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Abstract

In this thesis we study the F1−geometry, starting by describing the motivations that
gave rise to this subject. After that we focus on the approach introduced by Deitmar
in [8], about the geometry of monoids, from which we develop the notions of toric
varieties over F1 discussed in [5], and we extend them to the non-normal case. We
generalize various results, originally stated over fields (usually C), to toric varieties over
monoids. In particular we extend the results obtained in [10], about the multiplicity of
toric curves over a field, to the case of toric curves over F1.

Finally we study the geometry of F1 from the approach introduced by Lorscheid in [25],
which generalizes to Deitmar’s, and which is based on the geometry of blueprints. We
present an application of this approach to tropical geometry, which consists of treating
tropical varieties as blue schemes.
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Resumen

En esta tesis estudiamos la geometría de F1, comenzando por describir las motivaciones
que dieron lugar a esta área. Posteriormente nos enfocamos en el enfoque introducido
por Deitmar en [8], acerca de la geometría de monoides, desde el cual desarrollamos las
nociones de variedades tóricas sobre F1 discutidas en [5], y las extendemos al caso no
normal. Generalizamos diversos resultados, originalmente establecidos sobre campos
(usualmente C), a variedades tóricas sobre monoides. En particular extendemos los
resultados obtenidos en [10], acerca de la multiplicidad de curvas tóricas sobre un campo,
al caso de curvas tóricas sobre F1.

Finalemente estudiamos la geometría de F1 desde el enfoque introducido por Lorscheid
en [25], el cual generaliza al de Deitmar, y el cual se basa en la geometría de blueprints.
Presentamos una aplicación de este enfoque a la geometría tropical, la cual consiste en
tratar a las variedades tropicales como esquemas azules.
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Chapter 1

Introduction

In this work we want to present some of the main ideas around F1−geometry. By F1

we refer to an hypothetical field with one element. Of course this meaning cannot be
taken in a literal sense, however, as we shall see, the main notions of F1 are described
in terms of the category of pointed commutative monoids. In this context, F1 turns out
to be the initial object of such category1, namely, the monoid {0, 1}.

The first mentions of a field with one element are due to Jacques Tits in the 1950’s.
The idea arises from observing that certain mathematical objects (particularly in the
context of incidence geometries and algebraic groups) over finite fields Fq have a sig-
nificant interpretations when q = 1 (see [21, 23]). We show some examples these ideas
below.

Example 1.0.1. To compute the number of points in the projective space Pn−1
Fq we need

to count the number of 1−dimensional linear subspaces of the n−dimensional vector
space over Fq

[n]q =
qn − 1

q − 1
= 1 + q + · · ·+ qn−1.

Furthermore, to compute the number of elements in the Grassmanian Gr(k, n)(Fq) we
need to count the number of k−dimensional subspaces of the n−dimensional vector space
over Fq. To do this we first count the number of ways to obtain k linearly independent
vectors {v1, · · · , vk} in Fnq . There are qn−1 ways to chose v1, then, there are qn−q ways
to chose v2 and so forth. Thereafter we divide the result by the total number of ordered
basis of a k−dimensional linear subspace, which is obtained in a similar manner. Hence
we get

#Gr(k, n)(Fq) =
(qn − 1)(qn − q) · · · (qn − qk−1)

(qk − 1)(qk − q) · · · (qk − qk−1)
.

1Later we will see that this category corresponds to that of F1−algebras.
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CHAPTER 1. INTRODUCTION 2

Notice that the expression of above is given by the Gauss binomial

(
n

k

)
q

=
[n]q!

[k]q![n− k]q!
where [n]q! = [n]q[n− 1]q · · · [1]q.

Hence if we let q = 1 we obtain the following results

#Pn−1
F1

= [n]1 = n and #Gr(k, n)(F1) =

(
n

k

)
1

=

(
n

k

)
.

Example 1.0.2. Consider the general linear group GL(n,Fq). The cardinality of this
group is obtained in a similar manner to that of the Grassmanian. Indeed

#GL(n,Fq) =
n−1∏
i=0

(qn − qi).

The limit of this expression when q → 1 goes to 0, however, in [23, Section 1.1] it is
shown a procedure to resolve the 0 by dividing it by (q − 1)n. Thus the limit of the
cardinality of GL(n,Fq) when q → 1 goes to n! .

Furthermore, since GL(n,Fq) acts transitively on Gr(k, n)(Fq), when q → 1 we may
think that the vector space Fn1 is a set of n elements, say A = {1, · · · , n}, thus the
general linear group becomes the symmetric group Sn i.e.

GL(n,Fq) −−→
q→1

GL(n,F1) = Sn.

Finally notice that the Grassmanian Gr(k, n)(F1) can be seen as all k−subsets of A.

The examples of above show that, indeed, there is a significant meaning of some spaces
over the hypothetical field with one element. Moreover, as we mentioned earlier, Tits
investigated incidence relationships among such spaces. For instance, if we consider
the points of different Grassmanians Gr(1, n)(F1), Gr(2, n)(F1), . . . , Gr(n − 1, n)(F1)
as the corresponding points, lines, . . . , (n−2)−dimensional subspaces of the projective
space Pn−1

F1
we want to find incidence relations i.e. containment relations among those

subspaces of Pn−1
F1

. Let’s give an example.

Example 1.0.3. Let n = 3. By Example 1.0.2 we may think that the vector space F3
1

is {1, 2, 3}. Therefore

Gr(1, n)(F1) = {{1}, {2}, {3}} and Gr(2, n)(F1) = {{1, 2}, {1, 3}, {2, 3}}.

The incidence relations among the points and lines in P2
F1

are given by the contentions
between the elements of Gr(1, n)(F1) with the elements of Gr(2, n)(F1), namely, each
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point is contained in two lines, and every line contains two points. We depitc the
incidence relation in the figure below, where the red vertices correspond to the lines,
and the blue vertices corrrespond to the points.

Figure 1.1: Incidence relation among the points and lines in P2
F1
.

The above examples give us some expected properties of F1−geometry. For instance we
expect that pointed sets are vector spaces over F1, we also expect that the projective
line over F1 may contain two points. Moreover, since the spectrum of a field consist of
only one point, we expect that Spec(F1) contains only one point.

Notice that the expected properties of above cannot occur if we literally consider a field
with one element by allowing that the additive and multiplicative identity be the same
(i.e. if 0 = 1) because what we will get would be the trivial ring {0}.

Despite previous observations, the idea of F1 did not have much interest until the late
80’s and early 90’s mainly due to mathematicians Alexander Smirnov and Yuri Manin,
since they postulated that the F1−geometry would be involved in a possible proof of
the Riemann hypothesis by considering Spec(Z) as an F1−scheme (see [3, 23]).

In addition, Smirnov also postulated that another possible application of this geometry
would lie in proving the abc conjecture, which tells us that for 3 positive integers a, b, c
relative primes that satisfy the relation a+ b = c, then if d denotes the product of the
various prime factors of abc, then d is not much smaller than c.

However, it is not until 1999 that Cristhophe Soulé proposed the first notion of a variety
over F1. Subsequently there were many attempts to describe F1− schemes. Various
theories and their generalizations have been proposed by different mathematicians. In
this work we are going to study some of these theories. In particular we are going to
present a refinement of the monoid scheme theory developed by Deitmar in [8], which
is embedded in almost all other subsequent approaches to F1−schemes, which is why
called the core of F1−geometry. One of the theories that generalize Deitmar’s, and of
which we will present an introduction, is the theory of blueprints and blue schemes
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introduced by Lorscheid in [25], which has found new applications in tropical geometry
by setting tropical varieties in terms of blue schemes.

Now we give a brief description of the material of each chapter:

In Chapter 2 we introduce the necessary elements of commutative algebra for monoids.
Most of the results presented here are in analogy with the usual commutative algebra
for rings, however we emphasize the special properties that only apply for monoids.
Likewise we present illustrative examples that will be used throughout this work.

In Chapter 3 we develop the theory of affine and non affine monoid schemes. These
notions were the first attempts to describe F1-schemes and were introduced by Deitmar
in [8]. This material constitutes the basics of F1−geometry. Definitions and proofs
are similar to those of ring schemes. The main references for Chapters 1 and 2 are
[5, 6, 8].

In Chapter 4 we develop the theory of toric varieties over F1 using the material from
previous chapters. We start by introducing the necessary notions of multiplicative alge-
braic groups over F1 focusing on the algebraic tori. Later we will study the connection
between normal toric varieties and convex polyhedral cones and fans. Subsequently we
introduce divisors on toric varieties. At the end of the chapter we present some relation-
ships between the number of generators of a numerical monoid and the multiplicity of
toric curves. One of the main issues discussed in the chapter is a result due to Deitmar
which tells us that essentially monoid schemes are toric varieties. The main references
for this chapter are [5, 7, 9, 14,21].

In Chapter 5 we present an introduction to the theory of blueprints and blue schemes.
This theory constitutes an approach to F1−geometry that generalizes that of Deitmar.
As we have said before, this approach has found applications in tropical geometry by
setting tropical varieties in terms of blue schemes. At the end of the chapter we will
make an outline of these ideas. The main references for this chapter are [17, 22, 24,
27].

The main contributions that we can mention for this work are the following.

Throughout the work, a detailed explanation to various results and examples of the
theory presented are providing.

In chapter 4 we establish some results: We extend the notion of toric varieties over F1

discussed in [5] to the non-normal case. Furthermore, by using the theory of monoid
schemes developed in Chapter 3, we have been able to generalize various results of toric
varieties over C, to the context of monoids and subsequently to rings. In particular,
in Proposition 4.1.13 and Proposition 4.1.14 we obtain the characterization of affine
toric varieties over F1. Furthermore, in Theorem 4.1.19 we show a main result of
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Deitmar (see [9, Theorem 4.1]), which states that the base extension2 of an irreducible,
cancellative monoid scheme of finite type is a toric variety over C, however, our approach
of this result is stated only in terms of toric varieties over F1. In Section 4.5, we
generalize the results obtained in [10], about the multiplicity and regularity index of
toric curves over a field K, by extending such varieties in Proposition 4.5.1 to toric
curves over F1.

Finally, for Chapter 5, although no own results are established, a unifying introduction
to the Lorscheid’s theory of blueprints and blue schemes is presented. We remark this
since the main results of the theory are established in many different works.

2The base extension to ring schemes will be considered in Section 3.3



Chapter 2

Algebraic background on monoids

The purpose of this chapter is to develop the necessary theory of commutative algebra
for monoids that will be used throughout the following chapters.

2.1 Pointed commutative monoids
Definition 2.1.1. A monoid is a set A endowed with an associative binary operation
· : A×A→ A and identity element 1 ∈ A such that for all a ∈ A we have 1·a = a·1 = a.
Moreover, A is commutative if for all a, b ∈ A we also have ab = ba. A basepoint, or
zero element is a unique element 0 ∈ A such that 0 · a = a · 0 = 0 ∀a ∈ A. The monoid
is pointed if it has a basepoint.

In the following by monoids we mean pointed commutative monoids, unless otherwise
stated. In most cases we assume multiplicative notation in which case the monoid is
called multiplicative. However, sometimes we use an additive notation + in which case
we will specify it and say that the monoid is additive. In those cases the identity is
written as 0 and the basepoint is written as −∞.

Definition 2.1.2. Let A be a monoid. We say that A is finitely generated (f.g) if there
is a set X = {x1, · · · , xn} ⊂ A such that any element a ∈ A\{0} can be written as

a = xm1
1 · · ·xmnn with mi ∈ N for i = 1, · · · , n.

X is called the set of generators.

If X is a set of generators of A, the monoid is usually denoted by 〈X〉∗ = 〈x1, · · · , xn〉∗.
For instance the monoid generated by one element is 〈x〉∗ = {0, 1, x, x2, · · · }.

Example 2.1.3. Some examples of (pointed commutative) monoids:

6



2.1. POINTED COMMUTATIVE MONOIDS 7

1. We obtain a monoid by adding a zero to an unpointed monoid A. It is denoted by
A∗ = A ∪ {0}.

2. Any commutative ring R has an underlying monoid with respect to the multiplica-
tive operation (we just forget the addition operation).

3. As special case of point 1, we obtain a monoid G∗ by adding a zero to any abelian
group G.

Definition 2.1.4. Let A,B be monoids. A map f : A → B is a monoid morphism if
it satisfies

f(aa′) = f(a)f(a′), f(1A) = 1B and f(0A) = 0B.

The category of pointed commutative monoids is denoted byM∗. The initial object in
this category is the monoid {0, 1}, meaning that for any A ∈M∗ there exists a unique
monoid morphism {0, 1} → A. The terminal object is the trivial monoid {0}, meaning
that for any A ∈M∗ there exists a unique monoid morphism A→ {0}.

Remark 2.1.5. Throughout the Chapters 1-4, by F1 we refer to the initial object in
M∗ i.e. the monoid {0, 1}. ThereforeM∗ can be seen as the category of F1-algebras.

Definition 2.1.6. A monoid A is cancellative if ab = cb implies a = c for a, b, c ∈ A
with b 6= 0; is integral if ab = 0 implies a = 0 or b = 0; is torsion free when an = bn

implies a = b for a, b ∈ A with a 6= 0 6= b. Notice that cancellative property doesn’t
imply torsion free, for instance consider the monoid {−1, 0, 1}. However we can see
that a cancellative monoid is integral.

Definition 2.1.7. Let A be a monoid. A submonoid of A as a subset Y ⊂ A such
that Y is a monoid. Observe that F1 is a submonoid of any monoid A 6= {0}. If
X = {x1, · · · , xn} is any subset of A, then the smallest submonoid of A containing X
is:

〈X〉∗ = {xm1
1 · · ·xmnn }∗ with mi ∈ N for i ∈ {0, · · · , n}.

The elements of X are called the system of generators of the submonoid.

Example 2.1.8. Some F1-algebras.

1. Consider the unpointed additive monoid N. By adding a basepoint we obtain the
monoid N∗ = N ∪ {−∞}. This monoid can be written multiplicatively as follows:

F1[T ] = {0, 1, T, T 2, · · · }.
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2. The free monoid generated by T1, · · · , Tn is the monoid that consists of all the
monomials T e11 · · ·T enn where all ei ∈ N, and a basepoint 0. We denote it by

F1[T1, · · · , Tn].

Definition 2.1.9 (Product and coproduct). Let {Ai}i∈I be a family of monoids.

1. We define the product of the family {Ai}i∈I as the usual cartesian product∏
Ai = {(ai)i∈I | ai ∈ Ai}.

Notice that the product give us a monoid with componentwise multiplication.
Its zero is the element with zero in all components, and the identity is the ele-
ment whose all components are 1. Moreover, it satisfies the universal property of
products (see [32, Chapter 5]).

2. We define the coproduct or smash product of the family {Ai}i∈I , as the quotient
of the product

∏
Ai by the equivalence relation that identifies every element with

a component equal to 0 with the zero element (0)i∈I . The coproduct is denoted
by
∧
Ai. For instance, is the family {Ai}i∈I consists of the monoids A and B, the

smash product is

A ∧B = (A×B)/((A× {0}) ∪ ({0} ×B)).

Notice that smash product is also a monoid with componentwise multiplication.
Its zero is the class (0)i∈I , and the identity is the element whose all components
are 1. Note that there are canonical inclusions AI →

∏
Ai defined by

(a ∈ A) 7−→ (ai)i∈I with

{
ai = a for i = j

ai = 1 otherwise

If {fi : Ai → B}i∈I is a family of monoid morphisms, then, from the morphism

f :
∧

Ai −→ B

(ai)i∈I 7−→
∏
i∈I

fi(ai)

we can verify that the smash product satisfies the universal property of coproducts
(see [32, Chapter 5]).

Definition 2.1.10 (Equalizer and coequalizer). Let f, g : A → B be monoid mor-
phisms.
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1. We define the equalizer of f and g as the subset in A whose elements has the
same image under both f and g. It’s denoted it by

eq(f, g) = {a ∈ A | f(a) = g(a)}.

2. We define the coequalizer of f and g as the quotient of B by the smallest congru-
ence generated by the relations f(a) ∼ g(a) for a ∈ A (in Proposition 2.1.23 we
show that this congruence always exists). The coequalizer is denoted by coeq(f, g).

Both eq(f, g) and coeq(f, g) satisfy their respective universal properties (see [32,
Chapter 5]).

Definition 2.1.11. A directed diagram D = {(Ai)i∈I} is a commutative diagram in-
dexed by a directed set I, i.e. for every i, j ∈ I, there is a k ∈ I and there are unique
morphisms

fi : Ai → Ak and fj : Aj → Ak in D.

Definition 2.1.12. A category C is called complete (cocomplete) when every functor

F : D −→ C,

with D a small category, has a limit (colimit) (see [1, Section 2.8] for details).

Lemma 2.1.13. A category C is complete (cocomplete) when it contains products (co-
products) and equalizers (coequalizers).

Proof. We refer to [1, Theorem 2.8.1] for a proof. �

Theorem 2.1.14 (Chu, Lorscheid, Santhanam, [6]). The categoryM∗ is complete and
colimits of directed diagrams.

Proof. We have seen thatM∗ contains products, coproducts, equalizers and coequaliz-
ers. Hence, by Lemma 2.1.13M∗ contains limits and colimits.

Now we show that M∗ contains colimits of directed diagrams. Let D = {Ai}i∈I be
a commutative diagram of monoids and their morphisms indexed by a directed set I.
Now, for i ∈ I define the set

J(i) = {k ∈ I | ∃f : Ai → Ak in D}.
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Which means that J(i) is the cofinal directed subset of I. Now, let D(i) be the full
subdiagram of D that contains precisely {Ai}i∈J(i). Then we have the following repre-
sentation of the colimit of D:

colim(D) =
∐(aj) ∈

∏
j∈J(i)

| for all f : Aj → Ak in D(i), ak = f(aj)

 / ∼

where (aj)j∈J(i1) ∼ (bj)i∈J(j2) if aj = bj for all j ∈ J(i1) ∩ J(i2).

Now we have canonical morphisms

ϕi : Ai −→ colim(D)

given by
ai ∈ Ai 7−→ (f(ai) | f : Ai → Ak in D(i)).

Now, given a family of monoid morphisms gi : Ai → B that commute with all mor-
phisms in D, the map g : colim(D) → B that sends an element (aj)j∈J(i1) to gi(ai) is
the unique morphism that satisfies the universal property of the colimit of D. �

Definition 2.1.15. Let A be a monoid. A subset I ⊂ A is an ideal if I is not empty
and IA ⊂ I. An ideal I is generated by a subset Y ⊂ I if for any x ∈ I there exists
y ∈ Y such that x = ay for some a ∈ A. In addition, if Y is finite, then I is finitely
generated.

When {x1, · · · , xn} is a set of generators of an ideal I we also denote I as 〈x1, · · · , xn〉.
Also note that a monoid can have infinitely many ideals even if it is finitely generated.
For instance, each expression {xik}i≥N ∪{0} for N ∈ N, defines an ideal which is usually
denoted by 〈xik〉.

Many of the properties of monoids behave in the same way as for rings. For instance, if
we have a morphism f : A→ B of monoids, and I is an ideal of B, then, we can verify
that f−1(I) is an ideal of A since it contains the basepoint 0, and if a ∈ f−1(I) and
b ∈ A, then f(ab) = f(a)f(b) ∈ I. However, we will emphasize properties that only
apply for monoids.

Definition 2.1.16. Let A be a monoid. A congruence on A is defined as amultiplicative
equivalence relation R, i.e. a equivalence relation that satisfies the following condition

For any (a, b), (c, d) ∈ R then (a, b) · (c, d) = (ac, bd) ∈ R.

Proposition 2.1.17. Let A be a monoid, and let R be a congruence on A. Then there
is a well defined induced operation between the equivalence classes, namely [a]·[b] = [ab].



2.1. POINTED COMMUTATIVE MONOIDS 11

Hence the quotient A/R is a monoid with zero [0] and identity [1], and the canonical
map π : A→ A/R is a morphism of monoids.

Proof. The multiplication on A/R doesn’t depend of the choice of the class represen-
tatives since, by definition of congruence, we have (a, b) · (c, d) = (ac, bd) ∈ R, and thus
A/R is a monoid with zero [0] and identity [1]. �

Example 2.1.18. Let A be an integral monoid. Notice that

R = {(a, b) ∈ A× A | a 6= 0 6= b} ∪ {(0, 0)}

is a congruence and that A/R is isomorphic to F1.

Definition 2.1.19. Let A be a monoid. The quotient monoid by an ideal I is defined
as follows:

A/I =

{
[x] = [0] x ∈ I
[x] = {x} x /∈ I

It follows that A/I ∼= (A\I) ∪ {0}. Thus π : A → A/I is a surjective morphism of
monoids. Now let f : A→ B be a morphism of monoids. We define the kernel of f as
follows:

ker(f) = f−1(0) ⊂ A.

Let x ∈ ker(f) and a ∈ A, then f(xa) = 0f(a) = 0, thus ker(f) is an ideal of
A. Moreover, note that ker(f) induces a morphism f : A/ker(f) → B defined by
[a] 7→ f(a). However, a morphism need not be injective when the kernel is 0 as we can
see in the next example.

Example 2.1.20. Let G be the cyclic group of order n, then by adding a basepoint we
obtain the monoid G∗. If f : N∗ → G∗ is a morphism, notice that f(xk) = f(xk+n) for
all k ∈ N∗. Hence f is not injective but ker(f) = f−1(0) = 0.

As a consequence we can see that A/ker(f) � im(f), i.e. the first isomorphism theorem
doesn’t hold for monoids. An important implication of this is that M∗ is not an
abelian category. However, there is a general notion which will allow us to preserve the
isomorphism theorem, namely the congruence kernel which is defined as follows:

Definition 2.1.21. Let f : A→ B be a morphism of monoids. We define the congru-
ence kernel of f as the following relation on A:

R(f) := {(a, b) ∈ A× A | f(a) = f(b)}.
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Proposition 2.1.22. Let f : A → B be a morphism of monoids. The congruence
kernel R(f) is, indeed, a congruence on A.

Proof. We show the conditions for R(f):

Reflexive: f(a) = f(a).

Symmetrical: f(a) = f(b) implies f(b) = f(a).

Transitive: f(a) = f(b) and f(b) = f(c) implies f(a) = f(c).

Multiplicative: if f(a) = f(b) and f(c) = f(d) then f(ac) = f(a)f(c) = f(b)f(d) =
f(bd).

�

Proposition 2.1.23. Let A be a monoid, and let S ⊂ A × A be a subset. Then there
is a smallest congruence containing S, namely R = 〈S〉.

Proof. The intersection of congruences is a congruence. In particular there is a smallest
congruence containing S. �

Definition 2.1.24. Let A be a monoid. An ideal P ( A is prime if ab ∈ P implies
a ∈ P or b ∈ P . We denote by Spec(A) the set of all prime ideals of A.

Definition 2.1.25. Let A be a monoid. An increasing (resp. decreasing) sequence of
ideals I0 ⊂ I1 ⊂ · · · (I0 ⊃ I1 ⊃ · · · ) on A is called an ascending (resp. descending)
chain. A finite chain of ideals on A of the form I0 ( I1 ( · · · ( In is said to has length
n.

Definition 2.1.26. Let A be a monoid. The Krull dimension of A is the supremum of
the lengths of all strictly ascending chains of prime ideals, and it is denoted by dim(A).
Now let P ⊂ A be a prime ideal. The height or codimension of P is the supremum of
the lengths of all strictly ascending chains of the form

P0 ( P1 ( · · · ( Pn = P.

The codimension of P is denoted by codim(P ).

Proposition 2.1.27. Let A and B monoids, and let I be a prime ideal of B. If
f : A→ B is a morphism, then f−1(I) is a prime ideal of A.

Proof. We have already noticed that the preimage of an ideal is an ideal. Now, if
I is prime, then B\I is multiplicatively closed in B, then f−1(B\I) = A\f−1(I) is
multiplicatively closed in A, which means that f−1(I) is prime. �
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The next proposition and its corollary strengths differences between ideals of rings and
ideals of monoids.

Proposition 2.1.28. We denote by A× the set of all invertible elements of a monoid
A. Then A\A× is an ideal. Furthermore, it is a prime ideal.

Proof. Let a ∈ A\A×, and then suppose that there is y ∈ A with ay ∈ A×, but then
we can find z ∈ A such that (ay)z = a(yz) = 1, and hence a ∈ A×. �

Corollary 2.1.29. Any monoid A, has a unique maximal ideal A\A×, denoted by mA.
In particular, if G is an abelian group then G∗ only has one prime ideal, namely {0}
which corresponds to the only non invertible element in G∗.

Proposition 2.1.30. Let A be a monoid, and I be an ideal of A, then

1. I is prime ideal if and only if A/I is nontrivial and integral.

2. I is maximal if and only if A/I = (A/I)× ∪ {0}.

Proof.

1. First let I be a prime ideal, and let ab ∈ I. Then, by Definition 2.1.19, if in the
quotient monoid A/I we have [ab] = [0] then [a] = [0] or [b] = [0]. Hence A/I is
nontrivial and integral. The converse is obtained anagously.

2. As we have noticed before, A/I ∼= (A\I) ∪ {0}, so, when I is maximal (i.e.
I = A\A×), we have A/I ∼= A× ∪ {0}, thus A/I = (A/I)× ∪ {[0]}. Now, if
[a][b] = [1] in A/I, and as [a] 6= 0 6= [b], passing to A/I, we have [a] = {a} /∈ I
and [b] = {b} /∈ I, therefore ab = 1 in A, i.e. units in A/I corresponds to units
in A. Hence, as I is the kernel of · : A → A/I and as A/I = (A/I)× ∪ {[0]}, we
have I = A\A×, i.e. I is maximal.

�

Since monoids have only one maximal ideal, the concept of local morphism can be
defined as follows:

Definition 2.1.31. Amorphism of monoids f : A→ B is called local if f−1(mB) = mA.

Recall that a subset S ⊂ A is multiplicatively closed if 1 ∈ S and ab ∈ S for all a, b ∈ S.
Now we define the localization at S.

Definition 2.1.32. Let S ⊂ A be a multiplicatively closed subset. We define an
equivalence relation on A× S given by

(a, s′) ∼ (a′, s′) if and only if ∃s′′ ∈ S such that s′′as′ = s′′a′s.
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The equivalence class of (a, s) is denoted by a
s
. We define the localization at S as the

set of all equivalence classes in A× S, and it is denoted as follows:

S−1A =
{a
s
| a ∈ A, s ∈ S

}
.

Note that S−1A is a monoid with multiplication induced by A as follows:

a

s

b

t
=
ab

st
and

1

s

s

1
= 1

That means that any element of S becomes a unit in S−1A, and there is a canonical
morphism

ϕ : A→ S−1A given by a 7→ a

1
.

Note that if P ( A is a prime ideal, then 1 /∈ P , and if a, b ∈ A\P , then ab ∈ A\P . In
the case S = A\P , we denote S−1A by AP . Likewise, we denote the localization, at an
element f ∈ A, as follows:

Af = A[f−1] =

{
a

fn
| a ∈ A, n ∈ N

}
.

Remark 2.1.33. The localization operation satisfies the following universal property
whose proof is equal to the case of localization of rings (see for instance [11, Chapter
2]):

Let A,B be monoids, and let S be a multiplicatively closed subset of A. Then for
any morphism f : A → B that maps S to units in B there is a unique morphism
ϕ′ : S−1A→ B such that the following diagram commutes:

A S−1A

B

ϕ

f
ϕ′

The next proposition shows that localization behaves different in the case of monoids,
in contrast with rings.

Proposition 2.1.34 (Cortiñas, Haesemayer, Walker, Weibel, [5]). If S is any mul-
tiplicatively closed of A\{0}, then either S−1A = 0 or S−1A = AP , for some P ∈
Spec(A).
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Proof. First suppose that S−1A 6= 0. This monoid has a unique maximal ideal mS−1A.
Thus there is a morphism ϕ such that

ϕ : A→ S−1A implies ϕ−1(mS−1A) = P.

By Proposition 2.1.27 we know that P is prime ideal. Then T = A\P is a multiplica-
tively closed subset. Now let t ∈ T , then ϕ(t) is a unit in S−1A, and therefore, by the
universal property of lozalization, this induces a map AP → S−1A.

We claim that S ⊂ T . In fact, let x ∈ S and suppose that x ∈ P , then ϕ(x) ∈ mS−1A,
but ϕ(x) is a unit. This proves the claim, and furthermore, notice that this induces a
map S−1A→ AP . Finally the result follows from the universal property of localization
since the composition of the induced maps should be the identity map �

As we mentioned before, the last proposition is in general a false statement for the
case of rings. For instance consider the ring A = Z and the multiplicative closed set
S = {2n | n ∈ N}.

Proposition 2.1.35. Let A be a monoid, and let S ⊂ A\{0} be a multiplicative subset.
Then the proper ideals of S−1A are in bijection with the ideals of A contained in A\S.
In particular this bijection occurs among the prime ideals of S−1A and the prime ideals
of A contained in A\S.

Proof. Suppose I ⊂ A is an ideal with I ∩ S 6= ∅. Thus the ideal S−1I contains a unit,
then it is not a proper ideal of S−1A. On the other hand, if J ⊂ S−1A is an ideal, i.e.
1 /∈ J , then we would write J as S−1I where I = {a ∈ A | a/1 ∈ J} ⊂ A\S is an ideal
of A. �

Corollary 2.1.36. Let P be a prime ideal of A. Then, the codimension of P equals
the dimension of AP .

Proof. Consider the multiplicative closed set S = A\P . Thus, by Proposition 2.1.35,
the chains of prime ideals in AP are in bijection with the chains of prime ideals in A
contained in P . �

Now we give some remarks about the way to work with additive monoids. These
remarks are important since many times we find monoids with additive notation in a
natural way as is the case of numerical monoids which we will meet at the end of this
section.

Remark 2.1.37. Consider a cancellative monoid A with additive notation. Its group
completion A0 (see Definition 2.3.6) is the group generated formally by the equivalence
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clases on A×(A\{−∞}) of the differences of its elements, i.e. let a1, a2, b1, b2 ∈ A with
b1 6= −∞ 6= b2 then

a1 − b1 = a2 − b2 if and only if ∃c ∈ A with a1 + b2 + c = a2 + b1 + c.

Note that the canonical morphism A→ A0 is injective. For instance consider the map
N∗ → Z∗.

Proposition 2.1.38. Let A be a cancellative monoid. Then A is torsion free if and
only if A0 is torsion free.

Proof. Suppose A is torsion free. Thus if there is n ∈ N such that n(a1−b1) = n(a2−b2)
in A0, then there is c ∈ A such that

n(a1 + b2) + c = n(a2 + b1) + c.

Therefore, since A is cancellative and torsion free, a1 − b1 = a2 − b2. The converse
follows in the same way. �

Remark 2.1.39. Recall that a lattice N as a finitely generated torsion free abelian
group. Then notice that a finitely generated monoid is both cancellative and torsion
free, if and only if it is a submonoid of the pointed lattice N∗. For instance let N∗ = Zn∗ .
Hence N∗ is an finitely generated cancellative torsion free monoid.

Therefore we obtain a characterization of those monoids that can be embedded into a
pointed lattices, namely, finitely generated, cancellative and torsion free monoids. Those
kind of monoids are called affine monoids. In Chapter 4 we will see that affine monoids
play an important role in the construction of toric varieties.

The following remark show us how to go from an additive notation to a multiplicative
one in the case of affine monoids.

Remark 2.1.40. Let A be an affine monoid with additive notation and set of generators
{a1, · · · , an}. Then A can be written multiplicatively as

F1[A] = F1[T a1 , · · · , T an ].

Example 2.1.41. Consider the monoid Zn∗ which can be written multiplicatively as
F1[Zn∗ ] = F1[(T e1)±, · · · , (T en)±], where ei ∈ Zn is the i− th canonical vector i.e.

F1[Zn∗ ] = F1[T±1 , · · · , T±n ].

Remark 2.1.42. In what follows, by a lattice we mean a pointed lattice unless otherwise
stated, and when the context is clear we simply write that lattice in additive form as
N , and in multiplicative form as F1[N ]. For instance, in the example of above we write
F1[Zn] = F1[T±1 , · · · , T±n ].
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To end this section we introduce a special kind of monoids which are called numerical
monoids. In Chapter 5 we will use them to construct some toric varieties.

Almost all the basics on numerical monoids are given in additive notation, however, due
to the above remarks, we can write numerical monoids with multiplicative notation.

Definition 2.1.43. A numerical (additive) monoid is a submonoid of N∗ with finite
complement in N∗.

Lemma 2.1.44. Let n ∈ N≥2, and let A = {a1, · · · , an} ⊂ N. Then 〈A〉∗ is a numerical
monoid if and only if gcd(A) = 1.

Proof. By definition, N∗\〈A〉∗ is finite, thus there is some a ∈ 〈A〉∗ with a 6= −∞, such
that a+ 1 is also in 〈A〉∗. Hence gcd(A) = 1.

Conversely suppose that gcd(A) = 1. Therefore there exists numbers t1, · · · , tn ∈ Z
such that a1t1 + · · ·+ antn = 1. Then notice that the sum of the negative parts of the
previous expression gives us a number whose additive inverse b is such that b and b+ 1
belongs to 〈A〉∗.

Now we show that 〈A〉∗ has finite complement. Indeed, we claim that if n ≥ (b− 1)b+
(b − 1) then n ∈ 〈A〉. Thus let n = qb + r for some integers q and r with 0 ≤ r < b.
Then, since n ≥ (b− 1)b+ (b− 1), it follows that r ≤ b− 1 ≤ q. Hence

n = qb+ r

= qb+ r + rb− rb
= b(q − r) + (b+ 1)r ∈ 〈A〉

�

Remark 2.1.45. In [31, Theorem 2.7] it is shown that any numerical monoid S admits
a unique finite and minimal system of generators. Thus it is enough to consider a subset
A = {a1, . . . , am} ⊂ N with 1 < a1 < · · · < am and gcd(A) = 1 to associate a numerical
monoid S = 〈A〉∗, and, in most cases we may assume that A is the unique minimal set
of generators of S.

One of the historical reasons for working with numerical monoids is their close rela-
tionship with the problem of determining the nonnegative integers given by

∑n
i=1 niai

where ai ∈ A as before and xi ∈ N arbitrary numbers (see for instance [31]).

Now consider a numerical monoid S. A number associated with the previous problem
is the Frobenius number of S which is defined to be the greatest number contained
in N∗\S, and is denoted by F (S). Notice that by the definition of numerical monoid,
F (S) exists. This number has been used in [10] to bound the regularity index of toric
curves over a field. In Chapter 5 we will extend their results to toric curves over F1
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by interpreting the regularity index as the minimal number of generators of numerical
monoids.

2.2 A-sets
The structure discussed in this subsection was introduced in [6]. We are going to define
an analogue to a module over ring, but in our case we will use monoids instead of rings.
We consider a pointed set M , with basepoint denoted by 0M , and a monoid A with
basepoint denoted by 0A. We introduce the notion of A-set :

Definition 2.2.1. An A-action is a map θ : A ×M → M , satisfying the following
properties for all a, b ∈ A, and m ∈M (a ·m denotes θ(a,m)):

i 1 ·m = m

ii 0A ·m = 0M and a · 0M = 0M

iii (ab) ·m = a · (b ·m)

An A− set as a pair (M, θ), where M is a pointed set and θ is an A−action. However,
if there is not confusion, we will simply write it as M .

In the following, if there is not confusion, we will avoid the notation a ·m and simply
write am to refer θ(a,m).

Remark 2.2.2. If we denote by Hom(M,M) the basepoint preserving self-maps M →
M , we can also consider an A-set as a pointed set M together with a multiplicative map
A→ Hom(M,M) that preserves 0 an 1.

Definition 2.2.3. Let M be an A − set. We say that Y ⊂ M is a A-subset when
ay ∈ Y for all a ∈ A and y ∈ Y .

Example 2.2.4. Let A be a monoid. A is itself an A− set. Furthermore, note that an
A-subset B ⊂ A is, by definition, the same as an ideal I of A.

Example 2.2.5. We have seen that way to obtain a monoid A from a commutative
ring R, even more, in the same way, we can obtain an A − set from an R −module.
Indeed, we denote by Rings the category of commutative rings with unit, and we denote
by R−modules the category of modules over R, with R ∈ Rings. Thereafter we obtain
functors

U : Rings −→M∗

and
U ′ : R−modules −→ U(R)− sets.
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That means that an R−module has an underlying A− set if we just simply forget the
addition operation in the module.

Definition 2.2.6. Let M,N be A-sets.

1. The product of M and N is the usual cartesian product M ×N .

2. The coproduct or wedge product of M and N as

M ∨N = (M qN)/(0M ∼ 0N),

which identify the zeros of the A-sets.

3. We define the smash product of M and N as

M ∧N = M ×N/(M ∨N),

which still be an A− set via the action defined by a(m.n) = (am, an) if am 6= 0
(with m 6= 0M) and an 6= 0 (with n 6= 0N)), otherwise a(m,n) = 0.

Definition 2.2.7. An A-equivariant map between A-sets M and N , is a map f : M →
N such that f(am) = af(m) for all a ∈ A and m ∈ M . A morphism of A-sets is
an A−equivariant map. Then, we note that in particular, a morphism of A-sets sends
basepoints to basepoints.

IfM and N are A-sets, we denote the set of morphisms between them as HomA(M,N).
Then, the category of A-sets with their morphisms is denoted by A −Mod, and the
trivial A-set 0 = {∗} is both, the initial and terminal object of A−Mod, that is, is a
zero object in the category.

IfM,N and P are A-sets, we can define an biequivariant map as a map f : M×N → P
such that f(am, n) = af(m,n) and f(m, an) = af(m,n) for all a ∈ A and (m,n) ∈
M ×N . Now we are able to define the tensor products between A-sets.

Definition 2.2.8. Consider the equivalence relation∼ onM×N generated by (am, n) ∼
(m, an) for a ∈ A,m ∈M and n ∈ N . Then the tensor product ofM and N , is an A-set
denoted byM⊗AN together with a surjective biequivariant map f : M×N →M⊗AN .
Note that the equivalence relation induces a bijection M ×N/ ∼→M ⊗AN . Then the
tensor product satisfies the following universal property:

For every biequivariant map α : M × N → T to a third A-set T there is a unique
equivariant map g : M ⊗A N → T such that α = g ◦ f , i.e. such that the next diagram
commutes.

M ×N M ⊗A N

T

f

α
g
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Remark 2.2.9. When A = F1 notice that the tensor product of the A-sets M and N
is M ⊗F1 N ' M ∧ N as A-sets. Hence, if A and B are monoids, the tensor product
equals the smash product:

A⊗F1 B ' A ∧B = (A×B)/((A× {0}) ∪ ({0} ×B)).

Therefore, since any monoid A is an F1−algebra, we identify the monoid with their
tensor product A ⊗F1 F1 = A. For instance consider the monoid generated by one
element

F1 ⊗F1 〈T 〉 = {0, 1, T, T 2, · · · } = F1[T ].

Furthermore, notice that the free monoid F1[T1, · · · , Tn] can be seen as the tensor product

F1[T ]⊗n = F1[T1, · · · , Tn] = F1[T1]⊗F1 · · · ⊗F1 F1[Tn].

Example 2.2.10. As example of the above remark let A be a monoid and consider the
following tensor product

A[T1, · · ·Tn] = A⊗F1 F1[T1, · · · , Tn] = A⊗ F1[T ]⊗n

whose elements are all the monomials in F1[T1, · · ·Tn] with coefficients in A. The
monoid A⊗ F1[T ]⊗n is called the free A-monoid on n variables.

We have already seen how to pass from rings to monoids. Now we show how to extend
monoids to rings:

Definition 2.2.11. Let A be a monoid. We define the base extension functor from
monoids to rings, denoted by −⊗F1 Z, as follows:

AZ = A⊗F1 Z = Z[A]/〈1 · 0A〉.

Where Z[A] is the monoid ring of finite Z-linear combinations of elements of A, i.e.

Z[A] =
{∑

naa | na ∈ Z, almost all 0
}
.

And 〈1 · 0A〉 is the zero 0A of A, i.e. we identify the zero of the monoid A with the zero
of the ring Z[A].

Example 2.2.12. Some examples of base extension:

1. The base extension of the trivial monoid is the trivial ring.

2. The base extension of F1 is F1 ⊗F1 Z = Z.



2.2. A-SETS 21

3. The free monoid F1[T1, · · · , Tn] has base extension the polynomial ring in n vari-
ables.

F1[T1, · · · , Tn]⊗F1 Z = Z[T1, · · · , Tn].

4. Note that the localization of F1[T1, · · · , Tn] at 0, is the monoid F1[T±1 , · · · , T±n ],
whose base extension is the Laurent polynomials over Z. i.e. Z[T±1 , · · · , T±n ].

Remark 2.2.13. Let f : A→ B a monoid morphism. Note that, using base extension
in A and B, by linearity, we can extend f to a ring homomorphism

f ′ : A⊗F1 Z −→ B ⊗F1 Z.

Proposition 2.2.14. Let A be a monoid and S be a multiplicative subset. The canonical
ring homomorphism S−1AZ → (S−1A)Z, defined by linear extension of the map that
sends a

s
to a

s
for a ∈ A and s ∈ S, is an isomorphism.

Proof. Consider the canonical ring homomorphism

S−1AZ −→ (S−1A)Z.

Now, we are going to construct an inverse of this map. First note that an element of
(S−1A)Z can be written as

n∑
i=1

mi
ai
si

=
n∑
i=1

miai
∏

j 6=i sj∏n
j=1 sj

=
n∑
i=1

mia
′
i

s
.

Where

a′i = ai
∏
j 6=i

sj ∈ A and s =
n∏
j=1

sj.

Then
n∑
i=1

mia
′
i

s
∈ S−1AZ.

This defines the inverse map. �

Remark 2.2.15. If there is not confusion in the rest of the work we´ll simply denote
the tensor product of two monoids A,B over F1 just as A⊗B.

Proposition 2.2.16. A monoid A is finitely generated if and only if AZ is finitely
generated as a ring.

Proof. Since A is f.g. then Z[A] is finitely generated as a Z−algebra. Now suppose AZ
is finitely generated, that implies that Z[A] is a finitely generated by a set T , but also
T generates A as a monoid. �
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2.3 Noetherian conditions and valuations
In this section we present normal monoids which will be important when we introduce
affine toric varieties from cones. Moreover, in order to introduce divisors we need
some theory about noetherian conditions and valuations presented here. This section
is mainly based on [14].

Definition 2.3.1. An A-set M is called noetherian if it satisfies the ascending chain
condition (ACC), namely, for every ascending chain of A-subsets Y1 ⊆ Y2 ⊆ · · · there
exists n ∈ N such that Yi = Yn for every i ≥ n.

Remark 2.3.2. As in the case of noetherian rings, the condition for an A-set to be
noetherian is equivalent to say that every A-subset Y ⊂ A is finitely generated and the
proof follows in the same way (see for instance [16, Lemma 7.4]).

Proposition 2.3.3. The image of a noetherian A-set under an A-set morphism is a
noetherian A-set.

Proof. Let f : M1 →M2 be an A-set morphism. Then f−1(f(M1)) is finitely generated
by some elements m1, · · · ,mk ∈M1. �

Remark 2.3.4. A monoid A is called noetherian when is considered as an A-set and
satisfies the ACC for ideals. Thus, by Remark 2.3.2, the condition for a monoid to be
noetherian is equivalent to say that every ideal I ⊂ A is finitely generated.

Lemma 2.3.5. Let A be a noetherian monoid. If S ⊂ A is a multiplicatively closed
subset, then S−1A is noetherian.

Proof. It follows from Proposition 2.1.35. �

If A is a cancellative monoid, the element 0 generates a prime ideal, then the localization
A(0) makes sense. Then we have the following definition.

Definition 2.3.6. Let A be a cancellative monoid. We define its group completion or
quotient monoid as the localization A(0) which is usually denoted by A0. Indeed, notice
that A×0 = A0\{0} is a group.

Definition 2.3.7. Let A be a monoid and let B ⊂ A be a submonoid. An element
a ∈ A is called integral over B when an ∈ B for some n ≥ 1. The integral closure of B
over A is the following set

{a ∈ A | an ∈ B for some n ≥ 1}.
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Definition 2.3.8. We also define the normalization or saturation of a cancellative
monoid A as the set

Anor = {α ∈ A0 | αn ∈ A for some n ≥ 1}.

We say that A is normal, integrally closed orsaturated if it equals its integral closure in
its group completion, i.e. if A = Anor.

Proposition 2.3.9. Let A be a monoid, and B ⊂ A be a submonoid. Suposse B is
cancellative. If there is a finitely generated ideal I ⊂ B, and if there is an element
a ∈ A such that aI ⊂ I, then a is integral over B.

Proof. Since I is finitely generated, there is a finite set of generators, sayX = {x0, · · · , xr}.
Now, there is a function ϕ : X → X such that axi ∈ Bϕ(xi) for each xi ∈ X since
aI ⊂ I. Note that there is an xj ∈ X, for some j, such that ϕn(xj) = xj for some
n ∈ N. Then, we can show inductively that akxi ∈ Baϕk−1(xi) for all k ≥ 1. Hence the
numbers n, j determine an element b ∈ B such that anxj = bxj, thus an = b since A is
cancellative, and therefore a is integral over B. �

Lemma 2.3.10. Let A be a monoid. Let B ⊂ A be a submonoid of A and let S be a
multiplicatively closed subset of B. Then

1. If A is integral over B, then S−1A is integral over S−1B.

2. If A is the integral closure of B in another monoid C, then S−1A is the integral
closure of S−1B in S−1C.

3. If B is normal, then S−1B is normal.

Proof.

1. Let a ∈ A such that an ∈ B for some n ∈ N. Thus (a
s
)n ∈ S−1A implies

(a
s
)n ∈ S−1B.

2. Suppose that c
1
∈ S−1C is integral over S−1B, then ( c

1
)n ∈ S−1B for some n ∈ N.

Thus ( c
1
)n = b

s
which implies cnst = bt for some t ∈ S and therefore cst ∈ A since

A is the integral closure of B, but then c
1

= cst
st
∈ S−1A.

3. A equals its integral closure in its group completion, then, by the last paragraph,
we are done.

�

Definition 2.3.11. Let A be a cancellative monoid. A is called a valuation monoid if
for every non zero element a in A0 either, a ∈ A or a−1 ∈ A.
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Example 2.3.12. If (R, ·,+) is a valuation ring, then by forgetting the addition we get
a valuation monoid (R, ·).

Definition 2.3.13. Consider a valuation monoid A. Note that A×0 is a multiplicative
abelian group and A× is a subgroup of it. The quotient group A×0 /A

× is called the
value group. We define a total ordering in the value group given by x ≤ y if and only
if y

x
is in the image of A into A×0 /A× under the canonical morphism.

If we consider the value group as an additive group, we denote it by Γ. Thus recall that
Γ has identity 0 and basepoint −∞. Then consider the canonical map

v : A×0 /A
× −→ Γ

called the valuation map which just change the multiplicative operation to the additive
one.

Remark 2.3.14. By definition of both, Γ and the valuation map, notice that we identify
the valuation monoid A with the set

{a ∈ A×0 | v(a) ≥ 0}.

Likewise notice that v(a) = 0 if and only if a ∈ A×. Hence the maximal ideal of A is

{a ∈ A×0 | v(a) > 0}.

Proposition 2.3.15. Valuation monoids are normal.

Proof. Let A be a valuation monoid. Suppose a ∈ A0, with a 6= 0, is such that an ∈ A
for some n > 0. If a ∈ A we are done. Now suppose the contrary i.e. a /∈ A, but that
implies a−1 ∈ A since A is a valuation monoid, then (a−1)n−1 = a1−n ∈ A, therefore
(an)(a1−n) = a ∈ A, a contradiction. Hence A is normal. �

Definition 2.3.16. Let A be as before. We say that A is discrete valuation (DV)
monoid if its associated value group is infinite cyclic, i.e. is isomorphic to Z.

It’s well know that a valuation ring is discrete if and only if it is noetherian (see for
instance [16, Proposition 12.13]). The same fact apply for monoids, i.e. a valuation
monoid is noetherian if and only if is a discrete valuation monoid. We need all of this
to present the following results:

Proposition 2.3.17. A one dimensional, noetherian, normal monoid is a discrete
valuation monoid, and all DV monoids arise in this way.

Proof. For a proof we refer to [14, Proposition 2.5]. �
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Corollary 2.3.18. Let A be a noetherian normal monoid. If P is a codimension one
prime ideal of A, then AP is a discrete valuation monoid.

Proof. By Corollary 2.1.36, the dimension of AP is one. Then by Lemmas 2.3.5 and
2.3.10 we know that AP is normal and noetherian. Finally, the result follows from
Proposition 2.3.17. �

The next proposition shows that noetherian normal monoids are the intersections of
their localizations at codimension one prime ideals, whose proof can be found in [14,
Proposition 2.8].

Proposition 2.3.19 (Flores, Weibel, [14]). Let A be a noetherian normal monoid.
Then

A =
⋂

codim(P )=1

AP .

Finally we will see that Hilbert Basis theorem holds for monoids, and, as a conse-
quence finitely generated monoids are noetherian. In order to show this we need some
lemmas:

Lemma 2.3.20. Let A,B be monoids. Then, any ideal K of A⊗B is of the form

K =
⋃
λ∈Λ

Iλ ⊗ Jλ for some indexing set Λ.

Where Iλ ⊂ A and Jλ ⊂ B are ideals, and Λ is an indexing set. Moreover, at least one
of the sets of ideals {Iλ} and {Jλ} can be chosen to contain distinct elements.

Proof. Let a ∈ A and b ∈ B be elements such that a⊗ b ∈ K. Notice that aA, bB are
ideals, and, by the construction of tensor product, aA⊗ bB ⊂ K. Hence

K =
⋃

a⊗b∈K

aA⊗ bB.

Let I, I ′ ⊂ A, J, J ′ ⊂ B be ideals. Then note that

(I ⊗ J)
⋃

(I ′ ⊗ J) = (I
⋃

I ′)⊗ J.

And
(I ⊗ J)

⋃
(I ⊗ J ′) = I ⊗ (J

⋃
J ′).
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Now for each b ∈ B we define an ideal Ib such that we fix Iλ = Ib for some λ and obtain
some ideal Jλ as follows

Ib =
⋃

a⊗b∈K

aA and let Jλ =
⋃
{bB | Ib = Iλ}.

Therefore K =
⋃
λ∈Λ Iλ ⊗ Jλ and {Iλ} contains distinct elements. �

The next proposition is the analogue of the Hilbert Basis theorem for monoids:

Proposition 2.3.21. If A,B are noetherian monoids then A ⊗ B is noetherian. In
particular both F1[T1, · · · , Tn] and A[T1, · · · , Tn] are noetherian.

Proof. Let K ⊂ A⊗B be an ideal. Then, by Lemma 2.3.20 we have K =
⋃
λ∈Λ Iλ⊗ Jλ

for some indexing set Λ. Let λ ∈ Λ, then, by Remark 2.3.4, Iλ and Jλ are finitely
generated. Suppose {a1, · · · , an} ⊂ A and {b1, · · · , bm} ⊂ B are sets of generators.
Hence Iλ ⊗ Jλ is finitely generated by {ai ⊗ bj}.

Finally we have to show that Λ can be chosen to be finite. Thus by Lemma 2.3.20 we
may assume that {Iλ}λ∈Λ has distinct elements. If we suppose that Λ cannot be chosen
to be finite, we contradict the assumption on A to be noetherian since we obtain a
increasing sequence

Iλ1 ⊆ Iλ1 ∪ Iλ2 ⊆ · · · with λn ∈ Λ\{λ1, · · · , λn−1}.

Finally note that any ideal I of F1[T ] is generated by its element with lower degree.
Hence both F1[T ]⊗n and A[T1, · · · , Tn] are noetherian. �

Corollary 2.3.22. Let A be a finitely generated monoid, then A is noetherian. Thus,
by Remark 2.3.4 every ideal of A is finitely generated.

Proof. Let {a1, · · · , an} be a set of generators of A. Then we define a morphism

ϕ : F1[T1, · · · , Tn]→ A given by Ti 7→ ai.

Note that ϕ is onto. Hence by Propositions 2.3.3 and 2.3.21 A is noetherian. �



Chapter 3

The geometry of monoids

In this chapter we develop the theory of monoid schemes, which was was introduced by
Deitmar in [8] and was one of the first attempts to describe F1-schemes1. The material
presented here constitutes the basics of the area.

We start reviewing the spectrum of a monoid. Thereafter we introduce monoid schemes
which are topological spaces that locally look like the spectrum of a monoid together
with an structure sheaf. In the last section we will see how can extend the functor of
Definition 2.2.11 to recover ring schemes from monoid schemes.

As in the last chapter we will try to emphasize those properties that apply in a special
way to the case of monoid schemes and that do not occur in general in the case of of
ring schemes.

3.1 Affine monoid schemes
Definition 3.1.1. The spectrum of a monoid A is the set Spec(A) endowed with a
topology and a structure sheaf2. Sometimes we denote by |Spec(A)| the underlying set
or topological space without the structure sheaf, although, when the context is clear,
we simply write Spec(A).

Spec(A) is the topological space equipped with the Zariski topology given by closed
sets, namely

V (I) = {P ∈ Spec(A) | I ⊂ P} for any ideal I ⊂ A.

We also define the principal open subsets of Spec(A) as follows:
1Actually in [8] monoid schemes are called F1-schemes
2For the basic notions of sheaves that will be used in this work we refer the reader to [12, Section

I.1.3] or [18, Section 2.5].

27
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D(a) = {P ∈ Spec(A) | a /∈ P} for any a ∈ A.

Proposition 3.1.2. The principal open subsets form a basis of Spec(A). In particular

D(0) = ∅ and D(1) = Spec(A).

Proof. First note that D(a) ∩D(b) = D(ab) since ab /∈ P , for any two principal open
subsets D(a) and D(b), if and only if both a and b are not contained in P .

Now let U ⊂ Spec(A) be any open set, then U = Spec(A)\V (I) for some ideal I.
Therefore, if X is a set of generators of I then

U = Spec(A)\V (I) = Spec(A)\

(⋂
x∈X

V (x)

)
=
⋃
x∈X

D(x).

�

If S ⊂ A is a multiplicatively closed subset we denote by US ⊂ Spec(A) the set of
all primes of A that do not intersect with S. Notice that, in the particular, if S =
{1, a, a2, · · · } then US = D(a). Furthermore, note that US = ∅ if and only if 0 ∈ S.

Remark 3.1.3. The topological concepts of connectedness and irreducibility apply in
the same way as for schemes of rings (see [18, Proposition 1.15]). Let A be a monoid,
then, in particular, X = Spec(A) is irreducible if and only if A is integral. Moreover
the following statements are equivalent:

1. X is irreducible.

2. If U1, U2 ⊂ X are non empty open subsets, then U1

⋂
U2 6= ∅.

3. Let U ⊂ X be a non empty open subset, then U is dense in X.

4. Every non empty open subset is connected.

5. Every non empty open subset is irreducible.

Proposition 3.1.4. Spec(A) is quasi compact.

Proof. Let {Ui}i∈I be a open cover of Spec(A), then there exists Uj with j ∈ I, such
that the maximal ideal mA of A is contained in it. Now suppose mA is contained in
a principal open set D(a), i.e. mA ∈ D(a) ⊂ Ui. Thus a /∈ mA. Then, since mA is
maximal and therefore unique, a /∈ P for all P ∈ Spec(A). Hence P ∈ D(a). It follows
that

D(a) = Uj = Spec(A),

which means that Spec(A) is quasi compact. �
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Remark 3.1.5. Since a monoid A has a unique maximal ideal A\A×, the space Spec(A)
has a unique closed point i.e. mA is the only ideal with the property that {mA} = {mA}.
Moreover, if A is finitely generated Spec(A) is a finite poset of prime ideals. Indeed,
let X = {x1, · · · , xn} be a set of generators of A. Now, if P ∈ Spec(A), and S = A\P
then S is generated by {xi | xi /∈ P}.

Hence, if s ∈ S then s =
∏

i x
ei
i , and then ei = 0 when xi ∈ P . Now, by counting the

possible number of zeros in the ei’s we obtain an upper bound of the number of prime
ideals of A, namely

#|Spec(A)| ≤ 2n.

Hence, if A is finitely generated, the topological space has finitely many points. Then,
as a consequence, the space always has finite dimension.

Proposition 3.1.6. Let A be a f.g. monoid. Then, by considering a multiplicatively
closed subset S, the localization S−1A is finitely generated, US = D(s) for some s ∈ A
and Spec(S−1A) is open in Spec(A).

Proof. Suppose that {x1, · · · , xn} is a set of generators of A. Then, by Proposition
2.1.34 we know that S−1A = AP for some prime P , thus we may assume that S = A\P .
It follows that S is generated by {xi | xi /∈ P}. Now, if s =

∏
xi /∈P xi then US = D(s)

and we conclude that AP = As. Hence

US = D(s) = Spec(AP ) ⊂ Spec(A).

�

Let A be a finitely generated monoid, then, by Remark 3.1.5 we know that the space
Spec(A) only has finitely many points. When this happens Spec(A) becomes a finite
poset of prime ideals and we can represent the space as a directed graph G = (V,E)
whose vertices are the prime ideals. Thus, if P,Q ∈ V and P ⊂ Q then we obtain an
edge PQ directed from P to Q.

Moreover, with the representation of the space as a directed graph we can identify both
closed and open subsets of Spec(A). Indeed, we identify closed subsets as upper sets i.e.
sets that are closed from below, and we identify open subsets as the complements.

We give an example:

Example 3.1.7. The monoid F1[T1, T2, T3] has finitely many prime ideals, each one of
them generated by a subset of {T1, T2, T3}. We represent the space

X = Spec(F1[T1, T2, T3])

as the directed graph depicted below.
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Figure 3.1: Representation of Spec(F1[T1, T2, T3]) as a directed graph.

Now we illustrate the way to identify both open and closet subsets of X in the graph:
The vertices corresponding to the upper set of 〈T1〉 (blue vertices), correspond to the
closed subset that contains 〈T1〉, and its complement (red vertices) is the open subset
whose elements do not contain T1.

Let A be a monoid and let X = Spec(A). We want to describe the structure sheaf
OX . However, in order to make things easier, first we give an explicit description of
the values of the sheaf for the principal open subsets of X which are given in terms of
localization.

Definition 3.1.8. The structure sheaf of X = Spec(A) for the principal open subsets
is given by:

OX(D(s)) = A[s−1] =
{ a
sn
| a ∈ A, n ∈ N

}
.

In fact, this has sense since for two open subsets D(g) ⊂ D(s) it follows that g = fs for
some f ∈ A because D(fs) = D(f) ∩D(s), then, we can define the morphism:

ρD(s),D(g) : OX(D(s)) = A[s−1] −→ A[g−1] = OX(D(g)).

given by
a

si
7−→ af i

gi
.

Notice that if s = 1 then D(1) = Spec(A), and thus OX(Spec(A)) = A. Hence the
morphism ρD(s),D(g) maps an element a ∈ A to a

1
∈ A[g−1].
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Finally, the structure sheaf OX derives from the values obtained for the principal open
subsets ofX as above. The construction of the structure sheaf can be fount in [8, Section
2.1], however we give a description below.

Remark 3.1.9. let U ⊂ Spec(A) be a open subset. We can describe a section of OX(U)
as a family t = (tP )P∈U with tP ∈ AP for all P ∈ U with the property that for every
P ∈ U there are a, b ∈ A with b /∈ Q and

tQ =
a

b
∈ AQ for all Q in an open subset OP with P ∈ OP ⊂ U.

Definition 3.1.10. We define a monoidal space X as a pair X = (|X|,OX), where |X|
is a topological space, and OX is a sheaf of monoids (the structure sheaf).

Definition 3.1.11. An affine monoid scheme is a monoidal space isomorphic to

Spec(A) = (|Spec(A)|,OSpec(A)) for some A ∈M∗.

Definition 3.1.12. A morphism between monoidal spaces X = (|X|,OX) and Y =
(|Y |,OY ), is a pair (f, f#) such that

1. f : |X| −→ |Y | is a continuous map of topological spaces.

2. f# : OY −→ f∗OX is a morphism of sheaves.

Where, f# : OY → f∗OX is given by the pull back on U , that is

f# : OY (U) −→ OX(f−1(U))

for each open subset U ⊂ Y .

When the context is clear we simply denote the morphism of monoidal spaces as f :
X → Y .

Definition 3.1.13. Let (X,OX) be a monoidal space and let s ∈ X We define the stalk
of the structure sheaf OX at a point x ∈ X as follows

OX,x = colimx∈U(OX(U))

i.e. the colimit over all open neighborhoods of x. This is well defined since such colimit
always exists by Theorem 2.1.14.

Remark 3.1.14. Consider the set of open neighbourhoods as a partially ordered set by
inclusion, with order relation given by U ≥ U ′ ⇐⇒ U ⊂ U ′.
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Then, taking into account the restrictions maps of OX , we can think the notion of stalk
at some point x as follows:

OX,x = {(U, t) | x ∈ U, t ∈ OX(U)}/ ∼

Where the equivalence relation is given by (U, t) ∼ (U ′, t′) if and only if there exists an
open U ′′ ⊂ U ∩U ′ with x ∈ U ′′ and t|U ′′ = t′|U ′′. The classes of the equivalence relation
are the elements of the stalk and are called the germs of the stalk. We write [(U, t)] for
such an element.

Proposition 3.1.15. Let X = Spec(A). Then for any point P ∈ Spec(A) the stalk
OX,P is isomorphic to the localization AP .

Proof. By last remark consider the following morphism:

ϕ : OX,P −→ AP given by [(U, t)] 7−→ tP .

Note that this is well defined since ϕ maps the class of family t = (tQ)Q∈U ∈ OX(U) in
the stalk at P to its element Q = P . The morphism ϕ is surjective since any element
AP can be writen as a

b
with b /∈ P . Let U = D(b). Then we have

ϕ
([(

D(b),
a

b

)])
=
a

b
.

Now we show that ϕ is injective. Indeed, suppose

ϕ([(U, t)]) = ϕ([(U ′, t′)]).

Then, by Remark 3.1.9, in some neighborhood OP of P we have

tQ =
a

b
∈ AQ and t′Q =

a′

b′
∈ AQ for all Q ∈ OP .

But then, since tQ and t′Q map to the same element under ϕ, there exists b′′ ∈ A\P
such that b′′b′a = b′′ba′. Therefore, since P ∈ D(b′′), the equality a

b
= a′

b′
holds in AQ

for every Q ∈ OP ∩D(b′′). Hence [(U, t)] = [(U ′, t′)].

�

Remark 3.1.16. As we have seen before if X = Spec(A) for some monoid A, then a
point x ∈ X is a prime ideal of A i.e. x = P . Moreover, since there is an isomorphism
OX,x ∼= AP , and in analogy with Definition 2.1.26, we say that a point x ∈ X has
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height or codimension equal to the largest n of the lengths of strictly descending chains
of the form

x = xn ) xn−1 ) · · · ) x0.

Therefore, by both Corollary 2.1.36 and Proposition 3.1.15, the height of the point x
equals the dimension of the stalk OX,x.

Definition 3.1.17. A morphism (f, f#) between monoidal spaces X = (|X|,OX) and
Y = (|Y |,OY ) is called local if for all x ∈ |X| the morphism f# : OY,f(x) −→ OX,x is
local.

It is well know that in affine schemes for rings the morphisms corresponds to morphisms
of their underlying rings (see for instance [15, Proposition 12.28]). This statement
holds for affine monoid schemes and the proof proceeds in the same way as for affine
ring schemes since, by Proposition 2.1.27, the inverse image of a prime ideal under a
morphism of monoids is a prime ideal.

We summarize all of the above in the following proposition:

Proposition 3.1.18. For any two monoids A,B, there is a bijective correspondence

{morphisms Spec(A)→ Spec(B)} ←→ {monoid morphisms B → A}.

Thus a monoid morphism f : B → A yields a morphism

(ϕ, ϕ#) : (Spec(A),OSpec(B)) −→ (Spec(B),OSpec(A)).

Such that ϕ : Spec(A) → Spec(B) is a local morphism of monoidal spaces, and con-
versely.

Remark 3.1.19. The category of affine monoid schemes is denoted byM∗− schemes.
This category is dual toM∗. Hence the initial object inM∗− schemes is Spec(0), and
the terminal object is Spec(F1).

Furthermore, notice that, in particular, Proposition 3.1.18 shows that there is a bijection
between isomorphisms of monoids and isomorphisms of affine monoid schemes.

Before continuing with the theory, we show some examples:

Example 3.1.20 (Affine space). Motivated by the affine n−dimensional space AnZ =
Spec(Z[T1, · · · , Tn]), we define the affine space over F1 as the following affine monoid
scheme.

AnF1
= Spec(F1[T1, · · · , Tn]).
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For instance, Figure 3.1 shows the affine space A3
F1
, which was represented as a directed

graph.

Example 3.1.21 (Algebraic Tori). Consider the monoid F1[T±1 , · · · , T±n ] of Laurent
monomials over F1. We define the algebraic torus of rank n over F1 as the following
affine monoid scheme:

Gn
m,F1

= Spec(F1[T±1 , · · · , T±n ]).

Notice that Gn
m,F1

only has one point since F1[T±1 , · · · , T±n ] is a pointed group.

3.2 Monoid schemes
After having defined the building blocks of the theory we define monoid schemes.

Definition 3.2.1. A monoid scheme or F1−scheme in the sense of Deitmar, is a
monoidal space that admits an open cover by affine monoid schemes (an affine cover).
A morphism of monoid schemes is a local morphism of monoidal spaces.

Proposition 3.2.2. The principal open subsets D(a) ⊂ Spec(A) are isomorphic to
Spec(Aa). Hence affine schemes are schemes in the sense of Definition 3.2.1.

Proof. We know that D(a) = {P ∈ Spec(A) | a /∈ P}, but also note that Spec(Aa) has
the same underlying set. Then we show the isomorphism of their structure sheaf. In
order to do this, we just show the isomorphism betweenOD(a)(D(b)) andOSpec(Aa)(D(b))
for all principal open subsets D(b) ∈ Spec(A) since every open set is a union of principal
opens and then, by the sheaf axiom3, the isomorphism holds.

Then, since D(a)
⋂
D(b) = D(ab), and, by Definition 3.2.1

OSpec(A)|D(b)(D(b)) = OSpec(A)(D(ab)) ∼= Spec(Aab).

And, again, by Definition 3.1.8

OSpec(Aa)(D(b)) ∼= (Aa)b.

Hence OSpec(Aa)(D(b)) ∼= OD(a)(D(b)). Thus the result follows. �

Corollary 3.2.3. Let X be a monoid scheme, and let U ⊂ X be an open set. Then
U = (|U |,OX|U) is a monoid scheme.

3The precise statement of the sheaf axiom can be found in [12, Section I.1.3].
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Proof. Since U is open it is covered by principal open subsets. Then, by Proposition
3.2.2, U is a monoid scheme. �

Definition 3.2.4. Let X be a monoid scheme and let U ⊂ X be an open set. An open
monoid subscheme of X is a pair (U,OX|U). If U is affine we say that U is an affine
open monoid subscheme. Furthermore, note that U has an open cover by principal open
subset. Hence, by Proposition 3.2.2, U is a monoid scheme.

Remark 3.2.5. Notice that the intersection of open monoid schemes is again an open
monoid scheme since the basis of the topology is given by principal open subsets which,
as we have seen above, are monoid schemes. Furthermore, when the space is affine,
there is a generalization of Proposition 3.2.2 4:

Let U ⊂ Spec(A) be an affine monoid subscheme, and let S ⊂ A the set of elements
not in any prime in U , then S is multiplicatively closed. This defines the following
inclusions.

A ↪→ S−1A and Spec(S−1A) ↪→ Spec(A).

In particular the open inclusion U → Spec(A) is given by A → S−1A for some multi-
plicatively closed set S.

Definition 3.2.6. A monoid scheme is integral (normal, cancellative or torsion free)
if it can be covered by affine monoid schemes that are isomorphic to the spectrum of
an integral (resp. normal cancellative or torsion free) monoid. Thus, if X is an integral
(resp. normal, cancellative or torsion free) monoid scheme, then any affine subset is the
spectrum of an integral (resp. normal, cancellative or torsion free) monoid.

Definition 3.2.7. A point η of a monoid scheme X is called generic if it is contained
in every non empty open set.

Remark 3.2.8. When X = Spec(A) is cancellative then 0 defines a prime ideal of A.
Thus Spec(A) has a unique generic point.

Proposition 3.2.9. A cancellative monoid scheme X is a union

X =
⋃

generic points η∈X

Xη.

Where Xη is the closure of η in X. In particular, if X is connected then it has only a
unique generic point.

4See [6, Section 3.1.12] for details
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Proof. First consider the affine case X = Spec(A) with A integral. By last Remark, X
has a unique generic point.

Now let X be a cancellative monoid scheme, and let x ∈ X. Then note that any affine
neighborhood Ux = Spec(Ax) of x has a unique generic point η. Then, it follows that
η ∈ Ux ⊂ Xη. Therefore Xη =

⋃
Ux is open and closed in X.

Thus if X is connected X = Xη. Hence it has only one generic point. �

Now we show an example of a non affine space:

Example 3.2.10 (The projective line P1
F1
). (cf. [3, 3.1]) The space P1

F1
is covered by

two affine spaces of the form A1
F1
, namely Spec(F1[T0]) and Spec(F1[T1]). Then P1

F1
has

two closed points denoted by x0 and x1, and also, a generic point η. Thus note that
{η} coincides with G1

m,F1
. Indeed, we can see that η is contained in every non empty

open subset since we are identifying each affine space A1
F1

with the two open subsets
that cover P1

F1
, namely U0 = {x0, η}, U1 = {x1, η} whose intersection is the open subset

U01 = {η}. We depict the projective line over F1 below, where the arrows show the
contention relationships among the affine pieces.

Figure 3.2: The projective line P1
F1
.

Notice that the intersection U01 = {η} can be seen as Spec(F1[T0, T1]/〈T0T1 = 1〉). This
yields to the reestriction maps

ρUi,U01 : F1[Ti] 7−→ F1[T0, T1]/〈T0T1 = 1〉.

Remark 3.2.11. Notice that the projective line described above satisfies 1.0.1 which
tells us that PnF1

contains two points. To make sense of this consider F2
1 as a set with

two elements, say {1, 2}, Thus, as in Example 1.0.3, the closed points of PnF1
can be

seen as the subsets {1}, {2}. Hence x0 and x1 corresponds to these subsets and the
generic point η corresponds to the full set {1, 2}.
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Definition 3.2.12. Let S be a monoid scheme.

1. A scheme over S is a pair (X, fX), with X a monoid scheme, and fX a morphism
fX : X → S.

2. A morphism between monoid schemes over S is a morphism f : (X, fX)→ (Y, fY )
such that the following diagram commutes:

X Y

S

f

fX fY

We introduce the notion of the fiber product of monoid schemes.

Definition 3.2.13. Let (X, fX), (Y, fY ) be monoid schemes over S. A fiber product of
X and Y over S is a monoid scheme (X ×S Y, fX×SY ) over S together with morphisms
pr1 : X ×S Y → X and pr2 : X ×S Y → Y such that the following universal properety
holds:

Let Z be a monoid scheme such that for any two morphisms ψX : Z → X and ψY :
Z → Y that commutes respectively with fX and fY then there is a unique morphism
ψ : Z → X ×S Y such that the following diagram commutes:

Z

X ×S Y X

Y S

ψ
ψX

ψY

pr2

pr1

fY

fX

Proposition 3.2.14. The fiber product X ×S Y exists.

Proof. We restrict to the affine case, since the general result follows by gluing the affine
pieces. Thus let X = Spec(A), Y = Spec(B) and S = Spec(C) be as in Definition
3.2.12. Then, by Proposition 3.1.18 and by the universal property of tensor products
(Definition 2.2.8), the monoid A⊗C B gives the same diagram as above with all arrows
reversed. Hence Spec(A⊗C B) has the desired properties i.e.

X ×S Y = Spec(A⊗C B).

�
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We also have the notion of base change which plays an important role in order to pass
from monoid schemes to ring schemes:

Definition 3.2.15. Let X and T be schemes over S. The second projection

pr2 : X ×S T −→ T

makes the fibered product X ×S T a scheme over T . This process is called the base
change from S to T .

Remark 3.2.16. When S = Spec(F1) we simply write the fibered product of two
schemes X, Y over S as X × Y . Moreover, if S = Spec(F1) and T = Spec(A), where
A is a monoid, we simply say that pr2 : X×S T −→ T is the base change from F1 to A.

Example 3.2.17. Let X = Spec(F1[T1, · · · , Tn]) be an affine scheme. If Y = Spec(A)
for some monoid A, then, by Example 2.2.10, the base change from F1 to A is

X × Y = Spec(A[T1, · · · , Tn]).

Example 3.2.18. By Remark 2.2.9, the fibered product Spec(F1[T ]) × Spec(F1[T ]) is
Spec(F1[T ]⊗ F1[T ]) = Spec(F1[T1, T2]) i.e.

A1
F1
× A1

F1
= A2

F1
.

Proposition 3.2.19. The categoryM∗ − schemes contains limits.

Proof. The result follows from the existence of fibered product and Theorem 2.1.14. �

Definition 3.2.20. A monoid scheme X is noetherian if it admits a finite covering by
affine monoid schemes that are isomorphic to the spectrum of a noetherian monoid. We
also say that X is of finite type if is quasi compact and if it can be covered by affine
monoid schemes that are isomorphic to the spectrum of a finitely generated monoid.

Remark 3.2.21. Notice that finite type condition of a monoid scheme is equivalent
to noetherian condition since finitely generated monoids are noetherian by Corollary
2.3.22.

Monoid schemes of finite type have some particular properties such as the following
ones:

Proposition 3.2.22. Let X be monoid scheme of finite type. Then, each point x ∈ X
has an affine open neighborhood U such that

OX,x ∼= OX(U).
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Proof. Let x ∈ X, and suppose x has an affine open neighborhood U with U = Spec(A)
with A finitely generated, which means x = P for some prime ideal P of A, and thus
S = A\P is a multiplicatively closed subset. Then note that P is the only maximal
ideal in US. Therefore US is contained in all principal open subsets that contains P ,
but by Proposition 3.1.6, there is a principal open subset D(s) such that US = D(s)
for some s ∈ A. Hence OX,x ∼= OX(D(s)). �

Proposition 3.2.23. Let X be a monoid scheme of finite type and let B the set of all
open affine subsets of X. Consider the map

ϕ : X −→ B x 7−→
⋂
x∈Ux

Ux,

where Ux is an open neighborhood of x. Then ϕ is a bijective map whose inverse ϕ−1

sends an affine open subset U = Spec(A) of X to the maximal ideal mA of A, which is
a point of U ⊂ X.

Proof. By last Proposition, ϕ maps an element x ∈ X to a unique principal open subset
D(s) in a suitable affine space of the form Spec(A) such that s ∈ A and x is a prime
ideal P . Moreover P is the maximal ideal contained in US with S = A\P . Finally, ϕ−1

is injective, since maximal ideals in monoids are unique. �

We conclude this section introduced the notion of closed immersion of monoid schemes
as it is defined5 in [5, 26]. As we will see, this concept differs in the case of ring
schemes.

Definition 3.2.24. A morphism (f, f#) : X → Y of monoid schemes is a closed
immersion if f : |X| → |Y | is a homeomorphism onto its image and for every open
subset U ⊂ Y , the inverse image V = f−1(U) is affine in X and f# : OY → f∗OX
is surjective. A closed subscheme of Y is a monoid scheme X together with a closed
immersion.

It is well know that the image of a closed immersion ring schemes ϕ : X → Y is a closed
subset of Y (see for instance [18, Section 3.16]). However, this is not always true in the
case of closed immersion of monoid schemes.

Example 3.2.25. Consider the diagonal embbeding

∆ : A1
F1
−→ A1

F1
× A1

F1
= A2

F1

5Actually, the notion of closed immersion introduced in [26] is defined in terms of blue schemes,
which are generalizations of monoid schemes. We will present blue schemes in Chapter 5.
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which, by Proposition 3.1.18, corresponds to the monoid morphism

f∆ : F1[T1, T2] −→ F1[T ] given by Ti 7→ T for i = 1, 2.

Notice that F1[T ] only has two prime ideals, namely, 〈0〉 and 〈T 〉 whose inverse image
under f∆ are f−1

∆ (〈0〉) = {0} and f−1
∆ (〈T 〉) = 〈T1, T2〉. However the subset

{〈0〉, 〈T1, T2〉} ⊂ A2
F1
,

is not closed because V (〈0〉) = A2
F1
.

3.3 Base extension
The results presented in this section allow us to extend the properties that we have seen
for monoid schemes to ring schemes. Then, once the main results of this section have
been shown, we can use the theory developed in the previous sections of this chapter
and extend it to the case of ring schemes.

Remark 3.3.1. The base extension functor − ⊗F1 Z defined in Chapter 2 leads to a
functor from affine monoid schemes to affine ring schemes given by the base change
from F1 to Z, namely −×F1 Spec(Z). For instance, if X = Spec(A) for some monoid
A, its base extension to ring schemes is

XZ = Spec(A)×F1 Spec(Z) = Spec(A⊗F1 Z) = Spec(AZ).

Example 3.3.2. Some examples of base extension to ring schemes (or simply base
extension).

1. The base extension of the affine line:

AnZ = AnF1
× Spec(Z) = Spec(Z[T1, · · · , Tn]).

2. The base extension of the algebraic torus:

Gn
m,Z = Gn

m,F1
× Spec(Z) = Spec(Z[T±1 , · · · , T±n ]).

Remark 3.3.3. Consider a monoid scheme X with affine open cover {Ui}i∈I such that
each element is of the form Ui = Spec(Ai) for some monoid Ai. Moreover, by Remark
3.2.5 we may suppose that such an open cover is closed under intersections. Then we
extend the functor −⊗F1 Z in the following way

X =
⋃
i∈I

Ui −→
⋃
i∈I

(Ui)Z = XZ.
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Which is glued by the gluing maps of X. Moreover, using Proposition 3.1.18 and Corol-
lary 3.2.3 in [8, Section 2.3] it is shown that XZ does not depend of the choice of the
cover.

Proposition 3.3.4. Let X be a monoid scheme. Then

1. X is of finite type if and only if XZ is a scheme of finite type.

2. If X is of finite type, then only has finitely many points.

Proof.

1. It follows from Proposition 2.2.16

2. Note that X can be covered by finitely many open subsets since is quasi compact.
Then the result follows by Remark 3.1.5.

�

Recall that an open inclusion ι : X → Y , where X = Spec(B) and Y = Spec(A), is
given by the morphism i : A→ S−1A for some multiplicatively closed subset S ⊂ A by
Remark 3.2.5. Then, by Proposition 2.2.14, we have a base extension iZ : AZ → S−1AZ,
which induces the base extension of the open inclusion, i.e.

ιZ : XZ −→ YZ.

Which is an injective map.

Now, let X be a monoid scheme. If U ⊂ X is an open subset, we denote by UZ the
union of all base extension of affine open subsets of U inside XZ. Now we want to
construct a continuous map as the following:

β : XZ −→ X.

To do this let x ∈ XZ, and suppose UZ ⊂ Spec(AZ) is an affine neighborhood of x such
that UZ is the base extension of an affine open subset U = Spec(A) of X. Note that
x is a prime ideal P in the ring AZ. Then if we intersect P with A we obtain a prime
ideal P = A ∩P in A. Then P is a point t in some neighborhood U ∈ X.

In fact the map β is well defined and continuous by the following results:

Lemma 3.3.5. The map β : XZ → X is well defined, i.e. if β(x) = t as before, then
this value is independent of the choice of the affine neighboorhood U of the prime ideal
P = A ∩P.
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Proof. Suppose VZ is another affine open neighborhood of x which we may suppose to
be small enough to be contained in UZ by replacing V with V ∩ U . Then, by Remark
3.2.5, V is of the form Spec(S−1A) for some multiplicatively closed subset S ⊂ A.
Then, the inclusion map ι : V → U induces a the canonical map i : A → S−1A. Then
for any prime ideal P of S−1A

f−1
Z (P ) ∩ A = {a ∈ A | fZ(a) ∈ P}

= {a ∈ A | f(a) ∈ P ∩ S−1A}
= f−1(P ∩ S−1A).

Hence the value of β(x) is independent of the choice of U . �

The following theorem was stated in [6, Theorem 3.2]. For completeness we present the
proof

Theorem 3.3.6 (Chu, Lorscheid, Santhanam, [6]). The map β : XZ → X is continu-
ous. Moreover β−1(U) = UZ for any open subset U ⊂ X.

Proof. Let U ⊂ X be any open subset. Then, since UZ is the union of all base extension
of affine open subsets of U inside XZ, we show that β−1(U) = UZ for affine open subsets
U = Spec(A).

Thus, if x ∈ UZ is a point, then β(x) ∈ U . Then if x /∈ UZ we choose another affine
open neighborhood, namely VZ, then β(x) ∈ V and suppose V = Spec(B). Then by
construction of β, x gives a prime ideal P of BZ which gives a prime ideal P = P ∩ B
of B. Now, by Remark 3.2.5 the inclusion ι : V ∩ U → V implies that V ∩ U is of the
form Spec(S−1B) for some multiplicatively closed subset S ⊂ B. Then, we know that
x /∈ (V ∩U)Z which means that P ∩S 6= ∅, but, since S ∈ B then (P∩A)∩S 6= ∅. Hence
β(P) /∈ S−1B by Proposition 2.1.35. Thus β(x) /∈ U ∩ V and the result follows. �

As a consequence of Theorem 3.3.6 we obtain the following corollary:

Corollary 3.3.7. Let {Ui} be any family of open subsets of X. Then

(
Ui
⋂

Uj

)
Z

= (Ui)Z
⋂

(Uj)Z and
(⋃

Ui

)
Z

=
⋃

(Ui)Z.



Chapter 4

Toric varieties over F1

The goal of this chapter is to develop the theory of toric varieties using the geometry of
monoid schemes. In fact, our approach consists in construct toric varieties as a certain
kind of monoid schemes in a similar manner as the way as in the case of the usual theory
over C. The references for such a theory of such toric varieties are, for example, [2, 7]
and [13]. A reference for the theory of toric varieties over Z is, for example, [20]. It is
noteworthy that in this last reference the toric varieties are constructed from the point
of view of ring schemes. Throughout this chapter the notions of polyhedral geometry
that are can be found in Appendix A.

We begin by giving the general description of affine toric varieties over F1, which is
basically the spectrum of a monoid scheme with certain characteristics. After this we
build the non-affine toric varieties and study their connection between them and convex
polyhedral cones and fans. Later we introduce divisors, the class group and the Picard
group of toric varieties over F1. At the end of this section we introduce the notion of Cox
algebra. Finally, at the end of the chapter we present some relationships between the
number of generators of a numerical monoid and the multiplicity of toric curves.

4.1 Toric varieties over F1

In this section we present the general notion of toric varieties F1, starting with the
affine case.

First recall that F1[T±1 , · · · , T±n ] is a F1-algebra with monomials given by T a = Tα1
1 · · ·Tαnn

plus a 0 element, where a = (α1, · · · , αn) ∈ Zn. Then we associate a monoid mor-
phism

43
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θ : Zn∗ −→ F1[T±1 , · · · , T±n ].

a = (α1, · · · , αn) 7−→ T a = Tα1
1 · · ·Tαnn .

Thus
Zn∗ ∼= θ(Zn) = F1[T±1 , · · · , T±n ].

More generally we will use monomials associated to lattices. For this we need the
following remark.

Remark 4.1.1. From remark 2.1.42 recall that a lattice N is a pointed lattice N∗ i.e.
a pointed abelian group isomorphic to Zn∗ unless otherwise stated. In the same way, by
Zn we mean Zn∗ unless otherwise stated. Furthermore, if N ∼= Zn is a lattice, its dual
lattice is

M = HomZ(N,Z) ∼= Zn.

Below we present the basics notions of multiplicative groups schemes over F1. However
we will focus on the torus Gn

m,F1
of which we will describe its structure as group scheme

over F1
1.

Definition 4.1.2. Amultiplicative group scheme over F1 is a monoid schemeG together
with the three morphisms:

Multiplication µ : G×G −→ G

Inversion ι : G −→ G

Identity ε : Spec(F1) −→ G

that satisfies the usual axioms of a group, meaning that the following diagrams commute

G×G×G G×G

G×G G

µ×id

id×µ

µ

µ

1Many of the notions of algebraic groups over F1 don’t fit in the theory of monoid schemes, however,
they do in the case of the torus. There are extension of the theory that allow us to consider models
of algebraic groups in terms of blue schemes that we will meet in Chapter 5. A further discussion on
algebraic groups over F1 can be foun in [21,26].
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G G×G G G×G

G G

id×ε

µ
id id

ε×id

µ

G G×G G×G

Spec(F1) G

G G×G G×G

Spec(F1) G

∆ id×ι

µ

ε

∆ ι×id

µ

ε

Where ∆ : G → G × G is the diagonal x 7→ (x, x) as in Example 3.2.25, and G →
Spec(F1) is the unique morphism to Spec(F1).

In what follows, by group scheme we mean a multiplicative group scheme over F1 as in
Definition 4.1.2 unless otherwise stated.

Remark 4.1.3. The torus Gn
m,F1

is a group scheme with

1. Multiplication µ : Gn
m,F1
×Gn

m,F1
−→ Gn

m,F1
given by the F1−algebra morphism:

µ∗ : F1[T±1 , · · · , T±n ] −→ F1[(T ′1)±, · · · , (T ′n)±]⊗ F1[(T ′′1 )±, · · · , (T ′′n )±].

Ti 7−→ T ′i ⊗ T ′′i for i = 1, · · · , n.

2. Inversion ι : Gn
m,F1
−→ Gn

m,F1
given by the F1−algebra morphism:

ι∗ : F1[T±1 , · · · , T±n ] −→ F1[T±1 , · · · , T±n ].

Ti 7−→ T−1
i for i = 1, · · · , n.

3. Identity ε : Spec(F1) −→ Gn
m,F1

given by the F1−algebra morphism:

ε∗ : F1[T±1 , · · · , T±n ] −→ F1.

That maps every non zero element to 1.
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By Remark 2.2.9 recall that

F1[(T ′1)±, · · · , (T ′n)±]⊗ F1[(T ′′1 )±, · · · , (T ′′n )±] ∼= F1[(T ′1)±, · · · , (T ′n)±, (T ′′1 )±, · · · , (T ′′n )±].

Therefore, the multiplication of the torus is given by:

µ∗ defined by Ti 7−→ T ′iT
′′
i for i = 1, · · · , n.

Moreover if A is a monoid, by Remark 2.2.9, we know that A = A ⊗ F1. Thus the
identity ε of the group scheme has the usual meaning. For instance

Gn
m,F1
× Spec(F1) = Gn

m,F1
.

by the construction of the fiber product.

Definition 4.1.4. Consider two group schemes

1. T with multiplication µ1 and identity ε1;

2. G with multiplication µ2 and identity ε2.

A homomorphism of the group schemes T and G is a morphism of monoid schemes
ϕ : T → G such that the following diagrams commute

T × T T T

Spec(F1)

G×G G G

µ1

(ϕ,ϕ) ϕ

µ2

ε1

ε2

ϕ

The set of all such homomorphisms is denoted by Hom(T,G)

Definition 4.1.5. A Torus T is a monoid scheme isomorphic as a group scheme to
Gn
m,F1

with group structure inherited from the isomorphism.

Remark 4.1.6. A homomorphism of algebraic tori like the following:

ϕ : Gn
m,F1
−→ Gr

m,F1
.

is given by the F1−algebra morphism

ϕ∗ : F1[T±1 , · · · , T±r ] −→ F1[(T ′1)±, · · · , (T ′n)±].

Ti 7−→ (T ′)αi .
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Where αi ∈ Zn for i = 1, · · · , r, i.e. (T ′)αi is written in multi index. Indeed, this is a
homomorphism since ϕ∗ maps units to units.

We can see that morphisms of lattices Zr → Zn are in bijection with the elements of
Hom(F1[T±1 , · · · , T±r ],F1[(T ′1)±, · · · , (T ′n)±]), i.e. are in bijection with Hom(Gn

m,F1
, Gr

m,F1
).

In particular

Hom(Gn
m,F1

, G1
m,F1

) ∼= Zn and Hom(G1
m,F1

, Gn
m,F1

) ∼= Zn.

For an arbitrary torus we have the following definition:

Definition 4.1.7. A character of a torus T is an F1−algebra morphism that corre-
sponds to a homomorphism χ ∈ Hom(T, G1

m,F1
). A one parameter subgroup of a torus T

is an F1−algebra morphism that corresponds to a homomorphism λ ∈ Hom(G1
m,F1

,T).

Let T ∼= Gn
m,F1

be a torus. By Remark 4.1.6, notice that their associated characters
and one parameter subgroups yields lattices

M = Hom(T, G1
m,F1

) ∼= Zn and N = Hom(G1
m,F1

,T) ∼= Zn.

which we call character lattice and lattice of one parameter subgroups respectively. Note
that we identify N ∼= Hom(M,Z) and M ∼= Hom(N,Z). Sometimes we denote the
torus T by TN to refer to the lattice of on parameter subgroups associated with it.
Likewise, by Remark 2.1.40 we denote by F1[M ] the underlying monoid of the torus.
Notice that the base extension of the underlying monoid F1[M ]⊗F1 Z is the coordinate
ring of the algebraic tori TZ = T×F1 Spec(Z).

Additionally, we can check that the multiplication TN × TN → TN of the group scheme
is given by the F1−algebra morphism:

F1[M ] −→ F1[M ]⊗ F1[M ]

χm 7−→ χm ⊗ χm.

Example 4.1.8. For instance, suppose N = M = Zn. Then TN = Spec(F1[Zn]). Thus
for any m = (u1, · · · , un) ∈M = Zn there is a character χm given by

χm : F1[T±1 ] −→ F1[Zn]

χm(T1) = Tm = T u1
1 . . . T unn .

In the same way, an element n = (v1, · · · , vn) ∈ N = Zn induces a one paramenter
subgroup λn given by

λv : F1[Zn] −→ F1[T±1 ]

λv(Ti) = T vi1 for i = 1, · · · , n.
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Definition 4.1.9. A group action of a torus T over a monoid scheme X is a map
θ : T×X → X such that the following diagrams commutes.

T× T×X T×X Spec(F1)×X T×X

T×X X X

µ×id

id×θ

θ

θ

pr2

ε×id

θ

Now, we are ready to define toric varieties:

Definition 4.1.10. A toric variety over F1 is an irreducible monoid scheme X of finite
type containing a torus TN as an open subset such that the natural action of TN on
itself extends to an action TN ×X → X.

Notice that in our definition we don’t require X being normal.

Example 4.1.11. The affine space AnF1
= Spec(F1[T1, · · · , Tn]) is an affine toric vari-

ety, containing the torus T = Gn
m,F1

. The torus action is described by

T× Spec(F1[T1, · · · , Tn]) −→ Spec(F1[T1, · · · , Tn])

given by the morphism

F1[T1, · · · , Tn] −→ F1[(T ′1)±, · · · , (T ′n)±]⊗ F1[T ′′1 , · · · , T ′′n ].

Ti 7−→ T ′i ⊗ T ′′i for i = 1, · · · , n.

Recall that when we refer to an affine monoid A we use an additive notation, however,
by Remark 2.1.40, we can change this notation to a multiplicative one, namely F1[A].
Moreover, as we saw in Remark 2.1.39, an affine monoid can be embedded in a pointed
lattice. This is the reason why these monoids provides affine toric varieties as we will
see below, but before, we need a lemma whose proof can be found in [29, Proposition
2.14].

Lemma 4.1.12. Let ϕ : T1 → T2 be a homomorphism of tori. Then the image of T1

under ϕ equals a subtorus T ′ ⊂ T2.

Proposition 4.1.13. Let TN be a torus with character lattice M . Consider an affine
monoid A embedded in M , and suppose that {a1, · · · , as} is a set of generators of A.
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Then Spec(F1[A0]) is a torus with character lattice generated by {±a1, · · · ,±as} as a
monoid.

Proof. Consider the following morphism

ϕ : TN −→ Gs
m,F1

= Spec(F1[T±1 , · · · , T±s ]),

which by Remark 4.1.6 is entirely determined by the characters of the morphisms

χai : TN −→ Spec(F1[T±1 ]).

Then, by Lemma 4.1.12 the image of TN under ϕ is a torus T . Now, we show that T
has character lattice generated by {±a1, · · · ,±as} as a monoid i.e. T = Spec(F1[A0])

Suppose M ′ is the character lattice of T , then we have a commutative diagram

TN T

Gs
m,F1

ϕ

Which gives rise to the following commutative diagram of character lattices

Zs

M M ′

ϕ̌

Where ϕ̌ : Zs → M is defined by ei → ai for all i = 1, · · · , s where ei denotes an
element of the standard basis of Zs. Thus the image of Zs under ϕ̌ is A0. Hence, by
the last diagram we deduce that M ′ is a character lattice generated by {±a1, · · · ,±as}
as a monoid. �

Proposition 4.1.14. Let A be an affine monoid. Then Spec(A) is a toric variety with
torus Spec(A0).

Proof. Let X = Spec(A) and T = Spec(A0). By Proposition 4.1.13 we know that T is
a torus, then we have to show that T ↪→ X is an embedding as an open subset, but, by
Remark 3.2.5, this follows from the canonical morphism A → A0. Note that the open
set is dense since A is cancellative (in particular integral).
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Now, consider the torus action ϕ : T × T → T given by the morphism

ϕ∗ : A0 −→ A0 ⊗ A0.

a 7−→ a⊗ a.

And consider the map

θ∗ : A −→ A0 ⊗ A.
a 7−→ a⊗ a,

which induces a map θ : T ×X → X. Thus the following commutative diagrams show
that θ extends the torus action on X :

A A0 ⊗ A X T ×X

Which gives rise to

A0 A0 ⊗ A0 T T × T

θ∗

ϕ∗

θ

ϕ

Thus we can check that θ : T × X → X is a group action in the sense of Definition
4.1.9. �

Remark 4.1.15. By Proposition 4.1.14 when A is an affine monoid we obtain an affine
toric variety Spec(A) which also can be writen as Spec(F1[A]). Additionally, ifM is the
character lattice of the torus Spec(A0), an element m ∈M gives a character χm. Thus,
by Proposition 4.1.13, the affine monoid A can be written as the following F1−algebra:

F1[A] = {χm | m ∈ A}.

Note that in our definition we don’t require X to be normal, as it is shown in the next
example.

Example 4.1.16. Consider the numerical monoid S = 〈2, 3〉∗ ⊂ N∗, which can be
written multiplicatively as F1[T 2, T 3]. Note that S is not normal since S = T 3/T 2 ∈ Snor
but T /∈ S. We can check that S is affine, and, by Proposition 4.1.14, gives rise to the
toric variety Spec(S) with torus Spec(F1[Z]) = G1

m,F1
.

Example 4.1.16 shows a first connection between numerical monoids and toric vari-
eties. A further discussion of this connection will be given in the last section of this
chapter.
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In what follows we consider the non affine case. For this, let X be an irreducible,
cancellative, torsion free monoid scheme of finite type. Thus X has a unique generic
point η. Then we have the following definition.

Definition 4.1.17. Following [14], the stalk at the generic point OX,η, is called the
generic monoid, and it is denoted by A0. The term generic monoid is due to the fact
that in the affine case X = Spec(A) we obtain the stalk OX,η = A0.

Note that the generic monoid is the analogue of the field of rational functions of an
integral ring scheme (see [18, Remark 9.29]).

Remark 4.1.18. Let U ⊂ X be an open subset of a monoid scheme, then there is an
isomorphism

OU,η ∼= OX,η

given by the map OU,η → OX,η which sends an element t ∈ OU(V ) 7→ t ∈ OX(V ), and
has inverse map given by OX,η → OU,η which sends an element t ∈ OX(V ) 7→ t|V ∩U ∈
OU(V ∩ U).

Likewise, if x ∈ X is a point contained in an open subset U = Spec(A) ⊂ X we know
that it is a prime ideal P of A. In this case

OX,x ∼= OU,x = OU,P = AP .

The ideas of above about toric varieties over F1 are due to Deitmar. Indeed, in [9,
Theorem 4.1]. Deitmar shows that for a connected, torsion free, integral monoid scheme
of finite type X its base extensión XC is a toric variety (over C). The following theorem
is the analog for toric varieties over F1.

Theorem 4.1.19. Let X be an irreducible, cancellative, torsion free monoid scheme of
finite type. Then X is a toric variety.

Proof. By Proposition 3.2.9 we know that X has a unique generic point η. Then let
U = Spec(A) be an open affine subset. By hypothesis A is an affine monoid. Thus, by
Remark 4.1.18, the stalk OX,η is equal to A0. However, by Proposition 4.1.14 we know
that Spec(A) is an affine toric variety with torus Spec(A0) as an open subset.

Moreover, the action described in the affine case is compatible with the restriction maps
of the structure sheaf. Thus the action of Spec(A0) on Spec(A) extends to X. Thus X
is a toric variety over F1. �

Remark 4.1.20. Let X be an irreducible, cancellative, torsion free monoid scheme of
finite type. Note that the base extension XZ is a toric variety over Z, and in the same
way, due to Deitmar’s aforementioned theorem, we obtain a toric variety over C.
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Hence, by Theorem 4.1.19, we can see that the geometry of monoids is limited since
in some sense the only varieties that are obtained from monoid schemes are the toric
varieties. Therefore, as we already mentioned, toric varieties, like the ones presented
here, fit into other notions of F1-schemes.

In the next chapter we are going to present an introduction to blueprints and its ge-
ometric counterpart blue schemes, which are generalizations of monoids and monoid
schemes respectively, and which have made possible cover more types of varieties in the
framework of F1−geometry. However, it is noteworthy that the theory of toric varieties
presented here fits into the blue scheme theory.

4.2 Toric varieties associated to cones and fans
In this section we study a special kind of toric varieties, namely those that arise from
the structure of cones (in the affine case) and fans. These varieties have the property of
being normal. After this we will present both divisor class group and Picard group.

We start with the affine case:

Definition 4.2.1 (Affine toric variety associated to a cone). Let σ ∈ NR be a cone,
and let (Sσ)∗ its associated monoid (see A.0.10). We define the affine toric variety
associated to σ as follows:

Xσ = Spec(F1[Sσ]).

There is a relation among the elements of the monoid Sσ which we detail in the following:

Suppose that {a1, · · · , ak} is a set of generators of Sσ, where each ai is writen as
ai = (αi1 , · · · , αin). Let π : Zk → Sσ be the morphism that maps each canonical
element ei to the generator ai. Then the next short exact sequence give us the relation
among the elements of Sσ in terms of the generators:

0 ker(π) Zn Sσ 0π

Therefore, for some vj,mj ∈ Z≥0 we obtain

r =
k∑
j=1

vjej −
k∑
j=1

mjej ∈ ker(π).

Hence, it follows that
k∑
j=1

vjaj =
k∑
j=1

mjaj.
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Example 4.2.2. Consider a cone σ = cone(e2, 2e1 − e2), and its dual cone σ̌ =
cone(e1, e1 + 2e2). Both σ and σ̌ are depicted below.

Figure 4.1: σ and its dual cone σ̌

The set of generators of the monoid Sσ is {a1 = e1, a2 = e1 + e2, a3 = e1 + 2e2}.
Notice that the relation among the generators is given by a1 + a3 = 2a2. Then F1[Sσ] =
F1[T1, T1T2, T1T

2
2 ]. Hence the toric variety associated to σ is

Xσ = Spec(F1[T1, T1T2, T1T
2
2 ]).

Example 4.2.3. Consider the cone σ = cone(e1, e2, e3, e1 + e2 − e3) and its dual cone
σ̌ = cone(e1, e2, e1 + e3, e2 + e3) which is depicted below.

Figure 4.2: σ̌ = cone(e1, e2, e1 + e3, e2 + e3)
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The monoid Sσ is generated by the elements of the set {a1 = e1, a2 = e2, a3 = e1 +
e3, a4 = e2 + e3}, thus the relation among the generators is given by a1 + a4 = a2 + a3.
The affine toric variety associated to σ is

Xσ = Spec(F1[T1, T2, T1T3, T2T3]).

Remark 4.2.4. Let NR = N⊗ZR. A lattice homomorphism ϕ : N → L can be extended
to a homomorphism of real vector spaces ϕR : NR → LR. Then, if ϕR maps a cone σN
in NR, to a cone σL in LR, the homomorphism ϕR induces a dual map

ϕ̌ : HomZ(L,R) −→ HomZ(N,R).

given by ψ 7−→ ψ ◦ ϕ for all ψ ∈ HomZ(L,R).

Then we obtain a map SσL → SσN , which induces maps

RσL −→ RσN and XσN −→ XσL .

Once we have developed the affine blocks of the theory we present the toric varieties that
arises from gluing them. Indeed, these toric varieties are obtained by open embbedings
of affine patches given by localization of affine toric varieties whose structure is given
by that of the fan.

We start by looking at the structure and relations among the affine toric varieties
associated to the cones contained in a fan ∆.

Let σ ∈ ∆ be a cone, and let τ be a face of σ. By Proposition A.0.11, we know that
Sτ = Sσ + Z≥0(−λ), where λ ∈ σ̌ ∩M and τ = σ ∩ λ⊥.

Recall that F1[Sσ] = {χm | m ∈ Sσ}. Now, suppose that A = {a1, · · · , ak} is a set of
generators of Sσ. Notice that Sτ is obtained from Sσ by adding a generator −λ, and
then, if we assume that λ = ak we add ak+1 = −λ which means that the relations of the
generators of Sτ are the same as the generators of Sσ with an additional relation given
by ak + ak+1 = 0. Then by passing to Laurent monomials we obtain T akT ak+1 = 1.
Thus there is a map

F1[T a1 , · · · , T ak ] = F1[Sσ] −→ F1[Sτ ] = F1[T a1 , · · · , T ak , T ak+1 ],

given by the inclusion. This map can be seen as the inclusion in the localization σ at
its face τ since:

F1[Sτ ] = S−1F1[Sσ] where S = {(T ak)n | n ∈ N}.

All of these observations are generalized in the following proposition:
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Proposition 4.2.5. Let ∆ be a fan, and let σ be a cone in ∆. If τ is a face of σ i.e.
τ = σ∩λ⊥ with λ ∈ σ̌∩M . Therefore the associated F1−algebra of τ is the localization

F1[Sτ ] = F1[Sσ]χλ where χλ ∈ F1[Sσ].

Proof. In the same way as in the previous observations, the result follows from Propo-
sition A.0.11. �

Remark 4.2.6. Let σ and τ be as above. By Proposition 4.2.5 we obtain the localization
F1[Sτ ] = F1[Sσ]χλ, and by Proposition 2.1.34, there is a prime ideal P (τ) of F1[Sσ] such
that

S−1F1[Sσ] = F1[Sσ]P (τ).

In order to define toric varieties from fans consider a fan ∆, and let σ be a cone in ∆.
Then, as we have seen above, if τ is a face of σ, there is an inclusion Sσ → Sτ , which, by
Proposition 4.2.5 and Remark 3.2.5, induces an open inclusion of affine toric varieties

Spec(F1[Sτ ]) −→ Spec(F1[Sσ]).

All of the inclusions given as above define a directed diagram D (Definition 2.1.11).
Thus along these inclusions we glue the affine toric varieties, which gives rise to the
toric variety X∆. Formally we have the following definition:

Definition 4.2.7 (Toric varieties over F1 from fans). Let ∆ be a fan. We define the
toric variety over F1 associated to ∆ (cf. [33, Section 4.2] or [6, Section 3.1.4]) as follows:

X∆ = colimσ∈∆(Xσ).

As we saw above, by Remark 4.2.6, the faces of the cones contained in a fan define
localizations and define a directed diagram. Thus definition of toric varieties associated
to fans is well defined. Toric varieties can be thought of as the gluing of affine pieces
Xσ and Xσ′ along Xτ , where σ, σ′, τ ∈ ∆ with τ = σ ∩ σ′.

Remark 4.2.8. Notice that the requirements to obtain a toric variety over F1 associated
to a fan ∆ are sumarized by the structure of the fan as a follows:

Let ∆ be a fan defined over a lattice N . Let σ be a cone in ∆ and let τ = σ ∩ λ⊥
(λ ∈ σ̌ ∩M) be a face of σ, then:

1. We obtain inclusions F1[Sσ] ⊂ F1[Sτ ] as a subsets of N .

2. We obtain a localization of σ at τ , namely F1[Sτ ] = F1[Sσ]χλ where χλ ∈ F1[Sσ].

3. We obtain open inclusions Xτ → Xσ of affine toric varieties.
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Remark 4.2.9. Let ∆ be a fan, and let σ be a cone in ∆. By Remark 4.2.6 we
know that a face τ of σ ∈ ∆max is a prime ideal in F1[Sσ]. Therefore, the cones of ∆
corresponds to points of X∆. Moreover, in [5, Construction 4.2] it is shown that the
points of X∆ corresponds to the cones of ∆, and in particular codimension one points
in X∆ corresponds to the elements in ∆(1).

Notice that the trivial cone {0} is a face of all the elements in ∆. Its associated
F1−algebra is F1[M ] where M is the character lattice. Moreover notice that {0} corre-
sponds to the generic point η of the toric variety X∆.

The torus action of a toric variety X∆ is given by the map

F1[Sσ] −→ F1[S{0}]⊗ F1[Sσ].

Indeed, by Definition 4.1.9 and Proposition 4.1.14 this map give us a torus action that
extends the group law for TN , namely TN × TN → TN , to TN ×Xσ → Xσ.

Example 4.2.10. The projective plane P2
F1

is a toric variety associated to a fan. Indeed,
consider the fan ∆ in R2 of the following Figure:

Figure 4.3: Fan ∆ associated to P2
F1
, and their dual cones

Then, for each cone σ ∈ ∆ we associate the corresponding F1− algebra and the corre-
sponding affine toric variety. For this we need the dual cones of the cones contained in
∆. The dual cones are depicted below.
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Figure 4.4: Fan ∆ associated to P2
F1
, and their dual cones

Then we obtain

F1[Sσ0 ] = F1[T1, T2] associated with Xσ0 = Spec(F1[T1, T2]),

F1[Sσ1 ] = F1[T−1
1 , T−1

1 T2] associated with Xσ1 = Spec(F1[T−1
1 , T−1

1 T2]),

F1[Sσ2 ] = F1[T−1
2 , T1T

−1
2 ] associated with Xσ2 = Spec(F1[T−1

2 , T1T
−1
2 ]).

By gluing the affine pieces we obtain P2
F1
. For instance, by Remark 4.2.8, the gluing of

Xσ0 and Xσ1 along τ = cone(e2) is given by the open inclusions

Spec(F1[T1, T2]T1) ∼= Xτ → Xσ0 ,

and
Spec(F1[T−1

1 , T−1
1 T2]T−1

1
) ∼= Xτ → Xσ1 .

In other words, we identify the point 〈T1〉 in Xσ0 by the point 〈T−1
1 〉 in Xσ1. Moreover, by

Remark 4.2.9, the generic point η corresponds to the point in X{0} = Spec(F1[S{0}]) ∼=
G2
m,F1

.

In the figure below we depict the space P2
F1

with the relationships among the affine pieces,
where the arrows show containment relationships each affine space as in Example 3.1.7.
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Figure 4.5: The projective plane P2
F1

Remark 4.2.11. The projective plane P2
F1

satisfies the incidence relations of Example
1.0.3. Indeed, consider F3

1 as a set with three elements, say A = {1, 2, 3}. Then, the
closed points P2

F1
can be seen as the subsets {1}, {2}, {2} of A, which are represented

as blue vertices of the figure above. Likewise, the red vertices correspond to the lines in
P2
F1

i.e. correspond to the subsets 2−subsets of A, and the generic point η, represented
as a black vertex, corresponds to the full set A (see Figure 1.1).

Proposition 4.2.12. Affine toric varieties associated to cones are normal.

Proof. Suppose that {v1, · · · , vr} is a set of generators of σ. We denote by τi ∈ σ(1)
the cone (ray) associated to vi. Notice that F1[Sτi ]

∼= F1[T1, T
±
2 , · · · , T±n ]. Then by

Proposition A.0.7 we have

σ̌ =
r⋂
i=1

τ̌i which implies that Rσ =
⋂
F1[Sσ].

This means that F1[Sσ] is integrally closed. �

Remark 4.2.13. In addition to Proposition 4.2.12, in [5, Construction 4.2.] it is shown
that all normal toric varieties arises from fans.
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4.3 Divisors
The theory of divisors presented here was introduced [14], which is the main reference
for this section. Our main reference for classical theory of divisors of toric varieties over
C is [7, Chapter 5].

Our goal in this section is to present the theory of divisors for toric varieties over F1,
and then to show that it match with the usual theory of divisors of toric varieties over
C.

Throughout this subsection, by monoid scheme we understand an irreducible, cancella-
tive, torsion free, normal monoid scheme of finite type unless otherwise stated. Thus a
monoid scheme X contains a unique generic point η.

Definition 4.3.1. A prime divisor in a monoid scheme X is a point x ∈ X of codi-
mension 1. The free abelian group generated by height one points in X is denoted by
Div(X). The elements of this group are called Weil divisors, i.e. a Weil divisor D is a
finite sum

D =
∑
i

aixi.

where xi ∈ X with codim(xi) = 1 and ai ∈ Z for all i. Furtheremore, a Weil divisor
D =

∑
i aixi is called effective if ai ≥ 0 for all i. In this case we write D ≥ 0.

We want to work with the stalk OX,x in order to get a valuation monoid. Thus, by
Remark 4.1.18, we can restrict to the affine case X = Spec(A), where A is a normal
and finitely generated (and hence noetherian) monoid. Then, by Corollary 2.3.18, the
stalk OX,x ∼= AP is a discrete valuation monoid.

Remark 4.3.2. Let x be a prime divisor on a monoid scheme X. Then, since OX,x is
a discrete valuation monoid, we obtain a valuation map

vx : A×0 −→ Z.

Moreover note that OX,x is identified with the set {a ∈ A×0 | vx(a) ≥ 0}.

Definition 4.3.3. Let a ∈ A×0 . We define the divisor of a as follows

div(a) =
∑
x

vx(a)x.

Where each x is a height one element of X. Divisors of this form are called principal
divisors.
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Remark 4.3.4. Let a, b ∈ A×0 . Note that, the sum
∑

x vx(a)x is finite since X is of
finite type, thus div(a) belongs to Div(X). Moreover, note that

div(ab) = div(a) + div(b) since vx(ab) = vx(a) + vx(b).

Thus the set of all principal divisors is defined by Div0(X). Note that Div0(X) is a
subgroup of Div(X).

In what follows we use the notation O×X to define the following:

O×X(U) = {invertible elements of OX(U)}.

Proposition 4.3.5. Let X be a monoid scheme, and let a ∈ A×0 , then

1. div(a) ≥ 0 if and only if a ∈ OX(X), i.e. a is a global section.

2. div(a) = 0 if and only if a ∈ O×X(X).

Proof.

1. First suppose a ∈ OX(X). Then, for every point x ∈ X of height one, we have
a ∈ OX,x. It follows that vx(a) ≥ 0 by Remark 4.3.2. On the other hand, suppose
div(a) ≥ 0, meaning that vx(a) ≥ 0 for all x ∈ X of height one. Thus we can
restrict to an open affine subset U = Spec(A) where each point x of codimension
one corresponds to a prime ideal P of codimension one. Then a ∈ OX,P for all
prime divisor P ∈ U . Therefore by Proposition 2.3.19

a ∈
⋂

codim(P )=1

OX,P =
⋂

codim(P )=1

AP = A.

It follows that a is defined everywhere on U . Hence a ∈ A×0 is a global section on
OX(X).

2. The second statement follows by the first and by Remark 2.3.14.

�

Definition 4.3.6. We define the divisor class group of X as the quotient group

Cl(X) = Div(X)/Div0(X).

In order to study local properties of Weil divisors of a monoid scheme X we restrict
to a non empty open subset U ⊂ X. Thus, if D =

∑
i aixi is a Weil divisor, then the

restriction of D to U is the Weil divisor on U , namely

D|U =
∑
xi∈U

aixi.
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Definition 4.3.7. Let D be a Weil divisor on a monoid scheme X. Then D is called
Cartier if it is locally principal, meaning that there is an open cover {Ui}i∈I of X such
that D|Ui is principal in Ui for all i ∈ I. Thus, if D|Ui = div(ai)|Ui for i ∈ I and a ∈ A×0 ,
then we call {Ui, ai}i∈I the local data of D. In fact, sometimes we write D = {Ui, ai}i∈I .

Note that the set of Cartier divisors form a subgroup of Div(X). We denote by
CDiv(X) this subgroup. Likewise note that a principal divisor is locally principal,
i.e. div(a) is Cartier for all a ∈ A×0 . Hence

Div0(X) ⊂ CDiv(X) ⊂ Div(X).

Definition 4.3.8. We define the Picard group of X as the quotient group

Pic(X) = CDiv(X)/Div0(X).

Proposition 4.3.9. Let X be a monoid scheme. Then, there are exact sequences

1 O×X(X) A×0 Div(X) Cl(X) 0div

And

1 O×X(X) A×0 CDiv(X) Pic(X) 0div

Where the map O×X(X) → A×0 is the inclusion, and Div(X) → Cl(X) sends each
element to its class. Likewise in the second exact sequence the map CDiv(X)→ Pic(X)
sends each element to its class.

Proof. It follows directly from Proposition 4.3.5. �

Remark 4.3.10. By Remark 4.2.13 we know that normal toric varieties arises from
fans. Moreover, if X∆ is a toric variety, by Remark 4.2.6, we also know that height
one points in X∆ corresponds to the elements in ∆(1). Thus, the divisors consider here
correspond to the so called toric divisors defined in [7, Chapter 4].

Remark 4.3.11. LetM be the character lattice. We know that the cone {0} corresponds
to the generic point η of a toric variety X∆. Hence we obtain the generic monoid

OX∆,η
∼= F1[M ].

Therefore, by Remark 4.3.2, we obtain a valuation map

vρ : F1[M ]× −→ Z.

Where ρ ∈ ∆(1) represents a codimension one point xρ ∈ X∆. Notice that a monomial
described by a character is contained in the generic monoid, for instance let χm = Tm

for some m ∈M as in Example 4.1.8, then Tm ∈ F1[T±1 , · · · , T±n ].
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Proposition 4.3.12. Let X∆ be a toric variety associated to a fan ∆, and let m ∈
M ∼= Zn, then, for ρ ∈ ∆(1)

vρ(χ
m) = 〈m,uρ〉.

Proof. The element uρ ∈ N is a minimal generator of ρ ∈ ∆(1) and thus primitive.
Then we extend it to a basis uρ = e1, e2, · · · , en of N . We may assume that N =
Zn. Hence ρ = cone(e1) ⊂ Rn. Then we restrict to the affine open subset Uσ ∼=
Spec(F[T1, T

±
2 , · · · , T±n ]). Therefore we obtain a DV monoid

OU,xρ ∼= F1[T1, · · · , Tn]〈T1〉.

The valuation of an element t ∈ F[T±1 , T
±
2 , · · · , T±n ] is defined by

vρ(t) = l ∈ Z when t =
(
T l1
) (a

b

)
.

with a, b ∈ F[T±1 , T
±
2 , · · · , T±n ]\〈T1〉, and finally note that

χm = Tm

= T
〈m,e1〉
1 · · ·T 〈m,en〉1

= T
〈m,uρ〉
1 · · ·T 〈m,en〉1 .

where the first expression of Tm is given by the dual basis e1, · · · , en of M . Therefore,
by the valuation we obtain vρ(χm) = 〈m,uρ〉. �

Corollary 4.3.13. The divisor associated to a character χm, with m ∈M , is

div(χm) =
∑
ρ∈∆(1)

〈m,uρ〉xρ.

Now we compute the divisor class groups of some toric varieties.

Example 4.3.14. (cf. [14, Example 4.2.1]). Consider the toric variety Xσ = (F1[Sσ])
of Example 4.2.2, where σ(1) = {ρ1 = cone(e2), ρ2 = cone(2e1 − e2)}, thus u1 = e2

and u2 = 2e1 − e2. Then, since the group completion of Sσ is Z2, using the first exact
sequence of Proposition 4.3.9 we compute the divisor class group Cl(Xσ) as follows:

0 ∼ div(χe1) = 〈e1, u1〉xρ1 + 〈e1, u2〉xρ2 = 2xρ2 .

0 ∼ div(χe2) = 〈e2, u1〉xρ1 + 〈e2, u2〉xρ1 = xρ2 − xρ1 .

Where a ∼ b means that a and b belongs to the same class in Cl(Xσ). Hence, by
Corollary 4.3.13 we obtain the divisor class group

Cl(Xσ) ∼= Z/2Z.
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4.4 Cox algebra for toric varieties
In this section we denote by X = X∆ a normal toric variety associated to a fan ∆
such that the elements in ∆(1) spans NR. The reason for restrict ourselves to working
with this type of is due to the following proposition which is a classical result on toric
varieties over C, however, as it is pointed out in [17, Section 4.2] it does not depend of
the field in which we work. Thus we refer to [7, Theorem 4.1.3] for a proof.

Proposition 4.4.1. There is an exact sequence

0 M Div(X∆) Cl(X∆) 0div

if and only if {uρ | ρ ∈ ∆(1)} spans NR, where M is the character lattice, and the map
Div(X∆)→ Cl(X∆) sends each element to its class in Cl(X∆).

By remark 4.3.12 we know that codimension one points in X∆ corresponds to the one
dimensional cones in the fan ∆. Now, notice that

Div(X∆) =
⊕
ρ∈∆(1)

Zxρ.

To make reference of this, in what follows we denote the group Div(X∆) by Z∆(1). Then
following [17] we set

Cl(X∆) = Z∆(1)/M.

In addition with the notation introduced above, when we write expressions such as
∑

ρ

and
∏

ρ, the index means that ρ ranges over all elements in ∆(1). Now we define the
analogue in F1 of the Cox ring or total coordinate ring over C (see [7, Chapter 5]).

Definition 4.4.2. We define the Cox algebra as the F1−algebra over the set of one
dimensional cones ∆(1):

Cox(X∆) = F1[xρ | ρ ∈ ∆(1)].

An important property of the Cox algebra is that it has a grading by the class group,
which is obtained using the exact sequence of Proposition 4.4.1, where an element
a = (aρ) ∈ ZΣ(1) maps to its class group [

∑
ρ aρDρ] ∈ Z∆(1)/M . A monomial in

Cox(X∆) is of the form
xa =

∏
ρ

xaρρ ∈ Cox(X∆).

Then we define the grading of xa as follows:

deg(xa) =

[∑
ρ

aρDρ

]
∈ Z∆(1)/M.
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Example 4.4.3. Consider the fan ∆ associated to the toric variety PnF1
. From Example

4.2.10 we know that u0 = −e1 · · · − en and ui = ei for i = 1, · · · , n (see Figure 4.3),
thus |∆(1)| = n+ 1, therefore, the map M → Z∆(1) can be seen as

f : Zn −→ Zn+1

(a1, · · · , an) 7−→ (−a1 · · · − an, a1, · · · , an).

Furthermore, we also define the following map

g : Zn+1 −→ Z
(b0, · · · , bn) 7−→ b0 + · · ·+ bn.

Using the maps defined above we obtain the next short exact sequence

0 Zn Zn+1 Z 0.
f g

It follows that Cl(PnF1
) ' Z. Then we can see that the Cox algebra is

Cox(PnF1
) = F1[x0, · · · , xn].

And, from the last exact sequence by mapping ei 7→ 1 ∈ Z we obtain the grading of the
Cox algebra, namely deg(xi) = 1 for i = 0, · · · , n.

Example 4.4.4. Consider the toric variety associated to the fan ∆ given by its maximal
cones = σ1 = cone(e2,−e1) σ2 = cone(−e1, 2e1 − e2), σ3 = cone(2e1 − e2, e2). Thus
|∆(1)| = 3, and observe that Cox(X∆) = F1[x1, x2, x3]. Then, in order to obtain its
grading we compute the class group.

In the same manner as in Example 4.4.3 the map M → Z∆(1) can be seen as

f : Z2 −→ Z3

(a1, a2) 7−→ (2a1 − a2,−a1, a2).

And we define the map

g : Z3 −→ Z
(a0, a1, a2) 7−→ a0 + 2a1 + a2.

Then, from these maps we obtain the following exact sequence:

0 Z2 Z3 Z 0
f g

Thus, we obtain Cl(X∆) ' Z. Then we obtain the grading on Cox(X∆) by mapping
ei 7→ 1 ∈ Z we obtain the grading of the Cox algebra:

deg(x1) = deg(x3) = 1 and deg(x2) = 2.
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As it is explained in [7, Chapter 5], the reason to introduce the Cox ring was to write
toric varieties (over C) as categorical quotients imitating the case of the projective
space. We will not delve into this, instead we refer to [17, Construction 4.2] to see the
construction of normal toric varieties over F1 as a categorical quotients.

4.5 On toric curves from numerical monoids
In this section we give a first application of F1-geometry. It is based on [10] in which the
authors studied the Hilbert-Samuel multiplicity at the origin of a toric curve over a field
K using numerical monoids2 and give bounds for the regularity index of the multiplicity
in terms of the Frobenius number.

The goal is to generalize the results given in [10] to toric varieties over monoids (i.e.
over F1), which in turn allows to generalize those results to toric varieties over rings
using the functor given in Remark 3.3.1.

The first thing we will do is extend the notion of toric curves over a field K considered
in loc. cit. to toric curves over F1 obtained from numerical monoids. Later we will
explain how to count the minimum number of generators of a numerical monoid when
possible and give some bounds otherwise. Once this is done, we will explain how to
interpret this number in terms of multiplicity and regularity index.

Thus we start by describing the toric varieties that are obtained from numerical monoids.

The first example of such a monoid scheme was given in Example 4.1.16 in which we
considered the numerical monoid S = 〈2, 3〉 (or in multiplicative notation 〈T 2, T 3〉)
which we can see is affine and give rise to the non normal toric variety Spec(S) with
torus Spec(Z∗) ∼= G1

m,F1
.

In general, let S be any numerical monoid with additive notation. By remark 2.1.45 we
may assume that A = {a1, · · · , am} ⊂ N with 1 < a1 < · · · < am and gcd(A) = 1 is the
unique minimal set of generators of S. It is easy to see that S is affine, and therefore, by
Proposition 4.1.14, give rise to the toric variety Spec(S) (or in multiplicative notation
Spec(F1[S]) = Spec(F1[T a1 , · · · , T am ])). Then we have the following proposition.

Proposition 4.5.1. Spec(S) has the following properties:

1. It’s a non normal toric variety with torus Spec(Z∗) ∼= G1
m,F1

as an open subset,
where Z∗ is the stalk at the generic point −∞.

2. The (Krull) dimension of S is 1.

2Actually, the authors consider numerical semigroups, which are defined in the same way as in
Definition 2.1.43 but they don’t contain a basepoint.
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Proof.

1. We have already seen that Spec(S) is a toric variety. Now, notice that a2 − a1 ∈
Snor since a1(a2−a1) ∈ S but a2−a1 /∈ S. Hence Spec(S) is non normal. Finally,
notice that, since gcd(A) = 1, there are t1, · · · , tm ∈ Z such that

∑n
i=1 tiai = 1,

and therefore S0 = Z∗, and the result follows by Proposition 4.1.14.

2. We show that the only prime ideals of S are 〈−∞〉 and 〈a1, · · · , am〉. Indeed,
let ai1 , · · · , ain ∈ A with n < m, and suppose that the ideal I = 〈ai1 , · · · , ain〉
is prime, which means that S\I is additive closed, but maj ∈ S for any aj ∈ A
with aj 6= ai1 , · · · , ain and for all m ∈ I, which contradicts I being a prime ideal.
Hence the only prime ideals of S are 〈−∞〉 and 〈a1, · · · , am〉, and the results
follows since there is a chain 〈−∞〉 ( 〈a1, · · · , am〉.

Notice that, with multiplicative notation, the unique chain of ideals looks like
〈0〉 ( 〈T a1 , · · · , T am〉.

�

Remark 4.5.2. By Proposition 4.5.1 we know a numerical monoid S has Krull dimen-
sion 1. This is why Spec(S) is called a toric curve.

Before continuing we need to introduce some vocabulary.

Let A = {a1, · · · , am} ⊂ N be as before. In the following we write the elements of A in
a vector a = (a1, · · · , am) ∈ Nm, and we denote by Sm the associated numerical monoid
to make reference of the number of generators. Furthermore, by |a| we mean

∑m
i=1 ai,

and if b ∈ Nm is another vector, we denote the usual dot product as a · b.

We are interested in counting the minimum number of generators of the submonoids
defined below:

Smn = {0, b · a | c, b ∈ Nm, |b| = n, n ∈ N≥1}∗.

Indeed, notice that each Smn is a submonoid of Sm, and they are related by

Sm = Sm1 ⊃ Sm2 ⊃ · · · .

The minimum number of generators of Smn is denoted by λ(n,m). Furthermore, the
notation Smn + a1 means {s+ a1 | s ∈ Smn }∗. Thus we obtain inclusions

Smn + a1 ⊂ Sn+1 for all n ≥ 1.

In [10, Theorem 3.3] it is shown that λ(n,m) = a1 for all n ≥ k, for some big enough
k ∈ N. The smallest k such that the statement holds is the called the regularity index
of the monoid and it is denoted by ri(Sm).

Moreover, in [10, Proposition 2.1] it is shown that the simplest case to obtain an exact
number for the regularity index is when m = 2. Indeed it is shown that ri(S2) =
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a1− 1, whereas for m ≥ 3 the authors consider three cases to obtain bounds of ri(Sm),
namely a2 < F (Sm), a1 < F (Sm) < a2 or F (Sm) < a1, where F (Sm) is the Frobenius
number of the monoid Sm. The bounds obtained are found in the theorem below, which
summarizes [10, Theorem 3.3, Remark 3.6, Remark 3.7]. However, it should be clarified
that the context in which we establish it is given in terms of monoids.

Theorem 4.5.3. The minimum number of generators λ(n,m) is equal to a1 for all
n ≥ k for some big enough k ∈ N. Furthermore, if m = 2, the regularity index ri(Sm)
is equal to a1, otherwise, if m ≥ 3 there are three cases:

1. If a2 < F (Sm), let ∆ = F (Sm)− a1 and let D = a2 − a1. Then, for some L ∈ N,
∆ = D + L. In this case ri(Sm) ≤

⌊
L
D

⌋
.

2. If a1 < F (Sm) < a2, then ri(Sm) = 1.

3. If F (Sm) < a1, then ri(Sm) = 1.

Remark 4.5.4. Let n ∈ N≥1 Consider the toric curve associated to Sm written in
multiplicative notation, i.e.

Spec(F1[Sm]) = Spec(F1[T a1 , · · · , T am ]).

Let’s denote by I the ideal 〈T a1 , · · · , T am〉. Notice that the minimal number of genera-
tors of Smn can be interpreted as the cardinality of the quotient In/In+1, i.e.

λ(n,m) = #In/In+1.

Thus, the regularity index can be seen as the smallest k ∈ N such that the cardinality
of #In/In+1 stabilizes for n ≥ k. Furthermore, notice that the last theorem states that
#In/In+1 = a1 when n ≥ ri(Sm).

Moreover, as we mentioned in Chapter 1, pointed sets can be seen as vector spaces over
F1. In this context the cardinality #In/In+1 equals the dimension as vector space of
the quotient i.e. λ(n,m) = dimF1(In/In+1). The Hilbert-Samuel multiplicity3 of the
toric variety is defined as the dimension dimF1(In/In+1) when n ≥ ri(Sm). Hence the
Hilbert-Samuel multiplicity of Spec(F1[Sm]) is equal to a1.

Remark 4.5.5. Notice that we can extend the results of above to the context of ring
schemes by applying the base extension functor of Remark 3.3.1. Let X = Spec(F1[Sm])×
Spec(Z) = Spec(Z[T a1 , · · · , T am ]). We also obtain an ideal of rings

m = 〈T a1 , · · · , T am〉 ⊂ Z[T a1 , · · · , T am ].

3A further discussion of the Hilbert-Samuel multiplicity can be found in [11, Chapter 12].
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Also note that the dimension dimZ(mn/mn+1) is equal to λ(n,m), which means that
this number only depends of the monoid Sm. Thus, in the same way as in the last
remark, the Hilbert-Samuel multiplicity of X is defined as the number λ(n,m) such that
n ≥ ri(Sm), which, by Theorem 4.5.3 is equal to a1.

As we mentioned at the begining of this section, the observations made in both Re-
mark 4.5.4 and Remark 4.5.5, about the multiplicity and the regularity index, were
established in [10] for toric varieties over a field K. In this way, by using the theory of
monoid schemes, we have been able to generalize them to the context of monoids and
subsequently to rings.



Chapter 5

The geometry of blueprints

The need for a larger theory than the monoid schemes is that the latter is not robust
enough to has analogues to other types of varieties different from toric as we have
highlighted in Remark 4.1.20. In this chapter we want to present a broader approach of
F1−geometry which is based on the theory of blueprints and blue schemes introduced by
Lorscheid in [25]. This approach has allowed to find applications in tropical geometry
by setting tropical varieties in terms of blue schemes.

We begin by introducing semirings and giving some remarks about them. Thereafter
we introduce the basic notions of blueprints, and, subsequently, we introduce their
geometric counterpart, the blue schemes. After this we present the connections and
applications of F1−geometry in terms of blue schemes to tropical geometry.

5.1 Introduction to blueprints and blue schemes
To motivate the need to expand the theory of monoid schemes to the blue schemes,
consider, for instance, the special linear group SL(2) as scheme over the integers

SL(2)Z = Spec(SL(2)) = Spec(Z[T1, T2, T3, T4]/(T1T4 − T2T3 − 1)).

It makes no sense to place the ring scheme SL(2)Z in terms of monoidal scheme since
we cannot avoid the additive operation in SL(2)Z. However, as we shall see later, this
variety has its analog over F1 in the context of blue schemes. In what follows we present
the necessary elements of semirings to introduce blueprints and blue schemes.

Definition 5.1.1. A semiring is a triple (R,+, ·) which satisfies the same axioms as
a ring with the exception of having additive inverses for every element. However, in
the rest of the chapter we only consider commutative semirings that contain zero and

69
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unitary elements. Thus, from now, by semiring we refer to commutative semiring with
0 and 1.

Notice that a triple (R,+, ·) is a semiring if (R,+) is a monoid without basepoint and
unitary element 0, and (R, ·) is a monoid with basepoint 0 and unitary element 1. A
homomorphism of semirings R1 and R2 is a map f : R1 → R2 that satisfies

f(x+ y) = f(x) + f(y) and f(xy) = f(x)f(y)

and maps (0 ∈ R1) 7→ (0 ∈ R2) and (1 ∈ R1) 7→ (1 ∈ R2).

Then, we denote by SRings the category of commutative semirings with 1 and 0. The
initial object in SRing is the semiring of natural numbers N and the terminal object is
the trivial semiring {0 = 1}. Thus SRings can be seen as the category of N−algebras.

Example 5.1.2. Some semirings:

1. Basic examples of semirings are the non negative real numbers R≥0 and the poly-
nomial semiring R[T1, · · · , Tn] in n variables which consist in all polinomials with
coefficients in a given semiring R where the addition and multiplication is the
same as for polynomial rings.

2. The monoid semiring is defined as the set of finite formal sums of nonzero ele-
ments of a (multiplicative) monoid A:

N[A] =
{∑

ai | ai ∈ A\{0}
}
.

The product of N[A] is inherited by the product of A. Moreover, note that the zero
of A is identified with the zero of N[A] since ab = 0 in A implies that 1a · 1b = 0
equals the empty sum which is the neutral element of the monoid semiring.

3. The tropical semiring T is the semiring whose elements are the non negative real
numbers R≥0, its multiplication is the same of real numbers, but addition is defined
as the maximum between two elements i.e.

x+ y = max{x, y} for all x, y ∈ T.

Remark 5.1.3. Typically, the tropical semiring is described in terms of max-plus al-
gebra with underlying set R ∪ {−∞}, or in terms of min-plus algebra with underlying
set R ∪ {∞}, however, all the three conventions are equivalent, which means that the
semirings T, R∪ {−∞} and R∪ {∞}, are isomorphic. For the applications to tropical
geometry that we will present, the tropical semiring T described in the last example is
the model that we will use unless otherwise stated.
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We can extend semirings to rings as follows: Given a semiring R, we can extend it to
the ring RZ, which is defined as the set of formal differences of elements of the semiring
i.e. RZ = R×R/ ∼ where the equivalence given by (x, y) ∼ (x′, y′) if and only if there
is z ∈ R such that x + y′ + z = x′ + y + z. The class (x, y) ∈ RZ is denoted by x− y.
Moreover, the addition and multiplication of RZ is inherited from R as follows:

(x− y) + (z − t) = (x+ z)− (y + t)

and
(x− y) · (z − t) = (xz + yt)− (xt+ yz).

The extension of semirings to rings is also called the base change from N−algebras to
Z−algebras.

Example 5.1.4. Some examples of semirings extension:

• NZ = Z

• (R≥0)Z = R

• R[T1, · · · , Tn]Z = RZ[T1, · · · , Tn] for a given semiring R.

• TZ = {0}.

Definition 5.1.5. An ideal of a semiring R is a subset I such that 0 ∈ R and x+y, tx ∈
R for all x, y ∈ I and t ∈ R. We also have an extension of the concept of congruence
in a semiring as for monoids (Definition 2.1.16): Let R be a semiring. We define a
congruence on R as a multiplicative and additive equivalence relation R which means
that for (x, y), (r, t) ∈ R then

(x, y) + (r, t) ∈ R and (x, y) · (r, t) = (xr, yt) ∈ R.

If (x, y) ∈ R we write x ≡ y.

Let f : R1 → R2 be a morphism of semirings. Then, the concepts of kernel and
congruence kernel has the same definition that for monoids i.e. the congruence kernel
is the relation R on R given by {(x, y) ∈ R × R | f(x) = f(y)} and the kernel is the
ideal ker(f) = {x ∈ R1 | f(x) = 0}.

Remark 5.1.6. Let R be a semiring, and let S ⊂ R × R be a subset. In the same
way as for monoids (Proposition 2.1.23), there is a smallest congruence containing S,
namely 〈S〉.

Definition 5.1.7. As in the case of a congruence on a monoid, the reason to define
a congruence R on a semiring R is that quotient R/R is a semiring (see Proposition
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2.1.17). However, in contrast with rings, it is not true that every congruence comes
from an ideal nor that every ideal comes from a congruence. This lead us to focus on
ideals that occurs as the kernel of a semiring morphism which are called k-ideals (where
k is the abbreviation of kernel). Thus, in a ring, every ideal is a k−ideal.

Now, we are ready to define blueprints:

Definition 5.1.8. A blueprint is a pair B = (B•, B+) where B+ is a semiring and B•
is a multiplicative subset of B+ that contains 0 and 1 and generates B+ as a semiring.
Notice that B• ∈M∗. We call B• the underlying monoid, and B+ the ambient semiring
of the blueprint.

A morphism of blueprints f : B1 → B2 is a monoid morphism f • : B•1 → B•2 that
extends to a semiring morphism f+ : B+

1 → B+
2 . Note that f+ is uniquely determined

by f • since B•1 generates B+ as a semiring.

We say that a is an element of B if a ∈ B•. We denote the category of blueprints by
Blpr. The initial object in Blpr is ({0, 1},N) called the blueprint F1 and the terminal
object is ({0}, {0 = 1}) called the trivial blueprint.

Remark 5.1.9. The condition that B• generates B+ as a semiring is equivalent to say
that B+ is a quotient of the monoid semiring N[B•] by a congruence R defined on it.
Thus sometimes a blueprint B = (B•, B+) is denoted by B•//R since B+ = N[B•]/R

Remark 5.1.10. A monoid A is associated with the blueprint (A,N[A]). Notice that
we can recover the base extension functor of A (Definition 2.2.11) by the extension of
the semiring N[A] given by

A⊗F1 Z = (N[A])Z.

Likewise, a semiring R is associated with the blueprint (R,R). Thus, a blueprint is
a simultaneous generalization of monoids and semirings. Notice that, by definition of
blueprint, we obtain functors from the category of blueprints to both categories SRings
andM∗:

(−)+ : Blpr −→ SRings

and
(−)• : Blpr −→ M∗.

As it is explained in [23] and [24] there are different generalization to the notion of
ideals in blueprints which are used to different applications.

Definition 5.1.11. Let B be a blueprint.

1. An m−ideal of B is an ideal I of the underlying monoid B•.
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2. A k−ideal of B is an m−ideal I of B such that for all a1, · · · , an, b1, · · · , bm ∈ I
and c ∈ B•, an equality like the following∑

i

ai + c =
∑
j

bj in B+,

implies c ∈ I.

3. An (m/k)−ideal P is prime if S = B\P is a multiplicative closed subset.

The term m−ideal is an abbreviation of monoid ideal, and the term k−ideal comes
from the notion of k−ideal of semiring (Definition 5.1.7). Indeed, the next theorem,
whose proof can be found in [22, Proposition 4.6.9] shows that the notion of k−ideal of
blueprints is the same as the notion of k−ideal of semirings.

Proposition 5.1.12 (Lorscheid, [25]). Let B = (B•, B+) be a blueprint. A subset I
of B is an ideal if and only if there is a blueprint morphism f : B → C such that
I = f−1(0). In fact, let I be a k−ideal of B and let R(I) be the congruence on B+

generated by {(a, 0) | a ∈ I}. Then I is the kernel of the morphism

f0 : B −→ B//R(I).

The notion of spectrum of a blueprint Spec(B) is more sublte than that for monoids
since, as we have seen above, there are different generalizations to the concept of ideals
in blueprints, which lead to different affine schemes. Here, we are only going to introduce
the basics of such schemes and refer to [24] to delve into the subject.

The notion of prime k−ideal yields to the notion of affine blue schemes suitable for
the theory of algebraic groups (see [21] for details). In this direction Spec(B) is the
set of all prime k−ideals together with the topology generated by the principal open
subsets D(h) = {P ∈ Spec(B) | h /∈ P} where h ∈ B•, together with an structure sheaf
OSpec(B). We do not go into details of these spaces and refer the reader to [25] for further
discussion on them. Thus, in the following we just concentrate on the description of
Spec(B) as a topological space.

Example 5.1.13 (Special linear group over F1). At the begining of this section we
discussed the case the special linear group SL(2)Z. Here we present its analogue over
F1. Consider the following blueprint

F1(SL(2)) = F1[T1, T2, T3, T4]//〈T1T4 ≡ T2T3 + 1〉.

We want to describe the topological space

SL(2)F1 = Spec(F1(SL(2))) ⊂ Spec(F1[T1, T2, T3, T4]) = A4
F1
.
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Therefore we need to test which elements of A4
F1

(prime ideals of F1[T1, T2, T3, T4]),
satisfies the last condition in the definition of k−ideal and satisfies the congruence of
the quotient.

The relation T1T4 ≡ T2T3 + 1 implies that if both T1T4 and T2T3 are in the same prime
ideal P , then, by the last condition of k−ideal, 1 ∈ P . Thus either T1T4 or T2T3 are
not in the same prime ideal, i.e. either T1 and T4 are not P or T2 and T4 are not in P .

Hence the elements of Spec(F1(SL(2))) are {0}, 〈T1〉, 〈T2〉, 〈T3〉, 〈T4〉, 〈T1, T4〉, 〈T2, T3〉.
We depict the space below.

Figure 5.1: Spectrum of F1(SL(2))

Notice that the extension F1(SL(2))+
Z give us the coordinate ring of SL(2)Z.

5.2 Ordered blueprints and scheme tropicalization
Most important for the purposes of this work will be to consider the case of the spectrum
of prime m−ideals of blueprints. However, before introducing these ideas, we motivate
them by presenting another recent application of F1−geometry to tropical geometry for
which we present the basic notions that allow us to establish the connection between
these areas. A general reference for tropical geometry is [28].

Definition 5.2.1. Let R be a ring. A nonarchimedean seminorm on R is a map
v : R→ R≥0 such that

1. v(0) = 0 and v(1) = 1

2. v(ab) = v(a)v(b)

3. v(a+ b) ≤ max{v(a), v(b)}
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When R is a field K we define a nontrivial nonarchimedean absolute value on it as a
function

v : K −→ R≥0

such that for all a, b,∈ K satisfies 1) to 3) properties of above, and that additionally
satisfies both v(a) = 0 if and only if a = 0, and v(K) = R≥0. The pair (K, v) is called
a nonarchimedean field.

Definition 5.2.2. Consider the tropical semiring R ∪ {∞} with min-plus convention,
as in Remark 5.1.3. A tropical polynomial is a finite linear combination of monomials
in n−variables x1, · · · , xn with coefficients in T, such that multiplication and addition
is defined as in the tropical semiring:

P (x1, · · · , xn) =
m∑
i=1

= aix
i1
1 x

i2
2 · · ·xinn .

Remark 5.2.3. Notice that each tropical polynomial induces a function

P : Tn −→ T

(x1, · · · , xn) 7−→ minmi=1

{
ai +

n∑
j=1

ijxj

}
.

Definition 5.2.4. Let (K, v) be a nonarchimedean field. Consider an algebraic variety
X = V (f1, · · · , fr) ⊂ (K×)n with f1, · · · , fr ∈ K[x±1 , · · · , x±n ]. The tropicalization map
is defined as follows:

trop : (K×)n Rn≥0 Rn(v,··· ,v) (log,··· ,log)

The tropicalization of the variety X is defined as the topological closure of the image
of X in Rn, namely

X trop = trop(X).

Definition 5.2.5. A tropical variety is an equidimensional and rational polyhedral
complex Σ together with a weight function

m : {P ∈ Σ | dim(P) = dim(Σ)} −→ Z≥0

such that for every polyhedron P ∈ Σ with dim(P) = dim(Σ)− 1, the polyhedra in Σ
of maximal dimension containing P satisfy the balancing condition modulo the affine
linear span of P, that is ∑

P(Q

m(Q)uQ = 0.
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Where P and Q are the images of the respectively polyhedra modulo the affine linear
span of P, and, by uQ we denote the primitive vector of Q at P.

The way we associate the tropicalization of an algebraic variety with the concept of
tropical variety is given by the following theorem (cf. [28, Theorem 3.3.5]):

Theorem 5.2.6 (Structure theorem for tropicalizations). Let K be a nonarchimedean
field, and let X ⊂ (K×)n an equidimensional algebraic variety. Then

1. X trop = |Σ| for a rational and equidimensional polyhedral complex Σ.

2. The algebraic variety X determines a weight function

m : {P ∈ Σ | dim(P) = dim(Σ)} −→ Z≥0

such that (Σ,m) is a tropical variety.

However there are two problems with the concept of tropical variety that motivate the
use of semiring schemes.

The first problem is that the polyhedral complex Σ with |Σ| = X trop is not determined
by the algebraic variety X, which means that the tropicalization of a clasical algebraic
variety is not a tropical variety.

The second problem is that different polynomials define the same functions: For in-
stance, by remark 5.2.3, we can check that the following tropical polynomials 0 + x2

and (0 + x)2 are different as polynomial expressions, but are the same as functions.

Then, applications of F1−geometry to tropical geometry consist in lift tropicalization
to schemes in an appropriate way.

The search for a scheme theoretic formulation of tropical geometry formally begun by
Jeffrey and Noah Giansiracura in [17], in which they realize the tropicalization of an
algebraic varietyX as the set of T−rational points of a semiring scheme with a structure
morphism to Spec(T). Later, in [24], Lorscheid took a further step in this direction by
placing tropicalization within a framework of ordered blueprinted spaces.

However, the idea that we will focus in this section is one of the latest insights into
tropical scheme theory, which was developed in [27]. This approach is based on the
tropical hyperfield and on the theory of ordered blueprinted spaces which we will meet
below, although we only present the main ideas that will serve to the scheme theoretic
tropicalization. We refer to [24,27] for further discussion on these ideas.

Definition 5.2.7. We previously introduced blueprints. Now we enrich them by en-
dowing them with a partial order. We define an ordered blueprint as a triple B =
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(B•, B+,≤), where the pair (B•, B+) is a blueprint and ≤ is a partial order on the
ambient semiring B+ such that is additive and multiplicative i.e.

x ≤ y implies x+ z ≤ y + z and xz ≤ yz for all x, y, z ∈ B+.

A morphism of ordered blueprints f : B1 → B2 is a blueprint morphism such that
f+ : B+

1 → B+
2 is an order preserving semiring morphism. This defines the category of

ordered blueprints denoted by OBlpr.

The inital object in OBlpr is the ordered blueprint ({0, 1},N,=) which sometimes is
called the field with one element (see for instance [27, Example 1.3]). The terminal
object in OBlpr is ({0}, {0},=).

Notice that any blueprint (B•, B+) is identified with the ordered blueprint (B•, B+,=).

Remark 5.2.8. Let B = (B•, B+,≤) be an ordered blueprint. We say that the partial
order ≤ is generated by a set of relations S = {xi ≤ yi} on the ambient semiring if ≤
is the smallest preorder on B+ that contains S and that is closed under multiplication
and addition.

Definition 5.2.9. Given two morphism B → C and B → D of ordered blueprints, we
define their tensor product as the following ordered blueprint:

C ⊗B D = ((C ⊗B D)•, (C ⊗B D)+,≤).

Where

1. (C ⊗B D)+ = C+ ⊗B+ D+ is the tensor product of semirings1.

2. (C ⊗B D)• is the set of all pure tensors c⊗ d for c ∈ C, d ∈ D of (C ⊗B D)+.

3. ≤ is the partial order generated by

{x⊗ 1 ≤ y ⊗ 1 | x ≤ y ∈ C+}
⋃
{1⊗ x ≤ 1⊗ y | x ≤ y ∈ D+}.

Definition 5.2.10. Let B a blueprint, and let S be a multiplicative closed subset of
B. We define the localization of B at S as the following ordered blueprint

S−1B = S−1B•//Rs

where S−1B• is the localization of the monoid at S, and

RS =

〈∑ ai
1
≡
∑ bj

1
|
∑

ai ≡
∑

bj in B
〉
.

1Tensor product of semirings is the same that for rings. See [22, Chapter 2] for details.
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Let P be a prime m−ideal. The localization of B at P is BP = S−1B where S = B\P .
Likewise if S = {hn | b ∈ B, n ∈ N} we denote the localization at S as Bh.

Now we introduce the basic definitions of hyperrings. A further discussion on hyperrings
can be found in [19]

Definition 5.2.11 (Hyperoperation). Let H be a nonempty set. A hyperoperation on
H is a map

� : H ×H −→ P(H)∗,

where P(H)∗ is the set of all non empty subsets of H. For x, y, z ∈ H we define the
following subsets of H:

(x� y) � z =
⋃

w∈x�y

w � z and x� (y � z) =
⋃

w∈y�z

x� w.

The hyperoperation of two non empty subsets A,B ⊂ H is denoted by

A�B =
{⋃

(a� b) | a ∈ A, b ∈ B
}
.

Definition 5.2.12 (Hypergroup). A commutative canonical hypergroup is a pair (H,�),
where H is a nonempty set and � is a hyperoperation defined on it such that

1. x� y = y � x, for all x, y ∈ R.

2. (x� y) � z = x� (y � z), for all x, y, z ∈ H.

3. There exists a neutral element 0 ∈ H such that 0 � x = {x} = x� 0.

4. For all x ∈ H there is an element y ∈ H such that 0 ∈ x�y. It is denoted by −x.

5. If x ∈ y � z then z ∈ x� (−y).

Definition 5.2.13 (Hyperring and hyperfield). A commutative hyperring is a triple
(R,�, ·) such that R is a non empty subset endowed with a multiplicative operation
· : R × R → R and an hyperoperation � : R × R → P(R)∗ (called hyperaddition)
such that

1. The pair (R, ·) is an element ofM∗.

2. The pair (R,�) is a commutative canonical hypergroup.

3. x · (y � z) = x · y � x · z and (x� y) · z = x · z � y · z for all x, y, z ∈ R.

An hyperfield is an hyperring (R,�, ·) such that the pair (R×, ·) is a group.
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Definition 5.2.14. The tropical hyperfield T has as underlying set the non negative
real numbers R≥0, has same multiplication as T, and has the hyperaddition defined as
follows:

a� b =

{
{max{a, b}} if a 6= b,

[0, a] if a = b

In what follows we will see how to interpret the hyperfield T as an ordered blueprint,
and observe why the use of T has advantages in contrast with the tropical semiring.

Definition 5.2.15. An algebraic blueprint B = (B•, B+,≤) is an ordered blueprint
whose partial order ≤ is trivial i.e. x ≤ y only if x = y. Thus, sometimes by an
algebraic blueprint we simply refer to a blueprint.

The algebraic core of an ordered blueprint B = (B•, B+,≤) replaces the partial order
≤ with the trivial partial order, that is, Bcore = (B•, B+,=).

Remark 5.2.16. Notice that, by Remark 5.1.10, a monoid A is associated with the
blueprint Aalg = (A,N[A],=). Likewise a semiring R is associated with the blueprint
Ralg = (R,R,=).

Definition 5.2.17. Let B = (B•, B+,≤) be an ordered blueprint, and let A be
a monoid. The free ordered blue B-algebra in A is the ordered blueprint B[A] =
(B•[A], B+[A],≤), where the ambient semiring is

B[A]+ =

{∑
a∈A

xaa | xa ∈ B+ and xa = 0 for almost all a

}
.

With addition defined componentwise, and multiplication given by the linear extension
of the multiplication of A. The underlying monoid is

B[A]• =
{
ca ∈ B[A]+ | c ∈ B•, a ∈ A

}
.

Notice that A is a submonoid of B[A]• since an element a ∈ A can be written as
∑
cbb

with ca = 1 and cb = 0 for a 6= b. The partial order of B[A]+ is generated by the
relations

x1 ≤ y1 with x, y ∈ B+ whenever x ≤ y in B+.

Example 5.2.18. Let B = (B•, B+,≤) be a blueprint, and let A = F1[T1, · · · , Tn].
Then, the free ordered blue B−algebra in A is the ordered blueprint whose ambient
semiring is the polynomial semiring B+[T1, · · · , Tn], and its underlying monoid consist
of the following set of monomials {cT e11 · · ·T enn | c ∈ B•, ei ∈ N} plus a 0 element. This
ordered blueprint is denoted by = B[A] = B[T1, · · · , Tn].
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Likewise, if we consider the monoid A = F1[T±1 , · · · , T±n ] we obtain the ordered blueprint
B[A] = B[T±1 , · · · , T±n ].

Definition 5.2.19. Consider a semiring R. Its multiplicative monoid is denoted by
R•. We define its associated monomial ordered blueprint as the orderer blueprint

Rmon = (R•, (R•)+,≤),

where the the partial order is generated by the (left) monomial relations, namely, c ≤
a+ b for which c = a+ b in R.

One of the reasons to consider both, algebraic blueprints and associated monomial
ordered blueprints of rings, is because, through these, we can obtain the realization of
hyperrings as elements of OBlpr as we will see in both, Remark 5.2.20, and Remark
5.2.21.

Remark 5.2.20. Let R be an hyperring. Let R• be its underlying monoid. The real-
ization of R as an element in OBlpr is the ordered blueprint (R•, (R•)+,≤) where the
partial order ≤ is generated by the monomial relations

c ≤ a+ b for which c ∈ a� b in R.

We say that the relation c ∈ a � b is monomial. (Notice that this relation is not
symmetric).

We have just framed hyperrings in the context of ordered blueprints, that is, in the
context of F1−geometry. Next we are going to highlight some properties of hyperrings
that show the advantage of working with T instead of T.

Using the hyperaddition of T we obtain a notion of additive inverses, namely for every
element a ∈ T, there is a unique element b ∈ such that 0 ∈ a � b which occurs when
a = b. Moreover, this generalizes as follows

0 ∈ a1 � a2 � · · ·� an

if and only if the maximum occurs twice among the ai’s. This notion of additive inverses
allows us to reformulate the corner locus of a tropical polynomial p as the set of points
x ∈ T such that 0 ∈ p(x). But before to show this generalization let’s rewrite this
in terms of ordered blueprints by introducing the tropical hyperfield as an ordered
blueprint.

Remark 5.2.21 (Tropical hyperfield as ordered blueprint). First note that the multi-
plicative monoid of the tropical hyperfield T is R•≥0 and consider its associated blueprint
(R•≥0)alg = (R•≥0, (R•≥0)+,=). The realization of T as an ordered blueprint is obtained
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from exchanging the relation c ∈ a � b in T by c ≤ a + b, which means that T can be
seen as the ordered blueprint

T = (R≥0)alg//〈c ≤ a+ b | c ∈ a� b〉.

In other words, T has underlying monoid T • = R•≥0, ambient semiring T + = (R•≥0)+ =
N[R•≥0], and partial order defined by all relations c ≤ a+b for which the maximum occurs
twice among a, b, c.

Proposition 5.2.22 (Lorscheid, [27]). Let a, b1, · · · , bn ∈ T for n ≥ 1. Then a ≤∑n
j=1 bj in T if and only if the maximum occurs twice among a, b1, · · · , bn.

Proof. Note that if n = 1 then a ≤ b1 if and only if a = b1, and the case n = 2 the
results follows from the definition of partial order. Now we proceed by induction on n.

Let n ≥ 2, and suppose that a ≤
∑n

j=1 bj. Notice that the generators of the partial
order ≤ are given in terms of monomial relations with only two terms on the right side.
Hence, there must be a partition of {1, · · · , n}:

P =

{
Ji | i ∈ I, such that |I| < n and

⋃
i∈I

Ji = {1, · · · , n}

}
.

such that there is a relation a ≤
∑

i∈I ai, and relations ai ≤
∑

j∈Ji bj for every i ∈ I.
Then, by the inductive hypothesis, the maximum among a and ai for all i ∈ I occurs
twice, and for each i ∈ I the maximum among ai and bj for all j ∈ Ji occurs twice.

Without loss of generality, suppose that bj is the maximum among a, b1, · · · , bn for some
i ∈ I and j ∈ Ji. Thus, if bj = bk for some k ∈ Ji with k 6= j we are done, if not, by
hypothesis ai = aj, either ai = a or ai = ak for some k ∈ I with i 6= k. In the first
case a = bj and thus the maximum occurs twice. For the second case note that, by
hypothesis, there must be k′ ∈ Jk such that ak = bk′ , then bj = ai = ak = bk′ . Hence,
in any case the maximum among a, b1, · · · , bn occurs twice.

Now, suppose that the maximum among a, b1, · · · , bn occurs twice, and again we proceed
by induction on n. Note that the cases n = 1, 2 are trivial. Then we consider the case
when the maximum occurs among b1, · · · , bn.

Without loss of generality we assume that b1 = b2 ≥ bi for all i = 3, · · · , n. Therefore,
by inductive hypothesis on n we obtain the relations

a ≤
n−1∑
i=1

bj and bn ≤
n−1∑
i=1

bi.
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Hence, if a ≥ bn it follows that

a ≤ a+ bn ≤
n∑
i=1

bi.

and if a ≤ bn it follows that

a ≤ bn + bn ≤
n∑
i=1

bi.

Thus we are done since the maximum occurs twice among b1, · · · , bn. Now, suppose
that a equals the maximum among b1, · · · , bn. Without loss of generality assume that
a = b1. Thus, by the inductive hypothesis, a ≤

∑n−1
i=1 bi and a ≤ a+ bn. Hence

a ≤ a+ bn ≤
n∑
i=1

bi.

�

A second reason to use T is because absolute values of a nonarchimedean field will be
considered as morphism. We explain this below.

Let (K, v) be a nonarchimedean field. Notice that property 3) of definition of nonar-
chimedean field is equivalent with the monomial relation v(a + b) ∈ v(a) � v(b) which
characterizes the hyperaddition defined in T.

Proposition 5.2.23. Let R be a ring and v : R → R≥0 a nonarchimedean seminorm.
If a =

∑n
i=1 bi in R, then the maximum between v(a), v(b1), · · · , v(bn) occurs twice.

Proof. Since v(bi + bj) ≤ max{v(bi), v(bj)}, then inductively

v(a) ≤ max{v(b1), · · · , v(bn)}.

Thus the maximum lies in some v(bj). Without loss of generality assume that the
maximum occurs at j = 1, then note that v(−1) = 1 since (−1)2 = 1, therefore
v(−b1) = v(b1). Then note that

v(−b1) = v

(
−a+

n∑
i=2

bi

)
≤ max{v(−a), v(b2), · · · , v(bn)}
≤ max{v(a), v(b1), · · · , v(bn)}.

Hence the maximum v(bj) occurs twice. �
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The following theorem shows that nonarchimedeam seminorms can be interpreted as
morphisms of hyperrings in terms of ordered blueprints. This result is the key piece
to the approach of the scheme theoretic tropicalization which cover the main results in
this direction.

Theorem 5.2.24 (Lorscheid, [27]). Let R be a ring. Consider its associated monomial
ordered blueprint Rmon. Then, a morphism v : Rmon → T is by definition (see Defi-
nition 5.1.8) a monoid morphism of its underlying monoids v• : R → R≥0. Then, the
association v 7→ v• defines a bijection:

Hom(Rmon,T) ←→ {nonarchimedean seminorms on R}.
v : Rmon −→ T 7−→ v• : R −→ R≥0.

Proof. Given v ∈ Hom(Rmon,T), we show that v• : R → R≥0 is a nonarchimedean
seminorm:

Note that the properties v•(0) = 0, v•(1) = 1 and v•(ab) = v•(a)v•(b) are trivially
verified since v• is a monoid morphism. Finally we just need to check that v•(a+ b) ≤
max{v•(a),v•(b)} for a, b ∈ R. To do this, let c = a+ b, then, c ≤ a+ b in Rmon, which
means that v•(c) ≤ v•(a) + v•(b) in T, therefore, by Proposition 5.2.23 the maximum
among v•(a),v•(b),v•(c) occurs twice, in particular

v•(a+ b) ≤ max{v•(a),v•(b)}.

Hence v• : R→ R≥0 is a nonarchimedean seminorm.

On the other hand, let v : R → R≥0 be a nonarchimedean seminorm. Consider the
monomial ordered blueprint Rmon whose underlying monoid is R and recall that T• =
R≥0, thus we write v as v•. We show that v• : R → R≥0 is a morphism of ordered
blueprints:

Note that v• is a monoid morphism. Then, since the ambient semiring of Rmon is (R•)+,
this semiring is free as in Definition 5.2.17, and thus v• extends uniquely to a semiring
morphism

v+ : (R•)+ −→ T+ = (R•≥0)+.

Finally we just need to check that v+ is order preserving.

To verify that v+ is order preserving morphism, we will check that on generators c ≤
a+b of the partial order≤ ofRmon. Indeed, the relation a ≤ b1+b2 means that a = b1+b2

in R and then, by Proposition 5.2.22, the maximum among v+(a),v+(b1),v+(b2) occurs
twice, which means, by Proposition 5.2.23, that v+ is order preserving, i.e.

v(a) ≤ v(b1) + v(b2).

Hence v : Rmon → T is a morphism of ordered blueprints. �
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Finally we introduce the geometric counterpart of blueprints, namely ordered blueprinted
spaces.

Definition 5.2.25. The spectrum of an ordered blueprint B is the defined as Spec(B) =
{prime m−ideals of B} with the topology generated by the principal open subsets

D(h) = {P ∈ Spec(B) | h /∈ P}

for all h ∈ B•. Note that as a topological space Spec(B) equals Spec(B•).

The structure sheaf of X = Spec(B) is given by the principal open subsets, namely

OSpec(B)(D(h)) = Bh.

Definition 5.2.26. An ordered blueprinted space (OBlpr-space) is a pair (X,OX),
where X is a topological space and OX is a sheaf of ordered blueprints on X. An affine
ordered blue scheme is an OBlpr-space (Spec(B),OSpec(B)).

Remark 5.2.27. Let X = Spec(B) where B ∈ OBlpr. Thus let (X,OX) be a ordered
blueprinted space. In [22, Section 5.5] it is shown that OBlpr is complete and cocom-
plete. Thus the colimit colimx∈U(OX(U)) over all open neighborhoods U of x always
exists. The stalk of OX at a point x ∈ X is defined as this colimit. Moreover, in a
simmilar way as in Proposition 3.1.15 it can be shown that the stalk at a prime m−ideal
Bp is isomorphic to BP .

Remark 5.2.28. We restrict ourselves to the affine case since this presentation of
ideas on F1−schemes is introductory and to make the general case would imply to do a
more exhaustive development of the algebra of blueprints, although we present the main
definitions in the affine case and the results to carry out the scheme tropicalization The
general notion of ordered blue scheme can be found in [24].

Definition 5.2.29. A morphism of OBlpr-spaces is a continuous map f : X → Y
between the topological spaces together with a morphism ϕ# : OY → ϕ∗OX of sheaves
such that satisfies that for every x ∈ X and y = ϕ(x), the induced morphisms OY,y →
OX,x of stalks sends non-units to non-units.

Remark 5.2.30. (cf. [27, Section 2.2]). In the same way as Proposition 3.1.18, one
can show that for two ordered blueprints B and C there are a bijective correspondence

{morphisms Spec(B)→ Spec(C)} ←→ {morphisms C → B}.

Definition 5.2.31. Let k be an ordered blueprint. An affine ordered blue k-scheme is
an affine ordered blue scheme X = Spec(B) together with a morphism π : X → Spec(k)
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called the structure morphism. A morphism between affine ordered blue k−schemes is
a morphism f : (X, πX)→ (Y, πY ) such that the following diagram commutes:

X Y

k

f

πX πY

Remark 5.2.32. By Remark 5.2.15 notice that the theory developed for monoid schemes,
and in particular, for toric varieties over F1 is fully embbeded in terms of blueprints and
blue schemes. We show some examples of spaces that were covered in terms of monoid
schemes.

Example 5.2.33 (Affine space and algebrac tori). In the same way as in Chapter 3,
but in the context of ordered blueprints we define the n-dimensional affine space over an
ordered blueprint B as the affine ordered blue scheme AnB = Spec(B[T1, · · · , Tn]), and
the n-dimensional torus over B as Gn

m,B = Spec(B[T±1 , · · · , T±n ]).

Remark 5.2.34. Notice that a B−linear morphism f : B[T1, · · · , Tn]→ B corresponds
to an n−tuple (f(T1), · · · , f(Tn)) in Bn. Thus there is a canonical bijection

AnB(B) = HomB(B[T1, · · · , Tn], B) −→ Bn.

Likewise in the case of the n−dimensional torus

Gn
m,B(B) = HomB(B[T±1 , · · · , T±n ], B) −→ (B×)n.

This fact applies in general for affine ordered blue schemes. Thus we have the following
definition.

Definition 5.2.35. Let X = Spec(B) be an affine ordered blue T−scheme. We define
the set of T−rational points as the set

X(T) = HomT(B,T)

of T−linear morphism from B to T.

Once the necessary concepts have been introduced we are finally able to mention the
concept of scheme theoretic tropicalization from the context of ordered blueprints.

Definition 5.2.36. Let (K, v) be a nonarchimedean field, and let Kmon be its associated
monomial ordered blueprint. By Theorem 5.2.24 we associate a morphism v : Kmon →
T to v. Now let Y = Spec(B) be an affine ordered blue Kmon−scheme with Kmon → B
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the structure map. We define the scheme theoretic tropicalization of Y along v as the
affine ordered blue T−scheme

Tropv(Y ) = Spec(B ⊗Kmon T).

Remark 5.2.37. In the same way is in Chapter 2, in [22, Section 5.5] it is shown that
the tensor product satisfies the compatibilities

Kmon[T1, · · · , Tn]⊗Kmon T = T[T1, · · · , Tn].

Moreover, from Remark 5.2.30 and Definition 5.2.31, notice that tropicalization can be
thought of as the set of T−rational points:

Tropv(Y )(T) = HomT(B,T).

Example 5.2.38. The scheme theoretic tropicalization of the affine n−space over Kmon

is
Tropv(AnKmon) = AnT.

Likewise the scheme theoretic tropicalization of the n−dimensional torus over Kmon is

Tropv(Gn
m,Kmon) = Gn

m,T.

we conclude with an example that shows the tropicalization as the set of T−rational
points.

Example 5.2.39 (Tropical line). Consider the following ordered blueprint

B = T[T1, T2]//〈0 ≤ T1 + T2 + 1〉.

Let X = Spec(B). Then, note that

X(B) = HomT(B,T) = {(a1, a2) ∈ T 2 | 0 ≤ a1 + a2 + 1}.

Then, since 0 ≤ a1 + a2 + 1, by Proposition 5.2.22 the maximum among 0, a1, a2, 1
occurs twice. Note that X(B) is the tropical line (cf. [28, Section 1.3]). We depict the
tropical line with coordinates (a1, a2) in T in the figure below.
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Figure 5.2: Tropical line.



Appendix A

Polyhedral geometry

In this section we introduce the basic definitions and results of polyhedral geometry
which are used in Chapters 4 and 5 for toric varieties and tropical geometry respec-
tively.

Definition A.0.1. A polyhedron P ⊂ Rn is an intersection of finitely many halfspaces
in Rn i.e. subsets of Rn of the form

H = {(x1, · · · , xn) | a1x1, · · · , ancn ≥ b}

for some a1, · · · , an, b ∈ R. We say that the halfspace H is rational if a1, · · · , an ∈ Q.

A face of a polyhedron P is determined by an element w of the dual space (Rn)∗, denoted
by

facew(P) = {α ∈ P | w · α ≥ w · β for all β ∈ P}.

A polyhedral complex is a finite collection Σ of polyhedra satisfying two conditions:

1. Every face of a polyhedron in Σ is in Σ

2. Let P,Q ∈ Σ, then P ∩Q is either empty or a face of both P and Q.

Definition A.0.2. Let Σ be a polyhedral complex. The support of Σ is

|Σ| =
⋃
P∈Σ

P.

The dimension of the polyhedral complex is dim(Σ) = max{dim(P) | P ∈ Σ}. Σ is
equidimensional if

|Σ| =
⋃

dim(P)=dim(Σ)

P.

88
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Finally we say that Σ is rational if every polyhedron P in Σ is the intersection of
rational halfspaces.

Definition A.0.3. Let A = {v1, · · · , vr} ⊂ Rn be a finite set. The polyhedral cone σ
generated by A is defined as follows:

σ = cone(v1, · · · , vr) =

{
x ∈ Rn | x =

r∑
i=1

λivi, λi ∈ R≥0

}
.

More generally, for the treatment of toric varieties in Chapter 4 we need the use of
lattices, generalizing the spaces on Rn.

Definition A.0.4. A lattice N is an abelian group isomorphic to Zn. The dual lattice
is M = HomZ(N,Z) ∼= Zn. The vector space N ⊗Z R ∼= Rn is denoted by NR. The
dual vector space N ⊗Z R ∼= Rn is denoted by MR.

A polyhedral cone is called convex if it is closed under addition, and it is strongly
convex if it does not contains a linear subspace different from {~0}. Also a cone σ is
called rational or lattice cone if all of its generators belong to a lattice N . In this case
σ ⊂ NR.

Definition A.0.5. Let MR be the dual space to NR. We define the dual cone of σ as
follows:

σ̌ = {u ∈MR | 〈u, v〉 ≥ 0 ∀v ∈ σ} ⊂MR.

Proposition A.0.6 (Farkas’ Theorem). Let σ ⊂ NR be a convex polyhedral cone. Then
σ̌ is convex polyhedral cone and (σ̌)∨ = σ.

Proof. We refer to [13, Section 1.2] for a proof. �

All the cones that we will consider from here will be polyhedral, rational and strongly
convex unless otherwise stated.

Let σ be a cone, then, by Proposition A.0.6, its dual cone σ̌ is a convex polyhedral and
rational (associated to the dual lattice M) cone. However, in general, the dual cone σ̌
will not be strongly convex. For instance σ ⊂ R2 is a cone generated by e2, then σ̌ will
be generated by e∗1 and −e∗1, and clearly is not strongly convex since it contains the
subspace R.

Another way to describe cones by supporting planes. Suposse that {a1, · · · , ar} is a
set of generators of σ̌, then each element of this set defines a half-spaces of NR as
follows:

Hai = {v ∈ NR | 〈ai, v〉 ≥ 0}.
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Therefore σ is the intersection of these half-spaces

σ =
r⋂
i=1

Hai .

Proposition A.0.7. Let σ be a cone generated by {a1, · · · , ar}. Then

σ̌ =
r⋂
i=1

τ̌i.

Where τi is the cone generated by ai i.e. τi = cone(ai)

Definition A.0.8. A face of σ is an intersection of σ with a supporting plane Hλ for
some λ ∈M and is denoted by τ = σ ∩Hλ. Note that for u ∈ σ̌, σ ∩ u⊥ is a face of σ.

Proposition A.0.9. Let τ = σ ∩ λ⊥ be a face of σ, with λ ∈ σ̌, then

τ̌ = σ̌ + R≥0(−λ).

Proof. Since λ ∈ σ̌, it’s easy to see that both τ̌ and σ̌+R≥0(−λ) are convex polyhedral
cones, and to prove equality between them, it is enought to show it for their duals. In
fact, left side is easy (τ̌)∨ = τ . And, for the other side we have:

(σ̌ + R≥0(−λ))∨ = σ ∩ (−λ)∨ = σ ∩ λ⊥ = τ.

The first equality holds since any element in right side must dot positively with left
and conversely. To see the second equality take an element v ∈ σ ∩ (−λ)∨, and then
〈v,−λ〉 ≥ 0, because v ∈ (−λ)∨, but also we have 〈v, λ〉 ≥ 0 since v ∈ σ, and λ ∈ σ̌,
but that only happens if and only if 〈v, λ〉 = 0 i.e. v ∈ σ ∩ λ⊥ = τ . �

We can associate a monoid (without basepoint) to a cone σ, namely Sσ = σ̌ ∩ M ,
where M denotes the dual lattice. It can be multiplicatively written as T λ+m = T λTm

(T 0 = 1). Moreover, it can be shown that Sσ is finitely generated, and the fact arises
as a consequence of the following lemma:

Lemma A.0.10 (Gordan’s Lemma). Let σ be a cone, then Sσ = σ̌ ∩M is a finitely
generated monoid. We call Sσ the associated monoid to σ1

1Notice that Sσ is an unnpointed monoid. By adding a basepoint we obtain an element of M∗,
namely (Sσ)∗ which is also called the associated monoid to σ.
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Proof. Let {v1, · · · , vr} ⊂ M be a set of generators of σ̌, such that vi ∈ σ̌ ∩M for all
i = 1, · · · , r. Then we define the set

K =

{
r∑
i=1

tivi | 0 ≤ ti ≤ 1

}
.

Note that K is a closed and bounded subset ofM ∼= Rn, i.e. K is compact. Thus, since
M is discrete, it follows that K ∩M is finite because M and K are closed. Then we
show that K ∩M generates Sσ. Let v ∈ Sσ and v =

∑r
i=1 aivi, where ai ≥ 0 ∀i, thus

we write ai = zi + ti, where zi ∈ Z≥0 and 0 ≤ ti ≤ 1. Then we can write v as follows

v =
r∑
i=1

zivi +
r∑
i=1

tivi.

Note that first sum is contained in K∩M since vi ∈ K∩M for all i. Then note that by
definition, the second sum is in K, but also is inM since v and

∑r
i=1 zivi are. Hence we

have shown that K ∩M is a set of generators of Sσ since we have written an arbitrary
v as a sum of elements of K ∩M . �

Proposition A.0.11. Let σ be a cone, and let τ = σ∩λ⊥ be a face of σ (with λ ∈ Sσ),
then

Sτ = Sσ + Z≥0(−λ).

Proof. Since τ̌ = σ̌ + R≥0(−λ), then by intersect with M ∼= Zn the result follows. �

Definition A.0.12. A fan ∆ in NR is a non empty finite collection of cones such that:

1. All the cones contained in ∆ are rational, polyhedral and strongly convex.

2. Let σ be a cone in ∆, and let τ be a face of σ. Then τ is a cone in σ.

3. Let σ and σ′ be cones in ∆. Then σ ∩ σ′ is a common face of σ and σ′.

Note that the trivial cone {0} ⊂ NR is a common face of any other cone σ. Thus always
belong to any fan ∆.

Example A.0.13. Some examples of fans in R2:
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Figure A.1: Two fans in R2

Definition A.0.14. Let σ be a cone generated by the the finite set A = {v1, · · · , vr}.
The dimension of σ is the dimension of the smallest subspace Span(A) of NR containing
σ, and it is denoted by dim(σ).

Definition A.0.15. Let σ ⊂ NR be a cone. A facet of σ is a face τ of codimension
1, i.e. dim(τ) = dim(σ) − 1. An edge is a face of dimension 1. For instance, all the
maximal cones contained in each of the fans of figure A.1 are of dimension 2, thus their
edges are their facets.

An edge of a cone σ is usually denoted by ρ. Note that any edge ρ is a ray in NR
i.e. is a half line since σ is strongly convex. Moreover, since σ is rational, ρ ∩N is an
unnpointed monoid generated by a unique element uρ ∈ ρ∩N , called the ray generator
of ρ.

Thus, if σ is a cone, we denote by σ(1) the set of all edges. Likewise, if ∆ is a fan,
we denote by ∆(r) the set of all r−dimensional cones of ∆, and by ∆max the set of all
maximal (dimensional) cones of ∆.
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