity is expressed in terms of the radial amplitude of
the Proca field, as given in eq. (63), at the origin of coordinates.

The same figure shows the regions of intersection with relevant orbits asso-
ciated to Schwarzschild and Kerr black holes, showing that all of these orbits
fall within the region of interest of Proca stars, and thus, allowing for a Proca
star to mimic the shadow casted by these black holes. It is important to notice
that the dark region formed in the Proca case is due to hydrodynamical effects
in contrast with the gravitational deformation of orbits produced in black holes.
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7. Discussion and Conclusions

This work studied by the means of numerical simulations, the effect of
GRMHD effects on Proca stars that produce a dark inner region, with the
goal of determining if these can be observationally confused with the shadow of
a black hole in a more realistic astrophysical scenario.

In to order to better quantify the differences between both compact objects,
the simulations done in this work use the same initial configuration. These
differences are produced by two factors, the first one is the non-existence of an
event horizon in the case of the Proca star, which in the absence of angular
velocity peaks, allow for matter to be accreted all the way to the center of
the star (which is also surface-less). In black holes, the presence of an horizon
produces a funnel which controls the flow of matter that crosses into the horizon.
This is not present in the case of Proca stars, so that the accretion pattern
shown in the simulation is more chaotic in this case. The second factor, is
that Proca stars (along the branch of solutions presented) exhibit a maximum
angular velocity, which supresses the MRI, and thus, the accretion, producing a
dark inner region. Due to the fact that this phenomena appears at several radii
depending on the parameters of the solution, the apparent size of this region
can take different values that overlap with the size of a Schwarzschild or Kerr
black hole.

By considering the effects of GRMHD in the simulations, the originally cal-
culated radius where the maximal angular velocity appears is shifted further
into the center. After reaching this radius, matter is shoved inwards, accumu-
lating itself and presenting a peak in the density profile at rmax = 4.238 M. The
inner region delimited by this radius is displayed as a dark area that emulates
the shadow of a black hole. However, for a Proca star to mimic a black hole of
the same mass, the maximum value of angular velocity must be higher than the
one proposed in [57] due to the GRMHD effects.

In order to gain insight regarding the problem of a black hole shadow being
emulated by a Proca star, synthetic images must be constructed to gain insight
about the observational results that could be obtained by experiments such as
the EHT. More simulations from different Proca solutions are also needed in
order to study the modifications produced by the GRMHD effects.

The work presented here can be summarized by the following statements:

Proca stars present a maximum value of angular velocity which suppresses
the accretion-driven processes, producing a dark area on the inner region
of the star resembling the effect of shadows in black holes.

The influence of GRMHD effects is reflected on the fact that the radius at
which the angular momentum transport is suppressed is moved inwards,
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resulting in a smaller dark region with respect to the original calculation.
However, the radius that delimits this region can match several structures
that can be found in a black hole anatomy depending on the Proca field
amplitude.

The analysis presented in this work indicates that Proca stars can, the-
oretically, mimic black holes under certain specific conditions. However,
more work is required in order to narrow the space of parameters that
allow for this phenomena to appear. This involves working with different
solutions to the Proca-Einstein system presented in [20], in order to nar-
row the window of theoretical degeneration produced by GRMHD effects
shown in figure 18.

Regarding the observational degeneration, radiation detected by VLBI is
mostly from synchrotron emission (around mm-wavelengths), thus, recon-
structed synthetic images from VLBI observations are needed in order to
assert whether a Proca star can be an observational emulator of a black
hole. The construction of such images requires further simulations with
the inclusion of radiative transfer calculations.
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8. Appendix A: Cauchy problem and hyperbol-
lic systems

The hyperbolic character of the GRMHD equations (30) is a key factor
for such systems of equations to be solved. This section aims to give a brief
introduction to the basic properties needed in a system for it to be hyperbolic.

8.1. Partial differential equations and the Cauchy problem

A partial differential equation (PDE) of order m has the general form∑
|j|≤m

aj(x)D
ju = f (94)

where aj , u and f represent functions of the coordinate set x, and Dj is a partial
differential operator acting over the set of functions u. The principal part of a
partial differential equation is given by∑

|j|=m

ajD
j (95)

Eq. (94) is greatly simplified for the case of N first-order equations, as the
principal part can be written in terms of matrix elements [31].

The Cauchy problem for a PDE consists on finding a Cm-class solution for
eq. (94), which, along with their respective m − 1 lowest order derivatives,
take fixed values that are constrained into a n − 1 dimension manifold (a sub-
manifold known as characteristic manifold) [30]. The differential equation, on
this manifold S satisfies a first order equation

∑
|j|=m

ajp
j = 0, with pJ =

n∏
k=1

(
∂S

∂xk

)Jk

(96)

from PDEs can be classified into elliptic, hyperbolic or parabolic into a
specific direction according the corresponding solutions for the principal part of
the equation, which is directly related to the structure of the manifold.

Due to the nature of this work, the analysis is focused only on hyperbolic
systems, however, the interested reader can find the classification and expand
these ideas in [30].

Hyperbolic equations then are obtained when the eigenvalues associated to
the principal part are all real. Hyperbolicity of these equations can appear in a
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strong or weak regime. Weak hyperbolicity consists only in having real eigen-
values, while the strong regime appears when these eigenvalues form complete
sets of eigenvectors [58]. The matrix associated to the principal part of the
PDE can be symmetric, in which case, it is automatically strongly hyperbolic.
Strong hyperbolicity is needed in order to guarantee the well-posedness of the
system. The eigenvalues associated to the matrix define the propagation speed
of information related to these systems. The most commonly-known hyperbolic
equation is the wave equation.
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