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Abstract

In this thesis we compute the topological complexity of polyhedral products defined by
two LS-logarithmic based families P and G. The former is constructed out of real projective
spaces, whereas the latter of locally compact connected CW topological groups. In the
first case, the answer is given by a combinatorial formula that involves the LS category
and the topological complexity of the polyhedral product factors. Such a mixed cat/TC
phenomenon contrasts with the behavior noticed in the setting of right-angle artin groups.
In the second case, the estimate is given by a combinatorial formula that involves the LS
category of the polyhedral product factors. As a direct consequence, we show that the
Iwase-Sakai conjecture holds true for both polyhedral products determined by the based
families P and G.

The proof methodology of such results involves a Fadell-Husseini flavored definition
of monoidal topological complexity, which, under mild conditions, recovers the original
definition given by Iwase and Sakai. Furthermore, such a new version of monoidal
topological complexity represents an alternative to the slight variant given by Dranishnikov,
as well as the ones provided by Garcı́a-Calcines, Carrasquel-Vera, and Vandembroucq in
terms of relative category.
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Resumen

En esta tesis calculamos la complejidad topológica de productos poliédricos asociados a
dos familias basadas y LS-logarı́tmicas P y G. La primera está constituida por espacios
proyectivos reales, mientras que la segunda por grupos topológicos conexos y localmente
compactos con estructura de complejos celulares. En el primer caso, la respuesta está dada
en términos de la categorı́a y la complejidad topológica de los factores poliédricos. Tal
fenómeno mixto contrasta con el comportamiento que ocurre en el contexto de los grupos
RAA (right-angle Artin groups). En el segundo caso, la respuesta está dada en términos
de la categorı́a de los factores poliédricos. En particular, mostramos que la conjectura de
Iwase y Sakai es válida para los productos poliédricos que determinan las familias basadas
P y G.

La prueba de dichos resultados involucra una versión tipo Fadell-Husseini de la com-
plejidad topológica monoidal, la cual, bajo ciertas condiciones, recupera la definición
original dada por Iwase y Sakai. Además, tal versión de complejidad topológica monoidal
representa una alternativa a la ligera variante dada por Dranishnikov, y a la proporcionada
por Garcı́a-Calcines, Carrasquel-Vera y Vandembroucq en términos de categorı́a relativa.
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1

Introduction

The topological complexity of a space X, denoted by TC(X), was introduced by M. Farber
[19] as a way of measuring discontinuities of the process of motion planning in X, with X
thought of as the configuration space of a mechanical system. In the simplest terms, TC(X)
can be thought of as one less than the minimal number of motion planning rules required
to specify the motion between any pair of initial-final configurations of the system.

In this thesis we analyze the motion planner problem in the context of polyhedral
products, spaces obtained by assembling a family of based topological spaces via the
combinatorial data coming from an abstract simplicial complex. More concretely, inspired
by the detailed study in [23] of the higher topological complexities of polyhedral products
of real dimensional spheres, we determine, in several cases, the topological complexity of
any polyhedral product of real projective spaces PK; thus generalizing the equality

TC(RPn ∨RPm) = max{TC(RPn), TC(RPm), n + m}, (1.1)

with n, m ≥ 1, which follows from [15, Theorem 6] as a particular case.
As we will see in chapter 4, our estimate exhibits a mixed cat/TC phenomenon not

present in either (1.1) or, more generally, in the setting of right-angled Artin groups (see [3]
for more details). In the realm of higher topological complexities, we treat the case of
polyhedral products whose factors are even dimensional real projective spaces. The main
results of this chapter are included in the last section of [3], which has been accepted for
publication.

On the other hand, in chapter 5 we also compute, under suitable conditions, the topo-
logical complexity of any polyhedral product whose factors are locally compact connected
CW topological groups. We will point out that the answer is given by a combinatorial
formula that involves the LS category of each polyhedral product factor. This result enables
to provide a simple characterization of when a polyhedral product of this type admits an
H-space structure.

The proof methodology of our main results involves a Fadell-Husseini version of
monoidal topologial complexity (TCFH) together with its generalized counterpart (TCFH

g ),
which, roughly speaking, emerge naturally by imputing Dranishnikov’s and Garcı́a-
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Calcines’ points of view into Iwase-Sakai’s original definition (TCM) (all these notions will
be detailed in chapter 3).

We show that, if X is an ANR space,

TCFH(X) = TCFH
g (X) = TCDM(X) = TCM(X) = TCM

g (X), (1.2)

where the last equality was proved by Garcı́a-Calcines and the next-to-last equality is due
to Dranishnikov. Namely, the former author shows that Iwase-Sakai’s original definition
of TCM(X) can be given in terms of arbitrary (not necessarily open) covers of X × X,
whereas Dranishnikov claims that the definition of TCM(X) can be relaxed in the sense
that the diagonal of X does not need to be contained in each open domain covering X× X.
Therefore, our equality TCFH

g (X) = TCM(X) shows that TCM(X) also can be given in
terms of arbitrary covers of X× X and that the diagonal of X does not need to be contained
in each arbitrary domain covering X× X. In this sense, we assemble Dranishnikov’s and
Garcı́a-Calcines’ points of view into Iwase-Sakai’s original definition of TCM(X).

As a by-product of the equalities (1.2), we show that the Iwase-Sakai conjecture (re-
viewed in chapter 3) holds true for the polyhedral products PK and GK. Finally, this new
approach to monodial topological complexity together with the main results of chapter 5
are included in [2], which has been accepted for publication.



2

Preliminaries

This chapter is devoted to reviewing basic definitions and results that will be needed in
subsequent parts of the thesis. We start by defining the concepts of topological complexity,
higher topological complexities, and LS category. We next introduce polyhedral products
and provide some results on how to determine, under convenient hypotheses, the higher
topological complexities of these spaces.

2.1 Basic definitions and results

We start by defining the sectional category of a fibration, of which topological complexity
and LS category are special cases. As we shall see below, the former notion was introduced
by Farber in order to pave the way for topological aspects of the motion planning problem
in robotics. We refer the reader to [6, 19, 28] for further details.

Definition 2.1. The (reduced) sectional category of a fibration p : E→ B, denoted by secat(p),
is defined as the smallest n for which there exists an open cover {U0, . . . , Un} of B by n + 1
open sets, on each of which there is a continuous section si : Ui → E of p, that is, p ◦ si
equals the inclusion Ui ↪→ B. If such a n fails to exist, we set secat(p) = ∞.

Definition 2.2. The (reduced) topological complexity of a path-connected space X, denoted by
TC(X), is defined as the sectional category of the end-points evaluation map e2 : X[0,1] →
X× X. The sets Ui covering X× X and the corresponding local sections si of e2 are called
local domains and local rules, respectively, whereas the family {(Ui, si)} is known as a motion
planner.

The latter definition essentially captures, in a topological way, the motion planning
problem discussed at the beginning of the introduction. Concretely, X can be thought of
as the configuration space of a mechanical system and X[0,1] as the space of robot actions.
With these ideas in mind, a continuous global section of the fibration e2 takes a pair of
configurations (A, B) ∈ X× X as an input and produces as an output a continuous path
from the initial state A to the desired state B. Unfortunately, such a continuous global

7



8 Topological Complexity And Polyhedral Products

section exists if and only if our space X is contractible ([19, Theorem 1]), which is rather rare
in practice. Farber’s solution to this issue was to cover X× X with open sets and consider
continuous local sections of e2 instead of a global one. In this sense, TC(X) measures
discontinuity of the process of motion planning in X because the sections on the overlap of
two open sets are in general distinct.

On the other hand, if we need to plan the movement from A to B, passing through a
certain number of intermediate states, the following definition gives a topological answer.

Definition 2.3. Let r ∈ N with r ≥ 2. The (reduced) rth topological complexity of a path-
connected space X, denoted by TCr(X), is defined to be the sectional category of the
fibration

er : X[0,1] → Xr

γ 7→
(

γ
( 0

r−1

)
, γ
(

1
r−1

)
, . . . , γ

(
r−1
r−1

))
.

The collection {TCr(X)}r≥2 is called the higher or sequential topological complexities of
X.

Remark 2.4.

• TCr(X), with r ≥ 2, is a homotopy invariant of X.

• Notice that TC2(X) is precisely TC(X).

Another homotopy invariant of X that, in some occasions, is easier to compute than
TC(X) is its Lusternik-Schnirelmann category.

Definition 2.5. The (reduced) Lusternik-Schnirelmann category or simply the (reduced) LS
category of X, denoted by cat(X), is defined as the sectional category of the fibration
e1 : PX → X, where PX denotes the space of based paths in X and e1 takes a path to its
end-point.

Remark 2.6. Observe that cat(X) agrees with the smallest n for which there exists an open
cover {U0, . . . , Un} of X with each Ui being contractible within X.

In order to establish lower bounds for cat and TCr, we introduce the concepts of cup-
length and rth zero-divisor cup-length. These notions make use of the cohomology ring of
the space under consideration.

Definition 2.7. Let R be a commutative ring R with unit. The cup-length of X, denoted by
cupR(X), is the greatest integer n for which there exist n positive dimensional cohomology
classes ξi ∈ H̃∗(X; R) such that ξ1 · · · ξn 6= 0.

Definition 2.8. Let R be a commutative ring R with unit. The rth zero-divisor cup-length
of X, denoted by zclr(X; R) for r ≥ 3 and zcl(X; R) for r = 2, is the length of the longest
nontrivial product in ker(∆∗r : H∗(Xr; R) → H∗(X; R)), where ∆r : X → Xr is the r-fold
iterated diagonal.
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Bringing together the former and the latter definitions, the next theorem bounds cat and
TCr from below by homological methods, and from above by homotopical considerations.

Theorem 2.9. [6, Theorem 3.9] For a path-connected space X having the homotopy type of a CW
complex,

cupR(X) ≤ cat(X) ≤ hdim(X) and zclr(X; R) ≤ TCr(X) ≤ r· cat(X),

where hdim(X) denotes the (cellular) homotopy dimension of X, i.e., the smallest dimension of CW
complexes having the homotopy type of X.

Example 2.10. The first three facts below can easily be proved by making use of the
preceding theorem, while the proof of the last assertion can be found in [28]. In the last
section, we will discuss the connection between TC(RPn) and Imm(RPn). Here the latter
expression denotes the minimal integer k such that RPn admits a smooth immersion in Rk.

1. cat(Sn) = 1 for any n ≥ 1.

2. cat(RPn) = n for any n ≥ 1.

3. cat(Sg) = 2 for any closed (orientable or not) surface Sg of genus g ≥ 1.

4. For any r ≥ 2, TCr(Sn) =

{
r− 1, if n is odd;
r, if n is even.

2.2 Polyhedral products

Definition 2.11. Let (X, A) = {(Xi, Ai)}m
i=1 be a family of pairs of spaces and K be an

abstract simplicial complex with m vertices labeled by the set {1, . . . , m}. For each σ ∈ K
set (X, A)σ = ∏m

i=1 Yi , where

Yi =

{
Ai, if i ∈ {1, . . . , m} \ σ;
Xi, if i ∈ σ.

The polyhedral product determined by (X, A) and K is defined as

(X, A)K = ∪σ∈K(X, A)σ ⊆
m

∏
i=1

Xi. (2.1)

Remark 2.12. Note that (X, A)σ1 is contained in (X, A)σ2 provided σ1 ⊆ σ2. Therefore, it
suffices to take the union over all the maximal simplices of K in (2.1), that is, simplices that
are not contained in any other simplex of K.

Throughout this thesis we are only interested in the case where all Ai = ∗. Thus, (X, ∗)K

and (X, ∗)σ are simply denoted by XK and Xσ, respectively. Moreover, it is clear that, for
any σ ∈ K, Xσ is a retract of XK and Xσ ≈ ∏i∈σ Xi.
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Example 2.13. Let X = {(R, 0)}3
i=1 be a family of based spaces, where 0 is the neutral

element of R. The following table summarizes the polyhedral products we get for different
choices of K.

K Polyhedral product

Example 2.14 (Taken from [5]). Let (X, A) = {(D1, S0)} be a family of pairs, where D1

denotes the closed disk of dimension 1 and S0 its boundary, whereas K is defined to be the
boundary complex of a square on vertices {1, 2, 3, 4}. The following table illustrates how
XK turns out to be a 2-dimensional torus (we add the 1-skeleton in the first four pictures



2 – Preliminaries 11

for more clarity):

σ (X, A)σ

{1, 2}

{1, 4}

σ (X, A)σ

{2, 3}

{3, 4}

Figure 2.1: A 2-dimensional torus.

There are some approaches to explore the higher topological complexities of general
polyhedral products. For example, [23, Theorem 5.3] computes, under suitable conditions,
the higher topological complexities of XK in terms of the cone length of each polyhedral
product factor Xi. In fact, such a result will provide a proof of the result on sequential
topological complexities of polyhedral products constructed out of even dimensional
projective spaces (Theorem 4.12).

As an alternative to work with the cone length of each polyhedral product factor Xi, one
can wonder what hypotheses have to be imposed to the family of based spaces X in order
to guarantee that the general upper bound for TCr(XK) given by r· cat(XK) is optimal.
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The first problem that has to be conquered is the computation of cat(XK). Fortunately,
this task has been completed in [3, Section 6.3], where the proof methodology involves
certain properties of open covers of spaces. Indeed, with the purpose of making explicit
such a result, we introduce the notions of LS-logarithmic and TCr-logarithmic families.

Definition 2.15. A family of based spaces X = {(Xi, ∗)}m
i=1 is said to be LS-logarithmic if

cat(Xi1 × · · · × Xik) = cat(Xi1) + · · ·+ cat(Xik)

holds for any strictly increasing sequence 1 ≤ i1 < · · · < ik ≤ m. Likewise, X is said to be
TCr-logarithmic, for some r ≥ 2, if

TCr(Xi1 × · · · × Xik) = TCr(Xi1) + · · ·+ TCr(Xik)

holds for any strictly increasing sequence 1 ≤ i1 < · · · < ik ≤ m.

Theorem 2.16. [3, Lemma 6.7, Theorem 1.4] Let XK be the polyhedral product associated to a
family of based spaces X = {(Xi, ∗)}m

i=1 and an abstract simplicial complex K. We have

cat(XK) ≤ max
{

cat(Xi1) + · · ·+ cat(Xin) : {i1, . . . , in} ∈ K
}

.

Further, if the family {(Xi, ∗)}m
i=1 is LS-logarithmic, then the latter inequality is in fact an equality.

Theorem 2.17. [3, Theorem 1.5] Let {(Xi, ∗)}m
i=1 be a collection of based spaces. If, for some r ≥ 2,

1. TCr(Xi) = r· cat(Xi) for all i ∈ {1, . . . , m},

2. the collection {(Xi, ∗)}m
i=1 is LS-logarithmic, and

3. the collection {(Xi, ∗)}m
i=1 is TCr-logarithmic,

then

TCr(XK) = r· cat(XK) = max
{

TCr(Xi1) + · · ·+ TCr(Xin) : {i1, . . . , in} ∈ K
}

.

The latter result provides a nice alternative to compute, under suitable conditions,
some higher topological complexities of general polyhedral products. Nonetheless, for
r = 2, a real projective space does not fulfill the first hypothesis of Theorem 2.17 because
TC(RPn) < 2n = 2 cat(RPn). The same complication occurs if we consider a topological
group G since TCr(G) = cat(Gr−1) < r· cat(G) for any r ≥ 2 ([6, Proposition 3.4]).

We solve the above issues by constructing motion planners to determine the topological
complexity of polyhedral products whose factors are real projective spaces and (locally
compact connected CW) topological groups, separately. These projects will be carried out
in full detail in chapters 4 and 5. Nevertheless, as the next example shows, there exist
considerations that have to be taken into account in order to construct a motion planner for
a polyhedral product XK from motion planners for each polyhedral product factor Xi. As a
warm-up of the techniques we will use in following chapters, we sketch out the case of a
wedge sum of two arbitrary based spaces.
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Example 2.18. Let X1 ∨X2 = (X1× ∗)∪ (∗ ×X2) and suppose that we know how to move
between points of X1 and X2 separately. If we need to find a path (in X1 ∨ X2) connecting
a = (x1, ∗) and b = (∗, x2), the plan is clear: move from x1 to ∗ through some path α1 in
X1, and from ∗ to x2 through some path α2 in X2. We reparametrize α1 and α2 in such
a way that for times t ∈ [0, 1/2] we move, via α1, from x1 to ∗ (reaching the latter stage
when t = 1/2), while the path α2 keeps its initial position at ∗ during all this period of
time (see the blue arrow in the picture below). Then, for times t ∈ [1/2, 1] we move, via α2,
from ∗ to x2 (reaching the latter stage when t = 1), while α1 remains constant at ∗ during
all this period of time (see the red arrow in the picture below). This strategy is the heart
of the motion planners constructed for more general polyhedral products and it will be
formalized in chapter 4.

X1 × {∗}

{∗} × X2

a = (x1, ∗)

b = (∗, x2)
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3

The Fadell-Husseini monoidal topological com-
plexity

Having analyzed some basic results on topological complexity and polyhedral products, in
this chapter we introduce the Fadell-Husseini monoidal topological complexity (TCFH).
Such a notion emerges naturally by blending Dranishnikov’s (TCDM) and Garcı́a-Calcines’
(TCM

g ) views—reviewed after showing Proposition 3.2— into Iwase-Sakai’s original defi-
nition of monoidal topological complexity (TCM).

As we will see in Theorem 3.13, which is the principal result of this chapter, all the above
variants of TCM agree when dealing with ANR spaces. In particular, this new approach
to monoidal topological complexity will allow to show that the Iwase-Sakai conjecture
holds true for polyhedral products constructed out of real projective spaces (chapter 4) and
topological groups (chapter 5).

3.1 Monoidal topological complexity

The following notion was introduced by Iwase and Sakai in [25] and it is apparently more
restrictive than Farber’s topological complexity. In motion planning terms, TCM(X) can be
viewed in the same way as TC(X), except that the former satisfies an additional condition:
if the A, B is a pair of initial-final configurations of the system with A = B, then the
continuous motion from A to B is required to be the constant path at A. Such a requirement
seems to be quite natural in actual applications.

In fact, Iwase and Sakai showed in [24] that, for a locally finite simplicial complex X,
TCM(X) differs from TC(X) by at most one unit, and conjectured the equality TCM(X) =
TC(X). In this thesis we provide a sufficient condition to guarantee that the Iwase-Sakai
conjecture TCM(X) = TC(X) occurs when dealing with an ANR space X (see Corol-
lary 3.15).

Definition 3.1. The monoidal topological complexity of a path-connected space X, denoted
TCM(X), is the smallest n for which there is an open cover {U0, . . . , Un} of X × X by

15
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n + 1 open sets, each one containing the diagonal ∆X = {(x, x) : x ∈ X}, and on each of
which there is a continuous local section si : Ui → X[0,1] of the end-points evaluation map
e2 : X[0,1] → X × X such that, for each x ∈ X, si(x, x) = cx, the constant path at x. Such a
section is called reserved. If the coverings fail to exist, we agree to set TCM(X) = ∞.

Unlike the usual topological complexity, the example exhibited in [21, p.13] shows
that the monoidal topological complexity is not a homotopy invariant in general. It is
known that TCM(X) is a homotopy invariant if X is locally equiconnected, i.e., provided
the canonical embedding ∆X ↪→ X × X is a cofibration (see [8, Theorem 12] and [21,
Proposition 2.17]). An important instance of equiconnected spaces is given by an absolute
neighborhood retract (ANR), which, throughout this thesis, means a metrizable space X
satisfying the following property: every map f : A→ X, where A is a closed subset of any
metrizable space Y, can be continuously extended over an open neighborhood U of A in Y.

Following Dranishnikov’s observation in [14], the next proposition claims that the
condition ∆X ⊆ Ui imposed to each set of the open cover {Ui}n

i=0 of X×X in Definition 3.1
can be omitted in the case when X is an ANR space. Since some of the proof details in [14]
are not provided, we give a complete proof.

Proposition 3.2. If X is an ANR space, then TCM(X) = TCDM(X), where the latter expression
is defined to be the smallest nonnegative integer n for which there is an open cover {U0, . . . , Un}
of X × X, on each of which there is a continuous local section si : Ui → X[0,1] of the fibration
e2 : X[0,1] → X× X such that si(x, x) = cx for all x ∈ X with (x, x) ∈ Ui.

Proof. Clearly TCDM(X) ≤ TCM(X). In what follows we show the opposite inequality.
Let {U0, . . . , Un} be an open cover of X× X by sets that admit continuous local sections

si : Ui → X[0,1] of the fibration e2 such that si(x, x) = cx for all x ∈ X with (x, x) ∈ Ui.
Since X× X is a normal space, we can assure the existence of a closed cover {V0, . . . , Vn}
of X× X with Vi ⊆ Ui for all i ∈ {0, 1, . . . , n}. Then we have a continuous extension

si : Vi ∪ ∆X → X[0,1]

of si|Vi defined by

si(x, x′) =

{
si(x, x′), if (x, x′) ∈ Vi;
cx, if (x, x′) ∈ ∆X.

For i ∈ {0, 1, . . . , n}, let Γi stand for the closed subset ((Vi ∪∆X)× [0, 1])∪ (X×X×{0, 1})
of X× X× [0, 1] and define a continuous function ui : Γi → X by

ui(x, x′, t) =


si(x, x′)(t), if (x, x′, t) ∈ (Vi ∪ ∆X)× [0, 1];
x, if (x, x′, t) ∈ X× X× {0};
x′, if (x, x′, t) ∈ X× X× {1}.

Note that ui is well-defined because si is a continuous local section of e2. Since X is an
ANR space, there are open neighborhoods Wi of Γi in X× X× [0, 1] and continuous maps
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ui : Wi → X with ui|Γi = ui. By the compactness of [0, 1], we can take an open set Ni in
X× X containing Vi ∪ ∆X such that Ni × [0, 1] ⊆Wi.
Finally, the required reserved section s′i : Ni → X[0,1] of the fibration e2 is defined by
s′i(x, x′)(t) = ui(x, x′, t) for all (x, x′) ∈ Ni and t ∈ [0, 1]. Indeed, by construction, s′i is a
continuous extension of si. Therefore, the new open cover {N0, . . . , Nn} of X × X fulfills
the requirements of Definition 3.1.

The latter result due to Dranishnikov shows that, if X is an ANR space, Iwase-Sakai’s
definition of TCM(X) can be relaxed in the sense that the diagonal of X does not have to
be contained in each open domain covering X × X (yet, the continuous local sections of
the end-points evaluation map e2 : X[0,1] → X× X are still required to yield constant paths
on points of the diagonal). Furthermore, in [21, Remark 2.19], Garcı́a-Calcines proved
that, when X is an ANR space, TCM(X) can be defined in terms of general (not necessarily
open) covers of X× X by following the lines in Iwase-Sakai’s work, that is, by requiring
that the diagonal lies in each subset covering X × X, and that the corresponding local
sections yield constant paths when restricted to the diagonal of X. On the other hand,
Fadell and Husseini defined in [17] the relative category of a cofibered pair (X, A), denoted
by catFH(X, A), in terms of open sets covering X. In contrast to the definition of cat(X), in
the relative-category context exactly one of the covering open subsets is required to contain
A and deform to A (rel A) within X, while the rest of the open sets are actually required to
deform within X to a point.

In the next section we will introduce the Fadell-Husseini monoidal topological com-
plexity (Definition 3.4) by imputing the definition of catFH(X, A) into Dranishnikov’s and
Garcı́a-Calcines’ viewpoints for TCM(X). Nonetheless, before delving into this task it will
necessary to touch on relative category.

3.2 Relative category and principal results

We start by recalling the definition of the join of two maps having the same target [13]. Let
f : X → Z and g : Y → Z be maps, the join of f and g, denoted X ∗Z Y, is defined as the
homotopy pushout of the homotopy pullback of f and g:

P Y

X ∗Z Y

X Z,

g

f

where the dashed arrow, called join map or whisker map, is given by the weak universal
property of the homotopy pushout.
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The previous definition enables us to set forth the main notion of this section, the
relative category of a map as introduced in [13]. We need the following ingredient. Let
iX : A → X denote a map, the n-th Ganea map of iX, gn : Gn(X) → X (n ≥ 0), is the join
map inductively defined by the join construction

Pn−1 A

Gn(X)

Gn−1(X) X,

iX

αn

gn−1

gn

where g0 := iX and, if gn−1 : Gn−1(X) → X is already given, Gn(X) is the join of iX and
gn−1. Then, the relative category of iX, denoted relcat(iX), is defined as the least nonnegative
integer n such that gn : Gn(X)→ X admits a homotopy section σ : X → Gn(X) satisfying
σ ◦ iX ' αn.

Doeraene and El Haouari proved in [13] that the relative category of a map possesses
a characterization in terms of the n-th sectional fat-wedge tn : Tn(iX) → Xn+1 of iX (see
Theorem 3.3 below), which is inductively defined as follows: For n = 0, set T0(iX) := A
and t0 = iX : A → X. If tn−1 : Tn−1(iX) → Xn is already defined, then tn is the join map
making commutative, up to homotopy, the following diagram

Pn−1 Xn × A

Tn(iX)

Tn−1(iX)× X Xn+1,

1Xn×iX

tn−1×1X

tn

where Tn(iX) is the join of tn−1 × 1X and 1Xn × iX.
Lastly, the next result pieces together [13, Proposition 26] and [22, Corollary 11]. We have

chosen the statement in Theorem 3.3 because, on the one hand, of the simple description
of the n-th sectional fat-wedge and of the formulas of all maps appearing in diagram (3.1)
in the case when iX : A ↪→ X is a cofibration and, on the other hand, because we are
interested in the case of the diagonal inclusion in X× X. Nonetheless, we remark that the
characterization of relative category given by Doeraene and El Haouari in [13, Proposition
26] applies for any map iX : A→ X.



3 – The Fadell-Husseini monoidal topological complexity 19

Theorem 3.3. Let iX : A ↪→ X be a cofibration. We have relcat(iX) ≤ n if and only if there exits
a map f : X → Tn(iX) making commutative, up to homotopy, the diagram

A Tn(iX)

X Xn+1,

τn

iX tn
f

∆n+1

(3.1)

where ∆n+1 is the diagonal map, τn = ∆n+1|A, and tn : Tn(iX) ↪→ Xn+1 is the inclusion of the
subspace Tn(iX) = {(x0, . . . , xn) ∈ Xn+1 : xi ∈ A for some i }.

Definition 3.4.

(a) The Fadell-Husseini monoidal topological complexity of a path connected space X, de-
noted by TCFH(X), is the smallest nonnegative integer n for which there is an open
cover {U0, . . . , Un} of X× X by n + 1 subsets, on each of which there exists a continu-
ous local section si : Ui → X[0,1] of the end-points evaluation map e2 : X[0,1] → X× X
so that:

(1) U0 contains the diagonal ∆X = {(x, x) : x ∈ X};
(2) s0(x, x) = cx, the constant path at x, for all x ∈ X;

(3) ∆X ∩Ui = ∅ for all i ≥ 1.

(b) The Fadell-Husseini generalized monoidal topological complexity of a path-connected space
X, denoted by TCFH

g (X), is defined as above, except that the elements of the covers
{U0, . . . , Un} are not required to be open.

We agree to set TCFH(X) = ∞ or TCFH
g (X) = ∞ if the required coverings fail to exist.

Remark 3.5. In the generalized setting, condition (3) in Definition 3.4 can be omitted
without altering the value of TCFH

g , as the diagonal ∆X can be removed, if needed, from
the sets U1, . . . , Un. A similar observation applies in the non-generalized setting provided
X is a Hausdorff space. Furthermore, the inequalities TCDM(X) ≤ TCFH(X) ≤ TCM(X)
follow directly from the definitions. In fact, these inequalities turn out to be equalities if X
is an ANR, in view of Proposition 3.2.

What is more striking is the fact that the generalized version of TCFH also agrees with
the original definition of monoidal topological complexity when working with ANR
spaces. Nevertheless the proof of such a fact is not trivial, and can be proved by following
the guideline established by Garcı́a-Calcines in [21] to show that TCM(X) = TCM

g (X)
when dealing with an ANR space X. In fact, paralleling many of his techniques, we
introduce in Definitions 3.6 and 3.9 below the notions of relcatFH

op (iX) and relcatFH
g (iX),

where iX : A ↪→ X stands for a cofibration. Both concepts represent a Fadell-Husseini
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version of the concepts relcatop(iX) and relcatg(iX), which were widely studied in [21] in
order to provide a characterization by covers of relative category in the sense of Doeraene-
El Haouari. We show that if X is an ANR space and iX : ∆X ↪→ X×X denotes the canonical
cofibration, then

relcatFH
g (iX) = relcatFH

op (iX) = relcat(iX) = relcatop(iX) = relcatg(iX), (3.2)

where the last two equalities were proved in [21, Theorems 1.6 and 2.16].

Definition 3.6. Let iX : A ↪→ X be a cofibration. We say that a subset U of X is A-relatively
sectional if A ⊆ U and there exists a homotopy of pairs H : (U, A)× [0, 1] → (X, A) such
that H(x, 0) = x and H(x, 1) ∈ A for all x ∈ U. Then we define relcatFH

op (iX) as the least
nonnegative integer n such that X admits an open cover {Ui}n

i=0 satisfying:

1. U0 is A-relatively sectional;

2. for i ≥ 1, Ui ∩ A = ∅ and there are homotopies Hi : Ui × [0, 1]→ X with Hi(x, 0) = x
and Hi(x, 1) ∈ A for all x ∈ Ui.

If such an integer does not exist, then we simply set relcatFH
op (iX) = ∞.

Remark 3.7. If each Ui is required to be A-relatively sectional in Definition 3.6, we obtain
the notion of relcatop(iX). The latter concept agrees with the relative category of iX because
of [21, Theorem 1.6]. In the next proposition we show that relcat(iX) = relcatFH

op (iX) holds
as well by following similar techniques to those exposed in [21].

Proposition 3.8. Let X be a normal space. If iX : A ↪→ X is a cofibration, then relcat(iX) =

relcatFH
op (iX).

Proof. First we show that relcatFH
op (iX) ≤ relcat(iX) =: n. Since the latter coincides with

relcatop(iX) ([21, Theorem 1.6]), we can choose an open cover {U0, . . . , Un} of X such
that, for any i ≥ 0, Ui is A-relatively sectional. Then there are homotopies of pairs
Hi : (Ui, A)× [0, 1] → (X, A) such that Hi(x, 0) = x and Hi(x, 1) ∈ A for all x ∈ Ui. It
is clear that setting U∗0 := U0, U∗i := Ui \ A and restricting the homotopies Hi to U∗i
for i ≥ 1, the two items of Definition 3.6 are fulfilled. Thereby, the desired inequality
relcatFH

op (iX) ≤ relcat(iX) follows.
Now, in order to prove relcat(iX) ≤ relcatFH

op (iX), let relcatFH
op (iX) = n and consider an

open cover {Ui}n
i=0 of X such that:

1. U0 is A-relatively sectional, i.e., A ⊆ U0 and there exists a homotopy of pairs H0 :
(U0, A)× [0, 1]→ (X, A) with H0(x, 0) = x and H0(x, 1) ∈ A for all x ∈ U0;

2. for i ≥ 1, Ui ∩ A = ∅ and there are homotopies Hi : Ui × [0, 1]→ X with Hi(x, 0) = x
and Hi(x, 1) ∈ A for all x ∈ Ui.



3 – The Fadell-Husseini monoidal topological complexity 21

Since X is a normal space, there are closed sets Ai, Bi and open sets Θi (i = 0, . . . , n)
fulfilling A ⊆ A0 and Ai ⊆ Θi ⊆ Bi ⊆ Ui for all i, with {Ai}n

i=0 covering X. Furthermore,
there exist Urysohn maps hi : X → [0, 1] such that hi(Ai) = {1} and hi(X \Θi) = {0}. For
i ≥ 0, let Li : (X, A)× [0, 1]→ (X, A) be the continuous map defined by

Li(x, t) =

{
x, if x ∈ X \ Bi;
Hi(x, hi(x) · t), if x ∈ Ui.

Observe that Li is well-defined because x = Hi(x, hi(x) · t) for all x ∈ Ui \ Bi. Likewise,
the facts L0(a, t) = H0(a, t) ∈ A and Li(a, t) = a for t ∈ [0, 1], a ∈ A and i ≥ 1 (recall,
Ui ∩ A = ∅ for i ≥ 1) imply that Li restricts to a map A× [0, 1]→ A.
We define L : (X, A) × [0, 1] → (Xn+1, Tn(iX)) to be L := (L0, . . . , Ln). Since {Ai}n

i=0
covers X, we get a well-defined map f : X → Tn(iX) by setting f (x) := L(x, 1). Such
a map satisfies L : ∆n+1 ' tn ◦ f and L|A×[0,1] : τn ' f ◦ iX. Therefore, by Theorem 3.3,
relcat(iX) ≤ n.

We now discuss the Fadell-Husseini generalized relative category relcatFH
g (iX), which is

determined just as in Definition 3.6, but without requiring that the covers should consist of
open sets. We show that, under mild hypotheses, dropping such a condition is immaterial
(Proposition 3.12 below).

Definition 3.9. Let iX : A ↪→ X be a cofibration. We define relcatFH
g (iX) as the least

nonnegative integer n such that X admits a (not necessarily open) cover {U0, . . . , Un}
satisfying:

1. U0 is A-relatively sectional;

2. for i ≥ 1, Ui ∩ A = ∅ and there are homotopies Hi : Ui × [0, 1]→ X with Hi(x, 0) = x
and Hi(x, 1) ∈ A for all x ∈ Ui.

If such an integer does not exist, then we simply set relcatFH
g (iX) = ∞.

Remark 3.10. If each subset Ui is required to be A-relative sectional in Definition 3.9, we
obtain the notion of relcatg(iX). In view of [21, Theorem 2.16], the latter concept coincides
with relcat(iX) provided iX : A ↪→ X is a cofibration between ANR spaces. Paralleling
the proof of such a fact, we will prove that the same conclusion holds in the context of
relcatFH

g (iX).

Before delving into the equality relcat(iX) = relcatFH
g (iX), we prove the following

technical lemma (cf. [21, Lemma 2.14]).

Lemma 3.11. Let iX : A ↪→ X be a cofibration with X a normal space. Assume that

1. {U0, . . . , Un} is an open cover of X;
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2. A ⊆ U0 and there is a homotopy H0 : U0 × [0, 1]→ X so that H0(x, 0) = x, H0(x, 1) ∈ A,
and H0(−, 1)|A ' 1A;

3. for i ≥ 1, Ui ∩ A = ∅ and there are homotopies Hi : Ui × [0, 1] → X with Hi(x, 0) = x
and Hi(x, 1) ∈ A for any x ∈ Ui.

Then relcat(iX) ≤ n.

Proof. The first half of the argument follows the constructions in the proof of Proposition 3.8.
Let Ai, Bi be closed sets and Θi be open sets (i = 0, . . . , n), with {Ai}n

i=0 covering X, such
that A ⊆ A0 and Ai ⊆ Θi ⊆ Bi ⊆ Ui for all i. Choose Urysohn maps hi : X → [0, 1] such
that hi(Ai) = {1} and hi(X \Θi) = {0}. For i ≥ 0, let Li : X× [0, 1]→ X be defined by

Li(x, t) =

{
x, if x ∈ X \ Bi;
Hi(x, hi(x) · t), if x ∈ Ui.

Set L = (L0, . . . , Ln) : X× [0, 1]→ Xn+1 and note that we still have Li|A×[0,1] : A× [0, 1]→
A, as well as L : ∆n+1 ' tn ◦ f , where f (x) := L(x, 1) : X → Tn(iX).
On the other hand, let G0 : A× [0, 1] → A be the homotopy between 1A and H0(−, 1)|A,
that is, G0(a, 0) = a and G0(a, 1) = H0(a, 1) for all a ∈ A. Define G : A × [0, 1] →
An+1 ⊆ Tn(iX) to be G = (G0, L1|A×[0,1], . . . , Ln|A×[0,1]). Observe that L0(a, 1) = H0(a, 1) =
G0(a, 1), so G : τn ' f ◦ iX. Therefore, the desired inequality relcat(iX) ≤ n comes from
Theorem 3.3.

Proposition 3.12. Let iX : A ↪→ X be a cofibration between ANR spaces. We have relcat(iX) =

relcatFH
g (iX).

Proof. Clearly relcatFH
g (iX) ≤ relcatFH

op (iX) = relcat(iX), where the latter relation holds in
view of Proposition 3.8 (recall, X is a normal space since it is metrizable). We show the
inequality relcat(iX) ≤ relcatFH

g (iX).
Let n := relcatFH

g (iX) and consider a (not necessarily open) cover {Ui}n
i=0 of X such that:

1. U0 is A-relatively sectional, i.e., A ⊆ U0 and there exists a homotopy of pairs H0 :
(U0, A)× [0, 1]→ (X, A) with H0(x, 0) = x and H0(x, 1) ∈ A for all x ∈ U0;

2. for i ≥ 1, Ui ∩ A = ∅ and there are homotopies Hi : Ui × [0, 1]→ X with Hi(x, 0) = x
and Hi(x, 1) ∈ A for all x ∈ Ui.

The argument below for i = 0 is the one in the proof of [21, Theorem 2.16]. We review the
details since we will then describe a slight variant in order to deal with the case of i > 0.
Consider the following factorization of iX through its mapping cocylinder:

A X

Â,

iX

j p
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where Â = {(a, β) ∈ A× X[0,1] : iX(a) = β(0)}, p is a fibration and j a homotopy equiv-
alence. As observed in [21, Lemma 2.13], Â is also an ANR. Define s0 : U0 → Â to be
s0 = j ◦ H0(−, 1), then p ◦ s0 ' U0 ↪→ X and s0|A ' j. Actually, since p is a fibration, there
is no problem in assuming that p ◦ s0 = U0 ↪→ X. Following the proof of [21, Theorem
2.7], there exist an open neighborhood V0 of U0 in X and a map σ0 : V0 → Â such that
p ◦ σ0 = V0 ↪→ X and σ0|U0 ' s0. In particular,

σ0|A = (σ0|U0)|A ' s0|A ' j. (3.3)

If j′ : Â→ A denotes a homotopy inverse of j, then

iX ◦ j′ ◦ σ0 = p ◦ j ◦ j′ ◦ σ0 ' p ◦ σ0 = V0 ↪→ X.

Hence, there exists a homotopy G0 : V0 × [0, 1] → X such that G0(x, 0) = x, G0(x, 1) =
iX ◦ j′ ◦ σ0(x) ∈ A and G0(−, 1)|A = j′ ◦ (σ0|A) ' j′ ◦ j = 1A.
On the other hand, for i ≥ 1, set si := j ◦ Hi(−, 1) : Ui → Â. An examination of the proof
above (omitting those steps that involve A ⊆ U0) reveals that there are open neighborhoods
Vi of Ui in X together with maps σi : Vi → Â so that p ◦ σi = Vi ↪→ X and σi|Ui ' si.
Without losing generality we may assume that Vi ∩ A = ∅ for, otherwise, we simply set
V′i := Vi \ A and σ′i = σi|V′i . Furthermore, we have homotopies Gi : Vi × [0, 1] → X such
that Gi(x, 0) = x and Gi(x, 1) = iX ◦ j′ ◦ σi(x) ∈ A for all x ∈ Vi.
Therefore relcat(iX) ≤ n, by Lemma 3.11.

We bring together the above results to show the following theorem.

Theorem 3.13. If X is an ANR space, then

TCFH(X) = TCFH
g (X) = TCDM(X) = TCM(X) = TCM

g (X).

Proof. The last equality is due to Garcı́a-Calcines ([21, Remark 2.19]), whereas the next-to-
last equality is due to Dranishnikov (the proof details were completed in Proposition 3.2).
Likewise, by Remark 3.5, the equality TCM(X) = TCFH

g (X) is the only one requiring
argumentation.

First of all, since X is an ANR space, the canonical embedding iX : ∆X ↪→ X × X
is a cofibration between ANR spaces and, by [21, Theorems 1.6 and 2.16], relcat(iX) =

relcatop(iX) = relcatg(iX). The equalities relcat(iX) = relcatFH
op (iX) = relcatFH

g (iX) come
from Propositions 3.8 and 3.12 (so, all equalities in (3.2) follow).

We next observe that relcatFH
g (iX) ≤ TCFH

g (X). This fact comes by noticing that,
if {Ui}n

i=0 is a (not necessarily open) cover of X × X and si : Ui → X[0,1] are the local
sections of the fibration e2 coming from Definition 3.4, then one can define homotopies
H0 : (U0, ∆X)× [0, 1] → (X × X, ∆X) and Hi : Ui × [0, 1] → X × X (i ≥ 1) as Hi(x, y, t) =
(si(x, y)(t), y) (i ≥ 0) satisfying the two items of Definition 3.9. Likewise, it is clear that
TCFH

g (X) ≤ TCFH(X); nevertheless, the latter expression agrees with TCM(X) due to
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Remark 3.5. Finally, TCM(X) = relcat(iX) follows from [8, Theorem 12], while relcat(iX)

equals relcatFH
g (iX) by our initial discussion. In summary,

relcatFH
g (iX) ≤ TCFH

g (X) ≤ TCFH(X) = TCM(X) = relcatFH
g (iX),

which completes the proof.

Finally, having shown the principal result of this chapter, we focus on providing a
sufficient condition to guarantee that the Iwase-Sakai conjecture holds true when working
with ANR spaces. The next result was pointed out by Garcı́a-Calcines, who kindly accepted
to review a preliminary version of [2].

Theorem 3.14. If X is a locally equiconnected Hausdorff space such that X× X is normal, then
the stasis condition (2) in Definition 3.4 can be ignored without altering the resulting numerical
value of TCFH(X). The same conclusion holds in the generalized setting if X is an ANR space.

Proof. We start in the non-generalized setting, i.e., by proving that the stasis condition (2)
in Definition 3.4 can be omitted without altering the numerical value of TCFH(X). Let
{(Ui, si)}n

i=0 be a motion planner with ∆X ⊆ U0 and ∆X ∩Ui = ∅ for all i ≥ 1. We do not
assume that the section s0 of e2 yields constant paths when restricted to ∆X, but we do
assume that all subsets Ui are open. The task is to construct a motion planner {(Vi, σi)}n

i=0
of a Fadell-Husseini type, that is, one that consists of open sets Vi satisfying ∆X ∩Vi = ∅
for all i ≥ 1, as well as ∆X ⊆ V0 with σ0(x, x) = cx, the constant path at x, for all x ∈ X.

If n = 0, then X is in fact contractible, so that the homotopy invariance of the monoidal
topological complexity for locally equiconnected spaces ([21, Proposition 2.17]) gives the
required motion planner of a Fadell-Husseini type. We can therefore assume n ≥ 1.
By [16, Theorem II.1], there is an open neighborhood W of ∆X in X× X and a local section
λ : W → X[0,1] of the end-points evaluation map e2 satisfying λ(x, x) = cx for all x ∈ X.
Furthermore, by the normality assumption, there is an open cover {Wi}n

i=0 of X× X such
that Wi ⊆Wi ⊆ Ui for all i ≥ 0. Consider the open neighborhood N of ∆X given by

N = W ∩U0 ∩
(
(X× X) \W1

)
∩ · · · ∩

(
(X× X) \Wn

)
.

Using once more the normality of X × X, take an open set M in X × X with ∆X ⊆ M ⊆
M ⊆ N. Let V0 = (U0 \M) tM and define the reserved section σ0 : V0 → X[0,1] of e2 by

σ0(x, x′) =

{
s0(x, x′), if (x, x′) ∈ U0 \M;
λ(x, x′), if (x, x′) ∈ M.

Lastly, for 1 ≤ i ≤ n, set Vi = Wi t (N \ ∆X) and define the local sections σi : Vi → X[0,1]

of e2 by

σi(x, x′) =

{
si(x, x′), if (x, x′) ∈Wi;
λ(x, x′), if (x, x′) ∈ N \ ∆X.
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Then {(Vi, σi)}n
i=0 is the required motion planner of Fadell-Husseini type. It remains to

show that {V0, V1, . . . , Vn} covers X × X. Indeed, since Wi ⊆ Vi for i ≥ 1, the covering
assertion follows by observing that W0 \ (V1 ∪ · · · ∪Vn) ⊆ V0:

W0 \ (V1 ∪ · · · ∪Vn) ⊆ U0 \ (V1 ∪ · · · ∪Vn)

=
(
(U0 \M) ∪ (M \M) ∪M

)
\ (V1 ∪ · · · ∪Vn)

=
(
V0 ∪ (M \M)

)
\ (V1 ∪ · · · ∪Vn)

= (V0 \ (V1 ∪ · · · ∪Vn)) ∪
(

M \ (M ∪V1 ∪ · · · ∪Vn)
)

,

where

M \ (M ∪V1 ∪ · · · ∪Vn) ⊆ N \ (∆X ∪V1 ∪ · · · ∪Vn)

= (N \ ∆X) \ (V1 ∪ · · · ∪Vn) = ∅,

as n ≥ 1.
We now sketch the argument for the generalized case. Let {(Ui, si)}n

i=0 be a generalized
motion planner consisting of a cover {Ui}n

i=0 of X × X by not necessarily open subsets
Ui such that ∆X ⊆ U0 and ∆X ∩Ui = ∅ for all i ≥ 1, and of sections si : Ui → X[0,1] of
e2. Again, without assuming that s0 is a reserved section of e2, the task is to assure the
existence of a corresponding generalized motion planner, one of whose rules is defined on
the whole diagonal via constant paths. Following the proof of [21, Theorem 2.7], we can
construct a new motion planner {(Vi, σi)}n

i=0 so that, for all i ≥ 0, Vi is an open subset of
X × X, Ui ⊆ Vi (so ∆X ⊆ V0), and σi|Ui ' si. Furthermore, without loss of generality we
can assume ∆X ∩Vi = ∅ for all i ≥ 1. Then, by the argument in the non-generalized case,
we can fix the situation so to have in addition σ0(x, x) = cx, the constant path at x, for all
x ∈ X, which completes the argument.

Corollary 3.15. The equality TC(X) = TCM(X) in the Iwase-Sakai conjecture holds true for any
ANR space X for which there is a (not necessarily monoidal) motion planner with TC(X) + 1 (not
necessarily open) local domains one of which contains the diagonal ∆(X) (cf. [24, Corollary 3]).
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4

Real projective spaces

In this chapter we compute, under suitable conditions, TC(PK), where PK denotes the
polyhedral product determined by an abstract simplicial complex K and a based family
P = {(RPni , ∗)}m

i=1 of real projective spaces. As a particular case, we show that the Iwase-
Sakai conjecture holds true for PK (Theorem 4.7).

The proof of such a result is treated in sections 4.2.1 and 4.2.2. We first deal with the
lower bound for TC(PK) by considering the mod-2 cohomology ring of PK, then we carry
out the project of constructing a motion planner leading to an upper bound for TCM(PK).
As we shall see in section 4.2.2, the engine that powers this construction, and produces the
mixed cat/TC behavior in TC(PK), is precisely the concept of strong axial map. For this
reason, we start by proving some crucial results about the connection between the latter
notion and the topological complexity of a real projective space.

4.1 Axial and nonsingular maps

Historically, axial and nonsingular maps were widely studied because of their connection
with the immersion problem of real projective spaces. Later, Farber, Tabachnikov, and
Yuzvinsky show in [20] that this classical and tough problem is closely related to the compu-
tation of TC(RPn). In fact, for our purposes it was necessary to go back to Sanderson [29]
to guarantee that we can involve strong axial maps in the impressive connection between
TC(RPn) and Imm(RPn).

Most of the ideas and facts exposed here are inspired by the ones given in [20].

Definition 4.1. Let n, k ∈ N. A continuous map f : Rn+1 ×Rn+1 → Rk+1 is said to be
nonsingular if it satisfies the following conditions:

(a) f (λx, µy) = λµ f (x, y) for all x, y ∈ Rn+1, λ, µ ∈ R;

(b) f (x, y) = 0 implies that either x = 0 or y = 0.

Additionally, if f (x, ∗) = x and f (∗, x) = x for all x ∈ Rn+1, we say that f is a strong
nonsingular map. Here, ∗ denotes the basepoint (1, 0, . . . , 0) of Rn+1. Furthermore, we

27
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use the canonical embedding Rn+1 ↪→ Rk+1 to identify (x1, . . . , xn+1) ∈ Rn+1 with
(x1, . . . , xn+1, 0, . . . , 0) ∈ Rk+1.

It can be shown that a nonsingular map as above exists only for k ≥ n, and that n = k
is possible only for n ∈ {1, 3, 7} by using the operations of the complex, quaternion, and
octonion numbers, respectively. Indeed, in these cases, the map f : Rn+1 ×Rn+1 → Rn+1

defined by f (x, y) = xy produces a strong nonsingular map, whereas f (x, y) = xy yields a
nonsingular map whose first coordinate map is positive on the diagonal, that is,

f (x, x) = (λx, 0, . . . , 0),

with λx ≥ 0 for all x ∈ Rn+1 and λx = 0 if and only if x = 0.
The principal aim of this section is to guarantee, for n 6= 1, 3, 7, the existence of a strong

nonsingular map whose first coordinate map is positive on the diagonal. As we have
already seen in the previous paragraph, both requirements fail to exist for the same map in
the cases n ∈ {1, 3, 7}.

Definition 4.2. Let n, k be natural numbers. A continuous map

g : RPn×RPn → RPk

is called axial of type (n, k) if its restrictions to RPn×∗ and ∗ ×RPn are homotopic to the
equatorial inclusion map RPn → RPk (so n ≤ k is forced). Additionally, if g(A, ∗) = A and
g(∗, A) = A for any A ∈ RPn, we say that g is a strong axial map. Here, ∗ is the basepoint
of RPn given by the equivalence class of (1, 0, . . . , 0) ∈ Rn+1.

Remark 4.3. A nonsingular map f : Rn+1 ×Rn+1 → Rk+1 induces and is induced by an
axial map g : RPn×RPn → RPk. In this sense, f is strong if and only if g is strong (see the
proof of Proposition 4.6 below).

Sanderson proved in [29, Theorem 2.1] that if RPn admits a smooth immersion in Rk,
then there is a strong axial map RPn×RPn → RPk (note that n < k is forced). Conversely,
if n < k and there exists an axial map RPn×RPn → RPk (not necessarily strong) then
RPn # Rk (see [1] for details). On the other hand, it was shown in [20, Theorem 7.1] that
TC(RPn) = Imm(RPn) for n 6= 1, 3, 7 and TC(RPn) = n for n ∈ {1, 3, 7}. In summary, for
n 6= 1, 3, 7,

TC(RPn) = min{k : there exists a strong axial map RPn×RPn → RPk and n < k}. (4.1)

We now focus on showing the existence of a strong nonsingular map

f : Rn+1 ×Rn+1 → RTC(RPn)+1

such that its first coordinate map is positive on the diagonal for n 6= 1, 3, 7. This result will
be a consequence of the following two lemmas.



4 – Real projective spaces 29

Lemma 4.4. Let α : RPn×RPn → RPk be an axial map with n < k. The restriction of α to the
diagonal of RPn is null-homotopic.

Proof. For i ∈ {1, 2}, consider the commutative diagram

RPn RPn×RPn

RPn,

∆

πi

where ∆(A) = (A, A) and πi : RPn×RPn → RPn is the canonical projection onto the ith
factor.
Let x ∈ H1(RPn; Z2) be the generator of H1(RPn; Z2), and define xi to be the pullback of
x under πi. By the Künneth formula, H1(RPn×RPn; Z2) = Z2 ⊕Z2 is generated by x1
and x2, and hence α∗(x) = x1 + x2 since α is axial. Then

∆∗α∗(x) = ∆∗(x1 + x2)

= ∆∗(x1) + ∆∗(x2)

= 2x
= 0,

that is, the composition α ◦ ∆ is trivial in cohomology. Furthermore, considering that n < k,
the cellular approximation theorem asserts that the inclusion map j : RPk ↪→ RP∞ induces
a one-to-one correspondence between homotopy classes

[RPn, RPk]
ψ→ [RPn, RP∞].

By Brown’s representability theorem, the abelian group [RPn, RP∞] is isomorphic to
H1(RPn; Z2) under the map τ : [RPn, RP∞] → H1(RPn; Z2) given by τ([ f ]) = f ∗(u),
where u ∈ H1(RP∞; Z2) stands for the generator of H1(RP∞; Z2). Such facts imply that

τ ◦ ψ([α ◦ ∆]) = ∆∗α∗ j∗(u)
= ∆∗α∗(x)
= 0,

and therefore α ◦ ∆ is null-homotopic.

Lemma 4.5. Let n ∈ N with n 6= 1, 3, 7. There exists a strong axial map α : RPn×RPn →
RPTC(RPn) such that α(A, A) = ∗ for all A ∈ RPn.

Proof. Throughout the proof TC(RPn) is simply denoted by k.
Let β : RPn×RPn → RPk be a strong axial map given by (4.1). If we set E = RPn ∨RPn

and D stands for the diagonal in RPn×RPn, the restriction β|D is null-homotopic by
Lemma 4.4. In fact, β|D is based null-homotopic in view of [12, Corollary 6.58]. Let
HD : D× [0, 1]→ RPk be such a based null-homotopy for β|D, that is,
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• HD((A, A), 0) = β(A, A) for all (A, A) ∈ D,

• HD((A, A), 1) = ∗ for all (A, A) ∈ D, and

• HD((∗, ∗), t) = ∗ for all t ∈ [0, 1].

Let HE : E × [0, 1] → RPk be the constant homotopy defined by H(e, t) = β(e) for all
(e, t) ∈ E × [0, 1]. Since D ∩ E = {(∗, ∗)}, both homotopies HD and HE can be pieced
together to obtain a new homotopy H : (D ∪ E)× [0, 1]→ RPk satisfying

(a) H(z, 0) = β(z) for all z ∈ D ∪ E,

(b) H((A, ∗), 1) = A = H((∗, A), 1) for all A ∈ RPn, and

(c) H((A, A), 1) = ∗ for all (A, A) ∈ D.

In other words, the map H( , 1) : D ∪ E→ RPk fulfills the properties we need. So, in the
rest of the proof we extend H to all RPn×RPn×[0, 1].
Consider the commutative diagram

D ∪ E (D ∪ E)× [0, 1]

RPn×RPn (RPn×RPn)× [0, 1]

RPk,

ι0

ι0

β

G

H

(4.2)

where ι0 is the closed embedding t 7→ (t, 0). Since D ∪ E ↪→ RPn×RPn is a cofibration,
there exists a homotopy G : (RPn×RPn)× [0, 1]→ RPk making commute diagram (4.2).
Finally, we define α(A, B) = G((A, B), 1) for all (A, B) ∈ RPn×RPn. By construction, α is
a strong axial map such that α(A, A) = ∗ for all A ∈ RPn.

Proposition 4.6. Let n ∈N with n 6= 1, 3, 7. There exists a strong nonsingular map

f : Rn+1 ×Rn+1 → RTC(RPn)+1

such that f (x, x) = λx · ∗, where ∗ = (1, 0, . . . , 0) ∈ RTC(RPn)+1, λx ≥ 0 for all x ∈ Rn+1 and
λx = 0 if and only if x = 0.

Proof. Set k = TC(RPn). By Lemma 4.5, there exists a strong axial map α : RPn×RPn →
RPk such that α(A, A) = ∗ for all A ∈ RPn. Likewise, in view of the Lifting criterion, there
exists a based map g : (Sn × Sn, (∗, ∗))→ (Sk, ∗) fitting in a commutative diagram
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Sn × Sn Sk

RPn×RPn RPk .

g

pp×p

α

Here, p : S` → RP` stands for the universal covering of RP`.
The crux of the proof is that the condition g(∗, ∗) = ∗ implies that both restrictions
g|∗×Sn and g|Sn×∗ are the equatorial inclusion of Sn into Sk, while g is constant in the
diagonal of Sn by the same reason. Therefore, the required strong nonsingular map
f : Rn+1 ×Rn+1 → Rk+1 is given by

f (λx, µy) = λµg(x, y)

for all x, y ∈ Sn and λ, µ ≥ 0.

4.2 Polyhedral products of projective spaces

Theorems 4.7 and 4.12 are the main results of this section. The first one computes TC(PK)
and, in particular, shows that the Iwase-Sakai conjecture is valid for PK under suitable
conditions. The second one explores some sequential topological complexities of PK when
the based family G is constructed out of even dimensional real projective spaces. The proof
of the first fact will be deferred until we have analyzed some interesting consequences.

Theorem 4.7. Let PK denote the polyhedral product determined by an abstract simplicial complex
K and a based family P = {(RPni , ∗)}m

i=1 of real projective spaces. If TC(RPni) = zcl(RPni ; Z2)
for all i ∈ {1, . . . , m}, then

TC(PK) = TCM(PK) = max
{

∑
i∈σ14σ2

ni + ∑
i∈σ1∩σ2

TC(RPni) : σ1, σ2 ∈ K
}

,

where σ14σ2 = (σ1 \ σ2) ∪ (σ2 \ σ1) is the symmetric difference of σ1 and σ2

Remark 4.8. From [7] we know that the equality TC(RPn) = zcl(RPn; Z2) holds precisely
in the following cases:

1. n ∈ {1, 3, 7}, i.e., RPn is parallelizable;

2. n = 2a + b with a ≥ 1 and b ∈ {0, 1};

3. n = 6.

Corollary 4.9. If RPni is parallelizable for all i ∈ {1, . . . , m}, then

TC(PK) = TCM(PK) = max
{

∑
i∈σ1∪σ2

ni : σ1, σ2 ∈ K
}

.
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Example 4.10. As we indicated at the beginning of the chapter, there are instances of
Theorem 4.7 where the topological complexity exhibits a mixed cat/TC phenomenon. For
example, take K = ∂∆2, where ∆2 is the standard 2-simplex, and n1 = n2 = n3 = 2a with
a ≥ 0. Since TC(RP2a

) = 2a+1 − 1, we get the following data

σ1 σ2 ∑i∈σ14σ2
ni ∑i∈σ1∩σ2

TC(RPni)
{1, 2} {1, 2} 0 2a+2 − 2
{1, 2} {1, 3} 2a+1 2a+1 − 1
{1, 2} {2, 3} 2a+1 2a+1 − 1
{1, 3} {1, 3} 0 2a+2 − 2
{1, 3} {2, 3} 2a+1 2a+1 − 1
{2, 3} {2, 3} 0 2a+2 − 2

.

By Theorem 4.7, TC(PK) = TCM(PK) = 2a+2 − 1, a maximum realized by maximal
simplices σ1 and σ2 of K with |σ14σ2| = 2 and |σ1 ∩ σ2| = 1.

Theorem 4.7 does not seem to have a counterpart in the context of TCr; however, it
was shown in [7] that, if n is even and r is large enough, TCr(RPn) = r· cat(RPn) =
zclr(RPn) = rn. We will see in Theorem 4.12 that such a behavior spreads in the context
of polyhedral products whose factors are even dimensional real projective spaces. Before
stating such a result, we need set forth some terminology.

Definition 4.11. [11, Definition 1.1] Let n be a natural number. If n = ∑j εj2j with εj ∈ {0, 1}
is the binary representation of n, we define Zi(n)1 and S(n)2 by setting

Zi(n) =
i

∑
j=0

(1− εj)2j

and
S(n) = {i : εi = εi−1 = 1 and εi+1 = 0}.

Theorem 4.12. If all ni are even, then

TCr(PK) = r ·max{ni1 + · · ·+ ni` : {i1, . . . , i`} ∈ K}
= r · cat(PK)

for r ≥ max{M(n1), . . . , M(nm)}, where

M(ni) := max

{
3,

⌈
2k+1 − 1
Zk(ni)

⌉
: k ∈ S(ni)

}
for all i ∈ {1, . . . , m}.

1Zi(n) is the sum of 2-powers less than or equal to 2i corresponding to the 0’s in the binary representation
of n.

2The elements of S(n) are those that begin (from the left) a sequence of two or more consecutive 1’s in the
binary expansion of n.
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Remark 4.13. Our first proof of Theorem 4.12 was obtained by using a slight variation
of [23, Theorem 5.3], where the topological complexity of a general polyhedral product is
calculated in terms of the cone length of their polyhedral product factors. Since we have
not defined such a notion throughout this thesis, and for the sake of readability, we have
chosen an alternative proof based on Theorem 2.17.

Proof of Theorem 4.12. In what follows we verify the hypotheses of Theorem 2.17. It is clear
that the family P is LS-logarithmic, while the condition

TCr(RPni) = r· cat(RPni) = zclr(RPni) = rni

follows from [11, Corollary 3.4] and the assumption on r. So, it remains to check the
TCr-logarithmicity of the family P. The proof methodology of such a fact is standard: note
that

r

(
k

∑
j=1

nij

)
=

k

∑
j=1

zclr(RP
nij ; Z2) ≤ zclr

(
k

∏
j=1

RP
nij ; Z2

)
≤ TCr

(
k

∏
j=1

RP
nij

)

≤ r

(
k

∑
j=1

nij

)
,

where the first inequality follows from [9, Lemma 2.1], and the second and the third ones
come from Theorem 2.9.
In summary, for r ≥ max{M(n1), . . . , M(nm)},

TCr(PK) = r· cat(PK) = max
{

∑
i∈σ

TCr(RPni) : σ ∈ K
}

,

which completes the proof.

We now delve into the proof of Theorem 4.7. We first treat the lower bound for TC(PK):

Proposition 4.14. Let PK be as in Theorem 4.7. TC(PK) is bounded from below by3

max
{

∑
i∈σ14σ2

ni + ∑
i∈σ1∩σ2

zcl(RPni ; Z2) : σ1, σ2 ∈ K
}

.

Since TC(PK) ≤ TCM(PK), the proof of Theorem 4.7 will be complete once we prove:

Proposition 4.15. Let PK be as in Theorem 4.7. TCM(PK) is estimated from above by

N (n1,...,nm)(K) = max
{

∑
i∈σ14σ2

ni + ∑
i∈σ1∩σ2

TC(RPni) : σ1, σ2 ∈ K
}

.

3Notice that n ≤ zcl(RPn; Z2) ≤ TC(RPn) for all n ≥ 1. Therefore, both maxima in Propositions 4.14
and 4.15 are achieved by simplices that are not contained in any other simplex of K.
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4.2.1 Proof of Proposition 4.14

The principal ingredient required is the mod-2 cohomology ring of PK. We state it in the
following proposition as an easy application of [4, Theorem 2.35].

Proposition 4.16. The mod-2 cohomology ring of PK is given by

H∗(PK; Z2) ∼=
m⊗

i=1

H∗(RPni ; Z2)/I(K),

where I(K) is the generalized Stanley-Reisner ideal, that is, I(K) is generated by all elements
xr1 ⊗ xr2 ⊗ · · · ⊗ xrt , with xri ∈ H∗(RPnri ; Z2) and the simplex {r1, . . . , rt} /∈ K.

For each i ∈ {1, . . . , m}, let πi : PK → RPni be the canonical projection onto the ith
coordinate. If vi ∈ H1(RPni ; Z2) stands for the generator of H1(RPni ; Z2), we define ui to
be the pullback of vi under πi. Hence, the mod-2 cohomology ring of PK can be rewritten
as follows:

H∗(PK; Z2) ∼= Z2[u1, . . . , um]/
(
{un1+1

1 , . . . , unm+1
m , ur1 · · · urt : {r1, . . . , rt} /∈ K}

)
.

In particular, a graded basis for H∗(PK; Z2) consists of the monomials

ue1
1 · · · u

em
m

having 0 ≤ ei ≤ ni and {i : ei > 0} ∈ K.

Proof of Proposition 4.14. Let σ1 and σ2 be two simplices of K. Assume σ1 \ σ2 = {i1, . . . , ir},
σ2 \ σ1 = {j1, . . . , js}, and σ1 ∩ σ2 = {k1, . . . , kw}. By Theorem 2.9, it suffices to show that
the product, in [H∗(PK; Z2)]

⊗2,(
∏

i∈σ14σ2

(ui ⊗ 1 + 1⊗ ui)
ni

)(
∏

i∈σ1∩σ2

(ui ⊗ 1 + 1⊗ ui)
zcl(RPni ;Z2)

)
6= 0. (4.3)

The left-hand side factor in (4.3) agrees with( ni1

∑
`1=0

(
ni1
`1

)
u

ni1
−`1

i1
⊗ u`1

i1

)
· · ·
(

nir

∑
`r=0

(
nir
`r

)
unir−`r

ir ⊗ u`r
ir

)

·
( nj1

∑
q1=0

(
nj1
q1

)
u

nj1
−q1

j1
⊗ uq1

j1

)
· · ·
( njs

∑
qs=0

(
njs
qs

)
u

njs−qs
js ⊗ uqs

js

)

=

 ∑
0≤`t≤nit

1≤t≤r

(
ni1
`1

)
· · ·
(

nir
`r

)
u

ni1
−`1

i1
· · · unir−`r

ir ⊗ u`1
i1
· · · u`r

ir

 (4.4)

·

 ∑
0≤qt≤njt

1≤t≤s

(
nj1
q1

)
· · ·
(

njs
qs

)
u

nj1
−q1

j1
· · · unjs−qs

js ⊗ uq1
j1
· · · uqs

js

 . (4.5)
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On the other hand, recall that zcl(RPni ; Z2) = 2θi − 1 with 2θi−1 ≤ ni < 2θi , and in
particular ni ≤ 2θi − 1 < 2ni. With this in mind, the right-hand side factor in (4.3) equals nk1

∑
h1=2

θk1−1−nk1

u2
θk1−1−h1

k1
⊗ uh1

k1

 · · ·
 nkw

∑
hw=2θkw−1−nkw

u2θkw−1−hw
kw

⊗ uhw
kw



=

 ∑
2

θkt−1−nkt≤ht≤nkt
1≤t≤w

u2
θk1−1−h1

k1
· · · u2θkw−1−hw

kw
⊗ uh1

k1
· · · uhw

kw

 . (4.6)

The result follows by observing that, in the product of (4.4), (4.5), and (4.6), the basis
element

u
ni1
i1
· · · unir

ir u
nk1
k1
· · · unkw

kw
⊗ u

nj1
j1
· · · unjs

js u
2

θk1−1−nk1
k1

· · · u2θkw−1−nkw
kw

arises only from the product of:

• u
ni1
i1
· · · unir

ir ⊗ 1 in (4.4), with `t = 0 for all t ∈ {1, . . . , r};

• 1⊗ u
nj1
j1
· · · unjs

js in (4.5), with qt = njt for all t ∈ {1, . . . , s};

• u
nk1
k1
· · · unkw

kw
⊗ u

2
θk1−1−nk1

k1
· · · u2θkw−1−nkw

kw
in (4.6), with ht = 2θkt − 1− nkt for all t ∈

{1, . . . , w}.

4.2.2 Proof of Proposition 4.15

Notice that the n-dimensional compact smooth manifold RPn is an ANR space. Conse-
quently, Pσ is an ANR for each σ ∈ K, and therefore PK = ∪σ∈KPσ is an ANR as well.
Furthermore, in view of Theorem 3.13, it suffices to show that

TCFH
g (PK) ≤ N (n1,...,nm)(K) = max

{
∑

i∈σ14σ2

ni + ∑
i∈σ1∩σ2

TC(RPni) : σ1, σ2 ∈ K
}

.

In order to attain this result, we will construct a (not necessarily open) cover of PK × PK

together with continuous local sections of the fibration e2 : (PK)[0,1] −→ PK × PK fulfilling
the conditions of Definition 3.4 (b). The main ingredients we need are the local domains
and rules used in [20] to determine the topological complexity of RPn. For the sake of
readability we provide such details.

For each i ∈ {1, . . . , m}, we fix once and for all a nonsingular map

fi : Rni+1 ×Rni+1 −→ RTC(RPni )+1
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such that
fi(x, x) = (λx, 0, . . . , 0) (4.7)

for all x ∈ Rni+1 with λx ≥ 0 as well as λx > 0 for x 6= 0. Further, if ni 6= 1, 3, 7 we require
fi to be strong:

fi(∗, x) = x = fi(x, ∗) (4.8)

for all x ∈ Rni+1 (Proposition 4.6). Also, for each k ∈ {0, 1, . . . , TC(RPni)}, let fik be the
(k + 1)st coordinate map of fi. Set

Vi0 = {(A, B) ∈ RPni ×RPni : fi0(a, b) 6= 0 for some points a ∈ A and b ∈ B}

and, for k ∈ {1, . . . , TC(RPni)},

Vik = {(A, B) ∈ RPni ×RPni : A 6= B and fik(a, b) 6= 0 for some points a ∈ A and b ∈ B}.

Note that the diagonal of RPni is contained in Vi0 in view of (4.7), and hence

{Vi0, Vi1, . . . , Vi TC(RPni )}

is an open cover of RPni ×RPni .
On each set Vik there is a continuous local section λik : Vik → (RPni)[0,1] of the fibration

e2 : (RPni)[0,1] → RPni ×RPni defined as follows:

• If A = B, we choose the constant path at A.

• If A 6= B, we take unit vectors a ∈ A and b ∈ B such that fik(a, b) > 0. Instead of such
vectors we could have chosen −a and −b; nevertheless, both pairs a, b and −a,−b
determine the same orientation of the plane spanned by A and B. In this case, we
rotate with constant velocity A toward B in the plane spanned by A and B in the
positive direction determined by the orientation:

A

B
−a

a

b

−b

0

Clearly λik is continuous on Vik if k ∈ {1, . . . , TC(RPni)}. The continuity of λi0 on Vi0
follows from (4.7) and the fact that λi0(A, A) is the constant path for all A ∈ RPni .

The open sets Vik might not be disjoint, but this can easily be fixed by redefining

Uik = Vik \ (Vi0 ∪ · · · ∪Vi(k−1))
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for each k ∈ {1, . . . , TC(RPni)} and i ∈ {1, . . . , m}, so Ui0 = Vi0. We are interested in
the number of zeroes produced by taking an element in the sets Uik. Specifically, we
say that a pair of lines (A, B) in Rni+1 produces k initial zeroes if (A, B) ∈ Uik, with k ∈
{0, 1, . . . , TC(RPni)}. The justification of the latter convention comes from the observation:
(A, B) ∈ Uik if and only if

fi0(a, b) = · · · = fi(k−1)(a, b) = 0 6= fik(a, b)

for some (and therefore any) vectors a ∈ A and b ∈ B. The number of zeroes produced by
(A, B) is denoted Z(A, B).

An element (A1, A2) of PK × PK is thought of as a matrix of size m× 2, i.e.,

(A1, A2) =

A11 A12
...

...
Am1 Am2

 ,

where each column belongs to PK, say (A11, . . . , Am1) ∈ Pσ1 and (A12, . . . , Am2) ∈ Pσ2 for
some σ1, σ2 ∈ K. We know that each row (Ai1, Ai2) of the matrix (A1, A2) lies in a unique
set Uik with k = Z(Ai1, Ai2). Hence, the number of zeroes determined by (A1, A2), denoted
Z(A1, A2), is defined to be the sum of zeroes produced by the rows (Ai1, Ai2) of (A1, A2),
that is,

Z(A1, A2) :=
m

∑
i=1

Z(Ai1, Ai2).

As a first approximation, it is clear that Z(A1, A2) ≤ ∑i∈σ1∪σ2
TC(RPni); nevertheless, the

previous upper bound for Z(A1, A2) can be streamlined because the number of zeroes
generated by the rows of type either (Ai1, ∗) or (∗, Ai2) of (A1, A2) needs to be considered
more carefully in view of (4.8). In fact, note that if i ∈ σ1 \σ2, then Z(Ai1, Ai2) = Z(Ai1, ∗) ≤
ni since fi fulfills (4.8) when ni 6= 1, 3, 7 (recall that ni = TC(RPni) if ni = 1, 3, 7). In like
manner, if i ∈ σ2 \ σ1, then Z(Ai1, Ai2) = Z(∗, Ai2) ≤ ni. In summary,

Z(A1, A2) ≤ ∑
i∈σ14σ2

ni + ∑
i∈σ1∩σ2

TC(RPni) ≤ N (n1,...,nm)(K),

and hence we have proved:

Proposition 4.17. The sets Wj = {(A1, A2) ∈ PK × PK : Z(A1, A2) = j}, with j belonging to
{0, 1, . . . ,N (n1,...,nm)(K)}, form a pairwise disjoint cover of PK × PK.

The proof of Proposition 4.15 will be complete once a local rule is constructed on each
Wj. This is attained by splitting Wj into topological disjoint subsets (see Proposition 4.18
below), and then defining a local section of the fibration e2 on each one of them.

A partition of j, with j ∈ {0, 1, . . . ,N (n1,...,nm)(K)}, is an ordered tuple (j1, . . . , jm) of
nonnegative integers such that j = j1 + · · · + jm and 0 ≤ ji ≤ TC(RPni) for each i ∈
{1, . . . , m}. For such a partition of j, set

W(j1,...,jm) = {(A1, A2) ∈ PK × PK : Z(Ai1, Ai2) = ji for each i ∈ {1, . . . , m}}.
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It is straightforward to see that

Wj =
⊔

(j1,...,jm)

W(j1,...,jm), (4.9)

where the index runs over all partitions of j. We next show that (4.9) is a topological union,
that is, Wj has the weak topology determined by the several W(j1,...,jm).

Proposition 4.18. Let j ∈ {0, 1, . . . ,N (n1,...,nm)(K)}. If (j1, . . . , jm) and (r1, . . . , rm) are two
different partitions of j, then

W(j1,...,jm) ∩W(r1,...,rm) = ∅ = W(j1,...,jm) ∩W(r1,...,rm).

Proof. Since (j1, . . . , jm) 6= (r1, . . . , rm), there is a natural number ` ∈ {1, . . . , m} with
j` 6= r`, say j` < r`, while the equality j1 + · · ·+ jm = j = r1 + · · ·+ rm forces the existence
of another natural number q ∈ {1, . . . , m} such that rq < jq.
For elements (A1, A2) ∈W(j1,...,jm) and (B1, B2) ∈W(r1,...,rm) we have

(A`1, A`2) ∈ U`j` and (B`1, B`2) ∈ U`r` ,

then f`j`(a`1, a`2) 6= 0 for all a`1 ∈ A`1, a`2 ∈ A`2 and f`j`(b`1, b`2) = 0 for all vectors
b`1 ∈ B`1, b`2 ∈ B`2 since j` < r`. It is clear that the latter condition is inherited by elements
of W(r1,...,rm), so the second equality of our proposition follows.
In the same way as we proceeded in the case j` < r`, the statement W(j1,...,jm) ∩W(r1,...,rm) =
∅ is proved by using the condition rq < jq.

In the rest of the section we construct a continuous local section of the end-points
evaluation map e2 on each W(j1,...,jm) by adapting the techniques from [23]. As we noted
in Example 2.18, we have to be careful in order to guarantee that the path connecting
two points of PK lies in PK, so many of our efforts are devoted to carrying out this task
successfully.

For i ∈ {1, . . . , m}, consider the canonical Riemannian structure in the unit ni-sphere.
Since the antipodal involution Sni → Sni is a fixed-point free properly discontinuous
isometry, RPni inherits a canonical quotient Riemannian structure gi. Let Li(γ) denote the
resulting length of a smooth curve γ in RPni , and let

di(x, y) = inf{Li(γ) : γ is a geodesic on RPni from x to y}

be the associated metric. Note that the curves λik(A, B) set forth at the middle of page 36
are geodesic on RPni . Without loss of generality we can assume that each gi is normalized
so that any geodesic γ on RPni satisfies Li(γ) ≤ 1/2.

Now, we reparametrize the initial navigational instructions λik in the following way:
for k ∈ {0, 1, . . . , TC(RPni)}, consider the section τik : Uik → (RPni)[0,1] of the end-points
evaluation map e2 : (RPni)[0,1] → RPni ×RPni where, for (A1, A2) ∈ Uik,

τik(A1, A2)(t) =


A1, if di1 + di2 = 0;
λik(A1, A2)(

t
di1+di2

), if 0 ≤ t ≤ (di1 + di2) 6= 0;

A2, if 0 6= (di1 + di2) ≤ t ≤ 1;
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and dij = di(Aj, ∗), j = 1, 2.
The path τik is clearly continuous on the open subset of Uik determined by the condition
di1 + di2 6= 0. The latter open subset of Uik equals in fact Uik unless k = 0, so that τik
is continuous on the whole Uik for k ∈ {1, . . . , TC(RPni)}. The continuity of τi0 on Ui0
follows from the continuity of λi0 and the fact that λi0(A, A) is the constant path for all
A ∈ RPni .

Remark 4.19. Note that τik is a reparametrization of λik that makes the path λik reach its
end point at time di1 + di2. In particular τik(A1, ∗) reaches ∗ at time di1.

Let ϕ : PK × PK → (∏m
i=1 RPni)[0,1] be the map defined by

ϕ(A1, A2) = (ϕ1(A11, A12), . . . , ϕm(Am1, Am2)),

whose ith coordinate ϕi(Ai1, Ai2) is the path in RPni , from Ai1 to Ai2, given by

ϕi(Ai1, Ai2)(t) =

{
Ai1, if 0 ≤ t ≤ tAi1 ;
µ(Ai1, Ai2)(t− tAi1), if tAi1 ≤ t ≤ 1.

(4.10)

Here, tAi1 = 1/2− di(Ai1, ∗) and

µ(Ai1, Ai2) =


τi0(Ai1, Ai2), if (Ai1, Ai2) ∈ Ui0;
...

...
τi TC(RPni )(Ai1, Ai2), if (Ai1, Ai2) ∈ Ui TC(RPni ).

(4.11)

By construction, the map ϕ is clearly a section of

e2 : (
m

∏
i=1

RPni)[0,1] → (
m

∏
i=1

RPni)2.

Although ϕ is not a continuous global section of e2, its restriction to each W(j1,...,jm), where
(j1, . . . , jm) is a partition of j ∈ {0, 1, . . . ,N (n1,...,nm)(K)}, is continuous since formulas (4.11)
can be rewritten as

µ =


τi0, if ji = 0;
...

...
τi TC(RPni ), if ji = TC(RPni).

Remark 4.20. In preparation for the proof of our final result (Proposition 4.23), we unravel
formulas (4.10) by providing a complete description at the level of each polyhedral product
factor.
Suppose (Ai1, Ai2) ∈ Uik with k = Z(Ai1, Ai2), the path ϕi(Ai1, Ai2) is described as follows:

• if 0 ≤ t ≤ 1/2− di(Ai1, ∗), then stay at Ai1;
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• if 1/2− di(Ai1, ∗) ≤ t ≤ 1/2 + di(Ai2, ∗), then move from Ai1 to Ai2 at constant
speed;

• if 1/2 + di(Ai2, ∗) ≤ t ≤ 1, then stay at Ai2.

Having spelled out formulas (4.11), the next examples explain the following critical
situations: the motion from the base point toward an arbitrary element of RPni , and vice
versa. These cases illustrate in full the proof methodology in Proposition 4.23.

Example 4.21. Suppose Ai1 = ∗ and let Ai2 be any line through the origin in Rni+1. Assume
(Ai1, Ai2) ∈ Uik with k = Z(Ai1, Ai2). In this case, tAi1 = 1/2− di(Ai1, ∗) = 1/2− 0 = 1/2.
By Remark 4.20, the navigational instruction at level RPni is described as follows:

• if 0 ≤ t ≤ 1
2 , then we stay at ∗;

• if 1
2 ≤ t ≤ 1

2 + di(Ai2, ∗), then we move, by the corresponding local rule, from ∗ to
Ai2 at constant speed;

• if 1
2 + di(Ai2, ∗) ≤ t ≤ 1, then we stay at Ai2.

Example 4.22. In Example 4.21 we moved from the basepoint ∗ to Ai2. In this example we
explain the opposite situation. Assume Ai2 = ∗ and let Ai1 be any line through the origin
in Rni+1. Suppose (Ai1, Ai2) ∈ Uik with k = Z(Ai1, Ai2). In this case, the path ϕi(Ai1, Ai2)
is described as follows:

• if 0 ≤ t ≤ 1
2 − di(Ai1, ∗), then we stay at Ai1;

• if 1
2 − di(Ai1, ∗) ≤ t ≤ 1/2+ di(Ai2, ∗) = 1/2, then we move from Ai1 to ∗ at constant

speed by making use of the corresponding local rule;

• if 1
2 ≤ t ≤ 1, then we stay at ∗.

Recall that ϕ was defined from PK × PK to (∏m
i=1 RPni)[0,1]; however, we next show that

ϕ(PK × PK) ⊆ (PK)[0,1], thus completing the proof of Proposition 4.15.

Proposition 4.23. The image of ϕ is contained in (PK)[0,1].

Proof. Let (A1, A2) ∈ PK × PK, we need to prove that ϕ(A1, A2)([0, 1]) ⊆ PK. Assume
(A11, . . . , Am1) ∈ Pσ1 and (A12, . . . , Am2) ∈ Pσ2 with σ1, σ2 ∈ K. By Example 4.21, for all
i /∈ σ1, Ai1 = ∗ keeps its position through time t ≤ 1/2, so that ϕ(A1, A2)([0, 1/2]) ⊆
Pσ1 ⊆ PK. Likewise, Example 4.22 shows that, for i /∈ σ2, the path ϕi(Ai1, Ai2) has reached
its final position Ai2 = ∗ at time 1/2, so that ϕ(A1, A2)([1/2, 1]) ⊆ Pσ2 ⊆ PK, and the proof
is complete.
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Topological groups

In chapter 4 we detailed how to construct a motion planner for PK from motion planners
of each polyhedral product factor RPni . Namely, the latter motion planners possess the
following key properties:

• RPni ×RPni has an open covering such that the diagonal of RPni lies in only one
open subset.

• The path connecting two equal lines in Rni+1 is the constant path, hence the proposed
section ϕ for the fibration e2 : (PK)[0,1] → PK × PK is continuous by restricting it to a
suitable subspace of PK × PK.

This chapter arose from the observation that the preceding two items are fulfilled by
topological groups, and therefore the construction of a motion planner for polyhedral
products whose factors are locally compact connected CW topological groups comes for
free. Because of this, many of our principal results are stated without proof.

This chapter is organized as follows. We first note that the proof of the equalities
TC(G) = cat(G) = TCM(G) given in [14, Lemma 2.7], where G is a connected Lie group,
can be adapted to show that the Iwase-Sakai conjecture holds true for a locally compact
connected CW topological group. We spell out the details since they will be useful for
constructing an explicit motion planner leading to an upper bound for TCM(GK), where
GK stands for the polyhedral product determined by an abstract simplicial complex K
and a based family G = {(Gi, ei)}m

i=1 of locally compact connected CW topological groups.
Here ei denotes the neutral element of Gi.

In particular, we show that the Iwase-Sakai conjecture holds true for GK (Theorem 5.2)
when dealing with an LS-logarithmic family G, thus generalizing the equalities cat(G) =
TC(G) = TCM(G) noticed by Dranishnikov to the realm of polyhedral products.

41
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5.1 Polyhedral products of topological groups

In this section we compute, under suitable conditions, the topological complexity of
polyhedral products associated to an abstract simplicial complex K and a based family
G = {(Gi, ei)}m

i=1 of locally compact connected CW topological groups, where ei stands
for the neutral element of Gi. Indeed, following the guideline of the previous chapter, we
state our principal result and its proof will be deferred until we analyze some interesting
consequences.

We start by showing that the Iwase-Sakai conjecture holds for a locally compact con-
nected CW topological group.

Proposition 5.1. If G is a locally compact connected CW topological group, then TC(G) =
TCM(G) = cat(G).

Proof. Since TC(G) ≤ TCM(G), with the former agreeing with cat(G) (see [18, Lemma 8.2],
where the same proof works for topological groups), it suffices to show that TCM(G) ≤
cat(G). Furthermore, since a locally compact connected CW complex G is an ANR space
(see Appendix II of [26]), we only need to show that TCFH(G) ≤ cat(G), in view of
Remark 3.5.
Let n := cat(G) and choose an open cover {N0, . . . , Nn} of G together with homotopies
Hi : Ni × [0, 1]→ G satisfying Hi(a, 0) = a and Hi(a, 1) = e, a ∈ Ni, for all i ∈ {0, 1, . . . , n}
(here e denotes the neutral element of G). We can assume that e /∈ Ni for all i > 0 and
H0(e, t) = e for all t ∈ [0, 1], where the latter requirement follows from [10, Lemma 1.25]
and the fact that {e} ↪→ G is a cofibration (recall, CW complexes have non-degenerate base
points).
For each i ∈ {0, 1, . . . , n}, set Vi := {(a, b) ∈ G× G : b−1a ∈ Ni}. On each Vi of the open
cover {V0, . . . , Vn} of G× G there exists a continuous reserved section si : Vi → G[0,1] of e2
defined by si(a, b)(t) = bHi(b−1a, t), t ∈ [0, 1]. Note that ∆G ∩Vi = ∅ for all i ∈ {1, . . . , n}
and s0(a, a)(t) = aH0(a−1a, t) = aH0(e, t) = ae = a with (a, a) ∈ ∆G and t ∈ [0, 1].
Therefore TCFH(G) ≤ cat(G), thus completing the proof.

The next result generalizes the equalities given by Proposition 5.1 to the setting of
polyhedral products defined by LS-logarithmic families of locally compact connected CW
topological groups. Explicitly:

Theorem 5.2. Let GK be the polyhedral product determined by an abstract simplicial complex K
and a based family G = {(Gi, ei)}m

i=1 of locally compact connected CW topological groups, where
ei denotes the neutral element of Gi. If the family G is LS-logarithmic, i.e., if the equality

cat(Gi1 × · · · × Gik) = cat(Gi1) + · · ·+ cat(Gik)

holds true for any strictly increasing sequence 1 ≤ i1 < · · · < ik ≤ m, then

TC(GK) = TCM(GK) = C(G1, . . . , Gm; K) := max
{

∑
i∈σ1∪σ2

cat(Gi) : σ1, σ2 ∈ K
}

.1

1Note that the maximum is realized by maximal simplices of K.
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Remark 5.3. We point out that the LS category of GK is also given in terms of the LS
category of the polyhedral product factors. Explicitly, under the hypotheses of Theorem 5.2,
Theorem 2.16 gives

cat(GK) = max
{

∑
i∈σ

cat(Gi) : σ ∈ K
}

. (5.1)

Additionally, Theorem 5.2 is analogous to the equality case of Theorem 2.16, but their
hypotheses and conclusion contrast with those of Theorem 2.17 (for r = 2). Indeed, a fact
with the flavor of Theorem 5.2 is Corollary 4.9; in this sense, the former generalizes the
behavior noticed for the topological complexity of polyhedral products whose factors are
parallelizable real projective spaces.

Example 5.4. The family G = {(U(n), e)}m
i=1, where U(n) denotes the n-th unitary group,

fulfills the requirements of Theorem 5.2. The LS-logarithmicity hypothesis comes from [27,
Example 3.3], while cat(U(n)) = n is guaranteed by [30, Theorem 1]. Theorem 5.2 thus
gives

TC(GK) = TCM(GK) = max
{

∑
i∈σ1∪σ2

cat(U(n)) : σ1, σ2 ∈ K
}

= max
{

∑
i∈σ1∪σ2

n : σ1, σ2 ∈ K
}

= n ·max{|σ1 ∪ σ2| : σ1, σ2 ∈ K}.

Setting n = 1, we recover the result obtained in [23, Theorem 2.7] (for r = 2 and all spheres
being 1-dimensional). In fact, Theorem 5.2 also determines the topological complexity and
the monoidal topological complexity of polyhedral products whose factors are unitary
groups or special unitary groups of possibly different dimensions. In such a case, the
LS-logarithmicity hypothesis is guaranteed by [27, Example 3.3].

Corollary 5.5. Let G be an LS-logarithmic based family as the one in Theorem 5.2. If no Gi is
contractible, then GK admits an H-space structure if and only if K is the standard (m− 1)-simplex.

Proof. If K is the standard (m − 1)-simplex, then GK = G1 × · · · × Gm is a topological
group, and hence it is an H-space. On the other hand, suppose that GK admits an H-space
structure. Being connected and cellular, GK satisfies

max
{

∑
i∈σ1∪σ2

cat(Gi) : σ1, σ2 ∈ K
}

= TC(GK) = cat(GK) = max
{

∑
i∈σ

cat(Gi) : σ ∈ K
}

,

where the first equality comes from Theorem 5.2, the second one follows from [27, Theorem
1], and the third one is guaranteed by (5.1). Finally, bearing in mind that both maxima
above agree and cat(Gi) ≥ 1 for all i ∈ {1, . . . , m}, we conclude that K is the standard
(m− 1)-simplex.

We now delve into the proof of Theorem 5.2, starting with the following auxiliary result:
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Proposition 5.6. Let G be as in Theorem 5.2. If G is LS-logarithmic, then

TC(GK) ≥ max
{

∑
i∈σ1∪σ2

cat(Gi) : σ1, σ2 ∈ K
}

.

Proof. From [3, Corollary 6.15] we get TC(GK) ≥ cat(Gσ1 × Gσ2) for any disjoint simplices
σ1, σ2 ∈ K. The result follows in view of the LS-logarithmicity hypothesis.

Since TC(GK) ≤ TCM(GK), the proof of Theorem 5.2 will be complete once we prove:

Proposition 5.7. Let G be as in Theorem 5.2. Then TCM(GK) ≤ C(G1, . . . , Gm; K).

Remark 5.8. The previous upper bound for TCM(GK) exhibits a similar behavior to the first
statement of Theorem 2.16. As we pointed out in the paragraph preceding Definition 2.15,
the proof of such a result given in [3] involves certain properties of open covers of spaces.
In our case, as we shall see below, the proof of Proposition 5.7 is based on Proposition 5.1
and the tight control of the monoidal topological complexity of each polyhedral product
factor.

5.1.1 Proof of Proposition 5.7

As we remarked in the proof of Proposition 5.1, locally compact connected CW complexes
are ANR spaces. Consequently, Gσ is an ANR for each σ ∈ K, and therefore GK =
∪σ∈KGσ is an ANR as well. Furthermore, in view of Theorem 3.13, it suffices to show that
TCFH

g (GK) ≤ C(G1, . . . , Gm; K).
By following similar ideas to those of section 4.2.2, we construct a general (not neces-

sarily open) cover of GK × GK by sets that admit continuous local sections of the fibration
e2 : (GK)[0,1] → GK × GK.

For each i ∈ {1, . . . , m}, let {Vi0, . . . , Vici} be an open cover of Gi × Gi together with

reserved sections λik : Vik → G[0,1]
i of the end-points evaluation map e2 : G[0,1]

i → Gi × Gi.
Here, ci stands for the LS category of the corresponding polyhedral product factor Gi. As
shown in the proof of Proposition 5.1, we can assume that the diagonal of Gi is contained
in Vi0 and ∆Gi ∩Vik = ∅ for all k ∈ {1, . . . , ci}.

The open sets Vik might not be disjoint; however, this requirement can be achieved by
redefining

Uik = Vik \ (Vi0 ∪ · · · ∪Vi(k−1))

for each k ∈ {0, 1, . . . , ci} and i ∈ {1, . . . , m} (so Ui0 = Vi0). Instead of counting zeroes
produced by taking an element in the sets Uik, just as we did in the case of real projective
spaces, we equivalently count the number of closed conditions. Specifically, we say that
a pair (a, b) in Gi × Gi produces k closed conditions if (a, b) ∈ Uik, with k ∈ {0, 1, . . . , ci}.
The number of closed conditions produced by (a, b) is denoted by C(a, b).
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Recall, we regard an element (a1, a2) of GK × GK as a matrix of size m× 2, i.e.,

(a1, a2) =

 a11 a12
...

...
am1 am2

 ,

where each column belongs to GK, say (a11, . . . , am1) ∈ Gσ1 and (a12, . . . , am2) ∈ Gσ2 , with
σ1, σ2 ∈ K. We know that each row (ai1, ai2) of the matrix (a1, a2) lies in a unique set Uik for
k = C(ai1, ai2) ∈ {0, 1, . . . , ci}, so the number of closed conditions determined by (a1, a2),
denoted C(a1, a2), is defined to be the sum of closed conditions produced by the rows
(ai1, ai2) of (a1, a2), that is,

C(a1, a2) :=
m

∑
i=1

C(ai1, ai2).

It is clear that C(a1, a2) ≤ ∑i∈σ1∪σ2
ci ≤ C(G1, . . . , Gm; K), and hence we have proved:

Proposition 5.9. The sets Wj = {(a1, a2) ∈ GK × GK : C(a1, a2) = j}, with j belonging to
{0, 1, . . . , C(G1, . . . , Gm; K)}, form a pairwise disjoint cover of GK × GK.

The proof of Proposition 5.7 will be complete once a local rule is constructed on each
Wj. Further, since the proof of Proposition 4.18 applies word for word to show that

Wj =
⊔

(j1,...,jm)

W(j1,...,jm)

is a topological disjoint union, where the index runs over all partitions of j and

W(j1,...,jm) := {(a1, a2) ∈ GK × GK : C(ai1, ai2) = ji for each i ∈ {1, . . . , m}},

it suffices to construct a continuous local section of the fibration e2 on each W(j1,...,jm). Such
a task is performed in the rest of the section and the proof methodology is similar to that
developed in the last part of section 4.2.2. For this reason, we only provide the most
fundamental aspects: the definition of the (not necessarily continuous) global section
ϕ : GK × GK → (∏m

i=1 Gi)
[0,1] of e2, and the key observation that the image of ϕ lands in

the adequate subspace (GK)[0,1], and that ϕ is continuous when is restricted to W(j1,...,jm).
For i ∈ {1, . . . , m}, let di denote a metric on Gi. Since di is always equivalent to a

bounded metric, we can assume that the diameter of Gi, defined by

δ(Gi) = sup{di(a, b) : a, b ∈ Gi},

is finite. Likewise, there is no problem in assuming that each diameter δ(Gi) is positive.
Now, we reparametrize the initial navigational instructions λik in the following way:

For k ∈ {0, 1 . . . , ci}, consider the section τik : Uik → G[0,1]
i of the end-points evaluation map
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e2 : G[0,1]
i → Gi × Gi where, for (a1, a2) ∈ Uik,

τik(a1, a2)(t) =


a1, if di1 + di2 = 0;
λik(a1, a2)

( 2δ(Gi)t
di1+di2

)
, if 0 ≤ t ≤ di1+di2

2δ(Gi)
6= 0;

a2, if 0 6= di1+di2
2δ(Gi)

≤ t ≤ 1;
(5.2)

and dij = di(aj, ei), j = 1, 2. Recall, ei denotes the neutral element of Gi.
The path τik is clearly continuous on the open subset of Uik determined by the condition
di1 + di2 6= 0. The latter open subset of Uik equals in fact Uik unless k = 0, so that τik is
continuous on the whole Uik for k ∈ {1, . . . , ci}. The continuity of τi0 on Ui0 follows from
the continuity of the reserved section λi0.

Define the (not necessarily continuous) section

ϕ : GK × GK → (
m

∏
i=1

Gi)
[0,1]

of the fibration e2 to be ϕ(a1, a2) = (ϕ1(a11, a12), . . . , ϕm(am1, am2)), whose ith coordinate
ϕi(ai1, ai2) is the path in Gi, from ai1 to ai2, given by

ϕi(ai1, ai2)(t) =

{
ai1, if 0 ≤ t ≤ tai1 ;
µ(ai1, ai2)(t− tai1), if tai1 ≤ t ≤ 1.

(5.3)

Here, tai1 =
1
2 −

di(ai1,ei)
2δ(Gi)

and

µ(ai1, ai2) =


τi0(ai1, ai2), if (ai1, ai2) ∈ Ui0;
...

...
τici(ai1, ai2), if (ai1, ai2) ∈ Uici .

(5.4)

By construction, the map ϕ is clearly a section of the fibration

e2 : (
m

∏
i=1

Gi)
[0,1] →

m

∏
i=1

Gi ×
m

∏
i=1

Gi.

Although ϕ fails to be a continuous global section of e2, its restriction to each W(j1,...,jm),
where (j1, . . . , jm) is a partition of j ∈ {0, 1, . . . , C(G1, . . . , Gm; K)}, is continuous since
formulas (5.4) can be rewritten as

µ =


τi0, if ji = 0;
...

...
τici , if ji = ci.
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Remark 5.10. From Remark 4.20 we learned that formulas (5.3) can be spelled out in order
to understand better the motion provided by ϕ at the level of each polyhedral product
factor Gi. Concretely, if (ai1, ai2) ∈ Uik for some k ∈ {0, 1, . . . , ci}, the path ϕi(ai1, ai2) is
described as follows:

• if 0 ≤ t ≤ 1
2 −

di(ai1,ei)
2δ(Gi)

, then stay at ai1;

• if 1
2 −

di(ai1,ei)
2δ(Gi)

≤ t ≤ 1
2 +

di(ai2,ei)
2δ(Gi)

, then move from ai1 to ai2 at constant speed via τik;

• if 1
2 +

di(ai2,ei)
2δ(Gi)

≤ t ≤ 1, then stay at ai2.

Keeping in mind the proof of Proposition 4.23 and the previous observation, one can
show that the map ϕ lands in the adequate place, that is, ϕ(GK × GK) ⊆ (GK)[0,1]; thus
completing the proof of Proposition 5.7.
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6

Conclusions

In this thesis we constructed motion planners to estimate from above the monoidal topo-
logical complexity of polyhedral products whose factors are real projective spaces and
locally compact connected CW topological groups, separately. Furthermore, under suitable
conditions, such upper bounds for TCM(PK) and TCM(GK) turned out to be optimal in a
number of situations. In particular, we showed that the Iwase-Sakai conjecture holds true
for the polyhedral products PK and GK.

The engine that enabled to prove both results is a Fadell-Husseini point of view of
monoidal topological complexity. We showed that if X is an ANR space, then TCFH(X)
and its generalized counterpart TCFH

g (X) recover the original definition provided by Iwase
and Sakai (TCM(X)), as well as the ones given by Dranishnikov (TCDM(X)) and Garcı́a-
Calcines (TCM

g (X)). Likewise, we provided a sufficient condition to guarantee the equality
TCM(X) = TC(X) (Iwase-Sakai’s conjecture) when dealing with ANR spaces.

On the other hand, our approach to constructing motion planners to determine TC(PK)
does not seem to have a counterpart in the realm of TCr for r ≥ 3. Even though The-
orem 4.12 provides a partial result, we do not know how to deal with the general case,
that is, without assuming that each polyhedral product factor be an even dimensional
real projective space and r be large enough. We think that this difficulty arises because
we do not have local domains and rules to determine TCr(RPn) for r ≥ 3 and n ≥ 2. In
fact, it was conjectured in [7, Conjecture 4.1] that such a motion planner algorithm can
be constructed from a certain (Z2)

×(r−1)-equivariant map; nonetheless, to the best of our
knowledge, this problem remains open.

In the case of motion planners determining TCr(GK) for r ≥ 3, it is well-known that,
for a topological group G, the equality TCr(G) = cat(Gr−1) (r ≥ 2) comes from an optimal
motion planner ([6, Proposition 3.4]), i.e., there exist cat(Gr−1) + 1 open sets covering Gr

together with local sections of the fibration er. Indeed, a typical section s of er provides a
motion between any points g1, . . . , gr of G by a “pivotal” strategy: from g1 to g2, from g1 to
g3, and so on. However, there is no mention if the motion given by s from g1 to g` = g1, for
some ` ≥ 2, is the constant map at g1. If such a requisite does not hold, formula (5.2) fails
to be a continuous reparametrization of s, and therefore the techniques developed in the
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last section of chapter 5 cannot be implemented in the context of TCr(GK) with r ≥ 3.
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