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ABSTRACT

In this thesis, we analyze the dynamics of a system of chemical reactions as a
continuous-time stochastic process. In particular, when in the system only in-
stantaneous chemical reactions occur we will see that the corresponding stochastic
process is a continuous-time Markov chain, which is the unique solution of the
Anderson-Kurtz’s stochastic equation. We present an elementary proof of this last
fact since we show that the Doob-Gillespie’s algorithm and Anderson-Kurtz’s algo-

rithm are equivalent.

Finally, we will see how a simple modification to Anderson-Kurtz’s stochastic equa-
tion allows us to model chemical systems where one of the reactions has a time de-
lay. We will compare the corresponding Anderson-Kurtz’s algorithm for this kind
of chemical system with Barrio’s algorithm, which is one of the most used tools to

simulate chemical systems with delays.



RESUMEN

En esta tesis analizamos la dindmica de un sistema de reacciones quimicas como
un proceso estocastico a tiempo continuo. En particular, cuando en el sistema solo
ocurren reacciones quimicas instantaneas, veremos que el correspondiente proceso
estocastico es una cadena de Markov a tiempo continuo, la cual es la tinica solucién
de la ecuacién estocastica de Anderson-Kurtz. Presentamos una prueba elemental
de este ultimo hecho, ya que demostramos que el algoritmo de Doob-Gillespie y el

algoritmo de Anderson-Kurtz son equivalentes.

Finalmente, veremos como una simple modificacién a la ecuacion estocéstica de
Anderson-Kurtz nos permite modelar sistemas quimicos donde una de las reac-
cionas tiene retardo. Compararemos el correspondiente algoritmo de Anderson-
Kurtz para esta clase de sistema quimicos con el algoritmo de Barrio, el cual es una

de las herramientas méas usadas para simular sistemas quimicos con retardos.
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1. INTRODUCTION

The main objective of this thesis work is to analyze a system of chemical re-

actions as a stochastic process, especially in the case when one of the chemical
reactions has a time delay. A chemical reaction system or network comprises a set
of chemical species, a series of chemical reactions, and a collection of propensity
functions. The set of species consists of the reactants and products of the chemical
reactions, and the propensity functions have as domain a subset X C Ni*, where m
is the number of chemical species and X is itself the domain of possible states of the
chemical network. The simpler stochastic model for such networks treats the sys-
tem as a continuous-time Homogeneous Markov Chain (HMC) with space of states
X, an infinitesimal generator determined by the propensity functions, and reactions
modeled as possible transitions of the chain. Therefore, one of the techniques to
study the dynamics of the chemical system is through algorithms that simulate
the corresponding continuous-time HMC or reaction jump process. Among these
algorithms, Doob-Gillespie’s Stochastic Simulation Algorithm (SSA) is the funda-
mental tool used for this job; see for example [12].
Although Doob-Gillespie’s SSA gives us a way to simulate the trajectories of the
reaction jump process, it does not give us an explicit equation to represent the time
dynamic of these trajectories. The work done by Kurtz to approximate a certain
type of ODE by means of a sequence of continuous-time HMC (see [13], [14]) led
him to show that the reaction jump process of a chemical system with n chemical
reactions is the unique solution of the following stochastic integral equation (see
115, [16], [17)):

(1.1) X(#) :x0+§:uj (/Ot Oéj(X(S))d8> vll,

where {U;}; is a sequence of independent and unit-rate Poisson processes, and
{a;};, {v[j]}, are the sequences of propensity functions and stoichiometric vectors,
respectively associated to the chemical reactions (in Chapter 2 we will present a
formal definition of these sequences).

In [1], Anderson introduces the first algorithm to solve equation (1.1), which we
call the Anderson-Kurtz’s algorithm or Anderson-Kurtz’s SSA. Due to the work
done by Kurtz, it is clear that Anderson-Kurtz’s algorithm and Doob-Gillespie’s
SSA are equivalent. One of our intentions in this thesis is to present a direct and
elementary proof of this equivalence. To do this, we will introduce a modified ver-
sion of Doob-Gillespie’s SSA, which we will call Doob-Gillespie’s SSA Competitive
version (this name will be justified in Chapters 2 and 4). Then, we will show that
this version of Doob-Gillespie’s SSA is equivalent to Anderson-Kurtz’s algorithm.

The following diagram shows the different equivalences mentioned above.
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On the other hand, various efforts have been made to model chemical systems with
delayed reactions. Among these efforts, we can find algorithms that try to simulate
the dynamics of these chemical systems; and two of these algorithms are widely
used in the area of biochemistry, they are Barrio’s Stochastic Simulation Algorithm
with Delays (SSAD) and Cai’s SSAD, which are modifications to Doob-Gillespie
SSA; see for example [3] and [5]. The main problem with these algorithms is that,
unlike Doob-Gillespie SSA, it is not clear whether they are implementations of
some stochastic process that models the chemical system with delays. An effort
in the direction of finding a stochastic process associated with a delayed system
is made by Anderson in [1], where he shows how a simple modification to the
Anderson-Kurtz’s equation (1.1) can indeed model chemical systems with delays.
For example, in Chapter 3 we will see that for a chemical system of n instanta-
neous chemical reactions and a delayed one, its corresponding modification to the
Anderson-Kurtz’s equation is given by

Y (1) = Y (0) + iy U (fy (Y ())ds ) vlk]
+Uge (f(f ade(Y(s))ds> w1 + Uge (fgid ade(Y(s))ds> wa.

Thus, a natural question arises: For a chemical system of n instantaneous chemical

(1.2)

reactions and a delayed one, are the trajectories of the solution to equation (1.2)
simulated through Barrio’s SSAD and Cai’s SSAD? Although we do not have an
answer to this question, it is our belief that the answer is affirmative. In Chapter

5 we will introduce some results in this direction.



We must now introduce the basic definitions and assumptions that will allow
us to model the dynamics of a system of n (n € Ny) chemical reactions. Among
these definitions and assumptions, the Fundamental Hypothesis of the Stochastic
Reaction Kinetics and the Well-Mized Assumption imply that we can model the
dynamics of this chemical system with a continuous-time Homogeneous Markov
Chain (HMC), which has a specific infinitesimal generator. From now on, we will
refer to this continuous-time HMC as the reaction jump process. In Section 2.2 we
will present a construction of this reaction jump process.

Thus, the problem of determining the dynamics of a system with n chemical reac-
tions is reduced to a question of determining the transition probabilities or semi-
group of the corresponding reaction jump process. In Section 2.4 and Section 2.5 we
will verify that the semigroup of the reaction jump process satisfies Kolmogorov’s
equations. In particular, in Section 2.5 we will see that this semigroup satisfies the
corresponding Forward Kolmogorov equation, also known as the Chemical Master
Equation (CME). Therefore, the solutions of the CME give us the transition prob-
abilities of the reaction jump process.

In Section 2.3 we will present Anderson-Kurtz’s ideas for modeling a system of n
chemical reactions. We will see that these ideas are based on the following fact: in
order to determine the state of the system at a certain time ¢, we have to know how
many times each reaction has happened until time ¢. We will see how the counting
process of each chemical reaction is given, and how the dynamics of the chemical

system are represented by the Anderson-Kurtz’s equation (1.1).

Following the ideas in Section 2.1, we will begin Chapter 3 by presenting a def-
inition of what a delayed reaction is; there we will see that a delayed reaction is
constituted by a normal chemical reaction, which changes the stoichiometry of the
system instantaneously and generates an excited complex Z. This latter complex
will decompose itself and change the stoichiometry of the system d units of time
later. Furthermore, in Section 3.1 we will see how equation (1.2) allows us to model
the dynamics of a system with n chemical reactions and one delayed reaction. In
section 3.2 we will present a simple example of a chemical system with only one
delayed reaction; we will show that the corresponding reaction jump process is no

longer a continuous-time HMC, it is instead a Semi-Markovian process.

Although we can study the dynamics of a chemical system (without delayed
reactions) through the CME’s solutions, in practice this can be difficult because
the dimension of the system of differential equations can be very large (the dimen-
sion is equal to the cardinality of the set X of possible states). For this reason,
the dynamics of the chemical system is studied with algorithms that can simu-

late the corresponding reaction jump process. In Chapter 4 we will introduce



Doob-Gillespie’s Stochastic Simulation Algorithm (SSA); we will see that Doob-
Gillespie’s SSA is just an implementation based on the fact that the reaction jump
process is a continuous-time HMC. Following the construction of the reaction jump
process given in Section 2.2, in Section 4.1 we will give an equivalent version of
Doob-Gillespie’s SSA, which has an interpretation as a competition between the
different chemical reactions. In Section 4.2 we will introduce Anderson-Kurtz’s
SSA, which gives us a way to solve Anderson-Kurtz’s equation; we will show that
Anderson-Kurtz’s SSA and the competitive version of Doob-Gillespie’s SSA (given
in Section 4.1) are equivalents. This immediately implies that the only solution to
Anderson-Kurtz’s equation is the corresponding reaction jump process simulated
by the Doob-Gillespie’s SSA.

Finally, in Chapter 5 we will present the most used algorithms that allow us to
simulate the dynamics of a chemical system with n chemical reactions and one de-
layed reaction. We will begin this chapter by introducing Anderson-Kurtz’s SSAD,
which gives us a way to solve equation (1.2). In Section 5.7 we will present Barrio’s
SSAD for this chemical system with delays, and in Section 5.3 we will introduce
an example of a chemical system that will allow us to demonstrate that although
Anderson-Kurtz’s SSAD and Barrio’s SSAD have some differences, for this example
the trajectories that Barrio’s SSAD generates until certain time are solutions of the
corresponding Anderson-Kurtz’s equation with delays.

We will finish chapter 5 by presenting Cai’s SSAD; we will see that unlike Barrio’s
SSAD and Anderson-Kurtz’s SSAD that simulate all the times where a stoichiomet-
ric change occurs (either by a chemical reaction or the decomposition of an excited
Z complex), Cai’s SSAD only simulates the times where a chemical reaction occurs.
We will see how the Cai’s SSAD can be interpreted as a race between the chemical

reactions in the system.



2. CHEMICAL SYSTEMS AND PROBABILITY

2.1. Basic definitions and Fundamental Hypothesis. Consider a system of
molecules that belongs to different chemical species. These molecules move in a
given environment, the (spatial) domain D, where D C R* for k& € {1,2,3}, and
undergo chemical reactions which affect their population. We understand that a
chemical reaction is a process where two or more molecules collide together, in the

space D, to form new chemical species; for example

(2.1) Hy+ Fy — 2HF

is a chemical reaction where one molecule of gaseous hydrogen reacts with a mole-
cule of gaseous fluorine to produce two molecules of hydrogen fluoride.
As for the relation between spatial movement and reactivity, we make the following

central assumption.

Assumption 2.2. (Well-Mized Assumption) The spatial movement of molecules
is fast compared to reactions, i.e., the majority of close encounters of molecules
(where molecules come close enough so that reactions are possible) are nonreactive
and molecular positions are uniformly distributed throughout the space D at any

time.

Given the well-mixed assumption, the spatial positions of molecules become in-
significant for the system’s dynamics, so that modeling approaches without spatial
resolution are justified. The system’s state may then be specified by counting the
number of molecules of each species, regardless of their positions in the space.
Hence, if in our chemical system there are m € N chemical species Si,...,Sm,
we only need to know the number of molecules of each species Si. We do so by
introducing a vector x € Ni* so that the entry x; is the number of molecules of
the species Sy, for k = 1,2,...,m. This vector x € N is called the state of the
chemical system, and the set of all possible states x € N{J* is denoted by X C Nj".
A chemical reaction system or network comprises a set of chemical species, a set of
chemical reactions, and a set of propensity functions. The set of species consists of
the reactants and products of the chemical reaction, and the propensity functions
have as domain a subset X C Ng*, where m is the number of chemical species and
X is the set of possible states of the chemical network; for example, consider a sys-
tem of m € N chemical species Sq, ..., S, which interact through n € N reactions
Ri,...,Rn. Each reaction is represented by a stoichiometric equation of the form

(23) Rj : Sljsl ++SmJSm 1)8/1]451+"'+S;nj5m



with the stoichiometric coefficients s;, sj; € No denoting the numbers of reactants
and products molecules, respectively (see for example (2.1)). The associated stoi-
chiometric vector

olj) = (vij, ..., omg)t € 2™,
also called state-change vector, is defined as

[ .
Uiy = slj — Sij

and describes the net change in the number of molecules of each species S; due to
reaction R;. The constant x; > 0 is the reaction rate constant which quantifies the
rate for the reaction to take place.

Each reaction R; acts on those « € X such that « + v[j] € X, in the following way

(2.4) R;:x — x+v[j].
For example, consider again the chemical reaction
Hy+ Fy, — 2HF.

Assume that the state of our system is given by the vector z € Nj, where z =
(1, 2,23)T and x1, T2, and z3 represent the number of molecules of Hs, F», and
HF, respectively; then the reaction

H2 + F2 — 2HF.
can be represented as
R:x—z+(-1,-1,2)T.
From now on we will only use the notation (2.4) to designate chemical reactions.

The probability for such a reaction to occur depends on the reaction rate constant

and the state of the system.

Definition 2.5. (Propensity function) The propesity function for the reaction R;
is the function
a; : X — [0,00)
that satifies
(2.6) a;(x) = kihi(z) VreX,

where hj(z) is the number of distinct combinations in which the reactant molecules
can participate into the reaction R;. By (2.8)

=11

provided that s;; < z; for alll =1,...,m; and h;(z) = 0 if for some 1 <1 <m

z < 85
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Assumption 2.7. (Fundamental Hypothesis of the Stochastic Reaction Kinetics)
The probability for the reaction R; to occur once within the infinitesimal time in-

terval [t,t + dt) is oj(x)dt, given that the system is in the state x at time t.

Example 2.8. (Binding and Unbinding) Consider the reaction system of three
species X, Y and Z with reactions

Ri:X+Y 2B 7, Re:Z B X4V
For R, the stoichiometric vector and the propensity function are given by
v[1] = (=1,-1, )" and ai(z,y,2) = kizy,
respectively; and for Ra
v[2] = (1,1, -7 and as(z,y,2) = Koz

2.2. Construction of the reaction jump process. Consider a reaction system
of n reactions and m chemical species. To describe the time evolution of the system

we consider the continuous-time stochastic process X = (X (t))¢>0, where
X(t) = (X1(t),.... Xm(t) " €X

with X;(t) denoting the number of molecules of the species S; at time ¢ > 0
for j = 1,...,m. With this notation in mind, we can rewrite the fundamental
hypothesis as

(2.9) P(X(t+dt) =z + v[j]| X(t) = 2) = a;(x)dt

and the probability that a reaction doesn’t occur in the time interval (¢,t 4 dt] is

given by
(2.10) P(X(t+dt) =2|X(t)=2)=1— > a;(x) | dt
j=1
We are going to show the existence of a jump Markov chain that satisfies the

equations above.

Let A be a real-valued square matrix of size |X|? (|X| < 0o) defined as follows

(2.11) A(z,z+v[j]) = aj(z), V j=1,2,..,n,

(2.12) Az, x) = — Z a;(x)

and

(2.13) Alz,y) =0 Vy¢{z+u[j]:1<j<n}



Observe that A satisfies

Az, x) = — Z Az, y)
yeX\{z}

and A(z,z) < oo, that is A is a conservative and stable generator. We proceed
with the construction of a jump Markov process with infinitesimal generator A.
Let Xy be a random variable with values in X. If at time ¢ = 0 the chemical system
is in the state X, then consider the following independent Homogeneous Poisson
Processes (HPP)

{Nxo.x040) 2 1 < J < b,
where each N, x,1v[j has intensity a;(Xo). Let Nx, = Z;Zl Nx,,xo4v[j]- Then
Nx, is an HPP with intensity —A(Xy, Xo), see for example [4]. If 71 is the time
until the first event of Nx, and Jj is the type of the event, then in the context of
chemical reactions 7 is the time until the first rection and J; is the type of reaction.

From the theory of HPP, 7y and J; are independent random variables and

;(Xo)
—A(Xo, Xo)
ie., 1 ~exp(—A(Xy, Xp)) and 71 < oo a.s. because A(Xp, Xp) < 0 a.s.
Repeat the same process as above with X; = Xg4v[Ji] and Nx, = Z;L:1 Nx, x,+v[j]>
where given the event {X(0) = zo, X1 = x1} the sets of HPP

P[Tl > a, Jl = ]|X0]: exp(A(Xo,Xo)a)

{Nxo.x040] 1 <7 <0} ANx, x40 0 1 <5 <}
are independent. Take random variables 5, Js such that
. « (Xl)
P Jo = j| Xo, X1] = A(X, X1)a)—L——.
[12 > a, Jo = j|Xo, X1] = exp(A(X1, l)a)—A(Xth)
and let X2 = X1 + ’U[Jg], .N'X2 = Z?:l NXz,Xz-‘rU[j]'
By the process above, we get a sequence of r.v. {X;} and {¢;} given by

Xi=Xo+ > vl
k=1

and 4
K2
tz’ = ZTk.
k=1

Observe that t; is the time until the i-th reaction and the system will be in X; at
time ¢;. Moreover, Vo € X, A(x,z) < 0 which implies that ¢; < oo a.s.

Now, by the construction of the sequences {7} and {J;}, we can see

]P)[Ti_;,_l > a, Ji+1:j|X0, . ,XiZJJ]ZP[Ti+1 > a, Ji+1:j|Xz:m],
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therefore
P[Xi+1=.1‘ + ’U[j], tivy1—t; > CL|X0, . ,Xizx]ZP[TH_l > a, Ji+1=j|X0, . ,Xi:l‘}
:IP)[TH_1 > a, JZ+1:]|X7:£IZ]

aj(x)

=exp(A(z, z)a) “A(za)

By the continuity of the measure

P[Xi+1:$ + ’U[jHX(), e 7XZ:£L'}
= lima‘w P[Xi+1:$ + ’U[j], tivy1—t; > Q‘Xo, e ,Xi:.ﬂ

=limg, o exp(A(z, x)a) _OX(EZ)JC)
71C))
—A(z,z)"’

The argument above shows that {X;} is a HMC with transitions probabilities

()

B(Xia=a + vl Xi=o)=gr s

and
P(Xip1=y|Xi=2)=0 Vy & {z+o[j]:1<j<n}
With the discrete time HMC { X };en, we can construct a continuous time stochastic

process {X (t)} given by
X(t)=Xn if tn<t<tns

where to = 0 a.s. We say that {X (¢)} is the reaction jump process of the chemical
system and {X;};en is the corresponding embedded HMC. Observe that {X,};en
is a HMC thanks to the hypothesis that A is conservative and stable. In general,
as Doob showed (see [7]), the infinitesimal generator of a continuous-time HMC is
stable and conservative if and only if with probability 1 the first discontinuity of the
continuous-time HMC, after a specified time ¢, is a jump; that is, the infinitesimal
generator of a continuous-time HMC is stable and conservative if and only if the
embedded chain is a discrete HMC.

Since A is the infinitesimal generator of the reaction jump process {X(t)}, then
when h | 0

BX(t+h) =2 +[jlIX() =2) = a@)h+o(h)
P(X(t+h)=2|X({t)=2) = 1-— Z?:I aj(x)h + o(h)
P(X(t+h) =ylat) =) = 0 Vy¢{o+v[j]:1<j<n}

That is, the reaction jump process satisfies the Fundamental Hypothesis.

Consider the sequence of reactions times {t;}. We define the explosion time of the
chemical system as to, := lim; o t;. Note that given the event {t,, < oo}, with
probability 1 we have an infinite number of reactions in a small neighborhood of
t~, that is, the system jumps infinitely many times in a small neighborhood of .
Therefore, an important question about t, is the following: under what conditions
the event {t,, = oo} has probability 1?7 Since the sequence {¢;} depends on the
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generator A, then information about the generator A must give us information of
tso- But not only the properties of the generator are important because as Doob
showed ([7]), there exist conservative and stable generators such that the jump
process that defines it has finite explosion time with probability greater than 0.
We're going to show that {X(¢)} is regular, that is P(tc = c0) = 1. First of all,
we need Reuter’s criterion (see [4]):

Theorem 2.14. (Reuter’s criterion) Let Q be a stable and conservative infinitesi-
mal generator. Then the following are equivalent:

(1)The continuous-time HMC that @Q defines is regular.

(2)For all A > 0 the system of equations

(2.15) ()\ + qi)yi = Z Qi,5Y; 1€ F,
JEE\{i}

n matrix notation

(2.16) Qy = Ny,

has the trivial solution y = 0 as the only non-negative bounded solution.
(3)There is A > 0 such that the trivial solution y = 0 is the only non-negative
bounded solution of (2.15).

Since A is a finite matrix, then the set of eigenvalues of A is finite, and there exist
A > 0 that satisfies (3) of Theorem (2.14). Therefore {X(¢)} is regular. We have
assumed that X is finite, but we can make a similar analysis when X is a countable
infinite set; we will show that the semigroup, {P(¢)}, of the reaction jump process,
satisfies the Forward Kolmogorov’s equations(in our context the Chemical Master
Equations)

PO (t) = P(t)A,

which implies that at any time ¢g > 0, with probability 1 the last discontinuity of
the reaction jump process before tg is a jump (see [7]). Together with the fact that
A is stable and conservative, the reaction jump process is regular, whether X is
finite or countable infinite. Therefore the name ’jump process’ is justified and we

can rewrite this process as

=0

2.3. Anderson-Kurtz’s Equation. Another way to describe the jump process
{X(t)} is with the help of a counting process R;(t), where R;(t) is the number of
reactions of type R; that have occurred in the time interval [0,¢] for 1 < j < n.

Suppose that the chemical system satisfies X (0) = z¢. Then we can write the jump
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process X (t) as:
(215) X(0) =0+ 3 Ry(00),

and the fundamental hypothesis as:

Assumption 2.19. (Fundamental Hypothesis of the Stochastic Reaction Kinetics).
Forallj=1,...,m andt >0 it holds

P(R;(t+dt) — R;(t) = 0|X (t) = z) = 1 — a;(x)dt + o(dt),
P(R;(t +dt) — R;(t) = 1| X (t) = x) = o (x)dt + o(dt),
P(R;(t +dt) — R;(t) > 1| X (t) = z) = o(dt),
fordt - 0 and x € X.

An immediate question is the existence of a set of stochastic processes { Ry, ..., Ry}
that satisfy Assumption 2.19. Consider the reaction jump process
X :[0,00) x Q — Ng*
together with his natural filtration {F;}ic0,00), Ft = 0(X(s) : s < t), and proba-
bility space (2, F,P) where \/,., 73 = F. Recall that the function
s+ X(s,w)

is right continuous for P-a.s. w, and since (NJ',p) (p is the discrete metric) is
a separable metric space, it follows from Theorem 3 in [10] that for all ¢ > 0,
X 1 [0,¢] x @ — N7 is B([0,#]) x Fy-measurable. Then if ; : X — R is the
propensity function of R,

(s,w) = a;(X(s,w))

is B([0,¢]) x Fi-measurable and since is a non-negative function, it follows from
Tonelli theorem that

w = fi(t,w) ::/0 a;(X(s,w))ds

is also JF;- measurable.
Observe that if P(f;(t + h)—f;(t) > 0) > 0, then

PlweQ:o;(X(s,w)) >0 VselI(w) forsome subinterval I(w) C (t,t+h]) >0,

which implies that with positive probability a new reaction R; could happen in the
time interval (¢, ¢+ h|. That is, the stochastic process { f;(t)} give us the cumulative
propensity of R;, but it doesn’t count the number of reactions R; through time.
In order to do this counting consider a unit-rate Poisson process {{;(t)} adapted

to filtration {F;}; recall that this process can be written as
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Z/[j(t) = max{k €Np: Sj7k- < t}

where
k
Sj0:=0, Sjx =) s
i=1

and {s;r}r is an iid. sequence with distribution exp(1). This implies that the
average time between events is 1. With this amount of information let

(2.20) R;j:[0,00) x @ = Ny R;(t,w) :=U;(f;(t,w),w)

First of all, observe that for a.s. w € Q t — R;(¢,w) is right continuous, because
for a.s. w € Q, t— f;(t,w) is an increasing process and for a.s. w € Q, t — U;(t,w)
is right continuous. Second of all, for each ¢ € [0,00) what can we say about the
function w — R;(t,w)? Is w — R;(t,w) a random variable for each ¢ € [0, 00); and
if it is a random variable, is it F;-measurable?; that is, is {R;(t)}; a stochastic
process adapted to filtration {F;}? And finally, since we are working with unit-rate

Poisson process U; that satisfies
EU;(t)] = t = E[t]
what can we say about E[U;(f;(t))]? Is it true that E[U;(f;(t))] = E[f;(t)]?

The answers for these questions are positive; see for example [8].
Now we are going to show that this definition of R;(t) satisfies the Fundamental
Hypothesis. By the properties of HPP, we have

Ui (f;(t+dt)) = U ((f; (1), £5(t + db)]) + U (f5(2))-
Hence
R;(t +dt) = U;((f;(t), f;(t + dt)]) + R;(¢)
and
R;(t +dt) — R;(t) = U ((f; (1), f;(t + dt)]).
Since the propensity functions are constant in the infinitesimal time interval [¢,t +

dt), we get

P(R,(+dt) — Ry(t) = 1X(6) =a) = PRI, f5(t+dt)]) = 11X (1) = 2)
= PUj(aj(x)dt) = 1)
= exp(—o;(x)dt)
= aj(z)dt + o(dt).
Therefore (2.18) can be written as
(2.21) X(t) =z + > U </0 aj(X(s))ds> o[f],
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which is the Anderson-Kurtz’s Equation for this chemical system. In (2.21)
{U,...,Un}

is a set of independent unit-rate Poisson processes with sequence of times events
{S; i }ken for each U; . From the theory of HPP we know that for i # j,

SjJC 75 Si,k Vk €N,

hence every solution {X (¢)} of (2.21) makes jumps, with probability 1, of the form
x — x+v[j] whenever one of the Poisson processes U; indicates such a jump. That
is, if {X(¢)} is a solution of (2.21), then {X(¢)} must satisfy

(oo}
X(t) = Z ka[tk,thrl)(t)
k=0

where Vk € Ng z41 = zx+w for some w € {v[l],...,v[n|} and {¢;} are the times
when a stoichiometric change occurs due to a chemical reaction. In Chapter 4 we
will show that (2.21) has as unique solution the reaction jump process given in
Section 2.2.

Example 2.22. (Binding and Unbiding) For the reaction system of binding and
unbiding
Ri:X4+4Y 227, Re:Z B X+Y

the path representation X (t) = (x(t),y(t), 2(t))T is given by
(0) = Ra(t) + Ra(t)
(0) = Ru(t) + Ra(t)
2(0) + Ri(t) — Ra(t)

z(t) = =z
yt) =y
z(t)

where x(t), y(t) and z(t) are the number of molecules of X, Y and Z, respec-

tively, at time t. Since R1 has propensity o (z,y,z) = kixy and Ro has propensity
as(x,y, 2) = Koz we can write {X (1)} as
-1 1
X(t) = X(0) +Ui(k1 [y x(s)y(s)ds) | =1 | +Us(ka [ 2(s)ds) | 1
1 -1
In this equation, the second term on the right-hand side stands the number of times
that the reaction Ry happens in the time interval [0,t] and the last term stands the

number of times that reaction Ro happens in the time interval [0,¢].

2.4. Backward and Forward Kolmogorov’s Equations. So far we have seen
how Anderson-Kurtz’s equation can help us to describe the dynamics of a chemical
reaction system; nevertheless, there is another popular and alternative form to de-
scribe the time dynamics of a chemical reaction system; the Forward Kolmogorov’s
Equation, also called Chemical Master Equation in the biochemical field, see for
example [9].

Given a conservative and stable infinitesimal generator, say A, with space of states
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X, we are interested in the transition probabilities between states in X in a certain
period of time. That is, if {X(¢)} is the HMC defined by A, we are looking for the
values
pij(h) =P(X({t+h)=7X(t)=1i) VijeX
Let P(t) = [pi;(t)]ijex YVt > 0. The fact that {X(¢)} is a continuous-time HMC
implies that {P(t)} satisfies
Vi,jeX, pijl oY pig(t)
JjeX

and the Chapman-Kolmogorov Equations:

(2.23) Vi j € X,pij(t+h) = pix(t)pr;(h
keX

and

(2.24) Vi,j € X, pii = pir(h)pr(t
keX

Following the standard notation in the theory of continuous time HMC, we define

g == —A;,; and ¢; j := A; ;. Therefore, {P(t)} satisfies (see for example [6])

(2.25) Vi,j € X, ql—%l—fﬂfm(h)y w_:lﬁ%%(h).
Using Fatou’s lemma }_;_, ¢;,; and g; satisfy
dojzilig = Dojziliminfpio M
< liminfy g Z#l P77(h)
= lim 1nfhw —L 1(h)
= -

t+

That is if A is a generator, not necessarily conservative, then i Girj and ¢;

always satisfy
i
Observe that (2.24) implies
pij(t+h) =pij(t) = DpexPik(P)pr;(t) —pi;(t)
= i) Pii(h) = 1) + 35 Pik(h)pr,;(t)
and

pij(t+h)—p;;(t pi,zh_]- pz
(227) ]( ]?L J( ) _ ( pld k

k;éz

Using equation (2.27) and Fatou’s lemma we get

lim inf Pij (t+h) - Pij (*)
h—0 h

> —qipi,;(1) + Z i, kP, (1)
kot
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Now, since A is stable and conservative, we get for N > i

Y ==Y ) e Y w =Y

>N J<N J<N,j#i >N

Note that from the conservative property, the convergence of the series % > >N Pij (h)

only depends on the convergence of the finite series (1 — > j<n Pij(h)) which

converges uniformly in h. Hence },; P i’;b(h) converges uniformly to >, ¢i ;-

Therefore, if we let h — 0 in (2.27), we get the Backward Kolmogorov Equations
1
(2.28) Pz('J-) (t) = —qipi j(t) + Z Qi kPk.j (1)
ki

This proves an implication of the following Theorem(see [7]).

Theorem 2.29. A stable infinitesimal generator A is conservative if and only if
its transition semigroup {P(t)} satisfies the Backward Kolmogorov Equations, that
18

PO (t) = AP(1).

Proof. We only need to prove the if part. Let A be a stable generator such that
his semigroup satisfies the Backward Kolmogorov equations (2.28). Then, for fixed
1€ XwegetVt>0

SiexPi) ) = Ljex —aiig () + Xjex Lapi GiP (1)
= =i X jex Pi (1) + Xopsi € 2jexc Proj(t)
= =Gt D s Qi

and, using inequality(2.26),

n 1 n n
IS = =@ S i) + D qik (T s (1)
< G2 pig () + 2y 4k (X Pry (1)
< @it g Gk < 245

It follows using dominated convergence theorem that

Jis,s48) 2jex i (bt = Yjex Jis s469) Pg,lj) (t)dt

= D iexPij(s+0) —pij(s)]

= limpoo Z?:ﬂpi,j(s +0) — pij(s)]
o0 327 Pig (s +6) = 2252, pi(s)
- 1-1=0.

Since ZjEX pgjlj) (t)=—q + Zk# gi,; Vt > 0, we get

—q; + Z(Ii,j =0.

J#i
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Backward Kolmogorov’s Equations have an important probabilistic interpreta-
tion. Suppose that at time X (t9) = 4. Then the probability that X (to +t) = k and

the first discontinuity is a jump in the time interval (¢o,to + t], is given by

t ..
P(X(t+to) = k,to <711 <t+1to|X(to) =1) = / q; exp(—¢;$) q;’J ik(t — s)ds,
0 4
see for example [7]. Therefore, Vi, k € X
(2.30) pik(t) > Z/ exp(—q;(t — $))qi,ipjk(s)ds + §; k. exp(—q;t).

J#i
Since the equality in (2.30) is an integral form of the equation (2.28), if the semi-
group {P(t)} satisfies the Backward Kolmogorov Equations, then Vt; > 0 with
probability 1, the first discontinuity of X (¢) following ¢ is a jump.
With the help of (2.23) we get

pii(t+h) —pii(t) = YpexPik(®)pr,i(h) —pi;(t)
pii () Py (M) — 1) + X4z Pik(U)pr,5(h)

and

i (E+h) —pij(t
(2.31) p»]( ]i p’J()me()p“ +szk )
k#3j

It follows from (2.31) and Fatou’s lemma

lim g P+ h) —pi;(t)

m in - > —pi;(t)e; + Zpi,k(t)qk,j'

=y

We have seen that V¢ > 0 and 7, j € X the term pE}J? (t) exits when the generator A
is stable and conservative. Therefore
(2.32) Pf;,lj) (t) = —pij(t)g; + Zpi,k(t)Qk,j

oy
The following theorem gives us conditions under which there is equality in (2.32).
For more details of the proof see [4].

Theorem 2.33. Let A be a conservative and stable generator. Suppose that Vi € X
and ¥Vt > 0

> pik(t)ar < oo
keX
Then the Forward Kolmogorov equations
(2.34) pf,lg) (t) = —pii(t)g; + Zpi,k(t)Qk,j
ey

are satisfied.

Proof.
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Hence, Vt > 0
Pk,j(h
Pik(t) ;l( ) < pik(t)qr-

Since ), £ Pik(t)qr < 0o, by the dominated convergence theorem

. pk,] li pk;]
1 .
hl_q%)éé‘pz,k( E Dik(t E Di k() k.-
J

k#j k#j

Using (2.31) and the above equality we get the Forward Kolmogorov equation. O

Now we are going to find and integral form for a semigroup (with stable and

conservative generator) that satisfies the Forward Kolmogorov Equations and the

qu < 0.

keX

b(t) =Y pik(t)qk ;-

k)
Observe that V¢t > 0, the product p; (t)qx,; < qx,; < gqx. Since Zk# qr < 00, it

strong hypothesis

Let

follows by the dominated convergence theorem and the continuity of the semigroup
Yim b(t+h) = > lim pik(t + h)aw.; = b(b),
k#j
i.e., b is a continuous function.

We can write the Forward Kolmogorov equations as follows

P () = —qspiy(t) + b(t),

and by the variation of parameters formula

Ppi,j(t) = 6i,; exp(—qit) +/ sz k(t —8)qr,; | exp(—g;s)ds.

O \k#j

If ¢ : RS x (N\ {j}) — [0,1] is given by
o(t, k) = pi(t),

then ¢~'((a, b)) = Uke(N\{j})pZ;((aa b]) x {k} € B(Ry) x P(N\ {j}), because
Vk € N\ {j} the term p;, 1, is a continous function. Using Tonelli’s theorem we get

(2.35) pi,j(t) = d;j exp(—git) +Z/ Pik(t — 5)qn,; exp(—q;s)ds.
k#j

As Doob showed in [7], the probabilistic meaning of (2.35) is that V¢t > 0, the last
discontinuity of the continuous-time HMC is a jump with probability 1. Therefore,
the semigroup satisfies the Forward Kolmogorov equations if and only if V¢ >
0 the last discontinuity of the associated continuous-time HMC is a jump with
probability 1. Hence, if the semigroup satisfies the Forward Kolmogorov equations,
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the associated continuous-time HMC is regular.

In the following section, we are going to show Gillespie’s proof that the semigroup
of the reaction jump process satisfies the Chemical Master Equation, which is the
name given to the corresponding Forward Kolmogorov Equation. This ensures that

every reaction jump process must be regular, whether X is finite or infinite.

2.5. Chemical Master Equation(CME). We start this section analysing the
Forward Kolmogorov Equations, also known as Chemical Master Equation, for the
reaction system of n reactions and m species. Since we are supposing that the space
of states X C N is finite, Theorem 2.33 implies that the chemical system satisfies
these equations. Let zg,z € X and define

P(z,t|xg, to) := P(X(t) = z|X (to) = x0).

Then, the CME is given by

dP(l‘, t|$0, to)

dt = A(x7x)P($7t|x07tO) + Z A(yaﬁ)P(yvt‘xmtO)y

y#£T
where A is given by (2.11), (2.12) and (2.13). Therefore

dP(x,t|xg,t -
(2.36) TPEN0I0) _ S0 (0 ufj))Pa — ol o, o) — 0y (2) Pl o, )]
j=1

Observe that the previous derivation of the CME lacks a proper chemical interpre-
tation, which is a problem when we are working in applications. In order to solve
this problem, we are going to show the proof, given by Gillespie, that the reaction

system satisfies (2.36); suppose that at time to the system is in 2. Let
Pag o (%) := P(x| X (to) = 20)
be the conditional probability to the event {X(ty) = zo} and let E be the event
E ={X({t+dt) =z},

where is (¢, ¢+ dt] such that the probability that more than one reaction takes place
in this interval is o(dt) (See Assumption 2.19). Thus we can take d¢ such that at
most one reaction can take place over (¢, ¢+ dt]. Now, notice that to be in the state
x at time ¢ + dt, there are only two basic scenarios for time ¢; either the system was
already in the state z at time ¢ and no reaction took place over (¢,t + dt], or for
some 1 < j < n the system was in the state 2 — v[j] at time ¢t and the jth reaction
fired over [t,t + dt), thereby bringing the system into state x. Define

Hy = {X(t) = =},

for1<j<n
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and
Hopr :={X(t)=y:y#z—v[jl, 1<j<n}
Since {Hy, H1,...,Hyp, Hy+1} is a partition of the probability space, then
n+1
P(z,t+ dt|xo, to) = Pugto(B) = Payso (E|H;)Pyy 1, (Hj),
Jj=0
where Py, +,(Ho) = P(z,t|xo,t0), Pag o (Hj) = P(a — v[j], tlzo, to) with 1 < j < n.
By the Markov property of the reaction chain {X (¢)} and the fundamental hypoth-
esis, for 1 <j<n

Pato (E|Hj) = Pz, t + dt|lr — v[j],t) = a;(z — v[j])dt,
Pry .t (E|Ho) = P(a,t + dtla,t) = 1 — (O aj())dt + o(dt)
j=1
and

Pog to (B|Hpy1) = P(X(E+dt) = e[{X(8) =y -y # 2w —0lj], 1<j<n})=o(d).

Therefore

P(z,t+dt|zo,to) = P(x,t|z0,t0)
dt

= (X0 aj(@ — vli)P(x — vlj), tlro, to)) — (X 0 (@) P, t|zo, to) + L

and

P(z,t+dt|zo,to) = P(x,t|z0,t0)
dt

limgt o
=il (@ — v Pz — v[j], tlzo, to)) — a;j(x) P(z, t]zo, to)]-
Note that W exits because the genarator A, of the reaction chain, is stable
and conservative. Then
dP(z,t|xg,to)

o = _laj(w = v[i])P(x — vlj), tlzo, to)) — o (2) P(x, tfo, to)]-

j=1

Observe that this proof of the CME only uses the Fundamental Hypothesis. Thus,
in the hypothetical case where the space of states of the reaction system is infinite,
the corresponding semigroup satisfies the Forward Kolmogorov Equations which
implies that the reaction process is a regular continuous-time HMC.

Define 7, (t) = P(X(¢t) = z) for ¢t € [0,00) and x € X. Consider an initial dis-
tribution 7,(0) = P(X(0) = z) for the reaction jump process. Then, Vi > 0
7(t)T = x(0)T P(¢) and from the CME Vz € X

(237 Lralt) = Yoy — vl cai (6) — s ()ma(0)],

Jj=1

n
or in matrix representation
d

(2.38) %ﬂ'(t) = ATz(t).
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Proposition 2.39. 7 is a stationary signed measure of {P(t)} if and only if w is
an equilibrium point of (2.38).

Proof. Suppose that  is a stationary signed measure of { P(t)}, that is m = 77 P(¢).
Then, 0 = 77 P'(t) = 7T AP(t). If t | 0, then 0 = 7T A.
Let 7 be an equilibrium point of (2.38) and define Vt > 0 n(t)T = 7«7 P(t); then,
d
prid
Since P(0) = I, m = w1 P(t). O

)T =77 P'(t) =T AP(t) = 0.

For obvious reasons, we are interested in those equilibrium points that are posi-
tive. Zeron and Santillan have shown that (2.38) have at least one stable nonzero
stationary probability distribution and, whenever the reaction jump process is ir-
reducible, this probability distribution is unique and asymptotically stable, see for
example [19]. Now consider the embedded chain {X,} of an irreducible reaction
jump process; if 7 is the only stationary probability distribution of the process,

then p defined Vz € X as

() = W(x)aéum(m)

is a stationary distribution of the embedded chain, where C' =} s m(2)sum ().

Moreover, the following proposition implies that is unique p. This result can be
found in [4].

Proposition 2.40. Let {X,} be an irreducible HMC with transition matriz P. If
{X,} has a stationary probability distribution, then {X,} is recurrent.

Proof. Let 7 be a stationary probability distribution (77 = 77 P). Then, Vn € N
77 = 7T P" and for all state of the chain j, w(j) = Y, 7(i)pi ;(n). If some state j

is transient, then ) X{x,=j} < oo a.s. It follows that lim, o X(x,=j; = 0 a.s.

n=J
and by the dominated convergence theorem (x{x,—;}; < 1)

Jm pij(n) = lim Eilxix,=p] = Ei im x(x,=5] =0.
Again by the dominated convergence theorem (7(i)p; ;(n) < w(i) and ), 7(i) = 1)
m(j) = lim Z m(@)pi,j(n) = Z m(@) lim p;;(n) = 0.

7 7
Since the chain is irreducible every state is transient which implies that # = 0 and

this can not happen ([l

Example 2.41. (Irreducible reaction jump process) Consider the reaction system

of binding and unbiding
Ri:X+Y B 7, Re:Z B X4V,

Suppose that at time 0 the system is in the state (x¢,v0,0)T, where xy and yo are

the number of molecules of X and Y, respectively. Then the space of states is given
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by
X = {(zo—b,yo —b,6)" : 0 <b< min(zo,y0)}-

Let 0 < ¢ < b < min(xg,y) and 2, = (x0—b,y0—b,b)7, #. = (x0—¢,y0 —c, c)T.

Observe &, = &y + (b — c)v[2] and &p = & + (b — c)v[1]; that is we can go from &y
to T in b — c reactions of type Ro and from I, to &y in b — c reactions of type Rq:

iy 2+ 02 2 BB g (b—c— 1]2] 22 g,

Fo 25 o+ o[1] 5 B i (b—c— Du[l] 25 i

If {X,.} is the embedded HMC of the reaction jump process, then

P(Xp—oc = Tc|Xo = Ip)
> P(Xl =T+ ’U[Q}7 A 7Xb—c—1 =Ip+ (b —Cc— 1)’0[2], Xp_e = §70|X0 = .f?b)

= P(X) = & + 0[2]||Xo = &) ... B(Xpe = &el Xpoemy = 2+ (b— ¢ — 1)o[2))
_ et _aa(@ntkel2) o g
T LHlE=0  agum(@+kv[2]) ’

and

N N b—c— as(Ze v
P(Xp—e = 2| Xo = &) = k=0 ' asfi(iﬁk[jﬂf]) > 0.

Thus the embedded chain is irreducible, which implies that the jump process is
irreducible.
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3. CHEMICALS REACTIONS WITH DELAYS

In Chapter 2 we introduced and modeled the chemical reaction where one mol-
ecule of gaseous hydrogen and one molecule of gaseous fluorine react to form two

molecules of hydrogen fluoride:
Hy + F, — 2HF.

Although, for practical reasons, this reaction is thought to happen instantaneously,
the reality is that the molecules of Hy and F5 firstly form an excited complex,
denoted by (H2F5)*, and then this complex decomposes into two molecules of HF
after a short period of time (see for example [18] and [11]). Therefore, the reaction

of gaseous hydrogen and gaseous fluorine can be written more properly as follows

Hy+ Fy % (HyF)*

(3.1) —,
(H2F2) — 2HF,

where =% denotes a physical transition that takes d units of time. Together the
chemical reaction

Hy + Fy =% (HyFy)*,

and the pyshical transition
(HyF)* =% 2HF,

are called a chemical reaction with delay; and this will be our general scheme.
Thus, consider a chemical system of m chemical species Si,...,S,, and space of
states X C Ni*; then a chemical reaction with delay R4, that produces an excited

complex Z, is represented by stoichiometric equations of the form:

(3.2) 5151+~-~+sm5m%z’151+~-~+s;nsm+z
7 = $/S1+--+5.Sm,

with stoichiometric coefficients s;, s} and s7 in No. Note that in (3.2) is implicit
the fact that we are making a distinction between the chemical species Si, ..., Sn
and the excited complex Z. Now R4, introduces two stoichiometric vectors given

by

wy = (s)—s1,..., sin—sm)T
and
wo = (s7,...,s0)7.

Therefore, following the ideas presented in Section 2.1 we can write Ry, as

K,
x2S 4wy

d
7 = wo

Rae :
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for each x € X such that z+w; € X. In the same way that every chemical reaction

has its own propensity function, the chemical reaction part of Rg.
8151 4+ + 8mSm —5 8151 + -+ + 8, 8m + Z

also has his own propensity function age, which satisfies (2.5) and (2.7). Hence,
Rge is characterized by four parameters: the time of the physical transition d, the
two stoichiometric vectors wi, wy and the propensity function a4 of the chemical

reaction part of R4.. For example, consider again the delay reaction

Hy + Fy =5 (HoFy)*
(HyFy)* =% 2HF.

In this example w; = (—1,—1,0)T, wy = (0,0,2)7 and
a1, T2, T3) = K122,

where x1, x2 and x3 are the number of molecules of Ho, Iy and HF, respectively.

Hence, this reaction can be written as

r "2+ (—1,-1,0)7
(HQFQ)* — (O,O,Q)T.

Example 3.3. (Binding and Unbiding Reaction with Delay) Consider the reaction
system with chemical species X, Y and one complexr Z; moreover, add a chemical
reaction with delay composed by a normal R1 and a physical transition T with delay
d

Ri:X+Y ™Sz T:72-% X1V

Together, R1 and T constitute a Reaction with Delay
Rae = Rae(d, w1, w2, age),

where wy = (—1,—1), we = (1,1), and age : X = Ry is given by age(z,y) = K12Y.
If the initial number of molecules of X andY are xg and yo (o < yo), respectively,
then
X = {(z0,90)", (o — Liyo — 1),..., (0,50 — z0)" }.
Hence
5+ (-1, -1)7
Z =% (1,17,

3.1. Reaction Jump Process of a Chemical System with one Delayed
Reaction. Now that we have an interpretation of what a chemical reaction with
delay is, and we also have a proper form to model it, the following question is: how
can we represent the dynamics of a chemical system with one delayed reaction?
As we saw in Chapter 2, the reaction jump process of a chemical system (which

does not include reactions with delay) is a regular continuous-time HMC. In the
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next section, we will see that this is no longer the case when the chemical system
includes at least one reaction with delay. Then, how can we handle the problem?
To answer this question, we recall the work done in the first Chapter of this thesis.
In Section 2.3 we saw that a path representation of the reaction jump process can

be given in terms of unit-rate Poisson processes.

Consider a chemical system of m chemical species Sy, ..., S5, and a set of reactions
{R1,..., Ry} with propensities functions {a1,...,a,} and stoichiometric vectors
{v1,...,v,}. Suppose that we know how the reaction jump process (X (s)) is given

in the time [0, ¢). Then the dynamics of X (¢) can be described as
n ¢
(3.4) X(t)=X(0)+ Y U < / ak(X(s))ds) vlk],
k=1 0

where L{k(fot a(X(s))ds) is the number of times that the reaction Ry happens
inside the time interval [0, ¢], and the U s are independent unit rate Poisson process.

Now let {¢;} be the sequence of events of the counting process

{;u (f t (X (5))s };

thus Vw € Q, ¢;(w) is the first time the function

n t
t— ZUk (/ ak(X(s7w))ds,w> is equal to i.
k=1 0

Observe that we can interpret ¢; as the time where the ith reaction occurs; also
note that Vi the chemical system can not produce reactions in the time interval
(ti,tig1). From {t;} U {oo} we can subtract a subsequence {tj ;};, where Vw € Q,
if ¢y, j(w) # oo, then ty j(w) is the first time the function

t
t — Uy (/ ozk(X(s,w))ds,w> is equal to j.
0

that is, given the event {tx ; # oo}, tx; is the time where the jth reaction of the
type Ry occurs and the chemical system can not produce reactions of the type Ry

in the time interval (¢ j,t j+1). It is important to note that the event
{ap(X(s)) =0:Vs € [t;,0)}

may have probability greater than 0; then Vw € {ax(X(s)) =0:Vs € [t;,00)},

t,-(w)
tej(w) =00 Vj>U (/ Oék(X(S,w))dS,w> :
0

Now suppose that this chemical system also induces a reaction with delay

Rde = Rde (da wla w27 ade)
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z % g + wq,
Rae : 4
7 = w2,
where g is the propensity function of the chemical reaction part z “% z + w; of
Rae-
Note that a normal chemical reaction Ry will change instantaneously the stoi-
chiometry of the chemical system, but a reaction with delay R4, will change the
stoichiometry of the system in two times: the first one occurs instantaneously when
the chemical reaction part © — x+w; of Rg4e occurs, and the second one occurs d
units of time after the first one happened when the complex Z decomposes. Then,
we are interested in giving a description of the reaction jump process ({Y'(s)}) of
this chemical system that can handle the changes in the stoichiometry of the system
due to the decompositions of the complexes Z. Using (3.4) we can solve the problem
due to stoichiometric changes that normal reactions induce. Since the first change
that R4. induces in the stoichiometry of the system is due to the normal reaction
™% z+ws, we can think that the dynamic of the chemical system at time ¢ (given
Y(s) Vs € [0,1)) is

wn—Y@+(qulﬂMY@m§vm>H%(Al@W@mﬁwuﬂ@

where Uy, is a unit-rate Poisson process that is independent of {Uy, : 1 < k < n}
and 5(t) manage the stoichiometric changes (in the time interval [0,¢]) due to the
decompositions of complexes Z. We can infer that §(t) will be a function of the
number of complexes Z that have decomposed in the time interval [0,¢] and the
stoichimetric vector wo. Every time a reaction z “% z4w; occurs a new complex Z

is formed; therefore information about the counting process

{uk(Aimaywnw)},

can give us information about the times when the complexes Z will decompose. Let

us be more precise; consider the sequence of events {t4._;}; of the counting process

{ude (/Ot Oéde(Y(S))dS) } .

Given the event {fde,l < oo} (at least one delayed reaction R4, occurs), then the
first molecule of Z is formed at time fde’l, and at time fde,l +d this first complex will
decompose (Z N wo). Tt is clear then that if the event {fde,1 < 00,... ,fdeﬂ- <
oo} occurs (at least j delayed reactions R4 have occurred), for 1 < i < j, the
ith complex Z is formed at time tAde’i, and at time L:deyi-f—d this ¢th complex will

decompose (Z =4 wa). Therefore, the sequence of times at which the complexes
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will decompose is {f4 ;+d};, which has counting process given by

t—d
{L{d@ (/0 ade(Y(s))ds> } ,

because the following events are equal

t
{ude (/ ade(Y(S))dS) = j} = {fde,j <t-d< tAde7j+1} = {fde,j—Fd <t< Ltde,j_;,_l—l-d}.
0

Therefore, the reaction jump process of a chemical system with m chemical species,

n chemical reactions and one reaction with delay can be written as

Y (1) = Y(0) + X5y s (g (Y (s))ds) ol

(3.5) _

+Uge (fot ade(Y(s))dS) wi +Uge (fot d ade(Y(s))ds) wWs
Let x € {1,...,n,de}. Since every unit-rate Poisson process {U,(u)}y>0} is of the
form

oo
u*(u) = ZjX[S*,j7S*,j+1)(u)7
=0

where {S, ;}; is the sequence of events of U, with S, ¢ = 0, then every possible
solution of (3.5) has to be of the form

(3.6) Y(0) = Yixg, iy ®
§=0

where {p = 0 and for all j € Ny Y;41 = Y;+w with w € {vy,...,v,,wi,ws} and
{t;} are the times where any stoichiometric change happens.

In chapter 3 we are going to introduce Anderson-Kurtz’s algorithm for this type of
chemical systems, which give us a way to simulate {¢;}; and {Y;}, and we are going
to compare this algorithm with Barrio’s SSAD which is the standard tool used to

simulate a chemical system with delays.

Example 3.7. (Reaction Jump Process for the Binding and Unbinding Reaction
with Delay) Consider the reaction system with chemical species X, Y, and one exited

complex Z, one reaction R1, and a physical transition T with delay d
Ri:X+Y ™Sz T:7 % X1V

If the initial number of molecules of X and Y are xg and yo (ro < yo), then the

reaction jump process is given by

(ig;) <;c§> s (/@1 /()tx(s>y(5)ds> (:1) +Uy (“1 /Otdx(s)y(s)ds> (1)

3.2. A Semi-Markov Chemical Reaction System. Consider the reaction sys-

tem of example (3.3); that is one reaction Ry and a physical transition 7" with delay
d
Ri:X+Y X7, T:Z N X +Y,
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and initial state (1,y0)7 with yo € N. Since at time 0 there are no molecules of

complex Z, the first step of the chemical system is dictated by the chemical reaction
R1; then, at time 71 ~ exp(k1%9o) the system moves instantaneously from (1,y0)7
to (0,790—1)T, and at the same time, the first excited complex Z is produced. Note
that in the time interval [r1,71+d) the only molecule of X is binding with one
molecule of Y, which implies that V s € [r1, 71+d) (2(s),y(s))T=(0,y0—1)T; thus
the propensity of reaction R, is equal to zero V s € [r1,71+d). A change in the
propensity function of Ry will occur at time 71+d when the first excited molecule
Z decomposed in X and Y; at this time the system moves instantaneously from
(0,90—1)T to (1,y0)” and the propensity of R at time ¢,+d is equal to x1yg. At
this point, there are no exited complex Z in the system, and the dynamics of the
system is dictated again by R;.

Hence, if we let Ty=0, T'=To+(11+d), To=T1+(12+d), . .., Tn=Tp—1+(mn+d), where
{7} is a i.i.d. sequence with distribution exp(k1yo); then we can write the reaction

jump process as

(LyO)T Tn <t< Tn+1_d n e N07

(3.8) (1), y(t)T= -
0,90—1)" Tphp1—d <t <Tpi1 neN.

Note that {7, } is the corresponding renewal process of {7,+d}, where we can
interpret T, as the time where the nth excited complex Z decomposed or the time
where the nth reaction with delay has finished. Also, note that (3.8) define a Semi-
Markov process because the probability that the system moves from (0,y0—1)% to
(1,90)T follows a Dirac distribution centered on d.

In order to show that Anderson-Kurtz’s equation for this chemical system

(3.9)

<§§3> = (ylo> +Uy ( /0 tm(azy)(s)ds) (j) +Uy ( /0 tdnl(g;y)(s)ds> G)

is equivalent to (3.8), we must solve this equation. Since the unit-rate Poisson

process
{th(u)},>o

is of the form

Uy (u) = Z IX18;,5,.1) (W),
=0

where {S;} is the sequence of time events of ; and Sy=0, then every possible
solution of (3.9) has to be of the form

l‘(t) _ > Zj o
<y(t)> B Jgo (%) X[tj:thrl)(t)
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where for j > 0 the vector (2;41,yj+1)7 = (zj,y;)T +v with

ve{1,DT (-1,-1)T}

and {t } 2o are the times where any stoichiometric change happens; and we set
to 0.

Now we are going to solve explicitly (3.9) by constructing the sequences {; 1320
and {(x;,y;)T};>0. Note that (zy)(0) = yo, because of the initial conditions, so
that (xy)(s)=yo Vs € [0,#1). Now then #; must satisfy by definition

t1
/ k1(xy)(s)ds = Sh,
0
and
S1
K1Yo
which implies that #; ~ exp(k130). Observe that after substituting t = ¢ in (3.9)

t =

we obtain

w(t) 1 -1 1\ [ o
< @ )> <y0> +Uy (S1) (_1> +Uy (S1 — dr1yo) (1> = <y0—1>

so that (zy)(t1) = 0, the same identity (xy)(t) = 0 happens for all ¢ > #; until the

integral
t—d
/ k1(xy)(s)ds
0

in the last term of (3.9) is equal to the event S;. Since (xy)(s) = yo Vs € [0,%1),

then
t=d 0 if t<d,
/ 1 () (s)ds = _ )
0 quo(t—d) Zf d<t<ti+Hd.

and so (3.9) rewrites as follows V¢ € [f1,#;+d)
(3.10)

z(t) 1 . 1 _ 1
(y(t)) - <y0> Uy (fo lil(:ﬂy)(S)ds) (_1> +U, (fo dm(xy)(s)ds) <1>
= <y10> +Ui (S1) <_1> +Uy (S1 — dk1yo) G) - <y001> _

This equation is consistent because
Yo if sE€ [0

(zy)(s) = , .

0 if sé€lt,tr1+d).

Moreover, substituting t=¢;+d into (3.9) and (3.10) yields

w(ti+d)) (1 -1 1y (1
(y(f1+d)> = (y()) +Ui (S1) (_1> +Ui (S1) <1> = <y0> )
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because U (S )
So that (xy)(t ) = gy for the second stoichiometric time change f, = t;+d, the
same identity (zy)(t) = yo holds for all t > ¢, until the integral

(Km@@@@

is equal to the second time event Ss. If we continue with this process, then we can
rewrite (3.9) as

1,yo)T ton <t < toy, n € No,
(w(t) ytayyT=q St S S by €T

(0,90—1)T  ton41 <t <lopmi1) n € Np.

where Vn € Ny fonq1—ton ~ exp(k1yo) independent of t1,..., 1oy, and
f?(nJrl) = £2n+1+d-

Therefore, Anderson-Kurtz’s representation (3.9) is equivalent to (3.8) after setting
ton=T), and tg, 1=T)1—d.
We present and analyze now a second representation of the process (3.8). Let
{N([0,¢])} be the counting process for T, (see (3.8)). Since T},+d < T,,4+1 a.s., then
(3.8) can be written a.s. as

a(t)) (1 ~1 1
(y (t)> = <y0> +N ([0, t+d)) (_1> +N([0,4)) <1> .

(t) =1—N([0,t+d]) + N([0,t])

In particular,

8

and

P(a(t) = 1) = 1 — E[N([0, t+d])] + E[N([0,¢])]
because E[z(t)] = P(z(t) = 1). By Blackwell’s theorem

limy o0 P(2(t) = 1)

= 1= limg o0 (B[N ([0, t4d])] — E[N([0,¢])])

=1—- -2 _
E[r1+d]

-1 %
mivo T4

-1 K1Yod
1+K1yod

_ 1

T 14k1yod”

Then the steady state probabilities of finding the single molecule of X and the
single molecule of complex Z

Pocl(X) := lim P(e(t)=1),

Poo(Z) := lim P(x(t)=0),

respectively, satisfies the following identity
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1 _ K1yod

3.11 (X)) = ——| o(Z) = —28—
( ) s ( ) 1+/<;1y0d P ( ) 1+K)1y0d

Now that we have a clear characterization of the reaction jump process as a
Semi-Markov process (see (3.8)), we can analyze the distribution of (x(t),y(t))T;

from (3.8) we can write

B(((t),4(0)" = (1,30)7) = 3 B(Tk <t < Ti1—d).
k=0

which turns our question to calculate P(Ty, < t < Txy1—d). For k = 0, the result
is clear, but what about k& > 17 First of all, suppose that all the random variables
above has probability space (Q, F,P) and remember that

Tyy1—d = Tip+Tht1,
where T}, and 7,11 are independent. For fixed ¢ > 0, let D be the set
D={(z,y) eR*: 0 <y <t < xty}.

Then

P(Tk <t< Tk+7'k+1)

= Jo XD(TkHaTk)dP

= Jpo Xxp(2,y)d(P o (Tht1, Te) ™) (2, )
Joxp(@,y)d(Por l)(x) d(PoT)(y)
S, AP o Tl (@) d(P o T ()
P( Tk+1 > t—y)) d(P o T, ") (y)
exp(—r1yo(t—y))) d(P o T )(y).

—~

[
SRS S
= =N

Therefore

P((2(t), y(t))"=(1,50)")

= exp(—r1yot)+ S0 Jig. xb(—m1 (t-9))(dP o Ty (w).
The last equality shows how complicated it can be to compute the distributions
of the jump process, since we need for each £k € N the kth convolution of the

distribution function of 7 +d.
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4. SIMULATION OF THE REACTION JUMP PROCESS

In this chapter, we introduce Doob-Gillespie’s Stochastic Simulation Algorithm
(SSA), which is the basic tool for simulating the reaction jump process of a chem-
ical system (without delayed reactions). As we are going to see, Doob-Gillespie’s
SSA is an implementation of the construction for the reaction jump process given
in Section 2.2; therefore, we can give an interpretation to Doob-Gillespie’s SSA in
terms of a competition between reactions.

Thus, we consider the Anderson-Kurtz’s equation for the chemical system {Rq,..., Ry}

X(t) = Xo+ iuj ( / t %-(X(s))ds) olj]

Following this equation and the solutions that generate, we obtain Anderson and
Kurtz SSA. A natural question arises: Is Anderson and Kurtz SSA equivalent to
Doob-Gillespie algorithm? The answer to this question is affirmative, and we in-

troduce an elementary proof in this chapter.

4.1. Doob-Gillespie Stochastic Simulation Algorithm (SSA). Consider a
reaction system of n reactions Ri,..., R, and m chemical species S1,...,S,. As
we saw in Section 2.2, if the chemical system satisfies the fundamental hypothesis,
then the dynamics of the system can be modeled as a continuous-time regular HMC
{X(t)}+>0 which satisfies

(4.1) X(0) =D XXty ty40) (1),
7=0

where to=0, for all j € Ny X;11=X,4+w with w € {v[1],...,v[n]} and {¢,}, are the
times when a reaction occurs. These times satisfy

n
tjr1—1tj ~ exp (Z Otk(%‘))

k=1
independent of ty,...,t; given that we know zo,...,z;.
Doob-Gillespie SSA is only an implementation of (4.1). For example, if X (0) = xq,
we simulate 7 ~ exp (3", _; ax(z¢)) and J;, where
Qi (l‘o)

B Zﬁzl (o)

and Jy, 7 are independent given the event {X(0) = z}. We set t; = 71, and

P(Jl = JllX(O) = {E())

if Ji=j1, z1=x0+v[j1]. At this point we generate 75 ~ exp (Y} _, ax(x1)) and Jo
where
) (1‘1)

P(JQ :JQ‘X(O) = .TQ,Jl = ]1) = m
k=1 iz
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and 1o, Jo are P(-| X (0)=x¢, J1=41)-independent. We set to=t1+72 and zo=x1+v,,.
We continue with this process until the time reaches some time t,,,x. The following

lemmas will help us to simulate 7 and J.
Lemma 4.2. Ifu~U(0,1) and A > 0, then —w ~ exp(A)

Proof. Let a > 0; then

P (a < 71n§\u)>
P(—Xa > In(u))

(exp(—Aa) > u)
= exp(—Aa)

O

Lemma 4.3. Let Ay, ..., \; be positive real numbers and let u ~ U(0,1). Define
i—1 i
Z]‘:l )\j < Zj:l )‘j }

I:—min{lgigk: - <u< =%

Then P(I = i) = =t

j=1 >‘j

The resulting algorithm can be summarized very simply in the following pseu-
docode, where an initial state X (0) is given:
Algorithm 4.4. (Doob-Gillespie SSA)

(1) Initialization. Set x < xg, t + 0
(2) Calculate ay(x), ... ,an(x) and set

a < (a1(z), ..., on(2)).
(3) Generate two independent random varibles T ~ exp (>, _, i) and
Uy ~ U(O, ].)

(4) Set j to be the smallest integer satisfying

j—1 J
E ap < uy E o < E Q.
k=1 k k=1

(5) Update x < x + v[j] and update t <t + 7
(6) Return to step 2.

Since Doob-Gillespie SSA is a clear consequence of (4.1), and (4.1) is a progres-
sively measurable process, we can conclude that Doob-Gillespie SSA preserve the
measurability of the reaction jump process.

Now we are interested in giving an interpretation of Algorithm 4.4 as a competition
between the chemical reactions in the chemical system. Suppose that at time ¢ the
system satisfies X (t) = x. Following the construction given in Section 2.2 we need
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to consider the set of independent HPP
{Nx’m_,_v[k] V. 1<k<n Ngyayox hasintensity ak(x)}.

If for each 1 < k < n, we set T}, as the first event time of N, ;1,[x], then the event
“the next reaction is R;” can be written as

{T5, <Tjy:1# 5}
Since for each 1 <k <n, Tj | ~ exp(ay(r)), and the {T}, }) are independent, the
event {17 <Tj" : | # j} is equal to
{T7) = min{T{" :V 1<1<n}},
except for a set of zero probability. Let
(4.5) T=min{T;,:V 1<k<n}

and observe that we can interpret 7 as the time until the next reaction, given that
the system is in state x. If J is the index where the minimum is reached, then J is
the type of reaction that occurs.

Now we are going to prove that 7 and J have the same distributions as in Algorithm

4.4. We begin with a result known as The freezing lemma (see [2]).

Theorem 4.6. (The freezing lemma) Let (2, F,P) be a probability space and G
and D independent sub-c-algebras of F. Let X be a D-measurable random variable

taking values in the measurable space (E,&) and
UV:ExQ—=R
an € x G-measurable function such that w — ¥(X (w),w) is integrable. Then
E[V(X,)|P] = 6(X),
where O(z) = E[¥(z,-)].
All the results in this thesis can be demonstrated in an elementary way but we
want to show how The freezing lemma can be used.

Lemma 4.7. Let iy,...,i be in N and let X;,,...,X;, be k independent random
variables with distribution exp(A;, ), ..., exp(A;, ), respectively. If U = min{X,,,..., X;, },
then
U~exp(Aiy + -+ Aip)-

Proof. Take a € [0, 00)

P(U > a)

=P(X;, >a,...,X; >a)

=P(X;, >a)---P(X;, >a)

= exp(—A;,a) - -exp(—A;,a)

= exp(—(Ai; + -+ Ay )a).
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Lemma 4.8. Let Xq,...,X, be n independent random variables with distribu-
tion exp(A1),...,exp(\,), respectively, and well adapted to the probability space
(Q,F,P). Let Z = min{Xy,...,X,} and let J be such that Z = X ;. Then J and
Z are two independent random variables and satisfy: Z ~ exp(A + -+ A\,) and
Ai

exp(—(A1 4+ -+ A\p)a).

Proof. Let U = min{X : j # i}; then P(J =4,Z > a) =P(a < X; < U). Now let
U : (R) x 2 — R be given by

Note that if z € R is fixed and a < x, then
{we:¥(z,w)=1}={z < Ul

and if ¢ < a, {w € Q : ¥(z,w) = 0} = Q. Thus, in every case the function
w — U(r,w) is o(U)-measurable. Also note that for each w, z — ¥(z,w) is
left continuous. Then ¥ is B(R) x o(U)-measurable. Using the freezing lemma
(Theorem 4.6), the random variable w — ¥(X;(w),w) satisfies

ENV(X;,)[Xi] = (X)),
where ©(z) = E[¥(x,-)], that is

Pz <U) a <z,

O(z) =
0 z < a.
Note
{a<X; <U}={weN: ¥ (X;(w),w)=1}.

Therefore

Pla < X; <U)

@)

— BU(X,, )]

— BB[(X, )X,

= E[0(X;)]

= [ O(z)d(P o X; '(2))

= faoo P(x < U)\; exp(—N\jz)dz

= [ exp(— (3241 Aj)x) A exp(— i )de

:f exp(—(32; Aj)z) Nida

= P exp(~ (5, A)a)
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From Lemma 4.7 P(x < U) = exp(—(3_.,; A;j)z). Hence

J#i
(4.9) ]P’(J—iZ>a)—$ex (=M1 +-+Ap)a)
. ) - )\1 T+ +)\n p 1 n ;
and by continuity of the measure
P(J =1)

= limg o P(J = i, Z > a)
= hma\LO ﬁ eXp(f(Al + -+ )\n)a)
A\

= NFan
Therefore, V1 <i<n
(4.10) P(J =i) = . S
Mt A
Since Lemma 4.7 implies that Z ~ exp(A; + -+ + A,), then equations (4.9) and
(4.10) imply that J and Z are independent. a

It follows from lemma (4.8) that 7 and J as in (4.5) have the same distributions
as in Doob-Gillespie SSA (Algorithm 4.4). Also we can write Doob-Gillespie SSA
in the following way.

Algorithm 4.11. (Doob-Gillespie SSA Competitive version)

(1) Initialization. Set x < xo, t < 0
(2) Calculate aq(z),...,an(x) and set

a < (ag(x),...,an(x)).

Generate n independent random varibles 11, ..., T, with T ~ exp (ag) .

3)
(4) Set 7 =min{m,..., 7}
(5) Set K={1<k<n:71,=1}
(6) Update x as

x<—x+Zv[k}

(7) Updatet ast«t+T
(8) Return to step 2.

Note that K in (5) has cardinality |K| > 1 with probability zero.

Although Algorithm 4.11 has a clear interpretation as a competition between re-
actions, it is not as efficient as Algorithm 4.4 because every step of 4.11 needs to
generate n exponential and independent random variables, while 4.4 only generates
two independent random variables in each step.

Consider again the construction given in Section 2.2. Suppose that X (0) = zg; at
this point we model the competition between the reactions through a competition
of independent Poisson processes

{Nx07x0+v[k] V1<k<n Nyzotor) has intensity ak(:co)} .
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From Lemma 4.8 we know that the index of the first reaction J; and the time until
the first reaction 71 are independent, and we know their distributions.

Suppose that the event {X(0) = xo,J; = j1} has positive probability. Set z; =
xo+v[j1] and note that

{X(0) = w0, J1 = j1} = {X(0) = 0, X1 = 1}

Given the event {X(0) = xo,J1 = j1} we consider a set of independent Poisson

processes
{le,x1+v[k] V. 1<k<n Ng o4ok has intensity ak(:vl)}
and independent of
{Nugzotoir) 1Y 1<k<n Ny oo has intensity aj(zo)} .

If m=min{T}(] : 1 <k < n}, m=min{7}]} : 1 <k < n} (see 4.5) and J; is as in
Lemma (4.8), then

T1,7T2,Jo  are P(:|X(0) = xo,J1 = j1) — independent.
Therefore, if we continue with this process, then given the event
{X(0) =20, 1 = j1,..., Jg = Jg} ={X(0) =20, X1 = w1,..., Xg = 24}
the following sets of Poisson process are independent
{{Nmmﬁv[k} VI<k<n Ng a4ok) hasintensity ak(xi)} 0<i < q} .

This implies

Theorem 4.12. Let g € N. Given the chemical reaction’s chain until time q

{X(O)ajl :jlaa‘]q :](1}7

the times between chemical reactions and the index of the next reaction are inde-
pendent, that is

Tls-voyTqs Jgt1
are P(-|X(0), J1 = ji,...,Jqg = jq)—independent

With this in mind we can rewrite Doob-Gillespie SSA in the following way

Algorithm 4.13. (Doob-Gillespie SSA Chemical Reaction’s Chain version)
(1) Initialization. Set x < xq, t + 0, step < 0, Nsteps < q and
Statemat < Oy Nsteps+1-

(2) Update Statemat as Statemat(:,1) + x
(3) Calculate aq(z),...,an(x) and set

a <+ (a1(x),...,an(x)).
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(4) Generate u ~ U(0,1). Set j to be the smallest integer satisfying

Jj—1 J
E ar <u E ap < g .
k=1 k k=1

Update x + x + v[j].

Update step < step+1.

Update Statemat as Statemat(:, step+1) < x.

While step < Nsteps Return to step (3). Otherwise go to step (9).

Generate N steps+1 indepedent random variables 11, . .., Tnsteps+1 Such that

D Ot

oo

A~ Y~~~
=) ~
—_— o — D

T~ exp(z ag(Statemat(:,1))).
k=1

4.2. Anderson-Kurtz’s SSA. Now we put our attention back to Anderson-Kurtz’s

equation for the chemical system given in Section 2.3.

(4.14) X(t):X(o)+;uk ( /O ak(X(s))ds) k.

As we said in Section 2.3, every solution of (4.14) has to be of the form

(4.15) X(0) =D XXty ty40) (1),
7=0
where to=0, for all j € Ny the vector X;;1=X,+w with w € {v[1],...,v[n]}, and

{t;}; are the times when a reaction occurs.

Following (4.14) and (4.15), we get Anderson-Kurtz’s SSA which allows us to calcu-
late and simulate the sequences {X};, {t;}; in (4.15). Similar to Doob-Gillespie’s
SSA, Anderson-Kurtz’s SSA give us another way to simulate the times between re-
actions ({7;=t;11—t;};) and the type of reaction that occurs ({J;};); see Algorithm
4.21. Our objective is to show that Anderson-Kurtz’s SSA and Doob-Gillespie SSA

are equivalent. To do so, we need the following results:

(1) For every k € N, if we know the first k reactions, then

Tl,...,Tk,Tk+1,Jk+1

are independent. More precisely, given the event
{X(O) :.’E07J1 :jlv"'7Jk :jk}7

Tly«-oyThy Tk+1, Jp+1 are independent, for each 1 < i < k41

T; ~ €Xp (Z Qg (SCO‘F Z”Ul]))
k=1 =1

and

k .
. . . Gy (To+ 21 VI

P(Jkt1 = i1 X(0) = zo, J1 = J1, .-, Tk = Ji) = n]kH( AP h [ ]) .

> k=1 (ot Dy v[ii])



39

Note that (1) implies that Anderson-Kurtz’s equation (4.14) has a unique solution
and this solution is given by (4.1).

Now we introduce the machinery that will help us to prove (1).

Proposition 4.16. Let Xi,..., X, be i.i.d. random variables with distribution

exp(1), well adapted to the probability space (2, F,P). Let oy, . ..ay, be nonnegative

X X
Z:min{l,... n},

o1 T ay,

numbers; let

and J such that Z = f—j (if for some j o = 0, then f—j ~ exp(0); that is, it is

equal to oo with probability 1).
Fiz i such that P(J = i) > 0, consider k € {1,...,n—1} index i1,...,1 different
from i. Then, for any a,aq,...ar nonegative real numbers

P(X;,—anZ > a1,..., X, —a; Z > ag|J =i,Z > a) =exp(aq) . ..exp(ag).

Therefore given the event {J = i,Z > a}, the set {Xp—apZ : k # i} is a i.i.d

sequence with distribution exp(1).

Proof. Notice that a; # 0.
]P’(Xil—ailZ > ag, ... 7Xik.*04ikZ > ag, J = Z,Z > a)

:P(Xil—ailf—:>a17...,Xik—aik§: >ak,J:z’, ‘Zi‘ >CL)
Xi Xi X, Xi ; P X

=P(Xi,—ai, 32 > a1, .., X~y 58 > ag, it Vi #i, 51 > a)

g (e 7] ; . . . .
= P(le > al+T;Xia R 7Xik > Clk—FTin, Xj > %Xi Vj ¢ {Zl,. .. ,Zk,’t},Xi > aia)
Let ¥ : R x Q — R be given by

. (67} (e 7] : . . . .

1 if X (w)>a+ o T, X (w) > a;.c—l—a—fx,Xj(w) > %x Vi & {i1,. .. ik, i}, > qa

U(z,w) =
0 1.0.c

Fixed x € R it is clear that

[e3

k3
mlac,...,Xik > ap+

[e3%

{Xil > a1+

[0}

0 ifr < a,a.

by X > 2y Vi {in, ..., ik, ifr > aa
\I/(xa')_l(]-): i J = oy J¢{1 k }} f

Therefore, for any € R, o(¥(x,-)) C o(X; : j # i); i.e. for any z € R, o(¥(z,"))
is o(X; : j # i)-measurable. Now, for fixed w £ — ¥(z,w) is right continuous.
Then ¥ is B(R) x o(X : j # ¢)-measurable. By the freezing lemma

E[‘I’(Xz', )|XJ = @(Xi)
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where Vz € R,

O(x)
= E[V(z, )]
P(X;, > a1+°;ii1x,...,Xik > ak+%x,Xj > x Vi {in, ... ik i)) ifr>oa
0 ifer < oa
) P(X, > e Ta) o P(Xy > ant 55 1) [Lgpa, i PG > S22) ifr > aza
0 ifr < aa
eXp(—(a1+O;Ti;$)) - -exp(—(ak—k%:c)) [Liggin,.in.i} eXP(_(%z)) ifr > aia
0 ifr < aa

exp(—ay) - - - exp(—ag) exp(—(Mm) ifr > wa

— (e7

0 ifr < aa.

Since the expectation of the random variable w — ¥(X;(w),w) satisfies
(o7} Q;

E[U(X;, )] =P(Xi, > a1t Of Xi, X; =2 %Xi Vi & {ix, .., i}, Xi > asa),

1Xi;~~7Xik > ap+

(&7}

then

P(Xi, > a1 +52 X5, o, Xy, > agt
= E[E[¥(X;, )| X]]

= E[O(X,)]

_ [ ()P X, (x)

= exp(—ay) - - - exp(—ay) f:ja exp(—
=exp(—ay) - - exp(—ag) f:ja eXP(_<i

a;

«

X, X5 > 22X, Vi E i ik}, X > asa)

[0}

(#m) exp(—x)dx

x)dx.

Now
P(X;,—aiZ >a1,..., X, —o;, Z > aglJ =1i,Z > a)
= mP(X“ > a1+o;—i:Xi,...,Xik > ak+%Xi, X; > %Xz Vi {i1,. .. ik, 1}, Xi > aga)
= m [exp(—ay) - - - exp(—ay)] f;fa exp(—(zg%jx)dx

exp((Y; a)a) (Z22) exp(—a) - -~ exp(—ay)] [, exp(—(ZL2z)dx

fexp(—a1) - exp(—ap)] exp((3; a)a) [ [, ZL2 exp(—(ZL20)d

= [exp(—a1) - - - exp(—ag)] exp((}; aj)a) exp(f(zéiaj

— exp(—ar) - exp(—ay).

~—  ~—

)aia)

From Lemma 4.8, J and Z are independent and Z ~ exp(3_; o) O

Corollary 4.17. Let Xy,..., X, be i.i.d. random variables with distribution exp(1),
well adapted to the probability space (2, F,P). Let aq,...a, be nonnegative num-

bers; let
X X
Zmin{l... },

) 7
aq Qp
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and J such that Z = f—j (if for some j o; = 0, then f—; ~ exp(0); that is, it is
equal to oo with probability 1).

Fiz i such that P(J = i) > 0, consider k € {1,...,n—1} index i1,..., i different
from i. Then, for ay,...ay positive numbers

P(Xi,—ai, Z > a1,..., X, —0;, Z > ai|J = i) = exp(a1) . .. exp(ax).

Therefore, given the event {J =i}, {Xp—apZ : 1 < k <n} is a i.i.d sequence with
distribution exp(1l) except for k = i.

Proof. Since Z has exponential distribution, by continuity of the measure
EfoﬂP’(-\J =i, Z>a)=P(|] =1)
Then by proposition (4.16),
P(X;,—anZ > ax,..., X —a;, Z > ag|J =1i) = exp(a)...exp(ag).
([l

Corollary 4.18. Let X1,..., X, be i.i.d. random variables with distribution exp(1),
well adapted to the probability space (Q, F,P). Let ay,...«a, be nonnegative num-

bers; let
Z:min{Xl,...,Xn},
aq o275
and J such that Z = f—; (if for some j o = 0, then fj—; ~ exp(0); that is, it is
equal to oo with probability 1).
Fiz i such that P(J = i) > 0. Then given the event {J = i}, the set {X—ayZ :

1 <k < n} is independent of Z.

Proof. Let a >0, b > 0 and k # i. By Corollary 4.17 we have

P(Xy, — anZ > a,Z > b|lJ =)

= A P(X) — 2 > a,Z > b,J = i)

T=i)" <
N N

=P(Xy — axZ > a|lJ = )P(Z > b|J =1)

O
Consider again a reaction system of n reactions Rq,...,R, and m chemical
species S1,...,S5n. As we saw in Section 2.3, given the dynamics of the reaction

jump process in the time interval [0, t), the dynamic of the system at time ¢ is given

by Anderson-Kurtz’s equation

(4.19) X(t) = X(0) + . U t(l (X (s))ds | v]k].
>t ([ ncxtonas)
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which has solutions of the form
(4.20) X(8) =D Xty 0540 (1)
j=0

where t,=0, for all j € Ny the vector x;41=z;+w for some
w € {v[1],...,v[n]}.

The set {t;} are the times when a reaction occurs.
Consider the set of independent unit-rate Poisson processes U . ..U, and suppose
that these processes are independent of the initial condition X (0); suppose that
each Poisson process Uy, is well adapted to the probability (€2, F,P); that is, for
ecachl1 <k<n

cUp(t):0<t)CF
For each 1 <k < n, let { Sk ;};>0 be the sequence of events of the unit-rate Poisson

process Uy. Then, for each j € N
Sk,; = inf{t > 0:Ux(t) =74}, Sko=0.
For each [ € N the sequence of random variables
Sk 1=Sk1—5k,0; Sk,2—=Sk1; " 3 Sk 1—Sk 11

are 1.i.d. with distribution exp(1).
Suppose that the chemical system satisfies X (0) = x¢ with positive probability and
define a probability measure Py by

Po(-) = P(-|X(0) = o).

We are interested in the time ¢; when the system does a first transition to another
state due to some reaction Ry, ..., R,. Therefore, given the {X(0) = z¢} and the
fact that each solution of (4.19) has the form (4.20), then for each 1 < k < n we

must have the following equality

/0 " (X (s))ds = trax(xo).

Also, from (4.19) note that the first reaction will happen when some t1 (o) hits
the first event time of Uy, but due to the stoichiometry changes for the first reaction

{Sk,lk(l)_ak(xl)TO }
ok (20)

where [;(1) is the first event of Uy such that Sy, (1)~ (z_1)70 > 0, and we define

z_1:=0and 79 := 0. Then for each 1 < k <mn

t; must satisfies

t1 = min
1<k<n

a(x_1)m9 = 0.
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Thus, it is clear that a.s. V1 < k <n, lx(1) =1 and

. { Sk.1 }
t1 = min .
1<k<n | ag(zo)
Since the Poisson process U, ..., U, are independent of each other and indepen-
dent of X(0), then Uy, ..., U are independent of each other in the probability
space (€2, F,Pg). Therefore, from Lemma 4.8 below t; ~ exp(}_, ax(xo)) in the
probability space (2, F,Py). Let J; € {(k,lx(1)) : 1 <k < n} satisfies
S

g, 1)(x0)’

t1 =

where Jq(1) is the type of reaction. From Lemma 4.8 ¢; and J; are independent in
the probability space
(Q, F,Py).
Moreover, for each 1 < k <n
ag(zo)

25 aj(o)

Hence, (J1,t1) has the same distribution as the reaction type and the first reaction

Po(J1 = (K, 1k(1))) =

time given in Dood-Gillespie SSA.
Suppose that the event {J; = (j1,1;, (1))} has positive Po-probability. Given the
event {Xo = xo, J1 = (j1,1;, (1))}, define z1 := zo + v[j1] and

P1(-) :==Po(-|J1 = (j1,15, (1)))-

For now on we are restricted to the event {Xo = o, J1 = (j1,1;, (1))}

Now we are interested in finding the time ¢ when the second reaction is going
to happen. By (4.20) stoichiometric changes can not happen in the time interval
[t1,t2), then V1 < k <mn

/0 (X (8))ds = an ()71 + an(z1) 7,

where 15 := ts — t; and 7, := t;. Note that the second reaction is going to happen
when the last integral above hits some event of the internal clock of some Uj. More
precisely, 7o must satisfy
. Skle(2) — ax(T0)T1
T2 = Imin y
1<k<n ag(z1)

where [3,(2) is the first event of Uy such that Sy, 2) — ax(zo)71 > 0. Observe that
if J1 = (jl,ljl(l)), then a.s. Vk € {1, - 7n} with & 7é J1

1e(2) = (1)

and
1, (2) = 1;,(1)+1.
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Hence, 5 satisfies

Skt — Sivo - ay
= min{ k1 ak(:ro)n’ L2 — oy, ()T L <h<nks j1} .
(1) aj, (1)

From Corollary 4.17, the set of random variables
{Sk1 —ag(zo)m : 1 <k <n,k+#j}
are i.i.d. with ditribution exp(1) in the probability space (2, F,P;). Since
Py (aj, (wo)m1 = Sj,1) = 1,
then the set of random variables
{Sk1 — ar(xo)m1, 5,2 —aj, (xo)m1 : 1 <k <n,k# ji}.

are i.i.d. with distribution exp(1) in the probability space (2, F,P;). Therefore,
from Lemma 4.8 75 ~ exp(}_, (1)) in the probability space (€2, F,P;). Moreover,
if Jo € {(k,1x(2)) : 1 < k < n} satisfies
S, — 04J2(1)(1C0)71

a g,y (1)

then 75 and Jy are independent in (2, F,P;); also V1 < k <mn

Pi(J2 = (K, 1(2))) =

To =

ag(z1)
> aj(xn)
Leta € Rg and note that Proposition (4.16) implies that 75 and J; are independent
and have the same distributions in the probability spaces
(Q,I’Pl), (Q’]:7PO<'|J1 :(jlaljl(l))aTl >a/))

Since this is Va € ]RS' , we conclude that

(11,72, J2) are independent in the probability space (2, F,Py).

In summary, we have shown that (71, 72, Ji1, J2) have the same stochastic attributes
than the Doob-Gillespie’s SSA.

We can summarize this procedure in the following algorithm.

Algorithm 4.21. (Anderson-Kurtz’s SSA)

(1) Initialization: Set x < xg, Int <~ 0 € R™, and t < 0.

(2) Generaten independent random numbers s1, .. ., sy, with distribution exp(1),
and define the vector S as S < (s1,...,8n).

(3) Calculate aq(z),...,an(x) and set

a <+ (ar(x),...,an(x)).

(4) Define B as
B+ {ke{l,...,n}:ap #0}
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(5) If B # 0, then set T = min{s"‘;iim’“ : k € B}. Otherwise, the algorithm
ends.

(6) Fiz K as the set K ={ke B:71= S’“_aiim"}

(7) Generate a set {sy : k € K} of independent random numbers with distribu-
tion exp(1). Update the vector S by modifying the entries

Sk Sk+sk

for each k € K.
(8) Update Int as
Int < Int + Ta.

(9) Update x and t as

keK
tt+T7
(10) Return to step (3).
Moreover we get the following result.
Theorem 4.22. Consider a reaction system of n reactions Rq,..., R, and m
chemical species S1,...,Sy,. For this chemical system, the following is true:

(1) Anderson-Kurtz’s SSA is equivalent to Doob-Gillespie’s SSA .
(2) Anderson-Kurtz’s equation for this chemical system

X(t) = X(0) + éuk (/Ot Oék(X(S))d5> vlk]

has as unique solution the reaction jump process given in (4.1) and Section
2.2.

Proof. We proceed by induction. Note that the base of the induction step is given
above when we generate 11,79, J1, Jo. Let ¢ € N ¢ > 1. Now suppose that

{r =0 1) Jg—1 = (Jg—1,¢4-1), Jg = (Jg )}
has positive Py-probability. For each 1 <17 < gq
Pi(-) =Pie1(-|Ji = (i, i),
T =z 1+v[fil;
i.e., foreach 1 <i<gq
Pi(-) =Po(-|h = (1, c1),- -5 i = (Jis i)

We take the following induction hypothesis: we assume that for each 1 <17 < g, the

time of the ith reaction is given by ¢t; = >.._, 7 where 74,..., 7, satisfy:
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(1) For each 1 < i < ¢, the time step 7; is given by

Skt — (X1t o)1y )

1<k<n ap(Ti—1)

where [ (7) is the first event of U}, such that

i-1
Sk (i) — (Z ak(xr—1)7r> >0,
r=1

and 7; ~ exp(d_,_, ax(x;_1)) in the probability space (;F;P;_1)

(2) m,...,7q,Jq are Py_q-independent.

(3) The following set is i.i.d. with distribution exp(1) in the probability space
(Q>~7: ) ]Pq—l)

q—1
{Sk,lk(q) - <Z Ozk(il'rl)Tr> 01 § k S n} .
r=1

Let ty11 be the time of the (¢+1)th reaction and define 7,41 := t441—t;. From
(4.20) foreach 1 <k <n

q+1

/O (X ()ds = 3 ax(@ ),

which implies that 7,4; must satisfy

{Sk7lk(q+1) - gk:(i_ql) o (xr—1)7r) } 7

where [, (g+1) is the first event of U}, such that

Skl (q+1) (Zak Tr_1) ) > 0.

From corollary (4.17) the set

qg—1
{ (Sk,lk(q) - Zak(mrl)ﬁ> —ap(xg_1)Tg:1<k<n k# iq}

r=1

Tg41 = min
at 1<k<n

is i.i.d. with distribution exp(1) in the probability space (Q2, F,P,) and

Py ( Jarlig(a) — <Za1q Tr—1) ) = 0)

Since we are restricted to the event

{J1 = (1,c1)s s Jg=1 = (Jg—1,Cq—1)s Jq = (Jg> cq) }
VI<k<nkig
Ik(g+1) = lk(q)
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and

Then 7,44, satisfies P, — a.s.

_ {Skvlk(q) — () an(@r—1)7) Sﬂ'q»l:‘q<q>+1_quvlﬂ(Q) }
Tq+1 = mi ) s s
1<k<n,k#jq ak(xq) Aj, (xq)
-1
_ : (Sk’l"‘(Q) — ak(xrfl)ﬂ) ~ k(Tq-1)7q Sjaiq+1 %01, (a)
Tg+1 = min )
1<k<n, k#j, ag(zq) aj,(rq)
From lemma (4.8), 7441 ~ exp(>_, ax(z4)), and if
Jq+1 € {(k,lk(qul)) 1<k < TL}
is such that .
- SJq+1 - Er:l an+1(1)(xT*1)TT
Tg+1 = ’
an+1(1)(xq)
then 7441 and Jy41 are P;—independent and
o (Tq)
Pr(Jgr1 = (b, lk(g+1) = = -
! Zj oj(zq)
Now we are going to show that 7,...,7q, Tg41, Jg+1 are P, independent. First,
note from (2) above that 7,...,7, are Ps-independent. Now let aq,...,a, be

nonnegative real numbers. From Proposition (4.16) 74+1, Jy+1 are independent and

have the same distributions with the following probabilities measures
PO("JIZ(jla 01)7 ']2:<j2a 02)7 CE) Jq:(jq7 cq))

Po(-|J1=(j1,c1), 71 > a1, Ja=(j2,¢2), . - -, J4=(jqg> ¢q))
Po(-[J1=(j1,¢1), 71 > a1, Ja=(j2, c2), T2 > a2, J3=(J3,¢3), ..., Jq=(jg, Cq))

Po(-‘J1=(j1,Cl),T1 >al, JQZ(jQ, CQ), To > QA9,..., Jq:(jq, Cq),Tq > aq).
Since this is for every ai,...,a, nonnegative real numbers and 7,...,7, are Pg-

independent, we conclude that

Tlyeo s Tgy Tat1s Jgt1
are Pg-independent. ([

Note that in point (7) of Algorithm 4.21, the probability that | K| > 1 is equal to
0. Therefore, if we exclude point (2) of Algorithm 4.21, then every step of Anderson-
Kurtz’s SSA only generates one random variable. This is a big difference with
Doob-Gillespie’s SSA because every step of Doob-Gillespie’s SSA generates two

random variables (see Algorithm 4.4).
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5. SIMULATION OF THE REACTION JUMP PROCESS WITH DELAYS

5.1. Anderson-Kurtz’s Stochastic Simulation Algorithm with Delays (SSAD).
Now we study the simulation of the reaction jump process of a chemical system with
delays. Consider again a chemical system of n chemical reactions Rq,..., R, and

one chemical reaction with delay R4

Kd
r =+ w,

d
7 = ws.

Rde :

It is important to remember that for this system the stoichiometric changes not
only depend on normal reactions Ri, ..., Rn, & —% 2 + wy, but they also rely on
the decompositions of the Z complexes. Therefore, two questions arise: How can
we simulate the times where the stoichiometry of the system will change? And,
how can we know if the stoichiometric change is due to a normal reaction or to the
decomposition of the excited complex Z7 We are going to show how Anderson-
Kurtz’s equation can answer these questions in a simple form.

As proposed in Section 3.1, the dynamics of this reaction system is given by the

Anderson-Kurtz’s equation
Y () = Y (0) + Xy Uy (Jy (Y (5))ds ) ol
e (fy eV ())ds ) wn +Uae (fy " cae(Y (5))ds ) wa.

where every possible solution of (5.1) has to be of the form

(5.1)

(5.2) Y(t) = ZYJ‘X[@,@H)@),
=0

where the embedded chain {Y}}cn, satisfies Yj 1 = Y;+w, for some
w e {fvlu oo ,’Un,OJhOJQ};

and {t;} are the times where there is a stoichiometric change due to a chemical
reaction or decomposition of a complex Z. For example one possible event that we
could have is the following one:

Ry Ruw Z Ruy Z Z TRy,

I PR PR VO T T

where at time f#; occurs a chemical reaction Ry, at time 5 occurs a chemical
reaction R,,, at time {5 an excited complex Z has decomposed, etc.
Suppose that Y'(0) and the Poisson processes Uy, . .., U, Uge are well adapted to the
probability space (2, F,P); also suppose that Y (0) is independent of Uy, . . . ,Uy,, Uge.-
Let yo be some state of the system such that P(Y (0)=yg) > 0,

Vee{l,...,n,de} {Si;}; is the sequence of events of U,.
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Note that = is only a symbol, so that U, means U . when x=de. Remember that
U, ...,U,, Uy are independent unit-rate Poisson processes, therefore the sequences
defined above are independent.

Following equations (5.1) and (5.2), if we are restricted to the event {Y(0) = yo},
then Vs € [0,11), Y(s) = yo and Vx € {1,...,n, de}

/o 1 o (Y(s))ds:fla* (0);

and if at time ¢; occurs some reaction R;,, then

R ~ Si
s Y :S'l‘ , — { :%
15, (40) =551, (1) e (o)

and Vx € {1,...,n,de} \ {j1}
< S

fla*(yo) < S*,ljl(l) = 11 <
That is, the time ¢; satisfy

~ . S*vl*(l)
i, = min —== >,
*€{1,...,n,de} 04*(2!0)

where 1,(1) is the first event of U, such that S, ;, (1) > 0. It follows that {1 is a.s.

N . S*,l
t, = min )
*€{1,...,n,de} Oé*(yO)

which implies that #; ~ exp(3_, ax(yo)). If

J € {(x1(1)) : x€{1,...,n,de}}

is the index that occurs, then #; J; are P(-]Y(0) = yo)-independent and

P(J1 = (1, 1 (W)Y (0) = wo) = 2%

where j; € {1,...,n,de}. Note that the stoichiometric change at ¢; is due to a
chemical reaction, which is what is expected when there are no molecules of excited
complex Z in the system (which is one of the initial conditions).

Given the event {Y(0) = yo,J1 = (j1,1;,(1))} of positive P-probability, we are
interested in the time ¢, where the second stoichiometric change will occur. Here
we need to deal with two cases: j; # de and j; = de.

For case j; # de, the system has not formed excited complexes at time ¢, in terms

of equation (5.1)
i
/ ge(Y(8))ds < Sge,1,
0
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which implies that

t1+d—d £,
Ude </{; + ade(Y(S))CLS) :ude <A ade(Y(S))d,g) — O’

that is, the next stoichiometric change is due to a chemical reaction. Let y; =
yo+v[j1] and note that (5.2) implies that for x € {1,...,n,de}

Aimwmw:m%m+m@m,

where 75 := to—#; and 7 := {;. Then

. { St 2) = (yo)T1 }
= min 5
*€{1,...,n,de} Oé*(yl)
where [, (2) is the first event of U, such that S, ; (2)—ax(yo)71 > 0. From Section
4.2 we know that 75 ~ exp(>_, ax(y1)) with the probability measure
P('|Y(O):yOv Ji = (jla ljl (1)))
Now then, if .J5 is the index that occurs, then 75 and J, are
BY(0) = yo, i = (j Ly (1)) -independent

and Jo has the same distribution as in Section 4.2.

Now suppose we got case J; = (de, l4¢(1)). Thus given the event

{Y(O) = Yo, Jl = (dealde(l))}a

with probability 1, an stoichiometric change will occur at time #,+d because

t1+d—d i
Uge (/0 Olde(Y(S))dS> = Uge </o ade(Y(s))ds> —1;

that is, P(:|Y(0) = yo,J1 = (de,l4e(1))) -a.s. exists #; in the sequence {f;} such
that ¢; = £;+d.
At this point, the second stoichiometric change may be due to the decomposition

of the first excited complex Z or to a chemical reaction, that is ty=t,+d or

S, 2)—(yo)T1 }

{2 = £1+ min
*€{1,...,n,de} a*(yl)

Therefore, if fnglJr%g, then

. . St (2= (yo)tau
75 = min min d o,
*{1...,n,de} a*(yl)

where 71 = {1, y1 = yo+w1 and from Section 4.2

S (2)—a*(y0)%1}
min 2 has distribution ex o
*€{1,...,n,de} { Oé*(yl) P ; (yl)
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and is independent of 7; with the probability measure P(-]Y (0) = yo, J1 = (de, l4e(1))).
Let

{Ja =2} = {1 =d};
that is, the first complex formed at time ¢; has decomposed at time ¢5. Note that

we have the following event equality
(5.3) {Jo =2} = {Su1,2)—(y0)F1 = c(y1)F2 i € {1,...,n,de} }.
Since for each x € {1,...,n,de}

S22~ (yo)T1  has distribution exp(1)

and are independent with the probability measure P(-|Y (0) = yo, J1 = (de, l4e(1))).
Then, from the memoryless property of the exponential distribution, the following
set

{S*,l*(Z)_a*(yO)%l - O‘*(yl)’f_2 RS {17 sy Ty de}}
is i.d.d. with exp(1) distribution under the probability measure

P(-Y(0) = yo, J1 = (de,lge(1))), J2 = Z).

Observe that given event {Y(0) = yo, J1 = (de,lqe(1))), Jo = Z}, the equations
(5.2) and (5.1) implies that for each x € {1,...n,de},

/0 ' a, (Y (s))ds = a(yo) 71+ (Y1) Tot+ (y2) 73,

where 73 = 53—52, y1 = Yo+wi and yo = y;+ws. Since at time o there are not
molecules of excited complex Z, then the next stoichiometric change will be given by
a chemical reaction with P(-|Y (0)=yo, J1=(de,l4c(1))), Ja=Z)-probability 1. That

is, 73 satisfies

T3 =

. {S*,z*(:z)Oé*(yo)f’la*(yﬂf'z }
min

*€{1,...,n,de} a*(y2)

where [, (3) is the first time event of U, such that
S, 3)—(Yo) 1= (y1)m2 > 0.

From (5.3) P(-|Y(0) = yo, J1 = (de,lge(1))), Jo = Z)—a.s. we get
Vx e {1,...,n,de} 1,(3) =1.(2).

This implies that 75 satisfies P(:|Y(0) = yo, J1 = (de, lge(1 )))

2

R . Sit, 2) = (Yo)T1— (y1)7:

T3 = min
*€{1,...,n,de} a*(yZ

—a.s.
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which implies that 75 has P(:|Y'(0) = yo, J1 = (de, l4c(1))), Jo = Z)—distribution

T3 ~ eXP(Z s (y2))-

Although, 73 follows an exponential distribution as above, it is important to note
that 73 and

i { Sy, 2)—(yo)T1 }
*x€{1,...,n,de} (Y1)
are not P(-|[Y(0) = yo,J1 = (de,l4e(1))), Jo = Z)— independent. In other words,
given the event
{Y(0) = yo, J1 = (de,lac(1))), Jo = Z},
the competition bewteen the chemical reactions Ri,. .., Rn, T —5 z + w; at time
t1 is no longer independent of the competition on these chemical reactions at time
to.
The procedure described above can be summarized in the following algorithm. The
information of the reaction with delay R4 is stored in the index n+1.

Algorithm 5.4. (Anderson-Kurtz’s SSAD)

(1) Initialization: Set y < yo, Int +~ 0 € R"*1 t < 0 and D={o0}.

(2) Generate n+1 independent and exp(l) random numbers $i,...,Sn, Snt1
and set S as S < (S1,...,5n, Sn+1)-

(3) Caleulate a1(y), ..., an(y), any1(y) and set

Q4= (al(y)a ERE Oén(y>7 an+1(y))'
(4) Set BC{1,...,n+1} as
B+ {1<Ek<n+1l:a;#0}
(5) If B # 0, then set 7 = min ({S’“_aii"t" ke B} U D) . Otherwise, the algo-
rithm ends.
(6) If ¥ € D, update y by y + y+ws and D by
D =D\ {7}.
Otherwise go to the next step.
(7) Update D as
D+ D-r.
(8) Set K C {1,...,n+1} as K = {kEB:T:S’C;{:’t’“}. If K =0, then go

«

to step (11). Otherwise update y as

y<—y—+ Z v[k], and go to the next step.
keK



53

(9) Generate a set {si : k € K} of independent random numbers with distribu-
tion exp(1l). Update S entry by entry

Sk — Sp+si

for each k € K.
(10) Ifn+1 € K, then update D as D < DU{d}. Otherwise go to the next step.
(11) Update Int as
Int < Int + 7a.

(12) Update the time t as
L t+T.

(13) Return to step (3).

Now we make some observations to the previous Algorithm 5.4:

(1) The information of the reaction with delay Rg4. is stored in the index n+1.
(2) D—7={a—7:a€D}.
(3) With probability zero 7 € D and K # (.
(4) With probability zero |K| > 1.
It is important to note that in general, given the information of the first ¢ reactions
(¢ € N), the set of delays at time #,, say D,, are random variables. For example,

suppose that we have the following event
{Y(0) = yo, J1 = (de, lgc(1)), J2 = (de,lae(2))},

that is, at time ¢; occurs a reaction with delay and at time {5 occurs another

reaction with delay. Therefore, at time 5 the set of delays satisfies
Dy = {d—7,d}.

5.2. Barrio’s SSAD. As we said in the introduction the Anderson-Kurtz’s al-
gorithm was not the first algorithm designed to simulate chemical systems with
delays. Actually, there are two algorithms previously designed for that purpose:
Cai’s algorithm and Barrio’s algorithm. In this section we introduce the standard
algorithm to simulate the reaction jump process of chemical system with delays;
this algorithm is due to Barrio; see for example [3] and [5]. For the sake of sim-
plicity here we only going to deal with the chemical system of n chemical reactions
Ri,..., R, and one reaction with delay R g,
r =5 g “+ wq

Rae : d
Z = wo
Like Anderson-Kurtz’s SSAD, Barrio’s SSAD deals with the problem of the simu-
lation of the times where the stoichiometry of the system will change and if this
stoichiometric change is due to a chemical reaction or to a decomposition of a com-
plex Z.
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Let (Q, F,P) be a probability space; suppose that we know how the reaction jump
process is given in the time interval [0,%); that is, we know {Y(s)}se0,+) and sup-
pose that o(Y(s) : s € [0,t)) C F. Suppose that at time ¢ the reaction jump process
satisfies Y (¢t)=y and at times

t+dy, ..., t+d,
an excited complex Z will decompose. Then, if at time ¢{+7 occurs the next stoi-

chiometric change, Barrio’s proposal is to calculate the waiting time 7 as follows:
(5.5) 7i:=min{r,dy,...,d;},

where 7 has distribution exp (Z*G{l _____ n.de} a*(y)> and is independent of o (Y (s) :
s € [0,t)), everything under the probability measure P(-|Y(t) = y). That is, 7
satisfies

P(r > alo(Y(s) : 5 €[0,1)),Y(t) = y)=P(r > alY () = y) = exp(—sum(y)a),

where asum(y): E*e{l,‘..,n,de} Qx (y)

If 7=, then Barrio’s SSAD updates the state of the system as
y < y+ull],

where I satisfies: V* € {1,...,n,de}

. (y)
Wsum (Y)
and I is P(-|Y (t) = y)—independent of 7. Here v[de] : =w;.

If 7 € {di1,...,d;}, then Barrio’s SSAD updates the system as

(5.6) P(I=x|o(Y(s):s€[0,1)),Y(t) =y)=

Y=Y+ wa.
Therefore, Barrio’s proposal for the reaction jump process is given by:
Vs € [t,t+7) Y(s)=y
and according to (5.5),
Y (t47)= ytw  we {wklwr:1<k<n} if T=r,
ytwe if T€{d,...,di}.

This procedure is summarized in the following algorithm. All the information of

the reaction R4, is in the index n-+1.

Algorithm 5.7. (Barrio’s SSAD)

(1) Initialization: Set y < yo, t < 0, and D={occ}.
(2) Calculate a1(y), ..., an(y), ant1(y) and define

Q< (Oél(y), ceey an+1(y))'
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Generate T ~ exp(ZZii ag), and set
7=min({r}UD).

Update the time t <t + 7.
If 7 € D, then update the state of the system as

Yyt we
and update D as
D+ (D\{7})—{7} and return to step (2).

Otherwise go to the next step.
Update D as
D« D—{7}

Generate uy ~ U(0,1). Set i to be the smallest integer satisfying

1—1 7
Soesn Vo< Yo
k=1 k k=1
Update the state of the system as
y <y + vli].
If i=n+1, update D as
D+ DuU{d}.

Return to step (2).

It is clear that Barrio’s SSAD generates the sequence of times between stoichio-

where

metric changes {74 }ren and the sequence {Ji }ren where each

Ji € {Ik,Z}

gives us the information on whether the stoichiometric change is due to a reaction

(Jg=I)) or the decomposition of a complex (Jy=Z2) at time

k
tr == Zf'k.
=1

Therefore, if at time #, we know the variables Y (0), Jy, ..., J, and the set of delays
D, then we know from (5.6) how I, is distributed and from equation (5.5)

7A'q+1 = min{Tq+1 @] D}

Tq+1 ™~ €Xp (Y(O)‘f' > 'U[Ji]>
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and v[Z] := wa. In this sense, Barrio’s SSAD is a clear modification of Doob-
Gillepie’s SSA (see for example algorithm (4.13).
Now then, following the definition of 7 in (5.5), we can interpret Barrio’s SSAD
in terms of a competition between chemical reactions and the decomposition of a
complex Z. From Section 4.1, we know that 7 in (5.5) has an exponential distribu-
tion with parameter equal to the sum of the propensities and is independent of the
past of the reaction jump process, which means that different chemical reactions
are competing to occur first. With the definition of 7 as the minimum of 7 and
the delays in D, this competition now involves not only the reactions but also the
delays.
Here we emphasize the fact that in every step of Barrio’s SSAD 7 is independent
of the past of the reaction jump process. For example, if we know Y (0), J1, ..., Jg,
then until time fq Barrio’s SSAD has generated 74, ..., 7, random variables which
satisfy
k
Ty ~ eXp (Y(0)+ > v[JZ-]>
i=1
and are P(-|Y (0), Ji, ..., J;)—independent. This means that Barrio’s SSAD does an
important assumption in terms of the competition of the reactions; this assumption
is that the competitions of the chemical reactions at times 7y, ... ,fq are indepen-
dent.
It is clear from Algorithm 5.7 that the reaction jump process that Barrio’s SSAD
introduce has the following form

vt >0 Y(t):ZYjX[iijl)(t)
=0

where to := 0, Yy := Y(0), and Yj;1 = Yj+w for w € {v[k],w1, w2 : 1 < k < n}.
Note that this process has a similar structure as the solution of the Anderson-
Kurtz’s equation for this chemical system with delays (see Section 5.1). Thus, a
natural question arises: Is the reaction jump process produced by Barrio’s SSAD
a solution of the Andeson and Kurtz equation? In other words, Do the sequences
{Y;} and {#;} that Bario’s SSAD generates have the same distribution as those that
are solutions of the Anderson-Kurtz’s equation? Unfortunately we still don’t have
a general answer to these questions, and we have to continue with this investigation
in the Doctoral studies.

We could try to answer these questions by comparing Anderson-Kurtz’s SSAD and
Barrio’s SSAD, but as the following example will show, Barrio’s SSAD is differ-
ent from Anderson-Kurtz’'s SSAD, and Barrio’s SSAD generates solutions of the
Anderson-Kurtz’s equation up to time #,.

We will do these comparisons using a simple system.
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5.3. Example. Consider the reaction system of one reaction R and a physical
transition 7" with delay d

(5.8) R X+W -2, T:Z=% Xx+W,
and initial state Y(0)=(2,2)7. It is clear that the set of possibles states is given by
X={22" 1,170,077}

Therefore, if we know the number of molecules of X at time ¢ (let’s use notation
x(t)), then we know the state of the system at time t. Thus, we are going to
restrict our attention to the dynamics of the number of molecules of X. Before
continuing with the simulation of this chemical system, we introduce the notation
(fk7xk;d1, ...,d;) to indicate that at time {) there are xj; molecules of X and [
excited complexes Z that will decompose at times tAk—l—dl7 ... ,fk+dl.

We firstly present Barrio’s SSAD for the chemical system (5.8). Following Algo-
rithm 5.7 at the initial time o we set D={co} and

F1=min (DU {7 }),

where 71 ~ exp(4k). It is clear that 7y=71, and the system does a transition, with
probability 1, from (f(), 2) to (fl, 1;d), that is Barrio’s SSAD set t1=to+71

D={d,c0} x(t;)=1.
Note that the event {J;=R} has probability 1, thus
P=P(|J;=R).
At time £; Barrio’s SSAD define
Fo=min (D U {72}) =min (d, 72)

where 75 ~ exp(k) and is P—independent of 71. If 7,=d, then at time {o=£;+d the
next stoichiometric change is due to the decomposition of the only excited complex
Z formed at time £;. This implies that Barrio’s SSAD update D={oco} and x(f5)=2.
In the other case, at time fo=f;+7» the next stoichiometric change is due to a new
chemical reaction and Barrio’s SSAD update D={d—7,d, 00} and x(f3)=0. Note
that

P(J1=R, Jo=2Z)=P(72=d|J;=R)P(J;=R)=P(15 > d)=exp(—«d)

and
P(J1=R, Jo=R)=P(Fo=72|J1=R)P(J1=R)=P(12 < d)=1— exp(—~d).
This means that the following transitions
(to,2) = (t1,1;d) = (fa=t1+d,2),

(50,2) — (2?1, 1;d> — (tAQ:tAl‘f'TQ,O;d_TQ,d)
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have probabilities exp(—kd) and 1— exp(—«d), respectively.
Suppose that 75=d; then as we say before D={co}, z(f3)=2. Thus, Barrio’s SSAD
continues the simulation by setting

T3=min (D U {Tg}) =73,

where 75 ~ exp(4x) and P(|J;=R, Jo=2)— independent of 7 and 75. This implies
that with P(]J1=R, Jo=Z)— probability 1 the system does the following transition

(ta=t14d,2) — (t3=ta+73,1,d)
and the probability of the the following transitions
(to,2) — (t1,1;d) — (ta=t1+d,2) — (f3=t2+73,1,d)
is given by
P(J1=R, Jo=Z, J3=R)=P(J3=R|J1=R, Jo=2)P(Jo=Z|J;=R)P(J;)=1xexp(—krd)x 1.

The following diagram shows some of the paths that Barrio’s SSAD can take for
this system.
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1— exp(—krd)
To<d;To="T2

(t2,0; d—72, d)
to=t1+72

~ ~ R ~ exp(—krd ~
(f1,2) (f3, 1;72) (i3 15d) \ aory [ (i4,2)

=t1+d

¢

ty=tgtry ) o=\ fa=tatd—7 ty=t3+d
To<Ta;Ta="2

1— exp(—rd)

1— exp(—rd)
2 T4 <d;T4=Ta

Ta<T2;T4a=Ta

(ta,0; 72—74, d)

ty =£3 +74

The label (f) on the arrows indicates the probability p of taking the particular tran-

sition and how the waiting time 7 is calculated. For instance, if we want to know
P(J1=R, Jo=R, J3=R, J1=2),
then following the diagram we know that
P(J;=R)=1, P(Jo=R|J;=R)=1—exp(—«d), P(J3=R|J1=R,J.=R)=1

and 1 )
P(Js=Z|/1=R, Jo=R, J3:R):+e%(*”)_

Therefore
" 14 exp(—kd)

P(J1=R, Jo=R, J5=R, Jy,=Z)=(1—exp(—rd)) 5
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Now we make the simulation that Anderson-Kurtz’s SSAD generates for chemical
system (5.8). Recall from Chapter 3 that the corresponding Anderson-Kurtz’s
equation for the system (5.8) is given by

(Zf(?)) = (;) Uy < /0 tn(xw)(s)ds) (:1) U, ( /O tdn(xw)(s)d5> G) .

Here we let the series {Sk}ren be the sequence of events of the unit-rate Poisson
process U .
Following Anderson-Kurtz’s SSAD, at time #y=0, D={occ0}, Int=0, S=S; and 7, is

given by
A . S*Int 751
71=min ({ 1 } U D> =15

Since S7 ~ exp(1), 71 ~ exp(4k); and because we have only one reaction the event
{J1=R} has P—probability 1.
At time £, =fo+71, Anderson-Kurtz’s SSAD updates D, Int, S and z(f;) as

D={d, 00}, Int=4k?;, S=S; wx(t;)=1
and set 79 as

o i ({S—Int} UD) — uin (52—4'”1,d> i (52—517d> .
R KR KR

Note that $2=51 ~ exp(x) and is P(|.J;=R)—independent of 7;. Therefore, 75 has

K

the same probabilistic properties as in Barrio’s SSAD. Now we need to deal with
two cases: if ?2:%, then Anderson-Kurtz’s SSAD updates D, Int, S and m(fg)
as
D={d—%y,d, 00}, Int=4rFi+kis=S,, S=8S3, x(t2)=0.

In this case, at time #5 the propensity of reaction R is equal to zero; this implies
that with P(]J1=R, Jo=R)—probability 1 Anderson-Kurtz’s SSAD set 73=d—7.
Observe that for this case 73 has the same probabilistic properties as in Barrio’s
SSAD. At time #3 Anderson-Kurtz’s algorithm only updates D, Int and z(f3) to

D:{%Q,OO}7 Int=4k71+KkTo+073=5>, .T(fg)ZL
but does not update S; that is for this cases S=S53. This means that 74 is set as

T4= min ({ S—Int U D}) =min (SB_SZ,@) ,
K K

~ exp(x) and is independent of 75. Note that given the event

S3—So
K

where
{h=R, =R, J5=Z}

the waiting time 74 has the same probabilistic properties as in Barrio’s SSAD.
Now suppose that 7,=d; then at time #, Anderson-Kurtz’s SSAD only updates D,
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Int and z(t) to
D={c0}, Int=4k?+rd, x(t2)=2,
but does not update S; that is for this cases S=S55. Then Anderson-Kurtz’s SSAD

set 73 as
fi— min ({S;Int} U D) :52—4571—/%:5’2—51—%;(1.
K

4k 4k

Recall that in the analogue case Barrio’s SSAD set 75=min(7s, d) and 73=73, where
73 and 1 are P(|J1=R, Jo=Z)—independent. We can see that this is not the case
for Anderson and Kurtz SSAD because 52251 and SQ*f};“d are not

P(|J1=R, Jo=Z)—independent.

Despite this difference, given the event {J;=R, Jo=Z} the term W satisfies
Va > 0,

P (22=51=rd s g ) =R, Jo=7)
=P (52281254 > g|7y=)
=P (Sa=p=nd > g S50 > )

where

P (Sz_sl_ﬁd > a‘ 525 > d> =exp(—4ka)
4k K

because S;—S1—kd ~ exp(l) given the event {S;—S;—kd > 0} (this is by the
memoryless property of the exponential distribution).

This implies that given the event {J1=R, Jo=Z} the waiting time 75 ~ exp(4x) as
in Barrio’s SSAD and with probability 1 J3=R. Continuing with Anderson-Kurtz’s
algorithm, at time #3 D, Int, S and x(f3) are updated to

D:{d,oo}, Int:4li7;1+lid+4ﬁ723282, S=S53 I(£3)21,

T4= min ({ S—Int U D}) =min (53_52 , d)
K K
S3—Ss

where 23-22 ~ exp(x) and is independent of the past; that is, given the event

and 74 1s set as

{J1=R, Jo=R, J3=R} the waiting time 74 has the same probabilistic properties as
in Barrio’s SSAD.

The arguments above show that despite the difference between Barrio’s SSAD and
Anderson-Kurtz’s SSAD, up to time #, the reaction jump process that Barrio’s
SSAD generates is a solution of the Anderson-Kurtz’s equation

(5.9)

(:}8) = (;) +Uy </0t/£(xw)(3)ds> (j) +Uy (Atdn(xw)(s)ds> G) .

The following diagram shows the different paths that we have simulated above
with Anderson-Kurtz’s SSAD.
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1 A
) h=51 (t1,1;d)
start —| (¢, 2)

exp(—krd)
To=d

(EQa 07 d_%Za d)
to=t1+7

S 71NT — K
N ARk T d
Fo—=22 1

4K

~ ~ . ~ xp(—rd) ~
(t,2) (t3,1;72) (t3,1;d) S Rmd (t4,2)
T4=T2
1= exp(=kd) 1— exp(—kd)

2
~ S3—4rT] — KT
Fu=28""FT1 772 K;-l mT2 T4

(ta,0; 72—74, d)

ty=tz+74

. _ S3—4r?] —rd—4rt3

K

We use the same notation, the label (f ) on the arrows indicate the probability p of

taking the particular trasition and how the waiting time 7 is calculated.

Lemma 5.10. The paths calculated by Barrio’s SSAD Algorithm are solutions to

the Anderson-Kurtz’s equation (5.9) up to time ty.
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5.4. Cai’s SSAD. Another standard tool used in the simulation of chemical sys-
tems with delays is Cai’s SSAD. Unlike Anderson-Kurtz’s SSAD and Barrio’s SSAD,
Cai’s SSAD only simulates those times where a chemical reaction will occur; see [5]
for a historical presentation.
Consider again a chemical system of n chemical reactions R4, ..., R, and one chem-
ical reaction with delay R4
28 g + wy,

Rae : d
7 = ws.
Suppose that at time ¢ the chemical system is in some state y, and that at this time

there are [ exited complexes Z, which will decompose at times
t+dy < t+ds--- < t+d;.

If at time ¢+7 occurs the next reaction, then Cai’s proposal for the distribution of
T is given by: Vi € {0,...,1}, and Vs € [d;, diy1)

1—1
(5.11) Fr(s)=1—exp | =Y taum.j(dj11—d;)—Csum.i(s — di) | ,
j=0
where dy := 0, dj41 := 00, and Vj € {0,...,1}
Qaumj = > a(y+jws).
*€{1,...,n,de}

As is shown in [5] formula (5.11) is motivated by Doob-Gillespie’s SSA, and with
this motivation in mind, Cai’s proposal for the distribution of the type of reaction
that at occurs at time t+7 is: Vi € {0,...,1}

(5.12) P(J=x|r € [di,diﬂ)):w.

Note that if at time ¢ there aren’t excited complexes Z (that is {=0), then 7 and J
have the same distribution as in Doob-Gillespie’s SSA. Also note that V0 < s < dj,

IP(T S S):].— eXp(_asum,OS)'

This means that in the time interval [0,d;), the waiting time 7 follows an expo-
nential distribution as in Doob-Gillespie’s SSA. Observe that this agrees with the
fact that in the time interval [¢,t+d) there are no excited complexes that will de-
compose, which implies that in this time interval the only possible stoichiometric
change is a chemical reaction.

Another interesting point about the formula (5.11) is its sensitivity to stoichiomet-
ric changes due to decompositions of the excited complexes. For example observe

how F passes from exponencial distribution in the time interval [0, d;), to

Fr(s)=1— eXp(fasum,Odlfasum,l(S*dl)) Vs € [d1,d2)
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due to the decomposition of an excited complex at time t+d; (see [5]).

Now we introduce Cai’s SSAD; we refer to the reader to Pseudo-Code 1 in [5] for
a method to simulate 7. As in previous algorithms, all the information about the
delayed reaction Rg4e is in the index n+1.

Algorithm 5.13. (Cai’s SSAD)

(1) Initialization. Set y < yo, t < 0 and D=0.
(2) If D=0, then calculate V 1 < k < n+1, ag(y) and set

n+1

Asyum, 0= Z a (3/) .
k=1

Otherwise, set I=|D| and calculate V' 1 < k <n+1,V 0 <i <, ap(y+lws),

and set
n+1

Asum,i= Z (7% (y+'LUJ2)
k=1
(3) Generate T with distribution as (5.11).
(4) Generate an uniform random wvariable uy. If D=(), then set p to be the
integer for which
1

=
|

() <uy < - ak(y).

Asum,0 Asum,0

=

=1

Otherwise, if T €

di,dit1), then set u to be the integer for which

—1 X .
”Z ay(ytiws) _ - i ar(y+iws)
h—1 Qsym,i - h—1 Qsym,i

If i > 1, then update y < y+iws and update
D« (D\{dy,...,d;})—{7}.

(5) Update the state of the system y < y—+v[u].
(6) If u=n+1, then we update

D « DU {d}.

Otherwise, go to the next step.
(7) Sett <+ t+7. Go to step 2.

From Cai’s SSAD, the reaction jump process that this algorithm simulates has

the following structure

(514) Y(t):ZYk?X[tk,tk+1)(t)
k=0
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where the sequence {¢} are the times where a chemical reaction takes place and
the sequence {Y}} satisfies Vk € Ny

Yir1=Yi+c(k)ws)+w,

where w € {v[j],w1 : 1 <j <n} and c(k) is the number of excited complexes that
decomposed in the interval [tg,tg+1).

Although the reaction jump process described above does not have the same struc-
ture that the Anderson-Kurtz SSAD, a question arises: Is the reaction jump process
that Cai’s SSAD generates a solution of the Anderson-Kurtz equation? This ques-
tion is still open and in order to answer it we need much time and effort. In this
section, we lay some foundations for further work. In particular, we must point out
that trajectory (5.14) can be modified to include the effect of the physical tran-
sitions where the exited complexes Z decomposed. In this context, Cai asserted
in [5] that his SSAD is statistically equivalent to Barrio’s SSAD, but he does not
give a complete proof of this fact. Our intention is to prove that the SSAD of
Barrio and Cai are indeed equivalent; to do so we reinterpret Cai’s SSAD inspired
in Anderson-Kurtz’s algorithm.

Recall that Doob-Gillespie’s SSA has a clear interpretation as a competition be-
tween chemical reactions; see Theorem 4.22. This competition is expressed through
a race of independent random variables with exponential distribution (see Chapter
4). Due to the structure of the distribution of the time between chemical reactions
in Cai’s SSAD (see (5.11)), a natural question arises: Can we endow Cai’s SSAD
with an interpretation in terms of a competition of chemical reactions? The answer

to this question is affirmative as the following results show.

Lemma 5.15. Let dy < d; < -+ < d; < di41 be extended real numbers (they
can be equal to 00) such that dy := 0 and djy1 := oo. For each k € {1,...n}, let

00, QK15 - - -, 0,1 NONNeEgative real numbers such that oy ; > 0

Asym,i ‘= Zak,i >0 Vie {0, .. ,l}
k=1

Let X1,...,X, be independent random variables in a probability space (Q, F,P),
such that for each k € {1,...,n}, Xy has distribution

1—exp(— Y\—g anj(djp1—d)) — api(z—d;)) @ € [di,diyr) i €{0,...,1}
0 z < 0.

P(X; < z) =

If Z = min{Xy,..., X, }, then Z has distribution

1— eXp(_ Z;;lo O4su7n,j (dj-‘rl_dj) - asum,i(x_di)) Zf HARS [dw di-l—l)v
0 z < 0.

P(Z <z)=
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Proof. Let x € [d;,d;+1) for some i € {0,...,l}. Then

P(Z > x)

=P(X;>a,..., Xy > )

=1L P(X) > )

=TTy exp(— Yi—g o j(djpr—dy) — api(z—d;))
= exp(— Z;;%) Asum,j (dj—&-l*dj) - asum,i(x*di))

Theorem 5.16. Let X1,...,X,,,Z be as in Lemma 5.15. If J is the index where
the minimum is reached, that is if Z = X, then for those i € {0,...,l} such that

]P)(dz <Z< di+1) >0,

we get
Vre{l,...,n} P(J=r|d;<Z <diy)= Qi

Agum,i

Proof. Let r and i as above, and note that the following events are equivalent
{J:’I’, dl < 7 < dZJrl}:{dZ < XT < d7;+1,XT < U},

where
= min{ X} }.
U = min{ X}
Define V:Rx Q2 — R
1 di<zxz<d; z < U(w),
U(x,w) = t= + sUW)

0 in other case.

Note that for every w € €, the function x — ¥(x,w) is piecewise continuous
and for every = € R, the function w — ¥(z,w) is o(U)—measurable. Then ¥ is
B(R) x o(U)—measurable and observe that

EY(X,, )] =Pd; < X, <diy1, X, <U)
Since X, and U are independent, the freezing lemma 4.6 implies that
E[\I’<Xra )‘XT] = Q(XT)
where O(z) = E[¥(z,-)], that is
Plx <U ) € |d;, d; s
o) - [PES) i e lddin)

0 in other case.
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Therefore
P(d; < X, < di1, X, <U)

= E[U(X,,")]
(B[ (X,, )| X]]
(X

10X,
(e < U)d(B o X, ().

E
E
I
From Lemma 5.15,
1—1
Vr € [di,dit1), Pz <U)=exp _Z(asum,j_ar,j)(dj+1_dj) — (sum,i—ar,i)(r—d;)
§=0
and the density function of X, satisfies

Vo € [di,div1) . ;exp Zam i+1—d;)—ar i (z—d;)

Then
P(d; < X, < diy1,X, <U)
= [ Ple < U)d(Po X, ) (x)
= f;”l P(z < U)oy, exp (— E;;}) oy j(djp1—dj)—ayi(z—d; )) dx
= [ aniexp (- zz;aam,j)(djﬂ—d4>—<am i—ari)(e=d) =0 i(a—dy) ) da
= Qi €Xp (* Z;:E(asum,g (djp1— ) fd exp(—Qsym,i(r—d;))dx
22 exp (- Z;‘-;é(asum,j)(dm—dj)) (1 exp(—sum.i(di1—d;)))
e [exp (= Sizb(@um)(dis1—d;) ) —exp (= Sig(@oum.)(dis1—d;) )|

Asum,i

where from lemma (5.15)
i—1 %

P(di < Z <di1) = exp [ =Y (Qoum,j)(dj1—d;) | —exp | =D (aum ;) (dj11—d;)
j=0 =0

It follows that

]P)(J:T7 d; < Z < dz+1):P(dz <X, < di+1,Xr < U) = &P(dz <Z< di+1).

Qsum,i

Therefore
Qg

]P(J:T|dz <Z< di+1) = -

Qsum,i

As we wanted to prove. O

The previous results are an advance in the direction to prove that Barrio and
Cai’s SSADs are statistically equivalent, in the sense that both algorithms produce

trajectories of the form

(5.17) VE>0 Y(t ZYJXW”n
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where {fj }; is the sequence of times when a stoichiometric change occurs and every
Yit1 = Y;+w for w € {v[k],wi,w2 : 1 < k < n}. Moreover, we assert that the
equivalence between Barrio and Cai’s SSADs happens, because the corresponding

trajectories (5.17) are solutions to Anderson-Kurtz’s equation
V(1) = Y(0) + X5y U (Jy (Y (s))ds) o
+Uge (fot ade(Y(s))ds) w1 + Uge (fot_d ade(Y(s))ds) wo.

but this problem will be analyzed in the Doctoral studies.
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6. CONCLUSIONS

The following results were developed and shown in this thesis work. We firstly
presented in Section 2.1 and Chapter 3 a formal definition of a delayed chemical
reaction, which was inspired by the theory of transition states in chemistry. Using
this definition as a base, we then modify the original Anderson-Kurtz’s equation
for representing the stochastic time dynamics of a chemical reactor. For example,

the following modified Anderson-Kurtz’s equation
Y () = Y(0) + Xy U (Jy cn(Y(5))ds ) ol
e (fy ae (Y (5))ds) wn +Uae (fy " @ae(Y (5))ds) wa.

can model a system of n instantaneous chemical reactions and a delayed one. As

(6.1)

a result we were able to show that the chemical system with one reaction R4, a
physical trasition T with delay d
(6.2) Ri:X+Y 2, T:Z =% X+v,

and initial state (1,79)7 with yo € N, can be modeled with a Semi-Markovian

process which is the solution of the following Anderson-Kurtz’s equation with delays

(ygD <yl> st ([ i) (j) + ( / tdm(acy)(s)ds) G) .

The fact that we can find explicit solutions to a particular case of the delayed

Anderson-Kurtz’s equation (6.1) drives us to find more explicit solutions. Following
the construction of the reaction jump process given in Chapter 2, in Section 4.1 we
showed a new version of Doob-Gillespie’s SSA, which has an interpretation in terms
of a race between the chemical reactions of the system. We saw that this version
of Doob-Gillespie’s SSA is equivalent to Anderson-Kurtz’s SSA, which allows us
to show that for a chemical system with n chemical reactions, the corresponding
reaction jump process is the unique solution to the stochastic equation (Anderson-
Kurtz’s equation)

X(t) =m0 + iuj (/Ot %‘(X(S))dS> v[j].

The new interpretation of the Doob-Gillespie’s SSA, as a race, gives a natural expla-
nation on why the dynamics of a chemical reactor can be so efficiently represented
by the original Doob-Gillespie’s SSA. Moreover, the equivalence between Doob-
Gillespie’s SSA and Anderson-Kurtz’s SSA implies that Anderson-Kurtz’'s SSAD
(which generates the solution to equation (6.1)) can be interpreted as a modification
to the Doob-Gillespie’s SSA. We also noted in Chapter 5 that Barrio’s SSAD and
Cai’s SSAD are modifications to Doob-Gillespie’s SSA. Thus, a natural question
arises: For a chemical system of n instantaneous chemical reactions and a delayed

one, can the trajectories of the solution to equation (6.1) be simulated through
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Barrio’s SSAD and Cai’s SSAD? We believe that the answer to this question is
affirmative, and although we could not give a proof for this statement, in Section
5.3 we saw that for the system (6.2) with initial conditions (2,2)”, Barrio’s SSAD
generates the trajectories, until time %4, of the solution to the Anderson-Kurtz’s

equation with delays

(ngD - (;) +Uh < /0 tm(xy)(s)dS) (_1) +Uy ( /O tdm(a:y)(s)ds) (1) .

Finally, in order to lay the foundations for future work, we prove in Section
5.4 that Cai’s SSAD also has a natural interpretation in terms of a race between
the different chemical reactions participating in the system. We assert that this
interpretation is a forward step into proving that the trajectories generated by
Cai’s SSAD are solutions to the modified Anderson-Kurtz’s equation (6.1). These
ideas deserve to be further developed in a more detailed Doctoral work.
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