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todos mis sueños y metas.

Y finalmente, a toda mi familia por su cariño y apoyo incondicional, durante todo este

proceso.

i





Agradecimientos

Mi profundo agradecimiento a todas las autoridades y personal que integran el Departamento

de F́ısica del Cinvestav, por abrirme las puertas y permitirme llevar a cabo todo mi proceso

formativo dentro de sus instalaciones.

A los que hicieron posible este trabajo de tesis doctoral. Mi más grande y sincero agradec-

imiento al Dr. Pablo Roig por plantearme los temas de investigación que comprenden esta

tesis, por su esfuerzo, paciencia y dedicación, y sobre todo por tomarse el tiempo de hablar

conmigo siempre que lo necesitaba. A los Dres. Pablo Sánchez y Sergi Gonzàlez por su
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Resumen

El Modelo Estándar de f́ısica de part́ıculas (ME) es una de las teoŕıas más exitosas de la

f́ısica. Sin embargo, hay algunos problemas que el SM no puede resolver, en particular, la

materia oscura, la enerǵıa oscura y las masas de neutrinos. Dada la falta de evidencia directa

de Nueva F́ısica (NF) en el LHC hasta el momento, se puede recurrir a pruebas de precisión a

baja enerǵıa donde una cantidad permitida dentro del ME se mide con un nivel de precisión

que podŕıa revelar pequeñas desviaciones entre la teoŕıa y el experimento, y aśı indicar la

presencia de f́ısica más alla del modelo estándar. Para ello, es obligatorio contar con cálculos

precisos dentro del ME y una forma independiente de modelo que nos permita estudiar los

efectos de nueva f́ısica. Lo primero se ha logrado gracias a los esfuerzos de varios grupos

en todo el mundo, mientras que el segundo se puede conseguir trabajando en un marco de

teoŕıa de campo efectivo.

Este trabajo se divide en tres partes. En primer lugar, estudiamos el efecto de las in-

teracciones de NF en las desintegraciones hadrónicas del tau, lo cual nos permitio obtener

ĺımites competitivos para interacciones no estándar a través de un ajuste global. En se-

gundo lugar, revisamos las correcciones electromagnéticas y de ruptura de isospin para los

decaimientos de τ− → π−π0ντ utilizados como input para las contribuciones de dos piones

a la polarización del vaćıo hadrónico (a LO) del momento magnético anómalo del muón. Y

finalmente, evaluamos la contribución de mesones axiales a la estructura hiperfina (HFS) del

hidrógeno muónico.
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Abstract

The Standard Model of particle physics (SM) is one of the most successful theories in physics.

However, there are some problems that the SM cannot address, e.g. dark matter, dark energy,

and neutrino masses, among others. Given the lack of direct evidence of New Physics at the

LHC so far, one can turn to a low-energy precision test where a quantity allowed within the

SM is measured at a level of precision that could reveal tiny deviations between theory and

experiment and then signal the presence of BSM dynamics. For this industry, it is mandatory

to have precise SM computations and a model-independent way to study the BSM signal.

The former was achieved thanks to the efforts of several groups worldwide, while the second

can be attained in an Effective field theory framework.

This work is divided into three parts. Firstly, we study the effect of NP interactions

in hadronic tau decays getting competitive constraints on these non-standard interactions

through a global fit. Secondly, we revisit the electromagnetic and isospin-breaking correction

to τ− → π−π0ντ decays used as input to the two-pion contributions to the hadronic vacuum

polarization (at LO) of the muon anomalous magnetic moment. And finally, we evaluate the

axial-vector contribution to the hyperfine splitting (HFS) in muonic hydrogen.
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4.3 Hadronization of the scalar, vector and tensor currents . . . . . . . . . . . . 111

4.4 Decay observables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

4.4.1 Dalitz plot . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

4.4.2 Angular distribution . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

4.4.3 Decay rate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

4.4.4 Forward-backward asymmetry . . . . . . . . . . . . . . . . . . . . . . 123

4.4.5 Limits on ε̂S and ε̂T . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

4.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

5 Global Fit of non-standard interactions in exclusive semileptonic tau de-

cays 131

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131

5.2 SMEFT Lagrangian and decay rate . . . . . . . . . . . . . . . . . . . . . . . 134

ix



5.3 Two-meson form factors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136

5.4 New Physics bounds from ∆S = 0 decays . . . . . . . . . . . . . . . . . . . 140

5.5 New Physics bounds from |∆S| = 1 decays . . . . . . . . . . . . . . . . . . . 143

5.6 New Physics bounds from a global fit to both ∆S = 0 and |∆S| = 1 sectors . 146

5.7 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148

6 Hadronic contribution to the vacuum polarization of the muon anomalous

magnetic moment 151

6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151

6.2 Theoretical calculations of aµ . . . . . . . . . . . . . . . . . . . . . . . . . . 152

6.2.1 QED contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152

6.2.2 EW contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153

6.2.3 HVP contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155

6.2.4 HLbL contribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160

6.2.5 The SM prediction for aµ . . . . . . . . . . . . . . . . . . . . . . . . 163

6.3 Data-driven calculations of HVP . . . . . . . . . . . . . . . . . . . . . . . . . 164

6.3.1 Hadronic cross sections at low energies . . . . . . . . . . . . . . . . . 165

6.3.2 Tensions in hadronic data . . . . . . . . . . . . . . . . . . . . . . . . 176

6.3.3 Use of hadronic tau decay data . . . . . . . . . . . . . . . . . . . . . 182

7 Isospin-breaking corrections to τ−→ π−π0ντ decays and the muon g− 2 191

7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 191

7.2 τ−→ π−π0γντ decays . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 194

7.2.1 Amplitude . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 194

7.2.2 Theoretical framework . . . . . . . . . . . . . . . . . . . . . . . . . . 196

7.2.3 Vector Form Factors . . . . . . . . . . . . . . . . . . . . . . . . . . . 197

7.2.4 Axial-Vector Form Factors . . . . . . . . . . . . . . . . . . . . . . . . 200

7.2.5 SD constraints . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 202

7.3 Radiative corrections for hadronic vacuum polarization . . . . . . . . . . . . 207

x



7.3.1 Radiative decay . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 216

7.4 IB corrections to aHV P,LO ππµ . . . . . . . . . . . . . . . . . . . . . . . . . . . 224

7.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 238

8 Lamb shift and hyperfine splitting in muonic hydrogen 239

8.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 239

8.2 Nuclear effects in hydrogen-like atoms . . . . . . . . . . . . . . . . . . . . . . 243

8.3 Theory updates and future µH . . . . . . . . . . . . . . . . . . . . . . . . . 244

8.3.1 Lamb shift in µH . . . . . . . . . . . . . . . . . . . . . . . . . . . . 244

8.3.2 Hyperfine splitting in µH . . . . . . . . . . . . . . . . . . . . . . . . 247

8.4 New Physics searches . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 252

9 Axial-vector contributions to the HFS of muonic hydrogen 254

9.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 254

9.2 A→ `+`− decays . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 255

9.3 The contribution to the HFS . . . . . . . . . . . . . . . . . . . . . . . . . . . 259

9.4 Model results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 261

9.4.1 One-resonance saturation . . . . . . . . . . . . . . . . . . . . . . . . . 262

9.4.2 Two-resonance saturation . . . . . . . . . . . . . . . . . . . . . . . . 264

9.5 Results and conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 266

A FT (s) including resonances as explicit degrees of freedom 269

B Chiral ward Identities among four- and five-point Green functions 273

C Amplitude for the τ− → π−π−γντ decays 275

C.1 Anomaly . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 279

C.2 RχT contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 280

D Magnetic dipole moment of the ρ meson 296

xi



E Pseudoscalar resonances in radiative di-pion tau decay 298

E.1 Mixing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 299

F Virtual corrections to di-meson tau decays 302

G Fit of leading odd-intrinsic parity resonance couplings to the O(p6) LECs305

H Kinematics of four body tau decays 307

H.1 τ−(P )→ π−(p−)π0(p0)γ(k)ντ (q) kinematics . . . . . . . . . . . . . . . . . . 307

I Vector Form Factors in radiative di-pion tau decays 312

J Axial Form Factors in radiative di-pion tau decays 325

K Axial structure of the nucleon 339

K.1 The coupling of P to the nucleon . . . . . . . . . . . . . . . . . . . . . . . . 340

K.2 The coupling of A to the nucleon . . . . . . . . . . . . . . . . . . . . . . . . 343

K.2.1 Antisymmetric tensor field (Aµν) . . . . . . . . . . . . . . . . . . . . 343
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Preface

The standard model is a quantum field theory [127–129] that describes the strong, weak, and

electromagnetic interaction, and it has been tested with unprecedented accuracy. Despite its

success, the SM is unable to explain the neutrino mass, the matter-antimatter asymmetry,

the dark matter content in our universe, the accelerated expansion of the universe, and it

doesn’t include gravity. Although many BSM theories have been proposed to address these

issues, plenty of them predict new particles at scales far beyond any current and planned

experiment.

An effective field theory (EFT) provides us with the perfect framework to look up possible

departures from the SM in a model-independent way, for instance, the SMEFT [1, 130] is

the EFT of the SM that realizes its symmetries linearly, where the heavy new physics is

decoupled [131], and all the information about the fundamental theory is already contained

in the Wilson coefficients. Direct searches at colliders have set constraints on the mass scale

of new particles above a few TeVs.

Given the lack of direct evidence of new particles at the LHC so far, the study of precision

observables such as the W mass, the Higgs mass, flavor observables, and (g−2)µ would allow

disentangling new physics effects. The muon anomalous magnetic moment, aµ = (gµ− 2)/2,

is one of the most precise quantities that provides a stringent test of the SM and a window

to physics beyond the SM (BSM). A long-standing deviation between theory and experiment

about 3− 4 standard deviations has been observed. The difference between the combination

of the latest measurements from FNAL [96] and the previous one at Brookhaven [95] with

respect to the latest SM prediction [6] increases the significance at 4.2σ.
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Chiral perturbation theory 1 and dispersion relations give an excellent description of the

hadronic process at low-energies, where QCD becomes non-perturbative and any computa-

tion from first-principles is not feasible. Nevertheless, there have been several improvements

on the lattice QCD estimations (see [134] for further details).

The thesis is structured as follows: the theoretical framework implemented in this the-

sis, which includes concepts on QCD, EFT, ChPT and dispersion relations is presented in

Chapter 1. In Chapter 2, we highlight the relevance of the leptonic τ decays in the search of

New Physics and test of LU. Besides, we briefly describe the experimental and theoretical

progress of the hadronic tau decays. In Chapter 3, analogously to leptonic τ decays we study

the Lorentz structure of the τ− → π−π0ντ decays through an EFT analysis that includes

the most general structure allow by the symmetries of the SM. In addition, we investigate

the sensitivity of some observables to non-standard interactions. In Chapter 4, as before we

explore the susceptibility to NP in the τ− → K−η(′)ντ decays. In Chapter 5, we implement

a global analysis of strangeness-conserving and -changing exclusive hadronic tau decays into

one and two pseudoscalar mesons. Given the theoretical and experimental improvements of

the muon anomalous magnetic moment, we discuss the SM estimation of aµ and the input

used for the data-driven approach in Chapter 6. In Chapter 7, we review the isospin-breaking

and electromagnetic corrections to the τ− → π−π0ντ decays, which are used as an input to

the two-pion contributions to the hadronic vacuum polarization (at LO) of the anomalous

magnetic moment (aµ). An overview of the status of the Lamb shift and hyperfine splitting

in muonic hydrogen is discussed in Chapter 8. In Chapter 9, we focus on the axial-vector

contributions to the hyperfine splitting in muonic hydrogen.

1A nice review of ChiPT is given in [132,133].
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Chapter 1

Theoretical framework

1.1 Standard Model

The standard model of particle physics is the most successful quantum field theory in de-

scribing three of the four fundamental interactions of electromagnetic, weak and strong type.

Each one of its predictions has been verified, showing an impressive agreement between the-

ory and experiment.

1.1.1 Particle content in the Standard Model.

The particles and fields content of the Standard Model [127–129] (SM) consists of 12 fermions

(spin=1/2), 4 vector gauge bosons (spin=1), and a scalar Higgs boson (spin=0).

There are two types of fermions: leptons and quarks. These are:

• 3 charged leptons (e, µ, τ);

• 3 neutrinos (νe, νµ, ντ ) (or ν1, ν2, ν3);

• 6 quarks of different flavors.

Every quark can have one of three possible colors. Each fermion has 2 degrees of freedom

e.g., it can have spin up or spin down, or be left- or right-handed. Every fermion particle in
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the SM has an antiparticle, f 6= f̄ , the latter has not yet been verified for neutrinos, which

could be Majorana particles. Traditionally, fermions are known as matter fields, and bosons

as force fields (they are the mediators of SM interactions).

The SM has the following boson fields:

• 8 vector (spin=1) gluons;

• 4 vectors (spin=1) electroweak bosons: γ, Z, W±;

• 1 scalar (spin=0) Higgs boson.

Gluons and photons are massless and have 2 degrees of freedom (polarizations), Z and W

bosons are massive and have 3 degrees of freedom (polarizations). Massive or massless refers

to the presence or absence of a corresponding mass term in the SM Lagrangian.

Gluons and electroweak (EW) bosons are gauge bosons, their interactions with fermions are

fixed by certain symmetries of the SM Lagrangian. Electrically neutral bosons (H, γ, Z and

gluons) coincide with their antiparticles e.g., γ ≡ γ̄. Each one of the 8 gluons carries both a

color and an anticolor. All this is summarized in Table 1.1.

qi SU(3)C SU(2)L U(1)Y Q = T3 + Y

u0
mL 3 2 +1

6 +2
3

d0
mL 3 2 +1

6 −1
3

u0
mR 3 1 +2

3 +2
3

d0
mR 3 1 −1

3 −1
3

`0mL 1 2 −1
2 −1

ν0
mL 1 2 −1

2 0
`0mR 1 1 −1 −1
W± 1 3 0 ±1
Z 1 3 0 0
γ 1 1 0 0
H 1 2 +1

2 0
g 8 1 0 0

Table 1.1: Matter content of the Standard Model. Upperindex 0 means these fields are in
the flavor basis.
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1.1.2 Constructing the Lagrangian of the Electroweak Model

With all fields discussed above, it is possible to build the most general renormalizable La-

grangian invariant under SU(2)L×U(1)Y . Given that the symmetry SU(3)C commutes with

the SU(2)L factor and the fact that the color symmetry is exact, we can ignore color indices

and terms including gluons.

Working in natural units (~ = c = 1) in a (1 + 3)−dimensional space, we can see that

[ψ] = E3/2, [X] = E1 and [φ] = E1 where X = W i, B. For the theory to be renormalizable

we must include all operators Ô(i) with i ≤ 4, that can be built with the SM fields, that is

L =
4∑
i=0

αiÔ(i) = α0 Ô(0) + α2 Ô(2) + α3 Ô(3) + α4 Ô(4), (1.1)

where [αi] = E4−i and [O] = Ei.

We will see now which could be these operators:

• For i = 0, O(0) must be dimension zero, so the only possibility corresponds to a

constant. These terms are negligible working in flat spaces but become important in

curved spaces.

• For i = 1, the only possibility is including a boson field, since they are of mass dimen-

sion 1, although these terms would not be invariant under SU(2)L × U(1)Y , so there

are not operators with i = 1.

• For i = 2, the only possibility corresponds to mass terms of the boson fields. For the

gauge fields, these terms are forbidden since they are not invariant, while for the scalar

fields they are allowed. In the scalar field case this term appears in the potential V (φ).

• For i = 3, there are several possibilities. On one side, there are the mass terms of the

fermion fields,

ψ̄ψ = ψ̄LψR + ψ̄RψL, (1.2)

since ψL is SU(2)L doublet and ψR is SU(2)L singlet, these terms are not gauge in-
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variant. A term of the form φ†∂µφ would not be a relativistic invariant. The last

possibility corresponds to couplings between three boson fields X3, X2φ,Xφ2 and φ3

which are not invariant under SU(2) × U(1). Xφ2 terms are generated in the theory

after promoting the global symmetry to a local one, while the X3 arise because the

non-abelian nature of the gauge fields.

• There are more possibilities for i=4. The kinetic term of the fermion fields

ψ̄γµ∂µψ = ψ̄Lγ
µ∂µψL + ψ̄Rγ

µ∂µψR, (1.3)

is invariant as it does not mix chiral components. The scalar field kinetic term,

(∂µφ)†∂µφ is SU(2) × U(1) invariant. A term of the type φ†�φ, where � ≡ ∂µ∂
µ,

would be redundant. The kinetic term for the X gauge fields which is SU(2) invariant

corresponds to 〈XµνX
µν〉 = 1

2X
i
µνX

µν
i , where

Xµν ≡ τ iX i
µν , X i

µν = ∂µX
i
ν − ∂νX i

µ − g fijkXj
µX

k
ν , (1.4)

fijk being the group structure constant. For the X = B case, the kinetic term, BµνB
µν

with Bµν = ∂µBν − ∂νBµ, is U(1)Y invariant. Terms of the form (∂µX)X2 are not

relativistic invariants. Another possibility includes the coupling between 4 gauge boson

fields, the X4 terms are not invariant by themselves, but are already included in the

kinetic terms. X3φ and Xφ3 are not invariant. Even though the term X2φ2 is not

invariant, it appears when promoting the global symmetry to a local one. The term

including the coupling between four scalar fields φ4 is invariant under SU(2)L. Lastly,

it is possible to construct a term which is SU(2)L × U(1)Y invariant of the form ψ2φ,

in the simplest case, only a complex scalar doublet of SU(2)L is needed. This requires

a left-handed and a right-handed fermion field, ψ̄LφψR or ψ̄Lγ5φψR.
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1.1.3 Standard Model of Elementary Particles.

The Standard Model is based on the local gauge symmetry goup G = SU(3)C × SU(2)L ×

U(1)Y . The SU(3)C factor (QCD) has gauge couplings gs and eight gauge bosons (gluons)

Gi, i = 1 · · · 8. This part is not chiral, and acts over color indices of the left- and right-

handed quarks qrα, where α = 1, 2, 3 stands for color and r for flavor. QCD is not broken

spontaneously, so the gluons do not acquire mass.

On the other hand, the electroweak SU(2)L×U(1)Y factor is chiral. The SU(2)L group has

gauge couplings g, gauge bosons W i (i = 1, 2, 3), and acts only over the flavor indices of

left-handed fermions. This leads to the Fermi weak charged current interactions, and also

includes a neutral W 3 boson associated with a fermion phase symmetry. The abelian factor

U(1) has gauge couplings g′ and a gauge boson B. This is also chiral, acting over L and

R fermions but with different hypercharge. After spontaneous symmetry breaking (SSB),

SU(2)L × U(1)Y is broken to a single U(1)Q, incorporating QED with the photon, which is

a linear combination of W 3 and B. The orthogonal combination (Z), as well as W±, acquire

mass.

The Standard Model Lagrangian is

L = Lgauge + Lf + Lφ + LY uk, (1.5)

including the gauge, fermion, Higgs and Yukawa sectors of the theory. There are additional

terms: ghosts and gauge-fixing, entering the quantization, which are not shown above. Gauge

terms are

Lgauge = −1
4G

i
µνG

µνi − 1
4W

i
µνW

µνi − 1
4BµνB

µν , (1.6)
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where the field-strength tensors of SU(3)C , SU(2)L, and U(1)Y are, respectively

Gi
µν = ∂µG

i
ν − ∂νGi

µ − gsfijkGj
µG

k
ν , i, j, k = 1 · · · 8; (1.7a)

W i
µν = ∂µW

i
ν − ∂νW i

µ − gfijkW j
µW

k
ν , i, j, k = 1 · · · 3; (1.7b)

Bµν = ∂µBν − ∂νBµ. (1.7c)

These include kinetic terms of the gauge bosons as well as self-interacting terms of three and

four points for the Gi and W i. The abelian gauge boson U(1) does not have self-interactions.

The fermion part of the Standard Model involves F = 3, where F is the number of quark

and lepton families. Each family consists of

L Doublets : q0
mL =

 u0
m

d0
m


L

, `0
mL =

 ν0
m

`−0
m


L

, (1.8a)

R Singlets : u0
mR, d

0
mR, e

−0
mR, ν

0
mR, (1.8b)

wherein the chiral fields L are SU(2) doublets and the R fields are singlets. Upperindex 0

means these fields are weak eigenstates, i.e., with definite gauge transformation properties,

and the elements of each doublet transforming under SU(2)L, and m = 1, 2, 3 labelling the

family. After SSB, these mix in the mass eigenstate basis. Quarks u0 and d0 have electric

charges 2/3 and −1/3 (in terms of the electron charge), respectively. There are 2F = 6

quark flavors. Each of them carries a color index u0
mL,Rα or d0

mL,Rα. Groups SU(2)L and

SU(3)C commute, in such a way that QCD conserves flavor, and viceversa. Leptons e− and

ν0 are color singlets and have electric charges −1 and 0. Although there are not R neutrinos

in the Standard Model, these are required in various models to give neutrinos a mass. Here

we have considered R neutrinos simply as SU(2)L singlets. All these fields but ν0
mR carry

weak hypercharge Y , defined in our convention by

Y = Q− T 3
L, (1.9)
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where T 3
L is the third SU(2)L generator and Q is the electric charge.

SU(2)L and U(1)Y representations are chiral. Lf consists entirely of kinetic terms,

Lf =
F∑

m=1

(
q̄0
mLi /Dq

0
mL + ¯̀0

mLi /D`
0
mL

+ū0
mRi /Du

0
mR + d̄0

mRi /Dd
0
mR + ē0

mRi /De
0
mR + ν̄0

mRi /Dν
0
mR

)
,

(1.10)

for an arbitrary number of fermion families, F .

The Higgs part of the SM Lagrangian is

Lφ = (Dµφ)†Dµφ− V (φ), (1.11)

where φ ≡

 φ+

φ0

 is a complex doublet scalar Higgs field [135–137]. The covariant derivative

is

Dµφ =
(
∂µ + ig

2 ~τ ·
~Wµ + ig′

2 Bµ

)
φ. (1.12)

The modulus squared of the covariant derivative acting on φ generates interactions between

the gauge boson and the Higgs fields. V (φ) is the corresponding Higgs potential. Invariance

under SU(2)L × U(1)Y and renormalizability restrict V to be

V (φ) = +µ2φ†φ+ λ(φ†φ)2, µ2 < 0. (1.13)

The term LY uk represents Yukawa couplings among fermions and the Higgs doublet, which

are necessary to generate fermion masses through the SSB of chiral gauge symmetries. For

F fermion families, we have

LY uk = −
F∑

m,n=1

[
Γumnq̄0

mLφ̃u
0
nR + Γdmnq̄0

mLφd
0
nR

Γemn ¯̀0
mnφe

0
nR + Γνmn ¯̀0

mLφ̃ν
0
nR

]
+ h.c.,

(1.14)
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Left-handed fermion fields ψi =

 νi

`−i

 and

 ui

di

, of the i-th lepton family, transform

as doublets under SU(2)L, where d′i ≡
∑
j Vijdj, and V is the Cabibbo-Kobayashi-Maskawa

(CKM) [138, 139] mixing matrix. Right-handed fields are SU(2) singlets. In the minimal

model there are three lepton families and a complex Higgs doublet φ ≡

 φ+

φ0

.

1.2 Higgs mechanism

It is convenient to write φ in an Hermitian basis

φ =

 φ+

φ0

 =

 1√
2 (φ1 + iφ2)

1√
2 (φ3 + iφ4)

 , (1.15)

where φi = φ†i is an hermitian field. In this basis, the Higgs potential takes the form

V (φ) = 1
2µ

2
( 4∑
i=1

φ2
i

)
+ 1

4λ
( 4∑
i=1

φ2
i

)2

. (1.16)

This potential is O(4) ∼ SU(2) × SU(2) invariant. This is an example of an accidental

symmetry; the most general potential consistent with the gauge symmetry SU(2) × U(1)

and renormalizability displays a larger symmetry group.

We can choose axes as follows 〈0 |φi| 0〉 = 0, i = 1, 2, 4 y 〈0 |φi| 0〉 = ν. In such a way that

φ→ 〈0 |φ| 0〉 ≡ v = 1√
2

 0

ν

 ,
V (φ)→ V (v) = 1

2µ
2ν2 + 1

4λν
4,

(1.17)

which has to be minimized with respect to ν. There are two possibilities, for µ2 > 0 the

minimum corresponds to ν = 0 and, therefore, the symmetry is not broken therein. On the
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other hand, for µ < 0 the ν = 0 point is unstable, and the minimum occurs for ν 6= 0,

breaking the SU(2)× U(1) symmetry. This gives as solution ν =
√
−µ2

λ
.

Now we turn to the µ2 < 0 case, for which the Higgs doublet is replaced, in first approxi-

mation, by its vaccum expectation value, vev (v). Generators corresponding to T 1, T 2 and

T 3 − Y are broken,

T 1v = σ1

2
1√
2

 0

ν

 = 1
2
√

2

 ν

0

 6= 0,

T 2v = σ2

2
1√
2

 0

ν

 = −i
2
√

2

 ν

0

 6= 0,

(T 3 − Y )v =
(
σ3

2 − Y
)

1√
2

 0

ν

 = −1√
2

 0

ν

 6= 0,

(1.18)

while Qv = (T 3 + Y )v = 0, given that the vaccum is electrically neutral, so that U(1)Q of

electromagnetism is not broken, and SU(2)L × U(1)Y → U(1)Q.

Thus, the vacuum is only invariant under Q = T 3 + Y , and the SSB of the three other

generators gives three Goldstone bosons, spinless and massless particles, which appear as

longitudinal polarizations of the gauge bosons W± = (W 1∓iW 2)/
√

2 and Z0. The unbroken

generator (Q) warrants there is a massless gauge boson, the photon. This process is the

spontaneous symmetry breaking.

It is generally useful to rewrite the φ field in terms of a new set of variables using the Kibble

transformation,

φ = 1√
2

exp
[
i

3∑
i=1

ξiT ′i
] 0

ν

 , (1.19)

where the T ′i are the three broken generators T 1, T 2 and T 3 − Y , and H is an hermitian

scalar field, the physical Higgs boson. Hermitian ξi fields are the Goldstone bosons.

These only appear through derivatives, and disappear in the physical spectrum of the gauge
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theory. It is useful to work in the unitary gauge,

φ→ φ′ = exp
[
−i
∑

ξiT ′i
]
φ = 1√

2

 0

ν +H

 , φ̃→ 1√
2

 ν +H

0

 , (1.20)

together with the corresponding transformations of the other fields. Unitary gauge is the

simplest to show the matter content of the theory, because Goldstone bosons disappear and

only physical degrees of freedom survive. Sometimes it is better to work in other gauges

since they facilitate computations at higher orders (loops). Table 1.2 compares the degrees

of freedom in the unitary (’physical’) and renormalizable gauges.

Unitary gauge Renormalizable gauge
0 Goldstone Bosons 3 Goldstone Bosons

3 massive gauge bosons (W±, Z)
with 3 polarizations (2 T and 1 L)

4 massless gauge bosons (W i, B)
with 2 transverse polarizations (T)

1 massless Gauge Boson (γ)
with 2 transverse polarizations (T)

Table 1.2: Comparison between degrees of freedom in unitary and renormalizable gauge (11
in both).

1.3 Lagrangian after SSB

The kinetic term of the Higgs sector in the unitary gauge takes the following form

(Dµφ)†Dµφ = 1
2 (0 ν)

[
g

2τ
iW i

µ + g′

2 Bµ

]2
 0

ν

+ · · · . (1.21)

We can rewrite it using the relation

τ iW i = τ 3W 3 +
√

2τ+W+ +
√

2τ−W−, (1.22)
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where

W± = W 1 ∓ iW 2
√

2
, τ± = τ 1 ± τ 2

2 , (1.23)

which yields

g2ν2

4 W+µW−
µ + 1

2(g2 + g′2)ν
2

4

[
−g′Bµ + gW 3

µ√
g2 + g′2

]2

≡M2
WW

+µW−
µ + M2

Z

2 ZµZµ,

(1.24)

where W± are the charged gauge bosons mediating weak charged current interactions, and

Z ≡ −g
′B + gW 3
√
g2 + g′2

= − sin θW B + cos θW W 3 (1.25)

is a massive vector gauge boson mediating the weak interactions predicted by the SU(2)×

U(1) symmetry, where θW is the weak mixing angle, defined by

tan θW ≡
g′

g
, sin θW = g′√

g2 + g′2
, cos θW = g√

g2 + g′2
. (1.26)

The linear combination of B and W 3 orthogonal to Z is the photon (γ), whose field

A = cos θWB + sin θWW 3, (1.27)

remains massless.

After SSB, the Lagrangian including the Higgs sector is

Lφ = (Dµφ)†Dµφ− V (φ)

= M2
WW

µ+W−
µ

(
1 + H

ν

)2
+ 1

2M
2
ZZ

µZµ

(
1 + H

ν

)2

+ 1
2(∂µH)2 − V (φ) ,

(1.28)
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where the Higgs potential after SSB becomes

V (φ)→ −µ
4

4λ − µ
2H2 + λνH3 + λ

4H
4. (1.29)

Eq. (1.28) describes the interactions of massive gauge bosons, W± and Z, with the Higgs

boson, which are ZZH, W+W−Z, ZZH2 and W+W−H2. The Lagrangian includes a kinetic

term for the Higgs and a corresponding mass term in the potential has been generated,

predicting M2
H = −2µ2 = 2λν2.

On the other side, the Lagrangian for the fermion field after SSB is

LF =
∑
i

ψ̄i

[
i/∂ −mi

(
1 + gH

2MW

)]
ψi

− g

2
√

2
∑
i

ψ̄iγ
µ
(
1− γ5

) (
T+W+

µ + T−W−
µ

)
ψi

− e
∑
i

qiψ̄iγ
µψiAµ

− g

2 cos θW
∑
i

ψ̄iγ
µ
(
giV − giAγ5

)
ψiZµ.

(1.30)

In this expression, e = g sin θW is the positron electric charge. The Yukawa coupling

between H and ψi in the first term of Lf , diagonal in the minimal model, is g mi/2MW .

Gauge boson masses in the EW sector are given (at tree level) by

MH =
√

2λv, (1.31a)

MW = 1
2gv = ev

2 sin θW
, (1.31b)

MZ = 1
2
√
g2 + g′2v = ev

2 sin θW cos θW
= MW

cos θW
, (1.31c)

Mγ = 0. (1.31d)

From them, it can be shown that the limit g′ → 0 leads to MZ = MW . This is because the

O(4) global symmetry of the potential in Eq. (1.16) is broken to O(3) ∼ SU(2) after SSB.

This custodial symmetry (of global type) is respected by the SU(2) gauge interactions in
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eq. (1.21) for g′ = 0, such that MW± = MW 3 = MZ . Custodial SO(3) symmetry warrants

that the coefficient ν2 be the same for the W± and Z mass terms, even for g 6= 0, implying

MW = MZ cos θW . Since this relation has been verified experimentally with great accuracy,

any alternative model of SSB must involve global custodial SU(2) symmetry to keep it.

The second term in Lf represents the weak charged current interaction, where T+ and

T− are the weak isospin raising and lowering operators. For instance, the coupling of a W

to an electron and a neutrino is

− e

2
√

2 sin θW

[
W−
µ ēγ

µ(1− γ5)νe +W+
µ ν̄eγ

µ(1− γ5)e
]
. (1.32)

For momenta small compared to MW , this term gives rise to an effective four-fermion local in-

teraction with strength encoded in the Fermi constant, given by GF/
√

2 = 1/2v2 = g2/8M2
W .

CP is incorporated in the EW SM by means of a single physical phase in Vij.

The third term in Lf describes electromagnetic interactions (QED), and the last one is the

neutral current weak interaction. Their vector and axial-vector couplings are

giV ≡ t3L(i)− 2qi sin2 θW , (1.33a)

giA ≡ t3L(i), (1.33b)

where t3L(i) is the weak isospin of the i fermion (+1/2 for ui and νi; −1/2 for di and ei) and

qi is the electric charge of ψi in units of e.

The first term in eq. (1.30) also gives masses to fermions and, in presence of right-handed

neutrinos, gives neutrinos a Dirac mass, as well.
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SU(2) gauge kinetic terms produce self-interactions among three and four fields

LWWB = −ig cos θW
{

(∂ρZν)W+
µ W

−
σ [gρµgνσ − gρσgµν ] + (∂ρW+

µ )ZνW−
σ [gρσgµν − gρνgµσ]

+ (∂ρW−
σ )ZνW+

µ [gρνgµσ − gρµgνσ]
}

− ig sin θW
{

(∂ρAν)W+
µ W

−
σ [gρµgνσ − gρσgµν ] + (∂ρW+

µ )AνW−
σ [gρσgµν − gρνgµσ]

+ (∂ρW−
σ )AνW+

µ [gρνgµσ − gρµgνσ]
}

(1.34)

and

LW 4 =g
2

4
[
W+
µ W

+
ν W

−
σ W

−
ρ Qµνρσ − 2 cos2 θWW

+
µ ZνZσW

−
ρ Qµρνσ

−4 sin θW cos θWW+
µ AνZσW

−
ρ Qµρνσ − 2 sin2 θWW

+
µ AνAσW

−
ρ Qµρνσ

]
,

(1.35)

where

Qµνρσ ≡ 2gµνgρσ − gµρgνσ − gµσgνρ. (1.36)

1.3.1 The Yukawa sector and the mixing matrix

We will study now in more detail the Yukawa sector, which is responsible for generating the

mass terms after SSB. Working in the unitary gauge for the φ and φ̃ fields, one obtains, for

F families

−LY uk =
F∑

m,n=1
ū0
mLΓumn

(
ν +H√

2

)
u0
nR + (d, e, ν) + h.c.

= ū0
L(Mu + huH)u0

R + (d, e, ν) + h.c.,

(1.37)
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where u0
L = (u0

1L u
0
2L · · · u0

FL)T is a column vector with F components, and similarly for u0
R.

In this expression Mu is an F × F matrix,

Mu
mn = Γumn

ν√
2
, (1.38)

induced by the SSB, and

hu = Mu

ν
= gMu

2MW

(1.39)

is the matrix of Yukawa couplings. Given that Γumn does not need to be diagonal, Hermitian

or symmetric, it is necessary to diagonalize M by means of a unitary transformation defined

by AL and AR, acting on the left- and right-handed fermion fields, respectively. Then,

Au†L M
uAuR = Mu

D is a diagonal matrix with real non-negative eigenvalues corresponding to

the up-type quark masses (u). Similarly, we denote the hu eigenvalues as hi with i = u, c, t

for F = 3. Likewise, the mass matrices for down-type quarks and leptons can be diagonalized

by

Ad†LM
dAdR = Md

D A`†LM
`A`R = M `

D. (1.40)

Fields in the mass eigenbasis can be rewritten as uL,R = Au†L,Ru
0
L,R, dL,R = Ad†L,Rd

0
L,R and

`L,R = A`†L,R`
0
L,R, in such a way that ū0

LM
uu0

R = ūLM
u
DuR.

For the quarks case, eigenvalues in Mu,d
D are the bare masses in the QCD Lagrangian.

Unitary matrices AL,R can be built from the fact that MM † and M †M are hermitian. From

the previous relations, the following can be shown

Âu†L M
uMu†ÂuL = Âu†RM

u†MuÂuR = M2
D =



m2
u1 0 0 0

0 m2
u2 0 0

0 0 m2
u3 0

0 0 0 . . .


, (1.41)

so then ÂuL,R and their eigenvalues can be obtained with basic techniques. Given the her-

miticity of MM † and M †M , eigenvalues of m2
ur are real and their eigenvectors are orthogonal,

15



m2
ur > 0 holding as well. Nonetheless, these matrices are not unique, AuL,R is only determined

up to phases. In this way, in addition to AuL,R as solution of Eq. (1.41), also AuL ≡ ÂuLK
u
L

and AuR ≡ ÂuRK
u
R solves it, where

Ku
L,R =



exp
[
iφu1L,R

]
0 0 0

0 exp
[
iφu2L,R

]
0 0

0 0 exp
[
iφu3L,R

]
0

0 0 0 . . .


(1.42)

are diagonal matrices with arbitrary non-observable phases. Usual methodology consists in

choosing Ku
L such that all non-physical phases can be removed from the CKM matrix, then

one can choose the phase in Ku
R so that mu

r be real and non-negative. On the other hand,

AuR matrices are non-observable in the SM but this does not need to be the case in some of

its extensions.

With these results, the Lagrangian including kinetic terms for the fermions and the Yukawa

sector can be written

Lψ =
∑
r

ψ̄r

[
i/∂ −mr

(
1 + H

ν

)]
ψr, (1.43)

where the sum runs over all fermions, quarks and charged leptons. This expression corre-

sponds to the first term in the Lagrangian of Eq. (1.30), using the relation ν = 2MW/g.

If now we consider the second term of Eq. (1.30), which corresponds to the weak charged

current Lagrangian, it can be written as

LW = − g

2
√

2
∑
i

ψ̄iγ
µ
(
1− γ5

) (
T+W+

µ + T−W−
µ

)
ψi,

=− g

2
√

2
(
JµWW

−
µ + Jµ†WW

+
µ

)
,

(1.44)
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where the Jµ†W and JµW are defined by

JµW =
F∑

m=1

[
ν̄0
mγ

µ(1− γ5)e0
m + ū0

mγ
µ(1− γ5)d0

m

]
,

Jµ†W =
F∑

m=1

[
ē0
mγ

µ(1− γ5)ν0
m + d̄0

mγ
µ(1− γ5)u0

m

]
,

(1.45)

in the flavor eigenbasis. Rewriting these currents in the mass eigenbasis yields

JµW = 2ν̄LγµV` eL + 2ūLγµVqdL,

Jµ†W = 2ēLγµV †` νL + 2d̄LγµV †q u0
m,

(1.46)

where uL, dL, eL, and νL are F component vector columns. The unitary quark mixing matrix,

Vq ≡ Au†L A
d
L, describes the misalignement between the flavor and weak eigenbasis for the up-

and down-type quarks. V` is its analog for the lepton case, the PMNS matrix, which is

essential in the description of neutrino oscillations and other processes sensitive to neutrino

masses. For processes insensitive to them one can simply take V` = I.

For a complex F × F matrix, there are 2F 2 real parameters describing it, F 2 moduli and

F 2 phases. However, Vq is unitary, implying F (F + 1)/2 restrictions on the moduli and

F (F − 1)/2 conditions on the phases. We recall that not all these phases are observable,

according to the Ku,d
L matrices. In this way, we can choose Ku,d

L freeely to remove 2F − 1

phase differences in Vq, so that there are

(F − 1)2 = F (F − 1)
2 + (F − 1)(F − 2)

2 (1.47)

observable parameters, F (F − 1)/2 of them are rotation angles and the remaining (F −

1)(F − 2)/2 are CP violating phases. From this relation, F > 2 is needed for violating CP .

For F = 3 one has Vq = VCKM , with three mixing angles and a CP violating phase.
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The third term in Eq. (1.30), corresponds to the QED Lagrangian,

LQ = −e
∑
i

qiψ̄iγ
µψiAµ

= −e JµQAµ,
(1.48)

where Aµ is the photon field and

JµQ =
∑
r

qrψ̄
0
rγ

µψ0
r =

F∑
m=1

[2
3 ū

0
mγ

µu0
m −

1
3 d̄

0
mγ

µd0
m − ē0

mγ
µe0
m

]

≡ 2
3 ū

0γµu0 − 1
3 d̄

0γµd0 − ē0γµe0,

(1.49)

rewriting this expression in the mass eigenbasis yields

JµQ = 2
3 ūγ

µu− 1
3 d̄γ

µd− ēγµe, (1.50)

so that JµQ is diagonal in flavor.

The last term corresponds to the neutral weak current

LZ = − g

2 cos θW
∑
i

ψ̄iγ
µ
(
giV − giAγ5

)
ψiZµ

= − g

2 cos θW
JµZZµ,

(1.51)

where Zµ is a massive neutral boson. The neutral weak current is

JµZ =
∑
r

ψ̄0
rγ

µ
[
t3rL(1− γ5)− 2qr sin2 θW

]
ψ0
r

=
∑
r

t3rLψ̄
0γµ(1− γ5)ψ0

r − 2 sin2 θW JµQ,
(1.52)

summing over all fermion content. Working with the SM fields,

JµZ = ū0
Lγ

µu0
L − d̄0

Lγ
µd0

L + ν̄0
Lγ

µν0
L − ē0

Lγ
µe0
L − 2 sin2 θW JµQ

= ūLγ
µuL − d̄LγµdL + ν̄Lγ

µνL − ēLγµeL − 2 sin2 θW JµQ,
(1.53)
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showing that the neutral weak current is also diagonal in flavor. These results agree with

the observations of flavor-changing neutral current processes (FCNC), which are very sup-

pressed since they are forbidden at tree level and need to occur through loops, an additional

suppression coming from the GIM [140] mechanism (owing to the unitarity of the CKM

matrix).

1.4 Quantum Chromodynamics

Quantum chromodynamics (QCD), the gauge theory that describes the strong interactions

of colored quarks and gluons, is the SU(3) component of the SU(3)×SU(2)×U(1) Standard

Model. The QCD Lagrangian is given by

L =
∑
q

ψ̄q,a
(
iγµ∂µδab − gsγµtCabACµ −mqδab

)
ψq,b −

1
4F

A
µνF

µν
A , (1.54)

where repeated indices are summed over. The ψq,a are quark-field spinors for a quark of

flavor q and mass mq, with a color index a that runs from a = 1 to NC = 3. Quarks are said

to be in the fundamental representation of the SU(3) color group.

The ACµ correspond to the gluon fields, with C running from 1 to N2
C − 1 = 8. Gluons

transform under the adjoint representation of the SU(3) color group. The tCab, which corre-

spond to eight 3× 3 matrices, are the generators of the SU(3) group and are related to the

Gell-Mann matrices by tCab = λCab/2. They encode the fact that a gluon’s interaction with

a quark rotates the quark’s color in SU(3) space. The gs term (or αs = g2
s

4π ) is the QCD

running coupling. Apart from quark masses, which have electroweak origin (and the scale

ΛQCD, generated by quantum corrections and giving hadrons’ characteristic mass scale), it

is the only fundamental parameter of QCD. Lastly, the field tensor FA
µν is given by

FA
µν = ∂µAAν − ∂νAAµ − gsfABCABµACν [tA, tB] = ifABCt

C , (1.55)

where the fABC are the structure constants of the SU(3) group.
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Neither quarks nor gluons are observed as free particles. Hadrons are color-singlet com-

binations of quark, anti-quarks and gluons.

Ab-initio predictive methods for QCD include lattice gauge theory and perturbative

expansions in the coupling. The Feynman rules of QCD imply a quark-antiquark-gluon

(qq̄g) vertex, a 3-gluon vertex both proportional to gs, and a 4-gluon vertex proportional to

g2
s . A list of Feynman rules and examples can be found in Refs. [141–145].

There is a freedom for an additional CP-violating term to be present in the QCD La-

grangian, θαs8πF
A
µνF̃

Aµν , where θ is an extra free parameter, and F̃Aµν is the dual of the gluon

field tensor, 1
2εµνρσF

Aσρ, with εµνσρ being the fully antisymmetric Levi-Civita symbol. Ex-

perimental limits on ultracold neutrons [146, 147] and atomic mercury [148] constrain the

QCD vacuum angle to be |θ| . 10−10. Further discussions can be found in Refs. [3, 149].

1.4.1 Running coupling

In the frame of perturbative QCD (pQCD), predictions from observable are expressed in

terms of the renormalized coupling αs(µR), a function of an (unphysical) renormalization

scale µR. If µR is taken close to the scale of the momentum transfer Q in a given process,

then αs(µ2
R ' Q2) is indicative of the effective strength of the strong interaction in that

process.

The coupling satisfies the next renormalization group equation (RGE):

µ2
R

dαs
dµ2

R

= β(αs) = −(b0α
2
s + b1α

3
s + b2α

4
s + · · · ) , (1.56)

where b0 = (11CA−4nfTR)/(12π) = (33−2nf )/(12π) is the 1-loop β-function coefficient,

b1 = (17C2
A − nfTR(10CA + 6CF ))/(24π2) = (153 − 19nf )/(24π2) is the 2-loop coefficient

and b2 = (2857 − 5033
9 nf + 325

27 n
2
f )/(128π3) is the 3-loop coefficient for the SU(3) values of

TR = TF = 1
2 , CA = NC = 3 and CF = N2

C−1
2NC = 4

3 . Here nf is the number of quark flavors.

The 4-loop coefficient, b3, can be found in Refs. [150,151], while the 5-loop coefficient, b4, is

in Refs. [152–156]. The b2 and b3 coefficients (and subsequent) are renormalization-scheme-

dependent and are given here in the modified minimal subtraction scheme (MS) [157], which
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Figure 1.1: Summary of measurements of αs as a function of the energy scale Q [3]. The respective
degree of QCD perturbation theory used in the extraction of αs is indicated in brackets (NLO: next-
to-leading order; NNLO: next-to-next-to-leading-order; NNLO+res: NNLO matched to a resumed
calculation; N3LO: next-to-NNLO).

is the most used scheme in QCD.

The minus sign in Eq. (1.56) is the origin of Asymptotic Freedom [158,159], i.e. the fact

that the strong coupling becomes weak for processes involving large momentum transfers

(“hard processes”). In the 0.1−1 TeV range, αs ∼ 0.1, while the theory is strongly interacting

for scales around and below 1 GeV.

Many experimental observables are used to determine αs. A number of recent determi-

nations are collected in Ref. [160]. Further discussions and considerations on determinations

of αs can also be found in Refs. [161–163]. A summary for the results of αs(Q2) obtained

at discrete energy scales Q, now also including those based just on NLO QCD, is shown in

Fig. 1.1. Thanks to the results from the Tevatron and from the LHC, the energy scales, at

which αs is determined, now extend up to almost 2 TeV.
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1.4.2 Quark masses

Free quarks have never been observed, which is understood as a result of a long-distance,

confining property of the strong QCD force: up, down, strange, charm and bottom quarks

all hadronize, i.e. become part of a meson or baryon, on a timescale ∼ 1/ΛQCD; and, on

the other hand, the top quark decays before it has time to hadronize. This feature makes it

challenging to define what a quark mass is, for that one needs to adopt a specific prescription.

A perturbatively defined prescription is the pole mass, mq, which corresponds to the position

of the divergence of the propagator. This is close to the physical picture of mass. Nonetheless,

it suffers from a badly behaved perturbative series which makes it ambiguous to an amount

related to ΛQCD [164–166] when it is related to observable quantities. An alternative is the

MS mass, m̄q(µ2
R), which depends on the renormalization scale µR.

For the masses of heavier quarks, one quotes either the pole mass or the MS mass eval-

uated at a scale equal to the mass, m̄q(m̄2
q); light quark masses are often quoted in the MS

scheme at a scale µR ∼ 2 GeV. A series that starts as mq = mq(m2
q)
(

1 + 4αs(m2
q)

3π +O(α2
s)
)

relates the pole and MS masses, while the scale-dependence of MS masses is given at leading

order by

µ2
R

dmq(µ2
R)

dµ2
R

=
[
−αs(µ

2
R)

π
+O(α2

s)
]
mq(µ2

R). (1.57)

A more detailed discussion can be found in Ref. [167] and references therein.

In perturbative QCD computations of scattering processes, one neglects (i.e. sets to zero)

the masses of all quarks, whose mass is significantly smaller than the momentum transfer in

the process. Further details about perturbative calculations are summarized in the section

“Quantum Chromodynamics” in Ref. [3].
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1.5 Effective Field Theory

Effective field theories are a powerful tool to describe low-energy physics, where low is

defined with respect to some energy scale Λ. They only take explicitly into account the

relevant degrees of freedom i.e., those states with m � Λ, while the heavier excitations

with M � Λ are integrated out from the action. Thus, the information about the heavier

degrees of freedom is contained in the couplings of the resulting low-energy Lagrangian.

While effective field theories include an infinite number of terms, renormalizability is not a

problem in view of the fact that, at any order in the energy expansion, the low energy theory

is specified by a finite number of couplings, which permits an order-by-order renormalization.

In most of beyond-SM theories that have been considered to date, reduction to the SM at low

energies proceeds via decoupling of heavy particles with masses of order Λ or larger. At the

perturbative level, this decoupling is described by the Appelquist-Carazzone theorem [131].

The theoretical basis of effective field theory (EFT) [168] can be written as a theorem [169,

170]

For a given set of asymptotic states, perturbation theory with the most general Lagrangian

containing all terms allowed by the assumed symmetries will yield the most general S-matrix

elements consistent with analyticity, perturbative unitarity, cluster decomposition and as-

sumed symmetries.

The interested reader is referred to various reviews [168,171,172] for a broader survey of

the subject.

1.5.1 EFT expansion

The EFT Lagrangian has an expansion in powers of the operator dimension

LEFT =
∑
D≥0,i

c
(D)
i O

(D)
i

ΛD−d =
∑
D≥0

LD
ΛD−d , (1.58)

where O(D)
i are the allowed operators of dimension D. All operators of dimension D are

combined into the dimension D Lagrangian LD. In Eq. (1.58) the sum does not end when

23



D = d, but includes operators of arbitrarily high dimension. A scale Λ is introduced so

that the coefficients c(D)
i are dimensionless. Λ represents the short-distance scale at which

new physics occurs, but what is really relevant for theoretical calculations and experimental

measurements is the product cD Λd−D, not cD and Λd−D separately. Λ is a suitable tool that

makes it clear how to organize the EFT expansion.

When d = 4,

LEFT = LD≤4 + L5

Λ + L6

Λ2 + · · · (1.59)

LEFT is given by an infinite series of terms of increasing operator dimension, and must

be treated as an expansion in powers of 1/Λ. If you try and sum terms to all orders, you

violate the EFT power counting rules, and the EFT breaks down.

At energies below Λ, the behaviour of the different operators is determined by their

dimension. We can distinguish three types of operators:

• Relevant (D < 4)

• Marginal (D = 4)

• Irrelevant (D > 4)

The interactions induced by the Fermi Hamiltonian in Eq. (1.60), which are dimension

D = 6, are suppressed by two powers of MW , and are thus irrelevant. They are called

irrelevant since their effects are suppressed by powers of E/Λ and are thus small at low

energies. However, this does not mean they are are not important. Indeed, they usually

contain the compelling information about the underlying dynamics at higher scales.

The four-fermion interactions are important as they generate the leading contributions

to flavour-changing processes or to low-energy neutrino scattering. Nonetheless, if the mass

of the W and Z bosons were 1016 GeV, any signal of the weak interaction would have never

been observed.
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As opposed, a coupling of positive mass dimension gives rise to effects which become large

at energies much smaller than the scale of this coupling. Therefore, operators of dimension

less than four are called relevant, since they become more important at lower energies.

In a four-dimensional relativistic field theory, the number of possible relevant operators

is quite low:

• D = 0: The unit operator,

• D = 2: Boson mass terms (φ2),

• D = 3: Fermion mass terms (ψ̄ψ) and cubic scalar interactions (φ3).

At very high energies (E � m), finite mass effects are negligible, nevertheless they

become relevant when the energy scale is comparable to their mass.

Dimension-four operators are also important at all energy scales and are called marginal

operators. They are between relevant and irrelevant operators since quantum effects could

modify their scaling behaviour on either side. φ4, the QED and QCD interactions, and the

Yukawa ψ̄ψφ interactions are well-known examples of marginal operators.

As long as there is a large mass gap between the energy scale being analyzed and the

scale of any heavier states (i.e. m,E � M), the effects induced by irrelevant operators are

always suppressed by powers of E/M , and can usually be neglected. The resulting EFT is

called renormalizable and only contains relevant and marginal operators. Its predictions are

valid up to E/M corrections, that can be calculated to the desired precision (marked by the

experimental uncertainty).

1.5.2 Fermi Theory of Weak Interactions

The Fermi theory of weak interactions [173] is an EFT for weak interactions at energies

below W and Z masses. It is a low-energy EFT constructed from the SM fields.

In the SM, weak decays proceed at lowest order through the exchange of a W± boson

between two fermionic left-handed currents (except for the heavy quark top which decays

25



µ

νµ

W

e

ν̄e

=⇒
q2 �M2

W µ

νµ

e

ν̄e

Figure 1.2: Integration of the W boson out from the electroweak theory yields the Fermi
effective interaction, which is exemplified here for the muon decay.

into a real W+ and a bottom quark). The momentum transfer conveyed by the intermediate

W is very small compared to MW . Thus, the vector-boson propagator is reduced to a contact

interaction (see Fig. 1.2):

Heff = GF√
2
JµJ µ†, (1.60)

where

Jµ =
∑
ab

ūaγµ(1− γ5)Vabdb +
∑
`

ν̄`γµ(1− γ5)`, (1.61)

with Vab the Cabibbo-Kobayashi-Maskawa mixing matrix 1, and

GF√
2

= g2

8M2
W

(1.62)

is the so-called Fermi coupling constant.

Since it is not possible to produce a physical W boson at low energies (E �MW ), the W

field does not have to be included in the theory. The transition amplitudes, that correspond

to the weak decays of leptons and quarks, are well described by the effective Hamiltonian

in Eq. (1.60), which contains dimension-six operators and, then, a coupling of dimension

−2 (in powers of energy). The relation between the effective coupling and the parameters

(g, MW ) of the underlying electroweak theory (matching condition) is established by Eq.

(1.62).
1For simplicity, the 4-fermion Hamiltonian in Eq. (1.60) is written in terms of the flavor-eigenstate basis

of neutrinos, nonetheless they can be also expressed in the mass-eigenstate (ν1, ν2, ν3) through the PMNS
mixing matrix [174,175].
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Expanding the W propagator in powers of q2/M2
W , one would get fermionic operators of

higher dimensions, which generate corrections to Eq. (1.60). With a precision better than

m2
f/M

2
W , where mf is the mass of the decaying fermion, we can neglect these contributions.

Considering the leptonic decay `→ `′ν`′ν`, the decay width is then given by:

Γ(`→ `′ν`′ν`) = G5
Fm

5
`

192π3 f

(
m2
`′

m2
`

)
, (1.63)

where f(x) = 1 − 8x + 8x3 − x4 − 12x2 log x. The global mass dependence, Γ ∼ G2
Fm

5
` ,

results from the dimension of the Fermi coupling since Γ must have dimension 1. Additionally,

there is a three-body phase space factor of 1/(4π)3, in consequence, the explicit calculation

needs to take into account a global factor of 1/3 and a function f(m2
`′/m

2
`) containing the

dependence on the final lepton mass.

The Fermi constant is obtained from µ decays; thus, Eq. (1.63) gives a parameter-free

prediction for the leptonic τ decays. Therefore, the m5
` dependence of the decay width

implies the following relation

Br(τ− → e−ν̄eντ ) = ττ · Γ(τ− → e−ν̄eντ ) = m5
τ

m5
µ

ττ
τµ
' 17.77%, (1.64)

which is comparable with the experimental value (17.811± 0.041)% [5].

The effective Hamiltonian can also be used to study the low-energy neutrino scattering

off either quarks or leptons. A similar dimensional argument forces the cross-section to scale

with energy as

σν ∼ G2
F s, (1.65)

where s is the squared of the total energy in the center-of-mass frame. This behaviour

eventually points out to the failure of the EFT, at energy scales where the W boson becomes

dynamical.
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1.5.3 SMEFT

Provided that the Standard Model leaves many questions unanswered, a solution involving

some physics beyond the standard model (BSM), which may include new heavy particles with

masses M � v much above the scale of electroweak symmetry breaking (v ' 246 GeV), is

around the corner. While at present we do not know the UV theory, we can construct its low-

energy effective theory - the so-called SMEFT - by extending the familiar Standard Model

Lagrangian with higher-dimensional local operators built out of Standard Model fields [1,

130,176–178]:

LSMEFT = LSM +
∑
n≥1

∑
i

C
(n)
i

Mn
O(n)
i . (1.66)

These new operators O(n)
i , with mass dimension D = 4 + n must respect the symmetries

of the SM, such as Lorentz invariance and gauge invariance. In this framework, there is an

infinite set of operators, but there exists only a finite set of dimension D operators, and

the contributions of these operators to any given observable are suppressed by powers of

(v/M)D−4 relative to the contributions of the operators of the SM (there are processes which

are first possible beyond the SM, at D > 4, like lepton and/or baryon number violation).

The lowest-order operators contributing to Eq. (1.66) will be discussed below.

Dimension 5 operators

Imposing the SM gauge symmetry constraints on dimension-5 operators leaves out just a

single one [130], up to Hermitian conjugation and flavor assignments. This contribution can

be written as

Qνν = εjkεmnϕ
jϕm(`kp)TC`nr ≡ (ϕ̃†`p)TC(ϕ̃†`r), (1.67)

where C is the charge conjugation matrix. Qνν violates the lepton number by two units.

After the electroweak symmetry breaking, it generates neutrino masses and mixings. Neither

L(4)
SM nor the dimension-six terms can do the job (this is only possible at odd dimensions).
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Dimension 6 operators

All the independent dimension-six operators that are allowed by the SM gauge symmetries

are showed in Tabs. 1.3 and 1.4. Dirac indices are always contracted within the brackets, and

not displayed. The same is true for the isospin and color indices in the upper part of Table

1.4. In the lower-left block of that table, color indices are still contracted within brackets,

while the isospin ones are made explicit. Color indices are displayed only for operators

violating the baryon number B in the lower-right block of Table 1.4. All the other operators

in Tables 1.3 and 1.4 are both B and L conserving.

X3 ϕ6 y ϕ4D2 ψ2ϕ3

QG fABCGAν
µ GBρ

ν GCµ
ρ Qϕ (ϕ†ϕ)3 Qeϕ (ϕ†ϕ)(¯̀

perϕ)
Q
G̃

fABCG̃Aν
µ GBρ

ν GCµ
ρ Qϕ� (ϕ†ϕ)�(ϕ†ϕ) Quϕ (ϕ†ϕ)(q̄purϕ̃)

QW εIJKW Iν
µ W Jρ

ν WKµ
ρ QϕD (ϕ†Dµϕ)?(ϕ†Dµϕ) Qdϕ (ϕ†ϕ)(q̄pdrϕ)

Q
W̃

εIJKW̃ Iν
µ W Jρ

ν WKµ
ρ

X2ϕ2 ψ2Xϕ ψ2ϕ2D

QϕG ϕ†ϕGA
µνG

Aµν QeW (¯̀
pσ

µνer)τ IϕW I
µν Q

(1)
ϕ` (ϕ†i←→D µϕ)(¯̀

pγ
µ`r)

Q
ϕG̃

ϕ†ϕG̃A
µνG

Aµν QeB (¯̀
pσ

µνer)ϕBµν Q
(3)
ϕ` (ϕ†i←→D I

µϕ)(¯̀
pτ

Iγµ`r)
QϕW ϕ†ϕW I

µνW
Iµν QuG (q̄pσµνTAur)ϕ̃GA

µν Qϕe (ϕ†i←→D µϕ)(ēpγµer)
Q
ϕW̃

ϕ†ϕW̃ I
µνW

Iµν QuW (q̄pσµνur)τ Iϕ̃W I
µν Q(1)

ϕq (ϕ†i←→D I
µϕ)(q̄pγµqr)

QϕB ϕ†ϕBµνB
µν QuB (q̄pσµνur)ϕ̃Bµν Q(3)

ϕq (ϕ†i←→D I
µϕ)(q̄pτ Iγµqr)

Q
ϕB̃

ϕ†ϕB̃µνB
µν QdG (q̄pσµνTAdr)ϕGA

µν Qϕu (ϕ†i←→D µϕ)(ūpγµur)
QϕWB ϕ†τ IϕW I

µνB
µν QdW (q̄pσµνdr)τ IϕW I

µν Qϕd (ϕ†i←→D I
µϕ)(d̄pγµdr)

Q
ϕW̃B

ϕ†τ IϕW̃ I
µνB

µν QdB (q̄pσµνdr)ϕBµν Qϕud (ϕ†i←→D µϕ)(ūpγµdr)

Table 1.3: Dimension-six operators other than the four-fermion ones [1].

All the bosonic operators (X3, X2ϕ2, ϕ6 y ϕ4D2) are Hermitian. Those containing X̃µν

are CP -odd, while the remaining ones are CP -even. For the operators containing fermions,

Hermitian conjugation is equivalent to transposition of generation indices in each of the

fermionic currents in classes (L̄L)(L̄L), (R̄R)(R̄R), (L̄L)(R̄R), and ψ2ϕ2D2 (except for

Qϕud).

If CP is defined in the weak eigenstate basis then Q−(+)Q
† are CP -odd (-even) for all

the fermionic operators. However, CP -violation by any of those operators requires a non-
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(L̄L)(L̄L) (R̄R)(R̄R) (L̄L)(R̄R)
Q`` (¯̀

pγµ`r)(¯̀
sγ

µ`t) Qee (ēpγµer)(ēsγµet) Q`` (¯̀
pγµ`r)(ēsγµet)

Q(1)
qq (q̄pγµqr)(q̄sγµqt) Quu (ūpγµur)(ūsγµut) Q`e (¯̀

pγµ`r)(ūsγµut)
Q(3)
qq (q̄pγµτ Iqr)(q̄sγµτ Iqt) Qdd (d̄pγµdr)(d̄sγµdt) Q`d (¯̀

pγµ`r)(d̄sγµdt)
Q

(1)
`q (¯̀

pγµ`r)(q̄sγµqt) Qeu (ēpγµer)(ūsγµut) Qqe (q̄pγµqr)(ēsγµet)
Q

(3)
`q (¯̀

pγµτ
I`r)(q̄sγµτ Iqt) Qed (ēpγµer)(d̄sγµdt) Q(1)

qu (q̄pγµqr)(ūsγµut)
Q

(1)
ud (ūpγµur)(d̄sγµdt) Q(8)

qu (q̄pγµTAqr)(ūsγµTAut)
Q

(8)
ud (ūpγµTAur)(d̄sγµTAdt) Q

(1)
qd (q̄pγµqr)(d̄sγµdt)

Q
(8)
qd (q̄pγµTAqr)(d̄sγµTAdt)

(L̄R)(R̄L) y (L̄R)(L̄R) B-violating
Q`edq (¯̀j

per)(d̄sq
j
t ) Qduq εαβγεjk[(dαp )TCuβr ][(qγjs )TC`kt ]

Q
(1)
quqd (q̄jpur)εjk(q̄ksdt) Qqqu εαβγεjk[(qαjp )TCqβkr ][(uγs )TCet]

Q
(8)
quqd (q̄jpTAur)εjk(q̄ksTAdt) Qqqq εαβγεjnεkm[(qαjp )TCqβkr ][(qγms )TC`nt ]

Q
(1)
`equ (¯̀j

per)εjk(q̄ksut) Qduu εαβγ[(dαp )TCuβr ][(uγs )TCet]
Q

(3)
`equ (¯̀j

pσµνer)εjk(q̄ksσµνut)

Table 1.4: Four-fermion operators [1].

vanishing imaginary part of the corresponding Wilson coefficient.

Including the entries in Tables 1.3 and 1.4, there are 15 bosonic operators, 19 single-

fermionic-current ones, and 25 B-conserving four-fermion ones, which give a total of 15+19+

25 = 59 independent dimension-six operators [1], while B-conservation is imposed. Thanks

to the use of the equations of motion and Fierz identities the total number of dimension-six

operators in Ref. [130] is reduced from 80 to 59 due to the redundancy of some operators.

1.5.4 EFT below MW

Below the electroweak scale, one can write a low energy effective theory (LEFT) with quark

and lepton fields, and only QCD and QED gauge fields. The operators have been classified

in Refs. [179, 180], see also Ref. [172]. The fact that SU(2) gauge invariance is no longer a

requirement, implies that there are several new types of operators beyond those in SMEFT.

The complete renormalization group equations up to dimension-six have been worked out

for LEFT [179, 180]. Since the theory has dimension-five operators, there exist non-linear

terms from two insertions of dimension-five operators for the dimension-six running. Various
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pieces of the calculation have been studied before [181–192].

1.5.5 Principles of Effective Field Theory

The basic ingredients needed to build an EFT can be summarized as follows [168]:

1. Dynamics at low energies (large distances) does not depend on details of dynamics at

high energies (short distances).

2. Choose the appropriate description of the important physics at the considered scale.

If there are large energy gaps, put to zero (infinity) the light (heavy) scales, i.e.,

0 −→ m� E �M ←−∞. (1.68)

Finite corrections induced by these scales can be incorporated as perturbations.

3. Non-local heavy-particle exchanges are replaced by a tower of local (non-renormalizable)

interactions among the light particles.

4. The EFT describes the low-energy physics, to a given accuracy ε, in terms of a finite

set of parameters:

(E/M)(di−4) & ε↔ di . 4 + log(1/ε)
log(M/E) . (1.69)

5. The EFT has the same infrared (but different ultraviolet) behaviour than the under-

lying fundamental theory.

6. The only remnants of the high-energy dynamics are in the low-energy couplings and

in the symmetry of the EFT.
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1.6 Chiral Perturbation Theory

Since at low energies the strong coupling constant, gs becomes large, a perturbative de-

scription of QCD in terms of quarks and gluons is no longer valid. In order to describe

the dynamics of QCD at low energies, an effective field theory description known as Chi-

ral Perturbation Theory (χPT ) [169, 193, 194], which is based on chiral symmetry, emerges

as a successful and powerful tool. The theory is predictive up to some low-energy con-

stants fitted from observables. For that reason, Lattice becomes the only truly ab initio

nonperturbative method to solve QCD at low energies. Further details can be found in

Refs. [2, 132,133,195–199].

1.6.1 Chiral symmetry

In the absence of quark masses, the QCD Lagrangian with Nf (Nf = 2 or 3) massless quarks

q = (u, d, · · · )T

L0
QCD = −1

4G
a
µνG

µν
a + iq̄Lγ

µDµqL + iq̄Rγ
µDµqR, (1.70)

has a global symmetry

SU(Nf )L ⊗ SU(Nf )R︸ ︷︷ ︸
chiral group G

⊗U(1)V ⊗ U(1)A.

At the effective hadronic level, the quark number symmetry U(1)V is realized as baryon

number. The axial U(1)A is not a symmetry at the quantum level because of the Abelian

anomaly [200–202]. Therefore, this Lagrangian is invariant under independent global G ≡

transformations of the left- and right-handed quarks in flavor space:

qL
G−→ gLqL, qR

G−→ gRqR, gL,R ∈ SU(Nf )L,R. (1.71)

The Noether currents associated with the chiral group G are 2:
2λa are Gell-Mann’s matrices with Tr(λaλb) = 2δab.
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JaµX = q̄Xγ
µλa

2 qX , (X = L, R; a = 1, · · · , 8), (1.72)

and the corresponding Noether charges Qa
X =

∫
d3xJa0

X (x) satisfy the familiar commuta-

tion relations

[Qa
X , Q

b
Y ] = iδXY fabcQ

c
X , (1.73)

which were the beginning of the Current Algebra methods of the sixties.

The chiral symmetry, which should be approximately good in the light quark sector

(u, d, s), is nonetheless not seen in the hadronic spectrum. Even though hadrons can be

nicely organized in SU(3)V representations, degenerate multiplets with opposite parity do

not exist. Furthermore, the octet of pseudoscalar mesons is much lighter than all the other

hadronic states. Concerning this experimental evidence, the ground state of the theory (the

vacuum) should not be symmetric under the chiral group. Thus, the SU(3)L ⊗ SU(3)R
symmetry spontaneously breaks down to SU(3)L+R and, in compliance with Goldstone’s

theorem [203], an octet of pseudoscalar bosons appears in the theory.

If we now consider a Noether charge Q and assume the existence of an operator O

satisfying

〈0|[Q,O]|0〉 6= 0; (1.74)

this can only be possible if Q|0〉 6= 0. Thus, Goldstone’s theorem tells us that there is a

massless state |G〉 in a manner that

〈0|J0|G〉〈G|O|0〉 6= 0. (1.75)

The quantum numbers of the Goldstone boson are determined by those of J0 and O.

The quantity in the left-hand side of Eq. (1.74) is known as the order parameter of the

spontaneous symmetry breakdown.

Given the fact that there exists eight broken axial generators of the chiral group, Qa
A =

Qa
R − Qa

L, there should be eight pseudoscalar Goldstone bosons |Ga〉, which can be linked
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with the eight lightest hadronic states (π+, π−, π0, η, K+, K−, K0 and K̄0); the explicit

breaking of the global symmetry of the QCD Lagrangian produced by the quark-mass matrix

is responsible for their small masses. Hence, Oa must be a pseudoscalar operator, and the

simplest possibility is Oa = q̄γ5λaq, which satisfies

〈0|[Qa
A, q̄γ5λbq]|0〉 = −1

2〈0|q̄{λa, λb}q|0〉 = −2
3δab〈0|q̄q|0〉. (1.76)

Therefore, the quark condensate

〈0|ūu|0〉 = 〈0|d̄d|0〉 = 〈0|s̄s|0〉 6= 0 (1.77)

is the natural order parameter of Spontaneous Chiral Symmetry Breaking (SCSB).

1.6.2 Effective chiral Lagrangian at lowest order

Given that there is a mass gap between the pseudoscalar octet and the rest of the hadronic

spectrum, it is possible to build an effective field theory that contains only Goldstone modes.

The main assumption is the pattern of SCSB:

G ≡ SU(3)L ⊗ SU(3)R SCSB−−−→ H ≡ SU(3)V . (1.78)

Denoting φa (a = 1, · · · , 8) the coordinates representing the Goldstone fields in the coset

space G/H, and choosing a coset representative ξ̄(φ) ≡ (ξL(φ), ξR(φ)) ∈ G, the change of

the Goldstone coordinates under a chiral transformation g ≡ (gL, gR) ∈ G reads

ξL(φ) G−→ gLξL(φ)h†(φ, g), ξR(φ) G−→ gRξR(φ)h†(φ, g), (1.79)

where h(φ, g) ∈ H is a compensating transformation which is needed to recover the cor-

responding coset ξ̄; in general, h depends both on φ and g. Since the transformation h(φ, g)

appears in both sectors, left and right (this two can be related by a parity transformation,

which leaves H invariant), we can eliminate it by combining the two chiral relations in Eq.

(1.79):
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U(φ) G−→ gRU(φ)g†L, U(φ) ≡ ξR(φ)ξ†L(φ). (1.80)

Besides, we can take a canonical choice of coset representative in order that ξR(φ) =

ξ†L(φ) ≡ u(φ). The 3× 3 unitary matrix

U(φ) = u(φ)2 = exp
{
i
√

2Φ/f
}

(1.81)

allows a very convenient parametrization of the Goldstone fields

Φ(x) ≡
~λ√
2
· ~φ =


1√
2π

0 + 1√
6η8 π+ K+

π− − 1√
2π

0 + 1√
6η8 K0

K− K̄0 − 2√
6η8

 , (1.82)

where f is the decay constant of the pseudo-Goldstone bosons in the chiral limit (mu =

md = ms = 0), and η8 is the octet component of the η meson.

Although U(φ) transforms linearly under the chiral group, the induced transformation

on the Goldstone field ~φ is highly non-linear.

The recipe to get a low-energy effective Lagrangian is the same, we write the most

general Lagrangian involving the matrix U(φ), which is consistent with chiral symmetry.

The Lagrangian is organized in terms of increasing powers of momentum (or, equivalently,

increasing number of derivatives) and since parity conservation requires an even number of

derivatives, this can be written as:

Leff(U) =
∑
n

L2n. (1.83)

At low energies, the terms with a minimum number of derivatives will dominate.

Since U is a unitarity matrix (UU † = I), the leading-order Lagrangian is given by

L2 = f 2

4
〈
∂µU∂

µU †
〉
, (1.84)

where 〈· · · 〉 denotes the trace in flavor space. Expanding U(φ) in powers of φ, one obtains

the Goldstone kinetic terms plus a tower of interactions involving an increasing number of
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pseudoscalars.

The effective field theory technique becomes much more powerful when the couplings to

external classical fields are introduced. An extended QCD Lagrangian, with quark couplings

to external Hermitian matrix-valued fields vµ, aµ, s and p, can be written as:

LQCD = L0
QCD + q̄γµ (vµ + γ5aµ) q − q̄ (s− iγ5p) q, (1.85)

The external fields will allow us to compute the effective realization of general Green func-

tions of quark currents in a very straightforward way. Besides, they can be used to include

the electromagnetic and semileptonic weak interactions, and the explicit chiral symmetry

breaking through the quark masses:

rµ ≡ vµ + aµ = −eQAµ,

`µ ≡ vµ − aµ = −eQAµ −
e√

2 sin θW

(
W †
µT+ + h.c.

)
,

s =M,

p = 0,

(1.86)

where Q and M denote the quark-charge and quark-mass matrices, respectively,

Q = 1
3diag(2,−1,−1), M = diag(mu,md,ms) , (1.87)

and T+ is a 3×3 matrix which contains the relevant Cabibbo-Kobayashi-Maskawa factors

T+ =


0 Vud Vus

0 0 0

0 0 0

 . (1.88)

The Lagrangian in Eq. (1.85) is invariant under the following set of local SU(3)L⊗SU(3)R
transformations:

qL → gLqL, qR → gRqR, s+ ip→ gR (s+ ip) g†L,

`µ → gL`µg
†
L + igL∂µg

†
L, rµ → gRRµg

†
R + igR∂µg

†
R.

(1.89)
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Restricting ourselves to this symmetry, we can build a generalized effective Lagrangian

for the Goldstone bosons, in the presence of external sources. Local invariance forces the

gauge fields vµ, aµ to appear only through the covariant derivatives

DµU = ∂µU − irµU + iU`mu, DµU
† = ∂µU

† + iU †rµ − i`µU †, (1.90)

and through the field strength tensors

F µν
L = ∂µ`ν − ∂ν`µ − i[`µ, `ν ], F µν

R = ∂µrν − ∂νrµ − i[rµ, rν ]. (1.91)

At leading order in momenta, the most general effective Lagrangian, which is consistent

with Lorentz invariance and (local) chiral symmetry, is given by [193,194]

L2 = f 2

4
〈
DµUD

µU † + χU † + χ†U
〉
, (1.92)

where χ = 2B0(s + ip), and B0 is a constant, which, like f , is not fixed by symmetry

requirements alone.

The external field technique provides a powerful tool for computing the chiral Noether

currents. The Green functions are obtained as functional derivatives of the generating func-

tional Z[v, a, s, p], defined via the path-integral formula

exp[iZ] =
∫
DqDq̄DGµ exp

[
i
∫
d4xLQCD

]
=
∫
DU exp

[
i
∫
d4xLeff

]
. (1.93)

At lowest order in momenta, the generating functional reduces to the classical action S2 =∫
d4xL2; for that reason, the currents can be trivially computed by taking the appropriate

derivatives with respect to the external fields:

JµL = q̄Lγ
µqL

.= δS2

δ`µ
= i

2f
2DµU †U = f√

2
DµΦ− i

2
(
Φ←→D µΦ

)
+O(Φ3/f),

JµR = q̄Rγ
µqR

.= δS2

δrµ
= i

2f
2DµUU † = − f√

2
DµΦ− i

2
(
Φ←→D µΦ

)
+O(Φ3/f).

(1.94)

At O(p2), f is equal to the pion decay constant, f = fπ = 92.2 MeV, which is defined as
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〈0|(JµA)12|π+〉 ≡ i
√

2fπpµ. (1.95)

Likewise, when a derivative with respect to the external scalar and pseudoscalar sources

is taken,

q̄jLq
i
R
.= − δS2

δ(s− ip)ji = −f
2

2 B0U(~φ)ij,

q̄jRq
i
L
.= − δS2

δ(s+ ip)ji = −f
2

2 B0U
†(~φ)ij,

(1.96)

a relation between the quark condensate and the constant B0 is established

〈0|q̄jqi|0〉 = −f 2B0δ
ij. (1.97)

The Goldstone bosons, which are parameterized by the matrix U(φ), correspond to the

zero-energy excitations over this vacuum condensate.

1.6.3 Pseudoscalar meson masses at the lowest order

When s = M and p = 0, the non-derivative piece of the Lagrangian generates a quadratic

mass term for the pseudoscalar bosons, plus Φ2n interactions proportional to the quark

masses. With this, one finds:

f 2

4 2B0〈M(U + U †)〉 = B0

{
〈MΦ2〉+ 1

6f 2 〈MΦ4〉+O
(

Φ6

f 4

)}
. (1.98)

The computation of the trace in the quadratic term provides the relation between the

masses of the physical mesons and the quark masses:

M2
π± = 2m̂B0, M2

π0 = 2m̂B0 − ε+O(ε2),

M2
K± = (mu +ms)B0, M2

K0 = (md +ms)B0,

M2
ηs = 2

3(m̂+ 2ms)B0 + ε+O(ε2),

(1.99)

with
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m̂ = 1
2(mu +md), ε = B0

4
(mu −md)2

(ms − m̂) . (1.100)

Thanks to the chiral symmetry, the meson masses squared are proportional to a single

power of the quark masses, the proportionality constant is related to the vacuum quark

condensate [204]:

f 2
πM

2
π± = −m̂〈0|ūu+ d̄d|0〉. (1.101)

By factorizing the proportionality factor B0, the relations in Eq. (1.99) imply the old

Current-Algebra mass ratios [204,205],

M2
π±

2m̂ = M2
K+

mu +ms

= M2
K0

md +ms

≈
3M2

ηs

2m̂+ 4ms

, (1.102)

and, up to O(mu −md) corrections, the Gell-Mann-Okubo [206,207] mass relation,

3M2
ηs = 4M2

K −M2
π . (1.103)

Since the absolute values of the quark masses are short-distance parameters that depend

on QCD renormalization conventions, chiral symmetry cannot fix them by itself. The renor-

malization scale and scheme dependence cancels out in the products mq q̄q ∼ mqB0, which

are the relevant combinations determining the pseudoscalar masses. Fortunately, χPT pro-

vides information about quark mass ratios, which does not depend upon B0 (i.e., QCD is

flavor blind). When the tiny O(ε) is neglected, one gets the following relations:

md −mu

md +mu

= (M2
K0 −M2

K+)− (M2
π0 −M2

π+)
M2

π0
= 0.29,

ms − m̂
2m̂ = M2

K0 −M2
π0

M2
π0

= 12.6 .
(1.104)

In the first equation, the electromagnetic pion mass-squared difference has been sub-

tracted to account for the virtual photon contribution to the meson self-energies. In the

chiral limit (mu,d,s = 0), this correction is proportional to the square of the meson charge
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and its the same for K+ and π+ (this result is known as Dashen’s theorem [208]). These

relations imply the quark mass ratios advocated by Weinberg [205]:

mu : md : ms = 0.55 : 1 : 20.3 . (1.105)

Thus, quark mass corrections are governed by the strange quark mass ms, which is much

larger than mu and md. The light-quark mass difference md − mu is not small compared

with the individual up and down quark masses. Given the fact that isospin-breaking effects

are dominated by the small ratio (md −mu)/ms, isospin then turns out to be a very good

symmetry.

The O(p2) chiral Lagrangian encodes all the Current-Algebra results obtained in the

sixties [209, 210]. The pattern of SCSB in Eq. (1.78) and the explicit breaking, which is

incorporated by the QCD quark masses, are corroborated by these successful phenomeno-

logical predictions. Aside from its elegant simplicity, the EFT formalism provides a powerful

technique to estimate higher-order corrections in a systematic way.

1.6.4 ChPT at O(p4)

At next-to-leading order in momenta, O(p4), the calculation of the generating functional

Z[v, a, s, p] involves three elements:

1. The most general effective Lagrangian of O(p4), L4, to be considered at tree level.

2. One-loop graphs with the lowest-order Lagrangian L2.

3. The Wess-Zumino (1971)-Witten (1983) functional to account for the chiral anomaly.

O(p4) Lagrangian

At O(p4), the most general Lagrangian invariant under parity, charge conjugation and the

local chiral transformations in Eq. (1.89), reads [194]
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L4 =L1〈DµU
†DµU〉2 + L2〈DµU

†DνU〉〈DµU †DνU〉+ L3〈DµU
†DµUDνU

†DνU〉

+ L4〈DµU
†DµU〉〈U †χ+ χ†U〉+ L5〈DµU

†DµU(U †χ+ χ†U)〉

+ L6〈U †χ+ χ†U〉2 + L7〈U †χ− χ†U〉2 + L8〈χ†Uχ†U + U †χU †χ〉

− iL9〈F µν
R DµUDνU

† + F µν
L DµU

†DνU〉+ L10〈U †F µν
R UFLµν〉

+H1〈FRµνF µν
R + FLµνF

µν
L 〉+H2〈χ†χ〉.

(1.106)

The terms proportional to H1 and H2 do not contain the pseudoscalar fields and are then

not directly measurable. Thus, at O(p4) we need ten additional coupling constants Li to

determine the low-energy behavior of the Green functions. These constants parameterize

our ignorance about the details of the underlying QCD dynamics. In principle, all the

chiral couplings are calculable functions of ΛQCD and the heavy-quark masses, which can

be analysed with lattice simulations. Nevertheless, at this moment, our main source of

information about these couplings is still low-energy phenomenology. At this order, the

elastic ππ and πK scattering amplitudes are sensible to L1,2,3. The two-derivative couplings

L4,5 generate mass corrections to the meson decay constants (and mass-dependent wave-

function renormalizations), while the pseudoscalar meson masses are modified by the non-

derivative terms L6,7,8. L9 is mostly responsible for the charged-meson electromagnetic radius

and L10 only contributes to amplitudes with at least two external vector or axial-vector fields,

such as the radiative semileptonic decay π → eνeγ.

The chiral anomaly

Under an infinitesimal chiral transformation

gL = 1 + i(α− β) + · · · , gR = 1 + i(α + β) + · · · , (1.107)

with α = αaT
a and β = βaT

a, the anomalous change of the generating functional is given

by [211]:

δZ[v, a, s, p] = − NC

16π2

∫
d4x〈β(x)Ω(x)〉, (1.108)
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where NC = 3 is the number of QCD colors,

Ω(x) = εµνσρ
[
vµνvσρ + 4

3∇µaν∇σaρ + 2
3i{vµν , aσaρ}+ 8

3iaσvµνaρ + 4
3aµaνaσaρ

]
(1.109)

with ε0123 = +1, and

vµν = ∂µvν − ∂νvµ − i[vµ, vν ], ∇µaν = ∂µaν − i[vµ, aν ]. (1.110)

Ω(x) only depends on the external fields vµ and aµ, which have been assumed to be

traceless. This anomalous variation of Z is an O(p4) effect in the chiral counting. Up to this

point, we have imposing chiral symmetry to construct the effective ChPT Lagrangian. Given

that chiral symmetry is explicitly violated by the anomaly at the fundamental QCD level,

one needs to include an additional functional ZA with the property that its change under

a chiral gauge transformation yields Eq. (1.108). This functional was first constructed by

Wess and Zumino [212], and reformulated in a nice geometrical way by Witten [213]. The

WZW action is then given by

S[U, `, r]WZW =− iNC

240π2

∫
dσijklm

〈
ΣL
i ΣL

j ΣL
kΣL

l ΣL
m

〉
− iNC

48π2

∫
d4x εµναβ

(
W (U, `, r)µναβ −W (1, `, r)µναβ

)
,

(1.111)

W (U, `, r)µναβ =
〈
U`µ`ν`αU

†rβ + 1
4U`µU

†rνU`αU
†rβ + iU∂µ`ν`αU

†rβ

+ i∂µrνU`αU
†rβ − iΣL

µ`νU
†rαU`β + ΣL

µU
†∂νrαU`β

− ΣL
µΣL

νU
†rαU`β + ΣL

µ`ν∂α`β + ΣL
µ∂ν`α`β − iΣL

µ`ν`α`β

+1
2ΣL

µ`νΣL
α`β − iΣL

µΣL
νΣL

α`β

〉
− (L↔ R),

(1.112)

where

ΣL
µ = U †∂µU, ΣR

µ = U∂µU
†, (1.113)

and (L ↔ R) stands for the interchanges U ↔ U †, `µ ↔ rµ and ΣL
µ ↔ ΣR

µ . The

integration in the first term of equation (1.111) is over a five-dimensional manifold whose
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boundary is four-dimensional Minkowski space. The integrand is a surface term; thus both

the first and second terms of SWZW are O(p4), in compliance with the chiral counting rules.

The effects induced by the anomaly are completely calculable due to their short-distance

origin. The translation from the fundamental quark-gluon level to the effective chiral level

is unaffected by hadronization problems. The anomalous action in Eq. (1.111) has no free

parameters. The most general solution to the anomalous variation (Eq. (1.108)) of the QCD

generating functional is given by the WZW action plus the most general chiral-invariant

Lagrangian.

The anomaly term does not get renormalized. Thus, quantum loops insertions of the

WZW action generate higher-order divergences that obey the standard Weinberg’s power

counting and correspond to chiral invariant structures. These are renormalized by the LECs

of the corresponding χPT operators.

Since a Levi-Civita pseudotensor is present, the anomaly functional gives rise to inter-

actions that break the intrinsic parity. These vertices are absent in the LO and NLO χPT

Lagrangians because chiral symmetry only allows for odd-parity invariant structures starting

at O(p6). So, the WZW functional breaks an accidental symmetry of the O(p2) and O(p4)

chiral Lagrangians, giving the leading contributions to processes with an odd number of

pseudoscalars.

1.6.5 Higher-order corrections

The strucuture of the O(p6) χPT Lagrangian has also been studied. It contains 90 + 4 inde-

pendent chiral structures of even intrinsic parity (without Levi-Civita pseudotensors) [214],

the last four involving external sources only, and 23 operators of odd intrinsic parity [215,216]:

L6 =
94∑
i=1

CiO
p6

i +
23∑
i=1

C̃iÕ
p6

i . (1.114)

The complete renormalization of the χPT generating functional has been achieved at two-

loop level [214], which determines the renormalization group equations for the renormalized

O(p6) LECs.
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χPT is an expansion in powers of momenta over some typical hadronic scale Λχ, associ-

ated with the SCSB, which can be expected to be of the order of the (light-quark) resonance

masses. The variation of the loop amplitudes under a rescaling of µ provides a natural

order-of-magnitude estimate of the SCSB scale: Λχ ∼ 4πfπ ∼ 1.2 GeV [217,218].

At O(p2), the χPT Lagrangian is able to describe all QCD Green functions with only

two parameters, f and B0, an impressive achievement. Nonetheless, with p .MK (Mπ), we

expect O(p4) contributions to the LO amplitudes at the level of p2/Λ2
χ . 20% (2%). Aiming

to increase the accuracy of the χPT predictions beyond this level, the inclusion of NLO

corrections is required, which introduces ten additional unknown LECs. Many more free

parameters (90 + 23) are needed to account for O(p6) contributions. In consequence, the

predictive power of the effective theory is reduced when the precision is increased.

The present knowledge of the O(p4) LECs (Li) is summarized in Table 1.5. The numbers

correspond to the renormalized couplings, at a scale µ = Mρ. The second column shows the

LECs extracted from O(p4) phenomenological analyses [219], without any estimate of the

uncertainties produced by the missing higher-order contributions. The third column shows

the results obtained from a global O(p6) fit [219], which includes some theoretical priors

on the unknown O(p6) LECs. Since the number of parameters is increased at NNLO, the

O(p6) values should be taken with care, however they can give a good estimation of the

potential uncertainties. The O(p6) determination of Lr10(Mρ) has been directly extracted

from hadronic tau decay data [220]. In contrast, the fourth column displays the results of

lattice simulations with 2 + 1 + 1 dynamical fermions by the HPQCD collaboration [221].

Analogously, the results with 2 + 1 fermions were obtained by the MILC collaboration [222],

while their errors are larger. A similar compilation of LECs for the nf = 2 theory can be

obtained in Refs. [219,223].

The numbers reported in the table are in good agreement with the expected size of the

couplings Li in terms of the scale of SCSB:

Li ∼
f 2
π/4
Λχ

∼ 1
4(4π)2 ∼ 2 · 10−3, (1.115)
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Lri (Mρ)× 103

i O(p4) [219] O(p6) [219] Lattice [221] RχT [224] RχTSD [225,226]
1 1.0± 0.1 0.53± 0.06 0.6 0.9
2 1.6± 0.2 0.81± 0.04 1.2 1.8
3 −3.8± 0.3 −3.07± 0.20 −2.8 −4.8
4 0.0± 0.3 0.3 (fixed) 0.09± 0.34 0.0 0.0
5 1.2± 0.1 1.01± 0.06 1.19± 0.25 1.2† 1.1
6 0.0± 0.4 0.14± 0.05 0.16± 0.20 0.0 0.0
7 −0.3± 0.2 −0.34± 0.09 −0.3 −0.3
8 0.5± 0.2 0.47± 0.10 0.55± 0.15 0.5† 0.4
9 6.9± 0.7 5.9± 0.4 6.9† 7.1
10 −5.2± 0.1 −4.1± 0.4 −5.8 −5.3

Table 1.5: Phenomenological determination of the renormalized couplings Lri (Mρ) fromO(p4)
and O(p6) χPT analyses, and from lattice simulations. The fifth and sixth columns show the
RχT predictions without and with short-distance information, respectively. Values labeled
with † have been used as inputs [2].

where the normalization of L2 and Λχ ∼ 4πfπ have been taken as references. Hence, all

O(p4) couplings have the right order of magnitude, which implies a good convergence of the

momentum expansion below the resonance region, i.e., for p < Mρ. Nonetheless, this table

shows a clear hierarchy with some couplings being large while others seem compatible with

zero.
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1.7 Dispersion theory

Dispersive techniques are powerful, model-independent methods based on the fundamen-

tal principles of analyticity (the mathematical manifestation of causality) and unitarity (a

consequence of probability conservation). By exploiting nonperturbative relations between

amplitudes, they allow for a resummation of rescattering effects between final-state particles,

in contrast to a strictly perturbative χPT expansion in which such effects would be treated

order-by-order only. Dispersion theory, coupled with χPT , then allows one to extend the

χPT effective description of strong dynamics from low energy to an intermediate-energy

range where resonances start to appear.

1.7.1 Analyticity

Let us take as an example a form factor F (s), which is a function of a single Mandelstam

variable s. In several cases, these form factors are real below some threshold, s < sth, while

above threshold, s > sth, they have both real and imaginary parts, the latter due to the

propagation of on-shell intermediate states. Analyticity allows us to relate the real part of

the form factor to its discontinuity or imaginary part. In order to completely exploit these

properties one needs to analytically continue s into the complex plane where the discontinuity

is represented as a branch cut along the positive real axis, for s > sth, see Fig. 1.3. The

form factor is then a complex-valued function F (s) of complex argument s, which has the

following properties:

1. F (s) is real along the real axis for s < sth, and

2. F (s) is analytic in the entire complex plane except along the branch cut.

The sign of the imaginary part of F (s) along the cut is fixed by the convention F (s+ iε) =

ReF (s) + iImF (s), where ε is a positive infinitesimal quantity.

Starting from the Cauchy’s integral formula

F (s) = 1
2πi

∮
C
ds′

F (s′)
s′ − s

, (1.116)
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Figure 1.3: Symbolic representation of the Cauchy contour in the complex s plane. Reprinted
from Ref. [10].

and performing the integral on the contour in Fig. 1.3, one obtains

F (s) = 1
2πi

(∫ Λ2

sth
ds′

F (s′ + iε)− F (s′ − iε)
s′ − s

+
∫
|s′|=Λ2

ds′
F (s′)
s′ − s

)

= 1
2πi

(∫ Λ2

sth
ds′

discF (s′)
s′ − s

+
∫
|s′|=Λ2

ds′
F (s′)
s′ − s

)
.

(1.117)

When the Schwartz’s reflection is applied, F (z∗) = F (z), one gets

discF (s) = F (s+ iε)− F (s− iε) = F (s+ iε)− F ∗(s+ iε) = 2iImF (s+ iε), (1.118)

and then

F (s) = 1
π

∫ Λ2

sth
ds′

ImF (s′)
s′ − s− iε

+ 1
2πi

∫
|s′|=Λ2

ds′
F (s′)
s′ − s

. (1.119)

Now, if the second integral vanishes in the limit Λ → ∞, we obtain an unsubtracted

dispersion relation:

F (s) = 1
π

∫ ∞
sth

ds′
ImF (s′)
s′ − s− iε

. (1.120)

This relation is very powerful: it implies that the form factor F (s) can be reconstructed

anywhere in the complex plane provided we know its absorptive part along the branching

cut, which is in turn given by unitarity.
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In addition to the unsubtracted dispersion relation, if F (s) does not approach zero fast

enough at infinity, more substractions can be performed at s = s0 < sth. Applying one

substraction,

F (s)− F (s0) = 1
π

∫ Λ2

sth
ds′

ImF (s′)
s′ − s− iε

+ 1
2πi

∫
|s′|=Λ2

ds′
F (s′)
s′ − s

−
(

1
π

∫ Λ2

sth
ds′

ImF (s′)
s′ − s0

+ 1
2πi

∫
|s′|=Λ2

ds′
F (s′)
s′ − s0

) (1.121)

one obtains

F (s) = F (s0) + s− s0

π

∫ Λ2

sth

ds′

s′ − s0

ImF (s′)
s′ − s− iε

+ s− s0

2πi

∫
|s′|=Λ2

ds′
F (s′)

(s′ − s0)(s′ − s) . (1.122)

Now, the last expression contains one more power of s′ in the denominator, which ensures

a better convergence when Λ→∞. In that case, one obtains the once-subtracted dispersion

relation:

F (s) = F (s0) + s− s0

π

∫ ∞
sth

ds′

s′ − s0

ImF (s′)
s′ − s− iε

. (1.123)

The n-times-subtracted dispersion relation at s = s0 is given by

F (s) = Pn(s− s0) + (s− s0)n
π

∫ ∞
sth

ds′

(s′ − s0)n
ImF (s′)
s′ − s− iε

, (1.124)

where Pn(s − s0) is a polynomial of power n − 1 in (s − s0). It is possible to perform

subtractions in different points given that they are on the real axis to the left of the branch

cut.

1.7.2 Unitarity

Unitarity is a fundamental property of the S-matrix:

S†S = 1. (1.125)

The decomposition of the S-matrix into the identity and the nontrivial scattering matrix

T , S = 1 + iT , implies
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− i(T − T †) = T †T. (1.126)

When this relation is sandwiched between initial and final states and a complete set of

intermediate states is inserted on the right-hand side, we arrive at the well-known optical

theorem

ImTfi = 1
2
∑
n

(2π)4δ(4)(Pn − Pi)T ∗nfTni, (1.127)

where time-reversal invariance has been assumed and 〈f |T |i〉 ≡ (2π)4δ(4)(Pf − Pi)Tfi.

Considering the scattering of two incoming and two outgoing particles, and assuming

that we are in an energy region where only elastic final-state rescattering is allowed. Thus,

from Eq. (1.127), the only intermediate state is |n〉 = |f〉 and the completeness sum reduces

to an integral over the intermediate momenta:

ImTfi = (2π)4

2S

∫ d3q1 d
3q2

2E1(2π)32E2(2π)3 δ
(3)(pi − q1 − q2)T ∗ffTfi. (1.128)

The symmetry factor S is 2 for indistinguishable particles and 1 otherwise. Here, qi =

(Ei, qi) denotes the on-shell four-momenta of the two intermediate particles, and the total

initial and final four-momenta are pi = K + k′ = pf = p+ p′ = (
√
s,0) in the center-of-mass

frame. Defining θ (θ′) as the angle between p and k (q1) the three-momenta, and integrating

over the delta function, the following relation is found

ImTfi(s, θ) = 1
8(2π)2S

|q1|√
2

∫
T ∗ff (s, θ′)Tfi(s, θ′′)dΩ, (1.129)

where dΩ ≡ sin θ′dθ′dφ and |q1| =
√
s/4−m2

π as an example of an intermediate state of

two pions. A unitarity relation similar to that in Eq. (1.129) results also when we consider a

production amplitude or a form factor that produces the final state f in the elastic regime.

Let us take a look at the pion form factor, which is an essential ingredient throughout

the development of this thesis. This is defined as

〈
π+(p′)π−(p) |jµ(0)| 0

〉
= (p′ − p)µ F V

π (s), (1.130)
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Figure 1.4: Graphical representation of the discontinuity relation for pion form factors, where
the black disc represents the form factor, while the gray disc represents the pion-pion scattering
T -matrix, projected onto the appropriate partial wave. Reprinted from Ref. [10].

where

jµ = 2
3 ūγµu−

1
3 d̄γµd−

1
3 s̄γµs (1.131)

denotes the electromagnetic vector current for the light quarks. The unitarity relation in

Eq. (1.129) becomes

ImF V
π (s) = σ(s)

(
tI=1
J=1

)∗
F V
π (s)× θ(s− 4m2

π), (1.132)

where σ(s) =
√

1− 4m2
π/s, and tI=1

J=1(s) is the ππ P -wave isospin I = 1 scattering am-

plitude. The Eq. (1.132) is depicted in Fig. 1.4. If the unitarity relation to t11(s) is now

applied, we find

Imt11(s) = σ(s)
∣∣∣t11(s)

∣∣∣2 × θ(s− 4m2
π). (1.133)

Since t11(s) can be written as t11(s) = |t11(s)| eiδ1
1(s), the Eq. (1.133) leads to

∣∣∣t11(s)
∣∣∣ = sin δ1

1
σ(s) ; (1.134)

when this expression is used in Eq. (1.132), we get

ImF V
π (s) = sin δ1

1(s)e−iδ1
1(s)F V

π (s)× θ(s− 4m2
π). (1.135)

Writing F V
π (s) = |F V

π (s)|eiφV (s), where φV is the phase of the vector form factor, then

the unitary equation implies φV = δ1
1(s) which means that unitarity forces the phase of the
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form factor to be equal to the ππ (elastic) scattering phase. This is the well-known Watson

theorem [227] that holds only in the elastic region.

1.7.3 Omnès formalism

The solution to the form factor in Eq. (1.132) is easily obtained in terms of the so-called

Omnès function Ω1
1(s) [228],

F V
π (s) = R(s)Ω1

1(s), Ω1
1(s) = exp

{
s

π

∫ ∞
4m2

π

ds′
δ1

1(s′)
s′(s′ − s− iε)

}
, (1.136)

where R(s) is a function free of right-hand cuts up to the first inelastic threshold. At low

energies, R(s) can be approximated by a polynomial whose coefficients need to be determined

by other means, e.g., by matching to chiral perturbation theory near s = 0. The Omnès

function is completely given in terms of the appropriate pion-pion phase shift, which is

particularly useful thanks to the excellent information on pion-pion scattering at our disposal

[229–232]. The Omnès function then represents the exact resummation of elastic two-body

rescattering to all orders. For instance, the pion vector F V
π (s) as extracted from τ− → π−π0ντ

decays [18] can be described very well up to
√
s = 1 GeV by Eq. (1.136) with a linear

polynomial R(s) = 1 + αV s. At higher energies, the nonlinear effects of higher, inelastic

(ρ′, ρ′′) resonances become important [233]. For the pion vector form factor measured in

e+e− → π+π− [21, 53, 54, 57–59], the isospin-violating mixing effect with the ω-meson needs

to be taken into account [234]. More refined representations parameterizing inelastic effects

beyond roughly 1 GeV have employed conformal polynomials instead, which also allows for

better high-energy asymptotic behavior of the form factor [235–237]. Eqs. (1.132) and

(1.136) have also been generalized and employed frequently to describe coupled channels,

e.g., ππ ↔ K̄K scalar form factors [238–245], by promoting the Omnès function to a matrix

with a coupled-channel T -matrix as input. Nevertheless, the coupled-channels description

does not permit a compact closed form as in Eq. (1.136).

In order to describe more complicated amplitudes such as four-point functions, a more

complex unitarity relation needs to be considered due to the presence of left-hand cuts.
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Figure 1.5: Illustrative representation of the inhomogeneus unitarity relation in Eq. (1.137):
the homogeneus term similar to a form factor unitarity relation (left), plus the projection of a
typical diagram representing crossed-channel dynamics (right), giving rise to the inhomogeneus
Omnès problem. The double line renders a heavy particle with its three-body decay partial wave
represented by the blue dot, the single lines illustrate the three outgoing decay products that
rescatter elastically (red dots). Reprinted from Ref. [10].

These are a consequence of crossing symmetry and unitarity in the crossed channel: for

example, the pion-pion scattering amplitude possesses not only a cut in the s-channel for

s > 4m2
π, but also for t, u ≥ 4m2

π. Therefore, after projection onto s-channel partial waves,

the crossed-channel unitarity cuts translate into another discontinuity on the negative axis

for s ≤ 0. Separating right- and left-hand cuts into individual functions f IJ (s) and f̂ IJ (s) of

(s-channel) isospin I and angular momentum J , the unitarity condition in Eq. (1.132) yields

Imf IJ (s) = sin δIJ(s)e−iδIJ (s)
(
f IJ (s) + f̂ IJ (s)

)
θ(s− 4m2

π), (1.137)

where the inhomogeneity,

f̂ IJ (s) =
∑
n,I′,J ′

∫ +1

−1
d cos θ cosn θ cII′JJ ′n f I

′

J ′ (t(s, cos θ)) , (1.138)

is then a consequence of the singularities in the t- and u-channels, and ensues from their

projection onto the s-channel partial wave. Here, cII′JJ ′n are process-dependent coefficients

and t(s, cos θ) is the appropriate crossed-channel Mandelstam variable as a function of the

energy squared s and scattering angle θ. Fig. 1.5 shows the two terms on the right-hand

side of Eq. (1.137), which represents the inhomogeneus Omnès problem.

Given that both f IJ (s) and the Omnès function ΩI
J(s) are analytic on the whole complex

plane except on the real axis when s > sth, gIJ(s) = f IJ (s)/ΩI
J(s) has the same analytic

properties. The imaginary part of gIJ(s) on the upper rim of the cut can be computed:
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ImgIJ(s) = Imf IJ (s)ReΩI
J(s)− Ref IJ (s)ImΩI

J(s)
|ΩI

J(s)|2
= Imf IJ (s)ΩI

J(s)− f IJ (s)ImΩI
J(s)

|ΩI
J(s)|2

=

(
f IJ (s) + f̂ IJ (s)

)
e−iδ

I
J (s) sin δIJ(s)ΩI

J(s)− f IJ (s)ΩI
J(s)e−iδIJ (s) sin δIJ(s)

|ΩI
J(s)|2

= f̂ IJ (s) sin δIJ(s)
|ΩI

J(s)| .

(1.139)

Thus, the solution of the inhomogeneus Omnès problem is given by the n-times subtracted

dispersion relation for gJI (s) solved for f IJ (s),

f IJ (s) = ΩI
J(s)

Pn(s− s0) + (s− s0)n
π

∫ ∞
sth

ds′
f̂ IJ (s) sin δIJ(s)

|ΩI
J(s)| (s′ − s0)n(s′ − s− iε)

 . (1.140)

The inhomogeneus Omnès problem provides a possible dispersion-theoretical description

of three-body decays in the form of Khuri-Treiman equations 3 [246,247].

3A detailed description for the η → 3π decay can be found in Ref. [10].
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Chapter 2

Tau physics

2.1 Introduction

The τ lepton was discovered in 1975 by Martin Lewis Perl [248] at the Stanford Positron

Electron Asymmetric Rings (SPEAR) in SLAC, although it was anticipated previously by

Yung-su Tsai [249]. Since then, it has been a subject of extensive experimental analyses.

The tau lepton belongs to the third generation and decays into particles belonging to the

first and second generations (except to the charm quark). These leptons are excellent probes

to perform SM precision tests and look up New Physics. The structure of the Electroweak

gauge sector has been successfully measured at the level of 0.1 to 1%, corroborating the SM.

Moreover, the hadronic τ decays turn out to be a unique laboratory to investigate the strong

interaction at low energy, since the tau is the only massive enough lepton that can decay

into hadrons. Tau decay data is especially useful to obtain a precise determination of the

QCD coupling, the mixing matrix CKM element |Vus|, and the strange quark mass.

Leptonic tau decays have been measured with an astonishing precision. This allows

to study the effects produced by additional non-standard interactions to the SM through

extensions in the effective theory that include the coupling with both spinless and tensor

sources. In Chapters 3 and 4, we scrutinize the τ− → π−π0ντ and τ− → K−η(′)ντ decays,

respectively, in a similar way to the analyses in Refs. [250,251] for the πη(′) and (Kπ)− decay
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modes. Subsequently, in Chapter 5, we perform a global analysis of strangeness-conserving

and -changing exclusive hadronic tau decays into one and two pseudoscalar mesons. But

before that, in this chapter, we will review some well-known facts about (semi-)leptonic tau

decays.

2.2 Lepton decays

µ−

νµ

W− e−

ν̄e

τ−

ντ

W−
e−, µ−, d, s

ν̄e, ν̄µ, ū, ū

Figure 2.1: Feynman diagrams for µ− → e−ν̄eνµ and τ− → X−ντ (X− = e−ν̄e, µ
−ν̄µ, dū, sū).

The decays of the charged leptons, µ± and τ±, stem through the W -exchange diagrams

in Fig. 2.1, with the SM Lagrangian for charged-current interactions given by:

Lcc = − g

2
√

2
W †
µ

{∑
`

ν̄`γ
µ(1− γ5)`+ ūγµ(1− γ5)(Vud d+ Vus s)

}
+ h.c. (2.1)

The momentum transfer bore by the intermediate W± is very small compared to MW .

For that reason, the W -propagator shrinks to a point and can be well approximated through

a local four-fermion interaction governed by the Fermi coupling constant GF√
2 = g2

8M2
W

. The

leptonic decay width can be written as:

Γ`→`′ ≡ Γ[`− → `′ν̄`′ν`] = G2
`′`m

5
`

192π3 f
(
m2
`′/m

2
`

) (
1 + δ`

′`
RC

)
, (2.2)

where f(x) = 1− 8x+ 8x3 − x4 − 12x2 log x, and [252–262]

δ`
′`
RC = α

2π

[
25
4 − π

2 +O
(
m2
`′

m2
`

)]
+ · · · (2.3)
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which take into account radiative QED corrections up to O(α2). Here, δ`′`RC includes

inclusively additional photons or lepton pairs. Higher-order electroweak corrections and the

non-local structure of theW propagator, are incorporated into the effective coupling [263,264]

G2
`′` =

[
g2

4
√

2M2
W

(1 + ∆r)
]2 [

1 + 3
5
m2
`

M2
W

+ 9
5
m2
`′

M2
W

+O
(

m4
`′

M2
Wm

2
`

)]
, (2.4)

so that Geµ coincides with the Fermi coupling defined in the V −A theory. Here, g is the

SU(2)L gauge coupling constant and ∆r is the electroweak correction introduced by Sirlin

in Ref. [265].

The Fermi coupling is defined by the muon lifetime, given that τ−1
µ = Γ[µ− → e−ν̄eνµ(γ)].

The MuLan collaboration has achieved a precision of 1.0 parts per million in the measurement

of τµ [266], which is 15 times more precise than any previous experiment. It is the most

accurate particle lifetime ever measured and, in consequence, the world averaged, τµ =

2.1969811(22) ·10−6 s [3], is dominated by this measurement. In addition to the electron and

muon masses, me = 0.5109989461(31) MeV and mµ = 105.6583745(24) MeV [3], it implies

GF ≡ Geµ = (1.1663787± 0.0000006) · 10−5 GeV−2. (2.5)

Thanks to its much heavier mass, the τ lepton has various final states which are kine-

matically allowed i.e. τ− → e−ν̄eντ , τ− → µ−ν̄µντ , τ− → dū ντ and τ− → sū ντ . The

universality of the W couplings predicted by the SM implies that all these decay modes have

equal amplitudes (when final fermion masses and QCD interactions are neglected), with an

additional NC |VuD| factor (D = d, s) for the semileptonic channels 1. Regarding the unitarity

of the quark mixing matrix, |Vud|2 + |Vus|2 = 1− |Vub|2 ≈ 1, the lowest-order estimation for

the τ lifetime is given by

ττ ≡
1

Γ(τ) ≈
Γ(µ)

(
mτ

mµ

)5

[2 +NC(|Vud|2 + |Vus|2)]

−1

≈ 1
5τµ

(
mµ

mτ

)5
= 3.3·10−13 s, (2.6)

while their branching fractions are expected to be approximately (` = e, µ)
1NC refers to the number of colors.
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B` ≡ Br(τ− → `−ν̄`ντ ) '
1
5 = 20%, Γ(τ− → ντ + hadrons)

Γ(τ− → ντe−ν̄e)
' NC = 3. (2.7)

We can see the agreement between theory and experiment in Table 2.1, which provides

strong evidence for the color degree of freedom. An additional enhancement of about 20%

in the hadronic τ decay width is due to the missing QCD corrections (∼ O(αS
π

)) which are

responsible for the numerical differences.

mτ (1776.86± 0.12) MeV
ττ (290.3± 0.5) · 10−15 s

Br(τ− → e−ν̄eντ ) (17.82± 0.04)%
Br(τ− → µ−ν̄µντ ) (17.39± 0.04)%

Bµ/Be 0.9762± 0.0028
Br(τ− → π−ντ ) (10.82± 0.05)%
Br(τ− → K−ντ ) (6.96± 0.1) · 10−3

Table 2.1: Average values of some tau parameters [3].

Using the measured value of GF in µ decays, final fermion masses and taking into account

higher-order corrections, a precise relation between the τ lifetime and the leptonic branching

ratios is provided by Eq. (2.2)

Be = Bµ
0.972564± 0.000004 = ττ

(1632.6± 0.6) · 10−15 s . (2.8)

The error in the previous expression is dominated by the uncertainty of mτ , which high-

lights its sensitivity to the value of the τ mass.

The predicted value of Bµ/Be is in fair agreement with the measured ratio in Table 2.1

(1.3σ) 2. In Fig. 2.2 we can see that the relation between Be and ττ is well satisfied by the

current data.

Taking into account the relation in Eq. (2.8), the values of Be, Bµ and ττ can be combined

to determine the electronic branching ratios within the SM, i.e., assuming lepton universality

(LU):
2The precise BaBar measurement, Bµ/Be = 0.9725± 0.0039 [267], is responsible for this small difference,

which is 1.8σ away from the theoretical prediction. Before this data, the previous world-average was in
perfect agreement with the SM value.
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Figure 2.2: Relation between Be and ττ . The diagonal band corresponds to Eq. (2.8).

Bunie = (17.817± 0.023)%. (2.9)

The leptonic branching fractions and the lifetime of the tau are known with a precision

of 0.2%. The precise Belle measurement, ττ = (290.17±0.53±0.33) ·10−15 s [268], dominates

the world-average ττ = (290.3± 0.5) · 10−15 s [3].

The τ mass is only known at the 10−4 level. Making an energy scan of σ(e+e− → τ+τ−)

around the τ+τ− production threshold [269–271], the BES-III collaboration found mτ =

1776.91±0.12+0.10
−0.13 MeV [272] with an accuracy of 0.1 MeV. Recently the Belle II collaboration

released their first measurements of the mass of the τ lepton using the pseudomass method

in a blinded analysis procedure, mτ = 1777.28±0.75±0.33 [273], which is in good agreement

with the present world-average [3].

2.3 Lepton universality

In the SM all left-handed leptons are accommodated in SU(2)L doublets with identical cou-

plings to theW boson, i.e., ge = gµ = gτ ≡ g. Comparing the measurements of (semi)leptonic

decay widths which only differ in the lepton flavor, it is possible to test experimentally this

statement. The Bµ/Be ratio constrains |gµ/ge|, while Be/ττ provides information on |gτ/gµ|.
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The results are summarized in Table 2.2, together with the constraints obtained from π, K

and W decays.

Γτ→µ/Γτ→e Γπ→µ/Γπ→e ΓK→µ/ΓK→e ΓK→πµ/ΓK→πe ΓW→µ/ΓW→e
|gµ/ge| 1.0018(14) 1.0021(16) 0.9978(20) 1.0010(25) 0.996(10)

Γτ→e/Γµ→e Γτ→π/Γπ→µ Γτ→K/ΓK→µ ΓW→τ/ΓK→πe
|gτ/gµ| 1.0011(15) 0.9962(27) 0.9858(70) 1.034(13)

Γτ→µ/Γµ→e ΓW→τ/ΓW→e
|gτ/ge| 1.0030(15) 1.031(13)

Table 2.2: Experimental determinations of the ratios g`/g`′ [4].

The τ determination of |gµ/ge| is as precise (∼ 15%) as the one obtained from π`2 decays

and comparable accuracies have been reached with K`2 and K`3. The ratios

RP→e/µ ≡
Γ[P− → e−ν̄e(γ)]
Γ[P− → µ−ν̄µ(γ)] =

∣∣∣∣∣ gegµ
∣∣∣∣∣
2
m2
e

m2
µ

(
1−m2

e/m
2
P

1−m2
µ/m

2
P

)2 (
1 + δRP→e/µ

)
, P = π, K,

(2.10)

have been calculated and measured with high accuracy. Because of the V − A struc-

ture of the charged currents in the SM, the leptonic decay rate of a pseudoscalar meson

is helicity suppressed, which makes these ratios excellent probes of new-physics interac-

tions. The radiative corrections δRP→e/µ involve a summation of leading QED logarithms

αn logn(mµ/me) [274, 275] and a systematic two-loop calculation of O(e2p4) effects within

Chiral Perturbation Theory [193,194]. Comparing the SM predictions [276,277]

RSM
π→e/µ = (1.2352± 0.0001) · 10−4, RSM

K→e/µ = (2.477± 0.001) · 10−5, (2.11)

and the experimental Rπ→e/µ [278–283] and RK→e/µ ratios [284–289],

Rπ→e/µ = (1.2327± 0.0023) · 10−4, RK→e/µ = (2.488± 0.009) · 10−5, (2.12)

we can see a good agreement between them, ∼ 1.1σ for Rπ→e/µ and ∼ 1.2σ for RK→e/µ
3.

3The results quoted in Table 2.2 were obtained using a previous estimation of Rπ→e/µ, Rπ→e/µ = (1.230±
0.004) · 10−4.
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The decay modes τ− → π−ντ and τ− → K−ντ can be used to test universality through

the ratios

Rτ/P ≡
Γ[τ− → P−ντ ]
Γ[P− → µ−ν̄τ ]

=
∣∣∣∣∣gτgµ

∣∣∣∣∣
2

m3
τ

2mPm2
µ

(
1−m2

P/m
2
τ

1−m2
µ/m

2
P

)2 (
1 + δRτ/P

)
, (2.13)

where a rough estimate of the size of the relative corrections was given in [274,290–292]:

δRτ/π = (0.16± 0.14)%, δRτ/K = (0.90± 0.22). (2.14)

The outcome for the |gτ/gµ| ratios in Table 2.2 was obtained using these numbers. A

recent improved evaluation of δRτ/P [293, 294] yields δRτ/π = (0.18 ± 0.57)% and δRτ/K =

(0.97 ± 0.58)% which imply |gτ/gµ|π = 0.9964 ± 0.0038 and |gτ/gµ|π = 0.9857 ± 0.0078,

compatible with LU at 0.9σ and 1.8σ, respectively.

2.4 Lorentz structure of the charged current

Thanks to the high statistics, the leptonic decays `− → `′−ν̄`′ν` allow us to study the Lorentz

structure of the decay amplitudes through the analysis of the energy and angular distribution

of the final charged lepton, which can be complemented with polarization information when

available.

The most general, local, derivative-free, lepton-number conserving, four-lepton interac-

tion Hamiltonian, which is consistent with locality and Lorentz invariance [295–302],

H = 4G`′`√
2
∑
n,ε,ω

gnεω
[¯̀Γn(ν`′)σ

] [ ¯(ν`)λΓn`ω
]
, (2.15)

contains ten complex coupling constants, and since a common phase is arbitrary, there

are nineteen independent real parameters which could be different for each leptonic decay.

The chiralities of the corresponding fermions are labeled by the subindices ε, ω, σ, λ, and

n = S, V, T corresponds to the type of interaction, i.e., scalar (ΓS = I), vector (ΓV = γµ),

and tensor (ΓT = σµν/
√

2). The chilities of neutrinos are uniquely determined once n, ε, ω

are given. By factoring out G`′` the coupling constants gnεω are normalized to [300]
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1 =1
4
(
|gSRR|2 + |gSRL|2 + |gSLR|2 + |gSLL|2

)
+ 3

(
|gTRL|2 + |gTLR|2

)
+
(
|gVRR|2 + |gVRL|2 + |gVLR|2 + |gVLL|2

)
.

(2.16)

Hence, |gSεω| ≤ 2, |gVεω| ≤ 1, and |gTεω| ≤ 1/
√

3. The probabilities for the decay of an

ω−handed `− into an ε−handed daughter lepton is given by [300]

Qεω = 1
4 |g

S
εω|2 + |gVεω|2 + 3(1− δεω)|gTεω|2. (2.17)

In the SM, |gVLL|2 = 1 and all other vanish, |gnεω|2 = 0.

Given an initial lepton with polarization P`, the final charged-lepton distribution in the

decaying-lepton rest frame is usually parameterized as [296–298]

d2Γ`→`′
dx d cos θ = m` ω

4

2π3 G2
`′`

√
x2 − x2

0

{
F (x)− 1

3ξ P`
√
x2 − x2

0 cos θA(x)
}
, (2.18)

where θ is the angle between the `− spin and the final charged-lepton momentum, ω ≡

(m2
`′ +m2

`)/2m` is the maximum `′− energy for massless neutrinos, x ≡ E`′/ω is the reduced

energy, x0 ≡ m`′/ω and

F (x) = x(1− x) + 2
9ρ(4x2 − 3x− x2

0) + ηx0(1− x), (2.19a)

A(x) = 1− x+ 2
3δ
(

4x− 4 +
√

1− x2
0

)
. (2.19b)

For an unpolarized lepton `, the distribution is described by the so-called Michel [295]

parameters ρ and η. When the initial lepton polarization is known, we have two additional

parameters, ξ and δ. If the polarization of the final charged-lepton is also known, 5 additional

independent parameters (ξ′, ξ′′, η′′, α′, β′) appear [3]. In the SM, ρ = δ = 3/4, η = η′′ = α′ =

β′ = 0 and ξ = ξ′ = ξ′′ = 1.

The total decay rate for massless neutrinos can be written as [302]

Γ`→`′ = Ĝ2
`′`m

5
`

192π3 f
(
m2
`′/m

2
`

) (
1 + δ`

′`
RC

)
, (2.20)

where
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Ĝ`′` ≡ G`′`

√√√√1 + 4ηm`′

m`

g(m2
`′/m

2
`)

f(m2
`′/m

2
`)
, (2.21)

g(z) = 1 + 9z − 9z2 − z3 + 6z(1 + z) log z, and the radiative corrections δ`′`RC in the SM

have been included. Assuming that the SM produces the dominant contribution to the decay

rate, any additional higher-order correction beyond the Hamiltonian in Eq. (2.15) would be

a subleading effect.

The Fermi coupling GF , which is measured in µ decay, corresponds to the normalization

Geµ. The ratios defined previously, Bµ/Be and Be τµ/ττ , that allow us to test lepton univer-

sality, also probe the ratios Ĝµτ/Ĝeτ and Ĝeτ/Ĝeµ, respectively. According to Eq. (2.21) the

experimental determination of Geµ is sensitive to the uncertainty in ηµ→e.

In terms of the gnεω couplings, the parameters in Eqs. (2.18) and (2.19) are:

ρ = 3
4(β+ + β−) + (γ+ + γ−), (2.22a)

ξ = 3(α− − α+) + (β− − β+) + 7
3(γ+ − γ−), (2.22b)

ξδ = 3
4(β− − β+) + (γ+ − γ−), (2.22c)

η = 1
2Re

[
gVLL g

S∗
RR + gVRR g

S∗
LL + gVLR(gS∗RL + 6gT∗RL) + gVRL(gS∗LR + 6gT∗LR)

]
, (2.22d)

where [303]

α+ ≡ |gVRL|2 + 1
16 |g

S
RL + 6gTRL|2, α− ≡ |gVLR|2 + 1

16 |g
S
LR + 6gTLR|2, (2.23a)

β+ ≡ |gVRR|2 + 1
4 |g

S
RR|2, β− ≡ |gVLL|2 + 1

4 |g
S
LL|2, (2.23b)

γ+ ≡ 3
16 |g

S
RL − 2gTRL|2, γ− ≡ 3

16 |g
S
LR − 2gTLR|2, (2.23c)

are positive-definite combinations of decay constants, that correspond to a final right-

handed (α+, β+, γ+) or left-handed (α−, β−, γ−) lepton. The normalization in Eq. (2.16)

can be written as α+ + α− + β+ + β− + γ+ + γ− = 1. In terms of these parameters, the
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probabilities Qεω are:

QLL = β− = 1
4

(
−3 + 16

3 ρ−
1
3ξ + 16

9 ξδ + ξ′ + ξ′′
)
, (2.24a)

QRR = β+ = 1
4

(
−3 + 16

3 ρ+ 1
3ξ −

16
9 ξδ − ξ

′ + ξ′′
)
, (2.24b)

QLR = α− + γ− = 1
4

(
5− 16

3 ρ+ 1
3ξ −

16
9 ξδ + ξ′ − ξ′′

)
, (2.24c)

QLR = α+ + γ+ = 1
4

(
5− 16

3 ρ−
1
3ξ + 16

9 ξδ − ξ
′ − ξ′′

)
. (2.24d)

Upper bounds on any of these probabilities translate into corresponding limits for all

couplings with the given chiralities. The following relations are particularly useful:

Q`R ≡ QRR +QLR = 1
2

(
1 + 1

3ξ −
16
3 ξ δ

)
, (2.25a)

Q`′R
≡ QRR +QRL = 1

2 (1− ξ′) . (2.25b)

Thus, the total probability for the decay of an initial right-handed lepton is characterized

by ξ and ξδ, while a single polarization parameter fixes the probability to decay into a final

right-handed lepton. Other convenient positive-definite quantities are:

3
2β

+ + 2γ− = ρ− ξ δ, (2.26a)

QLR +QRL = 1
2

(
5− 16

3 ρ− ξ
′′
)
. (2.26b)

The first one supplies direct bounds on |gVRR|, |gSRR| and |gSLR − 2gTLR|, and shows that

ρ ≥ ξ δ. A precise measurement of the polarization parameter ξ′′ would imply upper limits

on all couplings gnεω with ε 6= ω through the second identity.

In the case of µ decay, where a precise measurement of the µ and e polarizations exist,

there are upper bounds [300] on QRR, QLR and QRL, and a lower limit on QLL, which

can be translated to upper bounds on the 8 couplings |gnRR|, |gnLR| and |gnRL|. The µ and

e measurements do not permit to determine |gSLL and |gVLL| separately [300, 304]. However,

a lower limit on |gVLL| is obtained in the inverse muon decay since σ(νµe− → µ−νe) ∝

|gVLL|2 [300]. Since the νµ helicity in pion decay is experimentally well known [305, 306],
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|2hνµ + 1| < 0.0041 (90% C.L.) [307], the |gSLL| contribution to σ(νµe− → µ−νe) is negligible;

the µ−decay constraints suppress the contributions from other gnεω couplings [308]. Setting a

lower bound on |gVLL|, the relation QLL gives the upper limit |gSLL|2 < 4(1− |gVLL|2). In Table

2.3 the present 90% C.L. bounds on the µ−decay couplings [309–314] are summarized. All

these bounds show nicely that the µ−decay transition amplitude is indeed of the predicted

V − A type.

|gSRR| < 0.035 |gSLR| < 0.050 |gSRL| < 0.412 |gSLL| < 0.550
|gVRR| < 0.017 |gVLR| < 0.023 |gVRL| < 0.104 |gVLL| > 0.960
|gTRR| ≡ 0 |gTLR| < 0.015 |gTRL| < 0.103 |gTLL| ≡ 0

|gSLR + 6gTLR| < 0.143 |gSLR + 2gTLR| < 0.108 |gSLR − 2gTLR| < 0.070
|gSRL + 6gTRL| < 0.418 |gSRL + 2gTRL| < 0.417 |gSRL − 2gTRL| < 0.418

QRR +QLR < 8.2 · 10−4

Table 2.3: Experimental bounds at 90% C.L. for the leptonic µ−decay couplings [3].

Since the τ lifetime is shorter, the experimental determination of the τ decay param-

eters must be different from the muon one. The measurements of the τ polarization and

the parameters ξ and δ are still possible because the spins of the τ+τ− pair produced in

e+e− annihilation are strongly correlated [249, 315–325]. The use of beam polarization was

employed by the SLD Collaboration [326]. Nevertheless, the polarization of the final charged

lepton in the τ decay has never been measured. For instance, this could be done by stopping

the muons and detecting their decay products of the τ− → µ−ν̄µντ decay [322]. Another

possibility is to use radiative decays, τ− → `−ν̄`ντγ (` = e, µ) [327], since the distribution of

the photons emitted by the daughter lepton is sensitive to the lepton polarization. Although

the measurement of the inverse decay would be very helpful, this is far from reach. There

are also interesting prospects from the five-lepton tau decay, τ → ``
′
`(′)ντν`(′) , which shows a

big sensitivity to new physics in one of its Michel parameters [328] (Denis Epifanov, private

communication).

In Table 2.4 we can see the experimental status on the τ−decay Michel parameters [326,

329–343] together with the more accurate values measured in µ decay [3,309–311,344–350].
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The 95% C.L. bounds on the τ−decay couplings are shown in Table 2.5.

µ− → e−ν̄eνµ τ− → µ−ν̄µντ τ− → e−ν̄eντ τ− → `−ν̄`ντ
ρ 0.74979± 0.00026 0.763± 0.020 0.747± 0.010 0.745± 0.008
η 0.057± 0.034 0.094± 0.073 − 0.013± 0.020
ξ 1.0009+0.0016

−0.0007 1.030± 0.059 0.994± 0.040 0.985± 0.030
ξδ 0.7511+0.0012

−0.0006 0.778± 0.037 0.734± 0.028 0.746± 0.021
ξ′ 1.00± 0.04 − − −
ξ′′ 0.65± 0.36 − − −

Table 2.4: Michel parameters [3]. The last column assumes identical couplings for ` = e, µ. ξµ→e
refers to the product ξµ→ePµ, where Pµ ≈ 1 is the longitudinal polarization of the µ from π decay.

τ− → e−ν̄eντ
|gSRR| < 0.70 |gSLR| < 0.99 |gSRL| < 2.01 |gSLL| < 2.01
|gVRR| < 0.17 |gVLR| < 0.13 |gVRL| < 0.52 |gVLL| < 1.005
|gTRR| ≡ 0 |gTLR| < 0.082 |gTRL| < 0.51 |gTLL| ≡ 0

τ− → µ−ν̄µντ
|gSRR| < 0.72 |gSLR| < 0.95 |gSRL| < 2.01 |gSLL| < 2.01
|gVRR| < 0.18 |gVLR| < 0.12 |gVRL| < 0.52 |gVLL| < 1.005
|gTRR| ≡ 0 |gTLR| < 0.079 |gTRL| < 0.51 |gTLL| ≡ 0

Table 2.5: Experimental bounds at 95% C.L. for the leptonic τ−decay couplings [3].

Assuming LU, the leptonic decay ratios Bµ/Be and Beτµ/ττ bring limits on the low-energy

parameter η. Ĝµτ provides the best sensitivity [351] since the term proportional to η is not

suppressed by the me/m` factor. Using the world-average value of Bµ/Be, it is possible to

determine ητ→` = 0.016 ± 0.013, which only assumes e/µ universality. This value is more

accurate that the µ → e and τ → µ shown in Table 2.4. A η value different from zero

would point out that there are at least two distinct couplings with opposite chiralities for

the charged leptons. Assuming the V − A coupling gVLL to be dominant, the second one

would be a scalar couplings gSRR. The ητ→` value implies, −0.019 < Re[gSRR] < 0.083 at 95%

C.L. since at leading order in new physics contributions, η ≈ Re[gSRR]/2.
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2.4.1 Model-dependent interpretation

Since the sensitivity of the current τ data is not good enough to set strong constraints from a

completely general analysis of the four-fermion Hamiltonian. However, more stringent limits

can be obtained assuming a particular model. For instance, in the framework of a two Higgs

doublet model, the measurements correspond to a limit of mH± > 1.9 GeV × tan β on the

mass of the charged Higgs boson, or a limit of 253 GeV on the mass of the second W boson

in left-right symmetric models for arbitrary mixing (both 95% C.L.). See [302,352–354].

For interactions mediated by a W boson, the hadronic decay modes τ− → h−ντ can be

used to test the structure of the τντW vertex, if one assumes the SM coupling of the W to

the light quarks. In that case, the Hamiltonian contains only two vector couplings gλ, with

λ being the τ (and ντ ) chirality, where |gL|2 + |gR|2 = 1. The Pτ dependent part of the

decay amplitude is proportional to ξh = |gL|2 − |gR|2, which plays a role analogous to the

leptonic decay constant ξ. This parameter, ξh 4, determines the mean ντ helicity times a

factor −2. The study of τ+τ− decay correlations in leptonic-hadronic and hadronic-hadronic

decay modes, using the π, ρ, and a1 hadronic final states [326, 329, 330, 332–341, 355–361],

implies ξh = 0.995± 0.007 [3]. This suggests |gL| > 0.995 and |gR| < 0.10 at 95% C.L.

2.5 Hadronic decays

Since the τ is the only known lepton massive enough that can decay into hadrons, its semilep-

tonic decays provide us with a clean laboratory to test QCD at low-energies and investigate

the hadronic weak currents. The τ− → H−ντ decay probes the matrix element of the

left-handed charged current between the vacuum and the final hadronic state H−,

〈
H−

∣∣∣(V ∗ud d̄+ V ∗us s̄
)
γµ(1− γ5)u

∣∣∣ 0〉 . (2.27)

The semileptonic τ decays allow us to study the properties of both vector and axial-

vector currents for Cabibbo-allowed or Cabibbo-suppressed final states [362], contrary to
4ξ = 1 in the SM.
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the well-known process e+e− → γ∗ → hadrons.

The matrix element of the vector charged current is related to the isovector part of the

e+e− annihilation cross section into hadrons through an isospin rotation, which evaluate the

hadronic matrix element of the I = 1 component of the electromagnetic current,

〈
V 0

∣∣∣(ūγµu− d̄γµd)∣∣∣ 0〉 . (2.28)

The τ → V −ντ decay can be written as an integral over the e+e− → V 0 cross section

[249,363]:

Rτ→V ≡
Γ(τ− → V −ντ )

Γτ→e
= 3 cos2 θC

2πα2m2
τ

SEW

∫ m2
τ

0
ds

(
1− s

m2
τ

)2 (
1 + 2s

m2
τ

)
sσI=1

e+e−→V 0(s),

(2.29)

where SEW are the short-distance electroweak corrections that include a next-to-leading

order resummation of large logarithms [256, 364, 365]. A comparison among the available

data on e+e− → V 0, the corresponding τ− → V −ντ decay width and the invariant-mass

distribution [366–371] could help us to improve our understanding of the non-perturbative

QCD. The e+e− data contains an additional isoscalar (I = 0) component, which is not

present in τ decays and needs to be subtracted in Eq. (2.29). The general form factors

charaterizing the hadronic amplitudes can be extracted from Dalitz-plot distributions of the

final hadrons [372, 373]. A detailed analysis of these processes gives a very valuable data

basis to confront with theoretical models.

2.5.1 Two-body semileptonic decays

The matrix elements for the τ− → π−ντ and τ− → K−ντ decays are given by

〈
π−(p)

∣∣∣d̄γµγ5u
∣∣∣ 0〉 = −i

√
2fπ pµ,

〈
K−(p)

∣∣∣s̄γµγ5u
∣∣∣ 0〉 = −i

√
2fK pµ, (2.30)

where fπ and fK are the decay constants, which are already known from the measured

π− → µ−νµ and K− → µ−νµ decays, and lattice QCD. The τ decay width can be predicted
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accurately using Eq. (2.13). As shown in Table 2.2, these predictions are in good agreement

with the measured values, and yield a quite precise test of charged-current universality.

Additionally, the ratio of the measured τ− → K−ντ and τ− → π−ντ decay widths can

be used to extract information about the ratio of the hadronic matrix elements:

|Vus|fK
|Vud|fπ

= m2
τ −m2

π

m2
τ −m2

K

{
Br(τ− → K−ντ )
Br(τ− → π−ντ )

1 + δRτ/π

1 + δRτ/K

1
1 + δRK/π

}1/2

= 0.2737±0.0021, (2.31)

which uses the radiative corrections in Eq. (2.14), and the corrections to the meson decay

ratio RK/π = Γ(K− → µ−ν̄µ)/Γ(π− → µ−ν̄µ):

δRK/π = −(0.0069± 0.0017)− (0.0044± 0.0015) = −(0.0113± 0.0023), (2.32)

where the first number is of electromagnetic origin [374, 375], the second one is related

to the strong isospin-breaking corrections [374], and fK and fπ denote the meson decay con-

stants in the isospin-limit. From RK/π [374], it is found (|Vus|fK)/(|Vud|fπ) = 0.2760(4) [376]

which is consistent with the result in Eq. (2.31). Taking into account the lattice average

fK/fπ = 1.1932(21) [377] and Vud = 0.97370(14) [3,378], one obtains a determination of the

Cabbibo mixing 5:

|Vus|
|Vud|

=

 0.2294± 0.0018

0.2313± 0.0005
|Vus| =

 0.2234± 0.0018 (τ → K/π)

0.2252± 0.0005 (K/π → µ)
. (2.33)

2.5.2 Decays into two hadrons

The decay into two pseudoscalar mesons, τ− → P−P 0ντ , is mediated by the vector current.

The amplitude for the τ−(P )→ P−(p−)P 0(p0)ντ (q) decays is given by

M0 = GFVuD
√
SEW√

2
Hν(p−, p0) ū(q)γν(1− γ5)u(P ). (2.34)

the hadronic matrix element can be written as

Hν(p−, p0) = CV F+(t)Qν + CS
∆−0
t
qνF0(t), t = q2, (2.35)

5This has been updated in Ref. [293] to |Vus||Vud| = 0.2288± 0.0020, |Vus| = 0.2220± 0.0018 at 2.1 and 2.6σ
from unitarity, respectively.
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where qν = (p−+ p0)ν , Qν = (p−− p0)ν − ∆−0
t
qν and ∆ij = m2

i −m2
j . F+(t) and F0(t) are

the vector and scalar form factors. CV and CS are the Clebsch–Gordan (CG) coefficients:

Cπ
−π0

V = Cπ
−π0

S =
√

2, CK
−K0

V = CK
−K0

S = −1,

CK
−π0

V = CK
−π0

S = 1√
2
, Cπ

−K̄0
V = Cπ

−K̄0
S = −1.

Thus, the spin-averaged squared amplitude follows as

|M0|2 = 2G2
F |VuD|

2 SEW
{
C2
S |F0(t)|2 Dh−h0

0 (t, u) + CSCV Re [F+(t)F ∗0 (t)] Dh−h0
+0 (t, u)

+C2
V |F+(t)|2 Dh−h0

+ (t, u)
}
,

(2.36)

where we have defined F+/0(t, u) = F+/0(t) + δF+/0(t, u), and δF0(t, u) ≡ δF+(u) +
t

∆−0
δF−(u). The expressions for Dh−h0

0 (t, u), Dh−h0
+0 (t, u) and Dh−h0

+ (t, u) are given by:

Dh−h0
+ (t, u) =m2

τ

2 (m2
τ − t) + 2m2

0m
2
− − 2u(m2

τ − t+m2
0 +m2

−) + 2u2

+ ∆−0
t
m2
τ (2u+ t−m2

τ − 2m2
0) +

∆2
−0
t2

m2
τ

2 (m2
τ − t),

(2.37)

Dh−h0
0 (t, u) =

∆2
−0m

4
τ

2t2
(

1− t

m2
τ

)
, (2.38)

Dh−h0
+0 (t, u) = ∆0−m

2
τ

t

(
2u+ t−m2

τ − 2m2
0 + ∆−0

t
(m2

τ − t)
)
. (2.39)

The differential decay width in the tau rest frame is

d2Γ
dt du

= 1
32(2π)3m3

τ

|M0|2, (2.40)

where t = (p− + p0)2 is the invariant mass and u = (P − p−)2 = (p0 + q)2. The physical

region is limited by (m− +m0)2 ≤ t ≤ m2
τ and u−(t) ≤ u ≤ u+(t),

u±(t) = 1
2t

{
2t(m2

τ +m2
0 − t)− (m2

τ − t)(t+m2
− −m2

0)± (m2
τ − t)

√
λ(t,m2

−,m
2
0)
}
, (2.41)

and λ(x, y, z) = x2 + y2 + z2 − 2xy − 2xz − 2yz.

The invariant mass distribution is obtained integrating upon the u variable

dΓ
dt

=G2
FSEW |VuD|2m3

τ

768π3t3

(
1− t

m2
τ

)2
λ1/2(t,m2

−,m
2
0)
{
C2
V |F+(t)|2

(
1 + 2t

m2
τ

)
λ(t,m2

−,m
2
0)

+ 3C2
S∆2
−0 |F0(t)|2

}
,

(2.42)
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Long-distance electromagnetic corrections and isospin-breaking contributions are channel

dependent and have been only studied in a model-dependent way for the ππ [7, 94, 97, 379]

and Kπ [380,381] final states.

τ−→ π−π0ντ

It is well known that in the isospin-limit the two-pion final state does not receive scalar

contributions. For that reason, this kind of decays are governed by the so-called pion form

factor Fπ(s) ≡ F ππ
V (s). In recent years there was a huge effort to improve our understanding

of Fπ(s) [15–17,218,382–384] using analyticity, unitarity and some properties of QCD, such

as chiral symmetry [132, 133, 198] and the short-distance asymptotic behaviour [224–226,

385–387]. For instance, all these requirements are complied using the following expression

for the pion form factor [15]

Fπ(s) =
M2

ρ

M2
ρ − s− iMρΓρ(s)

exp
{
− s

96π2f 2
π

Re [A(s)]
}
, (2.43)

where

A(s) ≡ log m
2
π

M2
ρ

+ 8m
2
π

s
− 5

3 + σ3
π log

(
σπ + 1
σπ − 1

)
(2.44)

contains the one-loop chiral logarithms [194], that account for the final-state interaction

(FSI) of the two pions, σπ ≡
√

1− 4m2
π/s and the off-shell ρ width is given by Γρ(s) =

θ(s− 4m2
π)σ3

πMρs/(96πf 2
π) [15, 383].

In the large-NC limit [388–390], the pion form factor is described by an infinite sum of

narrow-width vector resonance contributions [226, 391, 392]. In Eq. (2.43) only the lightest

ρ state, which dominates below 1 GeV, has been taken into account. As a consequence of

the conservation of the electromagnetic current, we have the normalization Fπ(0) = 1, while

the SD properties of QCD demand the form factor to vanish at infinite momentum. The

large-NC propagator is dressed with pion loop corrections subleading in 1/NC in such a

way that a Taylor expansion in powers of s/M2
ρ reproduces the one-loop χPT prediction at

low-energies. It is possible to implement a resummation of the one-loop chiral logarithms
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through an Omnès exponential [228] to comply with the constraints from analyticity and

unitarity. By a Dyson summation, the absorptive part of these corrections is reabsorbed into

the ρ width in order to regulate the resonance pole. All these ingredients extend the validity

domain of the χPT prediction in Eq. (2.43). The theoretical prediction, which only hinges

on three parameters: Mρ, mπ and fπ, is compared with the data in Fig. 2.3. The agreement

is also extended to negative values of s, where the e−π− elastic data sits.
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Figure 2.3: Pion form factor from ALEPH [11] and CLEO [12] τ data (left) and e+e− → π+π− [13]
and e−π− → e−π− [14] data (right), compared to theory [15–17]. The red dashed line is the
prediction from Eq. (2.43).

One can easily include the modifications due to kaon loops, heavier ρ resonance con-

tributions and additional NLO corrections in 1/NC ; the precision of this approximation

can be improved by including more free parameters at the cost of decreasing its predictive

power [16, 17, 218, 382, 384], which gives a better description of the ρ′ around 1.2 GeV (con-

tinuous line in Fig. 2.3). Belle has reported a clear signal for the ρ′′(1700) resonance in

τ− → π−π0ντ decays [18]. A fit to the Belle data, which includes the ρ′ and ρ′′ states [19],

is shown in Fig. (2.4).

The τ− → π−π0ντ decay amplitude is related to the isovector component of σ(e+e− →

π+π−) through an isospin rotation. For that reason, the pion form factor can be extracted

using both datasets. Over the years, there have been discrepancies between the different

experimental measurements that may be due to the underestimation of systematic uncer-
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Figure 2.4: Pion form factor extracted from Belle τ− → π−π0ντ data [18]. The curves corre-
spond to the different approximations, including ρ, ρ′ and ρ′′ [19]. The BaBar e+e− → π+π−γ
measurement [20,21] shows a clear signal of the ρ′′′ and the isoscalar ω state.

tainties. The amplitude measured in e+e− experiments [13, 20, 21, 52–54, 56–58, 393–396]

is slightly lower than those from τ decays [11, 12, 18, 397], and this discrepancy cannot be

fully explained through the calculation of isospin-violating effects [7, 94, 379]. Additionally

to the direct energy scan adopted in most e+e− measurements, some recent experiments

utilize the so-called radiative return method in order to extract σ(e+e− → π+π−) from the

e+e− → π+π−γ data, checking different ranges of π+π− invariant masses via the radiated

photon (initial state radiation, ISR) [398–405]. The BaBar data [20, 21], that uses this

method, has reduced the tension with τ -decay measurements, nevertheless the discrepancies

persevere with the KLOE data for e+e− → π+π−γ [56–58,395].

Using the isospin-breaking corrections in Refs. [7,94,379], the prediction from e+e− data is

Br(τ− → π−π0ντ ) = (24.94±0.25)% [406], which is 2.1σ smaller than the world average from

τ decay measurements, Br(τ− → π−π0ντ ) = (25.49 ± 0.09)% [3]. The BaBar data exhibits

a discrepancy of about 1.2σ while that of KLOE differs from the direct measurements by

2.7σ [406]. The computation of the isospin-breaking corrections to this channel is the main

focus of Chapter 7, which are also an essential ingredient for the estimation of the hadronic

vacuum polarization contribution to the muon g − 2 from τ data.
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τ−→ (Kπ)−ντ

Unlike the ππ channel, the τ− → K−π0ντ and τ− → K̄0π−ντ decays receive contributions

from two form factors because of the masses of the final state pseudoscalars. The vector and

scalar form factors are also probed in K`3 decays, but the tau ones are sensitive to a different

and broader region, where the light-flavored resonances play a key role.

A detailed analysis of these processes can be found in [23, 24, 380, 407–411]. The vector

form factor FKπ
V (s) can be obtained in a similar way to the pion form factor, whereas the

scalar one FKπ
S (s) uses additional information from Kπ scattering data through dispersion

relations [25–27, 412–414]. A comparison between the Belle τ− → Ksπ
−ντ measurement

[22,415] and a theoretical fit using the RχT description of FKπ
V (s) with two resonances [23,24]

is shown in Fig. 2.5. The scalar component gives a small contribution to the total decay

width, Br[τ → ντ (Kπ)S−wave] = (3.88±0.19) ·10−4, but it is sizeable near the threshold. The

dominant contribution comes from the K∗(892) followed by the K∗(1410), which induces a

small correction at higher invariant mass. The Belle data shows a bump at 0.682−0.705 GeV

(points 5, 6 and 7) that cannot be explained by the theoretical description 6 and, as a

consequence, it is not included in the fit; this bump seems to be absent in the BaBar

data [419].

The slope and curvature of the vector form factor can be extracted through a fit to the

τ− → KSπ
−ντ spectrum, with a precision comparable to that in K`3, and it is also possible

to predict the τ− → K−π0ντ and τ− → K̄0π−ντ branching ratios [23, 24, 380, 409–411]. A

combined fit to τ− → KSπ
−ντ and K`3 data, that utilizes a dispersive parameterization of the

two form factors, and includes electromagnetic and isospin-breaking corrections, gives [380]:

Br[τ− → K̄0π−ντ ]th = (0.8566± 0.0299)%, Br[τ− → K−π0ντ ]th = (0.4707± 0.0181)%.

(2.45)

These are slightly larger than the current experimental world averages, Br[τ− → K̄0π−ντ ]th =
6Although many devoted analysis [23, 30, 251, 380, 409–411, 416, 417] have signalled these three points as

controversial, there is a work by L.A. Jiménez and G. Toledo [418], which is able to describe these data points
due to the effect of the longitudinal correction to the K∗(892) propagator by a flavor symmetry breaking on
FKπS (s).
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Figure 2.5: The τ− → KSπ
−ντ spectrum measured by the Belle collaboration [22]. The solid

line corresponds to the fit in Ref. [23, 24], which includes a RχT description of FKπV (s) with two
resonances and FKπS (s) from Ref. [25–27]. The scalar and K∗(1410) correspond to the dotted and
dash-dotted lines, respectively.

(0.838 ± 0.014)% and Br[τ− → K−π0ντ ]th = (0.433 ± 0.015)% [3], corroborating an earlier

observation made in Ref. [23,24]. This effect has a significant impact on the Vus determina-

tion.

This channel provides valuable information about CP violation, which is an essential

ingredient to explain the presence of the baryon asymmetry in the universe [420]. Although

earlier searches did not find evidence for CP violation [421,422], a recent result by the BaBar

collaboration [423],

Aτ,exp
CP = −3.6(2.3)(1.1) · 10−3, (2.46)

disagrees with the SM prediction, Aτ,SM
CP = 3.32(6) · 10−3, which is driven by the K0− K̄0

mixing [424, 425]. The discrepancy between theory and experiment is slightly increased

(∼ 2.8σ) when the experimental conditions corresponding to the reconstruction of the KS at

the B-factory are taken into account [426], which yields Aτ,SM
CP = 3.6(1) · 10−3. This tension

could be considered a hint for beyond the Standard Model (BSM) physics. In Refs. [251,427],

an explanation using a new tensor interaction in terms of BSM originating in the ultraviolet

was ruled out.

The τ− → K−η(′)ντ decays have been studied in Ref. [428]. These decay channels are very
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suppressed. The τ− → K−ηντ channel has been measured at the B factories [29, 429–432]

with an average Br[τ− → K−ηντ ] = (1.55± 0.08) · 10−4 [3], while for the K−η′ mode there

is only an upper limit, Br[τ− → K−ηντ ] < 2.4 · 10−6 [433].

τ−→ π−ηντ

The final state of πη has IG = 1− and JP = 0+ or 1− for S and P wave, respectively. For

that reason, any observation of these decays would indicate either a G-parity violation since

the Cabibbo-allowed vector current has even G-parity [434], or a new physics contribution

that incorporates second-class currents [435, 436]. In the SM, these decays can proceed

via the isospin violation provided by the light quarks mass difference mu −md or through

electromagnetic contributions, which make them very suppressed [437–439] and increase its

sensitivity to new scalar or tensor interactions [250,438,440]. At LO in χPT the coupling to

the vector current is dominated by the well-known π0− η mixing, which predicts a constant

and equal vector and scalar form factors:

F πη
V (s)LO = F πη

S (s)LO =
√

3
4

(mu −md)
(ms − m̂) ≈ 0.99 · 10−2, (2.47)

where m̂ = (mu + md)/2. This result is enhanced by the NLO chiral corrections and

electromagnetic contributions. It is possible to extract both form factors at s = 0 in a simple

and very elegant way from the ratio FK−π0
V (0)/F K̄0π−

V (0) [441]. Using the K`3 information

[442], a very precise prediction of the πη form factors at s = 0 can be found [443]:

F πη
V (0) = F πη

S (0) = (1.49± 0.23) · 10−2. (2.48)

Using this as an input, together with the χPT constraints, it is feasible to estimate the

two form factors in the relevant kinematical domain through a dispersive representation,

implying the following branching ratio [443]:

Br[τ− → π−ηντ ] = (0.48+0.30
−0.20) · 10−5. (2.49)

This number, which is governed by the scalar contribution, is a factor 20 smaller than
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the current experimental upper bound 7: Br[τ− → π−ηντ ] < 9.9 ·10−5 (95% CL) [429]. Many

predictions exist already in the literature which differ by one to two orders of magnitude

[438–441, 445, 446]. For instance, the RχT prediction of Ref. [447] for this decay mode is

∼ 1.7 ·10−5 (see also Ref. [448]). With a branching ratio of 4.4 ·10−5, the τ− → π−ηντ decay

could be observed with a significance of 2.6σ at Belle II [449]. A somewhat better bound

exists for the π−η′ mode: Br[τ− → π−η′ντ ] < 4.0 · 10−6 (90% CL) [433], in which the RχT

prediction is [1 · 10−7, 1 · 10−6] [447].

Higher-multiplicity decays

Modes with high multiplicity require a richer dynamical structure and provide a very valu-

able experimental window into the non-perturbative hadronization of the QCD currents.

Nevertheless, the inclusion of three or more final-state hadrons is not an easy task. At tree

level, there are several computations in RχT for tau decays into three mesons, and some

final states with four pseudoscalars, but the chiral loop corrections are not yet implemented,

except for τ → 3πντ [450] and τ → 4πντ [451], at very low q2. This predictions correspond

to the limit of large-NC ; the only subleading contribution in the 1/NC expansion that is

taken into account is the finite width of the hadronic resonances. Despite the limitations

of the RχT approximations, these results provide a direct connection with the fundamental

QCD theory and are a good starting point to analyse the measured observables.

The first exhaustive studies of τ− → π+π−π−ντ and τ− → π0π0π−ντ were made in

[369,452]. A RχT analysis was later performed in Refs. [453,454], which includes a theoretical

description of the measured [317,358,359,397,455–457] JP = 1+ structure functions [372,373].

The τ− → (3π)−ντ decay amplitude contains two interfering contributions, that corresponds

to the exchange of the two identical final state pions and causing a parity-violating angular

asymmetry [317,369,458]. This makes possible to determine the sign of the ντ helicity to be

−1 [356–361].

Exhaustive analyses were carried out for other decay modes such as τ → KK̄πντ [459] and
7This mode was once claimed to have been observed with a surprisingly large branching fraction, Br =

(5.1± 1.5)% [444], however this was not confirmed by other experiments.
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X− Br(τ− → X−ντ ) [%] References X− Br(τ− → X−ντ ) [%] References

π− (10.808± 0.053) Ref. [397] π−π+π− (ex.K0, ω) (8.981± 0.052) Ref. [397]
π−π0 (25.486± 0.090) Ref. [397] π−π+π−π0 (ex.K0, ω) (2.743± 0.071)
π−2π0 (ex.K0) (9.245± 0.099) Ref. [397] h−h+h−2π0 (ex.K0, ω, η) (0.0979± 0.0356)
π−3π0 (ex.K0) (1.040± 0.071) Ref. [397] h−h+h−3π0 (0.0212± 0.0030) Ref. [474]
h−4π0 (ex.K0, η) (0.1118± 0.0391) Ref. [397] π−K−K+ (0.1434± 0.0027) Refs. [475–478]
K−K0 (0.1486± 0.0034) Refs. [479–483] π−K−K+π0 (0.0061± 0.0018) Refs. [475,484]
K−K0π0 (0.1499± 0.0070) Refs. [479,480,482,483] 3h−2h+ (ex.K0) (0.0828± 0.0031) Refs. [397,485–489]
π−K0

SK
0
S (0.0235± 0.0006) Refs. [479,482,483,490] 3h−2h+π0 (ex.K0) (0.0164± 0.0011) Refs. [397,474,487,489]

π−K0
SK

0
L (0.1048± 0.0247) Ref. [479] π−π0η (0.1386± 0.0072) Refs. [29, 430,432]

π−K0
LK

0
L (0.0235± 0.0006) π−ω (1.947± 0.065)

π−K0K̄0π0 (0.0354± 0.0119) h−π0ω (0.4069± 0.0419) Ref. [430]
a−1 (→ π−γ) (0.0400± 0.0200) Ref. [397]

Br(τ− → X−ντ ) = (61.80± 0.11)%

Table 2.6: Cabibbo-allowed hadronic τ branching ratios [5], h± stands for π± or K±.

X− Br(τ− → X−ντ ) [%] References X− Br(τ− → X−ντ ) [%] References

K− (0.6957± 0.0096) Ref. [480,491–493] K−η (0.0155± 0.0008) Ref. [29, 429–431]
K−π0 (0.4322± 0.0148) Ref. [480,491,494,495] K−π0η (0.0048± 0.0012) Ref. [29, 496]
K−2π0 (ex.K0) (0.0634± 0.0219) Ref. [480,491] π−K̄0η (0.0094± 0.0015) Ref. [29, 496]
K−3π0 (ex.K0, η) (0.0465± 0.0213) Ref. [480] K−ω (0.0410± 0.0092) Ref. [484]
π−K̄0 (0.8375± 0.0139) Ref. [480,482,497,498] K−φ (φ→ KK̄) (0.0044± 0.0016)
π−K̄0π0 (0.3810± 0.0129) Refs. [479,480,482,497] K−π−π+ (ex.K0, ω) (0.2924± 0.0068)
π−K̄02π0 (ex.K0) (0.0234± 0.0231) Refs. [499] K−π−π+π0 (ex.K0, ω, η) (0.0387± 0.0142)
K̄0h−h+h− (0.0222± 0.0202) Refs. [479]

Br(τ− → X−S ντ ) = (2.908± 0.048)%

Table 2.7: Cabibbo-suppressed hadronic τ branching ratios [5], h± stands for π± or K±.

τ → K2πντ [460], which include both vector and axial-vector currents, and τ → η′2πντ [461],

which is dominated by the vector current (up to small isospin-breaking effects). The results

in Ref. [459] for the τ → KK̄πντ decays agree with those in Ref. [462], where the vector

contribution dominates this mode, but are at odds with the results in Refs. [463, 464] that

suggest a larger axial component. Disentangling the two contributions would require a precise

experimental determination of the hadronic invariant-mass distribution. The vector-currents

amplitudes for these decays can be also evaluated using the corresponding e+e− annihilation

processes [465]. RχT currents were coded [466,467] in the Monte Carlo Generator TAUOLA

[468,469] and are available for public use.

More involved transitions, namely e+e− → 3π [465], τ → 4πντ and e+e− → 4π [451,470],

and radiative tau decays with one-meson in the final state [471–473] were also studied using

the RχT techniques.
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Experimental status

A huge effort is underway to understand the rich pattern of hadronic tau decay modes [3,5].

The current world averages for the Cabibbo-allowed and -suppressed branching ratios are

shown in Tables 2.6 and 2.7, using the “47 basis quantities” defined by the Heavy Flavor

Averaging Group (HFAG) [5]. They used a total of 171 measurements to fit 135 quantities

subject to 88 constraints. The fit has a χ2/d.o.f = 134/124, which corresponds to a confidence

level CL = 24.56%. Summing all the fitted branching ratios, leptonic and hadronic final

states, a unitarity residual is obtained [5]:

1−
∑
j

Br(τ → Xjντ ) = (0.0684± 0.1068)%, (2.50)

which is consistent with 0 within the experimental uncertainty. A unitarity constraint

was not used in the fit.

The expected high-statistics data samples that will be accumulated by the Belle-II de-

tector will lead to a new era of precision in τ physics [500]. B-Factory experiments such as

BaBar, Belle and Belle-II, and future prospects at Super Tau Charm Factory, LHC, EIC

and FCC-ee experiments have the potential to discover New Physics via charged lepton fla-

vor violation in the τ sector [501]. A nice summary of the progress made by the τ physics

community and future prospects can be found in Ref. [502].
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Chapter 3

Effective-field theory analysis of the

τ−→ π−π0ντ decays

3.1 Introduction

Early studies of nuclear beta decays and, particularly, the problem of apparent non-conservation

of energy and violation of the spin-statistics theorem lead to Pauli’s postulation of the neu-

trino. Soon after, Fermi proposed a theory [503] describing these decays which was inspired

by QED’s vector current interaction which, however, was of a local current-current type. This

was the first step towards establishing the V-A nature of the weak force and understanding

its maximal parity violation. Now the original Fermi theory is regarded as one of the possi-

ble contributions of dimension six effective operators to these decays and it constitutes the

basis for effective field theories. In this spirit, not only nuclear beta decays, but also purely

leptonic lepton decays, pion decays into a lepton and its corresponding neutrino and also

strangeness-changing meson and baryon decays involving a lepton charged current can be

studied in a coherent and comprehensive way with direct connection to the underlying the-

ory at some TeVs [187,192,504–512]. Thus, it is possible to obtain bounds on non-standard

charged current interactions from either of these processes that can be compared among

them (assuming lepton universality if necessary). As a result, quite generic New Physics
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(NP) is restricted in absence of deviations from the Standard Model (SM) predictions. In

the event of any such departures appearing, one would expect them to point to the underly-

ing new dynamics, as (nuclear) beta and muon decays did with the W mass value (provided

the coupling intensity can be estimated from some symmetry argument) and its left-handed

couplings.

In Ref. [250] we put forward that semileptonic tau decays are also an interesting scenario

in this respect. Particularly, our study of the τ− → π−(η/η′)ντ decays [250] showed that they

could be competitive with superallowed nuclear beta decays in restricting scalar non-standard

interactions. Our aim in this work is to extend our previous analysis to the τ− → π−π0ντ

decays, which should not be sensitive to NP charged current scalar interactions (as generally,

they are very suppressed by the small isospin breaking effects giving rise to them in this

decay channel [379]) but could instead be very competitive restricting charged-current tensor

interactions. The recent letter [512] also addresses this question.

Only if the SM input (and particularly the hadronization) to the considered decays is

well under control one can actually set bounds on NP effective couplings. This is the case for

the vector and -to a lesser extent- the scalar interactions (where we will follow the treatment

in Refs. [513] and [19], respectively) but only a theory-driven approach is possible for the

tensor form factor (where we will complement our previous work [250] guided by Refs. [427]

and [514]). In all cases it is desirable to fulfill the requirements imposed by the approximate

chiral symmetry of QCD, which are automatically enforced in its low-energy effective field

theory, Chiral Perturbation Theory (χPT ) [169, 193, 194]. If possible, it is also convenient

to use dispersion relations to warrant analyticity and comply with unitarity, at least in the

elastic region (for the ππ system it amounts to ∼ 1 GeV). Within this formalism, known

short-distance QCD constraints [515, 516] can also be satisfied. In the absence of data (as

it the case for the tensor form factor) enlarging the domain of applicability of χPT coupled

to tensor sources [517, 518] by including resonances as explicit degrees of freedom [224, 225]

could seem useful, although we showed [519] it is not the case here.

This chapter is organized as follows: in section 3.2 we present the basics for an effective
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field theory treatment of the considered decays. In section 3.3 the different contributions

to the matrix element are identified and the participant meson form factors defined. These

are the subject of section 3.4, with a special focus on the tensor form factor. With all

SM contributions fixed, we perform a phenomenological study in search for NP signatures,

examining the hadron spectrum and branching ratio, the Dalitz plot distributions and the

forward-backward asymmetry in section 3.5. The conclusions of this research are summarized

in section 3.6.

3.2 Effective theory analysis of τ−→ ντ ūd

For low-energy charged current processes, the effective Lagrangian with SU(2) ⊗ U(1) in-

variant dimension six operators 1 reads [504,505]

L(eff) = LSM + 1
Λ2

∑
i

αiOi → LSM + 1
v2

∑
i

α̂iOi, (3.1)

with α̂i = (v2/Λ2)αi the dimensionless multi-TeV NP couplings.

If we particularize it for theO(1 GeV) semileptonic strangeness and lepton-flavor conserving 2

charged current transitions involving any lepton (` = e, µ, τ) and only left-handed neutrino

fields, the following Lagrangian is obtained (where subscripts L(R) stand for left-(right-

)handedness)

LCC = −4GF√
2
[
(1 + [vL]``)¯̀

Lγµν`L ūLγ
µdL + [vR]`` ¯̀

Lγµν`L ūRγ
µdR

+ [sL]`` ¯̀
Rν`L ūRdL + [sR]`` ¯̀

Rν`L ūLdR

+ [tL]`` ¯̀
Rσµνν`L ūRσ

µνdL
]

+ h.c. .

(3.2)

In the previous equation GF is the tree-level definition of the Fermi constant and σµν ≡

i [γµ, γν ] /2. The SM Lagrangian is recovered setting vL,R = sL,R = tL = 0. Heavy degrees
1See in Refs. [1, 130] the most general effective Lagrangian including SM fields.
2An EFT framework study of strangeness-changing processes is carried out in Refs. [507,509,510].
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of freedom (H, W± and Z bosons plus c, b and t quarks) have been integrated out to obtain

Eq. (3.2). The effective couplings vL,R, sL,R and tL generated by the NP can be taken real

since we are only interested in CP conserving quantities 3.

Although observables are renormalization scale and scheme independent, this scale inde-

pendence comes after the cancellation of the scale dependence of the effective couplings (vL,R,

sL,R and tL) by the corresponding scale dependence of the hadronic matrix elements. These

encode the amplitude for the quark current to produce/annihilate the measured hadrons.

As it conventional, we select µ = 2 GeV as the renormalization scale.

It is advantageous to shift our basis for the spin-zero currents so that the new ones have

defined parity. This is achieved by means of introducing εS = sL + sR and εP = sL − sR.

Although the other elements in the basis of currents remain unmodified, we also rename

them to avoid any confusion between both bases: εR,L = vL,R and εT = tL.

One can proceed with ` = e, µ, τ in full generality (which may be profitable if lep-

ton universality is an approximate symmetry). We focus now on the tau case (and omit

the corresponding flavor subindex in the following), in such a way that the corresponding

semileptonic effective Lagrangian is:

LCC = −GF√
2
Vud(1 + εL + εR){τ̄ γµ(1− γ5)ντ ū

[
γµ − (1− 2ε̂R)γµγ5

]
d

+ τ̄(1− γ5)ντ ū(ε̂S − ε̂Pγ5)d

+ 2ε̂T τ̄σµν(1− γ5)ντ ūσµνd}+ h.c.,

(3.3)

where ε̂i ≡ εi/(1 + εL + εR) for i = R, S, P, T . From this expression it is easily seen that,

working at linear order in the ε̂i, one is insensitive to non-standard spin-one charged current

interactions because the overall dependence on εL + εR cannot be isolated, as it is subsumed

in the determination of GF . That is, conveniently normalized rates cancel the overall factor

(1 + εL + εR) in the previous equation. We note that, at linear order in the ε̂i’s, these agree

with Ref. [505].
3Appendix A in Ref. [505] provides with these couplings as functions of the α̂i couplings.
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3.3 Semileptonic τ decay amplitude

From now on, we will study the semileptonic τ− → π−(Pπ−)π0(Pπ0) ντ (P ′) decays, where

pions parity determines that only scalar, vector and tensor currents contribute. The decay

amplitude reads4

M =MV +MS +MT

= GFVud
√
SEW√

2
(1 + εL + εR)

[
LµH

µ + ε̂SLH + 2ε̂TLµνHµν
]
,

(3.4)

where the following lepton currents were introduced:

Lµ = ū(P ′)γµ(1− γ5)u(P ), (3.5a)

L = ū(P ′)(1 + γ5)u(P ), (3.5b)

Lµν = ū(P ′)σµν(1 + γ5)u(P ). (3.5c)

The scalar (H), vector (Hµ) and tensor (Hµν) hadron matrix elements entering Eq. (3.4)

can be decomposed using Lorentz invariance and discrete QCD symmetries in terms of a

number of allowed Lorentz structures times the corresponding form factors, which are scalar

functions encoding the hadronization procedure. Specifically, these are

H = 〈π0π−|d̄u|0〉 ≡ FS(s), (3.6a)

Hµ = 〈π0π−|d̄γµu|0〉 = CVQ
µF+(s) + CS

(
∆π−π0

s

)
qµF0(s), (3.6b)

Hµν = 〈π0π−|d̄σµνu|0〉 = iFT (s)(P µ
π0P

ν
π− − P

µ
π−P

ν
π0) . (3.6c)

In the previous equations, the momentum of the meson system is qµ = (Pπ− + Pπ0)µ, with

s = q2. We also introduced Qµ = (Pπ− − Pπ0)µ + (∆π0π−/s)qµ, and ∆π0π− = m2
π0 − m2

π− .
4As in Ref. [250], we take the short-distance electroweak radiative corrections encoded in SEW [256,274,

364, 365, 520–523] as a global factor in Eq. (3.4). Although SEW does not affect the scalar and tensor
contributions, the error of this approximation is negligible and renders simpler expressions than proceeding
otherwise.
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Clebsch-Gordan flavor coefficients are CS = CV =
√

2 for this decay channel.

The FS(s) and F0(s) form factors can be related by taking the divergence of the vector

current via

FS(s) = CS
∆π−π0

(md −mu)
F0(s). (3.7)

As in Ref. [250], the scalar contribution can be absorbed into the vector current amplitude.

This can achieved by replacing

CS
∆π−π0

s
−→ CS

∆π−π0

s

[
1 + s ε̂S

mτ (md −mu)

]
, (3.8)

in Eq. (3.6b).

Obtaining the F0(s), F+(s) and FT (s) form factors is discussed in the following section.

3.4 Hadronization of the scalar, vector and tensor cur-

rents

Lorentz invariance, together with the discrete symmetries of the strong interactions, deter-

mine Eqs. (3.6a) to (3.6c). QCD dynamics is encoded in these hadron matrix elements,

although it is not possible to determine them using the Lagrangian of the underlying theory

unambiguously. Nevertheless, QCD properties are useful in restricting this hadronic input.

On the one hand, it is desirable to keep the properties derived from the (very approximate)

chiral symmetry of low-energy QCD and from asymptotic strong interactions, where known.

On the other, using dispersion relations is ideal to warrant the correct analytic structure of

the amplitudes and to comply with unitarity (at least in the elastic region). These properties

will be exploited in what follows, as we will briefly review.

As shown in Ref. [513], the scalar form factor F0(s) can be determined in an essentially

model-independent way in the low-energy region, though it does not involve resonance con-

tributions to first order in isospin breaking. The S-wave π−π0 system must have isospin
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I = 2. Watson’s final-state interactions theorem [524] ensures that -in the elastic region-

the phase of the di-meson form factor with definite angular momentum (L) and isospin (I)

coincides with the corresponding meson-meson scattering phase shift having the same L and

I values (L = 0 and I = 2 in our case, so this phase shift is δ2
0(s) according to the usual

notation). Neglecting inelastic effects (that is a good approximation up to s ∼ 1 GeV2 in

this case), the required di-pion scalar form factor can be obtained [513] by means of a phase

dispersive representation (F0(0) = 1 has been used)

F0(s) = exp
{
s

π

∫ ∞
4m2

π

ds′
δ2

0(s′)
s′(s′ − s− iε)

}
, (3.9)

since the phase shift δ2
0(s) has been measured [525,526]. |F0(s)| and δ2

0(s) are plotted in the

upper panel of Fig. 12 in Ref. [513]. As expected, there is no hint of resonance dynamics in

F0(s).

The vector form factor, F+(s), is known with great accuracy, both theoretically and

experimentally. In absence of new-physics interactions, it can be extracted directly from

τ− → π−π0ντ data (since the scalar form factor is negligible up to second-order isospin-

violating corrections [379], which are tiny). The di-pion invariant mass spectrum in these

decays has been most precisely measured by the Belle Collaboration [365] (it was earlier

obtained by the CLEO [12], and ALEPH [397] and OPAL [527] LEP collaborations). F+(s)

can also be accessed -through a CVC violating correction [94,379]- via e+e− → π+π− cross-

section data at low energies, which has been measured very precisely by BaBar [20], BES-

III [59], CMD-2 [53], KLOE-2 [88] and SND [52, 54]. Finally, in the elastic region (s . 1

GeV2), F+(s) is related via unitarity with the spin-one isospin-one ππ scattering amplitude,

for which accurate measurements have been performed [528–530]. All previous measurements

correspond to the s > 0 region, e−π scattering [14] probes F+(s < 0).

Theoretically, F+(s) is well-constrained at low-energies by χPT [169, 193, 194] and in

the asymptotic regime by short-distance QCD results [515,516]. In the intermediate energy

(O(1) GeV) region, resonance dynamics is needed to interpolate between the two former
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limits. An adequate tool to connect all energy ranges taking advantage of analyticity and

unitarity constraints on F+(s) are the dispersion relations, which have been employed widely

in this context (see i. e. Ref. [19] and references therein). We will not discuss at length

the procedure here, but only recall that an excellent description of the data can be achieved

with three subtractions (one is used to set F+(0) = 1)

F+(s) = exp
[
α1s+ α2

2 s
2 + s3

π

∫ ∞
4m2

π

ds′
δ1

1(s)
(s′)3(s′ − s− iε)

]
, (3.10)

being α1,2 the remaining subtraction constants, to be fitted to low-energy data, and δ1
1(s)

the relevant phase shift. In Ref. [19], δ1
1(s) is given (below the ρ′ resonance region), in

terms of the ρ(770) pole position and the pion decay constant, Fπ. Its description in the

[Mρ′ .
√
s ≤ Mτ ] interval depends on the ρ′ and ρ′′ properties. We will use this framework

in what follows. The central values of the modulus and phase of F+(s) are plotted and

compared to data in Figs. 1 and 2 in Ref. [19]. We will use the best fit results corresponding

to case III in this reference, which includes first-order isospin breaking corrections. Both

statistical and systematic uncertainties on F+(s) are taken into account throughout our nu-

merical analysis.

Although it is difficult to constrain the hadronization of the tensor current, Eq. (3.6c),

from first principles, this would be desirable as it turns out that the τ− → π−π0ντ decays

have the potential to set competitive bounds on (non-standard) charged current tensor in-

teractions. This is in contrast with the τ− → π−η(′)ντ decays explored in Ref. [250], which

are competitive for new scalar contributions but not for tensor ones, which justified using

leading-order χPT results for Eq. (3.6c) in that analysis. Unfortunately, there is no experi-

mental data that can guide us in building FT (s), so we will rely only on theory to accomplish

this task.

Since s can vary from the two-pion threshold up to M2
τ , light resonances contribution

(giving the energy dependence of the form factor) should be included in a refined analysis,

as we intend. We show in the appendix of Ref. [519] that, for FT (s), it is not convenient
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to extend the energy range of applicability of χPT by including the resonances as explicit

degrees of freedom, in the so-called Resonance Chiral Theory [224]. Instead, it will be

more appropriate to use a dispersive construction of FT (s) taking advantage of unitarity

constraints on its phase [427]. FT (0) will be studied within χPT in the following.

The lowest-order χPT Lagrangian with tensor sources, which is O(p4) in the chiral count-

ing [518], includes only four operators. Among them, only the one with coefficient Λ2 con-

tributes to the studied decays:

L = Λ1〈tµν+ f+µν〉 − iΛ2〈tµν+ uµuν〉+ . . . . (3.11)

In the preceding equation, tµν+ = u†tµνu† + utµν†u and 〈· · · 〉 means a flavor space trace.

Operators in Eq. (3.11) are built with chiral tensors [531], with three of them entering the

displayed operators:

• uµ = i
[
u†(∂µ − irµ)u− u(∂µ − ilµ)u†

]
, which includes the left- and right-handed sources,

`µ and rµ.

• The chiral tensor sources tµν and its adjoint, and

• fµν+ = uF µν
L u† + u†F µν

R u, including the left- and right-handed field-strength tensors,

F µν
L and F µν

R , given in terms of `µ and rµ.

Let us recall the non-linear representation of the pseudo Goldstone bosons, given by

u = exp
[

i√
2F φ

]
[532,533], where (for two flavors)

φ =

 π0
√

2 π+

π− − π0
√

2

 , (3.12)

F being the pion decay constant in the chiral limit, F ∼ Fπ ∼ 92 MeV. All resonance

multiplets considered below have analogous flavor structure to Eq. (3.12).
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The tensor source (t̄µν) is related to its chiral projections (tµν and tµν†) by means of [518]

tµν = P µνλρ
L t̄λρ, 4P µνλρ

L = (gµλgνρ − gµρgνλ + iεµνλρ), (3.13)

where Ψ̄σµν t̄µνΨ is the tensor quark current.

From Eq. (3.11) it can be shown [250] that, in the limit of isospin symmetry 5,

i

〈
π−π0

∣∣∣∣∣∣δL
O(p4)
χPT

δt̄αβ

∣∣∣∣∣∣ 0
〉

=
√

2Λ2

F 2

(
pαπ−p

β
π0 − pαπ0p

β
π−

)
. (3.14)

We show in Appx. A that it is not convenient to include the energy-dependence of the

tensor form factor by extending χPT [169,193,194] including resonances [224,225].

Ref. [514] evaluated fT (0) = 2mπFT (0) on the lattice. Their result, fT (0) = 0.195±0.010

yields Λ2 = (12.0 ± 0.6) MeV, that we will use in the following. This value of Λ2 is

roughly a factor three smaller than the prediction for Λ1 obtained using short-distance QCD

properties [517], Λ1 = (33± 2) MeV. Since both operators displayed in Eq. (3.11) have the

same chiral counting order, one would have guessed Λ2 ∼ Λ1, resulting in an overestimation

of Λ2, as in Ref. [250] 6.

We will follow Ref. [427] and obtain FT (s) using again a phase dispersive representation.

As shown in Ref. [427], the tensor form factor phase equals the vector form factor phase,

δT (s) = δ+(s), in the elastic region. We will use the previous equation also above the onset

of inelasticities in our dispersion relation

FT (s)
FT (0) = exp

{
s

π

∫ ∞
4m2

π

ds′
δT (s′)

s′(s′ − s− iε)

}
, (3.15)

and fix FT (0) =
√

2Λ2
F 2 according to the leading-order χPT result. We plot in figure 3.1 the

modulus and phase of FT (s) obtained using Eq. (3.15). The different curves on the left
5Since FT (s), as given by Eq. (3.14), is purely real and the sign of Λ2 was unknown, a factor i was absorbed

redefining FT (s) in Ref. [250]. As we consider a non-vanishing tensor form factor phase (see Eq.(3.15) and
related discussion), we will not follow this procedure in the present analysis.

6Fortunately, since the τ− → η(′)π−ντ decays are quite insensitive to tensor interactions, this does not
change the limits obtained in this paper for ε̂S .
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panel are obtained for smax = M2
τ , 4 and 9 GeV2 7 and we will take this range for FT (s)

as an estimate of our corresponding error (our plots will be given for smax = 4 GeV2 in

the following). We neglect the uncertainty associated to our ignorance on the inelasticities

affecting δT (s) (see the related discussion in Ref. [427]), which are small below
√
s = 1.3

GeV.
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Figure 3.1: Modulus and phase, |FT (s)| (left) and δT (s) (right), of the tensor form factor,
FT (s), corresponding to Eq. (3.15).

3.5 Decay Observables

In order to study possible NP effects in these decays, one should use not only the hadronic

spectrum and branching ratio, but also Dalitz plot distributions and the measurable forward-

backward asymmetry. In this section, we focus in the study of the possible effects of the non-

standard effective couplings described in section 3.2 in these τ− → π−π0ντ decay observables.

We will start with the Dalitz plots (which should contain more dynamical information, as

no integration over any of the two independent kinematical variables has been performed)

and move later on to (partially) integrated observables: differential decay rate as function

of the di-meson invariant mass, forward-backward asymmetry and, finally, branching ratio.
7The parameter smax corresponds to the cutoff of the dispersive integral. The unphysical dependence

on it is a consequence of the dispersion relation (3.15) being once-subtracted. Additional subtractions
would reduce the artificial dependence on smax. However, since we lack low-energy information to fix these
subtraction constants, we cannot follow this procedure. Taking this into account, we restrict the smax values
in the previously quoted range.
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The differential decay width of the τ− → π−π0ντ decays, in the τ lepton rest frame, is

d2Γ
ds dt

= 1
32(2π)3M3

τ

|M|2, (3.16)

where |M|2 represents the unpolarized spin-averaged squared matrix element, s being the

π0π− system invariant mass, limited in the interval (mπ0 + mπ−)2 ≤ s ≤ M2
τ and t =

(p′ + pπ0)2 = (p− pπ−)2 with t−(s) ≤ t ≤ t+(s), where

t±(s) = 1
2s

[
2s(M2

τ +m2
π0 − s)− (M2

τ − s)(s+m2
π− −mπ0)± (M2

τ − s)
√
λ(s,m2

π− ,m
2
π0)
]
,

(3.17)

and λ(x, y, z) = x2 + y2 + z2 − 2xy − 2xz − 2yz is the usual Kallen function.

3.5.1 Dalitz plot

Including possible non-standard weak charged current interactions, the unpolarized spin-

averaged squared amplitude yields 8

|M|2 = G2
F |Vud|2SEW

s2 (1 + εL + εR)2 [M00 +M++ +M0+ +MT+ +MT0 +MTT ] , (3.18)

8We note a typo writing the corresponding equation, (22), of Ref. [250], where the factor 2 should not
appear. All subsequent expressions and the numerical results of Ref. [250] are not affected by this typo.
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where the scalar, vector and tensor squared amplitudes are M00, M++ and MTT , respectively.

Their corresponding interferences are denoted M0+, MT+, MT0. All these read 9

M0+ = 2CV CSm2
τ Re [F+(s)F ∗0 (s)] ∆π−π0

(
1 + sε̂S

mτ (md −mu)

)

×
{
s
(
m2
τ − s− 2t+ Σπ−π0

)
−m2

τ∆π−π0

}
,

MT+ = 4CV ε̂T m3
τ sRe

[
FT (s)F ∗+(s)

] (
1− s

m2
τ

)
λ(s,m2

π− ,m
2
π0),

MT0 = 4CS ∆π−π0 ε̂T mτ sRe [FT (s)F ∗0 (s)]
(

1 + sε̂S
mτ (md −mu)

)

×
{
s
(
m2
τ − s− 2t+ Σπ−π0

)
−m2

τ∆π−π0

}
,

M00 = C2
S (∆π−π0)2m4

τ

(
1− s

m2
τ

)
|F0(s)|2

(
1 + sε̂S

mτ (md −mu)

)2

,

M++ = C2
V |F+(s)|2

{
m4
τ (s−∆π−π0)2 −m2

τs
[
s(s+ 4t)− 2∆π−π0 (s+ 2t− Σπ−π0) + (∆π−π0)2

]
+ 4m2

π−s
2
(
m2
π0 − t

)
+ 4s2t

(
s+ t−m2

π0

)}
,

MTT = 4ε̂2T |FT (s)|2s2
{
m4
π−

(
m2
τ − s

)
− 2m2

π−

(
m2
τ − s

) (
s+ 2t−m2

π0

)
−m4

π0

(
3m2

τ + s
)

+ 2m2
π0

[(
s+m2

τ

)
(s+ 2t)− 2m4

τ

]
− s

[
(s+ 2t)2 −m2

τ (s+ 4t)
]}
,

(3.19)

where the familiar definitions ∆π−π0 = m2
π− −m2

π0 and Σπ−π0 = m2
π− +m2

π0 were employed.

Noteworthy, the scalar form factor is always suppressed by ∆π−π0 , which is tiny, in the

previous equations for M00, MT0 and M0+. This makes its effect negligible even for |ε̂S| ∼ 1

(radiative pion decay limits |ε̂S| . 0.01 and, under the reasonable assumption of lepton flavor

universality, this limit should also apply for the tau flavor considered here).

We now turn to analyze possible NP signatures in Dalitz plots distributions. The left

panel of figure 3.2 shows the squared matrix element |M|200 in the (s,t) plane, which is

obtained using the SM predictions for τ− → π−π0ντ form factors [19, 513]. The ρ(770)
9Comparing Eqs. (3.6a) to (3.6c) to their analogs in Ref. [250], it can be verified that Eqs. (3.19) agree

with the corresponding expressions in Ref. [250].
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meson dominance of the dynamics is clearly seen in this plot.

In order to better appreciate the modifications induced by non-vanishing ε̂S,T in Dalitz

plots, we introduce the observable

∆̃(ε̂S, ε̂T ) =

∣∣∣∣∣∣|M(ε̂S, ε̂T )|2 − |M(0, 0)|2
∣∣∣∣∣∣

|M(0, 0)|2
. (3.20)

In the left panel of figures 3.3 and 3.4, ∆̃(ε̂S, ε̂T ) (3.20) is shown for two representative

values of the set of (ε̂S, ε̂T ) parameters that are consistent with the Br(τ− → π−π0ντ )

(obtaining these limits will be discussed in subsection 3.5.5). Although O(1) effects are seen

in fig. 3.3, these are not realistic since two-pion tau decays are almost insensitive to ε̂S.

Indeed, when ε̂S is taken from more adequate processes [250, 504, 505, 512], the left panel of

fig. 3.5 shows that only a measurement of ∆̃ with . 1% uncertainty could distinguish these

new physics effects. In the left plot of fig. 3.4 (with (ε̂S = 0, ε̂T = −0.014)) the deviations

with respect to the SM are around 15% in a given region, but the left plot in figure 3.6

(obtained using our best fit value for ε̂T in section 3.5.5) reduces the size of this signal to

a 1% effect. These O(1%) effects would be difficult to measure, even at Belle-II [500]. Our

uncertainties do not affect the conclusions drawn in this paragraph.

3.5.2 Angular distribution

The hadronic mass and angular distributions are also modified by the generic new effective

interactions that we are studying and can have different sensitivity to ε̂S and ε̂T . The rest

frame of the hadronic system is convenient for this analysis. It is defined by ~pπ− + ~pπ0 =

~pτ−~pν = 0. In this frame, the charged particle energies are given by Eτ = (s+M2
τ )/2
√
s and

Eπ− = (s + m2
π− −m2

π0)/2
√
s. The measurable angle θ between these two particles can be

obtained from the invariant t variable by means of t = m2
π−+m2

τ −2EτEπ−+2|~pπ− ||~pτ | cos θ,

with |~pa| =
√
E2
a −m2

a for a = π−, τ−.
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Figure 3.2: Dalitz plot distribution |M|200 in the SM, Eq. (3.18): Differential decay distribu-
tion for τ− → π−π0ντ in the (s,t) variables (left). The right-hand figure shows the differential
decay distribution in the (s, cos θ) variables, Eq. (3.21). The Mandelstam variables, s and
t, are normalized to M2

τ .

Figure 3.3: Dalitz plot distribution for ∆̃(ε̂S, ε̂T ), (3.20), in the τ− → π−π0ντ decays: left-
hand side corresponds to Eq. (3.18) and right-hand side corresponds to the differential
decay distribution in the (s, cos θ) variables, both with (ε̂S = 1.31, ε̂T = 0). The Mandelstam
variables, s and t, are normalized to M2

τ .
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Figure 3.4: Dalitz plot distribution for ∆̃(ε̂S, ε̂T ), (3.20), in the τ− → π−π0ντ decays: left-
hand side corresponds to Eq. (3.18) and right-hand side corresponds to the differential decay
distribution in the (s, cos θ) variables, both with (ε̂S = 0, ε̂T = −0.014). The Mandelstam
variables, s and t, are normalized to M2

τ .

Figure 3.5: Dalitz plot distribution for ∆̃(ε̂S, ε̂T ), (3.20), in the τ− → π−π0ντ decays: left-
hand side corresponds to Eq. (3.18) and right-hand side corresponds to the differential decay
distribution in the (s, cos θ) variables, both with (ε̂S = 0.008, ε̂T = 0). The Mandelstam
variables, s and t, are normalized to M2

τ .

94



Figure 3.6: Dalitz plot distribution for ∆̃(ε̂S, ε̂T ), (3.20), in the τ− → π−π0ντ decays: left-
hand side corresponds to Eq. (3.18) and right-hand side corresponds to the differential decay
distribution in the (s, cos θ) variables, both with (ε̂S = 0, ε̂T = −0.001). The Mandelstam
variables, s and t, are normalized to M2

τ .

The Dalitz decay distribution in the (s, cos θ) variables, for general ε̂S and ε̂T reads

d2Γ
d
√
sd cos θ = G2

F |Vud|2SEW
128π3mτ

(1 + εL + εR)2
(
m2
τ

s
− 1

)2

|~pπ−|
{
C2
S (∆π−π0)2 |F0(s)|2

×
(

1 + sε̂S
mτ (md −mu)

)2

+ 16|~pπ−|2s2
∣∣∣∣ CV2mτ

F+(s) + ε̂TFT (s)
∣∣∣∣2

+ 4|~pπ− |2s
(

1− s

m2
τ

)
cos2 θ

[
C2
V |F+(s)|2 − 4sε̂2T |FT (s)|2

]
− 4CS∆π−π0|~pπ−|

√
s cos θ

×
(

1 + sε̂S
mτ (md −mu)

)[
CV Re

[
F0(s)F ∗+(s)

]
+ 2sε̂T

mτ

Re [FT (s)F ∗0 (s)]
]}
,

(3.21)

which coincides with the SM result when these two effective NP couplings are set to zero.

The right panel of figure 3.2 shows Eq. (3.21) for π−π0 in the SM case. In the right panel

of figures 3.3 and 3.4 the (s, cos θ) distributions for ∆̃(ε̂S, ε̂T ), (3.20), are plotted; for the

same representative values of (ε̂S, ε̂T ) used in order to obtain the left panel of these figures.

Again for non-standard scalar interactions, the large effect seen in the left panel of fig. 3.3

is unrealistic and it will be challenging to measure the reduced effect (. 6%) of fig. 3.5 at

Belle-II [500]. For tensor interactions, the deviation from the SM depicted in the right plot

of fig. 3.4 could be measurable, but this is not the case for the effect seen in the right plot
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of figure 3.6 (. 1%), obtained using our preferred value for ε̂T . Again, our uncertainties do

not affect the preceding discussion.

3.5.3 Decay rate

The di-pion invariant mass distributions is obtained integrating upon the t variable in Eq.

(3.16)

dΓ
ds

=G
2
F |Vud|2m3

τSEW
384π3s

(1 + εL + εR)2
(

1− s

m2
τ

)2

λ1/2
(
s,m2

π0 ,m2
π−

)
×
[
XV A + ε̂SXS + ε̂TXT + ε̂2SXS2 + ε̂2TXT 2

]
,

(3.22)

where

XV A = 1
2s2

[
3|F0(s)|2C2

S∆2
π−π0 + |F+(s)|2C2

V

(
1 + 2s

m2
τ

)
λ
(
s,m2

π0 ,m2
π−

)]
, (3.23a)

XS = 3
smτ

|F0(s)|2C2
S

∆2
π−π0

md −mu

, (3.23b)

XT = 6
smτ

Re
[
FT (s)F ∗+(s)

]
CV λ

(
s,m2

π0 ,m2
π−

)
, (3.23c)

XS2 = 3
2m2

τ

|F0(s)|2C2
S

∆2
π−π0

(md −mu)2 , (3.23d)

XT 2 = 4
s
|FT (s)|2

(
1 + s

2m2
τ

)
λ
(
s,m2

π0 ,m2
π−

)
. (3.23e)

Again, the SM limit is recovered with εL,R = ε̂S,T = 0. Figure 3.7 plots the invariant mass

distribution of the di-pion system for τ− → π−π0ντ decays. It is almost impossible to

distinguish the case of tensor interactions from the SM curve and, although some departure

is seen for non-standard scalar interactions, it goes away when realistic values on |ε̂S| ∼ 10−2

[250,504,505] are considered.
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Figure 3.7: The π0π− hadronic invariant mass distribution for the SM (solid line) and
ε̂S = 1.31, ε̂T = 0 (dashed line), ε̂S = 0, ε̂T = −0.014 (dotted line). Axes units are given in
GeV powers and the decay distributions are normalized to the tau decay width.

3.5.4 Forward-backward asymmetry

The forward-backward asymmetry is defined [513] by

Aππ(s) =
∫ 1

0 d cos θ d2Γ
dsd cos θ −

∫ 0
−1 d cos θ d2Γ

dsd cos θ∫ 1
0 d cos θ d2Γ

dsd cos θ +
∫ 0
−1 d cos θ d2Γ

dsd cos θ
. (3.24)

We can obtain it for τ− → π−π0ντ decays plugging in Eq. (3.21) into Eq. (3.24) and

integrating upon the cos θ variable,

Aππ(s) =
−3CS

√
λ (s,m2

π− ,m
2
π0)

2s2 [XV A + ε̂SXS + ε̂TXT + ε̂2SXS2 + ε̂2TXT 2 ]

(
1 + sε̂S

mτ (md −mu)

)
∆π−π0

×
{
CV Re[F0(s)F ∗+(s)] + 2s ε̂T

mτ

Re[FT (s)F ∗0 (s)]
}
,

(3.25)

where, again, the SM forward-backward asymmetry is recovered for εR,L = ε̂S,T = 0. This

reference case is plotted in figure 3.8, which agrees with the prediction in Ref. [513] (this

asymmetry was first studied in Ref. [534]). This observable is plotted in fig. 3.9 for an

unrealistically large value of ε̂S, for which there is a large deviation with respect to the SM
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case. Since such large departures disappear for reasonable values of ε̂S,T , in order to enhance

the sensitivity to new physics effects, we define the observable (odd under ε̂S ↔ −ε̂S)

∆AFB = AFB(s, ε̂S, ε̂T )− AFB(s, 0, 0), (3.26)

which is plotted in figs. 3.10. Even by using this observable it does not seem possible to

evidence non-vanishing ε̂S,T using the forward-backward asymmetry.
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Figure 3.8: The forward-backward asymmetry in the τ− → π−π0ντ decay as a function of
the ππ energy for the SM case. The low-energy region is shown in the left plot and remaining
energy range is represented in the right plot.
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Figure 3.9: Forward-asymmetry for ε̂S = 1.31, ε̂T = 0 (dashed line) compared to the SM
prediction (solid line). The left plot shows the low-energy region and the right plot includes
the remaining energy range.

As advanced before, Aππ(s) in Eq. (3.25) is a good observable for finding non-standard

scalar interactions: despite its numerator is suppressed by the small value of ∆π−π0 , its
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Figure 3.10: Normalized difference with respect to the SM for the forward-backward asym-
metry (∆AFB) in the case of scalar interactions (left plot, with ε̂S = 0.008, ε̂T = 0) and
tensor interactions (right plot, ε̂T = −0.001, ε̂S = 0).

denominator is further suppressed by the dependence of XS2 on ∆2
π−π0 , which enhances the

sensitivity of this forward-backward asymmetry to scalar contributions. However, as just

observed, if the strict limits on |ε̂S| obtained in other low-energy processes are applied, even

Aππ(s) happens to be unable of evidencing this kind of NP contributions.

3.5.5 Limits on ε̂S and ε̂T
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Figure 3.11: ∆ as a function of ε̂S for ε̂T = 0 (left-hand) and ε̂T for ε̂S = 0 (right-hand) for
τ− → π−π0ντ decays. Horizontal lines represent the values of ∆ according to the current
measurement and theory error (at three standard deviations) of the branching ratio (dashed
line) and the hypothetical case of this value being measured by Belle-II with three times
reduced error (dotted line).

The τ− → π−π0ντ decay width can be obtained integrating the invariant mass distribu-

tion, using the expressions for the form factors [19,513]. Since the total decay width depends
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on the effective couplings, this process branching ratio sets bounds on ε̂S and ε̂T . For that, we

compare the decay rate (Γ) for τ− → π−π0ντ in the presence of non-vanishing NP effective

couplings with respect to the one (Γ0) obtained by neglecting them (SM case). Using the best

fit results of case III in Ref. [19], we obtain a value of Γ0 which corresponds to the branch-

ing ratio (25.53 ± 0.24)%, in excellent agreement with the PDG value of (25.49 ± 0.09)%.

Integrating Eq. (3.22) we get the relative shift produced by NP contributions as follows

∆ ≡ Γ− Γ0

Γ0 = αε̂S + βε̂T + γε̂2S + δε̂2T , (3.27)

for whose coefficients we get: α = 3.5× 10−4, β = 3.3+0.6
−0.4, γ = 2.2× 10−2, δ = 4.7+2.0

−1.0. The

relative error of the coefficients α and γ due to our uncertainties is ≤ 2%. Eq. (3.27) is a

quadratic function of the effective scalar and tensor couplings, which can be used to explore

the sensitivity of τ− → π−π0ντ decays to non-standard scalar and tensor interactions. We

will do this in two steps. Firstly, we can make the analysis for one vanishing and one non-

vanishing coupling. This is shown in figure 3.11 where we represent with horizontal lines

the current experimental limits on ∆ (at three standard deviations) and use Eq. (3.27) to

translate this information into bounds for ε̂S and ε̂T . According to this procedure, we get

the following constraint −1.33 ≤ ε̂S ≤ 1.31 with ε̂T = 0 and [−0.79,−0.57]∪ [−1.4, 1.3] ·10−2

as the allowed region for ε̂T with ε̂S = 0 (at three standard deviations). The previous

results were used to estimate the values of ε̂S and ε̂T which were employed in the preceding

subsections: ε̂S ∼ 1.31 and ε̂T ∼ −0.014 10. The dotted lines illustrate how the limits would

evolve for an error reduced by a factor three, which could be achieved at Belle-II (the theory

error is not assumed to decrease in this exercise).

Then, we can also fix joint constraints on the scalar and tensor effective interactions

assuming both ε̂S and ε̂T non-vanishing and using again Eq. (3.27) as before. This result is

shown in figure 3.12, where the limits on the scalar and tensor couplings are contained inside

an ellipse in the ε̂S − ε̂T plane. As a rough estimate of the possible impact of Belle-II data
10The value ε̂T ∼ −0.001 could seem a bit too small, compared to the intervals just given. However, we

will see later in this section that the fits to the di-pion mass spectrum justify such an estimate.
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we repeat the exercise of assuming a threefold error improvement with respect to Belle-I.

The dashed lines of the figure 3.12 (right panel) are illustrative of this effect.
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Figure 3.12: Constraints on the scalar and tensor couplings obtained from ∆(τ− → π−π0ντ )
using the Belle measurement and the theory uncertainty (at three standard deviations) of
the branching ratio. The left-hand plot shows the constraints obtained from current data.
On the right-hand plot we show a magnification of the top part of this ellipse, where the solid
line represents the upper limit on ε̂S and ε̂T , while the dashed lines intend to illustrate the
effect of a possible threefold improvement in the measurement at the Belle-II experiment.

Table 3.1 summarizes the constraints on the scalar and tensor effective couplings that

can be obtained (at three standard deviations) from the Belle measurement of the branching

ratio for τ− → π−π0ντ decays (including theory errors). The bottom part of Table 3.1

illustrates the bounds that could be achieved with a threefold reduction of the uncertainty

at Belle-II.

∆ limits ε̂S (ε̂T = 0) ε̂T (ε̂S = 0) ε̂S ε̂T

Belle [−1.33, 1.31] [−0.79,−0.57]∪
[−1.4, 1.3] ·10−2

[−5.2, 5.2] [−0.79, 0.013]

3-fold
improved

measurement

[−1.20, 1.18] [−0.79,−0.57]∪
[−1.1, 1.1] · 10−2

[−5.1, 5.1] [−0.78, 0.011]

Table 3.1: Constraints on the scalar and tensor couplings obtained (at three standard devia-
tions) through the limits on the current branching ratio measurements and the hypothetical
case where this value be measured by Belle II with a three times smaller error. Theory errors
are included.
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Next we consider fits to the data reported by Belle [365] for the normalized spectrum

(1/Nππ)(dNππ/ds) and integrated branching ratio using the function 11

1
Γ(ε̂S, ε̂T )

dΓ(s, ε̂S, ε̂T )
ds

. (3.28)

When fitting ε̂S and ε̂T to Belle data in order to search for non-standard interactions, we

are assuming that our description of Γ0 (based on Ref. [19]) is a reliable estimate of the cor-

responding SM prediction (including theoretical uncertainties). Thus, we examine whether

it is possible or not to improve the agreement of the SM prediction with data by means of

non-vanishing new physics scalar or tensor interactions.

If both ε̂S and ε̂T are fitted, bounds of order one on ε̂S and of order 0.1 on ε̂T are

obtained. Because of this unrealistic bounds for ε̂S, which hinder the extraction of ε̂T , in

our reference fits we restrict |ε̂S| < 0.8 × 10−2 [504, 505] and fit only ε̂T . In this case we

find ε̂T =
(
−1.3+1.5

−2.2

)
· 10−3, which shows a small preference (0.9 sigma) for charged current

tensor interactions. We believe, however, that it is interesting to check this conclusion with

more precise measurements of these decays and scrutinizing F+(s), hopefully with improved

knowledge on the inelastic effects on FT (s).

A caveat is, of course, in order: although chiral symmetry (at low energies) and the use of

dispersion relations together with precise measurements (especially useful outside the χPT

regime of applicability) makes us confident on our knowledge of the vector two-pion form

factor, F+(s), one should be very cautious before claiming evidence for NP from this type

of analysis 12. Provided a hint for an anomaly appears, different investigations should be

performed to test it: it may be worth considering a dispersive coupled-channel analysis of

the two-pion and two-kaon vector form factors [535–538], one should analyze along these

lines the compatibility between the F+(s) form factor measured by Belle and the L = 1 = I

ππ scattering amplitude...
11All discussed uncertainties are considered in our fits.
12In the case of τ− → π−(η/η′)ντ decays [250] this would be noticeably more difficult: although the

hadronization of the vector current is given again in terms of the precisely-known two-pion vector form
factor, the dominant scalar contribution is subject to large uncertainties still [447].
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We can finally compare the constraints in tables 3.1 and the best fit results to the di-pion

spectrum with those obtained in Ref. [505]. For this, we need to assume lepton universality

because our decays involve the tau lepton, while their analysis involves electron and muon

flavors. According to Refs. [250,504,505], it is clear τ− → π−π0ντ decays cannot be competi-

tive setting constraints on the non-standard scalar interactions. Our three sigma upper limit

(using current data) is |ε̂S| < 1.3 while the limit from the radiative pion decays π → eνγ

is |ε̂S| < 0.8 × 10−2 (at 90% C.L.). Conversely, our best fit result, ε̂T = (−1.3+1.5
−2.2) · 10−3,

is competitive in the case of tensor interactions since the limit reported in [504, 505] is

|ε̂T | < 0.1 × 10−2 (at 90% C.L.). Notwithstanding, we find that the measured branch-

ing ratio only limits ε̂T ∈ [−0.79,−0.57]∪ [−1.4, 1.3] · 10−2 (at three sigma), which is not

competitive with the previous value. Our results in this work and in Ref. [250] are compat-

ible with those in Ref. [512] (which also analyze semileptonic tau decays in this context):

ε̂S = (−0.6 ± 1.5) · 10−2, ε̂T = (−0.04 ± 0.46) · 10−2. It must be noted that the analysis in

Ref. [250] does not include theory errors, which explains the smaller uncertainties quoted

therein for ε̂S. In this work, our bounds using only the measured branching ratio are less

restrictive than those in Ref. [512], and we can only achieve stronger limits with our fit to

both the branching ratio and spectrum (using the error band for Γ0 obtained in Ref. [19]

and restricting |ε̂S| . 1 × 10−2). In the light of more precise and diverse measurements of

the τ− → π−π0ντ decays, improved theory analysis shall be needed to pursue cornering new

physics with these decays.

3.6 Summary and conclusions

We have considered the τ− → π−π0ντ decays in the presence of generic New Physics effective

interactions up to dimension-six operators, assuming left-handed neutrinos and that the

new dynamics scale is in the multi-TeV range. Within this setting, we have paid particular

attention to the hadron matrix elements, which are needed SM inputs in order to set bounds

on the non-standard scalar and tensor couplings, ε̂S and ε̂T , respectively (we recall that it
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is not possible to restrict spin-one non-standard interactions in the considered processes).

For this, we have employed previous results using dispersion relations for the scalar [513],

vector [19] and tensor [427] form factors implementing the known chiral constraints at low

energies and QCD asymptotics at short distances, according to data. For the tensor form

factor, since no experimental information is available, we have pursued a purely theoretical

determination of its leading chiral behaviour using Chiral Perturbation Theory. In this work,

we improved over our previous treatment of the tensor form factor where only leading-order

chiral predictions were considered and unitarity constraints were ignored [250], motivated

here by the fact that di-pion tau decays constitute an excellent arena to set competitive

limits on ε̂T . Lattice QCD results [514] allowed determining the only leading low-energy

constant of the tensor form factor, permitting a direct access to ε̂T .

Within this framework, we have set bounds on ε̂S and ε̂T using the measured Belle branch-

ing ratio, through our observable ∆. This procedure yields quite competitive limits with the

world-best bounds for the tensor case (that we have thus used in the remaining analysis),

but quite poor (unrealistic assuming some reasonable approximate lepton universality holds

for them) in the scalar case, which is a consequence of its suppression in all considered ob-

servables (but the forward-backward asymmetry) by the tiny difference between charged and

neutral pion masses squared. Because of this feature, we have assumed ε̂S limits similar to

those obtained in light quark beta and τ− → π−(η/η′)ντ decays in the remaining analysis.

As a result of our study, it turns out that Dalitz plot distributions (both in the Mandel-

stam variables s and t and also replacing t by the angle between the two charged particles)

are not very sensitive to non-zero realistic values of ε̂S and ε̂T , as it also happens with the

forward-backward asymmetry. Apparently, the hadronic invariant mass distribution is not

sensitive either to charged-current tensor interactions. However, a fit to Belle data on this

observable (limiting |ε̂S| . 1 × 10−2 and with Γ0 fixed -within errors- previously) hints for

a slight preference for non-zero ε̂T . Therefore, it is very worth measuring with extreme pre-

cision the di-pion invariant mass distribution in τ− → π−π0ντ decays at Belle-II, as it will

serve to further restrict ε̂T and this way offer complementary information to other low-energy
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processes in the searches for non-standard charged current interactions. This effort would

need to come together with both a tight scrutiny of the dominant vector form factor SM

prediction and measurements of Dalitz distributions and forward-backward asymmetry.
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Chapter 4

Effective-field theory analysis of the

τ−→ K−η(′)ντ decays

In this chapter we study the effect of NP interactions in the τ− → K−η(′)ντ decays through

an effective field theory analysis which is complementary to another semileptonic tau decays

analysis, the ππ [519] and the πη(′) [250] channels for the strangeness conserving and the

Kπ [251] channel for the strangeness changing charged current transitions.

4.1 Introduction

Hadronic tau decays provide an important source of experimental information about QCD

at low and intermediate energies. These decays have the advantage of containing hadrons in

the final state thus avoiding the complications arising from having them in the initial state

as well. At the exclusive level, they can be used to understand specific properties of pions,

kaons, η and η′ mesons, and the interactions among them. So far, we have a good knowledge

over decays into a pair of pseudoscalar mesons, the Standard Model (SM) input of which

is encoded in terms of hadronic form factors. An ideal roadmap to describe meson form

factors would require a model-independent approach demanding a full knowledge of QCD

in both its perturbative and non-perturbative regimes, knowledge not yet unraveled. An

106



alternative to such enterprise would pursuit a synergy between theoretical calculations and

experimental data. In this respect, dispersion relations are a powerful tool to direct oneself

towards a model-independent description of meson form factors. For example, the analyses

of the decays π−π0 [15,16,19,28] and KSπ
− [23,24,30,409,410], carried out by exploiting the

synergy between Resonance Chiral Theory [224] and dispersion theory, are found to be in a

nice agreement with the rich data provided by the experiments. Accord with experimental

measurements is also found for the K−KS [28] and K−η [30, 428] decay modes, although

higher-quality data on these processes is required to constrain the corresponding theories or

models.

Several recent works [250,251,512,519] have put forward that semileptonic tau decays offer

also an interesting scenario to set bounds on non-standard weak charged current interactions

complementary to other low-energy semileptonic probes considered before, such nuclear beta

decays, purely leptonic lepton, pion and kaon decays or hyperon decays (see e.g. Refs. [187,

192,504–511,539]). The aim of this chapter is to extent the analysis in Chapter 3 for the τ− →

π−π0ντ decays [519] along with previous analyses for the τ− → (Kπ)−ντ [251] and τ− →

π−η(′)ντ [250] decays, which were studied using the most general effective Lagrangian for

weak charge current interactions up to dimension six on several phenomenological interesting

observables, to the τ− → K−(η(′), K0)ντ decays 1.

On the theory side, a controlled theoretical determination, with a robust error band, of

the corresponding form factors within the SM is required in order to increase the accuracy

of the search for non-standard interactions. At present, we have such a knowledge for the

vector and -to a great extent- the scalar form factors, but there are no experimental data

that can help us constructing the tensor form factor and, therefore, it will be built under

theoretical considerations only.

On the experimental side, our study is presently limited by the following facts: i) for

the decay τ− → K−K0ντ , while the PDG reports a branching ratio of 1.486(34) × 10−3

[541], no measurement of the corresponding decay spectrum has been released by the B-
1Although the τ− → K−K0ντ decays will not be discussed in this thesis, the interested reader is referred

to Ref. [540] for detailed description of the methods and results for the K−K0 decay mode.
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factories; ii) the associated errors of the brother process τ− → K−KSντ BaBar data [481]

are still relatively large; iii) unfolding detector effects has not been performed for the τ− →

K−ηντ Belle data [29]2; iv) and, finally, the decay τ− → K−η′ντ has not been detected yet,

although an upper limit at the 90% confidence level was placed by BaBar [433]. We will not

thus attempt to extract new physics bounds from the corresponding experimental data as

competitive as those coming from other low-energy probes, like the ones mentioned before,

but rather explore the size of the deviations from the SM predictions that one could expect

in these decay channels. For these reasons, we hope that our paper strengths the case for a

(re)analysis, with a larger data sample, of the K−K0, K−KS and K−η decay spectra and

encourage experimental groups to measure the K−η′ decay mode. All this should be well

within the reach of Belle-II [500], and of other future Z, tau-charm and B-factories where

new measurements should be possible.

This chapter is organized as follows. The theoretical framework is given in section 4.2

where we briefly present the effective Lagrangian and discuss the different effective weak

currents contributing to the decays. The hadronic matrix element and the participant form

factors are also defined in this section. The latter are the matter subject of section 4.3, where

we pay special attention to the tensor form factor. In section 4.4, we discuss the different

interesting phenomenological observables i.e. decay spectra and branching ratio, Dalitz plot

distributions and the forward-backward asymmetry, that can help us setting bounds on

non-SM interactions. We derive these bounds in section 4.4.5. Finally, our conclusions are

presented in section 4.5.
2This decay was also measured by BaBar [429]. However, the person in charge of the analysis left the

field and the data file was lost, unfortunately.
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4.2 Effective field theory analysis and decay amplitude

of τ−→ ντ ūs

The effective Lagrangian including dimension-six operators, that describes semileptonic

τ− → ντ ūs strangeness-changing charged current transitions with left-handed neutrinos,

can be written as [250,251,519,542]:

LCC = −GF√
2
Vus(1 + εL + εR)

{
τ̄ γµ(1− γ5)ντ ū

[
γµ − (1− 2ε̂R)γµγ5

]
s

+τ̄(1− γ5)ντ ū(ε̂S − ε̂Pγ5)s+ 2ε̂T τ̄σµν(1− γ5)ντ ūσµνs
}

+ h.c. , (4.1)

where GF is the tree-level definition of the Fermi constant. In Eq. (4.1), we have defined

ε̂i = εi/(1+εL+εR) for i = R, S, P, T , with εL,R and εi being effective couplings characterizing

NP that can be taken real since we are only interested in CP conserving quantities. Needless

to say, if we put them to zero i.e. εL,R = ε̂R,S,P,T = 0, we recover the SM Lagrangian. This

factorized form of Eq. (4.1) is useful as long as conveniently normalized rates allow to cancel

the overall factor (1 + εL + εR). Note that since εi = ε̂i at linear order in ε̂′is, we may use εi
instead of ε̂i when comparing to works which use the former instead of the latter [505]. A

more detailed derivation of the Lagrangian of Eq. (4.1) can be found above in Chapter 3 or

in Refs. [250,251,519].

The decay amplitude for τ− (P ) → K− (pK) η(′)(pη(′))ντ (P ′) that arises from the La-

grangian in Eq. (4.1) contains a vector (V ), an scalar (S) and a tensor (T ) contribution. The

resulting amplitude can be expressed as3

M =MV +MS +MT

= GFVus
√
SEW√

2
(1 + εL + εR)

[
LµH

µ + ε̂SLH + 2ε̂TLµνHµν
]
, (4.2)

3The short-distance electroweak radiative corrections encoded in SEW [365], do not affect the scalar and
tensor contributions. However, the error made by taking

√
SEW as an overall factor in Eq. (4.2) is negligible.
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where the leptonic currents are defined by:

Lµ = ū(P ′)γµ(1− γ5)u(P ) , (4.3)

L = ū(P ′)(1 + γ5)u(P ) , (4.4)

Lµν = ū(P ′)σµν(1 + γ5)u(P ) . (4.5)

The scalar H, vector (Hµ) and tensor (Hµν) hadronic matrix elements in Eq. (4.2) can be

decomposed in terms of allowed Lorentz structures and a number of form factors encoding

the hadronization procedure as

H = 〈K−η(′)|s̄u|0〉 ≡ FK−η(′)

S (s) , (4.6)

Hµ = 〈K−η(′)|s̄γµu|0〉 = CV
K−η(′)Q

µFK−η(′)

+ (s) + CS
K−η(′)

(
∆Kπ

s

)
qµFK−η(′)

0 (s) , (4.7)

Hµν = 〈K−η(′)|s̄σµνu|0〉 = iFK−η(′)

T (s)(pµ
η(′)p

ν
K − p

µ
Kp

ν
η(′)) , (4.8)

where qµ = (pK + pη(′))µ, Qµ = (pη(′) − pK)µ + (∆Kη(′)/s)qµ, s = q2 and ∆ij = m2
i − m2

j ,

and with the Clebsch-Gordan coefficients: CV
Kη(′) = −

√
3
2 , CS

Kη = − 1√
6 and CS

Kη′
= 2√

3 . The

divergence of the vector current Eq. (4.7) relates the form factors FS(s) and F0(s) via

FS(s) =
CS
Kη(′)∆Kπ

ms −mu

FKη(′)

0 (s) . (4.9)

As in Refs. [250, 251, 519, 542], the scalar and vector contributions in Eqs. (4.6) and

Eq. (4.7), respectively, can be treated jointly by doing the following replacement

CS
Kη(′)

∆Kπ

s
→ CS

Kη(′)
∆Kπ

s

(
1 + s ε̂S

mτ (ms −mu)

)
, (4.10)

in Eq. (4.7). The parametrization of the three independent form factors i.e., F0(s), F+(s)

and FT (s), will be discussed in the next section.

110



4.3 Hadronization of the scalar, vector and tensor cur-

rents

It is fundamental to have good control over the scalar, vector and tensor form factors since

they are used as SM inputs for binding the non-standard interactions. The frame approach

to describe the K−η(′) vector form factor is the following. They are calculated within the

context of Resonance Chiral Theory taking into account the effects of the K∗(892) and

the K∗(1410) vector resonances, and are connected to the Kπ vector form factor through

FKη(′)

+ (s) = cos θP (sin θP )FKπ
+ (s) [428], where θP is the η-η′ mixing angle in the octet-singlet

basis. We will then discuss the exemplify case of the Kπ vector form factor and take

θP = (−13.3 ± 0.5)◦ [543]. For our analysis, we follow the representation outlined in Ref.

[410]. The thrice subtracted dispersion relation reads

FKπ
+ (s) = FKπ

+ (0) exp
α1

s

m2
π

+ 1
2α2

s2

m4
π

+ s3

π

∫ scut

sKπ
ds′

δKπ+ (s′)
(s′)3(s′ − s− i0)

 , (4.11)

where sKπ = (mK + mπ)2 is the threshold of the Kπ system, while the value of FKπ
+ (0) is

extracted from |VusFK−π0
+ (0)| = 0.2165(2) [541], and α1 and α2 are two subtraction constants

that are related to the low-energy expansion of the form factor. The use of a three-times

subtracted dispersion relation reduces the high-energy contribution of the integral where

the phase is less well-known. In Eq. (4.11), scut is a cut-off whose value is fixed from the

requirement that the fitted parameters are compatible within errors with the case scut →∞.

In Refs. [30,410], the value of scut = 4 GeV2 was found to satisfy this criterion, and variations

of scut were used to estimate the associated systematic error. For the input phase δKπ+ (s) we

use

δKπ+ (s) = tan−1
[

Imf̃Kπ+ (s)
Ref̃Kπ+ (s)

]
, (4.12)
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where f̃Kπ+ (s) is taken to be of the form [410]

f̃Kπ+ (s) = m2
K? − κK?H̃Kπ(0) + γs

D(mK? , γK?) − γs

D(mK?′ , γK?′ )
, (4.13)

where we have included two resonances, the K∗ = K∗(892) and the K∗′ = K∗(1410). The

denominators in Eq. (4.13) are

D(mn, γn) ≡ m2
n − s− κnRe [HKπ(s)]− imnγn(s) , (4.14)

where

κn = 192πFKFπ
σ3
Kπ(m2

n)
γn
mn

, γn(s) = γn
s

m2
n

σ3
Kπ(s)

σ3
Kπ(m2

n) , (4.15)

and with the two-body phase-space factor given by σKπ(s) = 2qKπ(s)/
√
s where

qKπ(s) = 1
2
√
s
λ1/2(s,m2

K ,m
2
π)θ(s− (mK +mπ)2) . (4.16)

The scalar one-loop integral function HKπ(s) is defined below Eq. (3) of Ref. [24], however

removing the factor 1/F 2
π which cancels if κn is expressed in terms of the unphysical width γn.

For our analysis, we use the results of the reference fit in Ref. [30] jointly with the systematic

uncertainty obtained as explained along the lines of the same reference. One limitation of

Eq. (4.11) is that the 1/s asymptotic fall-off of the form factor [544] it is not guaranteed

because the subtraction constants are fixed from a fit to experimental data. However, we

have checked that our form factor parametrization is indeed a decreasing function of s (apart

from the K∗(892) and K∗(1410) peak structures) within the entire range where we apply it.

Regarding the Kη(′) scalar form factors, we employ the well-established results of Ref.

[412] derived from a dispersive analysis with three channels (Kπ,Kη,Kη′) 4.

As was already pointed out in Chapter 3, the tensor form factor is one of the most

difficult inputs to be reliable estimated since there are no experimental data that can help

constructing FKη(′)

T (s). Therefore, we shall rely again on theoretical considerations only.
4We are very grateful to Matthias Jamin and José Antonio Oller for providing us their solutions in tables.
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Figure 4.1: Normalized absolute value of the tensor form factor FKη(′)

T (s) given in Eq. (4.17)
(left), for scut = 4 GeV2 (dotted line), 9 GeV2 (dashed line) and scut → ∞ (solid line), and
tensor form factor phase δKη

(′)

T (s) (right).

The key observation is that the tensor form admits an Omnès dispersive representation

[251,427,519]

FKη(′)

T (s) = FKη(′)

T (0) exp
 s
π

∫ scut

sKπ
ds′

δKη
(′)

T (s′)
s′(s′ − s− i0)

 , (4.17)

where in the elastic region, the phase of the tensor form factor equals the P -wave phase of

the Kπ vector form factor i.e. δKη
(′)

T (s) = δKπ+ (s), with δKπ+ (s) extracted from Eq. (4.12).

We will assume the previous relations also hold above the onset of inelasticities until m2
τ

where we guide smoothly the tensor phase to π as in Ref. [28] to ensure the asymptotic 1/s

behavior dictated by perturbative QCD [544]. Lacking of precise low-energy information, we

do not increase the number of subtractions in Eq. (4.17), which, in turn, would reduce the

importance of the higher-energy part of the integral, but rather cut the integral at different

values of scut and take the differing results as an estimate of our theoretical systematic

uncertainty for the results presented in section 4.4.5. In Fig. 4.1, we show the tensor form

factor phase δKη
(′)

T (s) (right panel) together with the (normalized) absolute value of the

tensor form factor (left panel) for the cases scut = 4, 9 GeV2 and scut →∞, which is taken as

the baseline hypothesis. The value of the normalization FKη(′)

T (0) required in Eq. (4.17) can

be estimated within ChPT as explained in the following. The lowest-order ChPT Lagrangian
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with tensor sources is of O(p4) in the chiral counting and reads [518]

L = Λ1 〈tµν+ f+µν〉 − iΛ2 〈tµν+ uµuν〉+ Λ3
〈
tµν+ t+µν

〉
+ Λ4 〈fµν+ 〉

2 , (4.18)

where tµν+ = u†tµνu†+utµν†u includes the tensor source and its adjoint, and 〈· · · 〉 stands for a

flavor space trace. Only terms proportional to Λ2 contribute to the decays we are considering.

The chiral tensors entering Eq. (4.18) are given by: uµ = i
[
u†(∂µ − irµ)u− u(∂µ − ilµ)u†

]
,

where lµ and rµ are the left- and right-handed sources, and fµν+ = uF µν
L u† + u†F µν

R u, that

includes the left- and right-handed field-strength tensors for lµ and rµ, F µν
L,R. The non-linear

representation of the pseudo-Goldstone bosons is given by u = exp
[

i√
2F φ

]
[532,533], where

φ =


π3+ηq√

2 π+ K+

π− −π3+ηq√
2 K0

K− K̄0 ηs

 , (4.19)

where ηq = Cqη + Cq′η
′ and ηs = −Csη + Cs′η

′ are the light and strange quark components

of the η and η′ mesons, respectively. π3 coincides with the π0 when the isospin-breaking

terms are neglected. The constants describing the mixing between ηq and ηs states are given

by [545,546]

Cq ≡
Fπ√

3 cos(θ8 − θ0)

(
cos θ0

f8
−
√

2 sin θ8

f0

)
, Cq′ ≡

Fπ√
3 cos(θ8 − θ0)

(√
2 cos θ8

f0
+ sin θ0

f8

)
,

Cs ≡
Fπ√

3 cos(θ8 − θ0)

(√
2 cos θ0

f8
+ sin θ8

f0

)
, Cs′ ≡

Fπ√
3 cos(θ8 − θ0)

(
cos θ8

f0
−
√

2 sin θ0

f8

)
,

(4.20)

and for the corresponding mixing parameters we use [547,548]

θ8 = (−21.2± 1.9)◦, θ0 = (−6.9± 2.4)◦ , (4.21)

f8 = (1.27± 0.02)Fπ, f0 = (1.14± 0.05)Fπ , (4.22)
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with Fπ = 92.2 MeV being the pion decay constant.

The tensor source (tµν) is related to its chiral projections (tµν and tµν†) by [518]

tµν = P µνλρ
L tλρ, 4P µνλρ

L =
(
gµλgνρ − gµρgνλ + iεµνλρ

)
, (4.23)

where ΨσµνtµνΨ is the tensor quark current. Taking the functional derivative of eq. (4.18)

with respect to the tensor source t̄µν , we get

〈
K−η

∣∣∣∣δL4
χPT

δt̄µν

∣∣∣∣0〉 = i

(
Cq√

2
+ Cs

)
Λ2

F 2
π

(
pµηp

ν
K − p

µ
Kp

ν
η

)
, (4.24)

〈
K−η′

∣∣∣∣δL4
χPT

δt̄µν

∣∣∣∣0〉 = i

(
Cq′√

2
− Cs′

)
Λ2

F 2
π

(
pµη′p

ν
K − p

µ
Kp

ν
η′

)
. (4.25)

An estimation of FKπ
T (0) = 2mπFT (0) on the lattice was obtained in Ref. [514]. Their result

FKπ
T (0) = 0.417± 0.015, together with the fact that

FK−η
T (0) =

(
Cq√

2
+ Cs

)
Λ2

F 2
π

, (4.26)

FK−η′

T (0) =
(
C ′q√

2
− C ′s

)
Λ2

F 2
π

, (4.27)

yields Λ2 = (11.1 ± 0.4) MeV, that we will use for our analysis. This value is consistent

within one sigma with the one employed for the ππ channel in Chapter 3 and in Ref. [519].

4.4 Decay observables

Now, we focus on the possible NP effects, characterized by the effective weak couplings

described in section 4.2, in the following τ− → K−η(′)ντ decay observables: Dalitz plots, an-

gular and decay distributions, and the forward-backward asymmetry. The doubly differential

decay width for τ− → K−η(′)ντ , in the rest frame of the tau lepton, is given by

d2Γ
ds dt

= 1
32 (2π)3m3

τ

|M|2 , (4.28)
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where |M|2 is the unpolarized spin-averaged squared matrix element, s is the invariant mass

of the K−η(′) system, limited in the interval (mη(′) +mK)2 ≤ s ≤ m2
τ , and t = (P ′+ pη(′))2 =

(P − pK)2 with kinematic boundaries given by t−(s) ≤ t ≤ t+(s), with

t±(s) = 1
2s

[
2sm2

η(′) + (m2
τ − s)(s+m2

η(′) −m2
K)± (m2

τ − s)
√
λ(s,m2

η(′) ,mK2)
]
, (4.29)

and where λ(x, y, z) = x2 + y2 + z2 − 2xy − 2xz − 2yz is the usual Kallen function.

4.4.1 Dalitz plot

The unpolarized spin-averaged squared amplitude yields

|M|2 = G2
F |Vus|2SEW

s2 (1 + εL + εR)2 {M00 +M++ +M0+ +MT+ +MT0 +MTT} ,(4.30)

whereM00, M++ andMTT are, respectively, the scalar, vector and tensor amplitudes, whereas

M0+, MT+ and MT0 are their corresponding interferences. These expressions are given by:

M0+ =− 2CSKη(′)C
V
Kη(′)m

2
τRe

[
fKη

(′)

+ (s)f∗Kη
(′)

0 (s)
]

∆Kπ

(
1 + s ε̂S

mτ (ms −mu)

)
×
{
s
(
m2
τ − s− 2t+ ΣKη(′)

)
−m2

τ∆Kη(′)

}
, (4.31a)

MT+ =− 4CVKη(′) ε̂Tm
3
τsRe

[
fKη

(′)

T (s)f∗Kη
(′)

+ (s)
] (

1− s

m2
τ

)
λ
(
s,m2

η(′) ,m
2
k

)
, (4.31b)

MT0 =4CSKη(′) ε̂T∆KπmτsRe
[
fKη

(′)

T (s)f∗Kη
(′)

0 (s)
] (

1 + s ε̂S
mτ (ms −mu)

)
×
{
s
(
m2
τ − s− 2t+ ΣKη(′)

)
−m2

τ∆Kη(′)

}
, (4.31c)

M00 =
(
CSKη(′)

)2
∆2
Kπm

4
τ

(
1− s

m2
τ

) ∣∣∣fKη(′)

0 (s)
∣∣∣2 (1 + s ε̂S

mτ (ms −mu)

)2
, (4.31d)

M++ =
(
CVKη(′)

)2 ∣∣∣fKη(′)

+ (s)
∣∣∣2 {m4

τ

(
s−∆Kη(′)

)2
+ 4m2

ks
2
(
m2
η(′) − t

)
+ 4s2t

(
s+ t−m2

η(′)

)
−m2

τs
[
s (s+ 4t)− 2∆Kη(′)

(
s+ 2t− 2m2

η(′)

)
+ ∆2

Kη(′)

]}
, (4.31e)

MTT =4ε̂2T
∣∣∣fKη(′)

T (s)
∣∣∣2 s2

{
m4
K

(
m2
τ − s

)
−m4

η(′)

(
3m2

τ + s
)
− s

[
(s+ 2t)2 −m2

τ (s+ 4t)
]

+2m2
η(′)

[
(s+ 2t)

(
s+m2

τ

)
− 2m4

τ

]
− 2m2

K

(
m2
τ − s

) (
s+ 2t−m2

η(′)

)}
, (4.31f)
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where we have defined ∆PQ = m2
P −m2

Q and ΣPQ = m2
P +m2

Q.

In order to study possible NP signatures in Dalitz plots distributions, we introduce the

following observable [519]

∆̃ (ε̂S, ε̂T ) =

∣∣∣|M (ε̂S, ε̂T )|2 − |M (0, 0)|2
∣∣∣

|M (0, 0)|2
, (4.32)

which measures deviations between non-SM (either ε̂S 6= 0 or ε̂T 6= 0, or both ε̂S,T 6= 0) and

SM (ε̂S,T = 0) interactions.

Firstly, the Dalitz plot distributions in the SM in the (s, t) variables for the decays

τ− → K−ηντ (upper-left plot) and τ− → K−η′ντ (upper-right plot) are depicted in Fig.4.2.

As it can be seen from these plots, there is no evidence for a meson resonance production and

only the K∗(892)-and to lesser extent- the K∗(1410), and K0(1430) tails can be appreciated

for the Kη and Kη′ decay channels, respectively.

Secondly, we turn to analyze possible NP signatures by allowing non-zero values of either

ε̂S or ε̂T . In Fig. 4.3, first row, we show the observable ∆̃ (ε̂S, ε̂T ) in Eq. (4.32) for the decay

τ− → K−ηντ for two representative values of the set of effective couplings (ε̂s, ε̂T ), that we

anticipated from our results in section 4.4.5, that are consistent with the measured branching

ratio. For the left plots of the figure we use (ε̂S = −0.38, ε̂T = 0) and thus the variations with

respect to the SM occur due to M0+ and M00 in Eq. (4.31), while for the right ones we employ

(ε̂S = 0, ε̂T = 0.085) with NP effects entering through MT+,MT0 and MTT in Eq. (4.31). As

one can observe, the variations of scalar nature are in general small and occur close to the

s minimum, i.e. near the Kη threshold and t/m2
τ ∼ 0.47, and for s/m2

τ ∼ 0.66, while the

tensor contributions yield a sizable signal starting near the Kη threshold and populate the

diagonal of the Dalitz plot decreasingly. However, these contributions arise in zones with

very suppressed probability in the SM (see upper-left plot in Fig. 4.2) and will thus be very

challenging to identify.

In the case of τ− → K−η′ντ , shown in Fig. 4.4, we take, respectively, (ε̂S = −0.20, ε̂T = 0)

and (ε̂S = 0, ε̂T = 14.9) for the left- and right-plots and the corresponding variations in the
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Figure 4.2: Dalitz plot distribution in the SM, |M (0, 0)|2 in Eq. (4.30), for τ− → K−ηντ
(left) and τ− → K−η′ντ (right) in the (s, t) variables. The figures of the lower row show the
differential decay distribution in the (s, cos θ) variables, Eq. (4.33). The s and t variables are
normalized to m2

τ .
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Figure 4.4: Dalitz plot distribution of ∆̃ (ε̂S, ε̂T ) in Eq. (4.32) for τ− → K−η′ντ with (ε̂S =
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Dalitz plot distribution are seen in a reduced and similar region close to s/m2
τ ∼ 0.85 and

t/m2
τ ∼ 0.35. Again, compared to the SM (see upper-right plot in Fig. 4.2), these effects

appear in a zone of small probability density and will be therefore difficult to be measured.

If we had used another set of values of effective couplings e.g. [509], we would have

obtained qualitatively similar results.
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4.4.2 Angular distribution

The hadronic mass and angular distributions are also modified by the inclusion of the NP

interactions that we are studying. It is convenient to work in the rest frame of the hadronic

Kη(′) system defined by ~pK + ~pη(′) = ~pτ − ~pντ = 0. In this frame, the tau lepton and kaon

energies are given by Eτ = (s+m2
τ )/2
√
s and EK = (s+m2

K−m2
η(′))/2

√
s, and the measurable

angle θ between these two particles can be obtained from the invariant t variable through

t = m2
τ +m2

K − 2EτEK + 2|~pK ||~pτ | cos θ, where |~pK | =
√
E2
K −m2

K and |~pτ | =
√
E2
τ −m2

τ .

The decay distribution in the (s, θ) variables is given by:

d2Γ
d
√
s d cos θ = G2

F |Vus|2SEW
128π3mτ

(1 + εL + εR)2
(
m2
τ

s
− 1

)2

|~pK |
{

(CS
Kη(′))2(∆Kπ)2|FKη(′)

0 (s)|2

×
(

1 + sε̂S
mτ (ms −mu)

)2

+ 16|~pK |2s2

∣∣∣∣∣∣
CV
Kη(′)

2mτ

FKη(′)

+ (s)− ε̂TFKη(′)

T (s)
∣∣∣∣∣∣
2

+ 4|~pK |2s
(

1− s

m2
τ

)
cos2 θ

[
(CV

Kη(′))2|FKη(′)

+ (s)|2 − 4sε̂2T |F
Kη(′)

T (s)|2
]

+ 4CS
Kη(′)∆Kπ|~pK |

√
s cos θ

(
1 + sε̂S

mτ (ms −mu)

)

×
[
CV
Kη(′)Re[FKη(′)

0 (s)F ∗Kη
(′)

+ (s)]− 2sε̂T
mτ

Re[FKη(′)

T (s)F ∗Kη
(′)

0 (s)]
]}

, (4.33)

which coincides with the SM result [428] when the effective couplings of new interactions

are set to zero.

The SM Dalitz plot distribution in the (s, cos θ) variables is shown, for the same set of

effective couplings discussed previously, in the second row of Fig. 4.2 for the K−η (left) and

K−η′ (right) decay modes.

The effects of non-SM interactions on the angular distributions is displayed in the second

row of Figs. 4.3 and 4.4 for the K−η and K−η′ decay modes, respectively. For the K−η

channel, the enhanced region near the Kη threshold in the (s, t) upper-left diagram (the one

close to s minimum) is slightly enhanced in a limited region (cos θ > 0) as it can be seen on

the lower-left plot of Fig. 4.3, while NP tensor contributions show that the enhanced area
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for large t translates to nearly minimum values of cos θ as it can be observed on the plots

of the right. For the K−η′ system, both NP scalar and tensor contributions have similar

effects in the (s, cos θ) plot. These are given in Fig. 4.4 by the red sunshine area centered

at s/m2
τ ∼ 0.85. Altogether, we conclude that possible deviations from the SM patterns in

near future data will be hard to disentangle in (s, cos θ) Dalitz plot analyses.

4.4.3 Decay rate

Integrating Eq. (4.28) upon the t variable we obtain the Kη(′) invariant mass distribution

dΓ
d
√
s

= G2
F |Vus F

Kη(′)

+ (0)|2m3
τSEW

192π3√s
(1 + εL + εR)2

(
1− s

m2
τ

)2

λ1/2(s,m2
η(′) ,m

2
K)

×
[
XV A + ε̂SXS + ε̂TXT + ε̂2SXS2 + ε̂2TXT 2

]
, (4.34)

where

XV A =
(CV

Kη(′))2

2s2

[
3|F̃Kη(′)

0 (s)|2∆2
Kη(′) + |F̃Kη(′)

+ (s)|2
(

1 + 2s
m2
τ

)
λ(s,m2

η(′) ,m
2
K)
]
, (4.35)

XS = 3
smτ

(CV
Kη(′))2|F̃Kη(′)

0 (s)|2
∆2
Kη(′)

ms −mu

, (4.36)

XT = − 6
smτ

CV
Kη(′)

Re[FKη(′)

T (s)F ∗Kη
(′)

+ (s)]
|fKη(′)

+ (0)|2
λ(s,m2

η(′) ,m
2
K) , (4.37)

XS2 = 3
2m2

τ

(CV
Kη(′))2|F̃Kη(′)

0 (s)|2
∆2
Kη(′)

(ms −mu)2 , (4.38)

XT 2 = 4
s

|FKη(′)

T (s)|2

|FKη(′)

+ (0)|2

(
1 + s

2m2
τ

)
λ(s,m2

η(′) ,m
2
K) . (4.39)

In Eq. (4.34) we use |VusFK−η
+ (0)| = |VusFK−π0

+ (0) cos θP | and |VusFK−η′

+ (0)| = |VusFK−π0
+ (0) sin θP |,

with |VusFK−π0
+ (0)| = 0.2165(2) [541]. Notice that if one takes εL,R = ε̂S,T = 0 we recover

the SM result from Eq. (2.8) of Ref. [428]. The decay distribution in terms of the Kη and

Kη′ invariant mass is given, respectively, on the left-and right-plots of Fig. 4.5 for the rep-
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Figure 4.5: Left: K−η invariant mass distribution in the SM (solid line), and for ε̂S =
−0.38, ε̂T = 0 (dashed line) and ε̂S = 0, ε̂T = 0.085 (dotted line). Right: K−η′ invariant
mass distribution in the SM (solid line), and for ε̂S = −0.20, ε̂T = 0 (dashed line) and
ε̂S = 0, ε̂T = 14.9 (dotted line). Units in axes units are given in GeV powers and the decay
distributions are normalized to the tau decay width.

resentative values of the effective couplings. For the decay τ− → K−ηντ , it can be observed

that the deviations with respect to the SM result (solid line) are sizable in the entire energy

region of the decay spectrum. For the τ− → K−η′ντ decay spectrum, we predict a SM

branching ratio of BRSM ' 1.03× 10−6. This value is found to be totally in line with [428]

and respects the current experimental upper bound BRexp < 2.4×10−6 at 90 % C.L. [541]. In

this regard, a measurement of this decay mode will be very welcome to further constrain the

SM hadronic inputs, a requirement for searches of non-SM interactions. This measurement

should be feasible at Belle-II [500].

4.4.4 Forward-backward asymmetry

The forward-backward asymmetry for the hadronic K−η(′) system is defined in analogy to

the previous di-meson modes we have studied [250,251,519]

AKη(′)(s) =
∫ 1
0 d cos θ d2Γ

ds d cos θ −
∫ 0
−1 d cos θ d2Γ

ds d cos θ∫ 1
0 d cos θ d2Γ

ds d cos θ +
∫ 0
−1 d cos θ d2Γ

ds d cos θ
. (4.40)

Inserting Eq. (4.33) into the previous expression and integrating upon the cos θ variable
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Figure 4.6: Left: Forward-backward asymmetry for the decay τ− → K−ηντ in the SM (solid
line), and for ε̂S = −0.38, ε̂T = 0 (dashed line), and ε̂T = 0.085, ε̂S = 0 (dotted line). Right:
Forward-backward asymmetry for the decay τ− → K−η′ντ in the SM (solid line), and for
ε̂S = −0.20, ε̂T = 0 (dashed line), and ε̂T = 14.9, ε̂S = 0 (dotted line).

we obtain its analytical expression

AKη(′)(s) =
3CS

Kη(′)∆Kπ

√
λ(s,m2

η(′) ,m
2
K)

2s2|FKη(′)

+ (0)|2[XV A + ε̂SXS + ε̂TXT + ε̂2SXS2 + ε̂2TXT 2 ]

×
(

1 + sε̂S
mτ (ms −mu)

){
CV
Kη(′)Re[FKη(′)

0 (s)F ∗Kη
(′)

+ (s)]

− 2s ε̂T
mτ

Re[FKη(′)

T (s)F ∗Kη
(′)

0 (s)]
}
. (4.41)

The forward-backward asymmetry in the SM case i.e. ε̂S,T = 0, corresponds to the solid

line in Fig. 4.6 for the decays K−η (left plot) and K−η′ (right plot). For the K−η mode, it

should not be difficult to measure a non-zero (negative) value near the K−η threshold. AKη
increases with s, crosses zero at around 1.28 GeV and reaches its maximum near 1.45 GeV,

when it decreases up to the upper kinematical limit. For the Kη′ case, the forward-backward

asymmetry is a positive increasing observable from the Kη′ threshold until around 1.64 GeV

where it has a plateau and decreases afterwards.

In these figures, we also display the results arising from considering non-SM scalar and

tensor interactions. For the K−η channel, one observes that the tensor case (dotted line)

overlaps with the SM prediction thus being difficult to unveil its possible effects from the SM

contribution. On the contrary, for non-SM scalar interactions (dashed line), AKη flips sign
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with respect to the SM slightly before 1.3 GeV and it gets larger in magnitude as s increases.

If it is possible to measure this observable eventually, this would ease the identification of

NP contributions in AKη. The non-standard scalar contribution to the forward-backward

asymmetry of the Kη′ decay mode is negative and has, to great extent, the same size than the

SM ones but with opposite sign. The NP tensor contribution, also negative, has a clear non-

zero value near threshold and then becomes a decreasing function until the kinematical upper

limit of
√
s. It is clear then that noticeable differences with respect to the SM contribution

will be appreciated for quite large values of the new effective couplings.

4.4.5 Limits on ε̂S and ε̂T

Integrating the invariant mass distribution Eq. (4.34) upon the s variable one obtains the

total decay width which, in turn, depends on the NP effective couplings ε̂S,T . One can

therefore use the experimental branching ratio to set bounds on ε̂S,T . For this purpose, we

compare the decay width as obtained by including non-SM interactions, and that we denote

by Γ, with respect to the SM width, Γ0, obtained by neglecting NP interactions i.e. setting

ε̂S,T = 0. The relative shift produced by the NP contributions is better accounted for through

the following observable:

∆ ≡ Γ− Γ0

Γ0 = αε̂S + βε̂T + γε̂2S + δε̂2T . (4.42)

The numerical values of the coefficients α, β, γ and δ for the processes under consideration

are found to be: α = 0.85+0.05
−0.09, β = 3.7+1.2

−1.3, γ = 4.3+0.6
−0.9 and δ = 3.9+3.0

−2.2 for the K−η decay

channel; α = 24.2+1.5
−2.7, β = −0.26+0.17

−0.24, γ = 175.9+23.3
−36.6 and δ = 0.10+0.28

−0.09 for the K−η′ mode.

The errors carried by the previous coefficients come from the uncertainty associated to the

corresponding form factors (see section 4.3). Eq. (4.42) is a quadratic function of the effective

scalar and tensor couplings that can be used to explore the sensitivity of the corresponding

decays to the effects of non-SM interactions. As in Refs. [250,251,519], we will do this in two

different ways. Firstly, we set one of the couplings to zero and obtain bounds for the other,
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Figure 4.7: ∆ as a function of ε̂S for ε̂T = 0 (left-hand) and ε̂T for ε̂S = 0 (right-hand) for
the decay τ− → K−ηντ . Horizontal lines represent the values of ∆ according to the current
measurement and theory errors (at three standard deviations) of the branching ratio (dashed
line).

and vice versa. The result is shown in Figs. 4.7 and 4.8 for the two decays concerning us,

respectively. In these figures, the horizontal lines represent the current experimental limits

on ∆ (at three standard deviations), and the resulting bounds for the effective couplings are

found to be

−0.38 ≤ ε̂S ≤ 0.16 , ε̂T = 0 , (4.43)

ε̂S = 0 , ε̂T = [−1.4,−0.7] ∪ [−0.047, 0.085] , (4.44)

from the decay τ− → K−ηντ (BRexp = 1.55(8)× 10−4 [541]), and

−0.20 ≤ ε̂S ≤ 0.05 , ε̂T = 0 , (4.45)

ε̂S = 0 , −7.6 ≤ ε̂T ≤ 14.9 , (4.46)

from the transition τ− → K−η′ντ (BRexp < 2.4× 10−6 at 90 % C.L. [541]).

Secondly, we have also set constraints on these couplings from the general case where

both are non-vanishing using Eq. (4.42) as before. These results are graphically represented

by ellipses in the ε̂S-ε̂T plane in Fig. 4.9 for the two decay channels under consideration.

Altogether, our results for the bounds in the scalar and tensor effective couplings ε̂S
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Decay channel ε̂S (ε̂T = 0) ε̂T (ε̂S = 0) ε̂S ε̂T
τ− → K−ηντ [542] [−0.38, 0.16] [−1.4,−0.7] ∪ [−4.7, 8.5] · 10−2 [−0.7, 0.5] [−1.5, 0.1]
τ− → K−η′ντ [542] [−0.20, 0.05] [−7.6, 14.9] [−0.21, 0.05] [−10.4, 17.7]
τ− → K−K0ντ [542] [−0.12,−0.08] ∪ [0.08, 0.12] [−0.12,−0.06] ∪ [0.92, 0.99] [−0.2, 0.2] [−0.12, 0.98]
τ− → π−π0ντ [519] [−1.33, 1.31] [−0.79,−0.57] ∪ [−1.4, 1.3] · 10−2 [−5.2, 5.2] [−0.79, 0.013]
τ− → (Kπ)−ντ [251] [−0.57, 0.27] [−0.059, 0.052] ∪ [0.60, 0.72] [−0.89, 0.58] [−0.07, 0.72]
τ− → π−ηντ [250] [−8.3, 3.9] · 10−3 [−0.43, 0.39] [−0.83, 0.37] · 10−2 [−0.55, 0.50]
τ− → π−η′ντ [250] [−1.13, 0.68] · 10−2 |ε̂T | < 11.4 [−1.13, 0.67] · 10−2 [−11.9, 11.9]

Table 4.1: Constraints on the scalar and tensor couplings obtained (at three standard deviations)
through the limits on the current branching ratio measurements. Theory errors are included.

and ε̂T that can be obtained at three standard deviations from the current experimental

measurement are gathered in Table 4.1. The constraints on the scalar coupling obtained from

the K−η decay channel is quite symmetric while the tensor coupling has a mild preference

for ε̂T < 0. The allowed region has the same size for both. Limits on the scalar coupling

from the K−η′ mode favor slightly ε̂S < 0 while the constraints on the tensor one are much

weaker in this case.

In this table, we also compare the results of this work with the constraints we have

obtained in previous analyses from the π−π0 [519], K−K0 [540, 542], (Kπ)− [251, 540] and

π−η(′) [250] decay channels. The constraints for the scalar couplings are found to be more

precise than those obtained from the di-pion mode, competitive with the limits set from the

(Kπ)− decays, and weaker than the bounds coming from the decays π−η(′). For the tensor

couplings, we notice that the Kη′ channel gives a much looser limits than the decays with

Kη and K−K0. The allowed region of the last two, in turn, is similar than that obtained in

previous analyses but for π−η′, which is not competitive restricting tensor interactions.

As a final exercise, we have also determined the effective couplings from a χ2 function in

the following way:

χ2 =
BRth

K−η − BRexp
K−η

σBRexp
K−η

2

+
BRth

K−K0 − BRexp
K−K0

σBRexp
K−K0

2

, (4.47)

where BRexp
K−η and σBRexp

K−η
, and BRexp

K−K0 and σBRexp
K−K0

, are the measured branching ratio

and the corresponding uncertainties of the K−η and K−K0 decay mode, and BRth
K−η and
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BRth
K−K0 are the analogue theoretical expressions obtained upon integrating Eq. (4.34). The

χ2 function defined above depends solely on ε̂S and ε̂T . Using the experimental value given

below Eq. (4.44) and the branching fraction of the τ− → K−K0ντ decay (BRexp = 1.486(34) ·

10−3 [541]), we obtain the constraints:

ε̂S = 0.088+0.035
−0.056 , ε̂T = 0.015+0.056

−0.066 , (4.48)

where variations up to 3σ of the measured branching ratios have been taken into account.

Comparing our results with bounds obtained from other low-energy probes, our previous

limits are not competitive with semileptonic kaon decays, ε̂S = (−3.9 ± 4.9) × 10−4 and

ε̂T = (0.5 ± 5.2) × 10−3 [509], while they are similar than those obtained from hyperon

decays [507], where |ε̂S| < 4×10−2 and |ε̂T | < 5×10−2 are found at a 90% C.L.5. Concerning

the results of Ref. [512], obtained also from hadronic tau decays (strangeness-conserving

transitions only), our corresponding limits are less precise. However, the use of all available

data of all possible di-meson tau decays (see Table 4.1) could allow us improve the knowledge

in this respect. Such analysis is presented in the next chapter.

4.5 Conclusions

Hadronic tau lepton decays remain to be an advantageous tool for the investigation of the

hadronization of QCD currents in the non-perturbative regime of the strong interaction.

In this paper, we have studied the decays τ− → K−η(′)ντ in the presence of non-Standard

Model scalar and tensor interactions. We have focused our analysis on setting bounds on the

corresponding New Physics couplings from the current experimental measurements of these

decays. This has been possible due to the satisfactory knowledge we have on the necessary

Standard Model hadronic input, the form factors. For the description of the participating
5For the comparison, we need to assume lepton universality because our study involves the tau lepton,

while theirs electrons and muons. Given the smallness of possible lepton universality violations, this is
enough for current precision. We have also assumed that the corresponding CKM matrix elements do not
change under NP interactions, which is the case if ε(lud) = ε(lus) [549].
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vector and scalar form factors, we have employed previous results based on constraints

from Chiral Perturbation Theory supplemented by dispersion relations and experimental

data. On the contrary, there are no experimental data to help us constructing the required

tensor form factor and, therefore, it has been described under theoretical arguments solely.

Within this framework, we have set limits (see Table 4.1) on the non-standard scalar and

tensor couplings, ε̂S and ε̂T , respectively, using the measured branching ratios, and have

studied their effects on different phenomenological observables including Dalitz plot and

angular distributions, the decay rate and the forward-backward asymmetry. The present

analysis completes our series of dedicated studies of two-meson tau decays [250, 251, 519]

that have shown the complementary role that tau decays can play in restricting non-standard

interactions. Despite our bounds on the NP couplings are not as precise as those placed,

for example, from semileptonic kaon decays [509], and the corresponding effects are very

challenging to identify, we hope our works can serve as a motivation for the experimental

tau physics groups at Belle-II to measure the different observables we have discussed.
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Chapter 5

Global Fit of non-standard

interactions in exclusive semileptonic

tau decays

In this chapter we perform a global fit using exclusive semileptonic tau decays for one and two

pseudoscalar mesons, as a outcome we get powerful constraints on non-standard interactions.

5.1 Introduction

The τ lepton is the only known lepton heavy enough (mτ = 1.77686 GeV [541]) to decay

into hadrons; the ∼ 65% of its partial width contains hadrons in the final state. In the

Standard Model (SM), hadronic tau decays proceed through the exchange of W± bosons

which couple the τ and the generated neutrino ντ together with a quark-antiquark pair

that subsequently hadronizes. Such decays thus offer an advantageous laboratory to study

low-energy effects of the strong interactions under clean conditions [4] since half of the

process is purely electroweak and, therefore, free of uncertainties at the required precision.

At the inclusive level, these decays allow to extract fundamental parameters of the SM,

most importantly the strong coupling αS [550,551], but also the CKM quark-mixing matrix
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element |Vus| [380, 552, 553] and the mass of the strange quark at high precision [554–560].

On the other hand, exclusive hadronic decays can be used to learn specific properties of

the hadrons involved and the interactions among them. These can be classified according

to the number of hadrons in the final state. The simple one-meson transitions τ− → P−ντ

(P = π,K) are very well-known due to the precise determinations of the pion and kaon

decays constants obtained by the Lattice collaborations [377]. At present, we also have

a very good knowledge on the decays into a pair of mesons, the SM input of which is

encoded in terms of hadronic form factors. An ideal road map to describe meson form

factors would require a model-independent approach demanding a full knowledge of QCD

in both its perturbative and non-perturbative regimes, knowledge not yet unraveled. An

alternative to such enterprise would pursuit a synergy between theoretical calculations and

experimental data. In this respect, dispersion relations are a powerful tool to direct oneself

towards a model-independent description of meson form factors. For example, the analyses

of the decays π−π0 [15,16,19,28] and KSπ
− [23,24,30,409,410], carried out by exploiting the

synergy between Resonance Chiral Theory [224] and dispersion theory, are found to be in a

nice agreement with the rich data provided by the experiments. Accord with experimental

measurements is also found for the K−KS [28] and K−η [30, 428] decay modes, although

higher-quality data on these processes is required to constrain the corresponding theories

or models, while the predictions for the isospin-violating π−η(′) channels [447, 513] respect

the current experimental upper bounds. The latter are very challenging processes for Belle-

II [500]. Higher-multiplicity decay modes involve a richer dynamical structure but accounting

for the strong rescattering effects is not an easy task when three or more hadrons are present.

So far, all experimental results with the τ lepton are found to be in accord with the

SM, with the exception of the 2.6σ(2.4σ) deviation from lepton flavour universality in

|gτ/gµ|(|gτ/ge|) from W− → τ−ν̄τ [541,561]1, of the BaBar measurement of the CP asymme-

try in τ− → KSπ
−ντ , ACP = −3.6(2.3)(1.1)×10−3 [423], which is 2.8σ off the SM prediction,

ACP = 3.6(1)× 10−3 [426], and of the anomalous excess of τ production observed in some B
1See also Ref. [562], where the authors show that a NP explanation of this tension is not very plausible.

This anomaly disappeared after the ATLAS [563] and CMS [564] measurements.
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decays. As seen, these effects are not statistically large. However, the increased sensitivities

of the most recent experiments yield interesting limits on possible New Physics contributions

in the hadronic tau sector.

Several recent works [250,251,512,519,542] have put forward that semileptonic tau decays

are not only a clean QCD laboratory but also offer an interesting scenario to set bounds on

non-standard weak charged current interactions complementary to the traditional low-energy

semileptonic probes such nuclear beta decays, purely leptonic lepton, pion and kaon decays

or hyperon decays (see e.g. Refs. [187,192,504–511,539]).

The aim of the present work is to close the circle by extending our previous individual

analyses of the decays τ− → π−π0ντ [519], τ− → (Kπ)−ντ [251], τ− → K−(K0, η(′))ντ [542]

and τ− → π−η(′)ντ [250], carried out using the low-energy limit of the Standard Model

Effective Field Theory Lagrangian (SMEFT) [1,130] up to dimension six, to a global analy-

sis of the strangeness-conserving (∆S=0) and strangeness-changing (|∆S|=1) semileptonic

exclusive tau decays into one and two pseudoscalar mesons. The main advantage of this

EFT framework is that experimental measurements and their implications for New Physics

can be compared unambiguously either at low energies or at the high LHC energies in a

model-independent way [512].

We can anticipate that the bounds for the NP couplings that we get in this work (in the

MS scheme at the scale µ = 2 GeV), obtained from all data available on exclusive τ decays

only, are competitive and found to be in line with those of Ref. [512], which were obtained

analyzing data including both exclusive and inclusive decays. This agreement represents a

good consistency test between exclusive and inclusive determinations.

On the theory side, a controlled theoretical determination, with a robust error band, of

the corresponding form factors within the SM is required in order to increase the accuracy

of the search for non-standard interactions. At present, we have such a knowledge for the

vector and -to a great extent- the scalar form factors, but there are no experimental data

that can help us constructing the tensor form factor and, therefore, it has to be built under

theoretical considerations only.
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The fantastic possibilities offered by the Belle-II experiment [500], and other future Z,

tau-charm and B-factories, to study τ physics and low multiplicity final states with high

precision make these studies of timely interest.

This chapter is organized as follows. The theoretical framework is given in section 5.2

where we briefly present the effective Lagrangian for weak charge current interactions in-

volving light flavours up to dimension six, assuming left-handed neutrinos. The expressions

for the one-and two-meson partial decay width to be used in our fits are also defined in

this section. The description of the corresponding form factors is the subject of section 5.3.

In sections 5.4 and 5.5 we perform fits to the strangeness-conserving (∆S=0) and changing

(|∆S|=1) transitions, respectively, and set bounds on the New Physics effective couplings.

A global fit to both sectors i.e. (|∆S| =0 and 1), is performed in section 5.6. Finally, our

conclusions are presented in section 5.7.

5.2 SMEFT Lagrangian and decay rate

We start out writing the low-energy limit of the Standard Model Effective Field The-

ory Lagrangian including dimension six operators that describes semileptonic τ− → ντ ūD

strangeness-conserving (D = d) or strangeness-changing (D = s) charged current transitions

with left-handed neutrinos. Such Lagrangian reads [504,505]:

LCC = −GFVuD√
2

[
(1 + ετL)τ̄ γµ(1− γ5)ντ · ūγµ(1− γ5)D

+ετRτ̄ γµ(1− γ5)ντ · ūγµ(1 + γ5)D

+τ̄(1− γ5)ντ · ū(ετS − ετPγ5)D

+ετT τ̄σµν(1− γ5)ντ ūσµν(1− γ5)D
]

+ h.c. , (5.1)

where σµν = i[γµ, γν ]/2, GF is the tree-level definition of the Fermi constant and εi (i =

L,R, S, P, T ) are effective couplings characterizing NP. These can be complex, although we
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will assume them real in first approximation since we are only interested in CP conserving

quantities2. The product GFVuD in Eq. (5.1) denotes that its determination from the super-

allowed nuclear Fermi β decays carries implicitly a dependence on εeL and εeR that is given

by [509]

GF Ṽ
e
uD = GF (1 + εeL + εeR)VuD , (5.2)

and that we use for our analysis. Setting the coefficients εi = 0, one recovers the SM

Lagrangian.

The simplest semileptonic decays that can be calculated with the low-energy effective

Lagrangian of Eq. (5.1) are the one-meson decay modes τ− → P−ντ (P = π,K). The

expression for the τ− → π−ντ decay rate reads

Γ(τ− → π−ντ ) = G2
F |Ṽ e

ud|2f 2
πm

3
τ

16π

(
1− m2

π

m2
τ

)2

(1 + δτπem + 2∆τπ +O(ετi )2 +O(δτπemε
τ
i )),(5.3)

where fπ is the pion decay constant, the quantity δτπem accounts for the electromagnetic

radiative corrections and the term ∆τπ contains the tree-level NP corrections that arise from

the Lagrangian in Eq. (5.1)3 that are not absorbed in Ṽ e
ud. For the channel τ− → K−ντ , the

decay rate is that of Eq. (5.3) but replacing Ṽ e
ud → Ṽ e

us, fπ → fK , mπ → mK , and δτπem and

∆τπ by δτKem and ∆τK , respectively.

The amplitude for two-meson decays τ− → (PP ′)−ντ that arises from the Lagrangian

in Eq. (5.1) contains a vector, an scalar and a tensor contribution. The structure of the

amplitude, including a detailed definition of the corresponding hadronic matrix element, can

be found in our previous works i.e in Ref. [519] for π−π0, in Ref. [251] for the (Kπ)− system,

and in Ref. [542] for the cases K−(K0, η(′)), and we therefore have decided not repeat it here

once again.

The resulting partial decay width for two-meson decays is given by (the variable s is the
2The only coupling sensitive to an imaginary part is ετS from the decay τ− → π−ηντ [512] that we do not

consider in this work for lack of data.
3In Eq. (5.3) we have expanded up to linear order on the ετi couplings.
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invariant mass of the corresponding two-meson system):

dΓ
ds

= G2
F |Ṽ e

uD|2m3
τSEW

384π3s

(
1− s

m2
τ

)2

λ1/2(s,m2
P ,m

2
P ′)

×
[

(1 + 2(ετL − εeL + ετR − εeR))XV A + ετSXS + ετTXT + (ετS)2XS2 + (ετT )2XT 2

]
,(5.4)

where

XV A = 1
2s2

{
3
(
CS
PP ′

)2
|F PP ′

0 (s)|2∆2
PP ′ +

(
CV
PP ′

)2
|F PP ′

+ (s)|2
(

1 + 2s
m2
τ

)
λ(s,m2

P ,m
2
P ′)
}
,

XS = 3
smτ

(
CS
PP ′

)2
|F PP ′

0 (s)|2 ∆2
PP ′

md −mu

,

XT = 6
smτ

CV
PP ′ Re

[
F PP ′

T (s)
(
F PP ′

+ (s)
)∗]

λ(s,m2
P ,m

2
P ′) ,

XS2 = 3
2m2

τ

(
CS
PP ′

)2
|F PP ′

0 (s)|2 ∆2
PP ′

(md −mu)2 ,

XT 2 = 4
s
|F PP ′

T (s)|2
(

1 + s

2m2
τ

)
λ(s,m2

P ,m
2
P ′) , (5.5)

with CV
PP ′ and CS

PP ′ being the corresponding Clebsch-Gordan coefficients and where we have

defined ∆PP ′ = m2
P − m2

P ′ . In Eq. (5.4), SEW = 1.0201 [365] resums the short-distance

electroweak corrections and the function λ(x, y, z) = x2 + y2 + z2 − 2xy − 2xz − 2yz is the

usual Kallen function.

The functions F PP ′
0 (s), F PP ′

+ (s) and F PP ′
T (s) in Eq. (5.5) are, respectively, the scalar, the

vector and the tensor form factors, and their respective parametrizations is the subject of

the next section.

5.3 Two-meson form factors

In this section, we provide a brief overview of the description of the scalar, vector and tensor

form factors that we employ in our analysis. It is fundamental to have good control over
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them since they are used as SM inputs for binding the non-standard interactions. We will

not discuss them here at length but rather provide a compilation of the main formulae to

make this work self-contained.

To describe the pion vector form factor we follow the representation outlined in Ref. [28],

and briefly summarized below for the convenience of the reader, and write a thrice subtracted

dispersion relation

F ππ
+ (s) = exp

[
α1s+ α2

2 s
2 + s3

π

∫ scut

4m2
π

ds′

(s′)3
φ(s′)

(s′ − s− i0)

]
, (5.6)

where α1 and α2 are two subtraction constants that can be related to the slope and curvature

appearing in the low-energy expansion of the form factor. The use of a three-times subtracted

dispersion relation reduces the high-energy contribution of the integral where the phase is

less well-known. In Eq. (5.6), scut is a cut-off whose value is fixed from the requirement that

the fitted parameters are compatible within errors with the case scut → ∞. The value of

scut = 4 GeV2 was found to satisfy this criterion [28], and variations of scut were used to

estimate the associated systematic error. For the input phase φ(s) we use [28]

φ(s) =



δ1
1(s) 4m2

π ≤ s < 1 GeV2 ,

ψ(s) 1 GeV2 ≤ s < m2
τ ,

ψ∞(s) m2
τ ≤ s .

(5.7)

This phase consists in matching smoothly at 1 GeV the phase ψ(s), that we will explain in

the following, to the phase-shift δ1
1(s) solution of the Roy equations of Ref. [231]. We thus

exploit Watson’s theorem [227]4. The phase δ1
1(s) encodes the physics of the ρ-meson, it is

totally general and provides a phase which perfectly agrees with the P -wave ππ experimental

data within the elastic region. For ψ(s), we use a physically motivated parametrization that

contains the physics of the inelastic regime until m2
τ . This phase can be extracted from the

4Watson’s theorem applied to the pion vector form factor tells us that the form factor phase equals that
of the two-pion scattering within the elastic region.
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Figure 5.1: Belle measurement of the modulus squared of the pion vector form factor [18] as
compared to our fits [28].

relation

tanψ(s) = Imfππ+ (s)
Refππ+ (s) , (5.8)

where fππ+ (s) includes the contributions from the excited resonances ρ′ and ρ′′ that cannot

be neglected. The expression of fππ+ (s) that we use for our study is given by Eq. (17) of

Ref. [28]. Finally, for the high-energy region, we guide smoothly the phase to π at m2
τ

(ψ∞(s)) to ensure the correct asymptotic 1/s fall-off of the form factor [544]5.

Armed with this parametrization, in [28] we have analyzed the high-statistics Belle data

[18] on the pion vector form factor. The outcome that better illustrates the resulting analysis,

and that we use for this work, is displayed in Fig. 5.1, where the red error band denotes the

statistical fit uncertainty6.

The corresponding vector form factors for the (Kπ)−, K−K0 and K−η(′) systems can

be obtained following a similar dispersive procedure. We do not show here the explicit

expressions that we use for our analysis but rather provide a graphical account of their

applications (of some) against the Belle τ− → KSπ
−ντ (red solid circles) [22] and τ− →

K−ηντ (green solid squares) [29] experimental data (Fig. 5.2) and refer the interested reader

to Refs. [28,30,410,428], where they are derived and explained in detail. As seen, the KSπ
−

5In fact, this behavior it is not guaranteed because the subtraction constants in Eq. (5.6) are fixed from a
fit to data. However, we have checked that our form factor is indeed a decreasing function of s (apart from
the resonance peak structures) within the entire range where we apply it.

6In [28], we have also estimated potential systematic uncertainties.
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Figure 5.2: Belle τ− → KSπ
−ντ (red solid circles) [22] and τ− → K−ηντ (green solid squares) [29]

measurements as compared to our best fit results in [30] (solid black and blue lines, respectively)
obtained from a combined fit to both data sets. The small scalar contributions are represented by
black and blue dashed lines.

spectrum is dominated by the K∗(892) resonance, whose peak is neatly visible, followed by

a mild shoulder due to the heavier K∗(1410). There is no such a clear peak structure for

the K−η channel as a consequence of the interplay between both K∗ resonances. In all,

satisfactory agreement with data is seen for all data points.

Regarding the scalar form factors we take: the phase dispersive representation of the

π−π0 scalar form factor from Ref. [513] while for the K−K0 ones, we use the results of

Refs. [565–567]7. These were obtained after the unitarization, based on the method of

N/D, of the complete one-loop calculation of the strangeness conserving scalar form factors

within U(3) ChPT. Finally, for the Kπ and Kη(′) scalar form factors, we employ the well-

established results of Ref. [412] derived from a dispersive analysis with three coupled channels

(Kπ,Kη,Kη′) 8. As one can observe in Fig. 5.2, the Kπ scalar form factor contribution,

although small, is important to describe the data immediately above threshold, while the

Kη one is irrelevant for the decay distribution.

We next turn to the tensor form factor. This is the most difficult input to be reliably
7We thank very much Zhi-Hui Guo for providing us tables with the unitarized πη, πη′ and K0K̄0

scalar form factors. We translate the result of K0K̄0 to the K−K0 concerning us through FK
−K0

0 (s) =
−FK0K̄0

0 (s)/
√

2.
8We are very grateful to Matthias Jamin and Jose Antonio Oller for providing us their solutions in tables.
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estimated since there are no experimental data that can help its construction. Therefore,

we shall rely on theoretical considerations only. The key observation is that the tensor form

factor admits an Omnès dispersive representation [251,427,519,542,568]. We thus write the

general two-meson (PP ′) tensor form factor as

F PP ′

T (s) = F PP ′

T (0) exp
[
s

π

∫ scut

sth

ds′

s′
δPP

′
T (s′)

(s′ − s− i0)

]
, (5.9)

where sth = (mP + mP ′)2 is the corresponding two-meson production threshold, and where

in the elastic region, the phase of the tensor form factor equals the P -wave phase of the

corresponding vector one i.e. δPP ′T (s) = δPP
′

+ (s). We will assume the previous relations also

hold above the onset of inelasticities until m2
τ where we guide smoothly the tensor phase to

π as in Ref. [28] to ensure the asymptotic 1/s behavior dictated by perturbative QCD [544].

Lacking precise low-energy information, we do not increase the number of subtractions,

which, in turn, would reduce the importance of the higher-energy part of the integral, but

rather cut the integral at different values of scut e.g. scut = 4, 9 GeV2, and consider the

difference with respect to the case scut → ∞, that we take as a baseline hypothesis, as an

estimate of our (uncontrolled) theoretical systematic uncertainty for the results presented in

the following sections. For the required normalization F PP ′
T (0), we take the corresponding

ChPT based results derived in [251, 519, 542] obtained with the use of the corresponding

determination on the lattice [514]. In these references, a graphical account of the energy-

dependence of the tensor form factors is also shown.

5.4 New Physics bounds from ∆S = 0 decays

We start with the individual analysis of the decay mode with lowest multiplicity, τ− → π−ντ .

Taking the decay rate given in Eq. (5.3) and using fπ = 130.2(8) MeV from the lattice9 [377]

together with δτπem = 1.92(24)%, obtained from a combination of the values given in Refs.
9The pion decay constant determined from data cannot be employed as it may be contaminated with NP

effects.
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[277, 291, 569], and the PDG reported values [541] for: |Ṽ e
ud| = 0.97420(21) from nuclear β

decays, the measured branching ratio BR(τ− → π−ντ ) = 10.82(5)%, mπ = 0.13957061(24)

GeV, mτ = 1.77686(12) GeV, Γτ = 2.265× 10−12 GeV and GF = 1.16637(1)× 10−5 GeV−2,

we get the constraint:

ετL − εeL − ετR − εeR −
m2
π

mτ (mu +md)
ετP = (−0.12± 0.68)× 10−2 , (5.10)

where the uncertainty is dominated by fπ, followed by the error of branching ratio and the

radiative corrections uncertainty. The central value in Eq. (5.10) shows a slight difference

with respect to the result of [512], (−0.15± 0.67)×10−2, that we may attribute to a different

numerical input.

We next perform a simultaneous fit to one and two meson strangeness-conserving ex-

clusive hadronic tau decays. For our analysis, we consider the following observables: the

high-statistics τ− → π−π0ντ experimental data reported by the Belle collaboration [18], in-

cluding both the normalized unfolded spectrum and the branching ratio, and the branching

ratios of the decay τ− → K−K0ντ and of the one-meson τ− → π−ντ transition. The χ2

function to be minimized in our fits is

χ2 =
∑
k

N̄ th
k − N̄

exp
k

σN̄exp
k

2

+
(
BRth

ππ −BRexp
ππ

σBRexp
ππ

)2

+
(
BRth

KK −BR
exp
KK

σBRexp
KK

)2

+
(
BRth

τπ −BRexp
τπ

σBRexp
τπ

)2

,

(5.11)

where N̄ th
k relates the decay rate of Eq. (5.4) for τ− → π−π0ντ to the normalized distribution

of the measured number of events through

1
Nevents

dNevents

ds
= 1

Γ(ετi , εej)
dΓ(s, ετi , εej)

ds
∆bin , (5.12)
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where Nevents is the total number of measured events and ∆bin is the bin width. N̄ exp
k and

σN̄exp
k

in Eq. (5.11) are, respectively, the experimental number of events and the corresponding

uncertainties in the k-th bin. The unfolded distribution measured by Belle is available in 62

equally distributed bins with bin width of 0.05 GeV2. The second, third and fourth terms

in the χ2 function Eq. (5.11) are data points that are used as a constraint of the branching

ratios of τ− → π−π0ντ (BRexp
ππ = 25.49(9)%), of τ− → K−K0ντ (BRexp

KK = 1.486(34)× 10−3)

and of τ− → π−ντ (BRexp
τπ = 10.82(5)%) [541].

The bounds for the non-SM effective couplings resulting from the global fit are found to

be (in the MS scheme at scale µ = 2 GeV)



ετL − εeL + ετR − εeR

ετR + m2
π

2mτ (mu+md)ε
τ
P

ετS

ετT


=



0.5± 0.6+2.3
−1.8

+0.2
−0.1 ± 0.4

0.3± 0.5+1.1
−0.9

+0.1
−0.0 ± 0.2

9.7+0.5
−0.6 ± 21.5 +0.0

−0.1 ± 0.2

−0.1± 0.2+1.1
−1.4

+0.0
−0.1 ± 0.2


× 10−2, (5.13)

with χ2/d.o.f.∼ 0.6, and where the first error is the statistical fit uncertainty while the

associated (statistical) correlation matrix (ρij) is

ρij =



1 0.684 −0.493 −0.545

1 −0.337 −0.372

1 0.463

1


. (5.14)

The second error in Eq. (5.13) is the dominant one and comes from the theoretical uncer-

tainty associated to the pion vector form factor (cf. Fig. 5.1), while the third and fourth ones

are systematic uncertainties coming, respectively, from the error of the quark masses and

from the uncertainty associated to the corresponding tensor form factors. The systematic

errors, here and hereafter, have been obtained by taking the difference of the central values

that are obtained while varying the corresponding inputs with respect to the reported central

fit values.
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Comparing our limits10 in Eq. (5.13) with the bounds, εµS = (−0.039± 0.049)× 10−2 and

εµT = (0.05 ± 0.52) × 10−2 [509], obtained from semileptonic kaon decays involving muons,

and with those from hyperon decays [507], where |εS| < 4 × 10−2 and |εT | < 5 × 10−2 are

found at a 90% C.L., we conclude that while it is impossible to compete with the limits on

εS coming from K`3 decays, our analysis yields a very competitive constraint on the coupling

εT .

Our results are in accord with those of [512]11, which were obtained through a combina-

tion of inclusive and exclusive (strangeness-conserving) tau decays, but for the limit on the

coefficient ετS. Ours is much weaker, but still compatible within errors with, the bounds set

in [250,512], since we are not using the τ− → π−ηντ decay in the global fit for lack of exper-

imental measurements. The differing bound on εS obtained with and without the πη mode

increases the interest of its measurement and demands improved theoretical understanding

accordingly.

5.5 New Physics bounds from |∆S| = 1 decays

The lowest multiplicity strangeness-changing tau decay is τ− → K−ντ , which can be used

to restrict the combination of the couplings of the left-hand side of Eq. (5.10), but replacing

md → ms and mπ → mK and with the ε’s corresponding to u → s transitions12. Using the

lattice calculation of fK = 155.7(7) MeV [377], the radiative corrections δτKem = 1.98(31)%

from Refs. [277, 291, 569] and |Ṽ e
us| = 0.2231(7), BR(τ− → K−ντ ) = 6.96(10) × 10−3 and

10For the comparison, here and throughout the rest of the paper, we need to assume lepton universality
because our study involves the tau lepton, while theirs electrons and muons. Given the smallness of possible
lepton universality violations, this is enough for current precision. We have also assumed that the correspond-
ing CKM matrix elements do not change under NP interactions, which is the case if ε(lud) = ε(lus) [549].

11We would like to notice that our fit to ∆S = 0 processes is not sensitive to the coefficients ετP and ετR
individually but rather to a combination of them (given by the second row in Eq. (5.13)). However, as we will
see in section 5.6, one can still fit them separately if one performs a global fit including strangeness-changing
decays. This is also the case in the next section.

12In the chiral limit ετP is the same as in Eq. (5.10).
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mK = 0.493677(16) GeV from the PDG [541] as numerical inputs, we obtain the constraint:

ετL − εeL − ετR − εeR −
m2
K

mτ (mu +ms)
ετP = (−0.41± 0.93)× 10−2 . (5.15)

where the error is dominated by fK and |Vus| followed by the branching ratio and the radiative

corrections uncertainty.

Analogously to the previous section, we next analyze strangeness-changing exclusive tran-

sitions with one and two mesons in the final state simultaneously. In particular, we fit the

τ− → KSπ
−ντ Belle spectrum [22]13 including the measured branching ratio, BRexp

Kπ =

0.404(2)(13)%, as experimental datum to constrain the fit. The PDG branching ratio [541]

of the decays τ− → K−ηντ (BRexp
Kη = 1.55(8) × 10−4)14 and τ− → K−ντ (BRexp

τK =

6.96(10)× 10−3) are also added as external restrictions to the fit. The decay τ− → K−η′ντ

has not been detected yet, there is only an upper limit at the 90% confidence level placed

by BaBar [433] and we therefore have decided to not include it in our analysis. Hence, the

χ2 function to be minimized in this case is chosen to be

χ2 =
∑
k

N̄ th
k − N̄

exp
k

σN̄exp
k

2

+
(
BRth

Kπ −BR
exp
Kπ

σBRexp
Kπ

)2

+
BRth

Kη −BR
exp
Kη

σBRexp
Kη

2

+
(
BRth

τK −BR
exp
τK

σBRexp
τK

)2

,

(5.16)

where now N̄ th
k refers to the KSπ

− decay mode and its expression is given by

dNevents

d
√
s

= Nevents

Γ(ετi , εej)
dΓ(
√
s, ετi , ε

e
j)

d
√
s

∆bin . (5.17)

13We thank the Belle collaboration, in particular S. Eidelman, D. Epifanov and B. Shwartz, for providing
their data and for useful discussions.

14While the τ− → K−ηντ decay spectrum has been measured by Belle [29], unfolding detector effects has
not been performed and we therefore have decided to include only the branching ratio in our study.
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The number of events is Nevents = 53113.21, the bin width is ∆bin = 11.5 MeV [22] and the

number of fitted data points is 86 for the spectrum15, together with the respective branching

ratios used as a constraint: thus 89 data points in total.

In this case, the limits for the NP effective couplings are found to be (in the MS scheme

at scale µ = 2 GeV)



ετL − εeL + ετR − εeR

ετR + m2
K

2mτ (mu+ms)ε
τ
P

ετS

ετT


=



0.5± 1.5± 0.3

0.4± 0.9± 0.2

0.8+0.8
−0.9 ± 0.3

0.9± 0.7± 0.4


× 10−2, (5.18)

where the first error is the statistical fit uncertainty while the second one is a systematic

uncertainty due to the tensor form factor. Differently to Eq. (5.18), the uncertainty associated

to the kaon vector form factor and to the quark masses is negligible.

The (statistical) correlation matrix associated to the results of Eq. (5.18) is

ρij =



1 0.854 −0.147 0.437

1 −0.125 0.373

1 −0.055

1


, (5.19)

with χ2/d.o.f.∼ 0.9.

Notice that ρ12 in Eq. (5.19) is large (it was also the largest element in Eq. (5.14)). As we

will see in section 5.6, where we will perform a global fit to both ∆S = 0 and |∆S| = 1 sectors

and obtain both ετR and ετP independently, this is due to the strong correlation between ετR

and ετP .

The limits obtained from the |∆S| = 1 transitions in Eq. (5.18) serve as a consistency
15The points corresponding to bins 5,6 and 7 are difficult to bring into accord with theoretical parametriza-

tions, even when non-standard interactions are considered [251], and have been excluded from the minimiza-
tion. The first point has not been included either, since the centre of the bin lies below the KSπ

− production
threshold. We have furthermore excluded data corresponding to bin numbers larger than 90 following a sug-
gestion from the experimentalists.
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check upon comparison with those of Eq. (5.13) from the ∆S = 0 ones. As one can observe,

the results of the first and second lines in Eq. (5.18) are found to be in line with those from

Eq. (5.13). As for the central value of the coefficient ετS(ετT ) from the |∆S| = 1 sector, it has

decreased(increased) by about one order of magnitude with respect to the ∆S = 0 one; the

ετS coupling is now more competitive while ετT has changed sign. We can anticipate, however,

that the global fit in section 5.6 benefits from εT from the ∆S = 0 decays and from εS from

the |∆S| = 1 ones.

5.6 New Physics bounds from a global fit to both ∆S =

0 and |∆S| = 1 sectors

In this section, we close our exploratory analysis by performing a global fit to both ∆S = 0

and |∆S| = 1 sectors simultaneously. The participant |Vud| and |Vus| elements of the CKM

matrix to be used in this case are not independent but rather correlated according to [377]

|Vus|
|Vud|

= 0.2313(5) . (5.20)

For our analysis, we take |Vus| = 0.2231(7) [541] and extract |Vud| through Eq. (5.20).

The χ2 function to be minimized in the global fit includes all the quantities in Eqs. (5.11)

and (5.16) that were used for the individual analysis of the ∆S = 0 and |∆S| = 1 transitions,

respectively. The resulting limits for the NP effective couplings are (in the MS scheme at
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scale µ = 2 GeV)



ετL − εeL + ετR − εeR
ετR

ετP

ετS

ετT


=



2.9 ±0.6 +1.0
−0.9 ±0.6 ±0.0 ±0.4 +0.2

−0.3

7.1 ±4.9 +0.5
−0.4

+1.3
−1.5

+1.2
−1.3 ±0.2 +40.9

−14.1

−7.6 ±6.3 ±0.0 +1.9
−1.6

+1.7
−1.6 ±0.0 +19.0

−53.6

5.0 +0.7
−0.8

+0.8
−1.3

+0.2
−0.1 ±0.0 ±0.2 +1.1

−0.6

−0.5 ±0.2 +0.8
−1.0 ±0.0 ±0.0 ±0.6 ±0.1


× 10−2 ,

(5.21)

where the first error is the statistical error resulting from the fit, the second one comes from

the uncertainty on the pion vector form factor, the third error corresponds to the CKM

elements |Vud| and |Vus|, the fourth one is due to the radiative corrections δτπem and δτKem ,

the fifth estimates the (uncontrolled) systematic uncertainty associated to the tensor form

factor, while the sixth, and last error, is due to the errors of the quark masses.

The (statistical) correlation matrix associated to the limits of Eq. (5.21) is

A =



1 0.055 0.000 −0.279 −0.394

1 −0.997 −0.015 −0.022

1 0.000 0.000

1 0.243

1


, (5.22)

with χ2/d.o.f.∼ 1.38.

As anticipated in the previous section, the combined fit yields an independent determina-

tion of the couplings ετR and ετP which, in turn, carry a large statistical (and systematic) error.

This originates in the fact that these parameters are almost 100% correlated (cf. Eq. (5.22)).

For the combination of the couplings of the first line in Eq. (5.21), our limits are competitive

and within errors with [512]. Regarding ετS, our limit is not competitive and disagrees with

the values of Refs. [250,512], where a constraint for ετS was placed from the isospin-violating

decay τ− → π−ηντ . We do not take into account this channel here since it has not been mea-
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sured yet; only an upper bound exists. Finally, our bound for ετT is competitive and found

to be in agreement with [512, 519]. We would like to note that the uncertainty associated

to the CKM elements dominates the error of those coefficients in Eq. (5.21) for what we get

competitive bounds. Therefore, future lattice results can result in tighter constraints. After

the completion of this work, Ref. [570] appeared, analysing both the strangeness-changing

and -conserving sectors. A very interesting study of solutions to the unitarity puzzle in the

u quark couplings is given therein.

Our limits on the NP effective couplings Eq. (5.21) can be translated into bounds on the

corresponding NP scale Λ through the relation

Λ ∼ v (VuDεi)−1/2 , (5.23)

where v = (
√

2GF )−1/2 ∼ 246 GeV. Our bounds can probe scales as high as ∼ O(5) TeV,

which are quite restricted compared to the energy scale probed in semileptonic kaon decays

i.e. O(500) TeV [509].

5.7 Conclusions

This work highlights that hadronic tau lepton decays remain to be not only a privileged

tool for the investigation of the hadronization of QCD currents but also offer an interesting

scenario as New Physics probes.

In this work, we have performed a global analysis of strangeness-conserving (∆S = 0)

and strangeness-changing (|∆S| = 1) exclusive hadronic τ decays into one and two mesons.

From the current experimental measurements of the corresponding decay spectra and/or

branching ratios, we have set bounds on the NP effective couplings of the low-energy (di-

mension six) Standard Model Effective Field Theory Lagrangian. This has been possible due

to a controlled theoretical determination of the necessary Standard Model hadronic input

i.e. the form factors. For the description of the corresponding vector and scalar form factors,

we have employed previous results, based on constraints from Chiral Perturbation Theory
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supplemented by dispersion relations, that show a nice agreement with the rich experimental

data provided by the experiments. On the other hand, as there is no experimental data that

can help us constructing the corresponding tensor form factors, they have been built under

theoretical arguments only.

In general, our bounds on the NP couplings, Eqs. (5.13), (5.18) and (5.21), are compet-

itive. This is specially the case for the combination of couplings ετL − εeL + ετR − εeR, which

is found to be in accord with the constraints placed from a combination of inclusive and

exclusive (strangeness-conserving) tau decays [512], and for ετT , that can even compete with

the constraints set by the theoretically cleaner K`3 decays (for the comparison, lepton flavor

universality is assumed as mentioned throughout the main text). Our separate fits to both

∆S = 0 and |∆S| = 1 decays reflect that we are not sensitive to the coefficients ετP and ετR

individually but rather to a combination of them. It is still possible to fit them separately

performing a global fit to both ∆S = 0 and |∆S| = 1 sectors simultaneously. However, they

carry a large error bar whose origin stems from the very strong correlation between them.

As for ετS, it is impossible to compete with the limits coming from K`3 decays. Our limit,

however, is found to be much weaker than previous constraints from tau decays. This is

due to the fact that, for lack of experimental data, the decay τ− → π−ηντ has not been

taken into account in our analysis. These different bounds on ετS obtained with and without

the πη mode thus increase the interest of its measurement and demands refined theoretical

descriptions accordingly.

Our study is presently limited by the fact that the Standard Model form factors, the

input parameters of which have been fitted to data previously, may have absorbed some

NP information, if this is in the data. We have tried to address this drawback through fits

where not only the NP effective couplings are treated as free parameters to fit but also the

Standard Model input parameters entering the corresponding form factors. In doing so, we

have too many free parameters to fit and found no sensitivity to the NP couplings. This is

indeed interesting to prove in the future, with a higher-quality data, but at present is not

feasible. We thus hope our work can serve to encourage the experimental tau physics groups
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at Belle-II to measure these decays with higher accuracy.
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Chapter 6

Hadronic contribution to the vacuum

polarization of the muon anomalous

magnetic moment

6.1 Introduction

The muon (µ−), like the much lighter electron (e−) or the much heavier tau (τ−) particle, is

one of the 3 known charged leptons: elementary spin 1/2 fermions of electric charged −1 (in

units of the positron charge e). Each of the leptons has its positively charged antiparticle, the

positron e+, the µ+ and the τ+, respectively, as required by any local relativistic quantum

field theory [571]. One of the most precisely measured quantities in particle physics is the

muon anomalous magnetic moment (aµ) 1. A long-standing discrepancy between theory and

experiment about 3− 4 standard deviations has been observed.

The agreement between the latest measurement performed at Fermilab National Acceler-

ator Laboratory (FNAL) Muon g− 2 Experiment [96] with the previous one at Brookhaven
1Only ae is more precise, its measurements allow to fix α(0).
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[95], allows to combine them and get

aExp
µ = 116 592 061(41)× 10−11 (0.35 ppm).

The latest SM prediction [6] is

aSM
µ = 116 591 810(43)× 10−11 (0.37 ppm).

Therefore, the difference, ∆aµ = aExp
µ − aSM

µ = (251± 59)× 10−11, increases the significance

to 4.2σ. This deviation from the Standard Model could be a sign of New Physics around

the corner.

In this chapter, we will discuss briefly the SM contributions to aµ, and a description of

the data used as input in the data-driven computation of the HVP contribution. Further

details can be found in the White Paper (WP) of the Muon g− 2 Theory Initiative [6] or in

the several reviews concerning this topic (e.g. Refs. [31,572,573]).

6.2 Theoretical calculations of aµ

The prediction of the anomalous magnetic moment in the SM is determined from the sum

of all sectors of the SM [31]:

aSM
µ = aQED

µ + aEW
µ + aHVP

µ + aHLbL
µ , (6.1)

where aQED
µ are the QED contributions, aEW

µ are the electro-weak (EW) contributions,

aHVP
µ are the hadronic vacuum polarization (HVP) contributions and aHLbL

µ are due to con-

tributions from hadronic light-by-light (HLbL) scattering, see Fig. 6.1.

6.2.1 QED contributions

The QED contributions to aµ include those from leptons and photons alone and have been

completely calculated up to five-order. All contributions up to and including four-loop have
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Figure 6.1: SM contributions to aµ. The diagrams shown (from left to right) correspond to the
one-loop QED diagram, the one-loop EW diagram involving Z-boson exchange, the leading-order
HVP diagram and HLbL contributions. Reprinted from Ref. [31].

been determined and verified by different groups, from both numerical and analytical cal-

culations [6]. The four-loop universal contribution has been calculated analytically with an

impressive precision (∼ 1100 digits) [574] and is consistent with the numerical computa-

tions [575]. The overall five-loop contribution, which includes 12 672 Feynman diagrams, has

been calculated numerically [32,576] with independent cross checks [577–580]. The five-loop

Feynman diagrams are shown in Fig. 6.2. The value for the QED contribution is then

aQED
µ = 116 584 718.931(104) · 10−11, (6.2)

where the given error is the quadrature sum of errors because of the τ -lepton mass, four-

loop QED, five-loop QED, an estimate of the six-loop QED [6,32,576] and the fine-structure

constant α [581].

6.2.2 EW contributions

Diagrams that contain at least one of the EW bosons (W , Z, or Higgs) comprise the EW

contributions to aµ. The one-loop Feynman diagrams are depicted in Fig. 6.3. These sorts

of contributions may include QED and hadronic effects, but no EW processes enter in the

estimation of the QED, HVP and HLbL parts. Thanks to the masses of the EW bosons, the

EW contributions are highly suppressed. These have been computed up to two-loop and the

three-loop contributions have been estimated [582,583].

The value for aEW
µ is [6, 582,583]

aEW
µ = 153.6(1.0) · 10−11, (6.3)
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Figure 6.2: Five-loop QED diagrams. The overall QED contribution to aµ involves 12 672 dia-
grams. The straight and wavy lines denote lepton and photon propagators, respectively. Reprinted
from Ref. [32].

Figure 6.3: One-loop EW Feynman diagrams. Reprinted from Ref. [6].
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(a) (b) (c)

Figure 6.4: HVP Feynman diagrams at LO and NLO (a)-(c). The gray blobs refer to hadronic
VP while the white one refers to leptonic VP. Reprinted from Ref. [6].

where the uncertainty involves the two-loop hadronic effects, neglected two-loop terms,

and unknown three-loop contributions. The non-perturbative hadronic insertions that enter

at two loops significantly govern the uncertainty of the EW contributions and are small

compared to the HVP or HLbL sector uncertainties, due to the EW suppression.

6.2.3 HVP contributions

The contributions in the third diagram in Fig. 6.1 account for the so-called HVP con-

tributions. This sector can be estimated from data-driven approaches, using measured

e+e− → hadrons data as input into dispersion relations, or from Lattice QCD.

Data-driven HVP

The HVP contribution can be computed utilizing a combination of all e+e− → hadrons cross

section data, σhad(s) ≡ σ0(e+e− → hadrons +(γ)), which is inclusive of final state radiation

effects and where the superscript ‘0’ indicates the cross section is bare, i.e. excluding all

vacuum polarization effects. The LO and NLO HVP contributions are shown in Fig. 6.4.

More than 35 exclusive hadronic channels (final states) from different experimental col-

laboration must be combined (Fig. 6.5). Hadronic cross-section data are either obtained

from direct scan measurements (for instance, CMD-2, SND, KEDR) or via the method of

radiative return (for instance, BaBar, KLOE, BESIII), see below for more details. The com-

binations of data are accomplished channel-by-channel to determine individual contributions

to aHVP
µ , which are then summed. These combinations are not trivial, since the combined

result needs to be an accurate representation of the differing data and their uncertainties.
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Figure 6.5: Contributions to the total hadronic cross section (expressed as the hadronic R-ratio,
R(s) = σhad(s)/(4πα2/(3s))) from different final states below

√
s ∼ 2 GeV. The total hadronic

cross section is depicted in light blue and each final state is included as a new layer on top in
decreasing order of the size of its contribution to aHVP LO

µ . Reprinted from Ref. [33].

The dominant channel corresponds to the two pion channel, that contributes more than 70%

of the total HVP. Fortunately, final states, thresholds contributions, or resonances for which

there are no data are safely estimated. The estimation of the missing channels amounts to

less than 0.5% of aHVP
µ [6, 48, 81].

There are some data-driven evaluations of aHVP
µ that differ in the treatment of the data as

well as the assumptions made on the functional form of the form factors. The DHMZ [48,81]

and KNT [33, 47] groups use directly the bare cross section. The CHHKS group reach

an alternative approach, where they applied additional constraints from analyticity and

unitarity to evaluate the π0γ, 2π and 3π channels [237, 584, 585] 2. The outcomes from

these three groups have been combined in a conservative procedure to account for differ-

ences between groups and tensions between data sets. The combination yields aHVP LO
µ =

6 931(40) · 10−11 [6], with the corresponding results for the aHVP NLO
µ = −98.3(7) · 10−11 [47]

and aHVP NNLO
µ = 12.4(1) · 10−11 [586] amounting the total HVP contribution of [6]

aHVP
µ = 6 845(40) · 10−11. (6.4)

2DHMZ also applied similar constraints for the two-pion channel [48].
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Further details about all data-driven determinations of aHVP
µ , which include those from

other groups not used in the merged result, can be found in Ref. [6]. Prospects to improve the

data-driven estimation of aHVP
µ lie in new e+e− → hadrons cross section measurements, spe-

cially those of the π+π− channel. New π+π− data sets are expected from CMD-3, BABAR,

BESIII [587] and Belle-II. The CMD-3 result is projected to be the most statistically precise

of all the current measurements in the 2π channel, with systematic uncertainties ranging

from 0.6− 1%.

Similarly, the e+e− data is used to evaluate the five-flavor hadronic contribution to the

running QED coupling at the Z-pole, ∆α(5)
had(M2

Z). This quantity is an essential input to

global EW fits and, then, predictions of the EW fit parameters (for instance, the Higgs

mass). This connection has been exploited in various works [588–592]. In order to bridge

∆aµ, shifts in σhad were studied in Ref. [590], they found that these shifts are excluded above
√
s ∼ 0.7 GeV at 95% C.L. Nonetheless, prospects for ∆aµ originating below that energy

were deemed improbable given the required increases in the hadronic cross section.

Further opportunities to study the HVP contributions are expected from the MUonE ex-

periment [593,594], which is a proposed approach to evaluate the leading hadronic corrections

to the muon g− 2 purely from experiment (spacelike data instead of timelike measurements,

which avoids the difficulties intrinsic to resonances).

HVP from Lattice QCD

Determining the HVP contribution from lattice QCD is achieved by applying Euclidean

spacetime discretization of the vacuum polarization tensor Πµν(Q2) for space-like Q2 in finite

volumes and with finite lattice spacing, which is thus taken to continuum and infinite-volume

limits. It is possible to perform comparison between different lattice groups thanks to the

ability to split the calculation of aHVP LO
µ at O(α2) according to quark-connected (conn) and

quark-disconnected (dis) contributions as

aHVP LO
µ (α2) = aHVP LO

µ,conn + aHVP LO
µ,dis . (6.5)
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Since the different quark flavor-connections result in different statistical and systematic

uncertainties, it is suitable to separate them as

aHVP LO
µ,conn = aHVP LO

µ (ud) + aHVP LO
µ (s) + aHVP LO

µ (c) + aHVP LO
µ (b), (6.6)

where ud represents the contributions of the light u and d quarks (mu = md) and s, c

and b are the strange, charm and bottom quark contributions, respectively. Current lat-

tice calculations include strong and electromagnetic isospin-breaking corrections δaHVP LO
µ

as aHVP LO
µ = aHVP LO

µ (α2) + δaHVP LO
µ . The determination of the isosymmetric flavor terms

in Eq. (6.6) and the corrections δaHVP LO
µ are prescription and scheme dependent, giving

rise to different and comparable results between lattice calculations. A complete discussion

of the different methods and analysis choices is given in Ref. [6]. Fortunately, all lattice

prescriptions have common features. Thus, all results are extrapolated to the continuum

and infinite-volume limits and interpolated or extrapolated to the physical point. The errors

contain both statistical and systematic uncertainties, where the systematics appear from

common issues faced by all analyses: long-distance effects, finite-volume effects, discretiza-

tion effects, scale setting, chiral extrapolation/interpolation and quark mass tuning.

Outcomes from several lattice groups of the different flavor contributions and the to-

tal estimate of aHVP LO
µ are shown in Fig. 6.6. A combination using a conservative pro-

cedure from the ETM18/19 [34, 35], Mainz/CLS-19 [36], FHM-19 [37, 38], PACS-19 [39],

RBC/UKQCD [40] and BMW-17 [41] leads to [6]

aHVP LO
µ = 711.6(18.4) · 10−10. (6.7)

This value is also shown by a blue band in Fig. 6.6. These results are in the range

between the data-driven approaches and a no-new physics (green band), but generally with

errors too large to make a definitive statement. In consequence, the error on the average

is consistent with both the data-driven approaches and the no-new physics scenario. After

the publication of the WP, there have been two new results from the LM-20 and BMW-20

analyses, aHVP LO
µ [LM − 20] = 714(30) · 10−10 [42] and aHVP LO

µ [BMW − 20] = 707.5(5.5) ·
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Figure 6.6: Results for (aSM
µ − aEXP

µ ) · 1010 when aHVP LO
µ is taken from several lattice [34–46]

and data-driven [47–50] estimates. The filled dark blue circles are lattice results [34–41] that are
included in the lattice average in Ref. [6], which is indicated by the light-blue band. The unfilled
dark blue circles are those results not included in the averages [42–46, 51]. The red squares show
results from data-driven estimation of aHVP LO

µ , where filled squares are those included in the
merged data-driven result [47,48] and unfilled are not [49,50]. The purple triangle shows a hybrid
result where noisy lattice data at very short and long distances are replaced by e+e− → hadrons
data [40]. The yellow band indicates the “no New Physics” scenario, where aHVP LO

µ results are large
enough to bring aSM

µ into agreement with experiment. The grey band in the center of the yellow
one indicates the projected experimental uncertainty from the Fermilab Muon g − 2 experiment.
Reprinted from Ref. [31].
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10−10 [43], respectively. The BMW-20 value is the first lattice result for aHVP LO
µ with sub-

percent precision. This is 1.3σ below the no-new physics scenario and 2.1σ higher than the

recommended data-driven result.

Recently, a new lattice analysis [595] found awin
µ = 237.30(1.46) · 10−10 at the physical

point that agrees with the BMW-20 results in the so-called “intermediate” window observ-

ables [40] 3, for which both the short-distance and long-distance contributions in the integral

representation of aHVP
µ are reduced. However, this result is at odds (∼ 3.8σ above) with

the recent data-drive estimation in Ref. [596], which is awin
µ = 229.4(1.4) · 10−10. In fact,

this result shows further evidence for a strong tension between lattice calculations and the

data-driven approach.

Improvements in the precision of several lattice evaluations of aHVP LO
µ are also ex-

pected [6]. The main difficulties in reducing the uncertainties come from finite-volume ef-

fects, exponentially growing signal-to-noise problems at large Euclidean times, disconnected

contributions, and strong isospin breaking and QED corrections.

6.2.4 HLbL contribution

Contributions from HLbL scattering (Fig. 6.7) represent the process in which an external

soft and on-shell photon interacts though a hadronic blob with three off-shell photons that

are coupled to the muon. These contributions are classified by a four-point function and thus

require calculations that are more difficult than those of the two-point HVP function. Since

the HLbL contributions enter at O(α3), they are suppressed by an additional order α mak-

ing them two orders of magnitude smaller than the HVP ones. The hadronic contributions

to LbL scattering emerge from single mesons (e.g. π0, η, η′, f0(980), a0(980)), axial-vector

mesons (e.g. a1, f1), tensor mesons (e.g. f2, a2) and charged pion and kaon loops. Formerly,

these contributions have been determined through model-dependent estimates from meson

exchanges, the large Nc limit, chiral perturbation theory estimates and short distance con-
3The observable awin

µ accounts for about one third of the total aHVP
µ . When the data-driven evaluation

of awin
µ is subtracted from the WP estimate [6] and replaced by this number, the tension between the SM

prediction for aµ and experiment is reduced to 2.9σ.
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Figure 6.7: HLbL Feynman diagram at LO. The shaded blob represents all possible intermediate
hadronic states. Reprinted from Ref. [46].

straints from the operator product expansion and pQCD [49, 597–600]. Luckily, motivated

by the muon g−2 theory initiative [6], the status of the estimations of aHLbL
µ is now improved

because of newer calculations from data-driven dispersive approaches and from lattice QCD.

Data-driven and dispersive HLbL

Current data-driven and dispersive methods to calculate aHLbL
µ supply a model-independent

evaluation, where possible experimental data are used as input for several hadronic insertions

and, when data are not available, theoretical calculations of the amplitudes can be employed.

Additionally, there are being some improvements in the model-dependent estimates for the

sub-leading contributions [601–607]. The HLbL tensor can be splitted into the sum of all

intermediate states in direct and crossed channels as Πµνλσ = Ππ0−pole
µνλσ +Ππ−box

µνλσ +Πππ
µνλσ+ · · · .

It turns out that

aHLbL
µ = aπ

0−pole
µ + aπ−box

µ + aππµ + · · · , (6.8)

aHLbL
µ is realized to be dominated by contributions arising below 1.5 GeV, with the π0-pole

being the most dominant contribution. Other single-particle states (η and η′) are suppressed,

and even more two-pion and two-kaon effects. The expressions for η(′) and two-kaon effects

are straightforward. The main experimental inputs to determine these contributions come

in the form of π, η and η′ transition form factors (TFFs). These data are obtained as either

single-virtual TFFs in the space-like regime from γ∗γ collisions or in the time-like region
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from radiative production in e+e− collisions, single or double Dalitz decays of pseudoscalars,

double-virtual TFFs, or from Dalitz decays of vector mesons.

Detailed descriptions of the dispersive calculations and experimental inputs of each of

the contributions to aHLbL
µ are given in Refs. [608–618]. The values obtained from dispersive

approaches are consistent with those from older estimates, with improved uncertainties.

Summing all the values from the different contributions, the overall dispersive estimate for

aHLbL
µ is then

aHLbL
µ = 92(19) · 10−11, (6.9)

where the final uncertainty is a sum of data-driven errors added in quadrature and model-

dependent errors added linearly [6, 608–618]. The NLO contribution is aHLbL NLO
µ = 2(1) ·

10−11.

HLbL from Lattice QCD

Thanks to the efforts of the Muon g − 2 Theory Initiative [6], the total aHLbL
µ has been

calculated by two lattice groups [619, 620]. In discretized Euclidean spacetime, it has been

determined treating QED both perturbatively and non-perturbatively, in both finite (QEDL)

and infinite volumes (QED∞). Large uncertainties arise from volume errors and non-zero

lattice spacings. In QEDL, aHLbL
µ is recovered by extrapolating to infinite-volume and con-

tinuum limits. Further details about derivations and the methodologies can be found in

Refs. [6, 619, 620]. These two approaches have been tested by replacing quark loops with

lepton loops and have been shown to perform well. Moreover, cross checks have been carried

out between the results of both groups, which exhibit compatibility when checking effects

from lattice spacings and finite/infinite volumes.

After the infinite volume and continuum extrapolations, the outcome from the RBC

computation, with both QED and QCD gauge fields on the finite-volume QEDL is [619]

aHLbL
µ = 78.7(30.6)stat(17.7)sys · 10−11. (6.10)
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Contribution Value×1011 References

Experiment (BNL) 116 592 089(63) Ref. [95]
Experiment (FNAL) 116 592 040(54) Ref. [96]
Experiment (Average) 116 592 061(41) Refs. [95,96]

HVP LO (e+e−) 6 931(40) Refs. [33, 47,48,81,237,585]
HVP NLO (e+e−) −98.3(7) Ref. [47]
HVP NNLO (e+e−) 12.4(1) Ref. [586]
HVP LO (lattice, udsc) 7 116(184) Refs. [35, 36,38–41,46,621]
HLbL (phenomenology) 92(19) Refs. [49, 597,608–618]
HLbL NLO (phenomenology) 2(1) Ref. [622]
HLbL (lattice, uds) 79(35) Ref. [619]
HLbL (phenomenology + lattice) 90(17) Refs. [49, 597,608–619]

QED 116 584 718.931(104) Refs. [32, 576]
Electroweak 153.6(1.0) Refs. [582,583]
HVP (e+e−, LO + NLO + NNLO) 6 845(40) Refs. [33, 47,48,81,237,585,586]
HLbL (phenomenology + lattice + NLO) 92(19) Refs. [49, 597,608–619,622]
Total SM Value 116 591 810(43) Refs. [32, 33,47,48,81,237,576,582,583,585,586,597,608–613,619,622]
Difference: ∆aµ = aexp

µ − aSM
µ 251(59)

Table 6.1: Summary of the contributions to aSMµ . Adapted from Ref. [6].

This number was obtained using several lattice ensembles, with different lattice spacing

and volume, with all particles at their physical masses and including contributions from con-

nected and disconnected diagrams. Although this result is not as precise as the dispersive

HLbL computation, some improvements in precision are expected in the future. In QED∞,

the RBC group has performed preliminary calculations of both connected and leading dis-

connected diagrams with physical masses. A recent estimate from the Mainz group found

aHLbL
µ = 107(15) · 10−11 [620], which is consistent with the result in Ref. [619], but with a

smaller uncertainty.

6.2.5 The SM prediction for aµ

The recommended value for the SM prediction of the anomalous magnetic moment of the

muon is [6]

aSM
µ = 116 591 810(43) · 10−11 (0.37 ppm). (6.11)

The several contributions that enter into aSM
µ are summarized in Table 6.1.
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6.3 Data-driven calculations of HVP

Due to the properties of analyticity and unitarity, the loop integrals containing insertions

of HVP in photon propagators can be expressed in the form of dispersion integrals over the

cross section of a virtual photon decaying into hadrons (optical theorem). This cross section

can be determined in e+e− annihilation, either in direct scan mode, where the energy of the

beam is adjusted to measurements at different center-of-mass (CM) energies, or by relaying

on the method of radiative return, where a collider is operating at a fixed CM energy. The

high statistics on the second one provides with an effective scan over different masses of

the hadronic system through the emission of initial-state photons, whose spectrum can be

calculated and, even in some cases, measured directly. Besides, it is possible to use hadronic

τ decays to determine hadronic spectral functions, which can be related to the required cross

section by means of an isospin rotation.

At leading-order (LO), i.e., O(α2), the dispersion integral is given by [623,624]

aHV P,LOµ = α2

3π2

∫ ∞
M2
π

K(s)
s

R(s) ds, (6.12)

with the kernel function

K(s) = x2

2 (2− x2) + (1 + x2)(1 + x)2

x2

(
log(1 + x)− x+ x2

2

)
+ 1 + x

1− xx
2 log x, (6.13)

where x = 1−βµ
1+βµ , βµ =

√
1− 4m2

µ/s. The kernel is a slowly varying monotonic function,

which goes from the two pion threshold up to large s. R(s) is the so-called (hadronic)

R-ratio defined by

R(s) = σ0(e+e− → hadronic(+γ))
σpt

, σpt = 4πα2

3s . (6.14)

The factor K(s)/s in Eq. (6.12) enhances the contributions at lowest energies. The super-

script in σ0 indicates that the total hadronic cross sections in the dispersion integral must
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be the bare cross section, excluding effects from vacuum polarization (VP) that lead to the

running of the QED coupling. If these effects are included as part of the measured hadronic

cross section, this data has to be “undressed”, i.e., VP effects must be subtracted. Other-

wise, there would be a double counting and, therefore, iterated VP insertions are taken into

account as part of the higher-order HVP contributions.

Contrarily, the hadronic cross section used in the dispersion integral is normally taken to

be inclusive with respect to final-state radiation of additional photons. While this is in con-

tradiction to the formal power counting in α, it is impossible to subtract the real and virtual

photonic FSR effects in hadron production, especially for higher-multiplicity states for which

these QED effects are difficult to model. Since these FSR effects are not included explicitly

in the higher-order VP contributions, this procedure is fully consistent. The threshold for

hadron production is provided by the π0γ cross section and thus the lower limit of the dis-

persion integral is M2
π0 .

There are similar expressions to Eq. (6.12) for the HVP contributions at next-to-leading

order (NLO) [625] and next-to-next-to-leading order (NNLO) [586]. They are more diffi-

cult and require double and triple integrations. The NLO contributions are numerically of

the order of the HLbL contributions, but negative in sign. The NNLO contributions turn

out to be somewhat larger than naively expected and, therefore, should be evaluated as a

nonnegligible component of aHV P,LOµ .

6.3.1 Hadronic cross sections at low energies

At low energies, the total cross section is obtained by summing all possible different final

states. Measurements for more than 35 exclusive channels from different experiments have

been published over many years. At low energies the most important channel is the two-pion

channel, that contributes more than 70% of aHVP,LO
µ . This channel comes mainly from decays

of the ρ meson, with an admixture with the ω. Sub-leading contributions arise from decays
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of the ω and φ in the three-pion and two-kaon channels, and from four-pion final states with

more complicated production mechanism. The interferences between different production

mechanisms are taken into account since we are taking the incoherent sum over distinct final

states. In order to achieve an accurate description of the total cross section it is necessary

to include higher-multiplicity final states (up to six pions) and final states containing pions

and kaons or the η. Contributions for which no reliable data exists, but which are expected

to be non-negligible, have to be estimated, e.g., the case for multi-pion channels consisting

mainly of neutral pions. Such final states can be approximated by assuming isospin symme-

try, which can be used to model relations between measured and unknown channels. The

reliability of such relations is difficult to quantify and is usually mitigated by assigning a

large fractional error to these final states. Nonetheless, with more channels having been

measured in recent years, the role of these isospin-based estimates has been largely reduced.

For leading contributions very close to the threshold, where data is limited, the hadronic

cross section can be estimated based on additional constraints, e.g., from chiral perturbation

theory (χPT ).

Input data

Exclusive measurements

• π+π− channel

Since the contribution from this channel is very important, there has been a large

experimental effort to obtain reliable and precise data. Most old measurements are

now essentially obsolete. The most recent evaluations only use the results obtained in

the last decade or so.

Precise measurements in the ρ region came from Novosibirsk with CMD-2 [626] and

SND [54], revising older results 4. Also, CMD-2 has obtained results above the ρ

region [628], as well as a second set of data across the ρ resonance [629]. Neither
4There were problems with large radiative corrections in previous analyses of CMD-2 [627] and SND [396].
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Figure 6.8: CMD-2 [52, 53] (left) and SND [54] (right) data for e+e− → π+π− in the ρ region.
Reprinted from Ref. [55].

experiment can separate pions and muons, except for near threshold using momentum

measurement and kinematics for CMD-2, with the purpose that the measured quantity

is the ratio (Nππ +Nµµ)/Nee. The pion-pair cross section is obtained after subtracting

the muon-pair contribution and normalizing to the Bhabha events, using computed

QED cross section for both, including their respective radiative corrections. In Fig. 6.8,

these results are corrected for leptonic and hadronic VP, and for photon radiation by

the pions, in such a way that the deduced cross section corresponds to π+π− including

pion-radiated photons and virtual final-state QED effects.

The KLOE [56] and BABAR [20,21] ISR analyses are initially very different. First, the

CM energy is close to the studied energy in the case of KLOE (soft ISR photons), while

it is very far in the BABAR case (hard ISR photons). In KLOE-2008 and KLOE-2012

the ISR photon is not detected and reconstructed kinematically, assuming no extra pho-

tons. Since the cross section strongly peaks along the beams, a large statistics of ISR

events is get. Pion pairs are separated from muon pair with kinematical constraints.

In BABAR, the ISR photon is detected at large angle (about 10% efficiency) with the

intent that the full event is observed, and an additional photon can be included in

the kinematical fit (undetected forward additional ISR or detected ISR/FSR photon).

Another big difference concerns the ISR luminosity: in the KLOE-2008 and KLOE-

2010 analyses it is computed using the NLO PHOKHARA generator [402], while in
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Figure 6.9: The KLOE e+e− → π+π− measurement in the ρ region obtained in three experimental
configurations [56–58]. Adapted from Ref. [58].

BABAR both pion and muon pairs are measured and the ratio ππ(γ)/µµ(γ) directly

gives the ππ(γ) cross section. The small-angle ISR photon provides a suppression of the

sizeable LO |FSR|2 contribution in KLOE, and the remaining part is computed from

PHOKHARA. In BABAR, the |FSR|2 contribution is negligible because of the large

value of s. The KLOE method with small-angle undetected ISR photons also reduces

the range of ππ masses on the low side because of the limited angular acceptance of

the detector. To solve this problem, the analyses of KLOE-2010 were performed with

large-angle ISR [57]. Finally, the KLOE-2012 measurement [58] was obtained using

the same ratio method as BABAR (Fig. 6.9), but with undetected small-angle ISR

photons. This ratio is taken in small mass bin (6 MeV) for KLOE, while for BABAR

larger intervals (50 MeV) are used in order to reduce statistical fluctuations on the

individual cross sections values, using the expected variation of the µµ(γ) cross section

within each interval and the bin-to-bin correlations in the covariance matrix.

The three KLOE measurements have been recently combined utilizing the correlations

between the different data sets [88]. The combination method was intended at pro-

viding a coherent KLOE data set with a fully consistent treatment of uncertainties
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Figure 6.10: BABAR results [20, 21] using the large-angle ISR method: e+e− → µ+µ− compared
to NLO QED (top) and e+e− → π+π− from threshold to 3 GeV utilizing the ππ/µµ ratio (bottom).
Reprinted from Ref. [21].

between the three analyses.

To reduce systematic uncertainties, the BABAR method includes the simultaneous

measurement of the process e+e− → µ+µ−, which by itself can be inspected against

the QED prediction taking into account the e+e− luminosity. The comparison of the

BABAR data with NLO QED displays a good agreement from threshold to 3 GeV

within a total uncertainty of 1.1%, governed by the luminosity uncertainty (Fig. 6.10).

Recent results with the ISR method in the charm region and large-angle ISR tagging

have been obtained by BESIII [59] and a group utilizing the data from CLEO-c [60].

Both have a larger statistical uncertainty. This is shown in Fig. 6.11.

Although lots of data for the π+π− channel with an improved precision over time have

been recorded, the consistency among them is far from excellent.

• Other two-body channels

The π0γ final state is the first open hadronic channel and defines the lower limit of

integration of the dispersion integral. Moreover, recent measurements with better

precision from SND over the full spectrum up to 2 GeV are now available [630,631].

Cross section for the final states with K+K− and KSKL are depicted in Fig. 6.12 for
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Figure 6.11: Results from BESIII (left, reprinted from Ref. [59]) and CLEO-c (right, reprinted
from Ref. [60]) on e+e− → π+π− in the ρ region using large-angle detected ISR photons.

CMD-2 [62, 632], SND [61, 633], and BABAR [63]. They are governed by the φ reso-

nance. Here, the broad mass range available through the ISR approach is impressive.

Recent results were obtained at VEPP-2000 by CMD-3 [90] and SND [634], which differ

substantially from the earlier CMD-2 and SND measurements at VEPP-2M. Although

experiments are in good agreement for KSKL, the situation is more problematic for

K+K−.

BABAR [635–637] and CMD-3 [638] have achieved precise measurements of the pp̄ final

state. The cross section for e+e− → pp̄ displays little energy dependence from threshold

to 2 GeV. Here the ISR method also allows the measurements to be performed over

a large energy range up to 6 GeV. A cross section compatible to that of pp̄ from

threshold to 2 GeV is observed in the measurement of e+e− → nn̄ from SND [639].

The nuclear-pair production at 2 GeV accounts for about 4% of the total hadronic

cross section.

• Multi-hadronic channels

The cross section for different exclusive channels has been measured with the scan

method up to 1.4 GeV by CMD-2 and SND and extended more recently up to 2 GeV

using the VEPP-2000 collider and the upgraded CMD-3 and SND detectors. BABAR

has used extensively the ISR approach, covering the range from threshold to typically
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3 − 5 GeV. An almost complete set of exclusive measurements up to about 2 GeV is

represented by the BABAR results. Above 2 GeV, many channels with higher multi-

plicity open up that in practice cannot be studied independently, in such a way that

the method that uses the sum of exclusive cross sections is no longer applicable. There

is an excellent agreement between BABAR and the final state measurements by the

scan method at VEPP-2000, which provides a nice consistency check.

The largest multi-hadronic cross sections below 2 GeV are for the 3-pion and 4-pion

final states. The 3-pion cross section is dominated at low energies by the ω (see Fig.

6.13) and φ resonances as measured by the CMD-2 [64,640] and SND [66] experiments.

Above the φ region, results are at hand from BABAR [65] and SND [641], which

agree with each other as in Fig. 6.14, albeit both disagree strongly with the earlier

results from DM2 [642]. For the final states of 2π+2π− [68, 69] and π+π−2π0 [70],

the development provided by the ISR BABAR results is striking both in terms of

precision and mass coverage, see Fig. 6.14. Previous results from VEPP-2M [643–645]

and VEPP-2000 [646] only extended to 1.4 GeV. Results on exclusive final states

containing up to 6 quasi-stable hadrons are available [647, 648]. The limitation on

hadron multiplicity, set to a great extend by the difficulty to select and identify multi-

π0 final states, does not allow a reliable reconstruction of the full hadronic rate above

2 GeV as a sum over individually measured exclusive cross sections.

Several processes with smaller cross sections have to be considered to saturate the total

hadronic rate. Some results on final states including η mesons are shown in Fig. 6.15,

specifically ηπ+π− from BABAR [71, 72], CMD-2 [73], and SND [74], and ηπ+π−π0

from CMD-3 [75]. Besides, recent data sets for ηπ+π− are at hand from SND [649]

and CMD-3 [650]. For the final states of η4π only results from BABAR are available,

both for η2π+π− [71] and ηπ+π−2π0 [651]. A lot of progress was recently achieved

by BABAR on KK̄n pions final states with the complete set of measurements for all

charge configurations n = 1, 2 [76–80] owing to the detection of KS, KL, charged pions

and kaons, and multiple π0 (Fig. 6.16).
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Figure 6.13: The ω resonance in the π+π−π0 mode from CMD-2. Reprinted from Ref. [64].

There are additional measurements for some specific channels, K+K−π+π− [652] and

KSKLπ
0 [653]. Finally, cross sections for K+K−η [77] and KSKLη [79] are also avail-

able from BABAR.

Narrow resonances

The contributions of the very narrow resonances J/ψ and ψ(2S) are obtained by numerically

integrating their undressed Breit-Wigner line shapes. The uncertainties in the integrals are

dominated by the knowledge of their bare electronic widths available from experiment [3,654].

Inclusive R measurements

Above 2 GeV the annihilation cross section needs to be measured inclusively due to the large

number of open exclusive channels. Precise results from BESII [82–84] are in the 2−4.5 GeV

range. The KEDR collaboration has recently published results from an inclusive R scan

from
√
s = 1.84 to 3.05 GeV [85,86], complementing their preceding measurements obtained

between 3.12 and 3.72 GeV [85]. This data is the most precise and complete in this energy

range with a typical systematic uncertainty of 3%. It constitutes a very valuable input to

test the validity of the pQCD estimate (Fig. 6.17). Between 2 GeV and the charm threshold,
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Figure 6.16: BABAR results [76–80] on the cross sections for e+e− → KK̄π (top row) and
e+e− → KK̄ππ (second and third rows). Reprinted from Ref. [81].
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the R value (hadronic cross section scaled to the s-channel point-like fermion-pair lowest-

order cross section) behaves smoothly with a weak energy dependence, and it agrees with

the pQCD prediction within experimental uncertainties. Fig. 6.17 depicts the results on

R, which are based on the sum of exclusive channels below 2 GeV [81] and the inclusive

measurements above. The coincidence between the measurements in the two regions is good

enough and consistent with the quoted uncertainties.

6.3.2 Tensions in hadronic data

The precision of the data-driven approach is affected by some discrepancies among the dif-

ferent data sets.

Tensions in the π+π− channel

Approximately 3/4 of the full hadronic contribution to the muon g − 2 is accounted by

the π+π− channel. Hence, there is a need for the highest precision. Many experimental

measurements have been performed in the last four decades, however it is only in the last

fifteen years that sufficient statistics and small systematic uncertainties have been reached.
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Figure 6.18: The π+π− cross section from the KLOE combination compared to the BABAR,
CMD-2, SND, and BESIII data points in the 0.6− 0.9 GeV range [88]. The KLOE combination is
represented by the yellow band. The uncertainties shown are the diagonal and systematic uncer-
tainties added in quadrature. Reprinted from Ref. [88].

Nevertheless, the situation is not very good since the two most precise measurements by

KLOE and BABAR do not agree well within their quoted uncertainties. The state worsens

after combining [88] the three KLOE measurements based on different ISR methods since the

uncertainty is reduced. Fig. 6.18 displays the ratios of the recent measurements by CMD-2,

SND, BABAR, and BESIII to the combined KLOE cross section in the 0.6− 0.9 GeV mass

region, where the KLOE band and the data points involve the full diagonal error. Some

features are evident: (1) the normalization at the peak is generally higher than KLOE, (2)

there exists a trend for a linear increase on the ratio with mass, and (3) a clear disagreement

is seen in the narrow ρ−ω interference region. Because of the higher precision of the BABAR

data, these characteristics are most clearly visible there, but they are also present for the

other experiments. Although there is a fair agreement below 0.70 − 0.75 GeV, the KLOE

data seems noticeably lower on the ρ peak and above by a factor rising to a few percent.
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Figure 6.19: The π+π− cross section from KLOE combination, BABAR, CMD-2, SND, and BESIII
in the ρ− ω interference region [88]. Reprinted from Ref. [88].

A common oscillatory pattern is shown by the ratios in the ρ − ω interference region.

In Ref. [88] the ratio of a particular experiment was computed with respect to the linearly

interpolated value between adjoining KLOE points, some bias is expected especially in the

interference region with its fast-changing cross section. This oscillation is not present for

the ratio KLOE to BABAR [20], where the fit to the BABAR data is used as reference to

avoid these effects. The interference pattern is more eradicated in KLOE (Fig. 6.19), most

likely because of the choice of wide mass bins. A vertical offset is evident in the plot on

the ρ peak. However, the effect of the ρ − ω interference pattern is mostly cancelled when

integrating over the mass spectrum. Therefore, differences in this region among experiments

are not expected to produce large biases for the integral values.

The most salient discrepancy between the KLOE and BABAR data aims to one or various

systematic effects not properly covered by the estimated systematic uncertainties. At this

moment, other experiments are barely precise to resolve this discrepancy, lying between those

of KLOE and BABAR, and overlapping with both. The contributions to the dispersion

integral from the region between 0.6 and 0.9 GeV for each experiment is shown in Fig. 6.20.

One-parameter fits give χ2/d.o.f values of 4.5/4 and 3.6/4 when all experimental data sets

are included except BABAR and all experimental data sets are included except KLOE.

Hence, BESIII/CLEO/CMD-2/SND are compatible with either KLOE and BABAR.
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Figure 6.20: Comparison of results for aHVP
µ [ππ] evaluated between 0.6 GeV and 0.9 GeV for the

different experiments. Reprinted from Ref. [6].

In the combination procedure performed by both DHMZ and KNT, local tensions were

treated by introducing scaling factors for the uncertainties. Global tension was also accounted

for in the DHMZ analysis. Further details can be found in the WP [6].

There is also some tension when the three KLOE measurements [88] are combined. The

ratios of the cross section values between KLOE-2012 and KLOE-2008, along with KLOE-

2010 and KLOE-2008, were computed using all the correlations between the measurements,

for both the statistical and systematic uncertainties. Some systematic deviations from unity,

which are statistically significant and not completely taken into account by the local scaling

procedure, are depicted in Fig. 6.21. This effect is probably an underestimated systematic

uncertainty in the combined result. Given the fact that these deviations are canceled out

when integrating the spectrum, the integral values are consistent [88]. These discrepancies

are not present in the ratio between the KLOE-2012 and KLOE-2010 measurements, see

Fig. 6.21.

Recently the SND collaboration has presented their results at VEPP-2000 on the π+π−

mode [89] with increased statistics and reduced systematic errors (0.8%) compared to their

analysis at VEPP-2M. A fit of the pion form factor taking into account a vector-meson dom-

inance (VMD) ansatz for the ρ resonance along with ω and ρ′ contributions was performed.

This description of their data is used to compare with existence data. The resulting com-
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Figure 6.21: Ratios of cross sections [88] from KLOE-2012 to KLOE-2008 (top left), KLOE-2010
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parison ratios are illustrated in Fig. 6.22 for BABAR, KLOE-2008 and KLOE-2012, and

VEPP-2M results from SND and CMD-2. Here, the most severe discrepancies were found

with the KLOE and BABAR data. At first instance, below 0.7 GeV both KLOE-2008 and

BABAR are higher than SND by 2−4%, while KLOE-2010 is more in agreement. Conversely,

above 0.7 GeV SND agrees well with BABAR, while both KLOE measurements are below

by 2 − 3%. More experimental studies with high precision are needed to understand the

KLOE-BABAR discrepancy. These new results from SND are not included in the current

version of the WP [6].

Tensions in the K+K− channel

Tensions among data sets are also present in the K+K− channel (Fig. 6.23, top panel). A

discrepancy up to 20% between BABAR [63] and SND [633] was observed for masses between
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1.05 and 1.4 GeV. However, this problem has been resolved with the most recent SND

result [6], despite the fact that the origin of the previous systematic shift is not discussed.

There are also some concerns regarding data on the φ(1020) resonance. Formerly, a 5.1%

difference between CMD-2 [62] at VEPP-2M and BABAR [63], with the CMD-2 data being

lower, was observed. SND [61] results are also low compared to BABAR, but the difference

is not significant in view of the larger SND systematic uncertainty (6.8%). New results from

CMD-3 at VEPP-2000 [90] display the opposite effect: they are 5.5% higher the BABAR

(Fig. 6.23, middle). The quoted systematic uncertainty of 2.2%, of which only 1.2% is

assigned to the detection efficiency, is greatly exceeded by the discrepancy of almost 11%

between the two CMD-2/3 data sets. The upward cross section shift is claimed to originate

from a better understanding of the detection efficiency of kaons with very low energy in

the CMD-3 data, given the fact that the φ(1020) is very close to the K+K− threshold. In

comparison with the CMD-2/3 data and SND data sets, the ISR method of BABAR benefits

from higher-momentum kaons with better detection efficiency thanks to the final state boost.

Since the situation is unresolved, both CMD-2/3 data sets should be kept, which, owing

to the uncertainty of the rescaling procedure, gives a deterioration of the precision (by a

factor of ∼ 2) of the combined data (Fig. 6.23, bottom). A better understanding of the data

from CMD-2/3 and SND is necessary to improve this situation.

6.3.3 Use of hadronic tau decay data

In 1997 precise τ -spectral functions became available [11, 12, 18, 397, 455, 527, 655] which, to

the extent that flavor SU(2) in the light hadron sector is a good symmetry, allows one to

obtain the isovector part of the e+e− cross-section [249]. The idea to use the τ spectral

data to improve the evaluation of the hadronic contributions ahad
µ was realized by Alemany,

Davier and Höcker [656]. It is based on the fact that in the limit of isospin invariance, the

spectral function of the vector current decay τ− → X−ντ is related to the e+e− → X0 cross

section of the corresponding isovector final state X0 (the so-called conserved vector current

(CVC) relation),
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σJ=1
X0 (s) = 4πα2

s
v1,X−(s), (6.15)

where s is the CM energy-squared or equivalently the invariant mass-squared of the τ

final state X, α is the fine-structure constant, and v1,X− is the non-strange, isospin-one

vector spectral function given by

v1,X− = m2
τ

6|Vud|2
BX−
Be

1
NX

dNX

ds
×

(1− s

m2
τ

)2 (
1 + 2s

m2
τ

)−1
RIB(s)
SEW

. (6.16)

Here, mτ is the τ mass, |Vud| the CKM matrix element, BX− and Be are the branch-

ing ratios of τ− → X−(γ)ντ (final-state photon radiation is implied for τ branching ratios)

and of τ− → e−ν̄eντ , (1/NX)dNX/ds is the normalized τ spectral function (invariant mass

spectrum) of the hadronic final state, RIB represents s-dependent isospin-breaking (IB) cor-

rections, and SEW is the short-distance electroweak radiative corrections [7].

Both spectral functions and branching ratios for the tau have been precisely measured at

LEP and at the B factories under independent conditions. Despite the fact that B factories

have much larger statistics, the immense QCD backgrounds must be reduced at the cost

of small efficiencies with corresponding irreducible systematic uncertainty. The opposite

happened at LEP with Z decays into two boosted τ ′s and small well-understood back-

grounds inducing small systematic uncertainties, however with moderately high statistics.

Thus, branching ratios are well measured at LEP, while the determination of normalized

spectral functions exploit the high statistics at B factories. For the dominant 2π channel

the branching ratio has been measured by ALEPH [397] in agreement the other experi-

ments [12, 18, 487, 527, 657] and the most precise spectral function has been achieved by

Belle [18]. A combined spectral function from all experiments is available in Ref. [7].

Focusing on the dominant 2π channel, the IB correction term RIB(s) is given by

RIB(s) = FSR(s)
GEM(s)

β3
0(s)
β3
−(s)

∣∣∣∣∣ F0(s)
F−(s)

∣∣∣∣∣
2

, (6.17)

where FSR(s) corresponds to the final-state radiative corrections [658, 659], GEM(s)

denotes the long-distance radiative corrections of order α to the photon-inclusive τ− →
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π−π0ντ (γ) spectrum [7], β3
0(s)/β3

−(s) considers the impact on the ratio of phase space fac-

tors of the π± − π0 mass splitting and is important only close to threshold (Fig. 6.24), and

F0(s) and F−(s) are the time-like electromagnetic and weak pion form factors, respectively.

The ratio |F0(s)/F−(s)|2 is the most difficult to estimate reliably, because of some IB

effect that need to be taken into account. Among them, the ratio from the IB part of the

ρ− ω interference and the impact of IB differences in the masses and widths of the charged

and neutral ρ mesons can be estimated from data, although with some residual dependence.

On the other hand, contributions produced by an IB difference in the charge and neutral

ρ isovector current decay constants and/or a purely IB ρ0 isoscalar current decay constant,

both of which are expected to exist, would manifest themselves as small IB differences in

the broad ρ distributions for which there is no clear phenomenological method of estimating

their impact. A possibility is to assume that those contributions are numerically negligible,

estimate the contributions one is able to constrain phenomenologically, and then check if

the sum of the partial set of corrections, when applied to the τ → ππντ distribution, brings

the result into agreement with e+e− → π+π− distribution results. If that was the case,

this would provide post facto evidence for the smallness of the IB contributions that are

difficult to estimate phenomenologically. A huge effort has been spent on investigating this

possibility. At present we are unable to take advantage of the τ data, since the sum of the

partial set of IB corrections that result does not yet provide an understanding of the IB

difference between the τ and e+e− → π+π− distributions. An alternative possibility consists

in using lattice simulations to include all sources of IB simultaneously and evaluate the IB

inclusive τ -e+e− aHVP,LO
µ difference.

Below 1 GeV, the pion form factors are governed by the ρ meson resonance. Important IB

effects are then expected from the mass and width differences between the ρ± and ρ0 mesons,

and ρ − ω mixing. The difference between the corrections used in Ref. [7] and those from

Refs. [91] is mostly because of different width differences considered. The width difference

δΓρ(s) = Γρ0 − Γρ− used in Ref. [7] was based on [660]

δΓρ(s) =
g2
ρππ

√
s

48π
[
β3

0(s)(1 + δ0)− β3
−(s)(1 + δ−)

]
, (6.18)
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Figure 6.24: Comparison of IB corrections used by Davier et al. [7] and by F. Jegerlehner [91]. The
different plots correspond to FSR (top left), 1/GEM (top right), β3

0(s)/β3
−(s) ratio term (middle

left), the effect of the ρ mass and width difference in the |F0/F−| term (middle right), the effect of
the ρ− ω interference in the |F0/F−| term (bottom left), and the total corrections (bottom right).
The difference between the open blue points and the solid black one in the last plot come from the
ρ− γ mixing corrections proposed in Ref. [91]. Reprinted from Ref. [92].
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where gρππ is the strong coupling of the isospin invariant ρππ vertex and δ0,− represents

the radiative corrections for photon inclusive ρ → ππ decays and other electromagnetic

decays, in contrast to

δΓρ =
g2
ρππ

48π
(
β3

0(s)Mρ0 − β3
−(s)Mρ−

)
, (6.19)

used in Ref [91]. The numerical values of Eqs. (6.18) and (6.19) at Mρ = 775 MeV

are +0.76 MeV and −1.3 MeV, respectively. Another small difference that contributes to

the IB difference originates from the mass difference δMρ = Mρ− −Mρ0 of 1.0(9) MeV [7]

and 0.814 MeV [91]. This explains the systematic uncertainties when estimating the IB cor-

rections related to phenomenological form factor parameterizations. To avoid a circularity

problem, the ρ parameters need to be determined from other reactions than e+e− → π+π−

and τ− → π−π0ντ , but since, for instance, the Breit-Wigner parameters are reaction depen-

dent, this induces a systematic uncertainty that is difficult to control, one aspect of which

is the need to define a ρ0 in the presence of electromagnetic interactions and therefore a

convention for ρ0 − γ mixing.

The impact of the IB corrections applied to aHVP,LO
µ are depicted in Table 6.2 [7] using

τ -data in the dominant ππ channel for the energy range between the threshold and 1.8 GeV.

The short-distance correction, SEW = 1.0235(3) [7] is dominant. The uncertainty of the FSR

and ππγ electromagnetic corrections is an estimate of the structure-dependent effects (pion

form factor) in virtual corrections and of intermediate resonance contributions to real photon

emission [7]. The uncertainty of GEM(s) is evaluated using the two models depicted in Fig.

6.24. The systematic uncertainty assigned to the ρ − ω interference contribution accounts

for the difference in aHVP,LO
µ between two phenomenological fits, where the mass and width

of the ω resonance are either left free to vary or fixed according to the world-average values.

The IB corrections were also tested using two different parameterizations of the form factor,

the total uncertainty takes into account the full difference between the Gounaris-Sakurai

(GS) [661] and the Kühn-Santamaria (KS) parameterizations [7].

An important independent cross-check is provided by the τ− → π−π0ντ branching frac-
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Source ∆aHVP,LO
µ [ππ, τ ] ∆BCVC

π−π0

SEW −12.21(5) +0.57(1)
GEM −1.92(90) −0.07(17)
FSR +4.67(47) −0.19(2)
ρ− ω interference +2.80(19) −0.01(1)
Mπ± −Mπ0 effect on σ −7.88 +0.19
Mπ± −Mπ0 effect on Γρ +4.09 −0.22
Mρ± −Mρ0

bare
+0.20+0.27

−0.19 +0.08(8)
ππγ, electromagnetic decays −5.91(59) +0.34(3)
δ(GS−KS) −0.67 −0.03

Total −16.07(1.85) +0.69(22)

Table 6.2: Contributions to 1010 · aHVP,LO
µ [ππ](τ) and 102 · BCVC

π−π0 from the IB cor-
rections [6]. Corrections shown correspond to the Gounaris-Sakurai (GS) parameteri-
zation [7]. The total uncertainty includes the difference with Kühn-Santamaria (KS)
parameterization quoted as δ(GS−KS).

tion Bπ−π0 = Γ(τ− → π−π0ντ )/Γτ , another key quantity that can be directly measured [49].

This ”τ -observable”, which is a genuine charged channel quantity, can be evaluated in terms

of the I = 1 part of the e+e− → π+π− cross section after taking into account the IB cor-

rections. The effects of these to the branching fraction are also shown in Table 6.2. Using

CVC, the branching fraction of τ decaying into a G-parity even hadronic final state X− is

given by

BCVC
X = 3

2
Be|Vud|2

πα2m2
τ

∫ m2
τ

sth
ds sσIX0(s)×

(
1− s

m2
τ

)2 (
1 + 2s

m2
τ

)
SEW

RIB(s) , (6.20)

where sth is the threshold of the invariant mass-squared of the final state X0 in e+e−

annihilation. CVC comparisons of τ branching fractions are of special interest because they

are particularly insensitive to the shape of the τ spectral function, so avoiding biases in the

unfolding of the raw mass distributions from acceptance and resolution effects.

Regardless of the improved IB corrections, there still exists a sizable discrepancy between

the e+e− based prediction of 692.3(4.2) ·10−10 and the τ based one of 703.0(4.4) ·10−10 [655].

This difference amounts to 10.7(4.9) · 10−10, corresponding to a deviation of 2.2σ. After the

IB correction, the shape of the combined τ spectral function is also different from the one
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Figure 6.25: Relative comparison between the combined τ after the IB corrections and e+e− →
π+π− spectral function contributions. Reprinted from Ref. [93].

from e+e− data, see Fig. 6.25. The discrepancy reflected in the τ branching ratios is shown

in Fig. 6.26.

A model-dependent ρ − γ mixing, which appears only in the e+e− data, was proposed

in Ref. [91] to explain the e+e−-τ discrepancy. This correction corresponds to the difference

between the open blue points and the solid black points in Fig. 6.24 (bottom right), showing

an uncomfortably increasing effect above the ρ peak. Contrary to γ − Z mixing on the

Z resonance, well established theoretically and experimentally, the description of photon

mixing with strongly interacting ρ may be affected by some uncertainties that are difficult

to estimate. The correction [91], shown in Fig. 6.27, seems to overestimate the observed

difference.

At present, our understanding of the IB corrections to τ data is sadly not yet at the

level of precision to match the e+e− data, which does not allow their use for the HVP

dispersion integral. Since it remains a possibility, in Chapter 6, we revisit the tau-based

data-driven approach by extending previous work by Cirigliano et al. [94,379] , using ChPT

with resonances.
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23.5 24 24.5 25 25.5 26 26.5 27 27.5

B(τ– → ντπ
–π0)     (%)
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24.47 ± 0.22 ± 0.22

25.15 ± 0.18 ± 0.22

24.53 ± 0.22 ± 0.22

Figure 6.26: The measured branching ratios for τ− → π−π0ντ decays compared to the predictions
from the e+e− → π+π− spectral functions, after applying the IB corrections. The long and short
vertical error bands represent the τ and e+e− averages, respectively. Reprinted from Ref. [7].
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Figure 6.27: Same as Fig. 6.25, apart from the ρ− γ mixing correction proposed in Ref. [91] has
been applied to the τ data.
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Chapter 7

Isospin-breaking corrections to

τ−→ π−π0ντ decays and the muon

g− 2

7.1 Introduction

The anomalous magnetic moment of the (first electron, and then) muon (aµ ≡ (gµ − 2)/2)

has been crucial for the development of quantum field theory and the understanding of

radiative corrections within it. Over the years, it has validated those computed in QED

at increasing precision and (in the muon case) started probing the other Standard Model

sectors, electroweak and QCD, setting also -and more interestingly- stringent constraints

on new physics contributions. In the absence of any direct hint for heavy new particles or

interactions at the LHC, clean observables both from experiment and theory -among which

aµ stands out- are reinforced as a promising gate for the eagerly awaited further (indirect)

discoveries in high-energy physics.

With the forthcoming measurement of aµ at FNAL [662] we will finally have an experi-

mental update on the long-standing discrepancy (at 3 to 4 sigmas) between the SM prediction
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of this observable (recently refined in [6]) 1 and its most accurate measurement, at BNL [95].

On the theory side, a tremendous effort driven by the Muon g-2 Theory Initiative 2 has

been reducing (and making more robust) the SM errors during the last few years, in order

to profit maximally from the new data. In the near future, both the FNAL [662] and the

J-PARC [676] experiments will shrink the current experimental uncertainty (63 · 10−11) by

a factor four. A commensurate improvement on the theory error is essential in maximizing

the reach on new physics of these measurements.

The SM uncertainty on aµ (43 · 10−11) is saturated by that of the hadronic contributions,

where the error of the dominant hadronic vacuum polarization (HVP,LO) part has been

reduced to 40 · 10−11, versus 17 · 10−11 of the light-by-light piece [6]. In turn, the HVP,LO

contribution is dominated by the ππ cut (yielding ∼ 73% of the overall value), where good-

quality data of the corresponding e+e− hadronic cross-sections [20,21,52,54,56,57,59,88,628,

629] enables its computation by dispersive methods [623, 624]. Alternatively, one can also

use isospin-rotated τ → ππντ measurements with that purpose, as was put forward in LEP

times [656], despite the required IB corrections cannot be computed in a model-independent

way presently. Still, while a lattice QCD computation of these is achieved, the authors find

convenient testing the consistency of both extractions of aHV P,LOππµ , in light of the tensions

between different sets of e+e− → π+π− data that has not been resolved so far [6].

In addition to the previous data-based determinations of aHV P,LOµ , lattice QCD is also

achieving computations with reduced errors, although not yet competitive with the e+e−

evaluations [6]. One notable exception to this being the recent very accurate result (53 ·10−11

error) of the BMW Coll. [43], according to which the difference with respect to the SM

prediction is at the one sigma level.

Concerning the tau based determination, Refs. [94, 379] computed the required isospin

violating and electromagnetic corrections using Resonance Chiral Theory (RχT ) [224, 225]

and Refs. [677, 678] using Vector Meson Dominance (VMD). These series of articles were
1The SM prediction [6] is based on [32,33,35–41,46–49,81,237,576,582,583,585,586,597,608–619,621,622]

(see also the last developments in Refs. [43, 584,596,603–605,607,620,663–675]).
2Its website is https://muon-gm2-theory.illinois.edu/.
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employed by Ref. [7] (updated in Refs. [406, 655]) which, remarkably, found that the dis-

crepancy of the SM prediction with the measurement is reduced substantially when tau data

is employed 3. Notwithstanding, as precise measurements of σ(e+e− → hadrons) became

available in the last fifteen years, the e+e− based evaluation gained preference over using tau

data. Indeed, Ref. [6] concludes that ‘at the required precision to match the e+e− data, the

present understanding of the IB (isospin breaking) corrections to τ data is unfortunately not

yet at a level allowing their use for the HVP dispersion integrals’, despite Ref. [91] claiming

that (the model-dependent) ρ − γ mixing in the neutral channel makes it agree with the

results in the charged current. It is the purpose of this work 4 to extend previous RχT

analyses [94,379] of the required IB corrections to di-pion tau decays so that they can again

be useful, when combined with σ(e+e− → π+π−(γ)), to increase the accuracy of the SM

prediction of aHV P,LOµ . In this spirit, we note that F. Jegerlehener [681] indeed combines

both sets of data (using the IB corrections of Ref. [91]), which reduces the error of aHV P,LOµ

by ∼ 17% [681].

Within the global effort of the Muon g-2 theory initiative, we revisit in this work the

RχT computations including operators that -in the chiral limit- start to contribute at O(p6).

This is possible by the knowledge acquired after the analyses of Cirigliano et al. [94, 379]

(where operators contributing at O(p4) were considered), through a series of works studying

operator product expansion (OPE) restrictions on RχT couplings on several relevant 3−point

Green functions (and related form factors) [385–387,453,459,461,465,471,472,517,548,618,

682–692] 5 6. This procedure will also allow us to evaluate an uncertainty for the results by

Cirigliano et al. [94], which is one of the main outcomes of this work, together with the new

results, including operators that start contributing to the O(p6) chiral low-energy constants
3The difference between the SM prediction of aµ and the BNL measurement is 3.7σ [6]. If isospin-rotated

tau data is employed for aHV P,LOµ , it amounts to 2.4σ [655], instead. This difference could in principle be due
to new physics effects, hinting at a lepton universality violation in the corresponding non-standard vector
and/or tensor couplings at low-energies [512, 519, 679]. See the most updated discussions of its connection
with αQED in the electroweak fit in Refs. [589–592].

4Currently, a lattice evaluation of IB for using tau data in aHV P,LOππµ is in progress [680].
5See also e.g. Refs. [693–699].
6Similar radiative corrections were computed for the τ → ηπντγ decays in RχT [700], even though part

of our contributions here were suppressed (and thus neglected) there because of G-parity.
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(LECs).

The chapter is organized as follows. In section 7.2 we review the main features of the

τ− → π−π0ντγ decays and split the model-independent part from the hadron form factors,

computed in RχT including new terms, subleading in the chiral expansion. We then recall the

short-distance (SD) QCD constraints on the Lagrangian couplings, their phenomenological

determinations and explain our estimation of the remaining free couplings, based on chiral

counting. After that, in section 7.3 we recap the radiative corrections needed for the tau-

based calculation of aHV P,LOµ and predict several observables for the processes where the real

photon is detected together with the pion pair. Then, in section 7.4 we evaluate aHV P,LO|ππµ

using tau data, which is the main result of this investigation. Finally, our conclusions are

presented in section 7.5. Several appendices complement the main material, explaining how

the coefficients dominating uncertainties were fitted, giving a full account of the kinematics,

and providing with the complete expressions for the structure-dependent (axial-)vector form

factors of the τ− → π−π0ντγ decays.

7.2 τ−→ π−π0γντ decays

7.2.1 Amplitude

For the radiative decay τ− (P ) → π− (p−) π0 (p0) ντ (q) γ (k), we can split the contribution

due to the bremsstrahlung off the initial tau lepton from the one coming from the hadronic

part.

We write down the general structure for these processes [94,701]

T = eGFV
∗
udε

µ(k)∗
{
Fν ū (q) γν (1− γ5)

(
mτ + /P − /k

)
γµu (P )

+ (Vµν − Aµν) ū (q) γν (1− γ5)u (P )} ,
(7.1)

where Fν = (p0 − p−)ν f+ (s) /2P · k, with the charged pion vector form factor f+(s) defined

through
〈
π0π−|d̄γµu|0

〉
=
√

2f+(s)(p− − p0)µ and s = (p− + p0)2. Gauge invariance (εµ →
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εµ + kµ) implies the Ward identities

kµV
µν = (p− − p0)ν f+ (s) , kµA

µν = 0. (7.2)

Imposing Eq. (7.2) and Lorentz invariance, we have the following expression for the vector

structure-dependent tensor

V µν = f+
[
(P − q)2

] pµ− (p− + k − p0)ν

p− · k
− f+

[
(P − q)2

]
gµν

+
f+
[
(P − q)2

]
− f+ (s)

(p0 + p−) · k (p0 + p−)µ (p0 − p−)ν

+ v1
(
gµν p− · k − pµ−kν

)
+ v2 (gµν p0 · k − pµ0k

ν)

+ v3
(
p0 · k pµ− − p− · k p

µ
0
)
pν− + v4

(
p0 · k pµ− − p− · k p

µ
0
)

(p0 + p− + k)ν ,

(7.3)

and for the axial one

Aµν = ia1 ε
µνρσ (p0 − p−)ρ kσ + ia2W

ν εµλρσkλ p−ρ p0σ

+ ia3 ε
µνρσkρWσ + ia4 (p0 + k)ν εµλρσ kλ p−ρ p0σ,

(7.4)

where W ≡ P − q = p− + p0 + k. We could use the basis given in Ref. [700] but instead

we prefer a modified one that resembles the decomposition in Ref. [94] (see also Ref. [701]).

These tensor structures depend on four vector (vi) and four axial-vector (ai) form factors.

For the axial structure, the Schouten’s identity has been used.

Taking into account that (P − q)2 = s + 2 (p0 + p−) · k, the Low’s theorem [702] is

manifestly satisfied

V µν = f+ (s) pµ−
p− · k

(p− − p0)ν + f+ (s)
(
pµ−k

ν

p− · k
− gµν

)

+ 2df+ (s)
d s

(
p0 · k
p− · k

pµ− − pµ0
)

(p− − p0)ν +O (k) .
(7.5)
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7.2.2 Theoretical framework

We will present in the following the model-dependent contributions to the Vµν and Aµν

tensors. We will closely follow Ref. [94] 7, extending it to include subleading terms in the

chiral expansion. In this reference, a large-NC [388–390] inspired computation was carried

out. Specifically, it was restricted to the dominant (for NC → ∞) tree level diagrams,

although the relevant loop corrections for the τ− → π−π0ντγ decays –giving the ρ (and a1,

for completeness) off-shell width 8– were taken into account 9. Also, given the limited phase

space of tau decays and the fact that the region E . Mρ + Γρ is the most important one

for the IB corrections needed for aHV P,LOππµ [94], the contribution of the ρ(1450) and other

heavier resonances was neglected in this reference (despite the fact that, in the large-NC

limit, there is an infinite tower of resonances per channel), as we will also do 10. Within this

setting, our computation will include all RχT operators contributing to the O(p6) chiral low-

energy constants. Our results agree with those in Ref. [94], providing the new contributions

with resonance operators that are suppressed by one chiral order in the low-energy limit

(where possible, our computations have been checked against the results in Ref. [700]).

As explained in Ref. [94], this procedure warrants the correct low-energy limit (as given

by Chiral Perturbation Theory [169, 193, 194, 215, 531]) and includes consistently the most

general pion and photon interactions with the lightest resonances. Demanding the known

QCD SD constraints results in relations among the Lagrangian couplings, and chiral counting

can be employed to estimate those still unconstrained after using phenomenological infor-

mation. It should then provide an accurate description of the τ− → π−π0ντγ decays for

s . 1 GeV2, which gives ∼ 99.8% of the whole aHV P,LO|ππµ contribution.
7Using this approach a first prediction of the τ− → π−π0`+`−ντ decays (` = e , µ) was given in Ref. [703].
8We will introduce them following Ref. [383] for the ρ(770) and Refs. [453,467] for the a1(1260) resonances.
9See Refs. [218,382,704–708] for next-to-leading order (NLO) computations in 1/NC , allowing to include

the scale dependence of the Chiral Perturbation Theory LECs in the low-energy limit of RχT .
10Nevertheless, we will include the dominant effect of the ρ(1450) and ρ(1700) resonances in our dispersive

pion form factor [19, 28] and check the negligible impact of heavier resonances in the vi and ai form factors
in our analysis.
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7.2.3 Vector Form Factors

Within RχT [224,225,385,684], the diagrams contributing to the vector form factors of the

τ− → π−π0γντ decays including operators that start contributing to the O(p6) LECs are

shown in Figs. 7.1, 7.2 and 7.3 11. The first three diagrams in fig. 7.1 and the first diagram

in fig. 7.2 contribute to the pion vector form factor entering the structure-independent (SI)

piece 12

f+ (s) = 1 + GV FV
F 2

s

m2
ρ − s

+
√

2FV s
F 2

(
m2
ρ − s

) [2 (2λV8 + λV9 + 2λV10

)
m2
π − sλV21

]

+ 2
√

2GV s

F 2
(
m2
ρ − s

) [4λV6 m2
π − sλV22

]

+ 4s
F 2

(
m2
ρ − s

) [4λV6 m2
π − sλV22

] [
2
(
2λV8 + λV9 + 2λV10

)
m2
π − sλV21

]
.

(7.6)

The contribution of both the last diagram in fig. 7.1 and the last diagram in fig. 7.2 vanishes

for a real photon, as the corresponding (f+(0) = 1 part) contribution is already in the SI

piece. We note we are using F ∼ 92 MeV for the pion decay constant and that QCD OPE

constraints λV21 = λV22 = 0 [385]. In fact, we will see in sec. 7.2.5 that all modifications

induced by the λVi couplings to f+(s) (7.6) vanish once SD QCD constraints are accounted

for.

For the vector form factors, we get

v1 = v0
1 + vR1 + vRR1 + vRRR1 + vR+RR

GI1 , (7.7a)

v2 = v0
2 + vR2 + vRR2 + vRRR2 + vR+RR

GI2 , (7.7b)

v3 = v0
3 + vR3 + vRR3 + vRRR3 + vR+RR

GI3 , (7.7c)

v4 = v0
4 + vR4 + vRR4 + vRRR4 + vR+RR

GI4 , (7.7d)

11The contributions involving scalar and pseudoscalar resonances are discussed at the end of section 7.2.3.
12Relevant RχT couplings are introduced after Eq. (7.7) and in sec. 7.2.5 below.

197



ρ−
⊗

π−

γ

π0

ρ−

γ

⊗

π−

π0

ρ−
⊗

π−

γ

π0

ρ0

π−

π0

⊗ γ
ω

π−

⊗

π0

γ

a−1

π0

⊗

π−

γ π− ρ0

π0

⊗

π−

γ

Figure 7.1: One-resonance exchange contributions from the RχT to the vector form factors
of the τ− → π−π0γντ decays.
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Figure 7.2: Two-resonance exchange contributions from the RχT to the vector form factors
of the τ− → π−π0γντ decays.
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Figure 7.3: Three-resonance exchange contributions from the RχT to the vector form factors
of the τ− → π−π0γντ decays.
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where v0
i is the contribution in Ref. [94] (D−1

R stands for the inverse resonance propagator) 13

v0
1 ≡

FVGV
F 2M2

ρ

(
2 + 2M2

ρD
−1
ρ

[
(P − q)2

]
+ sD−1

ρ (s) + sM2
ρD
−1
ρ (s)D−1

ρ

[
(P − q)2

])
+ F 2

V

2F 2M2
ρ

(
−1−M2

ρD
−1
ρ

[
(P − q)2

]
+ (P − q)2D−1

ρ

[
(P − q)2

])
+ F 2

A

F 2M2
a1

(
M2
a1 −m

2
π + 1

2s
)
D−1
a1

[
(p− + k)2

]
,

v0
2 ≡

FVGV s

F 2M2
ρ

(
−D−1

ρ (s)−M2
ρD
−1
ρ (s)D−1

ρ

[
(P − q)2

])
+ F 2

V

2F 2M2
ρ

(
−1−M2

ρD
−1
ρ

[
(P − q)2

]
− (P − q)2D−1

ρ

[
(P − q)2

])
+ F 2

A

F 2M2
a1

(
M2
a1 −m

2
π − k · p−

)
D−1
a1

[
(p− + k)2

]
,

v0
3 ≡

F 2
A

F 2M2
a1

D−1
a1

[
(p− + k)2

]
,

v0
4 ≡ −

2FVGV
F 2 D−1

ρ (s)D−1
ρ

[
(P − q)2

]
+ F 2

V

F 2M2
ρ

D−1
ρ

[
(P − q)2

]
,

and vRi , vRRi , vRRRi and vR+RR
GIi

14 correspond to contributions including operators which do

not contribute to the NLO chiral LECs. Due to their length, the expressions for these form

factors are in App. I. In writing the new contributions to vi, the basis given in Ref. [385]

has been used for the even-intrinsic parity operators (with couplings λXi ) and the basis given

in Ref. [684] has been employed for the odd-intrinsic parity operators (κXi couplings). Both

sets of λXi and κXi couplings have dimensions of inverse energy.

Including operators with at most one resonance, only the contribution from the exchange

of ρ and a1 resonances on the vector form factor appeared [94]. Allowing for multi-resonance

operators we also have contributions with ω exchange, coming from the odd-intrinsic parity

sector, for both vector and axial-vector form factors (as well as resonance contributions on the

axial form factor, absent in Ref. [94]). Apparently, such ω contributions were responsible for

the larger effect of the IB corrections obtained in Refs. [677,678] with respect to Refs. [94,379].
13We recall that FR gives the coupling of the R = V,A resonance to the r = v, a external current and the

ρππ vertex receives contributions both from FV and GV .
14In general, diagrams are gauge-invariant by themselves. Those giving the contribution vR+RR

GIi need to
be summed to achieve gauge invariance. These are the first three diagrams in fig. 7.1 and the first diagram
in fig. 7.2.
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As a result, Ref. [7] (and later evaluations by this group) ascribed an error to these corrections

covering both contradictory evaluations. As we include (among others) contributions with

an ω − ρ − π vertex in this work, closer agreement with the VMD evaluation should, in

principle, be expected.

We have verified that all diagrams including scalar mesons vanish in the isospin symmetry

limit. We point out that all contributions involving pseudoscalar mesons can be obtained

from those with an axial-vector resonance by replacing it by a pseudoscalar resonance. Then,

at leading chiral order, the saturation of the LECs by spin-one mesons [224] shows that

diagrams including pseudoscalar resonances are suppressed. If we assume that this feature

also holds at the next chiral order, then pseudoscalar resonance exchanges could be safely

neglected 15.

7.2.4 Axial-Vector Form Factors

The axial form factors at chiral O (p4) get contibutions from the Wess-Zumino-Witten func-

tional [212,213]:

a0
1 ≡

1
8π2F 2 , a0

2 ≡
−1

4π2F 2
[
(P − q)2 −m2

π

] . (7.8)

The diagrams that receive contributions due to the anomaly are shown in fig. 7.4 16.

π−

γ

π0

⊗
π−

π−

γ

π0

⊗

Figure 7.4: Anomalous diagrams contributing to the axial tensor amplitude Aµν at O (p4).

15Since contributions from scalar and pseudoscalar resonances are suppressed, we will neglect them for the
axial form factors in the next section.

16The first diagram, when coupled to a vector current, contributes to the SI piece in V µν .
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γ

⊗
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π0

ρ−

π0
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π−

γ

ρ0
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π0

γ

ω

π−

π0

⊗ γ

ρ0
π−

⊗

π−

π0

γ

π− ρ−
⊗

π0

π−

γ

π− ρ−
⊗

γ

π−

π0

π− ω
⊗

π−

π0

γ
a−1

⊗

π−

γ

π0

Figure 7.5: One-resonance exchange contributions from the RχT to the axial-vector form
factors of the τ− → π−π0γντ decays.

ρ0 ω

π−

⊗

π0

γ
ρ− ω

π0

⊗

π−

γ

ω

γ

ρ−
⊗ π−

π0
⊗
π−

π−

ρ0 ω

π0

γ

⊗
π−

π0

ρ− ω

π−

γ
a−1 ρ−

⊗

π0

π−

γ

a−1 ρ0⊗

π−

π0

γ

a−1 ρ−
⊗

γ

π−

π0

a−1 ω
⊗

π−

π0

γ

Figure 7.6: Two-resonance exchange contributions from the RχT to the axial-vector form
factors of the τ− → π−π0γντ decays.

⊗
a−1

π0

ρ− ω

π−

γ ⊗
a−1

π−

ρ0 ω

π0

γ

Figure 7.7: Three-resonance exchange contributions from the RχT to the axial-vector form
factors of the τ− → π−π0γντ decays.
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For the axial form factors, we get

a1 = a0
1 + aR1 + aRR1 + aRRR1 , (7.9a)

a2 = a0
2 + aR2 + aRR2 + aRRR2 , (7.9b)

a3 = aR3 + aRR3 + aRRR3 , (7.9c)

a4 = aR4 + aRR4 + aRRR4 , (7.9d)

where aRi , aRRi and aRRRi include O (p6) vertices. Due to their length, the expressions for

these form factors appear in App. J.

7.2.5 SD constraints

Including operators which start contributing to the O (p6) LECs, we have now so many

parameters (see Table 7.1) allowed by the discrete symmetries of QCD and chiral symmetry

that, in practice, prevent making phenomenological predictions. It is possible to find relations

between these couplings by means of SD properties of QCD and its OPE. We summarize

these results in this section.

For the parameters contributing to 2-point Green Functions (and related form factors),

the constraints [224–226,412,413,709,710]:

FVGV = F 2, F 2
V − F 2

A = F 2,

F 2
VM

2
V = F 2

AM
2
A, 4cdcm = F 2,

8
(
c2
m − d2

m

)
= F 2, cm = cd =

√
2dm = F/2

(7.10)

are set, respectively, by the known asymptotic behaviour of: the pion vector form factor, the

V − A correlator (yielding the Weinberg sum rules), the scalar form factor and the S − P

correlator.

We note that the vanishing of the axial pion form factor (giving the π-to-γ matrix element)

at infinite momentum transfer demands -if only the original RχT Lagrangian [225] is used-
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2FVGV = F 2
V . This, together with the two first Eqs. in (7.10), determine

FV =
√

2F , GV = F√
2
, FA = F , (7.11)

all in terms of the pion decay constant. These relations were employed in Ref. [94]. We

emphasize that -once operators contributing to the NLO chiral LECs are considered [385,

684]-, the relations (7.11) no longer hold true (see Ref. [687]). Seen from another perspective,

consistent sets of SD relations on n-point Green functions vary with n. For n = 2 one has

the set (7.11) [224]. We shall also consider the set obtained for n = 3 [385, 684, 687] (where

operators with more than one resonance field start to appear) in the following. We will

come back to discussing the actual values of the FV , GV and FA couplings before closing this

section, as they are essential to assess the error associated to the IB corrections computed

in Ref. [94].

Now, we consider RχT operators which do not contribute to the NLO chiral LECs. For

the even intrinsic parity sector [385,548] 17:

λP13 = 0, λS17 = λS18 = 0,

λA17 = 0, λV6 = λV21 = λV22 = 0,
(7.12)

using these SD constraints in Eq. (7.6) and the Brodsky-Lepage behaviour [515, 516] of

f+(s), we get:
2λV8 + λV9 + 2λV10 = 0. (7.13)

The study of the 〈V AP 〉 and 〈SPP 〉 Green functions yield the following restrictions on the
17The corresponding coefficients are denoted λRi , with the upper index showing the resonance fields in-

volved.
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resonance couplings [385–387] (the Weinberg sum rules in Eq. (7.10) were used below):

√
2λ0 = −4λV A1 − λV A2 − λV A4

2 − λV A5 = 1
2
√

2
(
λ′ + λ′′

)
,

√
2λ′ = λV A2 − λV A3 + λV A4

2 + λV A5 = FV

2
√
F 2
V − F 2

,

√
2λ′′ = λV A2 − λV A4

2 − λV A5 = 2F 2 − F 2
V

2FV
√
F 2
V − F 2

,

λPV1 = −4λPV2 = − F 2

4
√

2dmFV
, λPA1 = F 2

16
√

2dm
√
F 2
V − F 2

.

(7.14)

For the odd-intrinsic parity sector [684] 18:

κV14 = NC

256
√

2π2FV
, 2κV12 + κV16 = − NC

32
√

2π2FV
, κV17 = − NC

64
√

2π2FV
, κP5 = 0,

κV V2 = F 2 + 16
√

2dmFV κPV3
32F 2

V

− NCM
2
V

512π2F 2
V

, 8κV V2 − κV V3 = F 2

8F 2
V

.

(7.15)

The analysis of the 〈V AS〉 Green’s function yields [684]:

κS2 = κA14 = 0, κV4 = 2κV15, κV A6 = F 2

32FAFV
,

FV
(
2κSV1 + κSV2

)
= 2FAκSA1 = F 2

16
√

2cm
,

(7.16)

and through the study of the 〈V V A〉 Green’s function in Ref. [618]:

FV κ
V A
5 = −NCM

2
V

64π2FA
. (7.17)

A comparison between two basis for the odd-intrinsic operators [682, 684] was given in Ref.
18The corresponding coefficients are denoted κRi , with the upper index showing the resonance fields in-

volved.
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[687], which is consistent with those in Eq. (7.15) 19

MV

(
2κV12 + 4κV14 + κV16 − κV17

)
= 4c3 + c1 = 0,

MV

(
2κV12 + κV16 − 2κV17

)
= c1 − c2 + c5 = 0,

−MV κ
V
17 = c5 − c6 = NCMV

64
√

2π2FV
,

MV κ
V
15 = c4 ,

8κV V2 = d1 + 8d2 = F 2

8F 2
V
− NCM

2
V

64π2F 2
V
,

κV V3 = d3 = − NC
64π2

M2
V

F 2
V
,

1 + 32
√

2FV dmκPV3
F 2 = 0,

F 2
V = 3F 2,

(7.18)

For the even- and odd-intrinsic parity sectors, there are 115 (EIP)+67 (OIP)=182 operators

saturating the O (p6) LECs but only a few of them contribute to a given process. The form

factors of the τ− → π−π0γντ decays at O (p6) are given by 32 (EIP)+23(OIP)=55 operators

(Table 7.1). Taking into account the relations in Eqs. (7.12)-(7.18) we get 24 (EIP)+17

(OIP)=41 undetermined couplings.

In order to estimate the unknown parameters, we basically followed (but for the results

Even-intrinsic parity (EIP) [385]
ÔV
i 6,7,8,9,10,12,13,14,15,16,17,18,19,20,21,22

ÔA
i 4,12,13,15,16,17

ÔV V
i 2,3,4,5,7

ÔV A
i 1,2,3,4,5

Odd-intrinsic parity (OIP) [684]
ÔV
iµναβ 1,2,3,6,7,8,9,10,11,12,14,16,17

ÔA
iµναβ 5,6,7

ÔV V
iµναβ 2,3,4

ÔV A
iµναβ 2,3,4,5

Table 7.1: Operators contributing at O (p6) to the vector and axial-vector form factors.

in appendix G) the strategy devised in Ref. [700]. We will restore to the available phe-

nomenological information on these couplings and estimate -based on chiral counting- those

for which we lack it.
19We note, particularly, the last of these Eqs., which is at odds with (7.11).
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Eq. (7.14) leaves two λV Ai couplings undetermined, the numerical values of the restricted

combinations (see their definitions in terms of the λV Ai in [387]) are:

λ′ ∼ 0.4, λ′′ ∼ −0.14, λ0 ∼ 0.07. (7.19)

Since the same linear combination of λV A4 and λV A5 is in all couplings in Eq. (7.19), we choose

λV A4 as independent. By similar reasons we take λV A2 as the other independent coupling.

Based on Eq. (7.19), we conservatively estimate
∣∣∣λV A2

∣∣∣ ∼ ∣∣∣λV A4

∣∣∣ ≤ 0.4.

According to Ref. [385] the λXi couplings can be estimated from low energy couplings CR
i

of the O (p6) χPT Lagrangian as 20

|λVi | ∼
3M2

V

2F CRi ∼ 0.025 GeV−1,

|λV Vi | ∼
M4
V

2F 2C
R
i ∼ 0.1,

(7.20)

where we take the relation |CR
i | ∼ 1

F 2(4π)4 linked to |LRi | ∼ 1
(4π)2 ∼ 5 ·10−3 which corresponds

to the typical size of the O (p4) LECs. This sets a reasonable upper bound on |λVi | ∼ |λAi | .

0.025 GeV−1 and |λV Vi | ∼ |λV Ai | . 0.1.

For the anomalous sector, we have the following predictions from the Eq. (7.18): −MV κ
V
17 =

c5− c6 ∼ 0.016, 8κV V2 = d1 + 8d2 ∼ −0.070 and κV V3 = d3 ∼ −0.112. There is a sign ambigu-

ity on the determination of c3 from τ− → ηπ−π0ντ decays [461]. We will take c3 = 0.007+0.020
−0.012

according to the determinations by Y. H. Chen et al. in Refs. [685, 688, 711] (which is also

in agreement with the most elaborated e+e− → (η/π0)π+π− fit [465]). Although c4 was first

evaluated by studying σ(e+e− → KKπ) in Ref. [453], this yielded an inconsistent result for

τ− → K−γντ branching ratio [471], so we will use c4 = −0.0024± 0.0006 [688] as the most

reliable estimation. In view of all these results, we will take |ci| . 0.015 as a reasonable

estimate, which is translated to |κVi | . 0.025 GeV−1. Since there is not enough information

on κAi , we will take |κAi | ∼ |κVi | . 0.025 GeV−1. We will see in the following sections that

the observables that we consider and the IB corrections for aHV P,LO|ππµ depend mostly on the

κVi couplings (besides FV , GV and FA) for this reason we perform a global fit to better bind
20Couplings of operators with two resonance fields are dimensionless [385,684].
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these couplings (see App. G) 21.

We turn now to the remaining couplings. We will employ d2 = 0.08±0.08, which has been

determined simultaneously with c3 [465, 685,688,711]. For d4 we will assume |d4| < 0.15, or

in terms of κV Vi , we get |κV Vi | . 0.1. Again we will adopt |κV Ai | ∼ |κV Vi | . 0.1, which agrees

with the prediction κV A5 ∼ −0.14 in Eq. (7.17).

Using only operators contributing to the O (p4) LECs we have the consistent set for

2-point Green functions (7.11). However, including operators which start contributing at

O (p6), we shall use the relations for 2 and 3-point Green functions (Eq. (7.10) and Eqs.

(7.12) to (7.18)). In particular, FV =
√

3F , which implies (via (7.10)) GV = F/
√

3 and

FA =
√

2F . Therefore, we will also be showing the Cirigliano et al. results [94] with the

latter set of constraints (inconsistent for 2-point Green functions) so that the impact of the

change of FV , FA and GV between these two cases is appreciated.

We will refer to the original [94] constraints (7.11) as ‘FV =
√

2F ’ and by ‘FV =
√

3F ’

to their consistent set of values (FV =
√

3F, GV = F/
√

3, FA =
√

2F ) up to 3-point Green

functions. In this last way, we stress that the consistent set of SD constraints in both parity

sectors [385,387,684,687] determines the FV =
√

3F relations (among many others, reviewed

in this section).

7.3 Radiative corrections for hadronic vacuum polar-

ization

The four-body differential decay width is given by [94] 22

dΓ = (2π)4

2mτ

|M|2δ4 (P − p− − p0 − k − q)
d3p−

(2π)3 2E−
d3p0

(2π)3 2E0

d3q

(2π)3 2Eν
d3k

(2π)3 2Eγ
, (7.21)

21The results obtained assuming |κVi | . 0.025 GeV−1 can be found in https://arxiv.org/abs/2007.11019v1.
While both results agree remarkably, the errors are reduced in the current procedure.

22Although the analytical results in this section were presented in the quoted reference, we include them
here given their importance in the evaluation of the relevant IB corrections, and take advantage to add a
few explanations to previous discussions of this subject [94,678].
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using the relation d3p−
2E−

d3p0
2E0

= π2

4m2
τ
ds du dx and integrating over the three-momentum of the

photon and neutrino 23, we get

dΓ = 1
32 (2π)6m3

τ

[∫ d3q

2Eν
d3k

2Eγ
|M|2δ4 (P − p− − p0 − k − q)

]
ds du dx, (7.22)

working at leading order in the Low expansion and in the isospin limit mu = md, we have

M = e ε∗µ (k)M(0)
ππ

(
p−µ
p− · k

− Pµ
P · k

)
+O

(
k0
)
, (7.23)

where M(0)
ππ = GFV

∗
ud

√
SEWf+ (s) (p− − p0)ν ū (q) γν (1− γ5)u (P ) is the amplitude at lead-

ing order for the non-radiative decay that includes the SD electroweak radiative corrections

(SEW ). At O (k−1), the amplitude for the radiative decay is proportional to the amplitude

of the non-radiative decay according to the Low’s theorem [702].

The unpolarized spin-averaged squared amplitude is given by

|M|2 =4πα|M(0)
ππ |2

∑
γ

ε∗µ (k) εν (k)
(

p−µ
p− · k + 1

2M
2
γ

− Pµ
P · k − 1

2M
2
γ

)

×
(

p−ν
p− · k + 1

2M
2
γ

− Pν
P · k − 1

2M
2
γ

)
+O

(
k−1

)
,

(7.24)

using the relation ∑γ ε
∗µ (k) εν (k) = −gµν and massive photons (kµkµ = M2

γ ). The sum over

photon polarizations should include the longitudinal part, since our photon has mass and

the amplitude is no longer gauge invariant. We do not take into account this contribution

because it will vanish in the limit Mγ → 0.

Thus, Eq. (7.24) becomes

|M|2 =4πα|M(0)
ππ |2

 2P · p−(
p− · k + 1

2M
2
γ

) (
P · k − 1

2M
2
γ

) − m2
π(

p− · k + 1
2M

2
γ

)2

− m2
τ(

P · k − 1
2M

2
γ

)2

+O
(
k−1

)
,

(7.25)

23The kinematics for these decays are in App. H.
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where

|M(0)
ππ |2 = 4G2

F |Vud|
2 SEW |f+ (s)|2 (D (s, u) +O (k)) , (7.26)

with D(s, u) = 1
2m

2
τ (m2

τ − s)+2m4
π−2u(m2

τ−s+2m2
π)+2u2. Eq. (7.25) does not contribute

atO (k−1), these terms are canceled out by those in Eq. (7.26) according to the Burnett-Kroll

theorem [712].

Replacing Eqs. (7.25) and (7.26) in Eq. (7.22), we get

dΓ =αG
2
F |Vud|2SEW
4(2π)4m3

τ

|f+ (s)|2D (s, u)
(
2P · p− I11 (s, u, x)−m2

π I02 (s, u, x)

−m2
τ I20 (s, u, x)

)
ds du dx+O

(
k0
)
,

(7.27)

the Imn (s, u, x) is defined as

Imn (s, u, x) = 1
2π

∫ d3q

2Eν
d3k

2Eγ
δ4 (P − p− − p0 − k − q)(

P · k − 1
2M

2
γ

)m (
p− · k + 1

2M
2
γ

)n , (7.28)

performing an integration over x, we can split the decay width according to the integration

region
d2Γ
ds du

= d2Γ
ds du

∣∣∣∣∣
DIII

+ d2Γ
ds du

∣∣∣∣∣
DIV/III

+O
(
k0
)
, (7.29)

where

d2Γ
ds du

∣∣∣∣∣
DIII

=αG
2
F |Vud|2SEW
4(2π)4m3

τ

|f+ (s)|2D (s, u)×

(J11 (s, u,Mγ) + J02 (s, u,Mγ) + J20 (s, u,Mγ)) ,
(7.30)

and

d2Γ
ds du

∣∣∣∣∣
DIV/III

=αG
2
F |Vud|2SEW
4(2π)4m3

τ

|f+ (s)|2D (s, u)×

(K11 (s, u) +K02 (s, u) +K20 (s, u)) ,
(7.31)
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with

Jmn (s, u,Mγ) = cmn

∫ x+(s,u)

M2
γ

dx Imn (s, u, x) , (7.32)

Kmn (s, u) = cmn

∫ x+(s,u)

x−(s,u)
dx Imn (s, u, x) , (7.33)

and

cmn =


2P · p− m = n = 1,

−m2
τ m = 2, n = 0,

−m2
π− m = 0, n = 2.

(7.34)

Eq. (7.28) is an invariant, so we can evaluate it in any reference frame in order to simplify

the integration, working in the γ − ντ center of mass, we have

Imn (s, u) = 1
23(2π)

∫ x−M2
γ

x
(
P · k − 1

2M
2
γ

)m (
p− · k + 1

2M
2
γ

)nd cos θν dφ−. (7.35)

Integrating this equation over x in DIV/III and DIII , as in Refs. [94, 713] we get (Li2(x) =

−
∫ 1

0
dt
t

log(1− xt))

J11(s, u) = log
(

2x+(s, u)γ̄
Mγ

)
1
β̄

log
(

1 + β̄

1− β̄

)

+ 1
β̄

(
Li2(1/Y2)− Li2(Y1) + log2(−1/Y2)/4− log2(−1/Y1)/4

)
,

(7.36)

J20 (s, u) = log
(
Mγ(m2

τ − s)
mτ x+(s, u)

)
, (7.37)

J02 (s, u) = log
(
Mγ(m2

τ +m2
π0 − s− u)

m−π x+(s, u)

)
, (7.38)

K20 (s, u) = K0,2 (s, u) = log
(
x−(s, u)
x+(s, u)

)
, (7.39)

where the expressions in Eq. (7.36) are given by

Y1,2 =
1− 2ᾱ±

√
(1− 2ᾱ)2 − (1− β̄2)

1 + β̄
, (7.40)
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with

ᾱ = (m2
τ − s)(m2

τ +m2
π0 − s− u)

(m2
π− +m2

τ − u) · λ(u,m2
π− ,m

2
τ )

2δ̄
,

β̄ = −

√
λ(u,m2

π− ,m
2
τ )

m2
π− +m2

τ − u
,

γ̄ =

√
λ(u,m2

π− ,m
2
τ )

2
√
δ̄

,

δ̄ = −m4
π0m2

τ +m2
π−(m2

τ − s)(m2
π0 − u)− su(−m2

τ + s+ u)

+m2
π0(−m4

τ + su+m2
τs+m2

τu).

Experimentally, it is impossible to measure the full photon spectrum because of acceptances,

efficiencies and cuts. For this reason, we need to calculate the inclusive decay width, since

we can not distinguish the radiative decay from the non-radiative decay for low-energy (or

collinear) photons.

For the non-radiative decay, we have

d2Γ
ds du

= G2
F |Vud|2SEW
64π3m3

τ

|f+(s)|2
(
1 + f elmloop (u,Mγ)

)2
D (s, u) , (7.42)

that includes isospin violation and photonic corrections according to Ref. [379], where f elmloop(u,Mγ)

is given by

f elmloop (u,Mγ) = α

4π
(
(u−m2

π)A(u) + (u−m2
π −m2

τ )B(u)

+2(m2
π +m2

τ − u)C (u,Mγ) + 2 log mπmτ

M2
γ

)
,

(7.43)
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with

A(u) = 1
u

(
−1

2 log rτ + 2− yτ√
rτ

xτ
1− x2

τ

log xτ
)
,

B(u) = 1
u

(
1
2 log rτ + 2rτ − yτ√

rτ

xτ
1− x2

τ

log xτ
)
,

C(u,Mγ) = 1
mτmπ

xτ
1− x2

τ

(
−1

2 log2 xτ + 2 log xτ log
(
1− x2

τ

)
− π2

6 + 1
8 log2 rτ

+Li2
(
x2
τ

)
+ Li2

(
1− xτ√

rτ

)
+ Li2 (1− xτ

√
rτ )− log xτ log

M2
γ

mτmπ

)
,

in terms of the variables

rτ = m2
τ

m2
π

, yτ = 1 + rτ −
u

m2
π

, xτ = 1
2√rτ

(
yτ −

√
y2
τ − 4rτ

)
,

Thus, the inclusive decay width is

d2Γ
ds du

∣∣∣∣∣
ππ(γ)

= G2
F |Vud|2SEW
64π3m3

τ

|f+(s)|2D (s, u) ∆ (s, u) , (7.45)

where

∆ (s, u) = 1 + 2f elmloop (u,Mγ) + grad (s, u,Mγ) . (7.46)

In the previous expression we neglected the quadratic term for f elmloop (u,Mγ), and

grad (s, u,Mγ) = gbrems (s, u,Mγ) + grest (s, u) , (7.47)

with

gbrems (s, u,Mγ) = α

π
(J11(s, u,Mγ) + J20(s, u,Mγ) + J02(s, u,Mγ)) , (7.48a)

grest (s, u) = α

π
(K11(s, u) +K20(s, u) +K02(s, u)) . (7.48b)
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Integrating Eq. (7.45) over u, and using

∫ u+(s)

u−(s)
D (s, u) du = m6

τ

6

(
1− s

m2
τ

)2 (
1− 4m2

π

s

)3/2 (
1 + 2s

m2
τ

)
,

we have

dΓ
ds

∣∣∣∣∣
ππ(γ)

=G
2
F |Vud|2m3

τSEW
384π3 |f+(s)|2

(
1− s

m2
τ

)2 (
1− 4m2

π

s

)3/2

×
(

1 + 2s
m2
τ

)
GEM(s),

(7.49)

for this we follow the same notation as in Ref. [94],

GEM(s) =
∫
RIV D (s, u) ∆ (s, u) du∫ u+(s)

u−(s) D (s, u) du
. (7.50)

We can split the electromagnetic correction factor (GEM(s)) in two parts, G(0)
EM(s) and

Grest
EM(s), the first one corresponds to taking grest(s, u)→ 0 and the second one is the remain-

der of GEM(s),

G
(0)
EM(s) =

∫
RIII D (s, u)

(
1 + 2f elmloop (u,Mγ) + gbrems (s, u,Mγ)

)
du∫ u+(s)

u−(s) D (s, u) du
, (7.51a)

Grest
EM(s) =

∫
RIV/III D (s, u) grest (s, u) du∫ u+(s)

u−(s) D (s, u) du
. (7.51b)

In Eq. (7.51a), the term 2f elmloop(u,Mγ) + gbrems(s, u,Mγ) is finite when Mγ → 0,

2f elmloop(u,Mγ) + gbrems(s, u,Mγ) = α

4π
(
(u−m2

π)A(u) + (u−m2
π −m2

τ )B(u)

+2(m2
π +m2

τ − u)C (u)
)

+ α

π
(J11(s, u) + J20(s, u) + J02(s, u)) .

(7.52)

213



In this limit, we have

C(u) = 1
mτmπ

xτ
1− x2

τ

(
−1

2 log2 xτ + 2 log xτ log
(
1− x2

τ

)
− π2

6 + 1
8 log2 rτ

+Li2
(
x2
τ

)
+ Li2

(
1− xτ√

rτ

)
+ Li2 (1− xτ

√
rτ )
)
,

(7.53)

J11(s, u) = 1
2 log

(
4x2

+(s, u)γ̄2

mπmτ

)
1
β̄

log
(

1 + β̄

1− β̄

)

+ 1
β̄

(
Li2(1/Y2)− Li2(Y1) + log2(−1/Y2)/4− log2(−1/Y1)/4

)
,

(7.54)

J20(s, u) = log
(
m2
τ − s

x+(s, u)

)
, (7.55)

J02(s, u) = log
(
m2
τ +m2

π − s− u
x+(s, u)

)
, (7.56)

where x+ (s, u) is defined in Eq. (H.19).

The leading Low approximation for G(0)
EM (s) is plotted in fig. 7.8. This function has two

poles, one at s = 4m2
π and the other at s = m2

τ .

We will use the same conventions as Ref. [94], so we denote as ‘complete Bremsstrahlung’

the amplitude where the structure-dependent (‘SD’) part vanishes, i.e. v1 = v2 = v3 = v4 =

a1 = a2 = a3 = a4 = 0. For convenience, we will refer in the following simply as O (p4) and

O (p6) to the contributions from RχT including operators that contribute up to O (p4) and

up to O (p6) chiral LECs, respectively 24.

In GEM(s), the difference between using the FV =
√

2F or FV =
√

3F constraints at

O (p4) is only appreciated for s . 0.35 GeV2, with the latter set producing the largest

deviation with respect to the SI result (fig. 7.8). It is important to note that -as put forward

in Ref. [94]- with FV =
√

2F constraints (those consistent for 2-point Green functions) the

impact of the ‘SD’ corrections on GEM(s) is negligible and the evaluation with SI gives

already an excellent approximation. On the contrary, we find that using the FV =
√

3F set

this is no longer true, which will increase the GEM(s) correction in aHV P,LO|ππµ using τ data
24The different SD constraints applying in each case were discussed at length in section 7.2.5.
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(even before adding the O(p6) contributions).

In fig. 7.8 several contributions to the GEM(s) function are shown: the G(0)
EM part by

a dashed blue line and the complete Bremsstrahlung (SI) contribution with a solid black

line. The full amplitude including all RχT operators which contribute at O (p4) (O (p6))

are represented by black dashed/dotted (red dashed-dotted) lines in fig. 7.8. For the O (p4)

contribution we distinguish between using FV =
√

2F (FV =
√

3F ), represented by dashed

(dotted) lines. Compared to previous results [94,379,677,678], we note the appearance of a

bump near the end of the phase space on GEM (s) due to the inclusion of the ρ(1450) and

the ρ(1700) resonances in the dispersive representation of the vector form factor [19,28]. The

blue band in fig. 7.8 shows the uncertainty of the O(p6) contribution, evaluated according to

that on the couplings which were determined phenomenologically or estimated from chiral

counting in section 7.2.5 (see also appendix G) 25. While the central values of the O (p6)

corrections change mildly the results obtained at O (p4) 26, their huge uncertainty band

suggests that our estimate of the RχT couplings which start contributing at O (p6) was

very conservative (one naively expects a ∼ 1/NC uncertainty for a large-NC expansion 27).

Lacking a better way for this estimation, we consider this uncertainty band as a conservative

upper limit on the corresponding uncertainties. Therefore, our error bands at O (p6) should

be regarded accordingly in the following. On the contrary, the small modification induced

by those O (p6) couplings fixed by SD constraints (with all remaining ones vanishing) with

respect to the O (p4) [94] results, suggests that the difference between those is a realistic

estimate of the missing subdominant terms in Ref. [94] 28 and will be given as such in the

remainder of the chapter.
25These were varied assuming Gaussian errors, and the band was generated so as to cover all data points

obtained in 100 spectrum simulations. Results were stable upon increasing statistics. The corresponding
blue bands were obtained similarly in Figs. 7.12 to 7.14.

26This is reasonable, since SI is basically unchanged by the O
(
p4) contributions.

27This rough estimate of the parametric uncertainty is supported by the computation of χPT LECs
including such corrections (see e. g. Refs. [218, 705, 707]). We note that in this work resonance widths
(dominant next-to-leading order effect in the large-NC expansion for the considered decays) are included.
Also the uncertainty corresponding to including excited resonances (an infinite number of them appears for
NC →∞) was checked to be negligible.

28These were not estimated in Ref. [94] as SI was already an excellent approximation to the result up to
O
(
p4) (using the FV =

√
2F set).
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Figure 7.8: Correction function G
(0)
EM (s) in Eq. (7.51a) (blue dashed line). The solid line

shows the GEM(s) function neglecting the structure-dependent part (SI), i.e. by taking
v1 = v2 = v3 = v4 = a1 = a2 = a3 = a4 = 0, the dashed and dotted lines are the O (p4)
GEM(s) function (with either FV =

√
2F or FV =

√
3F constraints). The blue shaded region

is the full O (p6) contribution, including (overestimated) uncertainties. The left-hand side
plot corresponds to the dispersive parametrization [19] while the right-hand side corresponds
to the Guerrero-Pich parametrization [15] of the form factor (the latter was used in Ref. [94]).

7.3.1 Radiative decay

The differential decay width [713] is given by

dΓ = λ1/2 (s,m2
π0 ,m2

π−)
2 (4π)6m2

τs
|M|2 dEγ dx ds d cos θ− dφ−, (7.57)

where |M|2 is the unpolarized spin-averaged squared amplitude that corresponds to the

τ− → π−π0γ ντ decays, and Eγ is the photon energy in the τ rest frame. It is not worth to

quote here the full analytical expression for |M|2.

For these decays, we have the following integration region

D =
{
Emin
γ ≤ Eγ ≤ Emax

γ , xmin ≤ x ≤ xmax, smin ≤ s ≤ smax,

−1 ≤ cos θ− ≤ +1, 0 ≤ φ− ≤ 2π} ,
(7.58)
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with boundaries

(m2
τ−s+x)
4m2

τ
− λ1/2(s,x,m2

τ)
4mτ ≤ Eγ (s, x) ≤ (m2

τ−s+x)
4mτ + λ1/2(s,x,m2

τ)
4mτ ,

4m2
π ≤ s (x) ≤ (mτ −

√
x)2

,

0 ≤ x ≤ (mτ − 2mπ)2 ,

(7.59)

or interchanging the last two limits,

0 ≤ x (s) ≤ (mτ −
√
s)2

,

4m2
π ≤ s ≤ m2

τ .
(7.60)

There are other ways to write these,

4m2
π ≤ s (x,Eγ) ≤ (mτ−2Eγ)(2mτEγ−x)

2Eγ

0 ≤ x (Eγ) ≤ 2Eγ(m2
τ−4m2

π−2mτEγ)
mτ−2Eγ ,

Ecut
γ ≤ Eγ ≤ m2

τ−4m2
π

2mτ ,

(7.61)

or exchanging x↔ Eγ,

(m2
τ+x−4m2

π)
4mτ − λ1/2(x,m2

τ ,4m2
π)

4mτ ≤ Eγ (s) ≤ (m2
τ+x−4m2

π)
4mτ + λ1/2(x,m2

τ ,4m2
π)

4mτ ,

0 ≤ x ≤ (mτ − 2mπ)2,
(7.62)

and
0 ≤ x (s, Eγ) ≤ 2Eγ(m2

τ−s−2Eγmτ )
mτ−2Eγ

4m2
π ≤ s (Eγ) ≤ mτ (mτ − 2Eγ),

Ecut
γ ≤ Eγ ≤ m2

τ−4m2
π

2mτ .

(7.63)

Further, interchanging s↔ Eγ, we get

Ecut
γ ≤ Eγ (s) ≤ m2

τ−s
2mτ ,

4m2
π ≤ s ≤ mτ (mτ − 2Ecut

γ ).
(7.64)

We recall that this amplitude has IR divergences due to soft photons, i.e. Eγ → 0, which
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is the same problem with Mγ → 0 outlined in the previous section. Correspondingly, the

experiment is not able to measure photons with energies smaller than some Ecut
γ (which is

related with the experimental resolution).

Concerning the O (p6) contributions, once we employ the relations obtained from the SD

behaviour of QCD and its OPE, it is seen that observables are basically insensitive (at the

percent level of precision) to O(1) changes of all the couplings but κVi (the ρ− ω− π vertex

is described by these couplings), which will saturate the (overestimated) uncertainty of our

predictions at this order.

If we integrate Eq. (7.57) using the limits in Eq. (7.64) and the dispersive vector form

factor [19, 28], we get the π−π0 invariant mass distribution, the photon energy distribution

and the branching ratios as a function of Ecut
γ , shown in Figs. 7.10, 7.11, 7.12, 7.13 and 7.14

and summarized in Table 7.2. In these figures, the dotdashed red line corresponds to taking

the limit where all the couplings at O (p6) vanish except for those constrained by SD and

the band overestimates the corresponding uncertainties.

Ecutγ BR(Brems) BR(FV =
√

2F )
[
O
(
p4)] BR(FV =

√
3F )

[
O
(
p4)]

100 MeV 8.6× 10−4 9.0× 10−4 9.5× 10−4

300 MeV 1.7× 10−4 1.9× 10−4 2.3× 10−4

500 MeV 2.8× 10−5 3.9× 10−5 5.4× 10−5

Table 7.2: Branching ratios Br(τ− → π−π0γντ ) for different values of Ecut
γ . The second

column corresponds to the complete Bremsstrahlung and the third and fourth to the O (p4)
contributions.

Ecutγ BR(SD)
[
O
(
p6)] BR

[
O
(
p6)]

100 MeV 1.3× 10−3 (1.9± 0.3)× 10−3

300 MeV 5.1× 10−4 (1.1± 0.3)× 10−3

500 MeV 2.4× 10−4 (0.6± 0.2)× 10−3

Table 7.3: Branching ratios Br(τ− → π−π0γντ ) for different Ecut
γ values at O (p6).

As it can be observed from Table 7.2 and fig. 7.14, the main contribution at O (p4) cor-
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responds to the complete Bremsstrahlung (SI) amplitude (in agreement with Ref. [94]), and

the value for the branching ratio becomes smaller with larger values of Ecut
γ . The values in

Table 7.2 are slightly different from those reported in Ref. [94], this effect is mainly due to the

parametrization of the pion vector form factor (see fig. 7.9). The form factor obtained from

the dispersion relation [19] is above the one obtained using the Guerrero-Pich parametriza-

tion [15] at s 'M2
ρ , and also the former includes the ρ (1450) and ρ (1700) resonances.
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Figure 7.9: Modulus and phase of the pion vector form factor, f+(s). The solid line corre-
sponds to the dispersive representation used in Ref. [19] while the dashed line corresponds
to the Guerrero-Pich parametrization [15] employed by Ref. [94].

According to our discussion on error estimation of the O (p4) result (including the un-

certainty coming from missing higher-order terms from the result at O (p6) when only SD

constraints are used), we have -for Ecut
γ = 300 MeV- BR(τ− → π−π0ντ ) = (1.9+3.2

−0.0) · 10−4.

The spectrum for these decays with vi = ai = 0 is plotted in fig. 7.10, the dominant peak

corresponds to bremsstrahlung off the π−, and the secondary receives two contributions: one

from bremsstrahlung off the τ lepton and another from a resonance exchange in Vµν (for

Ecut
γ ≤ 100 MeV, these two are merged into one single peak). The rate and spectrum are

dominated by the complete bremsstrahlung (SI) contribution.

In fig. 7.11, we show the distribution for Ecut
γ = 300 MeV taking into account the SI

contribution (dotted line) and the O (p4) amplitude obtained using FV =
√

2F (dashed line)
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Figure 7.10: The π−π0 hadronic invariant mass distribution for the τ− → π−π0γντ decays for
Ecut
γ = 100 MeV (black), Ecut

γ = 200 MeV (brown), Ecut
γ = 300 MeV (blue), Ecut

γ = 400 MeV
(gray) and Ecut

γ = 500 MeV (red) using only the Bremsstrahlung (SI) contribution.

and FV =
√

3F (solid line), the most important contribution corresponds to the ρ resonance

exchange at s ∼ 0.6 GeV2. The main difference between these two approaches is seen in

fig. 7.11, where up to s ∼ 0.4 GeV2 the dashed line is below and the solid line is above

the bremmstrahlung (SI) contribution (dotted line). The dashed line is quite similar to the

distribution in fig. 2 of Ref. [94] while the solid line resembles closely the distribution in fig.

4.6 of Ref. [713] obtained from the vector meson dominance (VMD) model [714] neglecting

the ω-resonance contribution.

In fig. 7.12 we show a comparison between the di-pion distribution at different orders.

As we can see, the inclusion of the corrections at O (p6) gives a noticeable enhancement at

low s.

For the photon energy distribution, fig. 7.13, we can differentiate between the full am-

plitude (solid, dashed lines up to O (p4) and dotdashed red line up to O (p6)) and the

bremsstrahlung contribution (dotted line) but, as in the case of the branching fraction, the

distribution decreases for high-energies. In the case of the O (p6) distribution there is an

enhancement at middle and high photon energies.

According to Figs. 7.11 to 7.14, measurements of the ππ invariant mass, of the photon
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Figure 7.11: The π−π0 hadronic invariant mass distributions for Ecut
γ = 300 MeV. The

solid and dashed lines represent the O (p4) corrections using FV =
√

3F and FV =
√

2F ,
respectively. The dotted line stands for the Bremsstrahlung contribution (SI).

dΓ/ds[SI]

dΓ/ds[O(p4)] with Fv= 3 f

dΓ/ds[O(p4)] with Fv= 2 f

dΓ/ds[O(p6)] only SD constraints

0.5 1.0 1.5 2.0

0

2

4

6

8

s [GeV
2]

d
Γ
/d

s
[1

0
-

1
5

G
e

V
-

1
]

Figure 7.12: The π−π0 hadronic invariant mass distributions for Ecut
γ = 300 MeV. The solid

and dashed line represent the O (p4) corrections using FV =
√

3F and FV =
√

2F , respec-
tively. The dotted line represents the Bremsstrahlung contribution (SI). The dotdashed red
line corresponds to using only SD constraints at O (p6) and the blue shaded region overesti-
mates the corresponding uncertainties.
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Figure 7.13: Photon energy distribution for the τ− → π−π0γντ decays normalized with the
non-radiative decay width. The dotted line represents the Bremsstrahlung contribution. The
solid and dashed lines represent the O (p4) corrections using FV =

√
3F and FV =

√
2F ,

respectively. The dotdashed red line corresponds to using only SD constraints at O (p6)
(with overestimated uncertainties in the blue shaded area).
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Figure 7.14: Branching ratio for the τ− → π−π0γντ decays as a function of Ecut
γ . The dotted

line represents the Bremsstrahlung contribution, the solid line and dashed line represent the
O (p4) corrections using FV =

√
3F and FV =

√
2F , respectively. The dotdashed red line

is the O (p6) contribution using only SD constraints and neglecting all other couplings. The
blue shaded region overestimates the O (p6) uncertainties.
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spectrum and the partial decay width, for a reasonable cut on Eγ (at low enough energies

the inner bremmstrahlung contribution hides completely any structure-dependent effect),

could decrease substantially the uncertainty of the O (p6) computation. This was already

emphasized in Ref. [94] but remained unmeasured at BaBar and Belle. We hope these data

can finally be acquired and analyzed at Belle-II.

In fig. 7.15, we show the branching ratio for Ecut
γ = 100, 300, and 500 MeV from top to

bottom. The outcomes were summarized in Table 7.3.
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Figure 7.15: Predictions for the branching ratio at O (p6) for a sample of 1000 points, with
Ecut = 100, 300, and 500 MeV from top to bottom.
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7.4 IB corrections to aHV P,LO ππµ

We can evaluate the leading contributions to the hadronic vacuum polarization (HVP) by

means of the dispersion relation [715],

aHV P,LOµ = 1
4π3

∫ ∞
sthr

dsK(s)σ0
e−e+→hadrons(s), (7.65)

where K(s) is a smooth QED kernel concentrated at low energies, which increases the E .

Mρ contribution,

K(s) = x2

2 (2− x2) + (1 + x2)(1 + x)2

x2

(
ln(1 + x)− x+ x2

2

)
+ (1 + x)

(1− x)x
2 ln(x), (7.66)

with

x = 1− βµ
1 + βµ

, βµ =
√

1− 4m2
µ/s,

and σ0
e−e+→hadrons(s) is the bare hadronic cross section 29. We can relate the hadronic spec-

tral function from τ decays to the e+e− hadronic cross section by including the radiative

corrections and the IB effects. For the ππ final state, we have [94,379]:

σ0
ππ =

[
Kσ(s)
KΓ(s)

dΓππ[γ]

ds

]
RIB(s)
SEW

, (7.67)

where

KΓ(s) = G2
F |Vud|2m3

τ

384π3

(
1− s

m2
τ

)2 (
1 + 2s

m2
τ

)
,

Kσ(s) = πα2

3s ,
(7.68)

and the IB corrections

RIB(s) = FSR(s)
GEM(s)

β3
π+π−

β3
π+π0

∣∣∣∣∣FV (s)
f+(s)

∣∣∣∣∣
2

. (7.69)

29Although final state radiation would belong to HVP,NLO it is always included in HVP,LO (and not in
HVP,NLO) as eliminating this radiation from the measured data is unfeasible. Thus, a final state radiation
(FSR) factor is also needed in the radiative corrections discussed below.
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The SEW term encodes the SD electroweak corrections [256, 274, 364, 365, 520–523] and

FSR(s) accounts for the radiation from the final-state pions [658, 659]. The GEM(s) term

was already discussed at length in section 7.3, the β3
π+π−/β

3
π+π0 term is a phase space factor

and the last term in RIB(s) is a ratio between the neutral (FV (s)) and the charged (f+(s))

pion form factor.

In order to study the effect of the radiative correction GEM(s) on aHV P,LOµ [ππ], we have

evaluated the following expression [94]

∆aHV P,LOµ = 1
4π3

∫ s2

s1
dsK(s)

[
Kσ(s)
KΓ(s)

dΓππ[γ]

ds

](
RIB(s)
SEW

− 1
)
, (7.70)

taking SEW = 1, β3
π+π−
β3
π+π0

= 1 and
∣∣∣FV (s)
f+(s)

∣∣∣2 = 1. The results are summarized in Table 7.4

using DR form factor. The results obtained for the G(0)
EM(s) and the complete O (p4) con-

tribution (with FV =
√

2F ) agree with those in [94], which are +16 · 10−11 and −10 · 10−11,

respectively (for the whole integral). In Table 7.5, we summarized the results obtained us-

ing the Guerrero-Pich [15] parametrization of the form factor (which only accounts for the

completely dominant ρ exchange), which are in nice agreement with those found with the

dispersive form factor (that also includes the ρ(1450) and ρ(1700) effects). This checks,

a posteriori, that excited resonance contributions make a negligible effect in the GEM(s)

corrections to aHV P,LOµ
30.

The values in the last column of Tables 7.4 and 7.5 were obtained evaluating the Eq.

(7.70) according to the couplings discussed in section 7.2.5 for a sample of 200 points for

each interval of integration (results were stable under increasing this number).

The other contributions are summarized in Table 7.6.

• The SEW contribution SEW = 1.0201 gives ∆aHV P,LOµ = −103.1 × 10−11, consistent

with earlier determinations (using slightly different values of SEW ) and with a negligible

error.
30By replacing D−1

ρ (x) by (1 + βρ′)−1(D−1
ρ (x) + βρ′D

−1
ρ′ (x)), with βρ′ ∈ [0.12, 0.15] [28] throughout the vi

and ai form factors, we have verified that the impact of the ρ′ on the GEM (s) correction to aHV P,LO|ππ,τµ is
negligible. Similarly, the error induced by other excited resonances shall also be irrelevant.
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[s1, s2] ∆aHVP,LO
µ,G(0)

EM
∆aHVP,LO

µ, SI ∆aHVP,LO
µ, [O(p4)] ∆aHVP,LO

µ, [O(p4)] ∆aHVP,LO
µ, [SD] ∆aHVP,LO

µ, [O(p6)][
4m2

π, 1 GeV2
]

+17.8 −11.0 −11.3 −17.0 −32.4 −74.8± 44.0[
4m2

π, 2 GeV2
]

+18.3 −10.1 −10.3 −16.0 −31.9 −75.9± 45.5[
4m2

π, 3 GeV2
]

+18.4 −10.0 −10.2 −15.9 −31.9 −75.9± 45.6[
4m2

π,m
2
τ

]
+18.4 −10.0 −10.2 −15.9 −31.9 −75.9± 45.6

Table 7.4: Contributions to ∆aHV P,LOµ in units of 10−11 using the dispersive representation
of the form factor. From the two evaluations labelled O (p4), the left(right) one corresponds
to FV =

√
2F (FV =

√
3F ).

[s1, s2] ∆aHVP,LO
µ,G(0)

EM
∆aHVP,LO

µ, SI ∆aHVP,LO
µ, [O(p4)] ∆aHVP,LO

µ, [O(p4)] ∆aHVP,LO
µ, [SD] ∆aHVP,LO

µ, [O(p6)][
4m2

π, 1 GeV2
]

+17.3 −10.2 −10.4 −15.9 −28.3 −63.2± 16.5[
4m2

π, 2 GeV2
]

+17.7 −9.4 −9.6 −15.2 −28.1 −58.1± 12.2[
4m2

π, 3 GeV2
]

+17.8 −9.3 −9.5 −15.1 −28.0 −67.8± 17.5[
4m2

π,m
2
τ

]
+17.8 −9.3 −9.5 −15.1 −28.0 −64.9± 13.4

Table 7.5: Contributions to ∆aHV P,LOµ in units of 10−11 using the GP parametrization of
the form factor. From the two evaluations labelled O (p4), the left(right) one corresponds to
FV =

√
2F (FV =

√
3F ).
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• The phase space (PS) correction induces ∆aHV P,LOµ = −74.5×10−11 (trivially in agree-

ment with previous computations), again with tiny uncertainties.

• The final state radiation (FSR, which is formallyNLO) yields ∆aHV P,LOµ = +45.5(4.6)×

10−11, in accord with Ref. [7] (its value was not quoted in Ref. [94]).

• The correction due to the ratio of the form factors (fig. 7.16) is harder to evaluate. We

have considered two alternatives, labelled FF1 and FF2, that we explain next. We use

the following numerical inputs for the ρ − ω mixing parameter θρω = (−3.5 ± 0.7) ×

10−3 GeV2 [94] and Γρ0 − Γρ+ = 0.3 ± 1.3 MeV, mρ± − mρ0 = 0.7 ± 0.8 MeV and

mρ0 = 775.26± 0.25 MeV from PDG [541].

In FF1, as in Ref. [94], we include the measurement of the ππγ channel of the ρ0

Γρ0→π+π−γ = 1.5± 0.2 MeV, and the measurement of Γρ0→π0γ and Γρ+→π+γ which are

approximately 0.1 MeV [3]. Thus, we estimate Γρ0→π+π−γ − Γρ±→π±π0γ = 1.5 ± 1.3

MeV. In this way, we get a positive correction of ∆aHV P,LOµ = +40.9(48.9) × 10−11.

The uncertainty on the third column of Table 7.6 (FF1) corresponds to sum the errors

due to uncertainties of ρ− ω mixing (8.5), the ρ+ − ρ0 mass difference (15.9), and the

ρ+ − ρ0 width difference (45.5) in quadrature (in units of 10−11).

On the other hand, in FF2 we use the same numerical inputs for Γρ0→π+π−γ−Γρ±→π±π0γ =

0.45±0.45 MeV as in Ref. [94] (and all the others as we did before), we obtain a positive

correction of ∆aHV P,LOµ = +77.6(24.0)× 10−11. The uncertainty on the fourth column

Table 7.6 (FF2) corresponds to sum the errors due to uncertainties of ρ − ω mixing

(8.6), the ρ+ − ρ0 mass difference (15.9), and the ρ+ − ρ0 width difference (15.8) in

quadrature (in units of 10−11).

This correction was +(61± 26± 3) · 10−11 in [94] and +(86± 32± 7) · 10−11 in [7], in

agreement (despite the big errors) with our FF2 and FF1 determinations, respectively.

• Finally, we get (−15.9+5.7
−16.0)·10−11 ((−76±46)·10−11) for theGEM(s) correction atO(p4)

(O(p6)), versus −10 · 10−11 in [94] and −37 · 10−11 in [677] (from the last two results,
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(−19.2± 9.0) · 10−11 was used in [7]). As explained before, the previous uncertainty on

the O(p6) can only be taken as an upper bound on it. Also interesting is the GEM(s)

correction when only the couplings restricted by SD are used (with all others at this

order set to zero), which allows us to estimate the effect of missing higher-order terms

on the O(p4) result quoted above. This O(p4) result, which is our reference value, is

consistent with both the earlier RχT [94] and the VMD [7] evaluations, albeit with a

larger (asymmetric) error.

[s1, s2] SEW PS FSR FF1 FF2 EM[
4m2

π, 1 GeV2
]
−101.1 −74.1 +44.7 +41.8± 49.0 +78.4± 24.5 −17.0+5.7

−15.4[
4m2

π, 2 GeV2
]
−103.1 −74.4 +45.5 +40.9± 48.9 +77.6± 24.0 −16.0+5.7

−15.9[
4m2

π, 3 GeV2
]
−103.1 −74.5 +45.5 +40.9± 48.9 +77.6± 24.0 −15.9+5.7

−16.0[
4m2

π,m
2
τ

]
−103.1 −74.5 +45.5 +40.9± 48.9 +77.6± 24.0 −15.9+5.7

−16.0
[s1, s2] ∆aµ(FF1) ∆aµ(FF2)[

4m2
π, 1 GeV2

]
−105.7+49.5

−51.6 −69.1+25.6
−29.3[

4m2
π, 2 GeV2

]
−107.1+49.4

−51.6 −70.4+25.1
−29.2[

4m2
π, 3 GeV2

]
−107.1+49.4

−51.7 −70.4+25.1
−29.2[

4m2
π,m

2
τ

]
−107.1+49.4

−51.7 −70.4+25.1
−29.2

Table 7.6: Contributions to ∆aHV P,LOµ in units of 10−11 using the DR form factor as the
reference one.

In fig. 7.17, we show the full IB correction factor RIB(s) for the different orders of

approximation in the GEM(s) factor using the DR parametrization of the form factor. As

we can see, there is a difference between the contributions at O(p4) and those at O(p6) for

energies below ∼ 0.5GeV2 and above ∼ 0.7GeV2.

An important cross-check is the branching fraction Bππ0 = Γ(τ → ππ0ντ )/Γτ which is

a directly measured quantity. It can also be evaluated from the I = 1 component of the

e+e− → π+π−(γ) cross section after taking into account the IB corrections. The branching

fraction is given by

BCV C
ππ0 = Be

∫ m2
τ

4m2
π

ds σπ+π−(γ)(s)N (s) SEW
RIB(s) , (7.71)
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Figure 7.16: Ratio of the form factors (FF1) for θρω = (−3.5± 0.7)× 10−3 GeV2. The solid
line represents the mean value.
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Figure 7.17: Full IB correction factor RIB(s) for the different orders of approximation in
GEM(s) using the central values given in (FF1). The blue region corresponds to the (over-
estimated) corrections at O(p6) in GEM(s).
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where

N (s) = 3 |Vud|2

2πα2
0m

2
τ

s

(
1− s

m2
τ

)2 (
1 + 2s

m2
τ

)
. (7.72)

Using the most recent data obtained from BaBar [20] 31 for the e+e− → π+π−(γ) cross

section and taking the same numerical inputs as we did for FF1, we get

BCV C
ππ0 =



(24.76± 0.11± 0.25± 0.01± 0.01± 0.02)%, SI,

(24.77± 0.11± 0.25± 0.01± 0.01± 0.02)%, FV =
√

2F,

(24.77± 0.11± 0.25± 0.01± 0.01± 0.02)%, FV =
√

3F,

(24.80± 0.11± 0.25± 0.01± 0.01± 0.02)%, SD,

(7.73)

where ‘SI’, ‘FV =
√

2F ’, ‘FV =
√

2F ’ and ‘SD’ correspond to the different approximations

of the GEM(s) factor. The result for FV =
√

2F is our reference one, with a negligible

uncertainty from the missing higher-order terms starting at O(p6).

On the other hand, when we use the same numerical inputs as in the case of FF2, we get

(again our reference result is the FV =
√

2F one, with the uncertainties quoted below)

BCV C
ππ0 =



(24.57± 0.11± 0.08± 0.01± 0.01± 0.02)%, SI,

(24.57± 0.11± 0.08± 0.01± 0.01± 0.02)%, FV =
√

2F,

(24.58± 0.11± 0.08± 0.01± 0.01± 0.02)%, FV =
√

3F,

(24.61± 0.11± 0.08± 0.01± 0.01± 0.02)%, SD.

(7.74)

In both cases, the first error corresponds to the statistical experimental uncertainty on

σππ(γ), the second is related to uncertainty on the ρ+ − ρ0 width difference, the third to the

uncertainty in the ρ+ − ρ0 mass difference and the fourth to the uncertainty of the ρ − ω

mixing. The last error corresponds to the corrections induced by FSR on BCV C
ππ0 , which

reduces ∼ −0.20(2)% the ππ branching fraction.

If we include all the couplings contributing to GEM(s) at O(p6) according to section 7.2.5
31We thank to Alex Keshavarzi and Bogdan Malaescu for providing us tables with the measurement of

the e+e− → π+π−(γ) cross section.
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we have an additional error associated to the EM contributions. Thus, we get

BCV C
ππ0 = (24.80± 0.11± 0.25± 0.01± 0.01± 0.02+0.21

−0.01)%, (7.75)

for FF1, and

BCV C
ππ0 = (24.61± 0.11± 0.08± 0.01± 0.01± 0.02+0.21

−0.01)%. (7.76)

for FF2. Both previous results match perfectly our reference determinations obtained with

FV =
√

2F .

These results are in good agreement (though better for FF1) with the value reported by

the Belle [18] collaboration,

Bτ
ππ0 = (25.24± 0.01± 0.39)%, (7.77)

where the first uncertainty is statistical and the second is systematic. Nonetheless, they are

in some tension with the very precise ALEPH measurement (25.471± 0.097± 0.085)% [397].

We show in fig. 7.18 the prediction for the e+e− → π+π− cross section using the data

reported by Belle [18] (as it is the most precise measurement of this spectrum) for the

normalized spectrum (1/Nππ)(dNππ/ds) compared to the last measurements from BaBar [20]

and KLOE [58] 32.

We recall that the e+e− → π+π− cross section obtained using τ data is given by [18]

σ0
ππ = 1

N (s) ×
(
Bππ

Be

)
×
(

1
Nππ

dNππ

ds

)(
RIB(s)
SEW

)
. (7.78)

In fig. 7.18 the τ -based prediction is obtained using the O(p4) result for GEM(s), with

the estimated uncertainty from missing higher-order corrections given by the result at O(p6)

(employing only the SD constraints). The blue dotdashed line shown overestimates the error
32We have chosen to show in the comparison these two e+e− data sets as the results from both Colls. are

those deviating the most, and thus mainly responsible from the tension in σ(e+e− → π+π−).
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at O(p6).

From fig. 7.18, we observe good agreement between the BaBar data and the τ decays

prediction (slightly better for FF1) 33. The previous comparisons make us consider our

evaluation with FF1 the reference one (so that its difference with FF2 will assess the size of

the error induced by IB among the ρ→ ππγ decay channels) 34.
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Figure 7.18: Comparison between the different data sets from BaBar (above) and KLOE
(below) with ∆Γππγ = 1.5 MeV (left-hand) and ∆Γππγ = 0.45 MeV (right-hand) for FF1 and
FF2, respectively. The blue region corresponds to the experimental error on σππ(γ). The
solid and dashed lines represent the contributions with FV =

√
3F and FV =

√
2F at O(p4),

respectively. The dotted line is the SI contribution. The red line depicts the envelope of
GEM(s) at O(p6), that overestimates the uncertainty at this order. The blue dotdashed line
is the O(p6) contribution using only SD constraints.

Using Eq. (7.78) we evaluate the IB-corrected aHV P,LOµ [ππ, τ ] from the Belle mass spec-

trum. We use the PDG values [541] for mτ , Vud and Be.
33One can also check how important the ρ+ − ρ0 width difference is around s 'M2

ρ .
34We, nevertheless, recall that recent BESIII data [59] and evaluations within the Hidden Local Symmetry

model [50,716–718] agree better with the KLOE data than with BaBar’s.
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In tables 7.7 (7.8) we show IB-corrected aHV P,LOµ [ππ, τ ] in units of 10−10 using the mea-

sured mass spectrum by Belle (ALEPH). For each dataset, results for the different ap-

proximations to GEM(s) are shown. We choose showing first the results with both Belle

and ALEPH datasets as the first (second) one yields the most accurate spectral function

(branching ratio) measurement. As in Ref. [7] (and later works by the Orsay group), the

contributions are split in two intervals. In the first one,
√
s ∈ [2mπ± , 0.36 GeV], (the very

scarce) data is not used, as this affects the precision of the integral. Instead, we use the

results of the dispersive fits in Ref. [28]. We proceed analogously in tables 7.9 and 7.10 with

the CLEO [12] and OPAL [527] 35 measurements.

FF1
[s1, s2] SI FV =

√
2F FV =

√
3F SD min max mean[

0.1296 GeV2, 1 GeV2
]

499.43 499.42 499.05 498.16 492.18 498.41 495.30[
0.1296 GeV2, 2 GeV2

]
509.47 509.46 509.09 508.14 501.87 508.40 505.13[

0.1296 GeV2, 3 GeV2
]

509.68 509.67 509.30 508.35 502.08 508.61 505.34[
0.1296 GeV2, 3.125 GeV2

]
509.72 509.71 509.34 508.40 502.12 508.65 505.39

FF2
[s1, s2] SI FV =

√
2F FV =

√
3F SD min max mean[

0.1296 GeV2, 1 GeV2
]

503.03 503.02 502.65 501.75 495.76 502.01 498.88[
0.1296 GeV2, 2 GeV2

]
513.08 513.06 512.70 511.75 505.46 512.00 508.73[

0.1296 GeV2, 3 GeV2
]

513.29 513.28 512.91 511.96 505.66 512.21 508.94[
0.1296 GeV2, 3.125 GeV2

]
513.33 513.32 512.95 512.01 505.71 512.26 508.98

Table 7.7: IB-corrected aHV P,LOµ [ππ, τ ] in units of 10−10 using the measured mass spectrum by
Belle with Bππ = (25.24±0.01±0.39)%. Different approximation to GEM(s) are displayed in
the various columns. The last three of them show the results at O(p6) and their differences
overestimate the error at this order. The error of the O(p4) prediction (obtained with
FV =

√
2F ) can be quantified from its difference with the SD value (corresponding to the

O(p6) contribution using only SD constraints).

Taking into account all di-pion tau decay data from the ALEPH [397], Belle [18], CLEO

[12] and OPAL [527] Colls. (the latter yielding the largest contribution to aHV P,LO|ππµ ex-
35We thank to Jorge Portolés for providing us with the OPAL data set.

233



FF1
[s1, s2] SI FV =

√
2F FV =

√
3F SD min max mean[

0.1296 GeV2, 1 GeV2
]

495.28 495.27 494.92 494.05 488.25 494.30 491.27[
0.1296 GeV2, 2 GeV2

]
506.57 506.56 506.21 505.29 499.15 505.53 502.34[

0.1296 GeV2, 3 GeV2
]

506.82 506.81 506.45 505.53 499.38 505.77 502.58[
0.1296 GeV2, 3.125 GeV2

]
506.82 506.81 506.46 505.53 499.39 505.78 502.58

FF2
[s1, s2] SI FV =

√
2F FV =

√
3F SD min max mean[

0.1296 GeV2, 1 GeV2
]

498.86 498.85 498.50 497.63 491.81 497.87 494.84[
0.1296 GeV2, 2 GeV2

]
510.16 510.15 509.80 508.87 502.72 509.12 505.92[

0.1296 GeV2, 3 GeV2
]

510.41 510.40 510.04 509.12 502.95 509.36 506.16[
0.1296 GeV2, 3.125 GeV2

]
510.41 510.40 510.05 509.12 502.96 509.36 506.16

Table 7.8: IB-corrected aHV P,LOµ [ππ, τ ] in units of 10−10 using the measured mass spectrum
by ALEPH with Bππ = (25.471± 0.097± 0.085)%. The rest is as in Table 7.7.

FF1
[s1, s2] SI FV =

√
2F FV =

√
3F SD min max mean[

0.1296 GeV2, 1 GeV2
]

498.51 498.50 498.14 497.27 491.43 497.52 494.47[
0.1296 GeV2, 2 GeV2

]
508.98 508.97 508.61 507.69 501.54 507.93 504.74[

0.1296 GeV2, 3 GeV2
]

509.15 509.14 508.79 507.86 501.70 508.11 504.91[
0.1296 GeV2, 3.125 GeV2

]
509.20 509.18 508.83 507.91 501.75 508.15 504.95

FF2
[s1, s2] SI FV =

√
2F FV =

√
3F SD min max mean[

0.1296 GeV2, 1 GeV2
]

502.10 502.09 501.74 500.86 495.00 501.11 498.06[
0.1296 GeV2, 2 GeV2

]
512.58 512.57 512.22 511.29 505.12 511.58 508.33[

0.1296 GeV2, 3 GeV2
]

512.76 512.75 512.39 511.47 505.29 511.71 508.50[
0.1296 GeV2, 3.125 GeV2

]
512.80 512.79 512.43 511.51 505.33 511.75 508.54

Table 7.9: IB-corrected aHV P,LOµ [ππ, τ ] in units of 10−10 using the measured mass spectrum
by CLEO with Bππ = (25.36± 0.44)%. The rest is as in Table 7.7.

234



FF1
[s1, s2] SI FV =

√
2F FV =

√
3F SD min max mean[

0.1296 GeV2, 1 GeV2
]

509.50 509.51 509.07 508.04 501.31 508.34 504.82[
0.1296 GeV2, 2 GeV2

]
521.29 521.29 520.86 519.77 512.69 520.06 516.34[

0.1296 GeV2, 3 GeV2
]

521.49 521.49 521.06 519.96 512.88 520.25 516.56[
0.1296 GeV2, 3.125 GeV2

]
521.49 521.49 521.06 519.97 512.88 520.26 516.57

FF2
[s1, s2] SI FV =

√
2F FV =

√
3F SD min max mean[

0.1296 GeV2, 1 GeV2
]

512.99 512.99 512.56 511.53 504.78 511.82 508.30[
0.1296 GeV2, 2 GeV2

]
524.79 524.79 524.36 523.27 516.17 523.56 519.86[

0.1296 GeV2, 3 GeV2
]

524.99 524.99 524.56 523.46 516.36 523.76 520.06[
0.1296 GeV2, 3.125 GeV2

]
524.99 524.99 524.56 523.46 516.36 523.76 520.06

Table 7.10: IB-corrected aHV P,LOµ [ππ, τ ] in units of 10−10 using the measured mass spectrum
by OPAL with Bππ = (25.46± 0.17± 0.29)%. The rest is as in Table 7.7.

aHV P,LOµ [ππ, τ ]
Experiment 2mπ± − 0.36 GeV 0.36− 1.8 GeV TOTAL

Belle 8.81± 0.00± 0.14+0.16
−0.34 511.14± 1.94± 7.99+1.91

−2.09 519.95± 1.94± 7.99+1.91
−2.12

ALEPH 8.89± 0.00± 0.05+0.16
−0.34 508.26± 4.48± 2.82+1.91

−2.09 517.15± 4.48± 2.82+1.91
−2.12

CLEO 8.85± 0.00± 0.15+0.16
−0.34 510.63± 3.40± 8.93+1.90

−2.08 519.48± 3.40± 8.93+1.90
−2.11

OPAL 8.89± 0.00± 0.12+0.15
−0.34 522.81± 10.04± 7.00+1.87

−2.12 531.70± 10.04± 7.00+1.87
−2.15

Table 7.11: IB-corrected aHV P,LOµ [ππ, τ ] in units of 10−10 at O(p4). The first error is related
to the systematic uncertainties on the mass spectrum, and also include contributions from
the τ -mass and Vud uncertainties. The second error arises from Bππ0 and Be, and the third
error from the isospin-breaking corrections.

aHV P,LOµ [ππ, τ ]
Experiment 2mπ± − 0.36 GeV 0.36− 1.8 GeV TOTAL

Belle 7.77± 0.00± 0.12+1.20
−0.59 507.18± 1.91± 7.88+4.72

−3.76 514.95± 1.91± 7.88+4.87
−3.81

ALEPH 7.84± 0.00± 0.04+1.21
−0.60 504.37± 4.35± 2.79+4.63

−3.70 512.21± 4.35± 2.79+4.78
−3.75

CLEO 7.80± 0.00± 0.14+1.21
−0.59 506.74± 3.28± 8.84+4.63

−3.71 514.54± 3.28± 8.84+4.78
−3.76

OPAL 7.84± 0.00± 0.10+1.20
−0.60 518.32± 9.69± 6.92+5.25

−4.12 526.16± 9.69± 6.92+5.39
−4.16

Table 7.12: IB-corrected aHV P,LOµ [ππ, τ ] in units of 10−10 at O(p6). The rest is as in Table
7.11.
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ceeding ∼ 10.7 · 10−10 the mean, although with the largest errors as well) in Tables 7.11 and

7.12 at O(p4) and O(p6), respectively, we get the combined tau-data contribution

1010 · aHV P,LO|ππ,τ data
µ = 519.6± 2.8spectra+BRs

+1.9
−2.1IB , (7.79)

at O(p4) and

1010 · aHV P,LO|ππ,τ data
µ = 514.6± 2.8spectra+BRs

+5.0
−3.9IB , (7.80)

at O(p6).

The IB errors come from the uncertainty on Γ(ρ→ ππγ) (FF1 vs FF2) and either from

the difference between the FV =
√

2F and SD results (in Eq. (7.79)) or from the difference

between the ’mean’ and ’min’/’max’ results (in Eq. (7.80)).

Contrary to previous estimates [7, 91, 94, 406, 655], the errors in a
HV P,LO|ππ,τ data
µ happen

to be dominated by the uncertainty on the IB contributions (but for the lower error on

Eq. (7.79)).

When Eqs. (7.79) and (7.80) are supplemented with the four-pion tau decays measure-

ments (up to 1.5 GeV) and with e+e− data at larger energies in these modes (and with e+e−

data in all other channels making up the hadronic cross section), we get [48,655]

1010 · aHV P,LO|τ data
µ = 705.7± 2.8spectra+BRs

+1.9
−2.1IB ± 2.0e+e− ± 0.1narrow res± 0.7QCD , (7.81)

at O(p4), and

1010 · aHV P,LO|τ data
µ = 700.7± 2.8spectra+BRs

+5.0
−3.9IB ± 2.0e+e− ± 0.1narrow res± 0.7QCD , (7.82)

at O(p6) and we have also included the uncertainties corresponding to using e+e− data for

those contributions not covered by tau decay measurements and to the inclusion of narrow

resonances and the perturbative QCD part.

Adding errors in quadrature, an uncertainty of +4.0
−4.1 (+6.1

−5.2) is obtained at O(p4) (O(p6)).

These numbers (all in units of 10−10) have to be compared with the error of 4.0 in Ref. [6].

When all other (QED, EW and subleading hadronic) contributions are added to eqs.
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(7.81) and (7.82) according to Ref. [6], the 4.2σ [6] deficit of the SM prediction with respect

to the experimental average (FNAL+BNL) [95,96] is reduced to

∆aµ ≡ aexpµ − aSMµ = (12.5± 6.0) · 10−10 , (7.83)

at O(p4), and

∆aµ ≡ aexpµ − aSMµ = (17.5+6.8
−7.5) · 10−10 , (7.84)

at O(p6), which are 2.1 and 2.3σ, respectively.

In figure 7.19 we show a comparison between our O(p4) and O(p6) calculation with

respect to the estimation based in the e+e− data driven [6] and the lattice results from the

BMW collaboration [43].

O(p
4
)

O(p
6
)

FNAL

BNL

SM
(Lattice BMW)

SM
(Data driven)

Experiment
Average

0.00116591810 0.00116591954 0.00116592061

aμ

Figure 7.19: Comparison between the experimental values of aµ from BNL [95] and FNAL [96] with
respect to the Muon g − 2 Theory Initiative recommended value [6], the lattice QCD calculation
from the BMW collaboration [43] and our results [97].
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7.5 Conclusions

In this work we have revisited the resonance chiral Lagrangian computation of the isospin-

breaking and radiative corrections to the τ− → π−π0ντγ decays in Ref. [94], by including the

terms that start to contribute to the O(p6) chiral LECs. Our main motivation for that was to

revisit the determination of aHV P,LOµ using tau decay data, so that it could -when combined

with the e+e− measurements- reduce the Standard Model error on aµ, thus enhancing the

sensitivity to new physics of the current BNL and future FNAL and J-PARC measurements.

Our isospin breaking corrections improve the agreement between τ and e+e− di-pion data

(both in the spectrum and its integral), which endorses our evaluation of aHV P,LO|τ data
µ . Our

main results are aHV P,LO|τ data
µ = (705.7+4.0

−4.1) · 10−10 (including the same contributions as in

Ref. [94]), and aHV P,LO|τ data
µ = (700.7+6.1

−5.2) · 10−10 (when the operators starting to contribute

to the O(p6) LECs are also considered). These reduce the anomaly ∆aµ ≡ aexpµ − aSMµ to 2.0

and 2.3σ, respectively.

We also provide with a detailed study of the ππ spectrum, Eγ distribution and branching

ratio, for different cuts on the photon energy. These τ− → π−π0ντγ decays observables have

the potential to reduce drastically the error of our predictions, so we eagerly await their

measurement at Belle-II.
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Chapter 8

Lamb shift and hyperfine splitting in

muonic hydrogen

8.1 Introduction

The energy levels of muonic atoms are very sensitive to effects of quantum electrodynamics

(QED), nuclear structure, and recoil, thanks to the muon mass, which is about 206 times

heavier than the electron [719]. The enhancement factor, as compared to H, is of order

(mµ/me)3 ∼ 107, making muonic hydrogen (µH) a neat laboratory for studies of the proton

structure.

The measurement of the Lamb shift in muonic hydrogen [103] has encouraged great

renewed interest in the energy levels of muonic atoms. Precise research of the Lamb shift

(LS) and hyperfine structure (HFS) of light muonic atoms is an elemental issue for testing

the Standard model, particularly the QED calculations, establishing the exact values of SM

parameters, like the Rydberg constant, detailed study of the proton structure, and searching

for effects of new physics [720]. A number of theoretical analyses of the Lamb shift (the 2p−2s

transition) in light muonic atoms have been published [721–730] before the measurement was

performed.

The last decade has witnessed a remarkable breakthrough in the laser spectroscopy of

239



muonic atoms, starting from the long-awaited observation of the 2S − 2P transition in µH

by the CREMA Collaboration [102, 103]. This measurement appears to be quite far from

the predicted value, which made it very hard to find, and very fascinating when observed. It

presumed a proton charge radius, rP , which was 7σ smaller than the state-of-the-art value

at that time (see CODATA ’10 [100] in Fig. 8.1). The CODATA value encompasses decades

of rP determinations using the traditional techniques: ep scattering and H spectroscopy.

This huge discrepancy, known as the proton-radius puzzle, motivated a wealth of activity

at the intersection of nuclear, particle, and atomic physics, reaching out to physics beyond

the Standard Model [731–734]. The subsequent measurements of the µD Lamb shift [121]

showed a similar discrepancy for the deuteron charge radius, rd, see Fig. 8.2. These two

measurements are related by the H−D isotopic shift measurement of the 1S−2S transitions

[735], which restraint the difference, r2
d − r2

p. They are sometimes commonly referred to as

the “Z = 1 radius puzzle”, highlighting that no such discrepancy has been found in muonic

helium [736]. When the theory updates in Refs. [101, 120] are used, the rp value obtained

from µD via the isotopic shift is in agreement with the value extracted from µH at the

permille level.

At present, more than a decade after the radius-puzzle installment, there is some consen-

sus, adopted also by the CODATA group [98], that the µH value is an order-of-magnitude

more precise, and also, more accurate. The discrepancy with the previous extractions may

simply lie in unaccounted systematic uncertainties. This view is supported by some of the

recent measurements using H. Aside from the H(1S − 3S) transition measurement by the

Paris group [107], the other four new measurements in H gave smaller radii than the CO-

DATA ’10: three of them agree with the muonic results [105, 106, 108], while a very recent

measurement of the H(2S − 8D) [104] shows a slightly tension.

On the side of ep scattering, the recent PRad experiment [109] has found a smaller value

of rp, in agreement with µH, confirming different analysis of scattering data that agree with

the muonic result [110, 111, 115–118]. The initial-state radiation experiment at MAMI does

not allow to discriminate between the small and large scenarios at this time [737] since it
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Figure 8.1: Selection of recent proton charge radius determinations [8]. The band corresponds
to the µH’13 value. The references are (from top to bottom): CODATA [98–100], muonic atoms
[101–103], H spectroscopy [99,104–108], ep scattering [109–114], dispersive analysis of ep scattering
[115–118].

has a larger uncertainty.

In Fig. 8.1, the discrepancy is diffused quite considerably by the latest results. However,

this problem has not become clear and a new round of experiments is underway, which include

the first measurements from µp scattering by MUSE [738] and AMBER collaborations [739],

improved ep scattering measurements from PRAD-II [740] and the PRES Collaboration at

MAMI, as well as spectroscopy measurements of H in Rydberg states [741], He+(1S − 2S)

[742,743] and simple molecules such as HD+, H+
2 and H2.

Even if the proton-radius puzzle vanishes, several aspects of the underlying theory can be

studied just by performing more precise measurements. For instance, the proton radius from

µH, in combination with the 1S−2S transition in H, leads to the most precise determination

of the Rydberg constant R∞. When it is combined with the H −D isotopic shift, the most
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Figure 8.2: Deuteron charge radius determinations [8]. The results here correspond to: CODATA
[98, 99], ed scattering [119], µD spectroscopy [101, 120, 121], H − D isotopic shift and µH Lamb
shift [102], D spectroscopy [122].

precise determination of the deuteron radius can be obtained. Subsequently, in combination

with the measured Lamb shift in µD, it provides a stringent test for the theory of the

deuteron structure, viz., the nucleon-nucleon interaction. The proton radius in combination

with the spectroscopy of H, D, HD+ and other simple systems, can be used to achieve

precision tests of bound-state QED for few-body systems, which impacts the precision of

several fundamental quantities. Although the current HD+ results barely favor the muonic

ones [744], its potential is huge. On the scattering side, the precise value of rp permits a

better determination of the proton electric form factor GEp(Q2). Thanks to the increased

precision, one becomes sensitive to some scenarios of physics beyond the Standard Model,

in addition to those proposed as explanation of the puzzle in the first place [745–748].

Another important topic concerns the ongoing efforts to measure the ground-state hfs in

µH. The CREMA Collaboration aims to measure with a precision of 1 ppm by means of

pulsed laser spectroscopy. Besides, two other collaborations, at J-PARC [749] and RIKEN-

RAL [126, 750–753], are planning measurements of these transitions using different tech-

niques. The hfs resonance is two orders of magnitude narrower than the 2S− 2P line width,
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Figure 8.3: Main corrections in µH. Here, the cyan blobs represent the finite-size effects, thin and
thick lines the muon and proton, respectively.

and therefore, difficult to find. Further details can be found in Ref. [8].

8.2 Nuclear effects in hydrogen-like atoms

Muonic atoms have a small Bohr radius, and thus, a larger sensitivity to nuclear structure,

and short-range effects in general. Whilst the finite-size contribution is improved by a factor

of 107, relative to normal atoms, the QED effects contributing to the 2S − 2P splitting is

increased only by a factor of 50, promoting the finite-size contribution to be the second largest

contribution, surpassed only by the one-loop eVP, shown in Fig. 8.3(a). There are plenty

of Refs. [721,722,754–756] accounting for these effects. However, a more precise calculation

will always be welcome, as soon as a more precise measurement emerges. Important for this

program is the progress on the nuclear side, since many of the corrections require the input

of nuclear and nucleon form factor and structure functions.

The first contribution comes from solving the Coulomb problem by using either the Dirac

or Schrödinger equation [757]. It assumes a point-like nucleus with the electric charge Ze,

thus the effects beyond this approximation arise as perturbative corrections to the Lamb shift,

fine and hyperfine structure; organized in powers of the fine-structure constant α = e2/4π,

and mass ratios. Among the nuclear-structure effects, (i) the finite-size effects come from the

fact that the nucleus is not a point but it has a smeared electromagnetic distribution, Fig.

8.3(b-d), and (ii) the polarizability effects in Fig. 8.3(a) is caused by deformations of this

distribution within the atom. The finite-size effects can be entirely described by the elastic

form factors, like GE(Q2) and GM(Q2) in case of a spin-1/2 nucleus, while the polarizability

ones require a more complicated input, viz., structure functions.
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8.3 Theory updates and future µH

Perturbation theory is used to calculate the various corrections to the energy levels, involving

an expansion of both operators and wave functions. The radiative (QED) corrections are

obtained in an expansion in α, binding effects and relativistic effects in (Zα), and recoil

corrections in the ratio of the masses of the two-body system (m/M), where Z = 1 is the

atomic charge number and α is the fine structure constant [758]. The contributions related

to the proton structure are in part described by an expansion in powers of rE and rZ .

8.3.1 Lamb shift in µH

Two transition frequencies in muonic hydrogen have been measured. One starts from the

2S-triplet state νt = 2P F=2
3/2 − 2SF=1

1/2 [102] and the other from the 2S-singlet state νs =

2P F=1
3/2 − 2SF=0

1/2 [102, 103], Fig. 8.4C. The principle of the muonic hydrogen Lamb shift

experiment [102] is to form muonic hydrogen in the 2S state (Fig. 8.4A) and measure the

2S − 2P energy splitting (Fig. 8.4C) by means of laser spectroscopy (Fig. 8.4B).

From these two transition measurements, the Lamb shift (∆EL = ∆E2P1/2−2S1/2) and the

2S-HFS splitting (∆EHFS) can be deduced independently by the linear combination [758]

1
4hνs + 3

4hνt = ∆EL + 8.8123(2)meV

hνs − hνt = ∆EHFS − 3.2480(2)meV .

Finite size effects are included in ∆L and ∆EHFS. This terms include the calculated

values of the 2P fine structure, the 2P3/2 hyperfine splitting, and the mixing of the 2P

states [722,754,759,760]. The finite proton size effects on the 2P fine and hyperfine structure

are smaller than 1 · 10−4 meV because of the small overlap between the 2P wave functions

and the nucleus. Their uncertainties arising from the proton structure are then negligible.

Using the measured transition frequencies νs and νt and Eq. (8.1), they found [102]

∆Eexp
L = 202.3706(23) meV,

∆Eexp
L = 22.8089(51) meV,

(8.1)
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Figure 8.4: (A) Formation of µH in highly excited states and subsequent cascade with emission
of “prompt” Kα,β,γ∗ . (B) Laser excitation of the 2S − 2P transition with subsequent decay to the
ground state with Kα emission. (C) 2S and 2P energy levels. The measured transitions νs and νt
are indicated along with the Lamb shift, 2S-HFS, and 2P -Pine and hyperfine splitting. Reprinted
from Ref. [102].
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The statistical and systematic uncertainties of νs and νt have been added quadratically

to get the final result.

On the theory side, the updated summary for the µH Lamb shift is given in Eq. (8.2).

Its accuracy is limited by the 2γ exchange, finite-size effects and the hVP.

E1P−2S(µH) =
[

205.0074︸ ︷︷ ︸
Uehling

+1.0153︸ ︷︷ ︸
rp indep.

+0.0114(3)︸ ︷︷ ︸
hVP

+0.0006(1)− 5.2275(10)
(
rp
fm

)2

︸ ︷︷ ︸
f.s. corr.

−E(2γ)
2S︸ ︷︷ ︸

2γ exchange

]
meV,

(8.2)

Utilizing the data-driven evaluation of the 2γ-exchange in Ref. [761], ∆E(2γ)
2S = −33(2)µeV,

one gets [8]

rp(µH) = 0.84099(12)sys(23)stat(3)hVP(8)f.s.(23)2γ fm = 0.84099(36) fm, (8.3)

where rp is the root mean square (RMS) charge radius given in fm and defined as r2
p =∫

d3r r2ρE(r) with ρE being the normalized proton charge distribution.

The uncertainty of the radius is restricted by the precision of the 2S− 2P measurements

and the prediction of the 2γ-exchange contribution, with the measurement accuracy limited

by statistics. The frequency uncertainty of the laser pulses delivered by the Raman cell

(the last stage of the laser system used to generate the pulses at 6µm) gives the systematic

uncertainty of 300 MHz. The typical atomic physics systematics like Stark, collisional and

Zeeman shifts are strongly suppressed in the tightly-bound µH atom.

The CREMA setup can be upgraded to improve the 2S − 2P measurements by a factor

5, accessible by increasing the statistics by 25 and reducing the systematics by 3. On the one

hand, by having a longer data-taking time (from 1 week to 5 weeks) and by increasing the

laser pulse energy (from 0.2 mJ to 1 mJ), in addition to a slight improvement of the setup, the

statistics could be improved. On the other hand, the systematics could be reduced by using

novel optical parametric down-conversion technologies under progress for the measurements

of the HFS in µH. Developments in this technology enable increasing both the laser pulse
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energy and the frequency control.

8.3.2 Hyperfine splitting in µH

The interaction between the bound particle and the magnetic field induced by the magnetic

moment of the nucleus give rise to shifts and splittings of the energy levels dubbed hyperfine

effects. In classical electrodynamics, the interaction between the magnetic moments µp and

µµ of proton and muon, respectively, is described by [762]

Hclassical
HFS = −2

3µp · µµ δ(r), (8.4)

where δ(r) is the delta-function in coordinate space. A similar Hamiltonian can be

derived in quantum field theory from the one-photon exchange diagram. Using coulomb

wave function, this gives rise in the first-order perturbation theory to an energy shift for

muonic hydrogen nS-states of [754]

EHFS(F ) = 4(Zα)4m3
τ

3n3mµmp

(1 + κ)(1 + aµ)1
2

[
F (F + 1)− 3

2

]
= ∆EFermi

1
2

[
F (F + 1)− 3

2

]
,

(8.5)

where ∆EFermi = 22.8320 meV [754] is the Fermi energy, mp is the proton mass, F is the

total angular momentum, κ and aµ are the proton and muon anomalous magnetic moments,

respectively. The F = 1 state is shifted by 1/4 × 22.8320 meV while the F = 0 state by

−3/4× 22.8320 meV, see Fig. 8.4c. A summary of the corrections arising from QED, recoil,

nuclear structure, hadronic and weak interactions effects can be found in Table 3 in Ref. [758].

The structure-dependent corrections, scaling as the reduced mass of the system, become

large in µH compared to hydrogen. The largest correction is given by finite-size effect which,

in the non-relativistic limit, is given by the well-known Zemach term [763,764]

∆EZemach = −∆EFermi · 2(Zα)mrrZ , (8.6)

where rZ is the Zemach radius defined as
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rZ =
∫
d3r

∫
d3r′ r′ρE(r)ρM(r − r′), (8.7)

with ρM and ρE being the normalized proton magnetization and charge distributions,

respectively. The convolution between charge and magnetization distribution in rZ is a con-

sequence of the interaction of the proton spin distributed spatially (given by the magnetic

form factor) with the spatial distribution of the muon spin which is described by the atomic

muon wave function. The latter is slightly affected, particularly at the origin, by the charge-

finite-size effect and consequently by ρE. In a quantum field framework, this contribution

arises from two-photon exchange processes. The intermediate virtual proton may be either

“on-shell” or “off-shell”, as in the case of the Lamb shift. Therefore, proton polarizability

contributions need to be accounted for [765]. This term has the largest uncertainty. It

emerges from the uncertainty of the polarized structure functions g1 [766, 767] and g2 [768]

(measured in inelastic polarized electron-proton scattering) needed as an input to evaluate

this contribution. For the HFS (contrary to the Lamb shift), no subtraction term is re-

quired for the calculation of the two-photon exchange diagram via Compton scattering and

dispersion analysis [769].

The Zemach-radius contribution can be evaluated based on empirically known form fac-

tors [8]

rZ = − 4
π

∫ ∞
0

dQ

Q2

[
GE(Q2)GM(Q2)

1 + κN
− 1

]
. (8.8)

A recent dispersive analysis of the nucleon electromagnetic form factors from the Bonn

group [115] yields:

rZp = 1.054(+0.003
−0.002)stat(+0.000

−0.001)sysfm, ∆Z(µH) = −7403+21
−16ppm. (8.9)

On the other hand, one can determine this contribution from the experimental HFS, given

predictions for the remaining theory contributions. At the moment, only the 1S-HFS in H

and the 2S-HFS in µH have been measured. The corresponding extractions of the Zemach

radius are depicted in Table 8.1 and compared with the form-factor determinations. Given
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ep scattering µH 2S HFS H 1S HFS

Lin et al. [115] Borah et al. [770] Antognini et al. [102] BχPT [771] Volotka et al. [125] BχPT [771]
1.054+0.003

−0.002 1.0227(107) 1.082(37) 1.041(31) 1.045(16) 1.012(14)

Table 8.1: Determinations of the proton Zemach radius rZp , in units of fm [8].

Figure 8.5: Correlation between the Zemach and charge radius of the proton.

that baryon χPT (BχPT ) gives a smaller prediction for the polarizability contribution than

data-driven evaluations, it also gives a smaller Zemach radius.

There is a considerable linear correlation between the Zemach and charge radius, see

Fig. 8.5. The black dashed line represents the usual dipole approximation, 1/(1 +Q2/Λ2)2,

for the form factors GE and GM . This correlation is more general since the proton size is

set predominantly by one QCD scale, ΛQCD. In Fig. 8.5, the current determination of rZp
from H is represented by the blue band, while rp from µH corresponds to the solid red line.

The upcoming 1S-HFS measurement in µH is expected to have a big impact on the precise

determination of rZp .

The leading recoil correction to the HFS is caused by the same two-photon exchange dia-

gram and is of order (Zα)(n/M)ẼFermi, where ẼFermi is the Fermi energy without contribution

of the muon anomalous magnetic moment [721].

The main HFS contributions have been confirmed and refined by Indelicato [755] by nu-

merical integration of the hyperfine Hamiltonian with Bohr-Weisskopf (magnetization distri-
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bution) correction using Dirac wave functions. The latter has been computed for Coulomb

finite-size and Uehling potentials. All-order finite size, relativistic, and eVP effects are then

included in the wave function. This calculation is performed for various rE and rZ , assuming

exponential charge and magnetization distributions.

The improved 2S − 2P measurements considered above will improve the precision of the

2S HFS measurement. Nonetheless, a new level of precision will be reached in the upcoming

CREMA measurements of 1S HFS [772]. On the theory side, a comprehensive account of

the different contributions to these HFS transitions has been made in Ref. [8]:

E1S−HFS =
[

182.443︸ ︷︷ ︸
EF

+1.350(7)︸ ︷︷ ︸
QED+weak

+0.004︸ ︷︷ ︸
hVP

−1.30653(17)
(
rZp
fm

)
+ EF (1.01656(4)∆recoil + 1.00402∆pol)︸ ︷︷ ︸
2γ incl. radiative corr.

]
meV, (8.10a)

E2S−HFS =
[

22.8054︸ ︷︷ ︸
1
8EF

+0.1524(8)︸ ︷︷ ︸
QED+weak

+0.0006(1)︸ ︷︷ ︸
hVP

−0.16319(2)
(
rZp
fm

)
+ 1

8EF (1.01580(4)∆recoil + 1.00326∆pol)︸ ︷︷ ︸
2γ incl. radiative corr.

]
meV. (8.10b)

When a high-precision measurement of the 1S HFS in µH is at hand, it can be used

together with H to accurately disentangle the Zemach and polarizability contributions, ∆Z

and ∆pol, with extraordinary precision. This can be achieved thanks to the difference between

H and µH for the eVP corrections to the 2γ exchange, see Eqs. (8.10a) and (8.12). With

an anticipated uncertainty of 1 ppm for the µH 1S HFS experiment, the Zemach radius

will be determined with a relative uncertainty of 5 · 10−3 and ∆pol(µH) with an absolute

uncertainty of 40 ppm. Thus, it will lead to the best empirical determination of the proton

Zemach radius from spectroscopy, without the uncertainty related to the polarizability.

The 1S HFS in H has already been measured with δ = 7 · 10−13 accuracy [773,774]:

Eexp
1S−HFS(H) = 1 420.405 751 768(1) MHz. (8.11)
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The corresponding theory prediction is given in Eq. (8.12). Compared to a previous

compilation by Volotka [125], the eVP correction has been recalculated in Ref. [8] which

agrees with those in Ref. [775],

E1S−HFS(H) =
[

1418840.082(9)︸ ︷︷ ︸
EF

+1 612.673(3)︸ ︷︷ ︸
QED+weak

+0.274︸ ︷︷ ︸
µVP

+0.077︸ ︷︷ ︸
hVP

−54.430(7)
(
rZp
fm

)
+ EF (0.99807(13)∆recoil + 1.00002∆pol)︸ ︷︷ ︸

2γ incl. radiative corr.

]
kHz.

(8.12)

The high-precision in HFS measurements was already used to constrain the 2γ-exchange

contribution and its effect in the HFS of µH in Refs. [776, 777]. In Ref. [8], an update

of the µVP and hVP contributions was obtained from a rescaling of the recent results from

muonium [778], giving rise to considerably larger results (by a factor of 3 and 5, respectively)

compared to those in Ref. [125].

Through a rescaling from H to µH, a complete prediction of the HFS in µH is found [8]:

E1S−HFS(µH) = 182.634(8) meV, E2S−HFS(µH) = 22.8130(9) meV, (8.13)

where an uncertainty due to possible scaling violation of ∆pol at the level of 2% (assuming

∆pol = 400 ppm) has also been included. This result is shown in Fig. 8.6, together with

other existing µH 2S HFS measurements. All theory predictions agree, even though the

data-driven dispersive evaluations and the BχPT prediction disagree in the polarizability

contribution (see Ref. [8] for a summary). This is because most works use the experimen-

tal H HFS to refine their prediction for the total 2γ-exchange effect. The discrepancy in

polarizability is then compensated by slightly different Zemach radii.

Eventually, a prediction of the hadronic contributions to the 1S HFS in H from the

measurement of the 1S HFS in µH might allow for a test of the H HFS theory. Nevertheless,

this would need further improvements for the recoil corrections from 2γ-exchange and for

the uncertainty from missing contributions in the µH theory.
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Figure 8.6: Experimental values and theoretical predictions for the 1S and 2S HFS in H and
µH [8].

8.4 New Physics searches

Precision spectroscopy of atoms and molecules could sense energy shifts caused by physics

beyond the standard model (BSM) involving a low-mass and weakly coupled sector that

escapes detection in high-energy colliders [746, 747, 779]. These searches typically involve

a contrast between theoretical predictions and experiments that eventually will be limited

by hadronic effects. Thus, the search for BSM physics consists in looking for deviations

between rp values extracted from the various systems: ep scattering, H, µH and molecules.

Any deviation might reveal an inconsistency of the theoretical framework pointing to the

existence of BSM physics [8]. Currently, these searches are limited by the uncertainty of the

rp as determined from measurements other than µH.

In Ref. [104], the authors highlighted that R∞ extracted from H tends to decrease as the

n of either the upper or lower state increases. This trend could be explained by a fifth-force

expressed as a Yukawa-like potential with a large scale [780] which mitigates the tension

between µH and recent H measurements [104].

A peculiar sensitivity of µH, µD and H(1S − 2S) to a dark sector with masses in the

keV to GeV was highlighted in Ref. [781]. The sensitivity showed in this study is greatly

enhanced when accounting for the upcoming measurements of the 1S HFS in µH, and

improved determinations of rp.

In order to exploit rp for BSM searches, one needs to use its accuracy to improve other

fundamental constants which increases the predictive power of our theories. For that purpose,
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boosting the 2γ- and 3γ-exchange contributions is crucial.
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Chapter 9

Axial-vector contributions to the HFS

of muonic hydrogen

9.1 Introduction

The electromagnetic interactions of axial-vector mesons have attracted much attention re-

cently. In particular, in the context of the hadronic light-by-light (HLbL) contribution to the

anomalous magnetic moment of the muon [6,49,601–603,614,618,671,673,782,783], but also

concerning their contribution to the hyperfine structure (HFS) of muonic hydrogen [784,785].

In the present study [786], we revise different aspects of their role in the HFS, briefly

discussing axial-vector mesons decays into `+`− that enter the HFS calculation. On the

one hand, we analyze the role of the high-energy behavior. This was missing in previous

pioneering studies of the HFS [784, 785], but has been found to play an important role in

the context of the HLbL [601–603]. We find that the impact is by no means negligible,

representing a 50% effect. On the other hand, we use short-distance constraints connecting

the Compton scattering tensor and the axial form factor of the nucleon. This allows to

unambiguously fix the sign of the HFS contribution and to better understand potential

off-shell effects [784, 785]. Overall, we obtain a value with opposite sign with respect to

previous estimates that, together with the non-negligible impact of the high-energy behavior,
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represents the main result of this work. Besides, a discussion concerning the uncertainties

on the relevant coupling constants and off-shell effects complements this study.

This chapter is organized as follows: in Sect. 9.2, we discuss the amplitude for A→ `+`−

decays, a necessary ingredient in our calculation. Building on the former, section 9.3 outlines

the contribution to the HFS on a general basis. The particular models are outlined in

section 9.4 based on resonance saturation. The final results and conclusions, including the

impact on the Zemach radius are given in section 9.5. Further information, including the

form factor description, is relegated to the appendices.

9.2 A→ `+`− decays

The axial-vector meson decays to a lepton pair play a central role in computing their con-

tribution to the HFS, to be discussed in the section below. Furthermore, they can provide

important information regarding A → γ∗γ∗ transitions [783, 787](see also the comments at

the end of this section). We outline next the evaluation of the relevant matrix element

appearing in these decays, which comparison to existing results will provide an additional

(intermediate) cross-check of our evaluation.

The aforementioned process occurs through the electromagnetic interactions and involves

the A→ γ∗γ∗ transition, which can be expressed on the basis of Lorentz invariance and CP

symmetry as [618]1

iMA→γ∗γ∗ = ie2
{
B2(q2

1, q
2
2) iεµαρβ qβ1

[
qα2 q2ν − gαν q2

2

]
+B2(q2

2, q
2
1) iεναρβ qβ2

[
qα1 q1µ − gαµ q2

1

]
+iεµναβ qα1 q

β
2

[
q̄12ρCA(q2

1, q
2
2) + q12ρCS(q2

1, q
2
2)
] }

ε∗µ(q1)ε∗ν(q2)ερ(q12) ≡ ie2MAµνρε
∗µ(q1)ε∗ν(q2)ερ(q12),

(9.1)

1We use ε0123 = +1. The interested reader is referred to Ref. [618] for relations to other bases. Comparing
to the basis in [784], A4−Ā3 = B2, Ā4−A3 = B̄2, 2CS = A3+Ā3, 2CA = A3−Ā3, as well as F (0)

AV γ∗γ∗(q2
1 , q

2
2) =

−B2S(q2
1 , q

2
2). Also, comparing to the basis in [783, 788], m2

AB2 = −F3, m2
AB̄2 = F2, m2

ACA = F1. In
addition, the form factors with well-defined symmetry are related by 2m2

AB2S = Fs, −2m2
AB2a = Fa2 ,

m2
ACA = Fa1 .
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A(q)

k

k − p

ℓ+(−p)

q − k

ℓ−(q − p)

(a)

ℓ−(p1) ℓ−(p2)

k q − k

k + p1

q = q1 − q2

p(q1) p(q2)

(b)

Figure 9.1: The leading contribution to A → `+`− decays (left). The axial-vector meson contri-
bution to the `−p→ `−p amplitude relevant to the HFS (right). The grey blob includes structure-
dependent axial-photon-photon interactions.

where q12 = q1 + q2 = q and q̄12 = q1 − q2. Here, ε∗µ(q1) and ε∗ν(q2) are the polarization

vectors of the photons, while ερ(q) is the polarization vector of the axial-vector meson with

A = a1, f
(′)
1 . Importantly, the basis in eq. (9.1) is free of kinematic singularities, see also [788].

The form factors, B2(q2
1, q

2
2), CA(q2

1, q
2
2) and CS(q2

1, q
2
2), encode the strong interaction dynam-

ics. To guarantee Bose symmetry, CA(q2
1, q

2
2) must be antisymmetric and CS(q2

1, q
2
2) must be

symmetric under q1 ↔ q2. The contribution from CS vanishes when the axial-vector meson

is on-shell and, in this basis, can be omitted when considering high-energy constraints [603],

which is not necessarily the case in other bases (see also Refs. [783,788]). In the last expres-

sion, CA corresponds to transverse photons (TT ) and B2 is a combination of TT and LT

polarization states (L standing for longitudinal).

The leading order contribution to A → `+`− decays is given by the diagram shown in

fig. 9.1a, which corresponding amplitude can be expressed by means of Eq. (9.1) as

iM = −e4ερ

∫ d4k

(2π)4
ūγν [(/k − /p) +m`]γµv
q2

1q
2
2[(k − p)2 −m2

` ]
Mµνρ

A (q1, q2) , (9.2)

with q1 = k and q2 = q − k. In the following, it will be useful to express the most general

amplitude for these decays, that based on Lorentz invariance and CP symmetry can be

written as

iM = i ū(q − p)
[
A1(q2) γρ + A2(q2) qρ

]
γ5v(p) ερ(q) ≡ iMρ

A→ ¯̀̀ ερ(q). (9.3)
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Note that the A2 amplitude is a pure off-shell effect and, as such, it does not contribute to the

decay width, while we keep it here as it will generally contribute to the Compton-scattering

tensor that appears in the HFS.

The scalar functions A1,2(q2) given in Eq. 9.3 can be obtained by means of the following

projection operators (p1(2) corresponds to the `−(`+) momentum)

A1(q2) = −1
4(q2 − 4m2

`)
Tr
[(
/p2 −m`

)(
γρ + 2m`

q2 qρ

)
γ5
(
/p1 +m`

)
Mρ

A→ ¯̀̀

]
, (9.4)

A2(q2) = m`

2q2(q2 − 4m2
`)

Tr
[(
/p2 −m`

)(
γρ −

q2 − 6m2
`

m` q2 qρ

)
γ5
(
/p1 +m`

)
Mρ

A→ ¯̀̀

]

= −2m`

q2 A1(q2)− 1
2q4 Tr

[(
/p2 −m`

)
qργ

5
(
/p1 +m`

)
Mρ

A→ ¯̀̀

]
. (9.5)

Thus, the Ai(q2) amplitudes are given by

A1(q2) = α2

iπ2
1
l2 q2

∫
d4k

CA(q2
1, q

2
2)ωA +B2S(q2

1, q
2
2)ω2S +B2A(q2

1, q
2
2)ω2A

q2
1 q

2
2[(k − p)2 −m2

` ]
, (9.6)

ω2S
2A

= ±(q2
1 ± q2

2){l2(q · q1)(q · q2)− q2(k · l)[q1 · q2 − q2]} − l2q2
{

2q2
1q

2
2

0

}
,

ωA = (q2
1 − q2

2){−q2 (k · l) (q1 · q2) + l2[k2 q2 − (k · q)2]},

and

A2(q2) = −2m`

q2 A1(q2) + α2

iπ2
4m`

q4

∫
d4k

k2 q2 − (k · q)2

k2(q − k)2[(k − p)2 −m2
` ]
{
−q2CS(q2

1, q
2
2)

−(q2
1 − q2

2)
[
CA(q2

1, q
2
2)−B2A(q2

1, q
2
2)
]
− (q2

1 + q2
2)B2S(q2

1, q
2
2)
}
, (9.7)

where we have defined l ≡ p`− − p`+ .

In the previous equations, we have used form factors with well-defined symmetry fol-

lowing Refs. [603, 618]: B2(q2
1, q

2
2) = B2S(q2

1, q
2
2) + B2A(q2

1, q
2
2) and B2(q2

2, q
2
1) = B2S(q2

1, q
2
2)−

B2A(q2
1, q

2
2).

Noteworthy, the current evaluation allows to cross-check our results for A1(m2
A) against

those in Refs. [783, 787], finding a nice agreement and reinforcing our results, to be used
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VMD eVMD heVMD DIP heDIP OPE

Be+e− 1.90(92
74) 1.55(50

38) 1.66(45
42) 2.87(3.69

1.73) 2.73(3.86
1.69) 2.67(3.99

1.75)

Table 9.1: Branching fraction for f1 → e+e− decays in units of 10−9 with the different form
factors outlined in appendix L (ideal mixing case). In particular the first three columns correspond
to models incorporating a vector meson mass mV = 0.77 GeV, whereas the last three columns
have effective masses around 1 GeV, illustrating the relevance of the intermediate V γ state. For
reference, this branching ratio is < 9.4× 10−9 at 90% confidence level [9].

below in the q2 → 0 limit for the HFS.

Finally, we would like to comment on an important aspect. Namely, that A → e+e−

decays are particularly sensitive to the intermediate V γ contributions (and thereby to the

timelike region), showing less sensitivity to high-energies or the spacelike regime. This

is a consequence of the Landau-Yang theorem [789, 790] and is opposite to π(η) → `+`−

decays [791], where the imaginary part is dominated by the intermediate 2γ state. Due to

this reason, and the fact that several form factors appear (in contrast to the HFS where the

knowledge of B2S suffices), we refrain from discussing this further. Still, we use different

models for the B2S form factor (see appendix L) to illustrate our claim for the f1(1285)

case. In particular, taking the unpolarized spin-averaged squared matrix element M2 and

the corresponding partial decay width

M2 = 4
3q

2β2
` |A1(q2)|2, ΓA→`` = 1

12π MA β
3
` |A1(M2

A)|2, (β2
` = 1− 4m2

`/s) , (9.8)

we find the results in table 9.1 using the form factors discussed in appendix L. From the

results therein, we find that the form factors including an explicit vector meson mass of

mV = 0.77 GeV (VMD, eVMDm, heVMD) display similar results, with mild corrections

from their different high-energy behavior. On the contrary, they differ substantially from

those employing an effective mass that successfully describes the L3 data [792, 793] in the

(singly-virtual) spacelike region, regardless of their high-energy behavior. As we will show,

this is the opposite for the HFS that, as such, might not benefit substantially from a precise

knowledge of A→ e+e− decays.
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9.3 The contribution to the HFS

Having computed the Mρ

A→ ¯̀̀ (q2) amplitude in eq. (9.3), the contribution of axial-vector

mesons to the HFS is straightforward. In particular, the relevant amplitude of the `−p→ `−p

process driven by axial-vector mesons, fig. 9.1b, can be expressed as

iM`p = igANN [ū(A1γ
µ + A2q

µ)γ5u]`
−gµν + qµqν

m2
A

q2 −m2
A

[ūγνγ5u]N , (9.9)

where we have introduced the coupling of the axial-vector mesons to the nucleons, gANN , via

La1NN = −ga1NN(N̄γµγ5~σN)~aµ1 , Lf1NN = −gf1NN(N̄γµγ5N)fµ1 . (9.10)

Determining the couplings above will be an important part of our study, that we postpone

to section 9.4. Pursuing further the nonrelativistic potential for the HFS, and making use

of the relation M`p = −2m`2mN ṼNR(q2), we obtain2

ṼNR(q2) = gANN

A1(−q2)
m2
A + q2

{
(σ̂` · σ̂N) + (q · σ̂`)(q · σ̂N)

m2
A

}
− Ã2(−q2)

m2
A

(q · σ̂`)(q · σ̂N)
 ,

(9.11)

where σ̂`(N) are Pauli matrices acting on the lepton(nucleon) spinors and 2m`Ã2 = A2. In

the following, we restrict ourselves to the leading-order contribution in α. This justifies, in

analogy with [784], to neglect the terms proportional to (q · σ̂`)(q · σ̂N), as well as to take

A1(−q2)→ A1(0), both effects being suppressed by m`α/Λ (see appendix M). Furthermore,

this justifies to keep with the leading term in the spinors’ nonrelativistic expansion [781].

Neglecting those terms, the expression above corresponds to a nonrelativistic potential

ṼNR(q2) ' gANN
A1(0)
m2
A + q2 (σ̂` · σ̂N), VNR(r) = gANNA1(0)

4πr e−mAr(σ̂` · σ̂N) . (9.12)

2We use ū(p2, s2)γ5u(p1, s1) NR−−→(p1−p2)·[ξ†s2
σξs1 ] and ū(p2, s2)γµγ5u(p1, s1) NR−−→2m[ξ†s2

(0,σ) ξs1 ], where
p1 − p2 → ±q for nucleons(leptons).
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This agrees with the recent study in Ref. [781] upon identifying their coupling constants

g
(1)
A → A1(0), g(2)

A → −gANN . The corresponding shifts for each level can be obtained

through ∆E = 〈Ψn,l,m|VNR(r) |Ψn,l,m〉, with Ψn,l,m the hydrogen atom wavefunctions. In par-

ticular, for the HFS we are interested in, corresponding to the energy difference E(nSF=1
1/2 )−

E(nSF=0
1/2 ) [781], it leads to:

∆EHFS
1 = gANNA1(0)

π

(µα)3

m2
A

1
(1 + 2µα

mA
)2 〈σ̂` · σ̂N〉(∆F ) = gANNA1(0)

π

(µα)3

m2
A

4
(1 + 2µα

mA
)2 ,

(9.13)

∆EHFS
2 = gANNA1(0)

16π
(µα)3

m2
A

2 +
(
µα
mA

)2

(1 + µα
mA

)4 〈σ̂` · σ̂N〉(∆F ) = gANNA1(0)
4π

(µα)3

m2
A

2 +
(
µα
mA

)2

(1 + µα
mA

)4 ,

(9.14)

for n = 1, 2, where µ is the reduced mass, and the factor of 4 in the right-hand side arises

from the spin expectation value. We note that A1(0) can be expressed following the notation

in Ref. [784] as

A1(0) = 4
3

(
α

π

)2 ∫ ∞
0

dk2L`(k2)B2S(−k2,−k2), (9.15)

with L`(k2) defined in Ref. [784] (see Eq. (14) therein).3 The previous results show

that only the B2S form factor contributes to the HFS to leading order in α, simplifying

the calculation as compared to A → e+e− decays. Likewise, it is straightforward to check

that the general results in Ref. [784] amount to our eqs. (9.13) and (9.14) times a factor of

(−2). While we could not trace the factor of 2, the relative sign appears comparing to their

Eqs. (5),(20). Still, the sign depends on their photon momentum flow and ε0123 convention,

that are unclear. More importantly, the final sign arising from eqs. (9.13) to (9.15) will

depend on the relative sign for B2S(0, 0) and gANN , that was fixed in Ref. [784] on the

basis of quark-loop models. In the following section, we introduce our setting to compute

the HFS, that unambiguously fixes the sign in a transparent manner, finally confirming our
3We further note that, for the dipole (DIP) parametrization employed in Ref. [784], A1(0) =

4
3
(
α
π

)2
B2S(0, 0)I(m`), with I(m`) defined in the Eq. (27) from Ref. [784].
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opposite sign for the numerical results. In any case, our agreement with Refs. [783, 787]

regarding A1(m2
A), and Ref. [781] in deriving the nonrelativistic potential, further reinforces

our findings, eqs. (9.13) and (9.14).

9.4 Model results

In order to obtain a numerical estimate for the HFS, determining the gANN couplings is al-

most as important as fixing the sign of B2S(0, 0)gANN . In the following, we use short-distance

constraints, that allow to relate the nucleon Compton scattering tensor to the nucleon axial

form factors in a transparent manner. This allows to fix the sign and, eventually, obtain the

desired couplings within a resonance saturation scheme. In particular, the relevant short-

distance constraint follows from the operator product expansion (OPE) of two vector currents

in the limit where q2
1 ∼ q2

2 ∼ q̂2 � {q2
12,Λ2

QCD}, where we have introduced q̂ ≡ (q1 − q2)/2

and q12 = q1 + q2. This reads [597,603]:

∫
d4xd4yei(q1·x+q2·y)T{jµ(x)jν(y)} = −2

q̂2 ε
µναq̂

∫
d4zeiq12·zj5α(z) +O

(
Λ2

QCD

q̂2

)
, (9.16)

with jµ5 = q̄γµγ5Q2q, εµνρqi ≡ εµνραqiα, and ε0123 = 1. Note actually that, since the typical

momentum in the atomic system is of O(m`α), this is indeed the relevant limit in this

calculation when the loop momentum in fig. 9.1b is large. Regarding the axial-vector meson

form factor, this implies [603,618,783,788]

lim
q̂2→∞

q̂4B2S(q̂2, q̂2) =
∑
a

tr(Q2λa)mAF
a
A, (9.17)

where we have introduced the axial decay constant 〈0| q̄γµγ5 λa
2 q |A〉 = F a

AmA. This fixes

sgnB2S(0, 0) = sgnFAmA provided the form factor does not change sign in the spacelike

region (which is the case here and in Ref. [784]), thus reducing the problem to determine the

sign for F a
AmAgANN . The latter combination appears indeed in the axial form factors of the
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proton (a = 3, 8, 0),

〈
p(k′)

∣∣∣q̄γµγ5λaq
∣∣∣p(k)

〉
= ū(k′)

[
γµG

a
A(q2) + qµ

2mN

Ga
P(q2)

]
γ5u(k) , (9.18)

when adopting a resonance saturation scheme. In particular, one finds [794]

Ga
A(q2) =

∑
A

2F a
AmAgANN
m2
A − q2 , (9.19)

where the sum goes over the (infinite number of) axial-vector meson resonances. As we

shall show, this ultimately allows to fix sgn gANNmAF
a
A in terms of Ga

A(0), which sign is

well-known. Ultimately, the previous modelling guarantees to fulfill the corresponding OPE

constraint for the Compton scattering tensor

lim
q̂2�{q2

12,Λ2
QCD}

∫
d4x eiq1·x 〈p(k′)|T{jµ(x)jν(0)} |p(k)〉 = −2

q̂2 ε
µναq̂ 〈p(k′)| j5α(0) |p(k)〉 (9.20)

provided eq. (9.17) is satisfied. In the following, we discuss the results obtained when trun-

cating the sum in eq. (9.19) with either one or two resonances.

9.4.1 One-resonance saturation

First, we start truncating the sum in eq. (9.19) with the lightest resonance. Then, the value

of the coupling constants can be determined in terms of Ga
A(0) as follows

G3
A(0) = g3

A = 2ga1NN
FA
ma1

, (9.21)

G8
A(0) = g8

A√
3

= 2FA

gf1NN

mf1

cos(φ− φ0) +
gf ′1NN

mf ′1

sin(φ− φ0)
, (9.22)

G0
A(0) =

√
2
3g

0
A = 2FA

− gf1NN

mf1

sin(φ− φ0) +
gf ′1NN

mf ′1

cos(φ− φ0)
 , (9.23)
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VMD eVMD DIP heVMD heDIP OPE

f1(1285) 1.68(27
25) 1.21(47

31) 0.99(17
15) 1.34(34

14) 1.33(48
33) 1.53(25

24)
a1(1260) 1.68(27

25) 1.03(65
28) 0.91(20

18) 1.17(51
16) 1.14(53

31) 1.41(31
28)

f1(1420) 2.99(35
33) 0.78(14

13) 0.78(15
13) 0.96(12

11) 0.96(33
23) 1.20(22

21)

Table 9.2: The results forA1(0)/[α2B2S(0, 0)] for ` = µ. For simplicity, we take ideal mixing in
VMD models, implying that mV = 0.77 GeV ' mρ,ω for a1, f1 and mV = mφ for the f ′1.

with φ the f1 − f ′1 mixing angle in the flavor basis and φ0 = arctan
√

2 (cf. appendix L).4

This implies (we adopt a positive FA),

ga1NN = 5.6(1.1), gf1NN = 2.01(0.17), gf ′1NN = −0.33(0.08), (φ = 0), (9.24)

ga1NN = 5.6(1.1), gf1NN = 1.93(0.16), gf ′1NN = 0.71(21), (φL3 = 26.7(5.0)◦), (9.25)

where we used g3
A = 1.2730(13) [796], g8

A = 0.530(18), g0
A = 0.392(24) [797], FA = 140(10) MeV [453,

467, 603] and the PDG [798] masses with an additional uncertainty accounting for the half-

width rule [799]. The errors obtained for ga1NN , gf1NN , gf ′1NN are dominated by ma1 , FA,

and g8,0
A , respectively. Our results are similar to [784], with a slight departure in the f (′)

1 cases

—partly related to their use of the OZI rule (that in our scheme would require g8
A = g0

A).

At this point, it is worth emphasizing that the ad hoc 1/e off-shell factor introduced in

Ref. [784] spoils the appropriate normalization for the axial form factors precisely at the

q2 → 0 point and should be avoided. Further discussions on this point are included in the

following section.

Having estimated the axial couplings, we move on to our results for A1(0). Taking the

models from appendix L, we obtain the values in table 9.2. There, we find that models failing

to incorporate the doubly-virtual high-energy Q2 scaling (eVMD, DIP) underestimate the

value for A1(0) —even if correctly reproducing the singly-virtual L3 data. This is the case

for the form factor in Ref. [784], that corresponds to our DIP column. This implies that
4In the basis from Refs. [792, 793], the relation is φ = θA + φ0 − π/2 which, for the mixing angle given

there using γγ∗ → f
(′)
1 reaction, results in φ = 26.7(2)◦. Recent studies [795] suggest a range for the mixing

angle φ ∈ (−7, 23)◦.
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A
A1(0)
α2BA

2S

BA
2S(0, 0) ∆EHFSA (1S) ∆EHFSA (2S)

[GeV−2] [meV] [meV]

f1(1285) 1.53(25)(+00
−20) 0.269(30) 0.011(2)(1)(1)(0)[0] 0.0014(+2

−3)(1)(2)(0)[0]
a1(1260) 1.41(30)(+00

−27) 0.245(63) 0.029(+6
−8)(6)(7)(2)[0] 0.0036(+8

−10)(7)(9)(2)[0]
f1(1420) 1.20(22)(+00

−24) 0.197(30) −0.001(0)(0)(0)(0)[+3
−0] −0.0001(0)(0)(0)(0)[+3

−0]

TOTAL 0.039(+12
−13)[+3

−0] 0.0049(+14
−16)[+3

−0]

Table 9.3: Results for the HFS of muonic hydrogen. The central values for the gANN couplings
are those from ideal mixing, eq. (9.24). The second column displays results from OPE column
in table 9.2, including as an additional uncertainty the difference with other models therein (see
details in the text). The final two columns include uncertainties from A1(0), gANN , B2S , mA and
an additional uncertainty from the mixing within brackets (see details in the text).

in the present calculation one should employ only those form factors describing L3 data

and incorporating the high-energy behavior (heVMD, heDIP, OPE). Among them, the OPE

model represents our preferred choice since: (i) it reproduces L3 data [792, 793]; (ii) it is

the only one that fulfills the pQCD scaling for a large virtual photon regardless the second

photon virtuality; (iii) for two virtual photons, it fulfills the OPE, eq. (9.17) (find further

details in appendix L). As such, we take it as the central value, incorporating the difference

with respect to heVMD and heDIP models as an additional uncertainty. Having determined

the value for A1(0), we estimate the contribution of the lowest-lying axial-vector mesons

to the HFS, that are collected in table 9.3. In the following section, we extend the model

including an additional multiplet of axial-vector mesons. While this induces further model

dependence concerning the transition form factors, it is known that at least two resonances

are required to have a satisfactory description of the axial form factors of the nucleon. As

such, it will serve as an estimate of our systematic uncertainties and to discuss off-shell

effects.

9.4.2 Two-resonance saturation

The one-resonance saturation employed in the previous section to describe the axial form

factors of the nucleon and to estimate the gANN couplings does not provide a satisfac-
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tory description of the axial form factor of the nucleon, that is better parametrized by

a dipole form either in electroproduction [800] or lattice QCD data [801–806]. This can

be partly understood on the basis of the high-energy behavior of the axial form factor,

limQ2→∞G
a
A(−Q2) ∼ α2

s(−Q2)Q−4 [807–809], that requires the presence of at least two res-

onances to recover a Q−4 behavior [794]. This suggests the necessity to go beyond the one

resonance saturation scheme, while this comes at the cost of non-negligible modeling of the

poorly known heavy axial-vector meson resonances, including their masses and form factors.

In order to estimate the masses of the heavier multiplets, we use the Regge trajectory from

Ref. [799]: m2
a1(n) = m2

a1 +nµ2
3, m2

f
(′)
1 (n)

= m2
f

(′)
1

+nµ2
0, with µ2

3/0 = 1.36/1.19 GeV2. Imposing

the normalization and the Q−4 behavior of the axial form factors, we obtain the following

coupling constants using ideal mixing

ga1NN = 11.8, gf1NN = 4.78, gf ′1NN = −0.90, (9.26)

ga1(1)NN = −8.6, gf1(1)NN = −3.64, gf ′1(1)NN = 0.71. (9.27)

The next part concerns the description of the B2S form factor of the heavy resonances.

Lacking any experimental data, we resort to a Regge-like model from Ref. [603]

BAn
2S (q2

1, q
2
2) = BAn

2S (0, 0)(M2
a + nΛ2)2

[q2
1 + q2

2 − (M2
a + nΛ2)]2 , BAn

2S (0, 0) = BA0
2S (0, 0)M4

amAn

(M2
a + nΛ2)2mA0

, (9.28)

that was created to describe some features of the 〈V V A〉 Green’s function. As this induces

further model dependence for the second multiplet (n = 1), for which no data is available , we

will use our results in this section to estimate systematic uncertainties in the one resonance

saturation approach. Our results are given in table 9.4.

We find that the enhanced couplings for the lowest-lying multiplet essentially double the

HFS contribution with respect to the previous section. Such enhancement is partially can-

celled by the contribution of the second multiplet, that reduces the final shift to a 60% effect.

Such variation could be taken as an off-shell effect, as it induces additional q2 dependence

besides the lowest-lying multiplet. However, its complexity goes beyond the 1/e factor in

265



A
A1(0)
α2BA

2S
gANN

BA
2S(0, 0) ∆EHFSA (1S) ∆EHFSA (2S)

[GeV−2] [meV] [meV]

f1(1285) 1.53 4.78 0.269 0.0269 0.0034
f1(1st excitation) 3.05 −3.64 0.093 −0.0082 −0.0010

Subtotal 0.0187 0.0024

a1(1260) 1.41 11.8 0.245 0.0605 0.0076
a1(1st excitation) 2.93 −8.6 0.082 −0.0162 −0.0020

Subtotal 0.0443 0.0056

f1(1420) 1.20 −0.90 0.197 −0.0024 −0.0003
f ′1(1st excitation) 2.72 0.71 0.051 0.0007 0.0001

Subtotal −0.0017 −0.0002

Total 0.0613 0.0078

Table 9.4: The contributions from the ground and first excited states contribution to the HFS
(errors not included, see details in the text). The results compare to those in table 9.3. The first
resonance contribution is enhanced with respect to table 9.3 as a result of the gANN coupling,
whereas the first excited states partially damp this effect.

Ref. [784] and a precise estimate would demand a better knowledge of the properties of the

heavy axial-vector mesons, including their gANN couplings and form factors.

Given the large theoretical uncertainties in the results derived, especially owing to the

masses and form factors of the second multiplet, we stick to our results in the previous

section and will assign the difference between the results in this and the previous subsection

as an additional systematic uncertainty of our results. Overall, this points to a substantially

larger contribution from the first multiplet and a partial reduction from heavier states.

9.5 Results and conclusions

As our final result for the HFS, we take as our central value the result obtained with the one

resonance saturation, incorporating as an additional systematic uncertainty the difference

with respect to the two-resonance saturation approach. This gives

∆EHFS
A (1S) = 0.039(+12

−13)(+3
−0)(+22

−00) meV, ∆EHFS
A (2S) = 0.0049(+14

−16)(+3
−0)(+29

−00) meV. (9.29)
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Compared to Ref. [784], we find an opposite sign (and a factor of 2 difference) in the cal-

culation. Our results for the A → `+`− amplitude and the nonrelativistic expansion are in

good agreement with existing studies, that further reinforces our findings. Besides, we find

an important role (a 50% effect roughly) of the doubly-virtual high-energy behavior of the

transition form factor, that was one of our main goals in this study —such effects should be

included in future calculations of ∆EHFS
A .

In addition, to fix the relevant signs of the form factors and coupling constants, we made

use of the OPE. This provides a connection among the Compton scattering tensor and the

axial form factors of the nucleon, that unambiguously defines the relevant signs when using

a resonance saturation scheme. For the simplest scenario, that incorporates the lowest-lying

resonance, we find similar couplings to those in Ref. [784], while substantial effects are found

when two resonances are included. These are required to achieve a reasonable description of

the axial form factors of the nucleon and points to a larger contribution of the lowest-lying

multiplet together with a mild effect from the next one. The latter could be considered as

an off-shell effect and discourages the use of ad hoc suppression factors as in Ref. [784]. The

difference between the two scenarios is accounted for as an additional systematic uncertainty

and points to the necessity of a better understanding of the nucleon to axial-vector meson

couplings in order to improve in precision.

Finally, we address the impact of this effect on the Zemach radius extraction by the

CREMA Collaboration [102,103], that measured the HFS of the 2S state, obtaining ∆Eexp
HFS =

22.8089(51) meV. Comparing to the theoretical results for the HFS, ∆Eth
HFS = 22.9843(30)−

0.1621(10) rZ meV, see [754, 765, 810, 811] and Table 3 from Ref. [758], they obtained rZ =

1.082(37) fm [102]. Incorporating the missing contributions from the axial vector mesons

to the theoretical estimate in eq. (9.29) together with the pseudoscalar contribution [812],

∆Eπ
HFS = −(0.09± 0.06)µeV, we obtain

rZ = 1.112(31)exp(19)th(+20
−10)axials . (9.30)

The value is in mild tension with other estimates, rZ = 1.086(12) fm [123] and rZ =
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eP scattering

H spectroscopy

CREMA coll.

Dorokhov et al.

This work

{

{
Meißner et al.

1.082 1.1121.040

rZ [fm]

Figure 9.2: The Zemach radius (rZ) from the references in the text and this work. The blue band
represents the average from Refs. [123–126].

1.045(4) fm [124], from electron-proton scattering, rZ = 1.045(16) fm [125] and rZ = 1.037(16) fm

[126] from Hydrogen spectroscopy, and rZ = 1.054(3) fm [115] from electron-proton scattering

and e+e− annihilation. We summarize these results in Fig. 9.2 where the blue band cor-

responds to the average for electron-proton (eP) scattering and hydrogen (H) spectroscopy.
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Appendix A

FT (s) including resonances as explicit

degrees of freedom

We show in this appendix that it is not convenient to build FT (s)/FT (0) including resonances

as explicit degrees of freedom.

As we will see, the tensor current couples to the JPC = 1−− and JPC = 1+− resonances,

but the contribution of the second tower of resonances is suppressed in the processes under

consideration. This can be seen phenomenologically, since the b1(1235) resonance (which

shares all quantum numbers with the ρ(770) meson but has opposed parity) is not known

to couple to the two-pion system (precisely because of parity b1 cannot decay into two

pseudoscalars, though it could be exchanged in meson-meson scattering, but ππ scattering

data do not show any hint for exchange of the b1 meson). Therefore, the ρ(770) is the

lightest resonance whose exchange provides an energy-dependence to FT , increasing its effect

and allowing us to set more restrictive bounds on ε̂T (we neglect the contributions from ρ

excitations in this study).

We shall now discuss the chiral couplings of meson resonances to the pseudoscalar Gold-

stone fields in the presence of tensor currents. We use the antisymmetric tensor representa-

tion [224, 225] in order to describe the relevant spin-one degrees of freedom. To determine

the resonance exchange contributions to the τ− → π−π0ντ decays (or to the effective chiral
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Lagrangian) we need the lowest order operators in the chiral expansion which are linear in

the resonance fields. Using the P and C transformation properties of given JPC resonance

fields: V (1−−), A(1++), S(0++), P (0−+) (see Table 2 in ref. [224]), and H(1+−) and T (2++)

(see ref. [813]), we can, for the first time, construct the RχT Lagrangian linear in resonance

fields and coupled to the tensor source of lowest chiral order, which has the following two

pieces:

L[V (1−−)] = F T
V MV 〈Vµνtµν+ 〉 , (A.1a)

L[H(1+−)] = iF T
HMH 〈Hµνt

µν
− 〉 . (A.1b)

In the following, we neglect the effect of the latter operator (assuming F T
H negligible)

because of the seemingly small b1ππ coupling commented above. A straightforward compu-

tation of the contribution of the former operator to the relevant hadronic matrix element

yields

〈π0π−|d̄σµνu|0〉 = iFT (s) (pµπ0p
ν
π− − p

µ
π−p

ν
π0) , (A.2)

where

FT (s) =
√

2Λ2

F 2

[
1 + GV F

T
V

Λ2

Mρ

M2
ρ − s

]
, (A.3)

in which the operator iGV√
2 〈Vµνu

µuν〉 [224] was used in order to obtain the ρππ coupling.

Eq. (A.3) depends on three a priori unknown couplings. Fortunately, short-distance

QCD properties can shed light on their values, as we explain next. First, it is known from

the analysis of two-point correlators within RχT that GV = F/
√

2 [224] (also FV =
√

2F ,

which is used next). The large-NC asymptotic analysis of 〈V V 〉, 〈TT 〉 and 〈V T 〉 correlators

determines F T
V /FV = 1/

√
2 [814], in such a way that only Λ2 remains unrestricted and

eq. (A.3) simplifies to

FT (s) =
√

2Λ2

F 2 + Mρ

M2
ρ − s

. (A.4)

The ρ meson contribution shifts the value of FT (0) by ∼ 65%, which is unphysical.

As in the case of the vector form factor, the ρ-propagator in eq. (A.3) is modified by the
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inclusion of the width Γρ(s) (proportional to the imaginary part of the corresponding loop

contributions) and also by shifting the pole mass value (according to the real part of the

loop contribution), as required by analyticity. Specifically,

(M2
ρ − x)−1 →

{
M2

ρ

(
1 + x

96π2F 2 Re
[
Aπ(x) + AK(x)

2

])
− x− iMρΓρ(x)

}−1

, (A.5)

with

Γρ(x) = Mρx

96πF 2

[
θ(x− 4m2

π)σ3
π(x) + θ(x− 4m2

K)σ
3
K(x)
2

]

= − Mρx

96π2F 2 Im
[
A

(
m2
π

x
,
m2
π

M2
ρ

)
+ 1

2A
(
m2
K

x
,
m2
K

M2
ρ

)]

and (AP (x) is short for A
(
m2
P

x
,
m2
P

M2
ρ

)
)

ReAP (x) = Log
m2
P

M2
ρ

+ 8m
2
P

x
− 5

3 + σ3
P (x)Log

∣∣∣∣∣∣σP (x) + 1
σP (x)− 1

∣∣∣∣∣∣ , (A.6)

being σP (x) =
√

1− 4m2
P

x
.

The tensor form factor, FT (s), given by eq. (A.4), and using the substitution eq. (A.5),

is plotted in figure A.1 for Λ2 = 12 MeV [514]. There, it is seen how the ρ(770) meson

contribution modifies the constant χPT lowest-order result for |FT (s)|. The form factor

phase, δT (s), grows from zero to ∼ 110◦ for 0.85 ≤
√
s ≤ 0.90 GeV and decreases softly to

zero for larger energies. Both |FT (s)| and δT (s) are influenced by the on-shell ρ(770) meson

width as expected, according to its value of ∼ 145 MeV.

At this point unitarity arguments may convince us that this description of FT (s) cannot

be complete 1. As explained in ref. [427], the phase of FT (s) must coincide with the phase

of F+(s) in the elastic region (in this paper this was shown for the tau decays into the Kπ

system, but it is completely analogous to the ππ one considered here). We briefly review the
1We thank Bastian Kubis for pointing this to us.
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Figure A.1: Modulus and phase, |FT (s)| (left) and δT (s) (right), of the tensor form factor, FT (s),
corresponding to the description explained in this appendix.

argument in what follows.

The unitarity relation for F+(s) can be written

ImmF+(s) = σπ(s)F+(s)(f 1
1 (s))∗θ(s− 4m2

π) , (A.7)

where f 1
1 (s) is the the corresponding partial wave in ππ scattering. The previous equation

implies that, in the elastic region, δ1
1(s) = δ+(s), which is again Watson’s theorem. The

crucial point is that an analogous unitarity relation holds for FT (s):

ImmFT (s) = σπ(s)FT (s)(f 1
1 (s))∗θ(s− 4m2

π) , (A.8)

from which one can immediately derive that, in the elastic region, δT (s) = δ+(s), a feature

that is not satisfied by our expression for FT (s) considered up to now (and it will not be

satisfied for any value of Λ2). This should not be understood as a failure of eq. (A.4)

(together with eq. (A.5)), but rather as a manifestation of its incompleteness. Indeed, the

contributions from the next-to-leading order χPT Lagrangian with tensor sources (O(p6) in

the chiral counting [518]) should provide with the needed energy-dependence to satisfy eq.

(A.8). However, since the number of such operators is 75 (plus 3 contact terms) even in the

SU(2) case [518], we refrain from proceeding this way as any predictability would be lost.
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Appendix B

Chiral ward Identities among four-

and five-point Green functions

In χPT , the Green functions are obtained through functional derivatives of the generating

functional Z (v, a, s, p). This functional is constructed in order that it is invariant under

transformations generated by the vector currents

Z (v, a, s, p) = Z (v′, a′, s′, p′) , (B.1)

where

v′µ ± a′µ = g (vµ ± aµ) g† + i∂µg
†, (B.2a)

s′ + ip′ = g (s+ ip) g†, g(x) ∈ SU(3). (B.2b)

In particular, seagulls and Schwinger terms are automatically taken into account for an

infinitesimal transformation g = 1 + iα +O (α2),

δvµ = i [α, vµ] + ∂µα ≡ Dµα, (B.3a)

δI = i [α, I] , I = aµ, s, p. (B.3b)
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One obtains from Eq. B.1

〈
αDµ

δZ

δvµ (x)

〉
= i

∑
i

〈
[α, I (x)] δZ

δI (x)

〉
, (B.4)

differentiating Eq. B.4 with respect to v1−i2
ν (y), v3

ρ(z), v1+i2
σ (w) and v3

λ(t) we get an expression

that relates the divergence of the Green function of five points with that of four points.
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Appendix C

Amplitude for the τ−→ π−π−γντ

decays

For the radiative decay τ− (P ) → π− (p−) π0 (p0) ντ (q) γ (k), we can split the contribution

due to the bremsstrahlung off the initial tau lepton and the other coming from the hadronic

part, this is shown in the figure C.1. We write down the general structure for these processes

τ−

ντ

γ

W−

π−

π0

τ−

ντ

W−

π−

π0

γ

Figure C.1: Feynman diagrams for the τ− → π−π0ντγ decays.

T = eGFV
∗
udε

µ(k)∗
{
Fν ū (q) γν (1− γ5)

(
mτ + /P − /k

)
γµu (P )

+ (Vµν − Aµν) ū (q) γν (1− γ5)u (P )} ,
(C.1)
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where Fν = (p0 − p−)ν f+ (s) /2P · k. Gauge invariance (εµ → εµ + kµ) implies the ward

identities

kµV
µν = (p− − p0)ν f+ (s) , with s = (p− + p0)2 (C.2a)

kµA
µν = 0. (C.2b)

In order to determine the general structure for Vµν and Aµν , we followed the same technique

as in Ref. [701], first we isolate the photon off the final π−, this process W− (P − q) →

π− (p−)π0 (p0) γ (k) is shown in the diagram C.2, the effective coupling is:

Γµ = −ie (p′ + p)µ , (C.3)

this contribution is proportional to the form factor f+
[
(P − q)2

]
.

We can write V µν as V µν = V
µν + V µν

1 , where V µν
1 is the contribution that we have found

γW−

π−

π0

Figure C.2: Bremsstrahlung off the charged-pion.

before.

V µν
1 = pµ− (p− − p0 + k)ν

p− · k
f+
[
(P − q)2

]
, (C.4a)

kµV
µν

1 = (p− − p0 + k)ν f+
[
(P − q)2

]
, (C.4b)

and finally

kµV
µν = (p− − p0)ν f+ (s)− (p− − p0 + k)ν f+

[
(P − q)2

]
. (C.5)
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We propose an structure for V µν using the four momentum (P − q), p−, p0 and k but only

three of them are l. i., so we have

V
µν = b1 g

µν + b2 p
µ
−k

ν + b3 p
µ
0k

ν + b4 p
µ
−p

ν
0 + b5 p

µ
0p

ν
− + b6 p

µ
−p

ν
− + b7 p

µ
0p

ν
0 (C.6)

or through a change of basis,

V
µν = b1 g

µν + b2 p
µ
−k

ν + b3 p
µ
0k

ν + b′4 (p0 + p−)µ pν0 + b′5 (p0 + p−)µ pν−

+ b′6 (p0 − p−)µ pν− + b′7 (p0 − p−)µ pν0,
(C.7)

imposing the ward identity and making the change b2 → −v1 + (p0 · k) v4, b3 → −v2 −

(p− · k) v4, b7 → − (p− · k) v4, b5 → − (p− · k) (v3 + v4) (or b′7 → − (p0 + p−) · k v4/2, b′6 →

− (p0 + p−) · k (v3 + v4) /2), we obtained these two equivalent expressions for V µν

V µν = f+ (s) p
µ
− (p− − p0)ν

p− · k
+ f+

[
(P − q)2

] ( pµ−kν
p− · k

− gµν
)

+ v1 (gµν p− · k − pµ−kν) + v2 (gµν p0 · k − pµ0kν)

+ v3 (p0 · k pµ− − p− · k pµ0) pν− + v4 (p0 · k pµ− − p− · k pµ0) (p0 + p− + k)ν

(C.8)

and

V µν = f+
[
(P − q)2

] pµ− (p− + k − p0)ν

p− · k
− f+

[
(P − q)2

]
gµν

+
f+
[
(P − q)2

]
− f+ (s)

(p0 + p−) · k (p0 + p−)µ (p0 − p−)ν

+ v1 (gµν p− · k − pµ−kν) + v2 (gµν p0 · k − pµ0kν)

+ v3 (p0 · k pµ− − p− · k pµ0) pν− + v4 (p0 · k pµ− − p− · k pµ0) (p0 + p− + k)ν .

(C.9)
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The second is the more useful than the first one because if we take into account that

(P − q)2 = s+ 2 (p0 + p−) · k, the Low’s theorem [702] is manifestly satisfied

V µν = f+ (s) pµ−
p− · k

(p− − p0)ν + f+ (s)
(
pµ−k

ν

p− · k
− gµν

)

+ 2df+ (s)
d s

(
p0 · k
p− · k

pµ− − pµ0
)

(p− − p0)ν +O (k)
(C.10)

For the axial structure, we followed the same method

Aµν = c1 ε
µνρσp−ρ p0σ + c2 ε

µνρσ p−ρkσ + c3 ε
µνρσp0ρ kσ + c4 p

ν
− ε

µλρσp−λ p0ρ kσ

+ c5 p
ν
0 ε

µλρσp−λ p0ρ kσ + c6 k
ν εµλρσp−λ p0ρ kσ + c7 p

µ
− ε

νλρσp−λ p0ρ kσ

+ c8 p
µ
0 ε

νλρσp−λ p0ρ kσ

(C.11)

imposing the ward identity for Aµν , we found one equation that satisfied kµA
µν = 0

c1 − c7 (k · p−)− c8 (k · p0) = 0 (C.12a)

with this equation and using the Schouten’s identity we get

Aµν =A1 ε
µνρσ p−ρkσ + A2 ε

µνρσp0ρ kσ

+ A3 p
ν
− ε

µλρσp−λ p0ρ kσ + A4 p
ν
0 ε

µλρσp−λ p0ρ kσ,
(C.13)

where A1 = c2 +c7 p− ·p0 +c8m
2
π−c6 k ·p0, A2 = c3−c7m

2
π−c8 p− ·p0 +c6 k ·p0, A3 = c4 +c7

and A4 = c5 + c8. For this case, there are only four Lorentz structures contributing to Aµν .

We can chose the basis given in Ref. [700]

Aµν = iεµνρσ (a′1p0ρkσ + a′2 kρWσ) + iεµλρσ kλ p−ρ p0σ (a′3W ν + a′4 (p0 + k)ν) , (C.14)

which is a linear combination of the basis in eq. C.13, where W ≡ P − q = p− + p0 + k,

but instead we’re going to use a modified one that resembles the decomposition given by
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Ref. [94]

Aµν =ia1 ε
µνρσ (p0 − p−)ρ kσ + ia2 (P − q)ν εµλρσkλ p−ρ p0σ

+ ia3 ε
µνρσkρWσ + ia4 (p0 + k)ν εµλρσ kλ p−ρ p0σ.

(C.15)

C.1 Anomaly

We have a contribution to these two diagrams (Fig. C.3) due to the chiral anomaly. The

π−

W−
γ

π0

W− π−

π−

γ

π0

Figure C.3: Anomalous diagrams for the transition W− (P − q)→ π− (p−) π0 (p0) γ (k) con-
tributing to the axial tensor amplitude Aµν

Wess-Zumino-Witten functional O (p4) [212,213] can be expressed in two terms which are

Lanom (Wγ) = − iα

4
√

2π sin θW
εµναβW+

µ Fνα

〈
T+

{
U †DβU,Q+ 1

2U
†QU

}〉
+ h.c.,

= − iαV ∗ud
8π sin θWf 2 ε

µναβWµFνα
(
π0∂βπ

+ − π+∂βπ
0
)

+ · · · ,
(C.16)

where DµU = ∂µU + ieAµ [Q,U ] is the covariant derivative with respect to electromagnetism

only, and

Lanom
(
φ3γ

)
= − e

16π2 ε
µνρσAσ

〈
Q
[
∂µU∂νU

†∂ρUU
† − ∂µU †∂νU∂ρU †U

]〉
= −i e

4π2f 3 ε
µνρσAσ∂µπ

+∂νπ
−∂ρπ

0 + · · · ,
(C.17)

279



where Fµν = ∂µAν − ∂νAµ. Eq. C.16 give us the coupling between Wπ−π0γ,

Γµν = −gW e V ∗ud
16π2f 2 ε

µναβ (p0 − p−)α kβ, (C.18)

while Eq. C.17 give us the coupling between π−π−π0γ

Γµ = − ie

4π2f 3 ε
µαβρ (P − q)α p−β p0ρ, (C.19)

then we get

a1 = 1
8π2f 2 , a2 = −1

4π2f 2
[
(P − q)2 −m2

π

] , (C.20)

or

a′1 = 1
4π2f 2 , a′2 = 1

8π2f 2 , a′3 = −1
4π2f 2

[
(P − q)2 −m2

π

] . (C.21)

C.2 RχT contributions

Using the antisymmetric formalism for spin-one fields, we write the RχT Lagrangian as

[224,225,813]

Lres(R) =
∑

R=T,V,A,H,S,P
[Lkin(R) + L2(R)] , (C.22)

with

Lkin(R) = −1
2 〈TµνD

µν,ρσ
T Tρσ〉 , R = T

Lkin(R) = −1
2

〈
∇λRλµ∇νR

νµ − 1
2M

2
RRµνR

µν
〉
− 1

2∂
λR1,λµ ∂νR

νµ
1

+ 1
4M

2
R1R1,µνR

µν
1 , R = V,A,H

Lkin(R) = 1
2
〈
∇µR∇µR−M2

RR
2
〉

+ 1
2
{
∂µR1∂µR1 −M2

R1

}
, R = S, P

(C.23)

where

∇µR = ∂µR + [Γµ, R] ,
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Γµ = 1
2
{
u†[∂µ − i(vµ + aµ)]u+ u[∂µ − i(vµ − aµ)]u†

}
,

and

Dµν,ρσ
T =

(
∂µ∂µ +M2

T

) [1
2 (gµρgνσ + gµσgνρ)− gµνgρσ

]
+ gρσ∂µ∂ν + gµν∂ρ∂σ − 1

2 (gνσ∂µ∂ρ + gρν∂µ∂σ + gµσ∂ρ∂ν + gρµ∂σ∂ν) ,

MR and MR1 are the masses in the chiral limit. Interactions with the V , A, S and P fields

start to order p2 and are given by

L2
[
V (1−−)

]
= FV

2
√

2
〈Vµνfµν+ 〉+ iGV√

2
〈Vµν uµuν〉, (C.24a)

L2
[
A(1++)

]
= FA

2
√

2
〈Aµν fµν− 〉, (C.24b)

L2
[
S(0++)

]
= cd〈Suµuµ〉+ cm〈Sχ+〉, (C.24c)

L2
[
P (0−+)

]
= idm〈Pχ−〉. (C.24d)

Thus, we get

JνW−→ρ− = −i
√

2FV (P − q)µ
〈
ρ− (P − q)

∣∣∣ρ+µν
∣∣∣ 0〉 (C.25)

JνW−→ρ−γ = ie
√

2FV ε∗µ (k)
〈
ρ− (p− + p0)

∣∣∣ρ+µν
∣∣∣ 0〉 (C.26)

JνW−→ρ−π0 =
√

2
f

(
2GV p0µ − FV (P − q)µ

) 〈
ρ− (p− + k)

∣∣∣ρ+µν
∣∣∣ 0〉 (C.27)

JνW−→ρ0π− = −
√

2
f

(
2GV p−µ − FV (P − q)µ

) 〈
ρ0 (p0 + k)

∣∣∣ρ0µν
∣∣∣ 0〉 (C.28)

JνW−→π−π0ρ0 = i√
2f 2

(
4GV p−µ − FV (P − q)µ

) 〈
ρ0 (k)

∣∣∣ρ0µν
∣∣∣ 0〉 (C.29)

JνW−→ρ−ρ0 =
√

2
{
kλ
〈
ρ− (p0 + p−) ρ0 (k)

∣∣∣ρ0
λκρ

+νκ
∣∣∣ 0〉

− (p− + p0)λ
〈
ρ− (p0 + p−) ρ0 (k)

∣∣∣ρ0νκρ+
λκ

∣∣∣ 0〉} (C.30)
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Jν
W−→a−1

= −i
√

2FA (P − q)µ
〈
a−1 (P − q)

∣∣∣a+µν
1

∣∣∣ 0〉 (C.31)

Jν
W−→a−1 γ

= ie
√

2FAε∗µ (k)
〈
a−1 (p− + p0)

∣∣∣a+µν
1

∣∣∣ 0〉 (C.32)

Jν
W−→a−1 π0 = −

√
2FA
f

(P − q)µ
〈
a−1 (p− + k)

∣∣∣a+µν
1

∣∣∣ 0〉 (C.33)

JνW−→a0
1π
− =
√

2FA
f

(P − q)µ
〈
a0

1 (p0 + k)
∣∣∣a0µν

1

∣∣∣ 0〉 (C.34)

Gρ−→π−π0 = 2GV

f 2 p−µp0ν
〈
0
∣∣∣ρ−µν ∣∣∣ ρ− (p− + p0)

〉
(C.35)

Gπ−→π−ρ0 = −2GV

f 2 (P + p−)µ p−ν
〈
ρ0 (P)

∣∣∣ρ0µν
∣∣∣ 0〉 (C.36)

Gπ−→π0ρ− = 2GV

f 2 (P − q)µ p0ν
〈
ρ− (p− + k)

∣∣∣ρ−µν ∣∣∣ 0〉 (C.37)

Gρ0→γ = e FV k
µε∗ν (k)

〈
0
∣∣∣ρ0
µν

∣∣∣ ρ0 (k)
〉

(C.38)

Gω→γ = 1
3e FV k

µε∗ν (k) 〈0 |ωµν |ω (k)〉 (C.39)

Gρ−→π−π0γ = e

2f 2 (4GV p
µ
0 + FV k

µ) ε∗ν (k)
〈
0
∣∣∣ρ−µν ∣∣∣ ρ− (P − q)

〉
(C.40)

Gρ−→ρ−γ = −ie ε∗ν (k)
{

(p− + p0)λ
〈
ρ− (p− + p0)

∣∣∣ρ+
λρ ρ

−νρ
∣∣∣ ρ− (P − q)

〉
+ (P − q)λ

〈
ρ− (p− + p0)

∣∣∣ρ+νρ ρ−λρ

∣∣∣ ρ− (P − q)
〉} (C.41)

Gρ−→ρ0π−π0 = i

2f 2

{
kλ (p0 − p−)ν

〈
ρ0 (k)

∣∣∣ρ0
λρ ρ

−νρ
∣∣∣ ρ− (P − q)

〉
+ (P − q)λ (p0 − p−)ν

〈
ρ0 (k)

∣∣∣ρ0νρ ρ−λρ

∣∣∣ ρ− (P − q)
〉} (C.42)

Ga−1 →π−γ
= −ieFA

f
kµε∗ν (k)

〈
0
∣∣∣a−1µν ∣∣∣ a−1 (p− + k)

〉
(C.43)

For the first diagram, we have

=
√

2FVGV (P − q)2

f 2k · p−
e ε∗µ (k)D−1

ρ

[
(P − q)2

]
pµ− (k − p0 + p−)ν

− 2
√

2FVGV

f 2 e ε∗µ (k)D−1
ρ

[
(P − q)2

]
pµ− (k + p0 + p−)ν ,

(C.44)
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π−

π0

γ⊗
ρ−

γ π−

π0

⊗
ρ−

⊗

γ π−

π0

ρ− ρ−
⊗ γ

π−

π0

ρ−

⊗

γ

π0

π−

ρ−

ρ0

⊗ γ

π−

π0

ρ− ρ0

π−

π0⊗

γ
ρ0 a−1

π0

⊗

π−

γ

Figure C.4: ρ and a1 exchange diagrams for the model at O (p4)

for the second diagram, we get

= 2
√

2FVGV

f 2M2
ρ

e ε∗µ (k)D−1
ρ (s)M2

ρ

(
pµ−p

ν
0 − pν−p

µ
0

)
, (C.45)

for the third diagram

=2
√

2FVGV

f 2M2
ρ

e ε∗µ (k)D−1
ρ (s)D−1

ρ

[
(P − q)2

]
M2

ρ

{1
2s (k · p− gµν − pµ−kν)

− 1
2s (k · p0 g

µν − pµ0kν)− (k · p0 p
µ
− − k · p− pµ0) (p− + p0 + k)ν

−s pµ−pν− − (P − q)2 pµ0p
ν
− + (P − q)2 pµ−p

ν
0 + s pµ0p

ν
0

}
,

(C.46)

for the fourth diagram

=−
√

2F 2
V

2f 2M2
ρ

e ε∗µ (k)D−1
ρ

[
(P − q)2

]
M2

ρ {(k · p− gµν − p
µ
−k

ν) + (k · p0 g
µν − pµ0kν)}

+ 2
√

2FVGV

f 2M2
ρ

e ε∗µ (k)D−1
ρ

[
(P − q)2

]
M2

ρ {(k · p− gµν − p
µ
−k

ν)

+pµ−pν0 + pµ0p
ν
0 + pµ−k

ν − 1
2 (P − q)2 gµν

}
,

(C.47)
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for the fifth diagram

=
√

2FVGV

f 2M2
ρ

e ε∗µ (k)D−1
ρ (s) {s (k · p− gµν − pµ−kν)− s (k · p0 g

µν − pµ0kν)} , (C.48)

for the sixth diagram

=
√

2F 2
V

2f 2M2
ρ

e ε∗µ (k)D−1
ρ

[
(P − q)2

] {
(P − q)2 (k · p− gµν − pµ−kν)

− (P − q)2 (k · p0 g
µν − pµ0kν) + 2 (k · p0 p

µ
− − k · p− pµ0) (p− + p0 + k)ν

}
,

(C.49)

for the seventh diagram

=−
√

2F 2
V

2f 2M2
ρ

e ε∗µ (k) {(k · p− gµν − pµ−kν) + (k · p0 g
µν − pµ0kν)}

+ 2
√

2FVGV

f 2M2
ρ

e ε∗µ (k) (k · p− gµν − pµ−kν) ,
(C.50)

and finally, for the a−1 exchange diagram

=
√

2F 2
A

f 2M2
a1

e ε∗µ (k)D−1
a1

[
(p− + k)2

] {(
M2

a1 −m
2
π + 1

2s
)

(k · p− gµν − pµ−kν)

+
(
M2

a1 −m
2
π − k · p−

)
(k · p0 g

µν − pµ0kν) + (k · p0 p
µ
− − k · p− pµ0) pν−

}
,

(C.51)

with Da(s) = M2
a − s the resonance propagators.

The overall contribution for these diagrams is

=
√

2e ε∗µ (k) [v1 (gµν p− · k − pµ−kν) + v2 (gµν p0 · k − pµ0kν)

+ v3 (p0 · k pµ− − p− · k pµ0) pν−

+v4 (p0 · k pµ− − p− · k pµ0) (p0 + p− + k)ν +Xµν ] ,

(C.52)
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where

v1 = FVGV

f 2M2
ρ

(
2 + 2M2

ρD
−1
ρ

[
(P − q)2

]
+ sD−1

ρ (s) + sM2
ρD
−1
ρ (s)D−1

ρ

[
(P − q)2

])
+ F 2

V

2f 2M2
ρ

(
−1−M2

ρD
−1
ρ

[
(P − q)2

]
+ (P − q)2D−1

ρ

[
(P − q)2

])
+ F 2

A

f 2M2
a1

(
M2

a1 −m
2
π + 1

2s
)
D−1
a1

[
(p− + k)2

]
,

v2 = FVGV s

f 2M2
ρ

(
−D−1

ρ (s)−M2
ρD
−1
ρ (s)D−1

ρ

[
(P − q)2

])
+ F 2

V

2f 2M2
ρ

(
−1−M2

ρD
−1
ρ

[
(P − q)2

]
− (P − q)2D−1

ρ

[
(P − q)2

])
+ F 2

A

f 2M2
a1

(
M2

a1 −m
2
π − k · p−

)
D−1
a1

[
(p− + k)2

]
,

v3 = F 2
A

f 2M2
a1

D−1
a1

[
(p− + k)2

]
,

v4 = −2FVGV

f 2 D−1
ρ (s)D−1

ρ

[
(P − q)2

]
+ F 2

V

f 2M2
ρ

D−1
ρ

[
(P − q)2

]
,

Xµν = 2FVGV

f 2 D−1
ρ (s)D−1

ρ

[
(P − q)2

] [(
2M2

ρ − s
)
pµ−p

ν
0 −M2

ρ p
µ
0p

ν
− − s p

µ
−p

ν
−

+M2
ρ p

µ
0p

ν
0 +

(
M2

ρ − s
)
pµ−k

ν − 1
2 (P − q)2

(
M2

ρ − s
)
gµν

]
.

The term proportional to gµν in Xµν is a contribution to the diagram shown in Fig. C.5,

and the others are contributions to
[
f+
[
(P − q)2

]
− f+ (s)

]
in eq. C.9. Thus,

π−

γ

π0

⊗

π−

γ

π0

⊗

Figure C.5: Diagrams that receives contribution from Xµν
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Xµν = 2FVGV

f 2 D−1
ρ

[
(P − q)2

]
pµ− (p− + p0 + k)ν , (C.54)

is not gauge invariant and receives contributions from diagram 3 and 4 which is canceled out

by the contribution of the first diagram.

There is no contribution coming from the transverse part, ΩT
µν,ρσ, for the ρ-exchange dia-

grams.

Using the contributions to O (p6) for the even- and the odd-intrinsic parity sectors [385,684]

, we get

ÔVi

Gρ0→γ = 8
√

2λ6m
2
πe k

µε∗ν (k)
〈
0
∣∣∣ρ0
µν

∣∣∣ ρ0 (k)
〉

(C.55)

Gω→γ = 8
√

2
3 λ6m

2
πe k

µε∗ν (k) 〈0 |ωµν |ω (k)〉 (C.56)

Gρ−→π−π0 = 2
√

2
f 2

(
4m2

πλ8 + 2m2
πλ9 + 4m2

πλ10 − sλ21
)
pµ−p

ν
0

〈
0
∣∣∣ρ−µν ∣∣∣ ρ− (p− + p0)

〉
(C.57)

Gπ−→π−ρ0 =− 2
√

2
f 2

(
4m2

πλ8 + 2m2
πλ9 + 4m2

πλ10 − P2λ21
)

(P + p−)µ pν−

×
〈
ρ0 (P)

∣∣∣ρ0
µν

∣∣∣ 0〉 (C.58)

Gπ−→π0ρ− =2
√

2
f 2

(
4m2

πλ8 + 2m2
πλ9 + 4m2

πλ10 − (p− + k)2 λ21
)

(P − q)µ pν0

×
〈
ρ− (p− + k)

∣∣∣ρ+
µν

∣∣∣ 0〉 (C.59)
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Gρ−→π−π0γ =2
√

2
f 2 e

{
2λ6m

2
πk

µε∗ν (k) + 4λ8m
2
πp

µ
0ε
∗ν (k) + 2λ9m

2
πp

µ
0ε
∗ν (k)

+4λ10m
2
πp

µ
0ε
∗ν (k)− 2λ12 (p− · p0) kµε∗ν (k) + 4λ20m

2
πk

µε∗ν (k)

+λ13
[
pµ− (p0 · k gαν − kνpα0 ) + pµ0

(
p− · k gαν − kνpα−

)]
ε∗α (k)

−λ14
[
pµ− (p0 · k gαν − kνpα0 )− pµ0

(
p− · k gαν − kνpα−

)]
ε∗α (k)

+λ15
[
pµ− (p0 · k gαν − kνpα0 )− pµ0

(
p− · k gαν − kνpα−

)]
ε∗α (k)

+λ16 (p− + k)µ (p0 · k gαν − kνpα0 ) ε∗α (k)

−λ17
(
s− 2m2

π + 2k · p0
)
kµε∗ν (k)

−λ18
(
p− · k gαµ − kµpα−

)
pν0ε
∗
α (k) + λ19 (p0 · k gαµ − kµpα0 ) pν0ε∗α (k)

−λ21
[
(P − q)2 pµ0ε

∗ν (k)− 2 (p− + p0)α ε
∗α (k) pµ−pν0

]
−λ22

(1
2s+ 2k · p0

)
kµε∗ν (k)

}〈
0
∣∣∣ρ−µν ∣∣∣ ρ− (p− + p0 + k)

〉

(C.60)

JρW−→ρ− = 4i
(
−4λ6m

2
π + λ22 (P − q)2

)
(P − q)µ

〈
ρ− (P − q)

∣∣∣ρ+µρ
∣∣∣ 0〉 (C.61)

JρW−→ρ−γ =4ie
{(

4λ6m
2
πε
∗
µ (k)− λ7 [(k · p− gµα − kµp−α) + (k · p0 gµα − kµp0α)] ε∗α (k)

−λ22
[
s ε∗µ (k) + 2 (P − q)α ε∗α (k) (P − q)µ

]) 〈
ρ− (p− + p0)

∣∣∣ρ+µρ
∣∣∣ 0〉

+ (λ7 (P − q)µ (kνε∗ρ (k)− kρε∗ν (k))− λ22k
µε∗ν (k) (p− + p0 − k)ρ)

×
〈
ρ− (p− + p0)

∣∣∣ρ+
µν

∣∣∣ 0〉}
(C.62)
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JρW−→ρ0π−π0 =i 4
f 2

{(
−2λ6m

2
π (P − q)µ + 2 (2λ8 + λ9)m2

πp−µ + λ12
(
s− 2m2

π

)
(P − q)µ

− λ13

[1
2s (p0 + p−)µ + (k · p− p0µ + k · p0 p−µ)

]
+ (λ14 − λ15)

[1
2s (p0 − p−)µ + (k · p− p0µ − k · p0 p−µ)

]
+ λ16

(1
2s+ k · p−

)
(k + p−)µ − 2λ17

(
m2
π + k · p−

)
(P − q)µ

+ λ18

(1
2s+ 2k · p− + k · p0

)
p−µ + λ19 (s+ 2k · p−) p−µ

−4λ20m
2
π (P − q)µ + λ22 (k · p0 − k · p−) (P − q)µ

) 〈
ρ0 (k)

∣∣∣ρ0µρ
∣∣∣ 0〉

+ (λ13 (P − q)ν (pµ0pρ− + pµ−p
ρ
0)− (λ14 − λ15) (P − q)ν (pµ0pρ− − pµ−pρ0)

+ λ16 (P − q)µ (k + p−)ν pρ− + λ18 (P − q)µ (k + p−)ρ pν−

+2λ19 (P − q)µ pν−p
ρ
− − λ21 p

µ
−p

ν
0 (p− + p0 − k)ρ

) 〈
ρ0 (k)

∣∣∣ρ0
µν

∣∣∣ 0〉}
(C.63)

JρW−→ρ0π− = 4
f

{(
4λ6m

2
π (P − q)µ − 2 (2λ8 + λ9 + λ10)m2

πp−µ

− (λ16 − 2λ17) p− · (P − q) (P − q)µ

− λ18 (P − q)2 p−µ − 2λ19p− · (P − q) p−µ + 4λ20m
2
π (P − q)µ

+λ21 (p0 + k)2 p−µ − λ22 (p0 + k)2 (P − q)µ
) 〈
ρ0 (p0 + k)

∣∣∣ρ0µρ
∣∣∣ 0〉

−
(
λ18 (P − q)µ pν− (P − q)ρ + 2λ19 (P − q)µ pν−p

ρ
−

) 〈
ρ0 (p0 + k)

∣∣∣ρ0
µν

∣∣∣ 0〉}
(C.64)

JρW−→ρ−π0 = 4
f

{(
−4λ6m

2
π (P − q)µ + 2 (2λ8 + λ9 + λ10)m2

πp0µ

+ (λ16 − 2λ17) p0 · (P − q) (P − q)µ

+ λ18 (P − q)2 p0µ + 2λ19p0 · (P − q) p0µ − 4λ20m
2
π (P − q)µ

−λ21 (p− + k)2 p0µ + λ22 (p− + k)2 (P − q)µ
) 〈
ρ− (p− + k)

∣∣∣ρ+µρ
∣∣∣ 0〉

+ (λ18 (P − q)µ pν0 (P − q)ρ + 2λ19 (P − q)µ pν0p
ρ
0)
〈
ρ− (p− + k)

∣∣∣ρ+
µν

∣∣∣ 0〉}
(C.65)
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ÔV Vi

Gρ−→ρ0π−π0 =i 2
f 2

{
2λV V2 (p− · p0) δαβ −

(
λV V3 − λV V4

) (
pα−p0β − pα0p−β

)
+2λV V5

(
pα−p0β + pα0p−β

)} 〈
ρ0 (k)

∣∣∣ρ−µα ρ0µβ
∣∣∣ ρ− (P − q)

〉 (C.66)

Gρ−→ρ−γ = −i2eλV V7 (kµε∗ν (k)− kνε∗µ (k))
〈
ρ− (p− + p0)

∣∣∣ρ−µα ρ+αν
∣∣∣ ρ− (P − q)

〉
(C.67)

Ga−1 →a
−
1 γ

= −i2eλV V7 (kµε∗ν (k)− kνε∗µ (k))
〈
a−1 (p− + p0)

∣∣∣a−1µα a+αν
1

∣∣∣ a−1 (P − q)
〉

(C.68)

Gρ−→ρ− = −4iλV V6 m2
π

〈
ρ− (P − q)

∣∣∣ρ−µα ρ+αν
∣∣∣ ρ− (P − q)

〉
(C.69)

JρW−→ρ−ρ0 =2
√

2λV V7 (P − q)µ
{〈
ρ0 (k) ρ− (p− + p0)

∣∣∣ρ+αρ ρ0
µα

∣∣∣ 0〉
−
〈
ρ0 (k) ρ− (p− + p0)

∣∣∣ρ0αρ ρ+
µα

∣∣∣ 0〉} (C.70)

ÔV Ai

Gρ−→a−1 π0 = 2
f

{(
2λV A1 m2

π + λV A5 p0 · (P − q)
) 〈
a−1 (p− + k)

∣∣∣ρ−µν a+µν
1

∣∣∣ ρ− (P − q)
〉

+
(
−2λV A2 pµ0p0α + λV A3 (P − q)µ p0α − λV A4 pµ0 (P − q)α

)
×
〈
a−1 (p− + k)

∣∣∣ρ−µν a+να
1

∣∣∣ ρ− (P − q)
〉} (C.71)

Gρ−→a0
1π
− = 2

f

{(
−2λV A1 m2

π − λV A5 p− · (P − q)
) 〈
a0

1 (p0 + k)
∣∣∣ρ−µν a0µν

1

∣∣∣ ρ− (P − q)
〉

+
(
2λV A2 pµ−p−α − λV A3 (P − q)µ p−α + λV A4 pµ− (P − q)α

)
×
〈
a0

1 (p0 + k)
∣∣∣ρ−µν a0να

1

∣∣∣ ρ− (P − q)
〉} (C.72)

Ga−1 →ρ−π0 = 2
f

{(
−2λV A1 m2

π + λV A5 p0 · (p− + k)
) 〈
ρ− (p− + k)

∣∣∣ρ+
µν a

−µν
1

∣∣∣ a−1 (P − q)
〉

+
(
2λV A2 pµ0p0α + λV A3 (p− + k)µ p0α − λV A4 pµ0 (p− + k)α

)
×
〈
ρ− (p− + k)

∣∣∣ρ+
µν a

−να
1

∣∣∣ a−1 (P − q)
〉} (C.73)

Ga−1 →ρ0π− = 2
f

{(
2λV A1 m2

π − λV A5 p− · P
) 〈
ρ0 (P)

∣∣∣ρ0
µν a

−µν
1

∣∣∣ a−1 (P + p−)
〉

+
(
−2λV A2 pµ−p−α − λV A3 Pµp−α + λV A4 pµ−Pα

)
×
〈
ρ0 (P)

∣∣∣ρ0
µν a

−να
1

∣∣∣ a−1 (P + p−)
〉} (C.74)
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Jρ
W−→ρ0a−1

=2
√

2
{(
−λV A2

[
gρα (P − q)µ + δρµ (P − q)α

]
+ λV A3 kµg

ρα − λV A4 kαδρµ

+λV A6

[
gρα (P − q)µ − δ

ρ
µ (P − q)α

])
×
〈
ρ0 (k) a−1 (p− + p0)

∣∣∣ρ0µνa+
1να

∣∣∣ 0〉
+λV A5 kρ

〈
ρ0 (k) a−1 (p− + p0)

∣∣∣ρ0µνa+
1µν

∣∣∣ 0〉}
(C.75)

Jρ
W−→ρ−a0

1
=2
√

2
{(
λV A2

[
gρα (P − q)µ + δρµ (P − q)α

]
− λV A3 (p− + p0)µ g

ρα + λV A4 (p− + p0)α δρµ

−λV A6

[
gρα (P − q)µ − δ

ρ
µ (P − q)α

])
×
〈
ρ− (p− + p0) a0

1 (k)
∣∣∣ρ+µνa0

1να

∣∣∣ 0〉
−λV A5 (p− + p0)ρ

〈
ρ− (p− + p0) a0

1 (k)
∣∣∣ρ−µνa0

1µν

∣∣∣ 0〉}
(C.76)

ÔAi

Jρ
W−→a−1

= −i4
[
4λA16m

2
π − λA17 (P − q)2

]
(P − q)µ

〈
a−1 (P − q)

∣∣∣a+µρ
1

∣∣∣ 0〉 (C.77)

Jρ
W−→a−1 π0 = 4

f

{(
−4λA4 m2

π (P − q)µ + 2λA12 p0 · (P − q) p0µ − 2λA13 p0 · (P − q) (P − q)µ

+λA15 (P − q)2 p0µ − 4λA16m
2
π (P − q)µ + λA17 (p− + k)2 (P − q)µ

)
×
〈
a−1 (p− + k)

∣∣∣a+µρ
1

∣∣∣ 0〉
+
(
2λA12 (P − q)µ pν0p

ρ
0 + λA15 (P − q)µ pν0 (P − q)ρ

) 〈
a−1 (p− + k)

∣∣∣a+
1µν

∣∣∣ 0〉
(C.78)

Jρ
W−→a0

1π
− = 4

f

{(
4λA4 m2

π (P − q)µ − 2λA12 p− · (P − q) p−µ + 2λA13 p− · (P − q) (P − q)µ

−λA15 (P − q)2 p−µ + 4λA16m
2
π (P − q)µ + λA17 (p0 + k)2 (P − q)µ

)
×
〈
a0

1 (p0 + k)
∣∣∣a0µρ

1

∣∣∣ 0〉
−
(
2λA12 (P − q)µ pν−p

ρ
− + λA15 (P − q)µ pν− (P − q)ρ

) 〈
a0

1 (p0 + k)
∣∣∣a0

1µν

∣∣∣ 0〉
(C.79)
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Jρ
W−→a−1 γ

=i4e
{(
−
(
λA12 + λA14

)
[k · (P − q) gµα − (P − q)α kµ] ε∗α (k)

+4λA16m
2
πε
∗
µ (k)− λA17

[
s ε∗µ (k) + 2 (p− + p0)α ε

∗α (k) (P − q)µ
])

×
〈
a−1 (p− + p0)

∣∣∣a+µρ
1

∣∣∣ 0〉
+
[(
λA12 − λA14

)
(P − q)ν (kµε∗ρ (k)− kρε∗µ (k))− 2λA13 k

ρkµε∗ν (k)
]

×
〈
a−1 (p− + p0)

∣∣∣a+
1µν

∣∣∣ 0〉}
(C.80)

Ga−1 →π−γ
=− i2

√
2

f
e
[
4λA4 m2

πk
µε∗ν (k) + 2λA12

(
k · p− gµα − pα−kµ

)
ε∗αp

ν
−

−2λA13 (k · p−) kµε∗ν (k) + 4λA16m
2
πk

µε∗ν (k)− λA17 (p− + k)2 kµε∗ν
]

×
〈
0
∣∣∣a−1µν ∣∣∣ a−1 (p− + k)

〉
(C.81)

ÔSi

Jρ
W−→a−0 γ

= 8
3λ

S
15e [k · (P − q) gµρ − (P − q)µ kρ] ε∗µ

〈
a−0 (p0 + p−)

∣∣∣a+
0

∣∣∣ 0〉 (C.82)

JρW−→f0π−
=i 4
f

[
4λS6m2

πp
ρ
− + 2λS7m2

πp
ρ
− − 2λS8m2

πp
ρ
− − λS17 (p0 + k)2 pρ−

−λS12

(
(P − q)2 pρ− − p− · (P − q) (P − q)ρ

)]
〈f0 (p0 + k) |f0| 0〉

(C.83)
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ÔViµναβ

JρW−→ωπ−π0 = 4
f 2

{
2
(
κV1 − κV2 + κV3

)
pα0 p

β
− (p0 + p−)ρ

+ 2
[(
κV1 − κV2 + κV3

)
p− · p0 +

(
2κV9 − κV10

)
m2
π

]
gρα (p0 − p−)β

−
(
κV1 − κV2 + κV3 + κV6 + κV7 − κV8

)
(P − q)α

(
pβ0p

ρ
− − pβ−pρ0

)
−
(
κV1 − κV2 + κV3 − κV6 − κV7 + κV8

)
gρα

[
(P − q) · p− pβ0 − (P − q) · p0 p

β
−

]
+ 2κV12

[
(P − q)α

(
pβ0 p

ρ
0 − p

β
− p

ρ
−

)
− gρα

(
(P − q) · p0 p

β
0 − (P − q) · p− pβ−

)]
+ κV16 (P − q)α

[
(p0 + k)β pρ0 − (p− + k)β pρ−

]
− κV17 (P − q)α

[
(p0 + k)ρ pβ0 − (p− + k)ρ pβ−

]
− κV16 g

ρα
[
(P − q) · p0 (p0 + k)β − (P − q) · p− (p− + k)β

]
+κV17 g

ρα
[
(P − q) · (p0 + k) pβ0 − (P − q) · (p− + k) pβ−

]}
× εµναβ 〈ω (k) |ωµν | 0〉

(C.84)

JρW−→ρ−γ =4e
3
{(
−κV11 + κV12

)
(P − q)α

[
kβε∗ρ (k)− kρε∗β (k)

]
−
(
κV11 + κV12

)
gρα

[
k · (P − q) gσβ − (P − q)σ kβ

]
ε∗σ (k)

−κV16 k
αε∗β (k) kρ

}
εµναβ

〈
ρ− (p− + p0)

∣∣∣ρ+µν
∣∣∣ 0〉

(C.85)

JρW−→ωπ− =i 4
f

{
−2κV12 (P − q)α pβ−pρ− +

[
2κV12 (P − q) · p− − κV17 (P − q)2

]
gραpβ−

+
[
4κV14m

2
π + κV16 p− · (P − q)

]
gρα (P − q)β + κV17 (P − q)α pβ− (P − q)ρ

}
× εµναβ 〈ω (p0 + k) |ωµν | 0〉

(C.86)

Gπ−→ωπ−π0 =4
√

2
f 3

{(
κV1 − κV2 + κV3

) [
(P − q + p−)α pβ0 (P − q) · p−

− (P − q + p0)α pβ− (P − q) · p0
]

+
(
2κV9 − κV10

)
m2
π p

α
0p

β
−

+
[
−
(
κV1 − κV2 + κV3

)
p− · p0 −

(
2κV9 − κV10

)
m2
π

]
(P − q)α (p0 − p−)β

}
× εµναβ 〈ω (k) |ωµν | 0〉

(C.87)
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Gρ0→π0γ =2
√

2
3f e

{
−2κV12 [k · p0 g

ρα − pρ0kα] ε∗ρ (k) pβ0 +
(
4κV14m

2
π − κV16 k · p0

)
kαε∗β (k)

}
× εµναβ

〈
0
∣∣∣ρ0µν

∣∣∣ ρ0 (p0 + k)
〉

(C.88)

Gω→π0γ =2
√

2
f

e
{
−2κV12 [k · p0 g

ρα − pρ0kα] ε∗ρ (k) pβ0 +
(
4κV14m

2
π − κV16 k · p0

)
kαε∗β (k)

}
× εµναβ 〈0 |ωµν |ω (p0 + k)〉

(C.89)

Gρ−→π−γ =2
√

2
3f e

{
−2κV12 [k · p− gρα − pρ−kα] ε∗ρ (k) pβ− +

(
4κV14m

2
π − κV16 k · p−

)
kαε∗β (k)

}
× εµναβ

〈
0
∣∣∣ρ−µν ∣∣∣ ρ− (p− + k)

〉
(C.90)

Gπ−→ρ−γ =2
√

2
3f e

{
−2κV12 [k · (P − q) gρα − (P − q)ρ kα] ε∗ρ (k) (P − q)β

+
(
4κV14m

2
π + κV16 k · (P − q)

)
kαε∗β (k)

}
εµναβ

〈
ρ− (p− + p0)

∣∣∣ρ+µν
∣∣∣ 0〉 (C.91)

Gγ→π0ρ0 =2
√

2
3f e

{
2κV12 [p0 · (p0 + k) gρα − pρ0 (p0 + k)α] pβ0

+
(
4κV14m

2
π + κV16p0 · (p0 + k)

)
gρα (p0 + k)β

−κV17

[
(p0 + k)2 gρα − (p0 + k)α (p0 + k)ρ

]
pβ0
}
εµναβ

〈
ρ0 (k)

∣∣∣ρ0µνAρ
∣∣∣ γ (P − q)

〉
(C.92)

Gγ→π0ω =2
√

2
f

e
{

2κV12 [p0 · (p0 + k) gρα − pρ0 (p0 + k)α] pβ0

+
(
4κV14m

2
π + κV16p0 · (p0 + k)

)
gρα (p0 + k)β

−κV17

[
(p0 + k)2 gρα − (p0 + k)α (p0 + k)ρ

]
pβ0
}
εµναβ 〈ω (k) |ωµνAρ| γ (P − q)〉

(C.93)
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ÔAiµναβ

JρW−→f1π−
=i 4
f

{[(
κA3 + κA15

)
p− · (P − q) + 4κA11m

2
π

]
gρα (P − q)β

+
[
2κA8 p− · (P − q)− κA16 (P − q)2 + 2κA12m

2
π

]
gραpβ−

−
[
2κA8 p

ρ
− − κA16 (P − q)ρ

]
(P − q)α pβ−

}
εµναβ 〈f1 (p0 + k) |fµν1 | 0〉

(C.94)

Ga−1 →π−π0γ =i2
√

2
3f 2

(
κA5 − κA6 + κA7

)
e ε∗σ (k)

[
(k · p0 g

ασ − pσ0kα) pβ− −
(
k · p− gασ − pσ−kα

)
pβ0
]

× εµναβ
〈
0
∣∣∣a−µν1

∣∣∣ a−1 (P − q)
〉

(C.95)

ÔRRiµναβ

JρW−→ρ−ω =i2
√

2εµναβ
{(
κV V3 gρα kσ + κV V4 δρσ k

α
) 〈
ρ− (p− + p0)ω (k)

∣∣∣ρ+βσωµν
∣∣∣ 0〉

+
(
κV V3 gρα (p0 + p−)σ + κV V4 δρσ (p0 + p−)α

) 〈
ρ− (p− + p0)ω (k)

∣∣∣ρ+µνωβσ
∣∣∣ 0〉}
(C.96)

Gρ−→ωπ− =i 2
f
εµναβ

{
−4κV V2 m2

π

〈
ω (P)

∣∣∣ρ−µνωαβ∣∣∣ ρ− (P + p−)
〉

+
(
κV V3 pα−Pσ + κV V4 p−σ Pα

) 〈
ω (P)

∣∣∣ρ−βσωµν ∣∣∣ ρ− (P + p−)
〉

−
(
κV V3 pα− (P + p−)σ + κV V4 p−σ (P + p−)α

) 〈
ω (P)

∣∣∣ρ−µνωβσ∣∣∣ ρ− (P + p−)
〉}

(C.97)

Gρ0→ωπ0 =i 2
f
εµναβ

{
−4κV V2 m2

π

〈
ω (k)

∣∣∣ρ0µνωαβ
∣∣∣ ρ0 (p0 + k)

〉
+
(
κV V3 pα0 kσ + κV V4 p0σ k

α
) 〈
ω (k)

∣∣∣ρ0βσωµν
∣∣∣ ρ0 (p0 + k)

〉
−
(
κV V3 pα0 (p0 + k)σ + κV V4 p0σ (p0 + k)α

) 〈
ω (k)

∣∣∣ρ0µνωβσ
∣∣∣ ρ0 (p0 + k)

〉} (C.98)

Gω→ρ0π0 =i 2
f
εµναβ

{
−4κV V2 m2

π

〈
ρ0 (k)

∣∣∣ρ0µνωαβ
∣∣∣ω (p0 + k)

〉
+
(
κV V3 pα0 kσ + κV V4 p0σ k

α
) 〈
ρ0 (k)

∣∣∣ρ0µνωβσ
∣∣∣ω (p0 + k)

〉
−
(
κV V3 pα0 (p0 + k)σ + κV V4 p0σ (p0 + k)α

) 〈
ρ0 (k)

∣∣∣ρ0βσωµν
∣∣∣ω (p0 + k)

〉} (C.99)
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ÔV Aiµναβ

Ga−1 →ωπ−π0 = 2
f 2

[
κV A2 − κV A3 − κV A4

] (
p0σ p

α
− − p−σ pα0

)
εµναβ

〈
ω (k)

∣∣∣ωµνa−βσ1

∣∣∣ a−1 (P − q)
〉

(C.100)

Ga−1 →ρ−γ
= −2

3κ
V A
5 (kαε∗σ (k)− kσε∗α (k)) εµναβ

〈
ρ− (p− + p0)

∣∣∣ρ+µνa−βσ1

∣∣∣ a−1 (P − q)
〉

(C.101)
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Appendix D

Magnetic dipole moment of the ρ

meson

Measurement of the magnetic dipole moment of vector mesons is not an easy task because

they have a very short lifetime about 10−24 s, but it is possible to infer it indirectly through

its impact on some low energy processes.

The electromagnetic vertex for a vector particle (V ) is defined by [815]

〈V (q2, η) |JµEM(0)|V (q1, ε)〉 ≡ η†νελΓµνλ, (D.1)

where qi’s are the momenta, η and ε are the polarization vectors. The most general Lorentz

structure that preserves C, P and CP is the following

Γµνλ = α(q2)gνλ(q1 + q2)µ + β(q2)(gµνqλ − gµλqν)− γ(q2)
M2

V

(q1 + q2)µqνqλ

− qλ1gµν − qν2gµλ,
(D.2)

where α(q2), β(q2) and γ(q2) are the electromagnetic form factors [816, 817]. The magnetic

dipole moment of the ρ meson can be obtained from the V (q1, ε) → V (q2, µ) γ (q) electro-

magnetic vertex using the Eqs. (C.41) and (C.67), and for a spin 1 particle in the formalism

296



of antisymmetric tensor fields [224,225]

〈0 |Wµν |W, p〉 = iM−1 [pµεν(p)− pνεµ(p)] , (D.3)

with the usual polarization vector εµ(p).

Thus, we get

〈
V (q2, η)

∣∣∣∣∣δLRχTδvµ

∣∣∣∣∣V (q1, ε)
〉

=η†νελ
{
gνλ(q1 + q2)µ + (1− 2λV V7 )[gµνkλ − gµλkν ]

+ 2λV V7
M2

V

(q1 + q2)µqνqλ
}
,

(D.4)

comparing with eq. (D.2), we have QV = α(0) = 1 (in units of e), µV = β(0) = 1 − 2λV V7

(in units of e/2MV ) and XEV = 1− β(0) + 2γ(0) = −2λV V7 (in units of e/M2
V ) where γ(0) =

−2λV V7 . At tree level, the prediction for the W gauge boson is α(0) = 1, β(0) ≡ 1+κ+λ = 2

and γ(0) ≡ λ = 0 (κ = 1 and λ = 0) [816, 817], which correspond to QW = 1, µW = 2 and

XEW = −1.
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Appendix E

Pseudoscalar resonances in radiative

di-pion tau decay

Taking into account the pseudoscalar resonances, we have the following contributions:

OP
i

JρW−→π′−π0 =− 4
f
λP9

[
(P − q)2 pρ0 − p0 · (P − q) (P − q)ρ

] 〈
π′− (p− + k)

∣∣∣π′+∣∣∣ 0〉 (E.1)

JρW−→π′0π− = 4
f
λP9

[
(P − q)2 pρ− − p− · (P − q) (P − q)ρ

] 〈
π′0 (p0 + k)

∣∣∣π′0∣∣∣ 0〉 (E.2)

JρW−→π′−γ = −8ie λP11 (P − q)µ [kµ ε∗ρ (k)− kρ ε∗µ (k)]
〈
π′− (p− + p0)

∣∣∣π′+∣∣∣ 0〉 (E.3)

Gπ′−→π−γ = −i4
√

2
f

e λP13m
2
π p−µε

∗µ (k)
〈
0
∣∣∣π′−∣∣∣ π′− (p− + k)

〉
(E.4)

OPV
i

Gπ′−→ρ0π− = − 2
f
λPV1 Pµpν−

〈
ρ0 (P)

∣∣∣ρ0
µν π

′−
∣∣∣ π′− (P + p−)

〉
(E.5)

Gπ′−→ρ−π0 = 2
f
λPV1 (p− + k)µ pν0

〈
ρ− (p− + k)

∣∣∣ρ+
µν π

′−
∣∣∣ π′− (P − q)

〉
(E.6)

298



Gρ−→π′−π0 = 2
f
λPV1 (p− + k)µ pν0

〈
π′− (p− + k)

∣∣∣ρ−µν π′+∣∣∣ ρ− (P − q)
〉

(E.7)

OP
iµναβ

JρW−→π′−γ = −32
3 e κ

P
5 εµναβ g

ρµ (P − q)ν kαε∗β (k)
〈
π′− (p− + p0)

∣∣∣π′+∣∣∣ 0〉 (E.8)

Gπ′−→π−π0γ = i
4
√

2
3f 2

(
κP2 + 2κP3

)
e kµε∗ν (k) pα− p

β
0 εµναβ

〈
0
∣∣∣π′−∣∣∣ π′− (P − q)

〉
(E.9)

OPV
iµναβ

Gπ′−→ωπ−π0 = 2
f 2

(
2κPV1 − κPV2

)
εµναβ p

α
− p

β
0

〈
ω (k)

∣∣∣ωµν π′−∣∣∣ π′− (P − q)
〉

(E.10)

Gπ′−→ρ−γ = 4
3e κ

PV
3 εµναβ k

α ε∗β (k)
〈
ρ− (p− + p0)

∣∣∣ρ+µν π′−
∣∣∣ π′− (P − q)

〉
(E.11)

E.1 Mixing

We have a mixing between the P resonance and the π meson

L = · · · − 1
2m

2
π

[
π0π0 + 2π−π+

]
− 1

2
(
m2
π′ − 4λPP3 m2

π

) [
π′0π′0 + 2π′−π′+

]
+ 2
√

2
f

m2
π

(
dm + 4λP10m

2
π − λP13m

2
π

) [
π′0π0 + π′+π− + π′−π+

]
+ · · · ,

(E.12)

this equation can be rewritten in a similar way

L = · · · − 1
2Π†M1Π− 1

2Π†0M0Π0 + · · · , (E.13)
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where Π = (π+, π−, π′+, π′−)t, Π0 = (π0, π′0)t,

M1 =



m2
π 0 −2

√
2

f
m2
π d
′
m 0

0 m2
π 0 −2

√
2

f
m2
π d
′
m

−2
√

2
f
m2
π d
′
m 0 m2

1 0

0 −2
√

2
f
m2
π d
′
m 0 m2

1


, (E.14)

and

M0 =

 m2
π −2

√
2

f
m2
π d
′
m

−2
√

2
f
m2
π d
′
m m2

1

 , (E.15)

with m2
1 = m2

π′ − 4λPP3 m2
π, and d′m = dm + 4λP10m

2
π − λP13m

2
π.

The flavor eigenstates (Π, Π0) are related to the mass eigenstates (Π̃, Π̃0) via their mixing

angle θ′ 

π̃+

π̃−

π̃′+

π̃′−


=



cos θ′ 0 sin θ′ 0

0 cos θ′ 0 sin θ′

− sin θ′ 0 cos θ′ 0

0 − sin θ′ 0 cos θ′





π+

π−

π′+

π′−


, (E.16)

 π̃0

π̃′0

 =

 cos θ′ sin θ′

− sin θ′ cos θ′


 π0

π′0

 , (E.17)

with

tan θ′ =

√
(m2

1 −m2
π)2 + 32

f2m4
πd
′2
m − (m2

1 −m2
π)

4
√

2
f
m2
πd
′
m

' 2
√

2
f

m2
πd
′
m

m2
1 −m2

π

. (E.18)

The masses are MD
1 = diag (m−,m−,m+,m+) and MD

0 = diag (m−,m+), where

m± = 1
2

(
m2

1 +m2
π ±

√
(m2

1 −m2
π)2 + 32

f 2m
4
πd
′2
m

)
'
{
m2

1
m2
π

}
± 8m4

πd
′2
m

f 2 (m2
1 −m2

π) . (E.19)

After this change of basis, we have the following contributions

JρW−→π′− = −i
√

2f sin θ′ (P − q)ρ
〈
π− (P − q)

∣∣∣π̃′+∣∣∣ 0〉 (E.20)
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JρW−→π′−π0 =
{
− 4
f
λP9 cos2 θ′

[
(P − q)2 pρ0 − p0 · (P − q) (P − q)ρ

]
+ 4
f
λP9 sin2 θ′

[
(P − q)2 (p− + k)ρ − (p− + k) · (P − q) (P − q)ρ

]
−
√

2 sin θ′ cos θ′ (p− + k − p0)ρ
} 〈
π′− (p− + k)

∣∣∣π̃′+∣∣∣ 0〉
(E.21)

Gπ′−→π−π0γ =
{
i
4
√

2
3f 2

(
κP2 + 2κP3

)
cos3 θ′e kµε∗ν (k) pα− p

β
0

−i e

4π2f 3 cos2 θ′ sin θ′ (P − q)µ ε∗ν (k) pα−p
β
0

}
εµναβ

〈
0
∣∣∣π̃′−∣∣∣ π′− (P − q)

〉 (E.22)

Gπ′−→π−γ =− i
{

4
√

2
f

cos2 θ′ λP13m
2
π p−µε

∗µ (k) + 2 sin θ′ cos θ′p−µε∗µ (k)
}

×
〈
0
∣∣∣π̃′−∣∣∣ π′− (p− + k)

〉 (E.23)

Gπ′−→ρ0π− =− 2
f
λPV1 cos2 θ′Pµpν−

〈
ρ0 (P)

∣∣∣ρ0
µν π̃

′−
∣∣∣ π′− (P + p−)

〉
− sin θ′ cos θ′Gπ−→ρ0π−

(E.24)

Gπ′−→ρ−π0 = 2
f
λPV1 cos2 θ′ (p− + k)µ pν0

〈
ρ− (p− + k)

∣∣∣ρ+
µν π̃

′−
∣∣∣ π′− (P − q)

〉
− sin θ′ cos θ′Gπ−→ρ−π0

(E.25)

Gρ−→π′−π0 = 2
f
λPV1 cos2 θ′ (p− + k)µ pν0

〈
π′− (p− + k)

∣∣∣ρ−µν π̃′+∣∣∣ ρ− (P − q)
〉

− sin θ′ cos θ′Gρ−→π−π0

(E.26)

Gπ′−→ρ−γ =4
3e κ

PV
3 cos θ′ εµναβ kα ε∗β (k)

〈
ρ− (p− + p0)

∣∣∣ρ+µν π̃′−
∣∣∣ π′− (P − q)

〉
− sin θ′Gπ−→ρ−γ

(E.27)

Gπ′−→ωπ−π0 = 2
f 2

(
2κPV1 − κPV2

)
cos3 θ′εµναβ p

α
− p

β
0

〈
ω (k)

∣∣∣ωµν π̃′−∣∣∣ π′− (P − q)
〉

− sin θ′ cos2 θ′Gπ−→ωπ−π0

(E.28)
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Appendix F

Virtual corrections to di-meson tau

decays

The radiative corrections to the τ− → P−P 0ντ decays at O(p2) in ChPT are shown along

with Eqs. (F.7-F.9). The Feynman rules needed for this calculation are:〈
π−π0

∣∣∣∣∣δL2
δ vµ

∣∣∣∣∣ 0
〉

=
√

2(p− − p0)µ,
〈
π−π0γ

∣∣∣∣∣δL2
δ vµ

∣∣∣∣∣ 0
〉

= −
√

2e εµ(k), (F.1)

〈
K−K0

∣∣∣∣∣δL2
δ vµ

∣∣∣∣∣ 0
〉

= −(p− − p0)µ,
〈
K−K0γ

∣∣∣∣∣δL2
δ vµ

∣∣∣∣∣ 0
〉

= e εµ(k), (F.2)

〈
K−π0

∣∣∣∣∣δL2
δ vµ

∣∣∣∣∣ 0
〉

= 1√
2

(pK − pπ)µ,
〈
K−π0γ

∣∣∣∣∣δL2
δ vµ

∣∣∣∣∣ 0
〉

= − 1√
2
e εµ(k), (F.3)

〈
π−K̄0

∣∣∣∣∣δL2
δ vµ

∣∣∣∣∣ 0
〉

= −(pπ − pK)µ,
〈
π−K̄0γ

∣∣∣∣∣δL2
δ vµ

∣∣∣∣∣ 0
〉

= e εµ(k), (F.4)

〈
π−(p)γ(k) |iL2|π−(p′)

〉
= −ie(p+ p′)µ ε∗µ(k), (F.5)〈

K−(p)γ(k) |iL2|K−(p′)
〉

= −ie(p+ p′)µ ε∗µ(k). (F.6)

The results in Eqs. (F.5) and (F.6) are in perfect agreement with the prediction from sQED.
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τ−(P ) P − k

k

p− − k

h−(p−)

h0(p0)

ντ (q)

⊗

=− iGF√
2
V ∗uD

∫
d4k

(2π)4 ū(q)γµ(1− γ5)
[
i(/P − /k +mτ )
(P − k)2 −m2

τ

]
[−ieγα]u(P )

× [CV (p− − k − p0)µ] [−ie(2p− − k)β]
[
−igαβ

k2 −M2
γ

] [
i

(p− − k)2 −m2
−

]

= −iGF√2V
∗
uD ū(q)γµ(1− γ5)u(P ) δH1µ(s, u),

(F.7)

τ−(P )
P − k

k h−(p−)

h0(p0)

ντ (q)

⊗

= −iGF√
2
V ∗uD

∫
d4k

(2π)4 ū(q)γµ(1− γ5)
[
i(/P − /k +mτ )
(P − k)2 −m2

τ

]
[−ieγα]u(P )

× [−eCV gµβ]
[
−igαβ

k2 −M2
γ

]

= −iGF√2V
∗
uD ū(q)γµ(1− γ5)u(P ) δH2µ(s, u),

(F.8)

k

τ−(P )

h−(p−)
p− − k

h0(p0)

ντ (q)

⊗

= −iGF√
2
V ∗uD ū(q)γµ(1− γ5)u(P )

∫
d4k

(2π)4 [−eCV gµα]
[

i

(p− − k)2 −m2
−

]

×
[
−igαβ

k2 −M2
γ

]
[−ie(2p− − k)β]

= −iGF√2V
∗
uD ū(q)γµ(1− γ5)u(P ) δH3µ(s, u),

(F.9)

where

δHµ
2 (t, u) = ie2CV

∫
d4k

(2π)4
2(P + k)µ

[k2 −M2
γ ][(P − k)2 −m2

τ ] (F.10)

δHµ
3 (t, u) = ie2CV

∫
d4k

(2π)4
(2p− − k)µ

[k2 −M2
γ ][(p− − k)2 −m2

−]
, (F.11)

and Cππ,KK,K−π0,K0π−

V = {
√

2,−1, 1√
2 ,−1}. We have omitted the analytic expression for

δHµ
2 (t, u) due to its length. The overall contribution is given by

δHµ(t, u) = δHµ
1 (t, u) + δHµ

2 (t, u) + δHµ
3 (t, u)

= CV δf+(u) (p1 − p0)µ + CV δf−(u) (p1 + p0)µ,
(F.12)

where
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δf+(u) = α

4π

{
2 + 1

ε
− γE + log 4π − log m

2
τ

µ2 + (u−m2
−)A(u) + (u−m2

− −m2
τ )B(u)

+ 2(m2
− +m2

τ − u)C(u,Mγ) + 2 log m−mτ

M2
γ

}
,

(F.13)

δf−(u) = α

4π

{
− 5− 3

(1
ε
− γE + log 4π

)
+ log

m2
−
µ2 + 2 log m

2
τ

µ2 + (3u+m2
− − 2m2

τ )A(u)

+ (u+m2
− −m2

τ )B(u)
}
,

(F.14)

A(u) = 1
u

[
−1

2 log rτ + 2− y
√
rτ

x

1− x2 log x
]
, (F.15)

B(u) = 1
u

[
1
2 log rτ + 2rτ − y√

rτ

x

1− x2 log x
]
, (F.16)

C(u,Mγ) = 1
mτm−

x

1− x2

[
− 1

2 log2 x+ 2 log x log
(
1− x2

)
− π2

6 + 1
8 log2 rτ

+ Li2(x2) + Li2

(
1− x
√
rτ

)
+ Li2(1− x

√
rτ )− log x log

M2
γ

mτm−

]
.

(F.17)

Here, A(u), B(u) and C(u,Mγ) are written in terms of the variables

rτ = m2
τ

m2
−
, y = 1 + rτ −

u

m2
−
, x = 1

2√rτ

(
y −

√
y2 − 4rτ

)
, (F.18)

and the dilogarithm

Li2(x) = −
∫ 1

0

dt

t
log(1− xt). (F.19)

The radiative corrections to these decays induce dependence in the u−variable. From a

comparison with the results in Ref. [380], we get the following relation

δf̄+(u) = α

4π
1

f+(0)
[
Γ1(u,m2

τ ,m
2
−) + Γ2(u,m2

τ ,m
2
−)
]

+ · · ·

= α

4π
1

f+(0)
[
(u−m2

−)A(u) + (u−m2
− −m2

τ )B(u)
]

+ · · · ,
(F.20)

and

δf̄−(u) = α

4π
1

f+(0)
[
Γ1(u,m2

τ ,m
2
−)− Γ2(u,m2

τ ,m
2
−)
]

+ · · ·

= α

4π
1

f+(0)
[
(3u+m2

− − 2m2
τ )A(u) + (u+m2

− −m2
τ )B(u)

]
+ · · · .

(F.21)

RχT contributions will be shown elsewhere and the phenomenological application of these

results (apart from the ππ mode) is work in progress.
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Appendix G

Fit of leading odd-intrinsic parity

resonance couplings to the O(p6) LECs

Since the κVi couplings are related with the ω exchange which is known to give an important

contribution to the τ → ππγντ decays, we perform a global fit using the relations for the

resonance saturation of the anomalous sector LECs at NLO [684], the eqs. (7.10)-(7.18) in

section 7.2.5 and the estimation of the LECs in [818].
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Neglecting all the other contributions, we get

κV1 = (−2.1± 0.7) · 10−2 GeV−1, (G.1a)

κV2 = (−8.8± 9.1) · 10−3 GeV−1, (G.1b)

κV3 = (2.2± 5.8) · 10−3 GeV−1, (G.1c)

κV6 = (−2.1± 0.3) · 10−2 GeV−1, (G.1d)

κV7 = (1.2± 0.5) · 10−2 GeV−1, (G.1e)

κV8 = (3.1± 0.9) · 10−2 GeV−1, (G.1f)

κV9 = (−0.1± 5.9) · 10−3 GeV−1, (G.1g)

κV10 = (−5.9± 9.6) · 10−3 GeV−1, (G.1h)

κV11 = (−3.0± 0.6) · 10−2 GeV−1, (G.1i)

κV12 = (1.0± 0.8) · 10−2 GeV−1, (G.1j)

κV13 = (−5.3± 1.1) · 10−3 GeV−1, (G.1k)

κV18 = (4.7± 0.8) · 10−3 GeV−1. (G.1l)

These values are in good agreement with our earlier estimation in section 7.2.5, |κVi | .

0.025 GeV−1.
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Appendix H

Kinematics of four body tau decays

H.1 τ−(P )→ π−(p−)π0(p0)γ(k)ντ (q) kinematics

In order to describe this type of decays we need five independent variables. We choose

s = (p− + p0)2, u = (P − p−)2, x = (k + q)2, θν which is the angle between the direction of

the π−π0 CM frame in the τ lepton rest frame and the direction of ~q in the π−π0 CM frame

(see fig. H.1) and φ−, which is angle between the plane of the π−π0 CM frame and the plane

of the γντ CM frame.

We can write the invariants in terms of these variables

π−

π0

τ−
θ−

γ

ντ

θν

φ−

Figure H.1: The τ− → π−π0γντ decay in the τ -lepton rest frame.
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P · p0 = s+ u− x−m2
π−

2 , (H.1a)

q · k =
x−M2

γ

2 , (H.1b)

p− · p0 = s−m2
π− −m2

π0

2 , (H.1c)

p0 · (q + k) = u− x−m2
π0

2 , (H.1d)

P · (q + k) = x− s+m2
τ

2 , (H.1e)

P · p− = (m2
π− −m2

π0 + s)(m2
τ + s− x)

4s + λ1/2(s, x,m2
τ )λ1/2(m2

τ ,m
2
π− ,m

2
π0)

4s cos θ−

= m2
τ +m2

π− − u
2 ,

(H.2)

P · k =
(m2

τ − s+ x)(x+M2
γ )

4x −
(x−M2

γ )λ1/2 (s, x,m2
τ )

4x cos θν , (H.3)

p− · k =

(
x+M2

γ

)
(m2

τ − s− u+m2
π0)

4x −

(
x−M2

γ

)
cos θν

4xλ1/2 (s, x,m2
τ )
A (s, u, x)

−

(
x−M2

γ

)
λ1/2 (s,m2

π− ,m
2
π0)

4
√
x
√
s

sin θν sin θ− cosφ−,

(H.4)

εµναβkµPνp−αqβ =
(x−M2

γ )λ1/2 (s,m2
π− ,m

2
π0)λ1/2 (s, x,m2

τ )
8
√
s
√
x

×

sin θν sin θ− sinφ−,
(H.5)

εµναβkµPνp−αp0β = εµναβkµPνp0αqβ = εµναβkµp−νp0αqβ = εµναβPµp−νp0αqβ

= −εµναβkµPνp−αqβ,
(H.6)

where

A (s, u, x) = m4
τ + s(s+ u) + x(u− s− 2m2

π−) +m2
π0(m2

τ − s+ x)−m2
τ (2s+ u+ x). (H.7)

Working in the τ -lepton rest frame, we have

Eγ =
(m2

τ − s+ x)(x+M2
γ )

4mτx
−

(x−M2
γ )λ1/2 (s, x,m2

τ )
4mτx

cos θν , (H.8)
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Eν = |~q| =
(m2

τ − s+ x)(x−M2
γ )

4mτx
+

(x−M2
γ )λ1/2 (s, x,m2

τ )
4mτx

cos θν , (H.9)

~k =
(
−

(x+M2
γ )λ1/2 (s, x,m2

τ )
4mτx

+
(m2

τ − s+ x)(x−M2
γ )

4mτx
cos θν

)
êz

+
x−M2

γ

2
√
x

sin θν êx,
(H.10)

~q =
(
−

(x−M2
γ )λ1/2 (s, x,m2

τ )
4mτx

−
(m2

τ − s+ x)(x−M2
γ )

4mτx
cos θν

)
êz

−
x−M2

γ

2
√
x

sin θν êx,
(H.11)

E− = (m2
τ + s− x)(s+m2

π− −m2
π0)

4mτs
+ λ1/2 (s, x,m2

τ )λ1/2 (s,m2
π− ,m

2
π0)

4mτs
cos θ−

= m2
τ +m2

π− − u
2mτ

,

(H.12)

E0 = (m2
τ + s− x)(s−m2

π− +m2
π0)

4mτs
− λ1/2 (s, x,m2

τ )λ1/2 (s,m2
π− ,m

2
π0)

4mτs
cos θ−

= s+ u− x−m2
π−

2mτ

,

(H.13)

|~p−| =
λ1/2 (u,m2

τ ,m
2
π−)

2mτ

, (H.14)

~p− =
(

(s+m2
π− −m2

π0)λ1/2 (s, x,m2
τ )

4mτs
+ (m2

τ + s− x)λ1/2 (s,m2
π− ,m

2
π0)

4mτs
cos θ−

)
êz

+ λ1/2 (s,m2
π− ,m

2
π0)

2
√
s

sin θ−êρ,
(H.15)

~p0 =
(

(s−m2
π− +m2

π0)λ1/2 (s, x,m2
τ )

4mτs
− (m2

τ + s− x)λ1/2 (s,m2
π− ,m

2
π0)

4mτs
cos θ−

)
êz

− λ1/2 (s,m2
π− ,m

2
π0)

2
√
s

sin θ−êρ,
(H.16)

cos θ− = 2s(m2
τ +m2

π− − u)− (m2
τ + s− x)(s+m2

π− −m2
π0)

λ1/2 (s, x,m2
τ )λ1/2 (s,m2

π− ,m
2
π0) , (H.17)

cos θν =
(m2

τ − s+ x)(x+M2
γ )− 4mτEγx

(x−M2
γ )λ1/2 (s, x,m2

τ )
, (H.18)

where λ(x, y, z) = x2 + y2 + z2− 2xy− 2xz− 2yz is the Kallen function, and êρ = cosφ−êx +
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sinφ−êy.

From eq. (H.17), we get

x± (s, u) =−m
4
π− + (m2

π0 − s)(m2
τ − u) +m2

π−(m2
τ +m2

π0 + s+ u)
2m2

π−

± λ1/2 (u,m2
τ ,m

2
π−)λ1/2 (s,m2

π− ,m
2
π0)

2m2
π−

,

(H.19)

and

u± (s, x) =m2
τ +m2

π− −
(m2

τ + s− x)(s+m2
π− −m2

π0)
2s

± λ1/2 (s, x,m2
τ )λ1/2 (s,m2

π− ,m
2
π0)

2s ,

(H.20)

these bounds on u and x correspond to the forward and backward direction, i.e. by taking

θ− = 0, π.

For the non-radiative decay, we have

DIII =
{
u− (s, 0) ≤ u ≤ u+ (s, 0) , (mπ− +mπ0)2 ≤ s ≤ m2

τ

}
, (H.21)

this region is plotted in fig. H.2 which corresponds to the projection RIII onto the su-plane.

In the case of the radiative decay, we have

DIV = {xmin (s, u) ≤ x ≤ xmax (s, u) , umin (s) ≤ u ≤ umax (s) ,

(mπ− +mπ−)2 ≤ s ≤ (mτ −Mγ)2
}
,

(H.22)

with

xmin (s, u) =

 x− (s, u) u+
(
s,M2

γ

)
≤ u ≤ (mτ −mπ−)2 , (mπ− +mπ0)2 ≤ s ≤ s∗

M2
γ u−

(
s,M2

γ

)
≤ u ≤ u+

(
s,M2

γ

)
, s∗ ≤ s ≤ (mτ −Mγ)2 ,

(H.23)

xmax (s, u) = x+ (s, u) , (H.24)
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umin (s) = u−
(
s,M2

γ

)
, (H.25)

umax (s) =

 (mτ −mπ−)2 (mπ− +mπ0)2 ≤ s ≤ s∗,

u+
(
s,M2

γ

)
s∗ ≤ s ≤ (mτ −Mγ)2 ,

(H.26)

where s∗ = mτ(mτmπ−+m2
π0−m

2
π−)−M2

γmπ−

mτ−mπ−
is the value that maximizes u+

(
s,M2

γ

)
. We will be

working in the isospin-limit (mu = md), i.e. m2
π− = m2

π0 and thus many of the last expres-

sions will be simplified.

We use a non-vanishing Mγ in order to deal with the IR divergences, at the end these diver-

gences are canceled out by those divergences of the non-radiative decay so we can take the

limit Mγ → 0. The projection RIV = RIV/III ∪ RIII of the DIV is plotted in fig. H.2 for

Mγ → 0.

0.5 1.0 1.5 2.0 2.5 3.0

0.0

0.5

1.0

1.5

2.0

2.5

s ( ππ )

u

Figure H.2: Projection of the kinematic region for the non-radiative decay RIII (gray) and
the radiative decay RIV = RIV/III ∪ RIII (black and gray) onto the su−plane. RIV/III

(black) is the kinematic region which is only accessible to the radiative decay.
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Appendix I

Vector Form Factors in radiative

di-pion tau decays

We present here the vector form factors in τ− → π−πoντγ decays.

vR1 = 1
F 2

16k · p0(2κV12 + κV16)(−(2k · p− + s)(2κV12 + κV16) + 2(P − q)2κV17)
Dω [(k + p0)2]

+
√

2FV
M2

ρ

(
2sλV12 − (4k · p0 + s)

(
λV13 + λV14 − λV15

)
+ (2k · p− + s)λV16 − 4k · p−λV17

+ 4k · p−λV18 + sλV18 + 4k · p−λV19 + 2sλV19 + 4k · p0λ
V
21 + 2k · p0λ

V
22 − 2k · p−λV22

)
+ 1
M2

a1Da1 [(k + p−)2]

(
− 8(−2k · p0M

2
a1s+ (k · p− −M2

a1)s2 + 2 (k · p0) (k · p−)

(2M2
a1 + s))(λA12)2 − 8k · p−(2k · p0 + s)(2M2

a1 + s)(λA13)2 − 2
√

2FA (k · p0) sλA15

− 2
√

2FA (k · p−) sλA15 −
√

2FAs2λA15 − 8
√

2FAk · p−M2
a1λ

A
17 − 4

√
2FA (k · p−) sλA17

+ 16 (k · p0) (k · p−) sλA15λ
A
17 + 16 (k · p−)2 sλA15λ

A
17 + 8 (k · p−) s2λA15λ

A
17

+ 32 (k · p−)2M2
a1(λA17)2 + 16 (k · p−)2 s(λA17)2 + λA13(8 (k · p−) s(P − q)2λA15

+ (2k · p0 − 2k · p− + s)(2M2
a1 + s)(

√
2FA − 8k · p−λA17)) + λA12(−8(s(2k · p−(M2

a1 − s)

+M2
a1s) + 2k · p0(4k · p−M2

a1 − 2 (k · p−) s+M2
a1s))λ

A
13 − 8(k · p− −M2

a1)s(P − q)2λA15

+ (k · p0(4M2
a1 − 2s)− s(2M2

a1 + s) + k · p−(−4M2
a1 + 2s))(

√
2FA − 8k · p−λA17))

)
(I.1)313



vRR1 = 1
2
√

2F 2

64k · p0FV (−(2k · p− + s)(2κV12 + κV16) + 2(P − q)2κV17)κV V3
M2

ρDω [(k + p0)2]

− 64k · p0(4k · p0 + 2k · p− + s)(2κV12 + κV16)κV V3 (−FV + 2
√

2(P − q)2λV22)
Dρ [(P − q)2]Dω [(k + p0)2]

+ 2FV
M2

a1M
2
ρDa1 [(k + p−)2]

(
2(2
√

2FAk · p−M2
a1 −
√

2FA (k · p−) s+
√

2FAM2
a1s

+ 4(−2k · p0M
2
a1s+ (k · p− −M2

a1)s2 + 2 (k · p0) (k · p−) (2M2
a1 + s))λA12

+ 4(2k · p0 + s)(2k · p−M2
a1 − (k · p−) s+M2

a1s)λ
A
13 + 8 (k · p0) (k · p−) sλA15

+ 8 (k · p−)2 sλA15 − 8k · p0M
2
a1sλ

A
15 − 8k · p−M2

a1sλ
A
15 + 4 (k · p−) s2λA15

− 4M2
a1s

2λA15 − 16 (k · p−)2M2
a1λ

A
17 + 8 (k · p−)2 sλA17 − 8k · p−M2

a1sλ
A
17)λV A2

− k · p−(2
√

2FAM2
a1 +
√

2FAs+ 4(4k · p0M
2
a1 − 2 (k · p0) s− s2)λA12

+ 4(2k · p0 + s)(2M2
a1 + s)λA13 − 8 (k · p0) sλA15 − 8 (k · p−) sλA15 − 4s2λA15

− 16k · p−M2
a1λ

A
17 − 8 (k · p−) sλA17)(λV A4 + 2λV A5 )

)
+ (

√
2FV − 4(P − q)2λV22)

M2
a1Da1 [(k + p−)2]Dρ [(P − q)2]

(
− 2(−4

√
2(−2k · p0M

2
a1s+ (k · p− −M2

a1)s2

+ 2 (k · p0) (k · p−) (2M2
a1 + s))λA12 + (4k · p0M

2
a1 − 2 (k · p0) s− s2)

(FA − 4
√

2k · p−λA13 − 4
√

2k · p−λA17))λV A2 − 2s(P − q)2(FA + 4
√

2(k · p− −M2
a1)λA12

− 4
√

2k · p−λA13 − 4
√

2k · p−λA17)λV A3 + (2k · p0 + s)(−4
√

2(2k · p−M2
a1 − (k · p−) s

+M2
a1s)λ

A
12 + (2M2

a1 + s)(FA − 4
√

2k · p−λA13 − 4
√

2k · p−λA17))(λV A4 + 2λV A5 )
)

+ 2FV
M2

ρDρ [(P − q)2]

(
− 2(P − q)2λV22((P − q)2 − 8sλV V2

− 2(4k · p0 + s)λV V3 + 8k · p0λ
V V
4 + 2sλV V4 − 16k · p0λ

V V
5 − 4sλV V5 )

+
√

2FV (−4sλV V2 − (4k · p0 + s)(λV V3 − λV V4 + 2λV V5 ))
)

− 4FV (
√

2(4k · p0 + s)GV λ
V V
7 + sλV21(s− 2(4k · p0 + s)λV V7 ))
M2

ρDρ[s]


(I.2)
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vRRR1 =− FV (−
√

2FV + 4(P − q)2λV22)√
2F 2M2

a1M
2
ρDa1 [(k + p−)2]Dρ [(P − q)2]

(−4(−2k · p0M
2
a1s

+ (k · p− −M2
a1)s2 + 2 (k · p0) (k · p−) (2M2

a1 + s))(λV A2 )2

− k · p−(λV A4 + 2λV A5 )(−2s(P − q)2λV A3 + (2k · p0 + s)(2M2
a1 + s)(λV A4 + 2λV A5 ))

+ 2λV A2 (2(k · p− −M2
a1)s(P − q)2λV A3 + (s(2k · p−(M2

a1 − s) +M2
a1s)

+ 2k · p0(4k · p−M2
a1 − 2 (k · p−) s+M2

a1s))(λ
V A
4 + 2λV A5 )))

(I.3)

vR+RR
GI1 = 1

F 2Dρ [(P − q)2]Dρ[s]

√2FV (2(M2
ρ − s)sλV12 − (M2

ρ − s)(4k · p0 + s)λV13

− 4k · p0M
2
ρλ

V
14 + 4 (k · p0) sλV14 −M2

ρsλ
V
14 + s2λV14 + 4k · p0M

2
ρλ

V
15 − 4 (k · p0) sλV15

+M2
ρsλ

V
15 − s2λV15 − 2k · p0M

2
ρλ

V
16 + 2 (k · p0) sλV16 + 4k · p0M

2
ρλ

V
17 − 4 (k · p0) sλV17

+ 2M2
ρsλ

V
17 − 2s2λV17 − 4k · p0M

2
ρλ

V
18 + 4 (k · p0) sλV18 −M2

ρsλ
V
18 + s2λV18

− 2k · p0M
2
ρλ

V
19 + 2 (k · p0) sλV19 − 4k · p−M2

ρλ
V
21 + 4 (k · p−) sλV21 − 2M2

ρsλ
V
21

+ s2λV21 + 6k · p0M
2
ρλ

V
22 + 2k · p−M2

ρλ
V
22 − 6 (k · p0) sλV22 − 2 (k · p−) sλV22

+ 2M2
ρsλ

V
22 − 2s2λV22 + 8 (k · p0) sλV21λ

V V
7 + 2s2λV21λ

V V
7 ) + 2GV (

√
2(4k · p0 + s)

((P − q)2 −M2
ρ )λV7 − (4k · p0 + s)FV λV V7 +

√
2λV22(−16 (k · p0)2 − (2M2

ρ − s)

(2k · p− + s)− 2k · p0(8k · p− − 2M2
ρ + 3s) + 2(4k · p0 + s)(P − q)2λV V7 ))

− 4(s(4k · p0 + s)((P − q)2 −M2
ρ )λV7 λV21 + λV22(2(M2

ρ − s)s(P − q)2λV12

− (M2
ρ − s)(4k · p0 + s)(P − q)2λV13 − 8 (k · p0)2M2

ρλ
V
14 − 8 (k · p0) (k · p−)M2

ρλ
V
14

+ 8 (k · p0)2 sλV14 + 8 (k · p0) (k · p−) sλV14 − 6k · p0M
2
ρsλ

V
14 − 2k · p−M2

ρsλ
V
14

+ 6 (k · p0) s2λV14 + 2 (k · p−) s2λV14 −M2
ρs

2λV14 + s3λV14 + 8 (k · p0)2M2
ρλ

V
15

+ 8 (k · p0) (k · p−)M2
ρλ

V
15 − 8 (k · p0)2 sλV15 − 8 (k · p0) (k · p−) sλV15

+ 6k · p0M
2
ρsλ

V
15 + 2k · p−M2

ρsλ
V
15 − 6 (k · p0) s2λV15 − 2 (k · p−) s2λV15 +M2

ρs
2λV15

− s3λV15 − 4 (k · p0)2M2
ρλ

V
16 − 4 (k · p0) (k · p−)M2

ρλ
V
16 + 4 (k · p0)2 sλV16
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+ 4 (k · p0) (k · p−) sλV16 − 2k · p0M
2
ρsλ

V
16 + 2 (k · p0) s2λV16 + 8 (k · p0)2M2

ρλ
V
17

+ 8 (k · p0) (k · p−)M2
ρλ

V
17 − 8 (k · p0)2 sλV17 − 8 (k · p0) (k · p−) sλV17

+ 8k · p0M
2
ρsλ

V
17 + 4k · p−M2

ρsλ
V
17 − 8 (k · p0) s2λV17 − 4 (k · p−) s2λV17

+ 2M2
ρs

2λV17 − 2s3λV17 − 8 (k · p0)2M2
ρλ

V
18 − 8 (k · p0) (k · p−)M2

ρλ
V
18

+ 8 (k · p0)2 sλV18 + 8 (k · p0) (k · p−) sλV18 − 6k · p0M
2
ρsλ

V
18 − 2k · p−M2

ρsλ
V
18

+ 6 (k · p0) s2λV18 + 2 (k · p−) s2λV18 −M2
ρs

2λV18 + s3λV18 − 4 (k · p0)2M2
ρλ

V
19

− 4 (k · p0) (k · p−)M2
ρλ

V
19 + 4 (k · p0)2 sλV19 + 4 (k · p0) (k · p−) sλV19

− 2k · p0M
2
ρsλ

V
19 + 2 (k · p0) s2λV19 − 8 (k · p0) (k · p−)M2

ρλ
V
21 − 8 (k · p−)2M2

ρλ
V
21

− 16 (k · p0)2 sλV21 − 8 (k · p0) (k · p−) sλV21 + 8 (k · p−)2 sλV21 + 4k · p0M
2
ρsλ

V
21

− 8k · p−M2
ρsλ

V
21 − 6 (k · p0) s2λV21 + 6 (k · p−) s2λV21 − 2M2

ρs
2λV21 + s3λV21

+ 8 (k · p0)2M2
ρλ

V
22 + 8 (k · p0) (k · p−)M2

ρλ
V
22 − 8 (k · p0)2 sλV22

− 8 (k · p0) (k · p−) sλV22 + 6k · p0M
2
ρsλ

V
22 + 2k · p−M2

ρsλ
V
22 − 6 (k · p0) s2λV22

− 2 (k · p−) s2λV22 +M2
ρs

2λV22 − s3λV22 + 16 (k · p0)2 sλV21λ
V V
7

+ 16 (k · p0) (k · p−) sλV21λ
V V
7 + 12 (k · p0) s2λV21λ

V V
7 + 4 (k · p−) s2λV21λ

V V
7

+ 2s3λV21λ
V V
7 ))



(I.4)
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vR2 = 1
F 2

 8(2k · p− + s)
M2

ωDω [(k + p0)2]

(
− 4(k · p0 −M2

ω)(2k · p− + s)(κV12)2 + k · p0κ
V
16

((4k · p0 + 2k · p− − 2M2
ω + s)κV16 − 2(P − q)2κV17) + κV12((−8 (k · p0)2 + 4k · p0M

2
ω

+ 2M2
ω(2k · p− + s))κV16 + 4(k · p0 −M2

ω)(P − q)2κV17)
)

+
√

2FV
M2

ρ

(
2sλV12 − sλV13

+ 4k · p−λV14 + sλV14 − 4k · p−λV15 − sλV15 − 4k · p−λV17 + 2k · p−λV18 − 4k · p−λV21

+ 2k · p0λ
V
22 − 2k · p−λV22

)
+ 2

√
2

M2
a1Da1 [(k + p−)2]

(
4
√

2 (k · p−)2 (2k · p0 + 2M2
a1 + s)

(λA12)2 + λA12(4
√

2k · p−(−4 (k · p0) (k · p−) + 2k · p0M
2
a1 + 2k · p−M2

a1 − 2 (k · p−) s

+M2
a1s)λ

A
13 + 4

√
2 (k · p−)2 (P − q)2λA15 + (−2 (k · p0) (k · p−) + 2 (k · p−)2

+ 2k · p0M
2
a1 + 2k · p−M2

a1 − (k · p−) s+M2
a1s)(−FA + 4

√
2k · p−λA17))

− (k · p− −M2
a1)(−4

√
2k · p−(2k · p0 + s)(λA13)2 − 4k · p−λA17(FA − 2

√
2k · p−λA17)

+ (P − q)2λA15(−FA + 4
√

2k · p−λA17) + λA13(4
√

2k · p−(P − q)2λA15

+ (2k · p0 − 2k · p− + s)(FA − 4
√

2k · p−λA17)))
)

(I.5)
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vRR2 = 1√
2F 2

 8FV (2k · p− + s)
M2

ρM
2
ωDω [(k + p0)2]

(
2(P − q)2κV17(−M2

ωκ
V V
3 + (2k · p0 −M2

ω)κV V4 )

+ κV16(M2
ω(2k · p− + s)κV V3 − (2k · p0 −M2

ω)(4k · p0 + 2k · p− + s)κV V4 )

+ 2(2k · p− + s)κV12(M2
ωκ

V V
3 +Dω

[
(k + p0)2

]
κV V4 )

)
+ 16(2k · p− + s)(−FV + 2

√
2(P − q)2λV22)

M2
ωDρ [(P − q)2]Dω [(k + p0)2]

(
k · p0κ

V
16(((P − q)2 +M2

ω)κV V3

+ (2k · p0 −M2
ω)κV V4 ) + κV12((−4 (k · p0)2 + 2M2

ω(2k · p− + s)

− 2k · p0(2k · p− − 3M2
ω + s))κV V3 + 2k · p0(−2k · p0 +M2

ω)κV V4 )
)

− 2k · p−FV
M2

a1M
2
ρDa1 [(k + p−)2]

(
2k · p−(−

√
2FA + 4(2k · p0 + 2M2

a1 + s)λA12

− 4(2k · p0 + s)λA13 + 8k · p0λ
A
15 + 8k · p−λA15 + 4sλA15 + 8k · p−λA17)λV A2

− (−4(2k · p0(k · p− −M2
a1)−M2

a1s+ k · p−(−2M2
a1 + s))λA12 + (k · p− −M2

a1)

(
√

2FA + 4(2k · p0 + s)λA13 − 4(P − q)2λA15 − 8k · p−λA17))(λV A4 + 2λV A5 )
)

− (
√

2FV − 4(P − q)2λV22)
M2

a1Da1 [(k + p−)2]Dρ [(P − q)2]

(
2(4
√

2 (k · p−)2 (2k · p0 + 2M2
a1 + s)λA12

+ (2k · p0(k · p− −M2
a1)−M2

a1s+ k · p−(−2M2
a1 + s))(FA − 4

√
2k · p−λA13

− 4
√

2k · p−λA17))λV A2 − (4
√

2 (k · p−)2 λA12 + (k · p− −M2
a1)(FA − 4

√
2k · p−λA13

− 4
√

2k · p−λA17))(2(P − q)2λV A3 − (2k · p0 + s)(λV A4 + 2λV A5 ))
)

+ FV
M2

ρDρ [(P − q)2]

(√
2FV (−4sλV V2 + (4k · p− + s)

(
λV V3 − λV V4

)
− 2sλV V5 )

+ 2(P − q)2λV22((P − q)2 + 8sλV V2 − 2(4k · p− + s)
(
λV V3 − λV V4

)
+ 4sλV V5 )

)

+ 2FV (
√

2(4k · p− + s)GV λ
V V
7 + sλV21(s− 2(4k · p− + s)λV V7 ))
M2

ρDρ[s]



(I.6)
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vRRR2 =−
√

2k · p−FV (−
√

2FV + 4(P − q)2λ22)
F 2M2

a1M
2
ρDa1 [(k + p−)2]Dρ [(P − q)2]

4k · p−(2k · p0 + 2M2
a1 + s)(λV A2 )2

− (k · p− −M2
a1)(λV A4 + 2λV A5 )(2(P − q)2λV A3 − (2k · p0 + s)(λV A4 + 2λV A5 ))

− 2λV A2 (2k · p−(P − q)2λV A3 + (−4 (k · p0) (k · p−) + 2k · p0M
2
a1

+ 2k · p−M2
a1 − 2 (k · p−) s+M2

a1s)(λ
V A
4 + 2λV A5 ))


(I.7)

vR+RR
GI2 =

√
2FV

F 2Dρ [(P − q)2]Dρ[s]

2(M2
ρ − s)sλV12 + s(−M2

ρ + s)λV13 + 4k · p−M2
ρλ

V
14

− 4 (k · p−) sλV14 +M2
ρsλ

V
14 − s2λV14 − 4k · p−M2

ρλ
V
15 + 4 (k · p−) sλV15 −M2

ρsλ
V
15

+ s2λV15 − 2k · p0M
2
ρλ

V
16 − 2k · p−M2

ρλ
V
16 + 2 (k · p0) sλV16 + 2 (k · p−) sλV16

−M2
ρsλ

V
16 + s2λV16 + 4k · p0M

2
ρλ

V
17 − 4 (k · p0) sλV17 + 2M2

ρsλ
V
17 − 2s2λV17

+ 2k · p−M2
ρλ

V
18 − 2 (k · p−) sλV18 + 2k · p0M

2
ρλ

V
19 + 2k · p−M2

ρλ
V
19 − 2 (k · p0) sλV19

− 2 (k · p−) sλV19 +M2
ρsλ

V
19 − s2λV19 − 4k · p−M2

ρλ
V
21 + 4 (k · p−) sλV21 + s2λV21

+ 6k · p0M
2
ρλ

V
22 + 2k · p−M2

ρλ
V
22 − 6 (k · p0) sλV22 − 2 (k · p−) sλV22 + 2M2

ρsλ
V
22

− 2s2λV22 − 8 (k · p−) sλV21λ
V V
7 − 2s2λV21λ

V V
7 )− 2GV (

√
2(4k · p− + s)

((P − q)2 −M2
ρ )λV7 − (4k · p− + s)FV λV V7 +

√
2λV22(−16 (k · p−)2 + 8k · p−M2

ρ

− 10 (k · p−) s− s2 − 2k · p0(8k · p− + s) + 2(P − q)2(4k · p− + s)λV V7 ))

+ 4(s(4k · p− + s)((P − q)2 −M2
ρ )λV7 λV21 + λV22(−2(M2

ρ − s)s(P − q)2λV12

+ (M2
ρ − s)s(P − q)2λV13 − 8 (k · p0) (k · p−)M2

ρλ
V
14 − 8 (k · p−)2M2

ρλ
V
14

+ 8 (k · p0) (k · p−) sλV14 + 8 (k · p−)2 sλV14 − 2k · p0M
2
ρsλ

V
14 − 6k · p−M2

ρsλ
V
14

+ 2 (k · p0) s2λV14 + 6 (k · p−) s2λV14 −M2
ρs

2λV14 + s3λV14 + 8 (k · p0) (k · p−)M2
ρλ

V
15
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+ 8 (k · p−)2M2
ρλ

V
15 − 8 (k · p0) (k · p−) sλV15 − 8 (k · p−)2 sλV15 + 2k · p0M

2
ρsλ

V
15

+ 6k · p−M2
ρsλ

V
15 − 2 (k · p0) s2λV15 − 6 (k · p−) s2λV15 +M2

ρs
2λV15 − s3λV15

+ 4 (k · p0)2M2
ρλ

V
16 + 8 (k · p0) (k · p−)M2

ρλ
V
16 + 4 (k · p−)2M2

ρλ
V
16 − 4 (k · p0)2 sλV16

− 8 (k · p0) (k · p−) sλV16 − 4 (k · p−)2 sλV16 + 4k · p0M
2
ρsλ

V
16 + 4k · p−M2

ρsλ
V
16

− 4 (k · p0) s2λV16 − 4 (k · p−) s2λV16 +M2
ρs

2λV16 − s3λV16 − 8 (k · p0)2M2
ρλ

V
17

− 8 (k · p0) (k · p−)M2
ρλ

V
17 + 8 (k · p0)2 sλV17 + 8 (k · p0) (k · p−) sλV17

− 8k · p0M
2
ρsλ

V
17 − 4k · p−M2

ρsλ
V
17 + 8 (k · p0) s2λV17 + 4 (k · p−) s2λV17

− 2M2
ρs

2λV17 + 2s3λV17 − 4 (k · p0) (k · p−)M2
ρλ

V
18 − 4 (k · p−)2M2

ρλ
V
18

+ 4 (k · p0) (k · p−) sλV18 + 4 (k · p−)2 sλV18 − 2k · p−M2
ρsλ

V
18 + 2 (k · p−) s2λV18

− 4 (k · p0)2M2
ρλ

V
19 − 8 (k · p0) (k · p−)M2

ρλ
V
19 − 4 (k · p−)2M2

ρλ
V
19 + 4 (k · p0)2 sλV19

+ 8 (k · p0) (k · p−) sλV19 + 4 (k · p−)2 sλV19 − 4k · p0M
2
ρsλ

V
19 − 4k · p−M2

ρsλ
V
19

+ 4 (k · p0) s2λV19 + 4 (k · p−) s2λV19 −M2
ρs

2λV19 + s3λV19 + 8 (k · p0) (k · p−)M2
ρλ

V
21

+ 8 (k · p−)2M2
ρλ

V
21 − 24 (k · p0) (k · p−) sλV21 − 24 (k · p−)2 sλV21 + 12k · p−M2

ρsλ
V
21

− 2 (k · p0) s2λV21 − 14 (k · p−) s2λV21 − s3λV21 − 8 (k · p0)2M2
ρλ

V
22

− 8 (k · p0) (k · p−)M2
ρλ

V
22 + 8 (k · p0)2 sλV22 + 8 (k · p0) (k · p−) sλV22

− 6k · p0M
2
ρsλ

V
22 − 2k · p−M2

ρsλ
V
22 + 6 (k · p0) s2λV22 + 2 (k · p−) s2λV22 −M2

ρs
2λV22

+ s3λV22 + 16 (k · p0) (k · p−) sλV21λ
V V
7 + 16 (k · p−)2 sλV21λ

V V
7 + 4 (k · p0) s2λV21λ

V V
7

+ 12 (k · p−) s2λV21λ
V V
7 + 2s3λV21λ

V V
7 )



(I.8)

320



vR3 = 2
F 2

 8
M2

ωDω [(k + p0)2]

(
− 4(4 (k · p0)2 −M2

ω(2k · p− + s) + k · p0

(2k · p− − 2M2
ω + s))(κV12)2 + k · p0κ

V
16((2k · p− + s)κV16 − 2(P − q)2κV17)

+ 2κV12((4 (k · p0)2 − 2k · p0M
2
ω +M2

ω(2k · p− + s))κV16 + 2(k · p0 −M2
ω)

(P − q)2κV17)
)

+
√

2FV (2λV13 + λV16 + λV18 + 2λV19)
M2

ρ

+ 8
M2

a1Da1 [(k + p−)2]

(
(−2 (k · p0) (k · p−) + 2k · p0M

2
a1 + 2k · p−M2

a1 − (k · p−) s

+M2
a1s)(λ

A
12)2 − 8k · p−(2k · p0 + s)(λA13)2 − 2

√
2FAk · p0λ

A
15 − 2

√
2FAk · p−λA15

−
√

2FAsλA15 − 4
√

2FAk · p−λA17 + 16 (k · p0) (k · p−)λA15λ
A
17 + 16 (k · p−)2 λA15λ

A
17

+ 8 (k · p−) sλA15λ
A
17 + 16 (k · p−)2 (λA17)2 + λA13(8k · p−(P − q)2λA15 + (2k · p0

− 2k · p− + s)(
√

2FA − 8k · p−λA17)) + λA12(8(k · p0(4k · p− − 2M2
a1)−M2

a1s

+ 2k · p−(M2
a1 + s))λA13 − 8(k · p− −M2

a1)(P − q)2λA15 + (2k · p0 − 2k · p− + 4M2
a1

+ s)(−
√

2FA + 8k · p−λA17))
)

(I.9)
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vRR3 = 1√
2F 2

− 16FV
M2

ρM
2
ωDω [(k + p0)2]

(
2κV12(−M2

ω(2k · p− + s)κV V3 + (2k · p0 −M2
ω)

(4k · p0 + 2k · p− + s)κV V4 )− ((2k · p− + s)κV16 − 2(P − q)2κV17)(M2
ωκ

V V
3

+Dω

[
(k + p0)2

]
κV V4 )

)
+ 32(−FV + 2

√
2(P − q)2λV22)

M2
ωDρ [(P − q)2]Dω [(k + p0)2]

(
− 2κV12((2 (k · p0)2

−M2
ω(2k · p− + s) + k · p0(2k · p− − 3M2

ω + s))κV V3 + k · p0(−2k · p0 +M2
ω)κV V4 )

+ k · p0κ
V
16(((P − q)2 +M2

ω)κV V3 +Dω

[
(k + p0)2

]
κV V4 )

)
+ 2FV
M2

a1M
2
ρDa1 [(k + p−)2]

(
− 2(−4(2k · p0(k · p− −M2

a1)−M2
a1s+ k · p−

(−2M2
a1 + s))λA12 + (k · p− −M2

a1)(
√

2FA + 4(2k · p0 + s)λA13 − 4(P − q)2λA15

− 8k · p−λA17))λV A2 + k · p−(−
√

2FA + 4(2k · p0 + 2M2
a1 + s)λA12 − 4(2k · p0 + s)λA13

+ 8k · p0λ
A
15 + 8k · p−λA15 + 4sλA15 + 8k · p−λA17)(λV A4 + 2λV A5 )

)
+ (−

√
2FV + 4(P − q)2λV22)

M2
a1Da1 [(k + p−)2]Dρ [(P − q)2]

(
− 2(4

√
2(2k · p0(k · p− −M2

a1)−M2
a1s

+ k · p−(−2M2
a1 + s))λA12 + (2k · p0 + 2M2

a1 + s)(FA − 4
√

2k · p−λA13

− 4
√

2k · p−λA17))λV A2 + (FA + 4
√

2(k · p− −M2
a1)λA12 − 4

√
2k · p−λA13

− 4
√

2k · p−λA17)(2(P − q)2λV A3 − (2k · p0 + s)(λV A4 + 2λV A5 ))
)

+ 8FV (
√

2FV − 4(P − q)2λV22)λV V5
M2

ρDρ [(P − q)2]


(I.10)

vRRR3 =−
√

2FV (−
√

2FV + 4(P − q)2λV22)
F 2M2

a1M
2
ρDa1 [(k + p−)2]Dρ [(P − q)2]

− 4(2k · p0(k · p− −M2
a1)

−M2
a1s+ k · p−(−2M2

a1 + s))(λV A2 )2 + k · p−(λV A4 + 2λV A5 )(2(P − q)2λV A3

− (2k · p0 + s)(λV A4 + 2λV A5 )) + 2λV A2 (2(k · p− −M2
a1)(P − q)2λV A3

− (k · p0(4k · p− − 2M2
a1)−M2

a1s+ 2k · p−(M2
a1 + s))(λV A4 + 2λV A5 ))


(I.11)
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vR+RR
GI3 = 2

√
2

F 2Dρ [(P − q)2] (FV − 2
√

2(P − q)2λV22)(2λV13 + λV16 + λV18 + λV19) (I.12)

vR4 = 2
F 2

 8
M2

ωDω [(k + p0)2]

(
4(k · p0 −M2

ω)(2k · p− + s)(κV12)2 + k · p0κ
V
16

(−(2k · p− + s)κV16 + 2(2k · p− +M2
ω + s)κV17)− 2κV12(M2

ω(2k · p− + s)κV16

+ 2(−M2
ω(2k · p− + s) + k · p0(2k · p− −M2

ω + s))κV17)
)

−
√

2FV (λV13 + λV14 − λV15 − λV21)
M2

ρ

−
√

2(2λA12 + λA15)(−FA + 4
√

2k · p−
(
λA12 + λA13 + λA17

)
)

Da1 [(k + p−)2]



(I.13)

vRR4 =
√

2
F 2

− 8FV
M2

ρM
2
ωDω [(k + p0)2]

(
(2k · p− + s)κV16(M2

ωκ
V V
3 + (−2k · p0 +M2

ω)κV V4 )

− 2κV17(M2
ω(P − q)2κV V3 − (2k · p0 −M2

ω)(2k · p− + s)κV V4 ) + 2(2k · p− + s)κV12

(M2
ωκ

V V
3 +Dω

[
(k + p0)2

]
κV V4 )

)
− 16κV V3 (−FV + 2

√
2(P − q)2λV22)

M2
ωDρ [(P − q)2]Dω [(k + p0)2](

(2M2
ω(2k · p− + s)− 2k · p0(2k · p− − 2M2

ω + s))κV12 + k · p0(2k · p− + 2M2
ω + s)κV16

)

+
(
√

2FV − 4(P − q)2λV22)(−FA + 4
√

2k · p−
(
λA12 + λA13 + λA17

)
)(2λV A2 − λV A3 )

Da1 [(k + p−)2]Dρ [(P − q)2]

+ 4k · p−FV (2λA12 + λA15)(2λV A2 − λV A4 − 2λV A5 )
M2

ρDa1 [(k + p−)2] − 2FV (
√

2GV − 2sλV21)λV V7
M2

ρDρ[s]

− FV (
√

2FV (λV V3 − λV V4 + 2λV V5 )− 2(P − q)2λV22(−1 + 2λV V3 − 2λV V4 + 4λV V5 ))
M2

ρDρ [(P − q)2]


(I.14)

vRRR4 = −2
√

2FV k · p−(
√

2FV − 4(P − q)2λV22)(2λV A2 − λV A3 )(2λV A2 − λV A4 − 2λV A5 )
F 2M2

ρDa1 [(k + p−)2]Dρ [(P − q)2] (I.15)
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vR+RR
GI4 = 2

√
2FV

F 2Dρ [(P − q)2]Dρ[s]

(−M2
ρ + s)

(
λV13 + λV14 − λV15 + λV18 + λV19

)
+ 2M2

ρλ
V
21 − sλV21

+ 2sλV21λ
V V
7 ) + 4GV (

√
2((P − q)2 −M2

ρ )λV7 − FV λV V7 +
√

2λV22(−4k · p0 − 4k · p−

+ 3M2
ρ − 2s+ 2(P − q)2λV V7 ))− 8(s((P − q)2 −M2

ρ )λV7 λV21 + λV22(−(M2
ρ − s)

(P − q)2λV13 − (M2
ρ − s)(P − q)2λV14 + 2k · p0M

2
ρλ

V
15 + 2k · p−M2

ρλ
V
15 − 2 (k · p0) sλV15

− 2 (k · p−) sλV15 +M2
ρsλ

V
15 − s2λV15 − 2k · p0M

2
ρλ

V
18 − 2k · p−M2

ρλ
V
18 + 2 (k · p0) sλV18

+ 2 (k · p−) sλV18 −M2
ρsλ

V
18 + s2λV18 − 2k · p0M

2
ρλ

V
19 − 2k · p−M2

ρλ
V
19 + 2 (k · p0) sλV19

+ 2 (k · p−) sλV19 −M2
ρsλ

V
19 + s2λV19 + 4k · p0M

2
ρλ

V
21 + 4k · p−M2

ρλ
V
21 − 8 (k · p0) sλV21

− 8 (k · p−) sλV21 + 5M2
ρsλ

V
21 − 4s2λV21 + 4 (k · p0) sλV21λ

V V
7 + 4 (k · p−) sλV21λ

V V
7

+ 2s2λV21λ
V V
7 )


(I.16)
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Appendix J

Axial Form Factors in radiative

di-pion tau decays

We copy here the axial-vector form factors in τ− → π−πoντγ decays.

aR1 =
√

2
3F 2

− 2(P − q)2FV (κV1 − κV2 + κV3 + κV6 + κV7 − κV8 − 2κV12 − κV16 + κV17)
M2

ω

+ 4((P − q)2κV11 + sκV12 − (k · p0 + k · p−)κV16)(−GV +
√

2sλV21)
Dρ[s]

+ 1
M2

ρDρ [(k + p−)2]

(
FV (2k · p− + s)(2(k · p− −M2

ρ )κV12 − k · p−κV16)

+GV (−4(2 (k · p−)2 + (k · p−) s−M2
ρs)κV12 + 2k · p−(2k · p− − 2M2

ρ + s)κV16)

+
√

2(−2κV12((k · p− −M2
ρ )(2k · p0 + s)(2k · p− + s)λV16 − 2(k · p− −M2

ρ )

(2k · p0 + s)(2k · p− + s)λV17 + 8 (k · p0) (k · p−)2 λV18 + 8 (k · p−)3 λV18

+ 4 (k · p0) (k · p−) sλV18 + 8 (k · p−)2 sλV18 − 4k · p0M
2
ρsλ

V
18 − 4k · p−M2

ρsλ
V
18

+ 2 (k · p−) s2λV18 − 2M2
ρs

2λV18 + 8 (k · p0) (k · p−)2 λV19 + 8 (k · p0) (k · p−)M2
ρλ

V
19

+ 8 (k · p−)2M2
ρλ19 + 4 (k · p0) (k · p−) sλV19 + 4 (k · p−)2 sλV19 − 4k · p0M

2
ρsλ

V
19

+ 2 (k · p−) s2λV19 − 2M2
ρs

2λV19 − 8 (k · p−)3 λV21 − 4 (k · p−)2 sλV21 + 4k · p−M2
ρsλ

V
21

+ 8 (k · p−)3 λV22 − 8 (k · p−)2M2
ρλ

V
22 + 4 (k · p−)2 sλV22 − 4k · p−M2

ρsλ
V
22)
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+ k · p−κV16((2k · p0 + s)(2k · p− + s)λV16 + 2(−(2k · p0 + s)(2k · p− + s)λV17

+ (P − q)2(2k · p− − 2M2
ρ + s)λV18 + 4 (k · p0) (k · p−)λV19 − 8k · p0M

2
ρλ

V
19

− 4k · p−M2
ρλ

V
19 + 2 (k · p0) sλV19 + 2 (k · p−) sλV19 − 2M2

ρsλ
V
19 + s2λV19 − 4 (k · p−)2

λV21 + 4k · p−M2
ρλ

V
21 − 2 (k · p−) sλV21 + 4 (k · p−)2 λV22 + 2 (k · p−) sλV22)))

)
+ 1
M2

ρDρ [(k + p0)2]

(
FV (4k · p0 + 2k · p− + s)(2(k · p0 −M2

ρ )κV12 − k · p0κ
V
16)

+GV (−4(4 (k · p0)2 −M2
ρ (2k · p− + s) + k · p0(2k · p− − 2M2

ρ + s))κV12 + 2k · p0

(4k · p0 + 2k · p− − 2M2
ρ + s)κV16) +

√
2(k · p0κ

V
16((2k · p− + s)(4k · p0 + 2k · p− + s)

λV16 + 2(−(2k · p− + s)(4k · p0 + 2k · p− + s)λV17 + (8 (k · p0)2 + 12 (k · p0) (k · p−)

+ 4 (k · p−)2 − 4k · p0M
2
ρ − 4k · p−M2

ρ + 6 (k · p0) s+ 4 (k · p−) s− 2M2
ρs+ s2)λV18

+ 8 (k · p0) (k · p−)λV19 + 4 (k · p−)2 λV19 − 4k · p−M2
ρλ

V
19 + 4 (k · p0) sλV19

+ 4 (k · p−) sλV19 − 2M2
ρsλ

V
19 + s2λV19 − 8 (k · p0)2 λV21 − 4 (k · p0) (k · p−)λV21

+ 4k · p0M
2
ρλ

V
21 − 2 (k · p0) sλV21 + 8 (k · p0)2 λV22 + 4 (k · p0) (k · p−)λV22 + 2 (k · p0) sλV22))

− 2κV12((k · p0 −M2
ρ )(2k · p− + s)(4k · p0 + 2k · p− + s)λV16 + 2(−(k · p0 −M2

ρ )

(2k · p− + s)(4k · p0 + 2k · p− + s)λV17 + (P − q)2(4 (k · p0)2 −M2
ρ (2k · p− + s)

+ k · p0(2k · p− − 2M2
ρ + s))λV18 + 8 (k · p0)2 (k · p−)λV19 + 4 (k · p0) (k · p−)2 λV19

− 4 (k · p0) (k · p−)M2
ρλ

V
19 − 4 (k · p−)2M2

ρλ
V
19 + 4 (k · p0)2 sλV19 + 4 (k · p0) (k · p−) sλV19

− 2k · p0M
2
ρsλ

V
19 − 4k · p−M2

ρsλ
V
19 + (k · p0) s2λV19 −M2

ρs
2λV19 − 8 (k · p0)3 λV21

− 4 (k · p0)2 (k · p−)λV21 + 4 (k · p0)2M2
ρλ

V
21 + 4 (k · p0) (k · p−)M2

ρλ
V
21 − 2 (k · p0)2 sλV21

+ 2k · p0M
2
ρsλ

V
21 + 8 (k · p0)3 λV22 + 4 (k · p0)2 (k · p−)λV22 − 8 (k · p0)2M2

ρλ
V
22

− 4 (k · p0) (k · p−)M2
ρλ

V
22 + 2 (k · p0)2 sλV22 − 2k · p0M

2
ρsλ

V
22)))

)

+ 2(P − q)2(κA5 − κA6 + κA7 )(−FA + 2
√

2(P − q)2λA17)
Da1 [(P − q)2]


(J.1)
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aRR1 = 1
3
√

2F 2

4sFV κV V3 (−
√

2GV + 2sλV21)
M2

ωDρ[s]

− 1
M2

ρM
2
ωDρ [(k + p−)2]

(
FV (
√

2(2k · p− + s)FV (M2
ρκ

V V
3 +Dρ

[
(k + p−)2

]
κV V4 )

+ 2
√

2GV (M2
ρ (2k · p− − s)κV V3 − (2k · p− + s)Dρ

[
(k + p−)2

]
κV V4 )

+ 2(2k · p− −M2
ρ )(2k · p− + s)κV V4 ((2k · p0 + s)λV16 − 2(2k · p0 + s)λV17 + 4k · p0λ

V
18

+ 4k · p−λV18 + 2sλV18 + 4k · p0λ
V
19 + 2sλV19 − 4k · p−λV21 + 4k · p−λV22)− 2M2

ρκ
V V
3

((2k · p0 + s)(2k · p− + s)λV16 − 2(2k · p0 + s)(2k · p− + s)λV17 − 2(2k · p− − s)

(P − q)2λV18 − 24 (k · p0) (k · p−)λV19 − 16 (k · p−)2 λV19 + 4 (k · p0) sλV19 − 4 (k · p−) sλV19

+ 2s2λV19 + 8 (k · p−)2 λV21 − 4 (k · p−) sλV21 + 8 (k · p−)2 λV22 + 4 (k · p−) sλV22))
)

+ 1
M2

ρM
2
ωDρ [(k + p0)2]

(
FV (−

√
2FV (4k · p0 + 2k · p− + s)(M2

ρκ
V V
3 +Dρ

[
(k + p0)2

]
κV V4 ) + 2

√
2GV (M2

ρ (2k · p− + s)κV V3 + (4k · p0 + 2k · p− + s)Dρ

[
(k + p0)2

]
κV V4 )

− 2(2k · p0 −M2
ρ )(4k · p0 + 2k · p− + s)κV V4 ((2k · p− + s)λV16 − 2(2k · p− + s)λV17

+ 4k · p0λ
V
18 + 4k · p−λV18 + 2sλV18 + 4k · p−λV19 + 2sλV19 − 4k · p0λ

V
21 + 4k · p0λ

V
22)

+ 2M2
ρκ

V V
3 ((2k · p− + s)(4k · p0 + 2k · p− + s)λV16 + 2(−(2k · p− + s)

(4k · p0 + 2k · p− + s)λV17 + (2k · p− + s)(P − q)2λV18 + 4 (k · p−)2 λV19

+ 4 (k · p−) sλV19 + s2λV19 − 4 (k · p0) (k · p−)λV21 − 2 (k · p0) sλV21 + 8 (k · p0)2 λV22

+ 4 (k · p0) (k · p−)λV22 + 2 (k · p0) sλV22)))
)

+ 2(P − q)2FV (κV A2 − κV A3 − κV A4 )(−
√

2FA + 4(P − q)2λA17)
M2

ωDa1 [(P − q)2]

− 4(P − q)2κV A5 (−
√

2GV + 2sλV21)(−FA + 2
√

2(P − q)2λA17)
Da1 [(P − q)2]Dρ[s]

− 2(FA − 2
√

2(P − q)2λA17)
M2

ρDa1 [(P − q)2]Dρ [(k + p−)2]

(
k · p−κV16(−2(−(2M2

ρ − s)(2k · p− + s)

+ 2k · p0(2k · p− − 4M2
ρ + s))λV A2 − 2M2

ρ (4k · p0 + 2k · p− + s)λV A3

+ (2k · p− + s)((2k · p0 + 4k · p− − 2M2
ρ + s)λV A4 + 2(2k · p0 + s)λV A5 ))

+ 2κV12(2((k · p−) s2 −M2
ρs

2 + 2 (k · p−)2 (2M2
ρ + s) + 2k · p0(2 (k · p−)2
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−M2
ρs+ k · p−(2M2

ρ + s)))λV A2 − 2k · p−M2
ρ (4k · p0 + 2k · p− + s)λV A3

− (2k · p− + s)((4 (k · p−)2 − 2k · p−M2
ρ + 2k · p0(k · p− −M2

ρ ) + (k · p−) s

−M2
ρs)λV A4 + 2(k · p− −M2

ρ )(2k · p0 + s)λV A5 ))
)

+ 2(FA − 2
√

2(P − q)2λA17)
M2

ρDa1 [(P − q)2]Dρ [(k + p0)2]

(
− k · p0κ

V
16(−2(2k · p− + s)(4k · p0 + 2k · p−

− 2M2
ρ + s)λV A2 − 2M2

ρ (2k · p− + s)λV A3 + (4k · p0 + 2k · p− + s)((4k · p0 + 2k · p−

− 2M2
ρ + s)λV A4 + 2(2k · p− + s)λV A5 )) + 2κV12(−2(2k · p− + s)(4 (k · p0)2

−M2
ρ (2k · p− + s) + k · p0(2k · p− − 2M2

ρ + s))λV A2 + 2k · p0M
2
ρ (2k · p− + s)λV A3

+ (4k · p0 + 2k · p− + s)((4 (k · p0)2 −M2
ρ (2k · p− + s) + k · p0(2k · p− − 2M2

ρ + s))

λV A4 + 2(k · p0 −M2
ρ )(2k · p− + s)λV A5 ))

)

(J.2)

aRRR1 =− FV (
√

2FA − 4(P − q)2λA17)
3
√

2F 2M2
ρM

2
ωDa1 [(P − q)2]Dρ [(k + p0)2]Dρ [(k + p−)2]

−M2
ρ (2k · p− + s)

Dρ

[
(k + p−)2

]
κV V3 (2(2k · p− + s)λV A2 + 4k · p0λ

V A
3 − (4k · p0 + 2k · p− + s)

(λV A4 + 2λV A5 )) +Dρ

[
(k + p0)2

]
(2Dρ

[
(k + p−)2

]
κV V4 (−2(3k · p0 + k · p− + s)

(2k · p− + s)λV A2 + (8 (k · p0)2 + 6 (k · p−)2 + 5 (k · p−) s+ s2 + 5k · p0

(2k · p− + s))λV A4 + 2(3k · p0 + k · p− + s)(2k · p− + s)λV A5 ) +M2
ρκ

V V
3

(2(12 (k · p0) (k · p−) + 8 (k · p−)2 − 2 (k · p0) s+ 2 (k · p−) s− s2)λV A2

− 4k · p−(4k · p0 + 2k · p− + s)λV A3 + (2k · p0 + s)(2k · p− + s)(λV A4 + 2λV A5 )))

(J.3)
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aR2 = 4
√

2
3F 2

− 2(P − q)2FV (κV1 − κV2 + κV3 )
M2

ωDπ [(P − q)2]

+ FV (3κV1 − 3κV2 + 3κV3 + κV6 + κV7 − κV8 − 2κV12 − κV16 + κV17)
M2

ω

+ 2
√

2k · p0(2κV12 + κV16)(λV18 + 2λV19)
Dρ [(k + p0)2] − 2k · p0(2κV12 + κV16)(−GV + 2

√
2k · p0λ

V
21)

Dπ [(P − q)2]Dρ [(k + p0)2]

− 2k · p−(2κV12 + κV16)(−GV + 2
√

2k · p−λV21)
Dπ [(P − q)2]Dρ [(k + p−)2] + 2(κV11 + κV12)(GV −

√
2sλV21)

Dρ[s]

− 2(k · p0 + k · p−)(2κV12 + κV16)(GV −
√

2sλV21)
Dπ [(P − q)2]Dρ[s]

+ 1
M2

ρDρ [(k + p−)2](
GV (4(k · p− −M2

ρ )κV12 − 2k · p−κV16) + FV (−2(k · p− −M2
ρ )κV12 + k · p−κV16)

+
√

2(−k · p−κV16((2k · p0 + s)λV16 − 2(2k · p0 + s)λV17 + 4k · p0λ
V
18 + 4k · p−λV18

− 2M2
ρλ

V
18 + 2sλV18 + 4k · p0λ

V
19 + 2sλV19 − 4k · p−λV21 + 4k · p−λV22) + 2κV12

((k · p− −M2
ρ )(2k · p0 + s)λV16 − 2(k · p− −M2

ρ )(2k · p0 + s)λV17 + 2(2 (k · p−)2

+ 2k · p0(k · p− −M2
ρ )−M2

ρs+ k · p−(−M2
ρ + s))λV18 + 2(k · p− −M2

ρ )

((2k · p0 + s)λV19 + 2k · p−(−λV21 + λV22))))
)

+ (κA5 − κA6 + κA7 )(FA − 2
√

2(P − q)2λA17)
Da1 [(P − q)2]


(J.4)
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aRR2 =2
√

2
3F 2

8k · p0FV κ
V V
3 (λV18 + 2λV19)

M2
ωDρ [(k + p0)2] + 4k · p0FV κ

V V
3 (
√

2GV − 4k · p0λ
V
21)

M2
ωDπ [(P − q)2]Dρ [(k + p0)2]

+ 4k · p−FV κV V3 (
√

2GV − 4k · p−λV21)
M2

ωDπ [(P − q)2]Dρ [(k + p−)2] + 2FV κV V3 (
√

2GV − 2sλV21)
M2

ωDρ[s]

+ FV
M2

ρM
2
ωDρ [(k + p−)2]

(√
2FV (M2

ρκ
V V
3 +Dρ

[
(k + p−)2

]
κV V4 )

− 2
√

2GV (M2
ρκ

V V
3 +Dρ

[
(k + p−)2

]
κV V4 )− 2M2

ρκ
V V
3 ((2k · p0 + s)λV16

− 2(2k · p0 + s)λV17 + 4k · p0λ
V
18 + 2sλV18 + 4k · p0λ

V
19 + 2sλV19 − 4k · p−λV21

+ 4k · p−λV22) + 2(2k · p− −M2
ρ )κV V4 ((2k · p0 + s)λV16 − 2(2k · p0 + s)λV17

+ 4k · p0λ
V
18 + 4k · p−λV18 + 2sλV18 + 4k · p0λ

V
19 + 2sλV19 − 4k · p−λV21

+ 4k · p−λV22)
)

+ FV (κV A2 − κV A3 − κV A4 )(
√

2FA − 4(P − q)2λA17)
M2

ωDa1 [(P − q)2]

+ 2κV A5 (
√

2GV − 2sλV21)(FA − 2
√

2(P − q)2λA17)
Da1 [(P − q)2]Dρ[s]

+ 4k · p0(2κV12 + κV16)(FA − 2
√

2(P − q)2λA17)(2λV A2 − λV A3 )
Da1 [(P − q)2]Dρ [(k + p0)2]

+ 2(FA − 2
√

2(P − q)2λA17)
M2

ρDa1 [(P − q)2]Dρ [(k + p−)2]

(
k · p−κV16(−2(2k · p0 + s)λV A2

+ (2k · p0 + 4k · p− − 2M2
ρ + s)λV A4 + 2(2k · p0 + s)λV A5 ) + 2κV12

(2(k · p− −M2
ρ )(2k · p0 + s)λV A2 + (−2 (k · p0) (k · p−)− 4 (k · p−)2

+ 2k · p0M
2
ρ + 2k · p−M2

ρ − (k · p−) s+M2
ρs)λV A4 − 2(k · p− −M2

ρ )

(2k · p0 + s)λV A5 )
)

(J.5)

aRRR2 = − 2
√

2FV (
√

2FA − 4(P − q)2λA17)
3F 2M2

ρM
2
ωDa1 [(P − q)2]Dρ [(k + p0)2]Dρ [(k + p−)2]

4k · p0M
2
ρ

Dρ

[
(k + p−)2

]
κV V3 (−2λV A2 + λV A3 ) +Dρ

[
(k + p0)2

]
(M2

ρ (2k · p0 + s)κV V3

(2λV A2 − λV A4 − 2λV A5 ) +Dρ

[
(k + p−)2

]
κV V4 (2(2k · p0 + s)λV A2

− (2k · p0 + 4k · p− + s)λV A4 − 2(2k · p0 + s)λV A5 ))


(J.6)
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aR3 =
√

2
3F 2

− 4FV (k · p0 − k · p−)(κV1 − κV2 + κV3 + κV6 + κV7 − κV8 − κV17)
M2

ω

− 4(k · p0 − k · p−)(2κV11 − κV16)(GV −
√

2sλV21)
Dρ[s]

+ 1
M2

ρDρ [(k + p0)2]

(
− 2GV (2(4 (k · p0)2 +M2

ρ (2k · p− + s)− k · p0

(2k · p− + 2M2
ρ + s))κV12 + k · p0(−4k · p0 + 2k · p− + 2M2

ρ + s)κV16)

+ FV (2(4 (k · p0)2 − k · p0(2k · p− + s) +M2
ρ (2k · p− + s))κV12 + k · p0

(−4k · p0 + 2k · p− + 4M2
ρ + s)κV16)−

√
2(k · p0κ

V
16(−(4k · p0 − 2k · p−

− 4M2
ρ − s)(2k · p− + s)λV16 + 2((4k · p0 − 2k · p− − 4M2

ρ − s)(2k · p− + s)λV17

+ (−8 (k · p0)2 + 4 (k · p−)2 − 2k · p0(2k · p− − 2M2
ρ + s) + 4k · p−(M2

ρ + s)

+ s(2M2
ρ + s))λV18 − 8 (k · p0) (k · p−)λV19 + 4 (k · p−)2 λV19 + 4k · p−M2

ρλ
V
19

− 4 (k · p0) sλV19 + 4 (k · p−) sλV19 + 2M2
ρsλ

V
19 + s2λV19 + 8 (k · p0)2 λV21

− 4 (k · p0) (k · p−)λV21 − 4k · p0M
2
ρλ

V
21 − 2 (k · p0) sλV21 − 8 (k · p0)2 λV22

+ 4 (k · p0) (k · p−)λV22 + 8k · p0M
2
ρλ

V
22 + 2 (k · p0) sλV22)) + 2κV12((2k · p− + s)

(4 (k · p0)2 − k · p0(2k · p− + s) +M2
ρ (2k · p− + s))λV16 + 2(−(2k · p− + s)

(4 (k · p0)2 − k · p0(2k · p− + s) +M2
ρ (2k · p− + s))λV17 + (8 (k · p0)3 − k · p0

(2k · p− + s)2 +M2
ρ (2k · p− + s)2 + 2 (k · p0)2 (2k · p− − 2M2

ρ + s))λV18

+ 8 (k · p0)2 (k · p−)λV19 − 4 (k · p0) (k · p−)2 λV19 − 4 (k · p0) (k · p−)M2
ρλ

V
19

+ 4 (k · p−)2M2
ρλ

V
19 + 4 (k · p0)2 sλV19 − 4 (k · p0) (k · p−) sλV19 − 2k · p0M

2
ρsλ

V
19

+ 4k · p−M2
ρsλ

V
19 − (k · p0) s2λV19 +M2

ρs
2λV19 − 8 (k · p0)3 λV21 + 4 (k · p0)2 (k · p−)λV21

+ 4 (k · p0)2M2
ρλ

V
21 − 4 (k · p0) (k · p−)M2

ρλ
V
21 + 2 (k · p0)2 sλV21 − 2k · p0M

2
ρsλ

V
21

+ 8 (k · p0)3 λV22 − 4 (k · p0)2 (k · p−)λV22 + 4 (k · p0) (k · p−)M2
ρλ

V
22 − 2 (k · p0)2 sλV22

+ 2k · p0M
2
ρsλ

V
22)))

)
+ 1
M2

ρDρ [(k + p−)2]

(
2GV (2(2 (k · p−)2 − (k · p−) s+M2

ρs)κV12

+ k · p−(−2k · p− + 2M2
ρ + s)κV16)− FV (2(2 (k · p−)2 + 2k · p−M2

ρ − (k · p−) s
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+M2
ρs)κV12 + k · p−(−2k · p− + 4M2

ρ + s)κV16) +
√

2(k · p−κV16(−(2k · p− − 4M2
ρ − s)

(2k · p0 + s)λV16 + 2((2k · p− − 4M2
ρ − s)(2k · p0 + s)λV17 − (2k · p− − 2M2

ρ − s)

(P − q)2λV18 − 4 (k · p0) (k · p−)λV19 + 4k · p−M2
ρλ

V
19 + 2 (k · p0) sλV19 − 2 (k · p−) sλV19

+ 2M2
ρsλ

V
19 + s2λV19 + 4 (k · p−)2 λV21 − 4k · p−M2

ρλ
V
21 − 2 (k · p−) sλV21 − 4 (k · p−)2 λV22

+ 8k · p−M2
ρλ

V
22 + 2 (k · p−) sλV22)) + 2κV12((2k · p0 + s)(2 (k · p−)2 + 2k · p−M2

ρ

− (k · p−) s+M2
ρs)λV16 + 2((2k · p0 + s)(−2 (k · p−)2 −M2

ρs+ k · p−(−2M2
ρ + s))λV17

+ (P − q)2(2 (k · p−)2 − (k · p−) s+M2
ρs)λV18 + 4 (k · p0) (k · p−)2 λV19 − 4 (k · p0)

(k · p−)M2
ρλ

V
19 + 4 (k · p−)2M2

ρλ
V
19 − 2 (k · p0) (k · p−) sλV19 + 2 (k · p−)2 sλV19

+ 2k · p0M
2
ρsλ

V
19 − (k · p−) s2λV19 +M2

ρs
2λV19 − 4 (k · p−)3 λV21 + 2 (k · p−)2 sλV21

− 2k · p−M2
ρsλ

V
21 + 4 (k · p−)3 λV22 + 4 (k · p−)2M2

ρλ
V
22 − 2 (k · p−)2 sλV22

+ 2k · p−M2
ρsλ

V
22)))

)
+ 4(−k · p0 + k · p−)(κA5 − κA6 + κA7 )(FA − 2

√
2(P − q)2λA17)

Da1 [(P − q)2]


(J.7)
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aRR3 = 1
3
√

2F 2

 FV
M2

ρM
2
ωDρ [(k + p0)2]

(√
2FV (M2

ρ (4k · p0 + 2k · p− + s)κV V3

+ (−4k · p0 + 2k · p− + s)Dρ

[
(k + p0)2

]
κV V4 )− 2(

√
2GV (M2

ρ (2k · p− + s)κV V3

+ (−4k · p0 + 2k · p− + s)Dρ

[
(k + p0)2

]
κV V4 ) + (2k · p0 −M2

ρ )(4k · p0

− 2k · p− − s)κV V4 ((2k · p− + s)λV16 − 2(2k · p− + s)λV17 + 4k · p0λ
V
18

+ 4k · p−λV18 + 2sλV18 + 4k · p−λV19 + 2sλV19 − 4k · p0λ
V
21 + 4k · p0λ

V
22)

+M2
ρκ

V V
3 ((2k · p− + s)(4k · p0 + 2k · p− + s)λV16 + 2(−(2k · p− + s)

(4k · p0 + 2k · p− + s)λV17 + (2k · p− + s)(P − q)2λV18 + 4 (k · p−)2 λV19

+ 4 (k · p−) sλV19 + s2λV19 − 4 (k · p0) (k · p−)λV21 − 2 (k · p0) sλV21 + 8 (k · p0)2 λV22

+ 4 (k · p0) (k · p−)λV22 + 2 (k · p0) sλV22)))
)

+ FV
M2

ρM
2
ωDρ [(k + p−)2](

−
√

2FV (M2
ρ (6k · p− + s)κV V3 + (−2k · p− + s)Dρ

[
(k + p−)2

]
κV V4 )

+ 2(
√

2GV (M2
ρ (2k · p− + s)κV V3 + (−2k · p− + s)Dρ

[
(k + p−)2

]
κV V4 )

+ (2k · p− −M2
ρ )(2k · p− − s)κV V4 ((2k · p0 + s)λV16 − 2(2k · p0 + s)λV17

+ 4k · p0λ
V
18 + 4k · p−λV18 + 2sλV18 + 4k · p0λ

V
19 + 2sλV19 − 4k · p−λV21

+ 4k · p−λV22) +M2
ρκ

V V
3 ((2k · p0 + s)(6k · p− + s)λV16 + 2(−(2k · p0 + s)

(6k · p− + s)λV17 + (2k · p− + s)(P − q)2λV18 − 4 (k · p0) (k · p−)λV19

+ 8 (k · p−)2 λV19 + 2 (k · p0) sλV19 + 2 (k · p−) sλV19 + s2λV19 − 4 (k · p−)2 λV21

− 2 (k · p−) sλV21 + 12 (k · p−)2 λV22 + 2 (k · p−) sλV22)))
)

+ 4FV
M2

ωDa1 [(P − q)2](
(−k · p0 + k · p−)(κV A2 − κV A3 − κV A4 )(

√
2FA − 4(P − q)2λA17)

)
+ 8(−k · p0 + k · p−)κV A5 (

√
2GV − 2sλV21)(FA − 2

√
2(P − q)2λA17)

Da1 [(P − q)2]Dρ[s]

+ 2(FA − 2
√

2(P − q)2λA17)
M2

ρDa1 [(P − q)2]Dρ [(k + p−)2]

(
k · p−κV16((−8 (k · p0) (k · p−) + 8k · p−M2

ρ

+ 4 (k · p0) s− 4 (k · p−) s+ 4M2
ρs+ 2s2)λV A2 + 2M2

ρ (4k · p0 − 2k · p− + s)λV A3
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+ 4 (k · p0) (k · p−)λV A4 + 8 (k · p−)2 λV A4 − 8k · p0M
2
ρλ

V A
4 − 4k · p−M2

ρλ
V A
4

− 2 (k · p0) sλV A4 − 2 (k · p−) sλV A4 − 2M2
ρsλ

V A
4 − s2λV A4 + 8 (k · p0) (k · p−)λV A5

− 16k · p0M
2
ρλ

V A
5 − 4 (k · p0) sλV A5 + 4 (k · p−) sλV A5 − 8M2

ρsλ
V A
5 − 2s2λV A5 )

+ 2κV12(2(2k · p0(k · p− −M2
ρ )(2k · p− − s)− (k · p−) s2 +M2

ρs
2

+ 2 (k · p−)2 (2M2
ρ + s))λV A2 + 2k · p−M2

ρ (4k · p0 − 2k · p− + s)λV A3

− 4 (k · p0) (k · p−)2 λV A4 − 8 (k · p−)3 λV A4 − 4 (k · p0) (k · p−)M2
ρλ

V A
4

+ 4 (k · p−)2M2
ρλ

V A
4 + 2 (k · p0) (k · p−) sλV A4 + 2 (k · p−)2 sλV A4

− 2k · p0M
2
ρsλ

V A
4 − 4k · p−M2

ρsλ
V A
4 + (k · p−) s2λV A4 −M2

ρs
2λV A4

− 8 (k · p0) (k · p−)2 λV A5 − 8 (k · p0) (k · p−)M2
ρλ

V A
5 + 4 (k · p0) (k · p−) sλV A5

− 4 (k · p−)2 sλV A5 − 4k · p0M
2
ρsλ

V A
5 − 4k · p−M2

ρsλ
V A
5 + 2 (k · p−) s2λV A5

− 2M2
ρs

2λV A5 )
)

+ 2(FA − 2
√

2(P − q)2λA17)
M2

ρDa1 [(P − q)2]Dρ [(k + p0)2]

(
k · p0κ

V
16(2(4k · p0 − 2k · p−

− 2M2
ρ − s)(2k · p− + s)λV A2 − 2M2

ρ (2k · p− + s)λV A3 − 16 (k · p0)2 λV A4

+ 4 (k · p−)2 λV A4 + 8k · p0M
2
ρλ

V A
4 + 4k · p−M2

ρλ
V A
4 + 4 (k · p−) sλV A4

+ 2M2
ρsλ

V A
4 + s2λV A4 − 16 (k · p0) (k · p−)λV A5 + 8 (k · p−)2 λV A5

+ 16k · p−M2
ρλ

V A
5 − 8 (k · p0) sλV A5 + 8 (k · p−) sλV A5 + 8M2

ρsλ
V A
5 + 2s2λV A5 )

+ 2κV12(−2(2k · p− + s)(4 (k · p0)2 +M2
ρ (2k · p− + s)− k · p0

(2k · p− + 2M2
ρ + s))λV A2 − 2k · p0M

2
ρ (2k · p− + s)λV A3 + 16 (k · p0)3 λV A4

− 4 (k · p0) (k · p−)2 λV A4 − 8 (k · p0)2M2
ρλ

V A
4 + 4 (k · p0) (k · p−)M2

ρλ
V A
4

+ 4 (k · p−)2M2
ρλ

V A
4 − 4 (k · p0) (k · p−) sλV A4 + 2k · p0M

2
ρsλ

V A
4

+ 4k · p−M2
ρsλ

V A
4 − (k · p0) s2λV A4 +M2

ρs
2λV A4 + 16 (k · p0)2 (k · p−)λV A5

− 8 (k · p0) (k · p−)2 λV A5 + 8 (k · p−)2M2
ρλ

V A
5 + 8 (k · p0)2 sλV A5

− 8 (k · p0) (k · p−) sλV A5 + 8k · p−M2
ρsλ

V A
5 − 2 (k · p0) s2λV A5 + 2M2

ρs
2λV A5 )

)

(J.8)
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aRRR3 = FV (
√

2FA − 4(P − q)2λA17)
3
√

2F 2M2
ρM

2
ωDa1 [(P − q)2]Dρ [(k + p0)2]Dρ [(k + p−)2]

−M2
ρ (2k · p− + s)

Dρ

[
(k + p−)2

]
κV V3 (2(2k · p− + s)λV A2 + 4k · p0λ

V A
3 − (4k · p0 + 2k · p− + s)

(λV A4 + 2λV A5 ))−Dρ

[
(k + p0)2

]
(2(k · p0 − k · p−)Dρ

[
(k + p−)2

]
κV V4

(−2(2k · p− + 3s)λV A2 + (8k · p0 + 6k · p− + s)λV A4 + 2(2k · p− + 3s)λV A5 )

+M2
ρκ

V V
3 (2(4 (k · p0) (k · p−)− 8 (k · p−)2 − 2 (k · p0) s− 2 (k · p−) s− s2)λV A2

− 4k · p−(4k · p0 − 2k · p− + s)λV A3 + (2k · p0 + s)(6k · p− + s)(λV A4 + 2λV A5 )))

(J.9)
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aR4 = 4
√

2
3F 2M2

ρ

 1
Dρ [(k + p0)2]

(
GV (4(k · p0 −M2

ρ )κV12 − 2k · p0κ
V
16)

+ FV (−2(k · p0 −M2
ρ )κV12 + k · p0κ

V
16) +

√
2(−k · p0κ

V
16((2k · p− + s)λV16

− 2(2k · p− + s)λV17 + 4k · p0λ
V
18 + 4k · p−λV18 + 2sλV18 + 4k · p−λV19 + 4M2

ρλ
V
19

+ 2sλV19 − 4k · p0λ
V
21 + 4k · p0λ

V
22) + 2κV12((k · p0 −M2

ρ )(2k · p− + s)λV16

− 2(k · p0 −M2
ρ )(2k · p− + s)λV17 + 4 (k · p0)2 λV18 + 4 (k · p0) (k · p−)λV18

− 4k · p0M
2
ρλ

V
18 − 4k · p−M2

ρλ
V
18 + 2 (k · p0) sλV18 − 2M2

ρsλ
V
18 + 4 (k · p0) (k · p−)λV19

− 4k · p0M
2
ρλ

V
19 − 4k · p−M2

ρλ
V
19 + 2 (k · p0) sλV19 − 2M2

ρsλ
V
19 − 4 (k · p0)2 λV21

+ 4k · p0M
2
ρλ

V
21 + 4 (k · p0)2 λV22 − 4k · p0M

2
ρλ

V
22))

)
+ 1
Dρ [(k + p−)2](

FV (2(k · p− −M2
ρ )κV12 − k · p−κV16) +GV (−4(k · p− −M2

ρ )κV12 + 2k · p−κV16)

+
√

2(k · p−κV16((2k · p0 + s)λV16 − 2(2k · p0 + s)λV17 + 4k · p0λ
V
18 + 4k · p−λV18

+ 2sλV18 + 4k · p0λ
V
19 + 4M2

ρλ
V
19 + 2sλV19 − 4k · p−λV21 + 4k · p−λV22)

+ κV12(−2(k · p− −M2
ρ )(2k · p0 + s)λV16 + 4(k · p− −M2

ρ )(2k · p0 + s)λV17

− 4(k · p− −M2
ρ )(P − q)2λV18 − 8 (k · p0) (k · p−)λV19 + 8k · p0M

2
ρλ

V
19 + 8k · p−M2

ρλ
V
19

− 4 (k · p−) sλV19 + 4M2
ρsλ

V
19 + 8 (k · p−)2 λV21 − 8k · p−M2

ρλ
V
21 − 8 (k · p−)2 λV22

+ 8k · p−M2
ρλ

V
22))

)
(J.10)
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aRR4 = 2
√

2
3F 2M2

ρ

 FV
M2

ωDρ [(k + p0)2]

(√
2FV (M2

ρκ
V V
3 +Dρ

[
(k + p0)2

]
κV V4 )

− 2
√

2GV (M2
ρκ

V V
3 +Dρ

[
(k + p0)2

]
κV V4 ) + 2(2k · p0 −M2

ρ )κV V4

((2k · p− + s)λV16 − 2(2k · p− + s)λV17 + 4k · p0λ
V
18 + 4k · p−λV18 + 2sλV18

+ 4k · p−λV19 + 2sλV19 − 4k · p0λ
V
21 + 4k · p0λ

V
22)− 2M2

ρκ
V V
3 ((2k · p− + s)λV16

− 2(2k · p− + s)λV17 + 4k · p0λ
V
18 + 4k · p−λV18 + 2sλV18 + 8k · p0λ

V
19 + 4k · p−λV19

+ 2sλV19 − 4k · p0λ
V
21 + 4k · p0λ

V
22)
)

+ FV
M2

ωDρ [(k + p−)2]

(
−
√

2FV (M2
ρκ

V V
3

+Dρ

[
(k + p−)2

]
κV V4 ) + 2

√
2GV (M2

ρκ
V V
3 +Dρ

[
(k + p−)2

]
κV V4 )

− 2(2k · p− −M2
ρ )κV V4 ((2k · p0 + s)λV16 − 2(2k · p0 + s)λV17 + 4k · p0λ

V
18

+ 4k · p−λV18 + 2sλV18 + 4k · p0λ
V
19 + 2sλV19 − 4k · p−λV21 + 4k · p−λV22)

+ 2M2
ρκ

V V
3 ((2k · p0 + s)λV16 − 2(2k · p0 + s)λV17 + 4k · p0λ

V
18 + 4k · p−λV18
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+ 2sλV18 + 4k · p0λ
V
19 + 8k · p−λV19 + 2sλV19 − 4k · p−λV21 + 4k · p−λV22)

)
− 2(FA − 2

√
2(P − q)2λA17)

Da1 [(P − q)2]Dρ [(k + p−)2]

(
k · p−κV16(−2(2k · p0 + 2M2

ρ + s)λV A2

+ 2M2
ρλ

V A
3 + 2k · p0λ

V A
4 + 4k · p−λV A4 − 2M2

ρλ
V A
4 + sλV A4 + 4k · p0λ

V A
5 + 2sλV A5 )

+ 2κV12(2(2 (k · p0) (k · p−)− 2k · p0M
2
ρ − 2k · p−M2

ρ + (k · p−) s−M2
ρs)λV A2

+ 2k · p−M2
ρλ

V A
3 − 2 (k · p0) (k · p−)λV A4 − 4 (k · p−)2 λV A4 + 2k · p0M

2
ρλ

V A
4

+ 2k · p−M2
ρλ

V A
4 − (k · p−) sλV A4 +M2

ρsλ
V A
4 − 4 (k · p0) (k · p−)λV A5

+ 4k · p0M
2
ρλ

V A
5 − 2 (k · p−) sλV A5 + 2M2

ρsλ
V A
5 )

)
+ 2(FA − 2

√
2(P − q)2λA17)

Da1 [(P − q)2]Dρ [(k + p0)2](
k · p0κ

V
16(−2(2k · p− + 2M2

ρ + s)λV A2 + 2M2
ρλ

V A
3 + 4k · p0λ

V A
4 + 2k · p−λV A4

− 2M2
ρλ

V A
4 + sλV A4 + 4k · p−λV A5 + 2sλV A5 ) + κV12(4(−M2

ρ (2k · p− + s)

+ k · p0(2k · p− − 2M2
ρ + s))λV A2 + 4k · p0M

2
ρλ

V A
3 − 8 (k · p0)2 λV A4

− 4 (k · p0) (k · p−)λV A4 + 4k · p0M
2
ρλ

V A
4 + 4k · p−M2

ρλ
V A
4 − 2 (k · p0) sλV A4

+ 2M2
ρsλ

V A
4 − 8 (k · p0) (k · p−)λV A5 + 8k · p−M2

ρλ
V A
5 − 4 (k · p0) sλV A5

+ 4M2
ρsλ

V A
5 )

)
(J.11)

aRRR4 =− 4
√

2FV (k · p0 − k · p−)(
√

2FA − 4(P − q)2λA17)
3F 2M2

ρM
2
ωDa1 [(P − q)2]Dρ [(k + p0)2]Dρ [(k + p−)2]−Dρ

[
(k + p0)2

]
Dρ

[
(k + p−)2

]
κV V4 (2λV A2 + λV A4 − 2λV A5 )

+M2
ρκ

V V
3 (2(M2

ρ + (P − q)2)λV A2 − 2M2
ρλ

V A
3 +Dρ

[
(P − q)2

]
(λV A4 + 2λV A5 ))


(J.12)
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Appendix K

Axial structure of the nucleon

The axial current expressed in terms of the light quarks fields

Aaµ ≡ q̄ γµγ
5T aq, (K.1)

where for the two and three flavor case T a = τa

2 and T a = λa

2 , being τa the Pauli matrices

and λa the Gell-Mann matrices for SU(2) and SU(3), respectively.

The matrix-element of the SU(2) isovector axial quark current between nucleon states is

given by [800,819,820]

〈
N(p′)

∣∣∣Aaµ∣∣∣N(p)
〉

= ū(p′)
[
γµGA(t) + (p′ − p)µ

2m GP (t)
]
γ5 τ

a

2 u(p), (K.2)

with t ≡ (p′−p)2 the invariant momentum transfer squared and m = (mp+mn)/2. However,

we will work in the isospin limit mp = mn (mu = md).

The eq. (K.2) follows from Lorentz invariance and C, P , T and isospin conservation and

the absence of second class currents [436], which is consistent with the experimental obser-

vations [821]. GA(t) is the nucleon axial form factor and GP (t) is the induced pseudoscalar

form factor.
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If we take the divergence of eq. (K.2), we obtain

∂µ
〈
N(p′)

∣∣∣Aaµ∣∣∣N(p)
〉

= i ū(p′)
[
2mGA(t) + t

2mGP (t)
]
γ5 τ

a

2 u(p) (K.3)

Furthermore, we can use the Ward identity, eq. (K.4), and the PCAC hypothesis

∂µ q̄ γµγ
5 q = 2q̄Miγ5 q + nq

g2
s

16π2G
µν
i G̃

i
µν −

(
Nc

3

)
e2

16π2FµνF̃
µν , (K.4)

where M = diag(mu, · · · ,mq), nq = 2, 3 is the number of flavors being considered and Nc is

the number of colours. Thus, in the chiral limit we have

∂µ
〈
N(p′)

∣∣∣Aaµ∣∣∣N(p)
〉

= 0. (K.5)

Therefore, from eqs. (K.3) and (K.5) we get

GP (t) = −4m2

t
GA(t) or GP (t) = 4m2

M2
P − t

GA(t) +O(MP ), (K.6)

which is the well-known pion pole term. This term arises from a direct coupling between a

pseudoscalar and an axial current.

K.1 The coupling of P to the nucleon

According to Ref. [822], the coupling of a pseudoscalar meson to a nucleon is given by the

χPT Lagrangian

L(1)
N = Ψ̄

(
i /D −m+ g0

2 /uγ
5
)

Ψ, (K.7)
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where Dµ = ∂µ + Γµ, Γµ = 1
2

[
u† (∂µ − irµ)u+ u (∂µ − i`µ)u†

]
and Ψ = (p n)T .

From this expression, we get

L(1)
N = · · · − g0

2fπ
p̄γµγ5p ∂µπ

0 + g0

2fπ
n̄γµγ5n ∂µπ

0 + · · ·

= · · ·+ g0mN

fπ
p̄iγ5p π0 − g0mN

fπ
n̄iγ5nπ0 + · · ·

(K.8)

which corresponds to the SU(2) limit. In the case of SU(3), we have [132,133]

L(B)
1 =

〈
B̄iγµ∇µB

〉
−mB

〈
B̄B

〉
+ D

2
〈
B̄γµγ5{uµ, B}

〉
+ F

2
〈
B̄γµγ5[uµ, B]

〉
(K.9)

where

B =


1√
2Σ0 + 1√

6Λ0 Σ+ p

Σ− − 1√
2Σ0 + 1√

6Λ0 n

Ξ− Ξ0 − 2√
6Λ0

 , B̄ ≡ B†γ0, (K.10)

and ∇µB ≡ ∂µB + [Γµ, B] with Γµ defined as before.

From this, we obtain

L(B)
1 =− g0

2fπ
p̄γµγ5p ∂µπ

0 + g0
2fπ

n̄γµγ5n∂µπ
0 − gη

2fπ
p̄γµγ5p ∂µη −

gη
2fπ

n̄γµγ5n∂µη

−
gη′

2fπ
p̄γµγ5p ∂µη

′ −
gη′

2fπ
n̄γµγ5n∂µη

′
(K.11)

where

g0 ≡ D + F, (K.12a)

gη ≡ (Cq −
1√
2
Cs)D + (Cq + 1√

2
Cs)F, (K.12b)

gη′ ≡ (Cq′ +
1√
2
Cs′)D + (Cq′ −

1√
2
Cs′)F. (K.12c)
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After an integration by parts and using the Dirac equation, we get

L(B)
1 =g0mN

fπ
p̄iγ5p π0 − g0mN

fπ
n̄iγ5nπ0 + gηmN

fπ
p̄iγ5p η + gηmN

fπ
n̄iγ5n η

+ gη′mN

fπ
p̄iγ5p η′ + gη′mN

fπ
n̄iγ5n η′,

(K.13)

which comply with the well-known Golberger-Treiman relation [823].

The coupling between a pseudoscalar meson to a nucleon is given by

LN = gPNN q̄ iγ
5 τ

a

2 q πa, (K.14)

where τa are the Pauli matrices.

From eq. (K.14), we get the pseudoscalar contribution to the axial current

〈
N(p′)

∣∣∣Aaµ∣∣∣N(p)
〉

= −gPNN ū(p′) γ5 τ
a

2 u(p) i

(p′ − p)2 −m2
P + iε

[−ifaP (p′ − p)µ]

= −
∑
P

gPNNf
a
P

(p′ − p)2 −m2
P + iε

ū(p′)(p′ − p)µγ5u(p),
(K.15)

where the following equation has been used,

〈
0
∣∣∣Aaµ∣∣∣P (q)

〉
= ifaP qµ. (K.16)

Finally, from the Lagrangian in eq. (K.7) we get

〈
N(p′)

∣∣∣Aaµ∣∣∣N(p)
〉

= g0 ū(p′) γµ γ5 τ
a

2 u(p), (K.17)

putting all these together, we have

〈
N(p′)

∣∣∣Aaµ∣∣∣N(p)
〉

= ū(p′)
[
g0 γµ γ

5 − gPNNf
a
P

(p′ − p)2 −m2
P + iε

(p′ − p)µγ5
]
τa

2 u(p), (K.18)

where the second term contains the pole contribution of GP (t).
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K.2 The coupling of A to the nucleon

K.2.1 Antisymmetric tensor field (Aµν)

If we use the antisymmetric tensor field representation for the axial vector meson instead of

the more familiar vector one, we get the most general structure describing the coupling of

the axial-vector resonance to the nucleon:

〈N ′(p′) |Aµν |N(p)〉 = ū(p′)
[1
2(qµ1 qν2 − qν1q

µ
2 )γ5G̃1 + 1

2(γµqν1 − γνq
µ
1 )γ5G̃2

+ 1
2(γµqν2 − γνq

µ
2 )γ5G̃3 + εµνρσ q1ρq2σG̃4

+1
2(qµ1 qν2 − qν1q

µ
2 )F̃1 + εµνρσ q1ρq2σγ

5F̃2

]
u(p) 〈A(q1) |Aµν | 0〉 ,

(K.19)

where q1 ≡ p − p′ and q2 ≡ p + p′, and G̃1, G̃2, G̃3 and G̃4 are C- and P-conserving form

factors while F̃1 and F̃2 are form factors that break the intrinsic parity. Also, G̃1 and F̃1 are

CP−odd. All the form factors, as expected, are G-conserving.

At O (p4) in χPT , we have

L2 = FA

2
√

2
〈Aµνfµν− 〉 . (K.20)

Thus, 〈
0
∣∣∣∣∣δL2

δaβ

∣∣∣∣∣A(q)
〉

= −i
√

2FA qα
〈
0
∣∣∣Aαβ∣∣∣A(q)

〉
. (K.21)

The longitudinal and transverse part of the propagator of Aµν are given by

Ωµν,ρσ
L (k) = iD−1

A (k2) (gµρgνσ − gµσgνρ) , (K.22a)

Ωµν,ρσ
T (k) = iM2

AD
−1
A (k2)

(
gµρkνkσ − gµσkνkσ − k2gµρgνσ − (µ↔ ν)

)
. (K.22b)

where DA(k2) = M2
A − k2.
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We are interested in the neutral current. The contribution from Aµν to the axial current is

p p′

aµ

p− p′

⊗
= ū(p′)

[√
2FA q2

1
DA(q2

1) F̃1 q
µ
2 +

√
2FA q2

1
DA(q2

1)

(
G̃1 −

2MN

q2
1

G̃3

)
qµ2γ

5

−
√

2FA q2
1

DA(q2
1) G̃2

(
γµγ5 + 2MN

q2
1
qµ1γ

5
)]

u(p),

(K.23)

where only the longitudinal part contributes to this diagram.

K.2.2 Proca field (Âµ)

From RχT , the Lagrangian that describes the coupling between an axial-vector meson and

an external source is given by [225]

LII = − fA

2
√

2
〈
Âµνf

µν
−

〉
, (K.24)

where Âµν = ∇µÂν −∇νÂµ.

From eq. (K.24), we get

〈
0
∣∣∣∣∣δLIIδabβ

∣∣∣∣∣A(q)
〉

=
√

2f bA q2
(
gαβ − qαqβ

q2

)
εα(q). (K.25)

If we use

〈N(p′)A(p− p′)|N(p)〉 ≡ −iHA ū(p′) γµγ5 τ
a

2 u(p) ε∗µ(q), q ≡ p− p′, (K.26)

which is similar to the one employed in Ref. [824], we obtain

〈N(p′) |JρA|N(p)〉 ≡
√

2faAHA q
2
1

DA(q2
1) ū(p′)

[
γργ5 + 2MN

q2
1
qρ1γ

5
]
τa

2 u(p) (K.27)

where DA(s) ≡M2
A − s.
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It is possible to write the propagator in a subtracted term (s.t.) and contact term (c.t.)

according to eq. (K.28) [603]

Dαβ(q2) = − q2gαβ − qαqβ

M2
A(q2 −M2

A) + gαβ

M2
A

≡ D̄αβ(q2) + gαβ

M2
A

, (K.28)

also we can split the propagator as we did before in eq. (K.22),

Dαβ
T (q) = −

gαβ − qα qβ

q2

q2 −M2
A

= D̄αβ(q2) +
gαβ − qα qβ

q2

M2
A

, (K.29)

and

Dαβ
L (q) = qαqβ

q2M2
A

, (K.30)

with the projectors given by

P µν
T (q) ≡ gµν − qµ qν

q2 , (K.31a)

P µν
L (q) ≡ qµ qν

q2 . (K.31b)

It is clear, from eq. (K.31), that eq. (K.25) only has the transverse contribution. Also, eq.

(K.30) can be understood as the longitudinal part of the contact term.

If, instead of eq. (K.25), we use the relation in eq. (K.32)

〈
0
∣∣∣Aaβ∣∣∣A(q)

〉
≡ F a

AmAεβ(q), (K.32)

345



we get

〈N(p′) |(JaA)ρ|N(p)〉 ≡ F a
AMAHA

DA(q2
1) ū(p′)

[
γργ5 + 2MN

M2
A

qρ1γ
5
]
τa

2 u(p)

= F a
AMAHA

DA(q2
1) ū(p′)

[
γργ5 + 2MN

q2
1
qρ1γ

5
]
τa

2 u(p) {T} (s.t. + c.t.)

− F a
AHA

MA

ū(p′)
[

2MN

q2
1
qρ1γ

5
]
τa

2 u(p) {L} (c.t.),

(K.33)

where T and L refer to the contributions from eqs. (K.29) and (K.30), respectively.

Now, if we start from the Lagrangian

L ≡ gANN ψ̄ γνγ
5∂µÂ

µν ψ, (K.34)

we get the following contribution to the axial current

iM =
√

2gANNfaA q4
1

DA(q2
1) ū(p′)

[
γργ5 + 2MN

q2
1
qρ1γ

5
]
τa

2 u(p) (K.35)

using eq. (K.25) and

iM = gANNF
a
AMA q

2
1

DA(q2
1) ū(p′)

[
γργ5 + 2MN

q2
1
qρ1γ

5
]
τa

2 u(p) (K.36)

using eq. (K.32).

Finally, we return to the eq. (K.19) and using the eq. (A.11) from Ref. [224]

〈A(q) |Aµν | 0〉 = −iM−1
A [qµgνσ − qνgµσ] ε∗σ(q), (K.37)

346



we get

p p′

aaµ

p− p′

⊗ = ū(p′)
[ √

2faA q4
1

MADA(q2
1) F̃1 q

µ
2 +

√
2faA q4

1
MADA(q2

1)

(
G̃1 −

2MN

q2
1

G̃3

)
qµ2γ

5

−
√

2faA q4
1

MADA(q2
1)G̃2

(
γµγ5 + 2MN

q2
1
qµ1γ

5
)]

τa

2 u(p)

(K.38)

using eq. (K.25) and

p p′

aaµ

p− p′

⊗ = ū(p′)
[
F a
A q

2
1

DA(q2
1) F̃1 q

µ
2 + F a

A q
2
1

DA(q2
1)

(
G̃1 −

2MN

q2
1

G̃3

)
qµ2γ

5

− F a
A q

2
1

DA(q2
1)G̃2

(
γµγ5 + 2MN

q2
1
qµ1γ

5
)]

τa

2 u(p)

(K.39)

using eq. (K.32).

K.2.3 Effective coupling in BχPT

In a similar way to Dorokhov, where the effective coupling is given by the Hamiltonian of

nucleon-axial-vector meson interaction

H1(a1NN) = ga1NNN̄τγµγ
5N aµ1 , for a1 exchange and (K.40a)

H1(f1NN) = gf1NNN̄τγµγ
5N fµ1 , for f1 exchange. (K.40b)

We find the lowest-order χPT Lagrangian that contributes to the ANN coupling using the

antisymmetric tensor field representation of the axial-vector resonances, which is given by

LχPTANN = g1
〈
B̄γµγ5{∇νAµν , B}

〉
+ g2

〈
B̄γµγ5[∇νAµν , B]

〉
. (K.41)
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Other related terms, like

〈
B̄γµ(γ5){Aµν ,∇νB}

〉
,

〈
B̄γµ(γ5)[Aµν ,∇νB]

〉
, (K.42a)〈

B̄σµν(γ5){Aµν , B}
〉
,

〈
B̄σµν(γ5)[Aµν , B]

〉
, (K.42b)

are not C−conserving. In order to build these operators, we have to recall that the Aµν field

transforms under C and P as

Aµν → C Aµν C = (Aµν)T ,

→ P Aµν P = −Aµν
(K.43)

where

Aµν =


a0

1√
2 + f1√

2 a+
1 K+

1

a−1 − a0
1√
2 + f1√

2 K0
1

K−1 K
0
1 −f ′1


µν

. (K.44)

Finally, we get from eq. (K.41)

LχPTANN = ga1NN p̄γ
µγ5p ∂νa1µν − ga1NN n̄γ

µγ5n ∂νa1µν

+ gf1NN p̄γ
µγ5p ∂νf1µν + gf1NN n̄γ

µγ5n ∂νf1µν

− gf ′1NN p̄γ
µγ5p ∂νf ′1µν − gf ′1NN n̄γ

µγ5n ∂νf ′1µν

(K.45)

where

ga1NN = gf1NN = 1√
2

(g1 + g2), and gf ′1NN = 1√
2

(g1 − g2). (K.46)

The Lagrangian in eq. (K.41) contributes to G̃2 in eq. (K.19).
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K.2.4 Coupling axial-vector to two photons

The most general structure that describes this coupling is given by

〈A(P ) |JµemJνem| 0〉 =
{(
kα1 k

β
2 − k

β
1k

α
2

) [
G1

(
k2

1k
2
2 g

µν + k1 · k2 k
µ
1k

ν
2 − k2

2 k
µ
1k

ν
1 − k2

1 k
µ
2k

ν
2

)
+G2 (kµ2kν1 − k1 · k2 g

µν) + G̃1 ε
µνρσk1ρk2σ

]
+ G̃2

(
gµν εαβρσk1ρk2σ − kν1 εµαβρk2ρ + k1 · k2 ε

µναβ + kµ2 ε
ναβρk1ρ

)
+ G̃3

[(
k1 · k2 k

µ
1 − k2

1 k
µ
2

)
εναβρk2ρ −

(
k1 · k2 k

ν
2 − k2

2 k
ν
1

)
εµαβρk1ρ

]
+ F̃1

[(
k1 · k2 k

µ
1 − k2

1 k
µ
2

)
εναβρk2ρ +

(
k1 · k2 k

ν
2 − k2

2 k
ν
1

)
εµαβρk1ρ

]}
× 〈A(P ) |Aαβ| 0〉 ,

(K.47)

where the Schouten identity has been used.

Here, Gi and G̃i are antisymmetric and F̃i is symmetric under k1 ↔ k2. F̃i and G̃i are

C− and P−conserving. G1 and G2 are only C-conserving.

The eq. (K.47) complies with the Ward identity,

k1µ 〈N(p′) |JµemJνem|N(p)〉 = 0, (K.48)

and

k2ν 〈N(p′) |JµemJνem|N(p)〉 = 0. (K.49)

K.2.5 〈N(p′) |JµemJνem|N(p)〉

Defining X ≡ k1 +k2, W1 ≡ p′+k1 and W2 ≡ p′+k2, we can write the most general structure

that describes the coupling NNγγ (see fig. K.1):
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〈
N(p′) |JµemJνem|N(p)

〉
=ū(p′) {F1Aµν + F2 Bµν + F3 Cµν + F4Dµν + F5 Eµν

+ F6
[
DB(W 2

2 ) γµ
(
/W 1 +mB

)
γν +DB(W 2

1 ) γν
(
/W 2 +mB

)
γµ
]

+ (F7Fµν + F8 Gµν +G1Hµν +G2 Iµν) γ5

+ (G3Fµν +G4 Gµν + F9Hµν + F10 Iµν) (/k1 − /k2) γ5

+
(
F̃1Aµν + F̃2 Bµν + F̃3 Cµν + F̃4Dµν + F̃5 Eµν

)
iγ5

+ F̃6Fµν + F̃7 Gµν + G̃1Hµν + G̃2 Iµν

+
(
G̃3Aµν + G̃4 Bµν + G̃4 Cµν + G̃4Dµν + G̃6 Eµν

)
(/k1 − /k2) γ5

}
u(p)

(K.50)

where Fi is symmetric and Gi is antisymmetric under the interchange k1 ↔ k2. Fi and

Gi are C- and P-conserving while F̃i and G̃i are only C-conserving.

~p p′

γ

k1

γ

k2

Figure K.1: Two photon exchange vertex.

With

Aµν =( k2
1 − k2

2 − 2P · (k1 − k2))( k4
1 + k4

2 + (P · (k1 − k2))2 + k2
1(2 k2

2 − P · (k1 − k2)− 2P · (k1 + k2))

+ k2
2(P · (k1 − k2)− 2P · (k1 + k2)) + (P · (k1 + k2))2) gµν + 2( k2

1 − k2
2 − P · (k1 − k2))

( k2
1 + k2

2 − 2P · (k1 + k2))Wµ
1 W

ν
2 − 2P · (k1 − k2)( k2

1 + k2
2 − 2P · (k1 + k2))Wµ

2 W
ν
1

+ 2( k2
1(−P · (k1 − k2) + P · (k1 + k2)) + ( k2

2 + P · (k1 − k2)− P · (k1 + k2))(P · (k1 − k2)

+ P · (k1 + k2))) (Wµ
1 W

ν
1 −W

µ
2 W

ν
2 )− ( k4

1 + k4
2 + (P · (k1 − k2))2 + k2

2(P · (k1 − k2)− 2P · (k1 + k2))

+ (P · (k1 + k2))2 − k2
1(−2 k2

2 + P · (k1 − k2) + 2P · (k1 + k2))) (XµW ν
1 −XνWµ

2 )

+ (− k4
1 − k4

2 − (P · (k1 − k2))2 − k2
2(P · (k1 − k2)− 2P · (k1 + k2))− (P · (k1 + k2))2

+ k2
1(−2 k2

2 + P · (k1 − k2) + 2P · (k1 + k2))) (XµW ν
2 −XνWµ

1 ) ,

(K.51)
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Bµν =( k2
1 − k2

2 − 2P · (k1 − k2))( k2
1 + k2

2 − P · (k1 + k2))( k4
1 + k4

2 + (P · (k1 − k2))2 + k2
1(2 k2

2

− P · (k1 − k2)− 2P · (k1 + k2)) + k2
2(P · (k1 − k2)− 2P · (k1 + k2)) + (P · (k1 + k2))2)XµXν
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1 P · (k1 + k2) + 3 k2
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2

+ k2
2(P · (k1 − k2)− 2P · (k1 + k2)) + 2 (P · (k1 + k2))2 − k2

1(2 k2
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1 W

ν
2 + ( k4

1 − k4
2 − k2

1 P · (k1 + k2) + k2
2 P · (k1 + k2)− 2P · (k1 − k2)

P · (k1 + k2))( k2
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2(P · (k1 − k2)

+ 2P · (k1 + k2)))Wµ
2 W

ν
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2(P · (k1 − k2)− 2P · (k1 + k2))

+ 2 (P · (k1 + k2))2 − k2
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1 W

ν
1 −W

µ
2 W

ν
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1 + k4
2

+ (P · (k1 − k2))2 + k2
1(2 k2

2 − P · (k1 − k2)− 2P · (k1 + k2)) + k2
2(P · (k1 − k2)− 2P · (k1 + k2))

+ (P · (k1 + k2))2)( k2
1(P · (k1 − k2)− 2P · (k1 + k2)) + 2 (P · (k1 + k2))2 − k2

2(P · (k1 − k2)

+ 2P · (k1 + k2))) (XµW ν
1 −XνWµ

2 ) + ( k4
1 + k4
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1(2 k2

2 − P · (k1 − k2)

− 2P · (k1 + k2)) + k2
2(P · (k1 − k2)− 2P · (k1 + k2)) + (P · (k1 + k2))2)( k4

1 + k4
2

+ k2
2(P · (k1 − k2)− 2P · (k1 + k2)) + 2 (P · (k1 + k2))2 − k2

1(2 k2
2 + P · (k1 − k2)

+ 2P · (k1 + k2))) (XµW ν
2 −XνWµ

1 ) ,

(K.52)

Cµν =(2 k2
1 − P · (k1 − k2)− P · (k1 + k2))(2 k2

2 + P · (k1 − k2)− P · (k1 + k2))Wµ
1 W

ν
2

+ ( k4
1 + k4

2 + (P · (k1 − k2))2 + k2
1(2 k2

2 − P · (k1 − k2)− 2P · (k1 + k2)) + k2
2(P · (k1 − k2)

− 2P · (k1 + k2)) + (P · (k1 + k2))2) (Wµ
1 W

ν
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2 W
ν
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2 − P · (k1 + k2))− 2 k2
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2 W
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2 − 2P · (k1 − k2))( k2
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µ
2 W

ν
2 ) ,

(K.53)
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Dµν =− (2 k2
1 − P · (k1 − k2)− P · (k1 + k2))(2 k2

2 + P · (k1 − k2)− P · (k1 + k2))( k4
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2 + (P · (k1 − k2))2 + k2

1(2 k2
2 − P · (k1 − k2)
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(K.54)
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Eµν =(2 k8
1 − 2 k8

2 − 4 k6
2(P · (k1 − k2)− 2P · (k1 + k2)) + k2

2(7P · (k1 − k2)− 5P · (k1 + k2))

(P · (k1 − k2)− P · (k1 + k2))P · (k1 + k2)− 4 k6
1(P · (k1 − k2) + 2P · (k1 + k2))

+ k4
2(−3 (P · (k1 − k2))2 + 12P · (k1 − k2)P · (k1 + k2)− 11 (P · (k1 + k2))2)

+ 2P · (k1 − k2)P · (k1 + k2)( (P · (k1 − k2))2 + 3 (P · (k1 + k2))2) + k4
1(3 (P · (k1 − k2))2

+ 4 k2
2(P · (k1 − k2)− P · (k1 + k2)) + 12P · (k1 − k2)P · (k1 + k2) + 11 (P · (k1 + k2))2)

+ k2
1(P · (k1 − k2) + P · (k1 + k2))(4 k4

2 − P · (k1 + k2)(7P · (k1 − k2) + 5P · (k1 + k2))))

Wµ
1 W

ν
2 + ( k2

1 − k2
2 − 2P · (k1 − k2))( k2

1 + k2
2 − P · (k1 + k2))( k4

1 + k4
2 + (P · (k1 − k2))2

+ k2
1(2 k2

2 − P · (k1 − k2)− 2P · (k1 + k2)) + k2
2(P · (k1 − k2)− 2P · (k1 + k2))

+ (P · (k1 + k2))2) (XµW ν
2 +XνWµ

1 )− ( k2
1 + k2

2 − P · (k1 − k2)− P · (k1 + k2))

( k2
1 + k2

2 + P · (k1 − k2)− P · (k1 + k2))( k4
1 − k4

2 − k2
1 P · (k1 + k2) + k2

2 P · (k1 + k2)

− 2P · (k1 − k2)P · (k1 + k2))Wµ
2 W

ν
1 − ( k2

1 + k2
2 − P · (k1 − k2)− P · (k1 + k2))

( k2
1 + k2

2 + P · (k1 − k2)− P · (k1 + k2))( k4
1 + k4

2 + k2
2(P · (k1 − k2)− 2P · (k1 + k2))

+ 2 (P · (k1 + k2))2 − k2
1(2 k2

2 + P · (k1 − k2) + 2P · (k1 + k2))) (Wµ
1 W

ν
1 −W

µ
2 W

ν
2 )

− ( k2
1 + k2

2 − P · (k1 − k2)− P · (k1 + k2))( k2
1 + k2

2 + P · (k1 − k2)− P · (k1 + k2))

( k4
1 + k4

2 + (P · (k1 − k2))2 + k2
1(2 k2

2 − P · (k1 − k2)− 2P · (k1 + k2)) + k2
2(P · (k1 − k2)
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1 ) ,

(K.55)

Fµν = i εµνρσXρ(W1 −W2)σ, (K.56)

Gµν =
(
k2

1 + k2
2 − P ·X

)
i εµνρσW1ρW2σ −

1
2P · (W1 −W2) i εµνρσXρ(W1 +W2)σ

+Wµ
1 i ε

νρσωXρW1σW2ω −W ν
2 i ε

µρσωXρW1σW2ω,

(K.57)

Hµν =
(
k2

1 − k2
2

)
i εµνρσW1ρW2σ − P ·X i εµνρσXρ(W1 +W2)σ

+Xµ i ενρσωXρW1σW2ω +Xν i εµρσωXρW1σW2ω,
(K.58)
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and

Iµν =P · (W1 −W2) i εµνρσW1ρW2σ −
1
2
(
k2

1 + k2
2 − P ·X

)
i εµνρσXρ(W1 +W2)σ

+Wµ
1 i ε

νρσωXρW1σW2ω +W ν
2 i ε

µρσωXρW1σW2ω,

(K.59)

The eq. (K.50) complies with the Ward identity,

k1µ 〈N(p′) |JµemJνem|N(p)〉 = 0, (K.60)

and

k2ν 〈N(p′) |JµemJνem|N(p)〉 = 0. (K.61)

In eq. (K.50), F7 and F̃1 to F̃5 receives contributions from the interchange of a pseu-

doscalar.

In the case of the proton, F6 receives contributions from QED at tree level

F6 = D−1
B (W 2

1 )D−1
B (W 2

2 ), (K.62)

where DB(s) = m2
B − s.

Some useful relations that we get using the Schouten identity are:

ū(p′) i εµνρσXρ(W1 −W2)σγ5 u(p)

= 1
2mB

ū(p′)
{(
γµγ5 iενρσβ − γνγ5 iεµρσβ

)
Xρ(W1 +W2)σ(W1 −W2)β

+ i εµνρβXρ(W1 +W2)β (/k1 − /k2) γ5
}
u(p),

(K.63)

and

i εµνρσXρ(W1 −W2)σ (/k1 − /k2) γ5

= (W1 −W2)2 i εµνρβγβγ
5Xρ −X · (W1 −W2) i εµνσβγβγ5(W1 −W2)σ

−
[
(W1 −W2)µ i ενρσβ − (W1 −W2)ν i εµρσβ

]
γβγ

5Xρ(W1 −W2)σ.

(K.64)
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If we recall

γµγνγρ = gµν γρ − gµρ γν + gνρ γµ + i εµνρσγσγ
5, (K.65)

using eq. (K.64) and eq. (K.65), we get

ū(p′) i εµνρσXρ(W1 −W2)σ (/k1 − /k2) γ5 u(p)

= ū(p′)
{

[(W1 −W2)µ(W1 +W2)ν − (W1 −W2)ν(W1 +W2)µ] (/k1 − /k2)

+ 1
2X · (W1 −W2)Aµν − [(W1 −W2)µγν − (W1 −W2)νγµ]

(
W 2

1 −W 2
2

)
+ [(W1 +W2)µγν − (W1 +W2)νγµ] (W1 −W2)2

}
u(p),

(K.66)

and

ū(p′) i εµνρσXρ(W1 −W2)σγ5 u(p)

= − 1
2mB

ū(p′)
{

[Xµ(W1 +W2)ν −Xν(W1 +W2)µ] (/k1 − /k2)

+ 1
2X

2 Aµν − [Xµγν −Xνγµ]
(
W 2

1 −W 2
2

)
+ [(W1 +W2)µγν − (W1 +W2)νγµ] X · (W1 −W2)

}
u(p),

(K.67)

where

Aµν ≡ γµ
(
/W 1 − /W 2

)
γν − γν

(
/W 1 − /W 2

)
γµ, (K.68)

with

k1µ ū(p′)Aµν u(p) = ū(p′) {2k1 · (W1 +W2)γν − 2/k1(W1 +W2)ν}u(p) (K.69a)

k2ν ū(p′)Aµν u(p) = ū(p′) {2k2 · (W1 +W2)γµ − 2/k2(W1 +W2)µ}u(p). (K.69b)
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The term proportional to F6 in eq. (K.50) can be written as

ū(p′)
[
DB(W 2

2 ) γµ
(
/W 1 +mB

)
γν +DB(W 2

1 ) γν
(
/W 2 +mB

)
γµ
]
u(p)

= ū(p′)
{1

4
(
DB(W 2

2 ) +DB(W 2
1 )
)
Aµν − 1

2
(
DB(W 2

2 )−DB(W 2
1 )
)
gµν

(
/W 1 − /W 2

)
− 1

2
(
DB(W 2

2 )−DB(W 2
1 )
)

[Xµγν −Xνγµ]

+ 1
2
(
DB(W 2

2 ) +DB(W 2
1 )
)

[(W1 +W2)µγν + (W1 +W2)νγµ]

+1
2
(
DB(W 2

2 )−DB(W 2
1 )
)

[(W1 −W2)µγν + (W1 −W2)νγµ]
}
u(p)

(K.70)

Hence F6 is already in Fi andGj for i = 7, 8, 9, 10 and j = 1, 2, 3, 4, respectively. Therefore

it should be omitted in the decomposition eq. (K.50).

K.3 Goldberger-Treiman (GT) relation

It is posible to split the contributions of the eq. (K.2) using the projectors in eq. (K.31),

〈
N(p′)

∣∣∣Aaµ∣∣∣N(p)
〉

=ū(p′)
[2MN

t
GA(t) + 1

2MN

GP (t)
]

(p′ − p)µγ5 τ
a

2 u(p) {L}

+ ū(p′)
[
γµ −

2MN

t
(p′ − p)µ

]
GA(t) γ5 τ

a

2 u(p) {T},
(K.71)

if we take the divergence of eq. (K.71), we recover eq. (K.3). Including the results from eqs.

(K.18) and (K.33) for t = 0,

∂µ
〈
N(p′)

∣∣∣Aaµ∣∣∣N(p)
〉

=
[
2MNg

a
0 + 2MNF

a
AHA

MA

]
u(p′)iγ5 τ

a

2 u(p), (K.72)

we get

gAMN =
∑
P

gPNNf
a
P +

∑
A

MNF
a
AHA

MA
(K.73)
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where GA(0) ≡ gA = 1.2762(5) [798] is the axial-vector coupling constant which is measured

in (polarized) neutron beta decays. The relation in eq. (K.73) reminds us the usual GT

relation [823], g0MN = gπNNfπ.

K.4 P → `` decays

We know that the most general structure for P → γ∗γ∗ transitions, which complies with

gauge and Lorentz invariance, is given by [825]

〈P |JµemJνem| 0〉 =
{
FPγ∗γ∗(k2

1, k
2
2) εµνρσk1ρk2σ + FCP1

Pγ∗γ∗(k2
1, k

2
2) (k1 · k2 g

µν − kµ2kν1)

+ FCP2
Pγ∗γ∗(k2

1, k
2
2)
(
k2

1k
2
2 g

µν + k1 · k2 k
µ
1k

ν
2 − k2

2 k
µ
1k

ν
1 − k2

1 k
µ
2k

ν
2

)}
ε∗µ(k1)ε∗ν(k2),

(K.74)

where FPγ∗γ∗ is C- and P-conserving, FCP1
Pγ∗γ∗ and FCP2

Pγ∗γ∗ are C-conserving. The last two

are both CP−violating. FPγ∗γ∗ , FCP1
Pγ∗γ∗ and FCP2

Pγ∗γ∗ are symmetric under k1 ↔ k2.

From the eq. (1.111), we can obtain the Pγγ Lagrangian (after interchanging εµνρσ by

−εµνρσ):

LPγγ =
√

2αNC

8πF εµναβFµνFαβ
〈
φQ2

〉
= αNC

24πF ε
µναβFµνFαβ

(
π0 + 1

3(5Cq −
√

2Cs)η + 1
3(5Cq′ +

√
2Cs′)η′

)
.

(K.75)

Thus, 〈
P 0(k1 + k2) |jµem jνem| 0

〉
= irP

αNC

3πF εµνρσk1ρk2σεµ(k1)εν(k2) (K.76)

where

rP =


1 if P = π0,
1
3(5Cq −

√
2Cs) if P = η,

1
3(5Cq′ +

√
2Cs′) if P = η′.

(K.77)
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Therefore, the WZW action is responsible for the decays π0 → 2γ and η → 2γ, and

the interaction vertices γ3π and γπ+π−η. The chiral anomaly makes a very stringent non-

perturbative prediction for the π0 decay width,

Γ[π0 → γγ] =
(
NC

3

)2 α2m3
π

64π3F 2 ' 7.7 eV, (K.78)

which is in excellent agreement with the experimental measurement, Γ[π0 → γγ] =

(7.72± 0.12) eV [3].

Using the Eq. (K.74), we can calculate the amplitude for P → `` decays (see fig. K.2).

P (q)

k

p− k

`+(p)

q − k

`−(q − p)

Figure K.2: Contributions to the P → `` decays via a P coupling to γγ.

Thus,

iM = i
[
gP ū(q − p) iγ5 v(p) + gS ū(q − p) v(p)

]
, (K.79)

with

gP = −2α2m`A(q2)FPγγ(0) (K.80)

and

gS = −i 2α2m`

π2q2β2
`

∫
d4k

FCP1
Pγ∗γ∗(k2, (q − k)2)w1 + FCP2

Pγ∗γ∗(k2, (q − k)2)w2

k2(q − k)2[(p− k)2 −m2
` ]

, (K.81)

where w1 = k ·(q−k) l2 +k ·l [k2 + (k − q)2], w2 = k2 (k−q)2 l ·(l−2k), l ≡ p`−−p`+ = q−2p,

and β` =
√

1− 4m`/q2. As we can see from Eqs. (K.80) and (K.81), gP and gS are CP -even

and CP -odd, respectively.
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A(q2) is given by the loop integral

A(q2) = 2i
π2q2

∫
d4k

(q2k2 − (q · k)2)F̃Pγ∗γ∗(k2, (q − k)2)
k2(q − k)2[(p− k)2 −m2

` ]
(K.82)

which is written in terms of the normalized TFF F̃Pγ∗γ∗(k2, (q−k)2), where F̃Pγ∗γ∗(0, 0) = 1.

The expression for gS in Eq. (K.81) is equal to that in Eq. (3.4) in Ref. [825] when p`+

and p`− are interchanged.

The unpolarized spin-averaged squared matrix element M2 is given by

M2 = 2q2|gP |2 + 2q2β2
` |gS|2. (K.83)

Then, the decay width is

ΓP→`` = 1
8π MP β`

(
|gP |2 + β2

` |gS|2
)∣∣∣
q2=M2

P

. (K.84)

K.4.1 Pseudoscalar meson exchange

The contribution to the HFS in muonic hydrogen due to the exchange of a pseudoscalar

meson is shown in fig. K.3.

µ−(p1) µ−(p2)

k q − k

−p1 − k

q = q1 − q2

p(q1) p(q2)

Figure K.3: Muon-proton interaction produced by a pseudoscalar exchange.

The amplitude of this interaction is given by
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iMP = [N̄(q2)Γ(p)N(q1)][iDP (q2)][¯̀(p2)Γ(µ)`(p1)]

=
[
igPNN ū(q2)iγ5u(q1)

] i

q2 −m2
P

[
igP ū(p2)iγ5u(p1)

]
= −i2mµ gPNN α

2FPγγ(0) A(q2)
q2 −m2

P

[ū(q2)γ5u(q1)][ū(q2)γ5u(q1)]

(K.85)

where we have neglected the contribution from the gS coupling in Eq. (K.79). This is a

good approximation since CP is conserved approximately. A(q2) is defined according to Eq.

(K.82) with q ≡ p2 − p1 = q1 − q2 and p = −p1.

We can use the relations given in Eqs. (K.86) and (K.87),

ur(p) =

 √p · σξr√
p · σ̄ξr

 =
√
E +m

2


(
1− ~σ·~p

E+m

)
ξr(

1 + ~σ·~p
E+m

)
ξr

 , (K.86)

vr(p) =

 √
p · σηr

−
√
p · σ̄ηr

 =
√
E +m

2


(
1− ~σ·~p

E+m

)
ηr

−
(
1 + ~σ·~p

E+m

)
ηr

 , (K.87)

where σµ = (1, ~σ) and σ̄µ = (1,−~σ), to write the amplitude in terms of the two-component

spinor.

Therefore,

ūr(p2)γ5ur′(p1) =
√

(E1 +m1)(E2 +m2)ξ†r
[
~σ · ~p1

E1 +m1
− ~σ · ~p2
E2 +m2

]
ξr′

' ξ†r [~σ · (~p1 − ~p2)] ξr′ ,
(K.88)

and

ū(p2)γµγ5u(p1) =
√

(E1 +m1)(E2 +m2)
2 ξ†r

[
(σ − σ̄)µ + (σ + σ̄)µ ~σ · ~p1

E1 +m1
+ ~σ · ~p2
E2 +m2

(σ + σ̄)µ

+ ~σ · ~p2
E2 +m2

(σ − σ̄)µ ~σ · ~p1
E1 +m1

]
ξr′ ,

' ξ†r
[
m(σ − σ̄)µ + 1

2(σ + σ̄)µ ~σ · (~p1 + ~p2)
]
ξr′ ,

(K.89)

when m = m1 = m2 in the nonrelativistic limit.
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Thus,

iMP = i2mµ gPNN α
2FPγγ(0) A(q2)

q2 −m2
P

[ξ†r ~σ · ~q ξr′ ][ξ†s ~σ · ~q ξs′ ], (K.90)

where q2 ≡ (q1 − q2)2 = (p2 − p1)2 ' −|~q|2 since E1 ' E2 ' m.

The pseudoscalar exchange contribution to the nonrelativistic Yukawa potential in mo-

mentum space is given by

∆VHFS
P (~q) = − MP

4mµmN

= λA(−|~q|2)~σ
(p) · ~q ~σ(µ) · ~q
|~q|2 +m2

P

,

λ = gPNN α
2FPγγ(0)

2mN

(K.91)

where mN is the proton mass. We can obtain the potential in the configuration space by

performing a Fourier transform

∆VHFS
P (~r) = λ

∫ d3~q

(2π)3 e
i~q·~rA(−|~q|2)~σ

(p) · ~q ~σ(µ) · ~q
|~q|2 +m2

P

,

~r = ~x− ~y.
(K.92)

We split the corrections induced by the q2-dependence on A by using the dispersion

relation representation of A(−|~q|2),

A(−|~q|2) = A(0)− |~q|
2

π

∫ ∞
0

d s′
ImA(s′)

s′(s′ + |~q|2 + iε) , (K.93)

neglecting the second term in Eq. (K.93) (q2 → 0), we get

∆VHFS
P (~r) ' λA(0)

∫ d3~q

(2π)3 e
i~q·~r~σ

(p) · ~q ~σ(µ) · ~q
|~q|2 +m2

P

' λA(0)
[
~σ(p) · ~∇x

] [
~σ(µ) · ~∇y

] ∫ d3~q

(2π)3
ei~q·~r

|~q|2 +m2
P

,

(K.94)

the integral corresponds to the static Yukawa potential
∫ d3~q

(2π)3
ei~q·~r

|~q|2 +m2
P

= 1
4πre

−mP r. (K.95)
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Performing the differentiation, we obtain

∆VHFS
P (~r) ' −m

2
P

12πλA(0)
[
~σ(µ) · ~σ(p) V

(P )
SS (~r) + S12 V

(P )
T (~r)

]
, (K.96)

where ~σ(µ) · ~σ(p) is called a spin exchange force and S12 = 3~σ(µ) · r̂ ~σ(p) · r̂ − ~σ(µ) · ~σ(p) a

tensor force, and

V
(P )
SS (~r) = e−mP r

r
− 4π
m2
P

δ3(~r), (K.97a)

V
(P )
T (~r) =

(
1 + 3

mP r
+ 3
m2
P r

2

)
e−mP r

r
. (K.97b)

S12 is the so-called tensor operator and it vanishes for the S wave. Since µ and p have

spin 1/2, we find

~σ(µ) · ~σ(p) =

 1 S = 1

−3 S = 0
(K.98)

For the S wave, we have the following 2-S states: 2SF=0
1/2 and 2SF=1

1/2 . Now we can compute

the expectation values for the Yukawa potential using the radial wave function for 2S states,

ψ2S(r) =
√

(µα)3

2 e−
µαr

2

(
1− µαr

2

)
, (K.99)

where µ is the muon-proton reduced mass 1/µ = 1/mµ + 1/mN .

Thus,

〈
2S
∣∣∣V (P )
SS (~r)

∣∣∣ 2S〉 ≡ Y
(P )
S (mP ) = −(µα)4

m3
P

8 + 11α̃ + 8α̃2 + 2α̃3

4(1 + α̃)4 ,

α̃ = µα

mP

.

(K.100)

Finally, we get the expressions for the shifts in the 2S states of the muonic hydrogen,

∆EHFS
P (2S) = λ̃Y

(P )
S (mP ) for 2SF=1

1/2 , (K.101a)

∆EHFS
P (2S) = −3λ̃Y (P )

S (mP ) for 2SF=0
1/2 , (K.101b)
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where λ̃ ≡ −m2
P

12πλA(0). We recover the same results as in Ref. [812].

The q2-dependence on A induces a correction to the potential in Eq. (K.94), which is

given by

δVHFS
P (~r) = λ

12π2

∫ ∞
0

d s′
ImA(s′)

s′(s′ −m2
P + iε)

[
~σ(p) · ~σ(µ) h

(P )
1 (r, s′) + S12 h

(P )
2 (r, s′)

]
(K.102)

where

h
(P )
1 (r, s′) = s′ 2 e−

√
s′r −m4

P e
−mP r

r
− 4π(s′ −m2

P ) δ3(~r) (K.103)

and

h
(P )
2 (r, s′) = s′ 2

(
1 + 3√

s′r
+ 3
s′r2

)
e−
√
s′r

r
−m4

P

(
1 + 3

mP r
+ 3
m2
P r

2

)
e−mP r

r
. (K.104)

Using the Eqs. (K.96) and (K.102), which are compatible with the results in [812], we

get

∆V HFS
P (~r) = 2SF=1

1/2 − 2SF=0
1/2

= 2gPNNα2FPγγ(0)
3mN

{
A(0)

[
δ(~r)− m2

P

4πre
−mP r

]

− 1
π

∫ ∞
0

ds′
ImA(s′)

s′

[
δ(~r) + 1

4πr(s′ −m2
P )
(
m4
P e
−mP r − s′2e−

√
s′r
)]} (K.105)

with

FPγγ(0) = rP
NC

12π2F
, rP =


1 if P = π0,
1
3(5Cq −

√
2Cs) if P = η,

1
3(5Cq′ +

√
2Cs′) if P = η′.

(K.106)

for P = π, we recover the expression in Eq. (17) for the potential in Ref. [785].

Therefore, the expectation value for a 2S state is

〈
2S
∣∣∣h(P )

1 (r, s′)
∣∣∣ 2S〉 = s′ 2 Y

(P )
S (
√
s′)−m4

P Y
(P )
S (mP ). (K.107)
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So, the overall contribution to the shifts for a 2S state is given by

∆EHFS
P = m2

P

12πλ
〈
~σ(p) · ~σ(µ)

〉
(−A(0) + δA)Y (P )

S (mP ) (K.108)

where

δA = 2
π

∫ ∞
0

d x
ImA(m2

P x
2)

x(x2 − 1 + iε)

x4Y
(P )
S (mP x)
Y

(P )
S (mP )

− 1
 , (K.109)

which is the same result for δA2 in Ref. [812] when Λπ →∞.
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Appendix L

Transition form factors

In this appendix, we describe the different models for the B2S(q2
1, q

2
2) form factor used in

the main text. Specifically, we discuss different variants in order to study the relevance

of the asymptotic behavior. In particular, for the doubly-virtual symmetric kinematics

one has the result in eq. (9.17) (see also Ref. [788]), enforcing B2S(−Q2,−Q2) ∼ O(Q−4)

for large Q2 values. In addition, in the singly-virtual kinematic regime, it is also known

from the light-cone expansion that, for large Q2 values, B2S(−Q2,−q2) ∼ O(Q−4), where

q2 � Q2 [783,788], that is also suggested by L3 data [792,793].

The most simple form factor corresponds to the standard VMD prescription

BVMD
2S (q2

1, q
2
2) = B2S(0, 0)m4

V

(q2
1 −m2

V )(q2
2 −m2

V ) , (L.1)

that, however, fails to describe the singly- and doubly-virtual asymptotic behavior, but is

relevant to our discussion regarding A → e+e− decays. A variant that incorporates the

appropriate high-energy behavior for singly-virtual kinematics is an extended VMD (eVMD)

model with two resonances

B
eVMD/DIP
2S (q2

1, q
2
2) = B2S(0, 0)m4

VM
4

(q2
1 −m2

V )(q2
1 −M2)(q2

2 −m2
V )(q2

2 −M2) , (L.2)

that still fails reproducing the OPE. A simplified variant of this model is the common dipole
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parametrization used in [784,792,793], where mV = M and that we denote as DIP. We can

amend this in a VMD incorporating the high-energy behavior (heVMD/heDIP) as follows

B
he(VMD/DIP)
2S (q2

1, q
2
2) =

B2S(0, 0)m4
VM

4
[
1 + q2

1q
2
2Λ−4

OPE

]
(q2

1 −m2
V )(q2

1 −M2)(q2
2 −m2

V )(q2
2 −M2) . (L.3)

Still, we note that such a form factor does not fulfill the appropriate high-energy behavior for

B2S(−Q2,−q2) unless q2 = 0. To better reproduce the high-energy behavior, we introduce

the following form factor from Ref. [603] inspired in [608], that we label as OPE,

BOPE
2S (q2

1, q
2
2) = B2S(0, 0)Λ4

A

(q2
1 + q2

2 − Λ2
A)2 . (L.4)

It describes L3 Collaboration results provided ΛA is chosen according to the dipole parame-

ters in L3 [792,793] and its doubly-virtual space-like behavior is in good agreement with the

holographic results in Ref. [601], representing our preferred choice.

For the normalization, we take the values for f1, f
′
1 from L3 [792, 793] together with

our estimate in [603, 618] for the a1: B2S(0, 0) = {0.269(30), 0.197(30), 0.245(63)}GeV−2 for

{f1, f
′
1, a1}. Regarding the mass parameter, we take both, for the OPE and (he)DIP variants,

mV = M = ΛA = {1.04(8), 0.926(79), 1.0(1)} GeV , see Refs. [603,618,792,793]. Concerning

the eVMD and heVD models, we fix the M parameter to reproduce the slope from the L3

Collaboration dipole in order to share the same low-energy behavior, which is accomplished

adopting M2 = Λ2
Am

2
V

2m2
V −Λ2

A
∼ 2 GeV for mV = 0.77 GeV. Finally, to ensure the OPE behavior

in eq. (9.17) in he(VMD/DIP) models, we find for ideal/L3 mixing

Λf1,f ′1,a1
OPE /mVM = {1.28(4)/1.37(5), 1.58(7)/1.26(6), 1.44(10)}GeV−1, (L.5)

respectively. In the equation above, we have employed the following mixing scheme f1

f ′1

 =

 cos θ − sin θ

sin θ cos θ


 f 8

f 0

 , (L.6)
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where θ is the mixing angle between the SU(3) singlet (f 0) and octet (f 8) states. Also, it is

possible to write the last expression as

 f1

f ′1

 =

 cosφ − sinφ

sinφ cosφ


 fNS

fS

 , (L.7)

where φ is the mixing angle between the non-strange (fNS) and strange (fS) states. θ and φ

are related through θ = φ− φ0 with φ0 = arctan
√

2 and the ideal mixing angle corresponds

to φ = 0. The angles above relate to the one used in L3 Coll. [792, 793] (θA = 62(5)◦) as

θ = θA− π
2 (φ = θA+φ0− π

2 ). In this study, and following Ref. [618], we take as our preferred

value φ = 0, while we will take into consideration the L3 mixing angle as an additional

uncertainty. Note also recent discussions concerning the mixing angle in Refs. [795,826].
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Appendix M

Higher-order effects in the

non-relativistic potential

In this section we justify the suppression of the terms that have been neglected in evaluating

the nonrelativistic potential in eq. (9.11). In particular, we start noticing the suppression

corresponding to the potential of the kind ṼNR(q2) = (q · σ̂`)(q · σ̂N)[m2
A(m2

A + q2)]−1, that

in position space reads

VNR(r) = 1
3
δ(3)(r)
m2
A

〈σ̂` · σ̂N〉 −
1
3
e−mAr

4πr

[
S12

(
1 + 3

rmA

+ 3
(rmA)2

)
+ 〈σ̂` · σ̂N〉

]
,

⇒ 1
3

[
δ(3)(r)
m2
A

− e−mAr

4πr

]
〈σ̂` · σ̂N〉, (M.1)

where in the last line we have omitted S12 = (3r̂ir̂j − δij)σ̂i`σ̂
j
N , that is a rank-2 symmetric

tensor and does not contribute to S-wave states. Accounting for this, the result reduces to

the combination of the δ(3)(r) contribution and the Yukawa part in eqs. (9.13) and (9.14).

Noting that |Ψ1(2),0,0(0)|2 = (µα)3/[(8)π], the cancellation of the Yukawa and δ terms in
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eq. (M.1) to leading order in (µα/mA) is clear, with the final result reading

∆EHFS
1 =

[
4(µα)4

3πm3
A

1 + ε

(1 + 2ε)2

]
〈σ̂` · σ̂N〉(F=1−F=0), (M.2)

∆EHFS
2 =

[
(µα)4

48πm3
A

8 + 11ε+ 8ε2 + 2ε3
(1 + ε)4

]
〈σ̂` · σ̂N〉(F=1−F=0), (M.3)

where ε = µα/mA. With these results at hand, it is straightforward to show the suppres-

sion from the A1(q2) dependence. Noting A1(q2) = A1(0) + q2

π

∫
dξ ImA(ξ)

ξ−q2 , the first term

corresponds to our main result, whereas the second one leads to a potential of the kind

V (r) = 1
π

∫
dξ ImA(ξ)ξ

[
e−
√
ξr

4πr −
δ(3)(r)
ξ

]
that, in parallel with eq. (M.1), is α suppressed.

Note in addition that the lower threshold in the previous integral corresponds to the inter-

mediate V γ state, so one expects the relevant scale to be above mV .
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B. Jäger, H. B. Meyer, A. Nyffeler, and H. Wittig. The hadronic vacuum polarization

contribution to the muon g − 2 from lattice QCD. JHEP, 10:020, 2017.

[45] Bipasha Chakraborty, C. T. H. Davies, P. G. de Oliviera, J. Koponen, G. P. Lepage,

and R. S. Van de Water. The hadronic vacuum polarization contribution to aµ from

full lattice QCD. Phys. Rev. D, 96(3):034516, 2017.

[46] Christopher Aubin, Thomas Blum, Cheng Tu, Maarten Golterman, Chulwoo Jung, and

Santiago Peris. Light quark vacuum polarization at the physical point and contribution

to the muon g − 2. Phys. Rev. D, 101(1):014503, 2020.

[47] Alexander Keshavarzi, Daisuke Nomura, and Thomas Teubner. g−2 of charged leptons,

α(M2
Z) , and the hyperfine splitting of muonium. Phys. Rev. D, 101(1):014029, 2020.

[48] M. Davier, A. Hoecker, B. Malaescu, and Z. Zhang. A new evaluation of the hadronic

vacuum polarisation contributions to the muon anomalous magnetic moment and to

α(m2
Z). Eur. Phys. J. C, 80(3):241, 2020. [Erratum: Eur.Phys.J.C 80, 410 (2020)].

[49] Friedrich Jegerlehner. The Anomalous Magnetic Moment of the Muon, volume 274.

Springer, Cham, 2017.

374



[50] M. Benayoun, L. Delbuono, and F. Jegerlehner. BHLS2, a New Breaking of the

HLS Model and its Phenomenology. Eur. Phys. J. C, 80(2):81, 2020. [Erratum:

Eur.Phys.J.C 80, 244 (2020)].

[51] Florian Burger, Xu Feng, Grit Hotzel, Karl Jansen, Marcus Petschlies, and Dru B.

Renner. Four-Flavour Leading-Order Hadronic Contribution To The Muon Anomalous

Magnetic Moment. JHEP, 02:099, 2014.

[52] V. M. Aul’chenko et al. Measurement of the e+ e- —> pi+ pi- cross section with the

CMD-2 detector in the 370 - 520-MeV c.m. energy range. JETP Lett., 84:413–417,

2006.

[53] R. R. Akhmetshin et al. High-statistics measurement of the pion form factor in the

rho-meson energy range with the CMD-2 detector. Phys. Lett. B, 648:28–38, 2007.

[54] M.N. Achasov et al. Update of the e+ e- —¿ pi+ pi- cross-section measured by SND

detector in the energy region 400-MeV ¡ s**(1/2) ¡ file1000-MeV. J. Exp. Theor. Phys.,

103:380–384, 2006.

[55] Michel Davier. Low-Energy e+e− Hadronic Annihilation Cross Sections. Ann. Rev.

Nucl. Part. Sci., 63:407–434, 2013.

[56] F. Ambrosino et al. Measurement of σ(e+e− → π+π−γ(γ) and the dipion contribution

to the muon anomaly with the KLOE detector. Phys. Lett. B, 670:285–291, 2009.

[57] F. Ambrosino et al. Measurement of σ(e+e− → π+π−) from threshold to 0.85 GeV2

using Initial State Radiation with the KLOE detector. Phys. Lett. B, 700:102–110,

2011.

[58] D. Babusci et al. Precision measurement of σ(e+e− → π+π−γ)/σ(e+e− → µ+µ−γ)

and determination of the π+π− contribution to the muon anomaly with the KLOE

detector. Phys. Lett. B, 720:336–343, 2013.

375



[59] M. Ablikim et al. Measurement of the e+e− → π+π− cross section between 600 and

900 MeV using initial state radiation. Phys. Lett. B, 753:629–638, 2016. [Erratum:

Phys.Lett.B 812, 135982 (2021)].

[60] T. Xiao, S. Dobbs, A. Tomaradze, Kamal K. Seth, and G. Bonvicini. Precision Mea-

surement of the Hadronic Contribution to the Muon Anomalous Magnetic Moment.

Phys. Rev. D, 97(3):032012, 2018.

[61] M. N. Achasov et al. Measurements of the parameters of the φ(1020) resonance through

studies of the processes e+e− → K+K−, KSKL, and π+π−π0. Phys. Rev. D, 63:072002,

2001.

[62] R. R. Akhmetshin et al. Measurement of e+e− → φ → K+K− cross section with the

CMD-2 detector at VEPP-2M Collider. Phys. Lett. B, 669:217–222, 2008.

[63] J. P. Lees et al. Precision measurement of the e+e− → K+K−(γ) cross section with

the initial-state radiation method at BABAR. Phys. Rev. D, 88(3):032013, 2013.

[64] R. R. Akhmetshin et al. Measurement of omega meson parameters in pi+ pi- pi0 decay

mode with CMD-2. Phys. Lett. B, 476:33–39, 2000.

[65] Bernard Aubert et al. Study of e+e− → π+π−π0 process using initial state radiation

with BaBar. Phys. Rev. D, 70:072004, 2004.

[66] M. N. Achasov et al. Study of the process e+ e- —> pi+ pi- pi0 in the energy region

s**(1/2) from 0.98-GeV to 1.38-GeV. Phys. Rev. D, 66:032001, 2002.

[67] V. M. Aul’chenko et al. Study of the e+ e– → π+π–π0 process in the energy range

1.05–2.00 GeV. J. Exp. Theor. Phys., 121(1):27–34, 2015.

[68] Bernard Aubert et al. The e+e− → π+π−π+π−, K+K−π+π−, and K+K−K+K−

cross sections at center-of-mass energies 0.5-GeV - 4.5-GeV measured with initial-state

radiation. Phys. Rev. D, 71:052001, 2005.

376



[69] J. P. Lees et al. Initial-State Radiation Measurement of the e+e−− > π+π−π+π− Cross

Section. Phys. Rev. D, 85:112009, 2012.

[70] J. P. Lees et al. Measurement of the e+e−→π+π−π0π0 cross section using initial-state

radiation at BABAR. Phys. Rev. D, 96(9):092009, 2017.

[71] Bernard Aubert et al. The e+ e- —> 2(pi+ pi-) pi0, 2(pi+ pi-) eta, K+ K- pi+ pi- pi0

and K+ K- pi+ pi- eta Cross Sections Measured with Initial-State Radiation. Phys.

Rev. D, 76:092005, 2007. [Erratum: Phys.Rev.D 77, 119902 (2008)].

[72] J. P. Lees et al. Study of the process e+e− → π+π−η using initial state radiation.

Phys. Rev. D, 97:052007, 2018.

[73] R. R. Akhmetshin et al. Study of the process e+ e- —> pi+ pi- pi+ pi- pi0 with

CMD-2 detector. Phys. Lett. B, 489:125–130, 2000.

[74] V. M. Aulchenko et al. Measurement of the e+e− → ηπ+π− cross section in the center-

of-mass energy range 1.22-2.00 GeV with the SND detector at the VEPP-2000 collider.

Phys. Rev. D, 91(5):052013, 2015.

[75] R. R. Akhmetshin et al. Study of the process e+e− → π+π−π0η in the c.m. energy

range 1394-2005 MeV with the CMD-3 detector. Phys. Lett. B, 773:150–158, 2017.

[76] Bernard Aubert et al. The e+ e- —> K+ K- pi+ pi-, K+ K- pi0 pi0 and K+ K- K+

K- cross-sections measured with initial-state radiation. Phys. Rev. D, 76:012008, 2007.

[77] Bernard Aubert et al. Measurements of e+e− → K+K−η, K+K−π0 and K0
sK
±π∓

cross- sections using initial state radiation events. Phys. Rev. D, 77:092002, 2008.

[78] J. P. Lees et al. Cross Sections for the Reactions e+e- –> K+ K- pi+pi-, K+ K-

pi0pi0, and K+ K- K+ K- Measured Using Initial-State Radiation Events. Phys. Rev.

D, 86:012008, 2012.

377



[79] J. P. Lees et al. Cross sections for the reactions e+e− → K0
SK

0
L, K0

SK
0
Lπ

+π−,

K0
SK

0
Sπ

+π−, and K0
SK

0
SK

+K− from events with initial-state radiation. Phys. Rev.

D, 89(9):092002, 2014.

[80] J. P. Lees et al. Measurement of the e+e− → K0
SK
±π∓π0 and K0

SK
±π∓η cross sections

using initial-state radiation. Phys. Rev. D, 95(9):092005, 2017.

[81] Michel Davier, Andreas Hoecker, Bogdan Malaescu, and Zhiqing Zhang. Reevaluation

of the hadronic vacuum polarisation contributions to the Standard Model predictions

of the muon g− 2 and α(m2
Z) using newest hadronic cross-section data. Eur. Phys. J.

C, 77(12):827, 2017.

[82] J. Z. Bai et al. Measurement of the total cross-section for hadronic production by e+

e- annihilation at energies between 2.6-GeV - 5-GeV. Phys. Rev. Lett., 84:594–597,

2000.

[83] J. Z. Bai et al. Measurements of the cross-section for e+ e —> hadrons at center-of-

mass energies from 2-GeV to 5-GeV. Phys. Rev. Lett., 88:101802, 2002.

[84] M. Ablikim et al. R value measurements for e+ e- annihilation at 2.60-GeV, 3.07-GeV

and 3.65-GeV. Phys. Lett. B, 677:239–245, 2009.

[85] V. V. Anashin et al. Measurement of Ruds and R between 3.12 and 3.72 GeV at the

KEDR detector. Phys. Lett. B, 753:533–541, 2016.

[86] V. V. Anashin et al. Precise measurement of Ruds and R between 1.84 and 3.72 GeV

at the KEDR detector. Phys. Lett. B, 788:42–51, 2019.

[87] V. V. Anashin et al. Measurement of R between 1.84 and 3.05 GeV at the KEDR

detector. Phys. Lett. B, 770:174–181, 2017.

[88] A. Anastasi et al. Combination of KLOE σ
(
e+e− → π+π−γ(γ)

)
measurements and

determination of aπ+π−
µ in the energy range 0.10 < s < 0.95 GeV2. JHEP, 03:173,

2018.

378



[89] M. N. Achasov et al. Measurement of the e+e− → π+π− process cross section with

the SND detector at the VEPP-2000 collider in the energy region 0.525 <
√
s < 0.883

GeV. JHEP, 01:113, 2021.

[90] E. A. Kozyrev et al. Study of the process e+e− → K+K− in the center-of-mass energy

range 1010–1060˜MeV with the CMD-3 detector. Phys. Lett. B, 779:64–71, 2018.

[91] Fred Jegerlehner and Robert Szafron. ρ0 − γ mixing in the neutral channel pion form

factor F e
π and its role in comparing e+e− with τ spectral functions. Eur. Phys. J. C,

71:1632, 2011.

[92] Zhiqing Zhang. Review of Recent Calculations of the Hadronic Vacuum Polarisation

Contribution. EPJ Web Conf., 118:01036, 2016.

[93] M. Davier, A. Hoecker, B. Malaescu, C. Z. Yuan, and Z. Zhang. Reevaluation of the

hadronic contribution to the muon magnetic anomaly using new e+ e- —> pi+ pi-

cross section data from BABAR. Eur. Phys. J. C, 66:1–9, 2010.

[94] V. Cirigliano, G. Ecker, and H. Neufeld. Radiative tau decay and the magnetic moment

of the muon. JHEP, 08:002, 2002.

[95] G. W. Bennett et al. Final Report of the Muon E821 Anomalous Magnetic Moment

Measurement at BNL. Phys. Rev. D, 73:072003, 2006.

[96] B. Abi et al. Measurement of the Positive Muon Anomalous Magnetic Moment to 0.46

ppm. Phys. Rev. Lett., 126(14):141801, 2021.

[97] J. A. Miranda and P. Roig. New τ -based evaluation of the hadronic contribution to

the vacuum polarization piece of the muon anomalous magnetic moment. Phys. Rev.

D, 102:114017, 2020.

[98] Eite Tiesinga, Peter J. Mohr, David B. Newell, and Barry N. Taylor. CODATA rec-

ommended values of the fundamental physical constants: 2018*. Rev. Mod. Phys.,

93(2):025010, 2021.

379



[99] Peter J. Mohr, David B. Newell, and Barry N. Taylor. CODATA Recommended Values

of the Fundamental Physical Constants: 2014. Rev. Mod. Phys., 88(3):035009, 2016.

[100] Peter J. Mohr, Barry N. Taylor, and David B. Newell. CODATA Recommended Values

of the Fundamental Physical Constants: 2010. Rev. Mod. Phys., 84:1527–1605, 2012.

[101] Vadim Lensky, Franziska Hagelstein, Astrid Hiller Blin, and Vladimir Pascalutsa.

Deuteron VVCS and nuclear structure effects in muonic deuterium at N3LO in pi-

onless EFT. In 10th International workshop on Chiral Dynamics, 3 2022.

[102] Aldo Antognini et al. Proton Structure from the Measurement of 2S − 2P Transition

Frequencies of Muonic Hydrogen. Science, 339:417–420, 2013.

[103] Randolf Pohl et al. The size of the proton. Nature, 466:213–216, 2010.

[104] A. D. Brandt, S. F. Cooper, C. Rasor, Z. Burkley, D. C. Yost, and A. Matveev. Mea-

surement of the 2S1/2-8D5/2 Transition in Hydrogen. Phys. Rev. Lett., 128(2):023001,

2022.

[105] Alexey Grinin, Arthur Matveev, Dylan C. Yost, Lothar Maisenbacher, Vitaly Wirthl,
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[448] G. Hernández-Tomé, G. López Castro, and P. Roig. G-parity breaking in τ− → η(′)π−ντ

decays induced by the η(′)γγ form factor. Phys. Rev. D, 96(5):053003, 2017.

[449] Kazuya Ogawa, Michel Hernández Villanueva, and Kiyoshi Hayasaka. Search for

second-class currents with the τ decay into πην. PoS, Beauty2019:061, 2020.

[450] Gilberto Colangelo, Markus Finkemeier, and Res Urech. Tau decays and chiral per-

turbation theory. Phys. Rev. D, 54:4403–4418, 1996.

[451] G. Ecker and R. Unterdorfer. Four pion production in e+ e- annihilation. Eur. Phys.

J. C, 24:535–545, 2002.

[452] R. Fischer, J. Wess, and F. Wagner. Decays of the Heavy Lepton τ and Chiral Dy-

namics. Z. Phys. C, 3:313–320, 1979.

[453] D. Gomez Dumm, P. Roig, A. Pich, and J. Portoles. tau —> pi pi pi nu(tau) decays

and the a(1)(1260) off-shell width revisited. Phys. Lett. B, 685:158–164, 2010.

[454] D. Gomez Dumm, A. Pich, and J. Portoles. tau —> pi pi pi nu(tau) decays in the

resonance effective theory. Phys. Rev. D, 69:073002, 2004.

[455] R. Barate et al. Measurement of the spectral functions of axial - vector hadronic tau

decays and determination of alpha(S)(M**2(tau)). Eur. Phys. J. C, 4:409–431, 1998.

[456] D. Buskulic et al. Measurement of the strong coupling constant using tau decays.

Phys. Lett. B, 307:209–220, 1993.

412



[457] T. E. Browder et al. Structure functions in the decay tau-+ —> pi-+ pi0 pi0 neu-

trino(tau). Phys. Rev. D, 61:052004, 2000.

[458] M. Feindt. Measuring Hadronic Currents and Weak Coupling Constants in τ → Neu-

trino 3 π. Z. Phys. C, 48:681–688, 1990.

[459] D. Gomez Dumm, P. Roig, A. Pich, and J. Portoles. Hadron structure in tau —> KK

pi nu (tau) decays. Phys. Rev. D, 81:034031, 2010.

[460] Pablo Roig. Hadronic and radiative decays of the tau lepton. PhD thesis, Valencia U.,

2010.

[461] Daniel Gomez Dumm and Pablo Roig. Resonance Chiral Lagrangian analysis of τ− →

η(′)π−π0ντ decays. Phys. Rev. D, 86:076009, 2012.

[462] J. J. Gomez-Cadenas, M. C. Gonzalez-Garcia, and A. Pich. The decay tau- —> K-

K+ pi- tau-neutrino and the tau-neutrino mass. Phys. Rev. D, 42:3093–3099, 1990.

[463] M. Finkemeier, Johann H. Kuhn, and E. Mirkes. Theoretical aspects of tau —> K h

(h) tau-neutrino decays and experimental comparisons. Nucl. Phys. B Proc. Suppl.,

55:169–178, 1997.

[464] M. Davier, S. Descotes-Genon, Andreas Hocker, B. Malaescu, and Z. Zhang. The

Determination of alpha(s) from Tau Decays Revisited. Eur. Phys. J. C, 56:305–322,

2008.

[465] L. Y. Dai, J. Portoles, and O. Shekhovtsova. Three pseudoscalar meson production in

e+e− annihilation. Phys. Rev. D, 88:056001, 2013.

[466] O. Shekhovtsova, T. Przedzinski, P. Roig, and Z. Was. Resonance chiral Lagrangian

currents and τ decay Monte Carlo. Phys. Rev. D, 86:113008, 2012.

[467] I. M. Nugent, T. Przedzinski, P. Roig, O. Shekhovtsova, and Z. Was. Resonance

chiral Lagrangian currents and experimental data for τ− → π−π−π+ντ . Phys. Rev. D,

88:093012, 2013.

413



[468] Stanislaw Jadach, Johann H. Kuhn, and Zbigniew Was. TAUOLA: A Library of Monte

Carlo programs to simulate decays of polarized tau leptons. Comput. Phys. Commun.,

64:275–299, 1990.

[469] S. Jadach, Z. Was, R. Decker, and Johann H. Kuhn. The tau decay library TAUOLA:

Version 2.4. Comput. Phys. Commun., 76:361–380, 1993.

[470] R. Unterdorfer. The One loop functional of chiral SU(2). JHEP, 07:053, 2002.

[471] Zhi-Hui Guo and Pablo Roig. One meson radiative tau decays. Phys. Rev. D, 82:113016,

2010.
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[549] Sébastien Descotes-Genon, Adam Falkowski, Marco Fedele, Mart́ın González-Alonso,
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