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Abstract

To find a new effective, mechanically and thermally stable, and non-toxic thermo-
electric material that can be used in future in thermoelectric devices for power gener-
ation. In this thesis we present a comprehensive study on the effect of the quantum
confinement and the pressure on the electronic band structure and thermoelectric
coefficients of the ε−polytype of GaSe, InSe and InGaSe2. Three structures have
been studied in each case; the bulk, nanoplates (7 quadruple layer), and monolayer
(one quadruple layer). The calculations have been done within the framework of
the density functional theory since the electronic properties were calculated using
the full potential linearized augmented plane wave method as implemented in the
Wien2k package. Based on the calculations of the band structure, the evolution of
the transport coefficient as a function of the chemical potential are evaluated with
the use of the Boltzmann transport theory as implemented in the BoltzTraP code.
The transformation occurred in the shape of the band structure of each material and
the cross over from direct to indirect gap transitions that occurred in the pristine
materials, GaSe and InSe as a result of decreasing the thickness to the nanometric
range has been elucidated. A great enhancement is found in the values of the See-
beck coefficient in the monolayer case of all the studied materials. The origin of
this enhancement was analyzed based on the aspect the electronic structure of each
material. To predict how would be the figure of merit of the studied cases was cal-
culated by making an assuming that the electronic and lattice thermal conductivity
are identical. It is found also that the pressure has a positive effect on the Seebeck
coefficient till a certain pressure that was different in each material; 20 GPa in InSe
and 10 GPa in both GaSe and InGaSe2. The contributions achieved in this thesis can
be considered as part of the extensive research that made daily to look for new ther-
moelectric materials. Our results assert that the pressure and quantum confinement
could be effective ways to enhance the thermoelectric properties even of the exist-
ing thermoelectric material. A future experimental research on the synthesis and
measuring the electronic and thermoelectric properties of all the structures studied
in this thesis will complement our study and will be the only way to evaluate the
validity of our results.





3

Resumen

Con el fin de encontrar un nuevo material termoeléctrico efectivo, mecánica y térmi-
camente estable y no tóxico que pueda usarse en el futuro en dispositivos termoeléc-
tricos para la generación de energía, en esta tesis presentamos un estudio exhaustivo
sobre el efecto del confinamiento cuántico y la presión sobre la estructura de bandas
electrónicas y coeficientes termoeléctricos del politipo ε de GaSe, InSe e InGaSe2. En
cada caso se han estudiado tres estructuras; el bulk, nanoplacas (7 capas cuádruples)
y monocapa (una capa cuádruple). Los cálculos se han realizado en el marco de la
teoría del funcional de la densidad (DFT), ya que las propiedades electrónicas se cal-
cularon utilizando el método de ondas planas aumentadas linealizadas de potencial
completo implementado en el código Wien2k. Usando los cálculos de la estructura
de la banda se evalúa la evolución del coeficiente de transporte en función del poten-
cial químico con el uso de la ecuación de transporte de Boltzmann (BTE) implemen-
tado en el código BoltzTraP. La transformación ocurrió en la forma de la estructura
de la banda de cada material como resultado de la disminución del espesor a rango
nanométrico ha sido dilucidado. Se encuentra una gran mejora en los valores del co-
eficiente de Seebeck en el caso de monocapa de todos los materiales estudiados. El
origen de esta mejora se analizó en función del aspecto de la estructura electrónica
de cada material. Para predecir cómo sería la figura de mérito de los casos estudi-
ados, se calculó asumiendo que la conductividad térmica de las vibraciones de la
red (fonones) y de los electrones libres son idénticas. También se encuentra que la
presión tiene un efecto positivo en el coeficiente de Seebeck hasta una cierta pre-
sión, 20 GPa en InSe y 10 GPa tanto en GaSe como en InGaSe2. Las contribuciones
alcanzadas en esta tesis pueden considerarse como parte de la extensa investigación
que se realiza diariamente para buscar nuevos materiales termoeléctricos. Nuestros
resultados afirman que la presión y el confinamiento cuántico podrían ser formas
efectivas de mejorar las propiedades termoeléctricas incluso del material termoeléc-
trico existente. Una futura investigación experimental sobre la síntesis y medición
de las propiedades electrónica y termoeléctrica de todas las estructuras estudiadas
en esta tesis complementarán nuestro estudio y serán la única forma de evaluar la
validez de nuestros resultados.
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Motivation

The world is facing two real problems, the first one is the energy crisis due to the vast
consumption of non-renewable energy resources, fossil fuels, and to the continuous
growth of the world economy and industrial development. In a previous review [1]
on the renewable energy they mentioned that the global reserve/production ratio
for oil estimated in 2012 is 54.2 years. The second problem is the Global warm-
ing and the climate change produced by the increase of the carbon dioxide level in
the environment in the last decade due to the burning of fossil fuels. Consequently,
looking for an alternative effective, clean, low cost, and sustainable energy resources
for power generation, such as photovoltaics, wind, bio fuels and thermoelectric en-
ergy conversion devices, is a must. This demand has stimulated interest in different
research fields to find energy conversion techniques that satisfy the world’s increas-
ing demand for energy. It is found that that more than half the energy that flows
through our economy is ultimately wasted and the main part of this energy is dissi-
pated as rejected heat [2]. This thermal energy could be exploited to create an electri-
cal energy via thermoelectric generators [3, 4]. Over the past decades, there has been
a growing interest in discovering efficient thermoelectric materials [5–8] for power
generation due to their potential applications as a clean energy source with many
attractive features as they work silently and without having any moving parts or
environmentally harmful fluids. In addition to the recovery of the wasted heat, the
thermoelectric devices have been also investigated for their use in thermoelectric-
solar hybrid systems [9, 10] and thermoelectric refrigeration [11].

The efficiency of the thermoelectric device depends on the properties of the used
thermoelectric material. The thermoelectric performance of a given material is char-
acterized by the dimensionless figure of merit:

ZT =
S2σ

k
T, (1)

where S, σ, T are the Seebeck coefficient, the electrical conductivity and the abso-
lute temperature, respectively. k is the total thermal conductivity which is composed
of the electronic contribution ke and phononic (or lattice) contributions kl. A high
value of ZT means high value of the powerfactor, S2σ and low thermal conductivity
k. However, we cannot increase S2σ infinitely and decrease k due to the interdepen-
dence between those parameters. Since the electronic thermal conductivity is linked
to the electrical conductivity by the Wiedemann–Franz law [12, 13]:

ke = LσT, (2)
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where L = 2.45 × 10−8WΩK−2. Also, σ and S have opposite proportional relation-
ship with the carrier concentration [3, 14]. It means that any attempts to maximize
one parameters will probably minimize the other one and the simultaneous opti-
mization of all the parameters is very difficult. Hence the design of good thermo-
electric materials depends on the ability to reach a subtle balance between those
three parameters. The challenge to face is to find materials that show electronic
properties typical of heavily doped semiconductors combined with a poor ability
to conduct heat since heavily doped semiconductors provide a balance between the
large S of lightly doped semiconductors and the high σ of metals. Several strategies
have been adopted to overcome this obstacle. Since the Seebeck coefficient and elec-
trical conductivity are strongly dependent on the geometry of the band structure,
band engineering is regarded as one of the most efficient approach to develop high
performance thermoelectric materials. Therefore, Electronic transport can be im-
proved by manipulating the density of states and band structures of a material by
involving complex dopants, interfaces [15], nano-structuring [16] and unusual elec-
tronic structures [17, 18]. The reduction of the thermal conductivity can be achieved
by the scattering of phonons on atomic length scales through rattling atoms [19],
vacancies, impurities, interstitials, or substitutional atoms, the concept of phonon-
glass electron crystal (PGEC [20]), and dimensional reduction nanostructured mate-
rials [21, 22] .

One of the most influential concepts in thermodynamics is the dimensional reduc-
tion as it can simultaneously improve the power factor and reduce the lattice ther-
mal conductivity. This started with the approach, proposed by Hicks and Dressel-
haus [16], of the possibility to increase Z of certain materials by preparing them in
quantum-well superlattice structures. They found that the ZT of a single layer thick
Bi2Te3 increased by a factor of 13 over the bulk value also the grain boundaries
and interfaces within the single layers could facilitate the scattering of mid/long-
wavelength phonon, contributing to a reduction in the thermal conductivity. Their
calculations showed that layering has the potential to increase significantly the fig-
ure of merit of a highly anisotropic material such as Bi2Te3 that has ascertained
their early assumption. This stimulated subsequent work on nanostructured ther-
moelectrics to increase the figure of merit [23, 24] especially, in the layered com-
pounds [25, 26] as it is found that the electronic band structure of the bulk case
of this compound changes qualitatively as the thickness is reduced down to a few
monolayers [27–31]. For example, the indirect to direct gap transition that occurs at
monolayer thicknesses of the Mo and W transition metal dichalcogenides (TMDCs)
[32].

GaSe and InSe are III − V I semiconducting layered compounds [33–35] that have
been characterized by theeir strong structural anisotropy and nonlinear optical
properties [36–45]. A lot of studies have been realized on them from the basic as-
pects, as their photovoltaic, photo electronic [46–48] and thermoelectric properties.
Concretely, indium-selenium-based compounds have received much attention as
thermoelectric materials since a high thermoelectric figure of merit of 1.48 at 705 K
was observed in In4Se2.35 [49]. Also Wang et al. [50] investigated theoretically the
structural, electronic, and thermoelectric properties of several nanotubes strcuctures
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of InSe at room temperature and they found that the power factor with respect to
relaxation time of one of the studied nanotube is nearly 10 times larger than that of
BiSb nanotubes due to the appearance of light and heavily bands around the Fermi
level that boosted them to be high-performance thermoelectric materials.

Additionally, one of the great advantages of the layered materials is the presence
of strong chemical bonds only between atoms in a single layer and the absence of
strong interfacial bonds between the layers. This can be exploited to grow heterojuc-
tions and superlattices, in the direction of the weak bond by using the van der Waals
epitaxy[51, 52], even between two materials with different physical properties, dif-
ferent crystalline parameters and with various types of crystal symmetry. Several
studies[53–59] have proved that several layered materials can be grown experimen-
tally on other layered materials in spite of the large differences in the lattice constant
and the crystal structure between them. Various techniques have been used to grow
those III − V I materials like the molecular beam epitaxy, chemical vapor deposi-
tion, chemical bath deposition, evaporation technique, and electrochemical atomic
layer epitaxy[60–64]. All of these have motivated us to theoretically study the elec-
tronic and thermoelectric properties of each of GaSe, InSe, the new supper lattice
InGaSe2 in three different structures; the bulk and one layer (monolayer) and 7 layer
(nanoplates).

Objectives and structure of the thesis

The main purpose of this work is to look for new thermoelectric materials with good
transport properties that could be implemented in thermoelectric devices. Hence,
in this thesis a comprehensive study of the electrical and thermoelectric properties
of the bulk, nanoplates and monolayer of each of GaSe InSe and the superlattice
InGaSe2 have been presented. The thesis have been organized as follows:

• In Chapter 1 a general introduction about thermoelectrics is presented.

• In Chapter 2 a brief description of the theories and the codes used in the cal-
culations is exhibited.

• In Chapters 3, 4, 5 a comparison between the calculated band structure, den-
sity of states and the transport coefficients of each of the bulk, nanoplates, and
monolayer structures in GaSe, InSe, and InGaSe2 is discussed, respectively.

• In Chapter 6 the effect of hydrostatic pressure on the transport on the bulk case
of in three studied materials is elucidated.

• Finally the conclusion of this work is presented.
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Chapter 1

General Introduction

The foundation of technology is based on the understanding of the material system.
Specific material properties are required depending on the application. For exam-
ple, the electrical conductivity of copper is exploited to build circuits, and the com-
pressive strength of concrete is needed to create skyscrapers. Therefore the progress
in the technology can be measured by how much we know about the properties of
the materials, that are based mainly on its constitution. Such as, the metallic bonds
that hold the atoms in the metals together leaves the electrons free to drift through
the material when an electric field is applied. However, there is another factor that
can affect the behaviour of the materials: its size. The electrical conductivity, chem-
ical reactivity, mechanical properties, and even how a material interacts with light
can all change at the nanoscale of some materials. Consequently the properties of
a material reckon on its size then the understanding the properties of the materials
on microscopic and macroscopic level is important. One of these properties is the
thermoelectric property. The ability of the material to convert the heat to electric-
ity was discovered in 1821 by the physicist Thomas Seebeck, called Seebeck effect,
and then was explored in more detail by French physicist Jean Peltier and two other
thermoelectric effects have been found.

1.1 Thermoelectric effects

1.1.1 Seebeck Effect

Thomas Johanson Seebeck noticed the deflection of a compass magnet close to a cir-
cuit made of two different materials that were joined in two places with a temper-
ature difference between the junctions. At first, Seebeck thought that the deflection
could be due to magnetism induced by the temperature difference. Then it was re-
alized the generation of an electric current due to the potential difference induced
between the two junctions and the current deflects the magnet by Ampere’s law.
This phenomenon is know as the Seebeck effect. Figure 1.1 shows a schematic di-
agram of this effect where a voltage difference is created across the terminal of an
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FIGURE 1.1: The Voltage difference, ∆V , produced across the termi-
nals of an open circuit made from a pair of dissimilar metals, A and B,
whose junctions are kept at different temperatures, is directly propor-
tional to the temperature difference ∆T = Th− Tc between the hot and

cold junction temperatures

open circuit made from a pair of dissimilar metals, A and B, whose two junctions
are kept at different temperatures.

At a microscopic level, this could be explained by the higher thermal velocities of
the charge carriers in the hot side of the materials with respect to the cold side. Then
they will diffuse from the hot to the cold side more quickly than in the opposite di-
rection [4, 65]. If a thermal gradient is maintained across the material, a continuous
flow of charge carriers give rise to a voltage difference between the two sides. This
is due to the fact that in the warmer side there is an excess of carriers as compared
to the coldest part and the carriers diffuse in order to be homogeneous through the
material. The voltage difference ∆V is proportional to the temperature difference
∆T between the hot and cold sides of the junction;

∆V = −S∆T. (1.1)

The constant of proportionality S is termed as Seebeck coefficient or thermopower.
Even though the term thermopower is a misnormer since it measures the voltage or
electric field(actually the electromotive force) induced in response to a temperature
difference, not the electric power. It has the units of V/K although in practice it is
more common to use microvolts per Kelvin, µV/K. The Seebeck coefficient depends
on the crystal structure of the materials and the conductive properties. It has low
values in metals as both the electrons and holes contribute to the induced thermo-
electric voltage, hence they cancel the contributions of each others to the voltage,
whereas semiconductors can be doped with an excess amount of electrons or holes
and thus can have large positive or negative values of the thermopower depending
on the type of the charge carriers. Thus the sign of the thermopower can determine
if the semiconductor is n− or p− type.
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1.1.2 Peltier Effect

This is the reverse of the Seebeck effect and it bears the name of the physicists who
has discovered it, Jean-Charles Peltier. He found that the flow of electric current
through a junction between two dissimilar metals can produce heating or cooling.
Thus, the heat is absorbed in one junction and rejected in the other junction. The
Peltier coefficient Π is defined as the heat transfer per unit of the applied current
and is described mathematically by the equation [4, 20]:

Π =
Q

I
, (1.2)

where I is the electrical current and Q is the rate of heating or cooling.

1.1.3 Thomson Effect

In 1851, Lord Kelvin predicted the Thomson Effect that comprise both the Seebeck
and Peltier effects. It describes the heating or cooling of a homogeneous conduct-
ing due to current passing through it as a result of a thermal gradient [66]. The
proportionality constant, known as the Thomson Coefficient κ is related by ther-
modynamics to the Seebeck coefficient. The relations with the Seebeck and Peltier
coefficients are [67]:

κ =
ds

d lnT
=
dΠ

dT
− s. (1.3)
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Chapter 2

Theory

2.1 Density functional theory

The fundamental tenet of the density functional theory is that any property of a sys-
tem of many interacting particles can be viewed as a functional of the ground state
density n0(r). That is, one scalar function of positions n0(r), in principle, determines
all the information in the many-body wave functions for the ground state and all the
excited states. The existence proofs for such functionals, given in the original work
of Hohenberg and Kohn and of Mermin[68], are simple. However, they provide no
guidance for constructing the functionals, and no exact functionals are known for
any system of more than one electron.

Density functional theory (DFT) would remain a minor curiosity today if it were not
for the ansatz made by Kohn and Sham [69], which has provided a way to make use-
ful, approximate ground state functionals for real systems of many electrons. The
remarkable successes of the approximate local density(LDA) [70] and generalized-
gradient approximation(GGA) functionals within the Kohn-Sham approach have
led to widespread interest in density functional theory as the most promising ap-
proach for accurate, practical methods in the theory of materials. The attraction of
density functional theory is evident by the fact that one equation for the density is
remarkably simpler than the full many-body Schrödinger equation that involves 3N
degrees of freedom for N electrons.

2.1.1 The quantum many body problem

A solid constitute of heavy, positively charged nuclei and lighter negatively charged
electron. Understanding the properties of this interacting electrons and atomic nu-
clei is the base of material science. The exact many-particle Hamiltonian for a system
of N nuclei and ZN electrons is:
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Ĥ = −~2

2

∑
i

∇2
~Ri

Mi

−~2

2

∑
i

∇2
~ri

mi

− 1

4πε0

∑
i,j

e2Zi

| ~Ri − ~rj|
+

1

4πε0

∑
i 6=j

e2

|~ri − ~rj|
+

1

4πε0

∑
i 6=j

e2ZiZj

| ~Ri − ~Rj|
,

(2.1)

the first term represents the kinetic energy operator for the nuclei, the second for
the electrons. The last three terms describe the Coulomb interaction between elec-
trons and nuclei, between electrons and other electrons, and between nuclei and
other nuclei. The direct solution of Schrodinger’s equation with this Hamiltonian
is an extremely impractical proposition. Almost all the properties of materials can
be known given suitable computational tools for solving this particular problem
in quantum mechanics. Several simplifications has applied to this Hamiltonian to
solve the Schrodinger’s equation and find acceptable approximate eigenstates. The
first one is the Bohr-Oppenheimer approximation [71]; in this approximation the
nuclei are assumed to be frozen at fixed positions and the electrons are in instanta-
neous equilibrium with them as a result of the fact that the nuclei are much heavier
than the electrons. Now the problem is much more simplified to be a problem of
a collection of NZ interacting negative particles moving in the external potential of
the nuclei. It means that the nuclei do not move any more hence their kinetic en-
ergy turned to be zero and the Coulomb interaction between nuclei and other nuclei
reduced to a constant. Then Hamiltonian is reduced to be:

Ĥ =
~2

2me

∑
i

∇2
i +

∑
i

Vext(ri) +
1

2

∑
i 6=j

e2

|ri − rj|
+ EII . (2.2)

2.1.2 The Hohenberg and Kohn theorems

After using the Bohr-Oppenheimer approximation, the problem is much simpler
than before but still too difficult to be solved. The use of density functional theory
could simplify the problem and reduce equation 2.2 to an approximate but tractable
form. The formulation of the Density functional theory as an exact theory of many-
body systems is based upon two theorems, proved by Hohenberg and Kohn:

Theorem I : For any system of interacting particles in an external potential Vext(r),
there is one to one correspondence between the ground state particle density n(r)
and the external potential Vext(r) . It means that the potential is determined uniquely
by the ground state density n(r). Consequently, the Hamiltonian is fully determined
and hence the many body wavefunctions for all states (ground and excited) are
determined. Therefore all the properties of the system are completely determined
given only the ground state density n(r) hence the ground state expectation value
of any observable Ô is a unique function of the ground-state electron density.

〈Ψ|Ô|Ψ〉 = O[n]. (2.3)
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Theorem II : For Ô being the Hamiltonian Ĥ hence universal functional for the en-
ergy E[n] in terms of the density n(r) can be defined, valid for any external potential
Vext(r). For any particular Vext(r), the exact ground state energy of the system is the
global minimum value of this functional, and the density that minimizes the func-
tional is the exact ground state density n(r). As mentioned before that all the prop-
erties can be viewed as a functional of n(r), including the total energy functional:

Evext [n] = 〈Ψ|T̂ + V̂ |Ψ〉+ 〈Ψ|V̂ext|Ψ〉+ EII ,

= FHK [n] +

∫
d3rVext(r)n(r) + EII ,

(2.4)

whereEII is the interaction energy of the nuclei. The Hohenberg-Kohn density func-
tional FHK represents all internal energies, kinetic and potential, of the interacting
electrons system which must be universal by construction since the kinetic energy
and interaction energy of the particles are functionals only of the density. Unfor-
tunately, The Hohenberg-Kohn doesn’t provide the form of the energy functional
Evext [n]. Hence, to solve the equation using the DFT sufficiently accurate approxi-
mations are needed.

2.1.3 The Kohn-Sham ansatz

The approach proposed by Kohn and Sham is a practical procedure to obtain the
ground state density by replacing the original difficult many body problem by an
auxiliary independent particle problem that can be solved more easily. Hence, the
many-body system, obeying the Hamiltonian(2.2), is replaced with a different aux-
iliary non-interacting system that has the same ground state density of the origi-
nal interacting system. This leads to independent-particle equations for the non-
interacting system that can be considered soluble with all the difficult many-body
terms incorporated into an exchange-correlation functional of the density. By solv-
ing the equations one finds the ground state density and energy of the original inter-
acting system with the accuracy limited only by the approximations in the exchange-
correlation functional.

Therefore this approach is based upon two important assumptions:

1. The ground state density of the original many body system can be replaced by
the ground state density of an auxiliary system of non –interacting particles.
This is called “non-interacting-V-representability”.

2. The auxiliary hamiltonian is chosen to have the usual kinetic operator and an
effective local potential V σ

eff (r) acting on an electron of spin σ at point r. The
local form isn’t essential, but it is an extremely useful simplification that is
often taken as the defining characteristics of the Kohn-Sham approach.
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The actual calculations are performed on the auxiliary independent-particle system
defined by the auxiliary Hamiltonian (using Hartree atomic units ~ = me = e =
4π/ε0 = 1):

Ĥσ
aux = −1

2
∇2 + V σ(r). (2.5)

The Kohn-Sham approach to the full interacting many-body problem is to rewrite
the Hohenberg-Kohn expression for the ground state energy functional in the form:

EKS = Ts[n] +

∫
drVext(r)n(r) + EHartree[n] + EII + Exc[n], (2.6)

here Vext(r) is the external potential due to the nuclei and any other external fields
and EII is the interaction between the nuclei. The independent particle kinetic en-
ergy Ts is given by:

Ts = −1

2

∑
σ

Nσ∑
i=1

(ψσi |∇2|ψσi )
1

2

∑
σ

Nσ∑
i=1

|∇ψσi |
2. (2.7)

EHartree[n] the Hartree energy, the classical coulomb interaction energy of the elec-
tron density n(r) interacting with itself, is given by:

EHartree[n] =
1

2

∫
d3rd3r′

n(r)n(r′)

|r − r′|
. (2.8)

It means that all the many-body effects of exchange and correlation are grouped
into the exchange correlation energy Exc . Comparing the Hohenberg-Kohn (2.4)
and Kohn-Sham (2.6) expressions for the total energy shows that Exc can be written
in terms of the Hohenberg-Kohn functional as:

Exc[n] = FHK [n]− (Ts[n] + EHartree[n])

=< T̂ > −Ts[n]+ < V̂int > −EHartree[n].
(2.9)

Thus Exc is just the difference of the kinetic and internal interaction energies of the
true interacting many-body system from those of the fictional independent-particle
system with electron-electron interactions replaced by the Hartree energy. If the
universal functional Exc[n] was known then the Kohn-Sham equations for indepen-
dent particles could be solved and then the exact ground state energy and density
of the many-body electron problem could be found since the density of the auxiliary
system is given by the sum of squares of the orbitals ψσi (r) for each spin σ:

n(r) =
∑
σ

n(r, σ) =
∑
σ

Nσ∑
i=1

|ψσi (r)|2. (2.10)
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The Kohn-Sham method provides a feasible approach to calculating the ground
state of many-body electron system when a good approach can be found to describe
the true exchange-correlation energy.

2.1.4 The local density approximation

The only approximation that was made till now is the Born-Oppenheimer approxi-
mation after that no approximation were made. To define the exchange-correlation
functional an approximation should be made. In the Kohn-Sham work they stated
that the solids can often be considered as close to the limit of the homogeneous elec-
tron gas. In that limit, it is known that the effects of exchange and correlation are
local in character, and they proposed making the local density approximation, in
which the exchange correlation energy is has this form:

ELDA
xc =

∫
n(r)εhomxc (n(r))d3r, (2.11)

where εxc is the exchange correlation eneergy of the homogeneous electron gas. It
means that the exchange correlation energy due to a particular density could be
found by dividing the materials into very small volumes with a constant density.
Each such volume contributes to the total exchange correlation energy by an amount
equal to the exchange correlation energy of an identical volume filled with a homo-
geneous electron gas, that has the same total density as the original material has
in this volume. Hence, LDA is expected to perform well for systems with a slowly
varying density. Surprisingly it was very accurate in many other (realistic) cases too,
this could be reasonable due to the fact that for typical densities found in solids, the
range of the effects of exchange and correlation is rather short.

2.1.5 Generalized-gradient approximations (GGAs)

The success of LDA and then the discovering of its shortcoming has led to the de-
velopment of various Generalized-gradient approximations (GGAs) with marked
improvement over LDA for many cases. In this approximation the exchange-
correlation contribution of every tiny volume not only depends on the local den-
sity in that volume, as in LDA, but also on the density in the neighboring volumes.
Thus, in GGA there is a functional of the magnitude of the gradient of the density
|∇n| as well as the value n at each point and the functional could be defined as a
generalized form of eq. 2.11:

EGGA
xc =

∫
n(r)εhomxc (n,∇n)d3r, (2.12)
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where εhomxc (n,∇n) = Fxc(n,∇n)εhomx , Fxc is dimensionless, and εhomx is the exchange
energy of the unpolarized gas. Widely used GGAs can now provide the accuracy re-
quired for density functional theory to be widely adopted by the chemistry commu-
nity. Even though the performance of GGA is slightly better than LDA, there are a
few drawbacks. Since in LDA approximation there is only one exchange correlation
functional, because there is a unique definition for εxc but in the GGA approximation
there is some freedom to incorporate the density gradient, and therefore several ver-
sions of GGA exist. Moreover, in practice one often fits a candidate GGA-functional
with free parameters to a large set of experimental data on atoms and molecules.
The best values for these parameters are fixed then, and the functional is ready to be
used in solids. Therefore such a GGA-calculation is strictly spoken not an ab initio
calculation, as some experimental information is used. Nevertheless, the one used
in our calculations is parameter free.

2.1.6 Solving the equations

After using the approach of Kohn-Sham, an infinite set of one-electron equations
has been obtained:

(
− ~2

2me

∇̂2
m +

e2

4πε0

∫
ρ(~r′)

|~r − ~r′|
d~r′ + Vxc + Vext

)
φm(~r) = εmφm(~r), (2.13)

the φm are mathematical single particle orbitals. Solving in most methods means
that we want to find the coefficients Cm

p needed to express φm in a given basis set φbp:

φm =
P∑
p=1

Cm
p φ

b
p. (2.14)

The wave functions φm belong to a function space which has an infinite dimension,
P is therefore in principle infinite. Practically, one works with a limited set of basis
functions. Such a limited basis will never be able to describe φm exactly but one
could try to find a basis that can generate a function that is close to the true wave
function φm.

Having chosen a basis (and hence a finite value for P we realize that we can deal
with the equations 2.13 as eigenvalue problem) for a given m, substitute eq. 2.14 in
eq. 2.13 and left-multiplied with < φbi |(i = 1, . . . , P ) >, this leads to:. . . . . . . . .

... < φbi | ~Hsp|φbi) > −εm < φbi |φbi) >
...

. . . . . . . . .

 =

C
m
1
...
Cm
p

 =

0
...
0

 . (2.15)

Diagonalization of the Hamiltonian matrix will lead to P eigenvalues and P sets
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of coefficients that express each of the P eigenfunctions in the given basis. The
larger P leads to better approximated eigenfunction, but there is time-consuming
the diagonalization of the matrix in equation eq. 2.15. The basis set that we have
used in this work is the linearized augmented plane wave.

2.1.7 The Linearized Augmented plane wave (LAPW) method

The LAPW method is a procedure for solving the Kohn-Sham equations for the
ground state density, total energy, and eigenvalues (energy bands) of a many-
electron system by introducing a basis set which is especially adapted to the prob-
lem. This adaptation is achieved by dividing the unit cell into: (1) non-overlapping
atomic spheres (centered at the atomic sites) called muffin tin spheres and (2) an in-
terstitial region as shown in Figure 2.1. The method uses two different basis sets in
the two regions:

FIGURE 2.1: Division of a unit cell in muffin tin regions and the inter-
stitial region, for a case with two atoms. The block dot is the region of
the axis system (which may but not need to coincide with the nucleus

of an atom)

1. Inside the atomic sphere (Sα) of radius (Rα) a linear combination of radial
functions times spherical harmonics Y l

m(r̂′) is used:

φ
~K
~k

(~r) =
∑
l,m

(Aα,
~k+ ~K

l,m uαl (r′, Eα
1,l) +Bα,~k+ ~K

l,m u̇αl (r′, Eα
1,l))Y

l
m(r̂′), (2.16)



20 Chapter 2. Theory

where ~K is a reciprocal lattice vector, ~k is a vector in the first Brillouin zone, ~r is
the vector position, α labels the different atoms in the unit cell,Aα,

~k+ ~K
l,m , Bα,~k+ ~K

l,m

are undetermined parameters, ~r′ = ~r − ~rα is the position inside the sphere
given with respect to the center of each sphere, r̂′ indicates the angles θ′ and ϕ′

which specifying the direction of ~r′ in spherical coordinates, uαl (r′, Eα
1,l) is the

solution to the radial part of the Schrödinger equation for a free atom α with
energy Eα

1,l (chosen normally at the center of the corresponding band), and
u̇αl (r′, Eα

1,l) is the energy derivative of uαl (r′, Eα
1,l) evaluated at the same energy

Eα
1,l.

2. In the interstitial region, a plane wave expansion is used:

φ
~K
~k

=
1√
V
ei(

~k+ ~K)~r, (2.17)

where V is the volume of the unit cell.

The coefficients Aα,
~k+ ~K

l,m , Bα,~k+ ~K
l,m which appeared in Eq. 2.16 are determined by re-

quiring that the function in the sphere matches the plane wave both in value and in
slope (derivative) at the sphere boundary (following basis quantum mechanics). But
to do that, it is easier first to expand the plane wave in spherical harmonics around
the origin of the sphere of the atom α .uαl (r′, Eα

1,l),u̇αl (r′, Eα
1,l) are obtained by numer-

ical integration of the radial part of the Schrödinger equation on a mesh inside the
sphere. The solutions to the Kohn-Sham equations are expanded in this combined
basis set of LAPW’s according to the linear variational method.

φn~k(~r) =
∑
~K

Cn,~k
~K
φ
~k
~k
(~r), (2.18)

where n is the band index. The coefficients Cn,~k
~K

are determined by the Rayleigh-
Ritz variational principle. Note that this basis set is ~k dependent: all eigenstates
φn~k(~r) that have the same ~k but a different n will be expressed in the basis set this
particular value of ~k. For eigenstates with another ~k, a new basis set using a different
~k has to be used. In practice we cannot work with an infinite basis set, and we have
to limit it somehow. For the LAPW basis set a good quantity to judge the accuracy
of the result is the product Rmin

α Kmax between the smallest muffin tin radius and
Kmax (which is the radius of a sphere centered at the origin in the reciprocal space
where all the reciprocal lattice vectors that are inside this sphere are taken into the
basis set). In the following sections, we will write it RKmax for abbreviation.



2.1. Density functional theory 21

2.1.8 LAPW with local orbitals (LAPW+LO)

The orbital that contain electron which is extremely well bound to the nucleus and
behave almost exactly as if it were in a free atom is called core state. The core state
does not participate directly in the chemical bonding with other atoms. Therefore,
it must be located entirely in the muffin tin sphere. valence states leaks out of the
muffin tin sphere as they participate in chemical bonds. While the valence states
in the LAPW are represented by plane waves, the core states are treated as in free
atoms, but subjects to the potential due to the valence states. The low-lying valence
states (which lay near the Fermi level) are called semi-core states. It frequently hap-
pens that states with the same l but a different principal quantum number n are both
valence states. To choose the energy Eα

1,l in this case, we need to add another type
of basis set, called a local orbital (LO). A local orbital is defined as:

φlmα,LO(~r) =

{
0 ~r /∈ Sα.
(Aα,LOlm uαl (r′, Eα

1,l) +Bα,LO
lm u̇αl (r′, Eα

1,l) + Cα,LO
lm uαl (r′, Eα

2,l))Y
l
m(r̂′) ~r ∈ Sα.

(2.19)

A local orbital is defined for a particular l and m and for a particular atom α. A
local orbital is zero in the interstitial region and in the muffin tin spheres of other
atoms, hence its name local orbital. In the muffin tin sphere of atom α, the same
uαl (r′, Eα

1,l) and u̇αl (r′, Eα
1,l) as in the LAPW basis set are used, with the linearization

energy Eα
1,l as suitable value for the highest of the two valence states. The lower

valence state (that is much more free-atom-like) is sharply peaked at an energy Eα
2,l).

A single radial function uαl (r′, Eα
2,l)) at that same energy will be sufficient to describe

it. Local orbitals are not connected to plane waves in the interstitial region; they
have hence neither ~k nor ~K-dependence. The three coefficients Aα,LOlm , Bα,LO

lm and
Cα,LO
lm are determined by requiring that the LO is normalized, and has zero value

and zero derivative at the boundary of the muffin tin sphere.

2.1.9 General considerations

In its general form, the LAPW method expands the potential in the following form
[ref]:

V (r) =

{∑
lm Vlm(r)Ylm(r̂) inside the sphere,∑
G VGe

iGr outside the sphere,
(2.20)

and the charge densities analogously. Thus no shape approximations are made, a
procedure frequently called a full potential method.
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2.1.10 WIEN2k Package

The code that we have used in this work is called WIEN2K. It consists of several
independent programs which are linked via C-SHELL SCRIPTS. The flow and usage
of the different program is illustrated in Figure 2.2. After creating the structure file
which contains information about the geometry of the compound, the calculations
are initialized. The initialization consists of running a series of auxiliary programs,
which generates the inputs for the main programs. Those programs are:

1. SETRMT a program which helps to select the proper RMT values.

2. NN using this program a list of the nearest neighbor distances up to a specified
limit (defined by a distance factor) is created and thus helps to determine the
atomic sphere radii. In addition it is a very useful additional check of the
structure file (equivalency of atoms). At the same time check that the muffin
tin spheres do not overlap.

3. SGROUP determines the space group of the structure defined in the structure
file.

4. SYMMETRY generates from the structure file, the initial file), the space group
symmetry operations, determines the point group of the individual atomic
sites, generates the lm expansion for the lattice harmonics expansion and de-
termines the local rotational matrices.

5. LSTART generates the free atomic densities and determines how the differ-
ent orbitals are treated in the band structure calculations (i.e. as core or band
states, with or without local orbitals). By inspection (from the output of the
file), we can decide if it is necessary to include a set of orbitals as local orbitals.

6. KGEN generates a k-mesh in the irreducible part of the BZ.

7. DSTART generates a starting density for the self-consistency cycle (SCF) by a
superposition of atomic densities generated in LSTART.

Then a self-consistency cycle is initiated and repeated until the convergence criteria
(energy convergence, charge convergence or force convergence) are reached. This
cycle consists of the following steps:

1. LAPW0 (potential) generates potential from density.

2. LAPW1 (BANDS) calculates the valence bands (eigenvalues and eigenvec-
tors).

3. LAPW2 (RHO) computes valence charge densities from eigenvectors (wave
functions).
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4. LCORE computes core states and densities.

5. MIXER mixes input and output densities to guarantee convergence.

NN- check for
overlap 
spheres

SGROUP

Struct files

SYMMETRY

Struct Files
Input files

LSTART
atomic calculation

𝑯𝝍𝒏𝒍 = 𝑬𝒏𝒍𝝍𝒏𝒍

Atomic densities
Input files

KGEN

K-mesh
generation

DSTART
Superposition

of atomic
densities

ρ

LAPW0
𝛁𝟐𝑽𝒄 = −𝟖𝝅𝝆    𝑷𝒐𝒊𝒔𝒔𝒐𝒏

𝑽𝒙𝒄 𝝆            𝑳𝑫𝑨

𝑽 = 𝑽𝑪 + 𝑽𝑿𝑪

𝑽𝑴𝑻𝑽

𝑳𝑪𝑶𝑹𝑬 
𝒂𝒕𝒐𝒎𝒊𝒄 𝒄𝒂𝒍𝒄𝒖𝒍𝒂𝒕𝒊𝒐𝒏𝒔

𝑯𝝍𝒏𝒍 = 𝑬𝒏𝒍𝝍𝒏𝒍

𝑬𝒄𝒐𝒓𝒆𝝆𝒄𝒐𝒓𝒆

LAPW1
−𝛁𝟐 + 𝑽 𝝍𝒌 = 𝑬𝒌𝝍𝒌

𝝍𝒌𝑬𝒌

MIXER
𝝆𝒏𝒆𝒘 = 𝝆𝒏𝒆𝒘⨂(𝝆𝒗𝒂𝒍 + 𝝆𝒄𝒐𝒓𝒆)

𝝆𝒐𝒍𝒅

𝝆𝒏𝒆𝒘

Converged?STOP

LAPW1

𝝆𝒗𝒂𝒍 = 𝝍𝒌
∗

𝑬𝒌 𝑬𝑭

𝝍𝒌

𝝆𝒗𝒂𝒍

no

yes

FIGURE 2.2: Program flow in WIEN2k.
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2.2 Boltzmann theory: The semi-classic equations

The efficiency of the thermoelectric devices is limited by the electronic and thermal
transport properties of the available thermoelectric materials, represented in the fig-
ure of merit:

ZT =
σS2

κ
T , (2.21)

where S is the Seebeck coefficient, also known as the thermopower, σ and k are
the electronic and thermal conductivities, respectively. A modeling of this parame-
ters is important in the search for a good thermoelectric materials. The most com-
mon procedure for modeling them is semi empirical by using a combination of a
parametrized band structure fitted to experimental results. This approach works
reasonably well in the study of the regions that is not too far from the conditions of
the experiment used to fit the model as found in previous studies [72–74]. So it will
be of limited when applied for the discovery of a new thermoelectric materials. The
other approach proposed by Madsen et. al.[75] that will be adopted in this study
is based on obtaining as much information as possible from first-principles calcu-
lations of the electronic structure to reduce the empirical information required to a
minimum.

The parameters in eq. 2.21 can be deduced using the Boltzmann theory [76–79].
While the Seebeck coefficient, the electrical conductivity, and the electronic ther-
mal conductivity can be obtained from the Boltzmann transport equation (BTE) for
electrons, the BTE for phonons gives the lattice or phonon thermal conductivity. In
general in a microscopic model of transport process, the electric current j, produed
due to applying an electric and magnetic field and a thermal gradient, can be written
in terms of the conductivity tensors as follows:

ji = σijEj + σijkEjBk + vij∇jT + ... (2.22)

This conductivity tensors can be expressed in terms of the group velocity:

σαβ(i, k) = e2τi,kvα(i, k)vβ(i, k), (2.23)

, where the group velocity is defined as the gradient in reciprocal space of the dis-
persion relation (band structure) of the electrons in the crystal, and equal:

vα(i, k) =
1

~
∂εi,k
∂kα

. (2.24)

From the solution of the Boltzmann equation, in the constant relaxation time ap-
proximation, the transport coefficients can be written as[75]:

σαβ(T ;µ) =
1

Ω

∫
σαβ(ε)[−∂fµ(T ; ε)

∂ε
]dε. (2.25)
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vαβ(T ;µ) =
1

eTΩ

∫
σαβ(ε)(ε− µ)[−∂fµ(T ; ε)

∂ε
]dε. (2.26)

k0
αβ(T ;µ) =

1

e2TΩ

∫
σαβ(ε)(ε− µ)2[−∂fµ(T ; ε)

∂ε
]dε. (2.27)

Sij = Ei(∇jT )−1 = (σ−1)αivαj. (2.28)

k0 is the electronic part of the thermal conductivity. σαβ(ε) is the energy projected
conductivity tensor can be defined using the conductivity tensor as :

σαβ(ε) =
1

N

∑
i,k

σαβ(i, k)
δ(ε− εi,k

dε
), (2.29)

where N is the number of the sampled k-points. All the parameters depends on the
relaxation time τ . Hence, for calculation of the semi-classic transport coefficients,
we need to calculate first the group velocity. Calculating the group velocity using
the definition in equation 2.24 is numerically difficult to implement. Therefore, elec-
tronic structure codes is used to calculate it, one of them is the BoltzTraP code.

2.2.1 BoltzTraP code

Electronic structure codes usually evaluate the band energies in a numerical mesh
for the Brillouin zone sampling, therefore the group velocity must be evaluated as
a numerical derivative. This differentiation requires the use of a computationally
costly very fine grid. In order to reduce the computational cost, the BoltzTraP pro-
gram [75] is used as it employs a Fourier expansion of the band energies where the
space group is maintained by using star functions:

ε̃(k) =
∑
R

CRiSR(k), SR(k) =
1

n

∑
[Λ]

e(ik.ΛR), (2.30)

R is a direct lattice vector, [Λ] are the n point group rotations. The idea is based
on using more star functions than the band energies, and constraining the fit so ε̃i
are exactly equal to the band-energies εi. Therefore, after obtaining the analytical
representation of the band-structure it is then a reasonable procedure to calculate
band structure dependent quantities.
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Chapter 3

The electronic, and thermoelectric
properties of GaSe

3.1 The Crystal structure

GaSe and InSe crystallize in a layered structure. The basic structure and symmetry
of an isolated layer is the same in all the layered materials (D3h point group) since
each layer has a hexagonal symmetry and is composed of two planes of metal atoms
sandwiched between two chalcogen planes and stacked along the c-axis. These lay-
ered compounds are characterized by highly anisotropic bonding forces; the bonds
inside such a tetralayer are of covalent type with some ionic contributions since the
cations are tetrahedrally coordinated (three anions and one cation), while the anions
are bounded to three cations. Covalent cation-cation bonds are oriented perpendic-
ular to the layers. This bonds saturate the bonding in the crystal and are responsible
for the semiconducting behavior. The layers are stacked together with predomi-
nantly van der Waals forces the distance between the layers is called the van der
Waals gap.

Due to the weakness of interlayer bonding various polytypes exist with different
stacking sequences of the layers. The stacking geometry determines the polytype of
macroscopic crystal. Most of the structures crystallize in the hexagonal or rhombo-
hedral lattice showing four possible stacking arrangements of the complex layers,
leading to four polytypes, named β, ε, γ, and δ. ε, β and δ have hexagonal structure
with different number of atoms in the unit cell while γ has rhombohedral lattice. A
strong covalent bonding within the layer and the weak van der Waals bond between
them lead to a strong anisotropy in all the polytypes. Hence the optical and electri-
cal properties, and the thermal conductivity, etc. remarkably differ in the directions
along the c-axis (perpendicular to the layer planes) and in the plane of the layers.

In the case of GaSe , the most common polytype is the hexagonal [80] ε− GaSe
with the space group P 6̄m2 (D3h point group) and is characterized by two lattice
parameters a and c. There are two layers per hexagonal unit cell and two formula
units (four atoms) per layer. While for InSe , the most common polytype is γ−InSe
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xy
z

FIGURE 3.1: The upper panel display the unit cell of the hexagonal
ε− polytype of GaSe or InSe. The largest spheres (blue) represents the
anions (Se) atoms and the smaller ones (red) represents the cations (Ga
or In) atoms. Only the bonding between the interlayer atoms is showed
to illustrate the layered character of the compounds. The lower Panel

shows nanoplates of 7 layers of GaSe or InSe
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with a space group R3̄m (C3v point group) with a sequence of three layer in the
rhombohedral unit cell [81]. In this work, only the ε-polytype of both GaSe and InSe
has been studied to compare their structural, electrical and thermoelectric properties
with the ε-polytype of new superlattice InGaSe2 . A fragment of the crystal lattice
of ε−Polytype of GaSe or InSe is shown in the upper panel of figure 3.1, where
the layered atomic arrangement is clearly visible. In the lower panel of the figure
The structure of a supercell constructed of 7 layers in the z direction and called it
nanoplates is presented.

3.2 Computational details

The electronic structure calculations of the bulk, nanoplates, and monolayers cases
of all the studied compounds have been performed within the framework of the
density functional theory by using the full potential linearized augmented plane
wave(FP-LAPW) method as implemented in the Wien2k code [82]. Core states are
treated within a multi-configuration relativistic Dirac-Fock approach, while valence
states are treated in scalar relativistic approach. The generalized gradient approxi-
mation(GGA) with the formalism of Perdew et al.[83] has been used to calculate the
exchange correlation energy.

The convergence of the calculations in terms of the size of the plane-wave basis set
and the k-points sampling within the irreducible part of the Brillouin zone have
been guaranteed, by varying the value of the cutoff parameter RMT Kmax (where
Kmax is the largest reciprocal lattice vector used in the plane wave expansion and
made the expansion up to lmax = 6 in the muffin tins, where lmax is the maximum
value of the angular momentum and RMT is the smallest of the Muffin tins sphere
radii.), Gmax (where Gmax is the magnitude of the largest vector G in the Fourier ex-
pansion of the product of two orbitals and the generated potential in the interstitial
region (Eqs. (13) and (14) in the paper[84]) and k − mesh (the number of k−points
in the irreducible wedge of the Brillouin zone), and calculate the total energy as a
function of these parameters.

From these calculations the value of RKmax, Gmax and k −mesh at which the total
energy is a minimum has been determined. The value of RKmax was 12 Ry for the
case of GaSe and 13 Ry for InSe. The value of the atomic sphere radius RMT has
chosen to be 2.25, 2.35 a.u. for In and Se atom respectively in InSe while for the case
of GaSe , it has chosen to be 2.15 a.u. for both Ga and Se atom. The value of Gmax

was 13 and 14 Ry for GaSe and InSe, respectively. A set of 48 k−points, equivalent
to a 14 × 14 × 2 Monkhorst-Pack grid in the unit cell has been chosen for GaSe and
InSe The steps of the structure optimization procedure were :

• firstly, the lattice parameters were taken from experimental studies[85]; for
GaSe , the experimental lattice parameters were a = 3.759Å and c = 15.968Å,
while for InSe a = 3.999Å and c = 16.7Å have been used.
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• Then the volume was relaxed towards the minimum of the total energy. From
the curves of total energies calculated with the GGA as a function of the vol-
ume, the optimized value of the lattice parameter is taken by using the Birch–
Murnagham equation of state[86].

The nanoplates structure has been created by using the unit cell of the optimized
structure of the bulk and then the supercell program, inside the wien2k code, has
been executed to obtain only 7 atomic layers in the z − axis and no changes have
been made in both the y− and x− axis.

For the case of monolayer, a vacuum region of 20Å was added so that the interac-
tions between the monolayer and its period image can be neglected.

The electronic band structures of the bulk case for all the studied materials have
been calculated within the GGA at the theoretical equilibrium lattice constants, the
optimized ones that we have obtained, without and with the modified Beck-Johnson
correction [87] which allows the calculations of the band gaps with an accuracy sim-
ilar to very expensive GW calculations [88, 89]. For the 2D structures, nanoplates
and monolayer, the modified Beck-Johnson correction was not used as it is known
that the correction doesn’t work well for the case of the few layers calculation, and
the band structure has been calculated using the lattice constant of the optimized
bulk structure.[82]

According to the Boltzmann transport, the thermoelectric transport coefficients can
be expressed as a function of the transport distribution function [90, 91], which can
be determined by the electronic structure and the electron scattering mechanisms
of the materials. Hence the electronic transport coefficients are derived from the
calculated electronic structure of all the studied cases based on the semiclassical
Boltzmann transport theory and rigid-band model, as implemented in the BoltzTraP
code. Within this method, the Seebeck coefficient S can be calculated independent
of the relaxation time τ , however, the electrical conductivity σ is calculated with τ
inserted as a parameter, that is, what we obtain is σ/τ . We plot the calculated elec-
tronic transport coefficients as a function of the chemical potential µ. The transport
coefficients have been calculated using a dense mesh of 364 k− points in the irre-
ducible wedge of the Brillouin zone that is equivalent to a 30 × 30 × 6 Monkhorst-
Pack grid in the unit cell.
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3.3 Electronic properties

3.3.1 Electronic band structure

The investigation of the electronic band structure helps to understand the electronic,
optical, and thermoelectric properties of the material. The electronic structure calcu-
lations have been done using the optimized lattice parameters obtained for ε−GaSe;
a, b = 3.8145Å and c = 16.2035Å. This optimized lattice parameters are larger than
the experimental ones [92, 93]. This could be explained based on the fact that the
layered semiconductors have a complicated structural for a normal structure opti-
mization procedure, since it includes the interlayer van der Waals interaction that
is not taken into account within the DFT. And also it is known that the generalized
gradient approximation(GGA) tends to overestimate the interatomic distances and
hence the lattice parameters of the unit cell. In this section a comparison between the
electronic band structure of the bulk, nanoplates, and monolayer of ε−GaSe will be
presented and discussed. The band structure of three studied structures of ε−GaSe
is shown in fig 3.2. The curves were plotted along the high symmetry directions of
a 3D Brillouin zone, so the electronic structure of thin and bulk crystals could be
compared. The blue dotted curves represent the band structure that has been calcu-
lated by including the modified Becke and Johnson correction (mBJ) [87] while the
black curves represent the band structure that has been calculated by using only the
generalized gradient approximation with the formalism of Perdew et. al. [83]. The
high symmetry points (axes), labeled as Γ,M,K,Γ and A are used to describe the
electronic band structure.

Fig. 3.2 shows that for the bulk case of the ε−GaSe , both valence band maxima and
conduction band minima occurs at the center of the Brillouin Zone, Γ. Indicating
that the bulk GaSe is a direct band gap semiconductor, the same results have been
obtained in a previous theoretical work [94]. At the same time we noticed that after
applying the modified Becke and Johnson correction, the minimum of the conduc-
tion band has been shifted to higher values leading to an increase of the band gap
value in comparison to the one calculated only with the GGA approximation. This
coincide with the fact that DFT underestimates the conduction band energies[95–
97] and leeds to a low estimate of the band gap value hence the value of the band
gap calculated with the mBJ correction is supposed to be closer to the experimental
value. It can be also noticed from the bands located between−7.0 eV and−3 eV that
the mBJ correction displaces up the valence bands at the Γ point.

Then when we move to the middle and lower part of fig. 3.2 where the 2 dimen-
sional cases are presented, nanoplates and monolayer, respectively. It was found
that even though the minimum of the conduction band, in both cases, still occurs
at Γ the same as in the bulk case, the evolution of the valence band has changed
depending on the thickness of the material. It has been noticed that the maximum
of the Valence band has moved to be in the Γ−K direction. This changes in the lo-
cation of the maximum of the valence band started slightly in the case of nanoplates
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as there was a very small difference, 0.00196 eV, between the energy of the MVB and
the valence band maximum at Γ. This difference has increased in the case of mono-
layer, 0.09967 eV, and creates a valley in the valence band which has been named in
the literature by Mexican hat dispersion [98]. This results indicate that by moving
from the three dimensional case to the two dimensional cases, ε−GaSe exhibited
a crossover from a direct to an indirect gap semiconductor and this behaviour oc-
curred not only in the case of one layer but also in the case of 7 layers which is
the case of nanoplates in our study. In the nanoplates case the number of bands
increased as a result of the increase of the number o atoms in the unit cell.

We should mention that there is another maximum between Γ and M the difference
between this maximum and the maximum of the valence band is a bout 2.8 × 10−4

and 3 × 10−3 eV for nanoplates and monolayer, respectively. Hence, the valence
band is less dispersed than the conduction band. Since, in the conduction band the
minimum is located Γ while in the valence band the maximum is located between
two symmetry points. It means the electrons can easily transfer between the two
maximum of the valence band with a small amount of energy. The same behavior
has been obtained in the previous theoretical study of monolayer ε−GaSe [99], as
they expected the cross over from direct to indirect gap semiconductor in the 2D
sheet limits. As the valence band has less dispersion in both the nanoplates and
monolayer cases in comparison with the bulk case, it means that the effective mass
of the holes in the 2D cases is larger than the effective mass of the holes of the bulk
case. This behavior indicates that the p-type doping of the 2D ε−GaSe may be more
preferable for good thermoelectric properties than the n-type. A similar feature was
previously found to exist in bulk InSe under pressure. [100]

TABLE 3.1: Calculated band gap in eV for the bulk, nanoplates, and
monolayer GaSe

GaSe
EGGA
direct(eV) EGGA

indirect(eV) EmBJ
direct(eV)

Bulk 0.82689 1.85041
Nanoplates 0.85451 0.85255
Monolayer 1.90071 1.80104

The band gap value of the bulk, nanoplates, and monolayer ε− GaSe without and
with the using of the mBJ correction are shown in table 3.1. In the table, we can
see the big difference between the band gap value of the bulk calculated with and
without the mBJ correction that have been mentioned before. The moderate band
gap of ε− GaSe indicates the thermoelectric performance can be easily optimized
within a reasonable doping level. For both the nanoplates and monolayer cases the
calculation has been done using only using the GGA. By looking in the table 3.1, it
is clear that in the nanoplates case there was a little increase in the value of the band
gap in comparison with the bulk case while in the monolayer case this increase was
larger and led to a wider band gap this increase could be attributed to the absence
of the interlayer bond in the monolayer case.
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FIGURE 3.2: The calculated band structure for bulk ε− GaSe in the
bulk, nanoplates and monolayer structures. The dark solid line rep-
resents the calculation with GGA. The blue dotted line represents the

calculation with GGA+mBJ
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3.3.2 Total and partial density of states

The calculated total (DOS) and partial density of states (PDOS) of bulk, nanoplates,
and monolayer ε − GaSe and has been presented and discussed in this section to
be able to investigate the difference between the two dimensional and three dimen-
sional cases. Figures 3.3, 3.4 and 3.5 show the total density of states, the contribution
of the Ga atoms to the DOS and the contribution of the Se atoms to the DOS, of the
three studied cases, respectively. The partial DOS for each element is a sum of a
partial DOS over all muffin-tin spheres of the same compound.

Our calculation showed the Ga-3d states are about 15.2 eV below the top of the va-
lence band and are considered as a core states. The lowest band contribution to the
bound is around 7.0 eV below the maximum of the valence band. The way by which
the orbitals of the cation and anion contributes to the valence and conduction band
has not been affected qualitatively by the reduction of the dimensional of the GaSe
compounds. All the states shown in figure 3.3 are 4s− 4p Ga states hybridized with
the 4p Se states and a very small contribution from 4s Se states. The lower valence
band is dominated by the main contribution that comes from Ga 4s states also there
are little contributions from Se- 4s, 4pz and 4(px+py) states to that band. The valence
band at Fermi level has the p characters as it is formed mainly from Se and Ga 4pz
and 4(px + py) orbitals, while there is a very small contribution comes from Ga 4s
state. On the other hand, the lower conduction bands are mainly constituted of Ga
4s−orbital hybridized with Ga and Se 4pz, 4(px+py) states as in previous study [94].
For the three studied cases of ε− GaSe even though the contribution of the atomic
orbitals is qualitatively similar, there was a noticeable difference between the values
of the total density of states since the largest value has been found in the nanoplates
case and the lower one was in the case of monolayer since in this case the number
of atoms is smaller that coincide with the number of atoms involved in each case.
Also, the most important change that was found between the three cases was at the
maximum of the valence band since only in the monolayer case there was an abrupt
increase in the total density of states at the Fermi level and this could improve the
thermoelectric properties of the monolayer case in comparison with the bulk and
nanoplates cases. At the same time, in the monolayer case the density of states
tends to have more defined peaks while for the bulk and nanoplates the appearance
of these peaks over the continues curve were less defined and this could be due to
the absence of the interlayer interactions in this case.
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FIGURE 3.3: The calculated total density of states for bulk, nanoplates,
and monolayer ε−GaSe
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FIGURE 3.4: The partial contribution of Ga atoms to the total density of
states in bulk, nanoplates, and monolayer ε−GaSe
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3.4 Transport Coefficients

3.4.1 Seebeck Coefficient

The conversion of heat into electricity at the junction of different types of wire is
known by the Seebeck effect that has been discovered by Thomas Johann Seebeck in
1821 [101]. The ratio of the resulting voltage difference, produced between the two
edges of a sample due to an applied temperature gradient between these two points
when the electrical current is zero, and the temperature difference is defined as the
Seebeck coefficients S and it is often referred to as thermopower even though it is
more related to potential than power. Actually if we short circuit the two ends of
the sample, a current (electromotive force) will flow through the sample.

The response of the materials to any applied temperature gradient can be under-
stood by the behavior of the Seebeck coefficient of the materials as it is related to
the its electronic structure. The sign of the Seebeck coefficient with reference to
the chemical potential indicates the type of the dominant charge carrier, positive S
represents the p−type materials whereas n−type materials have negative S. The
chemical potential defines the doping level or carrier concentration in a material,
which is very important for enhancing the thermoelectric nature of a material for
practical realization. However, we should keep in mind that the magnitude of the
charge carrier concentration corresponding to the chemical potential depends on the
actual band structure, which are not claimed to be exactly predicted by the single
particle DFT calculations. Since it is known that besides the advantage of DFT, it has
its limitation [102, 103].

It is known that the electronic structure near the Fermi energy is significant for ther-
moelectric properties i.e. when the electronic states of the studied material around
the Fermi level are extremely dense this would play a vital role for the thermoelec-
tric nature of these materials. So we are going to explain the relation between the
electronic structure near the band edges and the results of the Seebeck coefficient.
Within the constant scattering time approximation the Seebeck coefficient is directly
determined by the electronic band structure with no adjustable parameters. A com-
parison between the Seebeck coefficients of the bulk, nanoplates, and monolayer ε−
polytype of GaSe material vs chemical potential at 300 K are presented in the figure
3.6 in order to see the effect of the quantum confinement in this material on its See-
beck coefficient. It is assumed that µ=0 corresponds to the middle of the band gap.
In the rigid band approximation [104, 105] the band structure is assumed unaffected
by doping, which only leads to a shift of the chemical potential. For semiconduc-
tors, it is a good approximation for calculation of the transport properties, when the
doping level is not too high [106, 107].

One can see in the vicinity of EF that the Seebeck coefficients exhibit two
pronounced peak for n − /p−type of all the studied case. The range where
the materials exhibit good values for the Seebeck coefficient was similar in
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FIGURE 3.6: The Seebeck coefficients of the bulk, nanoplates and mono-
layer ε− GaSe at 300 K

the bulk and nanoplates cases [−0.55, 0.55] while it was wider in the case of
monolayer[−0.95, 0.95] which indicates that in the bulk and nanoplates cases the
compounds favor low doping. Beyond those points the Seebeck coefficient de-
creases. The discontinuity in the behavior of the Seebeck coefficient in the mono-
layer case could be attributed to the precision of the calculations, in the study of the
thermoelectric properties of the fully hydrogenated graphene similar behavior has
been obtained for the calculated Seebeck coefficients at 300K [108].

We noticed that the Seebeck coefficient exhibits the same behaviour in both the bulk
and nanoplates cases although there was a small difference between the maximum
values obtained in the p−type and n−type in each case. Since the maximum value
of the Seebeck coefficient in the n−type(p−type) was 1294 (1388) µV/K and 1310
(1311) µV/K in the bulk and nanoplates, respectively. It is clear that the highest
values of the Seebeck coefficients, obtained from all the studied case, were the one
of monolayer GaSe since the maximum value of the Seebeck coefficient at 300K in
the p−type region was 2893.8µV/K while it was 2611.59µV/K in the n−type region.
Even though the values of the Seebeck coefficient obtained in both the nanoplates
and bulk cases were smaller in comparison with the values obtained in the case of
monolayer, their values were high in comparison with the typical values obtained in
the semiconductors materials. Usually the values of the Seebeck coefficient should
be larger than 200µV/K in the efficient thermoelectric materials [109, 110], no mat-
ter p−type or n−type for all the studied structures, the average of S is much larger
than this value within a reasonable value of the carrier concentration level, which
indicates higher values of S and there may be higher values of S2σ and ZT . We
found that our calculated values for the Seebeck coefficient are larger than those
found for the Bi2Te3 and Bi2Se3 systems, as well as for other alloys. For example,
at ambient pressure, measured value for polycrystalline Sb1.5Bi0.5Te3 is reported to
be 212µV/K [111], while a value of 287µV/◦C at 54 ◦C was reported for a 9.8µm thick
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Bi2T3 thin film[112]. Also from the DFT calculations, using the vand der waals cor-
rection, Luo et al.[113] report a value of S = 300µV/K for Bi2Te3 while for Bi2Si3
they found a value of S = 600µV/K. Comparing the Seebeck coefficients in n−type
and p−type region, it can be noticed that for all the cases studied in this chapter the
maximum values of S was higher in the p−type region. This indicated the promi-
nence of the p−type doping in these materials.

The great enhancement in the values of the Seebeck coefficient for monolayer case
in comparison with the values obtained in the bulk and nanoplates cases could be
attributed to the following reasons:

1. The strong quantum confinement effect which makes S2 increases linearly
with decreasing the thickness. This is based on the theoretical prediction of
Hicks and Dreselhaus in 1993 [16] that the electronic properties could be en-
hanced by putting the thermoelectric materials in superlattice structures with
insulating barrier layers and that the improvement is largest for the shortest
period superlattices.

2. The enhancement in the Seebeck coefficient of the monolayer case also can be
explained based on the Mahan-Sofo theory [91], which suggests that a local
increase in the total density of states over a narrow energy range around the
Fermi level can achieve a high S [114, 115]. The same explanation could be
inferred from the definition of the Seebeck coefficient in the Mott equation
[116]. Therefore, the increase of S could be attributed to the sharp slope near
the Fermi level in the density of states (DOS) of the monolayer case that comes
from the increase in the contribution of Ga and Se 4Pz states as can be seen
from the figure of the total density of states of monolayer 3.3.

3. By referring to the band structure of the studied cases shown in figure 3.2.
In the monolayer case, there is less dispersion in the valence band around its
maximum value in comparison with the bulk and nanoplates. It means that
the effective mass of the holes in the monolayer case is higher than its corre-
sponding value in the bulk and nanoplates cases. If we refer to the relation
between the Seebeck coefficient and the effective mass for the metal [117]:

S =
8πk2

0

3eh2
m∗T (

π

3n
)2/3, (3.1)

where h,n,e and m∗ are Planck’s constant, carrier concentration, electronic
charge and the effective mass of the carrier, respectively. Even though our ma-
terials are semiconductor, we can use this relation to understand our results
in a qualitative way. From this relation we can see that there is a direct rela-
tion between the Seebeck coefficient and effective mass of the carrier. As we
have stated that the holes effective mass value should be higher in the mono-
layer case than its value in the bulk and nanoplates cases so we can expect
that the value of the Seebeck coefficient is larger for the monolayer case which
agrees with the results that we have obtained for the Seebeck coefficient which
is shown in figure 3.6
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3.4.2 Electrical conductivity

The electrical conductivity in metals originates from the motion of the electrons in
the conductors while in semiconductor both holes and electrons contribute to the
electrical conductivity. The charge carriers in the semiconductors are formed by
thermal activation. Hence their concentration is temperature dependent, in con-
trary to the case of metal, where the electron concentration is basically constant.
According to the equation:

σ = neµn + peµp (3.2)

The temperature dependence of the conductivity σ can be expressed as a function of
the mobilities µn and µp of electrons and holes, respectively, and the charge carrier
concentration, n for electrons and p for holes.

Based on the electronic structure we calculated the electrical conductivity relative
to the relaxation time (σ/τ , called the transport function) as a function of the chem-
ical potential. Within the framework of Boltzmann transport (BT) theory [75], the
constant scattering relaxation time (τ ) approximation is usually adopted and the re-
laxation time is taken to be direction independent and isotropic. The validity of this
approach has been tested earlier [91, 118–121] and the approximation has succeeded
even for systems with highly anisotropic crystal axes [121]. As a consequence, the
electrical conductivity (σ) is expressed in the form of the ratio (σ/τ ). It is impossi-
ble to calculate σ itself without the knowledge of the scattering rate τ . In order to
calculate τ an electron phonon interaction mechanism, or electron-impurity, must
be assumed. Till now and up to our knowledges there is no data on scattering rate
τ for GaSe material. Figure 3.7 shows the evolution of the electrical conductivity
of the bulk, nanoplates, and monolayer ε GaSe relative to the relaxation time as a
function of the chemical potential at temperature T = 300 K. The chemical potential
µ represents doping or the charge carrier concentration. σ/τ has been taken in units
1020 1/Ωms.

All the studied structure shown a typical semiconductor behavior since the lower
values of the σ/τ has been obtained at the lower values of the chemical potential,
then it starts to increase as the carrier concentration increase in both the p−type and
n−type regions. Furthermore, σ/τ is high in highly doped region for both p−type
and n−type region. In both the monolayer and nanoplates, the maximum value of
σ/τ has been obtained in n−type region while in the bulk case it is achieved in the
n−type region.

In the n−type region, at a certain value of the chemical potential σ/τ starts to in-
crease linearly as the chemical potential increase till it reaches to the maximum value
and then starts to decrease again. The value of the chemical potential at which σ/τ
starts to increase or decrease was different in each case. In this region, the maximum
value of σ/τ has been obtained in the bulk GaSe is 3.46 × 1020 1/Ωms followed by
2.495 × 1020 1/Ωms in the nanoplates and the lowest values obtained in the mono-
layer case 2.1× 1020 1/Ωms.
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FIGURE 3.7: σ/τ of the bulk, nanoplates and monolayer ε− GaSe at
300K

The behavior σ/τ in the p−type region was different from the n−type, there is a
fluctuation in the increase of σ/τ as a function of the chemical potential whereas the
overall behavior of σ/τ is that it increases as a function of the chemical potential
until it reaches a maximum value at a certain value of the chemical potential, there
was some points at which σ/τ decreases. In this region, the maximum value of σ/τ
have been obtained also in the bulk case 3.56 × 1020 1/Ωms followed by 1.82 × 1020

1/Ωms in both the nanoplates and monolayer case. From the the results of σ/τ it
was obvious that the confinement effect didn’t improve the electrical conductivity
of the GaSe this could be a result of the increase of the band gap values occurred in
the 2 dimensional cases.

3.4.3 Power factors

It is known that the thermoelectric properties of the materials could be improved
by enhancing the figure of merit (ZT ). As the power factor comes as a numerator
in the figure of merit relation ZT = S2σT/k, therefore, improving ZT can occur by
maximizing the power factor PF = S2σ or minimizing k. Different approach have
been adopted to increase ZT like doping or lowering the dimensionality of these
materials to decrease the thermal conductivity [122, 123]. Also, there is a recent in-
vestigation that suggested that the output power, Q, is more important than ZT for
the case of unlimited heat source such as solar or waste heat sources [124]. The max-
imum value of the output power, Qmax, includes the power factor (PF = S2σ) as
Qmax = PF (Th − Tc)/4L1, where Th and Tc are the hot and cold side temperatures,
respectively and L1 is the length between the hot and cold sides. Hence, This pa-
rameter gives an indication of the thermoelectric properties since the higher PF is,
the better is the efficiency of the TE device.
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Using the existing information on the Seebeck coefficient (S) and the electrical con-
ductivity relative to the relaxation time (σ/τ ), one can obtain the power factor rela-
tive to the relaxation time (PF/τ = S2σ/τ ). It is clear that the power factor is directly
proportional to Seebeck coefficient and electrical conductivity. The calculated power
factor of bulk, nanoplates, and monolayer ε− GaSe relative to the relaxation time at
300 K as a function of chemical potential between ∓2 eV as illustrated in Fig.3.8.
PF/τ has been taken in units 1014µW/cmK2s.

At the vicinity of the Fermi level, the power factor exhibits its minimum values. This
is attributed to that σ/τ shows its minimum values in the vicinity of the Fermi level.
beyond this region the values PF/τ started to increase.
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FIGURE 3.8: PF/τ of the bulk, nanoplates and monolayer ε− GaSe at
300 K

In all the cases, the PF/τ as a function of the chemical potential consists of several
peaks with different maximum value. The behavior of PF/τ was similar in both
the n−type and p−type. The maximum value of PF/τ obtained in the p−type re-
gion was found in the monolayer case 67.86 × 1014 µW/cmK2s at −1.27 eV of the
chemical potential while the maximum value in the n−type region was obtained in
the nanoplates case 26.11 × 1014 µW/cmK2s at 1.48 eV. As we can see both values
have been obtained at a high value of the chemical potential, and hence high dop-
ing value, which isn’t favorable so we will have more interest in the higher good
values obtained for PF/τ in the region with a smaller values of the chemical poten-
tial, and hence low doping concentration, as it is shown in the inset of fig. 3.8. In
this interval of the chemical potential [−1, 1] eV that is presented in the inset, it can
be observed that in both p−type and n−type regions the better values of PF/τ has
been found in the bulk case. In table 3.2 the highest values of the PF/τ obtained
for each case inside this interval is written down. So even though the 2D cases have
better values for PF/τ but obtaining this values at higher values of the chemical
potential wouldn’t be achieved easily in the experiment so the bulk cases would be
recommended due to its good values obtained at smaller values of µ.
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TABLE 3.2: The highest values of PF/τ obtained in the n − /p− type
region of bulk ε−polytype of bulk, nanoplates and monolayer GaSe at

300 K

Bulk-GaSe Nanoplates-GaSe monolayer-GaSe
p−type n−type p−type n−type p−type n−type

PF/τ (1014µW/cmK2s) 6.56 11.40 2.60 10.54 6.69 2.51

3.4.4 Electronic thermal conductivity

The total thermal conductivity (k) is the sum of electronic thermal conductivity (ke)
and thermal conductivity of the phonons (kl), i.e. k = ke + kl. since in metals and
semiconductors, the responsible for their thermal conductivity are the electrons and
phonon vibrations. Whereas the semiconductor’s thermal conductivity is domi-
nated by phonons, in metals this contribution is mainly due to electrons or free
carriers [125, 126]. BoltzTraP calculates only the electronic part. For simplification k
is used here to refer to the electronic part of the chemical potential instead of k = ke.
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FIGURE 3.9: (k/τ) of the bulk, nanoplates, and monolayer ε− GaSe at
300 K

The electronic thermal conductivity per relaxation time (k/τ) of the bulk,
nanoplates, and monolayer ε−GaSe versus the chemical potential at the tempera-
ture of 300 K is depicted in Figure 3.9. When the value of the chemical potential
is zero the thermal conductivity shows its minimum value and increases as the
potential increases. The behavior of the thermal conductivity as was similar to
the behavior obtained for the electrical conductivity 3.7 as they are linked by the
Wiedemann–Franz law in the p−type region, the values of k/τ for all the investi-
gated materials increases as the chemical potential increases. Its peak values were
26.035 (at−2.43 eV), 13.18(at−2.47 eV) and 13.13(at−2.49 eV)×1014W/mKs in bulk,
nanoplates, and monolayer respectively.
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In the n−type region the increase of k/τ as a function of the chemical potential was
more pronounced than in the p−type region. At a certain point k/τ started to in-
crease linearly as the chemical potential increase till it reaches to a maximum value
and then starts to decrease again. In this region, the lowest value of k/τ has found
for monolayer case the same as in p−type region. The maximum values of k/τ
was 24.84 (at 1.74 eV), 18.15(at 1.8 eV) and 15.21(at 2.02 eV) ×1014W/mKs in bulk,
nanoplates, and monolayer, respectively. So in both the n−type and p−type region
the lower values of thermal conductivity was obtained in the 2D cases.

As we mentioned before that the BoltzTraP code used in our calculations can only
calculate the electronic part of k, we cannot provide a complete prediction of the fig-
ure of merit of the calculated systems without knowing the lattice thermal conduc-
tivity. However, in order to expect how would it be the figure of merit in the studied
structure we assumed that the lattice and electronic thermal conductivities are quan-
titatively equivalent and calculate ZT as a function of the chemical potential. Our
calculated value for the figure of merit was 0.5 for both the bulk and monolayer and
0.45 for the nanoplates. It means that GaSe could be preferable as a good thermo-
electric materials in the bulk and monolayer case than in the nanoplates. However
we claim that ZT in both the monolayer and nanoplates would be better than the
obtained values since in the two dimensional case the lattice thermal conductivity
is expected to be smaller in the nano-structuring as the scattering of the phonons
increases in this structure.
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Chapter 4

The electronic, and thermoelectric
properties of InSe

4.1 Electronic properties

4.1.1 Electronic band structure

In this section a comparison between the calculated electronic band structure of the
bulk, nanoplates and monolayer ε − InSe is presented. Our results are a good op-
portunity to study how the progressive enhancement of quantum size confinement
can strongly tune the electronic properties of these atomically thick layer. As in the
case of GaSe, the electronic structure calculations of ε − InSe have been done using
the the generalized gradient approximation with the formalism of Perdew et. al.
[83] for the correlation potential for all the studied cases, while for the bulk case
the recently proposed modified beck and Johnson correction(mBJ) correction [87]
has been added to improve the value of the band gap and get a value close to the
experimental values and the results are presented in figure 4.1. The calculations of
the electronic structure have been done using the optimized lattice parameters ob-
tained for ε − InSe, a, b = 4.1593Å and c = 17.3649Å after the relaxation process to
the experimental lattice parameters. The optimized parameters were larger than the
experimental values that are listed in the literature [85] as a consequence of the fact
that the interlayer coupling is mostly driven by van der Waals interactions, which
are not reproduced by the PBE energy functional. The high symmetry points (axes),
labeled as Γ,M,K,Γ and A are used to describe the electron band structure of the
bulk case while in the 2D case there was no need to plot the dispersion along the
Γ− A of the Brillouin zone as we mentioned before that it has no physical meaning
and we already showed in the case of GaSe that the band structure is dispersionless
along this line.

For the bulk case of ε− InSe, both valence band maxima and conduction band min-
ima occur at the center of the Brillouin Zone, Γ, indicating that they are direct band
gap semiconductors. In a previous work on γ− InSe [94] they found that the com-
pound is a direct gap semiconductor but the minimum of the conduction band and
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the maximum of the valence band both occur at Z−point of the brillouin zone. The
use of the modified Beck and Johnson correction (mBJ) has displaced the minimum
of the conduction level to higher values, like in the case of GaSe, leading to an in-
crease in the value of the band gap as can be seen from the figure 4.1(a). It has also
displaced up the valence bands located between −7.0 eV and −3 eV.

For the monolayer and nanoplates cases of ε − InSe the calculation has been done
by using only the GGA. The central and lower panel of figure 4.1 displays their
electronic band structure. We found that the quantum confinement effect on the
electronic band structure of InSe was similar to the results obtained in GaSe. Since
the minimum of the conduction band still occurs at Γ as in the bulk case and the real
change was in the the maximum of the valence band. The maximum of the valence
band was displaced from being at Γ point to be between K and Γ exhibiting a cross
over from the direct to indirect gap semiconductor. The difference between the di-
rect and indirect band gap was small in comparison with the band gap value since
the difference between the two maximums of the valence band was .015 and 0.08
in the nanoplates and monolayer respectively. Another maximum has been found
between Γ and M , the difference between this maximum and the maximum of the
valence is almost 6.2×10−4 and 3.1×10−3 eV for nanoplates and monolayer, respec-
tively. As the valence band in the monolayer case has less dispersion in comparison
with the bulk case, it means that the effective mass of the holes in the monolayer case
is larger than the effective mass of the holes of the bulk case. The low dispersion of
the valence band in the two dimensional cases indicates that the p-type doping of
this material may be more preferable for good thermoelectric properties than the
n-type. A similar feature was previously found to exist in bulk InSe under pressure
where they found that the valence band maximum turned to be ring shaped at 7
GPa. They explained that the pressure provokes a change in some parameters in the
equation of the hole effective mass in the framework of the k.p model which in turn
leaded to different dispersion of the valence band maximum. [100]

TABLE 4.1: Calculated band gap in eV for the bulk, nanoplates, and
monolayer InSe

InSe
EGGA
direct(eV) EGGA

indirect(eV) EmBJ
direct(eV)

Bulk 0.45096 1.31028
Nanoplates 0.3131 0.29784
Monolayer 1.17843 1.098

The values of the band gap obtained in the three studied cases are recorded in ta-
ble 4.1. As the use of the modified Beck and Johnson correction has displaced the
minimum of the conduction band to higher values, it implies that the band gap
value of the bulk obtained by using this correction is larger than its value without
it which is already demonstrated in the table. In the previous theoretical study [94]
on γ − InSe, they found that the band gap (0.44 eV) calculated using the GGA ap-
proach was lower than one half of the experimental value (1.23 eV) and the use of
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m-BJ correction improves the calculated band gap value to be 1.83 eV but this value
is about 49% bigger than the experimental one. To the best of our knowledge, there
are no experimental data for the energy band gap of the ε− structure available in the
literature to make a meaningful comparison. However, we can compare our calcu-
lated energy gaps using the m-BJ correction with the experimental band gap value
of γ − InSe which shows a reasonable agreement. In the monolayer case there was
a large increase in the value of the band gap in comparison with the bulk case, and
that increase could be attributed to the absence of the interlayer bond in the mono-
layer case that is similar to the results obtained in the case of GaSe. The band gap
of the nanoplates was smaller than the band gap of the bulk case in contrast to the
results found for GaSe.

4.1.2 Total and partial density of states

In this section, we present the calculated total (DOS) and partial density of states
(PDOS) of bulk, nanoplates, and monolayer ε − InSe. Figures 4.2, 4.3 and 4.4 show
their total density of states, the contribution of the In, and Se atoms to the total
density of states, respectively. The partial DOS for each element is a sum of a partial
DOS over all muffin-tin spheres of the same compound.

There was a prominent difference between the values of the total density of states of
the three studied structures that was consistent with the number of atoms included
in each case. In the total density of states we found that the lowest band contribution
to the bond is around 6.0 eV below the maximum of the valence band in the Bulk
and nanoplates and around 5.5 eV in the monolayer.

From the plots of the partial density of states it is obvious that the cation and anion
orbitals contribute in a similar way to the valence and conduction band which was
expected and has already been found before in the case of GaSe in the previous chap-
ter. The upper valence band states have a band–width of about 5.11, 5.49 and 5.05
in the bulk, nanoplates, and monolayer respectively. The valence band maximum
in this compound has predominant Se-4pz character while the following deeper va-
lence bands have predominant Se-4(px + py) character as discussed in the literature
[127–129] and there is a very small contribution comes to the band from In 5s and 5p
states. The lower valence band is dominated by the main contribution that comes
from In 5s states, and lower contributions from Se 4(px+py), 4s, and 4pz states to that
band has been found. On the other hand, the lower conduction bands are mainly
constituted of In 5s−orbital hybridized with Se 4pz, 4(px + py) states. An important
change has been noticed at the maximum valence band of the monolayer case as
there was an abrupt increase in the total density of states, from Se-4pz orbitals, at the
Fermi level. This increase is predicted to enhance the Seebeck coefficient Values in
the monolayer case.
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4.2 Seebeck Coefficient

The constant scattering time approximation, known as the constant relaxation time
approximation, consists in taking the energy dependence of the band structure as
the main factor in the energy dependence of the conductivity in the transport equa-
tion. Using this approximation the scattering time in the expression for the ther-
mopower is cancelled, so that the thermopower is obtained as a function of tem-
perature and doping level from the band structure without any additional input. In
this section the relation between the electronic structure near the band edges and the
values of the Seebeck coefficient in InSe will be discussed. The Seebeck coefficient
of the bulk, nanoplates, and monolayer ε− InSe vs. chemical potential at 300 K are
presented in the figure 4.5.
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FIGURE 4.5: The Seebeck coefficients of the bulk, nanoplates and mono-
layer ε− InSe at 300 K.

The Seebeck coefficients exhibit two pronounced peak for n − /p−type around the
Ef in all the studied case. The highest value of the Seebeck coefficients has been
obtained for the monolayer case since the maximum value of the Seebeck coefficient
at 300K for the p−type region was 1765µV/K while it was 1662µV/K for n−type re-
gion. In the case of the bulk S exhibits lower values as it was 785µV/K in the p−type
region 689µV/K in n−type region while the lowest value of the Seebeck coefficient
has been found in the nanoplates, S was 437µV/K in the p−type region 405µV/K
in n−type region. Comparing between the Seebeck coefficients values in n−type
region and p−type region. It can be noticed that for all the studied materials to get
good values for the Seebeck coefficient the p−type region will be more desirable
that the n−type region. All the obtained values were good in comparison with the
values obtained in a recent studied materials since for example in a computational
study [130] of the transport properties of a single layer of Bi2Se3 the values reported
for the Seebeck coefficient were between−90µV/K at 300K and−174µV/K at 900K.
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For all the studied cases in this chapter, no matter p−type or n−type, within a rea-
sonable value of the carrier concentration level, the average of S is larger than the
recommended values for efficient thermoelectric materials [109, 110]. The higher
values of S could lead to higher values of S2σ and ZT .

The range where the materials exhibit good values for the Seebeck coefficient was
different in the studied materials as it was wider in the case of monolayer than
for both the bulk and nanoplates. The range was [−0.64, 0.6] eV for Monolayer,
[−0.37, 0.4] eV for bulk, and [−0.22, 0.24] eV nanoplates. Beyond these points the
Seebeck coefficient decreases. It means that the range where the materials exhibits
a good value for the Seebeck coefficient has been more extended in the monolayer
case than in the bulk case which indicates that in the bulk case the compounds favor
low doping.

As we commented before in the chapter of GaSe, the great enhancement in the val-
ues of the Seebeck coefficient for monolayer case in comparison with the bulk and
nanoplates could be attributed to three reasons; the strong quantum confinement
effect on the values of the Seebeck coefficient [16], the local increase in the total den-
sity of states over a narrow energy range around the Fermi level that has been found
in the monolayer and was shown in fig. 4.2 that is supposed to lead to higher values
of the S according to the Mahan-Sofo theory[16, 91, 114, 115], and the low disper-
sion of the valence band of the monolayer case shown in figure 4.1 indicate a high
value of the hole effective mass and hence higher values of the Seebeck coefficient
as a result of the direct relation between the Seebeck coefficient and effective mass
of the carrier.

4.3 Electrical conductivity

Within the frame work of constant scattering time approximation (σ/τ ) can be ob-
tained directly from the electronic structure as a function of the carrier concentration
and the temperature. To calculate σ itself, the knowledge of the scattering rate is a
must at the same time up to our knowledges there is no data on the scattering rate
τ for bulk or nanoplates or monolayer InSe. Figure 4.6 shows the electrical conduc-
tivity of the bulk, nanoplates, and monolayer InSe relative to the relaxation time
as a function of the chemical potential µ at temperature T = 300 K. The chemical
potential µ represents doping or the charge carrier concentration.

The behaviour of σ/τ as a function of the chemical potential in all the studied case
of InSe was the typical expected behavior of semiconductor materials; since σ/τ
increased as a function of the chemical potential, i.e. the number of carriers, in both
the p−type and n−type regions. Furthermore, while in both the monolayer and
nanoplates of InSe the maximum value of σ/τ has been obtained in n−type region,
the opposite have been found in the case of bulk since the maximum value of σ/τ
is in the p−type region. Meanwhile, the overall behavior of σ/τ was similar in the
three cases in both p−type and n−type region.
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FIGURE 4.6: σ/τ of the bulk, nanoplates and monolayer ε− InSe at
300K.

In the n−type region, σ/τ increase as a function of the chemical potential increase till
it reaches to the maximum value and then starts to decrease again. In this region,
the maximum value of σ/τ for bulk is 2.04 × 1020 1/Ωms followed by 1.51 × 1020

1/Ωms the nanoplates and then 0.97× 1020 1/Ωms for monolayer.

In the p−type region, σ/τ increases as a function of the chemical potential until it
reaches a maximum value but at the same time there was a fluctuation in the curve
as there was some points at which σ/τ decreases. In this region, the maximum of
σ/τ for bulk is 2.65 × 1020 1/Ωms followed by 1.13 × 1020 1/Ωms for the monolayer
and 1.1×1020 1/Ωms for the nanoplates case. Therefore, it can be concluded that the
values of σ/τ is larger in the bulk case.

The better values of σ/τ was found at high chemical potential and hence in a highly
doped region which isn’t very favorable experimentally so we will be more inter-
ested in the values obtain in a small interval around the zero value of the chem-
ical potential where the values bulk case exhibits the better values of σ/τ than
nanoplates and monolayer case.

4.4 Power factors

The power factor of the bulk, nanoplates, and monolayer InSe has been calculated
using the obtained results of the Seebeck oefficient (S) and the electrical conductivity
relative to the relaxation time (σ/τ ) and represented in Fig. 4.7 as a function of chem-
ical potential between∓2 eV at 300 K. PF/τ has been taken in units 1014µW/cmK2s.
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FIGURE 4.7: PF/τ of the bulk, nanoplates and monolayer ε− InSe at
300 K.

The power factor exhibits the minimum values around the Fermi level that was
expected from the small values of the conductivity at the Fermi level. Beyond this
region the PF/τ started to increase. It is clear that the behavior of PF/τ was similar
in all the studied cases as it consists of several peaks over a continues curves. In
the n−type region, the case that have shown the maximum value PF/τ , 23.25 ×
1014 µW/cmk2s at 1.43 eV, was the monolayer case followed by the value 8.7 × 1014

µW/cmK2s at 1.56 eV in the nanoplates and then 7.62 × 1014 µW/cmK2s at 1.37 eV
in the bulk case. In the p−type region the maximum value of PF/τ 16.64 × 1014

µW/cmK2s at−1.81 eV has been attained in the nanoplates. Next it comes the value
13.66×1014 µW/cmK2s at−1.32 eV in the monolayer and then 9.25×1014 µW/cmK2s
at −1.75 eV. From all that values and the plot 4.7, it is obvious that the best value
of the power factor has been found in the 2 dimension structures but these values
are attainable at higher values of the chemical potential; i.e high doping. Inside the
interval [−0.6, 0.6] eV of the chemical potential, at lower doping concentration that
could be attainable experimentally, the better values of PF/τ can be found in the
p−type region of the bulk and monolayer as displayed in the inset shown in the
figure 4.7.

4.5 Electronic thermal conductivity

For designing efficient thermoelectric devices, materials with low thermal conduc-
tivity are required in order to maintain the temperature gradient. The electronic
thermal conductivity per relaxation time (k/τ) of bulk, nanoplates, and monolayer
InSe versus the chemical potential at the temperature of 300 K is depicted in Fig-
ure 4.8. When the value of the chemical potential is zero, the thermal conductivity
shows its minimum value and then increases as the chemical potential increases.
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FIGURE 4.8: (k/τ) of the bulk, nanoplates, and monolayer ε− InSe at
300 K

In the p−type region, the values of k/τ for all the investigated cases increases as the
chemical potential increases while there was a fluctuation in the curves as there
were some points where k/τ decreased. Its peak value in each case was 19.425
×1014W/mKs at −2 eV, 8.224 ×1014W/mKs at −2 eV, and 7.886 ×1014W/mKs at
−1.92 eV in bulk and nanoplates, and monolayer, respectively.

In the n−type region the increase of k/τ as a function of the chemical potential was
more pronounced than in the p−type region. In this region the fluctuation has been
noticed only in the case of monolayer. The overall behaviour of k/τ in all the cases
was similar as its value increases with the increase of the of the chemical potential
till it reaches a maximum value and then starts to decrease. The peak values of k/τ
in the n−type was 14.48×1014W/mKs at 1.86 eV, 10.64×1014W/mKs at 1.91 eV and
6.84 ×1014W/mKs at 1.87 eV has been found in bulk, nanoplates, and monolayer,
respectively. In the chemical potential between ∓0.6 (eV), the investigated mate-
rials exhibit minimum value of the thermal conductivity and in both the n−type
and p−type region, the lower values for thermal conductivity can be attained in the
monolayer case.

We applied the same strategies that we used in the previous chapter to calculate ZT
of the three structure of InSe as a function of the chemical potential. The maximum
value obtained for the figure of merit was approximately 0.52 (0.47), 0.49 (0.48) and
0.38 (0.34) in the p−type (n−type) region of the bulk, monolayer and nanoplates,
respectively.
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Chapter 5

The electronic, and thermoelectric
properties of InGaSe2

5.1 Crystal structure

The InGaSe2 heterostructure is constructed by simultaneously stacking one layer of
GaSe and one layer of InSe. The layers stacking that have been considered in this
work corresponds to the hexagonal ε− polytype with space group P 6̄m2. In this
polytype, the unit cell consists of two layers, one layer of GaSe and one layer of
InSe. In a layer we have the same stacking, independently if we have InSe or GaSe,
although the bond distances are different. Each layer has a hexagonal symmetry
and is composed of two planes of metal atoms sandwiched between two chalcogen
planes. Hence there is one layer where there are two planes of In atoms sandwiched
between two planes of Se atoms and the next layer constitutes of two planes of Ga
atoms sandwiched between two planes of Se atoms as shown in figure 5.1 where
four unit cell of InGaSe2 in the xy plane and half layer out of the unit cell in the z−
direction are drawn.

The unit cell shown in this figure allows us to observe the inter-atomic bonds. The
cations are tetrahedrally coordinated to three anions and one cation while the anions
are bounded to three cations. Cation-cation bonds are oriented perpendicular to the
layer structure. The two planes of Se atoms in two adjacent layers are bound through
van der Waals forces and thus, the Se-Se inter-layer distances are larger than the
other bond distances. This distance between the layers is called the van der Waals
gap. This crystal structure that we proposed [131] differs from the supperlattice
proposed by Gashimzade et al. [132], where the stackings of InSe and GaSe are in
their bulk-like crystal structure (γ − InSe/ε−GaSe). The particular configuration
that we chose depends on the fact that the symmetries of individual monolayers of
InSe and GaSe are similar (D3h point group) and such similarity breaks in the bulk
compounds[100].
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FIGURE 5.1: InGaSe2 supercell with space group P 6̄m2 showing the
stacking of GaSe/InSe. The yellow, red, and turquoise balls represent

indium, gallium, and selenium atoms, respectively.

5.2 Computational details

To calculate the electronic band structure, we followed the same procedure as for
InSe and GaSe cases. The convergence of the total energy in terms of the variational
cutoff-parameters has been guaranteed by using an appropriate set of parameters.
The value ofRKmax used was 13 Ry while the value of the atomic sphere radiusRMT

has selected to be 2.2 a.u. for both In and Ga atoms while for Se atom it was 2.3 a.u.
The value ofGmax was 13 Ry. A set of 60 k−points which is equivalent to a 16×16×3
Monkhorst-Pack grid in the unit cell has been used while for the caluclation of the
transport coefficients a dense mesh of k−points is needed so we used 364 k−points
in the irreducible wedge of the Brillouin zone that is equivalent to a 30 × 30 × 6
Monkhorst-Pack grid.

To optimize the lattice parameters, the initial lattice parameters have been chosen to
be the average value of the lattice parameters of GaSe and InSe unit cell; a = 3.8795
and c = 16.334 Å. Also the positions of the atoms inside the unit cell have been
optimized by doing a minimization of the forces in the unit cell. The electronic
band structure has been calculated using the optimized lattice constants, like GaSe
and InSe, for the bulk case ε− InGaSe2 the modified Becke-Johnson correction, that
corrects the systematic underestimation of the electronic band gap showed in DFT
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calculations, has been included in part of the calculations while for the nanoplates
and monolayer cases it was not included, this is because of the recommendation of
authors of the Wien2k not to use this correction for the 2D systems.

5.3 Electronic properties

5.3.1 Electronic band structure

After the optimization of the structural parameters of InGaSe2 we found that the
layers of GaSe will be tensioned in the plane and thus there will be a compression
in the Z direction, while in the case of InSe layers there will be a compression in the
plane and a tension in the z direction which comes from the fact that the In atom
has a larger radius than Ga, thus the unit cell of GaSe is smaller than that of InSe
as already shown in the last two chapters. The optimized lattice parameters for the
InGaSe2 has found to be a = 3.945Å and c = 16.61Å. In the previous chapters, we
have seen that the PBE functional overestimate the lattice parameters with respect
to experimental measurements as it doesn’t include the van der Waals (vdW) cor-
rections so it could be assumed that if this compound can be synthesized, the exper-
imental value of this superlattice should be larger than the values obtained in this
calculations. The van der Waals forces should not affect much the electronic proper-
ties so we have calculated the electronic structure using these optimized parameters
and the results was presented in the figure 5.2.

The upper panel displays the band structure of the bulk ε− InGaSe2 the black solid
line represents the calculation with the GGA approximation while the blue dotted
line represents the calculations by including the mBJ correction. Like the pristine
materials, ε−InSe and GaSe, the bulk InGaSe2 shows a direct semiconductor char-
acter Since both the minimum of the conduction band and the maximum of the
valence band occurs at the center of the Brillouin zone, Γ, while in the superlattice
InGaSe2 the band gap is lower than the one of the pristine. The value of the band
gap without using the mBJ is Eg = 0.38 eV. A very significant difference has been
found in the dispersion of the valence band in this compound has a particular as-
pect since in the Γ − A direction the valence band was more dispersed than in the
Γ−K direction. As explained in previous study this would affect the thermoelectric
properties of the material [133]. In this superlattice, the mBJ correction doesn’t only
increases the value of the band gap by moving the minimum of the conduction band
in the upward direction, modifying the band gap Embj

g = 1.27 eV, but also reduced
the slope of the dispersion of the valence band in the Γ − A direction. We expect
that the experimental value should be closer to the band gap calculated with this
correction.

In the central and lower panel of the figure 5.2 the calculated band structure of the
nanoplates and monolayer case, respectively, is presented to show the effect of re-
ducing the dimensionality of this compound on its band structure. In the nanoplates
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case the material turned to be indirect semiconductor that coincide with the re-
sults obtained in the pristine compounds. Even though the minimum of the con-
duction band still occurs at Γ, the valence band maximum has moved to be be-
tween two symmetry points of the Brillouin zone, K and Γ. The direct band gap,
Edirect
g = 0.9898 eV, was larger than indirect band gap, Eindirect

g = 0.988 eV, by almost
negligible amount, 0.002 eV. Another maximum has been found between Γ and M
creating another indirect band gap Eindirect

g = 0.9883 eV that also less than the direct
band gap. The existence of those points reflects how flatten is the valence band of
the nanoplates InGaSe2. This results are consistent with the results obtained in the
pristine compounds.

In the case of monolayer in comparison with the bulk case no changes have been
noticed in the maximum of the valence band and the minimum of the conduction
band since both points still occur at Γ. The real change was the increase found in
both the band gap valueEdirect

g = 1.74965 eV and the dispersion of the valence band.
This indicates that, unlike the indirect band gap nature found in the InSe and GaSe
monolayer, the monolayer InGaSe2 is a direct band gap semiconductor. From all the
studied cases, the largest band gap value was the one of monolayer followed by the
gap of nanoplates and then the bulk.

5.3.2 Total and partial density of states

As the electron states around the Fermi level have an important effect on the thermo-
electric transport properties of the material, we calculated the total and partial den-
sity of states (TDOS and PDOS) of the bulk, nanoplates, and monolayer ε− InGaSe2

and draw them in Figure 5.3, 5.4, 5.5 and 5.6, respectively. In the bulk, nanoplates,
and monolayer cases the lowest band contribution to the bound is around −7, −7.5,
and −6.5 eV, respectively. It means that the width of the valence band in this com-
pound changes depending on the the number of layers. In the three studied cases,
the contributions of the orbitals of the atoms to the valence and conduction band is
similar. The same that have been illustrates before in the pristine compounds GaSe
and InSe. As well as the remarkable difference between the values of the total den-
sity of each case has been found. The lower valence band has the s− character since
the most important contribution comes from 5sIn and 4sGa orbitals and also a small
contribution from Se, 4s, 4pzand 4(px + py) states. Meanwhile, the valence band at
the Fermi level has the p− character, seeing that the main contribution comes from
Se, 4pzand 4(px + py) states and a little contributions from 5p, 5s In and 4s, 4p Ga
states reflecting that the bond between the atoms is a covalent bonding. Finally, the
conduction band is a mixture of the In and Ga states, mainly s− orbitals, and Se, 4pz
and 4(px+py) states. The most important feature of the density of states in the mono-
layer case, in comparison with the bulk and nanoplates cases, is that in the valence
band close to the Fermi level there is a sharp increase in the density of states and
another defined peak appears there. These features would contribute to improving
the thermoelectric properties of the monolayer case of InGaSe2.
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FIGURE 5.3: The calculated total density of states for bulk, nanoplates
and monolayer ε− InGaSe2.
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FIGURE 5.4: The partial contribution of In atoms to the total density of
states in bulk, plates, and monolayer ε− InGaSe2.
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FIGURE 5.5: The partial contribution of IGa atoms to the total density
of states in bulk, nanoplates, and monolayer ε− InGaSe2.
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FIGURE 5.6: The partial contribution of Se atoms to the total density of
states in bulk, nanoplates and monolayer ε− InGaSe2.
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5.4 Seebeck Coefficient

The Seebeck coefficients of the bulk, nanoplates, and monolayer ε− polytype of
InGaSe2 materials vs chemical potential at 300 K are presented in the figure 5.7.
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FIGURE 5.7: The Seebeck coefficients of the bulk, nanoplates, and
monolayer ε− InGaSe2 at 300 K

The Seebeck coefficients exhibit two pronounced peak around EF indicating the ex-
istence of n− and p−type in all the studied case. The discontinuity in the behavior
of the Seebeck coefficient of monolayer InGaSe2, could be attributed to the precision
of the calculations as commented before in the case of GaSe. The monolayer case
showed a great enhancement in the value of the Seebeck coefficient in comparison
with the bulk and nanoplates cases since the maximum value of the Seebeck co-
efficient at 300K for the p−type region was 2753µV/K while it was 2603µV/K for
n−type region comes after that the values obtained in the nanoplates case 1571µV/K
in the p−type region and 1328µV/K in the n−type region and then the values in the
bulk case 691µV/K in the p−type region and 567µV/K in the n−type region. This
results assert the proposition [16] mentioned before that the Seebeck coefficient of
a material increases with decreasing the thickness of the material as a result of the
strong confinement effect. The improvement of the values of the Seebeck coefficient
in the monolayer can be also explained based on Mahan-Sofo theory due to the lo-
cal increase found in the total density of states of the valence band over a narrow
energy range around the Fermi level as shown in fig. 5.3(c).

In these materials, better values of the Seebeck coefficient can be obtained in the
p−type region than the n−type region. This could be a result of the conduction
band with a low effective mass. No matter p−type or n−type for all the studied
materials, the average of S is larger than the value proposed for a good thermo-
electric materials, 200µV/K, within a reasonable value of the carrier concentration
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level, which indicates grand values of S and there may be higher values of S2σ and
ZT . Our values for the Seebeck coefficient are much better than the results found in
previous study on other thermoelectric materials.[134]

5.5 Electrical conductivity

The evolution of the electrical conductivity of the bulk, nanoplates, and monolayer
ε polytype of InGaSe2 relative to the relaxation time as a function of the chemical
potential at temperature T = 300 K is represented in fig.5.8

- 2 . 0 - 1 . 5 - 1 . 0 - 0 . 5 0 . 0 0 . 5 1 . 0 1 . 5 2 . 0
0 . 0

0 . 5

1 . 0

1 . 5

2 . 0

2 . 5

3 . 0

 

 

σ/
τ(

10
20

/Ω
ms

)

µ( e V )

 M o n o l a y e r _ I n G a S e 2
 B u l k _ I n G a S e 2
 N a n o p l a t e s _ I n G a S e 2

FIGURE 5.8: σ/τ of the bulk, nanoplates and monolayer ε− InGaSe2 at
300K

The three studied cases of InGaSe2, as in GaSe and InSe, showed an increasing elec-
trical conductivity with rising the chemical potential due to the increase of the car-
rier concentration. Therefore, σ/τ is high in highly doped region for both p−type
while in the n−type region after a certain value of the chemical potential the electri-
cal conductivity started to decrease with the increase in the chemical potential as a
result of the competition between the carrier concentration and electron relaxation
as in the Bi2Se3 single layer [130]. While in both bulk and nanoplates InGaSe2 the
maximum value of σ/τ has been obtained in n−type region, the opposite have been
found in the case of monolayer, since the maximum value of σ/τ is in the p−type
region. This could be attributed to the less dispersed valence band in the bulk and
nanoplates that leads to a large hole effective mass and hence lower values of the
electrical conductivity in the p−type region.

The maximum value of σ/τ that can achieved in the n−type region is 2.59 × 1020

1/Ωms for bulk followed by 2.13× 1020 1/Ωms for nanoplates and 1.48× 1020 1/Ωms
for monolayer. In the p−type region, the maximum of σ/τ for bulk is 2.47 × 1020
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1/Ωms followed by 1.85 × 1020 1/Ωms for monolayer and 1.23 × 1020 1/Ωms for
nanoplates.

5.6 Power factors

Using the existing information on the Seebeck coefficient (S) and the electrical con-
ductivity relative to the relaxation time (σ/τ ), we calculated the power factor of
bulk, nanoplates, and monolayer ε− polytype of InGaSe2 relative to the relaxation
time (PF/τ = S2σ/τ ) at 300 K as a function of chemical potential between ∓2 eV
and presented the results in Fig. 5.9.
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FIGURE 5.9: PF/τ of the bulk, nanoplates and monolayer ε− InGaSe2

at 300 K

The behaviour of the power factor as a function of the chemical potential in the
supper lattice InGaSe2 was similar to the pristine compound, at the vicinity of the
Fermi level, the power factor exhibits its minimum values. This is attributed to
lower value of carrier concentration and hence the electrical conductivity. In n−type
region the case that have showed the maximum value of PF/τ was monolayer, since
its maximum value was 17.13 × 1014 µW/cmK2s at 1.37 eV followed by the value
14.18 × 1014 µW/cmK2s at 1.35 eV in nanoplates and the lowest value 9.21 × 1014

µW/cmK2s at 1.9 eV obtained in bulk.

In p−type region the maximum value of PF/τ 23.354 × 1014 µW/cmK2s at −0.925
eV was obtained in bulk comes next its value 22.09 × 1014 µW/cmK2s at −1.66 eV
in nanoplates and then 9.97 × 1014 µW/cmK2s at −1.43 eV in monolayer. It means
that the maximum value of PF/τ in each materials hasn’t been obtained at the same
value of the chemical potential. Consequently, in this material the maximum value
of the power factor, in the studied interval of the chemical potential, was found in
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the p−type region of the bulk case in contrast to what found in the GaSe and InSe
materials where the monolayer case exhibit the maximum value of the power factor.
As we mentioned before, we are more interested in the values obtained within the
smallest range of the chemical potential, i.e. low doping concentration, where the
best maximum value of the PF/τ can be achieved in the p-type region of bulk and
n-type region of nanoplates.

5.7 Electronic thermal conductivity

The electronic thermal conductivity per relaxation time (k/τ) bulk, nanoplates, and
monolayer ε− polytype of InGaSe2 versus the chemical potential at the temperature
of 300 K is depicted in Figure 5.10.
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FIGURE 5.10: (k/τ) of the bulk, nanoplates, and monolayer ε−InGaSe2

at 300 K

As in all pristine atoms, when the value of the chemical potential is zero the thermal
conductivity shows its minimum values and increases as the potential increases.
The behaviour of the thermal conductivity as a function of the chemical potential
was similar to the electrical conductivity as both are affected by the carrier concen-
tration, for example, the bulk showed the maximum values of the electrical con-
ductivity and thermal conductivity as well. In the p−type region, the values of
k/τ for all the investigated materials increases as the chemical potential increases.
Its peak values obtained at −2 eV are 18.46, 14.03 and 9.05 ×1014W/mKs in bulk,
monolayer and nanoplates, respectively so the lowest thermal conductivity was the
one of nanoplates. In the n−type region, the lowest value of k/τ has found for
the monolayer case in contrary to the p−type region. As the values 18.23, 15.48 and
10.74×1014W/mKs has been found in bulk, nanoplates and monolayer, respectively.
Consequently, the lowest value of the thermal conductivity has been attained for the
p−type nanoplates.
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Calculating ZT of the three structure of InGaSe2 as a function of the chemical poten-
tial. The maximum value obtained for the figure of merit was approximately 0.53
(0.46), 0.49 (0.48) and 0.47 (0.47) in the p−type (n−type) region of the bulk, mono-
layer and nanoplates, respectively. Hence to obtain better values of ZT , doping
these compounds with an acceptor and creating p−type semiconductor is favorable.
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Chapter 6

The transport coefficients at high
pressure

One of the important branches in the field of material science is the study of the ma-
terials properties under high pressure. Applying a pressure on a material can induce
a change in the crystal structure of the material and hence its electronic properties
and band structure, like the unpredictable new properties that found in sodium
chlorides[135] . Due to the strong dependence of the Seebeck coefficient and elec-
trical conductivity of a material on its band structure and the density of states. In
such a way, we can infer that the pressure can be used to change the thermoelectric
properties of a material. Using the pressure to enhance the thermoelectric prop-
erties is better than doping and nanostructuring methodologies since the pressure
keep the compound as a perfect, defect-free crystal and enhance its thermoelectric
properties intrinsically. In the studies of Ovsyannikov [136, 137], they reported that
some thermoelectric materials exhibit dramatic improvements in the thermoelec-
tric power factor under compression. As a result of the different character between
intra- and interlayer bonding in the layered compounds, their axial compressibili-
ties are highly anisotropic. It means that the pressure can be used as a way to tune
the degree of anisotropy in the bonding, leading to nonlinearities in the pressure
dependence of the physical properties. This has motivated us to study the effect of
the hydrostatic pressure on the thermoelectric transport coefficients of the bulk ε−
polytype GaSe, InSe and InGaSe2 [138]. The calculations have been performed in
this order.

Firstly, the internal structure parameters and the lattice parameters were optimized
at different pressures, 10 and 20 GPa, by using as input the optimized lattice param-
eters of the unit cell of bulk at 0 GPa pressure.

Then, the energy structure of the three compounds has been calculated using the
WIEN2k code at three different pressure 0 , 10 and 20 GPa. The calculations have
been done by using the same parameters, RKmax, Gmax, and k−points, that have
been used before for each case and mentioned in the computational details of the
previous chapters.
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Finally, the obtained information has been inserted in the BoltzTraP program to cal-
culate the transport coefficients of each case. For these calculations finer k−mesh is
needed. Hence, a set of 364 k− points which is equivalent to 30 × 30 × 6 have been
used. All the calculations have been done at the ambient temperature.

6.1 Seebeck coefficient

Figure 6.1 shows the Seebeck coefficient of GaSe, InSe and InGaSe2 as a function of
the chemical potential at three different pressures 0, 10 and 20 GPa. In the vicinity
of Ef the Seebeck coefficient exhibited two pronounced peaks for n− and p− type
materials. From fig. 6.1 it is noticed that the effect of the pressure on the Seebeck
coefficient of the studied materials was different. For InSe, the values of the Seebeck
coefficient increases with the increase of the pressure and also there is an increase
in the range of the chemical potential where the Seebeck coefficient exhibits a good
value. It means that the Seebeck coefficient of InSe could be improved by increasing
the pressure since its best values have been obtained at 20 GPa followed by its values
at 10 GPa while its lowest values have been found at 0 GPa. The behavior was
different in GaSe and InGaSe2, for both of them the best values were found at 10
GPa. When the pressure increases to 20 GPa, the values of the Seebeck coefficient
starts to decrease again. For n − /p− type InGaSe2 and the n− type region of GaSe
the values of S are still better than its values calculated at 0 GPa while in the p−
type region of GaSe the values of S are lower than its values obtained at 0 GPa.
A comparison between the maximum values of the Seebeck coefficient obtained at
three different pressures in the n− and p− type regions of all the studied cases are
written down in table 6.1

TABLE 6.1: The highest values of the Seebeck coefficient S obtained in
the n− /p− type region of bulk ε−polytype of GaSe, InSe and InGaSe2

at 0, 10, 20 GPa.

GaSe InSe InGaSe2

p−type n−type p−type n−type p−type n−type
S(µV/K)at 0 GPa 1388 −1294 785 −689 691 −567
S(µV/K) at 10 GPa 1530 −1650 1001 −863 1331 −1329
S(µV/K)at 20 GPa 1219 −1330 1395 −1379 1025 −1074
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FIGURE 6.1: Calculated Seebeck coefficient as a function of the chem-
ical potential at three different pressures for GaSe, InSe and InGaSe2.
The black lines represent the calculated values at 0 GPa, the red lines
represent the calculated values at 10 GPa and the blue lines represent

the calculated values at 20 GPa.



76 Chapter 6. The transport coefficients at high pressure

6.2 Electrical conductivity

It is mentioned before that in the output of the BoltzTraP the electrical conductiv-
ity (σ) is expressed in the form of the ratio (σ/τ ), thus without the knowledge of
the scattering rate τ the value of the electrical conductivity could not be calculated.
Hence the electrical conductivity relative to the relaxation time σ/τ has been calcu-
lated as a function of the chemical potential for all the studied materials at the three
different pressures and the results are displayed in figure 6.2
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FIGURE 6.2: Calculated σ/τ as a function of the chemical potential at
three different pressures for GaSe, InSe and InGaSe2. The black lines
represent the calculated values at 0 GPa, the red lines represent the
calculated values at 10 GPa and the blue lines represent the calculated

values at 20 GPa.

At the zero value of the chemical potential, when the Fermi level is at the middle of
the band gap, and close to this value, σ/τ equals zero (a typical semiconductor be-
havior). When the Fermi level moves up or down, the number of the charge carriers
increases and hence the electrical conductivity starts to increases as a function of the
chemical potential. In the n− type region σ/τ increases with the chemical potential
till it reaches a maximum value and the it starts to decrease again. while in the p−
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type region σ/τ increases at first and then there is a fluctuation in its value before it
reaches its maximum value.

Hence, we can conclude that the overall behavior of the σ/τ in the studied materials
under pressure was similar to its behaviour at the ambient conditions. Also it can
be noticed that the effect of the pressure on the values of σ/τ was positive since in
all the studied cases its values increases as the pressure increases. It is obvious from
the result of the electrical conductivity and Seebeck coefficient that the hydrostatic
pressure could be a good tool to improve the thermoelectric properties of the studied
materials since it improves S and σ/τ simultaneously.

6.3 Power factor

From the results of the Seebeck coefficient (S) and the electrical conductivity relative
to the relaxation time (σ/τ ) of GaSe, InSe and InGaSe2 at high pressure, the power
factor relative to the relaxation time (PF/τ = S2σ/τ ) has been calculated at high
pressure as a function of the chemical potential and the results is displayed in figure
6.3.

As the power factor is directly proportional to the Seebeck coefficient and the elec-
trical conductivity, it means that close to the the Fermi level, when σ/τ experience
its lower values, the PF/τ must show its lower values as can be observed in the fig-
ure. The general aspect of the effect of the pressure in all the studied materials was
increasing the values of the power factor at the small values of the chemical poten-
tial; low doping. The improvement of the values of the PF/τ at lower values of the
chemical potential was more pronounced in the n−type region than in the p−type
region. For all the studied materials close to the Fermi level∓1 the maximum values
were the one calculated at 20 GPa while over all the studied range of the chemical
potential,∓2, the pressure at which the maximum of PF/τ has obtained in each ma-
terials was different.

In spite of the higher values of the Seebeck coefficient obtained under pressure of 10
GPa, it is found that the maximum values of PF/τ in both p− type and n− type in
GaSe was at 20 GPa followed by their values at 10 GPa and the lowest ones obtained
at 0 GPa. This could be attributed to the large value of the electrical conductivity at
20 GPa . The same results have been found in InSe but in this case due to the largest
values obtained for both the Seebeck coefficient and electrical conductivity under
pressure 20 GPa. This results reflects how good will be the effect of the pressure
on the thermoelectric properties of this material. In contrary, InGaSe2 showed the
best values of PF/τ under 10 GPa, this is due to the reasonable values of the S and
σ/τ found under this pressure, comes next its values at 20 GPa and finally the one
calculated at 0 GPa.
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FIGURE 6.3: Calculated PF/τ as a function of the chemical potential at
three different pressures for GaSe, InSe and InGaSe2. The black lines
represent the calculated values at 0 GPa, the red lines represent the
calculated values at 10 GPa and the blue lines represent the calculated

values at 20 GPa.

6.4 Electronic thermal conductivity

Figure 6.4 displays the calculated electronic thermal conductivity per relaxation time
(k/τ ) of bulk ε− GaSe, InSe and InGaSe versus the chemical potential at three differ-
ent pressures 0, 10, 20 GPa. From this figure it could be observed that the effect of
the pressure on the electronic thermal conductivity is positive, it means that the val-
ues of the thermal conductivity for all the studied materials increase as the pressure
increase following the same aspect as the electrical conductivity. Hence the lower
values of the thermal conductivity are the ones obtained at 0 GPa. Even though
the increase that occurred in the other transport coefficients with the pressure is
preferable and made from the pressure a good factor to improve the thermoelectric
properties of the materials, the increase of the thermal conductivity would lead to a
lower value of the figure of merit (ZT = T σs2

k
). By assuming that the lattice and ele-
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FIGURE 6.4: Calculated k/τas a function of the chemical potential at
three different pressures for GaSe, InSe and InGaSe2. The black lines
represent the calculated values at 0 GPa, the red lines represent the
calculated values at 10 GPa and the blue lines represent the calculated

values at 20 GPa.
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ctrical contributions of the thermal conductivity are quantitatively equivalent, our
calculated value for the figure of merit is approximately 0.5 for the three systems
studied in this work. Also it is noticed that ZT values are greater in the p−type than
the n−type.
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Chapter 7

Conclusions

From the comprehensive study of the structural, electronic and thermoelectric prop-
erties of ε− polytype of GaSe, InSe, and the new supper lattice InGaSe2 have been
studied at different conditions we extracted the following conclusions.

We encountered that the calculated lattice parameters of the bulk GaSe and InSe
have values larger than the value obtained in a previous experimental and theoret-
ical works. The overestimation of the lattice parameters is one of the drawbacks
of the generalized gradient approximation in the density functional theory. From
this we could deduce that if the heterostructure InGaSe2 could be synthesized, their
experimental lattice parameters should be lower than values obtained in our study.

It is found that effect of the quantum confinement on the electronic band structure
of the thickness of few layers of GaSe, InSe, and InGaSe2 was different in each mate-
rial. Three cases have been studied to make a comprehensive compression were, the
bulk, one layer (monolayer), and 7 layers (nanoplates). Several changes have been
noticed in the band structure of all the studied cases since in both GaSe and InSe a
cross over from the direct band gap to indirect band gap occurred by moving from
the 3 dimensional case, bulk, to the 2 dimensional case; nanoplates and monolayer.
The same results have been found in the nanoplates case of InGaSe2 even though
the monolayer case showed a direct band gap semiconductor characteristic.

The effect of the quantum confinement on the dispersion of the valence band was
more pronounced in the monolayer case than the nanoplates case of GaSe, InSe
since instead of finding the maximum of the valence band at the Γ point as in the
bulk case, the maximum of the valence band found between two symmetry points
of the Brillouin zone; Γ andK and a valley, Mexican hat dispersion, has been created
in the valence band at Γ in accordance with what have found before in the literature.
This behaviour didn’t occur in the monolayer InGaSe2 as its valence band showed
more dispersion in comparison with both of the bulk and nanoplates case of the
same material.

In all the studied cases of all the materials it is found that the largest band gap
value was the one of monolayer. Also the partial contributions of the orbitals of the
atoms to total density of states in the valence and conduction band wasn’t affected
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qualitatively by the quantum confinement.

Based on the calculated electronic structure of the studied cases, their transport co-
efficient have been calculated using the Boltzmann transport equation, to study the
effect of the quantum confinement on the thermoelectric transport coefficient. It is
found The quantum confinement has a positive effect on the Seebeck coefficient of
InGaSe2 since the largest values of S have been found in the monolayer case and
then in the nanoplates case. This coincide with the proposition of Hicks et. al. [16]
that the Seebeck coefficient of a material increases with decreasing the thickness of
the material as a result of the strong confinement effect. Even though in the mono-
layer GaSe and InSe the same results have been obtained, the opposite has been
found in the nanoplates structure of GaSe and InSe as it is found that their Seebeck
coefficient values are either comparable to or lower than its values in the bulk, re-
spectively.

In general all the average values of the Seebeck coefficient obtained in this study
are much larger than the recommended values for efficient thermoelectric materials
[109, 110]. Also, better values for the Seebeck coefficient can be obtained in the
p−type region than the n−type region.

The electrical conductivity in all the studied case showed a typical semiconductor
behavior as it is found that σ/τ increased as the chemical potential, doping level,
increased and showed its minimum values close to the Fermi level and σ/τ is high
in a highly doped region for both n− and p− type region. In contrast with the
results for the Seebeck coefficient, the quantum confinement has a negative effect on
the electrical conductivity as it found that the values of σ/τ , at the same value of the
chemical potential, decreased as the dimension of the material decreased. The same
results have been noticed in the overall behaviour of σ/τ in all the studied materials
with a small exception in the p−type InGaSe2 where the monolayer showed better
values of the σ/τ than the nanoplates and also in the n−type InGaSe2 at certain
values of the chemical potential the bulk and nanoplates showed almost similar
values of σ/τ .

The power factor relative to the relaxation time (PF/τ = S2σ/τ ) was calculated
From the existing information on the Seebeck coefficient (S) and the electrical con-
ductivity relative to the relaxation time (σ/τ ). The behaviour of the PF/τ as a func-
tion of the chemical potential in the studied materials was similar since at the vicin-
ity of the Fermi level, the power factor exhibits its minimum values that is attributed
to lower value of carrier concentration and hence the electrical conductivity. The
better values for PF/τ was found in the 2D cases at higher values of the chemical
potential, high doping level, that would not be achieved easily in the experiment.
So the values obtained at low chemical potential would be more interested and it is
found that bulk cases had the best values of PF/τ near the Fermi level.

The conduct of the electronic thermal conductivity k/τ as a function of the chemical
potential was similar to the electrical conductivity as both are affected by the carrier
concentration.
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The effect of the pressure on the Seebeck coefficients values of all the studied ma-
terials was different from one case to another. For InSe its values increase as the
pressure increase therefore the best values have been obtained at 20 GPa while for
GaSe and InGaSe2 its values have been improved at 10 GPa but when the pressure
increases to 20 GPa the values of the Seebeck coefficient start to decrease again. Fur-
thermore, the pressure has increased both the electrical (σ/τ ) and electronic thermal
conductivity relative to the relaxation time (k/τ ). From the values of PF/τ it can
be concluded that the pressure could be a good factor to improve the power factor
since it has a positive effect on both the Seebeck coefficient and the electrical con-
ductivity. Our results of ZT in all the structures of the material studied in this thesis
was within the range of 0.4 and 0.5.
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