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Resumen

El tema de esta tesis doctoral es la adaptación por simetría del ajuste variacional del

potencial de Coulomb y de Fock en el marco de referencia de la teoría del funcional de

la densidad auxiliar (ADFT por sus siglas en inglés) y de Kohn-Sham. Para este fin, las

ecuaciones de trabajo para el ajuste variacional de la densidad ajustado por simetría se

han desarrollado e implementado en el programa de química cuántica deMon2k junto

con las ya consolidadas ecuaciones de Kohn-Sham adaptadas por simetría.

Los beneficios de usar la simetría en el marco de referencia de la ADFT es doble.

Primero, la adaptación por simetría permite el etiquetamiento por simetría de orbitales

moleculares, funciones de base y operadores matemáticos de acuerdo a representaciones

irreducibles. Esto simplifica el análisis de cálculos de estructura electrónica y la asignación

por simetría de estados electrónicos. Segundo, el uso de la simetría introduce una

estructura de bloques dentro del álgebra lineal que surge de las ecuaciones de trabajo de

la ADFT. Como resultado, la solución de un sistema de ecuaciones grande, puede ser

sustituido por la solución de varios sistemas de ecuaciones más pequeños. El grado del

bloqueo matricial se incrementa con el orden del grupo puntual. Desde un punto de

vista computacional, la reducción de demanda de memoria de acceso aleatorio (RAM

por sus siglas en inglés) asociada, permite cálculos adaptados por simetría de tamaños

de sistemas que son de otra manera inaccesibles. Una simplificación adicional surge en

las ecuaciones de ajuste adaptadas por simetría para densidades totalmente simétricas,

para este caso, sólo la parte totalmente simétrica de las ecuaciones de ajuste necesitan ser

resueltas, lo cual implica una dramática reducción en consumo de RAM.

El formalismo matemático usado para la adaptación por simetría de las ecuaciones

de ajuste y las de Kohn-Sham se basa en la teoría de grupos. En ésta tesis sólo grupos

puntuales se estudian, es decir, sólo la simetría rotacional se aprovecha. Las ecuaciones

de Kohn-Sham y de ajuste adaptadas por simetría, se obtienen por la transformación de

orbitales atómicos a una base orbital ajustada por simetría.

Las matrices de simetrización necesarias para este cambio de base se construyen

mediante operadores de proyección proporcionados por la teoría de grupos. Estos

operadores de proyección se construyen a partir de tablas de grupos puntuales las cuales

que se agregaron al código de deMon2k. Las tablas de grupos puntuales se tomaron

de la literatura o bien han sido recién generadas. Para ser consistente con el cálculo

de integrales moleculares en demon2k, se desarrolló e implementó la construcción de

matrices de simetrización para índices de momento angular arbitrarios. Para mejorar la

eficiencia computacional, los orbitales atómicos y las funciones auxiliares se dividieron

en conjuntos mínimos de funciones que se transforman entre sí por medio de operaciones

de simetría. Nombramos a estos conjuntos, invariantes. Cada invariante se divide en

dos espacios abstractos separados, el espacio de permutación atómica y el espacio de

funciones centradas en el origen. La simplificación de las ecuaciones de trabajo de

la ADFT debido a su representación adaptada por simetría derivada aquí, surge del

teorema fundamental de la simetría, el cual establece que las integrales sobre funciones

y operadores adaptados por simetría son diferentes de cero, únicamente, cuando su

producto directo contiene a la representación totalmente simétrica.



Para dar ejemplos ilustrativos de aplicaciones del recién implementado enfoque de

estructura electrónica adaptado por simetría en deMon2k, presentamos el análisis de

orbitales moleculares del dímero de uranio, cálculos de energía adaptados por simetría

de fullerenos gigantes y el etiquetado con representaciones irreducibles de estados

excitados para varios sistemas.

La tesis se organiza de la siguiente manera. Los primeros dos capítulos dan una

descripción básica de la teoría del funcional de la densidad y de la ADFT respectivamente.

En el siguiente capítulo, se deriva la reciéndesarrolladaADFTadaptadapor simetría. En el

capítulo 4, se describe la construcción dematrices de simetrización para funciones de base

y funciones auxiliares de momentos angulares arbitrarios. Se discute la implementación

del algoritmo correspondiente en deMon2k. En el capítulo 5, se describe la construcción

de las recién implementadas tablas de grupos puntuales en deMon2k. La validación

del enfoque de la ADFT en el campo auto consistente (SCF por sus siglas en inglés)

adaptada por simetría, se discute en el capítulo que le sigue. En el capítulo 7 se presentan

aplicaciones seleccionadas. La tesis finaliza con conclusiones y perspectivas.
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Abstract

The topic of this Ph.D. thesis is the symmetry adaptation of the variational fitting of

the Coulomb and Fock potential in the framework of Kohn-Sham and auxiliary density

functional theory (ADFT). To this end, the working equations for the symmetry-adapted

variational density fittings are developed and implemented in the quantum chemistry

program deMon2k along with the well-established symmetry-adapted Kohn-Sham

equations.

The benefits of using symmetry in the ADFT framework are twofold. First, symmetry

adaptation permits symmetry labeling of molecular orbitals, basis functions and mathe-

matical operators according to irreducible representations. This simplifies the analysis of

electronic structure calculations and the symmetry assignment of electronic states. Sec-

ond, the use of symmetry introduces a block structure into the linear algebra that arises

from the ADFT working equations. As a result, the solution of one large equation system

can be substituted by the solutions of several smaller equation systems. The degree of

this matrix blocking increases with the point group order. From a computational point

of view, the associated reduction in random-access memory (RAM) demand permits

symmetry-adapted calculations of system sizes that are otherwise inaccessible. A further

simplification arises in the symmetry-adapted fitting equations for totally symmetric

densities. For this case, only the totally symmetric part of the fitting equations needs to

be solved which implies a dramatic reduction in RAM demand.

The mathematical formalism used for the symmetry adaptation of the fitting and

Kohn-Sham equations is based on group theory. In this thesis only point groups are

studied, i.e., only rotational symmetry is exploited. The symmetry-adapted Kohn-Sham

and fitting equations are obtained by the transformation of the atomic orbital basis into

a symmetry-adapted orbital basis.

The symmetrization matrices needed for this change of basis are built by means

of projection operators provided by group theory. These projection operators are

constructed from point group tables that are added to the deMon2k source. The point

group tables were taken either from the literature or newly generated. To be consistent

with the molecular integral calculation in deMon2k the construction of symmetrization

matrices for arbitrary angular momentum indices was developed and implemented.

To improve computational efficiency, the atomic orbitals and auxiliary functions are

split into minimal sets of functions that transform between themselves by means of

symmetry operations. We name these function sets invariants. Each invariant is split

into two separated abstract spaces, the atom permutation space and the origin-centered

function space. The simplification of the ADFTworking equations due to the here derived

symmetry-adapted representation arises from the fundamental theorem of symmetry,

namely that integrals over symmetry-adapted functions and operators are only different

from zero when their direct product contains the totally symmetric representation.

In order to give illustrative application examples of the newly implemented symmetry-

adapted electronic structure approach in deMon2k, we present the molecular orbital

analysis of the uranium dimer, the symmetry-adapted energy calculations of giant

fullerenes and the irreducible representation labeling of excited states of several systems.



The thesis is organized in the following form. The first two chapters give basic

descriptions of density functional theory and ADFT, respectively. In the following

chapter, the newly developed symmetry-adapted ADFT is derived. In Chapter 4 the

construction of symmetrization matrices for arbitrary angular momenta of basis and

auxiliary functions is outlined. The implementation of the corresponding algorithm in

deMon2k is discussed. The construction of the newly implemented point group tables

in deMon2k is described in Chapter 5. The validation of the symmetry-adapted ADFT

self-consistent field (SCF) approach is discussed in the next chapter. In Chapter 7 selected

applications are presented. The thesis finishes with conclusions and perspectives.

xii
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1
D E N S I T Y F U NC T I O NA L T H E O RY

1.1 The electronic Schrödinger equation

Within the adiabatic Born-Oppenheimer approximation [2–4], the non-relativistic, time-

independent electronic Schrödinger equation for amolecular systemwithN electrons (3N

independent variables) andM fixed nuclei (3M parameters for the nuclear coordinates)

is:

ĤΨ(r, r2, ..., rN) = EΨ(r, r2, ..., rN) (1.1)

To avoid cluttering of notation the parametric dependency from all nuclear coordinates

is being neglected. The expression of the (electronic) Hamiltonian in atomic units is:

Ĥ = −
1

2

N∑
i=1

∇2i +
N∑
i=1

N∑
j>i

1

|ri − rj|
+

N∑
i=1

v(ri) (1.2)

The first term

T̂e = −
1

2

N∑
i=1

∇2i (1.3)

is the electronic kinetic energy operator, the second term

V̂ee =

N∑
i=1

N∑
j>i

1

|ri − rj|
(1.4)

is the Coulomb repulsion between the electrons and the last term is the potential operator

1
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for the nuclear-electron attraction:

V̂en =

N∑
i=1

v(ri), with v(ri) = −

M∑
A=1

ZA
|ri −RA|

(1.5)

If no other interactions are considered, the one-electron function v(ri) is called the

external potential. It has the parameters of the molecular geometry {R1,R2, ...,RM}

and the nuclear charges {Z1, Z2, ..., ZM}. It is called “external” because in the Born-

Oppenheimer approximation the quantum calculations are only on the electrons since

the electronic degrees of freedom are the main variables. Therefore, the nuclei are

“external” fixed objects which exert their Coulomb potential to the electrons. In a

general situation, such an external potential could be provided not only by the nuclei

configuration but also from a non-molecular source like an external electromagnetic

field. Although, we will not consider that case here. Compactly the Hamiltonian can be

written as:

Ĥ = F̂+ V̂en, with F̂ = T̂e + V̂ee (1.6)

Thus, the Hamiltonian is determined by the number of electrons, N, and the external

potential. The expectation value of V̂en with the wave function is [5, p. 33]

〈Ψ|V̂en |Ψ〉 =
∫
v(r)ρ(r)dr (1.7)

where ρ(r) is the electron density:

ρ(r) = N

∫
· · ·
∫
Ψ∗(r, r2, ..., rN)Ψ(r, r2, ..., rN)dr2dr3...drN (1.8)

For simplicity, we neglect spin dependency. The here used short-hand integration

notation is in Cartesian coordinates defined as:

∫
dri ≡

∫∞
−∞
∫∞
−∞
∫∞
−∞ dxidyidzi (1.9)
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The electron density has the property that its integral yields the number of electrons, i.e.∫
ρ(r)dr = N (1.10)

The energy of the system is given by the expectation value of the Hamiltonian:

E =〈Ψ|Ĥ|Ψ〉

= 〈Ψ|F̂|Ψ〉+ 〈Ψ|V̂en|Ψ〉

= F+

∫
v(r)ρ(r)dr (1.11)

Where F = 〈Ψ|F̂|Ψ〉. Eq. (1.11) defines the energy of a system in terms of expectation values.

Now, we can apply the variational principle to obtain the energy of a (non-degenerate)

molecular ground state as:

E0 = 〈Ψ0|Ĥ|Ψ0〉 < 〈Ψ|Ĥ|Ψ〉 (1.12)

Here Ψ0 is the true ground state wave function, E0 its corresponding energy and Ψ

a quantum mechanically valid trial wave function. Since (1.1) is a many-body prob-

lem, only approximate numerical solutions are feasible. Therefore, the development

of computationally efficient methods for the approximate solution of the electronic

Schrödinger equation is a very active research field. In particular, for the calculation of

ground state energies the development of Density Functional Theory (DFT) provides

computationally efficient and reliable approximations for the solution of the electronic

Schrödinger equation. The exact formalism of DFT is based on the Hohenberg-Kohn [6]

theorems that establishes an unique mapping from the ground state density, ρ0(r), to

the corresponding energy, i.e.

ρ0(r)→ E[ρ0] ≡ E0 (1.13)
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This allows the formulation of electronic structure methods on the basis of the electronic

density instead of the wave function. The advantage of having as basic variable the

density instead of the wave function is that the density is simpler since it only depends on

three spatial coordinates and not on 3N variables as the wave function. Furthermore, the

density is an observable and can be measured. Therefore, within DFT the construction

of the complicated many-body wave function can be avoided.

1.2 Hohenberg-Kohn theorems

DFT is based on the two Hohenberg-Kohn theorems. The first states: The external potential

v(r) of a (non-degenerate) ground state is determined, within a trivial additive constant, by the

electron density ρ(r). Therefore, the density can be used as the basic variable for the

calculation of the ground state energy. The proof uses the minimum energy principle for

the ground state as outlined in the following [5]: If there were two external potentials v

and v ′ differing by more than a constant, yielding the same density ρ0, we would have

two Hamiltonians Ĥ and Ĥ ′ whose ground state densities are the same, although their

wave functions Ψ and Ψ ′ would be different. Due to the minimum energy principle for

the ground state, Eq. (1.12), we find:

E0 < 〈Ψ ′|Ĥ|Ψ ′〉 = 〈Ψ ′|Ĥ ′ − Ĥ ′ + Ĥ|Ψ ′〉 (1.14)

= 〈Ψ ′|Ĥ ′|Ψ ′〉+ 〈Ψ ′|Ĥ− Ĥ ′|Ψ ′〉 (1.15)

= E ′0 + 〈Ψ ′|V̂en − V̂ ′en|Ψ
′〉 (1.16)

Eq. (1.16) can be rewritten as:

E0 < E
′
0 +

∫
ρ ′(r)v(r)dr−

∫
ρ ′(r)v ′(r)dr (1.17)

= E ′0 +

∫
ρ ′(r)

[
v(r) − v ′(r)

]
dr (1.18)
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Because ρ ′(r) = ρ(r) by construction, we finally obtain:

E0 <E
′
0 +

∫
ρ(r)

[
v(r) − v ′(r)

]
dr (1.19)

Here E0 and E
′
0 are the ground state energies obtained with Ĥ and Ĥ ′, respectively. In

the same way we can take Ψ as trial wave function for the Hamiltonian H ′:

E ′0 < 〈Ψ|Ĥ ′|Ψ〉 (1.20)

E ′0 < 〈Ψ|Ĥ|Ψ〉+ 〈Ψ|Ĥ ′ − Ĥ|Ψ〉 (1.21)

E ′0 < E0 −

∫
ρ(r)[v(r) − v ′(r)]dr (1.22)

Adding Eq. (1.19) and (1.22) we obtain E0 + E
′
0 < E ′0 + E0, which is a contradiction.

Therefore, there cannot be two different external potentials that give the same ground

state density. As a result, the functional dependency on the electron density of the energy

is established:

E[ρ(r)] =

∫
ρ(r)v(r)dr+ F[ρ(r)] (1.23)

In Eq. (1.23) the system-dependent part is the external potential v(r) and F[ρ(r)] is called

the universal functional, meaning that it is system independent.

On the basis of the variational principle, and taking as basic variable the density

instead of the wave function, the second Hohenberg-Kohn theorem provides a route for

the calculation of the ground state density and energy. It states: For a trial density ρ ′(r)

such that ρ ′(r) > 0 ∀ r and
∫
ρ ′(r)dr = N holds:

E0 = E[ρ0] 6 E[ρ
′(r)] (1.24)

Here E[ρ ′(r)] is the energy functional of Eq. (1.23) evaluated with ρ ′(r). This is the variational

principle for the ground state energy as functional of the electron density. The proof

makes use of the previous theorem; since a trial density ρ ′ determines its own potential
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v ′ and therefore its own wave function Ψ ′, which can be taken as trial wave function for

the ground state Hamiltonian with potential v(r), it follows:

〈Ψ ′|Ĥ|Ψ ′〉 =
∫
ρ ′(r)v(r)dr+ F[ρ ′(r)] = E[ρ ′(r)] > E[ρ0(r)] (1.25)

Only when ρ ′ equals ρ0 the energies would be the same. This implies that the variation of

the energy with respect of the densities {ρ} that integrate to N electrons must satisfy the

stationary principle. So if we would know the form of the universal functional F[ρ] then

we could use the variational principle using trial densities until the energy is minimized.

However, the exact form of the universal functional remains unknown.

1.3 Kohn-Sham method

In order to evaluate F[ρ] one has to resort to approximations since its actual exact form

is currently unknown. Traditionally, it is split into kinetic, T [ρ], and potential energy,

Vee[ρ], containing all the electron-electron interaction energy contributions:

F[ρ] = T [ρ] + Vee[ρ] (1.26)

Of course, also the exact form of these functionals is unknown. There are several

approximations for the kinetic and potential energy functionals such as the ones based

on the Thomas-Fermi model [5, 7, 8]. In general, their accuracy is not sufficient for

chemical applications [9]. To overcome this drawback, Kohn and Sham reintroduced

orbitals for the total energy calculation in DFT [10]. To this end, they split the kinetic

energy functional into a one-particle contribution, Ts[ρ], and a remaining correlation

correction, Tc[ρ]:

T [ρ] = Ts[ρ] + Tc[ρ] (1.27)
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Following this route, they introduced a fictitious non-interacting systemwith an effective

local potential, vs(r), that gives rise to the following eigenvalue equations:

[
−
1

2
∇2 + vs(r)

]
ψi(r) = εiψi(r) (1.28)

with eigenfunctions {ψi} called Kohn-Sham orbitals. By construction, these orbitals of

the non-interacting system must yield a density, ρs(r), that matches the one of the real

system, ρ(r). Because the fictitious system is non-interacting, its exact wave function

is given by a single Slater determinant built with the Kohn-Sham orbitals, which we

request to be orthonormal:

〈ψi|ψj〉 = δij (1.29)

The density, ρs(r), and kinetic energy, Ts, of the non-interacting system are given by:

ρs(r) =

occ∑
i

|ψi(r)|
2

(1.30)

Ts[ρs] = −
1

2

occ∑
i

〈ψi[ρs]|∇2|ψi[ρs]〉 (1.31)

Here, the one-particle kinetic energy is written as a functional of the density since it

has been shown that the Kohn-Sham orbitals are functionals of the density [11–13]. To

connect the fictitious with the real system the variation of the energy is used. To this end,

we write the energy of the real system as:

E[ρ] = Ts[ρ] + J[ρ] + Exc[ρ] + V[ρ] (1.32)

with Exc[ρ] = Tc[ρ] + Vee[ρ] − J[ρ], and V[ρ] =

∫
v(r)ρ(r)dr (1.33)

Here, J[ρ], is known as the classical electrostatic or direct or Coulomb or Hartree energy,

which is coming from the electron density interacting with itself via the Coulomb’s law:
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J[ρ] =
1

2

∫∫
ρ(r1)ρ(r2)

|r1 − r2|
dr1dr2 (1.34)

Also, in Eq. (1.32), Exc[ρ] is known as the Kohn-Sham exchange-correlation functional. It

contains the kinetic energy correlation correction, Tc[ρ], to the kinetic energy of the non-

interacting system, Ts[ρ], and the electron-electron exchange and correlation corrections

to the Hartree energy J[ρ] [14]. The functional derivative of the energy,

δE[ρ]

δρ(r)
=
δTs[ρ]

δρ(r)
+
δJ[ρ]

δρ(r)
+
δExc[ρ]

δρ(r)
+
δV[ρ]

δρ(r)
(1.35)

and that of the fictitious system,

δEs [ρ]

δρ(r)
=
δTs [ρ]

δρ(r)
+
δVs [ρ]

δρ(r)
(1.36)

are identical if the effective potential, vs(r) =
δVs[ρ]
δρ(r) , is given by:

vs(r) =
δJ[ρ]

δρ(r)
+
δExc[ρ]

δρ(r)
+
δV[ρ]

δρ(r)
(1.37)

=

∫
ρ (r′)

|r− r′|
dr′ + vxc[ρ(r)] + v(r) (1.38)

In Eq. (1.38) the exchange-correlation potential is introduced and is defined as:

vxc[ρ(r)] =
δExc[ρ]

δρ(r)
(1.39)

Therefore, one can calculate the density of the interacting system by solving the equations

of a non-interacting system with effective potential vs(r). Since vs(r) depends on ρ(r),

the problem of solving Eqs. (1.28), known as Kohn-Sham equations, is a non-linear one.

Expanding vs[ρ(r)] yields the explicit form of the Kohn-Sham equations:

(
−
1

2
∇2 + v(r) +

∫
ρ(r ′)

|r− r ′|
dr ′ + vxc[ρ](r)

)
ψi(r) = εi(r)ψi(r) ∀ i (1.40)

From this discussion follows that the Kohn-Shammethod yields exact electronic energies

if the exact form of Exc[ρ] is used. Therefore, the Kohn-Sham approach is in principle
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exact, unlike the Hartree-Fock method, despite the use of a single determinant for the

expansion of the wave function. The approximation only enters when we have to decide

on an explicit form for the unknown functional of the exchange-correlation energy

Exc[ρ]. Because the Kohn-Sham effective potential vs[ρ](r) is local, in the sense that it is a

function of only the spatial variable r and independent from other points in space, and

also, is multiplicative and is the same for all electrons, it provides simpler expressions

than the Hartree-Fock method with its non-local exchange operator. On the other hand

the Kohn-Sham effective potential will probably have a very complex dependence on the

density [13, 15]. The central goal of modern DFT is, therefore, to find better and better

approximations to the exchange-correlation energy and potential. Once an approximation

for the exchange-correlation energy has been chosen, an iteration procedure is the usual

way of solving the Kohn-Sham equations. The quality of any DFT calculation that uses

the Kohn-Sham method is, therefore, determined by the approximation used for Exc[ρ].

Different types of approximations have been established over the years such as the Local

Density Approximation (LDA) [16, 17], the Generalized Gradient Approximation (GGA)

[18, 19] in form of BLYP [20–23] and PBE [24] functionals or the hybrid functionals [25]

like B3LYP and PBE0 [26, 27]. Given that the Kohn-Sham method is very similar to the

Hartree-Fock method, many ideas and technical knowledge can be inherited from it and

other ab initio methods. Some programs like ADF [28, 29] use Slater type orbitals for

the expansion of the Kohn-Sham orbitals, others like DMol [30] use numerical basis sets

and many other programs, like deMon2k [31], use the Linear Combination of Gaussian

Type Orbitals (LCGTO) approximation. In any case, the Kohn-Sham equations are recast

in matrix form yielding Roothaan-Hall type equation systems [32, 33]. Details of the

LCGTO approximation are given in the next section.
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1.4 The Kohn-Sham LCGTO-DFT method

In the Linear Combination of Atomic Orbitals (LCAO) approximation a (real) Molecular

Orbital (MO) is given by:

ψi(r) =
∑
µ

cµiµ(r) (1.41)

Here µ(r) denotes a real basis function centered at an atom and cµi is the corresponding

MO coefficient. In the LCGTO approximation, the atomic orbitals, µ(r), are expressed as

contracted Cartesian Gaussian type orbitals. The unnormalized form of them is:

µ(r) = (x−Ax)
ax(y−Ay)

ay(z−Az)
az

Kµ∑
k

dke
−ζk(r−A)2

(1.42)

This function is defined completely by its atomic center A, its angular momentum vector

index a = (ax, ay, az), its contraction degree Kµ, the contraction coefficients dk and the

orbital exponents ζk. The contraction coefficients remain constant during the electronic

structure calculation. The closed-shell LCGTO density is then given by:

ρ(r) = 2

occ∑
i

ψi(r)ψi(r) = 2

occ∑
i

∑
µ,ν

cµicνiµ(r)ν(r) =
∑
µ,ν

Pµνµ(r)ν(r) (1.43)

In Eq. (1.43), Pµν denotes an element of the (closed-shell) density matrix:

Pµν = 2

occ∑
i

cµicνi (1.44)

The extension to the open-shell case is described in [34–36]. Using the above-mentioned

expansions for the MOs and the density, the expression for the Kohn-Sham energy can

be written in the form:

E =
∑
µ,ν

PµνHµν +
1

2

∑
µ,ν

∑
σ,τ

PµνPστ〈µν||στ〉+ Exc[ρ] (1.45)



1.4 The Kohn-Sham LCGTO-DFT method 11

The elements of the mono-electronic core Hamiltonian, Hµν, are given by:

Hµν = −
1

2
〈µ|∇2|ν〉−

∑
A

〈µ| ZA
|r−RA|

|ν〉 (1.46)

The core Hamiltonian matrix elements contain the kinetic energy and nuclear attraction

of the electrons. Modifications of the external potential are usually added to these matrix

elements. The second term in (1.45), corresponding to the Hartree energy (see Eq. 1.34),

represents the Coulomb repulsion energy of the electrons. It contains four-center Electron

Repulsion Integrals (ERIs) for which we use the following short-hand notation:

〈µν||στ〉 =
∫∫
µ(r1)ν(r1)σ(r2)τ(r2)

r1 − r2
dr1dr2 (1.47)

In (1.47), the double bar is the Coulomb operator
1

|r1−r2|
. The functions in the bra depend

on r1 while the functions in the ket depend on r2. The same notation is used for two-

and three-center ERIs that will appear later in the text.

In order to derive the Kohn-Sham equations in the LCGTO approximationweminimize

the energy expression in equation (1.45) with respect to the molecular orbital coefficients,

imposing MO orthonormality:

〈
ψi | ψj

〉
=
∑
µ,ν

cµiSµνcνj = cTi Scj = δij (1.48)

InEq. (1.48),S is the atomic orbital overlapmatrixwith elementsSµ,ν = 〈µ|ν〉. Introducing

the Lagrangian

LKS ≡ E− 2
∑
i,j

λij
(
cTi Scj − δij

)
(1.49)

The partial derivative of the Lagrangian with respect to a given molecular orbital

coefficient is given by:

1

4

∂LKS
∂cµi

=
∑
ν

(Hµν +
∑
σ,τ

Pστ〈στ‖µν〉+ 〈µ |vxc|ν〉

)
cνi − Sµν

∑
j

cνjλji

 (1.50)
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At this point it is convenient to introduce the Kohn-Sham matrix, K, which is defined by

the differentiation of the electronic energy with respect to density matrix elements:

Kµν ≡
∂E

∂Pµν
= Hµν +

∑
σ,τ

Pστ〈στ‖µν〉+ 〈µ |vxc|ν〉 (1.51)

The last term arises from the differentiation of the exchange-correlation energy with

respect to density matrix elements, which is obtained as follows:

∂Exc[ρ]

∂Pµν
=

∫
δExc[ρ]

δρ(r)

∂ρ(r)

∂Pµν
dr =

∫
vxc(r)µ(r)ν(r)dr (1.52)

This contribution usually has to be calculated numerically. The minimization of the

Lagrangian,

∂LKS
∂cµi

= 0 ∀ cµi

then yields:

∑
ν

Kµνcνi =
∑
j

∑
ν

Sµνcνjλji ∀ µ, i

This system of generalized eigenvalue equations reads in matrix notation:

Kc = Scλ (1.53)

The electronic density is invariant under orthogonal transformations of the occupied

MOs. Therefore, it is convenient to choose a set of MOs for which the off-diagonal

undetermined Lagrange multipliers are zero. These MOs are called canonical MOs [37]

and are solutions of the canonical Kohn-Sham equations:

Kc = Scε (1.54)
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Eq. (1.54) is a generalized eigenvalue equation which can be transformed into a special

eigenvalue equation by a Löwdin orthogonalization [38, 39] as follows:

S−
1
2KS−

1
2S

1
2 c = S−

1
2Scε (1.55)

Kλcλ = cλε (1.56)

Upon diagonalization of Kλ the coefficients cλ and MO energies ε are obtained. After-

wards, the inverse transformation:

c = S−
1
2 cλ (1.57)

is needed to obtain theMOcoefficients in the original non-orthogonalAtomicOrbital (AO)

representation, which is needed for the evaluation of the energy according to Eq. (1.45).

Note that Eq. (1.54) is a Roothaan-Hall type equation system and since it is non-linear (K

depends on c) it has to be solved by a Self Consistent Field (SCF) procedure. In brief,

the SCF involves calculation of the energy from an initial density guess, building the

Kohn-Sham matrix, solving Eq. (1.54) for c as well as ε and building a new density

according to the Aufbau principle. With this density a new energy is calculated and

the SCF convergence is checked by comparing to the previous energy. These steps are

repeated until the SCF convergence criteria is reached.

To estimate the computational complexity of the here outlined Kohn-Sham SCF, we

analyze the scaling for the computation of the Kohn-Sham matrix elements, Eq. (1.51),

and energy, Eq. (1.45). The computation of Hµν scales formally N2
bas

, where N
bas

is the

number of basis functions. The Coulomb term introduces a formal N4
bas

scaling. For

the calculation of the exchange-correlation energy a numerical integration has to be

performed. This integration scales asN2
bas
×G,whereG is the number of grid points used

for the numerical integration. It follows that the calculation of the Coulomb repulsion

energy represents the computationally most demanding task. To overcome this problem

the variational fitting of the Coulomb potential is used for reducing the formal scaling

from N4
bas

by the introduction of an auxiliary function set to approximately 3N3
bas

. Next,
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we present the variational fitting of the Coulomb potential, which greatly reduces the

computation effort for ERI calculations.



2
AU X I L I A RY D E N S I T Y F U NC T I O NA L T H E O RY

2.1 Variational fitting of the Coulomb potential

The variational fitting of the Coulomb potential [40–43] is a technique that nowadays is

used in almost all LCGTO-DFT programs to accelerate the calculations of two-electron

Coulomb repulsion integrals. These calculations are computationally expensive because

they involve the evaluation of four-center integrals. In the variational fitting of the

Coulomb potential, this is avoided and instead three- and two-center integrals along

with linear algebra tasks have to be calculated. This technique was widespread available

for use since its introduction into the deMon-KS [44] and DGAUSS [45] programs, and is

implemented in deMon2k. In practice, the variational fitting of the Coulomb potential is

equivalent to the so-called Resolution of the Identity (RI) [46] used in other programs like

TURBOMOLE [47] or Gaussian [48]. A more extended discussion about the RI approach

and the variational fitting of the Coulomb potential can be found in [49, 50].

The variational fitting of the Coulomb potential is based on the minimization of the

following error functional:

ε2 =
1

2

∫∫
[ρ(r1) − ρ̃(r1)][ρ(r2) − ρ̃(r2)]

|r1 − r2|
dr1dr2 > 0 (2.1)

The approximated auxiliary density ρ̃(r) is expanded in a linear combination of auxiliary

functions

ρ̃(r) =
∑
k̄

xk̄k̄(r) (2.2)

15
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In deMon2k the auxiliary functions k̄(r) are primitive Hermite Gaussian functions that

are indicated by a bar [43]. The unnormalized form of an auxiliary function localized in

atom A with exponent ζk̄ is given by:

k̄(r) =

(
∂

∂Ax

)k̄x ( ∂

∂Ay

)k̄y ( ∂

∂Az

)k̄z
e−ζk̄(r−A)2

(2.3)

The auxiliary functions are normalized with respect to the Coulomb norm. In deMon2k

the auxiliary functions are grouped in s, spd, spdfg and spdfghi sets . The exponents

within these sets are shared [51, 52]. For the so-called GEN auxiliary function sets

in deMon2k the exponents are generated automatically via an almost well-tempered

expansion. The range of values taken for the exponents is determined by the smallest,

ζmin, and largest, ζmax, exponent of the primitive Gaussian of the used basis set. Specially

developed integral recurrence relations [43, 53] ensure maximum performance in the

analytic molecular integral calculations with these auxiliary function sets. The LCGTO

expansion of ρ(r) and ρ̃(r) yields for ε2:

ε2 =
1

2
〈ρ− ρ̃||ρ− ρ̃〉 = 1

2
〈ρ||ρ〉− 〈ρ||ρ̃〉+ 1

2
〈ρ̃||ρ̃〉

=
1

2

∑
µ,ν

∑
σ,τ

PµνPστ〈µν||στ〉−
∑
µ,ν

∑
k̄

Pµν〈µν||k̄〉xk̄ +
1

2

∑
k̄,l̄

xk̄xl̄〈k̄||̄l〉 (2.4)

As ε2 is semi-positive definite, the following inequality holds:

1

2

∑
µ,ν

∑
σ,τ

PµνPστ〈µν||στ〉 >
∑
µ,ν

∑
k̄

Pµν〈µν||k̄〉xk̄ −
1

2

∑
k̄,l̄

xk̄xl̄〈k̄||̄l〉 (2.5)

The fitting coefficients xk̄ are obtained by minimizing ε2 with respect to them:

∂ε2
∂xk̄

= −
∑
µ,ν

Pµν〈µν||k̄〉+
∑
l̄

xl̄〈̄l||k̄〉 = 0 ∀ k̄ (2.6)

At this point it is convenient to define the Coulomb matrix,
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G =



〈1||1̄〉 〈1||2̄〉 · · · 〈1||m̄〉

〈2||1̄〉 〈2||2̄〉 · · · 〈2||m̄〉
.
.
.

.

.

.

.
.
.

.

.

.

〈m̄||1̄〉 〈m̄||2̄〉 · · · 〈m̄||m̄〉


(2.7)

and Coulomb vector,

J =



∑
µ,ν

Pµν
〈
µν||1̄

〉
∑
µ,ν

Pµν
〈
µν||2̄

〉
.
.
.∑

µ,ν

Pµν 〈µν||m̄〉


=



〈
ρ||1̄
〉

〈
ρ||2̄
〉

.

.

.

〈ρ||m̄〉


(2.8)

Then the fitting coefficients gathered in the vector x are obtained by solving the inhomo-

geneous equation system:

Gx = J (2.9)

A straightforward solution is given by the inversion of the Coulomb matrix G:

x = G−1J (2.10)

The normalization of the auxiliary functions with respect to the Coulomb norm ensures

that Gk̄ l̄ 6 1 for any matrix element. This gives certain numerical control over G.

Nevertheless the inversion ofG is a delicate numerical process, especially if large auxiliary

function sets are chosen. In this case, the matrix can become easily ill-conditioned. In

practice, in deMon2k, in order to reduce numerical problems, a Truncated Eigenvalue

Decomposition (TED) is often used for obtaining the inverse of G. To perform this

decomposition the G matrix is diagonalized,
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D = M̃GM (2.11)

where the D matrix is the Coulomb matrix in diagonal representation and its entries are

the eigenvalues ofG. In the following step all eigenvalues below a certain threshold ε are

quenched, i.e. set to zero. Accordingly, the dimensionality of the active space (number of

non-vanishing columns inM) is reduced to a smaller dimension d,

Dd = M̃dGMd (2.12)

Transformation of Eq. (2.9) into the diagonal representation leads to:

DdM̃dx = M̃dJ

Ddxd = Jd
(2.13)

The fitting coefficients xd are calculated first in the diagonal representation and then

transformed back by:

x = Mdxd (2.14)

This increases the numerical stability compared to the direct calculation of the fitting

coefficients in the non-diagonal representation Eq. (2.10). Although, the TED is performed

only one time at the beginning of a calculation, the involved diagonalization of the G

matrix can become a critical computational bottleneck if more than a hundred thousand

auxiliary functions are used. This is due to that the diagonalization scales approximately

as the third power of the number of auxiliary functions. To overcome this computational

bottleneck the iterative density fitting with the Krylov subspace method MINRES [54]

has been recently implemented in deMon2k.

The expression for the energy which includes the variational fitting of the Coulomb

potential can be derived using the energy expression in Eq. (1.45) and the inequality

given by Eq. (2.5):
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E =
∑
µ,ν

PµνHµν +
∑
µ,ν

∑
k̄

Pµν〈µν||k̄〉xk̄ −
1

2

∑
k̄,l̄

xk̄xl̄〈k̄||̄l〉+ Exc[ρ] (2.15)

In deMon2k this formulation is triggered by the BASIS option of the VXCTYPE keyword

[55] because the density ρ(r), which is expanded in terms of the basis set functions

according to Eq. (1.43), is used for the calculation of the exchange-correlation energy.

In the literature this approach is often named Density Fitted - Density Functional

Theory (DF-DFT). Once the fitting coefficients are obtained for a given Coulomb vector

by solving Eq. (2.9), we can obtain the DF-DFT Kohn-Sham matrix elements by the

variation of Eq. (2.15) with respect to the elements of the density matrix as:

Kµν = Hµν +
∑
k̄

〈µν||k̄〉xk̄ + 〈µ|vxc[ρ]|ν〉 (2.16)

The accuracy of the variational approximation of the Coulomb potential is within

the intrinsic accuracy of the LCGTO approximation [56]. It has to be noticed that since

the auxiliary function density is adjusted to the orbital density which changes in each

SCF step, the fitting must be performed in each SCF step. Nevertheless, the variational

fitting of the Coulomb potential eliminates the four-center ERI calculation from the SCF.

Instead, three-center ERIs are needed for the building of the Kohn-Sham matrix and the

Coulomb vector. In deMon2k, even in the direct SCF method, where the three-center

ERIs are calculated two times in each SCF step, this approximation is much faster than

the traditional SCF procedure which involves the calculation of four-center ERIs. Thus,

the scaling for the ERI calculation has been reduced fromN4
bas

toN2
bas
×Naux.HereNaux

is the number of auxiliary functions which is usually two to three timesN
bas

. The scaling

of ERI calculation can be further reduced if the symmetry of matrices is exploited and

screening techniques are used. As a result, the computationally most demanding task in

DF-DFT approaches is usually the calculation of the exchange-correlation contributions

since it scales as N2
bas
×G, with G being the number of grid points, which can become

quite large. In conclusion, we have exchanged the calculation of four-center integrals

by the calculation of three- and two-center integrals and an additional linear algebra
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task for solving Eq. (2.9). Next, an additional approximation for dealing with the

exchange-correlation terms is described.

2.2 Auxiliary density exchange-correlation potential

In general, the integrals involved in the exchange-correlation terms for the energy

and Kohn-Sham matrix elements are too complicated for analytic solutions. Therefore,

the exchange-correlation integrals are computed numerically using three-dimensional

grids in Euclidean space. A point to note is that this problem does not arise in LCGTO

Hartree-Fock methods because the Fock exchange integrals can be evaluated in closed

form [57]. In order to reduce the computational demand for the numerical integration,

it is possible to use the linear scaling auxiliary function density, ρ̃(r), obtained from

the variational fitting of the Coulomb potential [49, 58–60], for the calculation of the

exchange-correlation energy. This yields the following energy expression:

E =
∑
µ,ν

Hµν +
∑
µ,ν

∑
k̃

Pµν〈µν||k̃〉xk̃ −
1

2

∑
k̃,l̃

xk̃xl̃〈k̃||̃l〉+ Exc[ρ̃] (2.17)

The resulting approximation has been named Auxiliary Density Functional Theory

(ADFT). In deMon2k, this approach is triggered by the AUXIS option of the VXCTYPE

keyword. It is the default method for calculating the exchange-correlation contributions.

In ADFT it is essential that ρ̃(r) inherits some properties of ρ(r), specifically, that ρ̃(r) > 0

and

∫
ρ̃(r)dr = N. The normalization constraint of the density to the number of electrons,

N, can be included into the variational density fitting but even without this constraint

the number of electrons is conserved to high accuracy. Also the situation of ρ̃(r) < 0

happens usually only in small regions where ρ(r) ≈ 0. These regions can be eliminated

by enlarging the auxiliary function set. As most exchange-correlation functionals are

undefined for negative values of the density, the sporadic negative auxiliary density

values are handled adequately simply by setting them to zero without sacrificing the
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accuracy of the numerically integrated electron number [59]. This screening is equivalent

to defining the exchange-correlation functional to be identically zero for negative values

of the density. This maintains continuity in the exchange-correlation functional and its

first derivatives and thus there will be no problems with SCF convergence caused by

this treatment, as verified in practice [61].

The corresponding ADFT Kohn-Sham matrix elements are given by:

Kµv = Hµv +
∑
k̄

〈µv‖k̄〉xk̄ +
∂Exc[ρ̃]

∂Pµv
(2.18)

The exchange-correlation term is evaluated as:

∂Exc[ρ̃]

∂Pµν
=

∫
δExc[ρ̃(r)]

δρ̃(r)

∂ρ̃(r)

∂Pµν
dr =

∑
k̄

∂xk̄
∂Pµν

∫
vxc[ρ̃(r)]k̄(r)dr (2.19)

with:

vxc[ρ̃(r)] ≡
δExc[ρ̃]

δρ̃(r)
(2.20)

The derivatives of the Coulomb fitting coefficients are obtained using Eq. (2.10) giving:

∂xk̄
∂Pµν

=
∑
l̄

G−1
k̄l̄
〈̄l‖µv〉 (2.21)

Here G−1
k̄l̄

refers to the k̄, l̄ element of G−1
. Introducing the exchange-correlation fitting

coefficient vector, z, with elements,

zk̄ =
∑
l̄

G−1
k̄l̄

〈
l̄ | vxc[ρ̃(r)]

〉
(2.22)

we can rewrite Eq. (2.18) as

Kµν = Hµν +
∑
k̄

〈µv‖k̄〉 (xk̄ + zk̄) (2.23)
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It is important to point out that zk̄ is a spin-dependent quantity. Its different values for α

and β spin densities determine the differences between the α and β Kohn-Shammatrices

in open-shell calculations. Similar to Eq. (2.9), an inhomogeneous equation system can

be formulated

Gz = L (2.24)

with

L =



〈
vxc | 1

〉
〈
vxc | 2

〉
.
.
.

〈vxc | m̄〉


(2.25)

In order to keep the calculation variational ρ̃(r) has to be used directly without modi-

fications from the solution of the Coulomb fitting for the evaluation of the exchange-

correlation potential. However, this is not mandatory for the calculation of the Coulomb

contribution in the SCF energy expression. As a result, there are two sets of fitting

coefficients in deMon2k calculations. The first one refers to the solution to Eq. (2.9), and

the other results from SCF acceleration techniques, such as fitting coefficient mixing

or Direct Inversion of the Iterative Space (DIIS) [62–64], which are used to build the

Coulomb part of the Kohn-Sham matrix.

Because the approximated density is a linear combination of auxiliary functions, the

density calculation at each grid point becomes linear, i.e. the numerical integration

scaling becomesNaux ×G. With the above described ADFT approach the computational

bottleneck for the numerical integration disappears. In combination with a sophisticated

implementation of the three-center ERI calculations, the Coulomb contribution can be

computed in an almost linear scaling effort by using the double-asymptotic expansion

technique [65]. The computational bottleneck is now shifted to linear algebra operations,
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mainly the diagonalization and multiplication of matrices. In particular, the diagonaliza-

tion of the Coulombmatrix, associatedwith the TED, is the single most demanding linear

algebra task in deMon2k. The second most demanding linear algebra task represents

the solution of the Kohn-Sham equation system. It consists of the transformation of

the general eigenvalue equation system into its special form and the diagonalization

of the corresponding Kohn-Sham matrix. These operations are performed using opti-

mized computational libraries [66–71]. The current implementation in deMon2k allows

routine calculations of systems with up to 10,000 basis functions and has already been

successfully applied to systems with more than 25,000 basis functions. If the molecular

system under consideration exhibits non-trivial degrees of symmetry these limits can

be further enlarged due to the symmetry-adapted blocking of the Kohn-Sham and

Coulomb matrices. Therefore, from a computational point of view, the main advantage

of symmetry adaptation in ADFT calculations is the transformation of the associated

linear algebra tasks into block-diagonal form. Furthermore, symmetry adaptation is also

a valuable tool for analyzing ADFT results. The next chapter will describe how to explore

symmetry in the framework of ADFT.





3
S Y M M E T RY-A DA P T E D AU X I L I A RY D E N S I T Y F U NC T I O NA L

T H E O RY

3.1 Selection rules

In order to introduce symmetry intoADFT,we are initially concernedwith the application

of the following symmetry selection rules [72]:

〈ψΓ(γ)|φΓ ′(γ ′)〉 = δΓΓ ′δγγ ′〈ψΓ(γ)|φΓ(γ)〉 (3.1)

〈ψΓ(γ)|ÔA|φΓ ′(γ ′)〉 = δΓΓ ′δγγ ′〈ψΓ(γ)|ÔA|φΓ(γ)〉 (3.2)

Here, the operator ÔA belongs to the totally symmetry representation A, the functions

ψΓ(γ)(r) andφΓ
′(γ ′)(r) are symmetry-adapted functions belonging to the real irreducible

representations Γ and Γ ′, respectively, and to the columns of these irreducible represen-

tations denoted by γ and γ ′. The indices γ and γ ′ take values from 1 to the dimension

of the irreducible representations dΓ and dΓ ′ , respectively. Proof of these equations are

found in [73]. Usually the symmetry-adapted functions are constructed by projection

operators, P̂γγ,

P̂Γγγφ(r) = φ
Γ(γ)(r) (3.3)

and transfer operators,

P̂Γγ ′γφ
Γ(γ)(r) = φΓ(γ

′)(r) (3.4)

25
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In the special case of complex irreducible representations, we employ corresponding

real forms, which may have increased dimensions, in order to avoid complex algebra

in the code. The enlarged real representations are called in the literature minimal

representations [74]. For them the following modified selection rules apply:

〈ψΓ(γ)|φΓ ′(γ ′)〉 = δΓΓ ′〈ψΓ(γ)|φΓ(γ
′)〉 (3.5)

〈ψΓ(γ)|ÔA|φΓ ′(γ ′)〉 = δΓΓ ′〈ψΓ(γ)|ÔA|φΓ(γ
′)〉 (3.6)

Thus, functions belonging to minimal representations are only orthogonal by symme-

try between different irreducible representations. For irreducible representations (not

minimal), we also rely on the next identity [72]:

〈ψΓ(γ)|ÔA|φΓ(γ)〉 = 〈ψΓ(γ ′)|ÔA|φΓ(γ ′)〉 (3.7)

Eq. (3.7) allows the calculation of matrix elements of a multi-dimensional irreducible

representation Γ from its degenerate symmetry-adapted functions of one column. A very

important operator that is totally symmetric is themolecularHamiltonian, Eq. (1.2). Totally

symmetric operators commutewith symmetry operations R̂, i.e. the eigenfunctions of ÔA

are also eigenfunctions of R̂. This fact allows us to connect the transformation properties

of symmetry-adapted functions with the transformation properties of eigenfunctions of

totally symmetric operators. Namely, as symmetry-adapted functions transform under

symmetry operations accordingly to [75],

R̂φΓ(γ
′)(r) =

∑
γ

χΓ
γγ ′(R̂)φ

Γ(γ)(r) (3.8)

where χΓγγ ′(R̂) is a matrix element of the irreducible representation Γ for the symmetry

operation R̂, then, the eigenfunctions of ÔA transform in the same way. Therefore, each

eigenfunction of ÔA can be assigned to an irreducible representation Γ(γ) [76]. A simple
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C5 Ê Ĉ5 Ĉ25 Ĉ35 Ĉ45

A 1 1 1 1 1

. . .

R̂ψ(r) = 1ψ(r) ∀ R̂

∴ ψ(r)→ ψA(r)

Figure 3.1: A molecular orbital of the system C20H5Cl5 with symmetry C5 that transforms as the

totally symmetric irreducible representation A. This is seen by applying all symmetry

operations R̂ of the point group C5 to the molecular orbital and noting that the

resulting function has coefficients equal to 1 for all R̂.

example of an eigenfunction of a totally symmetric operator which can be assigned to a

single irreducible representation is given in Figure 3.1.

We will see that the selection rules simplify the calculations in ADFT. In this thesis,

we treat only point group symmetry operations describing rotations performed on a

given molecule. Now we apply these selection rules to the Kohn-Sham equations and

Coulomb fitting equations.

3.2 Symmetry-adapted Kohn-Sham equations

For clarity of presentation, we restrict the following discussion to real one-dimensional

irreducible representations. The extension to higher-dimensional irreducible representa-

tions is given later on. The symmetry-adapted Kohn-Sham equations are obtained by

choosing symmetry-adapted basis functions for its matrix representation. The symmetry-

adapted basis consists of a function set {åΓ (r)} in which each function is labeled with Γ
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according to the irreducible representation to which it belongs. We call these functions

Symmetry-Adapted Orbitals (SAOs). They are expressed as linear combinations of AOs:

åΓ (r) =
∑
µ

UΓµåµ(r) (3.9)

We call the basis {åΓ (r)} the SAO basis. This basis can be constructed by applying

symmetry projectors and transfer operators to the AO basis. By construction the SAOs

{åΓ (r)} span the same space as the AOs, and therefore we can express the Kohn-Sham

matrix elements in the SAO representation as:

KΓΓ
′

åb̊
= 〈åΓ |K̂|̊bΓ ′〉 =

∑
µ,ν

UΓ
T

åµKµνU
Γ ′

νb̊
(3.10)

Thus, the symmetry-adapted Kohn-Sham matrix can be obtained by a transformation of

the Kohn-Sham matrix in AO representation with the symmetrization matrix U. We can

express this in linear algebra notation as:

K = UTKU (3.11)

For the symmetry-adaptedmatrices, here the Kohn-Shammatrix, we use in linear algebra

notation the blackboard bold font. Similarly, we find for the overlap matrix elements in

SAO representation:

SΓΓ
′

åb̊
= 〈åΓ |̊bΓ ′〉 =

∑
µ,ν

UΓ
T

åµSµνU
Γ ′

νb̊
(3.12)

The corresponding linear algebra notation is given as:

S = UTSU (3.13)
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Assuming the Kohn-Sham operator is totally symmetric, i.e. K̂ → K̂A, only the Kohn-

Sham matrix elements with SAOs from the same irreducible representation will not

vanish according to Eq. (3.2). Taking this integral selection rule into account we find:

KΓΓ
′

åb̊
= 〈åΓ |K̂A |̊bΓ ′〉 = δΓΓ ′〈åΓ |K̂A |̊bΓ 〉 = δΓΓ ′KΓåb̊ (3.14)

Therefore, the Kohn-Sham matrix in SAO representation is block diagonal since the

matrix elements with Γ 6= Γ ′ are zero. Furthermore, we can contract the irreducible

representation labeling to one superscript for the diagonal blocks. The same holds for

the overlap matrix elements in SAO representation:

SΓΓ
′

åb̊
= 〈åΓ |̊bΓ ′〉 = δΓΓ ′〈åΓ |̊bΓ 〉 = δΓΓ ′SΓåb̊ (3.15)

Therefore, the Kohn-Sham and overlap matrix in SAO representation have the general

structure:

M =



MΓ 0 . . . 0

0 MΓ
′
. . . 0

.

.

.

.

.

.

.
.
.

.

.

.

0 0 . . . MΓ
′′


(3.16)

In Eq. (3.16) Γ , Γ ′, ... Γ ′′ are different irreducible representations of the point group

under consideration and each blockMΓ is a square matrix. These blocks have dimension

nΓ × nΓ , where nΓ is the number of SAOs belonging to the irreducible representation Γ .

In general, the blocks have different dimensions. It is convenient to write block diagonal

matrices as a direct sum of their diagonal block matrices in the form:

M = MΓ ⊕MΓ
′ ⊕ · · · ⊕MΓ

′′
(3.17)
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To proceed, we now write the Kohn-Sham equations in SAO representation:

Kc = Scε (3.18)

Because K and S are block diagonal, the MO coefficient matrix in SAO representation, c,

becomes block diagonal, too. Therefore, the Kohn-Sham equations in SAO representa-

tion can be partitioned into individual Roothaan-Hall type equation systems for each

irreducible representation:

KΓ cΓ = SΓ cΓεΓ ∀ Γ (3.19)

From a computational point of view it is important to note that the equation systems

for each irreducible representation can be solved separately from each other. In the

deMon2k implementation developed in this thesis, the blocking of the Kohn-Sham

equations proceeds along the following steps. First the overlap matrix is transformed

into SAO representation according to Eq. (3.13). Next, a canonical orthogonalization [37]

is performed separately for each block:

SΓVΓ = VΓDΓ ∀ Γ (3.20)

YΓ = VΓDΓ
− 1
2 ∀ Γ (3.21)

The resulting orthogonalization blocks {YΓ } are assembled,

Y = YΓ ⊕YΓ
′ ⊕ ... (3.22)

and the final orthogonalization matrix is built as:

X = UY (3.23)
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With the matrix X, which is not block diagonal, the Kohn-Sham equations can be directly

transformed into an orthonormal SAO representation:

XTKXX−1c = XTSXX−1cε (3.24)

This yields the following block diagonal form,

K̆c̆ = c̆ε (3.25)

which can be solved for each irreducible representation separately:

K̆Γ c̆Γ = c̆ΓεΓ ∀ Γ (3.26)

The MO coefficients in the orthonormal SAO representation are assembled as:

c̆ = c̆Γ ⊕ c̆Γ
′ ⊕ ... (3.27)

Afterwards, the MO coefficients in AO representation are obtained by the back transfor-

mation:

c = Xc̆ (3.28)

With these MO coefficients the density matrix and energy can be calculated and, if

convergence is not reached, the next SCF cycle can be initialized.

In the case of multi-dimensional real irreducible representations an additional degree

of blocking is possible since we have two symmetry labels, the irreducible representation

Γ and the column of the irreducible representation γ. We then can apply an additional

selection rule:

〈åΓ(γ)|K̂A |̊bΓ ′(γ ′)〉 = δΓΓ ′δγγ′〈åΓ(γ)|K̂A |̊bΓ(γ)〉 = δΓΓ ′δγγ ′K
Γ(γ)

åb̊
(3.29)
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This gives rise to the following set of Kohn-Sham equations:

K̆Γ(γ)c̆Γ(γ) = c̆Γ(γ)εΓ(γ) ∀ Γ, γ (3.30)

In Eq. (3.30) γ takes the values 1, 2, ..., dΓ with dΓ being the dimension of the irreducible

representation Γ . From the identity in Eq. (3.7) we observe that the matrix K̆Γ(1) is equal

to K̆Γ(γ) for any γ if the Kohn-Sham operator is totally symmetric. However, in general

the used Kohn-Sham operators are not totally symmetric because of the asymmetry of the

electron density [77] and the approximate nature of the density functional when using

non-symmetry-dependent functionals and potentials [78]. Therefore, the degeneracies

are broken and not applying the identity of Eq. (3.7) allows us to detect this symmetry

breaking. In this case the blocks K̆Γ(γ) and K̆Γ(γ
′)
for γ 6= γ ′ are different. As a result, the

corresponding MO coefficients, c̆Γ(γ), and MO energies, εΓ(γ), are different from c̆Γ(γ
′)

and εΓ(γ
′)
for γ 6= γ ′. In particular, theMO energies are sensitive indicators for symmetry

breaking due to a not totally symmetric Kohn-Sham operator. For this reason, we enforce

in our symmetry-adapted ADFT implementation in deMon2k orthogonality between

different irreducible representations Γ and Γ ′ as well as between different degeneracies

(columns) γ and γ ′ of multi-dimensional irreducible representations. However we allow

K̆Γ(γ) to be different from K̆Γ(γ
′)
for γ 6= γ ′. The practical implication of this symmetry

breaking is discussed in the validation chapter. A detailed discussion of the problem of

asymmetry in density functional theory, its consequences and recent advances can be

found in [77–87]. In the case of minimal representations there is no additional degree of

blocking, i.e. we use Eq. (3.26) instead of (3.30), with:

K̆Γ =

K̆Γ(1)Γ(1) K̆Γ(1)Γ(2)

K̆Γ(2)Γ(1) K̆Γ(2)Γ(2)

 (3.31)

Here γ has taken the values of 1 and 2 because the minimal representations used in

deMon2k are always two-dimensional. The point groups that contain them are T , Th,
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Cn, Cnh with n > 2 and S2m withm > 2. We now turn to the symmetry adaptation of

the Coulomb and exchange-correlation fitting equations.

3.3 Symmetry-adapted fitting equations

As already discussed, density fitting is characteristic to DF-DFT and ADFT. The resulting

fitting equation systems can also be transformed into symmetry-adapted representation.

In order to obtain the fitting equations in symmetry-adapted representation, we introduce

symmetry-adapted auxiliary functions, k̊Γ (r), that span the same space as the primitive

Hermite Gaussian ones. Therefore, an alternative expansion of the auxiliary density, Eq.

(2.2), is given by:

ρ̃(r) =
∑
Γ

∑
k̊∈Γ

xΓ
k̊
k̊Γ (r) (3.32)

Here, the sum over Γ runs over all irreducible representations of the underlying point

group that are present in the symmetry-adapted auxiliary function set and the sum over

k̊ ∈ Γ runs over all linear independent symmetry-adapted functions belonging to the

same irreducible representation Γ . For clarity of presentation, we restrict the following

discussion to real one-dimensional irreducible representations. However, our actual

implementation covers higher-dimensional irreducible representations, too, as shown in

the validation and application chapters. Inserting the auxiliary density expansion of Eq.

(3.32) into the fitting error expression, Eq. (2.4), and minimizing ε2, now with respect to

the symmetry-adapted Coulomb fitting coefficients xΓ
k̊
, yields:

∑
µ,ν

Pµν 〈µν||̊kΓ 〉 =
∑
Γ ′

∑
l̊∈Γ ′

xΓ
′

l̊
〈̊l Γ ′ ||̊kΓ 〉 ∀ k̊Γ ∧ Γ (3.33)
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Because the Coulomb operator is totally symmetric only Coulomb matrix elements with

symmetry-adapted auxiliary functions of the same irreducible representation will not

vanish. Taking this integral selection rule into account modifies Eq. (3.33) to:

∑
µ,ν

Pµν〈µν||̊kΓ 〉 =
∑
Γ ′

∑
l̊∈Γ ′

xΓ
′

l̊
〈̊l Γ ′ ||̊kΓ 〉δΓ ′Γ =

∑
l̊∈Γ

xΓ
l̊
〈̊l Γ ||̊kΓ 〉 ∀ k̊Γ ∧ Γ (3.34)

Casting the symmetry-adapted density-fitting equations, Eq. (3.34), into matrix notation,

yields an equation system for each irreducible representation of the form:

GΓxΓ = JΓ ∀ Γ (3.35)

Note that these equation systems are independent of each other.

To proceed, we now expand the symmetry-adapted auxiliary functions, k̊Γ (r), in terms

of the normalized primitive atom-centered Hermite auxiliary functions that form our

auxiliary function set:

k̊Γ (r) =
∑
l̄

l̄(r)UΓ
l̄k̊

(3.36)

The corresponding auxiliary density expansion is then given by:

ρ̃(r) =
∑
Γ

∑
k̊∈Γ

xΓ
k̊
k̊Γ (r) =

∑
Γ

∑
k̊∈Γ

∑
l̄

xΓ
k̊
UΓ
k̊ l̄

T
l̄(r) (3.37)

Comparison of Eq. (3.37) with Eq. (2.2) yields for the Coulomb fitting coefficients the

relation:

x l̄ =
∑
Γ

∑
k̊∈Γ

xΓ
k̊
UΓ
k̊ l̄

T
(3.38)

Therefore, the standard Coulomb fitting coefficients can be directly obtained from their

symmetry-adapted equivalents calculated by Eq. (3.35) with the symmetrization matrix

U. On the other hand, the symmetry-adapted Coulomb vector, JΓ , and Coulomb matrix,



3.3 Symmetry-adapted fitting equations 35

GΓ , elements can be obtained by inserting the expansion of the symmetry-adapted

auxiliary functions, Eq. (3.36), as:

JΓ
k̊
=
∑
µ,ν

Pµν〈µν||̊kΓ 〉 =
∑
µ,ν

∑
l̄

Pµν〈µν|| l̄〉UΓl̄k̊ (3.39)

GΓ
k̊̊l

= 〈̊kΓ ||̊l Γ 〉 =
∑
m̄,n̄

UΓ
k̊m̄

T 〈m̄||n̄〉UΓ
n̄̊l

(3.40)

The corresponding matrix equations are:

JΓ = UΓ
T
J; GΓ = UΓ

T
GUΓ (3.41)

Therefore, the symmetry-adapted Coulomb vector and matrix can be straightforwardly

calculated from the corresponding standard Coulomb vector and matrix with the

symmetrization matrix U, too. Once these quantities are at hand, the symmetry-adapted

fitting equation systems can be solved separately for each irreducible representation and

the resulting symmetry-adapted fitting coefficients can be back-transformed into standard

Coulombfitting coefficients according to Eq. (3.38). This concludes the symmetry-adapted

Coulomb fitting.

Besides the Coulomb fitting coefficients, exchange-correlation coefficients have to be

calculated in ADFT, too. For symmetry-adapted exchange-correlation coefficients holds:

zΓ
k̊
=
∑
l̊∈Γ

〈̊kΓ ||̊l Γ 〉−1〈̊l Γ |vxc[ρ̃]〉 =
∑
l̊∈Γ

GΓ
k̊̊l

−1
〈̊l Γ |vxc[ρ̃]〉 (3.42)

Eq. (3.42) can be reformulated as a linear equation system for each irreducible represen-

tation analog to the Coulomb fitting equation systems in Eq. (3.35):

GΓ zΓ = LΓ ∀ Γ (3.43)
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Also these equation systems are independent of each other. Similar to the Coulomb vector,

the elements of the symmetry-adapted exchange-correlation vector, LΓ
k̊
, can be directly

calculated from the corresponding standard exchange-correlation vector elements:

LΓ
k̊
=
∑
l̄

L l̄U
Γ
l̄k̊

=
∑
l̄

〈vxc[ρ̃]| l̄〉UΓl̄k̊ (3.44)

The exchange-correlation integrals in Eq. (3.44) are calculated by numerical integra-

tion. Due to the spin polarization of the exchange-correlation potential, the exchange-

correlation vector elements are also spin polarized. As a consequence also the exchange-

correlation coefficients are spin polarized. Once the symmetry-adapted exchange-

correlation vectors are at hand, the relevant equation systems of Eq. (3.43) are solved.

Afterwards, the standardADFTexchange-correlation coefficients canbeobtained through

the following back-transformation:

zk̄ =
∑
Γ

∑
l̊∈Γ

zΓ
l̊
UΓ
l̊k̄

T
(3.45)

In order to extend our discussion to the case of real multi-dimensional irreducible

representations, we rewrite Eq. (3.37) as:

ρ̃(r) =
∑
Γ

∑
γ

∑
k̊∈Γ(γ)

x
Γ(γ)

k̊
k̊Γ(γ)(r) (3.46)

As for the extension of the symmetry-adapted Kohn-Sham equations, Eq. (3.30), γ runs

over the degeneracies of the irreducible representations. Again there are dΓ degenerate

functions which together form the irreducible representation Γ . As a consequence, the

Coulomb fitting equation system can be written as:

GΓ(γ)xΓ(γ) = JΓ(γ) ∀ Γ, γ (3.47)
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Because the Coulomb operator is totally symmetric we can use Eq. (3.7) for the Coulomb

matrix. Thus, it follows:

GΓ(γ) = GΓ(γ
′) ≡ GΓ(1) (3.48)

Therefore, only one block corresponding to one of the degenerate functions has to be

calculated, e.g. GΓ(1). Note, however, that in general Eq. (3.7) cannot be applied to the

Coulomb vector because the Kohn-Sham density propagates the symmetry breaking

of the approximated exchange-correlation potential. Thus, we must assume for the

different Coulomb vectors belonging to the same real multi-dimensional irreducible

representation:

JΓ(γ) 6= JΓ(γ)
′

(3.49)

Following these arguments, we can rewrite the symmetry-adapted Coulomb fitting

equations, including real multi-dimensional irreducible representations as:

GΓ(1)xΓ(γ) = JΓ(γ) ∀ Γ, γ (3.50)

After solving the symmetry-adapted fitting equation systems the symmetry-adapted

Coulomb fitting coefficients can be back-transformed according to:

x l̄ =
∑
Γ

∑
γ

∑
k̊∈Γ(γ)

x
Γ(γ)

k̊
U
Γ(γ)

k̊ l̄

T
(3.51)

Because the same argumentation holds also for the calculation of the exchange-correlation

fitting coefficients, we find as symmetry-adapted exchange-correlation fitting equations:

GΓ(1)zΓ(γ) = LΓ(γ) ∀ Γ, γ (3.52)
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with

z
Γ(γ)

k̊
=
∑
l̊∈Γ(γ)

〈̊kΓ(γ)||̊l Γ(γ)〉−1〈̊l Γ(γ)|vxc[ρ̃]〉 =
∑
l̊∈Γ(γ)

G
Γ(1)

k̊̊l

−1
〈̊l Γ(γ)|vxc[ρ̃]〉 (3.53)

Finally, for the case of the two-dimensional minimal irreducible representations,

orthogonality between degenerate functions (i.e. functions belonging to Γ with different

indicesγ andγ ′) cannot be achieved using real projector and transfer operators. Therefore,

only orthogonality betweendifferent irreducible representations Γ and Γ ′ can be exploited.

3.4 Symmetry-adapted fitting for totally symmetric densities

In the common situation of totally symmetric Kohn-Sham electron densities, which we

will denote by ρ(r) → ρA(r), the ADFT fitting equation systems will further simplify.

Because the Coulomb operator is totally symmetric, the Coulomb fitting equation system

reduces to its totally symmetric block:

〈ρA||̊kA〉 =
∑
l̊∈A

xA
l̊
〈̊lA||̊kA〉 ∀ k̊A (3.54)

Thus, only the totally symmetric equation system

GAxA = JA (3.55)

has to be solved.

Because the auxiliary density is totally symmetric the calculation of the exchange-

correlation fitting coefficients in ADFT simplifies, too. To show this, we calculate the

exchange-correlation contribution to the ADFT Kohn-Sham matrix [58, 59] with the

totally symmetric density as:

∂Exc[ρ̃
A]

∂Pµν
=

∫
δExc[ρ̃

A]

δρ̃A(r)

∂ρ̃A(r)

∂Pµν
dr (3.56)
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The here appearing partial derivative of the totally symmetric auxiliary density is given

by:

∂ρ̃A(r)

∂Pµν
=
∑
k̊∈A

∂xA
k̊

∂Pµν
k̊A(r) =

∑
k̊,̊l∈A

〈µν||̊kA〉GA
k̊̊l

−1
l̊A(r) (3.57)

Inserting Eq. (3.57) into Eq. (3.56) and introducing the ADFT exchange-correlation

potential as:

vxc[ρ̃
A] ≡ δExc[ρ̃

A]

δρ̃A(r)
(3.58)

yields:

∂Exc[ρ̃
A]

∂Pµν
=
∑
k̊∈A

〈µν||̊kA〉zA
k̊

; zA
k̊

=
∑
l̊∈A

GA
k̊̊l

−1
〈̊lA|vAxc[ρ̃A]〉 (3.59)

Therefore, also for the exchange-correlation coefficients only the totally symmetric

equation system,

GAzA = LA (3.60)

has to be solved.

Figure 3.2 depicts the symmetry-adapted Coulomb matrices of benzene in D6h

symmetry (top) and dodecahedrane in Ih symmetry (bottom) employing the GEN-A2

and GEN-A2* auxiliary function sets for benzene and dodecahedrane, respectively. The

first block, indicated by the red circle, corresponds to the totally symmetric irreducible

representation. In the case of benzene, the dimension of this block is 28× 28 whereas

the dimension of the full Coulomb matrix is 288× 288. In the case of dodecahedrane, its

dimension is 43× 43 whereas the dimension of the full Coulomb matrix is 2300× 2300.

This demonstrates the enormous reduction in the dimensionality of the fitting equation

systems if totally symmetric auxiliary densities are used [88].
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Figure 3.2: Symmetry-adapted Coulomb matrices of benzene in D6h symmetry, top, and dodeca-

hedrane in Ih symmetry, bottom. The first blocks, marked by red circles, belong to

the totally symmetric irreducible representations. The color code indicates positive

(towards red) and negative (towards blue) values.
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3.5 Symmetry-adapted fitting implementation

We now describe the implementation of the symmetry-adapted calculation of Coulomb

and exchange-correlation fitting coefficients as implemented in deMon2k. Instead of

calculating the Coulomb matrix in auxiliary function representation G, the blocks of

the symmetry-adapted representation {GΓ(1)} are calculated. For point groups with

real multi-dimensional irreducible representations the degenerate blocks are copied

from the first degenerate block, i.e. GΓ(γ) ← GΓ(1). Note, however, that for the two-

dimensional minimal representations the corresponding Coulomb matrix blocks are

given by GΓ = UΓ
T
GUΓ with the symmetrization matrix built as UΓ = (UΓ(1)|UΓ(2)).

Also, note that the Coulomb matrix in the original auxiliary function representation G is

normalized, i.e. the auxiliary functions are normalizedwith respect to the Coulomb norm.

On the other hand, the Coulomb matrix in symmetry representation G =
⊕
Γ(γ)G

Γ(γ)

is not normalized since the symmetry-adapted auxiliary functions are not normalized.

Therefore, the symmetry-adapted coefficients are expressing the auxiliary density in an

unnormalized symmetry-adapted auxiliary function basis. Nevertheless, by the back-

transformation, Eq. (3.51), the fitting coefficients in the original normalized auxiliary

function basis are obtained in terms of the symmetrization matrix U and the symmetry-

adapted fitting coefficients.

After building the symmetry-adaptedCoulombmatrix blocks {GΓ(1)}, they are inverted

and stored on tape. These blocks are used to solve equation system Eq. (3.50) for the

symmetry-adapted Coulomb fitting coefficients in DF-DFT and ADFT calculations. In

case of ADFT, they are also used to solve the equation system Eq. (3.52) for the symmetry-

adapted exchange-correlation fitting coefficients. Scheme 3.1 depicts the pseudocode for

the symmetry-adapted calculation and inversion of the Coulomb matrix.

Thus, the central quantity needed for the symmetry-adapted calculation of the Cou-

lomb and exchange-correlation coefficients is the symmetrization matrix U. At this point,

it is important to note that the U symmetrization matrix for AOs and auxiliary functions
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for Γ do

for γ = 1, dΓ do

if γ = 1 then

Build GΓ(γ)

Invert GΓ(γ)

else

Copy GΓ(γ)
−1 ← GΓ(1)

−1

end if

Store GΓ(γ)
−1

if Only A1 then

Finish

end if

end for

end for

Scheme 3.1: Pseudocode for the inversion by blocks of the Coulomb matrix.

is identical if the same function type is used. Particularly important for the here presented

implementation is that the same U symmetrization matrix can be used for Cartesian

AOs, in form of contracted Gaussian type orbitals, and (primitive) Hermite Gaussian

auxiliary functions. The details of the construction of the U symmetrization matrices are

given in the next chapter.
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The central quantity needed for the symmetry-adapted calculation of the MO coefficients

as well as the Coulomb and exchange-correlation coefficients is the symmetrization

matrix U
bas

for the basis functions and the symmetrization matrix Uaux for the auxiliary

functions. It turns out that the symmetrization matrices for Hermite Gaussian auxiliary

functions are identical to those for Cartesian Gaussian basis functions because Hermite

polynomials transform under rotations in the same way as Cartesian monomials xpyqzr

[89]. Because the symmetry adaptation of auxiliary functions has so far not been described

in the literature, we use here the construction of the symmetrization matrix Uaux for

auxiliary functions as a working example.

4.1 Construction of the U matrix for auxiliary functions

We start our description of the construction of the U symmetrization matrix for auxiliary

(and Cartesian basis) functions with the definition of the primitive Hermite Gaussian

auxiliary functions used in deMon2k. Such an (unnormalized) auxiliary function with

exponent ζk̄ centered at atom K is given by:

k̄(r; ζk̄,K, k̄) =

(
∂

∂Kx

)k̄x ( ∂

∂Ky

)k̄y ( ∂

∂Kz

)k̄z
e−ζk̄(r−K)2

(4.1)

Here k̄ = (k̄x, k̄y, k̄z) is the angular momentum index of the auxiliary function with

total angular momentum k̄ = k̄x + k̄y + k̄z. For the sake of simplicity in the following

descriptions, we restrict ourselves to a particular set of auxiliary functions that is closed

under symmetry operations. We call it an invariant [74]. From a technical point of view,

43
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it is convenient to construct the U matrix in terms of a symmetrization matrix V for

symmetry equivalent atoms and a symmetrization matrixW for (auxiliary) functions

centered at the global origin.

To proceed, we first describe the construction of the symmetrization matrix V. As an

example, we take the invariant consisting of the auxiliary functions at the three hydrogen

atoms of ammonia inC3v symmetry (see Scheme 4.1 and 4.2). The hydrogen atoms define

our symmetry-equivalent atom set. We define the corresponding atomic permutation

vectors pA, pB and pC as:

pA =


1

0

0

 , pB =


0

1

0

 , pC =


0

0

1

 (4.2)

Scheme 4.1 and 4.2 show the construction of the atomic permutation matrices for the

C3v symmetry operations. Technically, these matrices can be built during the symmetry

analysis of a molecule which yields its point group. The atomic permutation matrices

express symmetry operations, R̂, on the atomic permutation vectors given by Eq. (4.2).

R̂ pA → P(R̂)pA (4.3)

With these assignment rules, we can now apply projection operators of real irreducible

representations, Γ , here for the C3v point group with Γ = A1, A2, E,

P̂Γγγ ′ =
dΓ
6

(
χΓ
γγ ′(Ê)Ê+ χΓγγ ′(Ĉ3)Ĉ3 + χ

Γ
γγ ′(Ĉ

2
3)Ĉ

2
3+

χΓ
γγ ′(σ̂v)σ̂v + χ

Γ
γγ ′(σ̂

′
v)σ̂
′
v + χ

Γ
γγ ′(σ̂

′′
v )σ̂

′′
v

) (4.4)

as

PΓγγ ′ =
dΓ
6

(
χΓ
γγ ′(Ê)P(Ê) + χ

Γ
γγ ′(Ĉ3)P(Ĉ3) + χ

Γ
γγ ′(Ĉ

2
3)P(Ĉ

2
3)+

χΓ
γγ ′(σ̂v)P(σ̂v) + χ

Γ
γγ ′(σ̂

′
v)P(σ̂

′
v) + χ

Γ
γγ ′(σ̂

′′
v )P(σ̂

′′
v )
) (4.5)
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N
HB

HC

HA

Ê
N

HB

HC

HA

1 0 0

0 1 0

0 0 1


10
0

 =

10
0


1 0 0

0 1 0

0 0 1


01
0

 =

01
0


1 0 0

0 1 0

0 0 1


00
1

 =

00
1





P(Ê) =

1 0 0

0 1 0

0 0 1



N
HB

HC

HA

Ĉ3
N

HA

HB

HC

0 0 1

1 0 0

0 1 0


10
0

 =

01
0


0 0 1

1 0 0

0 1 0


01
0

 =

00
1


0 0 1

1 0 0

0 1 0


00
1

 =

10
0





P(Ĉ3) =

0 0 1

1 0 0

0 1 0



N
HB

HC

HA

Ĉ23
N

HC

HA

HB

0 1 0

0 0 1

1 0 0


10
0

 =

00
1


0 1 0

0 0 1

1 0 0


01
0

 =

10
0


0 1 0

0 0 1

1 0 0


00
1

 =

01
0





P(Ĉ23) =

0 1 0

0 0 1

1 0 0



Scheme 4.1: Construction of atomic permutation matrices for the equivalent hydrogen atoms of

ammonia in C3v symmetry corresponding to the symmetry operations Ê, Ĉ3 and Ĉ
2
3.

The rotations are right handed.

To further simplify these expressions we use the convention γ ′ = 1 for the operator PΓγγ ′

in our symmetry implementation in deMon2k. Therefore, we can drop the γ ′ index for

the projection operators and irreducible representation matrix elements by defining:

PΓγ ≡ PΓγ1; χΓ
γ(R̂) ≡ χΓγ1(R̂) (4.6)
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N
HB

HC

HA

σ̂v
N

HC

HB

HA

1 0 0

0 0 1

0 1 0


10
0

 =

10
0


1 0 0

0 0 1

0 1 0


01
0

 =

00
1


1 0 0

0 0 1

0 1 0


00
1

 =

01
0





P(σ̂v) =

1 0 0

0 0 1

0 1 0



N
HB

HC

HA

σ̂ ′v
N

HB

HA

HC

0 0 1

0 1 0

1 0 0


10
0

 =

00
1


0 0 1

0 1 0

1 0 0


01
0

 =

01
0


0 0 1

0 1 0

1 0 0


00
1

 =

10
0





P(σ̂ ′v) =

0 0 1

0 1 0

1 0 0



N
HB

HC

HA

σ̂ ′′v
N

HA

HC

HB

0 1 0

1 0 0

0 0 1


10
0

 =

01
0


0 1 0

1 0 0

0 0 1


01
0

 =

10
0


0 1 0

1 0 0

0 0 1


00
1

 =

00
1





P(σ̂ ′′v ) =

0 1 0

1 0 0

0 0 1



Scheme 4.2: Construction of atomic permutation matrices for the equivalent hydrogen atoms of

ammonia in C3v symmetry corresponding to the reflections.

The application of PΓγ , Eq. (4.5), on the atomic permutation vectors yields matrix vector

products. Thus, the (unnormalized) symmetry-adapted permutation vectors are obtained

as:

p
Γ(γ)
K ≡ PΓγpK =

dΓ

6
χΓ
γ(Ê)P(Ê)pK +

dΓ

6
χΓ
γ(Ĉ3)P(Ĉ2)pK +

dΓ

6
χΓ
γ(Ĉ

2
3)P(Ĉ2)pK+

dΓ

6
χΓ
γ(σ̂v)P(σ̂v)pK +

dΓ

6
χΓ
γ(σ̂

′
v)P(σ̂

′
v)pK +

dΓ

6
χΓ
γ(σ̂

′′
v )P(σ̂

′′
v )pK

(4.7)
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C3v Ê Ĉ3 Ĉ23 σ̂v σ̂ ′v σ̂ ′′v

A1 1 1 1 1 1 1

A2 1 1 1 −1 −1 −1

E

(
1 0

0 1

) (
−c −s

s −c

) (
−c s

−s −c

) (
1 0

0 −1

) (
−c −s

−s c

) (
−c s

s c

)
c = 1/2; s =

√
3/2

Table 4.1: C3v point group table.

In Eq. (4.7) K denotes any atomic center on which the auxiliary functions of the invariant

are centered. We perform these projections until we have found as many non-vanishing

linear independent symmetry-adapted permutation vectors as initial atomic permutation

vectors were used. Thus, in the case of our ammonia example for the equivalent hydrogen

atoms, three linear independent symmetry-adapted permutation vectors are searched.

The number of linear independent symmetry-adapted atomic permutation vectors can

also be directly obtained from the character formula for the reduction of representations

[76, 90, 91]. It is defined as follows for our ammonia example in C3v point group:

aΓ =
1

6

(
χΓ (Ê)χ(Ê) + χΓ (Ĉ3)χ(Ĉ3) + χ

Γ (Ĉ23)χ(Ĉ
2
3)+

χΓ (σ̂v)χ(σ̂v) + χ
Γ (σ̂ ′v)χ(σ̂

′
v) + χ

Γ (σ̂ ′′v )χ(σ̂
′′
v )
) (4.8)

In Eq. (4.8) χΓ (R̂) denote the characters of the irreducible representations. They can be

obtained from the point group tables now available in deMon2k. Table 4.1 shows this table

for the here discussedC3v example. For one-dimensional irreducible representations, the

character is simply the corresponding entry in thepoint group table. Formultidimensional

irreducible representations, it is given by the trace of the irreducible representation

matrices. On the other hand, the characters of the reducible representations χ(Ê), χ(Ĉ3)

and so on in Eq (4.8) are given by the traces of the corresponding permutation matrices,

listed in Scheme 4.1 and 4.2. Thus, we find for χ(R̂) = tr(P(R̂)):

χ(Ê) = 3, χ(Ĉ3) = 0, χ(Ĉ
2
3) = 0, χ(σ̂v) = 1, χ(σ̂

′
v) = 1, χ(σ̂

′′
v ) = 1 (4.9)
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• Γ = A1; γ = 1; χA1(Ê) = 1, χA1(Ĉ3) = 1, χ
A1(Ĉ23) = 1, χ

A1(σ̂v) = 1, χ
A1(σ̂ ′v) = 1,

χA1(σ̂ ′′v ) = 1; p
A1

A ≡ PA1pA

p
A1
A =

1

6
1

1 0 0

0 1 0

0 0 1


10
0

+
1

6
1

0 0 1

1 0 0

0 1 0


10
0

+
1

6
1

0 1 0

0 0 1

1 0 0


10
0

+

1

6
1

1 0 0

0 0 1

0 1 0


10
0

+
1

6
1

0 0 1

0 1 0

1 0 0


10
0

+
1

6
1

0 1 0

1 0 0

0 0 1


10
0



=
1

6


10
0

+

01
0

+

00
1

+

10
0

+

00
1

+

01
0


 =


1/3

1/3

1/3

 store; enough

for A1; next

projection in E

• Γ = E; γ = 1; χE1 (Ê) = 1, χ
E
1 (Ĉ3) = −1

2
, χE1 (Ĉ

2
3) = −1

2
, χE1 (σ̂v) = 1, χ

E
1 (σ̂

′
v) = −1

2
,

χE
1 (σ̂

′′
v ) = −1

2
; p
E(1)
A ≡ PE1pA

p
E(1)
A = 2

6
1

1 0 0

0 1 0

0 0 1


10
0

+ 2
6

(
− 1
2

)0 0 1

1 0 0

0 1 0


10
0

+ 2
6

(
− 1
2

)0 1 0

0 0 1

1 0 0


10
0

+

2
6
1

1 0 0

0 0 1

0 1 0


10
0

+ 2
6

(
− 1
2

)0 0 1

0 1 0

1 0 0


10
0

+ 2
6

(
− 1
2

)0 1 0

1 0 0

0 0 1


10
0



= 2
6


10
0

− 1
2

01
0

− 1
2

00
1

+

10
0

− 1
2

00
1

− 1
2

01
0


 =


2/3

−1/3

−1/3

 store; find

partner

increasing γ

• Γ = E; γ = 2; χE2 (Ê) = 0, χ
E
2 (Ĉ3) =

√
3
2
, χE2 (Ĉ

2
3) = −

√
3
2
, χE2 (σ̂v) = 0, χ

E
2 (σ̂

′
v) = −

√
3
2
,

χE
2 (σ̂

′′
v ) =

√
3
2
; p
E(2)
A ≡ PE2pA

p
E(2)
A = 2

6
0

1 0 0

0 1 0

0 0 1


10
0

+ 2
6

(√
3
2

)0 0 1

1 0 0

0 1 0


10
0

+ 2
6

(
−
√
3
2

)0 1 0

0 0 1

1 0 0


10
0

+

2
6
0

1 0 0

0 0 1

0 1 0


10
0

+ 2
6

(
−
√
3
2

)0 0 1

0 1 0

1 0 0


10
0

+ 2
6

(
−
√
3
2

)0 1 0

1 0 0

0 0 1


10
0



= 2
6

√32
01
0

−
√
3
2

00
1

−
√
3
2

00
1

+
√
3
2

01
0


 =

 0

1/
√
3

−1/
√
3

 store; all symmetry

vectors found; finish

Scheme 4.3: Construction of symmetry-adapted permutation vectors for the equivalent hydrogen

atoms of ammonia in C3v symmetry.
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Performing the resulting calculations according to Eq. (4.8) we obtain as only non-

vanishing expansion coefficients for the irreducible representations aA1 = 1, and aE = 1.

Considering that the irreducible representation E is two-dimensional, we must obtain

in total three symmetry-adapted vectors, one belonging to A1 and two belonging to E.

Their construction according to the here outlined algorithm is depicted in Scheme 4.3.

As this scheme shows, the three symmetry-adapted permutation vectors are pA1A and the

two pEA vectors.

In general, the (unnormalized) symmetry-adapted permutation vectors for a symmetry-

equivalent atom set using real irreducible representations are obtained as:

p
Γ(γ)
K =

dΓ
h

∑
R̂

χΓ
γ(R̂)P(R̂)pK (4.10)

In Eq. (4.10) h denotes the order of the point group and pK an atomic permutation vector

from the symmetry-equivalent atom set of the invariant under consideration. The general

form of the reduction formula is given by:

aΓ =
1

h

∑
R

χΓ (R̂)χ(R̂) (4.11)

The symmetry-adapted permutation vectors are stored in the V matrix as:

V =
(
VΓ(1) | VΓ(2) | ... |VΓ

′(1) | VΓ
′(2) | ...

)
(4.12)

with VΓ(γ) =
(
p
Γ(γ)
A | p

Γ(γ)
B | ...

)
(4.13)

In Eq. (4.12) Γ and Γ ′ are different irreducible representations of the point group under

consideration.

After the symmetry-adapted atomic permutation vectors are calculated, we now turn

to the construction of the symmetrization matrixW for the auxiliary functions. To this

end, we assume (auxiliary) functions that are centered at the global origin. Take as
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example the Hermite Gaussian d-type set of functions {d̄xx, d̄xy, d̄xz, d̄yy, d̄yz, d̄zz}. To

proceed, we express the (auxiliary) function vectors {dxx, dxy, dxz, dyy, dyz, dzz} as:

dxx =



1

0

0

0

0

0


, dxy =



0

1

0

0

0

0


, dxz =



0

0

1

0

0

0


, dyy =



0

0

0

1

0

0


, dyz =



0

0

0

0

1

0


, dzz =



0

0

0

0

0

1


(4.14)

The auxiliary function transformations are depicted in Figure 4.1. For convenience of

presentation, some symmetry operators are multiplied with a negative phase factor. The

corresponding (auxiliary) function symmetrization matrices, F(R̂), are:

F(Ê) =



1 0 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1


, F(Ĉ3) =



1
4

3
4

0 3
4

0 0

− 1
2

− 1
2

0 1
2

0 0

0 0 − 1
2

0 −
√
3
2

0
3
4

− 3
4

0 1
4

0 0

0 0
√
3
2

0 − 1
2

0

0 0 0 0 0 1


,

F(Ĉ23) =



1
4

− 3
4

0 3
4

0 0
1
2

− 1
2

0 − 1
2

0 0

0 0 − 1
2

0
√
3
2

0
3
4

3
4

0 1
4

0 0

0 0 −
√
3
2

0 − 1
2

0

0 0 0 0 0 1


, F(σ̂v) =



1 0 0 0 0 0

0 −1 0 0 0 0

0 0 1 0 0 0

0 0 0 1 0 0

0 0 0 0 −1 0

0 0 0 0 0 1


,

F(σ̂ ′v) =



1
4

3
4

0 3
4

0 0
1
2

1
2

0 − 1
2

0 0

0 0 − 1
2

0 −
√
3
2

0
3
4

− 3
4

0 1
4

0 0

0 0 −
√
3
2

0 1
2

0

0 0 0 0 0 1


, F(σ̂ ′′v ) =



1
4

− 3
4

0 3
4

0 0

− 1
2

1
2

0 1
2

0 0

0 0 − 1
2

0
√
3
2

0
3
4

3
4

0 1
4

0 0

0 0
√
3
2

0 1
2

0

0 0 0 0 0 1



(4.15)

With these matrices the symmetry operations on the d-type Hermite Gaussian auxiliary

functions are represented by matrix vector products according to:

R̂ dκ → F(R̂)dκ (4.16)
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d̄xx

Ê, σ̂v

d̄xx d̄xz

Ĉ23, σ̂
′
v

d̄ ′′xz

d̄xx

Ĉ3, σ̂
′′
v

d̄ ′xx d̄yy

Ê, σ̂v

d̄yy

d̄xx

Ĉ23, σ̂
′
v

d̄ ′′xx d̄yy

Ĉ3, σ̂
′′
v

d̄ ′yy

d̄xy

Ê,−σ̂v

d̄xy d̄yy

Ĉ23, σ̂
′
v

d̄ ′′yy

d̄xy

Ĉ3,−σ̂
′′
v

d̄ ′xy d̄yz

Ê,−σ̂v

d̄yz

d̄xy

Ĉ23,−σ̂
′
v

d̄ ′′xy d̄yz

Ĉ3,−σ̂
′′
v

d̄ ′yz

d̄xz

Ê, σ̂v

d̄xz d̄yz

Ĉ23,−σ̂
′
v

d̄ ′′yz

d̄xz

Ĉ3, σ̂
′′
v

d̄ ′xz d̄zz

R̂

d̄zz

Figure 4.1: Transformation of d-type auxiliary functions under C3v symmetry operations. The

symbol R̂ indicates any of the symmetry operations in the point group. The rotations

Ĉ3 and Ĉ
2
3 are right handed around the z axis. Themirror planes are σv(xz) = σv(⊥ y),

σ ′v(⊥ Ĉ3y) and σ ′′v (⊥ Ĉ23y).
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Here d refers to the total angular momentum of the (auxiliary) function shell and κ

is a specific angular momentum index, i.e. xx = (2, 0, 0), xy = (1, 1, 0) and so on. The

elements of the symmetrization matrix F(R̂) for the function vectors of an (auxiliary)

function shell are given by the formula:

Fκλ(R̂) = Nκλ

λx∑
a=0

a∑
b=0

λy∑
c=0

c∑
d=0

D(a, b, c, d) Babcd Sabcd(R̂) (4.17)

In Eq. (4.17) κ and λ refer to (auxiliary) functions in the shell under consideration with

corresponding angular momentum indices κ = (κx, κy, κz) and λ = (λx, λy, λz). The

normalization constant in Eq. (4.17) is given as:

Nκλ =

√
(2κx − 1)!!(2κy − 1)!!(2κz − 1)!!

(2λx − 1)!!(2λy − 1)!!(2λz − 1)!!
(4.18)

The D(a, b, c, d) play the role of a Kronecker delta for sum terms according to:

D(a, b, c, d) =


1 0 6 κy + κz − a− c 6 λz ∧ 0 6 κz − b− d 6 κy + κz − a− c

0 else

(4.19)

The other factors in Eq. (4.17) are products of binomial coefficients,

Babcd =

(
λx

a

)(
a

b

)(
λy

c

)(
c

d

)(
λz

κy + κz − a− c

)(
κy + κz − a− c

κz − b− d

)
(4.20)

and of the three-dimensional Cartesian representation matrices of the symmetry opera-

tion R̂:

Sabcd(R̂) = R
λx−a
11 R

λy−c
12 R

a+c−κy−κz+λz
13 Ra−b21 Rc−d22 R

−a+b−c+d+κy
23 Rb31R

d
32R

−b−d+κz
33

(4.21)
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Note that Eqs. (4.17) to (4.21) are valid for arbitrary angular momentum indices. For the

C3v example the three-dimensional Cartesian representation matrices are given by:

F(Ê) =


1 0 0

0 1 0

0 0 1

 , F(Ĉ3) =


−1
2

−
√
3
2

0

√
3
2

−1
2

0

0 0 1

 , F(Ĉ23) =


−1
2

√
3
2

0

−
√
3
2

−1
2

0

0 0 1

 ,

F(σ̂v) =


1 0 0

0 −1 0

0 0 1

 , F(σ̂ ′v) =


−1
2

−
√
3
2

0

−
√
3
2

1
2

0

0 0 1

 , F(σ̂ ′′v ) =


−1
2

√
3
2

0

√
3
2

1
2

0

0 0 1



(4.22)

Technically, these matrices can be constructed in the initial symmetry analysis of a

molecule which detects the point group of the molecule. However, the sorting of the

symmetry operations in the point group detection algorithm in deMon2k is in general

not the same as the sorting in the point group tables. Therefore, the three-dimensional

Cartesian representations for the construction of symmetry-adapted basis and auxiliary

functions are directly built from the point group tables in deMon2k. To this end, the

irreducible representations in these tables that transform according to the Cartesian

x, y and z basis are indicated, too. In the case of the C3v example these are the two-

dimensional irreducible representation E that transforms according to the (x, y) basis

and the irreducible representation A1 that transforms according to the z basis. Thus, the

three-dimensional Cartesian representations can be constructed from Table 4.1 as:

R = χχE(R̂)⊕ χχA1(R̂) ∀ R̂ (4.23)

With the three-dimensional Cartesian representation matrix elements at hand, the

symmetrization matrix for the function vectors can be calculated. Developing the
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formula of Eq. (4.17) in general for the d shell of (auxiliary) functions for any symmetry

operation, the symmetrization matrix takes the generic form:

F(R̂)=



R211
√
3R11R12

√
3R11R13 R212

√
3R12R13 R213

2R11R21√
3

R12R21 + R11R22 R13R21 + R11R23
2R12R22√

3
R13R22 + R12R23

2R13R23√
3

2R11R31√
3

R12R31 + R11R32 R13R31 + R11R33
2R12R32√

3
R13R32 + R12R33

2R13R33√
3

R221
√
3R21R22

√
3R21R23 R222

√
3R22R23 R223

2R21R31√
3

R22R31 + R21R32 R23R31 + R21R33
2R22R32√

3
R23R32 + R22R33

2R23R33√
3

R231
√
3R31R32

√
3R31R33 R232

√
3R32R33 R233


(4.24)

Once the (auxiliary) function symmetrization matrices are available, we can formulate

a projection operator in the same spirit as for the construction of the V symmetrization

matrix. Thus, the symmetry-adapted d-type (auxiliary) function vectors, d
Γ(γ)
κ ≡ PΓγdκ,

are calculated as:

d
Γ(γ)
κ =

dΓ
6
χΓ
γ(Ê)F(Ê)dκ +

dΓ
6
χΓ
γ(Ĉ3)F(Ĉ3)dκ +

dΓ
6
χΓ
γ(Ĉ

2
3)F(Ĉ

2
3)dκ +

dΓ
6
χΓ
γ(σ̂v)F(σ̂v)dκ +

dΓ
6
χΓ
γ(σ̂

′
v)F(σ̂

′
v)dκ +

dΓ
6
χΓ
γ(σ̂

′′
v )F(σ̂

′′
v )dκ

(4.25)

Again, we perform these projections until we have found as many non-vanishing linear

independent symmetry-adapted auxiliary function vectors as initial auxiliary function

vectors were used. For this task we also take advantage of the reduction formula Eq.

(4.11), taking χ(R̂) as the traces of the matrices given in Eq. (4.15). The only non-vanishing

expansion coefficients are aA1 = 2 and aE = 2. Therefore, we search for two symmetry

vectors belonging to A1 and two pairs of symmetry vectors belonging to the two-

dimensional E representation. In our example of d-type Hermite Gaussians auxiliary

functions, which is worked out in Schemes 4.4 and 4.5, theW matrix is given by:

W = (dA1xx |dA1zz |d
E(1)
xx |d

E(2)
xx |d

E(1)
xz |d

E(2)
xz ) (4.26)
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• Γ = A1; γ = 1; χA1(Ê) = 1, χA1(Ĉ3) = 1, χ
A1(Ĉ23) = 1, χ

A1(σ̂v) = 1, χ
A1(σ̂ ′v) = 1,

χA1(σ̂ ′′v ) = 1; d
A1
xx ≡ PA1

1 dxx

dA1
xx =

1

6
1F(Ê)dxx +

1

6
1F(Ĉ3)dxx +

1

6
1F(Ĉ23)dxx +

1

6
1F(σ̂v)dxx +

1

6
1F(σ̂ ′v)dxx +

1

6
1F(σ̂ ′′v )dxx

=
1

6
[1dxx + 1d

′
xx + 1d

′′
xx + 1dxx + 1d

′′
xx + 1d

′
xx]

=
1

3
[dxx + d ′xx + d ′′xx]

=
1

3

[
dxx +

(
1

4
dxx −

1

2
dxy +

3

4
dyy

)
+

(
1

4
dxx +

1

2
dxy +

3

4
dyy

)]
=
1

3

[
3

2
dxx +

3

2
dyy

]
=
1

2
[dxx + dyy] store; next projection

dA1
xy ≡ PA1

1 dxy

dA1
xy =

1

6
1F(Ê)dxy +

1

6
1F(Ĉ3)dxy +

1

6
1F(Ĉ23)dxy +

1

6
1F(σ̂v)dxy +

1

6
1F(σ̂ ′v)dxy +

1

6
1F(σ̂ ′′v )dxy

=
1

6

[
1dxy + 1d

′
xy + 1d

′′
xy + 1(−dxy) + 1(−d ′′xy) + 1(−d ′xy)

]
= 0 vanishes; next projection

...

dA1
yy ≡ PA1

1 dyy

dA1
yy =

1

6
1F(Ê)dyy +

1

6
1F(Ĉ3)dyy +

1

6
1F(Ĉ23)dyy +

1

6
1F(σ̂v)dyy +

1

6
1F(σ̂ ′v)dyy +

1

6
1F(σ̂ ′′v )dyy

=
1

6

[
1dyy + 1d

′
yy + 1d

′′
yy + 1dyy + 1d

′′
yy + 1d

′
yy

]
=
1

3

[
dyy + d ′yy + d ′′yy

]
=
1

3

[
dyy +

(
3

4
dxx +

1

2
dxy +

1

4
dyy

)
+

(
3

4
dxx −

1

2
dxy +

1

4
dyy

)]
=
1

3

[
3

2
dxx +

3

2
dyy

]
=
1

2
[dxx + dyy] linear dependent; next projection

...

dA1
zz ≡ PA1

1 dzz

dA1
zz =

1

6
1F(Ê)dzz +

1

6
1F(Ĉ3)dzz +

1

6
1F(Ĉ23)dzz +

1

6
1F(σ̂v)dzz +

1

6
1F(σ̂ ′v)dzz +

1

6
1F(σ̂ ′′v )dzz

=
1

6
[1dzz + 1dzz + 1dzz + 1dzz + 1dzz + 1dzz]

= dzz store; enough for A1

Scheme 4.4: Construction of symmetry-adapted (auxiliary) function vectors for the irreducible

representation A1. See Figure 4.1 for the actions of F(R̂) on the (auxiliary) function

vectors dκ.
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• Γ = E; γ = 1; χE1 (Ê) = 1, χ
E
1 (Ĉ3) = − 1

2
, χE1 (Ĉ

2
3) = − 1

2
, χE1 (σ̂v) = 1, χ

E
1 (σ̂

′
v) = − 1

2
, χE1 (σ̂

′′
v ) = − 1

2
;

d
E(1)
xx ≡ PE1dxx

d
E(1)
xx = 2

6

[
1F(Ê)dxx +

(
− 1
2

)
F(Ĉ3)dxx +

(
− 1
2

)
F(Ĉ23)dxx + 1F(σ̂v)dxx +

(
− 1
2

)
F(σ̂ ′v)dxx +

(
− 1
2

)
F(σ̂ ′′v )dxx

]
= 2
6

[
1dxx +

(
− 1
2

)
d ′xx +

(
− 1
2

)
d ′′xx + 1dxx +

(
− 1
2

)
d ′′xx +

(
− 1
2

)
d ′xx
]

= 2
6
[2dxx − d ′xx − d ′′xx] =

2
6

[
2dxx −

(
1
4
dxx −

1
2
dxy +

3
4
dyy

)
−
(
1
4
dxx +

1
2
dxy +

3
4
dyy

)]
= 2
6

[
3
2
dxx −

3
2
dyy

]
= 1
2
[dxx − dyy] store; find partner increasing γ

• Γ = E; γ = 2; χE2 (Ê) = 0, χ
E
2 (Ĉ3) =

√
3
2
, χE2 (Ĉ

2
3) = −

√
3
2
, χE2 (σ̂v) = 0, χ

E
2 (σ̂

′
v) = −

√
3
2
, χE2 (σ̂

′′
v ) =

√
3
2
;

d
E(2)
xx ≡ PE2dxx

d
E(2)
xx = 2

6

[
0F(Ê)dxx +

(√
3
2

)
F(Ĉ3)dxx +

(
−
√
3
2

)
F(Ĉ23)dxx + 0F(σ̂v)dxx +

(
−
√
3
2

)
F(σ̂ ′v)dxx +

(√
3
2

)
F(σ̂ ′′v )dxx

]
= 2
6

[(√
3
2

)
d ′xx +

(
−
√
3
2

)
d ′′xx +

(
−
√
3
2

)
d ′′xx +

(√
3
2

)
d ′xx

]
= 1√

3
[d ′xx − d ′′xx] =

1√
3

[(
1
4
dxx −

1
2
dxy +

3
4
dyy

)
−
(
1
4
dxx +

1
2
dxy +

3
4
dyy

)]
= − 1√

3
dxy store; find next projection in Γ = E, γ = 1

• Γ = E; γ = 1; χE1 (Ê) = 1, χ
E
1 (Ĉ3) = − 1

2
, χE1 (Ĉ

2
3) = − 1

2
, χE1 (σ̂v) = 1, χ

E
1 (σ̂

′
v) = − 1

2
, χE1 (σ̂

′′
v ) = − 1

2
;

d
E(1)
xy ≡ PE1dxy

d
E(1)
xy = 2

6

[
1F(Ê)dxy +

(
− 1
2

)
F(Ĉ3)dxy +

(
− 1
2

)
F(Ĉ23)dxy + 1F(σ̂v)dxy +

(
− 1
2

)
F(σ̂ ′v)dxy +

(
− 1
2

)
F(σ̂ ′′v )dxy

]
= 2
6

[
1dxy +

(
− 1
2

)
d ′xy +

(
− 1
2

)
d ′′xy + 1 (−dxy) +

(
− 1
2

) (
−d ′′xy

)
+
(
− 1
2

) (
−d ′xy

)]
= 0 vanishes; next projection

d
E(1)
xz = 2

6

[
1F(Ê)dxz +

(
− 1
2

)
F(Ĉ3)dxz +

(
− 1
2

)
F(Ĉ23)dxz + 1F(σ̂v)dxz +

(
− 1
2

)
F(σ̂ ′v)dxz +

(
− 1
2

)
F(σ̂ ′′v )dxz

]
= 2
6

[
1dxz +

(
− 1
2

)
d ′xz +

(
− 1
2

)
d ′′xz + 1dxz +

(
− 1
2

)
d ′′xz +

(
− 1
2

)
d ′xz
]

= 2
6
[2dxz − d ′xz − d ′′xz] =

2
6

[
2dxz −

(
− 1
2
dxz +

√
3
2
dyz

)
−
(
− 1
2
dxz −

√
3
2
dyz

)]
= dxz store; find partner increasing γ

• Γ = E; γ = 2; χE2 (Ê) = 0, χ
E
2 (Ĉ3) =

√
3
2
, χE2 (Ĉ

2
3) = −

√
3
2
, χE2 (σ̂v) = 0, χ

E
2 (σ̂

′
v) = −

√
3
2
, χE2 (σ̂

′′
v ) =

√
3
2
;

d
E(2)
xz ≡ PE2dxz

d
E(2)
xz = 2

6

[
0F(Ê)dxz +

(√
3
2

)
F(Ĉ3)dxz +

(
−
√
3
2

)
F(Ĉ23)dxz + 0F(σ̂v)dxz +

(
−
√
3
2

)
F(σ̂ ′v)dxz +

(√
3
2

)
F(σ̂ ′′v )dxz

]
= 2
6

[(√
3
2

)
d ′xz +

(
−
√
3
2

)
d ′′xz +

(
−
√
3
2

)
d ′′xz +

(√
3
2

)
d ′xz

]
= 1√

3
[d ′xz − d ′′xz] =

1√
3

[(
− 1
2
dxz +

√
3
2
dyz

)
−
(
− 1
2
dxz −

√
3
2
dyz

)]
= dyz store; six symmetry vectors found; finish

Scheme 4.5: Construction of symmetry-adapted (auxiliary) function vectors for the irreducible

representation E. See Figure 4.1 for the actions of F(R̂) on the (auxiliary) function

vectors dκ.
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d̄A1xx d̄A1zz

d̄
E(1)
xx d̄

E(2)
xx

d̄
E(1)
xz d̄

E(2)
xz

Figure 4.2: Origin-centered symmetry-adapted Hermite d-type functions.

The resulting symmetry-adapted functions are plotted in Figure 4.2. In general, the

symmetry-adapted auxiliary function vectors for a particular angular momentum ` are

obtained as:

`
Γ(γ)
κ =

dΓ
h

∑
R

χΓ
γ(R̂)F(R̂)`κ (4.27)

These symmetry-adapted auxiliary function vectors are stored in theW matrix.
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With the V and W matrices at hand, we now built a new basis by means of the direct

product of these matrices (see appendix A)

B =V ⊗W

=(pA1A |p
E(1)
A |p

E(2)
A )⊗ (dA1xx |dA1zz |d

E(1)
xx |d

E(1)
xz |d

E(2)
xx |d

E(2)
xz ) (4.28)

The resulting column vectors span the same space as the set of all vectors representing

the original atom-centered auxiliary functions in the invariant under consideration. For

point groups with only one-dimensional irreducible representations, the symmetrization

matrix U is the matrix B with columns sorted by irreducible representations [88]. In

general, the columns of the U symmetrization matrix are symmetry-adapted vectors

built by applying the usual projector operator P̂Γγ to the column vectors of B, i.e.

u
Γ(γ)

l̊
= P̂Γγ

(
p
Γ ′(γ ′)
L ⊗ `Γ

′′(γ ′′)
λ

)
(4.29)

In Eq. (4.29) l̊ is a cumulative index of the atom and function indices L and λ, the

irreducible representations Γ ′ and Γ ′′, and the column indices γ ′ and γ ′′ of the atomic

and function symmetry vectors. In our ammonia example, we are searching for 3 · 6 = 18

non-zero and linear independent symmetry-adapted vectors. To this end, we apply

systematically the projection and transfer operators to the columns of B in the same way

as we did for the symmetry-adapted permutation vectors and the symmetry-adapted

function vectors. To do so, we have to build the matrix representations for the symmetry

operations in the new basis given by the columns of B. The action of R̂ on these vectors

is given by the direct product of irreducible representations [92]:

R̂
(
p
Γ ′(γ ′)
L ⊗ `Γ

′′(γ ′′)
λ

)
=

dΓ ′∑
δ ′

dΓ ′′∑
δ ′′

χΓ
′

δ ′γ ′(R̂)χ
Γ ′′

δ ′′γ ′′(R̂) p
Γ ′(δ ′)
L ⊗ `Γ

′′(δ ′′)
λ (4.30)

Note that the expansion coefficients of the double sum in Eq. (4.30) are given by the

product of irreducible representation matrix elements and, therefore, are independent of
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L and λ. These coefficients depend only on the irreducible representations and their row

and column indices. The space spanned by the columns of B can be split into invariant

subspaces closed under the symmetry operations of the point group considered. These

subspaces are built by the direct products of the degenerate symmetry vectors belonging

to Γ ′ and Γ ′′, i.e. {p
Γ ′(1)
L ⊗ `Γ

′′(1)
λ , p

Γ ′(1)
L ⊗ `Γ

′′(2)
λ , ..., p

Γ ′(dΓ ′)
L ⊗ `Γ

′′(dΓ ′′)
λ }. For the ammonia

example the invariant subspaces are given by the columns of the following rectangular

matrices:

B1 =
(
pA1A ⊗ dA1xx

)
(4.31)

B2 =
(
pA1A ⊗ dA1zz

)
(4.32)

B3 =
(
pA1A ⊗ d

E(1)
xx |pA1A ⊗ d

E(2)
xx

)
(4.33)

B4 =
(
pA1A ⊗ d

E(1)
xz |pA1A ⊗ d

E(2)
xz

)
(4.34)

B5 =
(
p
E(1)
A ⊗ dA1xx |p

E(2)
A ⊗ dA1xx

)
(4.35)

B6 =
(
p
E(1)
A ⊗ dA1zz |p

E(2)
A ⊗ dA1zz

)
(4.36)

B7 =
(
p
E(1)
A ⊗ d

E(1)
xx |p

E(1)
A ⊗ d

E(2)
xx |p

E(2)
A ⊗ d

E(1)
xx |p

E(2)
A ⊗ d

E(2)
xx

)
(4.37)

B8 =
(
p
E(1)
A ⊗ d

E(1)
xz |p

E(1)
A ⊗ d

E(2)
xz |p

E(2)
A ⊗ d

E(1)
xz |p

E(2)
A ⊗ d

E(2)
xz

)
(4.38)

In general, we follow lexicographical ordering of the superscripts for building the

subspace matrices, i.e.

(
p
Γ ′(1)
L ⊗ `Γ

′′(1)
λ |p

Γ ′(1)
L ⊗ `Γ

′′(2)
λ |...|p

Γ ′(1)
L ⊗ `Γ

′′(dΓ ′′)
λ |p

Γ ′(2)
L ⊗ `Γ

′′(1)
λ |...|p

Γ ′(dΓ ′)
L ⊗ `Γ

′′(dΓ ′′)
λ

)
(4.39)

To proceed, we now construct symmetry-adapted vectors for the subspaces given by

the columns of matrices in Eqs. (4.31) to (4.38) using Eq. (4.30). Because the expansion

coefficients are given by the products of irreducible representation matrices, we only

need to calculate them for different direct products, here A1 ⊗ A1, A1 ⊗ E and E ⊗ E.

This projection procedure is known as the reduction of direct products of irreducible

representations [73]. For real one-dimensional irreducible representations holds Γ =
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Γ ′ ⊗ Γ ′′. Therefore, we have implemented the reduction of direct products for this

case, through the calculation of Clebsch-Gordan coefficients from the corresponding

characters [93]:

CΓ (Γ ′, Γ ′′) =
1

h

∑
R̂

χΓ (R̂)χΓ
′
(R̂)χΓ

′′
(R̂) (4.40)

As a result, we find as expansion coefficients for B1 and B2:

CA1(A1, A1) = 1 (4.41)

The corresponding column vectors of the symmetrization matrix U are given by:

uA11 = CA1(A1, A1) · pA1A ⊗ dA1xx = 1 ·

131
3
1
3

⊗



1
2

0

0
1
2

0

0


(4.42)

uA12 = CA1(A1, A1) · pA1A ⊗ dA1zz = 1 ·

131
3
1
3

⊗



0

0

0

0

0

1


(4.43)

For the two-dimensional A1 ⊗ E subspaces given by the columns of B3, B4, B5, and B6

an explicit reduction is needed. FromEq. (4.11), using χ(R̂) = tr[χA1(R̂)·χχE(R̂)], we obtain

as only non-zero contribution aE = 1. Therefore, we search for two symmetry-adapted

vectors belonging to the E irreducible representation. We define the two-dimensional

basis vectors c1(E) and c2(E) for the subspace spanned by the direct product vectors

pA1A ⊗ d
E(1)
xx and pA1A ⊗ d

E(2)
xx in B3 as:
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c1(E) =

(
1

0

)
, c2(E) =

(
0

1

)
(4.44)

The matrix representations of the symmetry operations in this subspace are given by:

DA1⊗E(R̂) = χA1(R̂) · χχE(R̂) ∀ R̂ (4.45)

As χA1(R̂) is 1 for all symmetry operations we obtain:

DA1⊗E(R̂) = χχE(R̂) ∀ R̂ (4.46)

With these representation matrices we can define the action of a symmetry operation in

this subspace as:

R̂ cj(E)→ DA1⊗E(R̂) cj(E) ∀ R̂∧ j (4.47)

We now apply the projection operator P̂E1 in order to obtain c
E(1)
1 (A1, E) as:

c
E(1)
1 (A1, E) = P̂

E
1 c1(E)

=
2

6

∑
R̂

χE
1 (R̂) D

A1⊗E(R̂) c1(E)

=
2

6

∑
R̂

χE
1 (R̂) χχ

E(R̂) c1(E) (4.48)

The corresponding degenerate second component is given by:

c
E(2)
1 (A1, E) = P̂

E
2 c1(E)

=
2

6

∑
R̂

χE
2 (R̂) D

A1⊗E(R̂) c1(E)

=
2

6

∑
R̂

χE
2 (R̂) χχ

E(R̂) c1(E) (4.49)
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The explicit calculation of the symmetry-adapted vectors is shown in Scheme 4.6. As this

scheme shows, the obtained symmetry-adapted vectors for the subspace given by the

columns of B3 are:

c
E(1)
1 (A1, E) =

(
1

0

)
= c1(E), and c

E(2)
1 (A1, E) =

(
0

1

)
= c2(E) (4.50)

The resulting column vectors of the E irreducible representation of the symmetrization

matrix U are given by:

u
E(1)
3 =

(
pA1A ⊗ d

E(1)
xx |pA1A ⊗ d

E(2)
xx

)
c
E(1)
1 (A1, E)

=
(
pA1A ⊗ d

E(1)
xx |pA1A ⊗ d

E(2)
xx

)(
1

0

)

= pA1A ⊗ d
E(1)
xx =

131
3
1
3

⊗



1
2

0

0

−12
0

0


(4.51)

and

u
E(2)
4 =

(
pA1A ⊗ d

E(1)
xx |pA1A ⊗ d

E(2)
xx

)
c
E(2)
1 (A1, E)

=
(
pA1A ⊗ d

E(1)
xx |pA1A ⊗ d

E(2)
xx

)(
0

1

)

= pA1A ⊗ d
E(2)
xx =

131
3
1
3

⊗



0

− 1√
3

0

0

0

0


(4.52)

For the subspaces given by the columns of B4, B5 and B6 the same projection holds. As

a result, the column vectors of the symmetrization matrix arising from the subspace

given by the columns of B4, as an example, are:
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• Γ = E; γ = 1; χE1 (Ê) = 1, χ
E
1 (Ĉ3) = −1

2
, χE1 (Ĉ

2
3) = −1

2
, χE1 (σ̂v) = 1, χ

E
1 (σ̂

′
v) = −1

2
,

χE
1 (σ̂

′′
v ) = −1

2
; c
E(1)
1 ≡ PE1 c1

c
E(1)
1 =

2

6

[
1DA1⊗E(Ê)c1 + (−1

2
)DA1⊗E(Ĉ3)c1 + (−1

2
)DA1⊗E(Ĉ23)c1 + 1D

A1⊗E(σ̂v)c1+

(−1
2
)DA1⊗E(σ̂ ′v)c1 + (−1

2
)DA1⊗E(σ̂ ′′v )c1

]
=
2

6

[
1 χχE(Ê)c1 + (−1

2
)χχE(Ĉ3)c1 + (−1

2
)χχE(Ĉ23)c1 + 1 χχ

E(σ̂v)c1+

(−1
2
)χχE(σ̂ ′v)c1 + (−1

2
)χχE(σ̂ ′′v )c1

]
=
2

6

[
1

(
1 0

0 1

)(
1

0

)
−
1

2

(
−1
2

−1
2√

3
2

−
√
3
2

)(
1

0

)
−
1

2

(
−1
2

1
2

−
√
3
2

−
√
3
2

)(
1

0

)
+

1

(
1 0

0 −1

)(
1

0

)
−
1

2

(
−1
2

−1
2

−
√
3
2

√
3
2

)(
1

0

)
−
1

2

(
−1
2

1
2√

3
2

√
3
2

)(
1

0

)]

=
2

6

[
1

(
1

0

)
−
1

2

(
−1
2√
3
2

)
−
1

2

(
−1
2

−
√
3
2

)
+ 1

(
1

0

)
−
1

2

(
−1
2

−
√
3
2

)
−
1

2

(
−1
2√
3
2

)]
=

(
1

0

)
store; find partner increasing γ

• Γ = E; γ = 2; χE2 (Ê) = 0, χ
E
2 (Ĉ3) =

√
3
2
, χE2 (Ĉ

2
3) = −

√
3
2
, χE2 (σ̂v) = 0, χ

E
2 (σ̂

′
v) = −

√
3
2
,

χE
2 (σ̂

′′
v ) =

√
3
2
; c
E(2)
1 ≡ PE2 c1

c
E(2)
1 =

2

6

[
0 χχE(Ê)c1 + (

√
3
2
)χχE(Ĉ3)c1 + (−

√
3
2
)χχE(Ĉ23)c1 + 0 χχ

E(σ̂v)c1+

(−
√
3
2
)χχE(σ̂ ′v)c1 + (

√
3
2
)χχE(σ̂ ′′v )c1

]
=
2

6

[
0

(
1 0

0 1

)(
1

0

)
+
√
3
2

(
−1
2

−1
2√

3
2

−
√
3
2

)(
1

0

)
−
√
3
2

(
−1
2

1
2

−
√
3
2

−
√
3
2

)(
1

0

)
+

0

(
1 0

0 −1

)(
1

0

)
−
√
3
2

(
−1
2

−1
2

−
√
3
2

√
3
2

)(
1

0

)
+
√
3
2

(
−1
2

1
2√

3
2

√
3
2

)(
1

0

)]

=
2

6

[√
3

2

(
−1
2√
3
2

)
−

√
3

2

(
−1
2

−
√
3
2

)
−

√
3

2

(
−1
2

−
√
3
2

)
+

√
3

2

(
−1
2√
3
2

)]
=

(
0

1

)
two symmetry vectors found; finish

Scheme 4.6: Reduction of the direct product of the irreducible representations A1 ⊗ E of the C3v
point group for the subspace given by the columns of B3. For clarity of presentation

the basis vector c1(E) is written as c1.

u
E(1)
5 =

(
pA1A ⊗ d

E(1)
xz |pA1A ⊗ d

E(2)
xz

)
c
E(1)
1 (A1, E) = pA1A ⊗ d

E(1)
xz (4.53)

u
E(2)
6 =

(
pA1A ⊗ d

E(1)
xz |pA1A ⊗ d

E(2)
xz

)
c
E(2)
1 (A1, E) = pA1A ⊗ d

E(2)
xz (4.54)
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We can gather the symmetry-adapted vectors c
E(1)
1 (A1, E) and c

E(2)
1 (A1, E) in a matrix

CE(A1, E) = (cE(1)(A1, E)|c
E(2)(A1, E)) (4.55)

ThisClebsch-Gordan coefficientmatrix for thedirect product ofA1⊗E is a straightforward

extension of the scalar Clebsch-Gordan coefficient for one-dimensional irreducible

representations given in Eq. (4.40) The projection procedure for the remaining four-

dimensional subspaces is outlined in appendix B. In general, the overall symmetry-

adapted vectors will be constructed as:

u
Γ(γ)

l̊
= (p

Γ ′(1)
L ⊗ `Γ

′′(1)
λ |p

Γ ′(1)
L ⊗ `Γ

′′(2)
λ |...|p

Γ ′(dΓ ′)
L ⊗ `Γ

′′(dΓ ′′)
λ ) c

Γ(γ)
j (Γ ′, Γ ′′) (4.56)

The Clebsch-Gordan coefficient matrices for the C3v example are given as:

CA1(A1, A1) = 1 (4.57)

CE(A1, E) =

1 0

0 1

 (4.58)

CE(E,A1) =

1 0

0 1

 (4.59)

(
CA1(E, E)|CA2(E, E)|CE(E, E)

)
=



1
2 0 1

2 0

0 1
2 0 −12

0 −12 0 −12

1
2 0 −12 0


(4.60)

Thus, if we resort the columns of B of our ammonia example according to its invariant

subspaces,

B = (B1|B2|B3|B4|B5|B6|B7|B8) (4.61)
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where the matrices Bi are built with the corresponding matrices for the subspaces in Eq.

(4.31) to Eq. (4.38) then the U symmetrization matrix is given by:

U = B
(
CA1(A1, A1)⊕ CA1(A1, A1)⊕ CE(A1, E)⊕ CE(A1, E)⊕

CE(E,A1)⊕ CE(E,A1)⊕ C(E, E)⊕ C(E, E)
) (4.62)

HereC(E, E) is given by Eq. (4.60). Also it can be shown that Eq. (4.56) can be equivalently

written as:

u
Γ(γ)

l̊
=

dΓ ′∑
δ ′

dΓ ′′∑
δ ′′

C
Γ(γ)
δ ′δ ′′,γ ′γ ′′(Γ

′, Γ ′′) p
Γ ′(δ ′)
L ⊗ `Γ

′′(δ ′′)
λ (4.63)

The Clebsch-Gordan expansion coefficients in Eq. (4.63) can be calculated as [93]:

C
Γ(γ)
δ ′δ ′′,γ ′γ ′′(Γ

′, Γ ′′) =
dΓ
h

h∑
R

χΓ
γ(R̂) χ

Γ ′

δ ′γ ′(R̂) χ
Γ ′′

δ ′′γ ′′(R̂) (4.64)

The double-index notation can be contracted into a single-index notation by the formula

i = dΓ ′′(δ
′ − 1) + δ ′′ and j = dΓ ′′(γ

′ − 1) + γ ′′. Whereas the i index denotes the row

index of the Clebsch-Gordan coefficient matrix, the selection of γ ′ and γ ′′ is not unique

[94]. In our implementation, we perform this selection by applying all the P̂Γγ operators

defined in the direct product space of the irreducible representations,

P̂Γγ → PΓγ =
dΓ
h

∑
R̂

χΓ
γD

Γ ′⊗Γ ′′(R̂) (4.65)

to the corresponding basis vectors of this space

{cj(Γ
′, Γ ′′)} = {c1(Γ

′, Γ ′′), c2(Γ
′, Γ ′′), ..., cdΓ ′dΓ ′′ (Γ

′, Γ ′′)} (4.66)

These projections are performed until we have obtained as many non-zero, linear

independent symmetry-adapted vectors as original basis vectors. This procedure is

depicted in Scheme 4.7. In this Scheme we first loop over all irreducible representations

Γ in the point group, then we loop over the basis vectors of the subspace given by Eq.
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for Γ do

for j = 1, dΓ ′ · dΓ ′′ do

if PΓ1cj(Γ
′, Γ ′′) is valid then

C← P̂Γ1cj(Γ
′, Γ ′′)

for γ = 2, dΓ do

C← P̂Γγcj(Γ
′, Γ ′′)

end for

if Rank(C) = dΓ ′ · dΓ ′′ then

Finish

end if

end if

end for

end for

Scheme 4.7: Pseudocode for building the Clebsch-Gordan coefficient matrix for the direct product

of irreducible representations Γ ′ and Γ ′′. Here a symmetry-adapted column vector is

“valid” when it is non-zero and linear independent to the previous found vectors

stored in matrix C. The left arrow means to add the column vector to the matrix C
(initially empty).

(4.66) as a standard basis [95]. The projector matrix representations given by Eq. (4.65)

are applied to the column vectors {cj(Γ
′, Γ ′′)} until we have obtained dΓ ′ · dΓ ′′ non-zero,

linear independent symmetry-adapted vectors. With this procedure the columns of the

Clebsch-Gordan coefficient matrix are uniquely defined.

To elaborate more on the cumulative column index l̊ of the U symmetrization matrix

we list it in Table 4.2 for the here discussed example. The corresponding symmetry-

adapted auxiliary functions are shown in Figure 4.3, 4.4 and 4.5. One of the interesting

symmetries of the symmetry-adapted auxiliary functions in the ammonia example is the

A2 irreducible representation which arises from the direct product reduction of E⊗ E.

The two symmetry-adapted A2 auxiliary functions, k̊A25 and k̊A26 are depicted at the

bottom of Figure 4.3. This irreducible representation is symmetric under the rotations Ĉ3

and Ĉ23 but antisymmetric under the reflections σ̂v, σ̂
′
v and σ̂

′′
v of the C3v point group.

The symmetry-adapted auxiliary functions belonging to irreducible representation E are

degenerate in couples. These couples are shown together in each row of the Figures 4.4

and 4.5.
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l̊ Γ γ L λ Γ ′ Γ ′′ γ ′ γ ′′ u
Γ(γ)

l̊

1 A1 1 H
A

xx A1 A1 1 1 pA1A ⊗ dA1xx

2 A1 1 H
A

zz A1 A1 1 1 pA1A ⊗ dA1zz

3 A1 1 H
A

xx E E 1 1 1
2p
E(1)
A ⊗ d

E(1)
xx + 1

2p
E(2)
A ⊗ d

E(2)
xx

4 A1 1 H
A

xz E E 1 1 1
2p
E(1)
A ⊗ d

E(1)
xz + 1

2p
E(2)
A ⊗ d

E(2)
xz

5 A2 1 H
A

xx E E 1 2 1
2p
E(1)
A ⊗ d

E(2)
xx − 1

2p
E(2)
A ⊗ d

E(1)
xx

6 A2 1 H
A

xz E E 1 2 1
2p
E(1)
A ⊗ d

E(2)
xz − 1

2p
E(2)
A ⊗ d

E(1)
xz

7 E 1 H
A

xx A1 E 1 1 pA1A ⊗ d
E(1)
xx

8 E 1 H
A

xz A1 E 1 1 pA1A ⊗ d
E(1)
xz

9 E 1 H
A

xx E A1 1 1 p
E(1)
A ⊗ dA1xx

10 E 1 H
A

zz E A1 1 1 p
E(1)
A ⊗ dA1zz

11 E 1 H
A

xx E E 1 1 1
2p
E(1)
A ⊗ d

E(1)
xx − 1

2p
E(2)
A ⊗ d

E(2)
xx

12 E 1 H
A

xz E E 1 1 1
2p
E(1)
A ⊗ d

E(1)
xz − 1

2p
E(2)
A ⊗ d

E(2)
xz

13 E 2 H
A

xx A1 E 1 1 pA1A ⊗ d
E(2)
xx

14 E 2 H
A

xz A1 E 1 1 pA1A ⊗ d
E(2)
xz

15 E 2 H
A

xx E A1 1 1 p
E(2)
A ⊗ dA1xx

16 E 2 H
A

zz E A1 1 1 p
E(2)
A ⊗ dA1zz

17 E 2 H
A

xx E E 1 1 −12p
E(1)
A ⊗ d

E(2)
xx − 1

2p
E(2)
A ⊗ d

E(1)
xx

18 E 2 H
A

xz E E 1 1 −12p
E(1)
A ⊗ d

E(2)
xz − 1

2p
E(2)
A ⊗ d

E(1)
xz

Table 4.2: List of the column indices of the overall U symmetrization matrix composed from

symmetry-adapted atomic permutation vectors and symmetry-adapted function vectors

for the ammonia example inC3v symmetry. The vectors have been sorted by irreducible

representations and enumerated.

In order to achieve block diagonalization of the G matrix for the invariant under

consideration, the columns of U have to be sorted according to their irreducible repre-

sentations. Furthermore, the here outlined construction of the symmetrization matrix

part for an invariant has to be performed for all invariants of a molecule. The resulting

symmetrization matrix blocks can then be combined into the completeU symmetrization

matrix. However, in our actual deMon2k implementation the complete symmetrization

matrix U
bas

is only built for the blocking of the Kohn-Sham matrix. The corresponding

symmetrization matrix for the auxiliary functions, Uaux, is not explicitly constructed.

Instead, we perform the transformation of the Coulombmatrix and vector into symmetry-

adapted representations element by element, looping over the k̊ and l̊ cumulative indices

of all the invariants for each pair Γ , γ. This approach is particularly memory efficient
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k̊A11 k̊A12

k̊A13 k̊A14

k̊A25 k̊A26

Figure 4.3: Symmetry-adapted auxiliary functions for the C3v ammonia example with symmetry

A1 and A2.

because only the V andW matrices need to be computed and stored. Take as example

the dodecahedrane molecule C20H20 in Ih symmetry shown at the bottom of Figure 3.2.

The two symmetry-equivalent atom sets of hydrogen and carbon atoms give rise to V

matrices with dimensions of 20× 20. If the GEN-A2 auxiliary function set is used, three
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k̊
E(1)
7 k̊

E(2)
13

k̊
E(1)
8 k̊

E(2)
14

k̊
E(1)
9 k̊

E(2)
15

Figure 4.4: Symmetry-adapted auxiliary functions for the C3v ammonia example with symmetry

E (part 1).

W matrices for the s-, p- and d-type (auxiliary) functions are needed. Their matrix

dimensions are 1×1, 3×3 and 6×6, respectively. In comparison, the complete U matrix

has dimension 2300×2300. Obviously, this is an enormous reduction in memory demand.
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k̊
E(1)
10 k̊

E(2)
16

k̊
E(1)
11 k̊

E(2)
17

k̊
E(1)
12 k̊

E(2)
18

Figure 4.5: Symmetry-adapted auxiliary functions for the C3v ammonia example with symmetry

E (part 2).



4.2 Construction of the U matrix for spherical basis functions 71

4.2 Construction of the U matrix for spherical basis functions

In order to use the procedure outlined above for the construction of symmetrization

matrices for spherical orbitals, the symmetrization matrix for Cartesian functions must

be transformed to their spherical analog. To do so, we introduce the following basis

transformation:

F
sph

(R̂) = M− F
Cart

(R̂)M ∀ R̂ (4.67)

The matrix M is in general rectangular. This is so because the Cartesian matrix rep-

resentations have dimension (
(`+1)(`+2)

2 )× (
(`+1)(`+2)

2 )whereas the spherical matrix

representations have dimension (2`+ 1)× (2`+ 1). Therefore, the matrixM−
is a Moore-

Penrose pseudoinverse such that the matrix product M−M yields the identity matrix of

dimension (2`+ 1)× (2`+ 1). The elements of M are given by [96]:

Ma,`m =


1√
2
(c(`,m, a) + c(`,−m, a)) m < 0

c(`, 0, a) m = 0

1√
−2

(c(`,m, a) − c(`,−m, a)) m > 0

(4.68)

with

c(`,m, a) =
1

2``!

√
(2ax)! (2ay)! (2az)!`!(`− |m|)!

(2`)!ax!ay!az!(`+ |m|)!

(`−|m|)/2∑
i=0

(
`

i

)(
i

j

)
(−1)i(2`− 2i)!

(`− |m|− 2i)!

·
j∑
k=0

(
j

k

)(
|m|

ax − 2k

)

·

{
(−1) (|m|−ax+2k)/2 m > 0

(−1)−(|m|−ax+2k)/2 m < 0
; j = (ax + ay − |m|) /2

(4.69)

Here, a = (ax, ay, az) is the angular momentum index of the Cartesian function and

the pair (`,m) the pointer to real spherical (harmonics) Gaussian functions. If j is not an
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integer,Ma,`m is zero. Furthermore, any term that includes the factorial of a negative

number is neglected. The elements of the back transformation matrixM−
are:

M−
`m,a =

∑
bx+by+bz=`

Sab ·Mb,`m (4.70)

with ` = ax + ay + az = bx + by + bz and

Sab =

[
(ax + bx)! (ay + by)! (az + bz)!

((ax + bx) /2)! ((ay + by) /2)! ((az + bz) /2)!

]
·
[
(2ax)! (2ay)! (2az)! (2bx)! (2by)! (2bz)!

ax!ay!az!bx!by!bz!

]−1/2
(4.71)

Here (ax + bx) /2, (ay + by) /2 and (az + bz) /2must be integers, otherwise Sab = 0. In

deMon2k these transformation matrices are built and stored for angular momentum up

to ` = 8. For higher angular momentum the matrix elements can be calculated on the fly.

In particular for d-type atomic orbitals the transformation matricesM and M−
are:

M =



0 0 −12 0
√
3
2

1 0 0 0 0

0 0 0 1 0

0 0 −12 0 −
√
3
2

0 1 0 0 0

0 0 1 0 0


, M− =



0 1 0 0 0 0

0 0 0 0 1 0

−13 0 0 −13 0 2
3

0 0 1 0 0 0
1√
3

0 0 − 1√
3
0 0


(4.72)

After obtaining the spherical representations matrices of the symmetry operations, we

use them in the usual reduction procedure to built a symmetrization matrixW for the

spherical basis. For the ammonia example the (5× 5)matrix representations F
sph

(R̂) are:

F(Ê) =


1 0 0 0 0

0 1 0 0 0

0 0 1 0 0

0 0 0 1 0

0 0 0 0 1

 , F(Ĉ3) =


−12 0 0 0 −

√
3
2

0 −12 0
√
3
2 0

0 0 1 0 0

0 −
√
3
2 0 −12 0

√
3
2 0 0 0 −12

 , (4.73)
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F(Ĉ23) =


−12 0 0 0

√
3
2

0 −12 0 −
√
3
2 0

0 0 1 0 0

0
√
3
2 0 −12 0

−
√
3
2 0 0 0 −12

 , F(σ̂v) =


−1 0 0 0 0

0 −1 0 0 0

0 0 1 0 0

0 0 0 1 0

0 0 0 0 1

 , (4.74)

F(σ̂ ′v) =



1
2 0 0 0

√
3
2

0 1
2 0 −

√
3
2 0

0 0 1 0 0

0 −
√
3
2 0 −12 0

√
3
2 0 0 0 −12

 , F(σ̂
′′
v ) =



1
2 0 0 0 −

√
3
2

0 1
2 0

√
3
2 0

0 0 1 0 0

0
√
3
2 0 −12 0

−
√
3
2 0 0 0 −12

 (4.75)

In general, for any symmetry operation of any point group the spherical d-type function

matrix representations are given in terms of the three-dimensional Cartesian representa-

tions by:

F(R̂)=



R12R21 + R11R22 R13R22 + R12R23
√
3R13R23 R13R21 + R11R23 R11R21 − R12R22

R22R31 + R21R32 R23R32 + R22R33
√
3R23R33 R23R31 + R21R33 R21R31 − R22R32

√
3R31R32

√
3R32R33

3R2
33
2

− 1
2

√
3R31R33

1
2

√
3
(
R231 − R

2
32

)
R12R31 + R11R32 R13R32 + R12R33

√
3R13R33 R13R31 + R11R33 R11R31 − R12R32

R11R12 − R21R22 R12R13 − R22R23
1
2

√
3
(
R213 − R

2
23

)
R11R13 − R21R23

1
2

(
R211−R212−R221+R222

)


(4.76)

Comparisonof the symmetry-adaptedd-typeCartesian atomic orbitals and the symmetry-

adapted d-type spherical atomic orbitals are shown in Figure 4.6. As this figure shows

the only difference is in the A1 irreducible representation. The SAOs of the irreducible

representation E are the same in Cartesian or spherical basis functions. As this discussion

showed, for the construction of the symmetrization matrices U for the basis or auxiliary

functions, we need the point group tables in order to define the projector and transfer

operators. Their implementation into deMon2k is described in the next chapter.
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Figure 4.6: Comparison of real symmetry-adapted atomic d-orbitals from Cartesian and spherical

basis functions.



5
P O I N T G RO U P R E P R E S E N TAT I O N S

5.1 Point group tables in deMon2k

The tables for the following point groups were included in deMon2k as part of the

development of this thesis: Ci, Cs, Cn, Cnv, Cnh, Dn, Dnd, Dnh, S4, S6, T , Td, Th, O,

Oh, I, Ih, C∞v andD∞h, with n = 2, ..., 6. Most of these tables were taken from the StoBe

code [97], which in turn took them from the literature [98]. Prior to implementation,

they were transformed into real form in order to avoid complex arithmetic. The point

group tables for I, Ih, C∞v and D∞h are generated in this thesis because they were not

available in StoBe. For these tables, the same literature, albeit in a newer edition [72],

was taken as reference. For the implementation in deMon2k, special care was taken to

align the molecule into the (standard) orientation used in these tables.

5.2 Construction of C∞v point group table cut outs

We now describe the construction of real irreducible representations for the point groups

C∞v in such a manner that they become finite and, therefore, can be computed. Our aim

is to build projector and transfer operators for the symmetry adaptation of the AO basis

and auxiliary functions. To this end, we need enough irreducible representations to span

completely the space of the basis functions. Take as an example the C∞v point group for

which the Cartesian tensor bases of the initial irreducible representation are given in

Table 5.1. As this table shows s-type basis functions with total angular momentum 0 only

project on to the Σ+(A1) irreducible representation. Furthermore, p-type functions with

75
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Rank of Cartesian tensor

C∞v 0 1 2 3

A1 (Σ
+) 1 z x2 + y2, z2

(
x2 + y2

)
z, z3

A2 (Σ
−)

E1(Π) (x, y) (zx, yz)
{
x
(
x2 + y2

)
, y
(
x2 + y2

)}
,
(
xz2, yz2

)
E2(∆)

(
xy, x2 − y2

) {
xyz, z

(
x2 − y2

)}
E3(Φ)

{
x
(
x2 − 3y2

)
, y
(
3x2 − y2

)}
Table 5.1: Symmetry-adapted Cartesian tensors of point group C∞v [72].

total angular momentum 1 project on to the one-dimensional irreducible representation

Σ+(A1) and the two-dimensional irreducible representation Π(E1). The corresponding

symmetry-adapted functions, in standard orientation, are pΣ
+

z and (px, py)
Π
. For the

d-type Cartesian function shell, we obtain as symmetry-adapted functions:

(dxx + dyy)
Σ+
, dΣ

+

zz , (dxz, dyz)
Π , (dxy, dxx − dyy)

∆
(5.1)

The shell of the Cartesian f-type functions will also project on to theΦ(E3) irreducible

representation. This indicates that the number of irreducible representations needed to

completely span the function space of the basis or auxiliary functions depends on the

maximum total angular momentum of the underlying function set. Note that this number

of necessary irreducible representations is the same for Cartesian and spherical Gaussian

type orbitals as well as for Hermite Gaussian type auxiliary functions. Therefore, if

the largest total angular momentum in the basis or auxiliary function set is ` = 1

only the irreducible representations Σ+
and Π are needed. Similarly, if the largest total

angular momentum in the function set under consideration is ` = 2 only the irreducible

representations Σ+
, Π and ∆ are needed. This can be straightforwardly generalized.

Therefore, taking Σ−
also into account the number of irreducible representations, NΓ ,

needed for the symmetry-adapted expansion of a basis or auxiliary function set with

total angular momentum ` is given by:

NΓ = 2+ ` (5.2)
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The next step is to generate the matrix representations for the symmetry operations

(rotations). The values of the determinants of these matrices are either +1 or −1. If the

determinant value is +1 we call the symmetry operation a proper rotation, if it is −1

we call it an improper rotation. For C∞v proper rotations refer to Ĉ rotations whereas

improper rotations refer to σ̂ reflections. The irreducible representations Σ+
and Σ−

are one-dimensional. For Σ+
all representations are +1 for proper rotations and −1 for

improper rotations, i.e. reflections. All following irreducible representations in C∞v are
two-dimensional. They can be most conveniently expressed by the following complex

form [72]:

χχEm(Ĉ(φ)) =

e−imφ 0

0 eimφ

 (5.3)

χχEm(σ̂(φ)) = (−1)m

 0 e−imφ

eimφ 0

 (5.4)

To ease the discussion, we switch to Mulliken notation that is more systematic but less

common in Chemistry, where the spectroscopic notation with greek letters is preferred.

To transform the complex two-dimensional irreducible representations of Eqs. (5.3) and

(5.4) into real form we employ the following symmetrization matrix [76]:

U =
1√
2

(
1 −i

1 i

)
(5.5)

Thus, we obtain the following real two-dimensional representations:

χχEm(Ĉ(φ)) =

cos(mφ) − sin(mφ)

sin(mφ) cos(mφ)

 (5.6)

χχEm(σ̂(φ)) = (−1)m

cos(mφ) sin(mφ)

sin(mφ) − cos(mφ)

 (5.7)
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These representations are defined for any angleφ since the point group is infinite. As our

purpose is to find a finite cut out of this infinite point group, we need to define a finite set

of angles {φn} for each symmetry operation. These angles will depend on the number,

h, of symmetry operations considered, and the symmetry operation index, n, that

enumerates the proper rotations and reflections taking the values n = 1, 2, ..., h/2. For

elucidating this dependency, we take the example of p-type functions. We demand that

the px and py functions remain the same or transform into each other under application

of any symmetry operation. For this we need symmetry operations that transform the

functions as follows

R̂px = ±px

or R̂px = ±py
(5.8)

These equations are accompanied by analogous rotations for the py function. The proper

rotations that accomplish Eq. (5.8) are the ones that divide the unit circle in quadrants,

i.e. 2π(n− 1)/4with n = 1, 2, 3, 4. These 4 proper rotations are accompanied in our C∞v
cut outs by four improper rotations, i.e. reflections. Therefore, the number of symmetry

operations and, thus, the group order is h = 8. Knowledge of the rotation angles allow

us to write the proper rotations in standard notation:

Ĉ

(
2π(n− 1)

h/2

)
= Ĉn−1

h/2
(5.9)

Thus, the 8 symmetry operations we have are Ê = Ĉ04, Ĉ4, Ĉ
2
4, Ĉ

3
4, σ̂v, σ̂

2
v, σ̂

3
v, and

σ̂4v. For convenience we have enumerated the reflection operations σ̂nv instead of using

primes. This defines all symmetry operations in our finite dimension C∞v point group
cut out needed for function sets that contain up to p-type functions. Thus, we have
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defined a set of angles to insert in Eq. (5.6) and Eq. (5.7). These angles are given in general

by:

φn =
2π(n− 1)

h/2
with n = 1, 2, ..., h/2 (5.10)

Therefore we can rewrite Eq. (5.6) and (5.7) as:

χχEm(Ĉn−1
h/2

) =

cos(mφn) − sin(mφn)

sin(mφn) cos(mφn)

 (5.11)

χχEm(σ̂nv ) = (−1)m

cos(mφn) sin(mφn)

sin(mφn) − cos(mφn)

 (5.12)

The finite part of the infinite C∞v point group given by the symmetry operations

{Ê, Ĉ4, Ĉ
2
4, Ĉ

3
4, σ̂v, σ̂

2
v, σ̂

3
v, σ̂

4
v} we just defined, is sufficient to describe the symmetry of

s- and p-type functions, i.e. to built corresponding projection operators that generate

symmetry-adapted s- and p-type functions for the irreducible representations under

consideration. The generated point group table is depicted in Table 5.2.

C∞v Ê Ĉ4 Ĉ24 Ĉ34 σ̂v σ̂2v σ̂3v σ̂4v

A1(Σ
+) 1 1 1 1 1 1 1 1

A2(Σ
−) 1 1 1 1 −1 −1 −1 −1

E1(Π)
(
1 0
0 1

) (
0 −1
1 0

) (
−1 0
0 −1

) (
0 1
−1 0

) (
−1 0
0 1

) (
0 −1
−1 0

) (
1 0
0 −1

) (
0 1
1 0

)
Table 5.2: Generated C∞v point group table cut out for angular momentum up to ` = 1.

The number of operations and therefore the angles φn will depend on the total

angular momentum of the basis functions. To elucidate this dependency we take the

example of the d-type functions depicted in Figure 5.1. We request that the functions

d1 = 1/2(dxx − dyy) and d2 = dxy remain the same or transform into each other under
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Figure 5.1: Hermite Gaussian functions 1/2(dxx − dyy) at left and dxy at right. These functions

transform into each other according to the ∆ irreducible representation of the C∞v
point group.

application of any symmetry operation. For this we need rotations that transform the

functions as follows,

R̂d1 = ±d1

or R̂d1 = ±d2
(5.13)

and similar for the d2 functions. The proper rotations that accomplish Eq. (5.13) are

the ones that divide the unit circle in octants, i.e. 2π(n− 1)/8with n = 1, 2, ..., 8. In the

same way there are eight reflections that accomplish Eq. (5.13) and, therefore, we find as

group order h = 16. The corresponding rotation angles are again given by Eq. (5.10). In

order to be able to compare the differences between the different cut outs of C∞v here
presented, the generated point group table cut out for angular momentum up to d-type

functions is shown in Tables 5.3 and 5.4.

In conclusion, we find that the group order for finite dimension cut outs of C∞v is
given in general by:

h = 8` (5.14)

Here `denotes the largest total angularmomentumof the function set under consideration.

By construction, the here derived finite-dimensional cut outs of the infinite point group
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C∞v Ê Ĉ8 Ĉ28 Ĉ38 Ĉ48 Ĉ58 Ĉ68 Ĉ78

A1 1 1 1 1 1 1 1 1

A2 1 1 1 1 1 1 1 1

E1(Π)
(
1 0
0 1

) (
q −q
q q

) (
0 −1
1 0

) (−q −q
q −q

) (
−1 0
0 −1

) (−q q
−q −q

) (
0 1
−1 0

) ( q q
−q q

)
E2(∆)

(
1 0
0 1

) (
0 −1
1 0

) (
−1 0
0 −1

) (
0 1
−1 0

) (
1 0
0 1

) (
0 −1
1 0

) (
−1 0
0 −1

) (
0 1
−1 0

)
q = 1√

2

Table 5.3: Generated C∞v point group table cut out for angular momentum up to ` = 2 (part 1).

C∞v σ̂v σ̂2v σ̂3v σ̂4v σ̂5v σ̂6v σ̂7v σ̂8v

A1 1 1 1 1 1 1 1 1

A2 −1 −1 −1 −1 −1 −1 −1 −1

E1(Π)
(
−1 0
0 1

) (−q −q
−q q

) (
0 −1
−1 0

) ( q −q
−q −q

) (
1 0
0 −1

) ( q q
q −q

) (
0 1
1 0

) (
−q q
q q

)
E2(∆)

(
1 0
0 −1

) (
0 1
1 0

) (
−1 0
0 1

) (
0 −1
−1 0

) (
1 0
0 −1

) (
0 1
1 0

) (
−1 0
0 1

) (
0 −1
−1 0

)
q = 1√

2

Table 5.4: Generated C∞v point group table cut out for angular momentum up to ` = 2 (part 2).

C∞v are not complete. As a result, the well-known relation between dimensionality of

irreducible representations and group order,

∑
Γ

d2Γ = h (5.15)

is modified for the finite dimensional cut outs to:

∑
Γ

2d2Γ − 4 = h (5.16)

Also, in our finite-dimensional cut outs, the number of classes [75] does not coincide

with the number of irreducible representations. For example, the symmetry operations

of Table 5.2 are the same of the C4v point group, nevertheless, in our cut out table we do

not have the B1 and B2 irreducible representations found in the C4v point group table

[72]. This represents no problem since the B irreducible representations are absent in the

complete C∞v point group, and, therefore, we do not need them. Also, we can compare
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the C8v point group table with the C∞v cut out table we built for d-type functions

(shown in Tables 5.3 and 5.3). The C8v and our cut out tables have the same symmetry

operations. We observed that in our cut out, not only the B irreducible representations

are absent but also a double degenerated irreducible representation, E3, which can

characterize Cartesian tensors of rank 3, i.e., f-type functions. This suggest that we

are taking more symmetry operations than the minimum needed for the symmetry

adaptation of functions. Nevertheless, this causes no problem in practice. Finally, we

have to consider an additional circumstance. The electron density is given by the squares

of MOs which at the end are given by the squares of SAOs. Therefore, we will have

irreducible representation products of the form Γ⊗Γ . For the two-dimensional irreducible

representations ofC∞vwe see from the point group tables thatEm⊗Em = Σ+⊕Σ−⊕E2m.

In order to span the space for such direct products we need to double its dimension.

Therefore, we set in our implementation:

NΓ = 2+ 2` (5.17)

h = 16 ` (5.18)

Again ` denotes in Eq. (5.17) and (5.18) the maximum total angular momentum of the

underlying function set.

5.3 Generation of I point group table in real form

Another point group table that was not available in the StoBe code was the one for the

icosahedral group I. In the literature, it is built from the generatormatrices shown in Table

5.5 given by Altmann and Herzig [72]. The matrix multiplication of the generators yields

all symmetry operation matrix representations for the irreducible representations of the

point group I. The expressions of the symmetry operations in terms of the generators are
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I Ĉ+
51 Ĉ+

31 Ĉ2a

A 1 1 1

T1
1
2

 g− ı̄ iḡ+

ı̄ g+ ḡ−

iḡ+ ḡ− 1


 0 0 ı̄

ı̄ 0 0

0 1 0


 1 0 0

0 1 0

0 0 1


T2

1
2

 g+ ı̄ ig−

ı̄ g− g+

ig− g+ 1


 0 0 ı̄

ı̄ 0 0

0 1 0


 1 0 0

0 1 0

0 0 1



F 1
4


1 t it it

t 1 3i ı̄

it 3i 1 1

it ı̄ 1 3



1 0 0 0

0 0 0 ı̄

0 ı̄ 0 0

0 0 1 0



1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1



H 1
2


0 λ2ω∗ λ̄ iλω̄∗ iλω̄

(λ∗)2ω 0 λ̄∗ iλ∗ω̄ iλ∗ω̄∗

λ̄∗ λ̄ 1 0 i

iλ∗ω̄ iλω̄∗ 0 1 1

iλ∗ω̄∗ iλω̄ i 1 0




ω 0 0 0 0

0 ω∗ 0 0 0

0 0 0 0 ı̄

0 0 ı̄ 0 0

0 0 0 1 0




1 0 0 0 0

0 1 0 0 0

0 0 1 0 0

0 0 0 1 0

0 0 0 0 1



λ = exp

(
i arctan

(√
5/3
))
, g± =

(√
5± 1

)
/2, t =

√
5, ω = exp(2π i/3), ı̄ = −i

Table 5.5: Generators for the icosahedral point group as given in [72]. Letters and numbers with

a bar denote their negative values.

shown in Table 5.6. As these generators are in complex form, the challenge was to find a

similarity transformation that transforms the irreducible representations into real form:

UΓ
†χχΓ

Complex
(R̂)UΓ = χχΓ

Real
(R̂) ∀ R̂, Γ (5.19)

The adjoint superscript † denotes a transposed, complex conjugated matrix. The UΓ

transfomation matrices I derived are shown in Fig. 5.2. Using these unitary matrices

the generators become real. The orthonormal matrices of the real generators are

explicitly shown in Table 5.7. The matrix UT1 was not needed since the real generators

for the irreducible representation T1 are also given in the tables [72] (see also Table 5.7).

Furthermore, the T1 irreducible representation corresponds to the transformation of the

Cartesian basis x, y, z. It is used to align the molecule into standard orientation and
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I I

E Ĉ2aĈ2a Ĉ+
36 Ĉ+

31Ĉ2aĈ
+
51Ĉ

+
31Ĉ2a

Ĉ+
51 Ĉ+

51 Ĉ+
37 Ĉ2aĈ

+
31Ĉ2aĈ

+
51

Ĉ+
52 Ĉ+

51Ĉ
+
51Ĉ2aĈ

+
31 Ĉ+

38 Ĉ2aĈ
+
51Ĉ2aĈ

+
31

Ĉ+
53 Ĉ+

51Ĉ2aĈ
+
31Ĉ

+
51 Ĉ+

39 Ĉ+
31Ĉ

+
51Ĉ2aĈ

+
31

Ĉ+
54 Ĉ+
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31Ĉ2aĈ
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+
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33 Ĉ+
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31Ĉ2a

Ĉ−
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+
31 Ĉ−
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31Ĉ2a

Ĉ−
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Ĉ−
56 Ĉ+

51Ĉ2aĈ
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51Ĉ
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+
51 Ĉ−
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+
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+
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+
31Ĉ
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+
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+
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+
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+
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+
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Ĉ2−51 Ĉ+
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+
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+
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+
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+
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+
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+
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+
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51Ĉ
+
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+
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+
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+
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+
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+
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+
31Ĉ2a

Ĉ+
31 Ĉ+
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+
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+
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Ĉ+
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31Ĉ2a Ĉ2l Ĉ2aĈ
+
51Ĉ

+
51Ĉ

+
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Ĉ+
33 Ĉ2aĈ

+
31Ĉ2a Ĉ2m Ĉ2aĈ

+
31Ĉ

+
51Ĉ2a

Ĉ+
34 Ĉ2aĈ

+
31 Ĉ2n Ĉ+

31Ĉ
+
31Ĉ2aĈ

+
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Ĉ+
35 Ĉ+
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+
51 Ĉ2o Ĉ+

31Ĉ
+
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+
51Ĉ2a

Table 5.6: Symmetry operations of the I point group in terms of its generators as given in [72].

it provides the matrix representations used for building the symmetrization matrices

for atom permutations, V, and origin-centered functions, W, given in the previous

chapter. Thus, with the real generators at hand, we can build any symmetry operation

matrix representation for any of the irreducible representations. As an example, take the

symmetry operation Ĉ+
52 which is given in terms of the generators (see Table 5.6) as:

Ĉ+
52 = Ĉ

+
51Ĉ

+
51Ĉ2aĈ

+
31 (5.20)
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Figure 5.2: Transfomation matrices for the construction of real generators for the icosahedral

point group. See text for details.

The corresponding real matrix representation for the F irreducible representation is

obtained with the real generators from Table 5.7 by:

χχF(Ĉ+
52) = χχF(Ĉ+

51)χχ
F(Ĉ+

51)χχ
F(Ĉ2a)χχ
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2 0 1

4

(
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√
5
)

1
2 −12

1
2 −12


(5.21)

The validity of the generated I point group table was confirmed by calculating the

multiplication table of the point group [99] and consecutive checking of its properties

(rearrangement theorem, criteria of irreducibility, orthonormality, group order and

number of irreducible representations relation). The building of the multiplication table

of the group and its validation were programmed in the software Maple [100]. The

generated real point group table was directly exported to Fortran code in order to include

it into deMon2k.
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5.4 Direct products of groups

We now turn to the construction of point group tables through direct products of groups.

In our implementation the following direct products of groups are implemented:

D∞h = C∞v ⊗ Ci (5.22)

I∞h = I⊗ Ci (5.23)

To proceed, we first review some general definitions and concepts for direct products of

groups [101]. To this end, we define the group S of order hS with elements (symmetry

operations) ŝ1, ŝ2, . . . ŝhS as:

S = {ŝ1, ŝ2, . . . ŝhS}

In the same way we define the group T as:

T =
{
t̂1, t̂2, . . . t̂hT

}
If the intersection of these groups is only the identity operation,

S ∩ T = Ê (5.24)

then the elements of Swill commute with the elements of T

ŝit̂j = t̂jŝi ∀ i = 1, ..., hS ∧ j = 1, ..., hT (5.25)

Under this condition we can define the group G as the direct product of the groups S

and T :

G = S⊗ T (5.26)
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The so-defined group G contains as elements all possible pairs of the elements from S

and T . Thus, the elements of G are given by:

G = {ĝ1 , ĝ2 , . . ., ĝhS , ĝhS+1, ĝhS+2, . . ., ĝhShT }

= {ŝ1t̂1, ŝ2t̂1, . . ., ŝhS t̂1, ŝ1t̂2 , ŝ2t̂2 , . . ., ŝhS t̂hT } (5.27)

From this definition of G follows that its group order is just the product of the group

orders of S and T :

hG = hS · hT (5.28)

The construction of G as a direct product of the groups S and T also permits to calculate

its irreducible representations, Γi, as direct products of the irreducible representation

matrices of S and T . To do so, we denote the irreducible representations of S and T as

{Σ1, Σ2, . . . , ΣkS} (5.29)

and

{Θ1, Θ2, . . . , ΘkT } (5.30)

respectively. Here kS and kT denote the number of irreducible representations in the

groups S and T . An irreducible representation of the direct product group G is then

given by:

Γi = Σj ⊗Θk ∀ j = 1, 2, .., kS ∧ k = 1, 2, .., kT (5.31)

Thus, the irreducible representations of G are given by:

{Γ } = {Γ1 , Γ2 , . . . , ΓkS , ΓkS+1 , ΓkS+2 , . . . , ΓkSkT }

{Γ } = {Σ1 ⊗Θ1 , Σ2 ⊗Θ1 , . . . , ΣkS ⊗Θ1 , Σ1 ⊗Θ2 , Σ2 ⊗Θ2 , . . . , ΣkS ⊗ΘkT }
(5.32)
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From this definition follows immediately that the number of irreducible representations

in G, kG, is just the product of the numbers of irreducible representations in S and T :

kG = kS · kT (5.33)

For the explicit calculation of the direct product in Eq. (5.31) we recall that the irreducible

representations of S and T are in general expressed by irreducible representationmatrices

with elements χΣσσ ′(ŝ) and χ
Θ
θθ ′(t̂). Thus, the direct product in Eq. (5.31) is calculated as

a direct product of matrices (see appendix A) by:

χχΓ (ĝ) = χχΣ(ŝ)⊗ χχΘ(t̂) (5.34)

The dimension of χχΓ (ĝ) is given by:

dΓ = dΣ · dΘ (5.35)

As this discussion shows, the point group table of G can be straightforwardly built from

the point group tables of S and T . In our implementation we sort the G point group table

according to Eqs. (5.27) and (5.32).

The here outlined constructions of direct products of groups and corresponding

irreducible representations were implemented in a general form through the subroutine

protab.f in deMon2k. In this thesis, they are used for the on-the-fly construction of the

D∞h and Ih point groups. Extension to other direct products is straightforward.

5.4.1 Construction of D∞h = C∞v ⊗ Ci point group table cut outs

In order to illustrate the direct product generation of D∞h = C∞v ⊗ Ci, we use the C∞v
cut out from Table 5.2 and the Ci point group table given in Table 5.8.
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Ci Ê î

Ag 1 1

Au 1 −1

Table 5.8: Ci point group table.

The resulting D∞h finite point group table cut out has the generic structure shown in

Table 5.9. In this table, Γ denotes any of the irreducible representations of C∞v and R̂
any of the symmetry operations of C∞v. The Tables 5.10 and 5.11 show the explicit form

of the multiplications based on Table 5.9. The resulting D∞h point group cut out for

angular momentum up to ` = 1 is given in Table 5.12.

D∞h R̂ Ê R̂ î

Γ ⊗Ag χχΓ (R̂)⊗ 1 χχΓ (R̂)⊗ 1

Γ ⊗Au χχΓ (R̂)⊗ 1 χχΓ (R̂)⊗ (−1)

Table 5.9: Generic D∞h point group table form in terms of direct products of the irreducible

representations of the point groups C∞v and Ci. See text for further details.
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Ĉ
′ 2

Ĉ
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5.4.2 Construction of Ih = I⊗ Ci

The other point group in our deMon2k implementation that is generated on-the-fly as a

direct product is Ih = I⊗ Ci. Table 5.13 lists the generic structure of the generated Ih

point group table. In this table Γ denotes any of the irreducible representations of I and

R̂ denotes any of the symmetry operations of I.

Ih R̂Ê R̂î

Γ ⊗Ag χχΓ (R̂)⊗ 1 χχΓ (R̂)⊗ 1

Γ ⊗Au χχΓ (R̂)⊗ 1 χχΓ (R̂)⊗ (−1)

Table 5.13: Generic structure of Ih point group table.

Take as example the matrix representation of the symmetry operation Ĉ+
52î in the

irreducible representation Fu = F⊗Au. It is given by:

χχFu(Ĉ+
52î) = χχ

F(Ĉ+
52)⊗ χχ

Au (̂i)

χχFu(Ĉ+
52î) = χχ

F(Ĉ+
52)⊗ (−1) (5.36)

This is just the negative of Eq. (5.21). As can be seen from Table 5.13 the only matrix

representations that are different from the ones in the I point group table are the

Γu = Γ ⊗ Au irreducible representations. An extract of the point group table of Ih is

shown in Table 5.14. In this table the following notations are used:

Ŝ−10,2 = Ĉ
+
52î, Ŝ−6,2 = Ĉ

+
32î, σ̂va = Ĉ2aî (5.37)

The complete list of the 120 symmetry operations of the Ih point group is given in Figure

5.3. In this list, the second half of the symmetry operations are the result of R̂î, where R̂

denotes any of the symmetry operations of the first half of the list.
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Ih ... Ĉ+
52 Ĉ+

32 Ĉ2a Ŝ3−10,2 Ŝ−6,2 σ̂a ...

Ag χχA(Ĉ+
52) χχA(Ĉ+

32) χχA(Ĉ2a) χχA(Ĉ+
52) χχA(Ĉ+

32) χχA(Ĉ2a)

T1g χχT1(Ĉ+
52) χχT1(Ĉ+

32) χχT1(Ĉ2a) χχT1(Ĉ+
52) χχT1(Ĉ+

32) χχT1(Ĉ2a)

T2g χχT2(Ĉ+
52) χχT2(Ĉ+

32) χχT2(Ĉ2a) χχT2(Ĉ+
52) χχT2(Ĉ+

32) χχT2(Ĉ2a)

Fg χχF(Ĉ+
52) χχF(Ĉ+

32) χχF(Ĉ2a) χχF(Ĉ+
52) χχF(Ĉ+

32) χχF(Ĉ2a)

Hg χχH(Ĉ+
52) χχH(Ĉ+

32) χχH(Ĉ2a) χχH(Ĉ+
52) χχH(Ĉ+

32) χχH(Ĉ2a)

Au χχA(Ĉ+
52) χχA(Ĉ+

32) χχA(Ĉ2a) −χχA(Ĉ+
52) −χχA(Ĉ+

32) −χχA(Ĉ2a)

T1u χχT1(Ĉ+
52) χχT1(Ĉ+

32) χχT1(Ĉ2a) −χχT1(Ĉ+
52) −χχT1(Ĉ+

32) −χχT1(Ĉ2a)

T2u χχT2(Ĉ+
52) χχT2(Ĉ+

32) χχT2(Ĉ2a) −χχT2(Ĉ+
52) −χχT2(Ĉ+

32) −χχT2(Ĉ2a)

Fu χχF(Ĉ+
52) χχF(Ĉ+

32) χχF(Ĉ2a) −χχF(Ĉ+
52) −χχF(Ĉ+

32) −χχF(Ĉ2a)

Hu χχH(Ĉ+
52) χχH(Ĉ+

32) χχH(Ĉ2a) −χχH(Ĉ+
52) −χχH(Ĉ+

32) −χχH(Ĉ2a)

Table 5.14: Extract of the Ih point group table in terms of the generators of the I point group.
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−
51, Ĉ
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−
53, Ĉ
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2+
56 , Ĉ
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+
34, Ĉ
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−
68, Ŝ
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+
69, Ŝ
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.

Figure 5.3: List of symmetry operations in the Ih point group as given in [72].
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The validation of our symmetry-adapted SCF and density-fitting implementation con-

sisted of four steps. First, we preparedmolecular test inputs for all point groups accessible

to the implementation presented in this thesis. In the next step, we validated that the

U symmetrization matrices for the AO basis and the auxiliary functions transform the

overlap and Coulomb matrix into block-diagonal form. This validation was performed

for all implemented point groups varying the angular momentum of the underlying

function sets. The next step was to compare total energies from symmetry-adapted ADFT

Kohn-Sham and Hartree-Fock calculations with their unconstrained counterparts. For

these calculations, the default settings of deMon2k were used. In the last step, the same

is done for the symmetry-adapted density fitting for a subset of molecules increasing

the angular momentum of the auxiliary functions and varying corresponding fitting

thresholds.

6.1 Molecular test set

Molecules, 3Dmodels, tables and geometric examples for the here discussed point groups

can be found in [102] and [103]. Most of the validation test set molecules were taken from

there. The selected molecules are listed in Table 6.1. All molecular geometries except

Au72 were optimized with the PBE exchange-correlation functional [24] in combination

with the DZVP [104] basis and GEN-A2 [105] auxiliary function sets. The optimized

geometry of Au72 was taken from [106]. After the molecular structure optimizations,

the molecular geometries were symmetrized either with SYMMOL [107] or VMD [108].

Next, structure similarity analyses between the symmetrized and optimized structures

95
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Point group Formula Name

1 C2 H2O2 Hydrogen peroxide [102]

2 C2v H2O Water [102]

3 C2h N2F2 trans-Diflurodiazene [102]

4 C3 P(C6H5)3 Triphenylphosphine [109]

5 C3v NH3 Ammonia [102]

6 C3h B(OH)3 Boric acid [110]

7 C4 CuC8H16N4(CH3)4
2+

Tetramethyl-1,4,7,10-tetraazacyclododecane copper(II) dication [111]

8 C4v BrF5 Bromine pentafluoride [112, 113]

9 C4h CuN12

2-
Tetraazidocopper(II) dianion [114]

10 C5 C20H5Cl5 Pentachlorocorannulene [115]

11 C5v NiNOC5(CH3)5 Pentamethylcyclopentadienyl nickel nitrosyl [116]

12 C5h C5(CH3)5
-

Pentamethylcyclopentadienyl anion [117]

13 C6 (C6O2H7(OH)3)6 α-Cyclodextrin [118]

14 C6v B7

+
Boronheptamer cation cluster [119]

15 C6h C6(N(CH3)2)6 Hexakis(dimethylamino)benzene [120]

16 D2 C10H16 Twistane [102]

17 D2d C3H4 Allene [102]

18 D2h N2O4 Dinitrogen tetroxide [102]

19 D3 Fe(C2O4)3
3-

Tris(oxalato)iron(III) trianion [121]

20 D3d C2H6 Ethane [102]

21 D3h C3H6 Cyclopropane [102]

22 D4 C8H16S4 1,4,7,10-Tetrathiacyclododecane [122]

23 D4d S8 Octasulfur [102]

24 D4h BrF4
-

Tetrafluorobromate anion [123]

25 D5 YbI2(OC4H8)5
+

trans-Diiodopentakis(tetrahydrofuran)ytterbium(III) cation [124]

26 D5d Fe(C5H5)2 Ferrocene [102]

27 D5h C10 Cyclo[10]carbon cluster [125]

28 D6 C6N6O12 Hexanitrobenzene [126]

29 D6d Au26 D6d [26]Gold cluster [127]

30 D6h C6H6 Benzene [102]

31 C∞v HCN Hydrogen cyanide [102]

32 D∞h H2 Hydrogen

34 Cs C2H2BrCl cis-1-Bromo-2-chloroethene [102]

33 Ci C2H2Br2Cl2 1,2-Dibromo-1,2-dichloroethane [102]

35 S4 C8H4(CH3)4 1,3,5,7-Tetramethylcycloocta-cis,cis,cis-1,3,5,7-tetraene [128]

36 S6 (C2H4O)6 1,4,7,10,13,16-hexaoxacyclooctadecane [129]

37 T C60F36 [36]Fluorinated [60]fullerene [130, 131]

38 Td CH4 Methane [102]

39 Th Th(NO3)6
2-

Hexanitratothorate(IV) dianion [132]

40 O (NC3H6)8 Dodeka(ethylene)octamine [133]

41 Oh SF6 Sulfur hexafluoride [102]

42 I Au72 [72]Gold fullerene [106]

43 Ih C20H20 Dodecahedrane [134]

Table 6.1: List of test molecules.
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C2 H2O2 C2v H2O C2h N2F2

C3 P(C6H5)3 C3v NH3 C3h B(OH)3

C4 CuC8H16N4(CH3)4
2+ C4v BrF5 C4h CuN12

2-

C5 C20H5Cl5 C5v NiNOC5(CH3)5 C5h C5(CH3)5
-

C6 (C6O2H7(OH)3)6 C6v B7

+ C6h C6(N(CH3)2)6

Figure 6.1: Test molecules with symmetry Cn, Cnv and Cnh with n = 2,...,6.
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D2 C10H16 D2d C3H4 D2h N2O4

D3 Fe(C2O4)3
3- D3d C2H6 D3h C3H6

D4 C8H16S4 D4d S8 D4h BrF4
-

D5 YbI2(OC4H8)5
+ D5d Fe(C5H5)2 D5h C10

D6 C6N6O12 D6d Au26 D6h C6H6

Figure 6.2: Test molecules with symmetry Dn, Dnd and Dnh with n = 2,...,6.



6.1 Molecular test set 99

C∞v HCN

D∞h H2

Cs C2H2BrCl Ci C2H2Br2Cl2

S4 C8H4(CH3)4 S6 (C2H4O)6 T C60F36

Td CH4 Th Th(NO3)6
2- O (NC3H6)8

Oh SF6 I Au72 Ih C20H20

Figure 6.3: Test molecules with symmetry C∞v, D∞h, Ci, Cs, S4, S6, T , Td, Th, O, Oh, I and Ih.
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were performed. The resulting similarity index [135] was in all cases larger than 0.99,

which indicates an almost perfect match between the two structures. The so-obtained

molecular structures are shown in Figures 6.1, 6.2 and 6.3.

6.2 Blocking of overlap and Coulomb matrices

As the unit and Coulomb operators are totally symmetric, their symmetry-adapted

matrix representation must be in block-diagonal form. To probe these block-diagonal

structures of the overlap and Coulomb matrix, we use basis and auxiliary functions with

angular momentum up to 6, i.e. i-type functions. This limit was chosen because it covers

all basis and auxiliary function sets used in this thesis. We emphasize that it does not

represent a physical limit for the here presented implementation in deMon2k. For the

validation of the block-diagonal form of the overlap matrix, we also employed Cartesian

and spherical basis functions. For these tests, we prepared a custom basis set that has

only one shell for each angular momentum with diffuse functions in such a way that

the overlap matrix remains dense in the original AO basis. For the auxiliary functions,

we used the GEN-A2** auxiliary function set [136] together with the custom basis set

just described. This generates auxiliary functions from s- to i-type and a dense Coulomb

matrix in the original auxiliary function representation. We calculated the matrices S
Cart

,

S
Sph

and G in the original representation as well as the corresponding symmetrization

matricesU
Cart

,U
Sph

andUaux. These matrices were exported in the matrix market format

[137]. Afterwards, the relevant matrix multiplications were performed with the software

Mathematica [138]. After obtaining the symmetry-adapted representations of the overlap

and Coulomb matrices, we observed that all matrix elements outside the diagonal blocks

of the irreducible representations are in absolute below 10−6 for all tests. Figure 6.4 shows

the largest absolute matrix elements out of the diagonal blocks for all test molecules

listed in Table 6.1. According to this figure, all outer block matrix elements are in absolute

below 10−6, which is the default integral threshold in deMon2k. Therefore, we conclude
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from these results that the newly implemented construction of the symmetrization

matrices is correct.

Figure 6.4: Largest absolute values of outer block matrix elements for the symmetry-adapted

Cartesian and spherical overlap (triangles) and Coulomb (diamonds) matrices. See

text for further details.

6.3 Symmetry-adapted DF-DFT and ADFT SCF calculations

After the construction of the symmetrization matrices has been successfully validated,

we now turn to symmetry-adapted SCF calculations. To this end, we performed Hartree-

Fock, DF-DFT and ADFT single-point energy calculations employing symmetry-adapted

Hartree-Fock or Kohn-Sham matrices. For the validation, we calculated the differences

of converged SCF energies from symmetry-adapted and unconstrained SCF runs for all

molecules from Table 6.1 as:

∆E ≡ ESym
SCF

− E
SCF

(6.1)
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Figure 6.5: Single-point energy differences between symmetry-adapted DF-DFT (empty symbols)

and ADFT (filled symbols) SCF calculations and their unconstrained counterparts.

The DZVP/GEN-A2 basis and auxiliary function sets were used. See text for further

details.

These calculations were performed with the DZVP basis and GEN-A2 auxiliary function

set [104, 105]. Figure 6.5 depicts the energy differences for Hartree-Fock (Fock), using the

variational fitting of Fock exchange [139], the local LDA with the Dirac exchange [16]

and VWN [17] correlation functional, the GGA [18, 19] in form of the BLYP [20–23] and

PBE [24] functionals, and the global PBE0 [26, 27] hybrid functional. As Figure 6.5 shows

|∆E| is always below 0.1 kcal/mol. Furthermore, note that |∆E| for the Hartree-Fock

calculations, which employ totally symmetric operators by construction, for the set of

molecules tested, the value is smaller than 0.06 kcal/mol. This value marks the here

used default SCF energy convergence threshold of 10−5 a.u. in deMon2k. Because the

corresponding deviations for the studied density functionals are usually smaller or

only insignificantly larger than this threshold, we conclude that symmetry breaking in

the SCF due to the approximate nature of the exchange-correlation functionals or their

unconstrained numerical integration can be neglected in symmetry-adapted DF-DFT

and ADFT SCF calculations.
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Figure 6.6: Test set of molecules for calculations with the cc-pVTZ basis set.

Aux. set PG System Fock VWN BLYP PBE PBE0 LCPBE HSE06

GEN-A2 C∞v HCN 0.000 0.000 0.000 0.000 0.000 0.000 0.000

C2v H2O 0.000 0.000 0.000 0.000 0.000 0.000 0.000

C3v NH3 0.000 0.000 0.000 0.000 0.000 0.000 0.000

Cs C2H2ClBr 0.109 0.000 0.000 0.000 -0.017 0.000 -0.016

D5d Fe(C5H5)2 0.014 -0.001 -0.001 -0.001 -0.002 -0.001 0.000

D5h C10 0.011 0.000 0.000 0.000 -0.006 0.000 -0.006

D6h C6H6 0.012 0.000 0.000 0.000 0.002 0.000 0.002

Oh SF6 0.010 0.000 0.000 0.000 0.115 0.000 0.047

Td CH4 0.000 0.000 0.000 0.000 0.000 0.000 0.000

Ih C20H20 0.000 0.000 0.000 0.000 0.000 0.000 0.000

GEN-A2* C∞v HCN 0.000 0.000 0.000 0.000 0.000 0.000 0.000

C2v H2O 0.000 0.000 0.000 0.000 0.000 0.000 0.000

C3v NH3 0.000 0.000 0.000 0.000 0.000 0.000 0.000

Cs C2H2ClBr -0.038 0.000 0.000 0.000 0.006 0.000 0.004

D5d Fe(C5H5)2 -0.005 -0.001 -0.001 -0.001 0.000 0.000 -0.001

D5h C10 -0.008 0.000 0.000 0.000 -0.003 0.000 -0.003

D6h C6H6 0.002 0.000 0.000 0.000 0.001 0.000 0.001

Oh SF6 0.000 0.000 0.000 0.000 0.046 0.000 -0.048

Td CH4 0.000 0.000 0.000 0.000 0.000 0.000 0.000

Ih C20H20 0.000 0.000 0.000 0.000 0.000 0.000 0.001

Table 6.2: Single point energy differences [kcal/mol] between symmetry-adapted ADFT and

unconstrained SCF calculations with the cc-pVTZ basis set. See text for further details.
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In order to investigate the influence of the basis and auxiliary function sets on these

results, we performed the same validation for ADFT albeit with a smaller test set depicted

in Figure 6.6, with the cc-pVTZ basis [140, 141] in combination with the GEN-A2 and

GEN-A2* auxiliary function sets. The corresponding energy differences according to

Eq. (6.1) are listed in Table 6.2. To this table we also added the recently implemented

variational fitted range-separated LCPBE [24, 142] and HSE06 [143] hybrid functionals.

As Table 6.2 shows the change of basis and auxiliary function set has no significant effect

on the here discussed energy differences. Therefore, we conclude that symmetry-adapted

DF-DFT and ADFT SCF calculations yield converged energies that are indistinguishable,

within the SCF convergence threshold, from their unconstrained counterparts.

In order to investigate the effect of symmetry breaking in more detail, we calculated

nitric oxide, NO, in C∞v symmetry employing PBE/DZVP/GEN-A2* level of theory.

Due to the odd number of electrons in this system the NO doublet ground state possesses

one unpaired electron in a doubly degenerate π MO (see Figure 6.7). Therefore, a

symmetry-adapted description of NO with only one Slater determinant is impossible.

This is also seen by the corresponding density contribution from the single occupied

πMO , given by π× π = Σ+ + Σ− + ∆, which yields an overall non-totally-symmetric

density. In Table 6.3 the MO energies from a symmetry-adapted Kohn-Sham calculation

(Sym.) are compared with those from a symmetry-unconstrained reference SCF (Ref.).

The symmetry breaking is clearly observable from the symmetry assignment of the

MOs in the symmetry-adapted Kohn-Sham calculation. It is significantly stronger in the

β than in the α spin manifold. This is surprising because the symmetry is broken by

the occupation of the α spin manifold. The converged (unrestricted Kohn-Sham) SCF

energy difference between these two calculations is only 0.3 kcal/mol. This shows that

the here presented symmetry-adapted SCF implementation permits the calculation and

identification of symmetry-broken SCF solutions. For comparison, we also list in Table

6.3 the results from a Kohn-Sham calculation with fractional occupation (Smear) of the

highest occupied π MO. In the corresponding eigenvalue spectrum, no symmetry
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Figure 6.7: Last occupied molecular orbitals of NO corresponding to the symmetry-adapted

calculation in Table 6.3. Only αMOs are shown.

Sym. Ref. Smear

Spin α Spin β Spin α Spin β Spin α Spin β

n ε [a.u.] Γ n ε [a.u.] Γ n ε [a.u.] n ε [a.u.] n ε [a.u.] n ε [a.u.]

0 0.384 π(1) 0 0.422 π(1) 0 0.383 0 0.422 0 0.384 0 0.410

0 0.387 π(2) 0 0.397 π(2) 0 0.387 0 0.397 0 0.384 0 0.410

0 0.197 σ+ 0 0.210 σ+ 0 0.197 0 0.210 0 0.197 0 0.210

0 -0.161 π(2) 0 -0.101 π(1) 0 -0.160 0 -0.101 0.5 -0.167 0 -0.123

1 -0.168 π(1) 0 -0.145 π(2) 1 -0.169 0 -0.145 0.5 -0.167 0 -0.123

1 -0.425 σ+ 1 -0.404 σ+ 1 -0.425 1 -0.404 1 -0.426 1 -0.404

1 -0.462 π(1) 1 -0.415 π(1) 1 -0.462 1 -0.415 1 -0.464 1 -0.434

1 -0.463 π(2) 1 -0.453 π(2) 1 -0.463 1 -0.453 1 -0.464 1 -0.434

Table 6.3: Molecular orbital energies (ε), occupations (n) and symmetry assignments (Γ ) for
NO. The data refer to symmetry-adapted (Sym.), unconstrained reference (Ref.) and

fractional occupied (Smear) SCF calculations employing PBE/DZVP/GEN-A2* level

of theory.

breaking is observed. However, the converged SCF energy of this calculation is over

1 kcal/mol above the reference energy. Thus, we find the following ordering for the

converged SCF energies of the calculations in Table 6.3:

E
SCF

6 E
Sym

SCF
< ESmear

SCF
(6.2)

As the energy ESmear

SCF
is the highest, this underlines the variational problematic of

fractional occupied Kohn-Sham calculations.
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6.4 Symmetry-adapted density fitting

The just outlined symmetry-adapted SCF calculations can be further extended by a

symmetry-adapted density fitting. This has been so far not discussed in the literature. In

order to validate the newly developed symmetry-adapted density fitting, we performed

single-point ADFT energy calculations of the molecules depicted in Figure 6.6 employing

the indicated point-group symmetries for the solution of the fitting equation systems.

All calculations were carried out with a SCF density fitting convergence of 10−5 atomic

units [62]. The threshold for the TED of the Coulomb matrix was set to 10−7. For the

numerical integration of the exchange-correlation energy and potential the pruned fixed

(75,302)p grid [144] was used. For all other keywords, the default settings of deMon2k

were employed. For the single-point SCF ADFT calculations the all-electron cc-pVTZ

basis [140] was used. Table 6.4 lists the energy differences between SCF calculations

with symmetry-adapted density fitting, using only auxiliary functions of the totally

symmetric irreducible representations, and symmetry-unconstrained SCF calculations.

The listed energy differences are calculated as:

∆E ≡ ESym
Fit

− E
SCF

(6.3)

The energy differences in Table 6.4 are given for Hartree-Fock (Fock), using the variational

fitting of Fock exchange [139], the LDA with the Dirac exchange [16] and VWN [17]

correlation functional, the GGA [18, 19] in form of the BLYP [20–23] and PBE [24]

functionals, the global PBE0 [26, 27] hybrid functional and the range-separated LCPBE

[24, 142] and HSE06 [143] hybrid functionals. All calculations were performed with the

GEN-A2, GEN-A2* as well as GEN-A4* auxiliary function sets. As Table 6.4 shows |∆E| is

always well below 1 kcal/mol. The energy differences for the GEN-A2 auxiliary function

set, which includes only s, p and d Hermite Gaussian auxiliary functions, are in absolute

usually smaller than for the GEN-A2* or GEN-A4* auxiliary function sets, which include

s, p, d, f and g auxiliary functions.
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Aux. set PG System Fock VWN BLYP PBE PBE0 LCPBE HSE06

GEN-A2 C∞v HCN 0.000 0.000 0.000 0.000 0.000 0.000 0.000

C2v H2O 0.000 0.000 0.000 0.000 0.000 0.000 0.000

C3v NH3 0.000 0.000 0.000 0.000 0.000 0.000 0.000

Cs C2H2ClBr 0.002 0.000 0.000 0.000 0.000 -0.001 0.000

D5d Fe(C5H5)2 0.045 0.062 0.059 0.070 0.063 0.062 0.069

D5h C10 -0.047 0.081 0.143 0.045 0.028 -0.028 0.040

D6h C6H6 0.007 0.005 0.006 0.006 0.006 0.006 0.006

Oh SF6 0.011 0.000 0.000 0.000 0.073 0.000 -0.035

Td CH4 0.000 0.000 0.000 0.000 0.000 0.000 0.000

Ih C20H20 0.005 0.001 0.001 0.001 0.002 0.003 0.002

GEN-A2* C∞v HCN 0.000 0.000 0.000 0.000 0.000 0.000 0.000

C2v H2O 0.000 0.000 0.000 0.000 0.000 0.000 0.000

C3v NH3 0.000 -0.017 -0.013 -0.014 -0.011 -0.001 -0.013

Cs C2H2ClBr 0.001 -0.001 -0.001 0.000 -0.001 -0.001 -0.001

D5d Fe(C5H5)2 0.025 0.058 0.004 0.011 0.025 0.048 0.025

D5h C10 -0.039 -0.049 -0.079 -0.075 -0.068 -0.058 -0.073

D6h C6H6 0.006 0.008 0.015 0.021 0.016 0.001 0.022

Oh SF6 -0.006 0.000 0.000 0.000 0.052 -0.001 -0.050

Td CH4 0.000 0.002 0.002 0.000 0.000 0.001 0.000

Ih C20H20 -0.038 -0.667 -0.532 -0.382 -0.423 -0.088 -0.503

GEN-A4* C∞v HCN 0.000 0.000 -0.001 -0.001 -0.001 -0.001 -0.001

C2v H2O 0.000 -0.001 -0.001 -0.001 -0.001 0.000 -0.001

C3v NH3 -0.001 -0.003 0.007 0.006 0.004 0.002 0.007

Cs C2H2ClBr -0.002 -0.002 -0.001 -0.002 -0.003 -0.001 -0.003

D5d Fe(C5H5)2 0.029 -0.154 -0.185 -0.065 0.041 -0.058 -0.018

D5h C10 -0.026 -0.026 -0.202 0.022 0.049 0.008 0.051

D6h C6H6 0.004 -0.008 -0.102 0.035 0.047 -0.004 0.053

Oh SF6 -0.055 0.005 -0.089 -0.087 -0.051 -0.075 -0.086

Td CH4 0.000 -0.001 -0.002 -0.003 -0.003 -0.002 -0.003

Ih C20H20 -0.011 -0.019 -0.370 0.053 0.092 -0.115 0.126

Table 6.4: Energy differences [kcal/mol] of converged SCF energies employing symmetry-adapted

density fitting using only the totally symmetric block of the Coulomb matrix and

unconstrained density fitting. The cc-pVTZ basis set was used in all calculations. See

text for further details.

At this point, it is important to note that the eigenvalues of the symmetry-adapted

Coulomb matrix are different from those of the symmetry-unconstrained Coulomb
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matrix. The Coulomb matrix eigenvalue spectra of ferrocene and dodecahedrane for

unconstrained and symmetry-adapted density fitting are shown in Figures 6.8 and 6.9.

0 5 10 15 20 25

0 5 10 15 20 25

Figure 6.8: D5d ferrocene cc-pVTZ/GEN-A2* eigenvalue spectrum of the Coulomb matrix in the

original auxiliary function representation (top) and in symmetry-adapted auxiliary

function representation including normalization (bottom).

0 10 20 30 40

0 10 20 30 40

Figure 6.9: Ih dodecahedrane cc-pVTZ/GEN-A2* eigenvalue spectrum of the Coulomb matrix

in the original auxiliary function representation (top) and in symmetry-adapted

auxiliary function representation including normalization (bottom).

The different eigenvalue spectra of the Coulombmatrix become particularly important for

the symmetry-adapted density fitting with TED. The TED, which truncates eigenvalues

of the auxiliary function set according to a given threshold, acts differently in the

symmetry-adapted and unconstrained density fitting. As a consequence, the converged

SCF energies differ slightly. As can be seen from Table 6.4 this energy difference is for

the fully analytic Hartree-Fock method always in the range of the used SCF convergence,



6.4 Symmetry-adapted density fitting 109

PG System Tol 10−x Fock VWN BLYP PBE PBE0 LCPBE HSE06

D5d Fe(C5H5)2 6 -0.076 -0.817 1.080 0.008 -0.454 -0.795 -0.400

7 0.025 0.058 0.004 0.011 0.025 0.048 0.025

8 0.024 0.023 -0.145 -0.034 -0.004 0.003 -0.004

D6h C6H6 6 -0.058 -0.498 0.956 0.042 -0.342 -0.812 -0.275

7 0.006 0.008 0.015 0.021 0.016 0.001 0.022

8 0.013 0.023 0.056 0.073 0.058 -0.007 0.078

Oh SF6 6 -0.063 -0.384 -0.880 -0.918 -0.689 -0.411 -0.767

7 -0.006 0.000 0.000 0.000 0.052 -0.001 -0.050

8 0.007 0.000 0.000 0.000 0.044 -0.001 -0.051

Ih C20H20 6 -0.281 -3.495 1.132 -2.202 -2.787 -1.814 -3.153

7 -0.038 -0.667 -0.532 -0.382 -0.423 -0.088 -0.503

8 -0.003 0.025 -0.389 -0.356 -0.218 -0.090 -0.252

Table 6.5: Energy differences [kcal/mol] of converged SCF energies between unconstrained

and symmetry-adapted density fitting using only the totally symmetric block of the

Coulomb matrix. The cc-pVTZ/GEN-A2* basis and auxiliary function sets were used

in all calculations. The Tol 10−x column denotes the TED tolerance. See text for further

details.

whereas larger deviations of around 0.5 kcal/mol are observed for LDA, GGA and

hybrid functionals. At first glance, it is tempting to attribute these larger deviations to

the unsymmetrical numerical integration grid. However, closer inspection reveals that

numerical integration errors are at least one order of magnitude smaller than the energy

differences found in Table 6.4 for C20H20 with the GEN-A2* auxiliary function set and

LDA, GGA or hybrid functionals. In fact, these energy differences can be substantially

reduced if the Coulomb matrix TED in the symmetry-adapted density fitting only acts

on negative eigenvalues. Therefore, the larger energy differences in Table 6.4 are caused

by the TED of the Coulomb matrix. To explore this behavior in more detail we conducted

cc-pVTZ/GEN-A2* calculations using different TED tolerances. The results are shown in

Table 6.5. As can be seen from this table, a substantial reduction of the energy difference is

obtained when the TED tolerance is tightened from 10−6 to 10−7. This is the reason why

we set the TED tolerance to 10−7 for all symmetry-adapted density fitting calculations.

In order to investigate the effect of reducing the Coulombmatrix to its totally symmetric

block, Eq. (3.55), we performed the calculations of Table 6.4 once again but now using
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all symmetry-adapted blocks of the Coulomb matrix. These results are listed in Table

6.6. As the comparison with Table 6.4 shows, the reduction of the Coulomb matrix

to its totally symmetric block introduces no additional deviations with respect to the

symmetry-unconstrained reference. In fact, we even find the contrary, namely smaller

deviations for the symmetry-adapted density fitting using only the totally symmetric

block of the Coulomb matrix. This unexpected result can be rationalized by the different

eigenvalue spectra (see Figures 6.8 and 6.9) of the unconstrained and symmetry-adapted

Coulomb matrix. If only the totally symmetric block of the Coulomb matrix is used, this

difference becomes smaller because the effect of TED in the symmetry-adapted density

fitting is minimized. On the other hand, if the eigenvalue spectrum of the Coulomb

matrix would be homogeneously dense, the effect of different TEDs would become

negligible. This is the reason why on average the energy deviations in Table 6.4 and 6.6

decrease when going from GEN-A2* to GEN-A4*.

So far we have investigated symmetry-adapted density fitting using symmetry-

unconstrained SCF calculations. Now we combine symmetry-adapted density fitting

with symmetry-adapted SCF calculations. To this end, we performed once again the

calculations of Table 6.4, however now with symmetry-adapted SCF . These results

are listed in Table 6.7. Comparison with Table 6.4 shows that symmetry adaptation of

the SCF has on average little to no effect on the observed energy deviations. The same

holds for the symmetry-adapted density fitting using all symmetry-adapted blocks of

the Coulomb matrix as the comparison of Table 6.7 and 6.8 shows. We observe that the

energy differences decrease for the Ih system when using the GEN-A4* instead of the

GEN-A2* auxiliary function set. However, such an improvement is not found for all

systems. In general, the best agreement between unconstrained and symmetry-adapted

density fitting calculations is found for GEN-A2 and GEN-A4*. From these calculations

we conclude that it is best to use in symmetry-adapted density fitting only the totally sym-

metric part of the auxiliary density. In combination with symmetry-adapted Kohn-Sham

SCF calculations, this approach yields converged energies that are in good agreement
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with symmetry-unconstrained results. In fact, for the GEN-A2 auxiliary function set the

observed deviations are negligible.

Aux. set PG System Fock VWN BLYP PBE PBE0 LCPBE HSE06

GEN-A2 C∞v HCN 0.000 0.000 0.000 0.000 0.000 0.000 0.000

C2v H2O 0.000 0.000 0.000 0.000 0.000 0.000 0.000

C3v NH3 0.000 0.000 0.000 0.000 0.000 0.000 0.000

Cs C2H2ClBr 0.000 0.000 0.000 0.000 0.000 -0.001 0.000

D5d Fe(C5H5)2 0.053 0.061 0.058 0.068 0.067 0.058 0.069

D5h C10 -0.028 -0.021 -0.020 -0.022 -0.023 -0.030 -0.023

D6h C6H6 0.007 0.005 0.005 0.006 0.006 0.006 0.006

Oh SF6 -0.097 0.000 0.000 0.000 -0.035 -0.001 -0.038

Td CH4 0.000 0.000 0.001 0.000 0.000 0.000 0.000

Ih C20H20 0.003 -0.002 -0.005 -0.006 -0.003 -0.003 -0.004

GEN-A2* C∞v HCN 0.000 0.000 0.000 0.000 0.000 0.000 0.000

C2v H2O 0.000 0.000 0.000 0.000 0.000 0.000 0.000

C3v NH3 0.002 -0.002 0.038 0.036 0.025 0.021 0.035

Cs C2H2ClBr 0.018 0.044 -0.576 -0.338 -0.196 -0.349 -0.221

D5d Fe(C5H5)2 0.025 -0.002 -0.009 -0.008 0.004 0.035 0.005

D5h C10 -0.046 -0.048 -0.085 -0.051 -0.045 -0.037 -0.048

D6h C6H6 0.007 -0.014 -0.001 -0.008 -0.005 -0.003 -0.006

Oh SF6 -0.003 0.223 0.176 0.236 0.216 0.009 0.182

Td CH4 0.000 0.002 0.002 0.000 0.000 0.001 0.000

Ih C20H20 -0.032 -0.735 -0.627 -0.459 -0.476 -0.116 -0.563

GEN-A4* C∞v HCN 0.000 0.000 -0.001 -0.001 -0.001 -0.001 -0.001

C2v H2O 0.000 -0.001 -0.001 -0.001 -0.001 0.000 -0.001

C3v NH3 -0.001 -0.007 0.008 0.003 0.001 0.001 0.003

Cs C2H2ClBr -0.003 -0.002 -0.002 -0.002 -0.003 -0.001 -0.003

D5d Fe(C5H5)2 0.035 -0.535 -0.713 -0.464 -0.637 -0.288 -0.376

D5h C10 -0.023 -0.056 -0.250 -0.014 0.020 -0.016 0.021

D6h C6H6 0.007 -0.065 -0.183 -0.023 0.001 -0.030 0.003

Oh SF6 -0.003 0.004 -0.089 -0.087 -0.066 -0.075 -0.036

Td CH4 0.000 -0.001 -0.002 -0.003 -0.003 -0.002 -0.003

Ih C20H20 -0.004 -0.127 -0.493 -0.068 -0.004 -0.162 0.019

Table 6.6: Energy differences [kcal/mol] of converged SCF energies employing symmetry-adapted

and unconstrained density fitting. The cc-pVTZ basis set was used in all calculations.

See text for further details.
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Aux. set PG System Fock VWN BLYP PBE PBE0 LCPBE HSE06

GEN-A2 C∞v HCN 0.000 0.000 0.000 0.000 0.000 0.000 0.000

C2v H2O 0.000 0.000 0.000 0.000 0.000 0.000 0.000

C3v NH3 0.000 0.000 0.000 0.000 0.000 0.000 0.000

Cs C2H2ClBr 0.109 0.000 0.000 0.000 -0.017 -0.001 -0.016

D5d Fe(C5H5)2 0.013 0.061 0.059 0.069 0.070 0.058 0.069

D5h C10 -0.029 -0.020 -0.021 -0.021 -0.027 -0.029 -0.027

D6h C6H6 0.018 0.005 0.006 0.006 0.009 0.006 0.009

Oh SF6 0.000 0.000 0.000 0.000 -0.007 -0.001 -0.095

Td CH4 0.000 0.000 0.001 0.000 0.000 0.000 0.000

Ih C20H20 0.001 0.001 0.001 0.001 0.001 0.000 0.001

GEN-A2* C∞v HCN 0.000 0.000 0.000 0.000 0.000 0.000 0.000

C2v H2O 0.000 0.000 0.000 0.000 0.000 0.000 0.000

C3v NH3 0.002 -0.001 0.037 0.037 0.026 0.021 0.035

Cs C2H2ClBr -0.020 0.044 -0.576 -0.338 -0.189 -0.349 -0.218

D5d Fe(C5H5)2 0.031 0.035 0.039 0.029 0.034 0.048 0.040

D5h C10 -0.046 -0.043 -0.075 -0.046 -0.044 -0.035 -0.045

D6h C6H6 0.008 0.021 0.039 0.029 0.025 0.006 0.030

Oh SF6 0.003 0.223 0.176 0.236 0.258 0.009 0.214

Td CH4 0.000 0.002 0.002 0.000 0.000 0.001 0.000

Ih C20H20 -0.040 -0.667 -0.532 -0.382 -0.423 -0.091 -0.502

GEN-A4* C∞v HCN 0.000 0.000 -0.001 -0.001 -0.001 -0.001 -0.001

C2v H2O 0.000 -0.001 -0.001 -0.001 -0.001 0.000 -0.001

C3v NH3 -0.001 -0.003 0.007 0.006 0.004 0.002 0.007

Cs C2H2ClBr -0.049 -0.002 -0.003 -0.003 -0.003 -0.003 -0.001

D5d Fe(C5H5)2 0.028 -0.156 -0.186 -0.065 -0.300 -0.058 -0.018

D5h C10 -0.026 -0.026 -0.201 0.022 0.048 0.008 0.050

D6h C6H6 0.004 -0.008 -0.102 0.035 0.047 -0.004 0.053

Oh SF6 -0.005 0.005 -0.089 -0.087 -0.050 -0.075 -0.051

Td CH4 0.000 -0.001 -0.002 -0.003 -0.003 -0.002 -0.003

Ih C20H20 -0.012 -0.019 -0.370 0.053 0.092 -0.115 0.126

Table 6.7: Energy differences [kcal/mol] of converged symmetry-adapted SCF energies employing

symmetry-adapteddensityfittingusingonly the totally symmetric block of theCoulomb

matrix and unconstrained SCF calculation. The cc-pVTZ basis set was used in all

calculations. See text for further details.
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Aux. set PG System Fock VWN BLYP PBE PBE0 LCPBE HSE06

GEN-A2 C∞v HCN 0.000 0.000 0.000 0.000 0.000 0.000 0.000

C2v H2O 0.000 0.000 0.000 0.000 0.000 0.000 0.000

C3v NH3 0.000 0.000 0.000 0.000 0.000 0.000 0.000

Cs C2H2ClBr 0.108 0.000 0.000 0.000 -0.017 -0.001 -0.016

D5d Fe(C5H5)2 0.058 0.060 0.058 0.067 0.069 0.058 0.071

D5h C10 -0.029 -0.021 -0.020 -0.022 -0.028 -0.030 -0.029

D6h C6H6 0.018 0.005 0.005 0.006 0.008 0.006 0.008

Oh SF6 -0.030 0.000 0.000 0.000 0.118 -0.001 -0.046

Td CH4 0.000 0.000 0.001 0.000 0.000 0.000 0.000

Ih C20H20 0.003 -0.002 -0.004 -0.005 -0.003 -0.003 -0.004

GEN-A2* C∞v HCN 0.000 0.000 0.000 0.000 0.000 0.000 0.000

C2v H2O 0.000 0.000 0.000 0.000 0.000 0.000 0.000

C3v NH3 0.002 -0.002 0.038 0.036 0.025 0.021 0.035

Cs C2H2ClBr -0.020 0.043 -0.576 -0.338 -0.189 -0.349 -0.218

D5d Fe(C5H5)2 0.025 -0.003 -0.009 -0.008 0.003 0.035 0.005

D5h C10 -0.046 -0.048 -0.085 -0.051 -0.048 -0.037 -0.050

D6h C6H6 0.010 -0.013 -0.003 -0.007 -0.004 -0.003 -0.004

Oh SF6 0.002 0.223 0.176 0.236 0.218 0.009 0.193

Td CH4 0.000 0.002 0.002 0.000 0.000 0.001 0.000

Ih C20H20 -0.031 -0.734 -0.626 -0.458 -0.475 -0.115 -0.562

GEN-A4* C∞v HCN 0.000 0.000 -0.001 -0.001 -0.001 -0.001 -0.001

C2v H2O 0.000 -0.001 -0.001 -0.001 -0.001 0.000 -0.001

C3v NH3 -0.001 -0.007 0.008 0.003 0.001 0.001 0.003

Cs C2H2ClBr -0.046 -0.002 -0.002 -0.002 -0.004 -0.002 0.000

D5d Fe(C5H5)2 0.038 -0.535 -0.713 -0.464 -0.636 -0.288 -0.375

D5h C10 -0.023 -0.056 -0.250 -0.014 0.018 -0.016 0.019

D6h C6H6 0.007 -0.065 -0.183 -0.023 0.001 -0.030 0.003

Oh SF6 0.003 0.005 -0.089 -0.087 -0.075 -0.075 -0.076

Td CH4 0.000 -0.001 -0.002 -0.003 -0.003 -0.002 -0.003

Ih C20H20 -0.004 -0.126 -0.493 -0.067 -0.004 -0.161 0.019

Table 6.8: Energy differences [kcal/mol] of converged symmetry-adapted SCF energies employing

symmetry-adapted density fitting and unconstrained SCF calculation. The cc-pVTZ

basis set was used in all calculations. See text for further details.
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A P P L I C AT I O N S

7.1 Fullerenes

After the symmetry-adapted fitting of Coulomb and exchange-correlation coefficients

has been validated, we now analyze the computational performance for the symmetry-

adapted density fitting using only totally symmetric auxiliary functions. To this end,

we carried out single-point ADFT energy calculations of icosahedral fullerenes ranging

from C20 to C
2160

. The geometries were provided from Dr. Pedroza-Montero [145] except

for the geometry of C
2160

, which was taken from the literature [146]. The here presented

calculations were performed with the PBE/DZVP/GEN-A2* methodology. Figures 7.1

and 7.2 compare Central Processing Unit (CPU) timings between the recently developed

MINRES fitting approach [54] and the here proposed symmetry-adapted TED fitting

(SYMTED) using only the totally symmetric block of the Coulomb matrix in symmetry

representation. The calculations were performed using 24 Intel(R) Xeon(R) CPU cores

with 20 GB of Random Access Memory (RAM) per core. As Figures 7.1 and 7.2 show

symmetry-adapted density fitting is for these systems always computationally more

efficient than MINRES without symmetry constraints. The CPU times of the different

density fitting approaches along with their RAM demands per core are listed in Table

7.1. For comparison, we also include in this table the reference data for the unconstrained

TED density fitting. For the fullerene, C960, symmetry-adapted TED density fitting is

more than 250 times faster than its unconstrained reference and still more than 7 times

faster than unconstrained MINRES. For the largest fullerene, C
2160

, symmetry-adapted
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Figure 7.1: CPU time for MINRES and symmetry-adapted TED (SYMTED) density fitting in

icosahedral fullerenes up to C960 [88] using PBE/DZVP/GEN-A2* methodology. To

guide the eye, the data points are connected by lines.

Figure 7.2: CPU time for MINRES and symmetry-adapted TED (SYMTED) density fitting in the

icosahedral fullerenes C1500 and C2160 using PBE/DZVP/GEN-A2* methodology. To

guide the eye, the data points are connected by lines.
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Fitting CPU time [s] Fitting RAM demand [MB]

System TED MINRES SYMTED TED MINRES SYMTED

C20 1.7 20.4 0.3 1.19 4.63 0.55

C60 61.6 17.7 2.2 10.02 7.83 0.68

C180 1573.1 134.9 22.9 89.30 17.72 1.25

C240 3694.4 206.2 53.5 158.63 22.83 1.61

C540 43150.6 1450.2 254.4 802.23 50.03 4.29

C720 103841.7 2740.6 432.0 1425.94 67.67 6.57

C960 255725.4 5665.9 759.0 2534.70 92.72 10.38

C1500 1017714.2* 19802.9 1635.3 6187.39 155.52 22.25

C2160 3119399.4* 35972.1 2819.9 12829.41 244.36 43.00

Table 7.1: FittingCPU times [s] andRAMdemands [MB/core] for single-point energy calculations

of icosahedral fullerenes employing the TED, MINRES and SYMTED density fitting

approaches. Values with * are estimated.

TED density fitting is estimated to be more than 1101 times faster than its unconstrained

reference and still more than 20 times faster than unconstrainedMINRES density fitting.

The estimations (values with * in Table 7.1) were performed by fitting the calculated

data points to a polynomial of degree 3, a + bx + cx2 + dx3, where the a, b, c and d

coefficients are determined to −3.74× 102, 1.12× 10−1, −5.85× 10−6 and 4.11× 10−10.

The estimated calculations, although still feasible, would take months to finish.

Furthermore, as Table 7.1 shows, symmetry-adapted density fitting shows sub-

quadratic scaling for the CPU time with respect to the fullerene system sizes and

dramatically reduced RAM demand. Thus, the here used large RAM node is mainly

necessary for the TED reference calculations and the RAM demand of the SCF .

7.2 Uranium dimer

The here presented U2 studies were performed in collaboration with Dr. Pérez-Figueroa

[136]. She performed symmetry-adapted calculations with the Kohn-Sham matrix in

symmetry representation in an unrestrictedKohn-Shammethodology using effective core

potentials. These calculations provided molecular orbitals that are symmetry-adapted.
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On the other hand, symmetry-unconstrained calculations yield MOs that are symmetry

distorted. The resulting MO diagrams of the optimized system [136] are shown in Figure

7.3. This diagram was calculated using the PBE exchange-correlation functional with a

32 valence electron quasi-relativistic pseudo potential [147] from the Stuttgart-Dresden

group in combination with a corresponding energy-optimized valence basis set [148].

For the density fitting the GEN-A2** auxiliary function set [136] was used. As can be seen

Figure 7.3: Uranium dimer ground state molecular orbital diagram from symmetry-adapted (left)

and symmetry-unconstrained (right) calculation. Only the αMOs and energies are

shown.

from Figure 7.3 the MO symmetry distortion in the symmetry-unconstrained calculation

is most pronounced at the Fermi level and above. On the other hand, the symmetry-

adapted calculation shows a symmetry breaking due to the single occupation of the

doubly degenerate φu MO. Therefore, the electron density from the symmetry-adapted

calculation of this system has contributions other than the totally symmetric one due to:

φu ⊗ φu = Σ+
g + Σ−

g + Ig (7.1)
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As a result, the Kohn-Sham operator and, thus, the Kohn-Sham matrix are symmetry

broken. This manifests itself in the different energies and occupations of symmetry-

degenerate orbitals as in the example of NO (see Table 6.3). For the uranium dimer, this

symmetry breaking is most pronounced by the different occupations of the symmetry-

degenerate φu MOs in Figure 7.3.

SYM NOSYM

Mult. re [Å] ∆E [kcal/mol] re [Å] ∆E [kcal/mol]

5 2.31 4.63 2.24 4.34

7 2.27 0.00 2.27 0.00

9 2.45 6.53 2.46 6.53

11 2.61 5.61 2.60 5.61

De [kcal/mol] 97.86 (65.14) 97.86 (72.16)

Table 7.2: Optimized bond lengths and relative energies of symmetry-adapted (SYM) and

symmetry-unconstrained (NOSYM) PBE/QECP32/GEN-A4** calculations of U2 with

different spin multiplicities. The dissociation energy refers to the septet ground state.

Values in parentheses are from single-point PBE0 calculations on top of PBE optimized

structures.

The only experimental data available for neutral U2 is its dissociation energy of 52 ± 5

kcal/mol [149]. This value was obtained at temperatures in the range of 2500−2700 K

under the assumption of a bond length of 3.0 Å. Table 7.2 lists optimized equilibrium

distances of U2 using multiplicities 5, 7, 9 and 11 from symmetry-adapted and symmetry-

unconstrained SCF calculations. These calculations were performed using the previously

mentioned level of theory together with the GEN-A4** auxiliary function set. As can

be seen from this table the calculations agree for multiplicities 7, 9 and 11, whereas for

multiplicity 5 there is a deviation of 0.07 Å in the bond length, with a larger optimized

distance from the symmetry-adapted SCF. Also in Table 7.2 are shown the dissociation

energies calculatedwith PBE and PBE0 exchange-correlation functionals using symmetry-

adapted and symmetry-unconstrained SCF calculations at the optimized bond length of

2.27 Å with multiplicity 7. The dissociation energies calculated with the PBE functional

agree well with each other. For the PBE0 calculations the dissociation energies differ by
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8.46 kcal/mol. As expected from the variational principle the symmetry-adapted PBE0

dissociation energy is smaller. As a result, it is closer to the experimental reference.

7.3 TD-ADFT

In the Time Dependent Auxiliary Density Functional Theory (TD-ADFT) methodol-

ogy, employing the random phase approximation, the excited states are calculated as

eigenvectors of the eigenvalue equation [50, 150, 151]:

ΩF = ω2F (7.2)

The elements of the matrix Ω are given by:

Ωia,jb = δabδij (εa − εi)
2 + 2

√
εa − εiKia,jb

√
εb − εj (7.3)

with:

Kia,jb =
∑
m̄,n̄

〈ia‖m̄〉G−1
m̄n̄〈n̄‖jb〉+∑

m̄,n̄

∑
k̄,l̄

〈ia‖k̄〉G−1
k̄l̄

〈
l̄ |fxc[ρ̃]| m̄

〉
G−1
m̄n̄〈n̄‖jb〉

(7.4)

In Eq. (7.4) fxc[ρ̃] is the ADFT exchange-correlation kernel
δ2Exc[ρ̃]
δρ̃(r)δρ̃(r ′) . From the solution

of Eq. (7.2), the excitation energies, ω, and the oscillator strengths can be obtained.

The elements of the eigenvectors F are double-index labeled by occupied MOs, ψΓi ,

and unoccupied MOs, ψΓ
′
a , denoting the product ψΓiψ

Γ ′
a . Here we have added to the

MOs irreducible representation labels since each MO is assigned to an irreducible

representation when the TD-ADFT calculation is performed on top of a symmetry-

adapted Kohn-Sham SCF. As a result, each element of the eigenvectors F can be assigned

to an irreducible representation, which reflects the corresponding excitation. Thus, for

labeling the excitation contributions to the excitation energies, the direct product of
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Figure 7.4: First excited state of ethylene. The lines of text are a sample of the new TD-ADFT

output in deMon2k.

irreducible representations must be calculated. To this end, we use Clebsch-Gordan

coefficients. The addition of irreducible representation labels to the transition energies

and the use of Clebsch-Gordan coefficients to determine the resulting symmetry of the

excitation energies in the deMon2k TD-ADFT module were realized in collaboration

with Lic. L. I. Hernandez-Segura. The situation is particularly simple if one or both

irreducible representations in the direct product Γ × Γ ′ are one-dimensional. In this case,

the results are single irreducible representations. As a pictorial example for this case, we

show in Figure 7.4 the main contribution of the F eigenvector for the first excited state

of ethylene in D2h symmetry. The resulting B1u excited state assignment is simply the

direct product of the irreducible representations of the involved MOs, here B2u × B3g

(note that in this particular example the direct product can be calculated from the

irreducible representation characters). As Figure 7.4 shows this symmetry information is

now added to the new TD-ADFT output in deMon2k. A list of symmetry assignment of

the 12 lowest-lying excited states of ethylene at the PBE/aug-cc-pVTZ/GEN-A2* level
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E.s. Mult. Sym. ∆E[eV] λ [nm] O.s.

1 T B1u 4.79 258.67 0.00

2 T B2u 6.46 191.81 0.00

3 S B2u 6.57 188.80 0.05

4 T B3g 6.92 179.03 0.00

5 S B3g 6.98 177.50 0.00

6 T B1g 6.99 177.31 0.00

7 S B1g 7.04 176.08 0.00

8 T B1g 7.19 172.54 0.00

9 S B1u 7.61 162.99 0.27

10 S B1g 7.71 160.78 0.00

11 T Au 7.74 160.27 0.00

12 S Au 7.74 160.08 0.00

Table 7.3: First 12 excited states of ethylene. With symmetry labeling at the PBE/aug-cc-

pVTZ/GEN-A2* level of theory. E.s., Mult., Sym. and O.s. denote the excited state,

its multiplicity (Singlet or Triplet), its symmetry and the corresponding transition

oscillator strength, respectively.

of theory is given in Table 7.3. Because the main contributions to the excitation energy

(the larges coefficients in absolute value) have the same irreducible representation direct

product the excited state symmetry labeling is straightforward.

For the benzene molecule the situation is different. In this case, direct products of

two-dimensional irreducible representations must be calculated. The result is a direct

sum of several irreducible representations. If the column indices of the two-dimensional

irreducible representation components of the degenerate MOs are known, we can

calculate linear combinations of direct products of these column components. Take as

example the first excitation in benzene (see Figure 7.5) given by E1g × E2u as:

−0.52(E1g(1)⊗ E2u(2)) + 0.52(E1g(2)⊗ E2u(1)) (7.5)

For the expansion of the here appearing direct products of two-dimensional column

components the corresponding (normalized) Clebsch-Gordan coefficients matrix is

needed. For the E1g × E2u example, this matrix is depicted in Table 7.4. Its elements are
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Figure 7.5: First excited state of benzene. The lines of text are a sample of the new TD-ADFT

output in deMon2k.

E1g ⊗ E2u B1u B2u E1u(1) E1u(2)

E1g(1)E2u(1)
1√
2

0 1√
2

0

E1g(1)E2u(2) 0 1√
2

0 − 1√
2

E1g(2)E2u(1) 0 − 1√
2

0 − 1√
2

E1g(2)E2u(2)
1√
2

0 − 1√
2

0

Table 7.4: The normalized Clebsch-Gordan coefficient matrix for the direct product of irreducible

representations E1g ⊗ E2u in the point group D6h as calculated in deMon2k.
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deMon2k Gaussian

E.s. Mult. Sym. ∆E [eV] λ [nm] O.s. E.s. Mult. Sym. ∆E [eV] λ [nm] O.s.

1 T B2u 4.74 261.58 0.00 1 T ? 4.46 278.08 0.00

2 T E1u 4.96 249.85 0.00 2 T ? 4.83 256.80 0.00

3 T E1u 4.96 249.85 0.00 3 T ? 4.83 256.80 0.00

4 T B1u 5.14 241.06 0.00 4 T ? 5.10 243.09 0.00

5 S B1u 5.42 228.93 0.00 5 S ? 5.36 231.33 0.00

6 S B2u 6.39 194.11 0.00 6 S ? 6.24 198.67 0.00

7 T A2u 6.99 177.41 0.00 7 T ? 6.94 178.61 0.00

8 T E2u 7.00 176.97 0.00 8 T ? 6.96 178.08 0.00

9 T E2u 7.00 176.97 0.00 9 T ? 6.96 178.08 0.00

10 T A1u 7.02 176.56 0.00 10 T ? 6.98 177.51 0.00

11 S A1u 7.15 173.34 0.00 11 S ? 7.11 174.39 0.00

12 S E2u 7.26 170.84 0.00 12 S ? 7.21 171.94 0.00

13 S E2u 7.26 170.84 0.00 13 S ? 7.21 171.94 0.00

14 S A2u 7.29 169.95 0.00 14 S ? 7.24 171.19 0.00

Table 7.5: Excited states of Benzene molecule calculated in deMon2k and Gaussian. E.s., Mult.,

Sym. and O.s. denote the excited state, its multiplicity (Singlet or Triplet), its symmetry

and the corresponding transition oscillator strength, respectively.

calculated according to Eq. (4.64). With the Clebsch-Gordan coefficients at hand we can

expand Eq. (7.5) as:

−0.52

(
1√
2
B2u −

1√
2
E1u(2)

)
+ 0.52

(
−
1√
2
B2u −

1√
2
E1u(2)

)
= −

1.04√
2
B2u (7.6)

This allows the determination of an overall single irreducible representation label for the

excited state in question. Table 7.5 compares the calculated excited states in deMon2k

with those from Gaussian [48] employing the VWN/6-31G** level of theory. For the

TD-ADFT calculations in deMon2k, the GEN-A2* auxiliary function set was used. Note

that in Gaussian the excited state symmetries arising from products of multi-dimensional

irreducible representations are not assigned, whereas this assignment is now possible in

deMon2k.
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8.1 Conclusions

This thesis describes the derivation and implementation of symmetry-adapted Hartree-

Fock, DF-DFT and ADFT calculations in deMon2k. The work is based on the symmetry

adaptation of the Hartree-Fock or Kohn-Sham matrix and the symmetry adaptation of

the Coulomb fitting equations. The now implemented point groups in deMon2k are: Ci,

Cs, Cn, Cnv, Cnh, Dn, Dnd, Dnh, S4, S6, T , Td, Th, O, Oh, I, Ih, C∞v and D∞h, with

n = 2, ..., 6. The icosahedral point group tables, as well as the linear infinity point group

table cutouts, were generated in this work. All other real point group tables were taken

from StoBe [97]. Noticeable characteristics of this implementation and corresponding

resulting studies are the following:

• The working equations for the symmetry-adapted calculation of Coulomb and

exchange-correlation fitting coefficients in ADFT (and DF-DFT) are derived in this

thesis and published in [88].

• The here presented formulas for the symmetry adaptation of the Kohn-Sham

matrix and fitting equations are general. In particular, no restriction for the angular

momentum of the Cartesian and spherical atomic orbital basis as well as for the

Hermite Gaussian auxiliary functions exists.

• It was found that for totally symmetric densities only the fitting equation systems

of the totally symmetric irreducible representation have to be solved. This results

in a huge dimension reduction of the linear equation systems that have to be solved

125
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for the calculation of the Coulomb and exchange-correlation fitting coefficients in

ADFT (and DF-DFT).

• To illustrate the advantages of symmetry-adapted density fitting, icosahedral

giant fullerenes up to C
2160

were calculated employing different density fitting

approaches. These calculations show that symmetry-adapted density fitting is

superior to all other tested approaches in terms of CPU time as well as in RAM

demand. This underlines the potential of the here presented fitting approach.

• The assignment of molecular orbitals and auxiliary functions according to their

irreducible representations is now available in deMon2k.

• The direct products of groups, irreducible representations and matrices were

implemented in a general form in deMon2k. Thus, additional point groups or

extensions, e.g. double groups for relativistic two-component wave functions, can

be straightforwardly implemented.

• The symmetry-adapted fitting was implemented in a memory-efficient form

allowing the study of large systems. Key to success is the on-the-fly calculation

of the symmetrization matrix elements in terms of of the symmetrization matrix

for atom permutation vectors and the symmetrization matrix for origin-centered

(auxiliary) functions. With this methodology the construction of the complete U

transformation matrix can be avoided allowing a memory-efficient implementation.

• The study of the symmetry-adapted density fitting showed energy deviations

from the corresponding symmetry-unconstrained calculations of up to around 0.5

kcal/mol. Our analysis reveals that these deviations originate from the truncated

eigenvalue decomposition of the Coulomb matrix due to its different eigenvalue

spectrum in symmetry-adapted andunconstrained form. Therefore,we recommend

to use symmetry-adapted density fitting only in studies where all calculations are

symmetry-adapted.
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• The here presented implementation of symmetry-adapted SCF calculations permits

the identification of symmetry breaking by analyzing theMOenergies of degenerate

orbitals. As this kind of symmetry breaking is allowed in our implementation

it is expected that the total energy differences between symmetry-adapted and

unconstrained calculations are small in general.

• As the direct products of irreducible representations are calculated as well as

the corresponding Clebsch-Gordan coefficients, the irreducible representation

labeling of the Kohn-Sham states and excited states in TD-ADFT become possible

in deMon2k.

8.2 Perspectives

From this work the following perspectives arise:

• To implement symmetry-adapted molecular structure optimization. This will

reduce the degrees of freedom in molecular geometry optimization by fixing the

point group of the molecule.

• To develop a reducedmemory SCF implementation for the Kohn-Shammatrix. This

involves the calculation of the symmetry-adapted Kohn-Sham matrix irreducible

representation blocks directly without the construction of the complete Kohn-Sham

matrix in the original AO representation. This implies a further reduction of RAM,

which will allow the calculation of even larger systems.

• To increase the efficiency of the symmetry-adapted density fitting by building the

symmetry-adapted matrix representations in a more efficient way or/and to use

the double coset decomposition methodology [152]. It has to be pointed out that

currently for the symmetry-adapted fitting 99% of the CPU time is used for the

building of the symmetry-adapted Coulomb matrix.
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• To augment the number of point groups implemented. There are several strategies

to achieve this: 1) To code more point group tables. 2) To perform direct products

of already implemented point groups. 3) Generate character tables for any point

group [153] (not the complete matrix representations) and use the subduction

methodology [154] for the building of symmetry-adapted basis and auxiliary

functions. 4) To generate directly the complete matrix representation tables for any

point group [155].

• Include space groups in the symmetry-adapted SCF and density fitting in order

to use it within the cyclic cluster model [156] methodology. This uses periodic

boundary conditions to model systems such as crystals, surfaces and polymers. As

translational symmetry is always used in thismethod, the use of symmetry-adapted

SCF and fitting is unavoidable and therefore exploitable.

• Use symmetry-adapted approximate Kohn-Sham operators for non-symmetric

molecules by perturbation theory [157].
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A
D I R E C T P RO D U C T O F M AT R I C E S

The direct product of matrices, also named Kronecker or outer product of the m × n

matrix A and the p× qmatrix B yields the (m · p)× (n · q) matrix C given by:

C = A⊗ B =


A11B · · · A1nB

.

.

.

.
.
.

.

.

.

Am1B · · · AmnB

 (A.1)

The elements of C are calculated as:

Cp(i−1)+k,q(j−1)+l = AijBkl (A.2)

Example:

0 1

1 0

⊗

0 −1 0

1 0 0

0 0 1

 =



0 0 0 0 −1 0

0 0 0 1 0 0

0 0 0 0 0 1

0 −1 0 0 0 0

1 0 0 0 0 0

0 0 1 0 0 0


(A.3)
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B
R E D U C T I O N O F E ⊗ E I N C 3v

This appendix outlines the reduction of the four-dimensional subspace that results from

the direct product E⊗E inC3v for the ammonia example of Chapter 4. The corresponding

invariant example subspaces are given by the columns of B7 and B8, see Eqs. (4.37) and

(4.38):

B7 =
(
p
E(1)
A ⊗ d

E(1)
xx |p

E(1)
A ⊗ d

E(2)
xx |p

E(2)
A ⊗ d

E(1)
xx |p

E(2)
A ⊗ d

E(2)
xx

)
(B.1)

B8 =
(
p
E(1)
A ⊗ d

E(1)
xz |p

E(1)
A ⊗ d

E(2)
xz |p

E(2)
A ⊗ d

E(1)
xz |p

E(2)
A ⊗ d

E(2)
xz

)
(B.2)

From the character reduction formula, Eq. (4.11), follows:

E⊗ E = A1 ⊕A2 ⊕ E (B.3)

Thus, the four-dimensional subspace must consist of 4 vectors, one belonging to the

irreducible representation A1, another to the irreducible representation A2 and two

degenerate vectors belonging to the two-dimensional irreducible representation E. A

basis for this four-dimensional subspace is given by:

c1 =


1

0

0

0

 , c2 =


0

1

0

0

 , c3 =


0

0

1

0

 , c4 =


0

0

0

1

 (B.4)
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A representation of the symmetry operations in this basis can be obtained by the direct

products of the corresponding irreducible representation matrices [73]:

DE⊗E(R̂) = χχE(R̂)⊗ χχE(R̂) ∀ R̂ (B.5)

The resulting representation matrices for C3v are:

DE⊗E(Ê) =

(
1 0

0 1

)
⊗

(
1 0

0 1

)
=


1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

 (B.6)

DE⊗E(Ĉ3) =

(
−12 −

√
3
2√

3
2 −12

)
⊗

(
−12 −

√
3
2√

3
2 −12

)
=


1
4

√
3
4

√
3
4

3
4

−
√
3
4

1
4 −34

√
3
4

−
√
3
4 −34

1
4

√
3
4

3
4 −

√
3
4 −

√
3
4

1
4

 (B.7)

DE⊗E(Ĉ23) =

(
−12

√
3
2

−
√
3
2 −12

)
⊗

(
−12

√
3
2

−
√
3
2 −12

)
=


1
4 −

√
3
4 −

√
3
4

3
4√

3
4

1
4 −34 −

√
3
4√

3
4 −34

1
4 −

√
3
4

3
4

√
3
4

√
3
4

1
4

 (B.8)

DE⊗E(σ̂v) =

(
1 0

0 −1

)
⊗

(
1 0

0 −1

)
=


1 0 0 0

0 −1 0 0

0 0 −1 0

0 0 0 1

 (B.9)

DE⊗E(σ̂ ′v) =

(
−12 −

√
3
2

−
√
3
2

1
2

)
⊗

(
−12 −

√
3
2

−
√
3
2

1
2

)
=


1
4

√
3
4

√
3
4

3
4√

3
4 −14

3
4 −

√
3
4√

3
4

3
4 −14 −

√
3
4

3
4 −

√
3
4 −

√
3
4

1
4

 (B.10)

DE⊗E(σ̂ ′′v ) =

(
−12

√
3
2√

3
2

1
2

)
⊗

(
−12

√
3
2√

3
2

1
2

)
=


1
4 −

√
3
4 −

√
3
4

3
4

−
√
3
4 −14

3
4

√
3
4

−
√
3
4

3
4 −14

√
3
4

3
4

√
3
4

√
3
4

1
4

 (B.11)



Reduction of E⊗ E in C3v 135

With these matrices, we can express the symmetry operations of the C3v point group

on the basis vectors of Eq. (B.4) as matrix vector products. As an example, take the Ĉ3

rotation applied to the first basis vector of Eq. (B.4):

Ĉ3c1 → DE⊗E(Ĉ3)c1 (B.12)

With Eq. (B.7) we find:

DE⊗E(Ĉ3) c1 =
1

4
c1 −

√
3

4
c2 −

√
3

4
c3 +

3

4
c4 (B.13)

In the same way we can now express corresponding projection operators for the basis

vectors in Eq. (B.4) of the form:

PΓγ =
dΓ
h

∑
R̂

χΓ
γ(R̂)D

E⊗E(R̂) (B.14)

The projection of the basis vectors from Eq. (B.4) on to the irreducible representations

A1, A2 and E is depicted in Scheme B.1 and B.2. The resulting four symmetry-adapted

basis vectors, {cΓ(γ)}, are collected in the so-called Clebsch-Gordan coefficient matrix as:

C = (cA11 |cA22 |c
E(1)
1 |c

E(2)
1 ) (B.15)

This is the Clebsch-Gordan coefficient matrix for the reduction of the direct product of

irreducible representation E⊗ E. Thus, the subspace given by the columns of matrix B7

of dimension 18× 4 takes the form:

B7 = (p
E(1)
A ⊗ d

E(1)
xx |p

E(1)
A ⊗ d

E(2)
xx |p

E(2)
A ⊗ d

E(1)
xx |p

E(2)
A ⊗ d

E(2)
xx ) (B.16)

The four resulting symmetry-adapted vectors corresponding to the subspace given by

the columns of B7, according to the here presented procedure, are given by:

B7C = (uA13 |uA25 |u
E(1)
11 |u

E(2)
17 ) (B.17)
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• Γ = A1; γ = 1; χA1(Ê) = 1, χA1(Ĉ3) = 1, χ
A1(Ĉ23) = 1, χ

A1(σ̂v) = 1, χ
A1(σ̂ ′v) = 1, χ

A1(σ̂ ′′v ) = 1;
c
A1
1 ≡ P

A1
1 c1

c
A1
1 =

1

6

[
1DE⊗E(Ê)c1 + 1D

E⊗E(Ĉ3)c1 + 1D
E⊗E(Ĉ23)c1 + 1D

E⊗E(σ̂v)c1 + 1D
E⊗E(σ̂ ′v)c1+

1DE⊗E(σ̂ ′′v )c1

]

=
1

6

1

1

0

0

0

+ 1


1
4

−
√
3
4

−
√
3
4

3
4

+ 1


1
4√
3
4√
3
4

3
4

+ 1


1

0

0

0

+ 1


1
4√
3
4√
3
4

3
4

+ 1


1
4

−
√
3
4

−
√
3
4

3
4


 =


1
2

0

0
1
2


store; enough for A1; next projection in A2

• Γ = A2; γ = 1; χA2(Ê) = 1, χA2(Ĉ3) = 1, χ
A2(Ĉ23) = 1, χ

A2(σ̂v) = −1, χA2(σ̂ ′v) = −1,
χA2(σ̂ ′′v ) = −1; c

A2
1 ≡ P

A2
1 c1

c
A2
1 =

1

6

[
1DE⊗E(Ê)c1 + 1D

E⊗E(Ĉ3)c1 + 1D
E⊗E(Ĉ23)c1 + (−1)DE⊗E(σ̂v)c1 + (−1)DE⊗E(σ̂ ′v)c1+

(−1)DE⊗E(σ̂ ′′v )c1

]

=
1

6

1

1

0

0

0

+ 1


1
4

−
√
3
4

−
√
3
4

3
4

+ 1


1
4√
3
4√
3
4

3
4

− 1


1

0

0

0

− 1


1
4√
3
4√
3
4

3
4

− 1


1
4

−
√
3
4

−
√
3
4

3
4


 =


0

0

0

0


vanishes; next projection

c
A2
2 ≡ P

A2
1 c2

=
1

6

[
1DE⊗E(Ê)c2 + 1D

E⊗E(Ĉ3)c2 + 1D
E⊗E(Ĉ23)c2 + (−1)DE⊗E(σ̂v)c2 + (−1)DE⊗E(σ̂ ′v)c2+

(−1)DE⊗E(σ̂ ′′v )c2

]

=
1

6

1

0

1

0

0

+ 1


√
3
4

1
4

− 3
4

−
√
3
4

+ 1


−
√
3
4

1
4

− 3
4√
3
4

− 1


0

−1

0

0

− 1


√
3
4

− 1
4

3
4

−
√
3
4

− 1


−
√
3
4

− 1
4

3
4√
3
4


 =


0
1
2

− 1
2

0


store; enough for A2; next projection in E

Scheme B.1: Reduction of the direct product of irreducible representations, E ⊗ E, of the C3v
point group for the irreducible representations A1 and A2.

In Eq. (B.17) we have enumerated the overall symmetry-adapted vectors u
Γ(γ)

l̊
to coincide

with Table 4.2. For the basis given by the columns of B8, we do not have to repeat the

reduction procedure. The subspace given by the columns of the matrix B8 of dimensions

18× 4 has the form:

B8 = (p
E(1)
A ⊗ d

E(1)
xz |p

E(1)
A ⊗ d

E(2)
xz |p

E(2)
A ⊗ d

E(1)
xz |p

E(2)
A ⊗ d

E(2)
xz ) (B.18)
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• Γ = E; γ = 1; χE1 (Ê) = 1, χ
E
1 (Ĉ3) = − 1

2
, χE1 (Ĉ

2
3) = − 1

2
, χE1 (σ̂v) = 1, χ

E
1 (σ̂

′
v) = − 1

2
, χE1 (σ̂

′′
v ) = − 1

2
;

c
E(1)
1 ≡ PE1 c1

c
E(1)
1 =

2

6

[
1DE⊗E(Ê)c1 + (− 1

2
)DE⊗E(Ĉ3)c1 + (− 1

2
)DE⊗E(Ĉ23)c1 + 1D

E⊗E(σ̂v)c1+

(− 1
2
)DE⊗E(σ̂ ′v)c1 + (− 1

2
)DE⊗E(σ̂ ′′v )c1

]

=
2

6

1

1

0

0

0

−
1

2


1
4

−
√
3
4

−
√
3
4

3
4

−
1

2


1
4√
3
4√
3
4

3
4

+ 1


1

0

0

0

−
1

2


1
4√
3
4√
3
4

3
4

−
1

2


1
4

−
√
3
4

−
√
3
4

3
4


 =


1
2

0

0

− 1
2


store; find partner increasing γ

• Γ = E; γ = 2; χE2 (Ê) = 0, χ
E
2 (Ĉ3) =

√
3
2
, χE2 (Ĉ

2
3) = −

√
3
2
, χE2 (σ̂v) = 0, χ

E
2 (σ̂

′
v) = −

√
3
2
, χE2 (σ̂

′′
v ) =

√
3
2
;

c
E(2)
1 ≡ PE2 c1

c
E(2)
1 =

2

6

[
0DE⊗E(Ê)c1 + (

√
3
2
)DE⊗E(Ĉ3)c1 + (−

√
3
2
)DE⊗E(Ĉ23)c1 + 0D

E⊗E(σ̂v)c1+

(−
√
3
2
)DE⊗E(σ̂ ′v)c1 + (

√
3
2
)DE⊗E(σ̂ ′′v )c1

]

=
2

6


√
3

2


1
4

−
√
3
4

−
√
3
4

3
4

−

√
3

2


1
4√
3
4√
3
4

3
4

−

√
3

2


1
4√
3
4√
3
4

3
4

+

√
3

2


1
4

−
√
3
4

−
√
3
4

3
4


 =


0

− 1
2

− 1
2

0


four symmetry vectors found; finish

Scheme B.2: Reduction of the direct product of irreducible representations, E ⊗ E, of the C3v
point group for the irreducible representation E.

The corresponding four resulting symmetry-adapted vectors are:

B8C = (uA14 |uA26 |u
E(1)
12 |u

E(2)
18 ) (B.19)

Again the enumeration of the symmetry-adapted column vectors u
Γ(γ)

l̊
coincide with

Table 4.2.
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