
CENTRO DE INVESTIGACIÓN Y DE ESTUDIOS
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Abstract

In this work, we solve three problems related to operator algebras over reproducing kernel Hilbert spaces

(RKHS), namely: we compute the reproducing kernel of the polyanalytic Bergman space on the unit ball,

we propose a scheme to describe the structure of W*-algebras of invariant operators acting over RKHS,

and we get the description of the W*-algebra of radial operators in the polyanalytic Bergman space over

the unit disk.

In the first chapter, we make a general study of homogeneous polyanalytic functions of total order m over

an n-dimensional domain, and then we prove that they can be written as polynomials in the conjugate

variables z1, . . . , zn with analytic coefficients. For such functions, we obtain a weighted mean-value

property and generalize some ideas by Pessoa to obtain an explicit formula for the reproducing kernel

of the m-analytic Bergman space over the unit ball. Then, using a unitary weighted change of variables,

we transform this kernel into the reproducing kernel of the m-analytic weighted Bergman space over the

n-dimensional Siegel domain.

In the second chapter, which is the main part of this work, we propose a general scheme to describe the

centralizer of unitary representations of abelian groups acting on a RKHS over a “tube” type domain. That

is, for a locally compact abelian group G and a measure space Y , we consider a closed subspace H of

L2(G× Y ) which is a RKHS by its own. By computing the G-Fourier transform of the reproducing kernel,

we provide a criterion to determine whether the W*-algebra of translation invariant operators acting

on H is commutative or not. For the commutative case, we construct a unitary “diagonalizer” operator

that turns all translation invariant operators into multiplication operators with bounded symbols. We

emphasize the role of the reproducing kernel in these results. We show explicitly how this scheme covers

many of the results obtained by Vasilevski and other authors.

Finally, we give a complete description of the W*-algebra of radial operators acting on the polyanalytic

Bergman space over the unit disk, which is a particular case of the space studied in the first chapter. Here,

we construct an explicit isomorphism between radial operators and some bounded sequences of matrices.

For this case, we show that Toeplitz operators with bounded generating symbols are not weakly dense in

the algebra of all bounded operators.
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Resumen

En este trabajo resolvemos tres problemas relacionados con el estudio de álgebras de operadores sobre

espacios de Hilbert con núcleo reproductor (EHNR), a saber: calculamos el núcleo reproductor del espacio

polianaĺıtico de Bergman sobre la bola unitaria, proponemos un esquema para describir la estructura

de algunas clases de operadores invariantes sobre EHNR, y obtenemos la descripción del álgebra W* de

operadores radiales que actúan sobre el espacio polianaĺıtico de Bergman sobre el disco unitario.

En el primer capı́tulo, hacemos un estudio general de las funciones poliananĺıticas homogéneas de orden

total m que actúan sobre dominios de dimensión n. Después probamos que dichas funciones pueden

expresarse como polinomios en las variables conjugadas z1, . . . , zn con coeficientes anaĺıticos. Para tales

funciones, mostramos una propiedad del valor medio con peso y generalizamos algunas ideas de Pessoa

para obtener una forma expĺıcita del núcleo reproductor del espacio polianaĺıtico de Bergman sobre la bola

unitaria. Luego, usando un cambio de variable unitario con peso, convertimos dicho núcleo reproductor

en aquel del espacio polianaĺıtico de Bergman sobre el dominio de Siegel.

En la parte principal de este trabajo, proponemos un esquema general para describir el centralizador

o conmutante de represenrtaciones unitarias de algunos grupos que actúan sobre EHNR en dominios

“tubulares”. Esto es, que para un grupo abeliano localmente compacto G y un espacio de medida Y ,

consideramos un EHNR H subespacio de L2(G× Y ). A través del cálculo de la transformada de Fourier

del núcleo reproductor sobre la primera coordenada, enunciamos un criterio para determinar si es o

no conmutativa el álgebra W* que forman todos los operadores invariantes bajo traslaciones. Para el

caso en el que lo es, construimos un operador unitario “diagonalizador” que convierte los operadores

invariantes en operadores de multiplicación. Enfatizamos cada vez el rol del núcleo reproductor en estos

resultados. Mostramos, además, que este esquema generaliza varios trabajos obtenidos por Vasilevski y

otros investigadores.

Finalmente, damos una descripción completa del álgebra W* de los operadores radiales que actúan en

el espacio polianaĺıtico de Bergman sobre el disco unitario (el cual es un caso particular en la primera

parte). En este capı́tulo construimos un isomorfismo isométrico entre operadores radiales y algunas

sucesiones de matrices. Para este caso, probamos que los operadores de Toepliz con sı́mbolos radiales no

son débilmente densos en el álgebra de todos los operadores acotados.
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Introduction

In 1999, Vasilevski [79] found a way to describe the structure of the C*-algebra generated

by Toeplitz operators with vertical symbols acting in the classical analytic Bergman space.

After this idea, many similar constructions have taken place around by other authors,

replacing three main characteristics of the original problem: the kind of symbols, the

underlying function space, and its domain. Many surprising results have been achieved,

but, above all, some geometric properties of the domain have been noticed to be related

to algebraic properties of some classes of Toeplitz operators under consideration. This

can be seen as showing a new face of an old problem: determining the structure of

operator algebras.

In the main part of this work, we extract some of the essential components of the large

list of examples induced by the one performed by Vasilevski, and then we generalize the

outcome as much as we can.

One essential feature present in every example is the existence of a reproducing kernel

(RK) in the Hilbert space structure of the function space H, where Toeplitz operators are

defined to act in. Another common feature is the “tubular” shape of the underlying do-

main, which every time turns to be (or to be unitarily equivalent to) a Cartesian product

of a locally compact abelian group G and a measure space Y . So we combine both of

these common characteristics to rewrite some of the classic results (and a couple of new

ones) in a new fashion by turning the action group into translations and considering the

image of the reproducing kernel under the “first-coordinate” Fourier transform. We deal

not only with Teoplitz operators with invariant symbols, but invariant operators under

the action of the group G on H. The natural structure for such operators (our object of

study) is the von Neumann algebra (or W* algebra), which is proven to be decomposable

into a direct integral of bounded operator algebras over the fiber spaces of H.

We provide a criterion to determine whether this von Neumann algebra is commutative

or not, and in the affirmative case, we construct an explicit operator that simultaneously
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diagonalizes all operators belonging to this algebra.

The scheme developed in this work is applicable to a list of suitable RKHS’s (see Ex-

amples in Section 2.9). It is used to unify many of the results produced in separated

investigations. Additionally, we find two more examples for this list, but unfortunately,

we haven’t make them fit in this scheme, and we let this task for a future project. Namely,

we construct the RK of the polyanalytic weighted Bergman space over the unit disk and

the unit ball by computing an explicit orthonormal basis in terms of generalized Jacobi

polynomials, which is been used to prove a mean value property of homogeneously

polyanalytic functions.

The results of this work are published in two articles [8, 53] and one preprint [38]. They

were presented in “International Workshop Operator Algebras, Toeplitz Operators and

Related Topics” in Boca de Rı́o Veracruz in 2018, “International Workshshop on Operator

Theory and its Applications” in Lisbon in 2019, and some seminars, such as “Seminario de

Operadores de Toeplitz” in CINVESTAV, and “Harmonic Analysis Seminar” in Louisiana

State University in the summer of 2021.

Here is a more specific description of each chapter in this work.

Homogeneous polyanalytic kernels

Bergman [12] comprehensively studied spaces of square-integrable analytic functions

on one-dimensional domains, considering them as reproducing kernel Hilbert spaces

(RKHS). For some multidimensional generalizations, see [24, 83, 87]. Polyanalytic func-

tions have been attracted attention of many mathematicians since the beginning of

the 20th century. For some of their properties, applications, and history, see, for exam-

ple [1, 2, 7, 25, 36, 80].

Koshelev [51] proved that every integrable m-analytic function f on D fulfills an analog

of the mean value property:

f(0) =
1

π

∫
D
f(z)P (|z|2) dµ(z),

where P is a certain polynomial of degree m− 1 with explicitly computed coefficients.

Furthermore, he proved that the corresponding space A2
m(D) is a RKHS and gave an

2
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explicit formula for the RK at the arbitrary point z0 of the disk, using the Möbius tran-

sormation ϕz0 that interchanges z0 with the origin. Due to the format of the journal, his

explanation was extremely short: “although the class of polyanalytic functions is not

invariant relative to fractional-linear transformations, this device is still usefull thanks to

the presence of Kn(z, z0) under the integral sign”. Pessoa [59] identified P with a certain

shifted Jacobi polynomial and explained very clearly, how to translate the reproducing

property from the origin to an arbitrary point z0 of the disk. Namely, he found a cor-

recting factor that restores the polyanalyticity and converts the composition operator

f 7→ f ◦ ϕz0 into a unitary operator in A2
m(D). He also computed [58] the RK of the

space A2
m(H1) of m-analytic functions on the upper halfplane H1 in C. Hachadi and

Youssfi [35] studied polyanalytic functions on the disk and on the entire complex plane,

provided with radial measures. In particular, they computed the RK ofA2
m(D, µα), where

dµα(z) = 1
π
(1− |z|2)α dµ(z).

In Chapter 1, we compute explicitly the reproducing kernel ofA2
m(Bn, µα), which is, the

homogeneous m-analytic weighted Bergman space over the n-dimensional unit ball, by

proving a reproducing formula at the origin or Mean-value property for such functions

and then constructing a unitary operator inA2
m(Bn, µα) in order to “reset” this property

from origin to an arbitrary point inside Bn.

The Mean-value property shown in this work is a consequence of a reproducing property

of generalized Jacobi polynomials, and the unitary operator mentioned above is a natural

generalization of the previous one constructed by Pessoa [59].

Among these results, we give a general approach to the study of weighted changes

of variables in the heomogeneous polyanalytic weighted Bergman space over more

general domains, and compute with these tools, the RK ofA2
m(Hn, µα), where Hn is the

n-dimensional Siegel domain, which is a multimensional generalization of the complex

upper halfplane. These results are published in [53].

There are several multidimensional results about polyanalytic spaces and kernels in

other settings. Askour, Intissar, and Mouayn [6] computed the RK of the space of polyan-

alytic functions on Cn, square-integrable with respect to the Gaussian weight (i.e., the

polyanalytic Bargmann–Segal–Fock space). If k ∈ Nn and (Ω, ν) is a direct product of

one-dimensional domains with some weights (for example, Ω = Cn or Ω = Dn), then the

RK ofAk(Ω, ν) can be obtained as the tensor product of the corresponding reproducing

kernels on one-dimensional domains [35]. Ramı́rez Ortega and Sánchez Nungaray [67]
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defined some polyanalytic-type spaces on the Siegel domain Hn by other systems of

differential equations, involving non-constant coefficients.

After submitting [53] to the journal, we found a preprint [86] by Youssfi, in which he has

found another interesting way to get some of the results presented in this work. Namely,

he also computed the RK of the weighted polyanalytic Bergman space over the unit

ball, and his formula coincides (after normalizing the measure) with our formula (1.45).

Moreover, he found the RK of the “homogeneously polyanalytic” Fock space.

Translation invariant operators

It is well known and easy to see that the radial Toeplitz operators on the Bergman space

A2(D) are diagonal in the monomial basis and therefore generate a commutative C*-

algebra. In 1999, Vasilevski [79] found another non-trivial commutative C*-algebra of

operators on the Bergman space. Namely, he considered “vertical” Toeplitz operators (i.e.

invariant under horizontal translations), acting in the Bergman spaceA2(H1) of analytic

functions over the upper halfplane H1, and constructed a unitary operator R̃ : A2(H1)→
L2(R+) that simultaneously “diagonalizes” all vertical Toeplitz operators, converting

them into multiplication operators. After that, many mathematicians obtained similar

results for other groups of transformations, other spaces of functions, and other domains

[28–30, 45, 47, 54, 65, 82]. Grudsky, Quiroga, and Vasilevski [31] performed a complete

study of non-trivial commutative C*-algebras of Toeplitz operators on the weighted

Bergman spaces over the unit disk. Dawson, Ólafsson, and Quiroga-Barranco [15, 16]

showed that in the case of group-invariant operators acting in the weighted Bergman

spaces of analytic functions over multidimensional domains, some of the previous

results follow naturally from the general theory of unitary representations of C*-algebras.

Quiroga-Barranco and Sánchez-Nungaray [61] studied commutative C*-algebras of

Toeplitz operators in the weighted Bergman spaces over the unit ball using moment

maps of the abelian subgroups of the biholomorphism group.

Here we propose another scheme to study group-invariant operators in reproducing

kernel Hilbert spaces (RKHS). We are inspired by the following general idea. If G is

a locally compact group acting on a measure space D such that the translations are

unitary operators in L2(D), and H is a RKHS over D invariant under these translations,

then it is natural to expect that the W*-algebra of translation-invariant operators can

be described in terms of the Fourier transform (along the orbits of the group action)

4
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of the reproducing kernel. In this work, we apply this idea to the particular case when

G is a locally compact abelian group (LCAG) and the domain D is a “tube” G× Y . Our

scheme is a natural generalization and developement of Vasilevski [79], [82, Section 3.1],

see Example 2.9.1.

In Sections 2.2 and 2.3, we prove two simple general results about W*-algebras: an analog

of the Stone–Weierstrass theorem and a criterion of commutativity of a direct integral.

In Section 2.4, we recall some properties of the Fourier transform and consider the

unitary representation of the group G on the space L2(G× Y ) defined by

(ρG×Y (a)f)(u, v) := f(u− a, v) (a ∈ G, u ∈ G, v ∈ Y ). (0.1)

Using the Fourier transform with respect to the first argument, F ⊗ IL2(Y ), we describe

the W*-algebra (ρG×Y )′ of bounded linear operators on L2(G× Y ), commuting with the

horizontal translations ρG×Y (a).

The main ideas of Sections 2.2–2.4 are well known, but we recall them in a convenient

form and state explicitly some results that we have been unable to find in the literature.

In Section 2.5 we suppose that H is a closed subspace of L2(G × Y ), invariant under

ρG×Y (a) for every a in G. Let ρH(a) be the compression of ρG×Y (a) onto H. Then ρH is a

unitary representation of G in H. Our principal object of study is the W*-algebra V of

translation-invariant bounded linear operators acting in H, i.e., the centralizer of the

representation ρH :

V := (ρH)′ = {A ∈ B(H) : ∀a ∈ G ρH(a)A = AρH(a)}. (0.2)

We show that the space Ĥ := (F ⊗ I)(H) decomposes into the direct integral of fibers

Ĥξ ⊆ L2(Y ), and the W*-algebra V is spatially isomorphic to the direct integral of the

factors B(Ĥξ):

Ĥ =

∫ ⊕
Ω

Ĥξ dν̂(ξ), ΦVΦ∗ =

∫ ⊕
Ω

B(Ĥξ) dν̂(ξ).

Here Ĝ is the dual group ofG, ν̂ is the Haar measure on Ĝ associated to ν, Φ: H → Ĥ is the

compression of F ⊗I , and Ω is defined as the set of all “frequencies” ξ in Ĝ corresponding

to non-zero fibers Ĥξ.

In particular, we conclude that V is commutative if and only if dim Ĥξ = 1 for ν̂-almost

all ξ in Ω. This condition is close to the multiplicity-free condition from [15, 16].

5
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In Section 2.6 we assume that H is a RKHS and denote by (Kx,y)x∈G,y∈Y the reproducing

kernel of H. The translation-invariance of H is equivalent to the following property of

the reproducing kernel:

Kx,y(u, v) = K0,y(u− x, v) (x, u ∈ G, y, v ∈ Y ).

We define L as the Fourier transform of K along the action of the group:

Lξ,y(v) := (ΦK0,y)(ξ, y) =

∫
G

ξ(u)K0,y(u, v) dν(u) (ξ ∈ Ĝ, y, v ∈ Y ). (0.3)

Under some additional assumptions, we show that each fiber Ĥξ is a RKHS, and its

reproducing kernel is (Lξ,y)y∈Y . As a consequence, we establish a constructive criterion

for commutativity of V , in terms of L.

In Section 2.7 we consider the commutative case (when dim(Ĥξ) = 1 for all ξ in Ω) and

construct a unitary operator R that simultaneously diagonalizes all operators belong-

ing to V . In particular, we diagonalize Toeplitz operators with translation-invariant

generating symbols.

In Section 2.8 we consider the non-commutative case with finite-dimensional fibers and

construct a unitary operator R that transforms elements of V into matrix families.

Finally, in Section 2.9 we apply this scheme to various examples.

Our scheme may be viewed as an application of the von Neumann theory to RKHS over

domains of the form G× Y . As an advantage of this work, we deal with general RKHS

and general LCAG, without requiring any analytic or differential structure on the domain.

We reduce the study of the algebra V to the computation of one Fourier integral (0.3).

The scheme proposed in this work unifies many of the currently known results on

translation-invariant operators acting in RKHS, but it is not universal. For example, it

cannot be applied to radial operators on RKHS over the unit ball Bn in Cn with n > 1,

because the corresponding unitary group U(n) is not commutative, and Bn does not

decompose into a product of the form U(n)× Y .

Radial operators in the poly-Bergman space

As the concrete case of n = 1 in Chapter 1, letA2
m(D, µα) be the space of (homogeneous)

m-analytic functions square integrable with respect to readial measure µα in D. We

denote byA2
(m)(D, µα) the orthogonal complement ofA2

m−1(D, µα) inA2
m(D, µα).

6
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For every τ in the unit circle T := {z ∈ C : |z| = 1}, let ρ(α)
m (τ) be the rotation operator

acting inA2
m(D, µα) by the rule

(ρ(α)
m (τ)f)(z) := f(τ−1z).

The family ρ(α)
m is a unitary representation of the group T in the spaceA2

m(D, µα), which

in turn, is invariant under rotations (see Proposition (3.6.8)). We denote by R(α)
m its

commutant, i.e., the von Neumann algebra that consists of all bounded linear operators

acting in A2
m(D, µα) that commute with ρ

(α)
m (τ) for every τ in T. In other words, the

elements ofR(α)
m are the operators intertwining the representation ρ(α)

m . The elements of

R(α)
m are called radial operators inA2

m(D, µα).

In a similar manner, we denote by ρ(α)
(m)(τ) the rotation operators acting inA2

(m)(D, µα) and

byR(α)
(m) the von Neumann algebra of radial operators inA2

(m)(D, µα). We also consider

the rotation operators ρ(α)(τ) in L2(D, µα) and the corresponding algebraR(α) of radial

operators.

In Section 3.2, we recall various equivalent formulas for the disk polynomials that can

be obtained by orthogonalizing the monomials in z and z. Using this orthonormal

basis (b
(α)
p,q )p,q∈N0 we descompose L2(D, µα) into the orthogonal sum of subspacesW(α)

ξ

corresponding to different frequences ξ, with ξ ∈ Z.

In Section 3.3 we give an elementary proof of the weighted mean value property of

polyanalytic functions and show the boundedness of the evaluation functionals for the

spaces of polyanalytic functions over general domains in C. In the unweighted case, this

mean value property was proven by Koshelev [51] and Pessoa [59]. In the weighted case,

it was found by Hachadi and Youssfi [35] and used by them to compute the reproducing

kernel ofA2
m(D, µα).

In Section 3.4, extending results by Ramazanov [63, 64] to the weighted case, we verify

that the family (b
(α)
p,q )p≥0,0≤q<m is an orthonormal basis ofA2

m(D, µα). Using this fact, we

decomposeA2
m(D, µα) into subspacesW(α)

ξ ∩ A2
m(D, µα).

In Section 3.5 we prove that the set of all Toeplitz operators with bounded generating

symbols is not weakly dense in B(A2
m(D, µα)). This simple result was surprising for us.

In Section 3.6 we decompose the von Neumann algebrasR(α),R(α)
m , andR(α)

(m), into direct

sums of factors. In particular, Theorems 3.6.9 and 3.6.10 imply that the algebraR(α)
m is

noncommutative for m ≥ 2, whereasR(α)
(m) is commutative for every m in N.

7
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In Section 3.7, we find explicit representations of the radial Toeplitz operators acting

in the spacesA2
m(D, µα) andA2

(m)(D, µα). The results of Sections 3.6 and 3.7 are similar

to [57]. The main difference is that the orthonormal bases are given by other formulas.

8



1 Polyanalytic Kernels in the Unit Ball

1.1 Scope

The aim of this chapter is to write an explicit formula for the reproducing kernel of the

homogeneous m-analytyc wheighted Bergman space over the unit ball Bn in Cn and over

the n-dimensional Siegel domain Hn. All these results were published in [53].

Let N = {1, 2, . . .}, N0 = {0, 1, 2, . . .} and take n ∈ N for the rest. We employ the usual

notation for the multi-indices and the notation |·| for the norm in Cn, see [70, Section 1.1].

Given an open set Ω in Cn, a multi-index k = (k1, . . . , kn) in Nn
0 and a function of the

class C |k|(Ω), we denote by D
k
f the Wirtinger derivative of f of the order k (such deriva-

tives were previously used by Poincaré, Pompeiu, and Kolossov). In a more classical

notation,

D
k
f(z) :=

∂|k|

∂k1z1 · · · ∂knzn
f(z) (z ∈ Ω).

LetA(Ω) be the class of all analytic functions on Ω. It is defined by the system of equations

D
(1,0,...,0)

f = 0, D
(0,1,...,0)

f = 0, . . . , D
(0,0,...,1)

f = 0. (1.1)

Given an open subset Ω of Cn and a multi-index k = (k1, . . . , kn) in Nn, k-analytic func-

tions on Ω are defined [7, Section 6.4] as functions that can be represented in the form

f(z) =

k1−1,...,kn−1∑
j1,...,jn=0

gj(z) zj, (1.2)

where all functions gj are analytic. We denote byAk(Ω) the class of all functions of the

form (1.2). For simply connected domains Ω, such functions can also be characterized

as smooth solutions of the system of differential equations

D
(k1,0,...,0)

f = 0, D
(0,k2,...,0)

f = 0, . . . , D
(0,0,...,kn)

f = 0. (1.3)

9



1 Polyanalytic Kernels in the Unit Ball

Instead of considering polyanalytic functions of a given multi-order k, we prefer to work

with the following classes of “homogeneously polyanalytic” functions.

Definition 1.1.1. Let Ω be an open set in Cn and m ∈ N. We say that f : Ω → C is

homogeneously polyanalytic of total order m or just m-analytic, if f belongs to the class

Cm(Ω) and D
k
f = 0 for every k in Nn

0 with |k| = m. We denote by Am(Ω) the set of all

such functions.

The multi-indices k with |k| = m can be associated with m-multisubsets of the set

{1, . . . , n}, and the number of such multi-indices is
(
n+m−1

m

)
. For example, the class

A1(Ω) = A(Ω) is defined by n differential equations (1.1).

Definition 1.1.2. Let Ω be an open set in Cn and m ∈ N. We denote by Ãm(Ω) the set of

all functions f : Ω→ C that can be written in the form

f(z) =
∑
|j|<m

hj(z)zj, (1.4)

where hj ∈ A(Ω) for all j ∈ Nn
0 with |j| < m.

This class of functions has been studied by Daghighi [14], who has proved some unique-

ness theorems. He used the term “polyanalytic functions of absolute order q”, where q

plays the role of our m.

In Section 1.2 we prove that Ãm(Ω) = Am(Ω). Obviously, Am(Ω) is a complex vector

space. In Proposition 1.2.7 we show that the spaceAm(Ω), withm in N, is invariant under

linear changes of variables (of course, the domain can change). In a contrast, the spaces

Ak, with n ≥ 2 and k ∈ Nn, k 6= (1, 1, . . . , 1), are not invariant under linear changes of

variables; see Proposition 1.2.8. If m ∈ N, thenAm(Ω) ⊆ A(m,...,m)(Ω), and some results

about k-analytic functions (k ∈ Nn) can be applied toAm(Ω). On the other hand, if k in

Nn, thenAk(Ω) ⊆ A|k|+1−n(Ω).

From now on, we denote by µ the Lebesgue measure on Cn.

Definition 1.1.3. Let Ω be an open set in Cn, m ∈ N, W : Ω → (0,+∞) be a continuous

function, and dν = W dµ. We denote by A2
m(Ω, ν) the set of all functions f ∈ Am(Ω)

that are square-integrable with respect to ν. We consider this space with the inner

product inherited from L2(Ω, ν). Furthermore, we denote byA2
(m)(Ω, ν) the orthogonal

complement ofA2
m−1(Ω, ν) inAm(Ω, ν). HereA2

0(Ω, ν) := {0}.

10



1.2 Homogeneously polyanalytic functions

Section 1.3 contains a weighted mean-value property for integrable functions belonging

toAm(Ω). As a consequence of this property,A2
m(Ω, ν) is a RKHS. In Section 1.4 we show

how the RK transforms under a weighted change of variables. In Section 1.5 we use the

previous tools to compute the RK ofA2
m(Bn, µα), where Bn is the unit ball in Cn and µα

is the standard radial measure on Bn, see (1.27). Finally, in Section 1.6 we compute the

RK of A2
m(Hn, να), where Hn is the standard Siegel domain in Cn and να is a weighted

Lebesgue measure (see (1.51) and (1.52)).

There are many recent studies of Toeplitz operators, acting in polyanalytic Bergman

spaces over one-dimensional domains [13, 46, 56, 57, 68, 82]. We hope that this work can

serve as a basis for some multidimensional generalizations, see Remarks 1.5.10, 1.5.11,

and 1.6.17.

1.2 Homogeneously polyanalytic functions

Polyanalytic functions naturally arise in some physical models (plane elasticity the-

ory, Landau levels) and in some methods of signal processing, see [1, 2, 4, 36, 42, 43].

Koshelev [51] computed the reproducing kernel of the m-analytic Bergman spaceA2
m(D)

on the unit disk. In [7], Balk explained fundamental properties of polyanalytic func-

tions. Dzhuraev [19] related polyanalytic projections with singular integral operators.

Vasilevski [80, 81] studied polyanalytic Bergman spaces on the upper halfplane and

polyanalytic Fock spaces using the Fourier transform. Ramazanov [63, 64] constructed

an orthonormal basis in A2
m(D) and studied various properties of A2

m(D). In fact, the

elements of this basis are well-known disk polynomials studied by Koornwinder [49],

Wünsche [84], and other authors. Pessoa [59] related Koshelev’s formula with Jacobi

polynomials and gave a very clear proof of this formula. He also obtained similar results

for some other one-dimensional domains. Hachadi and Youssfi [35] developed a general

scheme for computing the reproducing kernels of the spaces of polyanalytic functions

on radial plane domains (disks or the whole plane) with radial measures.

There are general investigations about bounded linear operators in reproducing kernel

Hilbert spaces (RKHS), especially about Toeplitz operators in Bergman or Fock spaces

[9, 85, 88], but the complete description of the spectral properties is found only for some

special classes of operators, in particular, for Toeplitz operators with generating symbols

invariant under some group actions, see Vasilevski [82], Grudsky, Quiroga-Barranco, and

11



1 Polyanalytic Kernels in the Unit Ball

Vasilevski [31], Dawson, Ólafsson, and Quiroga-Barranco [15]. The simplest class of this

type consists of Toeplitz operators with bounded radial generating symbols. Various

properties of these operators (boundedness, compactness, and eigenvalues) have been

studied by many authors, see [33, 50, 60, 89]. The C*-algebra generated by such operators,

acting in the Bergman space, was explicitly described in [10, 32, 40, 76]. Loaiza and

Lozano [55] obtained similar results for radial Toeplitz operators in harmonic Bergman

spaces. Maximenko and Tellerı́a-Romero [57] studied radial operators in the polyanalytic

Fock space.

Hutnı́k, Hutnı́ková, Ramı́rez-Mora, Ramı́rez-Ortega, Sánchez-Nungaray, Loaiza, and

other authors [46,48,56,66,68,71] studied vertical and angular Toeplitz operators in poly-

analytic and true-polyanalytic Bergman spaces. In particular, vertical Toeplitz operators

in the m-analytic Bergman space over the upper half-plane are represented in [68] as

m×mmatrices whose entries are continuous functions on (0,+∞), with some additional

properties at 0 and +∞.

Rozenblum and Vasilevski [69] investigated Toeplitz operators with distributional sym-

bols and showed that Toeplitz operators in true-polyanalytic spaces Bergman or Fock

spaces are equivalent to some Toeplitz operators with distributional symbols in the

analytic Bergman or Fock spaces.

Let Ω be an open set in Cn and m ∈ N. In this section we show thatAm(Ω) = Ãm(Ω) and

mention some other properties ofAm(Ω).

Lemma 1.2.1. Let f ∈ Am(Ω). Then the following function is analytic:

g(z) :=
∑
k∈Nn0
|k|<m

(−1)|k|

k!
(D

k
f)(z) zk.

Proof. Let p ∈ {1, . . . , n} and ep be the p-th canonical vector in Nn
0 , i.e., ep := (δp,s)

n
s=1,

where δ is the Kronecker’s delta. We have to show that D
ep
g = 0. By the product rule,

(D
ep
g)(z) = S1(z) + S2(z) + S3(z) + S4(z),

12



1.2 Homogeneously polyanalytic functions

where

S1(z) =
∑

|k|<m−1

(−1)|k|

k!
(D

k+ep
f)(z)zk, S2(z) =

∑
|k|=m−1

(−1)|k|

k!
(D

k+ep
f)(z)zk,

S3(z) =
∑
|k|<m
kp=0

(−1)|k|

k!
(D

k
f)(z)D

ep
(zk), S4(z) =

∑
|k|<m
kp>0

(−1)|k|

(k−ep)!
(D

k
f)(z)zk−ep .

We have that S2(z) = 0, because f ∈ Am(Ω) and |k + ep| = m in the sum defining S2. Also

S3(z) = 0, because D
ep
zk = 0 when kp = 0. Finally, with the change of variable j = k − ep,

we rewrite S4(z) as

S4(z) = −
∑
|j|<m−1

(−1)|j|

j!
(D

r+ep
f)(z) zj.

Therefore, (D
ep
g)(z) = S1(z) + S4(z) = 0.

Lemma 1.2.2. Let f ∈ Ãp(Ω) and g ∈ Ãq(Ω). Then fg ∈ Ãp+q−1(Ω).

Proof. This lemma follows from the elementary observation that if j ∈ Nn
0 and k ∈ Nn

0 ,

with |j| < p and |k| < q, then zj zk = zj+k and |j + k| = |j|+ |k| < p+ q − 1.

Theorem 1.2.3. Let Ω be an open set in Cn and m ∈ N. ThenAm(Ω) = Ãm(Ω).

Proof. It is well known thatA(Ω) = Ã(Ω). Let m > 1. It is obvious that Ãm(Ω) ⊆ Am(Ω).

We show, by induction on m, that Am(Ω) ⊆ Ãm(Ω). Suppose Ap(Ω) ⊆ Ãp(Ω) for every

p < m and let f ∈ Am(Ω). Define g as in Lemma 1.2.1, then observe that

f(z) = −
∑

0<|k|<m

(−1)|k|

k!
(D

k
f)(z) zk + g(z).

For every k with 0 < |k| < m, we have zk ∈ Ã|k|+1(Ω) and D
k
f ∈ Am−|k|(Ω) ⊆ Ãm−|k|(Ω);

the last inclusion holds by the induction hypothesis. Finally, apply Lemma 1.2.2.

Corollary 1.2.4. Let f ∈ Am(Ω) and a ∈ Ω. Then there exists a family of functions (hk)|k|<m

inA(Ω), such that for every z in Ω,

f(z) =
∑
k∈Nn0
|k|<m

hk(z) (z − a)k. (1.5)

13



1 Polyanalytic Kernels in the Unit Ball

Proof. First, we write f as (1.4). Then, expanding zj = (z − a+ a)j into multi-powers of

z − a and regrouping the summands, we obtain a sum of the form (1.5).

Corollary 1.2.5. Let f ∈ Am(Ω), a ∈ Ω, and r > 0 such that a+ rBn ⊆ Ω. Then there exists

a family (β)j,k∈Nn0 ,|k|<m of complex numbers such that for every z in a+ rBn,

f(z) =
∑
j∈Nn0

∑
k∈Nn0
|k|<m

βj,k(z − a)j(z − a)k. (1.6)

Moreover, this series converges uniformly on every compact subset of Bn.

Proof. It is well known that every holomorphic function on Bn, decomposes on Bn into

a power series, converging on Bn and uniformly converging on compact subsets of Bn.

Applying this fact to each hj from Corollary 1.2.4, we obtain (1.6).

Let us mention a version of the uniqueness property for m-analytic functions.

Proposition 1.2.6. Let Ω be a connected open set in Cn, Ω1 be an open subset of Ω, and

f ∈ Am(Ω) such that f(z) = 0 for every z in Ω1. Then f(z) = 0 for every z in Ω.

Proof. For k in Nn, the uniqueness property of k-analytic functions is proven in [7, Sec-

tion 6.4]. The uniqueness property for m-analytic functions is a corollary of this fact,

sinceAm(Ω) ⊆ A(m,...,m)(Ω).

To finish this section, we will show that the classAm with m in N is closed under linear

changes of variables, while the classesAk with k ∈ Nn are generally not.

Proposition 1.2.7. Let M be an invertible n× n complex matrix and f inAm(Ω). Define

g : MΩ→ C by g(z) := f(M−1z). Then g ∈ Am(MΩ).

Proof. Theorem 1.2.3 allows us to work with Ãm instead of Am. Let f be as in Defini-

tion 1.1.2. Then

g(z) =
∑
|j|<m

hj(M
−1z) (M−1z)

j
.

14



1.3 Weighted mean value property

The functions z 7→ hj(M
−1z) are analytic. Let M−1 = [cr,s]

n
r,s=1. Then

(M−1z)
j

=
n∏
r=1

(
n∑
s=1

cr,s zs

)jr

.

The last expression is a homogeneous polynomial in z1, . . . , zn of total degree |j|, which is

strictly less thanm (the same conclusion can also be obtained by Lemma 1.2.2). Therefore

g ∈ Ãm(MΩ).

Proposition 1.2.8. Let n ≥ 2, Ω be an open subset of Cn, k ∈ Nn, k 6= (1, 1, . . . , 1). Then

there exists a function f in Ak(Ω) and an invertible matrix M in Cn×n such that the

function g : MΩ→ C, defined by g(z) := f(M−1z), does not belong toAk(MΩ).

Proof. To simplify the notation, we suppose that k1 > 1. The general case is analogous.

Define M in such a manner that

M−1z = (z1 + z2, z2 − z1, z3, . . . , zn).

Consider f : Ω→ C, f(z) := z1
k1−1 z2

k2−1. Then

g(z) = (z1 + z2)k1−1 (z2 − z1)k2−1.

In the expansion of the last polynomial, one of the terms is z2
k1+k2−2. Since k1 + k2 − 2 >

k2 − 1, we obtain g /∈ Ak(MΩ), though f ∈ Ak(Ω).

1.3 Weighted mean value property

In this section we prove that the value of a m-analytic function at the center of the unit

ball Bn can be expressed as the integral of this function over the ball, with a certain real

radial weight (Theorem 1.3.3). Similar results in the one-dimensional case were proved

in [35, 51, 59].
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1 Polyanalytic Kernels in the Unit Ball

Jacobi polynomials and their reproducing property

Some integrals over the unit ball, written in the spherical coordinates, can be reduced to

integrals over the unit interval (0, 1) with weights of power type at the boundary points 0

and 1. Thereby Jacobi polynomials naturally appear.

For every ξ and η in R, the (generalized) Jacobi polynomial of degree m is defined by

Rodrigues formula:

P (ξ,η)
m (x) :=

(−1)m

2mm!
(1− x)−ξ(1 + x)−η

dm

dxm

(
(1− x)m+ξ(1 + x)m+η

)
. (1.7)

This definition and the general Leibniz rule imply its expansion into powers of x− 1 and

x+ 1:

P (ξ,η)
m (x) =

m∑
s=0

(
m+ ξ

m− s

)(
m+ η

s

)(
x− 1

2

)s(
x+ 1

2

)m−s
. (1.8)

Formula (1.8) yields a symmetry relation, the values at the points 1 and−1, and a formula

for the derivative:

P (ξ,η)
m (−x) = (−1)mP (η,ξ)

m (x), (1.9)

P (ξ,η)
m (1) =

(
m+ ξ

m

)
, P (ξ,η)

m (−1) = (−1)m
(
m+ η

m

)
, (1.10)

(
P (ξ,η)
m

)′
(x) =

ξ + η +m+ 1

2
P

(ξ+1,η+1)
m−1 (x). (1.11)

With the above properties, it is easy to compute the derivatives of P (ξ,η)
m at the point 1.

Now Taylor’s formula yields another two explicit expansions for P (ξ,η)
m :

P (ξ,η)
m (x) =

m∑
s=0

(
ξ + η +m+ s

s

)(
ξ +m

m− s

)(
x− 1

2

)s
(1.12)

=
m∑
s=0

(−1)s
(
ξ + η +m+ s

s

)(
η +m

m− s

)(
x+ 1

2

)s
. (1.13)

If ξ > −1 and η > −1, then (1.12) can be rewritten as

P (ξ,η)
m (x) =

Γ(ξ +m+ 1)

m! Γ(ξ + η +m+ 1)

m∑
s=0

(
m

s

)
Γ(ξ + η +m+ s+ 1)

Γ(ξ + s+ 1)

(
x− 1

2

)s
. (1.14)
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1.3 Weighted mean value property

For ξ > −1 and η > −1, we equip (−1, 1) with the weight (1− x)ξ(1 + x)η, then denote by

〈·, ·〉(−1,1),ξ,η the corresponding inner product:

〈f, g〉(−1,1),ξ,η :=

∫ 1

−1

f(x)g(x) (1− x)ξ(1 + x)η dx.

Then L2((−1, 1), (1− x)ξ(1 + x)η) is a Hilbert space, and the set P of Jacobi polynomials

is a dense subset. Using (1.7) and integrating by parts, for every f in P we get

〈f, P (ξ,η)
m 〉(−1,1),ξ,η =

1

2m
〈f ′, P (ξ+1,η+1)

m−1 〉(−1,1),ξ+1,η+1. (1.15)

Applying (1.15) and induction, it is easy to prove that the sequence (P
(ξ,η)
m )∞m=0 is an

orthogonal basis of L2((−1, 1), (1− x)ξ(1 + x)η), that is, for every polynomial h of degree

less than m, ∫ 1

−1

h(x)P (ξ,η)
m (x)(1− x)ξ(1 + x)ηdx = 0. (1.16)

Furthermore,

〈P (ξ,η)
` , P (ξ,η)

m 〉(−1,1),ξ,η =
2ξ+η+1 Γ(m+ ξ + 1)Γ(m+ η + 1)

(2m+ ξ + η + 1)Γ(m+ ξ + η + 1)m!
δ`,m. (1.17)

Formulas (1.7) and (1.16), and induction allow us to compute the following integral for

η > 0: ∫ 1

−1

P (ξ,η+1)
m (x) (1− x)ξ(1 + x)η dx = 2ξ+η+1(−1)m B(ξ +m+ 1, η + 1), (1.18)

where B is the classical Beta function.

Definition 1.3.1. Let m ∈ N and ξ, η > −1. We denote by R(ξ,η)
m the following polynomial:

R(ξ,η)
m (t) :=

(−1)m B(ξ + 1, η + 1)

B(ξ +m+ 1, η + 1)
P (ξ,η+1)
m (2t− 1). (1.19)

Equivalently, by the symmetry relation for Jacobi polynomials, we have

R(ξ,η)
m (t) =

B(ξ + 1, η + 1)

B(ξ +m+ 1, η + 1)
P (η+1,ξ)
m (1− 2t). (1.20)

Combining (1.19) with (1.13) or (1.20) with (1.12), we get the following explicit formulas

for R(ξ,η)
m :

R(ξ,η)
m (t) =

Γ(ξ + 1) Γ(η +m+ 2)

Γ(ξ + η + 2) Γ(ξ +m+ 1)

m∑
s=0

(−1)s Γ(ξ + η +m+ s+ 2)

s! (m− s)! Γ(η + s+ 2)
ts (1.21)

=
Γ(ξ + 1) Γ(η +m+ 2)

Γ(ξ + η + 2) (ξ +m)m!

m∑
s=0

(−1)s
(
m
s

)
B(ξ +m, η + s+ 2)

ts. (1.22)
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1 Polyanalytic Kernels in the Unit Ball

The next simple result was proven in [8] using the orthogonality of the Jacobi polynomials

and formula (1.18). Previously, Hachadi and Youssfi [35, formula (5.7)] gave another

proof for the case η = 0.

Proposition 1.3.2. Let m ∈ N and ξ, η > −1. Then for every polynomial h with complex

coefficients and deg(h) ≤ m,

1

B(ξ + 1, η + 1)

∫ 1

0

h(t)R(ξ,η)
m (t) (1− t)ξtη dt = h(0). (1.23)

The polynomials of degree ≤ m, considered as square-integrable functions on the in-

terval (0, 1) with the normalized weight 1
B(ξ+1,η+1)

(1− t)ξtη, form a RKHS. Formula (1.23)

means that R(ξ,η)
m is the RK of this space at the point 0.

As a particular case of (1.23), for every k in N0 with k ≤ m,

1

B(ξ + 1, η + 1)

∫ 1

0

R(ξ,η)
m (t)(1− t)ξtη+k dt = δk,0. (1.24)

Weighted mean value property of homogeneously

polyanalytic functions

We denote by µ the Lebesgue measure on Cn, by Sn the unit sphere in Cn, and by µSn the

(non-normalized) area measure on Sn. It is well known [70, Section 1.4] that

µ(Bn) =
πn

n!
, µSn(Sn) =

2πn

(n− 1)!
,

and ∫
Sn
ζjζ

k
dµSn(ζ) =

2πnj!

(n− 1 + |j|)!
· δj,k (j, k ∈ Nn

0 ). (1.25)

Given an integrable function f on Bn, its integral over Bn can be written as∫
Bn
f dµ =

∫ 1

0

r2n−1

(∫
Sn
f(rζ) dµSn(ζ)

)
dr. (1.26)

For α > −1, we denote by µα the Lebesgue measure on Bn with the standard radial weight:

dµα(z) = cα(1− |z|2)α dµ(z). (1.27)
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1.3 Weighted mean value property

The normalizing constant cα is chosen so that µα(Bn) = 1:

cα :=
Γ(n+ α + 1)

πn Γ(α + 1)
. (1.28)

Theorem 1.3.3. Let f ∈ Am(Bn) such that f ∈ L1(Bn, µα). Then

f(0) =

∫
Bn
f(z)R

(α,n−1)
m−1 (|z|2) dµα(z). (1.29)

Proof. We represent f in the form (1.6) with a = 0, then make the change of variables

z = rζ with 0 ≤ r < 1, ζ ∈ Sn:

f(z) =
∑
j∈Nn0

∑
k∈Nn0
|k|<m

βj,kr
|j|+|k|ζjζ

k
. (1.30)

For every s in (0, 1), let Is be the integral similar to the right-hand side of (1.29), but over

the ball sBn:

Is :=

∫
sBn

f(z)R
(α,n−1)
m−1 (|z|2) dµα(z).

Since the series (1.30) converges uniformly over r in [0, s] and ζ in Sn, it can be inter-

changed with the integral over sBn. Then we apply (1.26) and (1.25):

Is = cα
∑
j∈Nn0

∑
k∈Nn0
|k|<m

βj,k

∫ s

0

r2n−1+|j|+|k|R
(α,n−1)
m−1 (r2)(1− r2)α

(∫
Sn
ζjζ

k
dµSn(ζ)

)
dr

= cα
∑
k∈Nn0
|k|<m

βk,k ·
πn k!

(n− 1 + |k|)!

∫ s

0

R
(α,n−1)
m−1 (t)(1− t)αtn−1+|k| dt.

The condition f ∈ L1(Bn, µα) implies that Is → I1, as s → 1. Passing to this limit and

using (1.24), we finally obtain

I1 =
Γ(n+ α + 1)

Γ(α + 1)

∑
k∈Nn0
|k|<m

βk,k ·
k!

(n− 1 + |k|)!

∫ 1

0

R
(α,n−1)
m−1 (t)(1− t)αtn−1+|k| dt

=
Γ(α + n+ 1)

Γ(α + 1)

∑
|k|<m

βk,k
k!

(n− 1 + |k|)!
· δk,0 B(α + 1, n) = β0,0 = f(0).

Here is an analog of (1.29) for an arbitrary ball and for α = 0.
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1 Polyanalytic Kernels in the Unit Ball

Corollary 1.3.4. Let Ω be an open subset of Cn, f ∈ Am(Ω), a ∈ Ω, and r > 0 such that

a+ rBn ⊆ Ω. Suppose that f ∈ L1(a+ rBn, µ). Then

f(a) =
n!

πn
1

r2n

∫
a+rBn

f(z)R
(0,n−1)
m−1

(
|z − a|2

r2

)
dµ(z). (1.31)

Bergman spaces of homogeneously polyanalytic functions

In the rest of this section, we suppose that Ω, m, W , ν are like in Definition 1.1.3. Us-

ing (1.31), it is easy to prove the upcoming Lemma 1.3.5 and Proposition 1.3.6. See

similar proofs for the one-dimensional case in [8, Lemma 4.3, Proposition 4.4].

Lemma 1.3.5. Let K be a compact subset of Ω. There exists a number Cm,W,K > 0 such

that for every f inA2
m(Ω, ν) and every z in K,

|f(z)| ≤ Cm,W,K‖f‖A2
m(Ω,ν). (1.32)

Proposition 1.3.6. A2
m(Ω, ν) is a RKHS.

As a corollary, the spacesA2
(m)(Ω, ν) are also RKHS.

Proposition 1.3.7. In the conditions of Definition 1.1.3, suppose additionally that Ω is

bounded and ν is finite. Then

L2(Ω, ν) =
∞⊕
m=1

A2
(m)(Ω, ν). (1.33)

Proof. This is a simple consequence of three facts: 1) the continuous functions with

compact supports form a dense subset of L2(Ω, ν); 2) by the Stone–Weierstrass theorem,

every continuous function on the closure of Ω can be uniformly approximated by poly-

nomials in z1, . . . , zn, z1, . . . , zn; and 3) the norm of L2(Ω, ν) can be estimated from above

by a constant multiple of the maximum-norm.
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1.4 Pushforward reproducing kernel

In the one-dimensional case, the “true-m-analytic” spaces A2
(m) were studied by Ra-

mazanov [63] and Vasilevski [80–82]. According to [81] (see also another proof in [57]),

the decomposition (1.33) holds for the poly-Fock space A2
m(C, e−|z|2 dµ). On the other

hand, if Ω is the upper halfplane H1 with the Lebesgue measure, then L2(H1) decom-

poses into the orthogonal sum of the spaces A2
(m)(H1) and their conjugates (see [80]

or [82, Theorem 3.3.5]), and (1.33) fails. It is natural to ask if Proposition 1.3.7 remains

true if ν(Ω) < +∞, without assuming Ω to be bounded.

1.4 Pushforward reproducing kernel

In this section we show how to transform a RK using a weighted change of variables.

First, we deal with abstract positive kernels [5], then we consider reproducing kernels in

Hilbert spaces.

Let X be a non-empty set. We denote by CX the complex vector space of all functions

X → C with pointwise operations. A family (Kx)x∈X with values in CX is called a positive

kernel on X if for every m in N, every x1, . . . , xm in X and every α1, . . . , αm in C,

m∑
r,s=1

αrαsKxr(xs) ≥ 0.

Proposition 1.4.1. Let X, Y be non-empty sets, ψ : Y → X and J : Y → C be some func-

tions, and (Kx)x∈X be a positive kernel on X. Then the family (Lu)u∈Y , defined by

Lu(v) := J(u) J(v)Kψ(u)(ψ(v)),

is a positive kernel on Y .

Proof. Letm ∈ N, u1, . . . , um ∈ Y , α1, . . . , αm ∈ C. For every s in {1, . . . ,m} put xs := ψ(us)

and βs := J(us)αs. Then

m∑
r,s=1

αrαsLur(us) =
m∑

r,s=1

βrβsKxr(xs) ≥ 0.
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1 Polyanalytic Kernels in the Unit Ball

Let X be a non-empty set. We say that H is a Hilbert space of functions on X if H is a

vector subspace of CX , provided with an inner product and complete with respect to the

corresponding norm. Furthermore, if x ∈ X, K ∈ H and 〈f,K〉 = f(x) for every f in H,

then we say thatK is a reproducing kernel of H at the point x. In case of existence, this

function is unique.

Proposition 1.4.2. Let X, Y be non-empty sets, ψ : Y → X and J : Y → C be some func-

tions, H1 be a Hilbert space of functions over X, H2 be a Hilbert space of functions over Y ,

and

(Uf)(z) := J(z)f(ψ(z))

be a well-defined unitary operator mapping H1 onto H2. Suppose that u ∈ Y andK be the

reproducing kernel of H1 at the point ψ(u). Then the function L : Y → C, defined by the

following rule, is the reproducing kernel of H2 at the point u:

L(v) := J(u) J(v)K(ψ(v)).

Proof. Let g ∈ H2 and f = U−1g. Then

g(u) = J(u)f(ψ(u)) = J(u)〈f,K〉H1 = 〈g, J(u)UK〉H2 .

Defining L by L(v) = J(u)(UK)(v) = J(u)J(v)K(ψ(v)), we get the RK of H2 at u.

Proposition 1.4.3. Let X, Y be non-empty sets, ψ : Y → X and J : Y → C be some func-

tions, H1 be a Hilbert space of functions over X with reproducing kernel (Kx)x∈X , H2 be a

Hilbert space of functions over Y , and

(Uf)(z) := J(z)f(ψ(z))

be a well-defined unitary operator mapping H1 onto H2. Then H2 is a RKHS, and its

reproducing kernel (Lu)u∈Y is given by

Lu(v) = J(u) J(v)Kψ(u)(ψ(v)).

Proof. Apply Proposition 1.4.2 at every point u of Y .
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1.5 Reproducing kernel on the unit ball

As a simple application of this scheme, let us express the Berezin transform in H2 via

the Berezin transform in H1. Given a Hilbert space H, we denote by B(H) the C*-algebra

of all bounded linear operators acting in H. Given a set X, we denote by B(X) the

Banach space of all bounded functions on X, with the supremum norm. If H is a RKHS

over X and its RK satisfies ‖Kx‖H 6= 0 for every x in X, then the Berezin transform

BerH : B(H)→ B(X) is defined by

BerH(A)(x) :=
〈AKx, Kx〉H
〈Kx, Kx〉H

(A ∈ B(H), x ∈ X).

Proposition 1.4.4. In the conditions of Proposition 1.4.3, suppose that ‖Kx‖H1 6= 0 for

every x in X and J(u) 6= 0 for every u in Y . Then

BerH2(A)(u) = BerH1(U∗AU)(ψ(u)) (A ∈ B(H2), u ∈ Y ).

Proof. As we have seen in Proposition 1.4.2, Lu(v) = J(u)(UKψ(u))(v). Therefore,

BerH2(A)(u) =
〈ALu, Lu〉H2

‖Lu‖2
=
|J(u)|2〈AUKψ(u), UKψ(u)〉H2

|J(u)|2‖UKψ(u)‖2

=
〈U∗AUKψ(u), Kψ(u)〉H1

‖Kψ(u)‖2
= BerH1(U∗AU)(ψ(u)).

Corollary 1.4.5. In the conditions of Proposition 1.4.4, suppose that BerH1 is injective.

Then BerH2 is also injective. Moreover, if ψ is a bijection, than the injectivity of BerH1 is

equivalent to the injectivity of BerH2 .

1.5 Reproducing kernel on the unit ball

In this section we consider the domain Ω = Bn with the standard radial measure µα, given

by (1.27). Using the weighted mean value property and appropriate unitary operators,

we compute the RK ofA2
m(Bn, µα).
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1 Polyanalytic Kernels in the Unit Ball

On the unit ball biholomorphisms

For a fixed a in Bn \ {0}, we denote by ϕa the function Bn → Bn, defined by

ϕa(z) :=
a− 〈z,a〉〈a,a〉 a−

√
1− |a|2

(
z − 〈z,a〉〈a,a〉a

)
1− 〈z, a〉

. (1.34)

For a = 0, ϕa(z) := z. It is well known [70, Theorem 2.2.2] that for every a in Bn, ϕa is a

biholomorphism of Bn, ϕa(ϕa(z)) = z for every z in Bn, ϕa(0) = a, ϕa(a) = 0, and

1− 〈ϕa(z), ϕa(w)〉 =
(1− 〈a, a〉)(1− 〈z, w〉)
(1− 〈z, a〉)(1− 〈a, w〉)

. (1.35)

Here are particular cases of (1.35), with w = z and w = 0, respectively:

1− |ϕa(z)|2 =
(1− |a|2)(1− |z|2)

|1− 〈z, a〉|2
, (1.36)

1− 〈ϕa(z), a〉 =
1− |a|2

1− 〈z, a〉
. (1.37)

The real Jacobian of ϕa is [87, Lemma 1.7]

(JRϕa)(z) =

(
1− |a|2

|1− 〈z, a〉|2

)n+1

. (1.38)

We denote by ρBn(z, w) the expression |ϕz(w)|, known as the pseudohyperbolic distance

between z and w, see [87, Corollary 1.22] or [18]. Formula (1.36) provides a simple recipe

to compute ρBn(z, w).

A factor to preserve the polyanalyticity

Definition 1.5.1. Given a in Bn, we define pm,a : Bn → C by

pm,a(z) :=

(
1− 〈a, z〉
1− 〈z, a〉

)m−1

.

In the one-dimensional case, the function pm,a was introduced and studied by Pessoa [59].

As it is shown in the proof of Lemma 1.5.3, the main purpose of pm,a is to eliminate the

denominators in the multi-powers of ϕa(z).
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1.5 Reproducing kernel on the unit ball

Lemma 1.5.2. For every a, z in Bn,

|pm,a(z)| = 1, (1.39)

pm,a(ϕa(z))pm,a(z) = 1. (1.40)

Proof. Formula (1.39) follows directly from the definition of pm,a. Identity (1.40) is easy

to verify using (1.37).

Lemma 1.5.3. Let a ∈ Bn and f ∈ Am(Bn). Then (f ◦ ϕa) · pm,a ∈ Am(Bn).

Proof. Let f be of the form (1.4). Denote by Na(z) the numerator of (1.34); it is a polyno-

mial of degree 1 in z1, . . . , zn. Then,

f(ϕa(z))pm,α(z) =

(
1− 〈a, z〉
1− 〈z, a〉

)m−1 ∑
|j|<m

hj(ϕa(z))
Na(z)

j

(1− 〈a, z〉)|j|

=
∑
|j|<m

hj(ϕa(z))

(1− 〈z, a〉)m−1
Na(z)

j
(1− 〈a, z〉)m−1−|j|.

The quotients in the last sum are analytic functions of z. The multi-power Na(z)
j

is

a polynomial in z1, . . . , zn of total degree |j|, and the expression (1 − 〈a, z〉)m−1−|j| is

a polynomial in z1, . . . , zn of total degree m − 1 − |j|. Therefore, the whole sum is a

polynomial in z1, . . . , zm of total degree at mostm−1, with some analytic coefficients.

A factor to preserve the norm

Remark 1.5.4. In the upcoming formula for gα,a and in some other formulas, we work

with (non necesarily integer) powers of complex numbers. Given t in C \ {0} and β in C,

we define tβ as exp(β log(t)), where log(t) = logR |t|+ i arg(t), logR |t| is the real logarithm

of |t|, and arg(t) is the principal argument of t, belonging to (−π, π].

Given a in Bn, we denote by gα,a the following function Bn → C:

gα,a(z) :=
(1− |a|2)

n+1+α
2

(1− 〈z, a〉)n+1+α
. (1.41)
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1 Polyanalytic Kernels in the Unit Ball

This function and their properties stated below appear in Vukotić [83]. See also [87,

Proposition 1.13] or [22, formula (2.4)]. By (1.37),

gα,a(ϕa(z))gα,a(z) = 1. (1.42)

By (1.42), (1.36), and (1.38),

|gα,a(ϕa(w))|2(JRϕa)(w)(1− |ϕa(w)|2)α = (1− |w|2)α. (1.43)

Using (1.43) and the change of variables w = ϕa(z), one easily shows that for every f in

f ∈ L2(Bn, µα),

‖(f ◦ ϕa) · gα,a‖L2(Bn,µα) = ‖f‖L2(Bn,µα). (1.44)

A weighted shift operator preserving A2
m(Bn, µα)

Definition 1.5.5. Given a in Bn, we define Ua : A2
m(Bn, µα)→ A2

m(Bn, µα) by

(Uaf)(z) := f(ϕa(z))pm,a(z)gα,a(z).

Proposition 1.5.6. Let a ∈ Bn. Then Ua is a unitary operator inA2
m(Bn, µα), and U2

a = I.

Proof. Given f inA2
m(Bn, µα), Lemma 1.5.3 assures that Uaf ∈ Am(Bn). Formula (1.44),

combined with (1.39), implies that Ua is an isometry. Finally, (1.40) and (1.42) yield the

involutive property U2
a = I.

Computation of the RK on the unit ball

Recall that R(α,β)
m is defined by (1.19) and ρBn(z, w) denotes |ϕz(w)|.

Theorem 1.5.7. Let n,m ∈ N and α > −1. Then for every z in Bn, the following function

Kz is the reproducing kernel ofA2
m(Bn, µα) at the point z:

Kz(w) =
(1− 〈z, w〉)m−1

(1− 〈w, z〉)n+m+α
R

(α,n−1)
m−1 (ρBn(z, w)2). (1.45)
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1.5 Reproducing kernel on the unit ball

Proof. For z = 0, the function defined by the right-hand side of (1.45) simplifies to

K0(w) = R
(α,n−1)
m−1 (|w|2).

Theorem 1.3.3 means that K0 is indeed the RK at the point 0. Now, for z in Bn, we apply

Proposition 1.4.2 with H1 = H2 = A2
m(Bn), ϕz instead of ψ, and Jz := pm,zgα,z. Since

ϕz(z) = 0, we obtain

Kz(w) = Jz(z)Jz(w)K0(ϕz(w)). (1.46)

It is easy to see that Jz(z) = (1 − |z|2)−
n+1+α

2 . So, after some simplifications, we arrive

at (1.45):

Kz(w) =
1

(1− |z|2)
n+1+α

2

(
1− 〈z, w〉
1− 〈w, z〉

)m−1
(1− |z|2)

n+1+α
2

(1− 〈w, z〉)n+1+α
R

(α,n−1)
m−1 (|ϕz(w)|2)

=
(1− 〈z, w〉)m−1

(1− 〈w, z〉)n+m+α
R

(α,n−1)
m−1 (ρBn(z, w)2).

Formula (1.45) is a natural generalization of the previous results: [51, 58] for n = 1 and

α = 0, [35] for n = 1 and α > −1, and [87, Theorem 2.7] for m = 1.

Corollary 1.5.8. Let n,m ∈ N and α > −1. Then for every z in Bn,

‖Kz‖2
A2
m(Bn,µα) = Kz(z) =

(
n+m− 1

n

)
B(α + 1, n)

B(α +m,n)

1

(1− |z|2)n+α+1
. (1.47)

Remark 1.5.9. We get other formulas, equivalent to (1.45), using (1.36) and (1.12):

Kz(w) =
(1− 〈z, w〉)m−1

(1− 〈w, z〉)n+m+α

(−1)m−1 B(α + 1, n)

B(α +m,n)
P

(α,n)
m−1 (2ρBn(z, w)2 − 1) (1.48)

=
(1− 〈z, w〉)m−1

(1− 〈w, z〉)n+m+α

(−1)m−1 B(α + 1, n)

B(α +m,n)
P

(α,n)
m−1

(
1− 2(1− |z|2)(1− |w|2)

|1− 〈w, z〉|2

)
(1.49)

=
(1− 〈z, w〉)m−1

(1− 〈w, z〉)n+m+α

(−1)m−1 Γ(α + 1)

Γ(α + n+ 1) (m− 1)!
×

×
m−1∑
s=0

(−1)s
(
m− 1

s

)
Γ(α +m+ n+ s)

Γ(α + s+ 1)

(
(1− |z|2)(1− |w|2)

|1− 〈w, z〉|2

)s
. (1.50)

Remark 1.5.10. If M is a unitary n by n matrix, then the RK computed in Theorem 1.5.7

is invariant under the simultaneous action of M in both arguments:

KMz(Mw) = Kz(w) (z, w ∈ Bn).
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1 Polyanalytic Kernels in the Unit Ball

Therefore, by [57, Proposition 4.1], the spaceA2
m(Bn, µα) is invariant under the action of

the rotation operator

(RMf)(z) := f(M−1z).

This follows also directly from Proposition 1.2.7. Notice that the unitary matrices include

permutation matrices, diagonal matrices with unimodular complex entries, and real

rotations in any two coordinates.

Remark 1.5.11. Generalizing ideas of this section, it is possible to construct a unitary

weighted shift operator Uϕ acting inA2
m(Bn, µα), for every biholomorphism ϕ of Bn.

The next result was published by Engliš [21, Section 2] for RKHS of harmonic functions.

We reformulate it for our situation and recall the idea of the proof.

Proposition 1.5.12. Let H = A2
m(Bn, µα), with n ≥ 1 and m ≥ 2. Then BerH is not

injective.

Proof. The functions f(z) = z1 and g(z) = z1 are linearly independent elements of H.

Therefore, the operator Sh = 〈h, f〉Hf − 〈h, g〉Hg is not zero, but the Berezin transform

maps it into the zero function.

1.6 Reproducing kernel on the Siegel domain

Let n,m ∈ N and α > −1. In this section we compute the RK of the space A2
m(Hn, να),

where Hn is the standard Siegel domain (which can be considered as an unbounded

realization of the unit ball) and να is a usual weighted measure on Hn:

Hn := {ξ = (ξ′, ξn) ∈ Cn−1 × C : Im(ξn)− |ξ′|2 > 0}, (1.51)

dνα(ξ) :=
cα
4

(Im(ξn)− |ξ′|2)α dµ(ξ). (1.52)

For this purpose, we will construct a unitary operator V : A2
m(Bn, µα) → A2

m(Hn, να),

using some recipes from [62, Section 2] and an analog of the Pessoa factor which helps

to preserve the polyanalyticity.
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1.6 Reproducing kernel on the Siegel domain

Cayley transform

Following [62, Section 2], we employ the biholomorphism ω : Bn → Hn defined by

ω(z) :=

(
i

z1

1 + zn
, . . . , i

zn−1

1 + zn
, i

1− zn
1 + zn

)
.

Its inverse ψ : Hn → Bn is given by

ψ(ξ) :=

(
− 2 i ξ1

1− i ξn
, . . . ,− 2 i ξn−1

1− i ξn
,

1 + i ξn
1− i ξn

)
.

By a direct computation,

1− 〈ψ(ξ), ψ(η)〉 = 4
ξn−ηn

2 i
− 〈ξ′, η′〉

(1− i ξn)(1 + i ηn)
. (1.53)

In particular,

1− |ψ(ξ)|2 = 4
Im(ξn)− |ξ′|2

|1− i ξn|2
. (1.54)

The complex Jacobian matrices of ψ and ω are triangular, and their determinants are

easy to compute:

(JCω)(z) = − 2 in

(1 + zn)n+1
, (JCψ)(ξ) = − (−2 i)n

(1− i ξn)n+1
. (1.55)

Therefore, the real Jacobians of ω and ψ are

(JRω)(z) =
4

|1 + zn|2(n+1)
, (JRψ)(ξ) =

4n

|1− i ξn|2(n+1)
. (1.56)

Pseudohyperbolic distance on the Siegel domain

Definition 1.6.1. Define a distance on Hn by

ρHn(ξ, η) := ρBn(ψ(ξ), ψ(η)). (1.57)

The following proposition provides an efficient formula to compute ρHn(ξ, η).
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1 Polyanalytic Kernels in the Unit Ball

Proposition 1.6.2. For every ξ, η in Hn,

1− ρHn(ξ, η)2 =
(Im(ξn)− |ξ′|2)(Im(ηn)− |η′|2)∣∣∣∣ξn − ηn2 i

− 〈ξ′, η′〉
∣∣∣∣2 . (1.58)

Proof. Substitute ψ(ξ) and ψ(η) instead of z and w in (1.36):

1− ρHn(ξ, η)2 = 1− ρBn(ψ(ξ), ψ(η))2 =
(1− |ψ(ξ)|2)(1− |ψ(η)|2)

|1− 〈ψ(ξ), ψ(η)〉|2
.

Applying (1.53) and (1.54) we obtain (1.58).

Remark 1.6.3. For n = 1, formulas (1.57) and (1.58) simplify to

ρH1(ξ, η) =
|ξ − η|
|ξ − η|

, 1− ρH1(ξ, η)2 =
4 Im(ξ) Im(η)

|ξ − η|2
. (1.59)

A factor to preserve the norm when passing from Hn to Bn

The material of this subsection is equivalent to some computations from [62, Section 2].

Define hα : Hn → C by

hα(ξ) :=

(
2

1− i ξn

)n+α+1

. (1.60)

Lemma 1.6.4. For every ξ in Hn,

|hα(ξ)|2 =
4(1− |ψ(ξ)|2)α(JRψ)(ξ)

(Im(ξn)− |ξ′|2)α
. (1.61)

For any z in Bn,

1

4
|hα(ω(z))|2

(
1− |z|2

|1 + zn|2

)α
(JRω)(z) = (1− |z|2)α. (1.62)

Proof. Formula (1.61) is obtained by (1.54) and (1.56). Then (1.62) follows from (1.61)

and the well-known formula for the Jacobian of the inverse function.

Lemma 1.6.5. Let u ∈ L2(Bn, µα). Then

‖(u ◦ ψ) · hα‖L2(Hn,να) = ‖u‖L2(Bn,µα). (1.63)
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1.6 Reproducing kernel on the Siegel domain

Proof. First, using (1.54), we observe that the change of variable z = ψ(ζ) transforms the

weight function in the following way:

(Im(ζn)− |ζ ′|2)α =

(
1− |z|2

|1 + zn|2

)α
.

Apply this change of variables in the integral:

‖(u ◦ ψ) · hα‖2
L2(Hn,να) =

cα
4

∫
Hn
|u(ψ(ζ))|2|hα(ζ)|2(Im(ζn)− |ζ ′|2)αdµ(ζ)

= cα

∫
Bn
|u(z)|2|hα(ω(z))|2

(
1− |z|2

|1 + zn|2

)α
(JRω)(z) dµ(z)

= cα

∫
Bn
|u(z)|2(1− |z|2)αdµ(z) = ‖u‖2

L2(Bn,µα).

A factor to preserve the polyanalyticity when passing from

the unit ball to the Siegel domain

Definition 1.6.6. Define qm : Hn → C,

qm(ξ) :=

(
1 + i ξn
1− i ξn

)m−1

.

Lemma 1.6.7. Let f ∈ Am(Bn). Then (f ◦ ψ) · qm ∈ Am(Hn).

Proof. This proof is similar to the proof of Lemma 1.5.3. The main idea is that the

factor (1 + i ξn)m−1, appearing in the numerator of qm(ξ), cancels the denominators of

the expressions ψ(ξ)
j
, where |j| < m. We represent f in the form (1.4), compose with ψ,

and multiply by qm:

u(ξ) := (f ◦ ψ)(ξ)qm(ξ) =
∑
|j|≤m

hj(ψ(ξ))

(
n−1∏
s=1

(2 i ξs)
js

(1 + i ξn)js

)
(1− i ξn)jn

(1 + i ξn)jn

(1 + i ξn)m−1

(1− i ξn)m−1

=
∑
|j|≤m

hj(ψ(ξ))

(1− i ξn)m−1

(
n−1∏
s=1

(2 i ξs)
js

)
(1− i ξn)jn(1 + i ξn)m−|j|−1.

For each j, the corresponding summand is the product of an analytic function by a

polynomial in ξ1, . . . , ξn of total degree m− 1.
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1 Polyanalytic Kernels in the Unit Ball

Remark 1.6.8. Another way to prove Lemma 1.6.7, computing D
j
u, seems to be more

complicated. We will show it only for n = 2 and m = 2. In this case,

u(ξ) =
1 + i ξ2

1− i ξ2

f

(
− 2 i ξ1

1− i ξ2

,
1 + i ξ2

1− i ξ2

)
,

By the well-known chain rule and product rule for Wirtinger derivatives,

(D
(1,0)

u)(ξ) =
2 i(D

(1,0)
f)(ψ(ξ))

1− i ξ2

,

(D
(0,1)

u)(ξ) =
i f(ψ(ξ))

1− i ξ2

+
2
((
ξ1D

(1,0) − iD
(0,1)
)
f
)

(ψ(ξ))

(1− i ξ2)(1 + i ξ2)
,

(D
(2,0)

u)(ξ) =
−4(D

(2,0)
f)(ψ(ξ))

(1− i ξ2)(1 + i ξ2)
,

(D
(1,1)

u)(ξ) =
4
((

i ξ1D
(2,0)

+D
(1,1)
)
f
)

(ψ(ξ))

(1− i ξ2)(1 + i ξ2)2
,

(D
(0,2)

u)(ξ) =
4
((
ξ2

2
D

(2,0) − 2 i ξ1D
(1,1) −D(0,2)

)
f
)

(ψ(ξ))

(1− i ξ2)(1 + i ξ2)3
.

Since f ∈ A2(Bn), we conclude that u ∈ A2(Hn).

A weighted change of variables which unitarily maps

A2
m(Bn, µα) onto A2

m(Hn, να)

Definition 1.6.9. Define V : A2
m(Bn, µα)→ A2

m(Hn, να) by V u := (u ◦ ψ) · hα · qm, i.e.,

(V u)(ξ) := u(ψ(ξ))hα(ξ)qm(ξ).

Proposition 1.6.10. V is a well-defined unitary operatorA2
m(Bn, µα)→ A2

m(Hn, να).

Proof. Lemma 1.6.7 assures that V u ∈ Am(Hn) for every u inA2
m(Bn, µα). Lemma 1.6.5,

combined with the identity |qm(ξ)| = 1, provides the isometric property of V . It is easy to

verify that the adjoint operator V ∗ acts by

(V ∗f)(z) =
f(ω(z))

hα(ω(z))qm(ω(z))
, (1.64)

and that V ∗ is the inverse operator to V .
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1.6 Reproducing kernel on the Siegel domain

Computation of the RK on the Siegel domain

We define tβ via the principal argument of t, see Remark 1.5.4. The formulas (tu)β = tβuβ

and (t/u)β are not always true. Let us recall some sufficient conditions for these formulas

to be true.

Lemma 1.6.11. Let t, u ∈ C \ {0} and β ∈ C.

1. If Re(t) > 0 and Re(u) > 0, then (tu)β = tβuβ.

2. If Re(t) > 0 and Re(t/u) > 0, then (t/u)β = tβ/uβ.

Proof. 1. The assumptions on t and u imply that arg(tu) = arg(t) + arg(u).

2. Follows from part 1 applied to t and u/t.

Lemma 1.6.12. Let ξ, η ∈ Hn and β ≥ 0. Then

(1− 〈ψ(ξ), ψ(η)〉)β =
4β
(
ξn−ηn

2 i
− 〈ξ′, η′〉

)β
(1− i ξn)β (1 + i ηn)β

.

Proof. Due to (1.53), 1− 〈ψ(ξ), ψ(η)〉 = t/(uv), where

t := 4

(
ξn − ηn

2 i
− 〈ξ′, η′〉

)
, u := 1− i ξn, v := 1 + i ηn.

Since |ψ(ξ)| < 1 and |ψ(η)| < 1, we obtain

Re(t/(uv)) = Re(1− 〈ψ(ξ), ψ(η)〉) > 0.

Furthermore, Re(u) = 1 + Im(ξn) > 0 and Re(v) = 1 + Im(ηn) > 0. So, by Lemma 1.6.11,(
t

uv

)β
=

tβ

(uv)β
=

tβ

uβvβ
.

Theorem 1.6.13. Let n,m ∈ N and α > −1. Then for every ξ in Hn, the following function

K̃ξ is the reproducing kernel ofA2
m(Hn, να) at the point ξ:

K̃ξ(η) =

(
ξn−ηn

2 i
− 〈ξ′, η′〉

)m−1(
ηn−ξn

2 i
− 〈η′, ξ′〉

)n+m+α R
(α,n−1)
m−1 (ρHn(ξ, η)2). (1.65)
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1 Polyanalytic Kernels in the Unit Ball

Proof. Due to Proposition 1.6.10, we can apply Proposition 1.4.1 with H1 = Am(Bn, µα),

H2 = Am(Hn, να), and J(ξ) := hα(ξ)qm(ξ). So, for every ξ in Hn, the next function is the

RK ofAm(Hn, να) associated to the point ξ:

K̃ξ(η) = hα(ξ)qm(ξ)hα(η)qm(η)Kψ(ξ)(ψ(η)).

Substitute formula (1.45) for K:

K̃ξ(η) = hα(ξ)qm(ξ)hα(η)qm(η)
(1− 〈ψ(ξ), ψ(η)〉)m−1

(1− 〈ψ(η), ψ(ξ)〉)n+m+α R
(α,n−1)
m−1 (ρHn(ξ, η)2).

Then, substitute the definitions of hα, qm and use Lemma 1.6.12:

K̃ξ(η) = R
(α,n−1)
m−1 (ρHn(ξ, η)2)

2n+α+1(1 + i ηn)m−1

(1− i ηn)n+m+α

2n+α+1 (1− i ξn)m−1

(1 + i ξn)n+m+α

×
4m−1

(
ξn−ηn

2 i
− 〈ξ′, η′〉

)m−1

(1− i ξn)m−1 (1 + i ηn)m−1

(1 + i ξn)n+m+α (1− i ηn)n+m+α

4n+m+α
(
ηn−ξn

2 i
− 〈η′, ξ′〉

)n+m+α .

Simplifying this expression we obtain the right-hand side of (1.65).

Corollary 1.6.14. Let n,m ∈ N and α > −1. Then for every ξ in Hn,

‖K̃ξ‖2
A2
m(Hn,να) = K̃ξ(ξ) =

(
n+m− 1

n

)
B(α + 1, n)

B(α +m,n)

1

(Im(ξn)− |ξ′|2)α+n+1
. (1.66)

Remark 1.6.15. Analogously to the case of the unit ball, using (1.58) and (1.12), we get

the following formulas equivalent to (1.65):

K̃ξ(η) =

(
ξn−ηn

2 i
− 〈ξ′, η′〉

)m−1(
ηn−ξn

2 i
− 〈η′, ξ′〉

)n+m+α

(−1)m−1 B(α + 1, n)

B(α +m,n)
P

(α,n)
m−1 (2ρHn(ξ, η)2 − 1) (1.67)

=

(
ξn−ηn

2 i
− 〈ξ′, η′〉

)m−1(
ηn−ξn

2 i
− 〈η′, ξ′〉

)n+m+α

(−1)m−1 B(α + 1, n)

B(α +m,n)
×

× P (α,n)
m−1

(
1− 2(Im(ξn)− |ξ′|2)(Im(ηn)− |η′|2)∣∣ ξn−ηn

2 i
− 〈ξ′, η′〉

∣∣2
)

(1.68)

=

(
ξn−ηn

2 i
− 〈ξ′, η′〉

)m−1(
ηn−ξn

2 i
− 〈η′, ξ′〉

)n+m+α

(−1)m−1 Γ(α + 1)

Γ(α + n+ 1) (m− 1)!
×

×
m−1∑
s=0

(−1)s
(
m− 1

s

)
Γ(α +m+ n+ s)

Γ(α + s+ 1)

(
(Im(ξn)− |ξ′|2)(Im(ηn)− |η′|2)∣∣ ξn−ηn

2 i
− 〈ξ′, η′〉

∣∣2
)s

.

(1.69)
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1.6 Reproducing kernel on the Siegel domain

Remark 1.6.16. In the case n = 1, i.e., for the upper halfplane H1, formula (1.65) simpli-

fies to

K̃ξ(η) =

(
ξ−η
2 i

)m−1(
η−ξ
2 i

)m+α+1R
(α,0)
m−1

(
|ξ − η|2

|ξ − η|2

)
(ξ, η ∈ H1). (1.70)

In particular, forα = 0, this expression coincides with formula [58, Corollary 2.5] obtained

by another method.

Remark 1.6.17. Generalizing ideas of this work, it is possible to associate a unitary

operator (namely, a certain weighted shift) inA2
m(Hn, να) to every biholomorphism of the

Siegel domain Hn. In particular, using (1.65), we have verified that the spaceAm(Hn, να)

is invariant under the unweighted changes of variables, corresponding to the quasi-

parabolic, nilpotent, and quasi-nilpotent groups from [62, Section 3].
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2 Translation-Invariant Operators in

Reproducing Kernel Hilbert Spaces

2.1 Scope

This chapter contains the main part of this work, which is a general scheme to describe

the structure of some operator algebras. This scheme combine many ideas contained in

the papers by Vasilevski’s et al, with the theory of W*-algebras and group-representation.

We propose a more general approach to the description of commutative operator alge-

bras acting in RKHS over “tube” type domains. Many already known results are covered

by the scheme, see Section 2.9. Also a new case is proven to fit this scheme by the end of

this chapter: The radial basis function kernel on the complex domain. These results can

be found in the Preprint [38].

2.2 An analog of the Stone–Weierstrass theorem for

subalgebras of L∞

In this section we recall some facts about commutative W*-algebras. The main result,

Theorem 2.2.2, is an analog of the classic Stone–Weierstrass theorem adapted for W*-

subalgebras of L∞(X,µ). We use an information about W*-algebras from Dixmier [17],

Sakai [74], and Takesaki [77].

Given a Hilbert space H, we denote by B(H) the W*-algebra of bounded linear operators

acting on H and by WOT the weak operator topology in B(H). Given a subset S of B(H),

we denote by S ′ the centralizer or commutant of S in B(H), that is the set of all bounded
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2 Translation-Invariant Operators in Reproducing Kernel Hilbert Spaces

operators that commute with every operator in S. Given a subset S of B(H), we denote

by W ∗(S) the von Neumann algebra generated by S. It is known that W ∗(S) = (S ′)′.

In this section, X is a locally compact space and µ is a Radon measure whose support

is X. For simplicity, we additionally suppose that X is a σ-compact metric space. We

denote by τX or just by τ the weak-∗ topology in L∞(X,µ). Recall that if (an)n∈N is a

bounded sequence in L∞(X,µ) converging pointwise to a function b, then an
τ−→ b, i.e.,∫

X
anf dµ →

∫
X
bf dµ for every f in L1(X,µ). Indeed, if C < +∞ and ‖an‖∞ ≤ C for

every n, then the dominated convergence theorem can be applied with the “dominant

function” C|f |.

Given b in L∞(X,µ), let Mb : L2(X,µ)→ L2(X,µ) be the multiplication operator by b:

(Mbf)(x) := b(x)f(x).

We denote byMX the set of all such multiplication operators:

MX := {Mb : b ∈ L∞(X,µ)}.

It is well known and easy to see thatMX is a commutative W*-subalgebra of B(L2(X,µ)).

The function b 7→ Mb is an isometric isomorphism between the W*-algebras L∞(X,µ)

andMX . In particular, Mb1Mb2 = Mb1b2 = Mb2Mb1 , ‖Mb‖ = ‖b‖∞, and the spectrum of Mb

is the essential range of b. The τ-convergence of a net in L∞(X,µ) is equivalent to the

WOT-convergence of the corresponding multiplication operators. It can be shown that

M′
X =MX . (2.1)

The following proposition is well known. It can be proven by applying Luzin’s theorem [27,

Theorem 7.10] and the Tietze extension theorem, or by using techniques of C*- and W*-

algebras [77, proof of Theorem 3.1.2].

Proposition 2.2.1. Let Y be a compact Hausdorff space with a Radon measure µY . Then

closτY (C(Y )) = L∞(Y, µY ).

The next result is a generalization of Proposition 2.2.1 to spaces with infinite measure.

Notice thatA is not supposed to be closed or dense in the norm topology of Cb(X).

Theorem 2.2.2. Let X be a locally compact and σ-compact metric space, µ be a Radon

measure on X, andA be a self-adjoint unital subalgebra of Cb(X) separating points of X.

Then closτ (A) = L∞(X,µ).
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2.2 An analog of the Stone–Weierstrass theorem for subalgebras of L∞

Proof. We denote closτ (A) byW . Let (Kn)n∈N be an increasing compact covering of X.

In the steps 1–4 of the proof, Y is an arbitrary compact subset of X. We denote by

µY the restriction of µ, and by AY andWY the “restrictions” of the algebras A andW ,

respectively:

AY := {f |Y : f ∈ A}, WY := {f |Y : f ∈ W}.

Step 1. AY is a self-adjoint unital subalgebra ofC(Y ) that separates points of Y . So, by the

Stone–Weierstrass theorem,AY is dense in C(Y ) with respect to the uniform topology.

Step 2. We will prove that 1Y ∈ W . For every n in N, put

Zn := {x ∈ Kn : d(x, Y ) ≥ 1/n}.

Using Urysohn’s lemma, choose fn ∈ C(Kn, [0, 1]) such that

fn(y) = 1 (y ∈ Y ∩Kn), fn(x) = 0 (x ∈ Zn).

By Step 1, applied to Kn instead of Y , we find gn inA such that ‖gn|Kn − fn‖ < 1/n. Put

hn(x) := min{|gn(x)|, 1} =
|gn(x)|+ 1− ||gn(x)| − 1|

2
.

Then hn belong to the unital C*-algebra generated by gn; in particular, hn ∈ W . It is

easy to verify that the sequence (hn)n∈N is bounded in the uniform norm and converges

pointwise to 1Y . Therefore hn
τ−→ 1Y and 1Y ∈ W .

Step 3. We will prove thatWY is a τY -closed subset of L∞(Y, µY ). Let (fj)j∈J be a net

in WY that τY -converges to g ∈ L∞(Y, µY ). Choose uj ∈ W such that uj|Y = fj, put

vj = uj1Y , and denote by h the extension by zero of the function g to the domain X.

Then, by Step 2, vj ∈ W . The assumption fj
τY−→ g implies that vj

τX−→ h. Therefore h ∈ W
and g = h|Y ∈ WY .

Step 4. We will prove thatWY = L∞(Y, µY ). Combining Step 1 with Proposition 2.2.1 we

see that closτY (AY ) = L∞(Y, µY ). Since closτY (AY ) ⊆ closτY (WY ) =WY , we conclude that

WY = L∞(Y, µY ).

Step 5. Let f ∈ L∞(X,µ). For every n in N, applying the result of Step 4 to the compact

Y = Kn, find gn in W such that gn|Kn = f |Kn . By Step 2, gn1Kn ∈ W , i.e., f1Kn ∈ W .

The sequence (f1Kn)n∈N is bounded in the uniform norm and converges pointwise to f .

Therefore it converges to f in the topology τX , and f ∈ W .
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2 Translation-Invariant Operators in Reproducing Kernel Hilbert Spaces

2.3 Criterion for commutativity of a direct integral

of W*-algebras

For the definition and some properties of direct integrals see, for example, Dixmier [17,

Part II, Chapters 1–3], Folland [26, Section 7.4] and Takesaki [77, Section 4.8]. In this

section, we assume that (Ω, µ) is a σ-finite measure space and (Hξ)ξ∈Ω is a measurable

field of non-zero separable Hilbert spaces. By definition, this concept requires the

existence of a “fundamental sequence of measurable vector fields” (gj)j∈N such that for

every ξ in Ω, the sequence (gj(ξ))j∈N is complete inHξ, and for every j, k in N, the function

ξ 7→ 〈gj(ξ), gk(ξ)〉Hξ is measurable.

The following fact about the existence of a “measurable field of orthonormal bases”

uses the Gram–Schmidt orthogonalization; see detailed proofs in [17, Part II, Chapter 1,

Section 2, Lemma 1], [26, Proposition 7.19] or [77, Lemma 8.12].

Proposition 2.3.1. Let (Hξ)ξ∈Ω, (gj)j∈N be a measurable field of non-zero separable Hilbert

spaces, with dimensions dξ := dim(Hξ) ∈ N ∪ {∞}. Then {ξ ∈ Ω: dξ = m} is measurable

for every m in N ∪ {∞}. Moreover, there exists a sequence (bj)j∈N of vector fields with the

following properties:

• for each ξ ∈ Ω, (bj(ξ))
dξ
ξ=1 is an orthonormal basis for Hξ, and bj(ξ) = 0 for j >

dim(Hξ);

• for each j in N, there is a measurable partition of Ω, Ω = ∪∞k=1Ωj,k, such that on each

Ωj,k, bj(ξ) is a finite linear combination of the family (gk(ξ))k∈N, with coefficients

depending measurably on ξ.

We consider the following direct integral of W*-algebras:

A :=

∫ ⊕
Ω

B(Hξ) dµ(ξ). (2.2)

Recall that if S ∈ A and

S =

∫ ⊕
Ω

S(ξ) dµ(ξ),

then the norm ofS coincides with the essential supremum of the function ξ 7→ ‖S(ξ)‖B(Hξ):

‖S‖ := ess sup
ξ,µ

‖S(ξ)‖B(Hξ).
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2.3 Criterion for commutativity of a direct integral of W*-algebras

In particular, this means that S = 0 if and only if the equality S(ξ) = 0 holds for µ-almost

all points ξ.

Proposition 2.3.2. Algebra A defined by (2.2) is commutative if, and only if, µ(Ω2) = 0,

where

Ω2 := {ξ ∈ Ω: dim(Hξ) ≥ 2}.

Proof. Let Ω1 := {ξ ∈ Ω: dim(Hξ) = 1}. For every ξ in Ω1, we have dim(Hξ) = 1, and

B(Hξ) is commutative.

1. Suppose that µ(Ω2) = 0. Given S1, S2 inA, the operators (S1S2)(ξ) and (S2S1)(ξ) coin-

cide for every ξ in Ω1, which implies that S1S2 = S2S1. So, in this case,A is commutative.

2. Suppose that µ(Ω2) > 0. We are going to prove thatA is not commutative. Let (bj)j∈N

be a sequence like in Proposition 2.3.1. In particular, for every ξ in Ω2, the vectors b1(ξ)

and b2(ξ) are orthonormal. Given

f = (f(ξ))ξ∈Ω ∈
∫ ⊕

Ω

Hξ dµ(ξ),

we define S1f and S2f by

(S1f)(ξ) :=

〈f(ξ), b1(ξ)〉b2(ξ), ξ ∈ Ω2,

0, ξ ∈ Ω1;

(S2f)(ξ) :=

〈f(ξ), b2(ξ)〉b1(ξ), ξ ∈ Ω2,

0, ξ ∈ Ω1.

It is easy to see that S1, S2 ∈ A. For every ξ in Ω2, the restrictions of the operators S1(ξ)

and S2(ξ) to span(b1(ξ), b2(ξ)) have the following matrices with respect to the orthonormal

basis b1(ξ), b2(ξ): [
0 0

1 0

]
,

[
0 1

0 0

]
.

In particular, ‖(S1S2 − S2S1)(ξ)‖B(Hξ) = 1 for every ξ in Ω2, and S1S2 6= S2S1.
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2 Translation-Invariant Operators in Reproducing Kernel Hilbert Spaces

2.4 Translation-invariant operators in L2(G× Y )

Let us recall some well-known concepts and facts related to the translation operators

and to the Fourier transform on LCAG [26, 41]. In this section, we accept the following

assumption about G and Y .

Assumption 1. Let G be a locally compact abelian group (LCAG) with a Haar measure

ν, and Y be a measure space with a measure λ. We suppose that G is σ-compact and

metrizable, λ is σ-finite, and the spaces L2(G, µ) and L2(Y, λ) are separable. The cartesian

product G× Y is considered with the product measure ν × λ.

We denote by Ĝ the dual group of G. The conditions on G imply that Ĝ is also σ-compact

and metrizable; see, for example, [41, (24.48)]. Let ν be a Haar measure onG. The Fourier

transform of a function f in L1(G) is defined by

(F1f)(ξ) :=

∫
G

ξ(x) f(x) dν(x) (ξ ∈ Ĝ).

Let ν̂ be the dual Haar measure on Ĝ, such that ‖F1f‖L2(Ĝ,ν̂) = ‖f‖L2(G) for every f in

L1(G)∩L2(G). We writeLp(Ĝ) instead ofLp(Ĝ, ν̂) and denote byF the Fourier–Plancherel

transform which coincides with F1 on L1(G) ∩ L2(G)

Given a in G, we denote by ρG(a) the translation operator acting in L2(G) by the rule

(ρG(a)f)(x) := f(x− a).

Given a in G, we denote by Ea the function Ĝ→ C defined by Ea(ξ) := ξ(a). Let ρĜ(a) be

the operator of multiplication by E−a:

ρĜ(a) := ME−a . (2.3)

It is well known and easy to see that (ρG, L
2(G)) and (ρĜ, L

2(Ĝ)) are (strongly continuous)

unitary representations of G, and the Fourier–Plancherel transform intertwines them:

FρG(a)F ∗ = ρĜ(a). (2.4)

We shortly denote by ρ′
Ĝ

the centralizer of the set {ρĜ(a) : a ∈ G}. A similar notation is

used through this work also for other unitary representations.

The following proposition describes the operators acting in B(L2(Ĝ)) and commuting

with the multiplications by characters of Ĝ.
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2.4 Translation-invariant operators in L2(G× Y )

Proposition 2.4.1. W ∗({Ea : a ∈ G}) = L∞(Ĝ), and ρ′
Ĝ

=MĜ.

Proof. The first statement follows from Theorem 2.2.2 and the fact that the set {E−a : a ∈
G} separates the points of Ĝ (see, for example, [41, Theorem (22.17)]). The second

statement is a consequence of formula (2.1).

An operator A of the class B(L2(G)) is called a multiplier of L2(G) if A commutes with

ρG(a) for every a inG. The next proposition, being an equivalent form of Proposition 2.4.1,

means that the Fourier–Plancherel transform converts every multiplier of L2(G) into

a multiplication operator in L2(Ĝ). See Larsen [52, proof of Theorem 4.1.1] for a more

constructive proof.

Proposition 2.4.2. Fρ′GF
∗ =MĜ.

Here Fρ′GF
∗ is a short notation for {FAF ∗ ∈ B(L2(G)) : ∀a ∈ G ρG(a)A = AρG(a)}.

Corollary 2.4.3. Let Ω be a measurable subset of Ĝ and let A ∈ B(L2(Ω)). Suppose that A

commutes with the multiplications by all characters of Ĝ restricted to Ω:

∀a ∈ G AMEa|Ω = MEa|ΩA.

Then A ∈MΩ, i.e., there exists b in L∞(Ω) such that A = Mb.

Proof. Define B : L2(Ĝ)→ L2(Ĝ) by the following rule:

(Bf)(ξ) :=

(Af |Ω)(ξ), ξ ∈ Ω;

0, ξ /∈ Ω.

It is easy to see that BMEa = MEaB for every a in G. By Proposition 2.4.1, there exists

b1 ∈ L∞(Ĝ) such that B = Mb1 . Put b = b1|Ω. Then A = Mb.

Now we pass to the domains G × Y and Ĝ × Y , the spaces L2(G × Y ) and L2(Ĝ × Y ),

and the natural unitary representations of G in these spaces. It is well known [17, Part II,

Chapter 1, Section 8, Proposition 11 and its Corollary] that

L2(Ĝ× Y ) = L2(Ĝ)⊗ L2(Y ) =

∫ ⊕
Ĝ

L2(Y ) dν̂(ξ). (2.5)
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2 Translation-Invariant Operators in Reproducing Kernel Hilbert Spaces

Set ρG×Y (a) := ρG(a) ⊗ IL2(Y ) for each a ∈ G. More explicitly, ρG×Y is defined by (0.1).

Then, ρG×Y is a unitary representation of G in L2(G × Y ). We are going to understand

the structure of the centralizer ρ′G×Y . The crucial role here is played by the operator

F ⊗ IL2(Y ) : L2(G× Y )→ L2(Ĝ× Y ), which we call “the Fourier transform with respect

to the first coordinate” and denote shortly by F ⊗ I.

For each a in G, we set ρĜ×Y (a) := ρĜ(a)⊗ IL2(Y ), i.e.,

(ρĜ×Y (a)g)(ξ, y) = E−a(ξ)g(ξ, y) (a ∈ G, ξ ∈ Ĝ, y ∈ Y ). (2.6)

Then ρĜ×Y is a unitary representation ofG in L2(Ĝ×Y ). Formula (2.4) implies that F ⊗ I
intertwines ρG×Y with ρĜ×Y :

(F ⊗ I)ρG×Y (a)(F ⊗ I)∗ = ρĜ×Y (a). (2.7)

Lemma 2.4.4. Let H1 and H2 be separable Hilbert spaces, (Aj)j∈J be a net in B(H1), and

B ∈ B(H1). Then (Aj ⊗ IH2)j∈J weakly converges to B ⊗ IH2 if and only if (Aj)j∈J weakly

converges to B.

Proof. Given f, g in H1 and u, v in H2,

〈(Aj ⊗ IH2)f ⊗ u, g ⊗ v〉H1⊗H2 = 〈Ajf, g〉H1 〈u, v〉H2 ,

〈(B ⊗ I)f ⊗ u, g ⊗ v〉H1⊗H2 = 〈Bf, g〉H1 〈u, v〉H2 .

These identities yield immediately the sufficiency part. For the necessity part, we take u

and v to be the same normalized vector in H2.

Lemma 2.4.5. Let H1 and H2 be separable Hilbert spaces, and S be a selfadjoint subset of

B(H1). Then

W ∗({A⊗ IH2 : A ∈ S}) = W ∗(S)⊗ (CIH2).

Proof. Let R be the unital algebra generated by S, and P = {A ⊗ IH2 : A ∈ R}. Then,

obviously, P is the unital algebra generated by {A⊗ IH2 : A ∈ S}. Furthermore,

W ∗({A⊗ IH2 : A ∈ S}) = closWOT(P ) = {B ⊗ IH2 : B ∈ closWOT(R)}
= closWOT(R)⊗ (CIH2) = W ∗(S)⊗ (CIH2).

The second equality in this chain follows from Lemma 2.4.4.
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Proposition 2.4.6.

(F ⊗ I)ρ′G×Y (F ⊗ I)∗ =

∫ ⊕
Ĝ

B(L2(Y )) dν̂. (2.8)

Equivalently,

(F ⊗ I)ρ′G×Y (F ⊗ I)∗ =MĜ ⊗ B(L2(Y )). (2.9)

Proof. Since F ⊗ I is a unitary operator and (F ⊗ I)ρG×Y (F ⊗ I)∗ = ρĜ×Y , we have

(F ⊗ I)(ρG×Y )′(F ⊗ I)∗ = (ρĜ×Y )′.

Furthermore, by Lemma 2.4.5,

W ∗(ρĜ×Y ) = W ∗({ρĜ(a)⊗ IL2(Y ) : a ∈ G}) = W ∗(ρĜ)⊗ (CIL2(Y )).

Now we apply the fact [74, Theorem 2.8.1], [77, Theorem 5.9] that the centralizer of

the tensorial product is the tensor product of the corresponding centralizers, and use

Proposition 2.4.1:

ρ′
Ĝ×Y = W ∗(ρĜ×Y )′ = W ∗(ρĜ)′ ⊗ B(L2(Y )) =MĜ ⊗ B(L2(Y )).

We have proven (2.9). Furthermore, it is well known (see a more general result in [77,

Corollary 8.30]) that

MĜ =

∫ ⊕
Ĝ

C dν̂.

Now, using the “distributive relation” between the direct integral and the tensor product

of von Neumann algebras [17, Part II, Chapter 3, Section 4, Proposition 4], we obtain (2.9):

ρ′
Ĝ×Y =MĜ ⊗ B(L2(Y )) =

(∫
Ĝ

C dν̂

)
⊗ B(L2(Y )) =

∫
Ĝ

B(L2(Y )) dν̂.

The next corollary gives a constructive recipe for the decomposition (2.8).

Corollary 2.4.7. Let S ∈ ρ′G×Y . For every ξ in Ĝ, define Aξ : L2(Y )→ L2(Y ) by

(Aξh)(v) =
(F ⊗ I)S(f ⊗ h)(ξ, v)

(F1f)(ξ)
(h ∈ L2(Y )), (2.10)

where f is any function of the class L1(G) ∩ L2(G) such that its Fourier transform F1f does

not vanish, and (f ⊗ h)(u, v) := f(u)h(v). Then

(F ⊗ I)S(F ⊗ I)∗ =

∫ ⊕
Ĝ

Aξ dν̂(ξ). (2.11)
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2 Translation-Invariant Operators in Reproducing Kernel Hilbert Spaces

Proof. The existence of a family (Aξ)ξ∈Ĝ satisfying (2.11) follows from Proposition 2.4.6.

We are going to prove (2.10). Let f ∈ L1(G) ∩ L2(G) such that F1f does not vanish, and

let h ∈ L2(Y ). Put g := F1f = Ff . Then g ⊗ h = (F ⊗ I)(f ⊗ h), and

((F ⊗ I)S(f ⊗ h))(ξ, v) = ((F ⊗ I)S(F ⊗ I)∗)(g ⊗ h))(ξ, v)

= (Aξ(g ⊗ h)(ξ, ·))(v) = (Aξ(g(ξ)h))(v) = (F1f)(ξ) · (Aξh)(v).

Dividing by (F1f)(ξ) we get (2.10).

Corollary 2.4.7 (and thereby Proposition 2.4.6) can be proved with a more direct and

elementary reasoning, similarly to Larsen [52, proof of Theorem 4.1.1].

2.5 Translation-invariant operators in Hilbert spaces

In this section, we make the following assumption.

Assumption 2. Additionally to Assumption 1, let H be a closed subspace of L2(G × Y ),

and P : L2(G × Y ) → L2(G × Y ) be the orthogonal projection with H = P (L2(G × Y )).

We suppose that H is an invariant subspace of the representation ρG×Y . Equivalently, P

commutes with ρG×Y (a) for all a in G.

Recall that the unitary representation ρH and its centralizer V := ρ′H were defined in the

Introduction, see (0.2). Using the general tools from previous sections, in this section we

easily obtain a decomposition of V .

Let Ĥ := (F ⊗ I)(H) and let P̂ be the orthogonal projection acting in L2(Ĝ× Y ) such that

P̂ (L2(Ĝ× Y )) = Ĥ. Equivalently,

P̂ = (F ⊗ I)P (F ⊗ I)∗.

Proposition 2.5.1. There exists a family of orthogonal projections (P̂ξ)ξ∈Ĝ acting in L2(Y )

such that

P̂ =

∫ ⊕
Ĝ

P̂ξ dν̂(ξ). (2.12)
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Proof. Since P ∈ ρ′G×Y , by Proposition 2.4.6, there exists a family (P̂ξ)ξ∈Ĝ in L2(Y ) such

that (F ⊗ I)P (F ⊗ I)∗ decomposes into the direct integral (2.12). We have that P̂ 2 = P̂

and P̂ ∗ = P̂ . By well-known properties of the direct integral [26, formula (7.24)],∫ ⊕
Ĝ

P̂ 2
ξ dν̂(ξ) =

∫ ⊕
Ĝ

P̂ξ dν̂(ξ),

∫ ⊕
Ĝ

P̂ ∗ξ dν̂(ξ) =

∫ ⊕
Ĝ

P̂ξ dν̂(ξ).

Therefore, the equalities P̂ 2
ξ = P̂ξ and P̂ ∗ξ = P̂ξ are fulfilled for almost every ξ in Ĝ. After

modifying P̂ξ on a set of zero measure, we assure these properties for all ξ in Ĝ.

Remark 2.5.2. Formula (2.10) yields an explicit expression for P̂ξ:

(P̂ξh)(v) =
((F ⊗ I)P (f ⊗ h))(ξ, v)

(F1f)(ξ)
(h ∈ L2(Y )), (2.13)

where f is any function of the class L1(G, ν) ∩ L2(G, ν) such that its Fourier transform

F1f does not vanish.

In the rest of this section, we fix a family (P̂ξ)ξ∈Ĝ as in Proposition 2.5.1. For each ξ in Ĝ,

we denote by Ĥξ the image of the operator P̂ξ and by dξ its dimension:

Ĥξ := P̂ξ(L
2(Y )), dξ := dim(Ĥξ). (2.14)

Furthermore, we denote by Ω the set of the frequencies corresponding to the non-trivial

fibers:

Ω := {ξ ∈ Ĝ : dξ > 0}. (2.15)

Proposition 2.5.3. (Ĥξ)ξ∈Ω is a measurable field of Hilbert spaces. Moreover, there exists a

sequence of measurable vector fields (qj)j∈N with the following properties:

(i) (qj,ξ)
dξ
j=1 is an orthonormal basis for Ĥξ, and qj,ξ = 0 for j > dim(Ĥξ),

(ii) for each j in N, the function Ω× Y → C, (ξ, v) 7→ qj,ξ(v), is measurable.

Proof. Given an orthonormal basis (ej)j∈N in L2(Y ), we set

gj,ξ := P̂ξej.

Then (gj,ξ)j∈N is complete in Ĥξ for each ξ. Due to (2.13), the functions (ξ, v) 7→ gj,ξ(v) are

measurable on Ω× Y .
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2 Translation-Invariant Operators in Reproducing Kernel Hilbert Spaces

Applying Proposition 2.3.1 we get a family (qj,ξ)j∈N,ξ∈Ω with desired properties. Indeed,

if Ωj,k are as in Proposition 2.3.1, then (ξ, v) 7→ qj,ξ(v) is measurable on Aj,k × Y being a

finite linear combination of measurable functions (ξ, v) 7→ gk,ξ(v).

We notice that the measurability in this sense (as functions defined on Ω× Y ) is stronger

then the measurability which appears in the definition of a measurable field of Hilbert

spaces.

Proposition 2.5.4. Ĥ is the direct integral of the spaces Ĥξ:

Ĥ =

∫ ⊕
Ω

Ĥξ dν̂(ξ). (2.16)

Proof. If g ∈ Ĥ and gξ := g(ξ, ·) for every ξ, then P̂ξgξ = gξ for almost every ξ. After

modifying g on a set of measure zero, if needed, we assume that P̂ξgξ = gξ for all ξ in Ω

and gξ = 0 for every ξ in Ĝ \ Ω. So, the family (gξ)ξ∈Ω belongs to the direct integral in the

right-hand side of (2.16).

Conversely, given a vector field (gξ)ξ∈Ω belonging to the right-hand side of (2.16), we

trivially extend gξ = 0 for ξ in Ĝ \ Ω and obtain a function g of the class L2(Ĝ× Y ) such

that P̂ g = g.

Let Φ: H → Ĥ be defined by Φ(f) := (F ⊗ I)(f). In other words, Φ is the compression of

F ⊗ I to the domain H and codomain Ĥ.

Theorem 2.5.5. With Assumption 2,

ΦVΦ∗ =

∫ ⊕
Ω

B(Ĥξ) dν̂(ξ). (2.17)

Proof. We will explain the inclusion ⊆ only. Let S ∈ V . Define A ∈ B(L2(G × Y )) by

Af := SPf . Since S takes values in H, we obtain PA = PAP = AP . Furthermore,

Assumption 2 implies that P ∈ ρ′G×Y and therefore A ∈ ρ′G×Y . By Proposition 2.4.6, there

exists a family (Bξ)ξ∈Ĝ in B(L2(Y )) such that

(F ⊗ I)A(F ⊗ I)∗ =

∫ ⊕
Ĝ

Bξ dν̂(ξ).
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SinceA commutes withP , we conclude that (F⊗I)A(F⊗I)∗ commutes with P̂ . By (2.12),

for almost all ξ we obtain that Bξ commutes with P̂ξ, i.e., Ĥξ is an invariant subspace of

Bξ. Let Dξ be the compression of Bξ to Ĥξ. Then for every g in Ĥ and almost every ξ in Ω,

(ΦSΦ∗g)(ξ, ·) = ((F ⊗ I)A(F ⊗ I)∗g)(ξ, ·) = Bξg(ξ, ·) = Dξg(ξ, ·).

For ξ in Ĝ \ Ω, the space Ĥξ is trivial, and we omit these values of ξ. So,

ΦSΦ∗ =

∫
Ω

Dξ dν̂(ξ).

Proposition 2.5.6. V is commutative if and only if dξ = 1 for ν̂-almost every point ξ of Ω.

Proof. Follows from Proposition 2.3.2 and Theorem 2.5.5.

2.6 Translation-invariant operators in RKHS

In this section, we consider the case when H is a RKHS over G× Y . We freely use some

basic properties of RKHS. See, for example, Aronszajn [5] or Agler and McCarthy [3].

First, we give a simple criterion for ρG×Y -invariance of H in terms of the reproducing

kernel. This is a particular case of [57, Proposition 4.1].

Proposition 2.6.1. Let G and Y satisfy Assumption 1, and let H be a RKHS over G × Y ,

with reproducing kernel (Kx,y)(x,y)∈G×Y . Then the following conditions are equivalent.

(a) ρG×Y (H) ⊆ H for every a in G.

(b) PρG×Y (a) = ρG×Y (a)P for every a in G, where P is the orthogonal projection on

L2(G× Y ) such that P (L2(G× Y )) = H.

(c) For every x, u in G and every y, v in Y ,

Kx,y(u, v) = K0,y(u− x, v). (2.18)

(d) For every a, x in G and every y in Y ,

ρG×Y (a)Kx,y = Ka+x,y. (2.19)

In the rest of this section, we make the following assumption.
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2 Translation-Invariant Operators in Reproducing Kernel Hilbert Spaces

Assumption 3. Additionally to Assumption 2, suppose that H is a RKHS over G× Y , and

the reproducing kernel (Kx,y)(x,y)∈G×Y satisfies

∀y ∈ Y sup
v∈Y

∫
G

|K0,y(u, v)| dν(u) < +∞. (2.20)

For every ξ in Ĝ and every y, v in Y , we define Lξ,y(v) by (0.3). In particular, (2.20) implies

that the integral in (0.3) exists in the Lebesgue sense, and for every y, v in Y the function

ξ 7→ Lξ,y(v) is continuous.

The goal of this section is to provide more constructive descriptions of the projections P̂ξ
and spaces Ĥξ than in Section 2.5.

Using Proposition 2.6.1 and the Hermitian property of K we can write P as

(Pf)(x, y) =

∫
Y

∫
G

f(u, v)K0,v(x− u, y) dν(u) dλ(v). (2.21)

The inner integral in the right-hand side of (2.21) is a convolution. The following lemma

can be viewed as an application of the convolution theorem to this inner integral. The

technical assumptions on (G, µ), (Y, λ), and K allow us to interchange the order of

integration.

Lemma 2.6.2. Let f ∈ L1(G× Y ) ∩ L2(G× Y ). Then for every ξ in Ĝ and every y in Y ,

((F ⊗ I)Pf)(ξ, y) =

∫
Y

((F ⊗ I)f)(ξ, v)Lξ,y(v) dλ(v). (2.22)

Equivalently,

((F ⊗ I)Pf)(ξ, y) = 〈((F ⊗ I)f)(ξ, ·), Lξ,y〉L2(Y ). (2.23)

Proof. Step 1. We denote by Cy the supremum in (2.20). Let us estimate from above the

following triple integral:

J :=

∫
Y

∫
G

∫
G

|f(u, v)| |Kx,y(u, v)| dν(x) dν(u) dλ(v).

We write Kx,y(u, v) as K0,y(u− x, y), make the change of variables t = u− x (where u is a

fixed parameter), apply Tonelli’s theorem and assumption (2.20):

J =

∫
Y

∫
G

∫
G

|f(u, v)| |K0,y(t, v)| dν(t) dν(u) dλ(v)

=

∫
G

∫
Y

|f(u, v)|
(∫

G

|K0,y(t, v)| dν(t)

)
dλ(v) dν(u)

≤ Cy

∫
G

∫
Y

|f(u, v)| dλ(v) dν(u) = Cy‖f‖L1(G×Y ) < +∞.
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2.6 Translation-invariant operators in RKHS

Step 2. Due to Step 1, we can apply Fubini’s theorem to the following integrals.

((F ⊗ I)Pf)(ξ, y) =

∫
G

∫
G

∫
Y

ξ(x)f(u, v)Kx,y(u, v) dλ(v) dν(u) dν(x)

=

∫
Y

∫
G

ξ(u)f(u, v)

(∫
G

ξ(u− x)K0,v(u− x, y) dν(x)

)
dν(u) dλ(v)

=

∫
Y

((F ⊗ I)f)(ξ, v)Lξ,y(v) dλ(v).

Lemma 2.6.3. For every y, v in Y and every ξ in Ĝ,

Lξ,y(v) = 〈Lξ,y, Lξ,v〉L2(Y ). (2.24)

Proof. Follows from Lemma 2.6.2 applied to f = K0,y.

The following general fact can be seen as a corollary from Moore–Aronszajn theorem.

We have not found the explicit statement of this fact in the bibliography. In many

applications,H1 is a space of square-integrable functions, rather than their equivalence

classes.

Proposition 2.6.4 (On RKHS generated by a reproducing family in a complete space

with pre-inner product). Let X is a set and H1 be a space of functions X → C with a

pre-inner product 〈·, ·〉H1 , not necessarily strictly positive. We suppose thatH1 is complete

with respect to 〈·, ·〉H1 . Let (Kx)x∈X be a family inH1 such that

∀x, y ∈ X Kx(y) = 〈Kx,Ky〉H1 . (2.25)

Let

H2 := {f ∈ H1 : ∀x ∈ X f(x) = 〈f,Kx〉}.

ThenH2 is a RKHS and (Kx)x∈X is the reproducing kernel ofH2. The rule

(Pf)(x) := 〈f,Kx〉H1 , (2.26)

defines an orthogonal projection inH1, and P(H1) = H2.
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2 Translation-Invariant Operators in Reproducing Kernel Hilbert Spaces

Proof. The main challenge is to prove that Pf ∈ H1 for every f inH1. We will get this

fact indirectly, using the existence of an orthogonal projection onto a closed subspace

of a Hilbert space. Since 〈·, ·〉H1 is not necessarily strictly positive, we have to pass from

elements ofH1 to equivalent classes and return back.

Let H0 := {f ∈ H1 : 〈f, f〉H1 = 0}. Then H0 is a closed subspace of H1 and H1/H0 is

a Hilbert space (with a strictly positive inner product). We denote by π1 the canonical

projectionH1 → H1/H0.

Condition (2.25) easily implies that (Kx)x∈X is a positive definite kernel. LetH3 be the

span of {Kx : x ∈ X} andH4 be the RKHS constructed in the Moore–Aronszajn theorem.

Due to (2.25), the inner product in H4 is inherited from H1. The elements of H4 are

pointwise limits of Cauchy sequences inH3. At this point, we know thatH4 ⊆ H2.

Since π1(H4) is a closed subset of H1/H0, there exists an orthogonal projection P1 in

H1/H0 such that P1(H1/H0) = π1(H4). Given f inH1, let g ∈ H4 be such a function that

P1(π1(f)) = π1(g). Then, for every x in X,

g(x) = 〈g,Kx〉H1 = 〈π1(g), π1(Kx)〉H1/H0 = 〈P1(π1(f)), π1(Kx)〉H1/H0

= 〈π1(f),P1(π1(Kx))〉H1/H0 = 〈π1(f), π1(Kx)〉H1/H0 = 〈f,Kx〉H1 = (Pf)(x).
(2.27)

Thereby we get Pf = g ∈ H4. So, P is a well-defined function H1 → H1. Computa-

tion (2.27) means that π1 ◦ P = P1 ◦ π1. Since P1 is a bounded selfadjoint linear operator

and π1 is a linear isometry, we easily conclude that P is a bounded autoadjoint linear

operator.

If f ∈ H2 and g ∈ H4 such that π1(g) = P1(π1(f)), then the definition of H2 and the

reproducing property inH4 imply that f = g. Hence,H4 = H2. Finally, we can conclude

that P(H1) = H2 and P2 = P .

For every ξ in Ĝ, we define P̂ξ : L2(Y )→ L2(Y ) by

(P̂ξh)(y) := 〈h, Lξ,y〉L2(Y ) =

∫
Y

h(v)Lξ,y(v) dλ(v). (2.28)

Then, we denote by Ĥξ the image of P̂ξ:

Ĥξ := P̂ξ(L
2(Y )). (2.29)

We will prove that (2.28) is equivalent to the definition of P̂ξ in Section 2.5.
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Theorem 2.6.5. Let Assumption 3 hold. For every ξ in Ĝ, P̂ξ is an orthogonal projection in

L2(Y ) and Ĥξ is a RKHS with reproducing kernel (Lξ,y)y∈Y . For each ξ in Ĝ,

Ĥξ = closL2(Y )(span({Lξ,y : y ∈ Y })), (2.30)

where the closure is understood as the set of the pointwise limits of Cauchy sequences.

Moreover,

P̂ =

∫
Ĝ

P̂ξ dν̂(ξ), (2.31)

i.e., for every g in L2(Ĝ× Y ),

(P̂ g)(ξ, y) = 〈g(ξ, ·), Lξ,y〉L2(Y ) =

∫
Y

g(ξ, v)Lξ,y(v) dλ(v) (ξ ∈ Ĝ, y ∈ Y ). (2.32)

Proof. The first statements follow from Lemma 2.6.3 and Proposition 2.6.4. Let A be the

operator in L2(Ĝ × Y ) defined by the the right-hand side of (2.31) or (2.32). For each

ξ ∈ Ĝ, ‖P̂ξ‖ ≤ 1. This easily implies that A is a bounded linear operator with ‖A‖ ≤ 1.

By Lemma 2.6.2, the equality (F ⊗ I)Pf = A(F ⊗ I)f holds for every f in the intersection

L2(G×Y )∩L1(G×Y ), which is a dense subset of L2(G×Y ). Since (F ⊗ I)P andA(F ⊗ I)

are bounded linear operators, we conclude that the equality (F ⊗ I)P = A(F ⊗ I) holds

on the whole space L2(G× Y ). Hence, P̂ = (F ⊗ I)P (F ⊗ I)∗ = A.

Corollary 2.6.6. Let g ∈ Ĥ. Then for almost all ξ in Ĝ and almost all y in Y ,

g(ξ, y) = 〈g(ξ, ·), Lξ,y〉L2(Y ) =

∫
Y

g(ξ, v)Lξ,y(v) dλ(v). (2.33)

Remark 2.6.7. The integral in (2.33) is taken over Y , not over the Ĝ× Y . In general, Ĥ

does not have to be a RKHS.

Proposition 2.6.8. For every ξ in Ĝ,

dim(Ĥξ) =

∫
Y

Lξ,y(y) dλ(y) =

∫
Y

‖Lξ,y‖2
L2(Y ) dλ(y). (2.34)

Proof. This is a general formula for the dimension of the image of the orthogonal projec-

tion defined as an integral operator. Let us outline the proof in our settings. Recall that

(qj,ξ)
dξ
j=1 is an orthonormal basis for Ĥξ. Therefore, Lξ,y(y) =

∑dξ
j=1 |qj,ξ(y)|2 and∫

Y

Lξ,y(y) dλ(y) =

dξ∑
j=1

∫
Y

|qj,ξ(y)|2 dλ(y) =

dξ∑
j=1

1 = dξ.
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As a consequence of Proposition 2.6.8, we get a constructive description of Ω:

Ω =

{
ξ ∈ Ĝ :

∫
Y

Lξ,y(y) dλ(y) > 0

}
. (2.35)

Theorem 2.6.9. With Assumption 3, the following conditions are equivalent.

(a) V is commutative.

(b) For every ξ in Ω, dim(Ĥξ) = 1.

(c) For every ξ in Ω, ∫
Y

Lξ,y(y) dλ(y) = 1. (2.36)

(d) For every ξ in Ω and every y, v in Y ,

|Lξ,y(v)|2 = Lξ,y(y)Lξ,v(v). (2.37)

(e) There exists a family (qξ)ξ∈Ω in L2(Y ) such that the function (ξ, v) 7→ qξ(v) is measur-

able, the function qξ forms an orthonormal basis of Ĥξ, and

Lξ,y(v) = qξ(y)qξ(v) (ξ ∈ Ω, y, v ∈ Y ). (2.38)

Proof. The major part of the proof follows from Propositions 2.5.6 and 2.6.8. We will

comment only a few missing ideas. If (2.36) holds for almost every ξ, then, by continuity

of Lξ,y(v) with respect to ξ, it holds for every ξ.

Condition (d) means that the Schwarz inequality for Lξ,y and Lξ,v reduces to an equality,

i.e., the functions Lξ,y and Lξ,v are linear dependent. Since y and v are arbitrary elements

of Y and {Lξ,y : y ∈ Y } is a total subset of Ĥξ, (d) implies (b).

If (b) holds, then we apply Proposition 2.5.3 with dξ = 1 and obtain a family (qξ)ξ∈Ω such

that (ξ, v) 7→ qξ(v) is measurable and qξ is an orthonormal basis of Ĥξ. The reproducing

kernel of Ĥξ expresses through this orthonormal basis by (2.38).

Remark 2.6.10. In the context of the last part of the proof, for every ξ in Ω, there exists z

in Y and τ in C (both depending on ξ) such that ‖Lξ,z‖ 6= 0, |τ | = 1, and

qξ = τ
Lξ,z
‖Lξ,z‖

.

This means that q is essentially determined by L. In many examples, a decomposition of

the form (2.38) with a measurable function q is obvious.
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Remark 2.6.11. Let us emphasize additional properties that obtain P̂ξ and Ĥξ when

passing from Assumption 2 to Assumption 3.

1. Now P̂ξ and Ĥξ are uniquely defined for every ξ, instead of almost everywhere.

2. P̂ξ and Ĥξ have simple explicit expressions in terms of (Lξ,y)y∈Y .

3. The elements of Ĥξ, in contrast to L2(Y ), can be treaten as functions, instead of

classes of equivalence.

4. We have simple formulas (2.34) and (2.35) to compute Ω and the dimensions of Ĥξ.

5. Theorem 2.6.9 is a constructive criterion for the commutativity of V .

2.7 Diagonalization in the commutative case

In this section we set Assumption 2 to be fulfilled and, additionally, dξ = dim(Ĥξ) = 1 for

every ξ in Ω. In this case, Proposition 2.5.4 implies that there exists a family of functions

(qξ)ξ∈Ω with the following properties:

(i) Ĥξ = Cqξ and ‖qξ‖L2(Y ) = 1 for every ξ in Ω;

(ii) the function Ω× Y → C, (ξ, v) 7→ qξ(v), is measurable.

For each ξ in Ω, the function qξ is uniquely defined, up to a constant of absolute value

1.

In particular, if H is a RKHS satisfying Assumption 3 and equivalent conditions from

Theorem 2.6.9, then qξ is usually easy to find from Lξ, see Remark 2.6.10.

Identifying Ĥξ and B(Ĥξ) with C, in this section we will simplify the descomposition from

Theorem 2.5.5 and construct a unitary operator R : H → L2(Ω) such that RVR∗ =MΩ.

Our treatment generalizes ideas from Vasilevski [82].

Define N : Ĥ → L2(Ω) by

(Ng)(ξ) := 〈g(ξ, ·), qξ〉L2(Y ) =

∫
Y

qξ(v) g(ξ, v) dλ(v). (2.39)

Proposition 2.7.1. N is a unitary operator, and its inverse N∗ : L2(Ω) → Ĥ acts by the

following rule:

(N∗h)(ξ, y) =

qξ(y)h(ξ), ξ ∈ Ω;

0, ξ ∈ Ĝ \ Ω.
(2.40)
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Proof. 1. Let g ∈ Ĥ. For every ξ in Ω, by Proposition 2.5.4 we have g(ξ, ·) ∈ Ĥξ. Since

Ĥξ = Cqξ and ‖qξ‖2
L2(Y ) = 1, we obtain ‖g(ξ, ·)‖L2(Y ) = |(Ng)(ξ)|. Hence, N is isometric:

‖Ng‖2
L2(Ω) =

∫
Ω

|(Ng)(ξ)|2 dν̂(ξ) =

∫
Ω

‖g(ξ, ·)‖2
L2(Y ) dν̂(ξ) = ‖g‖2

Ĥ
.

2. LetZ be the operator defined by the right-hand side of (2.40). Proposition 2.5.4 assures

that Zh indeed belongs to Ĥ and Z is well-defined. A simple direct computation yields

NZh = h, which completes the proof.

Define R : H → L2(Ω) by the following rule:

R := NΦ, (2.41)

i.e.,

(Rf)(ξ) =

∫
Y

((F ⊗ I)f)(ξ, v)qξ(v) dλ(v). (2.42)

Remark 2.7.2. The idea of the operator R is similar to the ideas of some lossless audio-

and video-codecs: it is a kind of a Fourier transform followed by a “general compression”.

Proposition 2.7.3. R is a unitary operator from H onto L2(Ω).

Proof. Indeed, R is the composition of two unitary operators.

Proposition 2.7.4. Let y ∈ Y and ξ ∈ Ω. Then

(RK0,y)(ξ) = qξ(y). (2.43)

Proof. (RK0,y)(ξ) = 〈(ΦK0,y)(ξ, ·), qξ〉L2(Y ) = 〈Lξ,y, qξ〉L2(Y ) = qξ(y).

Remark 2.7.5. Additionally to the operators N : Ĥ → L2(Ω) and R : H → L2(Ω), one can

define in a similar way their extended versions Ñ : L2(Ĝ × Y ) → L2(Ω) and R̃ : L2(G ×
Y )→ L2(Ω). Then

Ñ∗Ñ = P̂ , ÑÑ∗ = IL2(Ω), Ñ∗(L2(Ω)) = Ĥ,

R̃∗R̃ = P, R̃R̃∗ = IL2(Ω), R̃∗(L2(Ω)) = H.
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Recall that Ea is defined by Ea(ξ) = ξ(a), where a ∈ G and ξ ∈ Ĝ.

Proposition 2.7.6. Let a ∈ G. Then

RρH(a)R∗ = ME−a|Ω . (2.44)

Proof. Let h ∈ L2(Ω). Substituting the definitions and using (2.7) we easily get

RρH(a)R∗h = NΦρH(a)Φ∗N∗h = N(F ⊗ I)ρG×Y (a)(F ⊗ I)∗N∗h = N(ρĜ(a)⊗ I)N∗h.

Therefore, for every ξ in Ω,

(RρH(a)R∗h)(ξ) = 〈E−a(ξ)qξh(ξ), qξ〉L2(Y ) = E−a(ξ)h(ξ).

Theorem 2.7.7. Define Λ: L∞(Ω)→ V by Λ(σ) := R∗MσR. Then Λ is an isometric isomor-

phism of W*-algebras. In particular, for every S in V , the productRSR∗ is a multiplication

operator in L2(Ω).

Proof. The algebraic properties of Λ and the isometric property of Λ follow easily from

well-known properties of multiplication operators and from the fact that R is a unitary

operator.

We have to show that Λ is surjective. Let S ∈ V and B := RSR∗. By Proposition 2.7.6, for

each a in G we have

BMEa|Ω = (RSR∗)(Rρ(−a)R∗) = RSρH(−a)R∗ = RρH(−a)SR∗ = MEa|ΩB,

i.e., B commutes with Ea. By Corollary 2.4.3, we conclude that B ∈MΩ.

In particular, Theorem 2.7.7 means that the W*-algebras V andMΩ are spatially iso-

morphic. Figure 2.1 shows a commutative diagram corresponding to the formula

S = Λ(σ) = R∗MσR from Theorem 2.7.7, jointly with some auxiliary objects.

Given S in V , we say that σ := Λ−1(S) is the spectral function of the operator S. The next

corollary provides is an explicit formula for σ.

Corollary 2.7.8. Let S ∈ V . Then for every ξ in Ω,

(Λ−1(S))(ξ) =
(RSK0,y)(ξ)

qξ(y)
, (2.45)

where y is an arbitrary point of Y so that qξ(y) 6= 0.
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H < L2(G× Y ) Ĥ < L2(Ĝ× Y ) L2(Ω)

H < L2(G× Y ) Ĥ < L2(Ĝ× Y ) L2(Ω)

Φ N

Φ∗ N∗

R

R∗

S ∈ ρ′H ΦSΦ∗ Mσ ∈MΩ

Figure 2.1: Operators participating in Theorem 2.7.7.

Proof. Let σ = Λ−1(S), i.e., RS = MσR. Furthermore, let ξ ∈ Ω and y ∈ Y such that

qξ(y) 6= 0. Using (2.43) we obtain

(RSK0,y)(ξ) = (MσRK0,y)(ξ) = σ(ξ)qξ(y).

Dividing over qξ(y) we get (2.45).

Corollary 2.7.9. Let S ∈ V and σ = Λ−1(S). Then ‖S‖ = ‖σ‖∞, and the spectrum of S is

the essential range of σ.

Berezin transform of a translation-invariant operator in terms of its

spectral function

Proposition 2.7.10. Let Assumption 3 holds, S ∈ V , and σ = Λ−1(S). Then

Ber(S)(x, y) =

∫
Ω
σ(ξ)|qξ(y)|2 dν̂(ξ)∫
Ω
|qξ(y)|2 dν̂(ξ)

(x ∈ G, y ∈ Y ). (2.46)

In particular, Ber(S)(x, y) does not depend on x.

Proof. Recall that the Berezin transform Ber(S) of S is defined by

Ber(S)(x, y) :=
〈SKx,y, Kx,y〉
〈Kx,y, Kx,y〉

(x ∈ G, y ∈ Y ).
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Now we apply (2.19) and the hypothesis that S commutes with ρH(x):

Ber(S)(x, y) =
1

‖Kx,y‖2
〈SKx,y, Kx,y〉 =

1

‖ρH(x)K0,y‖2
〈SρH(x)K0,y, ρH(x)K0,y〉

=
1

‖K0,y‖2
〈ρH(x)SK0,y, ρH(x)K0,y〉 =

1

‖K0,y‖2
〈SK0,y, K0,y〉

=
1

‖K0,y‖2
〈R∗MσRK0,y, K0,y〉 =

1

‖K0,y‖2
〈MσRK0,y, RK0,y〉.

Substituting (2.43) we get (2.46).

Spectral functions of Toeplitz operators with translation-invariant

generating symbols

Given ϕ ∈ L∞(G× Y ), we denote by Tϕ the Toeplitz operator with generating symbol ϕ,

acting in H by

Tϕ(f) := P (ϕf) = PMϕf.

In the following proposition we compute the spectral function of Tϕ, supposing that ϕ

depends only on the Y -component.

Proposition 2.7.11. Let ψ ∈ L∞(Y ). Define ϕ ∈ L∞(G × Y ) by ϕ(u, v) := ψ(v). Then

Tϕ ∈ V and Tϕ = Λ(γψ), where γψ : Ω→ C is defined by

γψ(ξ) :=

∫
Y

ψ(v)|qξ(v)|2 dλ(v). (2.47)

First proof. It is easy to see that Tϕ commutes with the horizontal translations ρH(a),

a ∈ G. Since ϕ(u, v) does not depend on u, the operator Mϕ commutes with F ⊗ I, and

(F ⊗ I)PMϕ = P̂ (F ⊗ I)Mϕ = P̂Mϕ(F ⊗ I). (2.48)

Let ξ ∈ Ω and y ∈ Y such that qξ(y) 6= 0. Using (2.48) we simplify RSK0,y:

(RSK0,y)(ξ) = (N(F ⊗ I)PMϕK0,y)(ξ) = (NP̂Mϕ(F ⊗ I)K0,y)(ξ) = 〈P̂ξMϕLξ,y, qξ〉L2(Y )

= 〈MϕLξ,y, P̂ξqξ〉L2(Y ) = 〈Mϕqξ(y)qξ, qξ〉L2(Y ) = qξ(y)

∫
Y

ψ(v)|qξ(v)|2 dλ(v).

With the help of (2.45) we conclude that Λ−1(Tϕ) = γψ.
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Second proof. Let us verify directly that RTϕR∗ = Mγψ . Given h in L2(Ω), we simplify

RTϕR
∗h applying (2.48):

RTϕR
∗h = N(F ⊗ I)PMϕ(F ⊗ I)∗N∗h = NP̂MϕN

∗h. (2.49)

If ξ ∈ Ω and v in Y , then (MϕN
∗h)(ξ, v) = h(ξ)ψ(v)qξ(v). Therefore,

(P̂MϕN
∗h)(ξ, v) = h(ξ)(P̂ξ(ψ qξ))(v),

and

(RTϕR
∗h)(ξ) = 〈(P̂MϕN

∗h)(ξ, ·), qξ〉L2(Y ) = h(ξ) 〈P̂ξ(ψqξ), qξ〉L2(Y )

= h(ξ) 〈ψqξ, qξ〉L2(Y ) = h(ξ)γψ(ξ).

We denote by VT 0 the set of all Toeplitz operators of the form Tϕ, where ϕ is as in

Proposition 2.7.11, and by G0 the set of the spectral functions of such Toeplitz operators:

G0 := {γψ : ψ ∈ L∞(Y )}. (2.50)

Let VT and G be the C*-algebras generated by VT 0 and G0, respectively.

Corollary 2.7.12. The C*-algebra VT is the image of the C*-algebra G with respect to

the isometric isomorphism Λ. The C*-algebra VT is weakly dense in V if and only if the

C*-algebra G is dense in L∞(Ω) with respect to the weak-* topology τΩ.

Proof. Λ is an isometrical isomorphism L∞(Ω)→ V , and is restriction to G is an isometri-

cal isomorphism from G onto VT . Moreover, Λ maps the weak-* topology of L∞(Ω) onto

the weak operator topology in V . Therefore, VT is weakly dense in V if and only if G is

dense in (L∞(Ω), τΩ).

Corollary 2.7.12 provides us with a tool to study the C*-algebra VT generated by Toeplitz

operators with translation-invariant generating symbols. A natural problem is to find

the C*-algebra generated by all Toeplitz operators with bounded symbols (not necesarily

translation-invariant), acting in a RKHS H. Various characterizations of this Toeplitz

algebra have been found for the Bergman and Segal–Bargmann–Fock spaces, see Xia [85],

Bauer and Fulsche [9], and Hagger [34]. Much earlier, Engliš [20] proved that Toeplitz

operators acting in the Bergman space L2
hol(D) are weakly dense in B(L2

hol(D)).
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2.8 Non-commutative case with finite-dimensional fibers

This section is a generalization of the previous one. In this section we require Assump-

tion 2 and additionally suppose that dξ := dim(Ĥξ) is finite for every ξ in Ω. Let (qj,ξ)j∈N,ξ∈Ω

be a measurable basis family for the spaces Ĥξ, like in Proposition 2.5.3. For each ξ in Ω,

we denote by Qξ the column-vector-function

Qξ(v) :=
[
qj,ξ(v)

]dξ
j=1

(v ∈ Y ).

Its conjugate transpose is the row-vector-function

Q∗ξ(v) =
([
qj,ξ(v)

]dξ
j=1

)>
=
[
q1,ξ(v), . . . , qdξ,ξ(v)

]dξ
j=1
.

Since Ĥξ is finite-dimensional, it is a RKHS over Y , and its reproducing kernel (Lξ,y)y∈Y

can be expressed via the orthonormal basis q1,ξ, . . . , qdξ,ξ of Ĥξ:

Lξ,y(v) =

dξ∑
j=1

qj,ξ(y) qj,ξ(v) = Q∗ξ(y)Qξ(v). (2.51)

When Assumption 3 holds, L can be computed in terms of K by (0.3), and in some

examples one can find functions qj,ξ decomposing L like in (2.51).

This section has many similarities with the previous one, thereby we omit detailed

proofs.

We denote by X the following direct integral of Hilbert spaces Cdξ :

X :=

∫ ⊕
Ω

Cdξ dν̂(ξ).

The elements of X are classes of equivalence of vector sequences, component-wise

measurable on {ξ ∈ Ω: dξ = m} for every m, and square-integrable. We define N : Ĥ →
X by

(Ng)(ξ) :=
[
〈g(ξ, ·), qj,ξ〉Ĥξ

]dξ
j=1

=

[∫
Y

qj,ξ(v)g(ξ, v) dλ(v)

]dξ
j=1

=

∫
Y

Qξ(v) g(ξ, v) dλ(v).

(2.52)

Proposition 2.8.1. N is a unitary operator from Ĥ onto X . Its inverse N∗ : X → Ĥ acts by

the following rule:

(N∗h)(ξ, y) =

dξ∑
j=1

qj,ξ(y)hj(ξ) = Q>ξ (y)h(ξ) (h ∈ X , ξ ∈ Ĝ, y ∈ Y ). (2.53)
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Proof. We apply Proposition 2.5.4 and use the isomorphism between Ĥξ and Cξ induced

by the orthonormal basis (qj,ξ)
dξ
j=1.

In particular, formula (2.53) tells us that (N∗h)(ξ, y) = 0 for ξ in Ĝ \ Ω, because the

corresponding sum in (2.53) is empty.

We define R : H → X as the composition R := NΦ.

Proposition 2.8.2. R is a unitary operator from H onto X .

Proposition 2.8.3. Let ξ ∈ Ω and y ∈ Y . Then

(RK0,y)(ξ) =
[
qj,ξ(y)

]dξ
j=1

= Qξ(y). (2.54)

We denote by Z the following direct integral of matrix algebras:

Z :=

∫ ⊕
Ω

Cdξ×dξ dν̂(ξ). (2.55)

Given a matrix family σ = (σ(ξ))ξ∈Ω in Z, let Mσ be the “multiplication operator” acting

in X by

(Mσh)(ξ) := σ(ξ)h(ξ).

Finally, we define Λ: Z → V by Λ(σ) := R∗MσR.

Theorem 2.8.4 (from shift-invariant operators to matrix families). Λ is an isometric

isomorphism of the W*-algebras Z and V .

Idea of the proof. Follows from Theorem 2.5.5, converting each B(Ĥξ) into Cdξ×dξ .

Corollary 2.8.5. Let S ∈ V . Then for every ξ in Ω,

(Λ−1(S))(ξ) =
[
(RSK0,y1)(ξ), . . . , (RSK0,ydξ

)(ξ)
] [
Qξ(y1), . . . , Qξ(ydξ)

]−1
, (2.56)

where y1, . . . , ydξ are chosen in Y such that the vectors Qξ(y1), . . . , Qξ(ydξ) are linearly

independent.
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Proof. Let σ := Λ−1(S), i.e., RS = MσR. Then, by (2.54),

(RSK0,y)(ξ) = (MσRK0,y)(ξ) = σ(ξ)Qξ(y),

Apply the above equality to the points y1, . . . , ydξ , then join the resulting columns:[
(RSK0,y1)(ξ), . . . , (RSK0,ydξ

)(ξ)
]

= σ(ξ)
[
Qξ(y1), . . . , Qξ(ydξ)

]
.

Solving this matrix equation for σ(ξ) we get (2.56).

Proposition 2.8.6 (Berezin transform of a translation-invariant operator). Let Assump-

tion 3 holds, S ∈ V , and let σ ∈ Z such that S = Λ(σ). Then

Ber(S)(x, y) =

∫
Ω
σ(ξ)Lξ,y(y) dν̂(ξ)∫
Ω
Lξ,y(y) dν̂(ξ)

(x ∈ G, y ∈ Y ). (2.57)

In particular, Ber(S)(x, y) does not depend on x.

Proof. Similar to the proof of Proposition 2.7.10, but applying (2.54).

Proposition 2.8.7 (matrix families corresponding to Toeplitz operators with transla-

tion-invariant generating symbols). Let ψ ∈ L∞(Y ). Define ϕ ∈ L∞(G× Y ) by ϕ(x, y) =

ψ(y). Then Tϕ = Λ(γψ), where

γψ(ξ) :=

∫
Y

ψ(v)Qξ(v)Q∗ξ(v) dλ(v) =

[∫
Y

ψ(v)qj,ξ(v)qk,ξ(v) dλ(v)

]dξ
j,k=1

. (2.58)

Proof. We will verify that RTϕR∗ = Mγψ . Same as in the proof of Proposition 2.7.11, we

get (2.48). If ξ ∈ Ω and v in Y , then

(MϕN
∗h)(ξ, v) = ψ(v)Q>ξ (v)h(ξ) =

dξ∑
j=1

hj(ξ)qj,ξ(v)ψ(v)

Therefore,

(P̂MϕN
∗h)(ξ, ·) = P̂ξ

(
(MϕN

∗h)(ξ, ·)
)

=

dξ∑
k=1

hk(ξ)P̂ξ(qk,ξψ),

and

(RTϕR
∗h)(ξ) =

[
〈(P̂MϕN

∗h)(ξ, ·), qj,ξ〉L2(Y )

]dξ
j=1

=

 dξ∑
k=1

hk(ξ)〈P̂ξ(qk,ξψ), qj,ξ〉L2(Y )

dξ
j=1

=

 dξ∑
k=1

〈ψqk,ξ, qj,ξ〉L2(Y )hk(ξ)

dξ
j=1

= γψ(ξ)h(ξ).
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2.9 Examples

To keep this work to a reasonable length, we restrict ourself to a series of just 9 simple

examples, mostly with one-dimensional domains G and Y . Example 2.9.11 is probably

new. In the other examples, the spectral functions γσ of Toeplitz operators are already

known. Nevertheless, the description of the whole W*-algebra V is new for some of these

“old examples”. We notice that the C*-algebra VT from Examples 2.9.2 and 2.9.8 is not

weakly dense in V .

We use the following notation: µn is the Lebesgue measure on Rn or a subset of Rn;

R+ := (0,+∞), N0 := {0, 1, 2, . . .}, T := {τ ∈ C : |τ | = 1}, 1A is the characteristic function

of A; its domain is clear from the context.

In this section, given a LCAG G, we denote by Ĝ a LCAG topologically isomorphic to the

dual group of G, and we use some pairing E : G × Ĝ → T. This means that ξ 7→ E(·, ξ)
is a topological isomorphism between Ĝ and the dual group of G. We select the Haar

measures ν, ν̂ onG, Ĝ in such a manner that the Fourier–Plancherel operator F is unitary.

For example, if G = R, then we put Ĝ = R. One possible pairing is E(x, ξ) = eixξ with the

measures ν = ν̂ = 1√
2π
µ1; another one is E(x, ξ) = e2π ixξ, with ν = ν̂ = µ1.

For each example we have verified assumption (2.20), but we have omitted the corre-

sponding computation, for the sake of brevity.

Example 2.9.1 (vertical operators in the holomorphic Bergman space over the upper

half-plane). Let Π := R × R+ and H = L2
hol(Π). In this example, G = Ĝ = R, Y = R+,

ν = ν̂ = 1√
2π
µ1, E(x, ξ) = eixξ, λ =

√
2πµ1, ν × λ = µ2, It is well known that H is a Hilbert

space with reproducing kernel

Kz(w) = − 1

π(w − z)2
.

Identifying z with (x, y) and w with (u, v), we rewrite the reproducing kernel as

Kx,y(u, v) = − 1

π((u− x) + i(v + y))2
.

The space H is invariant under horizontal translations. A simple computation with

residues shows that

Lξ,y(v) =

√
2

π
ξ e−ξ(y+v) 1R+(ξ).
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So, in this example V is commutative, Ω = R+, and

qξ(v) =

(
2

π

)1/4 √
ξ e−ξv 1R+(ξ).

Using (2.47) we compute the spectral functions of vertical Toeplitz operators:

γσ(ξ) = 2ξ

∫
R+

σ(v) e−2ξv dv (ξ > 0).

This formula coincides with Vasilevski [79, Theorem 3.1] and [82, Theorem 5.2.1], see also

Grudsky, Karapetyants, and Vasilevski [28]. The C*-algebra G in this example consists

of all bounded functions on R+, uniformly continuous with respect to the log-distance,

see [37, 39].

Example 2.9.2 (vertical operators in the harmonic Bergman space over the upper half–

plane). Let G, Y , ν, λ, and E be the same as in Example 2.9.1, but H := L2
harm(Π) be

the Bergman space of harmonic functions on Π. Using Riesz theorem about the Hardy

spaces of harmonic functions, one can show thatL2
harm(Π) = L2

hol(Π)⊕L2
hol(Π). Therefore,

H is a RKHS with reproducing kernel

Kz(w) = − 1

π(w − z)2
− 1

π(w − z)2
.

Identifying z with (x, y) and w with (u, v), we obtain

Kx,y(u, v) = − 1

π((u− x) + i(v + y))2
− 1

π((u− x)− i(v + y))2
.

Now

Lξ,y(v) =

√
2

π
|ξ| e−|ξ|(y+v) (ξ ∈ R).

We conclude that in this example V is commutative, Ω = R \ {0},

qξ(v) =

(
2

π

)1/4 √
|ξ| e−2|ξ|v,

and

γσ(ξ) = γσ(|ξ|) = 2|ξ|
∫
R+

σ(v) e−2|ξ|v dv.

Thereby we reproduce a result by Loaiza and Lozano [54, Theorem 4.16]. In this example,

the spectral functions γσ are even. The C*-algebra G generated by G0 coincides with

the closure of G0 in the norm topology and consists of all even function on R \ {0}
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whose restrictions to R+ are uniformly continuous with respect to the log-distance. By

Theorem 2.2.2, the W*-algebra generated by G0 is the class of all essentially bounded

even functions on R, which is a proper subset of L∞(R). So, G is not τΩ-dense in L∞(Ω).

By Corollary 2.7.12, this means that VT is not weakly dense in V .

Example 2.9.3 (vertical operators in the Bergman space of true-polyanalytic functions

over the upper half-plane). Let G, Y , ν, ν̂, λ, E be the same as in Example 2.9.1. For

a fixed m in N, we consider the space H := L2
(m)-hol(Π) of all square-integrable m-true-

polyanalytic functions on the upper half-plane Π. Applying the Fourier transform to

the differential equation defining H, Vasilevski computed [82, Section 3.4] the operator

(F ⊗ I)P (F ⊗ I)∗ which we denote by P̂ . Namely, he proved that P̂ acts by (2.32), with

Lξ,y(v) = 1R+(ξ)

√
2

π
ξ e−ξ(y+v) Lm−1(2ξy)Lm−1(2ξv), (2.59)

where Lk is the Laguerre polynomial of degree k. This means that Ω = R+,

qξ(v) =
√

2ξ e−ξv Lm−1(2ξv) 1R+(ξ) (ξ ∈ R, v > 0),

and

γσ(ξ) = 2ξ

∫
R+

σ(v) e−2ξv(Lm−1(2ξv))2 dv. (2.60)

Formula (2.60) was found by Hutnı́k [44, Theorem 3.2] and by Ramı́rez-Ortega and

Sánchez-Nungaray [65, Theorem 3.2]. The C*-algebra G for this example coincides with

the C*-algebra G from Example 2.9.1, see [48]. Vasilevski noticed [82, Theorem 3.4.1] that

the reproducing kernel of L2
(m)-hol(Π) can be obtained by applying (F ⊗ I)∗ to L given

by (2.59). Using explicit expressions for the Laguerre polynomials one obtains

Kz(w) = − 1

(w − z)2

m−1∑
j,k=0

(−1)j+k
(m− 1)! (j + k + 1)!

(j! k!)2 (m− 1− j)! (m− 1− k)!

(w − w)j (z − z)k

(w − z)j+k
.

(2.61)

Example 2.9.4 (vertical operators in the Bergman space of polyanalytic functions over

the upper half-plane). Here G and Y are the same as in Example 2.9.3, and H = L2
n-hol(Π)

is the space of square-integrable n-analytic functions on Π. The decomposition H =

H1 ⊕ · · · ⊕ Hn, whereHm is the space from Example 2.9.3, implies that

Lξ,y(v) = 1R+(ξ)

√
2

π
ξ e−ξ(y+v)

n∑
m=1

Lm−1(2ξy)Lm−1(2ξv). (2.62)
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It would be interesting to prove (2.62) directly, applying the Fourier transform to the

reproducing kernel (1.70) of A2
m(H1, να), computed in [58] and [53] in terms of Jacobi

polynomials:

KH
z (w) =

n (−1)n

π

(z − w)n−1

(w − z)n+1
P

(0,1)
n−1

(
2
|w − z|2

|w − z|2
− 1

)
. (2.63)

The orthogonality of the Laguerre polynomials implies that (2.62) is a particular case

of (2.51), with Ω = R+, dξ = n, and

qj,ξ(v) = (2/π)1/4
√
ξ e−ξv Lj−1(2ξv) (j = 1, . . . , n, ξ > 0, v > 0).

Thereby, the W*-algebra V in this example is spatially isomorphic to the direct integral of

matrix algebras,

V ∼=
∫ ⊕
R+

Cn×n dν̂(ξ) ∼= L∞(R+,Cn×n).

Ramı́rez-Ortega and Sánchez–Nungaray [65, Theorem 4.7] found a complete description

of a certain non-commutative C*-subalgebra of VT .

Example 2.9.5 (translation-invariant operators in wavelet spaces over the positive affine

group). Let ψ be a wavelet of the class L2(R) satisfying the admissibility condition:∫
R+

|(Fψ)(tξ)|2 dt

t
= 1 (ξ ∈ R \ {0}), (Fψ)(0) = 0. (2.64)

Put G = R, ν = ν̂ = µ1, E(x, ξ) = e2π ixξ, Y = R+, dλ(y) = dy
y2 . Notice that G × Y can be

identified with the positive affine group. For every (x, y) in G× Y , put

ψx,y(t) =
1
√
y
ψ

(
t− x
y

)
.

Define Wψ : L2(R)→ L2(G× Y ) by

(Wψf)(x, y) := 〈f, ψx,y〉L2(R).

The wavelet space H associated with ψ can be defined as Wψ(L2(R)). It is a RKHS over

G× Y , with reproducing kernel

Kx,y(u, v) = 〈ψu,v, ψx,y〉L2(R) = 〈ψu−x,v, ψ0,y〉L2(R).

Then

Lξ,y(v) =
√
yv (Fψ)(yξ) (Fψ)(vξ).
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2 Translation-Invariant Operators in Reproducing Kernel Hilbert Spaces

So, in this example Ω = R, V is commutative, and

qξ(v) =
√
v (Fψ)(vξ).

The property ‖qξ‖L2(Y ) = 1 follows from (2.64). The spectral functions are given by

γσ(ξ) =

∫
R+

σ(v) |(Fψ)(vξ)|2 dv

v
.

This formula was found by Hutnı́k and Hutnı́ková [45].

Let us mention without further details another similar example, studied by Hutnı́ková

and Miśková [47]: translation-invariant operators in the space related to the continuous

Stockwell transform.

In some examples, it is convenient to transform the domain of the functions and the

RKHS. The next simple proposition provides a recipe to compute the reproducing kernel

after a change of variables followed by the multiplication by some weight.

Proposition 2.9.6. Let D1 and D2 be some non-empty sets,H1 be a RKHS over D1, with

reproducing kernel (KH1
z )z∈D1 , andH2 be a complex vector space of functions overD2, with

a pre-inner product. Suppose that A is a linear isometry fromH1 toH2, acting by the rule

(Af)(z) = p(z)f(ϕ(z)) (z ∈ D2, f ∈ H1),

where ϕ : D2 → D1 and p : D2 → C. Then H := A(H1) is a RKHS over D2, and the

reproducing kernel in H can be computed by

KH
z (w) = p(z)KH1

ϕ(z)(ϕ(w))p(w). (2.65)

Proof. Since A is a linear isometry andH1 is a Hilbert space, H is also a Hilbert space.

The rest of the proof is the same as in [53, Proposition 4.3]. A similar construction is

explained in [3, Section 2.6].

Example 2.9.7 (radial operators in the analytic Bergman space over the unit disk). Let

H1 = L2
hol(D) be the Bergman space of analytic functions over the unit disk D provided

with the plane Lebesgue measure µ2. It is well known that the reproducing kernel ofH1 is

KH1
z (w) =

1

π(1− zw)2
.
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Let G be the group R/(2πZ) with the normalized Haar measure ν (we identify G with

[0, 2π)), Ĝ = Z with the counting measure ν̂, E(u + 2πZ, ξ) = eiuξ for u ∈ R and ξ in Z,

and Y be the interval [0, 1) with the measure dλ(v) = v dv. Define ϕ : G × Y → D and

p : G× Y → C by

ϕ(u, v) = v eiu, p(u, v) =
√

2π.

Let H2 = L2(G × Y, ν ⊗ λ). The operator A, defined as Proposition 2.9.6, is a linear

isometry:

‖Af‖2
H2

=

∫ 1

0

∫ 2π

0

|f(v eiu)|2 v du dv =

∫
D
|f(z)|2dµ2(z) = ‖f‖2

H1
.

Hence, A convertsH1 into a certain RKHS H over G× Y , with reproducing kernel

Kx,y(u, v) = p(x, y)KH1

ϕ(x,y)(ϕ(u, v)) p(u, v) =
2

(1− yv ei(u−x))2
.

Obviously,A intertwines the rotation operators acting inH1 into “horizontal translations”

acting in H. Now we notice that the function K0,y(· , v) decomposes into the Fourier

series

K0,y(u, v) =
∞∑
ξ=0

2(ξ + 1) (yv)ξ ei ξu,

which means that its Fourier coefficients are

Lξ,y(v) = 2(ξ + 1)(yv)ξ 1N0(ξ).

Thus, in this example, Ω = N0 and qξ(v) =
√

2(ξ + 1) vξ. The W*-algebra of radial

operators inH1 is commutative, and the sequence of the eigenvalues of a radial Toeplitz

operator is computed by

γσ(ξ) = 2(ξ + 1)

∫ 1

0

σ(v) v2ξ+1 dv = (ξ + 1)

∫ 1

0

σ(
√
r) rξ dr (ξ ∈ N0).

These results are well known and easily obtained from the fact that the radial operators

are diagonal in the monomial basis (
√

(ξ + 1)/π zξ)∞ξ=0. Our treatment of this example is

close to [82, Chapters 4, 6] and [30], where L2(D, µ2) is decomposed into L2(R/(2πZ))⊗
L2([0, 1), r dr), and the Fourier transform over R/(2πZ) is applied to the equation defining

H1. The C*-algebra VT for this example was described in [32] using Suárez [76].

Radial operators in the Segal–Bargmann–Fock space on C can be studied similarly to

Example 2.9.7. Moreover, Example 2.9.7 is easily generalized to the case of separately

radial operators acting on the Bergman space over the unit ball in Cn. In that case

G = (R/(2πZ))n and Ω = Nn
0 .
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2 Translation-Invariant Operators in Reproducing Kernel Hilbert Spaces

Example 2.9.8 (radial operators in the harmonic Bergman space over the unit disk). For

H1 = L2
harm(D),

KH1
z (w) =

1

π(1− zw)2
+

1

π(1− wz)2
− 1.

Similarly to Example 2.9.7, after passing to the polar coordinates and computing the

Fourier coefficients, we have

Lξ,y(v) = 2(|ξ|+ 1)(yv)|ξ| (ξ ∈ Z, y, v ∈ [0, 1)).

The W*-algebra of radial operators inL2
harm(D) is commutative, Ω = Z, qξ(v) =

√
2(|ξ|+ 1) v|ξ|,

and

γσ(ξ) = (|ξ|+ 1)

∫ 1

0

σ(
√
r) r|ξ| dr. (2.66)

Formula (2.66) was previously obtained by Loaiza and Lozano [54, Theorem 3.4].

Similarly to Example 2.9.2, the symmetry of formula (2.66) with respect to the sign of ξ

implies that G is a subclass of bounded symmetric sequences. By Corollary 2.7.12, the

C*-algebra generated by Toeplitz operators with radial symbols is not weakly dense in

the W*-algebra of all bounded radial operators on L2
harm(D).

Remark 2.9.9. Since the radialization transform of bounded linear operators in L2
harm(D)

is continuous in WOT and converts Toeplitz operators into radial Toeplitz operators, the

last paragraph of Example 2.9.8 implies that the set of all Toeplitz operators is not weakly

dense in B(L2
harm(D)). This result was proven more directly in [8]. In contrast, the weak

density of Toeplitz operators B(L2
hol(D)) has already been proven by Engliš [20].

Example 2.9.10 (angular operators in the analytic Bergman space over the upper half–

plane). Let H1 = L2
hol(Π). We say that an operator A of the class B(H1) is angular if A

commutes with all dilations Dh (h > 0), where Dh is given by

(Dhf)(w) = h−1f(h−1w).

Let G = R, Y = (0, π), ν = ν̂ = 1√
2π
µ1, E(x, ξ) = eixξ, and λ be the Lebesgue measure on

(0, π). Define ϕ : G× Y → Π, p : G× Y → C, and A : H1 → L2(G× Y ) by

ϕ(u, v) := eu+i v, p(u, v) := (2π)1/4 eu+i v, (Af)(u, v) = (2π)1/4 eu+i v f(eu+i v).

70



2.9 Examples

It is easy to see that A is a linear isometry, so we can apply Proposition 2.9.6. The space

H := A(H1) has reproducing kernel

Kx,y(u, v) = −
√

2

π

ex−i y eu+i v

(eu+i v− ex−i y)2 = −
√

2

π

1

4
(

sinh u−x+i(v+y)
2

)2 .

The linear isometry A intertwines the dilations, acting inH1, with the horizontal transla-

tions, acting in H:

ADeaA
∗ = ρH(a).

Hence, the algebra of angular operators inH1 is converted into V . For ξ > 0, integral (0.3)

can be computed via the residues at the points uk := − i(v + y)− 2π i k, k ∈ N0:

Lξ,y(v) = − 1

4π

∫
R

e− i ξu du(
sinh u+i(v+y)

2

)2 =
i

2

∞∑
k=0

res
u=uk

e− i ξu(
sinh u+i(v+y)

2

)2

=
i

2

∞∑
k=0

(
−4 i ξ e−ξ(v+y) e−2kπξ

)
=

2ξ e−ξ(y+v)

1− e−2πξ
.

For ξ < 0, the integral expresses through the residues at the points uk with k < 0, but the

final formula for Lξ,y(v) is the same. We conclude that V is commutative, Ω = R, and

qξ(v) =

√
2ξ

1− e−2πξ
e−ξv .

The spectral functions of angular Toeplitz operators can be computed by

γσ(ξ) =
2ξ

1− e−2πξ

∫ π

0

σ(v) e−2ξv dv.

This formula coincides with [82, Theorem 7.2.1], see also [29]. The C*-algebra G for this

example is found by Esmeral, Maximenko, and Vasilevski [23].

Example 2.9.11 (the radial basis function kernel on the complex domain). The following

reproducing kernel and its restriction to Rn are extensively used in machine learning:

Kz(w) = exp

(
−α2

n∑
j=1

(zj − wj)2

)
(z, w ∈ Cn).

Here α is a fixed positive number. Steinwart, Hush, and Scovel [75] proved that the

corresponding RKHS is H = {f ∈ Hol(Cn) : ‖f‖RBFK < +∞}, where

‖f‖RBFK :=

(
2nα2n

πn

∫
Cn
|f(z)|2 exp

(
−4α2

n∑
j=1

Im(zj)
2

)
dµ2n(z)

)1/2

.
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2 Translation-Invariant Operators in Reproducing Kernel Hilbert Spaces

We identify the domain Cn withG×Y , whereG = Y = Rn. The measures and the pairing

are

ν = ν̂ = µn, dλ(v) =
2nα2n

πn
exp

(
−4α2‖v‖2

)
, E(x, y) = exp (2π i〈x, y〉) .

Then the kernel takes the form

Kx,y(u, v) = exp

(
−α2

n∑
j=1

((uj − xj)2 − (vj + yj)
2 + 2 i(uj − xj)(vj + yj))

)
.

The computation of Lξ,y(v) can be reduced to the Gaussian integral and results in

Lξ,y(v) =

(√
π

α

)n
exp

(
−

n∑
j=1

(
2π(vj + yj)ξj +

π2ξ2
j

α2

))
.

In this example, Ω = Rn, V is commutative, and

qξ(v) =

(√
π

α

)n/2
exp

(
−

n∑
j=1

(
2πvjξj +

π2ξ2
j

2α2

))
.

Remark 2.9.12. For each example, we tested the equality ((F ⊗ I)K0,y)(ξ, v) = Lξ,y(v)

numerically in Sagemath. In Example 2.9.5, we used the Mexican hat wavelet.
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space

3.1 Scope

In this section, we describe the von-Neumann algebra of radial operators acting in the

polyanalytic weighted Bergman space over the unit disk. This is the case when n = 1

in Chapter 1. Unfortunately, although this example may fit in the scheme described in

Chapter 2, we have been unable to compute the Fourier transform of the reproducing

kernel, and, instead, we used the canonical orthonormal basis to provide the Fourier

decomposition of the space following ideas by Čučković [13]. All these calculations were

published in [8].

Jacobi polynomials for the unit interval

The function t 7→ 2t−1 is a bijection from (0, 1) onto (−1, 1). Denote byQ(α,β)
m the “shifted

Jacobi polynomial” obtained from P
(α,β)
m by composing it with this change of variables:

Q(α,β)
m (t) := P (α,β)

m (2t− 1).

The properties of Q(α,β)
m follow easily from the properties of P (α,β)

m . In particular, here are

analogs of (1.7), (1.13), and (1.14):

Q(α,β)
m (t) =

(−1)m

m!
(1− t)−αt−β dm

dtm

(
(1− t)m+αtm+β

)
, (3.1)

Q(α,β)
m (t) =

m∑
k=0

(
α + β +m+ k

k

)(
β +m

m− k

)
(−1)m−ktk. (3.2)

Q(α,β)
m (t) =

Γ(m+ β + 1)

m! Γ(m+ α + β + 1)

m∑
k=0

(
m

k

)
Γ(α + β +m+ k + 1)

Γ(β + k + 1)
(−1)m−ktk. (3.3)
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The sequence (Q
(α,β)
m )∞m=0 is orthogonal on (0, 1) weight as (1− t)αtβ, and∫ 1

0

Q(α,β)
m (t)Q(α,β)

n (t)(1− t)αtβdt = δm,n
Γ(m+ α + 1)Γ(m+ β + 1)

(2m+ α + β + 1)Γ(m+ α + β + 1)m!
. (3.4)

Also, here are analogs of (1.16) and (1.18):∫ 1

0

h(t)Q(α,β)
m (t)(1− t)αtβdt = 0, (3.5)

∫ 1

0

Q(α,β+1)
m (t)(1− t)αtβdt = (−1)m B(α +m+ 1, β + 1). (3.6)

Substituting in (3.1) t by tu and applying the chain rule, we get

∂m

∂tm

(
(1− tu)m+αtm+β

)
= m! (1− tu)α tβ Q(α,β)

m (tu). (3.7)

Inspired by (3.4) we define the Jacobi function J (α,β)
m on (0, 1) as

J (α,β)
m (t) := c(α,β)

m (1− t)α/2tβ/2Q(α,β)
m (t), (3.8)

where

c(α,β)
m :=

√
(2m+ α + β + 1) Γ(m+ α + β + 1)m!

Γ(m+ α + 1)Γ(m+ β + 1)
. (3.9)

Then ∫ 1

0

J (α,β)
m (t)J (α,β)

n (t) dt = δm,n. (3.10)

Reproducing property for the polynomials on the unit interval

Given m in N0 and α, β > −1, we denote by R(α,β)
m the polynomial

R(α,β)
m (t) :=

(−1)m B(α + 1, β + 1)

B(α +m+ 1, β + 1)
Q(α,β+1)
m (t). (3.11)

The following formula is analogous to (1.23) in Chapter 1.

Proposition 3.1.1. Let m ∈ N0 and α, β > −1. Then for every polynomial h with deg(h) ≤
m,

1

B(α + 1, β + 1)

∫ 1

0

h(t)R(α,β)
m (t) (1− t)αtβ dt = h(0). (3.12)
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Proof. See Proposition (1.3.2).

As a particular case of (3.12), for β = 0 and k ≤ m,

1

α + 1

∫ 1

0

tkR(α,0)
m (t)(1− t)αdt = δk,0. (3.13)

Formula (3.13) was proven in [35] in other way.

3.2 Orthonormal basis and Fourier decomposition of

L2(D, µα)

For each p, q ∈ N0, denote by mp,q the monomial function

mp,q(z) := zpzq.

The inner product of two monomial functions is

〈mp,q,mj,k〉 = (α + 1) B (p+ j + 1, α + 1) δp−q,j−k. (3.14)

In particular, this means that the family (mp,q)p,q∈N0 is not orthogonal.

In this section, we recall various equivalent formulas for an orthonormal basis inL2(D, µα),

that can be obtained by orthonormalizing (mp,q)p,q∈N0 , and whose elements are known as

Jacobi polynomials in z and z, see Koornwinder [49], or disk polynomials, see Wünsche [84],

among others. These polynomials, in the unweighted case, were also rediscovered

in [51], [63], and [59], in the context of polyanalytic functions. We work with a normal-

ized version of the disk polynomials and define them by

b(α)
p,q (z) := (−1)p+q c̃(α)

p,q (1− zz)−α
∂q

∂zq
∂p

∂zp

(
(1− z z)p+q+α

)
, (3.15)

where

c̃(α)
p,q =

√
(α + p+ q + 1)Γ(α + p+ 1)Γ(α + q + 1)

(α + 1)p! q! Γ(α + p+ q + 1)2
. (3.16)
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3 Radial operators in the poly-Bergman space

Since
∂

∂z
(1− zz) = −z and

∂

∂z
(1− zz) = −z, the expression in (3.15) can be rewritten in

other equivalent forms:

b(α)
p,q (z) = (−1)q

√
(α + p+ q + 1)Γ(α + p+ 1)

(α + 1)p! q! Γ(α + q + 1)
(1− zz)−α

∂q

∂zq

(
zp(1− z z)α+q

)
, (3.17)

b(α)
p,q (z) = (−1)p

√
(α + p+ q + 1)Γ(α + q + 1)

(α + 1)p! q! Γ(α + p+ 1)
(1− zz)−α

∂p

∂zp

(
zq(1− z z)α+p

)
. (3.18)

By (3.7), b(α)
p,q can be expressed via the shifted Jacobi polynomials:

b(α)
p,q (z) =



√
(α + p+ q + 1)Γ(α + p+ 1)q!

(α + 1) Γ(α + q + 1)p!
zp−qQ

(α,p−q)
q (|z|2), if p ≥ q;√

(α + p+ q + 1)Γ(α + q + 1)p!

(α + 1) Γ(α + p+ 1)q!
zq−pQ

(α,q−p)
p (|z|2), if p < q.

(3.19)

The two cases in (3.19) can be joined and written in terms of (3.8) and (3.9):

b(α)
p,q (rτ) =

c
(α,|p−q|)
min{p,q}√
α + 1

r|p−q|τ p−qQ
(α,|p−q|)
min{p,q}(r

2) (r ≥ 0, τ ∈ T), (3.20)

b(α)
p,q (rτ) =

τ p−q(1− r2)−α/2√
α + 1

J (α,|p−q|)
min{p,q} (r2). (3.21)

Notice that

c
(α,|p−q|)
min{p,q} =

√
(α + p+ q + 1)(min{p, q})! Γ(α + max{p, q}+ 1)

(max{p, q})! Γ(α + min{p, q}+ 1)
.

The family (b
(α)
p,q )p,q∈N0 has the following conjugate symmetric property:

b
(α)
p,q (z) = b(α)

q,p (z). (3.22)

Applying (3.3) in the right-hand side of (3.19) we obtain

b(α)
p,q (z) =

√
(α + p+ q + 1)p! q!

(α + 1) Γ(α + p+ 1)Γ(α + q + 1)
×

×
min{p,q}∑
k=0

(−1)k
Γ(α + p+ q + 1− k)

k! (p− k)! (q − k)!
zp−kzq−k,

(3.23)

In particular, (3.23) implies that b(α)
p,q is a polynomial in z and z whose leading term (when

k = 0) is a positive multiple of the monomials mp−k,q−k.
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3.2 Orthonormal basis and Fourier decomposition of L2(D, µα)

Let P be the set of all polynomials functions in z and z, i.e., the linear span of the

monomials

P := span{mp,q : p, q ∈ N0}.

For every ξ ∈ Z and every s ∈ N, denote byW(α)
ξ,s the subspace of P generated by mp,q

with p− q = ξ and min{p, q} < s:

W(α)
ξ,s := span{mp,q : p− q = ξ, min{p, q} < s}. (3.24)

The vector spaceW(α)
ξ,s does not depend on α, but we endow it with the inner product

from L2(D, µα). Obviously, dim(W(α)
ξ,s ) = s. Let us show that

W(α)
ξ,s = span{b(α)

p,q : p− q = ξ, min{p, q} < s}. (3.25)

Indeed, by (3.23),

mp,q =

√
(α + 1)Γ(α + p+ 1)Γ(α + q + 1)p! q!

Γ(α + p+ q + 2)
b(α)
p,q

− p! q!

Γ(α + p+ q + 1)

min{p,q}∑
ν=1

(−1)ν
Γ(α + p+ q + 1− ν)

ν! (p− ν)! (q − ν)!
mp−ν,q−ν .

(3.26)

Proceeding by induction on s, we see that the monomialsmp,q are linear combinations of

b
(α)
p−s,q−s with 0 ≤ s ≤ min{p, q}. So, formula (3.25) means that the first s elements in the

diagonal ξ of the table (b
(α)
p,q )∞p,q=0 generate the same subspace as the first s elements of

the diagonal ξ in the table (mp,q)
∞
p,q=0. For example,

W(α)
−2,3 = span{m0,2,m1,3,m2,4} = span{b(α)

0,2 , b
(α)
1,3 , b

(α)
2,4},

W(α)
1,4 = span{m1,0,m2,1,m3,2,m4,3} = span{b(α)

1,0 , b
(α)
2,1 , b

(α)
3,2 , b

(α)
4,3}.

In the following tables we show generators ofW(α)
1,4 (light blue) andW(α)

−2,3 (pink).

m0,0 m0,1 m0,2 m0,3 m0,4 m0,5
. . .

m1,0 m1,1 m1,2 m1,3 m1,4 m1,5
. . .

m2,0 m2,1 m2,2 m2,3 m2,4 m2,5
. . .

m3,0 m3,1 m3,2 m3,3 m3,4 m3,5
. . .

m4,0 m4,1 m4,2 m4,3 m4,4 m4,5
. . .

m5,0 m5,1 m5,2 m5,3 m5,4 m5,5
. . .

. . . . . . . . . . . . . . . . . . . . .

b
(α)
0,0 b

(α)
0,1 b

(α)
0,2 b

(α)
0,3 b

(α)
0,4 b

(α)
0,5

. . .

b
(α)
1,0 b

(α)
1,1 b

(α)
1,2 b

(α)
1,3 b

(α)
1,4 b

(α)
1,5

. . .

b
(α)
2,0 b

(α)
2,1 b

(α)
2,2 b

(α)
2,3 b

(α)
2,4 b

(α)
2,5

. . .

b
(α)
3,0 b

(α)
3,1 b

(α)
3,2 b

(α)
3,3 b

(α)
3,4 b

(α)
3,5

. . .

b
(α)
4,0 b

(α)
4,1 b

(α)
4,2 b

(α)
4,3 b

(α)
4,4 b

(α)
4,5

. . .

b
(α)
5,0 b

(α)
5,1 b

(α)
5,2 b

(α)
5,3 b

(α)
5,4 b

(α)
5,5

. . .
. . . . . . . . . . . . . . . . . . . . .

As a consequence, P =
⋃
ξ∈Z
⋃
s∈NW

(α)
ξ,s = span{b(α)

p,q : p, q ∈ N0}.
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3 Radial operators in the poly-Bergman space

Proposition 3.2.1. The family (b
(α)
p,q )p,q∈N0 is an orthonormal basis of L2(D, µα).

Proof. The orthonormal property follows straightforwardly from (3.21) and (3.10):

〈b(α)
p,q , b

(α)
j,k 〉 =

1

2π

∫ 2π

0

ei(p−q−j+k)θ dθ

∫ 1

0

J (α,|p−q|)
min{p,q} (t)J (α,|j−k|)

min{j,k} (t) dt

= δp−q,j−k · δmin{p,q},min{j,k} = δp,j · δq,k.

By the Stone–Weierstrass theorem, P is dense in C(clos(D)). In turn, by Luzin’s theorem,

the set C(clos(D))|D is dense in L2(D, µα) and for every f ∈ C(clos(D)) we have ‖f‖ ≤
maxz∈clos(D) |f(z)|. Now it is easy to see that the set P is dense in L2(D, µα), that is, the set

of all linear combinations of elements of the family is dense in L2(D, µα). For that reason,

(b
(α)
p,q )p,q∈N0 is a complete orthonormal family.

Corollary 3.2.2. Let ξ ∈ Z and s ∈ N. Then (b
(α)
q+ξ,q)

max{s−1,s−ξ−1}
q=max{0,−ξ} is an orthonormal basis

of W(α)
ξ,s .

Remark 3.2.3. By Proposition 3.2.1 and formula (3.26),

〈mξ+k,k, b
(α)
ξ+q,q〉 =


√

(α+1)Γ(α+p+1)Γ(α+q+1)p! q!
Γ(α+p+q+2)Γ(α+p+q+1)

, k = q;

0, max{0,−ξ} ≤ k < q.
(3.27)

The table of basic functions can be expressed as follows:

b
(α)
0,0 (z) = h

(α)
0,0 (|z|2), b

(α)
0,1 (z) = z h

(α)
0,1 (|z|2), b

(α)
0,2 (z) = z2 h

(α)
0,2 (|z|2),

b
(α)
1,0 (z) = z h

(α)
1,0 (|z|2), b

(α)
1,1 (z) = h

(α)
1,1 (|z|2), b

(α)
1,2 (z) = z h

(α)
1,2 (|z|2),

b
(α)
2,0 (z) = z2 h

(α)
2,0 (|z|2), b

(α)
2,1 (z) = z h

(α)
2,1 (|z|2), b

(α)
2,2 (z) = h

(α)
2,2 (|z|2),

where h
(α)
p,q (t) :=

c
(α,|p−q|)
min{p,q}√
α+1

Q
(α,|p−q|)
min{p,q}(t). Below we show explicitly some elements of this

basis.

b
(α)
0,0 (z) = 1, b

(α)
1,0 (z) =

√
α + 2 z, b

(α)
2,0 (z) =

√
(α + 3)(α + 2)

2
z2,

b
(α)
1,1 (z) =

√
α + 3

α + 1

(
(α + 2)zz − 1

)
, b

(α)
2,1 (z) =

√
2(α + 3)(α + 2)

α + 1

(
α + 3

2
z2z − z

)
,

b
(α)
2,2 (z) =

√
α + 5

α + 1

(
(α + 4)(α + 3)

2
z2z2 − 2(α + 3)zz +

1

2

)
.
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3.2 Orthonormal basis and Fourier decomposition of L2(D, µα)

Now, for every ξ in Z we introduce the subspaceW(α)
ξ associated to the “frequency” ξ or,

equivalently, to the diagonal ξ in the tables (mp,q)p,q∈N0 and (b
(α)
p,q )p,q∈Z:

W(α)
ξ := clos(span{mp,q : p− q = ξ}) = clos

(⋃
s∈N

W(α)
ξ,s

)
. (3.28)

Corollary 3.2.4. The sequence (b
(α)
ξ+q,q)

∞
q=max{0,−ξ} is an orthonormal basis ofW(α)

ξ .

The spaceW(α)
ξ can be naturally identified withL2 over (0, 1), providing (0, 1) with various

weights.

Proposition 3.2.5. Each one of the following linear operators is an isometric isomorphism

of Hilbert spaces:

1) L2((0, 1), (α + 1) (1− t)αdt)→W(α)
ξ , h 7→ f ,

f(rτ) := τ ξh(r2), i.e., f(z) := sgnξ(z)h(zz), (3.29)

where z ∈ D, 0 ≤ r < 1, τ ∈ T;

2) L2((0, 1), (α + 1) t|ξ|(1− t)α)→W(α)
ξ , h 7→ f ,

f(rτ) := τ ξr|ξ|h(r2), i.e., f(z) :=

zξh(zz), ξ ≥ 0,

zξh(zz), ξ < 0;
(3.30)

3) L2((0, 1))→W(α)
ξ , h 7→ f ,

f(rτ) := τ ξ
(1− r2)−α/2√

α + 1
h(r2), i.e., f(z) := sgnξ(z)

(1− zz)−α/2√
α + 1

h(zz). (3.31)

Proof. In each case, the isometric property is verified directly using polar coordinates,

and the surjective property is justified with the help of the orthonormal basis ofW(α)
ξ

(Corollary 3.2.4). The function sgn: C → C is defined by sgn(z) := z/|z| for z 6= 0 and

sgn(0) := 0.

Corollary 3.2.6. The space L2(D, dµα) is the orthogonal sum of the subspacesW(α)
ξ :

L2(D, dµα) =
⊕
ξ∈Z

W(α)
ξ . (3.32)
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3 Radial operators in the poly-Bergman space

The result of Corollary 3.2.6 can be seen as the Fourier decomposition of the space

L2(D, dµα), where each spaceW(α)
ξ corresponds to the frequency ξ.

Here we show the generators ofW(α)
0 (pink) andW(α)

−1 (light blue):

m0,0 m0,1 m0,2 m0,3
. . .

m1,0 m1,1 m1,2 m1,3
. . .

m2,0 m2,1 m2,2 m2,3
. . .

m3,0 m3,1 m3,2 m3,3
. . .

. . . . . . . . . . . . . . .

b
(α)
0,0 b

(α)
0,1 b

(α)
0,2 b

(α)
0,3

. . .

b
(α)
1,0 b

(α)
1,1 b

(α)
1,2 b

(α)
1,3

. . .

b
(α)
2,0 b

(α)
2,1 b

(α)
2,2 b

(α)
2,3

. . .

b
(α)
3,0 b

(α)
3,1 b

(α)
3,2 b

(α)
3,3

. . .
. . . . . . . . . . . . . . .

3.3 Weighted mean value property of polyanalytic

functions

It is known [7, Section 1.1] that any m-analytic function can be expressed as a “poly-

nomial” of degree m − 1 in the variable z with 1-analytic coefficients, that is, for any

f ∈ Am(D), there exist analytic functions g0, g1, . . . , gm−1 in D such that

f(z) =
m−1∑
k=0

gk(z)zk (z ∈ D).

Replacing every gk by its Taylor series, we get another classic form ofm-analytic functions:

there exist coeficients λj,k in C such that

f(z) =
m−1∑
k=0

∞∑
j=0

λj,kz
jzk (z ∈ D). (3.33)

The following weighted mean value property was proved by Hachadi y Youssfi [35] using a

slightly different method. The mean value property for solutions of more general elliptic

equations is studied in [78].

Proposition 3.3.1. Let f ∈ Am(D) such that∫
D
|f(z)| (1− |z|2)α dµ(z) < +∞.

Then

f(0) =
α + 1

π

∫
D
f(z)R

(α,0)
m−1(|z|2) (1− |z|2)α dµ(z). (3.34)
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3.3 Weighted mean value property of polyanalytic functions

Formula (3.34) is equivalent to formula (1.29) in Chapter 1.

Proof. See Proposition 3.3.1.

For α = 0, Proposition 3.3.1 reduces to the following mean value property that appeared

in [51] and [59].

Corollary 3.3.2. Let z ∈ C, r > 0, and f ∈ Am(z + rD) such that∫
z+rD
|f(w)| dµ(w) < +∞.

Then

f(z) =
α + 1

π r2

∫
z+rD

f(w)R
(α,0)
m−1

(
|w − z|2

r2

)
dµ(w). (3.35)

Proof. Denote by ϕ the linear change of variables ϕ(w) := rw+ z. If f ∈ Am(z+ rD), then

f ◦ ϕ ∈ Am(D). Applying (3.34) to f ◦ ϕ, we obtain (3.35).

Weighted Bergman spaces of polyanalytic functions on general complex domains

Given m in N, an open subset Ω of C and a continuous function W : Ω → (0,+∞),

we denote by A2
m(Ω,W ) the space of m-analytic functions belonging to L2(Ω,W ) and

provided with the norm of L2(Ω,W ). The mean value property (3.35) implies that the

evaluation functionals inA2
m(Ω,W ) are bounded (moreover, they are uniformly bounded

on compacts), andA2
m(Ω,W ) is a RKHS.

Lemma 3.3.3. Let K be a compact subset of Ω. There exists a number Cm,W,K > 0 such

that for every f inA2
m(Ω,W ) and every z in K,

|f(z)| ≤ Cm,W,K‖f‖A2
m(Ω,W ). (3.36)

Proof. Let r1 be the distance from K to C \ Ω. Since K is compact and C \ Ω is closed,

r1 > 0. Put r := min{r1/2, 1}, K1 := {w ∈ C : d(w,K) ≤ r},

C1 :=

(
max
0≤t≤1

|R(α,0)
m−1(t)|

)(
max
w∈K1

1√
W (w)

)
.
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3 Radial operators in the poly-Bergman space

For every z in K, we estimate |f(z)| from above applying (3.35) and Schwarz inequality:

|f(z)| ≤ 1

πr2

∫
z+rD
|f(w)|

∣∣∣∣R(α,0)
m−1

(
|w − z|2

r2

)∣∣∣∣ dµ(w)

≤ C1

πr2

∫
z+rD
|f(w)|

√
W (w) dµ(w)

≤ C1

πr2

(∫
z+rD
|f(w)|2W (w) dµ(w)

)1/2(∫
z+rD

1 dµ(w)

)1/2

≤ C1√
πr2
‖f‖A2

m(Ω,W ).

So, (3.36) is fulfilled with Cm,W,K = C1√
πr2

.

Proposition 3.3.4. A2
m(Ω,W ) is a RKHS.

Proof. Given a Cauchy sequence in A2
m(Ω,W ), for every compact K it converges uni-

formly on K by Lemma 3.3.3. The pointwise limit of this sequence is also polyanalytic

by [7, Corollary 1.8], and it coincides a.e. with the limit in L2(Ω,W ). Lemma 3.3.3 also

assures the boundedness of the evalution functionals and thereby the existence of the

reproducing kernel. See similar proofs in [57, Proposition 3.3].

Denote byA2
(m)(Ω,W ) the orthogonal complement ofA2

m−1(Ω,W ) inA2
m(Ω,W ).

Corollary 3.3.5. A2
(m)(Ω,W ) is a RKHS.

3.4 Weighted Bergman spaces of polyanalytic functions on

the unit disk

In the rest of the chapter, we suppose that m ∈ N and α > −1. Given z in D, denote by

K
(α)
m,z the reproducing kernel of A2

m(D, µα) at the point z and by K(α)
(m),z the reproducing

kernel ofA2
(m)(D, µα) at the point z. Hachadi and Youssfi [35] computed the reproducing

kernel ofA2
m(D, µα):

K(α)
m,z(w) =

(1− wz)m−1

(1− zw)m+1
R

(α,0)
m−1

(∣∣∣∣ z − w1− zw

∣∣∣∣2
)
. (3.37)
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3.4 Weighted Bergman spaces of polyanalytic functions on the unit disk

Their method uses (3.34) and a generalization of the unitary operator constructed by

Pessoa [59]. Formula (3.37) implies an exact expression for the norm of K(α)
m,z, which is

also the norm of the evaluation functional at the point z:

‖K(α)
m,z‖ =

√
(m+ α)

(
m+ α− 1

m− 1

)
1

1− |z|2
. (3.38)

Obviously, the reproducing kernel ofA2
(m)(D, µα) can be written as

K
(α)
(m),z(w) = K(α)

m,z(w)−K(α)
m−1,z(w). (3.39)

Unfortunately, we are unable to obtain a simpler formula for K(α)
(m),z.

Orthonormal basis in A2
m(D, µα)

Proposition 3.4.1. The family (b
(α)
p,q )p∈N0,q<m is an orthonormal basis ofA2

m(D, µα).

Proof. It is clear that the family is contained in A2
m(D, µα), and by Proposition 3.2.1 is

orthonormal. Using ideas of Ramazanov [63, proof of Theorem 2] we will show the total

property. Suppose that f ∈ A2
m(D, µα) and 〈f, b(α)

p,q 〉 = 0 for every p in N0 and q < m. For

r > 0, using expansion (3.33) and the orthogonality of the Fourier basis on T, we easily

obtain ∫
rD
f b

(α)
p,q dµα =

m−1∑
k=0

λk+p−q,k

∫
rD
mk+p−q,kb

(α)
p,q dµα.

The dominated convergence theorem allows us to pass to integrals over D, because f b(α)
p,q

and mk+p−q,k b
(α)
p,q belong to L1(D, µα). Now the assumption f ⊥ b

(α)
p,q = 0 yields

m−1∑
k=0

〈mk+p−q,k, b
(α)
p,q 〉λk+p−q,k = 0 (p ∈ N0, 0 ≤ q < m). (3.40)

For a fixed ξ in Z with ξ > −m, put s = min{m,m + ξ}. The vector [λk+ξ,k]
m−1
k=max{0,−ξ}

satisfies the homogeneous linear system (3.40) with the s× s matrix[
〈mξ+k,k, b

(α)
ξ+q,q〉

]m−1

q,k=max{0,−ξ}
.

By (3.27), this is an upper triangular matrix with nonzero diagonal entries, hence the

unique solution of (3.40) is zero.
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3 Radial operators in the poly-Bergman space

Corollary 3.4.2. The sequence (b
(α)
p,m−1)p∈N0 is an orthonormal basis ofA2

(m)(D, µα).

We denote by P (α)
m and P (α)

(m) the orthogonal projections acting in L2(D, µα), whose images

are A2
m(D, µα) and A2

(m)(D, µα), respectively. They can be computed in terms of the

corresponding reproducing kernels:

(P (α)
m f)(z) = 〈f,K(α)

m,z〉, (P
(α)
(m)f)(z) = 〈f,K(α)

(m),z〉.

For example, (b
(α)
p,q )p∈N0,q<4 is an orthonormal basis of A2

4(D, µα), and (b
(α)
p,3 )p∈N0 is an or-

thonormal basis ofA2
(4)(D, µα).

b
(α)
0,0 b

(α)
0,1 b

(α)
0,2 b

(α)
0,3 b

(α)
0,4 . . .

b
(α)
1,0 b

(α)
1,1 b

(α)
1,2 b

(α)
1,3 b

(α)
1,4 . . .

b
(α)
2,0 b

(α)
2,1 b

(α)
2,2 b

(α)
2,3 b

(α)
2,4 . . .

b
(α)
3,0 b

(α)
3,1 b

(α)
3,2 b

(α)
3,3 b

(α)
3,4 . . .

...
...

...
...

...
. . .

b
(α)
0,0 b

(α)
0,1 b

(α)
0,2 b

(α)
0,3 b

(α)
0,4 . . .

b
(α)
1,0 b

(α)
1,1 b

(α)
1,2 b

(α)
1,3 b

(α)
1,4 . . .

b
(α)
2,0 b

(α)
2,1 b

(α)
2,2 b

(α)
2,3 b

(α)
2,4 . . .

b
(α)
3,0 b

(α)
3,1 b

(α)
3,2 b

(α)
3,3 b

(α)
3,4 . . .

...
...

...
...

...
. . .

Decomposition of A2
m(D, µα) into subspaces corresponding to different “frequences”

We will use the following elementary fact about orthonormal bases in Hilbert spaces. In

the next proposition we treat orthonormal bases like sets rather than families.

Proposition 3.4.3. Let H1 be a Hilbert space and B1 ⊆ H1 be an orthonormal basis of H1.

Suppose that B2 and B3 are some subsets of B1. Denote by H2 and H3 the closed subspaces

ofH1 generated by B2 and B3, respectively. Then B2∩B3 is an orthonormal basis ofH2∩H3.

Applying Proposition 3.4.3 to the Hilbert space L2(D, µα) and thinking in terms of or-

thonormal bases (see Propositions 3.2.1, 3.4.1, and Corollaries 3.2.2, 3.2.4), we easily find

the intersection ofW(α)
ξ andA2

m(D, µα):

W(α)
ξ ∩ A

2
m(D, µα) =

W
(α)
ξ,min{m,m+ξ}, ξ ≥ −m+ 1;

{0}, ξ < −m+ 1.
(3.41)

Here is a description of the subspacesW(α)
ξ,m in terms of the polar coordinates.
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3.4 Weighted Bergman spaces of polyanalytic functions on the unit disk

Proposition 3.4.4. For every ξ in Z and every s in N, the spaceW(α)
ξ,s consists of all functions

of the form

f(rτ) = τ ξr|ξ|Q(r2) (r ≥ 0, τ ∈ T),

where Q is a polynomial of degree≤ s− 1. Moreover,

‖f‖ = ‖Q‖L2([0,1),(α+1)(1−t)αt|ξ| dt).

Proof. The result follows directly by Proposition (3.2.5) and formula (3.30).

The decomposition ofA2
m(D, µα) into a direct sum of the “truncated frequency subspaces”

shown below follows from Proposition 3.4.1 and Corollary 3.2.2, and plays a crucial role

in the study of radial operators. It can be seen as the “Fourier series decomposition” of

A2
m(D, µα).

Proposition 3.4.5.

A2
m(D, µα) =

∞⊕
ξ=−m+1

W(α)
ξ,min{m,m+ξ}. (3.42)

Let us illustrate Proposition 3.4.5 for m = 3 with a table (we have marked in different

shades of blue the basic functions that generate each truncated diagonal):

b
(α)
0,0 b

(α)
0,1 b

(α)
0,2 b

(α)
0,3 . . .

b
(α)
1,0 b

(α)
1,1 b

(α)
1,2 b

(α)
1,3 . . .

b
(α)
2,0 b

(α)
2,1 b

(α)
2,2 b

(α)
2,3 . . .

b
(α)
3,0 b

(α)
3,1 b

(α)
3,2 b

(α)
3,3 . . .

...
...

...
...

. . .

Define U (α)
m : A2

m(D, µα)→
⊕∞

ξ=−m+1 Cmin{m,m+ξ},

(U (α)
m f)ξ,q := 〈f, b(α)

q+ξ,q〉 (ξ ≥ −m+ 1, max{0,−ξ} ≤ q ≤ m− 1). (3.43)

Here, for−m+ 1 ≤ ξ < 0, the componentes of vectors in Cm+ξ are enumerated from−ξ
to m− 1.

Proposition 3.4.6. The operator U (α)
m is an isometric isomorphism of Hilbert spaces.

Proof. Follows from Proposition 3.4.1 or, even easier, from Proposition 3.4.5 and the fact

that (b
(α)
q+ξ,q)

m−1
q=max{0,−ξ} is an orthonormal basis ofW(α)

ξ,min{m,m+ξ} (see Corollary 3.2.2).
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3 Radial operators in the poly-Bergman space

An analog of the next fact for the unweighted poly-Bergman space was proved by

Vasilevski [82, Section 4.2]. We obtain it as a corollary from Proposition 3.2.1 and Corol-

lary 3.4.2.

Corollary 3.4.7. The space L2(D, µα) is the orthogonal sum of the subspacesA2
(m)(D, µα),

m ∈ N:

L2(D, µα) =
⊕
m∈N

A2
(m)(D, µα).

3.5 The set of Toeplitz operators is not weakly dense

Given a Hilbert space H, we denote by B(H) the algebra of all bounded operators acting

in H. If H is a RKHS and S ∈ B(H), then the Berezin transform of S is defined by

BerH(S)(z) :=
〈SKz, Kz〉H
〈Kz, Kz〉H

, i.e., BerH(S)(z) =
(SKz)(z)

Kz(z)
.

The Berezin transform can be considered as a bounded linear operator B(H)→ L∞(Ω).

Stroethoff proved [72] that BerH is injective for various RKHS of analytic functions, in

particular, for H = A2
1(D). Engliš noticed [21, Section 2] that BerH is not injective for

various RKHS of harmonic functions. The idea of Engliš can be applied without any

changes to various spaces of polyanalytic and polyharmonic functions. For clarity of

presentation, we state the result of Engliš forA2
m(D, µα), m ≥ 2, and repeat his proof.

Proposition 3.5.1. Let H = A2
m(D, µα) with m ≥ 2. Then the Berezin transform BerH is

not injective.

Proof. Let f ∈ H such that f ∈ H and the functions f, f are linearly independent. For

example, f(z) := z. Following the idea from [21, Section 2], consider the operator

Sh := 〈h, f〉Hf − 〈h, f〉H f.

Then S 6= 0, but 〈SKz, Kz〉H = |f(z)|2 − |f(z)|2 = 0 for every z in D. So, BerH(S) is the

zero constant.
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3.5 The set of Toeplitz operators is not weakly dense

Given a function g in L∞(D), let Mg be the multiplication operator defined on L2(D, µα)

by Mgf := gf . If H is a closed subspace of L2(D, µα), then the Toeplitz operator TH,g is

defined on H by

TH,g(f) := PH(gf) = PHMgf.

For H = A2
m(D, µα) and H = A2

(m)(D, µα), we write just T (α)
m,g and T (α)

(m),g, respectively. The

proof of the following fact is the same as the proof of [57, Proposition 3.18] or the proof

of [11, Theorem 4].

Proposition 3.5.2. If g ∈ L∞(D) and T (α)
m,g = 0, then g = 0 a.e. In other words, the function

g 7→ T
(α)
m,g, acting from L∞(D) to B(A2

m(D, µα)), is injective.

Inspired by the idea of Engliš explained in the proof of Proposition 3.5.1, we will prove

that the set of Toeplitz operators is not weakly dense in B(A2
m(D, µα)) with m ≥ 2. First,

let us prove an auxiliary fact from linear algebra: bounded quadratic forms separate

linearly independent vectors.

Lemma 3.5.3. Let H be a Hilbert space and f, g be two linearly independent vectors in H.

Then there exists S in B(H) such that

〈Sf, f〉H 6= 〈Sg, g〉H .

Proof. Without lost of generality, we will suppose that ‖f‖H = 1. Decompose g into the

linear combination g = λ1f + λ2h, with λ1, λ2 ∈ C, ‖h‖H = 1, h ⊥ f . More explicitly,

λ1 := 〈g, f〉H , w := g − λ1f, λ2 := ‖w‖H , h :=
1

λ2

w.

Define S as the orthogonal projection onto h:

Sv := 〈v, h〉Hh (v ∈ H).

Then Sf = 0 and Sg = λ2h, therefore 〈Sf, f〉H = 0 and 〈Sg, g〉H = λ2
2 > 0.

Theorem 3.5.4. Let H = A2
m(D, µα) with m ≥ 2. Then the set of the Toeplitz operators

with bounded symbols is not weakly dense in B(H).
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3 Radial operators in the poly-Bergman space

Proof. Let f ∈ H such that f ∈ H and the functions f, f are linearly independent. For

example, f(z) := z. The set

W := {S ∈ B(H) : 〈Sf, f〉H = 〈Sf, f〉H}

is a weakly closed subspace of B(H). By Lemma 3.5.3, W 6= B(H). On the other hand, for

every a in L∞(D)

〈T (α)
m,af, f〉H =

∫
X

a |f |2 dµα = 〈T (α)
m,a f, f〉H ,

i.e., {T (α)
m,a : a ∈ L∞(D)} ⊆ W .

Remark 3.5.5. An analog of Theorem 3.5.4 is true for the space of µα-square integrable

m-harmonic functions on D, with m ≥ 1.

3.6 Von Neumann algebras of radial operators

Set of operators diagonalized by a family of subspaces

The theory of von Neumann algebras and their decompositions is well developed. For

our purposes, it is sufficient to use the following elementary scheme from [57]. This

scheme is similar to ideas from [32, 60, 89].

Definition 3.6.1. LetH be a Hilbert space, U be a self-adjoint subset ofB(H), and (Wj)j∈J

be a finite or countable family of nonzero closed subspaces of H such that H =
⊕

j∈JWj .

We say that this family diagonalizes U if the following two conditions are satisfied.

1. For each j in J and each U in U , there exists λU,j in C such that Wj ⊆ ker(λU,jI − U),

i.e., U(v) = λU,jv for every v in Wj .

2. For every j, k in J with j 6= k, there exists U in U such that λU,j 6= λU,k.

Proposition 3.6.2. Let H, U , and (Wj)j∈J be as in Definition 3.6.1. Denote by A the

commutant of U . ThenA consists of all bounded linear operators that act invariantly on

each of the subspaces Wj , with j ∈ J :

A = {S ∈ B(H) : ∀j ∈ J S(Wj) ⊆ Wj}. (3.44)

Furthermore,A is isometrically isomorphic to
⊕

j∈J B(Wj), and the von Neumann algebra

generated by U is isometrically isomorphic to
⊕

j∈J CIWj
.

88



3.6 Von Neumann algebras of radial operators

Example 3.6.3. Let j1, . . . , jm ∈ J , λ1, . . . , λm ∈ C, and ujk , vjk ∈ Wjk for every k in

{1, . . . ,m}. Then the operator S : H → H defined by

Sf :=
m∑
k=1

λk〈f, ujk〉vjk , (3.45)

belongs toA. Moreover, every operator of finite rank, belonging toA, can be written in

this form. See the proof of [57, Corollary 5.7] for a similar situation.

Proposition 3.6.4. Let H, U , and (Wj)j∈J be as in Definition 3.6.1, and H1 be a closed

subspace of H invariant under U . For every U in U , denote by U |H1
H1

the compression of U

onto the invariant subspace H1, and put

U1 :=
{
U |H1

H1
: U ∈ U

}
, J1 := {j ∈ J : Wj ∩H1 6= {0}}.

Then

H1 =
⊕
j∈J1

(Wj ∩H1), (3.46)

and the family (Wj ∩H1)j∈J diagonalizes U1.

Example 3.6.5. The operators of finite rank, commuting with U |H1
H1

for every U in U , are

of the form (3.45), but with ujk , vjk ∈ Wjk ∩H1.

Radial operators in L2(D, µα)

For each τ in T, we denote by ρ(α)(τ) the rotation operator acting in L2(D, µα) by the rule

(ρ(α)(τ)f)(z) := f(τ−1z). (3.47)

It is easy to see that ρ(α)(τ1τ2) = ρ(α)(τ1)ρ(α)(τ2), the operators ρ(α)(τ) are unitary, and for

every f in L2(D, µα) the mapping τ 7→ ρ(α)(τ)f is continuous (this is easy to check first for

the case when f is a continuous function with compact support). So, (ρ(α), L2(D, µα)) is a

unitary representation of the group T. The operators commuting with ρ(α)(τ) for every τ

in T are called radial operators. We denote the set of all radial operators in L2(D, µα) by

R(α):

R(α) := {ρ(α)(τ) : τ ∈ T}′ = {S ∈ B(L2(D, µα)) : ∀τ ∈ T ρ(α)(τ)S = Sρ(α)(τ)}.
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3 Radial operators in the poly-Bergman space

Since {ρ(α)(τ) : τ ∈ T} is a selfadjoint subset of B(L2(D, µα)), its commutantR(α) is a von

Neumann algebra [74].

Recall that the subspacesW(α)
ξ are defined by (3.28).

Lemma 3.6.6. The family (W(α)
ξ )ξ∈Z diagonalizes the collection {ρ(α)(τ) : τ ∈ T} in the

sense of Definition 3.6.1.

Proof. 1. Let τ ∈ T. For every p, q ∈ Z with p− q = ξ, formula (3.20) implies

c (3.48)

i.e., b(α)
p,q ∈ ker(τ−ξI − ρ(α)(τ)). By Corollary 3.2.4, the functions b(α)

p,q with p− q = ξ form an

orthonormal basis ofW(α)
ξ . So,

W(α)
ξ ⊆ ker(τ−ξI − ρ(α)(τ)). (3.49)

2. Let ξ1, ξ2 ∈ Z and ξ1 6= ξ2. Put τ = exp iπ
ξ1−ξ2 . Then τ−ξ1 6= τ−ξ2 .

Proposition 3.6.7. The von Neumann algebraR(α) consists of all operators that act in-

variantly onW(α)
ξ for every ξ in Z, and is isometrically isomorphic to

⊕
ξ∈Z B(W(α)

ξ ).

Proof. Follows from Proposition 3.6.2 and Lemma 3.6.6.

The radialization transform Rad(α) : B(L2(D, µα)) → B(L2(D, µα)), introduced by Zor-

boska [89], acts by the rule

Rad(α)(S) :=

∫
T
ρ(τ)Sρ(τ−1) dµT(τ),

where µT is the normalized Haar measure on T, and the integral is understood in the

weak sense. The condition S ∈ R(α) is equivalent to Rad(α)(S) = S.
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3.6 Von Neumann algebras of radial operators

Radial operators in A2
m(D, µα)

Proposition 3.6.8. The spaceA2
m(D, µα) is invariant under every rotation ρ(α)(τ), τ ∈ T.

First proof. The reproducing kernel of A2
m(D, µα), given by (3.37), is invariant under

simultaneous rotations in both arguments:

K(α)
m,τz(τw) = K(α)

m,z(w) (z, w ∈ D, τ ∈ T). (3.50)

According to [57, Proposition 4], this implies the invariance of the subspace.

Second proof. By (3.47), the elements of the orthonormal basis (b
(α)
p,q )p∈N0,0≤q<n are eigen-

functions of ρ(α).

For every τ in T, we denote by ρ(α)
m (τ) the compression of ρ(α)(τ) onto the spaceA2

m(D, µα).

In other words, the operator ρ(α)
m (τ) acts in A2

m(D, µα) and is defined by (3.47). So,

(ρ
(α)
m ,A2

m(D, µα)) is a unitary representation of T. We denote by R(α)
m the commutant

of this representation, i.e., the von Neumann algebra of all bounded linear radial opera-

tors acting inA2
m(D, µα).

Denote by Mm the following direct sum of matrix algebras:

Mm :=
∞⊕

ξ=−m+1

Mmin{m,m+ξ} =

(
−1⊕

ξ=−m+1

Mm+ξ

)
⊕

(
∞⊕
ξ=0

Mm

)
.

For example,

M3 = M1︸︷︷︸
ξ=−2

⊕M2︸︷︷︸
ξ=−1

⊕M3︸︷︷︸
ξ=0

⊕M3︸︷︷︸
ξ=1

⊕M3︸︷︷︸
ξ=2

⊕ . . . .

According to the definition of the direct sum (see [74, Definition 1.1.5]), Mm consists of

all matrix sequences of the form A = (Aξ)
∞
ξ=−m+1, where Aξ ∈Mm+ξ if ξ < 0, Aξ ∈Mm if

ξ ≥ 0, and

sup
ξ≥−m+1

‖Aξ‖ < +∞.

Being a direct sum of W*-algebras, Mm is a W*-algebra. We identify the elements of Mm

with the bounded linear operators acting in
⊕∞

ξ=−m+1 Cmin{m,m+ξ}. Now we are ready to

describe the structure ofR(α)
m . Recall that U (α)

m is given by (3.43).
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3 Radial operators in the poly-Bergman space

Theorem 3.6.9. Let n ∈ N. ThenR(α)
m consists of all operators belonging to B(A2

m(D, µα))

that act invariantly on each subspaceW(α)
ξ,min{m,m+ξ}, for ξ ≥ −m+ 1. Furthermore,

R(α)
m
∼=

∞⊕
ξ=−m+1

B(W(α)
ξ,min{m,m+ξ}),

andR(α)
m is spatially isomorphic to Mm:

U (α)
m R(α)

m (U (α)
m )∗ = Mm.

Proof. We apply the scheme from Propositions 3.6.2, 3.6.4,

Wj =W(α)
ξ , U = {ρ(α)(τ) : τ ∈ T},

and H1 = A2
m(D, µα). By (3.41), we obtain

J1 = {ξ ∈ Z : ξ ≥ −m+ 1}, A2
m(D, µα) ∩W(α)

ξ =W(α)
ξ,min{m,m+ξ}.

So, the W*-algebraR(α)
m is isometrically isomorphic to the direct sum of B(W(α)

ξ,min{m,m+ξ}),

with ξ ≥ −m + 1. Using the orthonormal basis (b
(α)
ξ+k,k)

m−1
k=max{0,−ξ} of W(α)

ξ,min{m,m+ξ}, we

represent linear operators on this space as matrices. Define Φ
(α)
m : R(α)

m →Mm by

Φ(α)
m (S) :=

([〈
Sb

(α)
ξ+k,k, b

(α)
ξ+j,j

〉]m−1

j,k=max{0,−ξ}

)∞
ξ=−m+1

. (3.51)

In other words, Φ
(α)
m (S) = U

(α)
m S(U

(α)
m )∗, i.e., Φ

(α)
m is an isometrical isomorphism of W*-

algebras induced by the unitary operator U (α)
m .

Radial operators of finite rank, acting in A2
m(D, µα), can be constructed as in Exam-

ples 3.6.3 and 3.6.5.

It is easy to verify (see a more general result in [57, Corollary 4.3]) that ifA2
m = A2

m(D, µα)

and S ∈ R(α)
m , then BerA2

m
(S) is a radial function. For m = 1, the Berezin transform BerA2

1

is injective. So, if S ∈ B(A2
1(D, µα)) and the function BerA2

1
(S) is radial, then the operator

S is radial.
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3.7 Radial Toeplitz operators in polyanalytic Bergman spaces

Radial operators in A2
(m)(D, µα)

Let n ∈ N. The spaceA2
(m)(D, µα) is invariant under the rotation ρ(α)(τ) for all τ in T. The

proof is similar to the proof of Proposition 3.6.8. Denote the compression of ρ(α)(τ) onto

A2
(m)(D, µα) by ρ(m)(τ). LetR(α)

(m) be the von Neumann algebra of all radial operators in

A2
(m)(D, µα).

Theorem 3.6.10. R(α)
(m) consists of all operators belonging to B(A2

(m)(D, µα)) that are diag-

onal with respect to the orthonormal basis (b
(α)
p,m−1)∞p=0. Furthermore,

R(α)
(m)
∼= `∞(N0).

Proof. Corollaries 3.2.4 and 3.4.2 give

W(α)
ξ ∩ A

2
(m)(D, µα) =

Cb(α)
ξ+m−1,m−1, ξ ≥ −m+ 1,

{0}, ξ < −m+ 1.
(3.52)

By Propositions 3.6.2, 3.6.4 and formula (3.52), R(α)
(m) consists of the operators that act

invariantly on Cb(α)
ξ+m−1,m−1, ξ ≥ −m + 1, i.e., are diagonal with respect to the basis

(b
(α)
p,m−1)∞p=0. Therefore the function Φ

(α)
(m) : R(α)

(m) → `∞(N0), defined by

Φ
(α)
(m)(S) =

(
〈Sb(α)

p,m−1, b
(α)
p,m−1〉

)∞
p=0

, (3.53)

is an isometric isomorphism.

3.7 Radial Toeplitz operators in polyanalytic Bergman

spaces

This section is similar to [57, Section 6], but here we use Jacobi polynomials instead of

the generalized Laguerre polynomials.
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3 Radial operators in the poly-Bergman space

Radial functions

Given g in L∞(D), define rad(g) : D→ C by

rad(g)(z) :=

∫
T
g(τz) dµT(τ). (3.54)

Given a in L∞([0, 1)), define ã : D→ C by

ã(z) := a(|z|) (z ∈ D).

The proof of the following criterion is a simple exercise.

Proposition 3.7.1. Given g in L∞(D), the following conditions are equivalent:

(a) for every τ in T, the equality g(τz) = g(z) is true for a.e. z in D;

(b) for every τ in T, the equality ρ(α)(τ)g = g is true a.e.;

(c) rad(g) = g a.e.;

(d) there exists a in L∞([0, 1)) such that g = ã a.e.

Radial multiplication operators in L2(D, µα)

The following result is easily obtained by direct calculation

Proposition 3.7.2. Let g ∈ L∞(D). Then Rad(α)(Mg) = M
(α)
rad(g).

Given a in L∞([0, 1)), we define the numbers βa,α,ξ,j,k by

βa,α,ξ,j,k :=

∫ 1

0

a(
√
t)J (α,|ξ|)

min{j,j+ξ}(t)J
(α,|ξ|)
min{k,k+ξ}(t) dt, (3.55)

i.e.,

βa,α,ξ,j,k := c
(α,|ξ|)
min{q+ξ,q}c

(α,|ξ|)
min{k+ξ,k}

∫ 1

0

a(
√
t)Q

(α,|ξ|)
min{q,q+ξ}(t)Q

(α,|ξ|)
min{k,k+ξ}(t) (1− t)α t|ξ| dt. (3.56)

Proposition 3.7.3. Let a ∈ L∞([0, 1)). Then Mã ∈ R(α), and

〈Mãb
(α)
p,q , b

(α)
j,k 〉 = 〈ãb(α)

p,q , b
(α)
j,k 〉 = δp−q,j−kβa,α,p−q,q,k. (3.57)

Proof. Since ã is invariant under rotations, it follows directly from definitions that M (α)
ã

commutes with ρ(α)(τ) for every τ . This is a particular case of [57, Lemma 4.4]. For-

mula (3.57) is obtained directly using polar coordinates.
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3.7 Radial Toeplitz operators in polyanalytic Bergman spaces

Radial Toeplitz operators in A2
m(D, µα)

Proposition 3.7.4. Let g ∈ L∞(D). Then T (α)
m,g is radial if and only if the function g is radial.

Proof. Follows from Proposition 3.5.2 and [57, Corollaries 4.6, 4.7].

Recall that Φ
(α)
m : R(α)

m →Mm is defined by (3.51).

Given a in L∞([0, 1)), denote by γ(α)
m (a) the sequence of matrices [γ

(α)
m (a)ξ]

∞
ξ=−m+1, where

γ
(α)
m (a)ξ ∈Mmin{m+ξ,m} is given by

γ(α)
m (a)ξ :=

[
βa,α,ξ,j,k

]m−1

j,k=max{0,−ξ}. (3.58)

Proposition 3.7.5. Let a ∈ L∞([0, 1)). Then T (α)
m,ã ∈ R

(α)
m and Φm(T

(α)
m,ã) = γ

(α)
m (a).

Proof. Apply Propositions 3.7.3 and 3.7.4.

Radial Toeplitz operators in A2
(m)(D, µα)

Proposition 3.7.6. Let a ∈ L∞([0, 1)). Then T
(α)
(m),ã ∈ R

(α)
(m), the operator T (α)

(m),ã is diagonal

with respect to the orthonormal basis (b
(α)
p,m−1)∞p=0, and the corresponding eigenvalues can

be computed by

λa,α,m(p) =

∫ 1

0

a(
√
t)
(
J (α,|p−m+1|)

min{p,m−1} (t)
)2

dt (p ∈ N0). (3.59)

Proof. From Proposition 3.7.4 we get T (α)
(m),ã ∈ R

(α)
(m). Due to Proposition 3.7.3 and Theo-

rem 3.6.10,

λa,α,m(p) = (Φ(m)(T
(α)
(m),ã))p = 〈T (α)

(m),ãb
(α)
p,m−1, b

(α)
p,m−1〉 = βa,p−m+1,m−1,m−1.
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Colofón

Beauty is the first test: there is no permanent place

in the world for ugly mathematics. G. H. Hardy

La belleza es el primer examen, dice Hardy, concepto que a propósito confunde con simpleza. La simpleza es el primer examen:
las matemáticas feas no tienen un lugar permanente porque no son simples. La simpleza, la claridad, la evidencia: lo natural es lo
bello. La matemática resuelve, sı́, pero también simplifica. La matemática depura porque exprimiendo las cosas, éstas rebelan sus

entrañas.

La matemática es una suerte de alma que posee la esencia de las cosas una vez que es creada. En un acto de posesión demoniaca,
brinca de la imaginación humana al corazón de las cosas. Alĺı las posee de veras porque las comanda. La matemática describe,

sı́, pero también predice. Las cosas obedecen cuando las reglas son claras. Por eso la fealdad es la ambigüedad, lo intrincado, lo
inextricable.

Dice Kuntzmann (1969) que todos, quizá sin que hayamos reflexionado sobre ello, estamos seguros de dos cosas: no se puede
prescindir de las matemáticas y no se puede hacer trampa con ellas. No si se siguen bien sus reglas. A través de la lupa de las
matemáticas no hay resultado ambiguo ni misterio que no sea rebelado a su debido tiempo. Por mucho o poco que nos agraden,

podemos estar seguros de que en ellas yace una verdad inapelable. Todos confiamos en ellas porque la experiencia nos dice que
funcionan y nos hacen sentir seguros. Ernesto Sábato, a propósito de esto, dice en Uno y el universo que

Existe una opinión generalizada según la cual la matemática es la ciencia más difı́cil cuando en realidad es la más

simple de todas. La causa de esta paradoja reside en el hecho de que, precisamente por su simplicidad, los razon-
amientos matemáticos equivocados quedan a la vista [...] El resultado es que cualquier tonto se cree en condiciones

de discutir sobre polı́tica y arte –y en verdad lo hace–, mientras que mira la matemática desde una respetuosa distan-
cia.

La matemática es creada ad hoc, simulando el ejercicio de algo, ası́ posee: imitando. Y como virus que se implanta, también la

matemática se propaga. Ha sido varias veces descubierta en lugares inopinados. Se hace a la medida de lo que vemos, pero una
vez en marcha, nos habla de cosas inesperadas.

La matemática es un invento (el mejor invento): es un bisturı́ que corta un problema complejo en partes pequeñas y simples.

Por eso estudiamos el triángulo (que tiene muy pocos lados) y el cı́rculo (que está demasiado redondo) porque las figuras son
rompecabezas de triángulos y cı́rculos. De ahı́ su belleza simple: el análisis. Sin embargo, el mundo funciona sin que nosotros

sepamos muchas veces cómo. Hemos creado un lenguaje que describe lo que hay, lo que ya está, lo que ya funciona. Adecuamos
los signos y las palabras para representar las cosas, pero son las cosas mismas las que hablan de sı́ en este lenguaje, de lo que son y
de sus relaciones. Entonces la matemática es un descubrimiento (el más sorprendente). De ahı́ su simple belleza: la sı́ntesis.

La investigación en matemáticas funciona más o menos como una mina: alguien con mucha experiencia intuye que aquı́ habrá oro.
El oro de la matemática es la simplificación, que se obtiene estableciendo vı́nculos con ideas más sencillas y mejor comprendidas.

Cuando el milagro del oro se confirma, todo un equipo se encarga de escarbar al rededor. La experimentación en matemáticas
es ası́: se cambian algunas condiciones y se observa si se obtuvo el mismo resultado. Se cambian caracterı́sticas de un problema
resuelto y se observa si la solución se puede trasplantar o adaptar al nuevo problema.
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Siempre que se resuelve un problema hay que preguntarse qué otros problemas se resuelven del mismo modo. Es decir, hay que
intentar resolver muchos problemas con las herramientas que ya inventamos. ¿Cuáles caracterı́sticas del problema permiten que

cierta solución funcione? ¿Cuáles otros problemas tienen esas mismas caracterı́sticas esenciales? ¿De qué nos hablan esas carac-
terı́sticas esenciales? Una vez que se ha escarbado lo suficiente en la mina, ya es posible determinar hacia dónde va la veta, es
decir, se puede mirar desde un plano más general y proponer una hipótesis estructural. Ası́ el oro ya no es milagro: milagro que

es parecido a inexplicable (matemáticas feas). Las cosas que se simplifican se vuelven prototipos. Observando las caracterı́sticas
de la mina (una vez explorada), podremos reconocer otras más fácilmente. Ese es el modus operandi de la matemática, que es

por demás, el método cient́ıfico: observa un milagro, trata de reproducirlo, y cuando hayas creado una miscelánea de ejemplos,
será más fácil identificar las caracterı́sticas esenciales que producen el milagro. Entonces formula una teorı́a que haga encajar el
milagro en el mosaico de las matemáticas.

Esta elaborada tarea de análisis y sı́ntesis es en realidad el proceso mediante el cual aprendemos: primero advertimos un milagro,
un hecho fuera el alcance de nuestra comprensión. La curiosidad conduce a la manipulación: hacemos el examen de belleza, es

decir, buscamos qué partes son simples, comprensibles, aceptables. Luego estudiamos cómo se relacionan las partes entre sı́ y
finalmente juntamos todo: construimos los puentes entre lo que ya sabemos y lo nuevo. Resalto que para aprender hace falta

tener los ojos bien abiertos y una genuina sorpresa. Hace falta ser curioso, preguntón, incómodo pero sobre todo ingenioso, pues
nunca se cuenta con herramientas para explorar lo desconocido, hay que usar las que ya se tiene. Es importante saber usar esas
herramientas, pero siempre se puede aprender sobre la marcha: ası́ ocurre siempre. El deber del alumno es ser curioso. El deber

del profesor es fomentar la curiosidad y propiciar la confianza de meter las manos: el ejercicio de (intentar) responder nuestras
propias preguntas nos acerca al aprendizaje significativo. El profesor debe fomentar la autonomı́a. Los programas deben presentar
a la matemática más como una herramienta para explorar que para resolver.

La matemática en la actualidad florece no sólo como lenguaje universal de las ciencias naturales o por su aplicación en las finanzas

o la computación, también en su enseñanza, en sus fundamentos, en su propio lenguaje y sus objetos de estudio. Esta ciencia
ha crecido aceleradamente las últimas décadas. Prueba de ello es que, hasta 1950, a nivel mundial se producı́an menos de 10 mil
art́ıculos de investigación al año. Actualmente la producción anual rebasa los 90 mil. Es natural preguntarse: ¿Todos estos art́ıculos

son relevantes para la matemática? No individualmente (salvo algunos, quizás) sino todos en colectivo: mientras exista este flujo de
información, esta comunicación permanente, habrá la discusión, el análisis y la sı́ntesis que gesta las ideas nuevas. Evidentemente

la matemática no es una ciencia terminada, como suelen creer los estudiantes. Está siempre sometida a un replanteamiento, pues
las nuevas ideas y sus conexiones develan nuevas caras de las ideas anteriores. Es esta búsqueda y replanteamiento el sino de las
matemáticas.

Este crecimiento exagerado es debido en mucho al uso de las computadoras, pues permiten una manipulación cuantitativa veloz,
precisa y abundante: justo lo que se requiere para un análisis cualitativo más profundo. Los cálculos numéricos ahorran tiempo

y permiten desechar rápidamente hipótesis equivocadas o confirmar conjeturas acertadas. Las demostraciones anaĺıticas son ac-
tualmente el paso siguiente de las comprobaciones numéricas. Éstas últimas alumbran el arduo camino de la justificación teórica.

Para desarrollar la intuición hace falta tener experiencia, dice mi asesor, por eso hay que dar más peso al carácter estadı́stico de
la matemática en la educación, porque la inferencia es producto de la sı́ntesis. Las computadoras facilitan ese análisis estadı́stico
pues es justamente el rumbo de la informática: la minerı́a de datos. La enseñanza de las matemáticas debe incluir cuanto antes

esta herramienta. La matemática debe simplificar lo que ahora es complejo, vincular las ideas principales con todas las áreas del
conocimiento y unificar el lenguaje para propiciar la transdisciplinariedad. Su enseñanza debe plantearla como una herramienta

de exploración.
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Toeplitz operators with horizontal symbols acting on the poly-Fock spaces. J. Funct.

Spaces 2018, Article ID 8031259, 8 pages (2018). doi:10.1155/2018/8031259

[72] Stroethoff, K.: The Berezin transform and operators on spaces of analytic functions.

Banach Center Publ. 38, 361–380 (1997). doi:10.4064/-38-1-361-380
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