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ABSTRACT

In this thesis, we analyze the dynamics of a system of chemical reactions as a

continuous-time stochastic process. In particular, when in the system only in-

stantaneous chemical reactions occur we will see that the corresponding stochastic

process is a continuous-time Markov chain, which is the unique solution of the

Anderson-Kurtz’s stochastic equation. We present an elementary proof of this last

fact since we show that the Doob-Gillespie’s algorithm and Anderson-Kurtz’s algo-

rithm are equivalent.

Finally, we will see how a simple modification to Anderson-Kurtz’s stochastic equa-

tion allows us to model chemical systems where one of the reactions has a time de-

lay. We will compare the corresponding Anderson-Kurtz’s algorithm for this kind

of chemical system with Barrio’s algorithm, which is one of the most used tools to

simulate chemical systems with delays.



RESUMEN

En esta tesis analizamos la dinámica de un sistema de reacciones qúımicas como

un proceso estocástico a tiempo continuo. En particular, cuando en el sistema solo

ocurren reacciones qúımicas instantaneas, veremos que el correspondiente proceso

estocástico es una cadena de Markov a tiempo continuo, la cual es la única solución

de la ecuación estocástica de Anderson-Kurtz. Presentamos una prueba elemental

de este último hecho, ya que demostramos que el algoritmo de Doob-Gillespie y el

algoritmo de Anderson-Kurtz son equivalentes.

Finalmente, veremos como una simple modificación a la ecuación estocástica de

Anderson-Kurtz nos permite modelar sistemas qúımicos donde una de las reac-

cionas tiene retardo. Compararemos el correspondiente algoritmo de Anderson-

Kurtz para esta clase de sistema qúımicos con el algoritmo de Barrio, el cual es una

de las herramientas más usadas para simular sistemas qúımicos con retardos.
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por todo el apoyo ofrecido durante mi maestŕıa.
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1. Introduction

The main objective of this thesis work is to analyze a system of chemical re-

actions as a stochastic process, especially in the case when one of the chemical

reactions has a time delay. A chemical reaction system or network comprises a set

of chemical species, a series of chemical reactions, and a collection of propensity

functions. The set of species consists of the reactants and products of the chemical

reactions, and the propensity functions have as domain a subset X ⊂ Nm0 , where m

is the number of chemical species and X is itself the domain of possible states of the

chemical network. The simpler stochastic model for such networks treats the sys-

tem as a continuous-time Homogeneous Markov Chain (HMC) with space of states

X, an infinitesimal generator determined by the propensity functions, and reactions

modeled as possible transitions of the chain. Therefore, one of the techniques to

study the dynamics of the chemical system is through algorithms that simulate

the corresponding continuous-time HMC or reaction jump process. Among these

algorithms, Doob-Gillespie’s Stochastic Simulation Algorithm (SSA) is the funda-

mental tool used for this job; see for example [12].

Although Doob-Gillespie’s SSA gives us a way to simulate the trajectories of the

reaction jump process, it does not give us an explicit equation to represent the time

dynamic of these trajectories. The work done by Kurtz to approximate a certain

type of ODE by means of a sequence of continuous-time HMC (see [13], [14]) led

him to show that the reaction jump process of a chemical system with n chemical

reactions is the unique solution of the following stochastic integral equation (see

[15], [16], [17]):

(1.1) X(t) = x0 +

n∑
j=1

Uj
(∫ t

0

αj(X(s))ds

)
v[j],

where {Uj}j is a sequence of independent and unit-rate Poisson processes, and

{αj}j , {v[j]}j are the sequences of propensity functions and stoichiometric vectors,

respectively associated to the chemical reactions (in Chapter 2 we will present a

formal definition of these sequences).

In [1], Anderson introduces the first algorithm to solve equation (1.1), which we

call the Anderson-Kurtz’s algorithm or Anderson-Kurtz’s SSA. Due to the work

done by Kurtz, it is clear that Anderson-Kurtz’s algorithm and Doob-Gillespie’s

SSA are equivalent. One of our intentions in this thesis is to present a direct and

elementary proof of this equivalence. To do this, we will introduce a modified ver-

sion of Doob-Gillespie’s SSA, which we will call Doob-Gillespie’s SSA Competitive

version (this name will be justified in Chapters 2 and 4). Then, we will show that

this version of Doob-Gillespie’s SSA is equivalent to Anderson-Kurtz’s algorithm.

The following diagram shows the different equivalences mentioned above.
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Continuous-time HMC

Anderson-Kurtz’s Equation

Kurtz 1975-1977

ODE

Kurtz 1970-1971

Doob-Gillespie’s SSA
Doob-Gillespie

Anderson-Kurtz’s Algorithm
Anderson 2007

Doob-Gillespie’s SSA Competitive version

On the other hand, various efforts have been made to model chemical systems with

delayed reactions. Among these efforts, we can find algorithms that try to simulate

the dynamics of these chemical systems; and two of these algorithms are widely

used in the area of biochemistry, they are Barrio’s Stochastic Simulation Algorithm

with Delays (SSAD) and Cai’s SSAD, which are modifications to Doob-Gillespie

SSA; see for example [3] and [5]. The main problem with these algorithms is that,

unlike Doob-Gillespie SSA, it is not clear whether they are implementations of

some stochastic process that models the chemical system with delays. An effort

in the direction of finding a stochastic process associated with a delayed system

is made by Anderson in [1], where he shows how a simple modification to the

Anderson-Kurtz’s equation (1.1) can indeed model chemical systems with delays.

For example, in Chapter 3 we will see that for a chemical system of n instanta-

neous chemical reactions and a delayed one, its corresponding modification to the

Anderson-Kurtz’s equation is given by

(1.2)
Y (t) = Y (0) +

∑n
k=1 Uk

(∫ t
0
αk(Y (s))ds

)
v[k]

+Ude
(∫ t

0
αde(Y (s))ds

)
ω1 + Ude

(∫ t−d
0

αde(Y (s))ds
)
ω2.

Thus, a natural question arises: For a chemical system of n instantaneous chemical

reactions and a delayed one, are the trajectories of the solution to equation (1.2)

simulated through Barrio’s SSAD and Cai’s SSAD? Although we do not have an

answer to this question, it is our belief that the answer is affirmative. In Chapter

5 we will introduce some results in this direction.
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We must now introduce the basic definitions and assumptions that will allow

us to model the dynamics of a system of n (n ∈ N0) chemical reactions. Among

these definitions and assumptions, the Fundamental Hypothesis of the Stochastic

Reaction Kinetics and the Well-Mixed Assumption imply that we can model the

dynamics of this chemical system with a continuous-time Homogeneous Markov

Chain (HMC), which has a specific infinitesimal generator. From now on, we will

refer to this continuous-time HMC as the reaction jump process. In Section 2.2 we

will present a construction of this reaction jump process.

Thus, the problem of determining the dynamics of a system with n chemical reac-

tions is reduced to a question of determining the transition probabilities or semi-

group of the corresponding reaction jump process. In Section 2.4 and Section 2.5 we

will verify that the semigroup of the reaction jump process satisfies Kolmogorov’s

equations. In particular, in Section 2.5 we will see that this semigroup satisfies the

corresponding Forward Kolmogorov equation, also known as the Chemical Master

Equation (CME). Therefore, the solutions of the CME give us the transition prob-

abilities of the reaction jump process.

In Section 2.3 we will present Anderson-Kurtz’s ideas for modeling a system of n

chemical reactions. We will see that these ideas are based on the following fact: in

order to determine the state of the system at a certain time t, we have to know how

many times each reaction has happened until time t. We will see how the counting

process of each chemical reaction is given, and how the dynamics of the chemical

system are represented by the Anderson-Kurtz’s equation (1.1).

Following the ideas in Section 2.1, we will begin Chapter 3 by presenting a def-

inition of what a delayed reaction is; there we will see that a delayed reaction is

constituted by a normal chemical reaction, which changes the stoichiometry of the

system instantaneously and generates an excited complex Z. This latter complex

will decompose itself and change the stoichiometry of the system d units of time

later. Furthermore, in Section 3.1 we will see how equation (1.2) allows us to model

the dynamics of a system with n chemical reactions and one delayed reaction. In

section 3.2 we will present a simple example of a chemical system with only one

delayed reaction; we will show that the corresponding reaction jump process is no

longer a continuous-time HMC, it is instead a Semi-Markovian process.

Although we can study the dynamics of a chemical system (without delayed

reactions) through the CME’s solutions, in practice this can be difficult because

the dimension of the system of differential equations can be very large (the dimen-

sion is equal to the cardinality of the set X of possible states). For this reason,

the dynamics of the chemical system is studied with algorithms that can simu-

late the corresponding reaction jump process. In Chapter 4 we will introduce
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Doob-Gillespie’s Stochastic Simulation Algorithm (SSA); we will see that Doob-

Gillespie’s SSA is just an implementation based on the fact that the reaction jump

process is a continuous-time HMC. Following the construction of the reaction jump

process given in Section 2.2, in Section 4.1 we will give an equivalent version of

Doob-Gillespie’s SSA, which has an interpretation as a competition between the

different chemical reactions. In Section 4.2 we will introduce Anderson-Kurtz’s

SSA, which gives us a way to solve Anderson-Kurtz’s equation; we will show that

Anderson-Kurtz’s SSA and the competitive version of Doob-Gillespie’s SSA (given

in Section 4.1) are equivalents. This immediately implies that the only solution to

Anderson-Kurtz’s equation is the corresponding reaction jump process simulated

by the Doob-Gillespie’s SSA.

Finally, in Chapter 5 we will present the most used algorithms that allow us to

simulate the dynamics of a chemical system with n chemical reactions and one de-

layed reaction. We will begin this chapter by introducing Anderson-Kurtz’s SSAD,

which gives us a way to solve equation (1.2). In Section 5.7 we will present Barrio’s

SSAD for this chemical system with delays, and in Section 5.3 we will introduce

an example of a chemical system that will allow us to demonstrate that although

Anderson-Kurtz’s SSAD and Barrio’s SSAD have some differences, for this example

the trajectories that Barrio’s SSAD generates until certain time are solutions of the

corresponding Anderson-Kurtz’s equation with delays.

We will finish chapter 5 by presenting Cai’s SSAD; we will see that unlike Barrio’s

SSAD and Anderson-Kurtz’s SSAD that simulate all the times where a stoichiomet-

ric change occurs (either by a chemical reaction or the decomposition of an excited

Z complex), Cai’s SSAD only simulates the times where a chemical reaction occurs.

We will see how the Cai’s SSAD can be interpreted as a race between the chemical

reactions in the system.
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2. Chemical Systems and Probability

2.1. Basic definitions and Fundamental Hypothesis. Consider a system of

molecules that belongs to different chemical species. These molecules move in a

given environment, the (spatial) domain D, where D ⊂ Rk for k ∈ {1, 2, 3}, and

undergo chemical reactions which affect their population. We understand that a

chemical reaction is a process where two or more molecules collide together, in the

space D, to form new chemical species; for example

(2.1) H2 + F2 −→ 2HF

is a chemical reaction where one molecule of gaseous hydrogen reacts with a mole-

cule of gaseous fluorine to produce two molecules of hydrogen fluoride.

As for the relation between spatial movement and reactivity, we make the following

central assumption.

Assumption 2.2. (Well-Mixed Assumption) The spatial movement of molecules

is fast compared to reactions, i.e., the majority of close encounters of molecules

(where molecules come close enough so that reactions are possible) are nonreactive

and molecular positions are uniformly distributed throughout the space D at any

time.

Given the well-mixed assumption, the spatial positions of molecules become in-

significant for the system’s dynamics, so that modeling approaches without spatial

resolution are justified. The system’s state may then be specified by counting the

number of molecules of each species, regardless of their positions in the space.

Hence, if in our chemical system there are m ∈ N chemical species S1, . . . , Sm,

we only need to know the number of molecules of each species Sk. We do so by

introducing a vector x ∈ Nm0 so that the entry xk is the number of molecules of

the species Sk, for k = 1, 2, . . . ,m. This vector x ∈ Nm0 is called the state of the

chemical system, and the set of all possible states x ∈ Nm0 is denoted by X ⊂ Nm0 .
A chemical reaction system or network comprises a set of chemical species, a set of

chemical reactions, and a set of propensity functions. The set of species consists of

the reactants and products of the chemical reaction, and the propensity functions

have as domain a subset X ⊂ Nm0 , where m is the number of chemical species and

X is the set of possible states of the chemical network; for example, consider a sys-

tem of m ∈ N chemical species S1, . . . , Sm which interact through n ∈ N reactions

R1, . . . ,Rn. Each reaction is represented by a stoichiometric equation of the form

(2.3) Rj : s1jS1 + · · ·+ smjSm
κj−→ s′1jS1 + · · ·+ s′mjSm
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with the stoichiometric coefficients slj , s
′
lj ∈ N0 denoting the numbers of reactants

and products molecules, respectively (see for example (2.1)). The associated stoi-

chiometric vector

v[j] := (v1j , . . . , vmj)
T ∈ Zm,

also called state-change vector, is defined as

vlj := s′lj − slj

and describes the net change in the number of molecules of each species Sl due to

reaction Rj . The constant κj > 0 is the reaction rate constant which quantifies the

rate for the reaction to take place.

Each reaction Rj acts on those x ∈ X such that x+ v[j] ∈ X, in the following way

(2.4) Rj : x→ x+ v[j].

For example, consider again the chemical reaction

H2 + F2 −→ 2HF.

Assume that the state of our system is given by the vector x ∈ N3
0, where x =

(x1, x2, x3)T and x1, x2, and x3 represent the number of molecules of H2, F2, and

HF, respectively; then the reaction

H2 + F2 −→ 2HF.

can be represented as

R : x→ x+ (−1,−1, 2)T .

From now on we will only use the notation (2.4) to designate chemical reactions.

The probability for such a reaction to occur depends on the reaction rate constant

and the state of the system.

Definition 2.5. (Propensity function) The propesity function for the reaction Rj
is the function

αj : X→ [0,∞)

that satifies

(2.6) αj(x) = κjhj(x) ∀x ∈ X,

where hj(x) is the number of distinct combinations in which the reactant molecules

can participate into the reaction Rj. By (2.3)

hj(x) =

m∏
l=1

(
xl
slj

)
provided that slj ≤ xl for all l = 1, . . . ,m; and hj(x) = 0 if for some 1 ≤ l ≤ m

xl < slj .
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Assumption 2.7. (Fundamental Hypothesis of the Stochastic Reaction Kinetics)

The probability for the reaction Rj to occur once within the infinitesimal time in-

terval [t, t+ dt) is αj(x)dt, given that the system is in the state x at time t.

Example 2.8. (Binding and Unbinding) Consider the reaction system of three

species X,Y and Z with reactions

R1 : X + Y
κ1−→ Z; R2 : Z

κ2−→ X + Y.

For R1 the stoichiometric vector and the propensity function are given by

v[1] = (−1,−1, 1)T and α1(x, y, z) = κ1xy,

respectively; and for R2

v[2] = (1, 1,−1)T and α2(x, y, z) = κ2z.

2.2. Construction of the reaction jump process. Consider a reaction system

of n reactions and m chemical species. To describe the time evolution of the system

we consider the continuous-time stochastic process X = (X(t))t≥0, where

X(t) = (X1(t), . . . , Xm(t))T ∈ X

with Xj(t) denoting the number of molecules of the species Sj at time t ≥ 0

for j = 1, . . . ,m. With this notation in mind, we can rewrite the fundamental

hypothesis as

(2.9) P(X(t+ dt) = x+ v[j]|X(t) = x) = αj(x)dt

and the probability that a reaction doesn’t occur in the time interval (t, t + dt] is

given by

(2.10) P(X(t+ dt) = x|X(t) = x) = 1−

 n∑
j=1

αj(x)

 dt

We are going to show the existence of a jump Markov chain that satisfies the

equations above.

Let A be a real-valued square matrix of size |X|2 (|X| <∞) defined as follows

(2.11) A(x, x+ v[j]) = αj(x), ∀ j = 1, 2, ..., n,

(2.12) A(x, x) = −
n∑
j=1

αj(x)

and

(2.13) A(x, y) = 0 ∀y /∈ {x+ v[j] : 1 ≤ j ≤ n}.
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Observe that A satisfies

A(x, x) = −
∑

y∈X\{x}

A(x, y)

and A(x, x) < ∞, that is A is a conservative and stable generator. We proceed

with the construction of a jump Markov process with infinitesimal generator A.

Let X0 be a random variable with values in X. If at time t = 0 the chemical system

is in the state X0, then consider the following independent Homogeneous Poisson

Processes (HPP)

{NX0,X0+v[j] : 1 ≤ j ≤ n},

where each NX0,X0+v[j] has intensity αj(X0). Let NX0
=
∑n
j=1NX0,X0+v[j]. Then

NX0
is an HPP with intensity −A(X0, X0), see for example [4]. If τ1 is the time

until the first event of NX0
and J1 is the type of the event, then in the context of

chemical reactions τ1 is the time until the first rection and J1 is the type of reaction.

From the theory of HPP, τ1 and J1 are independent random variables and

P[τ1 > a, J1 = j|X0]= exp(A(X0, X0)a)
αj(X0)

−A(X0, X0)

i.e., τ1 ∼ exp(−A(X0, X0)) and τ1 <∞ a.s. because A(X0, X0) < 0 a.s.

Repeat the same process as above withX1 = X0+v[J1] andNX1 =
∑n
j=1NX1,X1+v[j],

where given the event {X(0) = x0, X1 = x1} the sets of HPP

{NX0,X0+v[j] : 1 ≤ j ≤ n} {NX1,X1+v[j] : 1 ≤ j ≤}

are independent. Take random variables τ2, J2 such that

P [τ2 > a, J2 = j|X0, X1] = exp(A(X1, X1)a)
αj(X1)

−A(X1, X1)
.

and let X2 = X1 + v[J2], NX2
=
∑n
j=1NX2,X2+v[j].

By the process above, we get a sequence of r.v. {Xi} and {ti} given by

Xi = X0 +

i∑
k=1

v[Jl]

and

ti =

i∑
k=1

τk.

Observe that ti is the time until the i-th reaction and the system will be in Xi at

time ti. Moreover, ∀x ∈ X, A(x, x) < 0 which implies that ti <∞ a.s.

Now, by the construction of the sequences {τk} and {Jk}, we can see

P[τi+1 > a, Ji+1=j|X0, . . . , Xi=x]=P[τi+1 > a, Ji+1=j|Xi=x],
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therefore

P[Xi+1=x+ v[j], ti+1−ti > a|X0, . . . , Xi=x]=P[τi+1 > a, Ji+1=j|X0, . . . , Xi=x]

=P[τi+1 > a, Ji+1=j|Xi=x]

= exp(A(x, x)a)
αj(x)
−A(x,x) .

By the continuity of the measure

P[Xi+1=x+ v[j]|X0, . . . , Xi=x]

= lima↓0 P [Xi+1=x+ v[j], ti+1−ti > a|X0, . . . , Xi=x]

= lima↓0 exp(A(x, x)a)
αj(x)
−A(x,x)

=
αj(x)
−A(x,x) .

The argument above shows that {Xi} is a HMC with transitions probabilities

P(Xi+1=x+ v[j]|Xi=x)=
αj(x)∑n
j=1 αj(x)

and

P(Xi+1=y|Xi=x)=0 ∀y /∈ {x+ v[j] : 1 ≤ j ≤ n}.

With the discrete time HMC {Xl}l∈N, we can construct a continuous time stochastic

process {X(t)} given by

X(t) = Xn if tn ≤ t < tn+1

where t0 = 0 a.s. We say that {X(t)} is the reaction jump process of the chemical

system and {Xi}i∈N is the corresponding embedded HMC. Observe that {Xi}i∈N
is a HMC thanks to the hypothesis that A is conservative and stable. In general,

as Doob showed (see [7]), the infinitesimal generator of a continuous-time HMC is

stable and conservative if and only if with probability 1 the first discontinuity of the

continuous-time HMC, after a specified time t, is a jump; that is, the infinitesimal

generator of a continuous-time HMC is stable and conservative if and only if the

embedded chain is a discrete HMC.

Since A is the infinitesimal generator of the reaction jump process {X(t)}, then

when h ↓ 0

P(X(t+ h) = x+ ν[j]|X(t) = x) = αj(x)h+ o(h)

P(X(t+ h) = x|X(t) = x) = 1−
∑n
j=1 αj(x)h+ o(h)

P(X(t+ h) = y|x(t) = x) = 0 ∀y /∈ {x+ ν[j] : 1 ≤ j ≤ n}
.

That is, the reaction jump process satisfies the Fundamental Hypothesis.

Consider the sequence of reactions times {ti}. We define the explosion time of the

chemical system as t∞ := limi→∞ ti. Note that given the event {t∞ < ∞}, with

probability 1 we have an infinite number of reactions in a small neighborhood of

t∞, that is, the system jumps infinitely many times in a small neighborhood of t∞.

Therefore, an important question about t∞ is the following: under what conditions

the event {t∞ = ∞} has probability 1? Since the sequence {ti} depends on the
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generator A, then information about the generator A must give us information of

t∞. But not only the properties of the generator are important because as Doob

showed ([7]), there exist conservative and stable generators such that the jump

process that defines it has finite explosion time with probability greater than 0.

We’re going to show that {X(t)} is regular, that is P(t∞ = ∞) = 1. First of all,

we need Reuter’s criterion (see [4]):

Theorem 2.14. (Reuter’s criterion) Let Q be a stable and conservative infinitesi-

mal generator. Then the following are equivalent:

(1)The continuous-time HMC that Q defines is regular.

(2)For all λ > 0 the system of equations

(2.15) (λ+ qi)yi =
∑

j∈E\{i}

qi,jyj i ∈ E,

in matrix notation

(2.16) Qy = λy,

has the trivial solution y = 0 as the only non-negative bounded solution.

(3)There is λ > 0 such that the trivial solution y = 0 is the only non-negative

bounded solution of (2.15).

Since A is a finite matrix, then the set of eigenvalues of A is finite, and there exist

λ > 0 that satisfies (3) of Theorem (2.14). Therefore {X(t)} is regular. We have

assumed that X is finite, but we can make a similar analysis when X is a countable

infinite set; we will show that the semigroup, {P (t)}, of the reaction jump process,

satisfies the Forward Kolmogorov’s equations(in our context the Chemical Master

Equations)

P (1)(t) = P (t)A,

which implies that at any time t0 > 0, with probability 1 the last discontinuity of

the reaction jump process before t0 is a jump (see [7]). Together with the fact that

A is stable and conservative, the reaction jump process is regular, whether X is

finite or countable infinite. Therefore the name ’jump process’ is justified and we

can rewrite this process as

(2.17) X(t) =

∞∑
i=0

Xiχ[ti,ti+1)(t).

2.3. Anderson-Kurtz’s Equation. Another way to describe the jump process

{X(t)} is with the help of a counting process Rj(t), where Rj(t) is the number of

reactions of type Rj that have occurred in the time interval [0, t] for 1 ≤ j ≤ n.

Suppose that the chemical system satisfies X(0) = x0. Then we can write the jump
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process X(t) as:

(2.18) X(t) = x0 +

n∑
j=1

Rj(t)v[j],

and the fundamental hypothesis as:

Assumption 2.19. (Fundamental Hypothesis of the Stochastic Reaction Kinetics).

For all j = 1, . . . ,m and t ≥ 0 it holds

P(Rj(t+ dt)−Rj(t) = 0|X(t) = x) = 1− αj(x)dt+ o(dt),

P(Rj(t+ dt)−Rj(t) = 1|X(t) = x) = αj(x)dt+ o(dt),

P(Rj(t+ dt)−Rj(t) > 1|X(t) = x) = o(dt),

for dt→ 0 and x ∈ X.

An immediate question is the existence of a set of stochastic processes {R1, . . . , Rm}
that satisfy Assumption 2.19. Consider the reaction jump process

X : [0,∞)× Ω→ Nm0

together with his natural filtration {Ft}t∈[0,∞), Ft = σ(X(s) : s ≤ t), and proba-

bility space (Ω,F ,P) where
∨

0≤t Ft = F . Recall that the function

s 7→ X(s, ω)

is right continuous for P-a.s. ω, and since (Nm0 , ρ) (ρ is the discrete metric) is

a separable metric space, it follows from Theorem 3 in [10] that for all t > 0,

X : [0, t] × Ω → Nm0 is B([0, t]) × Ft-measurable. Then if αj : X → R+
0 is the

propensity function of Rj ,

(s, ω) 7→ αj(X(s, ω))

is B([0, t]) × Ft-measurable and since is a non-negative function, it follows from

Tonelli theorem that

ω 7→ fj(t, ω) :=

∫ t

0

αj(X(s, ω))ds

is also Ft- measurable.

Observe that if P(fj(t+ h)−fj(t) > 0) > 0, then

P(ω ∈ Ω : αj(X(s, ω)) > 0 ∀s ∈ I(ω) for some subinterval I(ω) ⊂ (t, t+h]) > 0,

which implies that with positive probability a new reaction Rj could happen in the

time interval (t, t+h]. That is, the stochastic process {fj(t)} give us the cumulative

propensity of Rj , but it doesn’t count the number of reactions Rj through time.

In order to do this counting consider a unit-rate Poisson process {Uj(t)} adapted

to filtration {Ft}; recall that this process can be written as



13

Uj(t) = max{k ∈ N0 : Sj,k ≤ t}

where

Sj,0 := 0, Sj,k :=

k∑
i=1

sj,i

and {sj,k}k is an i.i.d. sequence with distribution exp(1). This implies that the

average time between events is 1. With this amount of information let

(2.20) Rj : [0,∞)× Ω→ N0 Rj(t, ω) := Uj(fj(t, ω), ω)

First of all, observe that for a.s. ω ∈ Ω t 7→ Rj(t, ω) is right continuous, because

for a.s. ω ∈ Ω, t 7→ fj(t, ω) is an increasing process and for a.s. ω ∈ Ω, t 7→ Uj(t, ω)

is right continuous. Second of all, for each t ∈ [0,∞) what can we say about the

function ω 7→ Rj(t, ω)? Is ω 7→ Rj(t, ω) a random variable for each t ∈ [0,∞); and

if it is a random variable, is it Ft-measurable?; that is, is {Rj(t)}t a stochastic

process adapted to filtration {Ft}? And finally, since we are working with unit-rate

Poisson process Uj that satisfies

E[Uj(t)] = t = E[t]

what can we say about E[Uj(fj(t))]? Is it true that E[Uj(fj(t))] = E[fj(t)]?

The answers for these questions are positive; see for example [8].

Now we are going to show that this definition of Rj(t) satisfies the Fundamental

Hypothesis. By the properties of HPP, we have

Uj(fj(t+ dt)) = Uj((fj(t), fj(t+ dt)]) + Uj(fj(t)).

Hence

Rj(t+ dt) = Uj((fj(t), fj(t+ dt)]) +Rj(t)

and

Rj(t+ dt)−Rj(t) = Uj((fj(t), fj(t+ dt)]).

Since the propensity functions are constant in the infinitesimal time interval [t, t+

dt), we get

P(Rj(t+ dt)−Rj(t) = 1|X(t) = x) = P(Uj((fj(t), fj(t+ dt)]) = 1|X(t) = x)

= P(Uj(αj(x)dt) = 1)

= exp(−αj(x)dt)

= αj(x)dt+ o(dt).

Therefore (2.18) can be written as

(2.21) X(t) = x0 +

n∑
j=1

Uj
(∫ t

0

αj(X(s))ds

)
v[j],
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which is the Anderson-Kurtz’s Equation for this chemical system. In (2.21)

{U1, . . . ,Un}

is a set of independent unit-rate Poisson processes with sequence of times events

{Sj,k}k∈N for each Uj . From the theory of HPP we know that for i 6= j,

Sj,k 6= Si,k ∀k ∈ N,

hence every solution {X(t)} of (2.21) makes jumps, with probability 1, of the form

x→ x+v[j] whenever one of the Poisson processes Uj indicates such a jump. That

is, if {X(t)} is a solution of (2.21), then {X(t)} must satisfy

X(t) =

∞∑
k=0

xkχ[tk,tk+1)(t)

where ∀k ∈ N0 xk+1 = xk+w for some w ∈ {v[1], . . . , v[n]} and {tk} are the times

when a stoichiometric change occurs due to a chemical reaction. In Chapter 4 we

will show that (2.21) has as unique solution the reaction jump process given in

Section 2.2.

Example 2.22. (Binding and Unbiding) For the reaction system of binding and

unbiding

R1 : X + Y
κ1−→ Z; R2 : Z

κ2−→ X + Y

the path representation X(t) = (x(t), y(t), z(t))T is given by

x(t) = x(0)−R1(t) +R2(t)

y(t) = y(0)−R1(t) +R2(t)

z(t) = z(0) +R1(t)−R2(t)

where x(t), y(t) and z(t) are the number of molecules of X, Y and Z, respec-

tively, at time t. Since R1 has propensity α1(x, y, z) = κ1xy and R2 has propensity

α2(x, y, z) = κ2z we can write {X(t)} as

X(t) = X(0) + U1(κ1

∫ t
0
x(s)y(s)ds)

−1

−1

1

+ U2(κ2

∫ t
0
z(s)ds)

 1

1

−1

 .

In this equation, the second term on the right-hand side stands the number of times

that the reaction R1 happens in the time interval [0, t] and the last term stands the

number of times that reaction R2 happens in the time interval [0, t].

2.4. Backward and Forward Kolmogorov’s Equations. So far we have seen

how Anderson-Kurtz’s equation can help us to describe the dynamics of a chemical

reaction system; nevertheless, there is another popular and alternative form to de-

scribe the time dynamics of a chemical reaction system; the Forward Kolmogorov’s

Equation, also called Chemical Master Equation in the biochemical field, see for

example [9].

Given a conservative and stable infinitesimal generator, say A, with space of states
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X, we are interested in the transition probabilities between states in X in a certain

period of time. That is, if {X(t)} is the HMC defined by A, we are looking for the

values

pi,j(h) := P(X(t+ h) = j|X(t) = i) ∀i, j ∈ X.

Let P (t) = [pi,j(t)]i,j∈X ∀t ≥ 0. The fact that {X(t)} is a continuous-time HMC

implies that {P (t)} satisfies

∀i, j ∈ X, pi,j(t) ≥ 0,
∑
j∈X

pi,j(t) = 1

and the Chapman-Kolmogorov Equations:

(2.23) ∀i, j ∈ X, pi,j(t+ h) =
∑
k∈X

pi,k(t)pk,j(h),

and

(2.24) ∀i, j ∈ X, pi,j(t+ h) =
∑
k∈X

pi,k(h)pk,j(t).

Following the standard notation in the theory of continuous time HMC, we define

qi := −Ai,i and qi,j := Ai,j . Therefore, {P (t)} satisfies (see for example [6])

(2.25) ∀i, j ∈ X, qi = lim
h↓0

1− pi,i(h)

h
, qi,j = lim

h↓0

pi,j(h)

h
.

Using Fatou’s lemma
∑
j 6=i qi,j and qi satisfy∑
j 6=i qi,j =

∑
j 6=i lim infh↓0

pi,j(h)
h

≤ lim infh↓0
∑
j 6=i

pi,j(h)
h

= lim infh↓0
1−pi,i(h)

h

= qi.

That is if A is a generator, not necessarily conservative, then
∑
j 6=j qi,j and qi

always satisfy

(2.26)
∑
j 6=i

qi,j ≤ qi.

Observe that (2.24) implies

pi,j(t+ h)− pi,j(t) =
∑
k∈X pi,k(h)pk,j(t)− pi,j(t)

= pi,j(t)(pi,i(h)− 1) +
∑
k 6=i pi,k(h)pk,j(t)

and

(2.27)
pi,j(t+ h)− pi,j(t)

h
=
pi,i(h)− 1

h
pi,j(t) +

∑
k 6=i

pi,k(h)

h
pk,j(t)

Using equation (2.27) and Fatou’s lemma we get

lim inf
h→0

pi,j(t+ h)− pi,j(t)
h

≥ −qipi,j(t) +
∑
k 6=i

qi,kpk,j(t).
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Now, since A is stable and conservative, we get for N > i

1

h

∑
j>N

pi,j(h) =
1

h
(1−

∑
j≤N

pi,j(h))→ qi −
∑

j<N,j 6=i

qi,j =
∑
j>N

qi,j .

Note that from the conservative property, the convergence of the series 1
h

∑
j>N pi,j(h)

only depends on the convergence of the finite series 1
h (1 −

∑
j≤N pi,j(h)) which

converges uniformly in h. Hence
∑
j 6=i

pi,j(h)
h converges uniformly to

∑
j 6=i qi,j .

Therefore, if we let h→ 0 in (2.27), we get the Backward Kolmogorov Equations

(2.28) p
(1)
i,j (t) = −qipi,j(t) +

∑
k 6=i

qi,kpk,j(t).

This proves an implication of the following Theorem(see [7]).

Theorem 2.29. A stable infinitesimal generator A is conservative if and only if

its transition semigroup {P (t)} satisfies the Backward Kolmogorov Equations, that

is

P (1)(t) = AP (t).

Proof. We only need to prove the if part. Let A be a stable generator such that

his semigroup satisfies the Backward Kolmogorov equations (2.28). Then, for fixed

i ∈ X we get ∀t ≥ 0∑
j∈X p

(1)
i,j (t) =

∑
j∈X−qipi,j(t) +

∑
j∈X

∑
k 6=i qi,jpk,j(t)

= −qi
∑
j∈X pi,j(t) +

∑
k 6=i qi,j

∑
j∈X pk,j(t)

= −qi +
∑
k 6=i qi,j

and, using inequality(2.26),

|
∑n
j=1 p

(1)
i,j (t)| = | − qi

∑n
j=1 pi,j(t) +

∑
k 6=i qi,k(

∑n
j=1 pk,j(t))|

≤ qi
∑n
j=1 pi,j(t) +

∑
k 6=i qi,k(

∑n
j=1 pk,j(t))

≤ qi +
∑
k 6=i qi,k ≤ 2qi.

It follows using dominated convergence theorem that∫
[s,s+δ]

∑
j∈X p

(1)
i,j (t)dt =

∑
j∈X

∫
[s,s+δs]

p
(1)
i,j (t)dt

=
∑
j∈X[pi,j(s+ δ)− pi,j(s)]

= limn→∞
∑n
j=1[pi,j(s+ δ)− pi,j(s)]

= limn→∞
∑n
j=1 pi,j(s+ δ)−

∑n
j=1 pi,j(s)

= 1− 1 = 0.

Since
∑
j∈X p

(1)
i,j (t) = −qi +

∑
k 6=i qi,j ∀t ≥ 0, we get

−qi +
∑
j 6=i

qi,j = 0.

�
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Backward Kolmogorov’s Equations have an important probabilistic interpreta-

tion. Suppose that at time X(t0) = i. Then the probability that X(t0 + t) = k and

the first discontinuity is a jump in the time interval (t0, t0 + t], is given by

P(X(t+ t0) = k, t0 < τ1 < t+ t0|X(t0) = i) =

∫ t

0

qi exp(−qis)
qi,j
qi
pj,k(t− s)ds,

see for example [7]. Therefore, ∀i, k ∈ X

(2.30) pi,k(t) ≥
∑
j 6=i

∫ t

0

exp(−qi(t− s))qi,jpj,k(s)ds+ δi,k exp(−qit).

Since the equality in (2.30) is an integral form of the equation (2.28), if the semi-

group {P (t)} satisfies the Backward Kolmogorov Equations, then ∀t0 > 0 with

probability 1, the first discontinuity of X(t) following t0 is a jump.

With the help of (2.23) we get

pi,j(t+ h)− pi,j(t) =
∑
k∈X pi,k(t)pk,j(h)− pi,j(t)

= pi,j(t)(pj,j(h)− 1) +
∑
k 6=j pi,k(t)pk,j(h)

and

(2.31)
pi,j(t+ h)− pi,j(t)

h
= pi,j(t)

pj,j(h)− 1

h
+
∑
k 6=j

pi,k(t)
pk,j(h)

h
.

It follows from (2.31) and Fatou’s lemma

lim inf
h→0

pi,j(t+ h)− pi,j(t)
h

≥ −pi,j(t)qj +
∑
k 6=j

pi,k(t)qk,j .

We have seen that ∀t > 0 and i, j ∈ X the term p
(1)
i,j (t) exits when the generator A

is stable and conservative. Therefore

(2.32) p
(1)
i,j (t) ≥ −pi,j(t)qj +

∑
k 6=j

pi,k(t)qk,j

The following theorem gives us conditions under which there is equality in (2.32).

For more details of the proof see [4].

Theorem 2.33. Let A be a conservative and stable generator. Suppose that ∀i ∈ X
and ∀t ≥ 0 ∑

k∈X
pi,k(t)qk <∞.

Then the Forward Kolmogorov equations

(2.34) p
(1)
i,j (t) = −pi,j(t)qj +

∑
k 6=j

pi,k(t)qk,j

are satisfied.

Proof.
pk,j(h)

h
≤ 1− pk,k(h)

h
≤ qk
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Hence, ∀t > 0

pi,k(t)
pk,j(h)

h
≤ pi,k(t)qk.

Since
∑
k 6=j pi,k(t)qk <∞, by the dominated convergence theorem

lim
h→0

∑
k 6=j

pi,k(t)
pk,j(h)

h
=
∑
k 6=j

pi,k(t) lim
h→0

pk,j(h)

h
=
∑
k 6=j

pi,k(t)qk,j .

Using (2.31) and the above equality we get the Forward Kolmogorov equation. �

Now we are going to find and integral form for a semigroup (with stable and

conservative generator) that satisfies the Forward Kolmogorov Equations and the

strong hypothesis ∑
k∈X

qk <∞.

Let

b(t) =
∑
k 6=j

pi,k(t)qk,j .

Observe that ∀t > 0, the product pi,k(t)qk,j ≤ qk,j ≤ qk. Since
∑
k 6=j qk < ∞, it

follows by the dominated convergence theorem and the continuity of the semigroup

lim
h→0

b(t+ h) =
∑
k 6=j

lim
h→0

pi,k(t+ h)qk,j = b(t),

i.e., b is a continuous function.

We can write the Forward Kolmogorov equations as follows

p
(1)
i,j (t) = −qjpi,j(t) + b(t),

and by the variation of parameters formula

pi,j(t) = δi,j exp(−qit) +

∫ t

0

∑
k 6=j

pi,k(t− s)qk,j

 exp(−qjs)ds.

If φ : R+
0 × (N \ {j})→ [0, 1] is given by

φ(t, k) = pi,k(t),

then φ−1((a, b]) =
⋃
k∈(N\{j}) p

−1
i,k ((a, b])× {k} ∈ B(R+

0 )× P(N \ {j}), because

∀k ∈ N \ {j} the term pi,k is a continous function. Using Tonelli’s theorem we get

(2.35) pi,j(t) = δi,j exp(−qit) +
∑
k 6=j

∫ t

0

pi,k(t− s)qk,j exp(−qjs)ds.

As Doob showed in [7], the probabilistic meaning of (2.35) is that ∀t > 0, the last

discontinuity of the continuous-time HMC is a jump with probability 1. Therefore,

the semigroup satisfies the Forward Kolmogorov equations if and only if ∀t >
0 the last discontinuity of the associated continuous-time HMC is a jump with

probability 1. Hence, if the semigroup satisfies the Forward Kolmogorov equations,
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the associated continuous-time HMC is regular.

In the following section, we are going to show Gillespie’s proof that the semigroup

of the reaction jump process satisfies the Chemical Master Equation, which is the

name given to the corresponding Forward Kolmogorov Equation. This ensures that

every reaction jump process must be regular, whether X is finite or infinite.

2.5. Chemical Master Equation(CME). We start this section analysing the

Forward Kolmogorov Equations, also known as Chemical Master Equation, for the

reaction system of n reactions and m species. Since we are supposing that the space

of states X ⊂ Nm is finite, Theorem 2.33 implies that the chemical system satisfies

these equations. Let x0, x ∈ X and define

P (x, t|x0, t0) := P(X(t) = x|X(t0) = x0).

Then, the CME is given by

dP (x, t|x0, t0)

dt
= A(x, x)P (x, t|x0, t0) +

∑
y 6=x

A(y, x)P (y, t|x0, t0),

where A is given by (2.11), (2.12) and (2.13). Therefore

(2.36)
dP (x, t|x0, t0)

dt
=

n∑
j=1

[αj(x− v[j])P (x− v[j], t|x0, t0)− αj(x)P (x, t|x0, t0)].

Observe that the previous derivation of the CME lacks a proper chemical interpre-

tation, which is a problem when we are working in applications. In order to solve

this problem, we are going to show the proof, given by Gillespie, that the reaction

system satisfies (2.36); suppose that at time t0 the system is in x0. Let

Px0,t0(∗) := P(∗|X(t0) = x0)

be the conditional probability to the event {X(t0) = x0} and let E be the event

E := {X(t+ dt) = x},

where is (t, t+dt] such that the probability that more than one reaction takes place

in this interval is o(dt) (See Assumption 2.19). Thus we can take dt such that at

most one reaction can take place over (t, t+dt]. Now, notice that to be in the state

x at time t+dt, there are only two basic scenarios for time t; either the system was

already in the state x at time t and no reaction took place over (t, t + dt], or for

some 1 ≤ j ≤ n the system was in the state x− v[j] at time t and the jth reaction

fired over [t, t+ dt), thereby bringing the system into state x. Define

H0 := {X(t) = x},

for 1 ≤ j ≤ n
Hj := {X(t) = x− v[j]}
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and

Hn+1 := {X(t) = y : y 6= x− v[j], 1 ≤ j ≤ n}.

Since {H0, H1, . . . ,Hn, Hn+1} is a partition of the probability space, then

P (x, t+ dt|x0, t0) = Px0,t0(E) =

n+1∑
j=0

Px0,t0(E|Hj)Px0,t0(Hj),

where Px0,t0(H0) = P (x, t|x0, t0), Px0,t0(Hj) = P (x− v[j], t|x0, t0) with 1 ≤ j ≤ n.

By the Markov property of the reaction chain {X(t)} and the fundamental hypoth-

esis, for 1 ≤ j ≤ n

Px0,t0(E|Hj) = P (x, t+ dt|x− v[j], t) = αj(x− v[j])dt,

Px0,t0(E|H0) = P (x, t+ dt|x, t) = 1− (
n∑
j=1

αj(x))dt+ o(dt)

and

Px0,t0(E|Hn+1) = P(X(t+ dt) = x|{X(t) = y : y 6= x− v[j], 1 ≤ j ≤ n}) = o(dt).

Therefore
P (x,t+dt|x0,t0)−P (x,t|x0,t0)

dt

= (
∑n
j=1 αj(x− v[j])P (x− v[j], t|x0, t0))− (

∑n
j=1 αj(x))P (x, t|x0, t0) + o(dt)

dt

and
limdt↓0

P (x,t+dt|x0,t0)−P (x,t|x0,t0)
dt

=
∑n
j=1[αj(x− v[j])P (x− v[j], t|x0, t0))− αj(x)P (x, t|x0, t0)].

Note that dP (x,t|x0,t0)
dt exits because the genarator A, of the reaction chain, is stable

and conservative. Then

dP (x, t|x0, t0)

dt
=

n∑
j=1

[αj(x− v[j])P (x− v[j], t|x0, t0))− αj(x)P (x, t|x0, t0)].

Observe that this proof of the CME only uses the Fundamental Hypothesis. Thus,

in the hypothetical case where the space of states of the reaction system is infinite,

the corresponding semigroup satisfies the Forward Kolmogorov Equations which

implies that the reaction process is a regular continuous-time HMC.

Define πx(t) = P(X(t) = x) for t ∈ [0,∞) and x ∈ X. Consider an initial dis-

tribution πx(0) = P(X(0) = x) for the reaction jump process. Then, ∀t ≥ 0

π(t)T = π(0)TP (t) and from the CME ∀x ∈ X

(2.37)
d

dt
πx(t) =

n∑
j=1

[αj(x− v[j])πx−v[j](t)− αj(x)πx(t)],

or in matrix representation

(2.38)
d

dt
π(t) = ATπ(t).



21

Proposition 2.39. π is a stationary signed measure of {P (t)} if and only if π is

an equilibrium point of (2.38).

Proof. Suppose that π is a stationary signed measure of {P (t)}, that is π = πTP (t).

Then, 0 = πTP ′(t) = πTAP (t). If t ↓ 0, then 0 = πTA.

Let π be an equilibrium point of (2.38) and define ∀t ≥ 0 π(t)T = πTP (t); then,

d

dt
π(t)T = πTP ′(t) = πTAP (t) = 0.

Since P (0) = I, π = πTP (t). �

For obvious reasons, we are interested in those equilibrium points that are posi-

tive. Zeron and Santillan have shown that (2.38) have at least one stable nonzero

stationary probability distribution and, whenever the reaction jump process is ir-

reducible, this probability distribution is unique and asymptotically stable, see for

example [19]. Now consider the embedded chain {Xn} of an irreducible reaction

jump process; if π is the only stationary probability distribution of the process,

then µ defined ∀x ∈ X as

µ(x) :=
π(x)αsum(x)

C
is a stationary distribution of the embedded chain, where C =

∑
x∈X π(x)αsum(x).

Moreover, the following proposition implies that is unique µ. This result can be

found in [4].

Proposition 2.40. Let {Xn} be an irreducible HMC with transition matrix P. If

{Xn} has a stationary probability distribution, then {Xn} is recurrent.

Proof. Let π be a stationary probability distribution (πT = πTP ). Then, ∀n ∈ N
πT = πTPn and for all state of the chain j, π(j) =

∑
i π(i)pi,j(n). If some state j

is transient, then
∑
n χ{Xn=j} < ∞ a.s. It follows that limn→∞ χ{Xn=j} = 0 a.s.

and by the dominated convergence theorem (χ{Xn=j} ≤ 1)

lim
n→∞

pi,j(n) = lim
n→∞

Ei[χ{Xn=j}] = Ei[ lim
n→∞

χ{Xn=j}] = 0.

Again by the dominated convergence theorem (π(i)pi,j(n) ≤ π(i) and
∑
i π(i) = 1)

π(j) = lim
n→∞

∑
i

π(i)pi,j(n) =
∑
i

π(i) lim
n→∞

pi,j(n) = 0.

Since the chain is irreducible every state is transient which implies that π = 0 and

this can not happen �

Example 2.41. (Irreducible reaction jump process) Consider the reaction system

of binding and unbiding

R1 : X + Y
κ1−→ Z; R2 : Z

κ2−→ X + Y.

Suppose that at time 0 the system is in the state (x0, y0, 0)T , where x0 and y0 are

the number of molecules of X and Y , respectively. Then the space of states is given
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by

X = {(x0 − b, y0 − b, b)T : 0 ≤ b ≤ min(x0, y0)}.

Let 0 ≤ c < b ≤ min(x0, y0) and x̂b = (x0−b, y0−b, b)T , x̂c = (x0−c, y0−c, c)T .

Observe x̂c = x̂b + (b− c)v[2] and x̂b = x̂c + (b− c)v[1]; that is we can go from x̂b

to x̂c in b− c reactions of type R2 and from x̂c to x̂b in b− c reactions of type R1:

x̂b
R2−→ x̂b + v[2]

R2−→ . . .
R2−→ x̂b + (b− c− 1)v[2]

R2−→ x̂c,

x̂c
R1−→ x̂c + v[1]

R1−→ . . .
R1−→ x̂c + (b− c− 1)v[1]

R1−→ x̂b.

If {Xn} is the embedded HMC of the reaction jump process, then

P(Xb−c = x̂c|X0 = x̂b)

≥ P(X1 = x̂b + v[2], . . . , Xb−c−1 = x̂b + (b− c− 1)v[2], Xb−c = x̂c|X0 = x̂b)

= P(X1 = x̂b + v[2]||X0 = x̂b) . . .P(Xb−c = x̂c|Xb−c−1 = x̂b + (b− c− 1)v[2])

=
∏b−c−1
k=0

α2(x̂b+kv[2])
αsum(x̂b+kv[2]) > 0,

and

P(Xb−c = x̂b|X0 = x̂c) =
∏b−c−1
k=0

α2(x̂c+kv[1])
αsum(x̂c+kv[1]) > 0.

Thus the embedded chain is irreducible, which implies that the jump process is

irreducible.
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3. Chemicals Reactions with Delays

In Chapter 2 we introduced and modeled the chemical reaction where one mol-

ecule of gaseous hydrogen and one molecule of gaseous fluorine react to form two

molecules of hydrogen fluoride:

H2 + F2 −→ 2HF.

Although, for practical reasons, this reaction is thought to happen instantaneously,

the reality is that the molecules of H2 and F2 firstly form an excited complex,

denoted by (H2F2)∗, and then this complex decomposes into two molecules of HF

after a short period of time (see for example [18] and [11]). Therefore, the reaction

of gaseous hydrogen and gaseous fluorine can be written more properly as follows

(3.1)
H2 + F2

κ−→ (H2F2)∗

(H2F2)∗
d

=⇒ 2HF,

where
d

=⇒ denotes a physical transition that takes d units of time. Together the

chemical reaction

H2 + F2
κ−→ (H2F2)∗,

and the pyshical transition

(H2F2)∗
d

=⇒ 2HF,

are called a chemical reaction with delay; and this will be our general scheme.

Thus, consider a chemical system of m chemical species S1, . . . , Sm and space of

states X ⊂ Nm0 ; then a chemical reaction with delay Rde, that produces an excited

complex Z, is represented by stoichiometric equations of the form:

(3.2)
s1S1 + · · ·+ smSm

κde−→ s′1S1 + · · ·+ s′mSm + Z

Z
d

=⇒ s′′1S1 + · · ·+ s′′mSm,

with stoichiometric coefficients sj , s
′
j and s′′j in N0. Note that in (3.2) is implicit

the fact that we are making a distinction between the chemical species S1, . . . , Sm

and the excited complex Z. Now Rde introduces two stoichiometric vectors given

by

ω1 := (s′1−s1, . . . , s
′
m−sm)T

and

ω2 := (s′′1 , . . . , s
′′
m)T .

Therefore, following the ideas presented in Section 2.1 we can write Rde as

Rde :

x
κde−→ x+ ω1

Z
d

=⇒ ω2
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for each x ∈ X such that x+ω1 ∈ X. In the same way that every chemical reaction

has its own propensity function, the chemical reaction part of Rde

s1S1 + · · ·+ smSm
κde−→ s′1S1 + · · ·+ s′mSm + Z

also has his own propensity function αde, which satisfies (2.5) and (2.7). Hence,

Rde is characterized by four parameters: the time of the physical transition d, the

two stoichiometric vectors ω1, ω2 and the propensity function αde of the chemical

reaction part of Rde. For example, consider again the delay reaction

H2 + F2
κ−→ (H2F2)∗

(H2F2)∗
d

=⇒ 2HF.

In this example ω1 = (−1,−1, 0)T , ω2 = (0, 0, 2)T and

α(x1, x2, x3) = κx1x2,

where x1, x2 and x3 are the number of molecules of H2, F2 and HF, respectively.

Hence, this reaction can be written asx
κ−→ x+ (−1,−1, 0)T

(H2F2)∗ =⇒ (0, 0, 2)T .

Example 3.3. (Binding and Unbiding Reaction with Delay) Consider the reaction

system with chemical species X,Y and one complex Z; moreover, add a chemical

reaction with delay composed by a normal R1 and a physical transition T with delay

d

R1 : X + Y
κ1−→ Z; T : Z

d
=⇒ X + Y.

Together, R1 and T constitute a Reaction with Delay

Rde = Rde(d, ω1, ω2, αde),

where ω1 = (−1,−1), ω2 = (1, 1), and αde : X→ R+ is given by αde(x, y) = κ1xy.

If the initial number of molecules of X and Y are x0 and y0 (x0 < y0), respectively,

then

X = {(x0, y0)T , (x0 − 1, y0 − 1), . . . , (0, y0 − x0)T }.

Hence x
κ1−→ x+ (−1,−1)T

Z
d

=⇒ (1, 1)T .

3.1. Reaction Jump Process of a Chemical System with one Delayed

Reaction. Now that we have an interpretation of what a chemical reaction with

delay is, and we also have a proper form to model it, the following question is: how

can we represent the dynamics of a chemical system with one delayed reaction?

As we saw in Chapter 2, the reaction jump process of a chemical system (which

does not include reactions with delay) is a regular continuous-time HMC. In the
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next section, we will see that this is no longer the case when the chemical system

includes at least one reaction with delay. Then, how can we handle the problem?

To answer this question, we recall the work done in the first Chapter of this thesis.

In Section 2.3 we saw that a path representation of the reaction jump process can

be given in terms of unit-rate Poisson processes.

Consider a chemical system of m chemical species S1, . . . , Sm and a set of reactions

{R1, . . . ,Rn} with propensities functions {α1, . . . , αn} and stoichiometric vectors

{v1, . . . , vn}. Suppose that we know how the reaction jump process (X(s)) is given

in the time [0, t). Then the dynamics of X(t) can be described as

(3.4) X(t) = X(0) +

n∑
k=1

Uk
(∫ t

0

αk(X(s))ds

)
v[k],

where Uk(
∫ t

0
αk(X(s))ds) is the number of times that the reaction Rk happens

inside the time interval [0, t], and the U ′ks are independent unit rate Poisson process.

Now let {ti} be the sequence of events of the counting process{
n∑
k=1

Uk
(∫ t

0

αk(X(s))ds

)}
;

thus ∀ω ∈ Ω, ti(ω) is the first time the function

t→
n∑
k=1

Uk
(∫ t

0

αk(X(s, ω))ds, ω

)
is equal to i.

Observe that we can interpret ti as the time where the ith reaction occurs; also

note that ∀i the chemical system can not produce reactions in the time interval

(ti, ti+1). From {ti} ∪ {∞} we can subtract a subsequence {tk,j}j , where ∀ω ∈ Ω,

if tk,j(ω) 6=∞, then tk,j(ω) is the first time the function

t→ Uk
(∫ t

0

αk(X(s, ω))ds, ω

)
is equal to j.

that is, given the event {tk,j 6= ∞}, tk,j is the time where the jth reaction of the

type Rk occurs and the chemical system can not produce reactions of the type Rk
in the time interval (tk,j , tk,j+1). It is important to note that the event

{αk(X(s)) = 0 : ∀s ∈ [ti,∞)}

may have probability greater than 0; then ∀ω ∈ {αk(X(s)) = 0 : ∀s ∈ [ti,∞)},

tk,j(ω) =∞ ∀j > Uk

(∫ ti(ω)

0

αk(X(s, ω))ds, ω

)
.

Now suppose that this chemical system also induces a reaction with delay

Rde = Rde(d, ω1, ω2, αde)
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Rde :

x
κde→ x+ ω1,

Z
d

=⇒ ω2,

where αde is the propensity function of the chemical reaction part x
κde→ x + ω1 of

Rde.
Note that a normal chemical reaction Rk will change instantaneously the stoi-

chiometry of the chemical system, but a reaction with delay Rde will change the

stoichiometry of the system in two times: the first one occurs instantaneously when

the chemical reaction part x → x+ω1 of Rde occurs, and the second one occurs d

units of time after the first one happened when the complex Z decomposes. Then,

we are interested in giving a description of the reaction jump process ({Y (s)}) of

this chemical system that can handle the changes in the stoichiometry of the system

due to the decompositions of the complexes Z. Using (3.4) we can solve the problem

due to stoichiometric changes that normal reactions induce. Since the first change

that Rde induces in the stoichiometry of the system is due to the normal reaction

x
κde→ x+ω1, we can think that the dynamic of the chemical system at time t (given

Y (s) ∀s ∈ [0, t)) is

Y (t) = Y (0) +

(
n∑
k=1

Uk
(∫ t

0

αk(Y (s))ds

)
v[k]

)
+ Ude

(∫ t

0

αde(Y (s))ds

)
ω1 + β(t)

where Ude is a unit-rate Poisson process that is independent of {Uk : 1 ≤ k ≤ n}
and β(t) manage the stoichiometric changes (in the time interval [0, t]) due to the

decompositions of complexes Z. We can infer that β(t) will be a function of the

number of complexes Z that have decomposed in the time interval [0, t] and the

stoichimetric vector ω2. Every time a reaction x
κde→ x+ω1 occurs a new complex Z

is formed; therefore information about the counting process{
Ude

(∫ t

0

αde(Y (s))ds

)}
,

can give us information about the times when the complexes Z will decompose. Let

us be more precise; consider the sequence of events {t̂de.j}j of the counting process{
Ude

(∫ t

0

αde(Y (s))ds

)}
.

Given the event {t̂de,1 < ∞} (at least one delayed reaction Rde occurs), then the

first molecule of Z is formed at time t̂de,1, and at time t̂de,1+d this first complex will

decompose (Z
d

=⇒ ω2). It is clear then that if the event {t̂de,1 < ∞, . . . , t̂de,j <
∞} occurs (at least j delayed reactions Rde have occurred), for 1 ≤ i ≤ j, the

ith complex Z is formed at time t̂de,i, and at time t̂de,i+d this ith complex will

decompose (Z
d

=⇒ ω2). Therefore, the sequence of times at which the complexes
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will decompose is {t̂de,j+d}j , which has counting process given by{
Ude

(∫ t−d

0

αde(Y (s))ds

)}
,

because the following events are equal{
Ude

(∫ t

0

αde(Y (s))ds

)
= j

}
= {t̂de,j ≤ t−d < t̂de,j+1} = {t̂de,j+d ≤ t < t̂de,j+1+d}.

Therefore, the reaction jump process of a chemical system with m chemical species,

n chemical reactions and one reaction with delay can be written as

(3.5)
Y (t) = Y (0) +

∑n
k=1 Uk

(∫ t
0
αk(Y (s))ds

)
v[k]

+Ude
(∫ t

0
αde(Y (s))ds

)
ω1 + Ude

(∫ t−d
0

αde(Y (s))ds
)
ω2

Let ? ∈ {1, . . . , n, de}. Since every unit-rate Poisson process {U?(u)}u≥0} is of the

form

U?(u) =

∞∑
j=0

jχ[S?,j ,S?,j+1)(u),

where {S?,j}j is the sequence of events of U? with S?,0 = 0, then every possible

solution of (3.5) has to be of the form

(3.6) Y (t) =

∞∑
j=0

Yjχ[t̂j ,t̂j+1)(t)

where t̂0 = 0 and for all j ∈ N0 Yj+1 = Yj+w with w ∈ {v1, . . . , vn, ω1, ω2} and

{t̂j} are the times where any stoichiometric change happens.

In chapter 3 we are going to introduce Anderson-Kurtz’s algorithm for this type of

chemical systems, which give us a way to simulate {t̂j}j and {Yj}, and we are going

to compare this algorithm with Barrio’s SSAD which is the standard tool used to

simulate a chemical system with delays.

Example 3.7. (Reaction Jump Process for the Binding and Unbinding Reaction

with Delay) Consider the reaction system with chemical species X,Y, and one exited

complex Z, one reaction R1, and a physical transition T with delay d

R1 : X + Y
κ1−→ Z; T : Z

d
=⇒ X + Y.

If the initial number of molecules of X and Y are x0 and y0 (x0 ≤ y0), then the

reaction jump process is given by(
x(t)

y(t)

)
=

(
x0

y0

)
+U1

(
κ1

∫ t

0

x(s)y(s)ds

)(
−1

−1

)
+U1

(
κ1

∫ t−d

0

x(s)y(s)ds

)(
1

1

)
3.2. A Semi-Markov Chemical Reaction System. Consider the reaction sys-

tem of example (3.3); that is one reaction R1 and a physical transition T with delay

d

R1 : X + Y
κ1−→ Z; T : Z

d
=⇒ X + Y,
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and initial state (1, y0)T with y0 ∈ N. Since at time 0 there are no molecules of

complex Z, the first step of the chemical system is dictated by the chemical reaction

R1; then, at time τ1 ∼ exp(κ1y0) the system moves instantaneously from (1, y0)T

to (0, y0−1)T , and at the same time, the first excited complex Z is produced. Note

that in the time interval [τ1, τ1+d) the only molecule of X is binding with one

molecule of Y, which implies that ∀ s ∈ [τ1, τ1+d) (x(s), y(s))T=(0, y0−1)T ; thus

the propensity of reaction R1 is equal to zero ∀ s ∈ [τ1, τ1+d). A change in the

propensity function of R1 will occur at time τ1+d when the first excited molecule

Z decomposed in X and Y ; at this time the system moves instantaneously from

(0, y0−1)T to (1, y0)T and the propensity of R1 at time t1+d is equal to κ1y0. At

this point, there are no exited complex Z in the system, and the dynamics of the

system is dictated again by R1.

Hence, if we let T0=0, T1=T0+(τ1+d), T2=T1+(τ2+d), . . . , Tn=Tn−1+(τn+d), where

{τk} is a i.i.d. sequence with distribution exp(κ1y0); then we can write the reaction

jump process as

(3.8) (x(t), y(t))T=

(1, y0)T Tn ≤ t < Tn+1−d n ∈ N0,

(0, y0−1)T Tn+1−d ≤ t < Tn+1 n ∈ N0.

Note that {Tn} is the corresponding renewal process of {τn+d}, where we can

interpret Tn as the time where the nth excited complex Z decomposed or the time

where the nth reaction with delay has finished. Also, note that (3.8) define a Semi-

Markov process because the probability that the system moves from (0, y0−1)T to

(1, y0)T follows a Dirac distribution centered on d.

In order to show that Anderson-Kurtz’s equation for this chemical system

(3.9)(
x(t)

y(t)

)
=

(
1

y0

)
+U1

(∫ t

0

κ1(xy)(s)ds

)(
−1

−1

)
+U1

(∫ t−d

0

κ1(xy)(s)ds

)(
1

1

)
is equivalent to (3.8), we must solve this equation. Since the unit-rate Poisson

process

{U1(u)}u≥0

is of the form

U1(u) =

∞∑
j=0

jχ[Sj ,Sj+1)(u),

where {Sj} is the sequence of time events of U1 and S0=0, then every possible

solution of (3.9) has to be of the form(
x(t)

y(t)

)
=

∞∑
j=0

(
xj

yj

)
χ[t̂j ,t̂j+1)(t)
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where for j ≥ 0 the vector (xj+1, yj+1)T = (xj , yj)
T+v with

v ∈ {(1, 1)T , (−1,−1)T }

and {t̂j}∞j=0 are the times where any stoichiometric change happens; and we set

t̂0=0.

Now we are going to solve explicitly (3.9) by constructing the sequences {t̂j}∞j=0

and {(xj , yj)T }j≥0. Note that (xy)(0) = y0, because of the initial conditions, so

that (xy)(s)=y0 ∀s ∈ [0, t̂1). Now then t̂1 must satisfy by definition∫ t̂1

0

κ1(xy)(s)ds = S1,

and

t̂1 =
S1

κ1y0

which implies that t̂1 ∼ exp(κ1y0). Observe that after substituting t = t̂1 in (3.9)

we obtain(
x(t̂1)

y(t̂1)

)
=

(
1

y0

)
+U1 (S1)

(
−1

−1

)
+U1 (S1 − dκ1y0)

(
1

1

)
=

(
0

y0−1

)
so that (xy)(t̂1) = 0, the same identity (xy)(t) = 0 happens for all t ≥ t̂1 until the

integral ∫ t−d

0

κ1(xy)(s)ds

in the last term of (3.9) is equal to the event S1. Since (xy)(s) = y0 ∀s ∈ [0, t̂1),

then ∫ t−d

0

κ1(xy)(s)ds =

0 if t < d,

κ1y0(t−d) if d ≤ t ≤ t̂1+d.

and so (3.9) rewrites as follows ∀t ∈ [t̂1, t̂1+d)

(3.10)(
x(t)

y(t)

)
=

(
1

y0

)
+U1

(∫ t
0
κ1(xy)(s)ds

)(−1

−1

)
+U1

(∫ t−d
0

κ1(xy)(s)ds
)(1

1

)

=

(
1

y0

)
+U1 (S1)

(
−1

−1

)
+U1 (S1 − dκ1y0)

(
1

1

)
=

(
0

y0−1

)
.

This equation is consistent because

(xy)(s) =

y0 if s ∈ [0, t̂1),

0 if s ∈ [t̂1, t̂1+d).

Moreover, substituting t=t̂1+d into (3.9) and (3.10) yields(
x(t̂1+d)

y(t̂1+d)

)
=

(
1

y0

)
+U1 (S1)

(
−1

−1

)
+U1 (S1)

(
1

1

)
=

(
1

y0

)
,
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because U1(S1) = 1.

So that (xy)(t̂2) = y0 for the second stoichiometric time change t̂2 = t̂1+d, the

same identity (xy)(t) = y0 holds for all t ≥ t̂2 until the integral∫ t

0

κ1(xy)(s)ds

is equal to the second time event S2. If we continue with this process, then we can

rewrite (3.9) as

(x(t), y(t))T=

(1, y0)T t̂2n ≤ t < t̂2n+1 n ∈ N0,

(0, y0−1)T t̂2n+1 ≤ t < t̂2(n+1) n ∈ N0.

where ∀n ∈ N0 t̂2n+1−t̂2n ∼ exp(κ1y0) independent of t̂1, . . . , t̂2n and

t̂2(n+1) = t̂2n+1+d.

Therefore, Anderson-Kurtz’s representation (3.9) is equivalent to (3.8) after setting

t̂2n=Tn and t̂2n+1=Tn+1−d.
We present and analyze now a second representation of the process (3.8). Let

{N([0, t])} be the counting process for Tn (see (3.8)). Since Tn+d < Tn+1 a.s., then

(3.8) can be written a.s. as(
x(t)

y(t)

)
=

(
1

y0

)
+N([0, t+d])

(
−1

−1

)
+N([0, t])

(
1

1

)
.

In particular,

x(t) = 1−N([0, t+d]) +N([0, t])

and

P(x(t) = 1) = 1− E[N([0, t+d])] + E[N([0, t])]

because E[x(t)] = P(x(t) = 1). By Blackwell’s theorem

limt→∞ P(x(t) = 1)

= 1− limt→∞(E[N([0, t+d])]− E[N([0, t])])

= 1− d
E[τ1+d]

= 1− d
1

κ1y0
+d

= 1− κ1y0d
1+κ1y0d

= 1
1+κ1y0d

.

Then the steady state probabilities of finding the single molecule of X and the

single molecule of complex Z

p∞(X) := lim
t→∞

P(x(t)=1),

p∞(Z) := lim
t→∞

P(x(t)=0),

respectively, satisfies the following identity



31

(3.11) p∞(X) =
1

1+κ1y0d
, p∞(Z) =

κ1y0d

1+κ1y0d
.

Now that we have a clear characterization of the reaction jump process as a

Semi-Markov process (see (3.8)), we can analyze the distribution of (x(t), y(t))T ;

from (3.8) we can write

P((x(t), y(t))T = (1, y0)T ) =

∞∑
k=0

P(Tk ≤ t < Tk+1−d).

which turns our question to calculate P(Tk ≤ t < Tk+1−d). For k = 0, the result

is clear, but what about k ≥ 1? First of all, suppose that all the random variables

above has probability space (Ω,F ,P) and remember that

Tk+1−d = Tk+τk+1,

where Tk and τk+1 are independent. For fixed t > 0, let D be the set

D={(x, y) ∈ R2 : 0 < y ≤ t < x+y}.

Then
P(Tk ≤ t < Tk+τk+1)

=
∫

Ω
χD(τk+1, Tk)dP

=
∫
R2 χD(x, y)d(P ◦ (τk+1, Tk)−1)(x, y)

=
∫
R
(∫

R χD(x, y)d(P ◦ τ−1
k+1)(x)

)
d(P ◦ T−1

k )(y)

=
∫ t

0

(∫∞
t−y d(P ◦ τ−1

k+1)(x)
)
d(P ◦ T−1

k )(y)

=
∫ t

0
(P(τk+1 > t−y)) d(P ◦ T−1

k )(y)

=
∫ t

0
(exp(−κ1y0(t−y))) d(P ◦ T−1

k )(y).

Therefore

P((x(t), y(t))T=(1, y0)T )

= exp(−κ1y0t)+
∑∞
k=1

∫
(0,t]

exp(−κ1(t−y))(dP ◦ T−1
k )(y).

The last equality shows how complicated it can be to compute the distributions

of the jump process, since we need for each k ∈ N the kth convolution of the

distribution function of τ1+d.
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4. Simulation of the Reaction Jump Process

In this chapter, we introduce Doob-Gillespie’s Stochastic Simulation Algorithm

(SSA), which is the basic tool for simulating the reaction jump process of a chem-

ical system (without delayed reactions). As we are going to see, Doob-Gillespie’s

SSA is an implementation of the construction for the reaction jump process given

in Section 2.2; therefore, we can give an interpretation to Doob-Gillespie’s SSA in

terms of a competition between reactions.

Thus, we consider the Anderson-Kurtz’s equation for the chemical system {R1, . . . ,Rn}

X(t) = X0 +

n∑
j=1

Uj
(∫ t

0

αj(X(s))ds

)
v[j].

Following this equation and the solutions that generate, we obtain Anderson and

Kurtz SSA. A natural question arises: Is Anderson and Kurtz SSA equivalent to

Doob-Gillespie algorithm? The answer to this question is affirmative, and we in-

troduce an elementary proof in this chapter.

4.1. Doob-Gillespie Stochastic Simulation Algorithm (SSA). Consider a

reaction system of n reactions R1, . . . ,Rn and m chemical species S1, . . . , Sm. As

we saw in Section 2.2, if the chemical system satisfies the fundamental hypothesis,

then the dynamics of the system can be modeled as a continuous-time regular HMC

{X(t)}t≥0 which satisfies

(4.1) X(t) =

∞∑
j=0

Xjχ[tj ,tj+1)(t),

where t0=0, for all j ∈ N0 Xj+1=Xj+w with w ∈ {v[1], . . . , v[n]} and {tj}j are the

times when a reaction occurs. These times satisfy

tj+1−tj ∼ exp

(
n∑
k=1

αk(xj)

)
independent of t0, . . . , tj given that we know x0, . . . , xj .

Doob-Gillespie SSA is only an implementation of (4.1). For example, if X(0) = x0,

we simulate τ1 ∼ exp (
∑n
k=1 αk(x0)) and J1, where

P(J1 = j1|X(0) = x0) =
αj1(x0)∑n
k=1 αk(x0)

and J1, τ1 are independent given the event {X(0) = x0}. We set t1 = τ1, and

if J1=j1, x1=x0+v[j1]. At this point we generate τ2 ∼ exp (
∑n
k=1 αk(x1)) and J2

where

P(J2 = j2|X(0) = x0, J1 = j1) =
αj2(x1)∑n
k=1 αk(x1)

.
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and τ2, J2 are P(·|X(0)=x0, J1=j1)-independent. We set t2=t1+τ2 and x2=x1+vj2 .

We continue with this process until the time reaches some time tmax. The following

lemmas will help us to simulate τ and J.

Lemma 4.2. If u ∼ U(0, 1) and λ > 0, then − ln(u)
λ ∼ exp(λ)

Proof. Let a > 0; then

P
(
a < − ln(u)

λ

)
= P(−λa > ln(u))

= P(exp(−λa) > u)

= exp(−λa)

�

Lemma 4.3. Let λ1, . . . , λk be positive real numbers and let u ∼ U(0, 1). Define

I := min

{
1 ≤ i ≤ k :

∑i−1
j=1 λj∑k
j=1 λj

≤ u <
∑i
j=1 λj∑k
j=1 λj

}
.

Then P(I = i) = λi∑k
j=1 λj

.

The resulting algorithm can be summarized very simply in the following pseu-

docode, where an initial state X(0) is given:

Algorithm 4.4. (Doob-Gillespie SSA)

(1) Initialization. Set x← x0, t← 0

(2) Calculate α1(x), . . . , αn(x) and set

α← (α1(x), . . . , αn(x)).

(3) Generate two independent random varibles τ ∼ exp (
∑n
k=1 αk) and

u1 ∼ U(0, 1).

(4) Set j to be the smallest integer satisfying

j−1∑
k=1

αk ≤ u1

∑
k

αk <

j∑
k=1

αk.

(5) Update x← x+ v[j] and update t← t+ τ

(6) Return to step 2.

Since Doob-Gillespie SSA is a clear consequence of (4.1), and (4.1) is a progres-

sively measurable process, we can conclude that Doob-Gillespie SSA preserve the

measurability of the reaction jump process.

Now we are interested in giving an interpretation of Algorithm 4.4 as a competition

between the chemical reactions in the chemical system. Suppose that at time t the

system satisfies X(t) = x. Following the construction given in Section 2.2 we need
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to consider the set of independent HPP{
Nx,x+v[k] : ∀ 1 ≤ k ≤ n Nx,x+v[k] has intensity αk(x)

}
.

If for each 1 ≤ k ≤ n, we set T xk,1 as the first event time of Nx,x+v[k], then the event

“the next reaction is Rj” can be written as

{T xj,1 < T xl,1 : l 6= j}.

Since for each 1 ≤ k ≤ n, T xk,1 ∼ exp(αk(x)), and the {T xk,1}k are independent, the

event {T xj,1 < T xl,1 : l 6= j} is equal to{
T xj,1 = min{T xl,1 : ∀ 1 ≤ l ≤ n}

}
,

except for a set of zero probability. Let

(4.5) τ = min{T xk,1 : ∀ 1 ≤ k ≤ n}

and observe that we can interpret τ as the time until the next reaction, given that

the system is in state x. If J is the index where the minimum is reached, then J is

the type of reaction that occurs.

Now we are going to prove that τ and J have the same distributions as in Algorithm

4.4. We begin with a result known as The freezing lemma (see [2]).

Theorem 4.6. (The freezing lemma) Let (Ω,F ,P) be a probability space and G
and D independent sub-σ-algebras of F . Let X be a D-measurable random variable

taking values in the measurable space (E, E) and

Ψ : E × Ω→ R

an E × G-measurable function such that ω 7→ Ψ(X(ω), ω) is integrable. Then

E[Ψ(X, ·)|D] = Θ(X),

where Θ(x) = E[Ψ(x, ·)].

All the results in this thesis can be demonstrated in an elementary way but we

want to show how The freezing lemma can be used.

Lemma 4.7. Let i1, . . . , ik be in N and let Xi1 , . . . , Xik be k independent random

variables with distribution exp(λi1), . . . , exp(λik), respectively. If U = min{Xi1 , . . . , Xik},
then

U ∼ exp(λi1 + · · ·+ λik).

Proof. Take a ∈ [0,∞)

P(U > a)

= P(Xi1 > a, . . . ,Xik > a)

= P(Xi1 > a) · · ·P(Xik > a)

= exp(−λi1a) · · · exp(−λika)

= exp(−(λi1 + · · ·+ λik)a).
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�

Lemma 4.8. Let X1, . . . , Xn be n independent random variables with distribu-

tion exp(λ1), . . . , exp(λn), respectively, and well adapted to the probability space

(Ω,F ,P). Let Z = min{X1, . . . , Xn} and let J be such that Z = XJ . Then J and

Z are two independent random variables and satisfy: Z ∼ exp(λ1 + · · ·+ λn) and

P(J = i, Z > a) =
λi

λ1 + · · ·+ λn
exp(−(λ1 + · · ·+ λn)a).

Proof. Let U = min{Xj : j 6= i}; then P(J = i, Z > a) = P(a < Xi ≤ U). Now let

Ψ : (R)× Ω→ R be given by

Ψ(x, ω) :=

1 a < x ≤ U(ω),

0 i.o.c.

Note that if x ∈ R is fixed and a < x, then

{ω ∈ Ω : Ψ(x, ω) = 1} = {x ≤ U};

and if x ≤ a, {ω ∈ Ω : Ψ(x, ω) = 0} = Ω. Thus, in every case the function

ω → Ψ(x, ω) is σ(U)-measurable. Also note that for each ω, x → Ψ(x, ω) is

left continuous. Then Ψ is B(R) × σ(U)-measurable. Using the freezing lemma

(Theorem 4.6), the random variable ω → Ψ(Xi(ω), ω) satisfies

E[Ψ(Xi, ·)|Xi] = Θ(Xi),

where Θ(x) = E[Ψ(x, ·)], that is

Θ(x) =

P(x ≤ U) a < x,

0 x ≤ a.

Note

{a < Xi ≤ U} = {ω ∈ Ω : Ψ(Xi(ω), ω) = 1}.

Therefore
P(a < Xi ≤ U)

= P(Ψ(Xi, ·))
= E[Ψ(Xi, ·)]
= E[E[Ψ(Xi, ·)|Xi]]

= E[Θ(Xi)]

=
∫
R Θ(x)d(P ◦X−1

i (x))

=
∫∞
a

P(x ≤ U)λi exp(−λix)dx

=
∫∞
a

exp(−(
∑
j 6=i λj)x)λi exp(−λix)dx

=
∫∞
a

exp(−(
∑
j λj)x)λidx

= λi∑
j λj

exp(−(
∑
j λj)a).
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From Lemma 4.7 P(x ≤ U) = exp(−(
∑
j 6=i λj)x). Hence

(4.9) P(J = i, Z > a) =
λi

λ1 + · · ·+ λn
exp(−(λ1 + · · ·+ λn)a),

and by continuity of the measure

P(J = i)

= lima↓0 P(J = i, Z > a)

= lima↓0
λi

λ1+···+λn exp(−(λ1 + · · ·+ λn)a)

= λi
λ1+···+λn .

Therefore, ∀ 1 ≤ i ≤ n

(4.10) P(J = i) =
λi

λ1 + · · ·+ λn
.

Since Lemma 4.7 implies that Z ∼ exp(λ1 + · · · + λn), then equations (4.9) and

(4.10) imply that J and Z are independent. �

It follows from lemma (4.8) that τ and J as in (4.5) have the same distributions

as in Doob-Gillespie SSA (Algorithm 4.4). Also we can write Doob-Gillespie SSA

in the following way.

Algorithm 4.11. (Doob-Gillespie SSA Competitive version)

(1) Initialization. Set x← x0, t← 0

(2) Calculate α1(x), . . . , αn(x) and set

α← (α1(x), . . . , αn(x)).

(3) Generate n independent random varibles τ1, . . . , τn with τk ∼ exp (αk) .

(4) Set τ = min{τ1, . . . , τn}.
(5) Set K = {1 ≤ k ≤ n : τk = τ}
(6) Update x as

x← x+
∑
k∈K

v[k]

(7) Update t as t← t+ τ

(8) Return to step 2.

Note that K in (5) has cardinality |K| > 1 with probability zero.

Although Algorithm 4.11 has a clear interpretation as a competition between re-

actions, it is not as efficient as Algorithm 4.4 because every step of 4.11 needs to

generate n exponential and independent random variables, while 4.4 only generates

two independent random variables in each step.

Consider again the construction given in Section 2.2. Suppose that X(0) = x0; at

this point we model the competition between the reactions through a competition

of independent Poisson processes{
Nx0,x0+v[k] : ∀1 ≤ k ≤ n Nx0,x0+v[k] has intensity αk(x0)

}
.
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From Lemma 4.8 we know that the index of the first reaction J1 and the time until

the first reaction τ1 are independent, and we know their distributions.

Suppose that the event {X(0) = x0, J1 = j1} has positive probability. Set x1 =

x0+v[j1] and note that

{X(0) = x0, J1 = j1} = {X(0) = x0, X1 = x1}.

Given the event {X(0) = x0, J1 = j1} we consider a set of independent Poisson

processes{
Nx1,x1+v[k] : ∀ 1 ≤ k ≤ n Nx1,x1+v[k] has intensity αk(x1)

}
and independent of{

Nx0,x0+v[k] : ∀ 1 ≤ k ≤ n Nx0,x0+v[k] has intensity αk(x0)
}
.

If τ1= min{T x0

k,1 : 1 ≤ k ≤ n}, τ2= min{T x1

k,1 : 1 ≤ k ≤ n} (see 4.5) and J2 is as in

Lemma (4.8), then

τ1, τ2, J2 are P(·|X(0) = x0, J1 = j1)− independent.

Therefore, if we continue with this process, then given the event

{X(0) = x0, J1 = j1, . . . , Jq = jq} = {X(0) = x0, X1 = x1, . . . , Xq = xq}

the following sets of Poisson process are independent{{
Nxi,xi+v[k] : ∀1 ≤ k ≤ n Nxi,xi+v[k] has intensity αk(xi)

}
: 0 ≤ i ≤ q

}
.

This implies

Theorem 4.12. Let q ∈ N. Given the chemical reaction’s chain until time q

{X(0), J1 = j1, . . . , Jq = jq},

the times between chemical reactions and the index of the next reaction are inde-

pendent, that is

τ1, . . . , τq, Jq+1

are P(·|X(0), J1 = j1, . . . , Jq = jq)−independent

With this in mind we can rewrite Doob-Gillespie SSA in the following way

Algorithm 4.13. (Doob-Gillespie SSA Chemical Reaction’s Chain version)

(1) Initialization. Set x← x0, t← 0, step← 0, Nsteps← q and

Statemat← 0m×Nsteps+1.

(2) Update Statemat as Statemat(:, 1)← x

(3) Calculate α1(x), . . . , αn(x) and set

α← (α1(x), . . . , αn(x)).
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(4) Generate u ∼ U(0, 1). Set j to be the smallest integer satisfying

j−1∑
k=1

αk ≤ u
∑
k

αk <

j∑
k=1

αk.

(5) Update x← x+ v[j].

(6) Update step← step+1.

(7) Update Statemat as Statemat(:, step+1)← x.

(8) While step ≤ Nsteps Return to step (3). Otherwise go to step (9).

(9) Generate Nsteps+1 indepedent random variables τ1, . . . , τNsteps+1 such that

τi ∼ exp(

n∑
k=1

αk(Statemat(:, i))).

4.2. Anderson-Kurtz’s SSA. Now we put our attention back to Anderson-Kurtz’s

equation for the chemical system given in Section 2.3.

(4.14) X(t) = X(0) +

n∑
k=1

Uk
(∫ t

0

αk(X(s))ds

)
v[k].

As we said in Section 2.3, every solution of (4.14) has to be of the form

(4.15) X(t) =

∞∑
j=0

Xjχ[tj ,tj+1)(t),

where t0=0, for all j ∈ N0 the vector Xj+1=Xj+w with w ∈ {v[1], . . . , v[n]}, and

{tj}j are the times when a reaction occurs.

Following (4.14) and (4.15), we get Anderson-Kurtz’s SSA which allows us to calcu-

late and simulate the sequences {Xj}j , {tj}j in (4.15). Similar to Doob-Gillespie’s

SSA, Anderson-Kurtz’s SSA give us another way to simulate the times between re-

actions ({τj=tj+1−tj}j) and the type of reaction that occurs ({Jj}j); see Algorithm

4.21. Our objective is to show that Anderson-Kurtz’s SSA and Doob-Gillespie SSA

are equivalent. To do so, we need the following results:

(1) For every k ∈ N, if we know the first k reactions, then

τ1, . . . , τk, τk+1, Jk+1

are independent. More precisely, given the event

{X(0) = x0, J1 = j1, . . . , Jk = jk},

τ1, . . . , τk, τk+1, Jk+1 are independent, for each 1 ≤ i ≤ k+1

τi ∼ exp

(
n∑
k=1

αk

(
x0+

i−1∑
l=1

v[jl])

)
and

P(Jk+1 = jk+1|X(0) = x0, J1 = j1, . . . , Jk = jk) =
αjk+1

(x0+
∑k
l=1 v[jl])∑n

k=1 αk(x0+
∑k
l=1 v[jl])

.
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Note that (1) implies that Anderson-Kurtz’s equation (4.14) has a unique solution

and this solution is given by (4.1).

Now we introduce the machinery that will help us to prove (1).

Proposition 4.16. Let X1, . . . , Xn be i.i.d. random variables with distribution

exp(1), well adapted to the probability space (Ω,F ,P). Let α1, . . . αn be nonnegative

numbers; let

Z = min

{
X1

α1
, . . . ,

Xn

αn

}
,

and J such that Z = XJ
αJ

(if for some j αj = 0, then
Xj
αj
∼ exp(0); that is, it is

equal to ∞ with probability 1).

Fix i such that P(J = i) > 0, consider k ∈ {1, . . . , n−1} index i1, . . . , ik different

from i. Then, for any a, a1, . . . ak nonegative real numbers

P(Xi1−αi1Z > a1, . . . , Xik−αikZ > ak|J = i, Z > a) = exp(a1) . . . exp(ak).

Therefore given the event {J = i, Z > a}, the set {Xk−αkZ : k 6= i} is a i.i.d

sequence with distribution exp(1).

Proof. Notice that al 6= 0.

P(Xi1−αi1Z > a1, . . . , Xik−αikZ > ak, J = i, Z > a)

= P(Xi1−αi1 Xiαi > a1, . . . , Xik−αik Xiαi > ak, J = i, Xiαi > a)

= P(Xi1−αi1 Xiαi > a1, . . . , Xik−αik Xiαi > ak,
Xj
αj
≥ Xi

αi
∀j 6= i, Xiαi > a)

= P(Xi1 > a1+
αi1
αi
Xi, . . . , Xik > ak+

αik
αi
Xi, Xj ≥ αj

αi
Xi ∀j 6∈ {i1, . . . , ik, i}, Xi > αia)

.

Let Ψ : R× Ω→ R be given by

Ψ(x, ω) =

1 if Xi1(ω) > a1+
αi1
αi
x, . . . ,Xik(ω) > ak+

αik
αi
x,Xj(ω) ≥ αj

αi
x ∀j 6∈ {i1, . . . , ik, i}, x > αia

0 i.o.c.

Fixed x ∈ R it is clear that

Ψ(x, ·)−1(1) =

{Xi1 > a1+
αi1
αi
x, . . . ,Xik > ak+

αik
αi
x,Xj ≥ αj

αi
x ∀j 6∈ {i1, . . . , ik, i}} ifx > αia

∅ ifx ≤ αia.

Therefore, for any x ∈ R, σ(Ψ(x, ·)) ⊂ σ(Xj : j 6= i); i.e. for any x ∈ R, σ(Ψ(x, ·))
is σ(Xj : j 6= i)-measurable. Now, for fixed ω x → Ψ(x, ω) is right continuous.

Then Ψ is B(R)× σ(Xj : j 6= i)-measurable. By the freezing lemma

E[Ψ(Xi, ·)|Xi] = Θ(Xi)
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where ∀x ∈ R,

Θ(x)

= E[Ψ(x, ·)]

=

P(Xi1 > a1+
αi1
αi
x, . . . ,Xik > ak+

αik
αi
x,Xj ≥ αj

αi
x ∀j 6∈ {i1, . . . , ik, i}) ifx > αia

0 ifx ≤ αia

=

P(Xi1 > a1+
αi1
αi
x) · · ·P(Xik > ak+

αik
αi
x)
∏
j 6∈{i1,...,ik,i} P(Xj ≥ αj

αi
x) ifx > αia

0 ifx ≤ αia

=

exp(−(a1+
αi1
αi
x)) · · · exp(−(ak+

αik
αi
x))
∏
j 6∈{i1,...,ik,i} exp(−(

αj
αi
x)) ifx > αia

0 ifx ≤ αia

=

exp(−a1) · · · exp(−ak) exp(−(
∑
j 6=i αj

αi
x) ifx > αia

0 ifx ≤ αia.

Since the expectation of the random variable ω → Ψ(Xi(ω), ω) satisfies

E[Ψ(Xi, ·)] = P(Xi1 > a1+
αi1
αi
Xi, . . . , Xik > ak+

αik
αi

Xi, Xj ≥
αj
αi
Xi ∀j 6∈ {i1, . . . , ik, i}, Xi > αia),

then

P(Xi1 > a1+
αi1
αi
Xi, . . . , Xik > ak+

αik
αi
Xi, Xj ≥ αj

αi
Xi ∀j 6∈ {i1, . . . , ik, i}, Xi > αia)

= E[E[Ψ(Xi, ·)|Xi]]

= E[Θ(Xi)]

=
∫∞

0
Θ(x)dP ◦X−1

i (x)

= exp(−a1) · · · exp(−ak)
∫∞
αia

exp(−(
∑
j 6=i αj

αi
x) exp(−x)dx

= exp(−a1) · · · exp(−ak)
∫∞
αia

exp(−(
∑
j αj

αi
x)dx.

Now

P(Xi1−αi1Z > a1, . . . , Xik−αikZ > ak|J = i, Z > a)

= 1
P(J=i,Z>a)P(Xi1 > a1+

αi1
αi
Xi, . . . , Xik > ak+

αik
αi
Xi, Xj ≥ αj

αi
Xi ∀j 6∈ {i1, . . . , ik, i}, Xi > αia)

= 1
P(J=i)P(Z>a) [exp(−a1) · · · exp(−ak)]

∫∞
αia

exp(−(
∑
j αj

αi
x)dx

= exp((
∑
j αj)a)(

∑
j αj

αi
) [exp(−a1) · · · exp(−ak)]

∫∞
αia

exp(−(
∑
j αj

αi
x)dx

= [exp(−a1) · · · exp(−ak)] exp((
∑
j αj)a)

[∫∞
αia

∑
j αj

αi
exp(−(

∑
j αj

αi
x)dx

]
= [exp(−a1) · · · exp(−ak)] exp((

∑
j αj)a) exp(−(

∑
j αj

αi
)αia)

= exp(−a1) · · · exp(−ak).

From Lemma 4.8, J and Z are independent and Z ∼ exp(
∑
j αj) �

Corollary 4.17. Let X1, . . . , Xn be i.i.d. random variables with distribution exp(1),

well adapted to the probability space (Ω,F ,P). Let α1, . . . αn be nonnegative num-

bers; let

Z = min

{
X1

α1
, . . . ,

Xn

αn

}
,
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and J such that Z = XJ
αJ

(if for some j αj = 0, then
Xj
αj
∼ exp(0); that is, it is

equal to ∞ with probability 1).

Fix i such that P(J = i) > 0, consider k ∈ {1, . . . , n−1} index i1, . . . , ik different

from i. Then, for a1, . . . ak positive numbers

P(Xi1−αi1Z > a1, . . . , Xik−αikZ > ak|J = i) = exp(a1) . . . exp(ak).

Therefore, given the event {J = i}, {Xk−αkZ : 1 ≤ k ≤ n} is a i.i.d sequence with

distribution exp(1) except for k = i.

Proof. Since Z has exponential distribution, by continuity of the measure

lim
a↓0

P(·|J = i, Z > a) = P(·|J = i)

Then by proposition (4.16),

P(Xi1−αi1Z > a1, . . . , Xik−αikZ > ak|J = i) = exp(a1) . . . exp(ak).

�

Corollary 4.18. Let X1, . . . , Xn be i.i.d. random variables with distribution exp(1),

well adapted to the probability space (Ω,F ,P). Let α1, . . . αn be nonnegative num-

bers; let

Z = min

{
X1

α1
, . . . ,

Xn

αn

}
,

and J such that Z = XJ
αJ

(if for some j αj = 0, then
Xj
αj
∼ exp(0); that is, it is

equal to ∞ with probability 1).

Fix i such that P(J = i) > 0. Then given the event {J = i}, the set {Xk−αkZ :

1 ≤ k ≤ n} is independent of Z.

Proof. Let a > 0, b > 0 and k 6= i. By Corollary 4.17 we have

P(Xk − αkZ > a,Z > b|J = i)

= 1
P(J=i)P(Xk − αkZ > a,Z > b, J = i)

= P(Z>b,J=i)
P(J=i) P(Xk − αkZ > a|Z > b, J = i)

= P(Xk − αkZ > a|J = i)P(Z > b|J = i)

�

Consider again a reaction system of n reactions R1, . . . ,Rn and m chemical

species S1, . . . , Sm. As we saw in Section 2.3, given the dynamics of the reaction

jump process in the time interval [0, t), the dynamic of the system at time t is given

by Anderson-Kurtz’s equation

(4.19) X(t) = X(0) +

n∑
k=1

Uk
(∫ t

0

αk(X(s))ds

)
v[k].
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which has solutions of the form

(4.20) X(t) =

∞∑
j=0

xjχ[tj ,tj+1)(t)

where t0=0, for all j ∈ N0 the vector xj+1=xj+w for some

w ∈ {v[1], . . . , v[n]}.

The set {tj} are the times when a reaction occurs.

Consider the set of independent unit-rate Poisson processes U1 . . .Un and suppose

that these processes are independent of the initial condition X(0); suppose that

each Poisson process Uk is well adapted to the probability (Ω,F ,P); that is, for

each 1 ≤ k ≤ n
σ(Uk(t) : 0 < t) ⊂ F

For each 1 ≤ k ≤ n, let {Sk,j}j≥0 be the sequence of events of the unit-rate Poisson

process Uk. Then, for each j ∈ N

Sk,j = inf{t > 0 : Uk(t) = j}, Sk,0=0.

For each l ∈ N the sequence of random variables

Sk,1=Sk,1−Sk,0;Sk,2−Sk,1; · · · ;Sk,l−Sk,l−1

are i.i.d. with distribution exp(1).

Suppose that the chemical system satisfies X(0) = x0 with positive probability and

define a probability measure P0 by

P0(·) = P(·|X(0) = x0).

We are interested in the time t1 when the system does a first transition to another

state due to some reaction R1, . . . ,Rn. Therefore, given the {X(0) = x0} and the

fact that each solution of (4.19) has the form (4.20), then for each 1 ≤ k ≤ n we

must have the following equality∫ t1

0

αk(X(s))ds = t1αk(x0).

Also, from (4.19) note that the first reaction will happen when some t1αk(x0) hits

the first event time of Uk, but due to the stoichiometry changes for the first reaction

t1 must satisfies

t1 = min
1≤k≤n

{
Sk,lk(1)−αk(x−1)τ0

αk(x0)

}
where lk(1) is the first event of Uk such that Sk,lk(1)−αk(x−1)τ0 > 0, and we define

x−1 := 0 and τ0 := 0. Then for each 1 ≤ k ≤ n

αk(x−1)τ0 = 0.
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Thus, it is clear that a.s. ∀1 ≤ k ≤ n, lk(1) = 1 and

t1 = min
1≤k≤n

{
Sk,1
αk(x0)

}
.

Since the Poisson process U1, . . . ,Uk are independent of each other and indepen-

dent of X(0), then U1, . . . ,Uk are independent of each other in the probability

space (Ω,F ,P0). Therefore, from Lemma 4.8 below t1 ∼ exp(
∑
k αk(x0)) in the

probability space (Ω,F ,P0). Let J1 ∈ {(k, lk(1)) : 1 ≤ k ≤ n} satisfies

t1 =
SJ1

αJ1(1)(x0)
,

where J1(1) is the type of reaction. From Lemma 4.8 t1 and J1 are independent in

the probability space

(Ω,F ,P0).

Moreover, for each 1 ≤ k ≤ n

P0(J1 = (k, lk(1))) =
αk(x0)∑
j αj(x0)

.

Hence, (J1, t1) has the same distribution as the reaction type and the first reaction

time given in Dood-Gillespie SSA.

Suppose that the event {J1 = (j1, lj1(1))} has positive P0-probability. Given the

event {X0 = x0, J1 = (j1, lj1(1))}, define x1 := x0 + v[j1] and

P1(·) := P0(·|J1 = (j1, lj1(1))).

For now on we are restricted to the event {X0 = x0, J1 = (j1, lj1(1))}.
Now we are interested in finding the time t2 when the second reaction is going

to happen. By (4.20) stoichiometric changes can not happen in the time interval

[t1, t2), then ∀1 ≤ k ≤ n∫ t2

0

αk(X(s))ds = αk(x0)τ1 + αk(x1)τ2,

where τ2 := t2 − t1 and τ1 := t1. Note that the second reaction is going to happen

when the last integral above hits some event of the internal clock of some Uk. More

precisely, τ2 must satisfy

τ2 = min
1≤k≤n

{
Sk,lk(2) − αk(x0)τ1

αk(x1)

}
,

where lk(2) is the first event of Uk such that Sk,lk(2) − αk(x0)τ1 > 0. Observe that

if J1 = (j1, lj1(1)), then a.s. ∀k ∈ {1, . . . , n} with k 6= j1

lk(2) = lk(1)

and

lj1(2) = lj1(1)+1.
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Hence, τ2 satisfies

τ2 = min

{
Sk,1 − αk(x0)τ1

αk(x1)
,
Si1,2 − αj1(x0)τ1

αj1(x1)
: 1 ≤ k ≤ n, k 6= j1

}
.

From Corollary 4.17, the set of random variables

{Sk,1 − αk(x0)τ1 : 1 ≤ k ≤ n, k 6= j1}

are i.i.d. with ditribution exp(1) in the probability space (Ω,F ,P1). Since

P1(αj1(x0)τ1 = Sj1,1) = 1,

then the set of random variables

{Sk,1 − αk(x0)τ1, Sj1,2 − αj1(x0)τ1 : 1 ≤ k ≤ n, k 6= j1} .

are i.i.d. with distribution exp(1) in the probability space (Ω,F ,P1). Therefore,

from Lemma 4.8 τ2 ∼ exp(
∑
k αk(x1)) in the probability space (Ω,F ,P1).Moreover,

if J2 ∈ {(k, lk(2)) : 1 ≤ k ≤ n} satisfies

τ2 =
SJ2 − αJ2(1)(x0)τ1

αJ2(1)(x1)
,

then τ2 and J2 are independent in (Ω,F ,P1); also ∀1 ≤ k ≤ n

P1(J2 = (k, lk(2))) =
αk(x1)∑
j αj(x1)

.

Let a ∈ R+
0 and note that Proposition (4.16) implies that τ2 and J2 are independent

and have the same distributions in the probability spaces

(Ω,F ,P1), (Ω,F ,P0(·|J1 = (j1, lj1(1)), τ1 > a)).

Since this is ∀a ∈ R+
0 , we conclude that

(τ1, τ2, J2) are independent in the probability space (Ω,F ,P1).

In summary, we have shown that (τ1, τ2, J1, J2) have the same stochastic attributes

than the Doob-Gillespie’s SSA.

We can summarize this procedure in the following algorithm.

Algorithm 4.21. (Anderson-Kurtz’s SSA)

(1) Initialization: Set x← x0, Int← 0 ∈ Rn, and t← 0.

(2) Generate n independent random numbers s1, . . . , sn with distribution exp(1),

and define the vector S as S ← (s1, . . . , sn).

(3) Calculate α1(x), . . . , αn(x) and set

α← (α1(x), . . . , αn(x)).

(4) Define B as

B ← {k ∈ {1, . . . , n} : αk 6= 0}



45

(5) If B 6= ∅, then set τ = min{Sk−Intkαk
: k ∈ B}. Otherwise, the algorithm

ends.

(6) Fix K as the set K = {k ∈ B : τ = Sk−Intk
αk

}.
(7) Generate a set {sk : k ∈ K} of independent random numbers with distribu-

tion exp(1). Update the vector S by modifying the entries

Sk ← Sk+sk

for each k ∈ K.
(8) Update Int as

Int← Int+ τα.

(9) Update x and t as

x← x+
∑
k∈K

v[k],

t← t+ τ.

(10) Return to step (3).

Moreover we get the following result.

Theorem 4.22. Consider a reaction system of n reactions R1, . . . ,Rn and m

chemical species S1, . . . , Sm. For this chemical system, the following is true:

(1) Anderson-Kurtz’s SSA is equivalent to Doob-Gillespie’s SSA .

(2) Anderson-Kurtz’s equation for this chemical system

X(t) = X(0) +

n∑
k=1

Uk
(∫ t

0

αk(X(s))ds

)
v[k]

has as unique solution the reaction jump process given in (4.1) and Section

2.2.

Proof. We proceed by induction. Note that the base of the induction step is given

above when we generate τ1, τ2, J1, J2. Let q ∈ N q > 1. Now suppose that

{J1 = (j1, c1), . . . , Jq−1 = (jq−1, cq−1), Jq = (jq, cq)}

has positive P0-probability. For each 1 ≤ i ≤ q

Pi(·) = Pi−1(·|Ji = (ji, ci)),

xi = xi−1+v[ji];

i.e., for each 1 ≤ i ≤ q

Pi(·) = P0(·|J1 = (j1, c1), . . . , Ji = (ji, ci)).

We take the following induction hypothesis: we assume that for each 1 ≤ i ≤ q, the

time of the ith reaction is given by ti =
∑i
r=1 τr where τ1, . . . , τq satisfy:
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(1) For each 1 ≤ i ≤ q, the time step τi is given by

τi = min
1≤k≤n

Sk,lk(i) −
(∑i−1

r=1 αk(xr−1)τr

)
αk(xi−1)

 .

where lk(i) is the first event of Uk such that

Sk,lk(i) −

(
i−1∑
r=1

αk(xr−1)τr

)
> 0,

and τi ∼ exp(
∑n
k=1 αk(xi−1)) in the probability space (Ω;F ;Pi−1)

(2) τ1, . . . , τq, Jq are Pq−1-independent.

(3) The following set is i.i.d. with distribution exp(1) in the probability space

(Ω,F ,Pq−1){
Sk,lk(q) −

(
q−1∑
r=1

αk(xr−1)τr

)
: 1 ≤ k ≤ n

}
.

Let tq+1 be the time of the (q+1)th reaction and define τq+1 := tq+1−tq. From

(4.20) for each 1 ≤ k ≤ n∫ tq+1

0

αk(X(s))ds =

q+1∑
r=1

αk(xr−1)τr,

which implies that τq+1 must satisfy

τq+1 = min
1≤k≤n

{
Sk,lk(q+1) − (

∑q
r=1 αk(xr−1)τr)

αk(xq)

}
,

where lk(q+1) is the first event of Uk such that

Sk,lk(q+1) −

(
q∑
r=1

αk(xr−1)τr

)
> 0.

From corollary (4.17) the set{(
Sk,lk(q) −

q−1∑
r=1

αk(xr−1)τr

)
− αk(xq−1)τq : 1 ≤ k ≤ n k 6= iq

}
is i.i.d. with distribution exp(1) in the probability space (Ω,F ,Pq) and

Pq

(
Sjq,ljq (q) −

(
q∑
r=1

αjq (xr−1)τr

)
= 0

)
= 1.

Since we are restricted to the event

{J1 = (j1, c1), . . . , Jq−1 = (jq−1, cq−1), Jq = (jq, cq)},

∀1 ≤ k ≤ n k 6= iq,

lk(q+1) = lk(q)
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and

ljq (q+1) = ljq (q)+1.

Then τq+1 satisfies Pq − a.s.

τq+1 = min
1≤k≤n,k 6=jq

{
Sk,lk(q) − (

∑q
r=1 αk(xr−1)τr)

αk(xq)
,
Sjq,ljq(q)+1−Sjq,ljq (q)

αjq (xq)

}
,

τq+1 = min
1≤k≤n,k 6=jq


(
Sk,lk(q) −

∑q−1
r=1 αk(xr−1)τr

)
− αk(xq−1)τq

αk(xq)
,
Sjq,ljq(q)+1−Sjq,ljq (q)

αjq (xq)

 .

From lemma (4.8), τq+1 ∼ exp(
∑
k αk(xq)), and if

Jq+1 ∈ {(k, lk(q+1)) : 1 ≤ k ≤ n}

is such that

τq+1 =
SJq+1

−
∑q
r=1 αJq+1(1)(xr−1)τr

αJq+1(1)(xq)
,

then τq+1 and Jq+1 are Pq−independent and

Pn(Jq+1 = (k, lk(q+1))) =
αk(xq)∑
j αj(xq)

.

Now we are going to show that τ1, . . . , τq, τq+1, Jq+1 are Pq independent. First,

note from (2) above that τ1, . . . , τq are Pq-independent. Now let a1, . . . , aq be

nonnegative real numbers. From Proposition (4.16) τq+1, Jq+1 are independent and

have the same distributions with the following probabilities measures

P0(·|J1=(j1, c1), J2=(j2, c2), . . . , Jq=(jq, cq))

P0(·|J1=(j1, c1), τ1 > a1, J2=(j2, c2), . . . , Jq=(jq, cq))

P0(·|J1=(j1, c1), τ1 > a1, J2=(j2, c2), τ2 > a2, J3=(j3, c3), . . . , Jq=(jq, cq))
...

P0(·|J1=(j1, c1), τ1 > a1, J2=(j2, c2), τ2 > a2, . . . , Jq=(jq, cq), τq > aq).

Since this is for every a1, . . . , aq nonnegative real numbers and τ1, . . . , τq are Pq-
independent, we conclude that

τ1, . . . , τq, τq+1, Jq+1

are Pq-independent. �

Note that in point (7) of Algorithm 4.21, the probability that |K| > 1 is equal to

0. Therefore, if we exclude point (2) of Algorithm 4.21, then every step of Anderson-

Kurtz’s SSA only generates one random variable. This is a big difference with

Doob-Gillespie’s SSA because every step of Doob-Gillespie’s SSA generates two

random variables (see Algorithm 4.4).
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5. Simulation of the Reaction Jump Process with Delays

5.1. Anderson-Kurtz’s Stochastic Simulation Algorithm with Delays (SSAD).

Now we study the simulation of the reaction jump process of a chemical system with

delays. Consider again a chemical system of n chemical reactions R1, . . . ,Rn and

one chemical reaction with delay Rde

Rde :

x
κde−→ x+ ω1,

Z
d

=⇒ ω2.

It is important to remember that for this system the stoichiometric changes not

only depend on normal reactions R1, . . . ,Rn, x
κde−→ x + ω1, but they also rely on

the decompositions of the Z complexes. Therefore, two questions arise: How can

we simulate the times where the stoichiometry of the system will change? And,

how can we know if the stoichiometric change is due to a normal reaction or to the

decomposition of the excited complex Z? We are going to show how Anderson-

Kurtz’s equation can answer these questions in a simple form.

As proposed in Section 3.1, the dynamics of this reaction system is given by the

Anderson-Kurtz’s equation

(5.1)
Y (t) = Y (0) +

∑n
k=1 Uk

(∫ t
0
αk(Y (s))ds

)
v[k]

+Ude
(∫ t

0
αde(Y (s))ds

)
ω1 + Ude

(∫ t−d
0

αde(Y (s))ds
)
ω2.

where every possible solution of (5.1) has to be of the form

(5.2) Y (t) =

∞∑
j=0

Yjχ[t̂j ,t̂j+1)(t),

where the embedded chain {Yj}j∈N0
satisfies Yj+1 = Yj+w, for some

w ∈ {v1, . . . , vn, ω1, ω2};

and {t̂j} are the times where there is a stoichiometric change due to a chemical

reaction or decomposition of a complex Z. For example one possible event that we

could have is the following one:

R?1 R?2 Z R?3 Z Z R?4 ,
t̂1 t̂2 t̂3 t̂4 t̂5 t̂6 t̂7

where at time t̂1 occurs a chemical reaction R?1 , at time t̂2 occurs a chemical

reaction R?2 , at time t̂3 an excited complex Z has decomposed, etc.

Suppose that Y (0) and the Poisson processes U1, . . . ,Un,Ude are well adapted to the

probability space (Ω,F ,P); also suppose that Y (0) is independent of U1, . . . ,Un,Ude.
Let y0 be some state of the system such that P(Y (0)=y0) > 0,

∀? ∈ {1, . . . , n, de} {S?,j}j is the sequence of events of U?.
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Note that ? is only a symbol, so that U? means Ude when ?=de. Remember that

U1, . . . ,Un,Ude are independent unit-rate Poisson processes, therefore the sequences

defined above are independent.

Following equations (5.1) and (5.2), if we are restricted to the event {Y (0) = y0},
then ∀s ∈ [0, t̂1), Y (s) = y0 and ∀? ∈ {1, . . . , n, de}∫ t̂1

0

α?(Y (s))ds=t̂1α?(y0);

and if at time t̂1 occurs some reaction Rj1 , then

t̂1αj1(y0)=Sj1,lj1 (1) ⇐⇒ t̂1=
Sj1,lj1 (1)

αj1(y0)

and ∀? ∈ {1, . . . , n, de} \ {j1}

t̂1α?(y0) < S?,lj1 (1) ⇐⇒ t̂1 <
S?,lj1 (1)

α?(y0)
.

That is, the time t̂1 satisfy

t̂1 = min
?∈{1,...,n,de}

{
S?,l?(1)

α?(y0)

}
,

where l?(1) is the first event of U? such that S?,l?(1) > 0. It follows that t̂1 is a.s.

t̂1 = min
?∈{1,...,n,de}

{
S?,1
α?(y0)

}
,

which implies that t̂1 ∼ exp(
∑
? α?(y0)). If

J1 ∈ {(?, l?(1)) : ? ∈ {1, . . . , n, de}}

is the index that occurs, then t̂1 J1 are P(·|Y (0) = y0)-independent and

P(J1 = (j1, lj1(1))|Y (0) = y0) =
αj1(y0)∑
? α?(y0)

,

where j1 ∈ {1, . . . , n, de}. Note that the stoichiometric change at t̂1 is due to a

chemical reaction, which is what is expected when there are no molecules of excited

complex Z in the system (which is one of the initial conditions).

Given the event {Y (0) = y0, J1 = (j1, lj1(1))} of positive P-probability, we are

interested in the time t̂2 where the second stoichiometric change will occur. Here

we need to deal with two cases: j1 6= de and j1 = de.

For case j1 6= de, the system has not formed excited complexes at time t̂1, in terms

of equation (5.1) ∫ t̂1

0

αde(Y (s))ds < Sde,1,
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which implies that

Ude

(∫ t̂1+d−d

0

αde(Y (s))ds

)
= Ude

(∫ t̂1

0

αde(Y (s))ds

)
= 0;

that is, the next stoichiometric change is due to a chemical reaction. Let y1 =

y0+v[j1] and note that (5.2) implies that for ? ∈ {1, . . . , n, de}∫ t̂2

0

α?(Y (s))ds = α?(y0)τ̂1 + α?(y1)τ̂2,

where τ̂2 := t̂2−t̂1 and τ̂1 := t̂1. Then

τ̂2 = min
?∈{1,...,n,de}

{
S?,l?(2)−α?(y0)τ1

α?(y1)

}
,

where l?(2) is the first event of U? such that S?,l?(2)−αk(y0)τ̂1 > 0. From Section

4.2 we know that τ̂2 ∼ exp(
∑
? αk(y1)) with the probability measure

P(·|Y (0)=y0, J1 = (j1, lj1(1))).

Now then, if J2 is the index that occurs, then τ2 and J2 are

P(·|Y (0) = y0, J1 = (j1, lj1(1)))-independent

and J2 has the same distribution as in Section 4.2.

Now suppose we got case J1 = (de, lde(1)). Thus given the event

{Y (0) = y0, J1 = (de, lde(1))},

with probability 1, an stoichiometric change will occur at time t̂1+d because

Ude

(∫ t̂1+d−d

0

αde(Y (s))ds

)
= Ude

(∫ t̂1

0

αde(Y (s))ds

)
=1;

that is, P(·|Y (0) = y0, J1 = (de, lde(1))) -a.s. exists t̂i in the sequence {t̂j} such

that t̂i = t̂1+d.

At this point, the second stoichiometric change may be due to the decomposition

of the first excited complex Z or to a chemical reaction, that is t̂2=t̂1+d or

t̂2 = t̂1+ min
?∈{1,...,n,de}

{
S?,l?(2)−α?(y0)τ̂1

α?(y1)

}
.

Therefore, if t̂2=t̂1+τ̂2, then

τ̂2 = min

{
min

?{1...,n,de}

{
S?,l?(2)−α?(y0) ˆtau1

α?(y1)

}
, d

}
,

where τ̂1 = t̂1, y1 = y0+ω1 and from Section 4.2

min
?∈{1,...,n,de}

{
S?,l?(2)−α?(y0)τ̂1

α?(y1)

}
has distribution exp

(∑
?

α?(y1)

)
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and is independent of τ̂1 with the probability measure P(·|Y (0) = y0, J1 = (de, lde(1))).

Let

{J2 = Z} = {τ̂2 = d};

that is, the first complex formed at time t̂1 has decomposed at time t̂2. Note that

we have the following event equality

(5.3) {J2 = Z} =
{
S?,l?(2)−α?(y0)τ̂1 ≥ α?(y1)τ̂2 : ? ∈ {1, . . . , n, de}

}
.

Since for each ? ∈ {1, . . . , n, de}

S?,l?(2)−α?(y0)τ̂1 has distribution exp(1)

and are independent with the probability measure P(·|Y (0) = y0, J1 = (de, lde(1))).

Then, from the memoryless property of the exponential distribution, the following

set

{S?,l?(2)−α?(y0)τ̂1 − α?(y1)τ̂2 : ? ∈ {1, . . . , n, de}}

is i.d.d. with exp(1) distribution under the probability measure

P(·|Y (0) = y0, J1 = (de, lde(1))), J2 = Z).

Observe that given event {Y (0) = y0, J1 = (de, lde(1))), J2 = Z}, the equations

(5.2) and (5.1) implies that for each ? ∈ {1, . . . n, de},∫ t̂3

0

α?(Y (s))ds = α?(y0)τ̂1+α?(y1)τ̂2+α?(y2)τ̂3,

where τ̂3 = t̂3−t̂2, y1 = y0+ω1 and y2 = y1+ω2. Since at time t̂2 there are not

molecules of excited complex Z, then the next stoichiometric change will be given by

a chemical reaction with P(·|Y (0)=y0, J1=(de, lde(1))), J2=Z)-probability 1. That

is, τ̂3 satisfies

τ̂3 = min
?∈{1,...,n,de}

{
S?,l?(3)−α?(y0)τ̂1−α?(y1)τ̂2

α?(y2)

}
where l?(3) is the first time event of U? such that

S?,l?(3)−α?(y0)τ1−α?(y1)τ2 > 0.

From (5.3) P(·|Y (0) = y0, J1 = (de, lde(1))), J2 = Z)−a.s. we get

∀? ∈ {1, . . . , n, de} l?(3) = l?(2).

This implies that τ̂3 satisfies P(·|Y (0) = y0, J1 = (de, lde(1))), J2 = Z)−a.s.

τ̂3 = min
?∈{1,...,n,de}

{
S?,l?(2)−α?(y0)τ̂1−α?(y1)τ̂2

α?(y2)

}
,
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which implies that τ̂3 has P(·|Y (0) = y0, J1 = (de, lde(1))), J2 = Z)−distribution

τ̂3 ∼ exp(
∑
?

α?(y2)).

Although, τ̂3 follows an exponential distribution as above, it is important to note

that τ̂3 and

min
?∈{1,...,n,de}

{
S?,l?(2)−α?(y0)τ1

αk(y1)

}
are not P(·|Y (0) = y0, J1 = (de, lde(1))), J2 = Z)− independent. In other words,

given the event

{Y (0) = y0, J1 = (de, lde(1))), J2 = Z},

the competition bewteen the chemical reactions R1, . . . ,Rn, x
κde−→ x + ω1 at time

t̂1 is no longer independent of the competition on these chemical reactions at time

t̂2.

The procedure described above can be summarized in the following algorithm. The

information of the reaction with delay Rde is stored in the index n+1.

Algorithm 5.4. (Anderson-Kurtz’s SSAD)

(1) Initialization: Set y ← y0, Int← 0 ∈ Rn+1, t← 0 and D={∞}.
(2) Generate n+1 independent and exp(1) random numbers s1, . . . , sn, sn+1

and set S as S ← (s1, . . . , sn, sn+1).

(3) Calculate α1(y), . . . , αn(y), αn+1(y) and set

α← (α1(y), . . . , αn(y), αn+1(y)).

(4) Set B ⊂ {1, . . . , n+1} as

B ← {1 ≤ k ≤ n+1 : αk 6= 0}.

(5) If B 6= ∅, then set τ̂ = min
({

Sk−Intk
αk

: k ∈ B
}
∪D

)
. Otherwise, the algo-

rithm ends.

(6) If τ̂ ∈ D, update y by y ← y+ω2 and D by

D = D \ {τ̂}.

Otherwise go to the next step.

(7) Update D as

D ← D − τ̂ .

(8) Set K ⊂ {1, . . . , n+1} as K =
{
k ∈ B : τ = Sk−Intk

αk

}
. If K = ∅, then go

to step (11). Otherwise update y as

y ← y +
∑
k∈K

v[k], and go to the next step.
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(9) Generate a set {sk : k ∈ K} of independent random numbers with distribu-

tion exp(1). Update S entry by entry

Sk ← Sk+sk

for each k ∈ K.
(10) If n+1 ∈ K, then update D as D ← D∪{d}. Otherwise go to the next step.

(11) Update Int as

Int← Int+ τ̂α.

(12) Update the time t as

t← t+ τ̂ .

(13) Return to step (3).

Now we make some observations to the previous Algorithm 5.4:

(1) The information of the reaction with delay Rde is stored in the index n+1.

(2) D − τ̂ = {a− τ̂ : a ∈ D}.
(3) With probability zero τ̂ ∈ D and K 6= ∅.
(4) With probability zero |K| > 1.

It is important to note that in general, given the information of the first q reactions

(q ∈ N), the set of delays at time t̂q, say Dq, are random variables. For example,

suppose that we have the following event

{Y (0) = y0, J1 = (de, lde(1)), J2 = (de, lde(2))},

that is, at time t̂1 occurs a reaction with delay and at time t̂2 occurs another

reaction with delay. Therefore, at time t̂2 the set of delays satisfies

D2 = {d−τ̂2, d}.

5.2. Barrio’s SSAD. As we said in the introduction the Anderson-Kurtz’s al-

gorithm was not the first algorithm designed to simulate chemical systems with

delays. Actually, there are two algorithms previously designed for that purpose:

Cai’s algorithm and Barrio’s algorithm. In this section we introduce the standard

algorithm to simulate the reaction jump process of chemical system with delays;

this algorithm is due to Barrio; see for example [3] and [5]. For the sake of sim-

plicity here we only going to deal with the chemical system of n chemical reactions

R1, . . . ,Rn and one reaction with delay Rde

Rde :

x
κde−→ x+ ω1

Z
d

=⇒ ω2

Like Anderson-Kurtz’s SSAD, Barrio’s SSAD deals with the problem of the simu-

lation of the times where the stoichiometry of the system will change and if this

stoichiometric change is due to a chemical reaction or to a decomposition of a com-

plex Z.
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Let (Ω,F ,P) be a probability space; suppose that we know how the reaction jump

process is given in the time interval [0, t); that is, we know {Y (s)}s∈[0,t) and sup-

pose that σ(Y (s) : s ∈ [0, t)) ⊂ F . Suppose that at time t the reaction jump process

satisfies Y (t)=y and at times

t+d1, . . . , t+dl

an excited complex Z will decompose. Then, if at time t+τ̂ occurs the next stoi-

chiometric change, Barrio’s proposal is to calculate the waiting time τ̂ as follows:

(5.5) τ̂ := min{τ, d1, . . . , dl},

where τ has distribution exp
(∑

?∈{1,...,n,de} α?(y)
)

and is independent of σ(Y (s) :

s ∈ [0, t)), everything under the probability measure P(·|Y (t) = y). That is, τ

satisfies

P(τ > a|σ(Y (s) : s ∈ [0, t)), Y (t) = y)=P(τ > a|Y (t) = y) = exp(−αsum(y)a),

where αsum(y)=
∑
?∈{1,...,n,de} α?(y).

If τ̂=τ, then Barrio’s SSAD updates the state of the system as

y ← y+v[I],

where I satisfies: ∀? ∈ {1, . . . , n, de}

(5.6) P(I= ? |σ(Y (s) : s ∈ [0, t)), Y (t) = y)=
α?(y)

αsum(y)

and I is P(·|Y (t) = y)−independent of τ. Here v[de] : =ω1.

If τ̂ ∈ {d1, . . . , dl}, then Barrio’s SSAD updates the system as

y ← y + ω2.

Therefore, Barrio’s proposal for the reaction jump process is given by:

∀s ∈ [t, t+τ̂) Y (s) = y

and according to (5.5),

Y (t+τ̂)=

y+w w ∈ {v[k], ω1 : 1 ≤ k ≤ n} if τ̂ = τ,

y+ω2 if τ̂ ∈ {d1, . . . , dl}.

This procedure is summarized in the following algorithm. All the information of

the reaction Rde is in the index n+1.

Algorithm 5.7. (Barrio’s SSAD)

(1) Initialization: Set y ← y0, t← 0, and D={∞}.
(2) Calculate α1(y), . . . , αn(y), αn+1(y) and define

α← (α1(y), . . . , αn+1(y)).
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(3) Generate τ ∼ exp(
∑n+1
k=1 αk), and set

τ̂ = min ({τ} ∪D) .

(4) Update the time t← t+ τ̂ .

(5) If τ̂ ∈ D, then update the state of the system as

y ← y + ω2

and update D as

D ← (D \ {τ̂})−{τ̂} and return to step (2).

Otherwise go to the next step.

(6) Update D as

D ← D−{τ̂}

(7) Generate u1 ∼ U(0, 1). Set i to be the smallest integer satisfying

i−1∑
k=1

αk ≤ u1

∑
k

αk <

i∑
k=1

αk.

Update the state of the system as

y ← y + v[i].

(8) If i=n+1, update D as

D ← D ∪ {d}.

(9) Return to step (2).

It is clear that Barrio’s SSAD generates the sequence of times between stoichio-

metric changes {τ̂k}k∈N and the sequence {Jk}k∈N where each

Jk ∈ {Ik, Z}

gives us the information on whether the stoichiometric change is due to a reaction

(Jk=Ik) or the decomposition of a complex (Jk=Z) at time

t̂k :=

k∑
j=1

τ̂k.

Therefore, if at time t̂q we know the variables Y (0), J1, . . . , Jq and the set of delays

D, then we know from (5.6) how Iq+1 is distributed and from equation (5.5)

τ̂q+1 = min{τq+1 ∪D}.

where

τq+1 ∼ exp

(
Y (0)+

q∑
i=1

v[Ji]

)
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and v[Z] := ω2. In this sense, Barrio’s SSAD is a clear modification of Doob-

Gillepie’s SSA (see for example algorithm (4.13).

Now then, following the definition of τ̂ in (5.5), we can interpret Barrio’s SSAD

in terms of a competition between chemical reactions and the decomposition of a

complex Z. From Section 4.1, we know that τ in (5.5) has an exponential distribu-

tion with parameter equal to the sum of the propensities and is independent of the

past of the reaction jump process, which means that different chemical reactions

are competing to occur first. With the definition of τ̂ as the minimum of τ and

the delays in D, this competition now involves not only the reactions but also the

delays.

Here we emphasize the fact that in every step of Barrio’s SSAD τ is independent

of the past of the reaction jump process. For example, if we know Y (0), J1, . . . , Jq,

then until time t̂q Barrio’s SSAD has generated τ1, . . . , τq random variables which

satisfy

τk ∼ exp

(
Y (0)+

k∑
i=1

v[Ji]

)
and are P(·|Y (0), J1, . . . , Jq)−independent. This means that Barrio’s SSAD does an

important assumption in terms of the competition of the reactions; this assumption

is that the competitions of the chemical reactions at times t̂1, . . . , t̂q are indepen-

dent.

It is clear from Algorithm 5.7 that the reaction jump process that Barrio’s SSAD

introduce has the following form

∀t > 0 Y (t)=

∞∑
j=0

Yjχ[t̂j ,t̂j+1)(t)

where t̂0 := 0, Y0 := Y (0), and Yj+1 := Yj+w for w ∈ {v[k], ω1, ω2 : 1 ≤ k ≤ n}.
Note that this process has a similar structure as the solution of the Anderson-

Kurtz’s equation for this chemical system with delays (see Section 5.1). Thus, a

natural question arises: Is the reaction jump process produced by Barrio’s SSAD

a solution of the Andeson and Kurtz equation? In other words, Do the sequences

{Yj} and {t̂j} that Bario’s SSAD generates have the same distribution as those that

are solutions of the Anderson-Kurtz’s equation? Unfortunately we still don’t have

a general answer to these questions, and we have to continue with this investigation

in the Doctoral studies.

We could try to answer these questions by comparing Anderson-Kurtz’s SSAD and

Barrio’s SSAD, but as the following example will show, Barrio’s SSAD is differ-

ent from Anderson-Kurtz’s SSAD, and Barrio’s SSAD generates solutions of the

Anderson-Kurtz’s equation up to time t̂4.

We will do these comparisons using a simple system.
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5.3. Example. Consider the reaction system of one reaction R and a physical

transition T with delay d

(5.8) R : X +W
κ−→ Z; T : Z

d
=⇒ X +W,

and initial state Y (0)=(2, 2)T . It is clear that the set of possibles states is given by

X = {(2, 2)T , (1, 1)T , (0, 0)T }

Therefore, if we know the number of molecules of X at time t (let’s use notation

x(t)), then we know the state of the system at time t. Thus, we are going to

restrict our attention to the dynamics of the number of molecules of X. Before

continuing with the simulation of this chemical system, we introduce the notation

(t̂k, xk; d1, . . . , dl) to indicate that at time t̂k there are xk molecules of X and l

excited complexes Z that will decompose at times t̂k+d1, . . . , t̂k+dl.

We firstly present Barrio’s SSAD for the chemical system (5.8). Following Algo-

rithm 5.7 at the initial time t̂0 we set D={∞} and

τ̂1= min (D ∪ {τ1}) ,

where τ1 ∼ exp(4κ). It is clear that τ̂1=τ1, and the system does a transition, with

probability 1, from (t̂0, 2) to (t̂1, 1; d), that is Barrio’s SSAD set t̂1=t̂0+τ̂1

D={d,∞} x(t̂1)=1.

Note that the event {J1=R} has probability 1, thus

P=P(|J1=R).

At time t̂1 Barrio’s SSAD define

τ̂2= min (D ∪ {τ2}) = min (d, τ2)

where τ2 ∼ exp(κ) and is P−independent of τ1. If τ̂2=d, then at time t̂2=t̂1+d the

next stoichiometric change is due to the decomposition of the only excited complex

Z formed at time t̂1. This implies that Barrio’s SSAD update D={∞} and x(t̂2)=2.

In the other case, at time t̂2=t̂1+τ2 the next stoichiometric change is due to a new

chemical reaction and Barrio’s SSAD update D={d−τ2, d,∞} and x(t̂2)=0. Note

that

P(J1=R, J2=Z)=P(τ̂2=d|J1=R)P(J1=R)=P(τ2 > d)= exp(−κd)

and

P(J1=R, J2=R)=P(τ̂2=τ2|J1=R)P(J1=R)=P(τ2 ≤ d)=1− exp(−κd).

This means that the following transitions

(t̂0, 2)→ (t̂1, 1; d)→ (t̂2=t̂1+d, 2),

(t̂0, 2)→ (t̂1, 1; d)→ (t̂2=t̂1+τ2, 0; d−τ2, d)
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have probabilities exp(−κd) and 1− exp(−κd), respectively.

Suppose that τ̂2=d; then as we say before D={∞}, x(t̂2)=2. Thus, Barrio’s SSAD

continues the simulation by setting

τ̂3= min (D ∪ {τ3}) =τ3,

where τ3 ∼ exp(4κ) and P(|J1=R, J2=Z)− independent of τ1 and τ2. This implies

that with P(|J1=R, J2=Z)− probability 1 the system does the following transition

(t̂2=t̂1+d, 2)→ (t̂3=t̂2+τ3, 1, d)

and the probability of the the following transitions

(t̂0, 2)→ (t̂1, 1; d)→ (t̂2=t̂1+d, 2)→ (t̂3=t̂2+τ3, 1, d)

is given by

P(J1=R, J2=Z, J3=R)=P(J3=R|J1=R, J2=Z)P(J2=Z|J1=R)P(J1)=1×exp(−κd)×1.

The following diagram shows some of the paths that Barrio’s SSAD can take for

this system.
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(t̂0, 2)start
(t̂1, 1; d)

t̂1=t̂0+τ̂1

(t̂2, 0; d−τ̂2, d)

t̂2=t̂1+τ̂2

(t̂2, 2)

t̂2=t̂1+d

(t̂3, 1; τ̂2)

t̂3=t̂2+d−τ̂2
=t̂1+d

(t̂3, 1; d)

t̂3=t̂2+τ̂3

(t̂4, 0; τ̂2−τ̂4, d)

t̂4=t̂3+τ̂4

(t̂4, 2)

t̂4=t̂3+τ̂2

(t̂4, 0; d−τ̂4, d)

t̂4=t̂3+τ̂4

(t̂4, 2)

t̂4=t̂3+d

1
τ̂1=τ1

1− exp(−κd)
τ2<d;τ̂2=τ2

exp(−κd)
d≤τ2;τ̂2=d

1
τ̂3=d−τ̂2

1− exp(−κd)
2

τ4<τ̂2;τ̂4=τ4

1+ exp(−κd)
2

τ̂2≤τ4;τ̂4=τ̂2

1
τ̂3=τ3

1− exp(−κd)
τ4<d;τ̂4=τ4

exp(−κd)
d≤τ4;τ̂4=d

The label
(
p
τ̂

)
on the arrows indicates the probability p of taking the particular tran-

sition and how the waiting time τ̂ is calculated. For instance, if we want to know

P(J1=R, J2=R, J3=R, J4=Z),

then following the diagram we know that

P(J1=R)=1, P(J2=R|J1=R)=1− exp(−κd), P(J3=R|J1=R, J2=R)=1

and

P(J4=Z|J1=R, J2=R, J3=R)=
1+ exp(−κd)

2
.

Therefore

P(J1=R, J2=R, J3=R, J4=Z)=(1− exp(−κd))× 1+ exp(−κd)

2
.
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Now we make the simulation that Anderson-Kurtz’s SSAD generates for chemical

system (5.8). Recall from Chapter 3 that the corresponding Anderson-Kurtz’s

equation for the system (5.8) is given by(
x(t)

w(t)

)
=

(
2

2

)
+U1

(∫ t

0

κ(xw)(s)ds

)(
−1

−1

)
+U1

(∫ t−d

0

κ(xw)(s)ds

)(
1

1

)
.

Here we let the series {Sk}k∈N be the sequence of events of the unit-rate Poisson

process U1.

Following Anderson-Kurtz’s SSAD, at time t̂0=0, D={∞}, Int=0, S=S1 and τ̂1 is

given by

τ̂1= min

({
S−Int

4κ

}
∪D

)
=
S1

4κ
.

Since S1 ∼ exp(1), τ̂1 ∼ exp(4κ); and because we have only one reaction the event

{J1=R} has P−probability 1.

At time t̂1=t̂0+τ̂1, Anderson-Kurtz’s SSAD updates D, Int, S and x(t̂1) as

D={d,∞}, Int=4κτ̂1, S=S2 x(t̂1)=1

and set τ̂2 as

τ̂2= min

({
S−Int
κ

}
∪D

)
= min

(
S2−4κτ̂1

κ
, d

)
= min

(
S2−S1

κ
, d

)
.

Note that S2−S1

κ ∼ exp(κ) and is P(|J1=R)−independent of τ̂1. Therefore, τ̂2 has

the same probabilistic properties as in Barrio’s SSAD. Now we need to deal with

two cases: if τ̂2=S2−S1

κ , then Anderson-Kurtz’s SSAD updates D, Int, S and x(t̂2)

as

D={d−τ̂2, d,∞}, Int=4κτ̂1+κτ̂2=S2, S=S3, x(t̂2)=0.

In this case, at time t̂2 the propensity of reaction R is equal to zero; this implies

that with P(|J1=R, J2=R)−probability 1 Anderson-Kurtz’s SSAD set τ̂3=d−τ̂2.
Observe that for this case τ̂3 has the same probabilistic properties as in Barrio’s

SSAD. At time t̂3 Anderson-Kurtz’s algorithm only updates D, Int and x(t̂3) to

D={τ̂2,∞}, Int=4κτ̂1+κτ̂2+0τ̂3=S2, x(t̂3)=1,

but does not update S; that is for this cases S=S3. This means that τ̂4 is set as

τ̂4= min

({
S−Int
κ

∪D
})

= min

(
S3−S2

κ
, τ̂2

)
,

where S3−S2

κ ∼ exp(κ) and is independent of τ̂2. Note that given the event

{J1=R, J2=R, J3=Z}

the waiting time τ̂4 has the same probabilistic properties as in Barrio’s SSAD.

Now suppose that τ̂2=d; then at time t̂2 Anderson-Kurtz’s SSAD only updates D,
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Int and x(t̂2) to

D={∞}, Int=4κτ̂1+κd, x(t̂2)=2,

but does not update S; that is for this cases S=S2. Then Anderson-Kurtz’s SSAD

set τ̂3 as

τ̂3= min

({
S−Int

4κ

}
∪D

)
=
S2−4κτ̂1−κd

4κ
=
S2−S1−κd

4κ
.

Recall that in the analogue case Barrio’s SSAD set τ̂2= min(τ2, d) and τ̂3=τ3, where

τ3 and τ2 are P(|J1=R, J2=Z)−independent. We can see that this is not the case

for Anderson and Kurtz SSAD because S2−S1

κ and S2−S1−κd
4κ are not

P(|J1=R, J2=Z)−independent.

Despite this difference, given the event {J1=R, J2=Z} the term S2−S1−κd
4κ satisfies

∀a > 0,

P
(
S2−S1−κd

4κ > a|J1=R, J2=Z
)

=P
(
S2−S1−κd

4κ > a|τ̂2=d
)

=P
(
S2−S1−κd

4κ > a|S2−S1

κ > d
)

where

P
(
S2−S1−κd

4κ
> a

∣∣∣S2−S1

κ
> d

)
= exp(−4κa)

because S2−S1−κd ∼ exp(1) given the event {S2−S1−κd > 0} (this is by the

memoryless property of the exponential distribution).

This implies that given the event {J1=R, J2=Z} the waiting time τ̂3 ∼ exp(4κ) as

in Barrio’s SSAD and with probability 1 J3=R. Continuing with Anderson-Kurtz’s

algorithm, at time t̂3 D, Int, S and x(t̂3) are updated to

D={d,∞}, Int=4κτ̂1+κd+4κτ̂3=S2, S=S3 x(t̂3)=1,

and τ̂4 is set as

τ̂4= min

({
S−Int
κ

∪D
})

= min

(
S3−S2

κ
, d

)
where S3−S2

κ ∼ exp(κ) and is independent of the past; that is, given the event

{J1=R, J2=R, J3=R} the waiting time τ̂4 has the same probabilistic properties as

in Barrio’s SSAD.

The arguments above show that despite the difference between Barrio’s SSAD and

Anderson-Kurtz’s SSAD, up to time t̂4 the reaction jump process that Barrio’s

SSAD generates is a solution of the Anderson-Kurtz’s equation

(5.9)(
x(t)

w(t)

)
=

(
2

2

)
+U1

(∫ t

0

κ(xw)(s)ds

)(
−1

−1

)
+U1

(∫ t−d

0

κ(xw)(s)ds

)(
1

1

)
.

The following diagram shows the different paths that we have simulated above

with Anderson-Kurtz’s SSAD.
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(t̂0, 2)start
(t̂1, 1; d)

t̂1=t̂0+τ̂1

(t̂2, 0; d−τ̂2, d)

t̂2=t̂1+τ̂2

(t̂2, 2)

t̂2=t̂1+d

(t̂3, 1; τ̂2)

t̂3=t̂2+τ̂3
=t̂1+d

(t̂3, 1; d)

t̂3=t̂2+τ̂3

(t̂4, 0; τ̂2−τ̂4, d)

t4=t̂3+τ̂4

(t̂4, 2)

t̂4=t̂3+τ̂2

(t̂4, 0; d−τ̂4, d)

t̂4=t̂3+τ̂4

(t̂4, 2)

t̂4=t̂3+d

1
τ̂1=

S1
4κ

1− exp(−κd)

τ̂2=
S2−4κτ̂1

κ

exp(−κd)
τ̂2=d

1
τ̂3=d−τ̂2

1− exp(−kd)
2

τ̂4=
S3−4κτ̂1−κτ̂2

κ

1+ exp(−kd)
2

τ̂4=τ̂2

1
τ̂3=

S2−4κτ̂1−κd
4κ

1− exp(−κd)

τ̂4=
S3−4κτ̂1−κd−4κτ̂3

κ

exp(−κd)
τ̂4=d

We use the same notation, the label
(
p
τ̂

)
on the arrows indicate the probability p of

taking the particular trasition and how the waiting time τ̂ is calculated.

Lemma 5.10. The paths calculated by Barrio’s SSAD Algorithm are solutions to

the Anderson-Kurtz’s equation (5.9) up to time t̂4.



63

5.4. Cai’s SSAD. Another standard tool used in the simulation of chemical sys-

tems with delays is Cai’s SSAD. Unlike Anderson-Kurtz’s SSAD and Barrio’s SSAD,

Cai’s SSAD only simulates those times where a chemical reaction will occur; see [5]

for a historical presentation.

Consider again a chemical system of n chemical reactionsR1, . . . ,Rn and one chem-

ical reaction with delay Rde

Rde :

x
κde−→ x+ ω1,

Z
d

=⇒ ω2.

Suppose that at time t the chemical system is in some state y, and that at this time

there are l exited complexes Z, which will decompose at times

t+d1 < t+d2 · · · < t+dl.

If at time t+τ occurs the next reaction, then Cai’s proposal for the distribution of

τ is given by: ∀i ∈ {0, . . . , l}, and ∀s ∈ [di, di+1)

(5.11) Fτ (s)=1− exp

− i−1∑
j=0

αsum,j(dj+1−dj)−αsum,i(s− di)

 ,

where d0 := 0, dl+1 :=∞, and ∀j ∈ {0, . . . , l}

αsum,j :=
∑

?∈{1,...,n,de}

α?(y+jω2).

As is shown in [5] formula (5.11) is motivated by Doob-Gillespie’s SSA, and with

this motivation in mind, Cai’s proposal for the distribution of the type of reaction

that at occurs at time t+τ is: ∀i ∈ {0, . . . , l}

(5.12) P(J= ? |τ ∈ [di, di+1))=
α?(y+iω2)

αsum,i
.

Note that if at time t there aren’t excited complexes Z (that is l=0), then τ and J

have the same distribution as in Doob-Gillespie’s SSA. Also note that ∀ 0 ≤ s < d1,

P(τ ≤ s)=1− exp(−αsum,0s).

This means that in the time interval [0, d1), the waiting time τ follows an expo-

nential distribution as in Doob-Gillespie’s SSA. Observe that this agrees with the

fact that in the time interval [t, t+d1) there are no excited complexes that will de-

compose, which implies that in this time interval the only possible stoichiometric

change is a chemical reaction.

Another interesting point about the formula (5.11) is its sensitivity to stoichiomet-

ric changes due to decompositions of the excited complexes. For example observe

how Fτ passes from exponencial distribution in the time interval [0, d1), to

Fτ (s)=1− exp(−αsum,0d1−αsum,1(s−d1)) ∀s ∈ [d1, d2)
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due to the decomposition of an excited complex at time t+d1 (see [5]).

Now we introduce Cai’s SSAD; we refer to the reader to Pseudo-Code 1 in [5] for

a method to simulate τ. As in previous algorithms, all the information about the

delayed reaction Rde is in the index n+1.

Algorithm 5.13. (Cai’s SSAD)

(1) Initialization. Set y ← y0, t← 0 and D=∅.
(2) If D=∅, then calculate ∀ 1 ≤ k ≤ n+1, αk(y) and set

αsum,0=

n+1∑
k=1

αk(y).

Otherwise, set l=|D| and calculate ∀ 1 ≤ k ≤ n+1, ∀ 0 ≤ i ≤ l, αk(y+lω2),

and set

αsum,i=

n+1∑
k=1

αk(y+iω2).

(3) Generate τ with distribution as (5.11).

(4) Generate an uniform random variable u1. If D=∅, then set µ to be the

integer for which

µ−1∑
k=1

αj(y)

αsum,0
≤ u1 <

µ∑
k=1

αk(y)

αsum,0
.

Otherwise, if τ ∈ [di, di+1), then set µ to be the integer for which

µ−1∑
k=1

αj(y+iω2)

αsum,i
≤ u1 <

µ∑
k=1

αk(y+iω2)

αsum,i
.

If i ≥ 1, then update y ← y+iω2 and update

D ← (D \ {d1, . . . , di})−{τ}.

(5) Update the state of the system y ← y+v[µ].

(6) If µ=n+1, then we update

D ← D ∪ {d}.

Otherwise, go to the next step.

(7) Set t← t+ τ . Go to step 2.

From Cai’s SSAD, the reaction jump process that this algorithm simulates has

the following structure

(5.14) Y (t)=

∞∑
k=0

Ykχ[tk,tk+1)(t)
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where the sequence {tk} are the times where a chemical reaction takes place and

the sequence {Yk} satisfies ∀k ∈ N0

Yk+1=(Yk+c(k)ω2)+w,

where w ∈ {v[j], ω1 : 1 ≤ j ≤ n} and c(k) is the number of excited complexes that

decomposed in the interval [tk, tk+1).

Although the reaction jump process described above does not have the same struc-

ture that the Anderson-Kurtz SSAD, a question arises: Is the reaction jump process

that Cai’s SSAD generates a solution of the Anderson-Kurtz equation? This ques-

tion is still open and in order to answer it we need much time and effort. In this

section, we lay some foundations for further work. In particular, we must point out

that trajectory (5.14) can be modified to include the effect of the physical tran-

sitions where the exited complexes Z decomposed. In this context, Cai asserted

in [5] that his SSAD is statistically equivalent to Barrio’s SSAD, but he does not

give a complete proof of this fact. Our intention is to prove that the SSAD of

Barrio and Cai are indeed equivalent; to do so we reinterpret Cai’s SSAD inspired

in Anderson-Kurtz’s algorithm.

Recall that Doob-Gillespie’s SSA has a clear interpretation as a competition be-

tween chemical reactions; see Theorem 4.22. This competition is expressed through

a race of independent random variables with exponential distribution (see Chapter

4). Due to the structure of the distribution of the time between chemical reactions

in Cai’s SSAD (see (5.11)), a natural question arises: Can we endow Cai’s SSAD

with an interpretation in terms of a competition of chemical reactions? The answer

to this question is affirmative as the following results show.

Lemma 5.15. Let d0 < d1 < · · · < dl < dl+1 be extended real numbers (they

can be equal to ∞) such that d0 := 0 and dl+1 := ∞. For each k ∈ {1, . . . n}, let

αk,0, αk,1, . . . , αk,l nonnegative real numbers such that αk,l > 0

αsum,i :=

n∑
k=1

αk,i > 0 ∀i ∈ {0, . . . , l}.

Let X1, . . . , Xn be independent random variables in a probability space (Ω,F ,P),

such that for each k ∈ {1, . . . , n}, Xk has distribution

P(Xk ≤ x) =

1− exp(−
∑i−1
j=0 αk,j(dj+1−dj)− αk,i(x−di)) x ∈ [di, di+1) i ∈ {0, . . . , l}

0 x < 0.

If Z = min{X1, . . . , Xn}, then Z has distribution

P(Z ≤ x) =

1− exp(−
∑i−1
j=0 αsum,j(dj+1−dj)− αsum,i(x−di)) if x ∈ [di, di+1),

0 x < 0.



66

Proof. Let x ∈ [di, di+1) for some i ∈ {0, . . . , l}. Then

P(Z > x)

= P(X1 > x, . . . ,Xn > x)

=
∏n
k=1 P(Xk > x)

=
∏n
k=1 exp(−

∑i−1
j=0 αk,j(dj+1−dj)− αk,i(x−di))

= exp(−
∑i−1
j=0 αsum,j(dj+1−dj)− αsum,i(x−di)).

�

Theorem 5.16. Let X1, . . . , Xn, Z be as in Lemma 5.15. If J is the index where

the minimum is reached, that is if Z = XJ , then for those i ∈ {0, . . . , l} such that

P(di ≤ Z < di+1) > 0,

we get

∀r ∈ {1, . . . , n} P(J=r|di ≤ Z < di+1) =
αk,i
αsum,i

.

Proof. Let r and i as above, and note that the following events are equivalent

{J=r, di ≤ Z < di+1}={di ≤ Xr < di+1, Xr ≤ U},

where

U = min
k 6=r
{Xk}.

Define Ψ : R× Ω→ R

Ψ(x, ω) =

1 d1 ≤ x < di+1 x ≤ U(ω),

0 in other case.

Note that for every ω ∈ Ω, the function x → Ψ(x, ω) is piecewise continuous

and for every x ∈ R, the function ω → Ψ(x, ω) is σ(U)−measurable. Then Ψ is

B(R)× σ(U)−measurable and observe that

E[Ψ(Xr, ·)] = P(di ≤ Xr < di+1, Xr ≤ U)

Since Xr and U are independent, the freezing lemma 4.6 implies that

E[Ψ(Xr, ·)|Xr] = Θ(Xr)

where Θ(x) = E[Ψ(x, ·)], that is

Θ(x) =

P(x ≤ U) ifx ∈ [di, di+1),

0 in other case.
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Therefore
P(di ≤ Xr < di+1, Xr ≤ U)

= E[Ψ(Xr, ·)]
= E[E[Ψ(Xr, ·)|Xr]]

= E[Θ(Xr)]

=
∫ di+1

di
P(x ≤ U)d(P ◦X−1

r )(x).

From Lemma 5.15,

∀x ∈ [di, di+1), P(x ≤ U)= exp

− i−1∑
j=0

(αsum,j−αr,j)(dj+1−dj)− (αsum,i−αr,i)(x−di)


and the density function of Xr satisfies

∀x ∈ [di, di+1) αr,i exp

− i−1∑
j=0

αr,j(dj+1−dj)−αr,i(x−di)

 .

Then

P(di ≤ Xr < di+1, Xr ≤ U)

=
∫ di+1

di
P(x ≤ U)d(P ◦X−1

r )(x)

=
∫ di+1

di
P(x ≤ U)αr,i exp

(
−
∑i−1
j=0 αr,j(dj+1−dj)−αr,i(x−di)

)
dx

=
∫ di+1

di
αr,i exp

(
−
∑i−1
j=0(αsum,j)(dj+1−dj)−(αsum,i−αr,i)(x−di)−αr,i(x−di)

)
dx

= αr,i exp
(
−
∑i−1
j=0(αsum,j)(dj+1−dj)

) ∫ di+1

di
exp(−αsum,i(x−di))dx

=
αr,i
αsum,i

exp
(
−
∑i−1
j=0(αsum,j)(dj+1−dj)

)
(1− exp(−αsum,i(di+1−di)))

=
αr,i
αsum,i

[
exp

(
−
∑i−1
j=0(αsum,j)(dj+1−dj)

)
− exp

(
−
∑i
j=0(αsum,j)(dj+1−dj)

)]
,

where from lemma (5.15)

P(di ≤ Z < di+1) = exp

− i−1∑
j=0

(αsum,j)(dj+1−dj)

− exp

− i∑
j=0

(αsum,j)(dj+1−dj)

 .

It follows that

P(J=r, di ≤ Z < di+1)=P(di ≤ Xr < di+1, Xr ≤ U) =
αr,i
αsum,i

P(di ≤ Z < di+1).

Therefore

P(J=r|di ≤ Z < di+1) =
αr,i
αsum,i

.

As we wanted to prove. �

The previous results are an advance in the direction to prove that Barrio and

Cai’s SSADs are statistically equivalent, in the sense that both algorithms produce

trajectories of the form

(5.17) ∀t > 0 Y (t)=

∞∑
j=0

Yjχ[t̂j ,t̂j+1)(t)
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where {t̂j}j is the sequence of times when a stoichiometric change occurs and every

Yj+1 := Yj+w for w ∈ {v[k], ω1, ω2 : 1 ≤ k ≤ n}. Moreover, we assert that the

equivalence between Barrio and Cai’s SSADs happens, because the corresponding

trajectories (5.17) are solutions to Anderson-Kurtz’s equation

Y (t) = Y (0) +
∑n
k=1 Uk

(∫ t
0
αk(Y (s))ds

)
vk

+Ude
(∫ t

0
αde(Y (s))ds

)
ω1 + Ude

(∫ t−d
0

αde(Y (s))ds
)
ω2.

but this problem will be analyzed in the Doctoral studies.
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6. Conclusions

The following results were developed and shown in this thesis work. We firstly

presented in Section 2.1 and Chapter 3 a formal definition of a delayed chemical

reaction, which was inspired by the theory of transition states in chemistry. Using

this definition as a base, we then modify the original Anderson-Kurtz’s equation

for representing the stochastic time dynamics of a chemical reactor. For example,

the following modified Anderson-Kurtz’s equation

(6.1)
Y (t) = Y (0) +

∑n
k=1 Uk

(∫ t
0
αk(Y (s))ds

)
v[k]

+Ude
(∫ t

0
αde(Y (s))ds

)
ω1 + Ude

(∫ t−d
0

αde(Y (s))ds
)
ω2.

can model a system of n instantaneous chemical reactions and a delayed one. As

a result we were able to show that the chemical system with one reaction R1, a

physical trasition T with delay d

(6.2) R1 : X + Y
κ1−→ Z; T : Z

d
=⇒ X + Y,

and initial state (1, y0)T with y0 ∈ N, can be modeled with a Semi-Markovian

process which is the solution of the following Anderson-Kurtz’s equation with delays(
x(t)

y(t)

)
=

(
1

y0

)
+U1

(∫ t

0

κ1(xy)(s)ds

)(
−1

−1

)
+U1

(∫ t−d

0

κ1(xy)(s)ds

)(
1

1

)
.

The fact that we can find explicit solutions to a particular case of the delayed

Anderson-Kurtz’s equation (6.1) drives us to find more explicit solutions. Following

the construction of the reaction jump process given in Chapter 2, in Section 4.1 we

showed a new version of Doob-Gillespie’s SSA, which has an interpretation in terms

of a race between the chemical reactions of the system. We saw that this version

of Doob-Gillespie’s SSA is equivalent to Anderson-Kurtz’s SSA, which allows us

to show that for a chemical system with n chemical reactions, the corresponding

reaction jump process is the unique solution to the stochastic equation (Anderson-

Kurtz’s equation)

X(t) = x0 +

n∑
j=1

Uj
(∫ t

0

αj(X(s))ds

)
v[j].

The new interpretation of the Doob-Gillespie’s SSA, as a race, gives a natural expla-

nation on why the dynamics of a chemical reactor can be so efficiently represented

by the original Doob-Gillespie’s SSA. Moreover, the equivalence between Doob-

Gillespie’s SSA and Anderson-Kurtz’s SSA implies that Anderson-Kurtz’s SSAD

(which generates the solution to equation (6.1)) can be interpreted as a modification

to the Doob-Gillespie’s SSA. We also noted in Chapter 5 that Barrio’s SSAD and

Cai’s SSAD are modifications to Doob-Gillespie’s SSA. Thus, a natural question

arises: For a chemical system of n instantaneous chemical reactions and a delayed

one, can the trajectories of the solution to equation (6.1) be simulated through
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Barrio’s SSAD and Cai’s SSAD? We believe that the answer to this question is

affirmative, and although we could not give a proof for this statement, in Section

5.3 we saw that for the system (6.2) with initial conditions (2, 2)T , Barrio’s SSAD

generates the trajectories, until time t̂4, of the solution to the Anderson-Kurtz’s

equation with delays(
x(t)

y(t)

)
=

(
2

2

)
+U1

(∫ t

0

κ1(xy)(s)ds

)(
−1

−1

)
+U1

(∫ t−d

0

κ1(xy)(s)ds

)(
1

1

)
.

Finally, in order to lay the foundations for future work, we prove in Section

5.4 that Cai’s SSAD also has a natural interpretation in terms of a race between

the different chemical reactions participating in the system. We assert that this

interpretation is a forward step into proving that the trajectories generated by

Cai’s SSAD are solutions to the modified Anderson-Kurtz’s equation (6.1). These

ideas deserve to be further developed in a more detailed Doctoral work.
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