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Abstract

The objective of this thesis is to present recent developments of the homotopy theory of non-
𝑘-equal spaces, a generalization of configuration spaces where collisions of 𝑘 coordinates
are avoided in 𝑛 tuples of R𝑑 .
In particular, recent results about the Lusternik-Schnirelmann category, topological com-
plexity, and sequential topological complexity for these spaces are developed. The invariants
mentioned above are computed in full for 𝑑 = 1, while for 𝑑 > 1, bounds for 𝑘 and 𝑛 where
these invariants have been determined are provided.
An essential part of the description of the cohomology of non-𝑘-equal spaces is the use of
a generalized Poincare duality for non-compact manifolds. For this reason, some necessary
results to establish this duality are briefly exposed and, as an application, some non-trivial
Massey products are computed geometrically.

Resumen

El objetivo de esta tesis es exponer desarrollos recientes de la teoría de homotopía de los
espacios de no 𝑘 iguales, una generalización de los espacios de configuraciones donde se
evitan colisiones de 𝑘 coordenadas en 𝑛 tuplas de R𝑑 .
En particular se desarrollan resultados recientes acerca de la categoría de Lusternik-Schnirel-
mann, complejidad topológica y complejidad topológica secuencial para estos espacios. Los
invariantes anteriormente mencionados se determinan totalmente para 𝑑 = 1 mientras que
para 𝑑 > 1 se proporcionan cotas para 𝑘 y 𝑛 donde se han determinado esos invariantes.
Parte esencial para la descripción de la cohomología de los espacios de no 𝑘 iguales es el
uso de la dualidad de Poincaré generalizada para variedades no compactas. Por tal motivo,
se exponen brevemente algunos resultados necesarios para establecer esa dualidad y, como
una aplicación, algunos productos de Massey no triviales son calculados geométricamente.
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Introduction

The non-𝑘-equal manifold 𝑀 (𝑘)
𝑑

(𝑛)—so named in Baryshnikov preprint [1]— is defined as
the complement in

(
R𝑑

)𝑛 of the diagonal-subspace arrangement, 𝐴(𝑘)
𝑑

(𝑛), formed by the
union of subspaces

𝐴𝐼 =
{
(𝑥1, . . . , 𝑥𝑛) ∈

(
R𝑑

)𝑛 | 𝑥𝑖1 = · · · = 𝑥𝑖𝑘
}
,

where 𝐼 = {𝑖1, . . . , 𝑖𝑘 } runs through all cardinality-𝑘 subsets of the segment n = {1,2, . . . , 𝑛}.
For the smallest possible value 𝑘 = 2, 𝑀 (𝑘)

𝑑
(𝑛) yields the classical and extensively studied

configuration space of 𝑛 distinct ordered points in R𝑑 . On the other extreme, 𝑀 (𝑛)
𝑑

(𝑛) ≃
S𝑑𝑛−𝑑−1 whereas 𝑀 (𝑘)

𝑑
(𝑛) =

(
R𝑑

)𝑛 for 𝑘 > 𝑛. So, the present thesis will only deal with the
cases where 3 ≤ 𝑘 < 𝑛.

The study of the topology of 𝑘-equal arrangements 𝐴(𝑘)
𝑑

(𝑛) and its complement began with
Björner and his coauthors in [3–5] where they studied the 𝑘-equal manifold arrangement and
its complement as a generalization of the widely studied configuration spaces (𝑘 = 2, 𝑑 = 1)
and the pure braid space (𝑘 = 2, 𝑑 = 2). Björner and Lovász found in [3, 4] a connection
between the algorithmic problem of determining bounds for the complexity of the linear de-
cision tree of the 𝑘-equal problem—given 𝑛 real numbers 𝑥1, . . . , 𝑥𝑛, decide if some 𝑘 of
them are equal—and the Euler characteristic of 𝐴(𝑘)

𝑑
(𝑛) or 𝑀 (𝑘)

𝑑
(𝑛). Also, in [5] Björner

and Welker gave a recursive formula for computing the Betti numbers of 𝑀 (𝑘)
𝑑

(𝑛) using the
Goresky-MacPherson combinatorial formula for the cohomology of complements of sub-
space arrangements and obtained the ranks where the cohomology groups of these spaces do
not vanish.

Nevertheless the multiplicative structure of the cohomology ring of 𝑀 (𝑘)
𝑑

(𝑛) could not be
recovered using the Goresky-MacPherson formula and therefore some efforts were made to
compute the cohomology ring of these manifolds. The first successful attempt was made
by Yuzvinsky in [35]. Yuzvinsky obtained a description of the rational cohomology ring
of 𝑀 (𝑘)

𝑑
(𝑛) for 𝑑 = 2 (the complement of the complex 𝑘-arrangement) by means of the De

Concini-Procesi differential graded algebra.
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After that, Baryshnikov determined the cohomology ring of 𝑀 (𝑘)
𝑑

(𝑛) for 𝑑 = 1 “geometri-
cally” by taking geometric intersections of submanifolds representing cohomology classes
and this idea was used by Dobrinskaya and Turchin in [8] to produce the cohomology ring
of 𝑀 (𝑘)

𝑑
(𝑛) for 𝑑 > 1.

The main interest of the author’s work along the Ph. D. program was to determine the Lus-
ternik–Schnirelmann category (LS category in what follows) and (higher) topological com-
plexity of non-𝑘-equal manifolds. This work began in a joint work with Jesús González and
Christopher Roque-Márquez in [15] where these invariants where calculated for the non-𝑘-
equal manifold 𝑀 (𝑘)

𝑑
(𝑛) with 𝑑 = 1. The main result states that the Lusternik–Schnirelmann

category is cat
(
𝑀

(𝑘)
1 (𝑛)

)
= ⌊𝑛/𝑘⌋, the topological complexity is TC

(
𝑀

(𝑘)
1 (𝑛)

)
= 2 ⌊𝑛/𝑘⌋ and

the higher topological complexity is TC𝑠

(
𝑀

(𝑘)
1 (𝑛)

)
= 𝑠 ⌊𝑛/𝑘⌋. The determination of these

invariants is examined in Chapter 2.
The case 𝑑 > 1 was combinatorially more challenging, and unfortunately, the tools used
in [15] could not give a complete description of the invariants studied. Nevertheless the
invariants are determined for some configuration of values of 𝑑, 𝑘 and 𝑛 and in the general
case the bounds in the following theorem were established by Jesús González and the author
in [14]. In the following, ⌊ℓ⌋ (respectively ⌈ℓ⌉) stands for the greatest (smallest) integer less
than (greater than) or equal to the real number ℓ.

Theorem. Let 𝑎 = 𝑑 (𝑘 −1) −1 and 𝑏 = 𝑛− 𝑘
⌊
𝑛
𝑘

⌋
, then

⌊𝑛
𝑘

⌋
≤ cat(𝑀 (𝑘)

𝑑
(𝑛)) ≤

⌊𝑛
𝑘

⌋
+
⌈ ( ⌊

𝑛
𝑘

⌋
+ 𝑏−1

)
(𝑑 −1)

𝑎
−1

⌉
,

2
⌊𝑛
𝑘

⌋
≤ TC(𝑀 (𝑘)

𝑑
(𝑛)) ≤ 2

(⌊𝑛
𝑘

⌋
+
⌈ ( ⌊

𝑛
𝑘

⌋
+ 𝑏−1

)
(𝑑 −1)

𝑎
−1

⌉)
,

𝑠

⌊𝑛
𝑘

⌋
≤ TC𝑠 (𝑀 (𝑘)

𝑑
(𝑛)) ≤ 𝑠

(⌊𝑛
𝑘

⌋
+
⌈ ( ⌊

𝑛
𝑘

⌋
+ 𝑏−1

)
(𝑑 −1)

𝑎
−1

⌉)
.

The proof of this theorem is given in Chapter 3.
Finally, an essential tool for establishing the results mentioned before was the cohomology
ring of non-𝑘-equal spaces. Therefore, the cohomology ring of 𝑀 (𝑘)

1 (𝑛) given by Barysh-
nikov in [1] and the cohomology ring of 𝑀 (𝑘)

𝑑
(𝑛) for 𝑑 > 1 given by Dobrinskaya and Turchin

in [8] are briefly treated in Chapter 1 as well as some classical theorems giving bounds for
the LS category and (higher) topological complexity. Also, as a consequence of the geo-
metric nature of the cohomology ring, some non trivial Massey products are computed in
Chapter 4.
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1 | Preliminaries

This chapter introduces the definitions of Lusternik Schnirelmann category and (higher)
topological complexity along with the classical theorems giving bounds for these invariants.
The essence of these theorems is to use the cohomological description of a space to produce
adequate non zero products of a certain length. Therefore, a review of the cohomology rings
for 𝑀 (𝑘)

1 (𝑛) and 𝑀 (𝑘)
𝑑

(𝑛) for 𝑑 > 1 is given in Sections 1.2 and 1.3.

1.1 LS category and (higher) topological complexity

For a space 𝑋 , the LS category, cat(𝑋), the topological complexity, TC(𝑋), and the higher
topological complexity, TC𝑠 (𝑋) are homotopy invariants of 𝑋 and special cases of the notion
of sectional category (or Schwarz genus) of a fibration.

Definition 1.1. The (reduced) sectional category of a fibration 𝑝 : 𝐸 → 𝐵, secat(𝑝), is de-

fined as the smallest non-negative integer 𝑘 so that there exists an open covering of the base

𝐵 =𝑈0 ∪𝑈1 ∪ · · · ∪𝑈𝑘 such that the fibration 𝑝 admits a continuous section on each𝑈ℓ.1.

𝐸

𝑈ℓ 𝐵

𝑝
𝑠ℓ

𝑖

As a special case, we obtain the (reduced) LS category of a space 𝑋 , cat(𝑋), defined as the
sectional category of the fibration 𝑒1 : 𝑃0(𝑋) → 𝑋 , where 𝑃0(𝑋) is the space of based paths
𝛾 on 𝑋 (i.e. 𝛾(0) = ∗) and 𝑒1 is the evaluation map given by 𝑒1(𝛾) = 𝛾(1). On the other
hand, the (reduced) topological complexity of a space 𝑋 , TC(𝑋), is defined as the sectional
category of the fibration 𝑒0,1 : 𝑃(𝑋) → 𝑋 × 𝑋 , where 𝑃(𝑋) is the space of free paths on 𝑋

1Schwarz’ original (unreduced) definition is recovered as genus(𝑝) = secat(𝑝) +1.
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1.1. LS category and (higher) topological complexity

and 𝑒0,1 is the double evaluation map given by 𝑒0,1(𝛾) = (𝛾(0), 𝛾(1)). The open2 sets 𝑈𝑖
covering 𝑋 × 𝑋 so that 𝑒0,1 admits a continuous section on each𝑈𝑖 are called local domains,
and the corresponding local sections are called local rules. The system of local domains and
local rules is called a motion planner for 𝑋 . A motion planner is said to be optimal if it has
TC(𝑋) +1 local rules.

Similarly the 𝑠-th topological complexity of a space 𝑋 , TC𝑠 (𝑋), is the sectional category of
the fibration

𝑒𝑋𝑠 = 𝑒𝑠 : 𝑋𝐽𝑠 → 𝑋 𝑠, 𝑒𝑠 (𝛾) = (𝛾(11), . . . , 𝛾(1𝑠))

where 𝐽𝑠 is the wedge of 𝑠 closed intervals [0,1] (each having 0 ∈ [0,1] as the base point),
and 1𝑖 stands for the 1 in the 𝑖th interval.

As explained by Farber in his seminal work [9, 11], topological complexity gives a homo-
topical framework for studying the motion planning problem in robotics. Indeed, TC(𝑋)
gives a measure of the complexity of motion-planning an autonomous system with state-
space 𝑋 and which should perform robustly within a noisy environment. Similarly higher
topological complexity is a natural generalization of topological complexity where the mo-
tion planning does not only depend on a couple of initial-final states of a robot, but in a
sequence of prescribed intermediate stages that the robot should reach through the motion,
see [2, 30].

Most of the existing methods to estimate the topological complexity of a given space are
cohomological in nature and are based on some form of obstruction theory. One of the most
simple and successful such methods is:

Theorem 1.2 ([9, Theorem 7] and [2, Theorem 3.9]). Let 𝑋 be a 𝑐-connected space having

the homotopy type of a CW complex, then

cl(𝑋) ≤ cat(𝑋) ≤ hdim(𝑋)
𝑐+1

,

zcl(𝑋) ≤ TC(𝑋) ≤ 2hdim(𝑋)
𝑐+1

,

zcl𝑠 (𝑋) ≤ TC𝑠 (𝑋) ≤
𝑠hdim(𝑋)
𝑐+1

.

The notation hdim(𝑋) stands for the (cellular) homotopy dimension of 𝑋 , i.e. the minimal
dimension of CW complexes having the homotopy type of 𝑋 . On the other hand, the cup-

2For practical purposes, the openness condition on local domains can be replaced (without altering the
resulting numerical value of TC(𝑋)) by the requirement that local domains are pairwise disjoint Euclidean
neighborhood retracts (ENR) see [10, Theorem 13.1].
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Preliminaries

length of 𝑋 , cl(𝑋), the zero-divisor cup-length of 𝑋 , zcl(𝑋), and the 𝑠-th zero-divisors,
zcl𝑠 (𝑋), are defined in purely cohomological terms.

• cl(𝑋) is the largest non-negative integer ℓ such that there are coefficients systems
𝐴1, . . . , 𝐴ℓ over 𝑋 and corresponding positive-dimensional classes 𝑐 𝑗 ∈ 𝐻∗(𝑋; 𝐴 𝑗 ) so
that the product 𝑐1 · · ·𝑐ℓ ∈ 𝐻∗(𝑋;

⊗
𝑖 𝐴𝑖) is non-zero.

• Likewise, zcl(𝑋) is the largest non-negative integer ℓ such that there are coefficients
systems 𝐴1, . . . , 𝐴ℓ over 𝑋 × 𝑋 and corresponding classes 𝑧 𝑗 ∈ 𝐻∗(𝑋 × 𝑋; 𝐴 𝑗 ), each
with trivial restriction under the diagonal inclusion Δ : 𝑋 ↩→ 𝑋 × 𝑋 , and so that the
product 𝑧1 · · · 𝑧ℓ ∈ 𝐻∗(𝑋 × 𝑋;

⊗
𝑖 𝐴𝑖) is non-zero. Each such class 𝑧𝑖 is called a zero-

divisor for 𝑋 .

• Finally, zcl𝑠 (𝑋) is the largest non-negative integer ℓ such that there are coefficients
systems 𝐴1, . . . , 𝐴ℓ over 𝑋 𝑠 and corresponding classes 𝑧 𝑗 ∈ 𝐻∗(𝑋 𝑠; 𝐴 𝑗 ), each with triv-
ial restriction under the iterated diagonal map Δ𝑠 : 𝑋 ↩→ 𝑋 𝑠, and so that the product
𝑧1 · · · 𝑧ℓ ∈ 𝐻∗(𝑋 𝑠;

⊗
𝑖 𝐴𝑖) is non-zero. Each such class 𝑧𝑖 is called a 𝑠-th zero-divisor

for 𝑋 .

Throughout this work, we will only be concerned with simple coefficients in Z2 or Z, and
will omit reference of coefficients in writing a cohomology group 𝐻∗(𝑋). In these terms,
Δ∗ : 𝐻∗(𝑋 𝑠) →𝐻∗(𝑋) is given by cup-multiplication, which explains the name “zero-divisors”.

1.2 Baryshnikov cohomological description

The objective of this section is to present the description of the cohomology ring𝐻∗(𝑀 (𝑘)
1 (𝑛))

given by Baryshnikov in the preprint [1] and later stated by Dobrinskaya and Turchin in [8,
sec. 4]. The essential combinatorial objects to consider are string preorders encoded in terms
of the following definition.

Definition 1.3. A string preorder is an arrangement of alternating () and []-blocks of the

form (
𝐼0

) [
𝐽1

] (
𝐼1

) [
𝐽2

]
· · ·

(
𝐼ℓ−1

) [
𝐽ℓ

] (
𝐼ℓ
)

where the sets 𝐼0, 𝐽1, . . . , 𝐽ℓ, 𝐼ℓ are mutually disjoint and their union is the set n= {1,2, . . . , 𝑛}.
Such a string preorder determines a submanifold in R𝑛 defined by the following conditions:

• 𝑥𝑘1 = 𝑥𝑘2 if 𝑘1, 𝑘2 ∈ 𝐽𝑚 for some 𝑚 = 1, . . . , ℓ,
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1.2. Baryshnikov cohomological description

• 𝑥𝑖 ≤ 𝑥 𝑗 if 𝑖 ∈ 𝐼𝑚 and 𝑗 ∈ 𝐽𝑚+1 for some 𝑚 = 0, . . . , ℓ−1,

• 𝑥 𝑗 ≤ 𝑥𝑖 if 𝑗 ∈ 𝐽𝑚 and 𝑖 ∈ 𝐼𝑚.

Hence, the first condition says that []-blocks encode collided coordinates and the second and
third conditions ensure that the coordinates are ordered according to the corresponding sets
from left to right.3

Example 1.4. In R8 we can consider, for example, the string preorder

({1}) [{2,3,4}] (∅) [{5,6}] ({7,8}),

and this preorder has the associated submanifold

{(𝑥1, 𝑥2, . . . , 𝑥8) | 𝑥1 ≤ 𝑥2 = 𝑥3 = 𝑥4, 𝑥5 = 𝑥6 ≤ 𝑥7, 𝑥8}.

As a convention, the braces in the sets will be omitted so to get a cleaner notation. Hence

the string preorder of Example 1.4 is simply

(1) [2,3,4] ( ) [5,6] (7,8).

String preorders give a convenient way of writing submanifolds of R𝑛 where the coordinates
are subjected to order restrictions. In particular, we are interested in all those string preorders
generating cohomology classes by means of duality. The basic building blocks for cohomol-
ogy classes will be all those string preorders with only one []-block of cardinality 𝑘−1. From
this point of view, 𝑘 is fixed and corresponds to the collision restriction in 𝑀 (𝑘)

𝑑
(𝑛).

Definition 1.5. A string preorder is said to be 𝑘-elementary or just elementary for short, if

it has the form (𝐼) [𝐽] (𝐾) with |𝐽 | = 𝑘 −1.

Example 1.6. (1)[2,3,4](5,6,7,8) and (1,2,7,4,5)[6,3,8]( ) are elementary string preorders

in 𝑀 (4)
1 (8).

Note that, as a consequence of the definition and our assumption 𝑘 < 𝑛, any elementary
string preorder must have at least one non-empty ()-block. Furthermore, the boundary of the
associated submanifold lies in the 𝑘-equal arrangement, so the locally finite chain given by
the sum of the top simplices in a triangulation of this submanifold determines a homology

3Note that in [1], the increasing order for the coordinates is given from right to left, but both conventions
lead to the same cohomological description.
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Preliminaries

class in Borel-Moore homology and therefore, by duality, that class renders a cohomology
class in 𝐻𝑘−2(𝑀 (𝑘)

1 (𝑛))—where 𝑘 −2 is the codimension of any elementary string preorder.
See Section 4.1 for further details about the duality isomorphism.
Now, the additive relations for the cohomology classes induced by elementary string pre-
orders appear as a consequence of the boundary of string preorders with only one []-block
of cardinality 𝑘 −2. But for a consistent management of orientations, a standard orientation
for string preorders needs to be chosen.

Definition 1.7. The orientation of each submanifold corresponding to a string preorder

(𝐼) [𝐽] (𝐾) is the (co)orientation obtained by first considering an ordered basis for the nor-

mal space—obtained from the []-block whose elements are listed in the natural order—and

then taking the induced orientation on its tangent space relative to the standard orientation

of R𝑛, assuming that the elements in each ()-block are also naturally oriented.

Example 1.8. The string preorders 𝑆1 = (2,3) [1,4,5] (6,7), 𝑆2 = (1,3) [2,4,5] (6,7), 𝑆3 =

(1,2) [3,4,5] (6,7), 𝑆4 = (1,2,3) [4,5,6] (7) and 𝑆5 = (1,2,3) [4,5,7] (6) are elementary in

𝑀
(4)
1 (7) and, as explained below, they constitute the boundary of another string preorder,

and considering their orientations, satisfy the additive relation 𝑆1 + 𝑆2 + 𝑆3 − 𝑆4 − 𝑆5 = 0.

The string preorders in Example 1.8 have only one []-block with 3 elements, hence they
are elementary string preorders and it is easy to verify they are boundary submanifolds of
𝑆 = (1,2,3) [4,5] (6,7). In order to obtain the oriented boundary of 𝑆 we must determine the
orientation for each manifold corresponding to the string preorders, which we still label as
𝑆, 𝑆1, . . . , 𝑆5 for convenience.
First, note that 𝑇𝑥𝑆 = [4,5] = {𝑥 ∈ R7 | 𝑥4 = 𝑥5} and this is the level set of the function 𝑓[4,5] :
R7 → R given by 𝑓[4,5] (𝑥) = 𝑥5−𝑥4. Hence, 𝑇𝑥𝑆 = ker𝑑𝑓[4,5] = ⟨𝑒1, 𝑒2, 𝑒3, 𝑒4 + 𝑒5, 𝑒6, 𝑒7⟩, and
the normal space is ⟨𝑒5 −proj𝑒4+𝑒5

𝑒5⟩, where proj𝑣 𝑢 denotes the projection of vector 𝑢 onto
vector 𝑣. Now, note that

⟨𝑒5 −proj𝑒4+𝑒5
𝑒5, 𝑒1, 𝑒2, 𝑒3, 𝑒4 + 𝑒5, 𝑒6, 𝑒7⟩ = ⟨𝑒1, 𝑒2, 𝑒3, 𝑒4, 𝑒5, 𝑒6, 𝑒7⟩ = E7

is the standard orientation of R7. Therefore, the orientation frame for 𝑇𝑥𝑆 is ⟨𝑒1, 𝑒2, 𝑒3, 𝑒4 +
𝑒5, 𝑒6, 𝑒7⟩.
Now, to find the orientation frame for 𝑇𝑥𝑆1 = [1,4,5] consider the function 𝑓[1,4,5] : R7 → R2

given by 𝑓[1,4,5] (𝑥) = (𝑥4 − 𝑥1, 𝑥5 − 𝑥1), then 𝑇𝑥𝑆1 = ker𝑑𝑓[1,4,5] = ⟨𝑒2, 𝑒3, 𝑒1 + 𝑒4 + 𝑒5, 𝑒6, 𝑒7⟩
and the normal space is ⟨𝑒4 −proj𝑒1+𝑒4+𝑒5

, 𝑒5 −proj𝑒1+𝑒4+𝑒5
⟩, this time we also have

⟨𝑒4 −proj𝑒1+𝑒4+𝑒5
, 𝑒5 −proj𝑒1+𝑒4+𝑒5

, 𝑒2, 𝑒3, 𝑒1 + 𝑒4 + 𝑒5, 𝑒6, 𝑒7⟩ = E7

7



1.2. Baryshnikov cohomological description

so the orientation frame for 𝑆1 is ⟨𝑒2, 𝑒3, 𝑒1 + 𝑒4 + 𝑒5, 𝑒6, 𝑒7⟩. The process for finding the ori-
entation frame for the remaining manifolds is similar, and in summary, we have the following
orientations:

O
(
(1,2,3) [4,5] (6,7)

)
= ⟨𝑒1, 𝑒2, 𝑒3, 𝑒4 + 𝑒5, 𝑒6, 𝑒7⟩,

O
(
(2,3) [1,4,5] (6,7)

)
= ⟨𝑒2, 𝑒3, 𝑒1 + 𝑒4 + 𝑒5, 𝑒6, 𝑒7⟩,

O
(
(1,3) [2,4,5] (6,7)

)
= −⟨𝑒1, 𝑒3, 𝑒2 + 𝑒4 + 𝑒5, 𝑒6, 𝑒7⟩,

O
(
(1,2) [3,4,5] (6,7)

)
= ⟨𝑒1, 𝑒2, 𝑒3 + 𝑒4 + 𝑒5, 𝑒6, 𝑒7⟩,

O
(
(1,2,3) [4,5,6] (7)

)
= ⟨𝑒1, 𝑒2, 𝑒3, 𝑒4 + 𝑒5 + 𝑒6, 𝑒7⟩,

O
(
(1,2,3) [4,5,7] (6)

)
= −⟨𝑒1, 𝑒2, 𝑒3, 𝑒4 + 𝑒5 + 𝑒7, 𝑒6⟩.

Note that, in general, the sign could be obtained by finding the sign of the corresponding
permutation on n sending each coordinate index to its position according to Definition 1.7.
For example, the string preorder (1,2,3) [4,5,7] (6) has ⟨𝑒1, 𝑒2, 𝑒3, 𝑒4 + 𝑒5 + 𝑒7, 𝑒6⟩ as a basis
and the sign is given by the permutation

𝜎 =

(
1 2 3 4 5 6 7
3 4 5 6 1 7 2

)
.

Since 𝜎 can be expressed as the product of 5 transpositions its sign is negative.

Now, the oriented boundary 𝑆1 of 𝑆 is obtained as follows:

𝑆1 is a boundary of 𝑆 that can be described as the inverse image of R+ under the function
𝑔1 : (2,3) [4,5] (6,7) → R given by 𝑔1(𝑥) = 𝑥4 − 𝑥1. Hence, we have

𝑇𝑥 (2,3) [4,5] (6,7) = [4,5]
= ⟨𝑒1, 𝑒2, 𝑒3, 𝑒4 + 𝑒5, 𝑒6, 𝑒7⟩
= ⟨𝑒1, 𝑒2, 𝑒3, 𝑒1 + 𝑒4 + 𝑒5, 𝑒6, 𝑒7⟩
= ⟨𝑒1 −proj𝑒1+𝑒4+𝑒5

𝑒1, 𝑒2, 𝑒3, 𝑒1 + 𝑒4 + 𝑒5, 𝑒6, 𝑒7⟩

and the vector 𝑒1 − proj𝑒1+𝑒4+𝑒5
𝑒1 is an outward-pointing normal vector. Therefore 𝑆1 has

the induced boundary orientation given by the frame ⟨𝑒2, 𝑒3, 𝑒1+ 𝑒4+ 𝑒5, 𝑒6, 𝑒7⟩ which agrees
with the orientation frame for that manifold. Therefore 𝑆1 appears as a boundary term of 𝑆
with positive sign.
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Similarly we can deduce the boundary orientation for 𝑆2 by considering the function 𝑔2 :
(13) [4,5] (6,7) → R given by 𝑔2(𝑥) = 𝑥4 − 𝑥2. This time we have

𝑇𝑥 (1,3) [4,5] (6,7) = [4,5]
= ⟨𝑒1, 𝑒2, 𝑒3, 𝑒4 + 𝑒5, 𝑒6, 𝑒7⟩
= ⟨𝑒1, 𝑒2, 𝑒3, 𝑒2 + 𝑒4 + 𝑒5, 𝑒6, 𝑒7⟩
= −⟨𝑒2 −proj𝑒2+𝑒4+𝑒5

𝑒2, 𝑒1, 𝑒3, 𝑒2 + 𝑒4 + 𝑒5, 𝑒6, 𝑒7⟩

and, since 𝑒2−proj𝑒2+𝑒4+𝑒5
𝑒2 is an outward-pointing normal vector, the boundary orientation

for 𝑆2 is given by the frame −⟨𝑒1, 𝑒3, 𝑒2 + 𝑒4 + 𝑒5, 𝑒6, 𝑒7⟩ which agrees with the orientation of
𝑆2. Therefore 𝑆2 appears as a boundary term of 𝑆 with positive sign. By continuing with the
process it is easy to verify that 𝑆3 appears as a boundary term with positive sign, 𝑆4 appears
with negative sign, and 𝑆5 with negative sign.

Generalizing the example above, we can obtain the boundary formula of a string preorder
with only one []-block with 𝑘 −2 elements.4

Theorem 1.9. Let (𝐼) [𝐽] (𝐾) be a string preorder where |𝐽 | = 𝑘 −2. The boundary formula

for (𝐼) [𝐽] (𝐾) is

𝜕 (𝐼) [𝐽] (𝐾) =
∑︁
]∈𝐼

(−1)𝑔(]) (𝐼 − ]) [𝐽 + ]] (𝐾) +
∑̂︁
∈𝐾

(−1)𝑔(^)+1(𝐼) [𝐽 + ^] (𝐾 + ^),

where 𝑔(𝑥) is the number of elements in 𝐽 greater than 𝑥.

Proof. The orientation frame for 𝑆 = (𝐼) [𝐽] (𝐾) can be expressed as

O
(
(𝐼) [𝐽] (𝐾)

)
= sgn(𝜎𝑆)

〈
𝑒𝐼 ,

∑︁
𝑗∈𝐽
𝑒 𝑗 , 𝑒𝐾

〉
,

where 𝜎𝑆 is the permutation on n sending each coordinate index to its position according to
Definition 1.7, and 𝑒𝐼 and 𝑒𝐾 are the sets of elementary vectors indicated by the naturally
ordered elements in 𝐼 and 𝐾 respectively.

Let us determine the sign of the boundary term 𝑆] corresponding to moving an element ]
from set 𝐼 to set 𝐽. Let 𝑝(]) be the position of element ] in the string preorder (𝐼) [𝐽] (𝐾).

4This is a minor correction of the boundary formula of [1, pg. 3] concerning the signs of the boundary terms
and does not affect the multiplicative description of 𝑀 (𝑘)

1 (𝑛).
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Hence, working with the ordered tangent space for 𝑆 we have

𝑇𝑥𝑆 = sgn(𝜎𝑆)
〈
𝑒𝐼 , 𝑒] +

∑︁
𝑗∈𝐽
𝑒 𝑗 , 𝑒𝐾

〉
= sgn(𝜎𝑆) (−1)𝑝(])−1

〈
𝑒]−proj𝑒 ]+∑𝑒𝐾

𝑒], 𝑒𝐼−{]}, 𝑒] +
∑︁
𝑗∈𝐽
𝑒 𝑗 , 𝑒𝐾

〉
and since 𝑒] − proj𝑒 ]+∑𝑒𝐾

𝑒] is an outward-pointing normal vector, the boundary orientation
for 𝑆] is given by the frame

sgn(𝜎𝑆) (−1)𝑝(])−1
〈
𝑒𝐼−{]}, 𝑒] +

∑︁
𝑗∈𝐽
𝑒 𝑗 , 𝑒𝐾

〉
but the orientation imposed on 𝑆] according to Definition 1.7 is

sgn(𝜎𝑆 ])
〈
𝑒𝐼−{]}, 𝑒] +

∑︁
𝑗∈𝐽
𝑒 𝑗 , 𝑒𝐾

〉
so the sign appearing in the boundary formula for term 𝑆] should be

(−1)𝑝(])−1 sgn(𝜎𝑆) sgn(𝜎𝑆 ])

But note that 𝜎𝑆 ] can be recovered from 𝜎𝑆 by pre-multiplying with a permutation fixing the
values in 𝐾 as well as all those values in 𝐼 greater than ] and the values in 𝐽 smaller than ].
Specifically, the permutation is given by the cycle (𝑏(]), ], 𝑎(])) where 𝑏(]) are the elements
in 𝐼 smaller than ] and 𝑎(]) are the elements in 𝐽 greater than ]. Therefore, the total sign
contribution of sgn(𝜎𝑆) sgn(𝜎𝑆 ]) is equal to (−1)𝑝(])+𝑔(])−1. Hence, the sign appearing in the
boundary formula should be (−1)𝑔(]) .

Similarly, we can determine the sign of the boundary term 𝑆^ corresponding to moving an
element ^ from set 𝐾 to set 𝐽. From the ordered frame for 𝑆 we have

𝑇𝑥𝑆 = sgn(𝜎𝑆)
〈
𝑒𝐼 , 𝑒^ +

∑︁
𝑗∈𝐽
𝑒 𝑗 , 𝑒𝐾

〉
= sgn(𝜎𝑆) (−1)𝑝(^)−1−(𝑘−3)

〈
𝑒^ −proj𝑒^+∑𝑒𝐾

𝑒^, 𝑒𝐼 , 𝑒^ +
∑︁
𝑗∈𝐽
𝑒 𝑗 , 𝑒𝐾−{^}

〉
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and since 𝑒^ − proj𝑒^+∑𝑒𝐾
𝑒^ is an inward-pointing normal vector, the boundary orientation

for 𝑆^ is given by the frame

sgn(𝜎𝑆) (−1)𝑝(^)+𝑘+1

〈
𝑒𝐼 , 𝑒^ +

∑︁
𝑗∈𝐽
𝑒 𝑗 , 𝑒𝐾−{𝑘}

〉
but the orientation imposed on 𝑆^ according to Definition 1.7 is

sgn(𝜎𝑆^ )
〈
𝑒𝐼 , 𝑒^ +

∑︁
𝑗∈𝐽
𝑒 𝑗 , 𝑒𝐾−{^}

〉
so the sign appearing in the boundary formula for term 𝑆^ should be

(−1)𝑝(^)+𝑘+1 sgn(𝜎𝑆) sgn(𝜎𝑆^ ).

Again, we can recover 𝜎𝑆^ by pre-multiplying with an adequate permutation fixing all values
in 𝐾 greater than ^. Let 𝑟 (^) be the position of ^ inside the ()-block 𝐾 and ℓ(^) be the number
of elements in 𝐽 less than ^, we have two cases:

• ℓ(^) = 0. Hence, ^ is the minimum in the new block [𝐽 + ^] and shifts the positions of
the elements in 𝐽 and 𝐼 producing the cycle (𝐽, 𝐼), also, shifts the positions of ^’s from
^1 to ^𝑟 (^)−1 producing the cycle (^1, . . . , ^𝑟 (^)). Therefore sgn(𝜎𝑆) sgn(𝜎𝑆^ ) gives a
sign contribution of (−1)𝑝(^)−2 = (−1)𝑝(^) .

• ℓ(^) > 0. Hence, the minimum in the new block [𝐽 + ^] is the same as before in [𝐽].
The elements in 𝐽 less than ^ except min 𝐽 remain fixed, and the elements starting
from 𝑗ℓ(^)+1 are shifted as well as the elements in 𝐼. Note that the last element of
𝐼 now takes the value of min 𝐽 in 𝜎 and min 𝐽 takes the value of ^1 in 𝜎, also the
elements ^1, . . . , ^𝑟 (^) are shifted and ^𝑟 (^) takes the value of 𝑗ℓ(^)+1 in 𝜎, giving the
cycle (min 𝐽, ^1, . . . , ^𝑟 (^) , 𝑗ℓ(^)+1, . . . , 𝑗𝑘−2, 𝐼). Therefore sgn(𝜎𝑆) sgn(𝜎𝑆^ ) gives a sign
contribution of (−1)𝑝(^)−ℓ(^) .

In any case, the sign sgn(𝜎) sgn(𝜎^) is (−1)𝑝(^)−ℓ(^) and since ℓ(^) +𝑔(^) = 𝑘 −2 the bound-
ary element 𝑆^ appears with sign (−1)𝑔(^)+1. □

Example 1.10. According to Theorem 1.9 we have the following boundary in 𝑀 (4)
1 (7).

𝜕 (2,5,7) [3,6] (1,4) = + (5,7) [2,3,6] (1,4) − (2,7) [3,5,6] (1,4) + (2,5) [3,6,7] (1,4)
− (2,5,7) [1,3,6] (4) + (2,5,7) [3,4,6] (1).
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1.2. Baryshnikov cohomological description

So far, we have identified the elementary string preorders as generators for Borel-Moore
homology in dimension 𝑘 −2 subject to the additive relations obtained in Theorem 1.9. Af-
ter dualization, the multiplicative structure of the cohomology ring is determined by the
transverse intersection—intersection product—of the corresponding submanifolds. There-
fore transverse intersection of manifolds associated with elementary string preorders—or,
more specifically their corresponding string preorders—are the basic elements generating
the cohomology ring in dimensions which are multiples of 𝑘 −2.

For string preorders (𝐼) [𝐽] (𝐾) and (𝐼′) [𝐽′] (𝐾′) (possibly non-elementary), there are three
cases:

(i) If 𝐼 ∪ 𝐽 ⊆ 𝐼′, then
(
𝐼
)
[𝐽]

(
𝐾
)
⋔

(
𝐼′
)
[𝐽′]

(
𝐾′) = (

𝐼
)
[𝐽]

(
𝐾 ∩ 𝐼′

)
[𝐽′]

(
𝐾′) .

(ii) Similarly, if 𝐼′∪ 𝐽′ ⊆ 𝐼,
(
𝐼
)
[𝐽]

(
𝐾
)
⋔

(
𝐼′
)
[𝐽′]

(
𝐾′) = (

𝐼′
)
[𝐽′]

(
𝐾′∩ 𝐼

)
[𝐽]

(
𝐾
)
.

(iii) If 𝐼 ∪ 𝐽 ⊈ 𝐼′ and 𝐼′∪ 𝐽′ ⊈ 𝐼, there are two cases

– If |𝐽∪ 𝐽′∪ (𝐼 ∩𝐾′) ∪ (𝐼′∩𝐾) | = |𝐽 | + |𝐽′| −1 > |𝐽 | then the transverse intersection
is

(
𝐼
)
[𝐽]

(
𝐾
)
∩

(
𝐼′
)
[𝐽′]

(
𝐾′) = (

𝐼 ∩ 𝐼′
)
[𝐽 ∪ 𝐽′∪ (𝐼 ∩𝐾′) ∪ (𝐼′∩𝐾)]

(
𝐾 ∩𝐾′) but

it lies in the 𝑘-equal arrangement giving a trivial (co)homology class.

– Otherwise, after applying a displacement, the transverse intersection is empty,
giving again the trivial cohomology class.

Definition 1.11. A string preorder is said to be:

(a) admissible, if it has the form (𝐼0) [𝐽1] (𝐼1) [𝐽2] · · · [𝐽𝑑] (𝐼𝑑) with card(𝐽𝑖) = 𝑘 −1 for all

𝑖 = 1, . . . , 𝑑. In such a case, the admissible string preorder is said to have dimen-
sion 𝑑 (𝑘 −2).

(b) basic, if it is specified by a string (𝐼0) [𝐽1] (𝐼1) [𝐽2] · · · [𝐽𝑑] (𝐼𝑑) satisfying card(𝐽𝑖) =
𝑘 −1 and max(𝐽𝑖 ∪ 𝐼𝑖) ∈ 𝐼𝑖, for all 𝑖 = 1, . . . , 𝑑 (the maximal element of 𝐽𝑖 ∪ 𝐼𝑖 is taken

with respect to the standard order of integers).

Example 1.12. An admissible (basic) preorder (𝐼0) [𝐽1] (𝐼1) [𝐽2] · · · [𝐽𝑑] (𝐼𝑑) of dimension

𝑑 (𝑘 −2) factors as Y1 ⋔ · · · ⋔ Y𝑑 , where

Y𝑖 =
(
𝐼0 ∪ 𝐽1 ∪ 𝐼1 ∪ · · · ∪ 𝐽𝑖−1 ∪ 𝐼𝑖−1

) [
𝐽𝑖
] (
𝐼𝑖 ∪ 𝐽𝑖+1 ∪ 𝐼𝑖+1 ∪ · · · ∪ 𝐽𝑑 ∪ 𝐼𝑑

)
is an elementary (basic) preorder of dimension 𝑘 −2.
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Therefore admissible string preorders encode transverse intersections of elementary strings,
and from those, basic string preorders of dimension 𝑑 (𝑘 − 2) form an additive basis for the
cohomology group of 𝑀 (𝑘)

1 (𝑛) in dimension 𝑑 (𝑘 −2). The proof of the fact that basic string
preorders indeed form a basis for the 𝑑 (𝑘−2)-cohomology group is given by Baryshnikov [1,
Theorem 2] by showing that the pairing matrix between the proposed basic string preorders
and a homological basis for 𝑀 (𝑘)

1 (𝑛) has a triangular matrix with diagonal elements ±1.

Finally we are ready to state Baryshnikov’s description of the ring 𝐻∗(𝑀 (𝑘)
1 (𝑛)).

Theorem 1.13 (Baryshnikov [1, Theorem 1], Dobrinskaya-Turchin [8, Section 4]). For 𝑘 ≥
3, the cohomology ring 𝐻∗(𝑀 (𝑘)

1 (𝑛)) is isomorphic to the (anti)commutative free exterior

algebra generated in dimension 𝑘 − 2 by the elementary preorders subject to the following

relations:

1.
∑
]∈𝐼 (−1)𝑔(]) (𝐼− ]) [𝐽+ ]] (𝐾) =∑

^∈𝐾 (−1)𝑔(^) (𝐼) [𝐽+^] (𝐾 +^) whenever n can be writ-

ten as a disjoint union n = 𝐼
∐
𝐽
∐
𝐾 with card(𝐽) = 𝑘 −2.

2. (𝐼) [𝐽] (𝐾) · (𝐼′) [𝐽′] (𝐾′) = 0, for elementary preorders (𝐼) [𝐽] (𝐾) and (𝐼′) [𝐽′] (𝐾′)
whose intersection has a [ ]-block of cardinality larger than 𝑘 −1.

Example 1.14 ([5, Table 1] and [28, Example 4.6]). Consider the non-3-equal arrange-

ment 𝑀 (3)
1 (7). Examples of elementary preorders in dimension 1 are: () [1,2] (3,4,5,6,7),

(1,2) [3,4] (5,6,7), (3,6) [1,4] (5,2,7), etc. Note that we can count the number of elementary

preorders in dimension 1 by first selecting at least 3 elements from the set 7, this will con-

stitute the blocks [𝐽1] (𝐼1) but the maximum is fixed in 𝐼1 so it remains to choose 2 elements

from the remaining. Therefore, the total number of elementary string preorders is

7∑︁
𝑖=3

(
7
𝑖

) (
𝑖−1

2

)
= 351.

Now, it remains to examine possible cup products of elementary terms but note that it is not

possible to multiply more than 2 elementary strings to obtain a new string preorder because

a string preorder of the form (𝐼0) [𝐽1] (𝐼1) [𝐽2] (𝐼2) [𝐽3] (𝐼3) will require at least 9 numbers.

Hence cup products appear only in dimension 2 and are of the form (𝐼0) [𝐼1] (𝐼1) [𝐽2] (𝐼2).
Using a similar combinatorial argument as in dimension 1, we have the following number of

basic string preorders in dimension 2:(
7

3,4

) (
2
2

) (
3
2

)
+

(
7

4,3

) (
3
2

) (
2
2

)
+

(
7

1,3,3

) (
2
2

) (
2
2

)
= 350,
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where
(
𝑛1 +𝑛2 + · · · +𝑛ℓ
𝑛1, 𝑛2, . . . , 𝑛ℓ

)
denotes the multinomial coefficient

(𝑛1 +𝑛2 + · · · +𝑛ℓ)!
𝑛1!𝑛2! · · · 𝑛ℓ!

.

If it happens that after multiplying the resulting string preorder is not written in a basic form,

we can apply the boundary relation of Theorem 1.9 to express the product in terms of basic

elements. For example

(2) [5,6] (1,3,4,7)⌣ (2,5,6,7) [1,3] (4) = (2) [5,6] (1) [3,4] (7)

is not a basic element, but the first term appears in the boundary of (2) [5] (1,3,4,6,7), so,

using Theorem 1.9, we have

(2) [5,6] (1,3,4,7) = − ()[2,5] (1,3,4,6,7) + (2) [1,5] (3,4,6,7) + (2) [3,5] (1,4,6,7)
+ (2) [4,5] (1,3,6,7) − (2) [5,7] (1,3,4,6).

Therefore,

(2) [5,6] (1) [3,4] (7) = (2) [1,5] (6) [3,4] (7) − () [2,5] (1,6) [3,4] (7)

expresses the product in terms of basic elements of dimension 2.

1.3 Dobrinskaya-Turchin cohomological description

In this section, we recall the combinatorial description of the cohomology ring of 𝑀 (𝑘)
𝑑

(𝑛)
given in [8]. Similar to the objects considered in Section 1.2, the cohomological description
of 𝑀 (𝑘)

𝑑
(𝑛) for 𝑑 ≥ 2 is encoded by combinatorial objects called admissible 𝑘-forests.

Definition 1.15. A 𝑘-forest on n (or simply a 𝑘-forest) is an acyclic simple graph with two

types of vertices, square ones and round ones, each containing a certain subset of n. A

square vertex must contain 𝑘 −1 elements of n, and cannot be an isolated vertex; in fact the

set of immediate neighbors of a square vertex must contain a round vertex. A round vertex

must contain a single element of n, and must be either an isolated vertex or have valency 1,

in which case it must be connected to a square vertex. We require that the subsets of integers

inside the various vertices of a 𝑘-forest form a disjoint partition of n. Square vertices are

declared to have degree 𝑑 (𝑘 −2), while edges are declared to have degree 𝑑−1. The degree

of a 𝑘-forest is then defined as the sum of the degrees of its square vertices and edges. An

orientation for a 𝑘-forest consists of three ingredients:

14
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(a) An orientation for each edge;

(b) A total ordering for the elements inside each square vertex;

(c) A total ordering for the orientation set, i. e., the set consisting of all edges and all

square vertices.

Example 1.16. Figure 1.1 is an oriented 5-forest of degree 28 (with 𝑑 = 3 and 𝑛 = 14). In

such a picture, we agree that the ordering of elements inside a square vertex is spelled out

by listing the elements from left to right.

1 3 9 8 4 5 6 132

11 12 7 10

14
1

2

3 4

5

6

7

Figure 1.1: Small numbers attached to square vertices and edges indicate the ordering in the
orientation set.

Theorem 1.17 ([8, Theorem 6.1]). Let 𝑑 ≥ 2, 𝑘 ≥ 3 and 𝑛 ≥ 1. The cohomology 𝐻∗(𝑀 (𝑘)
𝑑

(𝑛))
is free and generated by oriented 𝑘-forests on n subject to the relations listed below.

1. Orientation relations:

(i) Permuting the order of the orientation set introduces the Koszul sign induced by

the permutation (with respect to the degrees of the elements of the orientation

set).

(ii) A permutation 𝜎 ∈ Σ𝑘−1 of the elements inside a square vertex introduces the sign

𝜖 (𝜎)𝑑 , where 𝜖 (𝜎) stands for the sign of 𝜎.

(iii) Reversing the orientation of an edge introduces the sign (−1)𝑑 .

2. Three-term relations:

𝐴

𝐵

𝐶

1 2

𝐴

𝐵

𝐶
2

1

𝐴

𝐵

𝐶

2

1

+ +0 =

These three pictures are local in the sense that we have three oriented 𝑘-forests that

are identical except for the disposition of oriented edges connecting vertices 𝐴, 𝐵 and

𝐶, whose orderings in the corresponding orientation sets are indicated by the attached

numbers.

15



1.3. Dobrinskaya-Turchin cohomological description

3. Generalized Jacobi relations:

· · · · · ·

𝑖1 𝑖2 · · · 𝑖𝑘−2 𝑗ℓ

𝑗1 𝑗2 𝑗ℓ−1 𝑗ℓ+1 𝑗𝑚

1 2
· · · · · ·

𝑚−1
0 =

𝑚∑︁
ℓ=1

(−1)ℓ(𝑑−1)

These 𝑚 pictures are again local. Moreover, in each of the global pictures, the square

vertex cannot be connected to other (non shown) round vertices.

In the orientation set, the interchange of a square vertex and an edge produces a positive
Koszul sign because 𝑑 (𝑘 −2) (𝑑−1) is always even. Thus, the ordering in the orientation set
is really a pair of orderings, one for square vertices and another for edges.
A connected component of a 𝑘-forest that reduces to an isolated round vertex is said to
be trivial. Orientation and three-term relations can be used to write any oriented 𝑘-forest
as an 𝑅-linear combination of oriented “linear” 𝑘-forests, i.e., 𝑘-forests whose non-trivial
connected components are trees with square vertices lying along an embedded arc, as in
Figure 1.2. In turn, orientation and generalized Jacobi relations can be used to express a

· · ·𝐴1

· · ·

𝐴2

· · ·

𝐴𝑠

· · ·

Figure 1.2: A non-trivial component of a linear 𝑘-forest.

linear 𝑘-forest as an 𝑅-linear combination of “ordered” linear 𝑘-forests, i.e., those whose
non-trivial connected components satisfy that the largest of the integers inside round vertices
attached to any given square vertex 𝐴𝑖 is larger than any of the integers inside 𝐴𝑖. Orientation
relations can then be used to choose explicit signs on ordered linear 𝑘-forests:

Definition 1.18. An ordered linear 𝑘-forest is called basic provided its non-trivial compo-

nents satisfy the following conditions, where we use the notation in Figure 1.2:

• Edge orientations are as indicated in Figure 1.2.

• In the orientation set, 𝐴1 < 𝐴2 < · · · < 𝐴𝑠.

• For a portion of the form

𝐴𝑖

· · ·

16
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the elements inside the square vertex appear in their natural order. Likewise, the or-

dering (in the orientation set) of the edges attaching round vertices to the square vertex

agrees with the natural order of the integers inside the round vertices. Furthermore, if

𝑖 > 1, then the edge from 𝐴𝑖−1 to 𝐴𝑖 is smaller than all edges connecting 𝐴𝑖 to round

vertices. Likewise, if 𝑖 < 𝑠, then the edge from 𝐴𝑖 to 𝐴𝑖+1 is larger than all edges

connecting 𝐴𝑖 to round vertices.

• The minimal 𝑚 ∈ n inside the vertices of the linear tree component 𝐶 in Figure 1.2

appears either inside 𝐴1 or inside a round vertex attached to 𝐴1. Furthermore, if 𝑚′ is

the corresponding minimal element in another linear tree component𝐶′ of the 𝑘-forest,

and 𝑚 < 𝑚′, then orientation elements associated to 𝐶 are smaller than orientation

elements associated to 𝐶′.

Theorem 1.17 (Continued). Basic 𝑘-forests yield a graded basis for the cohomology of

𝑀
(𝑘)
𝑑

(𝑛).

For the purposes of Chapter 4, we need to recall how a given 𝑘-forest relates to its corre-
sponding dual fundamental class in the Borel-Moore homology of 𝑀 (𝑘)

𝑑
(𝑛).

Let 𝑝1 :R𝑑 →R𝑑−1 denote the projection to the last 𝑑−1 coordinates, 𝑝1(𝑥) = (𝑥 (2) , . . . , 𝑥 (𝑑)),
where 𝑥 = (𝑥 (1) , 𝑥 (2) , . . . , 𝑥 (𝑑)). A 𝑘-forest 𝑇 determines the cell 𝑐𝑇 consisting of all tuples
(𝑥1, . . . , 𝑥𝑛) ∈ (R𝑑)𝑛 satisfying the following (in)equalities:

• If 𝑖 and 𝑗 in n lie in the same square vertex, then 𝑥𝑖 = 𝑥 𝑗 .

• If two vertices 𝐴 and 𝐵 of 𝑇 are connected by an edge oriented from 𝐴 to 𝐵, then for
all 𝑖 ∈ 𝐴, 𝑗 ∈ 𝐵, one has 𝑥 (1)

𝑖
≤ 𝑥 (1)

𝑗
and 𝑝1(𝑥𝑖) = 𝑝1(𝑥 𝑗 ).

We then choose a locally finite triangulation of 𝑐𝑇 and consider the corresponding locally
finite chain of (R𝑑)𝑛 with boundary in 𝐴(𝑘)

𝑑
(𝑛). As an abuse of notation, we think of the cell

𝑐𝑇 as both the actual chain and the corresponding submanifold. The ingredients (b) and (c)
in an orientation of 𝑇 determine a coorientation of 𝑐𝑇 as illustrated in Example 1.19. Note
that, if 𝑖 and 𝑗 lie in the same connected component of 𝑇 , then the condition 𝑝1(𝑥𝑖) = 𝑝1(𝑥 𝑗 )
holds true for all points in the component.

Example 1.19. For example, with the notation and conventions above, the oriented 4-forest

𝑇 in 𝑀 (4)
3 (7) ⊂ (R3)7 given by

1 2 41
2

6
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1.3. Dobrinskaya-Turchin cohomological description

corresponds to the locally finite chain 𝑐𝑇 consisting of tuples (𝑥1, . . . , 𝑥7) in (R3)7 such that

𝑥1 = 𝑥2 = 𝑥4, 𝑝1(𝑥1) = 𝑝1(𝑥6) and 𝑥 (1)1 ≤ 𝑥 (1)6 . The tangent space to 𝑐𝑇 is simply the set of

points satisfying 𝑥1 = 𝑥2 = 𝑥4 and 𝑝1(𝑥1) = 𝑝1(𝑥6) so we can describe a frame for the tangent

space by means of the kernel of the differential map 𝜋𝑇 : (R3)7 → Rdeg(𝑇) = (R3)2 ×R2 with

components 𝜋□ : (R3)7 → (R3)2 and 𝜋◦ : (R3)7 → R2 given by

𝜋□(𝑥1, . . . 𝑥7) = (𝑥2 − 𝑥1, 𝑥4 − 𝑥1) and 𝜋◦(𝑥1, . . . , 𝑥7) = 𝑝1(𝑥6 − 𝑥1).

Hence we can coorient it by taking the natural order of the vectors generating its normal

space in a similar way as it was done in Section 1.2.

In such a setting, sums correspond to unions of chains, while signs arise from a consistent
management of chain orientations. For example, the three-term relation

𝐴

𝐵

𝐶

1 2

𝐴

𝐵

𝐶
2

1

𝐴

𝐵

𝐶

2

1

+ + = 0

is a rearrangement, under the sign conventions, of the element corresponding to the union of
two locally finite chains:

𝐴

𝐵

𝐶

1 2

𝐴

𝐵

𝐶
1

2

𝐴

𝐵

𝐶

1

2

= +
.

Example 1.20. To illustrate the phenomenon, consider the oriented locally finite chain in

𝑀3
𝑑
(9) corresponding to the sum

1 2

3 4 5

6

7 8

9

1

2

1 2

3 4 5

6

7 8

9
1

2

+

which is the union of the cooriented chains 𝑐1 and 𝑐2 with common defining inequalities

𝑥
(1)
1 = 𝑥

(1)
2 ≤ 𝑥 (1)3 , 𝑥

(1)
4 = 𝑥

(1)
5 ≤ 𝑥 (1)6 and 𝑥

(1)
7 = 𝑥

(1)
8 ≤ 𝑥 (1)9 , (1.1)
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together with the requirement that all 𝑥𝑖-coordinates have the same projection under 𝑝1. The

additional defining inequalities in 𝑐1 are

𝑥
(1)
4 ≤ 𝑥 (1)7︸      ︷︷      ︸

2

and 𝑥
(1)
7 ≤ 𝑥 (1)1︸      ︷︷      ︸

1

,

while the additional defining inequalities in 𝑐2 are

𝑥
(1)
4 ≤ 𝑥 (1)1︸      ︷︷      ︸

1

and 𝑥
(1)
1 ≤ 𝑥 (1)7︸      ︷︷      ︸

2

.

The union of these conditions can be stated as

𝑥
(1)
4 ≤ 𝑥 (1)1︸      ︷︷      ︸

1

and 𝑥
(1)
4 ≤ 𝑥 (1)7︸      ︷︷      ︸

2

which, together with (1.1), define the cooriented chain associated to

1 2

3 4 5

6

7 8

9
1 2

.

Similarly, the generalized Jacobi relation arises as the boundary of a cell described by a
forest one of whose square vertices has 𝑘 −2 (rather than 𝑘 −1) elements.

Finally, since each of these 𝑘-forests represents a cell whose boundary lies in the 𝑘-equal
arrangement, its locally finite chain represents the (Borel-Moore) fundamental class of the
submanifold of 𝑀 (𝑘)

𝑑
(𝑛) determined by the interior of 𝑐𝑇 . Furthermore, cohomology cup-

products are readable as intersection products in Borel-Moore homology. The resulting
product structure is spelled out next.

Theorem 1.21 ([8, Theorem 7.1]). For 𝑛, 𝑘, 𝑑 as in Theorem 1.17, let 𝑇1, 𝑇2 ∈ 𝐻∗(𝑀 (𝑘)
𝑑

(𝑛))
be two oriented 𝑘-forests. The cup product of 𝑇1 and 𝑇2 is zero if either of the following three

conditions holds:

(1) There exist a square vertex 𝐴 in 𝑇1 and a square vertex 𝐵 in 𝑇2 such that 𝐴∩𝐵 ≠ ∅.

In case that no square vertex of 𝑇1 intersects a square vertex of 𝑇2, we define the

superposition 𝑇1∪𝑇2 as the oriented graph obtained by superposition of the vertices of
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1.3. Dobrinskaya-Turchin cohomological description

𝑇1 and 𝑇2 with the convention that if some integer 𝑖 ∈ n lies in a round vertex in, say, 𝑇2

as well as in a square vertex 𝐴 in 𝑇1, then 𝑖 appears in 𝑇1∪𝑇2 inside the corresponding

square vertex 𝐴, and if there were some oriented edge in 𝑇2 between the round vertex

containing 𝑖 and some square vertex 𝐵, then a corresponding oriented edge between

vertices 𝐴 and 𝐵 in 𝑇1 ∪𝑇2 would have to be added:

𝑖𝐴 𝐵

(This of course might lead to multiple oriented edges between square vertices in 𝑇1 ∪
𝑇2, as well as to round vertices having two square vertices as immediate neighboring

vertices.)

(2) 𝑇1 ∪𝑇2 has unoriented cycles (for instance if two square vertices of 𝑇1 ∪𝑇2 are joined

by multiple edges).

(3) 𝑇1 ∪𝑇2 has a square vertex with no round vertex attached.

Otherwise 𝑇1 ·𝑇2 =𝑇1∪𝑇2, the superposition of the 𝑘-forests, with orientation set given by the

concatenation of the orientation sets of the factors, and with the convention that, if 𝑇1 ∪𝑇2

is not a 𝑘-forest (in the sense of Definition 1.15), so that 𝑇1 ∪𝑇2 has one or several round

vertices of valency 2, then we use repeatedly the following form of the three-term relation to

write 𝑇1 ∪𝑇2 as a sum of 𝑘-forests:

𝐴 𝐵

1 2

𝐴 𝐵
2

1

𝐴 𝐵

2

1

= +

.

(R)

As above, pictures are local.

Remark 1.22. Items (2) and (3) in Theorem 1.21 might have to be used in the iterative

process of applying relation (R) to write 𝑇1 ∪𝑇2 as a sum of 𝑘-forests. For instance, if the

pictures in (R) are in fact global (omitting isolated round vertices), then the two summands

on the right of (R) would vanish in view of item (3) in Theorem 1.21.

Relevant for us is the fact that 𝐻∗(𝑀 (𝑘)
𝑑

(𝑛)) is multiplicatively generated by basic oriented
𝑘-forests having a single square vertex; such a generator will be said to be elementary. Ex-
plicitly, a basic oriented 𝑘-forest is, up to sign, the product of its connected components.
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In turn, each such connected component is, up to sign, a product of elementary oriented
𝑘-forests. For example, the basic oriented 3-forest

1 2 4 5 7 8

3 6 9

1 2 3

4 6 8
5 7

is the product ©« 1 2

3 4

1

2 3 ª®¬©« 4 5

6 7

1

2 3 ª®¬©« 7 8

9

1

2 ª®¬
where we have omitted to write isolated round vertices.
In some arguments of Chapter 3 we will consider 𝑘-forests with Z2-coefficients in order to
avoid sign and orientation conventions. In those cases, a non-trivial connected component of
a basic 𝑘-forest is simply a linear undirected tree

𝐴1

· · ·

𝐴2

· · ·

𝐴𝑠

· · ·

. . .

where one of the integers in round vertices attached to each 𝐴𝑖 is larger than any of the
vertices inside 𝐴𝑖, and where the smallest of the integers in the vertices of the component
lies either in 𝐴1 or 𝐴𝑠 or in a round vertex attached to 𝐴1 or to 𝐴𝑠. Such a Z2-equipped basic
𝑘-forest lifts canonically to a Z-oriented basic 𝑘-forest that satisfies the sign conventions in
Definition 1.18.

Example 1.23. Yuzvinsky described the non-trivial groups 𝐻∗(𝑀 (3)
2 (6)) in [35, page 1944]

as

𝐻∗(𝑀 (3)
2 (6)) rank

𝐻3(𝑀 (3)
2 (6)) 20

𝐻4(𝑀 (3)
2 (6)) 45

𝐻5(𝑀 (3)
2 (6)) 36

𝐻6
1 (𝑀

(3)
2 (6)) 10

𝐻6
2 (𝑀

(3)
2 (6)) 10

𝐻7(𝑀 (3)
2 (6)) 10
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where 𝐻6 = 𝐻6
1 ⊕ 𝐻

6
2 . This and Yuzvinsky’s product description, which is captured by the

two multiplication maps 𝐻3(𝑀 (3)
2 (6)) ⊗ 𝐻3(𝑀 (3)

2 (6)) ↠ 𝐻6
2 (𝑀

(3)
2 (6)) and 𝐻3(𝑀 (3)

2 (6)) ⊗
𝐻4(𝑀 (3)

2 (6))↠ 𝐻7(𝑀 (3)
2 (6)), are transparent in terms of forests:

• The smallest positive dimension where the cohomology is non trivial is given by the

minimal dimension of an elementary 3-forest, namely a square vertex with one round

vertex attached, which has dimension 3. As three numbers determine an elementary 3-

forest, there are
(6
3
)
= 20 basis elements in 𝐻3(𝑀 (3)

2 (6)). Here and below, non-explicit

Z-orientations and orderings are taken as explained above.

• The next cohomological dimension is generated by elementary 3-forests with one square

and two round vertices attached. In this case we can first select 4 numbers to fill in

the square and round vertices. From those numbers, the greatest value is forced to be

in a round vertex so it only remains to determine the value of the other round vertex.

Therefore there are
(6
4
) (3

1
)
= 45 basis elements in 𝐻4(𝑀 (3)

2 (6)).

• The rank of 𝐻5(𝑀 (3)
2 (6)) is obtained similarly, in this case there are

(6
5
) (4

2
)
= 36 basis

elements.

• Dimension 6 is the first case where products appear. Here we have two types of basis

elements:

– Basic 3-forests with two square vertices and a single round vertex attached to

each square vertex. There are
(6
3
)
/2 = 10 such basis elements.

The group 𝐻6
2 (𝑀

(3)
2 (6)) is generated by such basic 3-forests, each of which is the

product (up to a sign) of two elementary 3-forests of dimension 3 (the superposi-

tion of its two components).

– Elementary 3-forests with one square vertex connected to four round vertices.

There are
(5
2
)
= 10 such basis elements, all of them being linearly independent

modulo product-decomposable elements. This corresponds to the 𝐻6
1 (𝑀

(3)
2 (6))

summand.

• Ignoring orientation matters, basic 3-forests in 𝐻7(𝑀 (3)
2 (6)) are necessarily of the

form

𝑖

𝐴

𝑗

𝐵
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and we can assume without loss of generality that 𝑖 < 𝑗 . Such a basis element is

the product of two elementary 3-forests, one of dimension 3 and one of dimension 4,

namely

𝑖

𝐴

𝑖 𝑗

𝐵
·

,

where isolated round vertices in both factors have been omitted. Note there are
(6
3
)
/2 =

10 basis elements in dimension 7.

• Finally, it is not possible to construct generators of dimension greater than 7, because

we can add neither more vertices nor more edges.

Elements of maximal dimension in Example 1.23 are 𝑘-forests having a single linear tree
component of the form

𝐴1 𝐴2 𝐴𝑚. . .

More generally:

Lemma 1.24. Let 𝑛, 𝑘, 𝑑 be as in Theorem 1.17. Elements of maximal dimension in the

cohomology ring 𝐻∗(𝑀 (𝑘)
𝑑

(𝑛)) are given by linear combinations of basic 𝑘-forests having a

single component which is an ordered linear tree with
⌊
𝑛
𝑘

⌋
square vertices and 𝑛−(𝑘−1)

⌊
𝑛
𝑘

⌋
non-isolated round vertices.

Proof. The mod-2 reduction map 𝐻∗
(
𝑀

(𝑘)
𝑑

(𝑛);Z
)
→ 𝐻∗

(
𝑀

(𝑘)
𝑑

(𝑛);Z2

)
yields an isomor-

phism after tensoring with Z2, so it suffices to prove the lemma for Z2 coefficients. Conse-
quently, we can ignore all orientation and sign conventions. In addition, it suffices to check
the stated characterization for basic 𝑘-forests of maximal dimension. We start by noticing
that such a basic 𝑘-forest 𝑓 cannot have isolated round vertices (for any such vertex can be
attached to some square vertex of 𝑓 to produce a basic 𝑘-forest of larger dimension), and
must have a single linear tree component (otherwise a basis element of larger dimension can
be constructed by adding edges that concatenate the components of 𝑓 ). Let 𝐴1, . . . , 𝐴𝑚 de-
note the square vertices of 𝑓 , and 𝑏𝑖 stand for the number of round vertices attached to 𝐴𝑖,
so that

𝑛 = 𝑚(𝑘 −1) +
𝑚∑︁
𝑖=1
𝑏𝑖 (1.2)
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1.3. Dobrinskaya-Turchin cohomological description

as there are no isolated round vertices. We claim that

0 ≤
𝑚∑︁
𝑖=1

(𝑏𝑖 −1) < 𝑘. (1.3)

The first inequality is obvious as each 𝑏𝑖 is positive. If the second inequality fails, then 𝑘
of the round vertices, except for the greatest round vertex attached to each square vertex,
can be detached from its corresponding 𝐴𝑖, to yield a smaller-dimensional 𝑘-tree 𝑓 ′. The
integers corresponding to the detached round vertices can then be assembled into a new
elementary basic 𝑘-forest that can further be concatenated to 𝑓 ′ to yield a basic 𝑘-forest
𝑓 ′′. By construction, deg( 𝑓 ′) = deg( 𝑓 ) − 𝑘 (𝑑 − 1), while deg( 𝑓 ′′) = deg( 𝑓 ′) + 𝑑 (𝑘 − 2) +
2(𝑑 −1), which yields deg( 𝑓 ′′) > deg( 𝑓 ), as 𝑘 ≥ 3, contradicting the maximality of 𝑓 . This
proves (1.3). The conclusion of the lemma now follows from (1.2) and (1.3): 𝑛 = 𝑚𝑘 + 𝑏,
where 𝑏 :=

∑𝑚
𝑖=1(𝑏𝑖 −1) is in fact the residue in the division of 𝑛 by 𝑘 (so that 𝑚 =

⌊
𝑛
𝑘

⌋
). □

Remark 1.25. As illustrated by Example 1.23, any subset of n with 𝑘 elements determines

(up to a sign) a cohomology class of minimal dimension (i.e. dimension 𝑎 in the notation

of Corollary 1.26): an elementary 𝑘-forest with a single attached round vertex (and some

prescribed orientations). More generally, choosing 𝑚𝑘 elements of n, and partitioning these

elements into 𝑚 subsets of cardinality 𝑘 , say 𝑃1⊔𝑃2⊔· · ·⊔𝑃𝑚, we can form a basic 𝑘-forest

of dimension 𝑚𝑎 which, in addition, factors (up to a sign) as a product of 𝑚 elementary

minimal-dimension 𝑘-forests, namely those determined by each 𝑃𝑖. This observation will be

the basis to construct, in Chapter 3, a number of relevant cohomology classes in cartesian

products of 𝑀 (𝑘)
𝑑

(𝑛).

Corollary 1.26. Let 𝑛, 𝑘, 𝑑 be as in Theorem 1.17. The largest (respectively lowest) positive

dimension where the cohomology of 𝑀 (𝑘)
𝑑

(𝑛) is non-zero equals 𝑚𝑎 + (𝑑 − 1) (𝑚 + 𝑏 − 1)
(respectively 𝑎), where 𝑚 =

⌊
𝑛
𝑘

⌋
, 𝑎 = 𝑑 (𝑘 −1) −1 and 𝑏 = 𝑛−𝑚𝑘 (so that 0 ≤ 𝑏 < 𝑘).

Proof. The first observation in Remark 1.25 below yields the assertion about the bottom non-
trivial dimension. Lemma 1.24 yields the assertion about the top non-trivial dimension. □
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2 | Lusternik-Schnirelmann Category and
Topological Complexity for the Real
Case

This chapter develops the results published in [15] related to the LS category and (higher)
topological complexity of non-𝑘-equal arrangements 𝑀 (𝑘)

1 (𝑛). The invariants are fully deter-
mined by means of Theorem 1.2. The upper bound is easily obtained since Severs and White
established in [31, Theorems 1.1 and 1.2] that 𝑀 (𝑘)

1 (𝑛) admits a minimal cellular model, i.e.,
it has the homotopy type of a cell complex having as many cells in each dimension 𝑑 as the
rank of the cohomology group 𝐻𝑑 (𝑀 (𝑘)

1 (𝑛))—since 𝐻𝑑 (𝑀 (𝑘)
1 (𝑛)) is torsion-free. Hence,

using that the minimum and maximum dimensions for cohomology are 𝑘 −2 and (𝑘 −2)
⌊
𝑛
𝑘

⌋
respectively ([31, Theorem 1.2], [5, Theorem 1.1] or Section 2.1 below), we have the fol-
lowing lemma.

Lemma 2.1. 𝑀 (𝑘)
1 (𝑛) is a (𝑘 −3)-connected space having hdim(𝑀 (𝑘)

1 (𝑛)) = (𝑘 −2)
⌊
𝑛
𝑘

⌋
.

Corollary 2.2. The Lusternik-Schnirelmann and (higher) topological complexity for 𝑀 (𝑘)
1 (𝑛)

satisfy the following inequalities

cl(𝑀 (𝑘)
1 (𝑛)) ≤ cat(𝑀 (𝑘)

1 (𝑛)) ≤
⌊𝑛
𝑘

⌋
,

zcl(𝑀 (𝑘)
1 (𝑛)) ≤ TC(𝑀 (𝑘)

1 (𝑛)) ≤ 2
⌊𝑛
𝑘

⌋
,

zcl𝑠 (𝑀 (𝑘)
1 (𝑛)) ≤ TC𝑠 (𝑀 (𝑘)

1 (𝑛)) ≤ 𝑠
⌊𝑛
𝑘

⌋
.

Therefore, in order to prove that cat(𝑀 (𝑘)
1 (𝑛)) =

⌊
𝑛
𝑘

⌋
and TC𝑠 (𝑀 (𝑘)

1 (𝑛)) = 𝑠
⌊
𝑛
𝑘

⌋
—identifying

TC2 with TC—it is enough to exhibit a non trivial cup product or 𝑠-th zero-divisor of appro-
priate length.
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2.1. Cup length and zero-divisors cup length

2.1 Cup length and zero-divisors cup length

In Example 1.14 it was shown that, in 𝑀
(3)
1 (7), only cup products in dimension 2 exist

since any basic string preorder of dimension 3 requires 9 > 7 numbers, and so 2 =
⌊ 7

3
⌋

is the
maximum number of factors that can be multiplied to obtain a non zero cohomology class.
This fact can be easily generalized by noticing that in the definition of a basic string preorder

(𝐼0) [𝐽1] (𝐼1) [𝐽2] · · · [𝐽𝑑] (𝐼𝑑)

the requirement max 𝐽𝑖 ∪ 𝐼𝑖 ∈ 𝐼𝑖 implies that each (𝐼)-block, except possibly the first one,
has at least one element, hence, the basic string preorder has at least a sequence of [𝐽𝑘 ] (𝐼𝑘 )
blocks containing a total of 𝑘 elements, so the least possible number of values required to
produce such a basic element is 𝑑𝑘 . Therefore, in 𝑀 (𝑘)

1 (𝑛), the maximum value for 𝑑 is
⌊
𝑛
𝑘

⌋
and an example of such basic element is

[1, . . . , 𝑘 −1] (𝑘) [𝑘 +1, . . . ,2𝑘 −1] (2𝑘) · · · [(𝑞−1)𝑘 +1, . . . , 𝑞𝑘 −1] (𝑞𝑘) (2.1)

where 𝑞 =
⌊
𝑛
𝑘

⌋
. This proves the following lemma.

Lemma 2.3. cl(𝑀 (𝑘)
1 (𝑛)) =

⌊
𝑛
𝑘

⌋
.

Corollary 2.4. cat(𝑀 (𝑘)
1 ) (𝑛) =

⌊
𝑛
𝑘

⌋
In order to address the topological complexity using zero divisors, we introduce a few key
elements in 𝐻∗(𝑀 (𝑘)

1 (𝑛)) and in 𝐻∗(𝑀 (𝑘)
1 (𝑛))⊗2. In what follows cohomology groups will

be taken with Z2-coefficients, a restriction that is not essential but allows us to simplify
calculations.

Definition 2.5. For a positive integer 𝑚 satisfying 𝑚 + 𝑘 ≤ 𝑛 + 2, consider the elements

𝑥𝑚, 𝑥
′
𝑚 ∈ 𝐻𝑘−2(𝑀 (𝑘)

1 (𝑛)) given by

𝑥𝑚 = (1, . . . ,𝑚−2,𝑚−1) [𝑚,𝑚 +1, . . . ,𝑚 + 𝑘 −2] (𝑚 + 𝑘 −1, . . . , 𝑛) ,

𝑥′𝑚 = (1, . . . ,𝑚−2,𝑚) [𝑚−1,𝑚 +1, . . . ,𝑚 + 𝑘 −2] (𝑚 + 𝑘 −1, . . . , 𝑛) ,

where 𝑥′𝑚 is defined only for 𝑚 ≥ 2.

Each of the corresponding zero-divisors 𝑦𝑚 = 𝑥𝑚 ⊗ 1+1⊗ 𝑥𝑚 for 𝑀 (𝑘)
1 (𝑛) is central in what

follows, with the elements 𝑥′𝑚 playing a subtle role.
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LS Category and Topological Complexity for the real case

Remark 2.6. If 𝑚 + 𝑘 ≤ 𝑛 + 1 the elements 𝑥𝑚 and 𝑥′𝑚 end with a ()-block with the number

𝑚 + 𝑘 −1 and therefore they are elementary basic elements in 𝑀 (𝑘)
1 (𝑛).

Example 2.7. As illustrated in Example 1.12, the product of the elements 𝑥𝑖 can be easily

expressed in terms of a string preorder as follows

𝑖∏
𝑗=1
𝑥( 𝑗−1)𝑘+2 = 𝑥2𝑥𝑘+2 · · ·𝑥(𝑖−1)𝑘+2

= (1) [2, . . . , 𝑘] (𝑘 +1) [𝑘 +2, . . . ,2𝑘] (2𝑘 +1) · · · [(𝑖−1)𝑘 +2, . . . , 𝑖𝑘] (𝑖𝑘 +1, . . . , 𝑛) (2.2)

moreover, if 𝑖𝑘 +1 ≤ 𝑛 the product is a basis element in 𝐻∗(𝑀 (𝑘)
1 (𝑛)).

Likewise, if �̃�( 𝑗−1)𝑘+1 stands for either 𝑥( 𝑗−1)𝑘+1 or 𝑥′( 𝑗−1)𝑘+1 (the latter one being a possibility

only for 𝑗 ≥ 2), then

𝑖∏
𝑗=1
�̃�( 𝑗−1)𝑘+1 = �̃�1�̃�𝑘+1 · · · �̃�(𝑖−1)𝑘+1

= [1, . . . , 𝑘 −1](𝑘)[𝑘 +1, . . . ,2𝑘 −1]· · · ((𝑖−1)𝑘)[(𝑖−1)𝑘 +1, . . . , 𝑖𝑘 −1](𝑖𝑘, . . . , 𝑛) , (2.3)

where curved arrows indicate pairs of elements that might have to be switched (depending on

the actual term �̃�( 𝑗−1)𝑘+1 under consideration), is a basis element in 𝐻∗(𝑀 (𝑘)
1 (𝑛)) provided

𝑖𝑘 ≤ 𝑛.

Example 2.8. Since 3 ≤ 𝑘 < 𝑛, both 𝑥1 and 𝑥2 are Baryshnikov basis elements in𝐻∗(𝑀 (𝑘)
1 (𝑛)),

and since 𝑥1 ≠ 𝑥2, we obviously have

𝑦1𝑦2 = (𝑥1 ⊗ 1+1⊗ 𝑥1) (𝑥2 ⊗ 1+1⊗ 𝑥2) = · · · + 𝑥1 ⊗ 𝑥2 + 𝑥2 ⊗ 𝑥1 + · · · ≠ 0. (2.4)

So 2 ≤ zcl(𝑀 (𝑘)
1 (𝑛)), which determines the topological complexity of 𝑀 (𝑘)

1 (𝑛) for 2𝑘 > 𝑛 in

view of Corollary 2.2.

The proof for 𝑛 ≥ 2𝑘 requires a major generalization of the simple calculation in (2.4). The
product indicated in (2.5) below will play the role of the product 𝑦1𝑦2 on the left-hand side
of (2.4). Most importantly, the tensor factors 𝑥1 and 𝑥2 in the two highlighted summands on
the right-hand side of (2.4) will be replaced by products of the form (2.2), and by certain
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2.1. Cup length and zero-divisors cup length

products of the form (2.3), some of which are made explicit as follows:

𝑝𝑖,1 =


𝑥1

©«
𝑎−1∏
𝑗=1
𝑥(2 𝑗−1)𝑘+1𝑥

′
2 𝑗 𝑘+1

ª®¬𝑥(2𝑎−1)𝑘+1 , if 𝑖 = 2𝑎 ≥ 2;

𝑥1
©«
𝑎∏
𝑗=1
𝑥(2 𝑗−1)𝑘+1𝑥

′
2 𝑗 𝑘+1

ª®¬ , if 𝑖 = 2𝑎 +1 ≥ 3,

𝑝𝑖,2 =


𝑥1

©«
𝑎−1∏
𝑗=1
𝑥′(2 𝑗−1)𝑘+1𝑥2 𝑗 𝑘+1

ª®¬𝑥′(2𝑎−1)𝑘+1 , if 𝑖 = 2𝑎 ≥ 2;

𝑥1
©«
𝑎∏
𝑗=1
𝑥′(2 𝑗−1)𝑘+1𝑥2 𝑗 𝑘+1

ª®¬ , if 𝑖 = 2𝑎 +1 ≥ 3.

Theorem 2.9. If the integers 𝑖, 𝑘, 𝑛 satisfy 2 ≤ 𝑖, and 𝑖𝑘 ≤ 𝑛, then the product

𝑖∏
𝑗=1
𝑦 ( 𝑗−1)𝑘+1𝑦 ( 𝑗−1)𝑘+2 ∈ 𝐻

∗(𝑀 (𝑘)
1 (𝑛))⊗2 (2.5)

is non-zero. Explicitly:

1. If 𝑖𝑘 +1 ≤ 𝑛, then the expression of (2.5) as a linear combination of Baryshnikov tensor

basis elements for 𝐻∗(𝑀 (𝑘)
1 (𝑛))⊗2 has the following element as a summand

𝑖∏
𝑗=1
𝑥( 𝑗−1)𝑘+1 ⊗

𝑖∏
𝑗=1
𝑥( 𝑗−1)𝑘+2.

2. If 𝑘𝑖 = 𝑛, then the expression of (2.5) as a linear combination of Baryshnikov tensor

basis elements for 𝐻∗(𝑀 (𝑘)
1 (𝑛))⊗2 uses the Baryshnikov basis element 𝑝𝑖,1 ⊗ 𝑝𝑖,2.

The proof of the theorem is done throughout the remainder of this section. Note that the
hypothesis 𝑖 ≥ 2 is relevant only for the second half of Theorem 2.9. The actual exceptional
case that has to be avoided is 𝑛 = 𝑘 , for which 𝑦1𝑦2 is forced to vanish.
The validity of 2

⌊
𝑛
𝑘

⌋
≤ zcl(𝑀 (𝑘)

1 (𝑛)) for 𝑛 ≥ 2𝑘 (i.e. the cases that remain to be considered)
follows from Theorem 2.9 below by taking 𝑖 = ⌊𝑛/𝑘⌋. So, the rest of the section is devoted
to the proof of Theorem 2.9.

Lemma 2.10. The following relations hold in 𝐻∗(𝑀 (𝑘)
1 (𝑛)) :
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1. 𝑥2𝑥𝑘+1 = 𝑥1𝑥𝑘+1, for 𝑛 ≥ 2𝑘 −1.

2. 𝑥𝑛−2𝑘+4𝑥𝑛−𝑘+2 = 𝑥𝑛−2𝑘+3𝑥𝑛−𝑘+2 = 0, for 𝑛 ≥ 2𝑘 −2.

3. 𝑥𝑛−2𝑘+2𝑥𝑛−𝑘+2 = 𝑥𝑛−2𝑘+2𝑥𝑛−𝑘+1, for 𝑛 ≥ 2𝑘 −1.

4. 𝑥𝑛−2𝑘+1𝑥𝑛−𝑘+2 = 𝑥𝑛−2𝑘+1𝑥𝑛−𝑘+1 + 𝑥𝑛−2𝑘+1𝑥
′
𝑛−𝑘+1, for 𝑛 ≥ 2𝑘 .

5. 𝑥𝑟𝑥𝑟+𝑘𝑥𝑟+2𝑘−1 = 𝑥𝑟𝑥𝑟+𝑘−1𝑥𝑟+2𝑘−1, for 𝑛 ≥ 𝑟 +3𝑘 −3 and 𝑟 ≥ 1.

6. 𝑥𝑟𝑥𝑟+𝑘+1𝑥𝑟+2𝑘 = 𝑥𝑟𝑥𝑟+𝑘𝑥𝑟+2𝑘 + 𝑥𝑟𝑥′𝑟+𝑘𝑥𝑟+2𝑘 , for 𝑛 ≥ 𝑟 +3𝑘 −2 and 𝑟 ≥ 1.

Remark 2.11. The numeric restrictions on 𝑘 , 𝑛 and 𝑟 ensure that each of the factors 𝑥𝑚 in

the six items above is an element of 𝐻∗(𝑀 (𝑘)
1 (𝑛)).

Proof of Lemma 2.10. All these equalities follow from Theorem 1.13 and the discussion pre-
ceding Definition 1.11. We give full details for completeness.

• Assume 𝑛 ≥ 2𝑘 − 2. Taking 𝐴 = {1, . . . , 𝑛− 𝑘 + 1}, 𝐵 = {𝑛− 𝑘 + 2, . . . , 𝑛− 1}, 𝐶 = {𝑛}
and Z2 coefficients in Theorem 1.13.1, we get

𝑥𝑛−𝑘+2 = (1, . . . , 𝑛− 𝑘 +1) [𝑛− 𝑘 +2, . . . , 𝑛]

=

𝑛−𝑘+1∑︁
𝑖=1

(1, . . . , �̂�, . . . , 𝑛− 𝑘 +1) [𝑖, 𝑛− 𝑘 +2, . . . , 𝑛−1] (𝑛). (2.6)

As explained in the paragraph preceding Definition 1.11, all terms in the summation
in (2.6) vanish when multiplied by

𝑥𝑛−2𝑘+3 = (1, . . . , 𝑛−2𝑘 +2) [𝑛−2𝑘 +3, . . . , 𝑛− 𝑘 +1] (𝑛− 𝑘 +2, . . . , 𝑛).

This yields 𝑥𝑛−2𝑘+3𝑥𝑛−𝑘+2 = 0, also the equality 𝑥𝑛−2𝑘+4𝑥𝑛−𝑘+2 = 0 follows directly. This
proves item 2.

• Assume 𝑛 ≥ 2𝑘 − 1. Terms with 𝑖 ≤ 𝑛 − 𝑘 in the summation in (2.6) vanish when
multiplied by

𝑥𝑛−2𝑘+2 = (1, . . . , 𝑛−2𝑘 +1) [𝑛−2𝑘 +2, . . . , 𝑛− 𝑘] (𝑛− 𝑘 +1, . . . , 𝑛).

This yields 𝑥𝑛−2𝑘+2𝑥𝑛−𝑘+2 = 𝑥𝑛−2𝑘+2𝑥𝑛−𝑘+1, proving item 3.
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• Assume 𝑛 ≥ 2𝑘 . Terms with 𝑖 < 𝑛− 𝑘 in the summation in (2.6) vanish when multiplied
by

𝑥𝑛−2𝑘+1 = (1, . . . , 𝑛−2𝑘) [𝑛−2𝑘 +1, . . . , 𝑛− 𝑘 −1] (𝑛− 𝑘, . . . , 𝑛).

This yields 𝑥𝑛−2𝑘+1𝑥𝑛−𝑘+2 = 𝑥𝑛−2𝑘+1𝑥𝑛−𝑘+1 + 𝑥𝑛−2𝑘+1𝑥
′
𝑛−𝑘+1, proving item 4.

• Assume 𝑛 ≥ 𝑟 +3𝑘 −2 and 𝑟 ≥ 1. Take 𝐴 = {1, . . . , 𝑟 + 𝑘 −1}, 𝐵 = {𝑟 + 𝑘, . . . , 𝑟 +2𝑘 −3}
and 𝐶 = {𝑟 +2𝑘 −2, . . . , 𝑛} in Theorem 1.13.1

𝑟+𝑘−1∑︁
𝑖=1

(1, . . . , �̂�, . . . , 𝑟 + 𝑘 −1) [𝑖, 𝑟 + 𝑘, . . . , 𝑟 +2𝑘 −3] (𝑟 +2𝑘 −2, . . . , 𝑛)

=

𝑛∑︁
𝑖=𝑟+2𝑘−2

(1, . . . , 𝑟 + 𝑘 −1) [𝑟 + 𝑘, . . . , 𝑟 +2𝑘 −3, 𝑖] (𝑟 +2𝑘 −2, . . . , �̂�, . . . , 𝑛).

Terms with 𝑖 < 𝑟+𝑘−1 in the first summation vanish when multiplied by 𝑥𝑟 = (1, . . . , 𝑟−
1) [𝑟, . . . , 𝑟 + 𝑘 −2] (𝑟 + 𝑘 −1, . . . , 𝑛), and terms with 𝑖 > 𝑟 +2𝑘 −2 in the second summa-
tion vanish when multiplied by

𝑥𝑟+2𝑘−1 = (1, . . . , 𝑟 +2𝑘 −2) [𝑟 +2𝑘 −1, . . . , 𝑟 +3𝑘 −3] (𝑟 +3𝑘 −2, . . . , 𝑛).

This yields the equality 𝑥𝑟𝑥𝑟+𝑘−1𝑥𝑟+2𝑘−1 = 𝑥𝑟𝑥𝑟+𝑘𝑥𝑟+2𝑘−1, proving item 5.

• When 𝑛 ≥ 2𝑘 −1, the previous argument applies for 𝑟 = 2− 𝑘 —by vacuity in the case
of the assertion about the first summation, whose only one term is 𝑥1. This yields
𝑥1𝑥𝑘+1 = 𝑥2𝑥𝑘+1, proving item 1.

• Assume 𝑛 ≥ 𝑟 +3𝑘 −2 and 𝑟 ≥ 1. Take 𝐴 = {1, . . . , 𝑟 + 𝑘}, 𝐵 = {𝑟 + 𝑘 +1, . . . , 𝑟 +2𝑘 −2},
𝐶 = {𝑟 +2𝑘 −1, . . . , 𝑛}, and Z2 coefficients in Theorem 1.13.1 to get

𝑟+𝑘∑︁
𝑖=1

(1, . . . , �̂�, . . . , 𝑟 + 𝑘) [𝑖, 𝑟 + 𝑘 +1, . . . , 𝑟 +2𝑘 −2] (𝑟 +2𝑘 −1, . . . , 𝑛)

=

𝑛∑︁
𝑖=𝑟+2𝑘−1

(1, . . . , 𝑟 + 𝑘) [𝑟 + 𝑘 +1, . . . , 𝑟 +2𝑘 −2, 𝑖] (𝑟 +2𝑘 −1, . . . , �̂�, . . . , 𝑛). (2.7)

Terms with 𝑖 < 𝑟 + 𝑘 −1 in the first summation vanish when multiplied by

𝑥𝑟 = (1, . . . , 𝑟 −1) [𝑟, . . . , 𝑟 + 𝑘 −2] (𝑟 + 𝑘 −1, . . . , 𝑛),
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while terms with 𝑖 > 𝑟 +2𝑘 −1 in the second summation vanish when multiplied by

𝑥𝑟+2𝑘 = (1, . . . , 𝑟 +2𝑘 −1) [𝑟 +2𝑘, . . . , 𝑟 +3𝑘 −2] (𝑟 +3𝑘 −1, . . . , 𝑛).

This yields the equality 𝑥𝑟𝑥′𝑟+𝑘𝑥𝑟+2𝑘 + 𝑥𝑟𝑥𝑟+𝑘𝑥𝑟+2𝑘 = 𝑥𝑟𝑥𝑟+𝑘+1𝑥𝑟+2𝑘 , proving item 6. □

Proof of part 1 in Theorem 2.9. Using the description of non-trivial products given in the
paragraph preceding Definition 1.11, we get

𝑦 ( 𝑗−1)𝑘+1𝑦 ( 𝑗−1)𝑘+2 = (𝑥( 𝑗−1)𝑘+1 ⊗ 1+1⊗ 𝑥( 𝑗−1)𝑘+1) (𝑥( 𝑗−1)𝑘+2 ⊗ 1+1⊗ 𝑥( 𝑗−1)𝑘+2)

= 𝑥( 𝑗−1)𝑘+1 ⊗ 𝑥( 𝑗−1)𝑘+2 + 𝑥( 𝑗−1)𝑘+2 ⊗ 𝑥( 𝑗−1)𝑘+1,

so the product in (2.5) is

𝑖∏
𝑗=1
𝑦 ( 𝑗−1)𝑘+1𝑦 ( 𝑗−1)𝑘+2 = (𝑥1 ⊗ 𝑥2 + 𝑥2 ⊗ 𝑥1) (𝑥𝑘+1 ⊗ 𝑥𝑘+2 + 𝑥𝑘+2 ⊗ 𝑥𝑘+1) · · ·

· · · (𝑥(𝑖−1)𝑘+1 ⊗ 𝑥(𝑖−1)𝑘+2 + 𝑥(𝑖−1)𝑘+2 ⊗ 𝑥(𝑖−1)𝑘+1)

=
∑︁

𝜖 𝑗∈{1,2}
1≤ 𝑗≤𝑖

𝑥3−𝜖1𝑥𝑘+3−𝜖2 · · · 𝑥(𝑖−1)𝑘+3−𝜖𝑖 ⊗ 𝑥𝜖1𝑥𝑘+𝜖2 · · · 𝑥(𝑖−1)𝑘+𝜖𝑖 . (2.8)

The basis element we care about, namely

𝑖∏
𝑗=1
𝑥( 𝑗−1)𝑘+1 ⊗

𝑖∏
𝑗=1
𝑥( 𝑗−1)𝑘+2, (2.9)

is the summand in (2.8) with 𝜖 𝑗 = 2 for all 𝑗 . The proof task is to argue that, when we expand
the other terms of (2.8) as sums of tensor of basis elements, the tensor (2.9) does not appear.
This is obvious for the summand in (2.8) with 𝜖 𝑗 = 1 for all 𝑗 . For all other summands, the
assertion will be argued by focusing on the sequence of leaps associated to the subscripts of
both tensor factors of each summand in (2.8). Explicitly, the first leap in the subscripts of
𝑥3−𝜖1𝑥𝑘+3−𝜖2 · · · 𝑥(𝑖−1)𝑘+3−𝜖𝑖 is 𝑘 +3− 𝜖2− (3− 𝜖1) = 𝑘 + 𝜖1− 𝜖2, and the full sequences of leaps
associated to

𝑥3−𝜖1𝑥𝑘+3−𝜖2 · · · 𝑥𝑘 (𝑖−1)+3−𝜖𝑖 and 𝑥𝜖1𝑥𝑘+𝜖2 · · · 𝑥𝑘 (𝑖−1)+𝜖𝑖 (2.10)

are, respectively,

(𝑘 + 𝜖1− 𝜖2, 𝑘 + 𝜖2− 𝜖3, . . . , 𝑘 + 𝜖𝑖−1− 𝜖𝑖) and (𝑘 − 𝜖1+ 𝜖2, 𝑘 − 𝜖2+ 𝜖3, . . . , 𝑘 − 𝜖𝑖−1+ 𝜖𝑖). (2.11)
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Such sequences of leaps clearly satisfy:

(A) Leap values are either 𝑘 − 1, 𝑘 , or 𝑘 + 1. Moreover, if all 𝑘-leaps are removed from
either one of the sequences in (2.11), then the resulting sequence of leaps either is
empty or, else, has leap values that alternate between 𝑘 −1 and 𝑘 +1: (𝑘 −1,𝑘 +1,𝑘 −
1,. . . ) or (𝑘 +1,𝑘 −1,𝑘 +1,. . . ).

(B) The two sequences of leaps in (2.11) are coordinate-wise complementary to each other
with respect to 2𝑘 .

(C) The first leap different from 𝑘 (if any) in either of the sequences of leaps (2.11) is a
(𝑘 + 1)-leap (respectively (𝑘 − 1)-leap) provided the corresponding product in (2.10)
starts with 𝑥1 (respectively 𝑥2).

Since the right tensor factor in (2.9), i.e.
∏𝑖

𝑗=1 𝑥( 𝑗−1)𝑘+2, is a basic string preorder starting as
(1) [2, . . . , 𝑘] · · · , the proof is complete in view of Proposition 2.12 below. □

Proposition 2.12. Any summand in (2.8) whose associated sequences of leaps (2.11) contain

at least a (𝑘 − 1)-leap (equivalently a (𝑘 + 1)-leap) is a linear combination of tensor basis

elements 𝑢 ⊗ 𝑣 where both 𝑢 and 𝑣 are basic string preorders starting as

[1, . . . , 𝑘 −1] (𝐼1) · · · (𝐼𝑖−1) [𝐽𝑖] (𝐼𝑖).

Proof. Take a product 𝑝 = 𝑥𝑘1𝑥𝑘2 · · ·𝑥𝑘𝑖 in (2.10), so 𝑘1 ∈ {1,2}, with associated sequence of
leaps (ℓ1, . . . , ℓ𝑖−1) satisfying conditions (A)–(C) above, and so that not all leap values ℓ 𝑗 are
𝑘 .
Case 𝑘1 = 1: 𝑝 has the form

𝑥1 · · ·𝑥𝑘𝑟1+1𝑥𝑘 (𝑟1+1)+2︸             ︷︷             ︸
(𝑘 +1)-leap

· · ·𝑥𝑘𝑟2+2𝑥𝑘 (𝑟2+1)+1︸             ︷︷             ︸
(𝑘 −1)-leap

· · ·𝑥𝑘𝑟3+1𝑥𝑘 (𝑟3+1)+2︸             ︷︷             ︸
(𝑘 +1)-leap

· · ·𝑥𝑘𝑟4+2𝑥𝑘 (𝑟4+1)+1︸             ︷︷             ︸
(𝑘 −1)-leap

· · · , (2.12)

where we only indicate (𝑘−1)-leaps and (𝑘 +1)-leaps. Items 5 and 6 in Lemma 2.10 allow us
to replace each portion 𝑥𝑘𝑟 𝑗+1𝑥𝑘 (𝑟 𝑗+1)+2 · · ·𝑥𝑘𝑟 𝑗+1+2𝑥𝑘 (𝑟 𝑗+1+1)+1, having an initial (𝑘 +1)-leap, a
final (𝑘 −1)-leap, and (perhaps) some intermediate 𝑘-leaps, by

𝑥𝑘𝑟 𝑗+1(𝑥𝑘 (𝑟 𝑗+1)+1 + 𝑥′𝑘 (𝑟 𝑗+1)+1)𝑥𝑘 (𝑟 𝑗+2)+1 · · ·𝑥𝑘𝑟 𝑗+1+1𝑥𝑘 (𝑟 𝑗+1+1)+1,

which only has 𝑘-leaps. The replacing process can be iterated since the initial and final terms
in the replacing portion agree with those in the replaced portion. After all replacements are
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made, and sums are distributed, 𝑝 becomes a sum of expressions each of which is similar
to the original one (2.12), except that some of the initial elements 𝑥𝑘 𝑗+1 get replaced by the
corresponding 𝑥′

𝑘 𝑗+1, and in such a way that no (𝑘−1)-leaps show up, and at most one (𝑘 +1)-
leap shows up. But any such expression is a basis element of the required form (the latter
assertion uses the hypothesis 𝑖𝑘 +1 ≤ 𝑛 in part 1 of Theorem 2.9 —see Remark 2.13 below).

Case 𝑘1 = 2: 𝑝 has the form

𝑥2 · · ·𝑥𝑘𝑟1+2𝑥𝑘 (𝑟1+1)+1︸             ︷︷             ︸
(𝑘 −1)-leap

· · ·𝑥𝑘𝑟2+1𝑥𝑘 (𝑟2+1)+2︸             ︷︷             ︸
(𝑘 +1)-leap

· · ·𝑥𝑘𝑟3+2𝑥𝑘 (𝑟3+1)+1︸             ︷︷             ︸
(𝑘 −1)-leap

· · ·𝑥𝑘𝑟4+1𝑥𝑘 (𝑟4+1)+2︸             ︷︷             ︸
(𝑘 +1)-leap

· · · ,

Items 1 and 5 in Lemma 2.10 allow us to replace the initial portion 𝑥2 · · ·𝑥𝑘𝑟1+2𝑥𝑘 (𝑟1+1)+1 by
𝑥1 · · ·𝑥𝑘𝑟1+1𝑥𝑘 (𝑟1+1)+1. Then, the replacement process described in the previous case allows
us to write 𝑝 as a sum of basis elements of the required form. □

Remark 2.13. Part 2 in Theorem 2.9 will be proved using an argument similar to that in
the previous proof, except that it will be necessary to deal first with an additional subtlety.
Namely, note that when 𝑖𝑘 = 𝑛, we have

𝑥(𝑖−1)𝑘+2 = (1, · · · , (𝑖−1)𝑘 +1) [(𝑖−1)𝑘 +2, · · · , 𝑖𝑘] (𝑖𝑘 +1, · · · , 𝑛)

= (1, · · · , (𝑖−1)𝑘 +1) [(𝑖−1)𝑘 +2, · · · , 𝑛] ,

which is an elementary non-basic element (i.e., under the main hypothesis in part 2 of Theo-
rem 2.9). So, when analyzing a typical tensor factor 𝑥𝜖1𝑥𝑘+𝜖2 · · ·𝑥(𝑖−1)𝑘+𝜖𝑖 in (2.8) with 𝜖𝑖 = 2,
the recursive process described in the previous proof will not end up producing sums of basis
elements. This issue will be resolved using item 4 in Lemma 2.10.

Let us go back to the starting point for the proof of part 2 in Theorem 2.9, i.e., the expression
in (2.8) for the product

∏𝑖
𝑗=1 𝑦 ( 𝑗−1)𝑘+1𝑦 ( 𝑗−1)𝑘+2. As observed in Remark 2.13, we no longer

work with the basis element indicated in part 1 of Theorem 2.9. Instead, the basis element we
now care about is 𝑝𝑖,1 ⊗ 𝑝𝑖,2, where 𝑘𝑖 = 𝑛, and which arises from one of the two summands
in (2.8) for which the values of the indices 𝜖 𝑗 alternate between 1 and 2.

In order to simplify the argument, it is convenient to note that all 𝑦 𝑗 , and therefore their
product

∏𝑖
𝑗=1 𝑦 ( 𝑗−1)𝑘+1𝑦 ( 𝑗−1)𝑘+2, are invariant under the involution induced by the map that

switches coordinates in 𝑀 (𝑘)
1 (𝑛) ×𝑀 (𝑘)

1 (𝑛). We show the following (equivalent, by the sym-
metry just noted, but slightly simpler-to-prove) version of part 2 in Theorem 2.9:
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Theorem 2.14. For 𝑖 ≥ 2, 𝑘 ≥ 3 and 𝑛 = 𝑘𝑖, both 𝑝𝑖,1 ⊗ 𝑝𝑖,2 and 𝑝𝑖,2 ⊗ 𝑝𝑖,1 are used in the

expression of the product (2.5) as a linear combination of Baryshnikov tensor basis elements

for 𝐻∗(𝑀 (𝑘)
1 (𝑛))⊗2.

Proof. We provide full proof details when 𝑖 = 2𝑎 is even; the parallel argument for 𝑖 odd
is left as an exercise for the reader. In order to simplify notation, we let 𝑟1 ·𝑟2 · · ·𝑟𝑡 and
𝑟1 ·𝑟2 · · ·𝑟𝑡 |𝑠1 ·𝑠2 · · · 𝑠𝑡 stand for 𝑥𝑟1𝑥𝑟2 · · ·𝑥𝑟𝑡 and 𝑥𝑟1𝑥𝑟2 · · ·𝑥𝑟𝑡 ⊗ 𝑥𝑠1𝑥𝑠2 · · ·𝑥𝑠𝑡 , respectively. With
this notation, (2.8) becomes

(1|2+2|1) ((𝑘 +1) | (𝑘 +2) + (𝑘 +2) | (𝑘 +1)) · · ·

· · · (((2𝑎−1)𝑘 +1) | ((2𝑎−1)𝑘 +2) + ((2𝑎−1)𝑘 +2) | ((2𝑎−1)𝑘 +1))

=
∑︁

𝜖 𝑗 ∈{1,2}
1≤ 𝑗≤𝑖

(3− 𝜖1) (𝑘 +3− 𝜖2) · · · ((2𝑎−1)𝑘 +3− 𝜖2𝑎) | (𝜖1) (𝑘 + 𝜖2) · · · ((2𝑎−1)𝑘 + 𝜖2𝑎). (2.13)

The summand with (𝜖1, 𝜖2, · · · , 𝜖2𝑎) = (1,2,1, . . . ,2) is

2· (𝑘 +1) · (2𝑘 +2) · (3𝑘 +1) · · · ((2𝑎−2)𝑘 +2) · ((2𝑎−1)𝑘 +1)
| 1· (𝑘 +2) · (2𝑘 +1) · (3𝑘 +2) · · · ((2𝑎−2)𝑘 +1) · ((2𝑎−1)𝑘 +2), (2.14)

whose associated sequences of leaps are

(𝑘 −1, 𝑘 +1, 𝑘 −1, . . . , 𝑘 −1) and (𝑘 +1, 𝑘 −1, 𝑘 +1, . . . , 𝑘 +1). (2.15)

Using the replacing process explained in the previous proof, it is clear that the expression of

2· (𝑘 +1) · (2𝑘 +2) · (3𝑘 +1) · · · ((2𝑎−2)𝑘 +2) · ((2𝑎−1)𝑘 +1)

in terms of Baryshnikov basis elements uses 𝑝2𝑎,1, but not 𝑝2𝑎,2. Likewise, the replacing
process and item 4 in Lemma 2.10 imply that the expression of

1· (𝑘 +2) · (2𝑘 +1) · (3𝑘 +2) · · · ((2𝑎−2)𝑘 +1) · ((2𝑎−1)𝑘 +2)

in terms of Baryshnikov basis uses 𝑝2𝑎,2. Therefore the expression of (2.14) in terms of
Baryshnikov (tensor) basis elements uses 𝑝2𝑎,1 ⊗ 𝑝2𝑎,2 without using 𝑝2𝑎,2 ⊗ 𝑝2𝑎,1. Fur-
ther, the symmetry coming from the involution induced by the switching map on 𝑀 (𝑘)

1 (𝑛)×2

implies that the expression in terms of Baryshnikov basis of the summand in (2.13) with
(𝜖1, 𝜖2, · · · , 𝜖2𝑎) = (2,1,2 . . . ,1) uses 𝑝2𝑎,2 ⊗ 𝑝2𝑎,1 without using 𝑝2𝑎,1 ⊗ 𝑝2𝑎,2.
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It remains to prove that neither 𝑝2𝑎,1 ⊗ 𝑝2𝑎,2 nor 𝑝2𝑎,2 ⊗ 𝑝2𝑎,1 are used in the expression in
terms of basis elements of any summand in (2.13) whose associated sequences of leaps is
different from those in (2.15). By symmetry, it suffices to consider the case of a summand

(3− 𝜖1) (𝑘 +3− 𝜖2) · · · ((2𝑎−1)𝑘 +3− 𝜖2𝑎) | (𝜖1) (𝑘 + 𝜖2) · · · ((2𝑎−1)𝑘 + 𝜖2𝑎) (2.16)

with 𝜖1 = 1. Let _ ∈ {𝑘 −1, 𝑘, 𝑘 +1} (𝜌 ∈ {𝑘 +1, 𝑘, 𝑘 −1}) stand for the value of the last leap
in the tensor factor on the left (right) of (2.16). Recall _+ 𝜌 = 2𝑘 .

Case _ = 𝜌 = 𝑘: The ending portion of one of the two tensor factors in (2.16) is forced to be

· · ·((2𝑎−2)𝑘 +1) · ((2𝑎−1)𝑘 +1).

The replacing process shows that such a factor cannot give rise to 𝑝2𝑎,1 or 𝑝2𝑎,2 in its expres-
sion in terms of Baryshnikov basis.

Case (_, 𝜌) = (𝑘 − 1, 𝑘 + 1): The equalities 𝜖2𝑎−1 = 1 and 𝜖2𝑎 = 2 are now forced. Letting
𝑗 ′ stand for 𝑥′

𝑗
, and ignoring Baryshnikov basis elements different from 𝑝2𝑎,1 and 𝑝2𝑎,2, the

right factor in (2.16) then becomes

1· (𝑘 + 𝜖2) · · · ((2𝑎−2)𝑘 +1) ((2𝑎−1)𝑘 +2) = 1· (𝑘 + 𝜖2) · · · ((2𝑎−2)𝑘 +1) ((2𝑎−1)𝑘 +1)′,

in view of the replacing process and item 4 in Lemma 2.10. Further, the replacing process
makes it clear that the expression of the latter element in terms of Baryshnikov basis elements
does not use 𝑝2𝑎,1, and that it uses 𝑝2𝑎,2 only if the sequence of leaps associated to the right
tensor factor in (2.16) is the second sequence in (2.15).

Case (_, 𝜌) = (𝑘 + 1, 𝑘 − 1): The equalities 𝜖2𝑎−1 = 2 and 𝜖2𝑎 = 1 are now forced. Ignoring
Baryshnikov basis elements different from 𝑝2𝑎,1 and 𝑝2𝑎,2, the left factor in (2.16) becomes

2· (𝑘 +3− 𝜖2) · · · ((2𝑎−2)𝑘 +1) ((2𝑎−1)𝑘 +2) = 2· (𝑘 +3− 𝜖2) · · · ((2𝑎−2)𝑘 +1) ((2𝑎−1)𝑘 +1)′,

where the latter expression further evolves under the replacing process (still ignoring Barysh-
nikov basis elements different from 𝑝2𝑎,1 and 𝑝2𝑎,2) to either zero or to

2· (𝑘 +1) · (2𝑘 +1) · (3𝑘 +1)′ · · · ((2𝑎−2)𝑘 +1) ((2𝑎−1)𝑘 +1)′. (2.17)

Note the factor “(𝑘 + 1)”, rather than a (primed) “(𝑘 + 1)′”, due to the initial “2” in (2.17).
In any case, a final application of item 1 in Lemma 2.10 shows that (2.17) vanishes modulo
Baryshnikov basis elements different from 𝑝2𝑎,1 and 𝑝2𝑎,2. □
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Finally, the equality TC𝑠 (𝑀 (𝑘)
1 (𝑛)) = 𝑠

⌊
𝑛
𝑘

⌋
will follow once we exhibit a non-zero product

of 𝑠⌊𝑛/𝑘⌋ “𝑠-th zero-divisors” for 𝑀 (𝑘)
1 (𝑛), i.e., of elements in the kernel of the iterated cup

product 𝐻∗(𝑀 (𝑘)
1 (𝑛))⊗𝑠 → 𝐻∗(𝑀 (𝑘)

1 (𝑛)).

Let 𝑖 = ⌊𝑛/𝑘⌋, 𝑞 ∈ {1, . . . , 𝑠−1}, and consider the 𝑠-th zero-divisors

𝑧𝑚,𝑞 = 1⊗ · · · ⊗ 1⊗ 𝑥𝑚︸︷︷︸
𝑞-th

⊗1⊗ · · · ⊗ 1+1⊗ · · · ⊗ 1⊗ 𝑥𝑚 ∈ 𝐻∗(𝑀 (𝑘)
1 (𝑛))⊗𝑠,

whenever 𝑚 + 𝑘 ≤ 𝑛+2. For instance

𝑖∏
𝑗=1
𝑧( 𝑗−1)𝑘+1,𝑠−1𝑧( 𝑗−1)𝑘+2,𝑠−1 = 1⊗ · · · ⊗ 1⊗

𝑖∏
𝑗=1
𝑦 ( 𝑗−1)𝑘+1 · 𝑦 ( 𝑗−1)𝑘+2

and, for 𝑞 ≤ 𝑠−2,

𝑧𝑚,𝑞

𝑖∏
𝑗=1
𝑧( 𝑗−1)𝑘+1,𝑠−1𝑧( 𝑗−1)𝑘+2,𝑠−1 =1⊗ · · · ⊗ 1⊗ 𝑥𝑚︸︷︷︸

𝑞−th

⊗1⊗ · · · ⊗ 1⊗
𝑖∏
𝑗=1
𝑦 ( 𝑗−1)𝑘+1 · 𝑦 ( 𝑗−1)𝑘+2

+1⊗ · · · ⊗ 1⊗ ©«(1⊗ 𝑥𝑚) ·
𝑖∏
𝑗=1
𝑦 ( 𝑗−1)𝑘+1𝑦 ( 𝑗−1)𝑘+2

ª®¬ .
The second summand in the latter expression vanishes in view of Lemma 2.1 (by dimensional
considerations or, alternatively, by cat-considerations). Consequently

𝑖∏
𝑗=1
𝑧( 𝑗−1)𝑘+1,1 ·

𝑖∏
𝑗=1
𝑧( 𝑗−1)𝑘+1,2 · · ·

𝑖∏
𝑗=1
𝑧( 𝑗−1)𝑘+1,𝑠−2 ·

𝑖∏
𝑗=1
𝑧( 𝑗−1)𝑘+1,𝑠−1𝑧( 𝑗−1)𝑘+2,𝑠−1

=
©«

𝑖∏
𝑗=1
𝑥( 𝑗−1)𝑘+1

ª®¬⊗ · · · ⊗ ©«
𝑖∏
𝑗=1
𝑥( 𝑗−1)𝑘+1

ª®¬⊗
𝑖∏
𝑗=1
𝑦 ( 𝑗−1)𝑘+1𝑦 ( 𝑗−1)𝑘+2,

which is non-zero because the first 𝑠− 2 tensor factors in the latter expression are Barysh-
nikov basis elements, whereas the last tensor factor is non-zero by Theorem 2.9.
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Theorem 2.15. Summarizing, the Lusternik-Schnirelmann and (higher) topological com-

plexity for 𝑀 (𝑘)
1 (𝑛) are

cat(𝑀 (𝑘)
1 (𝑛)) =

⌊𝑛
𝑘

⌋
, TC(𝑀 (𝑘)

1 (𝑛)) = 2
⌊𝑛
𝑘

⌋
, TC𝑠 (𝑀 (𝑘)

1 (𝑛)) = 𝑠
⌊𝑛
𝑘

⌋
.
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3 | Lusternik-Schnirelmann Category and
Topological Complexity for the non real
case

This chapter describes the work done in [14] related to LS category and TC𝑠 of non-𝑘-equal
manifolds for 𝑑 ≥ 2.

First we deduce the upper bound given by Theorem 1.2 in a similar way to how it was
done in Chapter 2 for 𝑀 (𝑘)

1 (𝑛). This time the key point is that for 𝑑 ≥ 2, 𝑀 (𝑘)
𝑑

(𝑛) is simply
connected [22, Theorem 1.2] and has torsion-free Z-homology [8, Proposition 3.9]. Hence,
by Hurewicz’ Theorem, we get

conn(𝑀 (𝑘)
𝑑

(𝑛)) +1 = 𝑎

where 𝑎 = 𝑑 (𝑘 − 1) − 1 is the lowest positive dimension where 𝐻∗(𝑀 (𝑘)
𝑑

(𝑛)) is non-zero by
Corollary 1.26.

Also, Corollary 1.26 identifies the greatest positive dimension where 𝐻∗(𝑀 (𝑘)
𝑑

(𝑛)) is non-
zero determining the cellular homotopy dimension of 𝑀 (𝑘)

𝑑
(𝑛) by means of [19, Proposi-

tion 4C.1],
hdim(𝑀 (𝑘)

𝑑
(𝑛)) = 𝑚𝑎 + (𝑑 −1) (𝑚 + 𝑏−1), with 𝑚 =

⌊
𝑛
𝑘

⌋
. (3.1)

Corollary 3.1. The LS category and (higher) topological complexity for 𝑀 (𝑘)
𝑑

(𝑛) satisfy the

following inequalities

cl(𝑀 (𝑘)
𝑑

(𝑛)) ≤ cat(𝑀 (𝑘)
𝑑

(𝑛)) ≤
⌊𝑛
𝑘

⌋
+

⌊ ( ⌊
𝑛
𝑘

⌋
+ 𝑏−1

)
(𝑑 −1)

𝑎

⌋
,
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zcl(𝑀 (𝑘)
𝑑

(𝑛)) ≤ TC(𝑀 (𝑘)
𝑑

(𝑛)) ≤ 2

(⌊𝑛
𝑘

⌋
+

⌊ ( ⌊
𝑛
𝑘

⌋
+ 𝑏−1

)
(𝑑 −1)

𝑎

⌋)
,

zcl𝑠 (𝑀 (𝑘)
𝑑

(𝑛)) ≤ TC𝑠 (𝑀 (𝑘)
𝑑

(𝑛)) ≤ 𝑠
(⌊𝑛
𝑘

⌋
+

⌊ ( ⌊
𝑛
𝑘

⌋
+ 𝑏−1

)
(𝑑 −1)

𝑎

⌋)
.

In the following section the values of cl(𝑀 (𝑘)
𝑑

(𝑛)), and zcl𝑠 (𝑀 (𝑘)
𝑑

(𝑛)) for 𝑠 ≥ 2 will be de-
termined.

3.1 Cup-length and zero-divisors cup-length

If the ring under consideration needs to be specified we will use the more explicit notation
zcl𝑅𝑠 (or zcl𝑅, cl𝑅).

Lemma 3.2. For 𝑠 ≥ 1, zcl𝑠 (𝑀 (𝑘)
𝑑

(𝑛)) = 𝑠
⌊
𝑛
𝑘

⌋
.

Proof. Recall we assume 𝑘 < 𝑛, in particular 𝑚 :=
⌊
𝑛
𝑘

⌋
≥ 1. We start by working with Z2-

coefficients. For 𝑘 ≤ 𝑖 ≤ 𝑛, let 𝑥𝑖 be the elementary 𝑘-forest of the form

𝐴

𝐵
(3.2)

where 𝐴 = {𝑖− 𝑘 +1, 𝑖− 𝑘 +2, . . . , 𝑖−1}, 𝐵 = 𝑖 and the remaining indices of n lie on isolated
round vertices. Similarly, let �̃�𝑖 be the elementary 𝑘-forest of the form (3.2) where now
𝐴 = {1, 𝑖− 𝑘 +2, . . . , 𝑖−1} and 𝐵 = 𝑖. Consider in addition the products

𝑥𝑘 · 𝑥2𝑘 · · · · · 𝑥(𝑚−1)𝑘 · 𝑥𝑚𝑘 and 𝑥𝑘+1 · 𝑥2𝑘+1 · · · · · 𝑥(𝑚−1)𝑘+1 · �̃�𝑚𝑘 . (3.3)

Note that 𝑥𝑘 = �̃�𝑘 , however 𝑥𝑖 and �̃�𝑖 are different basis elements for 𝑖 > 𝑘 . Likewise, the
products in (3.3) are different basic 𝑘-forests except for 𝑚 = 1, in which case both coincide
with �̃�𝑘 = 𝑥𝑘 . By Remark 1.25, both products in (3.3) are basic 𝑘-forests and, thus, are
non-zero. This yields in particular the inequality⌊𝑛

𝑘

⌋
≤ clZ2 (𝑀 (𝑘)

𝑑
(𝑛)). (3.4)
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On the other hand, the mod-2 reduction map Z→ Z2 induces a ring epimorphism, thus, we
get clZ2 (𝑀 (𝑘)

𝑑
(𝑛)) ≤ clZ(𝑀 (𝑘)

𝑑
(𝑛)). Therefore, the case 𝑠 = 1 will be proved once we show

clZ(𝑀 (𝑘)
𝑑

(𝑛)) ≤
⌊𝑛
𝑘

⌋
.

Switching to Z-coefficients, we need to show that the product of any set of 𝑚 +1 elementary
oriented 𝑘-forests vanishes. In turn it suffices to show that there are no oriented 𝑘-forests
with 𝑚 + 1 square vertices. But any such 𝑘-forest would have, in addition to the integers
inside the 𝑚 +1 square vertices, at least one integer attached to each square vertex, making a
total of at least (𝑚 +1)𝑘 integers inside n. This is impossible for 𝑚 =

⌊
𝑛
𝑘

⌋
.

Next we bound from below the zero-divisors cup-length zcl2(𝑀 (𝑘)
𝑑

(𝑛)). Working with Z2-
coefficients, we can consider the zero-divisors in 𝐻∗(𝑀 (𝑘)

𝑑
(𝑛)) ⊗𝐻∗(𝑀 (𝑘)

𝑑
(𝑛)) given as

𝑦𝑖,1 = 1⊗ 𝑥𝑖𝑘+1 + 𝑥𝑖𝑘+1 ⊗ 1, for 1 ≤ 𝑖 < 𝑚,

𝑦𝑚,1 =


1⊗ 𝑥𝑘+1 + 𝑥𝑘+1 ⊗ 1, if 𝑚 = 1 (recall 𝑘 < 𝑛);

1⊗ �̃�𝑚𝑘 + �̃�𝑚𝑘 ⊗ 1, if 𝑚 > 1,

𝑦𝑖,2 = 1⊗ 𝑥𝑖𝑘 + 𝑥𝑖𝑘 ⊗ 1, for 1 ≤ 𝑖 ≤ 𝑚.

If 𝑚 = 1, 𝑦1,1𝑦1,2 = 𝑥𝑘+1 ⊗ 𝑥𝑘 + 𝑥𝑘 ⊗ 𝑥𝑘+1 ≠ 0, showing 2𝑚 ≤ zclZ2 (𝑀 (𝑘)
𝑑

(𝑛)). For 𝑚 > 1
observe that the square vertex in 𝑥𝑖𝑘 intersects the square vertex in 𝑥𝑖𝑘+1 (as 𝑘 ≥ 3) and so their
product is zero. Consequently 𝑦𝑖,1𝑦𝑖,2 = 𝑥𝑖𝑘 ⊗𝑥𝑖𝑘+1+𝑥𝑖𝑘+1⊗𝑥𝑖𝑘 for 𝑖 < 𝑚. Likewise, 𝑦𝑚,1𝑦𝑚,2 =
�̃�𝑚𝑘 ⊗ 𝑥𝑚𝑘 + 𝑥𝑚𝑘 ⊗ �̃�𝑚𝑘 . Note also that each product 𝑥𝑖𝑘+1𝑥(𝑖+1)𝑘 vanishes (cf. Remark 1.22),
as well as the product 𝑥𝑘 �̃�𝑚𝑘 , so we have

𝑚∏
𝑖=1

𝑦𝑖,1𝑦𝑖,2 =

((
𝑚−1∏
𝑖=1
𝑥𝑖𝑘+1

)
�̃�𝑚𝑘

)
⊗

𝑚∏
𝑖=1
𝑥𝑖𝑘 +

𝑚∏
𝑖=1
𝑥𝑖𝑘 ⊗

((
𝑚−1∏
𝑖=1
𝑥𝑖𝑘+1

)
�̃�𝑚𝑘

)
,

which is the (symmetric) sum of the tensor product of the basis elements in (3.3). This
gives again 2𝑚 ≤ zclZ2 (𝑀 (𝑘)

𝑑
(𝑛)). Furthermore, the surjectivity argument used in the case

of cup-length allows us to assemble Z-zero-divisors (of the form 1 ⊗ 𝑧 − 𝑧 ⊗ 1, rather than
1⊗ 𝑧+ 𝑧⊗1) giving 2𝑚 ≤ zclZ

(
𝑀

(𝑘)
𝑑

(𝑛)
)
. The fact that both inequalities are sharp will follow

once we observe that, actually, the product of any 2𝑚 +1 positive-dimensional basic tensors
𝑏𝑖 = 𝑢𝑖 ⊗ 𝑣𝑖 in 𝐻∗(𝑀 (𝑘)

𝑑
(𝑛)) ⊗ 𝐻∗(𝑀 (𝑘)

𝑑
(𝑛)) vanishes (with either Z or Z2 coefficients). To
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see the latter fact, just note that, in the product

2𝑚+1∏
𝑖=1

𝑏𝑖 = (𝑢1 · · ·𝑢2𝑚+1) ⊗ (𝑣1 · · ·𝑣2𝑚+1),

one of the factors 𝑢1 · · ·𝑢2𝑚+1 or 𝑣1 · · ·𝑣2𝑚+1 vanishes as it is the product of at least 𝑚 + 1
positive-dimensional cohomology classes.

The last argument generalizes easily to yield zcl𝑅𝑠 (𝑀
(𝑘)
𝑑

(𝑛)) = 𝑠𝑚: Working with 𝑅 = Z2,
consider the 𝑠-th zero divisors in 𝐻∗(𝑀 (𝑘)

𝑑
(𝑛))⊗𝑠:

𝑧𝑖,1 = 1⊗ 𝑥𝑖𝑘+1 ⊗ 1⊗ · · · ⊗ 1+ 𝑥𝑖𝑘+1 ⊗ 1⊗ · · · ⊗ 1, for 1 ≤ 𝑖 < 𝑚,

𝑧𝑚,1 =


1⊗ 𝑥𝑘+1 ⊗ 1⊗ · · · ⊗ 1+ 𝑥𝑘+1 ⊗ 1⊗ · · · ⊗ 1, for 𝑚 = 1;

1⊗ �̃�𝑚𝑘 ⊗ 1⊗ · · · ⊗ 1+ �̃�𝑚𝑘 ⊗ 1⊗ · · · ⊗ 1, for 𝑚 > 1,

𝑧𝑖, 𝑗 = 1⊗ · · · ⊗ 1⊗ 𝑥𝑖𝑘︸︷︷︸
𝑗−th

⊗1⊗ · · · ⊗ 1+ 𝑥𝑖𝑘 ⊗ 1⊗ · · · ⊗ 1, for 1 ≤ 𝑖 ≤ 𝑚 and

2 ≤ 𝑗 ≤ 𝑠.

Direct calculation yields
𝑚∏
𝑖=1

𝑠∏
𝑗=1
𝑧𝑖, 𝑗 ≠ 0. For instance, if 𝑚 > 1, we have

𝑠∏
𝑗=1
𝑧𝑖, 𝑗 = 𝑥𝑖𝑘+1 ⊗ 𝑥𝑖𝑘 ⊗ 𝑥𝑖𝑘 ⊗ · · · ⊗ 𝑥𝑖𝑘 + 𝑥𝑖𝑘 ⊗ 𝑥𝑖𝑘+1 ⊗ 𝑥𝑖𝑘 ⊗ · · · ⊗ 𝑥𝑖𝑘

= (𝑦𝑖,1𝑦𝑖,2) ⊗ 𝑥𝑖𝑘 ⊗ · · · ⊗ 𝑥𝑖𝑘

for 𝑖 < 𝑚, while

𝑠∏
𝑗=1
𝑧𝑚, 𝑗 = �̃�𝑚𝑘 ⊗ 𝑥𝑚𝑘 ⊗ · · · ⊗ 𝑥𝑚𝑘 + 𝑥𝑚𝑘 ⊗ �̃�𝑚𝑘 ⊗ 𝑥𝑚𝑘 ⊗ · · · ⊗ 𝑥𝑚𝑘

= (𝑦𝑚,1𝑦𝑚,2) ⊗ 𝑥𝑚𝑘 ⊗ · · · ⊗ 𝑥𝑚𝑘 .

So
𝑚∏
𝑖=1

𝑠∏
𝑗=1
𝑧𝑖, 𝑗 =

(
𝑚∏
𝑖=1

𝑦𝑖,1𝑦𝑖,2

)
⊗

𝑚∏
𝑖=1
𝑥𝑖𝑘 ⊗ · · · ⊗

𝑚∏
𝑖=1
𝑥𝑖𝑘 ≠ 0.
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Therefore 𝑠𝑚 ≤ zcl𝑅𝑠 (𝑀
(𝑘)
𝑑

(𝑛)) for 𝑅 = Z2 and, as above, for 𝑅 = Z. The latter inequality is
sharp by considerations completely parallel to those in the case 𝑠 = 2. □

Corollary 3.3. The LS category and TC𝑠 for 𝑀 (𝑘)
𝑑

(𝑛) is bounded by⌊𝑛
𝑘

⌋
≤ cat(𝑀 (𝑘)

𝑑
(𝑛)) ≤

⌊𝑛
𝑘

⌋
+

⌊ ( ⌊
𝑛
𝑘

⌋
+ 𝑏−1

)
(𝑑 −1)

𝑎

⌋
,

2
⌊𝑛
𝑘

⌋
≤ TC(𝑀 (𝑘)

𝑑
(𝑛)) ≤ 2

(⌊𝑛
𝑘

⌋
+

⌊ ( ⌊
𝑛
𝑘

⌋
+ 𝑏−1

)
(𝑑 −1)

𝑎

⌋)
,

𝑠

⌊𝑛
𝑘

⌋
≤ TC𝑠 (𝑀 (𝑘)

𝑑
(𝑛)) ≤ 𝑠

(⌊𝑛
𝑘

⌋
+

⌊ ( ⌊
𝑛
𝑘

⌋
+ 𝑏−1

)
(𝑑 −1)

𝑎

⌋)
.

where 𝑎 = 𝑑 (𝑘 −1) −1 and 𝑏 = 𝑛− 𝑘
⌊
𝑛
𝑘

⌋
(so 0 ≤ 𝑏 < 𝑘).

Corollary 3.4. If 𝑛− (𝑘 −1)
⌊ 𝑛
𝑘

⌋
<
𝑑𝑘 −2
𝑑 −1

,

cat(𝑀 (𝑘)
𝑑

(𝑛)) =
⌊𝑛
𝑘

⌋
,

TC(𝑀 (𝑘)
𝑑

(𝑛)) = 2
⌊𝑛
𝑘

⌋
,

TC𝑠 (𝑀 (𝑘)
𝑑

(𝑛)) = 𝑠
⌊𝑛
𝑘

⌋
.

Proof. With the notation in Corollary 3.3 and its proof, the equality TC𝑠

(
𝑀

(𝑘)
𝑑

(𝑛)
)
= 𝑠𝑚

holds provided (𝑚 + 𝑏−1) (𝑑 −1) < 𝑎 or, equivalently, 𝑚 + 𝑏 < 𝑑𝑘−2
𝑑−1 . □

3.2 A fine tuning using Obstruction Theory

The objective of this section is to determine the LS category and TC𝑠 also for the values
satisfying the equality in the hypothesis of Corollary 3.4.
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Theorem 3.5. If 𝑛− (𝑘 −1)
⌊ 𝑛
𝑘

⌋
≤ 𝑑𝑘 −2
𝑑 −1

,

cat(𝑀 (𝑘)
𝑑

(𝑛)) =
⌊𝑛
𝑘

⌋
,

TC(𝑀 (𝑘)
𝑑

(𝑛)) = 2
⌊𝑛
𝑘

⌋
,

TC𝑠 (𝑀 (𝑘)
𝑑

(𝑛)) = 𝑠
⌊𝑛
𝑘

⌋
.

where 𝑎 = 𝑑 (𝑘 −1) −1 and 𝑏 = 𝑛− 𝑘
⌊
𝑛
𝑘

⌋
(so 0 ≤ 𝑏 < 𝑘).

In fact, we improve by 𝑠 units the upper bound in Corollary 3.3 for all cases where (
⌊
𝑛
𝑘

⌋
+

𝑏−1) (𝑑 −1) is divisible by 𝑎 (see Theorem 3.8 below).

The following fact is standard, see for instance [13, Theorem 3.1].

Theorem 3.6. Let 𝑝 : 𝐸 → 𝐵 be a fibration with fiber 𝐹 whose base 𝐵 is a CW complex.

Assume 𝑝 admits a section 𝜙 over the 𝑠-skeleton 𝐵(𝑠) of 𝐵 for some 𝑠 ≥ 1. If 𝐹 is 𝑠-simple and

the obstruction cocycle to the existence of an extension of 𝜙 to 𝐵(𝑠+1) lies in the cohomology

class

[ ∈ 𝐻𝑠+1 (𝐵; {𝜋𝑠 (𝐹)}
)
,

then 𝑝(ℓ) (the (ℓ+1)-th fiberwise join power of 𝑝) admits a section over 𝐵(𝑠+1) (ℓ+1)−1 whose

obstruction cocycle to extending to 𝐵(𝑠+1) (ℓ+1) belongs to the cohomology class

[ℓ+1 ∈ 𝐻 (𝑠+1) (ℓ+1) (𝐵; {𝜋𝑠ℓ+𝑠+ℓ (𝐹∗(ℓ+1))}
)
.

The class [ℓ+1 in Theorem 3.6 stands for the image of the (ℓ +1)-fold cup-power of [ under
the 𝜋1(𝐵)-morphism of coefficients

𝜋𝑠 (𝐹)⊗(ℓ+1) → 𝜋𝑠ℓ+𝑠+ℓ (𝐹∗(ℓ+1)) (3.5)

given by iterated join of homotopy classes. We use Theorem 3.6 when 𝐵 is simply connected,
so that all cohomology groups above have trivial systems of coefficients, and when 𝐹 is
(𝑠 − 1)-connected, so that (3.5) is an isomorphism, and [ℓ+1 is really the (ℓ + 1)-st cup-
power of [. In addition, our connectivity hypothesis on 𝐹 implies that [ and [ℓ+1 are the
primary obstructions for sectioning 𝑝 and 𝑝(ℓ), respectively, and thus they are well defined
(no indeterminacy). Lastly, since the pull-back 𝑝∗(𝑝) admits a tautological section, we have
𝑝∗([) = 0 a fortiori.
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As in the previous section, we denote by 𝑚 and 𝑏 the quotient and remainder, respectively, of
the division of 𝑛 by 𝑘 . The role of 𝑝 in Theorem 3.6 will be played by the based path-space
fibration

Ω𝑀
(𝑘)
𝑑

(𝑛) −→ 𝑃0(𝑀 (𝑘)
𝑑

(𝑛)) 𝑒1−→ 𝑀
(𝑘)
𝑑

(𝑛). (3.6)

We analyze the obstructions for having cat
(
𝑀

(𝑘)
𝑑

(𝑛)
)
= secat(𝑒1) ≤ 𝑚 + 𝑖 − 1, where 𝑖 is a

positive integer, or, equivalently, for having secat(𝑒1(𝑚+𝑖−1)) = 0, where as in Theorem 3.6

∗
𝑚+𝑖

(
Ω𝑀

(𝑘)
𝑑

(𝑛)
)
−→ 𝐽𝑚+𝑖−1

(
𝑃0(𝑀 (𝑘)

𝑑
(𝑛))

) 𝑒1 (𝑚+𝑖−1)
−−−−−−−→ 𝑀

(𝑘)
𝑑

(𝑛)

stands for the (𝑚 + 𝑖)-fold fiberwise join-power of 𝑒1 (so ℓ = 𝑚 + 𝑖 − 1 in Theorem 3.6).
Since Ω𝑀 (𝑘)

𝑑
(𝑛) is (𝑎−2)-connected, there are no obstructions for the existence of a section

𝜙 over the (𝑎 − 1)-skeleton of 𝑀 (𝑘)
𝑑

(𝑛) (so 𝑠 = 𝑎 − 1 in Theorem 3.6). Therefore, if [ ∈
𝐻𝑎

(
𝑀

(𝑘)
𝑑

(𝑛);𝜋𝑎−1

(
Ω𝑀

(𝑘)
𝑑

(𝑛)
))

stands for the primary obstruction for sectioning 𝑒1, then
the primary obstruction for sectioning 𝑒1(𝑚 + 𝑖−1) is the (𝑚 + 𝑖)-st cup-power

[𝑚+𝑖 ∈ 𝐻𝑎(𝑚+𝑖)
(
𝑀

(𝑘)
𝑑

(𝑛);𝜋𝑎(𝑚+𝑖)−1

(
∗
𝑚+𝑖

(
Ω𝑀

(𝑘)
𝑑

(𝑛)
)))

= 𝐻𝑎(𝑚+𝑖)
(
𝑀

(𝑘)
𝑑

(𝑛);
(
𝜋𝑎−1

(
Ω𝑀

(𝑘)
𝑑

(𝑛)
))⊗(𝑚+𝑖))

.

In view of (3.1), all potential obstructions for sectioning 𝑒1(𝑚 + 𝑖 − 1) lie in trivial groups
when 𝑎(𝑚 + 𝑖) > 𝑚𝑎+ (𝑑−1) (𝑚 + 𝑏−1). For 𝑖 = 1, this of course yields a direct obstruction-
theoretic argument for the inequality cat(𝑀 (𝑘)

𝑑
(𝑛)) ≤ 𝑚 in Corollary 3.4. Yet, we need the

cup-length arguments in the previous section in order to deal with the case where the primary
obstruction [𝑚+𝑖 does not lie in a trivial group. Actually, we prove next the triviality of the
(𝑚 +1)-st cup-power of any element in 𝐻𝑎

(
𝑀

(𝑘)
𝑑

(𝑛);𝜋𝑎−1

(
Ω𝑀

(𝑘)
𝑑

(𝑛)
))

.

Lemma 3.7. Recall 𝑚 =
⌊
𝑛
𝑘

⌋
and 𝑎 = 𝑑𝑘 − 𝑑 −1. Any element

[ ∈ 𝐻𝑎
(
𝑀

(𝑘)
𝑑

(𝑛);𝜋𝑎−1

(
Ω𝑀

(𝑘)
𝑑

(𝑛)
))

has trivial (𝑚 +1)-st cup-power.

Proof. Hurewicz’ theorem and the considerations in Section 1.3 (see particularly Theo-
rem 1.17 and Remark 1.25) show that the coefficient group 𝜋𝑎−1

(
Ω𝑀

(𝑘)
𝑑

(𝑛)
)

is free abelian

of rank
(𝑛
𝑘

)
. So, in terms of the decomposition𝐻𝑎

(
𝑀

(𝑘)
𝑑

(𝑛);
⊕

(𝑛𝑘) Z
)
=
⊕

(𝑛𝑘) 𝐻
𝑎
(
𝑀

(𝑘)
𝑑

(𝑛);Z
)
,
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we write [ =
∑
(𝑛𝑘) [ 𝑗 . The naturality of cup-product on coefficients yields [𝑚+1 =

(∑
[ 𝑗

)𝑚+1
=∑

[ 𝑗1 · · ·[ 𝑗𝑚+1 where each summand [ 𝑗1 · · ·[ 𝑗𝑚+1 stands for the image of the cup-product
[ 𝑗1 ∪ · · · ∪[ 𝑗𝑚+1 ∈ 𝐻𝑎(𝑚+1)

(
𝑀

(𝑘)
𝑑

(𝑛);Z
)

under the map induced on coefficients by

Z = Z⊗ · · · ⊗Z
] 𝑗1⊗···⊗] 𝑗𝑚+1 //

(⊕
(𝑛𝑘) Z

)⊗(𝑚+1)

.

Here ]𝑟 : Z ↩→
⊕

(𝑛𝑘) Z stands for the inclusion into the 𝑟-th summand. The triviality of [𝑚+1

then follows from that of each [ 𝑗1 ∪ · · · ∪[ 𝑗𝑚+1 which, in turn, follows from the case 𝑠 = 1 in
Lemma 3.2. □

Returning to the discussion prior to Lemma 3.7, we next prove a strengthening of Corol-
lary 3.3, from which Theorem 3.5 follows as an immediate consequence.

Theorem 3.8. For 𝑠 ≥ 1,

𝑠

⌊𝑛
𝑘

⌋
≤ TC𝑠 (𝑀 (𝑘)

𝑑
(𝑛)) ≤ 𝑠

(⌊𝑛
𝑘

⌋
+
⌈ ( ⌊

𝑛
𝑘

⌋
+ 𝑏−1

)
(𝑑 −1)

𝑎
−1

⌉)
,

where 𝑎 = 𝑑 (𝑘 −1) −1, 𝑏 = 𝑛− 𝑘
⌊
𝑛
𝑘

⌋
and ⌈ℓ⌉ stands for the smallest integer greater than or

equal to the real number ℓ.

Proof. Recall 𝑚 = ⌊𝑛/𝑘⌋. We only need to focus on the cases not covered by Corollary 3.3,
i.e., those satisfying

𝑎𝑖 = (𝑑 −1) (𝑚 + 𝑏−1) (3.7)

for some positive integer 𝑖. Further, in such a case, the well known estimate TC𝑠 ≤ 𝑠 · cat
implies that it suffices to prove

cat(𝑀 (𝑘)
𝑑

(𝑛)) ≤ 𝑚 + 𝑖−1. (3.8)

Lemma 3.7 and its preparatory discussion give the vanishing of the primary obstruction
for (3.8), i.e., for sectioning 𝑒1(𝑚 + 𝑖 − 1), whereas the rest of the higher obstructions lie in
trivial groups in view of (3.1) and (3.7). □

For fixed 𝑘 ≥ 3, the function 𝑓𝑘 (𝑑) = 𝑑𝑘−2
𝑑−1 is decreasing, so that Theorem 3.5 applies for

more values of 𝑛 when 𝑑 = 2. The following assertion identifies the first complete interval of
values of 𝑛 where Theorem 3.5 holds for 𝑑 = 2.
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Corollary 3.9. If 3 ≤ 𝑘 < 𝑛 ≤ 𝑘2 + 𝑘 −2 and 𝑠 ≥ 1, then

TC𝑠 (𝑀 (𝑘)
2 (𝑛)) = 𝑠

⌊𝑛
𝑘

⌋
.

Representative cases where Theorem 3.5 determines cat(𝑀 (𝑘)
𝑑

(𝑛)) for 𝑑 = 2,3,5,10, are or-
ganized in Tables 3.1 to 3.5. The value of TC𝑠 can then be read off by multiplying by 𝑠. For
example, in Table 3.1, TC𝑠 (𝑀 (8)

2 (40)) = 5𝑠. Shading tones in the table are intended to sim-
plify the task of identifying cases with a common value of

⌊
𝑛
𝑘

⌋
. Actual tabulated numbers

indicate the values of cat(𝑀 (𝑘)
𝑑

(𝑛)) coming from Theorem 3.5. Instances where the equality
cat(𝑀 (𝑘)

𝑑
(𝑛)) =

⌊
𝑛
𝑘

⌋
is not established by Theorem 3.5 are indicated with a question mark.

The general structure of the table is simple: column 𝑘 is divided into vertical blocks of size
𝑘 (except for the very first block, whose size is 𝑘 − 1) sharing a common value for

⌊
𝑛
𝑘

⌋
. In

the top blocks, the common value is the answer for cat
(
𝑀

(𝑘)
𝑑

(𝑛)
)
, while lower blocks start

having instances (the first one holding for 𝑛 = 𝑘2 + 𝑘 −1) where condition
⌊
𝑛
𝑘

⌋
+ 𝑏 ≤ 𝑑𝑘−2

𝑑−1 in
Theorem 3.5 fails.
In principle, the obstruction techniques used in this section for the base path evaluation
map (3.6) could be used directly with the fibrations defining the higher topological com-
plexities TC𝑠. It is interesting to remark that such a strategy does not seem to lead to any
improved TC𝑠 upper bounds for the manifolds 𝑀 (𝑘)

𝑑
(𝑛); instead, it suggests the possibility

that the gap in Corollary 3.3 would have to be resolved by improving the lower bound. In
view of the results in [16] non-trivial Massey products holding in non-formal spaces 𝑀 (𝑘)

𝑑
(𝑛)

might be a way to formalize the suggested phenomenon.
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Table 3.1: Lusternik-Schnirelmann category values for 𝑀 (𝑘)
2 (𝑛).

n\k 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

k + 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

k + 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

k + 3 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

k + 4 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

k + 5 ? 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

k + 6 3 2 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

k + 7 ? 2 2 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

k + 8 ? 3 2 2 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

k + 9 ? 3 2 2 2 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

k + 10 ? 3 3 2 2 2 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

k + 11 ? ? 3 2 2 2 2 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1

k + 12 ? 4 3 3 2 2 2 2 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1

k + 13 ? 4 3 3 2 2 2 2 2 2 2 1 1 1 1 1 1 1 1 1 1 1 1

k + 14 ? ? ? 3 3 2 2 2 2 2 2 2 1 1 1 1 1 1 1 1 1 1 1

k + 15 ? ? 4 3 3 2 2 2 2 2 2 2 2 1 1 1 1 1 1 1 1 1 1

k + 16 ? 5 4 3 3 3 2 2 2 2 2 2 2 2 1 1 1 1 1 1 1 1 1

k + 17 ? ? 4 3 3 3 2 2 2 2 2 2 2 2 2 1 1 1 1 1 1 1 1

k + 18 ? ? ? 4 3 3 3 2 2 2 2 2 2 2 2 2 1 1 1 1 1 1 1

k + 19 ? ? ? 4 3 3 3 2 2 2 2 2 2 2 2 2 2 1 1 1 1 1 1

k + 20 ? ? 5 4 3 3 3 3 2 2 2 2 2 2 2 2 2 2 1 1 1 1 1

k + 21 ? ? 5 4 4 3 3 3 2 2 2 2 2 2 2 2 2 2 2 1 1 1 1

k + 22 ? ? ? 4 4 3 3 3 3 2 2 2 2 2 2 2 2 2 2 2 1 1 1

k + 23 ? ? ? ? 4 3 3 3 3 2 2 2 2 2 2 2 2 2 2 2 2 1 1

k + 24 ? ? ? 5 4 4 3 3 3 3 2 2 2 2 2 2 2 2 2 2 2 2 1

k + 25 ? ? 6 5 4 4 3 3 3 3 2 2 2 2 2 2 2 2 2 2 2 2 2

k + 26 ? ? ? 5 4 4 3 3 3 3 3 2 2 2 2 2 2 2 2 2 2 2 2

k + 27 ? ? ? 5 ? 4 4 3 3 3 3 2 2 2 2 2 2 2 2 2 2 2 2

k + 28 ? ? ? ? 5 4 4 3 3 3 3 3 2 2 2 2 2 2 2 2 2 2 2

k + 29 ? ? ? ? 5 4 4 3 3 3 3 3 2 2 2 2 2 2 2 2 2 2 2

k + 30 ? ? ? 6 5 4 4 4 3 3 3 3 3 2 2 2 2 2 2 2 2 2 2

k + 31 ? ? ? 6 5 4 4 4 3 3 3 3 3 2 2 2 2 2 2 2 2 2 2

k + 32 ? ? ? 6 5 5 4 4 3 3 3 3 3 3 2 2 2 2 2 2 2 2 2

k + 33 ? ? ? ? ? 5 4 4 4 3 3 3 3 3 2 2 2 2 2 2 2 2 2

k + 34 ? ? ? ? ? 5 4 4 4 3 3 3 3 3 3 2 2 2 2 2 2 2 2

k + 35 ? ? ? ? 6 5 4 4 4 3 3 3 3 3 3 2 2 2 2 2 2 2 2

k + 36 ? ? ? 7 6 5 5 4 4 4 3 3 3 3 3 3 2 2 2 2 2 2 2

k + 37 ? ? ? 7 6 5 5 4 4 4 3 3 3 3 3 3 2 2 2 2 2 2 2

k + 38 ? ? ? ? 6 5 5 4 4 4 3 3 3 3 3 3 3 2 2 2 2 2 2

k + 39 ? ? ? ? ? ? 5 4 4 4 4 3 3 3 3 3 3 2 2 2 2 2 2

k + 40 ? ? ? ? ? 6 5 5 4 4 4 3 3 3 3 3 3 3 2 2 2 2 2

k + 41 ? ? ? ? ? 6 5 5 4 4 4 3 3 3 3 3 3 3 2 2 2 2 2

k + 42 ? ? ? 8 7 6 5 5 4 4 4 4 3 3 3 3 3 3 3 2 2 2 2

k + 43 ? ? ? ? 7 6 5 5 4 4 4 4 3 3 3 3 3 3 3 2 2 2 2

k + 44 ? ? ? ? 7 6 ? 5 5 4 4 4 3 3 3 3 3 3 3 3 2 2 2

k + 45 ? ? ? ? ? 6 6 5 5 4 4 4 4 3 3 3 3 3 3 3 2 2 2

k + 46 ? ? ? ? ? ? 6 5 5 4 4 4 4 3 3 3 3 3 3 3 3 2 2

k + 47 ? ? ? ? ? ? 6 5 5 4 4 4 4 3 3 3 3 3 3 3 3 2 2

k + 48 ? ? ? ? ? 7 6 5 5 5 4 4 4 4 3 3 3 3 3 3 3 3 2

k + 49 ? ? ? ? 8 7 6 5 5 5 4 4 4 4 3 3 3 3 3 3 3 3 2

k + 50 ? ? ? ? 8 7 6 6 5 5 4 4 4 4 3 3 3 3 3 3 3 3 3

k + 51 ? ? ? ? ? 7 6 6 5 5 4 4 4 4 4 3 3 3 3 3 3 3 3

k + 52 ? ? ? ? ? 7 ? 6 5 5 5 4 4 4 4 3 3 3 3 3 3 3 3

k + 53 ? ? ? ? ? ? ? 6 5 5 5 4 4 4 4 3 3 3 3 3 3 3 3

k + 54 ? ? ? ? ? ? 7 6 5 5 5 4 4 4 4 4 3 3 3 3 3 3 3

k + 55 ? ? ? ? ? ? 7 6 6 5 5 4 4 4 4 4 3 3 3 3 3 3 3

k + 56 ? ? ? ? 9 8 7 6 6 5 5 5 4 4 4 4 3 3 3 3 3 3 3

k + 57 ? ? ? ? ? 8 7 6 6 5 5 5 4 4 4 4 4 3 3 3 3 3 3

k + 58 ? ? ? ? ? 8 7 6 6 5 5 5 4 4 4 4 4 3 3 3 3 3 3

k + 59 ? ? ? ? ? 8 7 ? 6 5 5 5 4 4 4 4 4 3 3 3 3 3 3

k + 60 ? ? ? ? ? ? ? 7 6 6 5 5 5 4 4 4 4 4 3 3 3 3 3
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Table 3.2: Lusternik-Schnirelmann category values for 𝑀 (𝑘)
3 (𝑛).

n\k 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

k + 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

k + 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

k + 3 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

k + 4 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

k + 5 ? 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

k + 6 3 2 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

k + 7 ? 2 2 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

k + 8 ? 3 2 2 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

k + 9 ? 3 2 2 2 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

k + 10 ? 3 3 2 2 2 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

k + 11 ? ? 3 2 2 2 2 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1

k + 12 ? 4 3 3 2 2 2 2 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1

k + 13 ? 4 3 3 2 2 2 2 2 2 2 1 1 1 1 1 1 1 1 1 1 1 1

k + 14 ? ? ? 3 3 2 2 2 2 2 2 2 1 1 1 1 1 1 1 1 1 1 1

k + 15 ? ? 4 3 3 2 2 2 2 2 2 2 2 1 1 1 1 1 1 1 1 1 1

k + 16 ? 5 4 3 3 3 2 2 2 2 2 2 2 2 1 1 1 1 1 1 1 1 1

k + 17 ? ? 4 3 3 3 2 2 2 2 2 2 2 2 2 1 1 1 1 1 1 1 1

k + 18 ? ? ? 4 3 3 3 2 2 2 2 2 2 2 2 2 1 1 1 1 1 1 1

k + 19 ? ? ? 4 3 3 3 2 2 2 2 2 2 2 2 2 2 1 1 1 1 1 1

k + 20 ? ? 5 4 3 3 3 3 2 2 2 2 2 2 2 2 2 2 1 1 1 1 1

k + 21 ? ? 5 4 4 3 3 3 2 2 2 2 2 2 2 2 2 2 2 1 1 1 1

k + 22 ? ? ? 4 4 3 3 3 3 2 2 2 2 2 2 2 2 2 2 2 1 1 1

k + 23 ? ? ? ? 4 3 3 3 3 2 2 2 2 2 2 2 2 2 2 2 2 1 1

k + 24 ? ? ? 5 4 4 3 3 3 3 2 2 2 2 2 2 2 2 2 2 2 2 1

k + 25 ? ? 6 5 4 4 3 3 3 3 2 2 2 2 2 2 2 2 2 2 2 2 2

k + 26 ? ? ? 5 4 4 3 3 3 3 3 2 2 2 2 2 2 2 2 2 2 2 2

k + 27 ? ? ? 5 ? 4 4 3 3 3 3 2 2 2 2 2 2 2 2 2 2 2 2

k + 28 ? ? ? ? 5 4 4 3 3 3 3 3 2 2 2 2 2 2 2 2 2 2 2

k + 29 ? ? ? ? 5 4 4 3 3 3 3 3 2 2 2 2 2 2 2 2 2 2 2

k + 30 ? ? ? 6 5 4 4 4 3 3 3 3 3 2 2 2 2 2 2 2 2 2 2

k + 31 ? ? ? 6 5 4 4 4 3 3 3 3 3 2 2 2 2 2 2 2 2 2 2

k + 32 ? ? ? 6 5 5 4 4 3 3 3 3 3 3 2 2 2 2 2 2 2 2 2

k + 33 ? ? ? ? ? 5 4 4 4 3 3 3 3 3 2 2 2 2 2 2 2 2 2

k + 34 ? ? ? ? ? 5 4 4 4 3 3 3 3 3 3 2 2 2 2 2 2 2 2

k + 35 ? ? ? ? 6 5 4 4 4 3 3 3 3 3 3 2 2 2 2 2 2 2 2

k + 36 ? ? ? 7 6 5 5 4 4 4 3 3 3 3 3 3 2 2 2 2 2 2 2

k + 37 ? ? ? 7 6 5 5 4 4 4 3 3 3 3 3 3 2 2 2 2 2 2 2

k + 38 ? ? ? ? 6 5 5 4 4 4 3 3 3 3 3 3 3 2 2 2 2 2 2

k + 39 ? ? ? ? ? ? 5 4 4 4 4 3 3 3 3 3 3 2 2 2 2 2 2

k + 40 ? ? ? ? ? 6 5 5 4 4 4 3 3 3 3 3 3 3 2 2 2 2 2

k + 41 ? ? ? ? ? 6 5 5 4 4 4 3 3 3 3 3 3 3 2 2 2 2 2

k + 42 ? ? ? 8 7 6 5 5 4 4 4 4 3 3 3 3 3 3 3 2 2 2 2

k + 43 ? ? ? ? 7 6 5 5 4 4 4 4 3 3 3 3 3 3 3 2 2 2 2

k + 44 ? ? ? ? 7 6 ? 5 5 4 4 4 3 3 3 3 3 3 3 3 2 2 2

k + 45 ? ? ? ? ? 6 6 5 5 4 4 4 4 3 3 3 3 3 3 3 2 2 2

k + 46 ? ? ? ? ? ? 6 5 5 4 4 4 4 3 3 3 3 3 3 3 3 2 2

k + 47 ? ? ? ? ? ? 6 5 5 4 4 4 4 3 3 3 3 3 3 3 3 2 2

k + 48 ? ? ? ? ? 7 6 5 5 5 4 4 4 4 3 3 3 3 3 3 3 3 2

k + 49 ? ? ? ? 8 7 6 5 5 5 4 4 4 4 3 3 3 3 3 3 3 3 2

k + 50 ? ? ? ? 8 7 6 6 5 5 4 4 4 4 3 3 3 3 3 3 3 3 3

k + 51 ? ? ? ? ? 7 6 6 5 5 4 4 4 4 4 3 3 3 3 3 3 3 3

k + 52 ? ? ? ? ? 7 ? 6 5 5 5 4 4 4 4 3 3 3 3 3 3 3 3

k + 53 ? ? ? ? ? ? ? 6 5 5 5 4 4 4 4 3 3 3 3 3 3 3 3

k + 54 ? ? ? ? ? ? 7 6 5 5 5 4 4 4 4 4 3 3 3 3 3 3 3

k + 55 ? ? ? ? ? ? 7 6 6 5 5 4 4 4 4 4 3 3 3 3 3 3 3

k + 56 ? ? ? ? 9 8 7 6 6 5 5 5 4 4 4 4 3 3 3 3 3 3 3

k + 57 ? ? ? ? ? 8 7 6 6 5 5 5 4 4 4 4 4 3 3 3 3 3 3

k + 58 ? ? ? ? ? 8 7 6 6 5 5 5 4 4 4 4 4 3 3 3 3 3 3

k + 59 ? ? ? ? ? 8 7 ? 6 5 5 5 4 4 4 4 4 3 3 3 3 3 3

k + 60 ? ? ? ? ? ? ? 7 6 6 5 5 5 4 4 4 4 4 3 3 3 3 3
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Table 3.3: Lusternik-Schnirelmann category values for 𝑀 (𝑘)
4 (𝑛).

n\k 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

k + 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

k + 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

k + 3 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

k + 4 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

k + 5 ? 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

k + 6 3 2 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

k + 7 ? ? 2 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

k + 8 ? 3 2 2 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

k + 9 ? 3 2 2 2 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

k + 10 ? ? 3 2 2 2 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

k + 11 ? ? 3 2 2 2 2 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1

k + 12 ? 4 3 3 2 2 2 2 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1

k + 13 ? ? 3 3 2 2 2 2 2 2 2 1 1 1 1 1 1 1 1 1 1 1 1

k + 14 ? ? ? 3 3 2 2 2 2 2 2 2 1 1 1 1 1 1 1 1 1 1 1

k + 15 ? ? 4 3 3 2 2 2 2 2 2 2 2 1 1 1 1 1 1 1 1 1 1

k + 16 ? ? 4 3 3 3 2 2 2 2 2 2 2 2 1 1 1 1 1 1 1 1 1

k + 17 ? ? 4 ? 3 3 2 2 2 2 2 2 2 2 2 1 1 1 1 1 1 1 1

k + 18 ? ? ? 4 3 3 3 2 2 2 2 2 2 2 2 2 1 1 1 1 1 1 1

k + 19 ? ? ? 4 3 3 3 2 2 2 2 2 2 2 2 2 2 1 1 1 1 1 1

k + 20 ? ? 5 4 ? 3 3 3 2 2 2 2 2 2 2 2 2 2 1 1 1 1 1

k + 21 ? ? 5 4 4 3 3 3 2 2 2 2 2 2 2 2 2 2 2 1 1 1 1

k + 22 ? ? ? ? 4 3 3 3 3 2 2 2 2 2 2 2 2 2 2 2 1 1 1

k + 23 ? ? ? ? 4 3 3 3 3 2 2 2 2 2 2 2 2 2 2 2 2 1 1

k + 24 ? ? ? 5 4 4 3 3 3 3 2 2 2 2 2 2 2 2 2 2 2 2 1

k + 25 ? ? 6 5 4 4 3 3 3 3 2 2 2 2 2 2 2 2 2 2 2 2 2

k + 26 ? ? ? 5 ? 4 3 3 3 3 3 2 2 2 2 2 2 2 2 2 2 2 2

k + 27 ? ? ? ? ? 4 4 3 3 3 3 2 2 2 2 2 2 2 2 2 2 2 2

k + 28 ? ? ? ? 5 4 4 3 3 3 3 3 2 2 2 2 2 2 2 2 2 2 2

k + 29 ? ? ? ? 5 4 4 3 3 3 3 3 2 2 2 2 2 2 2 2 2 2 2

k + 30 ? ? ? 6 5 4 4 4 3 3 3 3 3 2 2 2 2 2 2 2 2 2 2

k + 31 ? ? ? 6 5 ? 4 4 3 3 3 3 3 2 2 2 2 2 2 2 2 2 2

k + 32 ? ? ? ? ? 5 4 4 3 3 3 3 3 3 2 2 2 2 2 2 2 2 2

k + 33 ? ? ? ? ? 5 4 4 4 3 3 3 3 3 2 2 2 2 2 2 2 2 2

k + 34 ? ? ? ? ? 5 4 4 4 3 3 3 3 3 3 2 2 2 2 2 2 2 2

k + 35 ? ? ? ? 6 5 ? 4 4 3 3 3 3 3 3 2 2 2 2 2 2 2 2

k + 36 ? ? ? 7 6 5 5 4 4 4 3 3 3 3 3 3 2 2 2 2 2 2 2

k + 37 ? ? ? ? 6 5 5 4 4 4 3 3 3 3 3 3 2 2 2 2 2 2 2

k + 38 ? ? ? ? ? ? 5 4 4 4 3 3 3 3 3 3 3 2 2 2 2 2 2

k + 39 ? ? ? ? ? ? 5 ? 4 4 4 3 3 3 3 3 3 2 2 2 2 2 2

k + 40 ? ? ? ? ? 6 5 5 4 4 4 3 3 3 3 3 3 3 2 2 2 2 2

k + 41 ? ? ? ? ? 6 5 5 4 4 4 3 3 3 3 3 3 3 2 2 2 2 2

k + 42 ? ? ? ? 7 6 5 5 4 4 4 4 3 3 3 3 3 3 3 2 2 2 2

k + 43 ? ? ? ? 7 6 ? 5 4 4 4 4 3 3 3 3 3 3 3 2 2 2 2

k + 44 ? ? ? ? ? 6 ? 5 5 4 4 4 3 3 3 3 3 3 3 3 2 2 2

k + 45 ? ? ? ? ? ? 6 5 5 4 4 4 4 3 3 3 3 3 3 3 2 2 2

k + 46 ? ? ? ? ? ? 6 5 5 4 4 4 4 3 3 3 3 3 3 3 3 2 2

k + 47 ? ? ? ? ? ? 6 5 5 4 4 4 4 3 3 3 3 3 3 3 3 2 2

k + 48 ? ? ? ? ? 7 6 ? 5 5 4 4 4 4 3 3 3 3 3 3 3 3 2

k + 49 ? ? ? ? 8 7 6 ? 5 5 4 4 4 4 3 3 3 3 3 3 3 3 2

k + 50 ? ? ? ? ? 7 6 6 5 5 4 4 4 4 3 3 3 3 3 3 3 3 3

k + 51 ? ? ? ? ? 7 ? 6 5 5 4 4 4 4 4 3 3 3 3 3 3 3 3

k + 52 ? ? ? ? ? ? ? 6 5 5 5 4 4 4 4 3 3 3 3 3 3 3 3

k + 53 ? ? ? ? ? ? ? 6 5 5 5 4 4 4 4 3 3 3 3 3 3 3 3

k + 54 ? ? ? ? ? ? 7 6 ? 5 5 4 4 4 4 4 3 3 3 3 3 3 3

k + 55 ? ? ? ? ? ? 7 6 6 5 5 4 4 4 4 4 3 3 3 3 3 3 3

k + 56 ? ? ? ? ? 8 7 6 6 5 5 5 4 4 4 4 3 3 3 3 3 3 3

k + 57 ? ? ? ? ? 8 7 ? 6 5 5 5 4 4 4 4 4 3 3 3 3 3 3

k + 58 ? ? ? ? ? 8 7 ? 6 5 5 5 4 4 4 4 4 3 3 3 3 3 3

k + 59 ? ? ? ? ? ? ? ? 6 ? 5 5 4 4 4 4 4 3 3 3 3 3 3

k + 60 ? ? ? ? ? ? ? 7 6 6 5 5 5 4 4 4 4 4 3 3 3 3 3
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Table 3.4: Lusternik-Schnirelmann category values for 𝑀 (𝑘)
5 (𝑛).

n\k 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

k + 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

k + 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

k + 3 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

k + 4 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

k + 5 ? 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

k + 6 3 2 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

k + 7 ? ? 2 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

k + 8 ? 3 2 2 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

k + 9 ? 3 ? 2 2 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

k + 10 ? ? 3 2 2 2 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

k + 11 ? ? 3 2 2 2 2 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1

k + 12 ? 4 3 3 2 2 2 2 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1

k + 13 ? ? ? 3 2 2 2 2 2 2 2 1 1 1 1 1 1 1 1 1 1 1 1

k + 14 ? ? ? 3 3 2 2 2 2 2 2 2 1 1 1 1 1 1 1 1 1 1 1

k + 15 ? ? 4 3 3 2 2 2 2 2 2 2 2 1 1 1 1 1 1 1 1 1 1

k + 16 ? ? 4 3 3 3 2 2 2 2 2 2 2 2 1 1 1 1 1 1 1 1 1

k + 17 ? ? ? ? 3 3 2 2 2 2 2 2 2 2 2 1 1 1 1 1 1 1 1

k + 18 ? ? ? 4 3 3 3 2 2 2 2 2 2 2 2 2 1 1 1 1 1 1 1

k + 19 ? ? ? 4 3 3 3 2 2 2 2 2 2 2 2 2 2 1 1 1 1 1 1

k + 20 ? ? 5 4 ? 3 3 3 2 2 2 2 2 2 2 2 2 2 1 1 1 1 1

k + 21 ? ? ? 4 4 3 3 3 2 2 2 2 2 2 2 2 2 2 2 1 1 1 1

k + 22 ? ? ? ? 4 3 3 3 3 2 2 2 2 2 2 2 2 2 2 2 1 1 1

k + 23 ? ? ? ? 4 ? 3 3 3 2 2 2 2 2 2 2 2 2 2 2 2 1 1

k + 24 ? ? ? 5 4 4 3 3 3 3 2 2 2 2 2 2 2 2 2 2 2 2 1

k + 25 ? ? ? 5 4 4 3 3 3 3 2 2 2 2 2 2 2 2 2 2 2 2 2

k + 26 ? ? ? 5 ? 4 ? 3 3 3 3 2 2 2 2 2 2 2 2 2 2 2 2

k + 27 ? ? ? ? ? 4 4 3 3 3 3 2 2 2 2 2 2 2 2 2 2 2 2

k + 28 ? ? ? ? 5 4 4 3 3 3 3 3 2 2 2 2 2 2 2 2 2 2 2

k + 29 ? ? ? ? 5 4 4 3 3 3 3 3 2 2 2 2 2 2 2 2 2 2 2

k + 30 ? ? ? 6 5 ? 4 4 3 3 3 3 3 2 2 2 2 2 2 2 2 2 2

k + 31 ? ? ? 6 5 ? 4 4 3 3 3 3 3 2 2 2 2 2 2 2 2 2 2

k + 32 ? ? ? ? ? 5 4 4 3 3 3 3 3 3 2 2 2 2 2 2 2 2 2

k + 33 ? ? ? ? ? 5 4 4 4 3 3 3 3 3 2 2 2 2 2 2 2 2 2

k + 34 ? ? ? ? ? 5 ? 4 4 3 3 3 3 3 3 2 2 2 2 2 2 2 2

k + 35 ? ? ? ? 6 5 ? 4 4 3 3 3 3 3 3 2 2 2 2 2 2 2 2

k + 36 ? ? ? 7 6 5 5 4 4 4 3 3 3 3 3 3 2 2 2 2 2 2 2

k + 37 ? ? ? ? 6 ? 5 4 4 4 3 3 3 3 3 3 2 2 2 2 2 2 2

k + 38 ? ? ? ? ? ? 5 4 4 4 3 3 3 3 3 3 3 2 2 2 2 2 2

k + 39 ? ? ? ? ? ? 5 ? 4 4 4 3 3 3 3 3 3 2 2 2 2 2 2

k + 40 ? ? ? ? ? 6 5 5 4 4 4 3 3 3 3 3 3 3 2 2 2 2 2

k + 41 ? ? ? ? ? 6 5 5 4 4 4 3 3 3 3 3 3 3 2 2 2 2 2

k + 42 ? ? ? ? 7 6 ? 5 4 4 4 4 3 3 3 3 3 3 3 2 2 2 2

k + 43 ? ? ? ? 7 6 ? 5 ? 4 4 4 3 3 3 3 3 3 3 2 2 2 2

k + 44 ? ? ? ? ? ? ? 5 5 4 4 4 3 3 3 3 3 3 3 3 2 2 2

k + 45 ? ? ? ? ? ? 6 5 5 4 4 4 4 3 3 3 3 3 3 3 2 2 2

k + 46 ? ? ? ? ? ? 6 5 5 4 4 4 4 3 3 3 3 3 3 3 3 2 2

k + 47 ? ? ? ? ? ? 6 5 5 ? 4 4 4 3 3 3 3 3 3 3 3 2 2

k + 48 ? ? ? ? ? 7 6 ? 5 5 4 4 4 4 3 3 3 3 3 3 3 3 2

k + 49 ? ? ? ? 8 7 6 ? 5 5 4 4 4 4 3 3 3 3 3 3 3 3 2

k + 50 ? ? ? ? ? 7 ? 6 5 5 4 4 4 4 3 3 3 3 3 3 3 3 3

k + 51 ? ? ? ? ? ? ? 6 5 5 ? 4 4 4 4 3 3 3 3 3 3 3 3

k + 52 ? ? ? ? ? ? ? 6 5 5 5 4 4 4 4 3 3 3 3 3 3 3 3

k + 53 ? ? ? ? ? ? ? 6 ? 5 5 4 4 4 4 3 3 3 3 3 3 3 3

k + 54 ? ? ? ? ? ? 7 6 ? 5 5 4 4 4 4 4 3 3 3 3 3 3 3

k + 55 ? ? ? ? ? ? 7 6 6 5 5 4 4 4 4 4 3 3 3 3 3 3 3

k + 56 ? ? ? ? ? 8 7 6 6 5 5 5 4 4 4 4 3 3 3 3 3 3 3

k + 57 ? ? ? ? ? 8 7 ? 6 5 5 5 4 4 4 4 4 3 3 3 3 3 3

k + 58 ? ? ? ? ? ? ? ? 6 ? 5 5 4 4 4 4 4 3 3 3 3 3 3

k + 59 ? ? ? ? ? ? ? ? 6 ? 5 5 4 4 4 4 4 3 3 3 3 3 3

k + 60 ? ? ? ? ? ? ? 7 6 6 5 5 5 4 4 4 4 4 3 3 3 3 3
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3.2. A fine tuning using Obstruction Theory

Table 3.5: Lusternik-Schnirelmann category values for 𝑀 (𝑘)
10 (𝑛).

n\k 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

k + 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

k + 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

k + 3 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

k + 4 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

k + 5 ? 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

k + 6 3 2 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

k + 7 ? ? 2 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

k + 8 ? 3 2 2 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

k + 9 ? 3 ? 2 2 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

k + 10 ? ? 3 2 2 2 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

k + 11 ? ? 3 ? 2 2 2 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1

k + 12 ? 4 3 3 2 2 2 2 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1

k + 13 ? ? ? 3 ? 2 2 2 2 2 2 1 1 1 1 1 1 1 1 1 1 1 1

k + 14 ? ? ? 3 3 2 2 2 2 2 2 2 1 1 1 1 1 1 1 1 1 1 1

k + 15 ? ? 4 3 3 ? 2 2 2 2 2 2 2 1 1 1 1 1 1 1 1 1 1

k + 16 ? ? 4 ? 3 3 2 2 2 2 2 2 2 2 1 1 1 1 1 1 1 1 1

k + 17 ? ? ? ? 3 3 ? 2 2 2 2 2 2 2 2 1 1 1 1 1 1 1 1

k + 18 ? ? ? 4 3 3 3 2 2 2 2 2 2 2 2 2 1 1 1 1 1 1 1

k + 19 ? ? ? 4 ? 3 3 ? 2 2 2 2 2 2 2 2 2 1 1 1 1 1 1

k + 20 ? ? 5 4 ? 3 3 3 2 2 2 2 2 2 2 2 2 2 1 1 1 1 1

k + 21 ? ? ? ? 4 3 3 3 2 2 2 2 2 2 2 2 2 2 2 1 1 1 1

k + 22 ? ? ? ? 4 ? 3 3 3 2 2 2 2 2 2 2 2 2 2 2 1 1 1

k + 23 ? ? ? ? 4 ? 3 3 3 2 2 2 2 2 2 2 2 2 2 2 2 1 1

k + 24 ? ? ? 5 4 4 3 3 3 3 2 2 2 2 2 2 2 2 2 2 2 2 1

k + 25 ? ? ? 5 ? 4 ? 3 3 3 2 2 2 2 2 2 2 2 2 2 2 2 2

k + 26 ? ? ? ? ? 4 ? 3 3 3 3 2 2 2 2 2 2 2 2 2 2 2 2

k + 27 ? ? ? ? ? 4 4 3 3 3 3 2 2 2 2 2 2 2 2 2 2 2 2

k + 28 ? ? ? ? 5 4 4 ? 3 3 3 3 2 2 2 2 2 2 2 2 2 2 2

k + 29 ? ? ? ? 5 ? 4 ? 3 3 3 3 2 2 2 2 2 2 2 2 2 2 2

k + 30 ? ? ? 6 5 ? 4 4 3 3 3 3 3 2 2 2 2 2 2 2 2 2 2

k + 31 ? ? ? ? ? ? 4 4 3 3 3 3 3 2 2 2 2 2 2 2 2 2 2

k + 32 ? ? ? ? ? 5 4 4 ? 3 3 3 3 3 2 2 2 2 2 2 2 2 2

k + 33 ? ? ? ? ? 5 ? 4 4 3 3 3 3 3 2 2 2 2 2 2 2 2 2

k + 34 ? ? ? ? ? 5 ? 4 4 3 3 3 3 3 3 2 2 2 2 2 2 2 2

k + 35 ? ? ? ? 6 5 ? 4 4 ? 3 3 3 3 3 2 2 2 2 2 2 2 2

k + 36 ? ? ? ? 6 ? 5 4 4 4 3 3 3 3 3 3 2 2 2 2 2 2 2

k + 37 ? ? ? ? ? ? 5 ? 4 4 3 3 3 3 3 3 2 2 2 2 2 2 2

k + 38 ? ? ? ? ? ? 5 ? 4 4 ? 3 3 3 3 3 3 2 2 2 2 2 2

k + 39 ? ? ? ? ? ? 5 ? 4 4 4 3 3 3 3 3 3 2 2 2 2 2 2

k + 40 ? ? ? ? ? 6 5 5 4 4 4 3 3 3 3 3 3 3 2 2 2 2 2

k + 41 ? ? ? ? ? 6 ? 5 4 4 4 ? 3 3 3 3 3 3 2 2 2 2 2

k + 42 ? ? ? ? 7 6 ? 5 ? 4 4 4 3 3 3 3 3 3 3 2 2 2 2

k + 43 ? ? ? ? ? ? ? 5 ? 4 4 4 3 3 3 3 3 3 3 2 2 2 2

k + 44 ? ? ? ? ? ? ? 5 5 4 4 4 ? 3 3 3 3 3 3 3 2 2 2

k + 45 ? ? ? ? ? ? 6 5 5 4 4 4 4 3 3 3 3 3 3 3 2 2 2

k + 46 ? ? ? ? ? ? 6 ? 5 ? 4 4 4 3 3 3 3 3 3 3 3 2 2

k + 47 ? ? ? ? ? ? 6 ? 5 ? 4 4 4 ? 3 3 3 3 3 3 3 2 2

k + 48 ? ? ? ? ? 7 6 ? 5 5 4 4 4 4 3 3 3 3 3 3 3 3 2

k + 49 ? ? ? ? ? 7 ? ? 5 5 4 4 4 4 3 3 3 3 3 3 3 3 2

k + 50 ? ? ? ? ? ? ? 6 5 5 ? 4 4 4 ? 3 3 3 3 3 3 3 3

k + 51 ? ? ? ? ? ? ? 6 5 5 ? 4 4 4 4 3 3 3 3 3 3 3 3

k + 52 ? ? ? ? ? ? ? 6 ? 5 5 4 4 4 4 3 3 3 3 3 3 3 3

k + 53 ? ? ? ? ? ? ? 6 ? 5 5 4 4 4 4 ? 3 3 3 3 3 3 3

k + 54 ? ? ? ? ? ? 7 6 ? 5 5 ? 4 4 4 4 3 3 3 3 3 3 3

k + 55 ? ? ? ? ? ? 7 ? 6 5 5 ? 4 4 4 4 3 3 3 3 3 3 3

k + 56 ? ? ? ? ? 8 7 ? 6 5 5 5 4 4 4 4 ? 3 3 3 3 3 3

k + 57 ? ? ? ? ? ? ? ? 6 ? 5 5 4 4 4 4 4 3 3 3 3 3 3

k + 58 ? ? ? ? ? ? ? ? 6 ? 5 5 ? 4 4 4 4 3 3 3 3 3 3

k + 59 ? ? ? ? ? ? ? ? 6 ? 5 5 ? 4 4 4 4 3 3 3 3 3 3

k + 60 ? ? ? ? ? ? ? 7 6 6 5 5 5 4 4 4 4 4 3 3 3 3 3
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4 | Massey products

In [27], Miller obtained partial results on the structure of Massey products on non-𝑘-equal
manifolds with 𝑑 = 2. He showed that all 𝑝-order Massey products on 𝑀 (𝑘)

2 (𝑛) vanish pro-
vided either one of the following conditions holds:

3 ≤ 𝑝 < 𝑘 (in view of [27, Theorem 1.2]). (4.1)

𝑛 ≤ 𝑘 (𝑘 −1) (in view of [27, Corollary 1.3]). (4.2)

Both of these restrictions are optimal; neither the upper bound for 𝑝 in (4.1) nor the upper
bound for 𝑛 in (4.2) can be improved for general 𝑘 . Indeed, Miller proved in addition that

𝑀
(3)
2 (𝑛) admits non-trivial triple Massey products when 𝑛 > 6. (4.3)

Remark 4.1. In rational-formality terms, the above picture is particularly pleasant for 𝑘 = 3.

Indeed, work of Halperin and Stasheff ([18, Corollary 5.16]) implies that 𝑀 (𝑘)
𝑑

(𝑛) is formal

when 𝑛 is sufficiently small, namely, when

𝑛(𝑑 −1) +𝑚(𝑘 −2) ≤ 3𝑑𝑘 −2(𝑑 +3). (4.4)

Here and below 𝑚 stands for the integral part of 𝑛/𝑘 . Thus 𝑀 (3)
2 (𝑛) is formal for 𝑛 ≤ 6, but

non-formal otherwise in view of (4.3). However, for 𝑘 > 3, condition (4.2) is less restrictive

than the (𝑑 = 2)-case of condition (4.4). As a result, for 𝑘 > 3 fixed, there are manifolds

𝑀
(𝑘)
2 (𝑛) which, despite of not supporting non-trivial Massey products, are not known to be

formal.

Miller’s paper ends by conjecturing that

𝑀
(𝑘)
2 (𝑛) admits non-trivial Massey products provided 𝑛 > 𝑘 (𝑘 −1). (4.5)
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4.1. The Duality Isomorphism

Presumably, the non-trivial Massey products conjectured by Miller to hold in 𝑀 (𝑘)
2 (𝑛) would

be of order precisely 𝑘 .
This chapter is devoted to provide a slight generalization of Miller’s result (4.3) by proving
the following theorem.

Theorem 4.2. For 𝑑 ≥ 2, and 𝑛 > 6, 𝑀 (3)
𝑑

(𝑛) admits a non-trivial ternary Massey product.

The relevance of Theorem 4.2, is that it would leave, for 𝑘 = 3 and 𝑑 ≥ 2, a finite number of
spaces 𝑀 (𝑘)

𝑑
(𝑛) with undecided formality.

Miller’s cup- and Massey-product computations are based on Yuzvinsky’s DGA structure on
the relative atomic complex for 𝑀 (𝑘)

𝑑
(𝑛) introduced by Vassiliev ([33, 34]). With such an

approach, much effort is required to show non-triviality of an appropriate cohomology class
and, as a consequence, the extent of results in [27] was somehow limited. We circumvent the
problem by following a more direct route. Namely, as originally noted in [25], in many cases
Poincaré duality and intersection theory (using Borel-Moore homology in our non-compact
case) can be used to evaluate Massey products. Actually, Baryshnikov [1] and Dobrinskaya
and Turchin [8] used Poincaré duality to give a fully workable description of the cohomology
ring of 𝑀 (𝑘)

𝑑
(𝑛). We extend the approach in order to evaluate Massey products. The idea

was already suggested on page 263 of [8].

4.1 The Duality Isomorphism

The cohomological descriptions of 𝑀 (𝑘)
1 (𝑛) and 𝑀 (𝑘)

𝑑
(𝑛) developed in Sections 1.2 and 1.3

are grounded on a Poincaré Duality Isomorphism briefly indicated in this section. Consider
the following ingredients that can be found in [7, Section V.11], [21, Sections II.9, IX.3, IX.4
and IX.5], [12, Section 19.1] and [32, Theorem 10.4].
For a locally compact space 𝑍 , there is a (sheaf theoretic supported) cap product⌢ : 𝐻BM

𝑎 (𝑍) ⊗
𝐻𝑏 (𝑍) → 𝐻BM

𝑎−𝑏 (𝑍) that has several properties including:

1. 𝑓∗(𝑎′ ⌢ 𝑓 ∗b) = 𝑓∗𝑎′ ⌢ b, for any proper map 𝑓 : 𝑍′ → 𝑍 and classes 𝑎′ ∈ 𝐻BM
∗ (𝑍′)

and b ∈ 𝐻∗(𝑍).

2. (𝑎 ⌢ b)⌢[ = 𝑎 ⌢ (b ⌣ [), for classes 𝑎 ∈ 𝐻BM
∗ (𝑍) and b,[ ∈ 𝐻∗(𝑍).

3. For an oriented 𝑛-dimensional (Hausdorff paracompact) manifold 𝑁 , cap product with
the fundamental class [𝑁] ∈ 𝐻BM

𝑛 (𝑁) yields a duality isomorphism

𝐷 : 𝐻∗(𝑁) → 𝐻BM
𝑛−∗(𝑁).
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Massey products

4. For an oriented properly embedded submanifold 𝑉 ⊂ 𝑁 of codimension 𝑘 , the orien-
tation class 𝔬𝑁

𝑉
∈ 𝐻𝑘 (𝑁) of 𝑉 in 𝑁 , i.e., the restriction of the (normal) Thom class

𝔲𝑁
𝑉
∈ 𝐻𝑘 (𝑁,𝑁 −𝑉) of 𝑉 in 𝑁 , satisfies

𝐷 (𝔬𝑁𝑉 ) = [𝑉]𝑁 ,

the image of [𝑉] in Borel-Moore homology of 𝑁 under the inclusion 𝑉 ↩→ 𝑁 .

This information suffices to prove (just as in [6, Theorem 11.9]) that the intersection pairing
at the bottom of the commutative square

⊗ 𝐻𝑛−𝑞 (𝑁)𝐻𝑛−𝑝 (𝑁) 𝐻2𝑛−𝑝−𝑞 (𝑁)⌣

⊗ 𝐻BM
𝑞 (𝑁)𝐻BM

𝑝 (𝑁) 𝐻BM
𝑝+𝑞−𝑛 (𝑁),

•
twist◦ (𝐷 ⊗𝐷) 𝐷 (4.6)

i.e., the product given by 𝛽 •𝛼 = 𝐷 (𝐷−1𝛼 ⌣ 𝐷−1𝛽), allows us to compute cup products in
geometrical terms:

Theorem 4.3. Let 𝑁 be as in item (3) above. If 𝑋 and 𝑌 are properly embedded oriented

submanifolds of 𝑁 with transverse intersection, then

[𝑋]𝑁 • [𝑌 ]𝑁 = [𝑋 ∩𝑌 ]𝑁 .

Theorem 4.3 and diagram (4.6) lead to Theorem 1.21, a description of the cohomology ring
of 𝑀 (𝑘)

𝑑
(𝑛) for 𝑑 ≥ 2 in terms of the basis of 𝑘-forests.

Here it should be noted that a cup product of admissible forests 𝑇 ·𝑇 ′ vanishes in any of the
following two situations related to their corresponding locally finite chains as described in
the paragraph before Example 1.19 in Section 1.3:

• the intersection 𝑐𝑇 ∩ 𝑐𝑇 ′ is empty—for instance, if the General Position Lemma has
to be applied to one of the submanifolds in order to assure the transverse-intersection
hypothesis in Theorem 4.3.

• the transverse intersection 𝑐𝑇 ∩ 𝑐𝑇 ′ is not empty but lies in the 𝑘-equal arrangement,
𝐴
(𝑘)
𝑑

(𝑛).

Those situations are precisely reflected in Theorem 1.21 and furthermore, we obtain that a
product of elementary terms is zero only if the numbers appearing in the essential picture of
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4.2. Massey products

both terms—without considering all those round vertices not attached to any square vertex—
intersect in at least one number, see Theorem 1.21 (1)–(3). Hence, the following observation
will be useful in the rest of the chapter.

Remark 4.4. Let 𝑢 and 𝑣 be elementary 𝑘 forests

𝑢 =

𝐵1 𝐵 𝑗

𝐴

· · ·

and 𝑣 =

𝐷1 𝐷ℓ

𝐶

· · ·

,

and suppose that 𝑢 · 𝑣 = 0. Then the numbers appearing in 𝑢 and 𝑣 intersect in a set with

𝑚 > 0 elements.

1. If 𝑚 > 1 we have two cases

(a) 𝐴∩𝐶 ≠ ∅. The intersection of the corresponding chains 𝑐𝑢 and 𝑐𝑣 is not trans-

verse but, as explained in the proof of (1) in [8, Theorem 7.1], after applying a

translation we obtain an empty transverse intersection.

(b) 𝐴∩𝐶 = ∅. Then the superposition of the trees encoding 𝑐𝑢 and 𝑐𝑣 has cycles

and, as explained in the proof of (2) in [8, Theorem 7.1], the factors 𝑢 and 𝑣

can be represented up to a sign by submanifolds 𝑐𝑢 and 𝑐𝑣 with actual empty

intersection.

2. If 𝑚 = 1 we have three situations:

(a) 𝐴∩𝐶 ≠ ∅. The intersection is transverse but it lies in the 𝑘-equal arrangement,

thus, the product is represented by the empty chain.

(b) 𝑗 = 1 and 𝐵1 ∈ 𝐶. In this case, after the superposition, the square vertex with set

𝐴 has no round vertex attached so, as noted in [8, Remark 6.2], the case 𝑚 = 1
in the Jacobi relation implies that the product is represented by a Borel-Moore

boundary. A similar situation holds when ℓ = 1 and 𝐷1 ∈ 𝐴.

(c) 𝑗 = ℓ = 1 and 𝐵1 = 𝐷1. In this case, the three-terms relation can be used to see

that the product is represented as a sum of terms as those considered on item 2 (b)

above. So the product is again represented by a sum of Borel-Moore boundaries.

4.2 Massey products

In his seminal work [25], Massey introduced a geometric method to compute his higher
order cohomology operations by using Poincaré duality so to replace cup products by in-
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Massey products

tersection products. Since then, variants of the technique have been used in knot theory to
compute higher order linking numbers ([17, 20, 29]). Outside low dimensional topology,
intersection theory has been successfully used to evaluate Massey products in classical con-
figuration spaces ([24, 26]). The basic (folklore) observation is the following. For oriented
submanifolds 𝐾 , 𝐿 and 𝑀 of an oriented 𝑛-dimensional manifold 𝑁 , let ^, _ and ` be the
Poincaré duals of the fundamental classes [𝐾]𝑁 , [𝐿]𝑁 , [𝑀]𝑁 ∈ 𝐻BM

∗ (𝑁). Assume bounding
transverse intersections 𝐾 ⋔ 𝐿 = 𝜕𝑋 and 𝐿 ⋔ 𝑀 = 𝜕𝑌 for oriented submanifolds 𝑋 and 𝑌
with 𝑋 ⋔ 𝑀 and 𝐾 ⋔ 𝑌 . Then the Poincaré dual of the fundamental class[

𝑋 ∩𝑀 − (−1)dim𝐾𝐾 ∩𝑌
]
𝑁

lies in the triple Massey product ⟨^,_, `⟩. In our case, 𝑁 =𝑀
(𝑘)
𝑑

(𝑛) and the relevant subman-
ifolds are given by the cells 𝑐𝑇 associated to 𝑘-forests.

The rules listed below are clearly valid and will be used without notice in the rest of the
paper.

1. The submanifolds 𝑋 and 𝑌 used in the description of the Massey product ⟨^,_, `⟩
given above will fail to be admissible 𝑘-forests but they can be described using the
terminology of 𝑘-forests.

2. If we remove a number from a square vertex, it might happen that the square ver-
tex remains with only one value inside. In that case we will consider it as a round
vertex instead and will apply the usual rules for rewriting a final product in terms of
admissible 𝑘-forests.

3. If either the transverse intersection 𝐾 ⋔ 𝐿 or 𝐿 ⋔ 𝑀 is empty in 𝑀 (𝑘)
𝑑

(𝑛), the Massey
product is simply the cohomology class corresponding to 𝐾 ⋔𝑌 or 𝑋 ⋔ 𝑀 respectively.

In what follows orientations will be avoided by working with Z2 coefficients.

The following result, which is an immediate consequence of the Jacobi relation, allows us to
rewrite the representative of any elementary 𝑘-forest with only one round vertex.

Remark 4.5. The cohomology class of any 𝑘-elementary term of the form

𝑏

𝑎1,. . . , 𝑎𝑘−1
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4.2. Massey products

is equal to the cohomology class of the term

𝑎ℓ

𝑎1,. . . , 𝑎ℓ,. . . , 𝑎𝑘−1, 𝑏 .

Indeed, both terms appear as the boundary of the (𝑘 −2)-forest with numbers 𝑎1,. . . , 𝑎ℓ,. . . ,

𝑎𝑘−1 in its square vertex and two round vertices containing 𝑎ℓ and 𝑏.

For instance, for 𝑘 = 3, the three forests

𝑢, 𝑣

𝑤
,

𝑢, 𝑤

𝑣
and

𝑣, 𝑤

𝑢

represent the same class, which will be denoted simply by

{𝑢, 𝑣,𝑤}
.

The following result, which is a partial generalization (to Euclidean dimensions 𝑑 ≥ 2) of
[27, Theorem 1.2], indicates that many triple Massey products in 𝑀 (𝑘)

𝑑
(𝑛) are trivial, i.e., as

sets, those products agree with their indeterminacy.

Theorem 4.6. Every defined triple Massey product of 𝑘-elementary terms is trivial.

Proof. Let us suppose that ⟨^,_, `⟩ is a defined Massey product where ^, _, and ` are 𝑘-
elementary terms. By the geometric description of Massey products at the beginning of this
subsection, it suffices to argue that we can take representatives 𝑐^, 𝑐_ and 𝑐` in such a way
that both transverse intersections 𝑐^ ⋔ 𝑐_ and 𝑐_ ⋔ 𝑐` are empty. According to Remark 4.4,
that is already the case if the consecutive terms coincide in more than one number or in
exactly one number in their corresponding square vertices, so it is enough to indicate how to
modify the representatives when the intersection of consecutive 𝑘-forests falls in the cases
2 (b) or 2 (c) of Remark 4.4.

If the product of ^ · _ falls either in case 2 (b) or 2 (c) of Remark 4.4, we can modify the
corresponding 𝑘-forests by using Remark 4.5 to force that the common number occurs in
their square vertices, in order to have the needed empty transverse intersection. Let us call
the new representatives ^′ and _′.
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Massey products

We can proceed similarly with the pair _′ and `; the only additional requirement to meet is
that, if we have to replace _′ again, we must do it in a way that the common number between
^′ and _′ still remains in the square vertex. This is possible since 𝑘 ≥ 3. □

The next example illustrates the type of calculations we will use in order to detect non-trivial
triple Massey products in 𝑀 (3)

𝑑
(𝑛). From this point on 𝑘 = 3.

Example 4.7. The 3-admissible forest

(
2 4 5

1,3

) ©« 5, 6

7 ª®®¬ lies in the indeterminacy of

〈
1, 2

3
,

3, 4

5
,

5, 6

7
〉
,

so, by Theorem 4.6, the 3-admissible forest lies also in the actual Massey product. We next

give an explicit geometric argument for the latter assertion. Let us label the representing

manifolds as follows

𝐾 =
1, 2

3
, 𝐿 =

3, 4

5
, 𝑀 =

5, 6

7
.

The submanifolds 𝑋 and 𝑌 required to compute the Massey product are

𝑋 =

1

2 5

3,4
, 𝑌 =

3

4 7

5,6

Hence, we obtain the following intersections

𝐾 ⋔ 𝑌 =

1,2 3

4 7

5,6
, 𝑋 ⋔ 𝑀 =

1

2

3,4

7

5,6

and, consequently, their union represents an element of the triple Massey product.

In order to identify the resulting class, note that 𝑋 and𝑌 appear in the boundary of the forest

𝑍 =

1

2

3

4 7

5,6
,
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4.2. Massey products

thus the required class is given by the rest of the boundary:

𝐾 ⋔ 𝑌 + 𝑋 ⋔ 𝑀 =
2 4

1,3

7

5,6
.

The previous geometric argument allows us to identify concrete elements representing gen-
eral Massey products. Yet, if we want to identify non-trivial products, we need to be able to
rule out indeterminacy equalities as the one noted at the beginning of Example 4.7. A naive
way to achieve such a goal is through slight perturbations of the first and third factors in a
Massey product. For instance, using the techniques in the example, it is easy to check that

2 4

1,3

7

5,6
∈

〈
1, 2

3
,

3, 4

5
,

4, 6

7
+

5, 6

7
〉

which partially achieves the goal as now we have

2 4 5

1,3

©« 4, 6

7
+

5, 6

7 ª®®¬ =
2 5

1,3

7

4,6
+

2 4

1,3

7

5,6 .

However, we still have the equality

2 4 6

1,3

©« 4, 6

7
+

5, 6

7 ª®®¬ =
2 4

1,3

7

5,6

which shows that

〈
1, 2

3
,

3, 4

5
,

4, 6

7
+

5, 6

7
〉

is trivial.

The latter indeterminacy equality can be fixed (without altering the first fix) by another direct
computation giving

2 4

1,3

7

5,6
∈

〈
1, 2

3
,

3, 4

5
,

4, 5

7
+

4, 6

7
+

5, 6

7
〉
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as now

2 4 5

1,3

©« 4, 5

7
+

4, 6

7
+

5, 6

7 ª®®¬ =
2 5

1,3

7

4,6
+

2 4

1,3

7

5,6

and

2 4 6

1,3

©« 4, 5

7
+

4, 6

7
+

5, 6

7 ª®®¬ =
2 6

1,3

7

4,5
+

2 4

1,3

7

5,6 .

Unfortunately we also have

2 4 7

1,3

©« 4, 5

7
+

4, 6

7
+

5, 6

7 ª®®¬ =
2 4

1,3

7

5,6

which yields the triviality of the product〈
1, 2

3
,

3, 4

5
,

4, 5

7
+

4, 6

7
+

5, 6

7
〉
.

But the next natural try leads to the desired goal:

Theorem 4.8. For 𝑛 ≥ 7 and 𝑑 ≥ 2, the Massey product in 𝑀 (3)
𝑑

(𝑛)

2 4

1,3

7

5,6
∈

〈
1, 2

3
,

3, 4

5
,

5, 6

7
+

4, 6

7
+

4, 5

7
+

4, 5

6
〉

is not trivial.

In preparation for the proof, we observe the following fact whose verification is an elemen-
tary exercise using the cup-product description in Section 1.3.

Lemma 4.9. The product of two basis elements

𝑥, 𝑦

𝑧
and

𝑐 𝑑 𝑒

𝑎, 𝑏
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4.2. Massey products

in 𝐻∗(𝑀 (3)
𝑑

(𝑛)) is either zero or a sum of basic elements of one of the two forms

𝑧

𝑥, 𝑦
or ·

𝑥, 𝑦

𝑧

and, in either case, the set of numbers inside the vertices of each of these summands is

precisely {𝑎, 𝑏, 𝑐, 𝑑, 𝑒, 𝑥, 𝑦, 𝑧}.

Proof of Theorem 4.8. Let us label the representing manifolds as

𝐾 =
1, 2

3
, 𝐿 =

3, 4

5
, 𝑀 =

5, 6

7
+

4, 6

7
+

4, 5

7
+

4, 5

6

Since representatives for products of consecutive terms are the same as in Example 4.7, we
have that

𝐾 ⋔ 𝑌 + 𝑋 ⋔ 𝑀 =
2 4

1,3

7

5,6

represents a cohomology class in this Massey product. The non-triviality of the product will
be established once we rule out any possible solution to the equation

2 4

1,3

7

5,6
= 𝛼

(
1,2,3

)
+ 𝛽

(
𝑀4 + 𝑀5 + 𝑀6 + 𝑀7

)
,

(4.7)

where 𝑀ℓ = {4,5,6,7} \ {ℓ} for ℓ ∈ {4,5,6,7}—so 𝑀ℓ ≠ 𝑀ℓ′ if ℓ ≠ ℓ′.

Notice that, by dimensional reasons, both 𝛼 and 𝛽 should be sums of basis elements of the
general form

𝑐 𝑑 𝑒

𝑎, 𝑏
(4.8)

for some numbers 𝑎, 𝑏, 𝑐, 𝑑 and 𝑒 such that {𝑎, 𝑏, 𝑐, 𝑑, 𝑒} ⊂ n. Lemma 4.9 then shows that
the first product on the right-hand side of any expression (4.7) must vanish. Consequently,
we only need to rule out solutions to the simpler equation

2 4

1,3

7

5,6
= 𝛽

(
𝑀4 + 𝑀5 + 𝑀6 + 𝑀7

)
.

(4.9)
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In such a setting, we can assume that all basic summands (4.8) in 𝛽 having zero product with
[𝑀] have been deleted. Furthermore, by Lemma 4.9, we have the vanishing of the product
of [𝑀] with the sum of all summands (4.8) of 𝛽 for which {𝑎, 𝑏, 𝑐, 𝑑, 𝑒} contains an integer
𝑖 ≥ 8. Consequently, we assume also that all those summands have been deleted from 𝛽. We
then proceed to analyze the product with [𝑀] of any of the remaining terms 𝜏 in (4.8), which
is then forced to have

{1,2,3} ⊂ {𝑎, 𝑏, 𝑐, 𝑑, 𝑒} ⊂ {1,2,3,4,5,6,7}. (4.10)

To begin with, there must be a (not necessarily unique) ℓ ∈ {4,5,6,7} with

𝜏 · 𝑀ℓ ≠ 0.

In particular, {𝑎, 𝑏} ∩𝑀ℓ = ∅ and |{𝑐, 𝑑, 𝑒} ∩𝑀ℓ | = 1, in view of (4.10). Say 𝑒 ∈ 𝑀ℓ, so
{𝑐, 𝑑} ∩𝑀ℓ = ∅ and the product takes the (perhaps non-basic) form

𝑐 𝑑

𝑎, 𝑏
𝑀ℓ ,

where {1,2,3} ⊂ {𝑎, 𝑏, 𝑐, 𝑑} ⊂ {1,2, . . . ,7} \𝑀ℓ, i.e.,

{𝑎, 𝑏, 𝑐, 𝑑} = {1,2,3, ℓ}. (4.11)

The above information allows us to evaluate in full the product 𝜏 · [𝑀]:

• If ℓ ∈ {𝑎, 𝑏}, say 𝑏 = ℓ, we have

𝜏 · [𝑀] = 𝜏 ·
(
𝑀ℓ

)
=

𝑐 𝑑

𝑎, ℓ
𝑀ℓ =

𝑑 ℓ

𝑎, 𝑐
𝑀ℓ +

𝑐 ℓ

𝑎, 𝑑
𝑀ℓ ,

which is a sum of two basis elements, in view of (4.11).

• If ℓ ∈ {𝑐, 𝑑}, say 𝑑 = ℓ, we have

𝜏 · [𝑀] = 𝜏 ·
(
𝑀ℓ

)
+ 𝜏 ·

(
𝑀𝑒

)
=

𝑐 ℓ

𝑎, 𝑏
𝑀ℓ +

𝑐 𝑒

𝑎, 𝑏
𝑀𝑒 ,

a sum of two basis elements, again in view of (4.11).
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4.2. Massey products

This shows that the product 𝛽 · [𝑀] is a sum of an even number of basic elements, therefore
ruling out any possible solution to (4.9). □

The argument in the proof above applies word for word to yield the more general statement:

Theorem 4.10. For 𝑛 ≥ 7, 𝑑 ≥ 2 and seven pairwise distinct numbers 𝑎, 𝑏, 𝑐, 𝑑, 𝑒, 𝑓 , 𝑔 in n
with max{𝑎, 𝑏} ≤ 𝑐, max{𝑐, 𝑑} ≤ 𝑒 and max{𝑒, 𝑓 } ≤ 𝑔, the Massey product in 𝑀 (3)

𝑑
(𝑛)

𝑏 𝑑

𝑎, 𝑐

𝑔

𝑒, 𝑓
∈

〈
𝑎, 𝑏

𝑐
,
𝑐, 𝑑

𝑒
,
𝑒, 𝑓

𝑔

+
𝑑, 𝑓

𝑔

+
𝑑, 𝑒

𝑔

+
𝑑, 𝑒

𝑓
〉

is not trivial.

Corollary 4.11. For 𝑛 ≥ 7 and 𝑑 ≥ 2, 𝑀 (3)
𝑑

(𝑛) is non formal.
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Conclusions

No 𝑘-equal manifolds constitute one of the few known examples where Poincaré duality—in
the non-compact case—allows us to recover totally the cohomology ring of these spaces and,
even more, assess Massey products in this geometric fashion, showing a fascinating interplay
between geometry, topology and algebra.
Also, these manifolds play a central role in several research topics, like 𝑘-equal immersions
as described in [8], or the fact that 𝑀 (3)

1 (𝑛) is the R-analogue of the classifying Artin pure
braid group as shown in [23]. Worth mentioning also is the fact that the Betti numbers of
𝑀

(𝑘)
1 (𝑛) bound the computational complexity of the 𝑘-equal problem as was shown in [5].

Computing the LS category and (higher) topological complexity of these manifolds is a
highly non-trivial problem with potential applications to motion planning problems in robotics.
We hope that the developments in this work can be successfully applied or generalized in the
future. For instance, an interesting open problem that would benefit from our contribution is
the design of reasonably efficient motion planning algorithms of automated guided particles
that are allowed to interact (collision) among them in an organized and controlled way.
Our results show that, unlike the case of ordinary configuration spaces on R𝑑 , the parity
of the dimension of the ambient Euclidean space does not seem to be a decisive parameter
for the actual value of the topological complexity of collision-controlled motion planning
of particles in R𝑑 . While the 1-dimensional case is as difficult as it can get, there is the
(intuition-compatible) possibility that the higher dimensional situation exhibits lower TC
values that could actually be independent of (the parity of) 𝑑.
On the purely theoretical side, our methods and contributions on the structure of Massey
products on Euclidean no 𝑘-equal manifolds reveal a deep and fruitful connection between
geometric aspects and homotopical properties of these spaces.
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