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Resumen

El Modelo Estandar de fisica de particulas (ME) es una de las teorias mas exitosas de la
fisica. Sin embargo, hay algunos problemas que el SM no puede resolver, en particular, la
materia oscura, la energia oscura y las masas de neutrinos. Dada la falta de evidencia directa
de Nueva Fisica (NF) en el LHC hasta el momento, se puede recurrir a pruebas de precisién a
baja energia donde una cantidad permitida dentro del ME se mide con un nivel de precision
que podria revelar pequenas desviaciones entre la teoria y el experimento, y asi indicar la
presencia de fisica més alla del modelo estandar. Para ello, es obligatorio contar con célculos
precisos dentro del ME y una forma independiente de modelo que nos permita estudiar los
efectos de nueva fisica. Lo primero se ha logrado gracias a los esfuerzos de varios grupos
en todo el mundo, mientras que el segundo se puede conseguir trabajando en un marco de
teoria de campo efectivo.

Este trabajo se divide en tres partes. En primer lugar, estudiamos el efecto de las in-
teracciones de NF en las desintegraciones hadroénicas del tau, lo cual nos permitio obtener
limites competitivos para interacciones no estandar a través de un ajuste global. En se-
gundo lugar, revisamos las correcciones electromagnéticas y de ruptura de isospin para los

Yy, utilizados como input para las contribuciones de dos piones

decaimientos de 77 — 77
a la polarizacién del vacio hadrénico (a LO) del momento magnético anémalo del muén. Y
finalmente, evaluamos la contribucion de mesones axiales a la estructura hiperfina (HFS) del

hidrégeno muénico.
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Abstract

The Standard Model of particle physics (SM) is one of the most successful theories in physics.
However, there are some problems that the SM cannot address, e.g. dark matter, dark energy;,
and neutrino masses, among others. Given the lack of direct evidence of New Physics at the
LHC so far, one can turn to a low-energy precision test where a quantity allowed within the
SM is measured at a level of precision that could reveal tiny deviations between theory and
experiment and then signal the presence of BSM dynamics. For this industry, it is mandatory
to have precise SM computations and a model-independent way to study the BSM signal.
The former was achieved thanks to the efforts of several groups worldwide, while the second
can be attained in an Effective field theory framework.

This work is divided into three parts. Firstly, we study the effect of NP interactions
in hadronic tau decays getting competitive constraints on these non-standard interactions
through a global fit. Secondly, we revisit the electromagnetic and isospin-breaking correction
to 77 — 7 7%, decays used as input to the two-pion contributions to the hadronic vacuum
polarization (at LO) of the muon anomalous magnetic moment. And finally, we evaluate the

axial-vector contribution to the hyperfine splitting (HFS) in muonic hydrogen.
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Preface

The standard model is a quantum field theory [127-129] that describes the strong, weak, and
electromagnetic interaction, and it has been tested with unprecedented accuracy. Despite its
success, the SM is unable to explain the neutrino mass, the matter-antimatter asymmetry,
the dark matter content in our universe, the accelerated expansion of the universe, and it
doesn’t include gravity. Although many BSM theories have been proposed to address these
issues, plenty of them predict new particles at scales far beyond any current and planned
experiment.

An effective field theory (EFT) provides us with the perfect framework to look up possible
departures from the SM in a model-independent way, for instance, the SMEFT [1,|130] is
the EFT of the SM that realizes its symmetries linearly, where the heavy new physics is
decoupled [131], and all the information about the fundamental theory is already contained
in the Wilson coefficients. Direct searches at colliders have set constraints on the mass scale
of new particles above a few TeVs.

Given the lack of direct evidence of new particles at the LHC so far, the study of precision
observables such as the W mass, the Higgs mass, flavor observables, and (g —2), would allow
disentangling new physics effects. The muon anomalous magnetic moment, a, = (g, —2)/2,
is one of the most precise quantities that provides a stringent test of the SM and a window
to physics beyond the SM (BSM). A long-standing deviation between theory and experiment
about 3 — 4 standard deviations has been observed. The difference between the combination
of the latest measurements from FNAL [96] and the previous one at Brookhaven [95] with

respect to the latest SM prediction [6] increases the significance at 4.2 0.

XXX1



Chiral perturbation theory D and dispersion relations give an excellent description of the
hadronic process at low-energies, where QCD becomes non-perturbative and any computa-
tion from first-principles is not feasible. Nevertheless, there have been several improvements
on the lattice QCD estimations (see [134] for further details).

The thesis is structured as follows: the theoretical framework implemented in this the-
sis, which includes concepts on QCD, EFT, ChPT and dispersion relations is presented in
Chapter [I} In Chapter [2| we highlight the relevance of the leptonic 7 decays in the search of
New Physics and test of LU. Besides, we briefly describe the experimental and theoretical
progress of the hadronic tau decays. In Chapter [3| analogously to leptonic 7 decays we study
the Lorentz structure of the 7= — 7~ 7%y, decays through an EFT analysis that includes
the most general structure allow by the symmetries of the SM. In addition, we investigate
the sensitivity of some observables to non-standard interactions. In Chapter [4, as before we
explore the susceptibility to NP in the 7= — K~n"v. decays. In Chapter , we implement
a global analysis of strangeness-conserving and -changing exclusive hadronic tau decays into
one and two pseudoscalar mesons. Given the theoretical and experimental improvements of
the muon anomalous magnetic moment, we discuss the SM estimation of a, and the input
used for the data-driven approach in Chapter[6] In Chapter[7], we review the isospin-breaking
and electromagnetic corrections to the 7= — 7~ 7%y, decays, which are used as an input to
the two-pion contributions to the hadronic vacuum polarization (at LO) of the anomalous
magnetic moment (a,). An overview of the status of the Lamb shift and hyperfine splitting
in muonic hydrogen is discussed in Chapter [§ In Chapter [0, we focus on the axial-vector

contributions to the hyperfine splitting in muonic hydrogen.

LA nice review of ChiPT is given in [132}/133].
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Chapter 1

Theoretical framework

1.1 Standard Model

The standard model of particle physics is the most successful quantum field theory in de-
scribing three of the four fundamental interactions of electromagnetic, weak and strong type.
Each one of its predictions has been verified, showing an impressive agreement between the-

ory and experiment.

1.1.1 Particle content in the Standard Model.

The particles and fields content of the Standard Model [127-129] (SM) consists of 12 fermions
(spin=1/2), 4 vector gauge bosons (spin=1), and a scalar Higgs boson (spin=0).

There are two types of fermions: leptons and quarks. These are:
« 3 charged leptons (e, u, 7);
« 3 neutrinos (v, v, v;) (or 11, 1o, V3);
e 6 quarks of different flavors.

Every quark can have one of three possible colors. Each fermion has 2 degrees of freedom

e.g., it can have spin up or spin down, or be left- or right-handed. Every fermion particle in



the SM has an antiparticle, f # f, the latter has not yet been verified for neutrinos, which
could be Majorana particles. Traditionally, fermions are known as matter fields, and bosons
as force fields (they are the mediators of SM interactions).

The SM has the following boson fields:
8 vector (spin=1) gluons;
o 4 vectors (spin=1) electroweak bosons: v, Z, W¥;
o 1 scalar (spin=0) Higgs boson.

Gluons and photons are massless and have 2 degrees of freedom (polarizations), Z and W
bosons are massive and have 3 degrees of freedom (polarizations). Massive or massless refers
to the presence or absence of a corresponding mass term in the SM Lagrangian.

Gluons and electroweak (EW) bosons are gauge bosons, their interactions with fermions are
fixed by certain symmetries of the SM Lagrangian. Electrically neutral bosons (H, 7, Z and
gluons) coincide with their antiparticles e.g., v = 7. Each one of the 8 gluons carries both a

color and an anticolor. All this is summarized in Table [I.1]

| @ [ SUB)c SUR)L UQ)y |Q=Ts+Y |
ul 3 2 +2 +2
;. 3 2 i 1
ud p 3 1 +2 +§
774 T T )
o, 1 2 -3 ~1
s 1 2 —% 0
0 o 1 1 ~1 ~1
W= 1 3 0 +1
Z 1 3 0 0
~ 1 1 0 0
H 1 2 +3 0
g 8 1 0 0

Table 1.1: Matter content of the Standard Model. Upperindex ° means these fields are in
the flavor basis.



1.1.2 Constructing the Lagrangian of the Electroweak Model

With all fields discussed above, it is possible to build the most general renormalizable La-
grangian invariant under SU(2), x U(1)y. Given that the symmetry SU(3)¢ commutes with
the SU(2), factor and the fact that the color symmetry is exact, we can ignore color indices
and terms including gluons.

Working in natural units (A = ¢ = 1) in a (1 + 3)—dimensional space, we can see that
(] = E32, [X] = E" and [¢] = E' where X = W', B. For the theory to be renormalizable
we must include all operators OW with i < 4, that can be built with the SM fields, that is

L= Z ;0% = ay 00 4 a4, 0@ as OB + @(4), (1.1)

where [o;] = E*" and [O] = E'.

We will see now which could be these operators:

e For i = 0, O© must be dimension zero, so the only possibility corresponds to a
constant. These terms are negligible working in flat spaces but become important in

curved spaces.

o For i =1, the only possibility is including a boson field, since they are of mass dimen-
sion 1, although these terms would not be invariant under SU(2), x U(1)y, so there

are not operators with ¢ = 1.

o For ¢ = 2, the only possibility corresponds to mass terms of the boson fields. For the
gauge fields, these terms are forbidden since they are not invariant, while for the scalar

fields they are allowed. In the scalar field case this term appears in the potential V' (¢).

o For ¢ = 3, there are several possibilities. On one side, there are the mass terms of the

fermion fields,

Y =Yg + YpYr, (1.2)

since ¢y, is SU(2) doublet and v is SU(2) singlet, these terms are not gauge in-



variant. A term of the form ¢'9#¢ would not be a relativistic invariant. The last
possibility corresponds to couplings between three boson fields X3, X2¢, X¢? and ¢*
which are not invariant under SU(2) x U(1). X¢? terms are generated in the theory
after promoting the global symmetry to a local one, while the X? arise because the

non-abelian nature of the gauge fields.

There are more possibilities for i=4. The kinetic term of the fermion fields
VYO = YLy 0L + YRV Outbr, (1.3)

is invariant as it does not mix chiral components. The scalar field kinetic term,
(0,0)10"¢ is SU(2) x U(1) invariant. A term of the type ¢'0¢p, where O = 9,0,
would be redundant. The kinetic term for the X gauge fields which is SU(2) invariant
corresponds to (X, X") = 3 X! X! where

X =7'X]

,u,l/ — H‘V’

X, =0.X,-0,X,—g fiijﬁXfa (1.4)

fijr being the group structure constant. For the X = B case, the kinetic term, B, B*”
with B, = 8,B, — 8, B,, is U(1)y invariant. Terms of the form (9,X) X? are not
relativistic invariants. Another possibility includes the coupling between 4 gauge boson
fields, the X* terms are not invariant by themselves, but are already included in the
kinetic terms. X3¢ and X¢* are not invariant. Even though the term X?¢? is not
invariant, it appears when promoting the global symmetry to a local one. The term
including the coupling between four scalar fields ¢ is invariant under SU(2);. Lastly,
it is possible to construct a term which is SU(2);, x U(1)y invariant of the form 1)%¢,
in the simplest case, only a complex scalar doublet of SU(2)y, is needed. This requires

a left-handed and a right-handed fermion field, ¥, ¢ ¥g or Yy>d V.



1.1.3 Standard Model of Elementary Particles.

The Standard Model is based on the local gauge symmetry goup G = SU(3)c x SU(2), X
U(1l)y. The SU(3)¢ factor (QCD) has gauge couplings g; and eight gauge bosons (gluons)
G', i = 1---8. This part is not chiral, and acts over color indices of the left- and right-
handed quarks ¢,., where a = 1,2, 3 stands for color and r for flavor. QCD is not broken
spontaneously, so the gluons do not acquire mass.

On the other hand, the electroweak SU(2); x U(1)y factor is chiral. The SU(2);, group has
gauge couplings g, gauge bosons W' (i = 1,2,3), and acts only over the flavor indices of
left-handed fermions. This leads to the Fermi weak charged current interactions, and also
includes a neutral W? boson associated with a fermion phase symmetry. The abelian factor
U(1) has gauge couplings ¢’ and a gauge boson B. This is also chiral, acting over L and
R fermions but with different hypercharge. After spontaneous symmetry breaking (SSB),
SU(2)r x U(1)y is broken to a single U(1)g, incorporating QED with the photon, which is
a linear combination of W3 and B. The orthogonal combination (Z), as well as W*, acquire
mass.

The Standard Model Lagrangian is
L= Lyguge + Ls+ L+ Ly, (1.5)

including the gauge, fermion, Higgs and Yukawa sectors of the theory. There are additional
terms: ghosts and gauge-fixing, entering the quantization, which are not shown above. Gauge

terms are

1 i Vi 1 7 123 1 v
'Cgauge - —EG“VG'LL - EWHVW'UJ - EB'LWB“ 5 (16)



where the field-strength tensors of SU(3)¢, SU(2)r, and U(1)y are, respectively

G, = 0,G, —0,G), — gs [ GLGL, 0,4, k=1---8; (1.7a)
Wi, =0.W, =W, — gfiuWIWE, ijk=1--3; (1.7b)
B,, = 0,B, — 0,B,. (1.7¢)

These include kinetic terms of the gauge bosons as well as self-interacting terms of three and
four points for the G and W*. The abelian gauge boson U(1) does not have self-interactions.
The fermion part of the Standard Model involves F' = 3, where F' is the number of quark

and lepton families. Each family consists of

ud 0
L Doublets : ¢, = T, R, = " : (1.8a)
d° (0
/L mo/L
R Singlets : uY, p, do g, €%, VO 5 (1.8b)

wherein the chiral fields L are SU(2) doublets and the R fields are singlets. Upperindex °
means these fields are weak eigenstates, i.e., with definite gauge transformation properties,
and the elements of each doublet transforming under SU(2)., and m = 1,2, 3 labelling the
family. After SSB, these mix in the mass eigenstate basis. Quarks u” and d° have electric
charges 2/3 and —1/3 (in terms of the electron charge), respectively. There are 2F = 6
quark flavors. Each of them carries a color index u,; g, or dy,; r,. Groups SU(2); and
SU(3)¢ commute, in such a way that QCD conserves flavor, and viceversa. Leptons e~ and
¥ are color singlets and have electric charges —1 and 0. Although there are not R neutrinos
in the Standard Model, these are required in various models to give neutrinos a mass. Here

we have considered R neutrinos simply as SU(2);, singlets. All these fields but v2 , carry

weak hypercharge Y, defined in our convention by

Y =Q T3, (1.9)



where T7? is the third SU(2); generator and @ is the electric charge.

SU(2),, and U(1)y representations are chiral. £, consists entirely of kinetic terms,

F
= > (quz]quL + 0D,
= (1.10)

iy, i Pty + Ay i Py, + 0, i Pl + VmRZlDVmR)

for an arbitrary number of fermion families, F'.

The Higgs part of the SM Lagrangian is

Ly = (D"6)' Dy = V(9), (1.11)
+
where ¢ = . is a complex doublet scalar Higgs field [135-137]. The covariant derivative
¢
is
L9
Duqb—( T W 23>¢ (1.12)

The modulus squared of the covariant derivative acting on ¢ generates interactions between
the gauge boson and the Higgs fields. V' (¢) is the corresponding Higgs potential. Invariance
under SU(2), x U(1)y and renormalizability restrict V' to be

V(g) = +1*d'o + A(0'¢)?,  u? <0 (1.13)

The term Ly, represents Yukawa couplings among fermions and the Higgs doublet, which
are necessary to generate fermion masses through the SSB of chiral gauge symmetries. For

F fermion families, we have

F

£Yuk - - Z {F;ﬁmqmﬁbu R + anQmL¢d2R
m,n=1 (114)

annggnngbenR + FV go L¢VnR] + h‘ C.,



v; U;
Left-handed fermion fields v; = and , of the i-th lepton family, transform
0; d;
as doublets under SU(2), where d; = 32, Vj;d;, and V' is the Cabibbo-Kobayashi-Maskawa
(CKM) [138139] mixing matrix. Right-handed fields are SU(2) singlets. In the minimal
ot
gbo

model there are three lepton families and a complex Higgs doublet ¢ =

1.2 Higgs mechanism

It is convenient to write ¢ in an Hermitian basis

+ 1 -
— + )
¢’ 75 (03 + i)
where ¢; = @T is an hermitian field. In this basis, the Higgs potential takes the form
2

(1.16)

v =y (Ne) + 2 ()

This potential is O(4) ~ SU(2) x SU(2) invariant. This is an example of an accidental
symmetry; the most general potential consistent with the gauge symmetry SU(2) x U(1)
and renormalizability displays a larger symmetry group.

We can choose axes as follows (0]¢;]0) =0, 7=1,2,4y (0]|¢;] 0) = v. In such a way that

1 0
¢—>(0¢0>_U\/§( ) w17

1 1
V() =V (v) = Suv* + 204,

which has to be minimized with respect to v. There are two possibilities, for 2 > 0 the

minimum corresponds to ¥ = 0 and, therefore, the symmetry is not broken therein. On the



other hand, for © < 0 the v = 0 point is unstable, and the minimum occurs for v # 0,
breaking the SU(2) x U(1) symmetry. This gives as solution v = y/ _T“?
Now we turn to the 2 < 0 case, for which the Higgs doublet is replaced, in first approxi-

mation, by its vaccum expectation value, vev (v). Generators corresponding to T, 7% and

T3 —Y are broken,

ol 1 0 1 v
TWw=—— = — 0,
maval, ) TaaEly )7
o’ 1 0 —q v
T? = —— = — 0 1.18
v 2\/§ y 2\/5 O 7é7 ( )
o3 1 (0 —1{ 0
(T3—Y)v:<—Y> =— #0,
2 V2l ) V2l

while Qu = (T? + Y)v = 0, given that the vaccum is electrically neutral, so that U(1)g of
electromagnetism is not broken, and SU(2), x U(1)y — U(1)g.

Thus, the vacuum is only invariant under Q@ = 72 + Y, and the SSB of the three other
generators gives three Goldstone bosons, spinless and massless particles, which appear as
longitudinal polarizations of the gauge bosons W* = (W!FiWW?)/4/2 and Z°. The unbroken
generator (QQ) warrants there is a massless gauge boson, the photon. This process is the
spontaneous symmetry breaking.

It is generally useful to rewrite the ¢ field in terms of a new set of variables using the Kibble
transformation,

= \/§ exp |1 2 R .

14

where the T" are the three broken generators 7%, T2 and T2 — Y, and H is an hermitian
scalar field, the physical Higgs boson. Hermitian £ fields are the Goldstone bosons.

These only appear through derivatives, and disappear in the physical spectrum of the gauge



theory. It is useful to work in the unitary gauge,

o 1 0 ~ 1 v+ H
¢— ¢ =exp|—i) T ¢p=—= ;9= ; (1.20)
[ 2 } V2| y +H V2 0
together with the corresponding transformations of the other fields. Unitary gauge is the
simplest to show the matter content of the theory, because Goldstone bosons disappear and
only physical degrees of freedom survive. Sometimes it is better to work in other gauges
since they facilitate computations at higher orders (loops). Table compares the degrees

of freedom in the unitary ('physical’) and renormalizable gauges.

’ Unitary gauge ‘ Renormalizable gauge ‘
0 Goldstone Bosons 3 Goldstone Bosons
3 massive gauge bosons (W*, 7) 4 massless gauge bosons (W¢, B)
with 3 polarizations (2 T and 1 L) with 2 transverse polarizations (7T)

1 massless Gauge Boson ()
with 2 transverse polarizations (T)

Table 1.2: Comparison between degrees of freedom in unitary and renormalizable gauge (11
in both).

1.3 Lagrangian after SSB

The kinetic term of the Higgs sector in the unitary gauge takes the following form

, 2
(D,¢) D' = ; 0 v) BTZ’W; - “C;BM] ! e (1.21)
1%

We can rewrite it using the relation

W= W3 V2 tW V2w, (1.22)

10



where
:V[/quﬂ/V2 " 472

W+ = — 1.23
vz T > (1.23)
which yields
2.2 2 ’ w312
A U N A ALl
I wrew- o = T2 e
4 Rl [ Vg*+9g” (1.24)

— 2 U1t — M% o

where W* are the charged gauge bosons mediating weak charged current interactions, and

—¢'B + gW3

7 =
N

= —sin Oy B + cos Oy W? (1.25)

is a massive vector gauge boson mediating the weak interactions predicted by the SU(2) x

U(1) symmetry, where fy is the weak mixing angle, defined by

~

/

g . g 9
tanfy = =, sinfy = ————, cosfy = ———. 1.26
V= w 21 g2 w 21 g2 (1.26)
The linear combination of B and W? orthogonal to Z is the photon (), whose field
A = cos Oy B + sin Oy W?, (1.27)
remains massless.
After SSB, the Lagrangian including the Higgs sector is
Ly=(D"$)'Dus—V (9)
HN\? 1 H\?
= MZWHHW, (1 + ) + oM, (1 + ) (1.28)
v v

+ SO =V (9),

11



where the Higgs potential after SSB becomes

Ca

A
T P H?* + AH? + ZH‘*. (1.29)

V() = -
Eq. describes the interactions of massive gauge bosons, W* and Z, with the Higgs
boson, which are ZZH, W W~Z, ZZH? and WW~H?2. The Lagrangian includes a kinetic
term for the Higgs and a corresponding mass term in the potential has been generated,
predicting M7 = —2u? = 2 %
On the other side, the Lagrangian for the fermion field after SSB is

Lp :Z'(Zz W —my (1 + 2]\4W> (5
Zm (1=°) (T W + T W, ) o
) (1.30)
—€ Z @i Vi Ay,
S vt (9 — 947°) iz,

"~ 2cos 0W -

In this expression, e = gsinfy, is the positron electric charge. The Yukawa coupling
between H and 1); in the first term of L, diagonal in the minimal model, is gm;/2Myy .

Gauge boson masses in the EW sector are given (at tree level) by

My = V2, (1.31a)
1 ev
My = —gv = 1.31
W 29 2sin Oy’ (1.31b)
1 —— ev My
7= 5V A 2sin Oy cos Oy cos Oy’ (1.31c)
M, =0. (1.31d)

From them, it can be shown that the limit ¢ — 0 leads to Mz = My,. This is because the
O(4) global symmetry of the potential in Eq. (1.16) is broken to O(3) ~ SU(2) after SSB.
This custodial symmetry (of global type) is respected by the SU(2) gauge interactions in

12



eq. for ¢ = 0, such that My + = Mys = M. Custodial SO(3) symmetry warrants
that the coefficient v be the same for the W= and Z mass terms, even for g # 0, implying
My = My cos Oy . Since this relation has been verified experimentally with great accuracy,
any alternative model of SSB must involve global custodial SU(2) symmetry to keep it.
The second term in Ly represents the weak charged current interaction, where 7" and
T~ are the weak isospin raising and lowering operators. For instance, the coupling of a W

to an electron and a neutrino is

e

¢ Tw-s N + Y
NG {WH ey (1 =" )ve + WivA" (1 — v )e} . (1.32)

For momenta small compared to My, this term gives rise to an effective four-fermion local in-
teraction with strength encoded in the Fermi constant, given by Gr/v/2 = 1/2v? = g% /SM3,.
CP is incorporated in the EW SM by means of a single physical phase in V;;.

The third term in £ describes electromagnetic interactions (QED), and the last one is the

neutral current weak interaction. Their vector and axial-vector couplings are
g%/ = tgL(Z) — 2(], SiIl2 ew, (133&)

g4 = tsr(i), (1.33b)

where t37,(7) is the weak isospin of the i fermion (+1/2 for w; and v;; —1/2 for d; and e;) and
¢; is the electric charge of 1; in units of e.
The first term in eq. (1.30]) also gives masses to fermions and, in presence of right-handed

neutrinos, gives neutrinos a Dirac mass, as well.

13



SU(2) gauge kinetic terms produce self-interactions among three and four fields
Lywwp = —ig cos 9w{(8pZy)WJ W, g™g" — g g" ]+ O,W,)ZW, (97 g" — 9" g"°]
@2 [0 —f@ﬂ}
 iasin b QAW (50 — 7 QDA [ — o
FOWDAI "~ )
(1.34)

and

2

Ly —7 [WJFW;“WU_W_ QHPe _ 9 cos? Oy W 2,7, W - QHve
et ’ g ’ (1.35)
—4 sin By cos QWWJAuZan QMY _ 9 gin? HWWJAVAUW; Qupw] ’

where

Quvpo = 291w9p0 — JupGve — JuoGup- (1.36)

1.3.1 The Yukawa sector and the mixing matrix

We will study now in more detail the Yukawa sector, which is responsible for generating the
mass terms after SSB. Working in the unitary gauge for the ¢ and ¢ fields, one obtains, for

F families

F
v+ H
—Lyup = T u’ .+ (d, e, v) + h.c.
Yuk m%;I mLmn(ﬂ)nR ( )

=) (M" + h“H)u% + (d,e,v) + h.c.,

(1.37)

14



where v = (uf, u; -+ u%; )" is a column vector with F' components, and similarly for u$,.

In this expression M" is an F' X F' matrix,

v
My o—1e Y 1.38

induced by the SSB, and
h' = — = 1.39

is the matrix of Yukawa couplings. Given that I': = does not need to be diagonal, Hermitian
or symmetric, it is necessary to diagonalize M by means of a unitary transformation defined
by A; and Ag, acting on the left- and right-handed fermion fields, respectively. Then,
AYTMU A = MY is a diagonal matrix with real non-negative eigenvalues corresponding to
the up-type quark masses (u). Similarly, we denote the h* eigenvalues as h; with i = u, ¢, t
for I = 3. Likewise, the mass matrices for down-type quarks and leptons can be diagonalized
by

ATMAAL = Md ATMEAL = MY (1.40)

Fields in the mass eigenbasis can be rewritten as upr = A%TR“%,R» drr = ACLlJfRd% r and
lrr =AY 9 5, in such a way that a) M u$, = i, Mpug.

For the quarks case, eigenvalues in Mg’d are the bare masses in the QCD Lagrangian.
Unitary matrices Ay, g can be built from the fact that MM and MTM are hermitian. From

the previous relations, the following can be shown

Aut aru o rut fu Aut A rutasu fu 2 0 miZ 0 0
0 0 ml 0
0 0 0

so then fl% r and their eigenvalues can be obtained with basic techniques. Given the her-

miticity of M MT and MM, eigenvalues of mZT are real and their eigenvectors are orthogonal,

15



m?,_> 0 holding as well. Nonetheless, these matrices are not unique, Af  is only determined
up to phases. In this way, in addition to A} p as solution of Eq. 1 ,also A% = AvKY

and A} = ALK} solves it, where

exp {W?L,R} 0 0 0
Y 0 explidh; ] 0 0 (L42)
’ 0 0 explighy 5| 0
0 0 0

are diagonal matrices with arbitrary non-observable phases. Usual methodology consists in

choosing K} such that all non-physical phases can be removed from the CKM matrix, then

one can choose the phase in K} so that m; be real and non-negative. On the other hand,
% matrices are non-observable in the SM but this does not need to be the case in some of

its extensions.

With these results, the Lagrangian including kinetic terms for the fermions and the Yukawa

sector can be written

i —m, <1+i[ﬂ ¥y, (1.43)

Ly=2 U
where the sum runs over all fermions, quarks and charged leptons. This expression corre-
sponds to the first term in the Lagrangian of Eq. ((1.30)), using the relation v = 2My, /g.

If now we consider the second term of Eq. ((1.30)), which corresponds to the weak charged

current Lagrangian, it can be written as

b = =0 S0 (1) (P03 + TV ) L

—— 2:’% (W + Jiiwt)

16



where the J4I and J& are defined by

F
Ty = 3 [P (L= ")ep, + iy (1= 77)dp,]
m=1
- ) (1.45)
TiE =" (e (1= "), + do (1 = 77)ul |

m=1

in the flavor eigenbasis. Rewriting these currents in the mass eigenbasis yields

Jhy = 2" Vier + 2upy"*Vydy, i

J{/{/T = QEL’}/MVJVL + QCZL'WVJUEH, 140
where ur, dy, ey, and vy, are F component vector columns. The unitary quark mixing matrix,
V, = A%TAdL, describes the misalignement between the flavor and weak eigenbasis for the up-
and down-type quarks. V, is its analog for the lepton case, the PMNS matrix, which is
essential in the description of neutrino oscillations and other processes sensitive to neutrino
masses. For processes insensitive to them one can simply take V, = 7.
For a complex F' x F matrix, there are 2F? real parameters describing it, F? moduli and
F? phases. However, V, is unitary, implying F'(F' + 1)/2 restrictions on the moduli and
F(F — 1)/2 conditions on the phases. We recall that not all these phases are observable,
according to the Kﬁ’d matrices. In this way, we can choose Kz’d freeely to remove 2F — 1
phase differences in V,, so that there are

o F(F-1)  (F-1)(F-2)

(F—1) 5 5

(1.47)

observable parameters, F(F — 1)/2 of them are rotation angles and the remaining (F' —
1)(F —2)/2 are C'P violating phases. From this relation, F' > 2 is needed for violating C'P.

For ' = 3 one has V, = Vog s, with three mixing angles and a C'P violating phase.

17



The third term in Eq. ((1.30)), corresponds to the QED Lagrangian,

EQ = —€ Z %ZEN”%A#

(1.48)
= —eJhA,,
where A, is the photon field and
_ L
=Y a0y = 3 [2a i, — 2, — el
- ~ 13 R (1.49)
2
Zw0yrud — 3dO AHd® — eOyrel,
rewriting this expression in the mass eigenbasis yields
B 2. B 1 K S/t
Jo = W' — gdfy d — evte, (1.50)
so that Jg is diagonal in flavor.
The last term corresponds to the neutral weak current
9 n i i
L2 = = ety 2= V" (9 — 9ir°) 2,
2 cos by =
(1.51)
7J“ Zy,
2 cos 9W
where Z,, is a massive neutral boson. The neutral weak current is
Jy = Z PoAH {tiL (1 —19°) — 2¢, sin® QW} {0
(1.52)
= Zt L1 — 4 — 2sin? Oy J5,
summing over all fermion content. Working with the SM fields,
JY =yl — ddyrd) + DRy — eyl — 2sin? Oy, JG (153)

= Z_LL’}/“UL — JL’}/udL + le’}/HVL — éL’}/H€L — 251n2 0W ‘]57
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showing that the neutral weak current is also diagonal in flavor. These results agree with
the observations of flavor-changing neutral current processes (FCNC), which are very sup-
pressed since they are forbidden at tree level and need to occur through loops, an additional
suppression coming from the GIM [140] mechanism (owing to the unitarity of the CKM

matrix).

1.4 Quantum Chromodynamics

Quantum chromodynamics (QCD), the gauge theory that describes the strong interactions
of colored quarks and gluons, is the SU(3) component of the SU(3) x SU(2) x U(1) Standard
Model. The QCD Lagrangian is given by

-, 1 ,
L= tga (w“@uéab - gsy“taCbAS - mqéab) Yab — ZFﬁ’F‘Z , (1.54)
q

where repeated indices are summed over. The 1), , are quark-field spinors for a quark of
flavor ¢ and mass my, with a color index @ that runs from a = 1 to N¢ = 3. Quarks are said
to be in the fundamental representation of the SU(3) color group.

The Afj correspond to the gluon fields, with C' running from 1 to N3 — 1 = 8. Gluons
transform under the adjoint representation of the SU(3) color group. The t$,, which corre-
spond to eight 3 x 3 matrices, are the generators of the SU(3) group and are related to the
Gell-Mann matrices by t5, = A5 /2. They encode the fact that a gluon’s interaction with
a quark rotates the quark’s color in SU(3) space. The g term (or a; = %) is the QCD
running coupling. Apart from quark masses, which have electroweak origin (and the scale

AQCD | generated by quantum corrections and giving hadrons’ characteristic mass scale), it

is the only fundamental parameter of QCD. Lastly, the field tensor F :‘V is given by

FA = 0,48 — 0,A% — g, fapcAPAS [t 5] = ifapctC, (1.55)

where the fapc are the structure constants of the SU(3) group.
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Neither quarks nor gluons are observed as free particles. Hadrons are color-singlet com-
binations of quark, anti-quarks and gluons.

Ab-initio predictive methods for QCD include lattice gauge theory and perturbative
expansions in the coupling. The Feynman rules of QCD imply a quark-antiquark-gluon
(qqg) vertex, a 3-gluon vertex both proportional to gs, and a 4-gluon vertex proportional to
g%. A list of Feynman rules and examples can be found in Refs. [141}{145].

There is a freedom for an additional CP-violating term to be present in the QCD La-
grangian, 0g= I ;ﬁ,ﬁ Anv where 0 is an extra free parameter, and F4# is the dual of the gluon
field tensor, %EWPUF Ao with €uvop being the fully antisymmetric Levi-Civita symbol. Ex-
perimental limits on ultracold neutrons [146,/147] and atomic mercury [148] constrain the

QCD vacuum angle to be 0] < 1070, Further discussions can be found in Refs. [3,/149).

1.4.1 Running coupling

In the frame of perturbative QCD (pQCD), predictions from observable are expressed in
terms of the renormalized coupling as(ur), a function of an (unphysical) renormalization
scale pug. If pug is taken close to the scale of the momentum transfer () in a given process,
then a,(u% ~ Q?) is indicative of the effective strength of the strong interaction in that
process.

The coupling satisfies the next renormalization group equation (RGE):

5 dag

1 = Blos) = —(boo + bra + baaiy + - -+ ), (1.56)
dpg

where by = (11C4 —4n;Tr)/(127) = (33 —2ny)/(127) is the 1-loop S-function coefficient,
by = (17C3 — nyTr(10C, + 6CF))/(247%) = (153 — 19ny)/(247?) is the 2-loop coefficient
and by = (2857 — 28n; 4 3Bn2) /(1287°) is the 3-loop coefficient for the SU(3) values of

T =1TF = %, Cs = Ng=3and Cp = ];%Vj = %. Here ny is the number of quark flavors.
The 4-loop coefficient, b3, can be found in Refs. [150,[151], while the 5-loop coefficient, by, is
in Refs. [152156]. The by and b3 coefficients (and subsequent) are renormalization-scheme-

dependent and are given here in the modified minimal subtraction scheme (MS) [157], which
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Figure 1.1: Summary of measurements of o as a function of the energy scale @ . The respective
degree of QCD perturbation theory used in the extraction of a is indicated in brackets (NLO: next-
to-leading order; NNLO: next-to-next-to-leading-order; NNLO+res: NNLO matched to a resumed
calculation; N3LO: next-to-NNLO).

is the most used scheme in QCD.

The minus sign in Eq. is the origin of Asymptotic Freedom [158,[159], i.e. the fact
that the strong coupling becomes weak for processes involving large momentum transfers
(“hard processes”). In the 0.1—1 TeV range, as ~ 0.1, while the theory is strongly interacting
for scales around and below 1 GeV.

Many experimental observables are used to determine a,. A number of recent determi-
nations are collected in Ref. . Further discussions and considerations on determinations
of a, can also be found in Refs. . A summary for the results of a,(Q?) obtained
at discrete energy scales (), now also including those based just on NLO QCD, is shown in
Fig. [1.1l Thanks to the results from the Tevatron and from the LHC, the energy scales, at

which ay is determined, now extend up to almost 2 TeV.
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1.4.2 Quark masses

Free quarks have never been observed, which is understood as a result of a long-distance,
confining property of the strong QCD force: up, down, strange, charm and bottom quarks
all hadronize, i.e. become part of a meson or baryon, on a timescale ~ 1/A%“P: and, on
the other hand, the top quark decays before it has time to hadronize. This feature makes it
challenging to define what a quark mass is, for that one needs to adopt a specific prescription.
A perturbatively defined prescription is the pole mass, m,, which corresponds to the position
of the divergence of the propagator. This is close to the physical picture of mass. Nonetheless,
it suffers from a badly behaved perturbative series which makes it ambiguous to an amount
related to APCD [164-166] when it is related to observable quantities. An alternative is the
MS mass, m,(u%), which depends on the renormalization scale jip.

For the masses of heavier quarks, one quotes either the pole mass or the MS mass eval-
uated at a scale equal to the mass, m,(m ) light quark masses are often quoted in the MS
scheme at a scale g ~ 2GeV. A series that starts as m, = m,(7;) <1 + == 4% (mg) O« ))
relates the pole and MS masses, while the scale-dependence of MS masses is given at leading

order by

i ) [0 00| i) (157
HR @

A more detailed discussion can be found in Ref. [167] and references therein.

In perturbative QCD computations of scattering processes, one neglects (i.e. sets to zero)
the masses of all quarks, whose mass is significantly smaller than the momentum transfer in
the process. Further details about perturbative calculations are summarized in the section

“Quantum Chromodynamics” in Ref. [3].
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1.5 Effective Field Theory

Effective field theories are a powerful tool to describe low-energy physics, where low is
defined with respect to some energy scale A. They only take explicitly into account the
relevant degrees of freedom i.e., those states with m < A, while the heavier excitations
with M > A are integrated out from the action. Thus, the information about the heavier
degrees of freedom is contained in the couplings of the resulting low-energy Lagrangian.
While effective field theories include an infinite number of terms, renormalizability is not a
problem in view of the fact that, at any order in the energy expansion, the low energy theory
is specified by a finite number of couplings, which permits an order-by-order renormalization.
In most of beyond-SM theories that have been considered to date, reduction to the SM at low
energies proceeds via decoupling of heavy particles with masses of order A or larger. At the
perturbative level, this decoupling is described by the Appelquist-Carazzone theorem [131].

The theoretical basis of effective field theory (EFT) [168] can be written as a theorem [169,
170]

For a given set of asymptotic states, perturbation theory with the most general Lagrangian
containing all terms allowed by the assumed symmetries will yield the most general S-matrix
elements consistent with analyticity, perturbative unitarity, cluster decomposition and as-
sumed symmetries.

The interested reader is referred to various reviews [168,171,]172] for a broader survey of

the subject.

1.5.1 EFT expansion

The EFT Lagrangian has an expansion in powers of the operator dimension

(D) ~(D)
¢; 0, L
Lorr= 3 “ioea = 2 joe (1.58)

D>0,i D>0

where OZ(D) are the allowed operators of dimension D. All operators of dimension D are

combined into the dimension D Lagrangian Lp. In Eq. (1.58)) the sum does not end when
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D = d, but includes operators of arbitrarily high dimension. A scale A is introduced so
(D)

that the coefficients ¢;”’ are dimensionless. A represents the short-distance scale at which
new physics occurs, but what is really relevant for theoretical calculations and experimental
measurements is the product c¢p AP, not cp and AP separately. A is a suitable tool that
makes it clear how to organize the EFT expansion.

When d = 4,

- Ly Lo
Lrr —E’D§4+X+E+"' (1.59)

Lgpr is given by an infinite series of terms of increasing operator dimension, and must
be treated as an expansion in powers of 1/A. If you try and sum terms to all orders, you
violate the EFT power counting rules, and the EFT breaks down.

At energies below A, the behaviour of the different operators is determined by their

dimension. We can distinguish three types of operators:

e Relevant (D < 4)
o Marginal (D = 4)
o Irrelevant (D > 4)

The interactions induced by the Fermi Hamiltonian in Eq. , which are dimension
D = 6, are suppressed by two powers of My,, and are thus irrelevant. They are called
irrelevant since their effects are suppressed by powers of E/A and are thus small at low
energies. However, this does not mean they are are not important. Indeed, they usually
contain the compelling information about the underlying dynamics at higher scales.

The four-fermion interactions are important as they generate the leading contributions
to flavour-changing processes or to low-energy neutrino scattering. Nonetheless, if the mass
of the W and Z bosons were 109 GeV, any signal of the weak interaction would have never

been observed.
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As opposed, a coupling of positive mass dimension gives rise to effects which become large
at energies much smaller than the scale of this coupling. Therefore, operators of dimension
less than four are called relevant, since they become more important at lower energies.

In a four-dimensional relativistic field theory, the number of possible relevant operators

is quite low:

e D = 0: The unit operator,
« D = 2: Boson mass terms (¢?),

« D = 3: Fermion mass terms (¢/¢) and cubic scalar interactions (¢?).

At very high energies (E > m), finite mass effects are negligible, nevertheless they
become relevant when the energy scale is comparable to their mass.

Dimension-four operators are also important at all energy scales and are called marginal
operators. They are between relevant and irrelevant operators since quantum effects could
modify their scaling behaviour on either side. ¢*, the QED and QCD interactions, and the
Yukawa 1)1)¢ interactions are well-known examples of marginal operators.

As long as there is a large mass gap between the energy scale being analyzed and the
scale of any heavier states (i.e. m, E < M), the effects induced by irrelevant operators are
always suppressed by powers of E/M, and can usually be neglected. The resulting EFT is
called renormalizable and only contains relevant and marginal operators. Its predictions are
valid up to E/M corrections, that can be calculated to the desired precision (marked by the

experimental uncertainty).

1.5.2 Fermi Theory of Weak Interactions

The Fermi theory of weak interactions [173] is an EFT for weak interactions at energies
below W and Z masses. It is a low-energy EFT constructed from the SM fields.
In the SM, weak decays proceed at lowest order through the exchange of a W* boson

between two fermionic left-handed currents (except for the heavy quark top which decays
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Figure 1.2: Integration of the W boson out from the electroweak theory yields the Fermi
effective interaction, which is exemplified here for the muon decay.

into a real W and a bottom quark). The momentum transfer conveyed by the intermediate
W is very small compared to My,. Thus, the vector-boson propagator is reduced to a contact

interaction (see Fig. [1.2)):

Gr
Heg = —= T T, 1.60
ff \/ijﬂj ( )
where
T = V(1 = 75)Vapdy + > 0eyu(1 — 75)0, (1.61)
ab V4

with V,;, the Cabibbo-Kobayashi-Maskawa mixing matrix E|, and

Gr_ ¢
V2 8ME,

(1.62)

is the so-called Fermi coupling constant.

Since it is not possible to produce a physical W boson at low energies (E < My, ), the W
field does not have to be included in the theory. The transition amplitudes, that correspond
to the weak decays of leptons and quarks, are well described by the effective Hamiltonian
in Eq. , which contains dimension-six operators and, then, a coupling of dimension
—2 (in powers of energy). The relation between the effective coupling and the parameters

(9, M) of the underlying electroweak theory (matching condition) is established by Eq.
(T.62).

IFor simplicity, the 4-fermion Hamiltonian in Eq. ((1.60)) is written in terms of the flavor-eigenstate basis
of neutrinos, nonetheless they can be also expressed in the mass-eigenstate (v1,v2,v3) through the PMNS
mixing matrix [174}/175].
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Expanding the T propagator in powers of ¢>/M32,, one would get fermionic operators of
higher dimensions, which generate corrections to Eq. (1.60)). With a precision better than
mfc /M3, where m; is the mass of the decaying fermion, we can neglect these contributions.

Considering the leptonic decay ¢ — {'vpvy, the decay width is then given by:

, Gam3 , (m2
F(g —/ I/g/l/g) = 15;271.;]0 (m%> , (163)

where f(z) =1 — 8z + 8z® — x* — 122?log x. The global mass dependence, I' ~ G%m?,
results from the dimension of the Fermi coupling since I' must have dimension 1. Additionally,
there is a three-body phase space factor of 1/(4m)3, in consequence, the explicit calculation
needs to take into account a global factor of 1/3 and a function f(m2/m?) containing the
dependence on the final lepton mass.

The Fermi constant is obtained from p decays; thus, Eq. gives a parameter-free
prediction for the leptonic 7 decays. Therefore, the m? dependence of the decay width
implies the following relation

5
my 7

Br(r™ = e vevr) =7 - I(17 = e lery) = ~ 17.77%, (1.64)

=
which is comparable with the experimental value (17.811 %+ 0.041)% [5].
The effective Hamiltonian can also be used to study the low-energy neutrino scattering
off either quarks or leptons. A similar dimensional argument forces the cross-section to scale

with energy as

o, ~ G% s, (1.65)

where s is the squared of the total energy in the center-of-mass frame. This behaviour
eventually points out to the failure of the EF'T, at energy scales where the W boson becomes

dynamical.
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1.5.3 SMEFT

Provided that the Standard Model leaves many questions unanswered, a solution involving
some physics beyond the standard model (BSM), which may include new heavy particles with
masses M > v much above the scale of electroweak symmetry breaking (v ~ 246 GeV), is
around the corner. While at present we do not know the UV theory, we can construct its low-
energy effective theory - the so-called SMEFT - by extending the familiar Standard Model
Lagrangian with higher-dimensional local operators built out of Standard Model fields [1}
1304|176H178]:

™ o
Lo 1.66
M (1.66)

Lsmerr = Lsm + Z Z

n>1 i

These new operators OZ(”), with mass dimension D = 4 + n must respect the symmetries
of the SM, such as Lorentz invariance and gauge invariance. In this framework, there is an
infinite set of operators, but there exists only a finite set of dimension D operators, and
the contributions of these operators to any given observable are suppressed by powers of
(v/M)P~* relative to the contributions of the operators of the SM (there are processes which

are first possible beyond the SM, at D > 4, like lepton and/or baryon number violation).
The lowest-order operators contributing to Eq. (1.66) will be discussed below.

Dimension 5 operators

Imposing the SM gauge symmetry constraints on dimension-5 operators leaves out just a
single one [130], up to Hermitian conjugation and flavor assignments. This contribution can

be written as
Quv = €pemn’ 9" (6,)TCLY = (§16,)TC("4,), (1.67)

where C' is the charge conjugation matrix. @,, violates the lepton number by two units.
After the electroweak symmetry breaking, it generates neutrino masses and mixings. Neither

Eg\)/[ nor the dimension-six terms can do the job (this is only possible at odd dimensions).
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Dimension 6 operators

All the independent dimension-six operators that are allowed by the SM gauge symmetries
are showed in Tabs. and[1.4] Dirac indices are always contracted within the brackets, and
not displayed. The same is true for the isospin and color indices in the upper part of Table
1.4 In the lower-left block of that table, color indices are still contracted within brackets,
while the isospin ones are made explicit. Color indices are displayed only for operators
violating the baryon number B in the lower-right block of Table[I.4l All the other operators
in Tables [I.3] and [T.4] are both B and L conserving.

XS 906 y §04D2 77/12903

Qo | [APOGGIrao | Q, (1) Qep (' o) (Lperp)
Rz fABCGZ‘”GVB’JG,?“ Qy (¢Te)D(p'p) Qugp (') (Gpur@)
Qw Ef j i %Wj ”W[f; “ Il Qup | (#TDFe)*(¢TDup) || Qug (¢'0) (@pdr )
Qp | EWIWewEn

X2302 ?,DQX(,D @Z)QQOQD
Qqc plpGL, G Qaw | (Lotve )T W], || QY (w*f_? uwp) ()
Qua | #leGha™ || Qi | (Go"e)eBu | Q4 | (2D o) (r'y4,)

_ - <=
Quw | @reWL, Wl Que | (4o T u) @G, | Que | (911 D o)
Qui | WL, W Quw | (g0 u)T'¢Wi, | QU) (@*j_lg ) (@ qr)

Qen ‘PTQOBWBW Qub (q_pa“”uT)gBBw, prsq) (@Ti D ©) (quI'y“qr)
ng ‘PT%OEWBW Quc ((ijWTAdT)chﬁy Qpu (@Tiguso)(ﬂw“ur)
Qews | 'T'oWiL,B" | Qaw | (Gpo"d)T" oW, || Qua | (¢l D Le)(dy*d,)
Quis | WL || Qus | (@0"d)pBu || Quua | (911D ) (ipydy)

Table 1.3: Dimension-six operators other than the four-fermion ones [1].

All the bosonic operators (X?, X2p? @b y ©*D?) are Hermitian. Those containing X,
are C'P-odd, while the remaining ones are C'P-even. For the operators containing fermions,
Hermitian conjugation is equivalent to transposition of generation indices in each of the
fermionic currents in classes (LL)(LL), (RR)(RR), (LL)(RR), and 1*p?D? (except for
Qo).

If C'P is defined in the weak eigenstate basis then Q(:L)QT are C'P-odd (-even) for all

the fermionic operators. However, C'P-violation by any of those operators requires a non-
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(LL)(LL) (RR)(RR) (LL)(RR)
Que (P%L ) (L™ ly) Qee (épfyuer)(is'wet) Que (pryugr)(és'wet)
QW | (@uar) (@7 a) Quu (upvuur)(un“ut) Qe (Ll ) (s ue)
Q(z) (@77 4 ) (@ " 1) Quad (dpyudy)(d sVMdt) Qua (Lpvulr) (dsytdy)
Qétlz) (p%t ) (@7 ) Qeu (é r)(_s'VMut) Qqe (ijV,uqr)(és'Vuet)
Q) | G )@ ™ q) | Qe | Emen)drtd) | QW | (Ga) (s ue)
Q4 <mu7><cinﬂdt> QY | (@ T4q) (@A Tuy)
Qu | (7 Tu,) (dy " TAdy) @512 (G (dsy" dy)
Q| (@7, T"q,)(dy"T4d,)
(LR)(RL) y (LR)(LR) B-violating
@Mq (Gen)(duad) Quug e Pesl(ds) Cull[(q7) T Clf]
%“qd (@u)en(@d) || Qugu eMejul(qs?) Cqf[(u)" Cey)
vt | (@) (@TAL) || Qg el (g3 Caf (g7 Ol
Qﬁequ Eeen@u) | Qua () Cuf)[()) " e
Qi | (Boye)e(qio™ u,)

Table 1.4: Four-fermion operators [1].

vanishing imaginary part of the corresponding Wilson coefficient.

Including the entries in Tables and [I.4], there are 15 bosonic operators, 19 single-
fermionic-current ones, and 25 B-conserving four-fermion ones, which give a total of 15+19+
25 = 59 independent dimension-six operators 1], while B-conservation is imposed. Thanks
to the use of the equations of motion and Fierz identities the total number of dimension-six

operators in Ref. [130] is reduced from 80 to 59 due to the redundancy of some operators.

1.5.4 EFT below My

Below the electroweak scale, one can write a low energy effective theory (LEFT) with quark
and lepton fields, and only QCD and QED gauge fields. The operators have been classified
in Refs. [179,/180], see also Ref. |172]. The fact that SU(2) gauge invariance is no longer a
requirement, implies that there are several new types of operators beyond those in SMEFT.

The complete renormalization group equations up to dimension-six have been worked out
for LEFT [179,|180]. Since the theory has dimension-five operators, there exist non-linear

terms from two insertions of dimension-five operators for the dimension-six running. Various
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pieces of the calculation have been studied before [181-192].

1.5.5 Principles of Effective Field Theory

The basic ingredients needed to build an EFT can be summarized as follows [168]:

1. Dynamics at low energies (large distances) does not depend on details of dynamics at

high energies (short distances).

2. Choose the appropriate description of the important physics at the considered scale.

If there are large energy gaps, put to zero (infinity) the light (heavy) scales, i.e.,
0—m>FE>M<+— . (1.68)

Finite corrections induced by these scales can be incorporated as perturbations.

3. Non-local heavy-particle exchanges are replaced by a tower of local (non-renormalizable)

interactions among the light particles.

4. The EFT describes the low-energy physics, to a given accuracy ¢, in terms of a finite

set of parameters:
log(1/€)

E/M)% ) > e dy S4+—L—

(1.69)

5. The EFT has the same infrared (but different ultraviolet) behaviour than the under-

lying fundamental theory.

6. The only remnants of the high-energy dynamics are in the low-energy couplings and

in the symmetry of the EFT.
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1.6 Chiral Perturbation Theory

Since at low energies the strong coupling constant, gs becomes large, a perturbative de-
scription of QCD in terms of quarks and gluons is no longer valid. In order to describe
the dynamics of QCD at low energies, an effective field theory description known as Chi-
ral Perturbation Theory (xPT) |169;/193,194], which is based on chiral symmetry, emerges
as a successful and powerful tool. The theory is predictive up to some low-energy con-
stants fitted from observables. For that reason, Lattice becomes the only truly ab initio
nonperturbative method to solve QCD at low energies. Further details can be found in

Refs. [2,132,(133}/195-199].

1.6.1 Chiral symmetry

In the absence of quark masses, the QCD Lagrangian with Ny (N; = 2 or 3) massless quarks
q: (u’d’...)T
1 - .
Loop = _ZGZVGZV +iqy" Duqr + 1qry" Dyuqr, (1.70)

has a global symmetry

SU(Ny)rL @ SU(Ny)r@U(1)y @ U(1) 4.

chiral group G

At the effective hadronic level, the quark number symmetry U(1)y is realized as baryon
number. The axial U(1)4 is not a symmetry at the quantum level because of the Abelian
anomaly [200-202]. Therefore, this Lagrangian is invariant under independent global G =

transformations of the left- and right-handed quarks in flavor space:

qrL G, grqr, 4r G, 9RAR, gr,r € SU(Ny)L,R. (1.71)

The Noether currents associated with the chiral group G are [}

2\, are Gell-Mann’s matrices with Tr(Ag\p) = 284p-
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Aa
N =w"Fa,  (X=L R a=1-.8) (172)

and the corresponding Noether charges Q% = [ d®zJP(z) satisfy the familiar commuta-

tion relations

[Q%, Q%] = i0xy fareQ% (1.73)

which were the beginning of the Current Algebra methods of the sixties.

The chiral symmetry, which should be approximately good in the light quark sector
(u,d,s), is nonetheless not seen in the hadronic spectrum. Even though hadrons can be
nicely organized in SU(3)y representations, degenerate multiplets with opposite parity do
not exist. Furthermore, the octet of pseudoscalar mesons is much lighter than all the other
hadronic states. Concerning this experimental evidence, the ground state of the theory (the
vacuum) should not be symmetric under the chiral group. Thus, the SU(3), ® SU(3)g
symmetry spontaneously breaks down to SU(3).;r and, in compliance with Goldstone’s
theorem [203], an octet of pseudoscalar bosons appears in the theory.

If we now consider a Noether charge () and assume the existence of an operator O

satisfying

(0][@Q, OJ|0) # 0; (1.74)

this can only be possible if Q|0) # 0. Thus, Goldstone’s theorem tells us that there is a

massless state |G) in a manner that

(0]J°|GY(G|O]0) # 0. (1.75)

The quantum numbers of the Goldstone boson are determined by those of J° and O.
The quantity in the left-hand side of Eq. is known as the order parameter of the
spontaneous symmetry breakdown.

Given the fact that there exists eight broken axial generators of the chiral group, Q% =

Q% — Q%, there should be eight pseudoscalar Goldstone bosons |G*), which can be linked
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with the eight lightest hadronic states (7, 7=, 7°, 5, K*, K=, K° and K°); the explicit
breaking of the global symmetry of the QCD Lagrangian produced by the quark-mass matrix
is responsible for their small masses. Hence, O® must be a pseudoscalar operator, and the

simplest possibility is O% = gy5\.q, which satisfies
. 1 2 )
(Ol[Q%, 4r52a]10) = =5 (01a{Aa; Ao }4]0) = — 734 {0]G40). (1.76)

Therefore, the quark condensate

(0]au|0) = (0]dd|0) = (0]5s]0) # 0 (1.77)

is the natural order parameter of Spontaneous Chiral Symmetry Breaking (SCSB).

1.6.2 Effective chiral Lagrangian at lowest order

Given that there is a mass gap between the pseudoscalar octet and the rest of the hadronic
spectrum, it is possible to build an effective field theory that contains only Goldstone modes.

The main assumption is the pattern of SCSB:

G=5SU(3),®SUB)r 225 H = SU®3)y. (1.78)
Denoting ¢* (a = 1,- - -, 8) the coordinates representing the Goldstone fields in the coset
space G /H, and choosing a coset representative £(¢) = (£4(0),Er(0)) € G, the change of

the Goldstone coordinates under a chiral transformation g = (g1, gr) € G reads

E0(0) 2 gr&r(@)h(6.9),  Er(ed) = grér(®)hi(e, 9), (1.79)

where h(¢, g) € H is a compensating transformation which is needed to recover the cor-
responding coset &; in general, h depends both on ¢ and g. Since the transformation h(¢, g)
appears in both sectors, left and right (this two can be related by a parity transformation,
which leaves H invariant), we can eliminate it by combining the two chiral relations in Eq.

(1.79):
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U6) S grU(d)gh,  U(9) = Er(0)€L(0). (1.80)

Besides, we can take a canonical choice of coset representative in order that {g(¢) =

£ (¢) = u(¢). The 3 x 3 unitary matrix

U(9) = u(@)’ = exp{iv2®/f} (1.81)

allows a very convenient parametrization of the Goldstone fields

5 AR K+
O(z) = 5 0= m — 5+ s KO | (1.82)
K~ K" _%7]8

where f is the decay constant of the pseudo-Goldstone bosons in the chiral limit (m, =
mg = ms = 0), and 7g is the octet component of the 7 meson.

Although U(¢) transforms linearly under the chiral group, the induced transformation
on the Goldstone field q; is highly non-linear.

The recipe to get a low-energy effective Lagrangian is the same, we write the most
general Lagrangian involving the matrix U(¢), which is consistent with chiral symmetry.
The Lagrangian is organized in terms of increasing powers of momentum (or, equivalently,
increasing number of derivatives) and since parity conservation requires an even number of

derivatives, this can be written as:

Leg(U) =) Lon. (1.83)

At low energies, the terms with a minimum number of derivatives will dominate.
Since U is a unitarity matrix (UUT = I), the leading-order Lagrangian is given by

f2

EQ—Z

(0,U0"U), (1.84)

where (- - -) denotes the trace in flavor space. Expanding U(¢) in powers of ¢, one obtains

the Goldstone kinetic terms plus a tower of interactions involving an increasing number of
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pseudoscalars.
The effective field theory technique becomes much more powerful when the couplings to
external classical fields are introduced. An extended QCD Lagrangian, with quark couplings

to external Hermitian matrix-valued fields v,, a,, s and p, can be written as:
Loco = Loop + T (v +750,) ¢ — G (s — i75D) 4, (1.85)

The external fields will allow us to compute the effective realization of general Green func-
tions of quark currents in a very straightforward way. Besides, they can be used to include
the electromagnetic and semileptonic weak interactions, and the explicit chiral symmetry

breaking through the quark masses:

Ty =V, +a, =—eQA,,

(&
b=t = e = =R = o (WiT +hc.) (1.86)
s=M,
p=0,

where () and M denote the quark-charge and quark-mass matrices, respectively,

1
Q= gdlag(l —1, _1)a M = dlag(mm mq, ms) ) (187)

and 7' is a 3 x 3 matrix which contains the relevant Cabibbo-Kobayashi-Maskawa factors

0 Vud Vus
Th=10 0 o0 |- (1.88)
0 0 0

The Lagrangian in Eq. (1.85)) is invariant under the following set of local SU(3),®SU (3)r

transformations:

qr = 9rqr, qr — YR4R, s+ip — gr (s +1ip) gh, (1.59)

b, — gqugE + igLauQL Ty — QRRMQE + igRaung%-
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Restricting ourselves to this symmetry, we can build a generalized effective Lagrangian
for the Goldstone bosons, in the presence of external sources. Local invariance forces the

gauge fields v,, a, to appear only through the covariant derivatives

DU =0,U —ir,U +iUlyu,  D,U"=0,U" +iU'r, —il U, (1.90)

and through the field strength tensors

FI = orr — oV er — a0 0¥], FE = otr? — oVrt —d[rt, r”]. (1.91)

At leading order in momenta, the most general effective Lagrangian, which is consistent

with Lorentz invariance and (local) chiral symmetry, is given by [193,194]

2
Ly = J; (DUDUT + XU +X1U) | (1.92)
where x = 2By(s + ip), and By is a constant, which, like f, is not fixed by symmetry
requirements alone.
The external field technique provides a powerful tool for computing the chiral Noether

currents. The Green functions are obtained as functional derivatives of the generating func-

tional Z[v, a, s, p|, defined via the path-integral formula
expliZ] = /DchjDG# exp [z’/d‘leQCD} = /DUexp {i/d‘lxﬁeff} . (1.93)

At lowest order in momenta, the generating functional reduces to the classical action Sy =
[ d*xLs; for that reason, the currents can be trivially computed by taking the appropriate

derivatives with respect to the external fields:

Jr=a e = ?52 - %fQD“UTU = \%ow - % (e D ®) + 0%/ 1),
o
. . (1.94)
_ .05y i f i 4=
g B, = 2% — " 2D T— _ bd 2 3
Jh = Grv qn 5 G /PP = 5D 2(<I>D ®) +O(®%/f).

At O(p?), f is equal to the pion decay constant, f = f, = 92.2 MeV, which is defined as
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(O[(J5) 2| ) = iv2 fxp". (1.95)

Likewise, when a derivative with respect to the external scalar and pseudoscalar sources

is taken,
i 0S5 f? "
T1qR = —722 = —BoU(¢)i,
d(s —ip)I 2

) (1.96)

Thogh = _iﬂ - —LBOUT(_‘%'

R d(s + ip)t 2 7

a relation between the quark condensate and the constant By is established

(01¢’q'|0) = — f?Bod". (1.97)

The Goldstone bosons, which are parameterized by the matrix U(¢), correspond to the

zero-energy excitations over this vacuum condensate.

1.6.3 Pseudoscalar meson masses at the lowest order

When s = M and p = 0, the non-derivative piece of the Lagrangian generates a quadratic
mass term for the pseudoscalar bosons, plus ®?" interactions proportional to the quark

masses. With this, one finds:

JZ2BO<M(U +U") =By {<M<I>2> + 61J02<M<I>4> +0 (;Ii) } : (1.98)

The computation of the trace in the quadratic term provides the relation between the

masses of the physical mesons and the quark masses:

M?Z: = 2By, M2 = 2mBy — e + O(€?),

2
Mri = g(m +2m,) By + € + O(€?),

with
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1 B w — 2
=S tmg,  e= Do

: (1.100)

(ms —m)

Thanks to the chiral symmetry, the meson masses squared are proportional to a single
power of the quark masses, the proportionality constant is related to the vacuum quark

condensate [204]:

f2M2% = —m(0]uu + dd|0). (1.101)

By factorizing the proportionality factor By, the relations in Eq. (1.99) imply the old
Current-Algebra mass ratios [2041205],

Mzi o MI2(+ . MIZ{Q ~ ?)Mgs

(1.102)

O My +ms  mg+ms 20+ 4m,’
and, up to O(m, — my) corrections, the Gell-Mann-Okubo [206},207] mass relation,

3M; =AMy — M. (1.103)

Since the absolute values of the quark masses are short-distance parameters that depend
on QCD renormalization conventions, chiral symmetry cannot fix them by itself. The renor-
malization scale and scheme dependence cancels out in the products m,qq ~ m,B,, which
are the relevant combinations determining the pseudoscalar masses. Fortunately, YPT pro-
vides information about quark mass ratios, which does not depend upon By (i.e., QCD is

flavor blind). When the tiny O(¢) is neglected, one gets the following relations:

ma—ma (Mo — M) — (M2 — M2)

Mg + My M2, ’
. 9 5 (1.104)
ms—m Mo — Mz _ 196
2m M2,

In the first equation, the electromagnetic pion mass-squared difference has been sub-
tracted to account for the virtual photon contribution to the meson self-energies. In the

chiral limit (m,q4s = 0), this correction is proportional to the square of the meson charge

39



and its the same for K™ and 7" (this result is known as Dashen’s theorem [208]). These

relations imply the quark mass ratios advocated by Weinberg [205]:

My 2 Mg mg = 0.55:1:20.3. (1.105)

Thus, quark mass corrections are governed by the strange quark mass m,, which is much
larger than m, and mg. The light-quark mass difference my — m,, is not small compared
with the individual up and down quark masses. Given the fact that isospin-breaking effects
are dominated by the small ratio (mgq — m,)/ms, isospin then turns out to be a very good
symmetry.

The O(p?) chiral Lagrangian encodes all the Current-Algebra results obtained in the
sixties [209,/210]. The pattern of SCSB in Eq. and the explicit breaking, which is
incorporated by the QCD quark masses, are corroborated by these successful phenomeno-
logical predictions. Aside from its elegant simplicity, the EFT formalism provides a powerful

technique to estimate higher-order corrections in a systematic way.

1.6.4 ChPT at O(p?)

At next-to-leading order in momenta, O(p?), the calculation of the generating functional

Z|v,a, s, p| involves three elements:

1. The most general effective Lagrangian of O(p*), L4, to be considered at tree level.
2. One-loop graphs with the lowest-order Lagrangian Ls.

3. The Wess-Zumino (1971)-Witten (1983) functional to account for the chiral anomaly.

O(p*) Lagrangian

At O(p*), the most general Lagrangian invariant under parity, charge conjugation and the

local chiral transformations in Eq. (1.89)), reads [194]
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Ly =L(D,U'D"U)* + Lo(D,U'D,UY{D*UTD"U) + L3y(D,U'D*UD,U'D"U)
+ Ly(D,UD*UY U + X'U) + Ls(D, U D*U(UTx + x'U))
+ Le(UTx + XTU)? + Lo (Utx — x1U)? + Ly (xXTUXTU + UtxUTY) (1.106)
—iLg(F'D,UD,U" + FI*D,U'D,U) + Lio(U'F§'UF,.,)

+ Hi(Fru PR+ FruFr”) + H2<XTX>-

The terms proportional to H; and Hy do not contain the pseudoscalar fields and are then
not directly measurable. Thus, at O(p*) we need ten additional coupling constants L; to
determine the low-energy behavior of the Green functions. These constants parameterize
our ignorance about the details of the underlying QCD dynamics. In principle, all the
chiral couplings are calculable functions of Aqgcp and the heavy-quark masses, which can
be analysed with lattice simulations. Nevertheless, at this moment, our main source of
information about these couplings is still low-energy phenomenology. At this order, the
elastic 7w and 7K scattering amplitudes are sensible to L; 2 3. The two-derivative couplings
L, 5 generate mass corrections to the meson decay constants (and mass-dependent wave-
function renormalizations), while the pseudoscalar meson masses are modified by the non-
derivative terms Lg 7 8. Lg is mostly responsible for the charged-meson electromagnetic radius
and Lo only contributes to amplitudes with at least two external vector or axial-vector fields,

such as the radiative semileptonic decay m — ev,7.

The chiral anomaly

Under an infinitesimal chiral transformation

gr=1+ila=pB)+-, gr=1+ila+pB)+- -, (1.107)

with a = a, 7% and g = (3,1, the anomalous change of the generating functional is given

by [211]:

d0Zv,a,s,p| = /d4 x)), (1.108)

167r2
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where Ng = 3 is the number of QCD colors,

4 2 8 4
Qz) = " |v0,, + gvuayv,,ap + gi{vw, asap,} + giaa%u% + 3oty (1.109)

with €0123 — +1, and

Uy = OpU, — 0,0, — 1V, vy, V,a, = 0ua, —i[v,, ay). (1.110)

() only depends on the external fields v, and a,, which have been assumed to be
traceless. This anomalous variation of Z is an O(p*) effect in the chiral counting. Up to this
point, we have imposing chiral symmetry to construct the effective ChPT Lagrangian. Given
that chiral symmetry is explicitly violated by the anomaly at the fundamental QCD level,
one needs to include an additional functional Z, with the property that its change under
a chiral gauge transformation yields Eq. . This functional was first constructed by
Wess and Zumino [212], and reformulated in a nice geometrical way by Witten [213]. The
WZW action is then given by
_ Ne

24072

N
- is < / A" e (WU, €)% — W (L, £,

SWU L, rlwaw = /daijklm <EiLEJLE£EZLE£L>

(1.111)

1
WU, £, 7) s = <U€#€y€aUT7‘5 + JUGU U s + U860,y
+ 10, UL U rg — iSlt, UTr Uls + SEUT0,roUls L112)
1.112
— SIS U Uls 4 S, 00ls + S50, 0o ls — iS50, 064

1
+S 8L S i25252565> _ (L& R),
where

Sh=UU, ~ SF=U8U", (1.113)

and (L < R) stands for the interchanges U < U', ¢, > r, and X < Xf. The

integration in the first term of equation (1.111)) is over a five-dimensional manifold whose
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boundary is four-dimensional Minkowski space. The integrand is a surface term; thus both
the first and second terms of Sy zw are O(p?), in compliance with the chiral counting rules.

The effects induced by the anomaly are completely calculable due to their short-distance
origin. The translation from the fundamental quark-gluon level to the effective chiral level
is unaffected by hadronization problems. The anomalous action in Eq. has no free
parameters. The most general solution to the anomalous variation (Eq. ) of the QCD
generating functional is given by the WZW action plus the most general chiral-invariant
Lagrangian.

The anomaly term does not get renormalized. Thus, quantum loops insertions of the
WZW action generate higher-order divergences that obey the standard Weinberg’s power
counting and correspond to chiral invariant structures. These are renormalized by the LECs
of the corresponding xPT operators.

Since a Levi-Civita pseudotensor is present, the anomaly functional gives rise to inter-
actions that break the intrinsic parity. These vertices are absent in the LO and NLO yPT
Lagrangians because chiral symmetry only allows for odd-parity invariant structures starting
at O(p%). So, the WZW functional breaks an accidental symmetry of the O(p?) and O(p?)
chiral Lagrangians, giving the leading contributions to processes with an odd number of

pseudoscalars.

1.6.5 Higher-order corrections

The strucuture of the O(p®) YPT Lagrangian has also been studied. It contains 90 + 4 inde-
pendent chiral structures of even intrinsic parity (without Levi-Civita pseudotensors) [214],

the last four involving external sources only, and 23 operators of odd intrinsic parity [215,216]:

94 2
Le=> COV +> COr. (1.114)

i=1 =1

The complete renormalization of the x PT" generating functional has been achieved at two-
loop level [214], which determines the renormalization group equations for the renormalized

O(p®) LECs.
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XPT is an expansion in powers of momenta over some typical hadronic scale A,, associ-
ated with the SCSB, which can be expected to be of the order of the (light-quark) resonance
masses. The variation of the loop amplitudes under a rescaling of i provides a natural
order-of-magnitude estimate of the SCSB scale: A, ~ 47 fr ~ 1.2GeV [217,218].

At O(p?), the YPT Lagrangian is able to describe all QCD Green functions with only
two parameters, f and By, an impressive achievement. Nonetheless, with p < My (M), we
expect O(p*) contributions to the LO amplitudes at the level of p*/A2 < 20% (2%). Aiming
to increase the accuracy of the yPT predictions beyond this level, the inclusion of NLO
corrections is required, which introduces ten additional unknown LECs. Many more free
parameters (90 + 23) are needed to account for O(p°®) contributions. In consequence, the
predictive power of the effective theory is reduced when the precision is increased.

The present knowledge of the O(p*) LECs (L;) is summarized in Table[L.5] The numbers
correspond to the renormalized couplings, at a scale u = M,. The second column shows the
LECs extracted from O(p*) phenomenological analyses [219], without any estimate of the
uncertainties produced by the missing higher-order contributions. The third column shows
the results obtained from a global O(p®) fit [219], which includes some theoretical priors
on the unknown O(p®) LECs. Since the number of parameters is increased at NNLO, the
O(p®) values should be taken with care, however they can give a good estimation of the
potential uncertainties. The O(p°) determination of Lf,(M,) has been directly extracted
from hadronic tau decay data [220]. In contrast, the fourth column displays the results of
lattice simulations with 2 4 1 + 1 dynamical fermions by the HPQCD collaboration [221].
Analogously, the results with 2+ 1 fermions were obtained by the MILC collaboration [222],
while their errors are larger. A similar compilation of LECs for the ny = 2 theory can be
obtained in Refs. [219]223].

The numbers reported in the table are in good agreement with the expected size of the
couplings L; in terms of the scale of SCSB:
R

L.
YA 4(4m)

-3
5 ~2-107°, (1.115)
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LI (M) x 103

i O@Y) [219]  O@@®) [219]  Lattice [221] RxT [224] RxTsp [225,226]
1 1.0+01 0.53+0.06 0.6 0.9
2 1.6+£02 0814004 1.2 1.8
3 —38+03 —3.0740.20 —2.8 —4.8
4 00403 03 (fixed)  0.09+0.34 0.0 0.0
5 12401 1.01+£006 1.1940.25 1.2f 1.1
6 00+£04 0144005 0.1640.20 0.0 0.0
7 —03+02 —0.3440.09 —0.3 —0.3
8 05402 047£0.10 0.55+0.15 0.5 0.4
9 69407 5.9+ 0.4 6.91 7.1
10 —52+01 —414+04 ~5.8 5.3

Table 1.5: Phenomenological determination of the renormalized couplings LT (M,) from O(p?)
and O(p®) xPT analyses, and from lattice simulations. The fifth and sixth columns show the
RxT predictions without and with short-distance information, respectively. Values labeled
with 1 have been used as inputs [2].

where the normalization of £, and A, ~ 47 f; have been taken as references. Hence, all
O(p*) couplings have the right order of magnitude, which implies a good convergence of the
momentum expansion below the resonance region, i.e., for p < M,. Nonetheless, this table
shows a clear hierarchy with some couplings being large while others seem compatible with

Zero.
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1.7 Dispersion theory

Dispersive techniques are powerful, model-independent methods based on the fundamen-
tal principles of analyticity (the mathematical manifestation of causality) and unitarity (a
consequence of probability conservation). By exploiting nonperturbative relations between
amplitudes, they allow for a resummation of rescattering effects between final-state particles,
in contrast to a strictly perturbative y PT expansion in which such effects would be treated
order-by-order only. Dispersion theory, coupled with xPT, then allows one to extend the
xPT effective description of strong dynamics from low energy to an intermediate-energy

range where resonances start to appear.

1.7.1 Analyticity

Let us take as an example a form factor F'(s), which is a function of a single Mandelstam
variable s. In several cases, these form factors are real below some threshold, s < sy, while
above threshold, s > s;,, they have both real and imaginary parts, the latter due to the
propagation of on-shell intermediate states. Analyticity allows us to relate the real part of
the form factor to its discontinuity or imaginary part. In order to completely exploit these
properties one needs to analytically continue s into the complex plane where the discontinuity
is represented as a branch cut along the positive real axis, for s > s, see Fig. The
form factor is then a complex-valued function F'(s) of complex argument s, which has the

following properties:
1. F(s) is real along the real axis for s < sy, and
2. F(s) is analytic in the entire complex plane except along the branch cut.

The sign of the imaginary part of F(s) along the cut is fixed by the convention F(s + i€) =
ReF'(s) +ilmF(s), where € is a positive infinitesimal quantity.

Starting from the Cauchy’s integral formula

F(s)zl_]{ds'F(S)
2mi Jo s —
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any
A

Figure 1.3: Symbolic representation of the Cauchy contour in the complex s plane. Reprinted
from Ref. [10].

and performing the integral on the contour in Fig. [1.3] one obtains

Fls) = L ( SA dS,F(s’ +i€) — F(s' — ie) N /|SI_A2 dS,F(s')>

21 h s’ —s s’ —s
A2 ) , . (1.117)
_ L ds/dlscF<S>+/ PRLICORY
278 \Jsen s —s |s'|=A2 §' — s

When the Schwartz’s reflection is applied, F(z*) = F(z), one gets
discF(s) = F(s +i€) — F(s —ie) = F(s +ie) — F*(s + i€) = 2(ImF(s + ie), (1.118)

and then

1 A ImF'(s") 1
F(s)=— [ ds—"250 —/ d . 1.119
() T Jsen ° s’ — 5 —1€ * 271 J|s'|=A2 ° s'—s ( )

Now, if the second integral vanishes in the limit A — oo, we obtain an unsubtracted

dispersion relation:

0o /
F(s) = 1 ds’ mF(s')

T Jsn s —s—1€

(1.120)

This relation is very powerful: it implies that the form factor F'(s) can be reconstructed
anywhere in the complex plane provided we know its absorptive part along the branching

cut, which is in turn given by unitarity.
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In addition to the unsubtracted dispersion relation, if F'(s) does not approach zero fast

enough at infinity, more substractions can be performed at s = sq < sy, Applying one

substraction,
1 A2 ImF(s 1 F(s
F(s) - Flso) = = [ ag 2Dy L[ eI
T Jsn §'—s—1e 2w J)s'|=A2 s’ —s
(1.121)

(L ds’LlF(S,) + 1/ ds' ()
T Jsy, s’ — s 21 Jis'j=A2 8" — 59

ds'  ImF(s) s — So , F(s)
o e ey (1122)

s— 5y (A
F(s)=F /
(s) (s0) + T s ST — 898 — s —e€ 21

one obtains

Now, the last expression contains one more power of s’ in the denominator, which ensures

a better convergence when A — oco. In that case, one obtains the once-subtracted dispersion

ImF(s) (1.123)

s—589 [ ds
F(s)=F / .
(5) (s0) + T sip S — Sp S — 85— 1€

relation:

The n-times-subtracted dispersion relation at s = sq is given by
ds’ ImF (s
g ImF(s) (1.124)

(s —so)" /OO
F - Pn - )
(5) (s = 50) + T sm (8 — o) s — s —ie

where P,(s — sg) is a polynomial of power n — 1 in (s — sq). It is possible to perform

subtractions in different points given that they are on the real axis to the left of the branch
cut.

1.7.2 Unitarity

Unitarity is a fundamental property of the S-matrix:
STS =1. (1.125)

The decomposition of the S-matrix into the identity and the nontrivial scattering matrix

T, S =1+14T, implies
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—i(T —T" =T'T. (1.126)

When this relation is sandwiched between initial and final states and a complete set of
intermediate states is inserted on the right-hand side, we arrive at the well-known optical
theorem

1
Ty = o S @m)*'sW(P, — BT T, (1.127)

where time-reversal invariance has been assumed and (f|T]i) = (2m)*@ (P; — P)T}.

Considering the scattering of two incoming and two outgoing particles, and assuming
that we are in an energy region where only elastic final-state rescattering is allowed. Thus,
from Eq. (1.127)), the only intermediate state is |n) = |f) and the completeness sum reduces
to an integral over the intermediate momenta:

d3Q1 d3Q2

(2m)*
Ty = - | 5 — a1 — a0) T T 198
T 57 ) 2B (2n)%2E, (27) (pi = a1 = @) T Ty (1.128)

The symmetry factor S is 2 for indistinguishable particles and 1 otherwise. Here, ¢; =
(E;, q;) denotes the on-shell four-momenta of the two intermediate particles, and the total
initial and final four-momenta are p; = K + & = p; = p+p’ = (1/s,0) in the center-of-mass
frame. Defining 6 (0') as the angle between p and k (g;) the three-momenta, and integrating
over the delta function, the following relation is found

ImTy(s,0) — ——_ 11l [ T35, 0TG5, ), (1.129)
8(2m)2S /2

where d) = sin#'df'd¢ and |q,| = /s/4 — m2 as an example of an intermediate state of
two pions. A unitarity relation similar to that in Eq. results also when we consider a
production amplitude or a form factor that produces the final state f in the elastic regime.

Let us take a look at the pion form factor, which is an essential ingredient throughout

the development of this thesis. This is defined as

(7 (@)7(p) 17u(0)] 0) = (' = p) FY (s), (1.130)
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Figure 1.4: Graphical representation of the discontinuity relation for pion form factors, where
the black disc represents the form factor, while the gray disc represents the pion-pion scattering
T-matrix, projected onto the appropriate partial wave. Reprinted from Ref. [10].

where

. 2 _ 1- 1_
j,u, = gu’)/uu — gd’)/ud — 58”}/“5 (1131)

denotes the electromagnetic vector current for the light quarks. The unitarity relation in

Eq. (1.129) becomes

mFY (s) = o(s) (£25)  FY (s) x 0(s — 4m?2), (1.132)

™

where o(s) = /1 —4m2/s, and t/=Z}(s) is the 77 P-wave isospin I = 1 scattering am-
plitude. The Eq. (1.132)) is depicted in Fig. . If the unitarity relation to #i(s) is now
applied, we find

Tmt}(s) = o(s) |t1(s)[ x 6(s — 4m?). (1.133)

Since t!(s) can be written as t!(s) = [t1(s)] €19, the Eq. (1.133) leads to

L) — sin 0y
()] o(5) (1.134)

when this expression is used in Eq. (1.132)), we get

ImFY (s) = sin 0t (s)e 1 FY () x 0(s — 4m2). (1.135)

Writing FY (s) = |FY (s)]|e*v(®), where ¢y is the phase of the vector form factor, then

the unitary equation implies ¢y = d1(s) which means that unitarity forces the phase of the
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form factor to be equal to the 77 (elastic) scattering phase. This is the well-known Watson

theorem [227] that holds only in the elastic region.

1.7.3 Omnes formalism

The solution to the form factor in Eq. (|1.132)) is easily obtained in terms of the so-called
Omnes function Q](s) [22§],

FV(s) = R(s)Q(s), Q(s) = exp{s h ds'W}, (1.136)
" 7w Jam2 (s — s — ie)

where R(s) is a function free of right-hand cuts up to the first inelastic threshold. At low
energies, R(s) can be approximated by a polynomial whose coefficients need to be determined
by other means, e.g., by matching to chiral perturbation theory near s = 0. The Omnes
function is completely given in terms of the appropriate pion-pion phase shift, which is
particularly useful thanks to the excellent information on pion-pion scattering at our disposal
[229/-232]. The Omnes function then represents the exact resummation of elastic two-body

rescattering to all orders. For instance, the pion vector FY (s) as extracted from 7= — 7~ 70,

decays [18] can be described very well up to /s = 1GeV by Eq. with a linear
polynomial R(s) = 1 + ays. At higher energies, the nonlinear effects of higher, inelastic
(0, p") resonances become important [233]. For the pion vector form factor measured in
ete” — mtn~ 21,5354, 57-59], the isospin-violating mixing effect with the w-meson needs
to be taken into account [234]. More refined representations parameterizing inelastic effects
beyond roughly 1 GeV have employed conformal polynomials instead, which also allows for
better high-energy asymptotic behavior of the form factor [235-237]. Egs. and
have also been generalized and employed frequently to describe coupled channels,
e.g., mm <+ KK scalar form factors [238-245], by promoting the Omneés function to a matrix
with a coupled-channel T-matrix as input. Nevertheless, the coupled-channels description
does not permit a compact closed form as in Eq. .

In order to describe more complicated amplitudes such as four-point functions, a more

complex unitarity relation needs to be considered due to the presence of left-hand cuts.
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Figure 1.5: Illustrative representation of the inhomogeneus unitarity relation in Eq. (1.137):
the homogeneus term similar to a form factor unitarity relation (left), plus the projection of a
typical diagram representing crossed-channel dynamics (right), giving rise to the inhomogeneus
Omnes problem. The double line renders a heavy particle with its three-body decay partial wave
represented by the blue dot, the single lines illustrate the three outgoing decay products that
rescatter elastically (red dots). Reprinted from Ref. [10].

These are a consequence of crossing symmetry and unitarity in the crossed channel: for
example, the pion-pion scattering amplitude possesses not only a cut in the s-channel for
s > 4m?2, but also for t,u > 4m2. Therefore, after projection onto s-channel partial waves,
the crossed-channel unitarity cuts translate into another discontinuity on the negative axis
for s < 0. Separating right- and left-hand cuts into individual functions f1(s) and f%(s) of
(s-channel) isospin I and angular momentum J, the unitarity condition in Eq. yields

Imf1(s) = sin 5§(s)e’i§§(s) (f}(s) + ff(s)) 0(s — 4m2), (1.137)

where the inhomogeneity,

< +l ! ! /
fis)= > [1 dcos® cos™ 0 el f1 (¢ (s, cos ), (1.138)

n,I’,J'

is then a consequence of the singularities in the ¢- and u-channels, and ensues from their

rjJ

. are process-dependent coefficients

projection onto the s-channel partial wave. Here, ¢
and t(s, cosf) is the appropriate crossed-channel Mandelstam variable as a function of the
energy squared s and scattering angle 0. Fig. [L.5] shows the two terms on the right-hand
side of Eq. , which represents the inhomogeneus Omnes problem.

Given that both fZ(s) and the Omnes function Q% (s) are analytic on the whole complex

plane except on the real axis when s > sy, gh(s) = fL(s)/Q4(s) has the same analytic

properties. The imaginary part of g4(s) on the upper rim of the cut can be computed:
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_ Imfj(s)Re)(s) — Refj(s)ImQ)(s) _ Imfj(s)2)(s) — f7(s)ImQ)(s)

Img?(s) = TRYE i(s)[*
190 [€255)]
_ (F1(s) + f3(s)) e @5 sin 5{,(5)95(83 — [1(5)Q2h(s)e7 1) sin 5 (s) (1.139)
A Q2 (s)]|
_ [i(s)sind)(s)
Q)

Thus, the solution of the inhomogeneus Omnes problem is given by the n-times subtracted

dispersion relation for gf(s) solved for f1(s),

Fi(s) = QL(s) (Pn(s — so) + <S_7f°>n/°° ) f(5)sind,(s) ) . (1.140)

(8" — s0)(s" — s — i€)

The inhomogeneus Omneés problem provides a possible dispersion-theoretical description

of three-body decays in the form of Khuri-Treiman equationsE] [246,1247].

3A detailed description for the 7 — 37 decay can be found in Ref. [10].
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Chapter 2

Tau physics

2.1 Introduction

The 7 lepton was discovered in 1975 by Martin Lewis Perl [248] at the Stanford Positron
Electron Asymmetric Rings (SPEAR) in SLAC, although it was anticipated previously by
Yung-su Tsai [249]. Since then, it has been a subject of extensive experimental analyses.
The tau lepton belongs to the third generation and decays into particles belonging to the
first and second generations (except to the charm quark). These leptons are excellent probes
to perform SM precision tests and look up New Physics. The structure of the Electroweak
gauge sector has been successfully measured at the level of 0.1 to 1%, corroborating the SM.
Moreover, the hadronic 7 decays turn out to be a unique laboratory to investigate the strong
interaction at low energy, since the tau is the only massive enough lepton that can decay
into hadrons. Tau decay data is especially useful to obtain a precise determination of the
QCD coupling, the mixing matrix CKM element |V,,|, and the strange quark mass.
Leptonic tau decays have been measured with an astonishing precision. This allows
to study the effects produced by additional non-standard interactions to the SM through
extensions in the effective theory that include the coupling with both spinless and tensor
sources. In Chapters [3| and |4 we scrutinize the 7= — 7~ 7%, and 7= — K 1", decays,

respectively, in a similar way to the analyses in Refs. [250,251] for the (") and (K7)~ decay
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modes. Subsequently, in Chapter [f, we perform a global analysis of strangeness-conserving
and -changing exclusive hadronic tau decays into one and two pseudoscalar mesons. But
before that, in this chapter, we will review some well-known facts about (semi-)leptonic tau

decays.

2.2 Lepton decays
Yy vy
- e, u,d,s
7, Ve, Uy, Uy T
Figure 2.1: Feynman diagrams for u= = e v, and 77 = X v (X~ = €7V, i~ 1y, du, su).

The decays of the charged leptons, u* and 7F, stem through the W-exchange diagrams
in Fig. [2.1] with the SM Lagrangian for charged-current interactions given by:

»Ccc = FWT {Z V[Y 1 - K + ufy (1 - ’75)<Vudd + Vus 3)} + h.c. (21)

The momentum transfer bore by the intermediate W* is very small compared to My .

For that reason, the W-propagator shrinks to a point and can be well approximated through

a local four-fermion interaction governed by the Fermi coupling constant 7 81?423[/' The

leptonic decay width can be written as:

_ _ G2/ m5 /
Toye =T = i) = 1557?; £ (mi/mi) (14 056), (2.2)

where f(z) =1 — 8z + 8z% — 2% — 1222 log x, and [252262]

: 25 2
5%:;[4—w2+(9<m2>1+--- (2.3)
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which take into account radiative QED corrections up to O(a?). Here, 0%% includes
inclusively additional photons or lepton pairs. Higher-order electroweak corrections and the
non-local structure of the W propagator, are incorporated into the effective coupling [263.264]

2 3m?  9ms mj
1+ A 1+ -——+ — @) 2.4
“‘ﬂl*wm*w%*(mmﬂ’ (24)

2

G2/ - g
e 4\/§M3V

so that G, coincides with the Fermi coupling defined in the V' — A theory. Here, g is the
SU(2), gauge coupling constant and Ar is the electroweak correction introduced by Sirlin
in Ref. [265)].

The Fermi coupling is defined by the muon lifetime, given that 7‘171 =T[p™ = e v, ()]
The MuLan collaboration has achieved a precision of 1.0 parts per million in the measurement
of 7, [266], which is 15 times more precise than any previous experiment. It is the most
accurate particle lifetime ever measured and, in consequence, the world averaged, 7, =
2.1969811(22)-107% s [3], is dominated by this measurement. In addition to the electron and
muon masses, m, = 0.5109989461(31) MeV and m,, = 105.6583745(24) MeV [3], it implies

Gp = Ge, = (1.1663787 =+ 0.0000006) - 107> GeV 2. (2.5)

Thanks to its much heavier mass, the 7 lepton has various final states which are kine-
matically allowed ie. 7= — e vy, 77 — p v, 7 — duv; and 7 — suv,. The
universality of the W couplings predicted by the SM implies that all these decay modes have
equal amplitudes (when final fermion masses and QCD interactions are neglected), with an
additional N¢|V,p| factor (D = d, s) for the semileptonic channels[[] Regarding the unitarity
of the quark mixing matrix, |V,4|? + |Vis|* = 1 — |Vi|? &~ 1, the lowest-order estimation for

the 7 lifetime is given by

5 _1
1 m 1 my,\°
= ~{T — ) 24 Ne(|Vial? |’ ~ - (“) =3.3-107 15, (2.
re s { 00 (22 12+ VeV +nfrn} a 33105, (26

0 5 -

while their branching fractions are expected to be approximately (¢ = e, i)

I N¢ refers to the number of colors.
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I'(t~ — v, + hadrons)
I'(t— = vre )

= 20%, ~Ne=3. (27

o]

By =Br(t™ — "y, ~

We can see the agreement between theory and experiment in Table 2.1, which provides
strong evidence for the color degree of freedom. An additional enhancement of about 20%
in the hadronic 7 decay width is due to the missing QCD corrections (~ O(=£)) which are

responsible for the numerical differences.

m, (1776.86 & 0.12) MeV
Tr (290.34+0.5) - 107155
Br(r™ — e Uery) (17.82 £0.04)%
Br(r™ — p~vuvy) (17.39 £ 0.04)%
B,/B. 0.9762 + 0.0028
Br(r— = 7 v;) (10.82 £ 0.05)%
Br(r— — K v,) (6.96 +0.1)- 1073

Table 2.1: Average values of some tau parameters [3].

Using the measured value of G in p decays, final fermion masses and taking into account
higher-order corrections, a precise relation between the 7 lifetime and the leptonic branching
ratios is provided by Eq. ([2.2)

B _ B, B T,
© 7 0.972564 £ 0.000004  (1632.6 £ 0.6) - 10-155

(2.8)

The error in the previous expression is dominated by the uncertainty of m,, which high-
lights its sensitivity to the value of the 7 mass.

The predicted value of B, /B, is in fair agreement with the measured ratio in Table
(1.30) E] In Fig. we can see that the relation between B, and 7, is well satisfied by the
current data.

Taking into account the relation in Eq. , the values of B, B,, and 7, can be combined
to determine the electronic branching ratios within the SM, i.e., assuming lepton universality
(LU):

2The precise BaBar measurement, B,,/B. = 0.9725 £ 0.0039 [267], is responsible for this small difference,
which is 1.80 away from the theoretical prediction. Before this data, the previous world-average was in
perfect agreement with the SM value.
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Figure 2.2: Relation between B, and 7. The diagonal band corresponds to Eq. 1D

B = (17.817 £ 0.023)%. (2.9)

The leptonic branching fractions and the lifetime of the tau are known with a precision
of 0.2%. The precise Belle measurement, 7, = (290.174+0.53+0.33)-1071° s [268], dominates
the world-average 7, = (290.3 +0.5) - 107155 [3].

The 7 mass is only known at the 107* level. Making an energy scan of o(ete™ — 7777)
around the 777~ production threshold [269-271], the BES-IIT collaboration found m, =
1776.9140.127519 MeV [272] with an accuracy of 0.1 MeV. Recently the Belle II collaboration
released their first measurements of the mass of the 7 lepton using the pseudomass method
in a blinded analysis procedure, m, = 1777.28 £0.7540.33 [273|, which is in good agreement

with the present world-average [3].

2.3 Lepton universality

In the SM all left-handed leptons are accommodated in SU(2), doublets with identical cou-
plings to the W boson, i.e., g = g, = ¢g- = g. Comparing the measurements of (semi)leptonic
decay widths which only differ in the lepton flavor, it is possible to test experimentally this

statement. The B,,/B. ratio constrains |g,/g.|, while B. /7, provides information on |g,/g,|-
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The results are summarized in Table 2.2 together with the constraints obtained from 7, K

and W decays.

FT—>M/FT—>6 Fﬂ—)u/rﬂ—w FK—)},L/FK—>6 FK—)W,u/FK—Mre FW—)u/FW—)e
l9,/9.] 1.0018(14) 1.0021(16) 0.9978(20) 1.0010(25) 0.996(10)

FT—>6/F/J—>6 FT—>7r/F7r—>,u FT—)K/FK—HJ FW—)T/FK—HTG
lg-/9.] 1.0011(15)  0.9962(27)  0.0858(70)  1.034(13)

Frﬁ,u/r,u%e FW*)T/FW*)Q
lg-/9.]  1.0030(15)  1.031(13)

Table 2.2: Experimental determinations of the ratios gs/ge [4].

The 7 determination of |g,/g.| is as precise (~ 15%) as the one obtained from 7, decays

and comparable accuracies have been reached with Ky and Ky3. The ratios

R TP sen() _
TP = ()

ge
Iu

2 9 2/, 2\ 2
1 —
m <me/mP> (1+0Rpoes), P=m K,

(2.10)

o \ 12,2 /2
m2 \1—m?2/mp

have been calculated and measured with high accuracy. Because of the V — A struc-
ture of the charged currents in the SM, the leptonic decay rate of a pseudoscalar meson
is helicity suppressed, which makes these ratios excellent probes of new-physics interac-
tions. The radiative corrections d Rp_,./, involve a summation of leading QED logarithms
a™log"(my,/m.) [274,275] and a systematic two-loop calculation of O(e?p*) effects within

Chiral Perturbation Theory [193.|194]. Comparing the SM predictions [276),277]

R, =(1.2352£0.0001) - 107, RM,,, = (2477 £0.001) - 1077, (2.11)

T—e/u

and the experimental R._../, [278-283] and Rx_,./, ratios [284-289],

Ryesp = (1.23274£0.0023) - 107, Ryc_e/, = (2.488 £ 0.009) - 1072, (2.12)

we can see a good agreement between them, ~ 1.10 for R/, and ~ 1.20 for Rg_,¢/, E|

3The results quoted in Tablewere obtained using a previous estimation of R/, Rr—e/, = (1.230+
0.004) - 1074
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The decay modes 7= — m v, and 7~ — K v, can be used to test universality through
the ratios

R = Llr= — Py,
TP s

9r
Iu

2 3 2 7,02\ 2
m 1 —m%/m
r ") (14 6Rp), 2.13
2mpm? (1—mi/m%> ( + /P) (2.13)

where a rough estimate of the size of the relative corrections was given in [274}290-292]:

0R,/r = (016 £0.14)%,  6R./x = (0.90 4 0.22). (2.14)

The outcome for the |g,/g,| ratios in Table was obtained using these numbers. A
recent improved evaluation of 0R;/p [293,294] yields IR,/ = (0.18 & 0.57)% and 6R,/x =
(0.97 £ 0.58)% which imply |g;/gul= = 0.9964 £ 0.0038 and |g-/gu|- = 0.9857 % 0.0078,
compatible with LU at 0.9 and 1.8 o, respectively.

2.4 Lorentz structure of the charged current

Thanks to the high statistics, the leptonic decays /= — ¢~ vpvy allow us to study the Lorentz
structure of the decay amplitudes through the analysis of the energy and angular distribution
of the final charged lepton, which can be complemented with polarization information when
available.

The most general, local, derivative-free, lepton-number conserving, four-lepton interac-

tion Hamiltonian, which is consistent with locality and Lorentz invariance [295-302],

H= 45 3 g [(T" ()] [Tt (2.15)

contains ten complex coupling constants, and since a common phase is arbitrary, there
are nineteen independent real parameters which could be different for each leptonic decay.
The chiralities of the corresponding fermions are labeled by the subindices €, w, o, A, and
n = S,V,T corresponds to the type of interaction, i.e., scalar (I' = T), vector (I'V = 4#),
and tensor (I'" = o //2). The chilities of neutrinos are uniquely determined once n, €, w

are given. By factoring out Gy, the coupling constants g, are normalized to [300]
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L=— (lgzal” + l98c)” + l92al + 197.1%) + 3 (I9ke)® + |9Lrl?)

1
4 (2.16)
+ (l9kal® + lgkel + 19 sl* + 9L
Hence, [¢°] < 2, |[¢¥,| < 1, and |¢gZ,| < 1/4/3. The probabilities for the decay of an
w—handed ¢~ into an e—handed daughter lepton is given by [300]
1
Qe = 719l + lgeel® +3(1 = dew)lgc (2.17)

In the SM, |g};|* = 1 and all other vanish, |¢",|> = 0.
Given an initial lepton with polarization Py, the final charged-lepton distribution in the

decaying-lepton rest frame is usually parameterized as [296-298|
ITee = e ! GopJ a2 — {F(x) — 1573 V2% — 23 cos QA(x)} (2.18)
dx dcosf oms ¢ 0 3>t 0 ’ '

where 6 is the angle between the ¢~ spin and the final charged-lepton momentum, w =

(m2 +m3)/2my is the maximum ¢~ energy for massless neutrinos, z = Ey /w is the reduced

energy, xo = my /w and

Fz)=2z(1—x)+ 3p(4m2 — 37 — 22) +nzo(l — 1), (2.19a)
A(x):1—x+§5 <4x—4+\/1—x8). (2.19b)

For an unpolarized lepton ¢, the distribution is described by the so-called Michel [295]
parameters p and 1. When the initial lepton polarization is known, we have two additional
parameters, £ and §. If the polarization of the final charged-lepton is also known, 5 additional
independent parameters (£',£",n", o/, f') appear [3]. Inthe SM, p=§=3/4, n=n"=d' =
fl=0and £ =¢=¢"=1.

The total decay rate for massless neutrinos can be written as [302]

e = SO (i o) (1 + 05 (220
19273 ’

where
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My g(mf,/mﬁ)
my f(mg/m7)’

Goo = GMJ 1+ 4n (2.21)

g(z) =1+ 92— 922 — 2% + 62(1 + 2)log 2, and the radiative corrections 6% in the SM
have been included. Assuming that the SM produces the dominant contribution to the decay
rate, any additional higher-order correction beyond the Hamiltonian in Eq. would be
a subleading effect.

The Fermi coupling G, which is measured in p decay, corresponds to the normalization
Gy The ratios defined previously, B,,/B. and B, 7,,/7,, that allow us to test lepton univer-
sality, also probe the ratios G ur/ Ger and G, / @e#, respectively. According to Eq. the

experimental determination of G, is sensitive to the uncertainty in 7,_..

In terms of the ¢, couplings, the parameters in Eqs. (2.18]) and (2.19)) are:

3 _ _
p=7BT )+ +7), (2.22a)
_ _ 7 _
§=3(a" —an)+ (87 =87) + 300" =), (2.22D)
3 _
& =107 =8)+0" =), (2.22¢)
1 * * * * * *
0= 5Re|gl1 g5k + 9kr 975 + 9¥n(9Rr + 6957) + 9re 98k + 69ik)] (2.22d)
where [303]
1 _ 1
at = |9§L|2 + T6|91%L + 69£L|2a a = |9);/R|2 + E|Q€R + 6QER|2a (2.23a)
1 B 1
B% = lgnal + Jloral’, 87 = lorul + Jlois (2.23b)
3 _ 3
7= T6|9§2L - 29£L’27 = T|Q€R - 29%R|27 (2.23¢)

are positive-definite combinations of decay constants, that correspond to a final right-
handed (a*, 87,4") or left-handed (o, 37,77) lepton. The normalization in Eq. ({2.16))
can be written as a™ +a~ + T+ 7 + 97+~ = 1. In terms of these parameters, the
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probabilities @), are:

1 16 1 16
Quu=p8"= (—3 gt g+ 5”) , (2.24a)
1 16 1 16
Qrr =1 = 1 (—3 + 3P + gf - 565 - &+ f”) ) (2.24b)
1 16 1 16
QLR =a +7v = Z (5 - gp + gf - 35(5 + 5/ - f”) ) (2240)
1 16 1 16
Qrr=a" +~% = 1 (5 — 3P §5 + 555 - - §H> : (2.24d)

Upper bounds on any of these probabilities translate into corresponding limits for all

couplings with the given chiralities. The following relations are particularly useful:

Qi = Qrr + QLr = ; (1 + ;’5 — 136§ 5) : (2.25a)

Qu, = Qrr+ Qrr = ! (1-¢). (2.25Db)

2
Thus, the total probability for the decay of an initial right-handed lepton is characterized
by & and &6, while a single polarization parameter fixes the probability to decay into a final

right-handed lepton. Other convenient positive-definite quantities are:

36* +277 =p—&o, (2.26a)
Qrr + Qrr = ; (5 — 136p — f") . (2.26Db)

The first one supplies direct bounds on |gkz|, |92r| and |g7p — 297 5|, and shows that
p > £9. A precise measurement of the polarization parameter £’ would imply upper limits
on all couplings g7, with € # w through the second identity.

In the case of p decay, where a precise measurement of the p and e polarizations exist,
there are upper bounds [300] on Qrr, Qrr and Qgr, and a lower limit on @z, which
can be translated to upper bounds on the 8 couplings |g%g|, |97 | and |g%;|. The p and
e measurements do not permit to determine |g7; and |g};| separately [300,304]. However,
a lower limit on |g);| is obtained in the inverse muon decay since o(v,e” — pv.)

lgrr1? [300]. Since the v, helicity in pion decay is experimentally well known [305,(306],
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|2h,,, + 1] < 0.0041 (90% C.L.) [307], the |g7 | contribution to o(v,e™ — p~v.) is negligible;
the p—decay constraints suppress the contributions from other g, couplings [308]. Setting a
lower bound on |gY, |, the relation Q1 gives the upper limit |g7,|? < 4(1—|g¥.|?). In Table
the present 90% C.L. bounds on the p—decay couplings [309-314] are summarized. All
these bounds show nicely that the y—decay transition amplitude is indeed of the predicted
V — A type.

lgprl <0.035  |g7xl <0.050 g | <0412  |g7.] < 0.550
lghel < 0.017  |gVa| <0.023  |gk.| <0.104  |gY,| > 0.960
|9krl =0 |91r| < 0.015 |gF.| < 0.103 91l =0
975 + 691r| < 0.143  |g75 +291p| < 0.108 |97 — 297 5| < 0.070
|9k + 69k, <0418 |gi, + 20k, <0417 |gh, — 297, | < 0.418
Qrr+Qrrp <82-107%

Table 2.3: Experimental bounds at 90% C.L. for the leptonic p—decay couplings [3].

Since the 7 lifetime is shorter, the experimental determination of the 7 decay param-
eters must be different from the muon one. The measurements of the 7 polarization and
the parameters £ and § are still possible because the spins of the 777~ pair produced in
ete™ annihilation are strongly correlated [249}315-325]. The use of beam polarization was
employed by the SLD Collaboration [326]. Nevertheless, the polarization of the final charged
lepton in the 7 decay has never been measured. For instance, this could be done by stopping
the muons and detecting their decay products of the 7= — p~ 7,1, decay [322]. Another
possibility is to use radiative decays, 7= — ",y (L= e, ) [327], since the distribution of
the photons emitted by the daughter lepton is sensitive to the lepton polarization. Although
the measurement of the inverse decay would be very helpful, this is far from reach. There
are also interesting prospects from the five-lepton tau decay, 7 — ﬁflﬁ(/)mﬁm, which shows a
big sensitivity to new physics in one of its Michel parameters [328] (Denis Epifanov, private
communication).

In Table we can see the experimental status on the 7—decay Michel parameters [326],
329-343] together with the more accurate values measured in p decay [3,309-311}344-350].
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The 95% C.L. bounds on the 7—decay couplings are shown in Table [2.5]

W — e Ve, T =S WU | T e Vel | T — 0,
p | 0.74979 4 0.00026 | 0.763 & 0.020 | 0.747 & 0.010 | 0.745 £ 0.008
n 0.057 +0.034 | 0.094 £ 0.073 - 0.013 £ 0.020
¢ 1.000975:000 1.030 £ 0.059 | 0.994 + 0.040 | 0.985 + 0.030
£6 0.7511F5 000 0.778 £0.037 | 0.734 £ 0.028 | 0.746 % 0.021
¢ 1.00 £ 0.04 — — —
" 0.65 + 0.36 — — —

Table 2.4: Michel parameters [3]. The last column assumes identical couplings for ¢ = e, p. &,
refers to the product ,,,.P,, where P, ~ 1 is the longitudinal polarization of the y from 7 decay.

T = e Vly

lg7r] < 0.70 lg7 5| < 0.99 lg7. ] < 2.01 g7, ] < 2.01
lghr| < 0.17 lg¥s| < 0.13 gk, | < 0.52 lgY .| < 1.005
|9kl =0 91| < 0.082 |l9ks| < 0.51 91,1 =0

T — WVl

lgpr] < 0.72 lg7 5| < 0.95 lgn.| < 2.01 lg7,] < 2.01

lghrl < 0.18 lgVs| < 0.12 gk, | < 0.52 lg¥,| < 1.005
|9kl =0 l91r] < 0.079 |9k < 0.51 91,1 =0

Table 2.5: Experimental bounds at 95% C.L. for the leptonic T—decay couplings [3].

Assuming LU, the leptonic decay ratios B,,/B. and B.7,/7, bring limits on the low-energy
parameter 7. G’M provides the best sensitivity [351] since the term proportional to 7 is not
suppressed by the m./m, factor. Using the world-average value of B, /B., it is possible to
determine 7n,,, = 0.016 £ 0.013, which only assumes e/ universality. This value is more
accurate that the y — e and 7 — p shown in Table 2.4 A 7 value different from zero
would point out that there are at least two distinct couplings with opposite chiralities for
the charged leptons. Assuming the V — A coupling g¥; to be dominant, the second one
would be a scalar couplings g3g. The 7,_,, value implies, —0.019 < Re[g5z] < 0.083 at 95%

C.L. since at leading order in new physics contributions, 7 &~ Re[g%z]/2.
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2.4.1 Model-dependent interpretation

Since the sensitivity of the current 7 data is not good enough to set strong constraints from a
completely general analysis of the four-fermion Hamiltonian. However, more stringent limits
can be obtained assuming a particular model. For instance, in the framework of a two Higgs
doublet model, the measurements correspond to a limit of myg+ > 1.9 GeV X tan 5 on the
mass of the charged Higgs boson, or a limit of 253 GeV on the mass of the second W boson
in left-right symmetric models for arbitrary mixing (both 95% C.L.). See [302}|352354].
For interactions mediated by a W boson, the hadronic decay modes 7= — h™ v, can be
used to test the structure of the 7v,.W vertex, if one assumes the SM coupling of the W to
the light quarks. In that case, the Hamiltonian contains only two vector couplings ¢, with
A being the 7 (and v,) chirality, where |gr|> + |gr|?> = 1. The P, dependent part of the
decay amplitude is proportional to & = |gr|?> — |gr|*, which plays a role analogous to the
leptonic decay constant ¢. This parameter, &, [] determines the mean v, helicity times a
factor —2. The study of 717~ decay correlations in leptonic-hadronic and hadronic-hadronic
decay modes, using the 7, p, and a; hadronic final states [326,1329}330,332-341, 355361,
implies &, = 0.995 + 0.007 [3]. This suggests |g.| > 0.995 and |gr| < 0.10 at 95% C.L.

2.5 Hadronic decays

Since the 7 is the only known lepton massive enough that can decay into hadrons, its semilep-
tonic decays provide us with a clean laboratory to test QCD at low-energies and investigate
the hadronic weak currents. The 7= — H v, decay probes the matrix element of the

left-handed charged current between the vacuum and the final hadronic state H ™,
(H™ |(Vigd + V5, 8) 7"(1 = 7")u| 0) . (2.27)

The semileptonic 7 decays allow us to study the properties of both vector and axial-

vector currents for Cabibbo-allowed or Cabibbo-suppressed final states [362], contrary to

4¢ =1 in the SM.
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the well-known process ete™ — v* — hadrons.
The matrix element of the vector charged current is related to the isovector part of the
ete™ annihilation cross section into hadrons through an isospin rotation, which evaluate the

hadronic matrix element of the I = 1 component of the electromagnetic current,
<VO ‘(ﬂ'y“u - J’y“d)‘ O> . (2.28)

The 7 — Vv, decay can be written as an integral over the eTe™ — V' cross section

[2491363]:

Nr— =V, 3cos? 0 25 _
RT—)V = ( T ) — 27Ta2m§ EW/ ds (1 — > (]_ + Trﬂ) SO'iJre —)VO( )
T—€E T
(2.29)

where Sgy are the short-distance electroweak corrections that include a next-to-leading
order resummation of large logarithms [256|364,365]. A comparison among the available
data on ete”™ — VY the corresponding 7= — Vv, decay width and the invariant-mass
distribution [366-371] could help us to improve our understanding of the non-perturbative
QCD. The ete” data contains an additional isoscalar (I = 0) component, which is not
present in 7 decays and needs to be subtracted in Eq. . The general form factors
charaterizing the hadronic amplitudes can be extracted from Dalitz-plot distributions of the
final hadrons [372,373]. A detailed analysis of these processes gives a very valuable data

basis to confront with theoretical models.

2.5.1 Two-body semileptonic decays

The matrix elements for the 7= — 77 v, and 7~ — K~ v, decays are given by
@’@H&Wfd0>=—h@ﬁp% <K‘@H§Wf%0>=—h@ﬁdﬂ, (2.30)

where f, and fx are the decay constants, which are already known from the measured

7~ — p v, and K~ — p v, decays, and lattice QCD. The 7 decay width can be predicted
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accurately using Eq. (2.13). As shown in Table these predictions are in good agreement
with the measured values, and yield a quite precise test of charged-current universality.
Additionally, the ratio of the measured 7~ — K v, and 7= — 7w~ v, decay widths can

be used to extract information about the ratio of the hadronic matrix elements:

Vas|fxe  m2—m2 {BI"(T_ — K v;) 14+ 0R, /x 1

% | Br(tm = 7)) 14+ 0R: )k 1+ 0Rk)x

1/2
= = 0.273740.0021, (2.31
Valf, = } 0.2737+0.0021, (2.31)

which uses the radiative corrections in Eq. (2.14)), and the corrections to the meson decay
ratio Ry /r = (K™ — p0,)/T(n7 = pv,):

§Ry/w = —(0.0069 & 0.0017) — (0.0044 =+ 0.0015) = —(0.0113 = 0.0023), (2.32)
/

where the first number is of electromagnetic origin [374,375|, the second one is related
to the strong isospin-breaking corrections [374], and fx and f; denote the meson decay con-
stants in the isospin-limit. From Ry . [374], it is found (|Vis|fx)/(|Vua| f=) = 0.2760(4) [376]
which is consistent with the result in Eq. . Taking into account the lattice average
fr/fr=1.1932(21) [377] and V,q = 0.97370(14) [3,378], one obtains a determination of the
Cabbibo mixing [}
Vis| ] 0.2294£0.0018 0.2234 +0.0018 (7 — K/m)

= Vas| = . (2.33)
Vil 0.2313 + 0.0005 0.2252 + 0.0005 (K /7 — p)

2.5.2 Decays into two hadrons

The decay into two pseudoscalar mesons, 7~ — P~ P% . is mediated by the vector current.

The amplitude for the 7= (P) — P~ (p_)P°(po)v-(q) decays is given by

_ GrVupVSEW
V2

the hadronic matrix element can be written as

Mo H,(p—,po) a(g)y" (1 = 7")u(P). (2.34)

A_
H(p—.po) = CvFL()Q" + Cs =" Fo(t),  t=¢", (2:35)

5This has been updated in Ref. [293] to [zl = 0.2288 4 0.0020, |Vy,s| = 0.2220 + 0.0018 at 2.1 and 2.60

from unitarity, respectively.
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where ¢ = (p— +po)”, Q" = (p— —po)’ — 272¢" and A;; = m? —mj. Fy(t) and Fy(t) are
the vector and scalar form factors. Cy and Cg are the Clebsch-Gordan (CG) coefficients:

Cp ™ =05 =v2, COf =0l =11,
_ - 1 — 0 - 0
CKTrOZ Kwozia Cﬂ'K: WK:_]_'
1% S o) 1% S

Thus, the spin-averaged squared amplitude follows as
Mol® = 2G% Vi[> Spw { C3IFo()* D " (t,u) + CsCyRe [Fy. (65 (8)] D™ (¢, ) (236)
) ’
+CF | (t)* DI (8w}

where we have defined Fyo(t,u) = Fi(t) + 0F}0(t,u), and §Fy(t,u) = 0F(u) +

ﬁéF_(u). The expressions for DI " (t,u), D" (t,u) and D" " (t,u) are given by:

2
Di_ho (t,u) :%(mz —t) +2m2m?% — 2u(m2 —t + md +m?) 4 2u?
AL AZ 3 (2.37)
+ Tmz(Qu +t—m2 —2md) + t%OTT(mz —t),

—p0 A2 mf. t

DE W (4 u) = 2(;2 (1 - m2> (2.38)
- Ao m? A_
D" hot,u: 0- Mr Qut+t—m2—2m2+ ="9(m2—1)). 2.39
+0 T 0 n T
The differential decay width in the tau rest frame is

d’T 1 —

Mo/, (2.40)

dtdu 32(2m)3m3

where t = (p_ + pp)? is the invariant mass and u = (P — p_)? = (po + ¢)*. The physical

region is limited by (m_ +mg)? <t <m? and v (t) < u < u™(t),

wE(t) = % {zt(m3 2 —t) — (m2 = 1)t +m2 —m2) £ (m2 — 1) )\(t,m2,m2)} L (241)

and \(z,y,2) = 22 + y* + 2% — 22y — 202 — 2yz.

The invariant mass distribution is obtained integrating upon the u variable

dr G%SEWWuDPmi t\?2 1/2 2 9 2 2 2t
dt 7687383 (1—2) A (t,m_,mo>{CVyF+(t)y (1+m2

mz

) A(t,m?%, md)

(2.42)
+3038% IR0 |,
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Long-distance electromagnetic corrections and isospin-breaking contributions are channel
dependent and have been only studied in a model-dependent way for the 77 [7,/94,97,[379]
and K [380,1381] final states.

T~ = 7 7,

It is well known that in the isospin-limit the two-pion final state does not receive scalar
contributions. For that reason, this kind of decays are governed by the so-called pion form
factor F(s) = F{™(s). In recent years there was a huge effort to improve our understanding
of Fr(s) [15H17,218,382-384] using analyticity, unitarity and some properties of QCD, such
as chiral symmetry [132]|133|198] and the short-distance asymptotic behaviour [224-226],
385-387]. For instance, all these requirements are complied using the following expression

for the pion form factor [15]

M? s
Fo(s) = D — % __RelA(s)]}, 2.43
() M2 — s — iM,T,(s) eXp{ g6z el (8)]} (243)
where
Als) =log Tz 1 87x 5 | g3 ("”“) (2.44)
VTR Ty T3 T\ '

contains the one-loop chiral logarithms [194], that account for the final-state interaction
(FSI) of the two pions, o, = m and the off-shell p width is given by I',(s) =
(s — 4m2)o2M,s/(967 f2) [15,383).

In the large-N¢ limit [388-390], the pion form factor is described by an infinite sum of
narrow-width vector resonance contributions [226,[391}392]. In Eq. only the lightest
p state, which dominates below 1 GeV, has been taken into account. As a consequence of
the conservation of the electromagnetic current, we have the normalization F,(0) = 1, while
the SD properties of QCD demand the form factor to vanish at infinite momentum. The
large-N¢ propagator is dressed with pion loop corrections subleading in 1/N¢ in such a
way that a Taylor expansion in powers of s/ Mp2 reproduces the one-loop yPT prediction at

low-energies. It is possible to implement a resummation of the one-loop chiral logarithms
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through an Omnes exponential [228] to comply with the constraints from analyticity and
unitarity. By a Dyson summation, the absorptive part of these corrections is reabsorbed into
the p width in order to regulate the resonance pole. All these ingredients extend the validity
domain of the xYPT prediction in Eq. . The theoretical prediction, which only hinges
on three parameters: M,, m, and f,, is compared with the data in Fig. [2.3| The agreement

is also extended to negative values of s, where the e”7~ elastic data sits.

— Fitt data (I\/JJ =0.776 GeV) X
1 57|._. Guerero and Pich (= 0.776 GeV] 4 N

o O CLEO-Ildata
O O ALEPH data
— Ourfit

— — Guerrero and Pich (g/l: 0.776 GeV)

| | | |
0.5 0.75 1 1.25

Vs (GeV) s/V(Is]) (GeV)

Figure 2.3: Pion form factor from ALEPH [11] and CLEO [12] 7 data (left) and eTe™ — 77~ [13]
and e~ — e 7w [14] data (right), compared to theory [15-17]. The red dashed line is the
prediction from Eq. ([2.43)).

One can easily include the modifications due to kaon loops, heavier p resonance con-
tributions and additional NLO corrections in 1/N¢; the precision of this approximation
can be improved by including more free parameters at the cost of decreasing its predictive
power [16}/17,218,382,384], which gives a better description of the p’ around 1.2 GeV (con-
tinuous line in Fig. [2.3). Belle has reported a clear signal for the p”(1700) resonance in
7~ — 7 7y, decays [18]. A fit to the Belle data, which includes the p' and p” states [19],
is shown in Fig. (2.4)).

The 7= — 7 7%, decay amplitude is related to the isovector component of o(ete™ —
7t7~) through an isospin rotation. For that reason, the pion form factor can be extracted
using both datasets. Over the years, there have been discrepancies between the different

experimental measurements that may be due to the underestimation of systematic uncer-
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Figure 2.4: Pion form factor extracted from Belle 7= — 7~ 7'y, data [18]. The curves corre-
spond to the different approximations, including p, p and p” [19]. The BaBar ete™ — ntn vy
measurement [20,21] shows a clear signal of the p”” and the isoscalar w state.

tainties. The amplitude measured in eTe™ experiments [13}20,21,52-54} 56-58393-396]
is slightly lower than those from 7 decays |11}/12,|18,1397], and this discrepancy cannot be
fully explained through the calculation of isospin-violating effects [7,/94,379]. Additionally
to the direct energy scan adopted in most e"e” measurements, some recent experiments
utilize the so-called radiative return method in order to extract o(ete™ — w7 ~) from the
ete™ — mtn~~ data, checking different ranges of 77~ invariant masses via the radiated
photon (initial state radiation, ISR) [398-405]. The BaBar data [20}21], that uses this
method, has reduced the tension with 7-decay measurements, nevertheless the discrepancies
persevere with the KLOE data for efe™ — nt7n ™y [56-58,395].

Using the isospin-breaking corrections in Refs. [7,94379], the prediction from e*e™ data is
Br(r— — 7 7%,) = (24.94+0.25)% [406|, which is 2.1 smaller than the world average from
7 decay measurements, Br(7~ — 7 7%.,) = (25.49 4+ 0.09)% [3]. The BaBar data exhibits
a discrepancy of about 1.2 while that of KLOE differs from the direct measurements by
2.70 [406]. The computation of the isospin-breaking corrections to this channel is the main
focus of Chapter [7], which are also an essential ingredient for the estimation of the hadronic

vacuum polarization contribution to the muon g — 2 from 7 data.
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T~ — (K7m)“ v,

Unlike the 77 channel, the 7= — K~ 7%, and 7= — K%~ v, decays receive contributions
from two form factors because of the masses of the final state pseudoscalars. The vector and
scalar form factors are also probed in K3 decays, but the tau ones are sensitive to a different
and broader region, where the light-flavored resonances play a key role.

A detailed analysis of these processes can be found in [23,24,380,407-411]. The vector
form factor FE™(s) can be obtained in a similar way to the pion form factor, whereas the
scalar one FE™(s) uses additional information from K scattering data through dispersion
relations [25-27,412H414]. A comparison between the Belle 7= — K 7~ v, measurement
[22,/415] and a theoretical fit using the RxT description of FE™(s) with two resonances [23/24]
is shown in Fig. 2.5 The scalar component gives a small contribution to the total decay
width, Br[r — v, (K7T)s_wave] = (3.884:0.19)-107%, but it is sizeable near the threshold. The
dominant contribution comes from the K*(892) followed by the K*(1410), which induces a
small correction at higher invariant mass. The Belle data shows a bump at 0.682—0.705 GeV
(points 5, 6 and 7) that cannot be explained by the theoretical description ﬁ and, as a
consequence, it is not included in the fit; this bump seems to be absent in the BaBar
data [419].

The slope and curvature of the vector form factor can be extracted through a fit to the
7~ — Kgm v, spectrum, with a precision comparable to that in K3, and it is also possible
to predict the 7= — K~ 7%, and 7= — K%~ v, branching ratios [23}24,380,/409-411]. A
combined fit to 77 — Kg¢n~ v, and K3 data, that utilizes a dispersive parameterization of the

two form factors, and includes electromagnetic and isospin-breaking corrections, gives |380]:

Br[r~ — K7 v ]u = (0.8566 + 0.0299)%, Br[r~ — K 7]y = (0.4707 £ 0.0181)%.
(2.45)

These are slightly larger than the current experimental world averages, Br[r~ — K7~ v,y =

6 Although many devoted analysis [23}|30,251}380,409-411}/416}/417] have signalled these three points as
controversial, there is a work by L.A. Jiménez and G. Toledo [418], which is able to describe these data points

due to the effect of the longitudinal correction to the K*(892) propagator by a flavor symmetry breaking on
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Figure 2.5: The 7= — Kgn~ v, spectrum measured by the Belle collaboration [22]. The solid
line corresponds to the fit in Ref. [23,[24], which includes a RxT description of F{¥™(s) with two
resonances and FX™(s) from Ref. [25-27]. The scalar and K*(1410) correspond to the dotted and
dash-dotted lines, respectively.

(0.838 + 0.014)% and Br[r~ — K 70, ]y, = (0.433 £ 0.015)% [3], corroborating an earlier
observation made in Ref. [23,24]. This effect has a significant impact on the V,,; determina-
tion.

This channel provides valuable information about C'P violation, which is an essential
ingredient to explain the presence of the baryon asymmetry in the universe [420]. Although
earlier searches did not find evidence for C'P violation [421/{422], a recent result by the BaBar
collaboration [423],

ATPP = —3.6(2.3)(1.1) - 1072, (2.46)

disagrees with the SM prediction, AZP" = 3.32(6) - 1072, which is driven by the K° — K°
mixing [424]425]. The discrepancy between theory and experiment is slightly increased
(~ 2.80) when the experimental conditions corresponding to the reconstruction of the Kg at
the B-factory are taken into account [426], which yields AZP" = 3.6(1) - 1073. This tension
could be considered a hint for beyond the Standard Model (BSM) physics. In Refs. [251,427],
an explanation using a new tensor interaction in terms of BSM originating in the ultraviolet
was ruled out.

The 7= — K~1")u, decays have been studied in Ref. [428]. These decay channels are very
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suppressed. The 7= — K~ nu, channel has been measured at the B factories [29,429-432]
with an average Br[r~ — K nuv,] = (1.55 £ 0.08) - 10~* [3], while for the K~ mode there
is only an upper limit, Br[r~ — K nu,| < 2.4-107°% [433].

T — T N,

The final state of 79 has I¢ = 1~ and J* = 0% or 1~ for S and P wave, respectively. For
that reason, any observation of these decays would indicate either a G-parity violation since
the Cabibbo-allowed vector current has even G-parity [434], or a new physics contribution
that incorporates second-class currents [435]436]. In the SM, these decays can proceed
via the isospin violation provided by the light quarks mass difference m, — mgy or through
electromagnetic contributions, which make them very suppressed [437H439] and increase its
sensitivity to new scalar or tensor interactions [250,438,440]. At LO in yPT the coupling to
the vector current is dominated by the well-known 7% — 7 mixing, which predicts a constant

and equal vector and scalar form factors:

@ (M, — my)

4 (mg—m)

Fi'(8)o = F§"(8)ro = ~0.99 - 1072, (2.47)

where 1 = (m, + mg)/2. This result is enhanced by the NLO chiral corrections and
electromagnetic contributions. It is possible to extract both form factors at s = 0 in a simple
and very elegant way from the ratio 5 ™ (0)/FE"™ (0) [441]. Using the K5 information

[442], a very precise prediction of the w7 form factors at s = 0 can be found [443]:
FZ(0) = F5"(0) = (1.49 4+ 0.23) - 1072, (2.48)
Using this as an input, together with the xYPT constraints, it is feasible to estimate the

two form factors in the relevant kinematical domain through a dispersive representation,

implying the following branching ratio [443]:

Br[r™ — 7 ] = (0.487030) - 107°. (2.49)

This number, which is governed by the scalar contribution, is a factor 20 smaller than
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the current experimental upper bound [} Br[r~ — 7~ nv,] < 9.9-107° (95% CL) [429]. Many
predictions exist already in the literature which differ by one to two orders of magnitude
[438-441}445,|446]. For instance, the RxT prediction of Ref. [447] for this decay mode is
~ 1.7-107° (see also Ref. [448]). With a branching ratio of 4.4-107°, the 7= — 7 nv, decay
could be observed with a significance of 2.60 at Belle II [449]. A somewhat better bound
exists for the 777’ mode: Br[r™ — 7 n/v,] < 4.0-107% (90% CL) [433], in which the RxT
prediction is [1-1077,1-1079] [447].

Higher-multiplicity decays

Modes with high multiplicity require a richer dynamical structure and provide a very valu-
able experimental window into the non-perturbative hadronization of the QCD currents.
Nevertheless, the inclusion of three or more final-state hadrons is not an easy task. At tree
level, there are several computations in RxT for tau decays into three mesons, and some
final states with four pseudoscalars, but the chiral loop corrections are not yet implemented,
except for 7 — 3wy, [450] and T — 47y, [451], at very low ¢2. This predictions correspond
to the limit of large-N¢; the only subleading contribution in the 1/N¢ expansion that is
taken into account is the finite width of the hadronic resonances. Despite the limitations
of the RxT approximations, these results provide a direct connection with the fundamental
QCD theory and are a good starting point to analyse the measured observables.

The first exhaustive studies of 7= — 77 7 v, and 7~ — 7°7% v, were made in
[369,452]. A RxT analysis was later performed in Refs. [453,454], which includes a theoretical
description of the measured [317,358/359,397,455-457] J© = 17 structure functions [372,373].
The 7= — (37) v, decay amplitude contains two interfering contributions, that corresponds
to the exchange of the two identical final state pions and causing a parity-violating angular
asymmetry [317,369,458]. This makes possible to determine the sign of the v, helicity to be
—1 [356-361].

Exhaustive analyses were carried out for other decay modes such as 7 — K Knv, [459] and

"This mode was once claimed to have been observed with a surprisingly large branching fraction, Br =
(5.1 £1.5)% [444], however this was not confirmed by other experiments.
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X Br(t™ — X ;) [%] References X~ Br(t™ — X v;) (%] References

T (10.808 + 0.053)  Ref. 397 1t (ex. KO, w) (8.981£0.052) Ref. [397

a0 (25.486 +0.090) Ref. [397 aatr 0 (ex. KO w) (2.743 £0.071)

77210 (ex. K0) (9.245 4+ 0.099) Ref. 397 h=hth=27° (ex. KO, w,n) (0.0979 + 0.0356)

77379 (ex. K©) (1.040 4+ 0.071)  Ref. [397 h~hth=3r0 (0.0212 £ 0.0030)  Ref. |474

h=47° (ex. K%, m) (0.1118 £0.0391)  Ref. [397 K K+ (0.1434 +0.0027)  Refs. [475[478

K~ K° (0.1486 4 0.0034)  Refs. [479}1483 1K~ K*7° (0.0061 4 0.0018)  Refs. [475484

K- K% (0.1499 + 0.0070)  Refs. [479]480/482[483] 3h—2h* (ex.K?) (0.0828 + 0.0031)  Refs. Fm 4854891
T KK (0.0235 + 0.0006)  Refs. [479)[482/483[490] 3h~2n+ 70 (ex. K0) (0.0164 4+ 0.0011)  Refs. [397]474] 487489
T KK (0.1048 £ 0.0247)  Ref. 479 a7y (0.1386 £ 0.0072)  Refs. [29]430]432]
T KYKY (0.0235 £ 0.0006) T w (1.947 £ 0.065)

7 KOK070 (0.0354 = 0.0119) h 0w (0.4069 & 0.0419)  Ref.

ap (= 77) (0.0400 £ 0.0200)  Ref.

Br(r~ — X~ ;) = (61.80 £0.11)%

Table 2.6: Cabibbo-allowed hadronic 7 branching ratios , h* stands for 7% or K*.

X~ Br(r~ — X v;) [%] References X~ Br(t™ — X v;) [%] References

K- (0.6957 £ 0.0096) Ref. [480][4911493] K= n (0.0155 4 0.0008)  Ref. [29/[429/1431
K—n° (0.4322 +:0.0148)  Ref. [480|4911[194[495] K=y (0.0048 4+ 0.0012)  Ref. [29]496
K270 (ex.K?) (0.0634 £ 0.0219)  Ref. [480]491 7~ K% (0.0094 £ 0.0015)  Ref. [29/[496
K=37° (ex.K°, ) (0.0465 4 0.0213)  Ref. [480 K-w (0.0410 4 0.0092)  Ref. [484

m K° (0.8375 £ 0.0139)  Ref. [480482/497[498] K¢ (¢ - KK) (0.0044 + 0.0016)

7~ Kox® (0.3810 £0.0129)  Refs. [479[[480(482[497] K~ n~7" (ex.K°, w) (0.2924 = 0.0068)

17 K%279 (ex. K©) (0.0234 +0.0231)  Refs. [499 K=n~ntn0 (ex. K% w,n) (0.0387 +0.0142)

KOh~hth~ (0.0222 £0.0202) Refs. [479)

Br(t™ — Xgv,r

) = (2.908 £ 0.048)%

Table 2.7: Cabibbo-suppressed hadronic 7 branching ratios , h* stands for 7% or K*.

T — K2mv, [460], which include both vector and axial-vector currents, and 7 — 727y, [461],

which is dominated by the vector current (up to small isospin-breaking effects). The results
in Ref. || for the 7 — K Krv, decays agree with those in Ref. || where the vector
contribution dominates this mode, but are at odds with the results in Refs. [463 that

suggest a larger axial component. Disentangling the two contributions would require a precise
experimental determination of the hadronic invariant-mass distribution. The vector-currents

amplitudes for these decays can be also evaluated using the corresponding e*e™ annihilation

processes [465]. RxT currents were coded [466! in the Monte Carlo Generator TAUOLA

[468,/469] and are available for public use.
More involved transitions, namely ete™ — 3m [465], 7 — 47w, and eTe™ — 47 [451/470],

and radiative tau decays with one-meson in the final state [471+473] were also studied using

the RxT techniques.
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Experimental status

A huge effort is underway to understand the rich pattern of hadronic tau decay modes [3,5].
The current world averages for the Cabibbo-allowed and -suppressed branching ratios are
shown in Tables and [2.7] using the “47 basis quantities” defined by the Heavy Flavor
Averaging Group (HFAG) [5]. They used a total of 171 measurements to fit 135 quantities
subject to 88 constraints. The fit has a x?/d.o.f = 134/124, which corresponds to a confidence
level CL = 24.56%. Summing all the fitted branching ratios, leptonic and hadronic final

states, a unitarity residual is obtained [5]:

1— 3 Br(r — X,v,) = (0.0684 + 0.1068)%, (2.50)

J

which is consistent with 0 within the experimental uncertainty. A unitarity constraint
was not used in the fit.

The expected high-statistics data samples that will be accumulated by the Belle-1I de-
tector will lead to a new era of precision in 7 physics [500]. B-Factory experiments such as
BaBar, Belle and Belle-1I, and future prospects at Super Tau Charm Factory, LHC, EIC
and FCC-ee experiments have the potential to discover New Physics via charged lepton fla-
vor violation in the 7 sector [501]. A nice summary of the progress made by the 7 physics

community and future prospects can be found in Ref. [502].
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Chapter 3

Effective-field theory analysis of the

7~ — 7 7wy, decays

3.1 Introduction

Early studies of nuclear beta decays and, particularly, the problem of apparent non-conservation
of energy and violation of the spin-statistics theorem lead to Pauli’s postulation of the neu-
trino. Soon after, Fermi proposed a theory [503] describing these decays which was inspired
by QED’s vector current interaction which, however, was of a local current-current type. This
was the first step towards establishing the V-A nature of the weak force and understanding
its maximal parity violation. Now the original Fermi theory is regarded as one of the possi-
ble contributions of dimension six effective operators to these decays and it constitutes the
basis for effective field theories. In this spirit, not only nuclear beta decays, but also purely
leptonic lepton decays, pion decays into a lepton and its corresponding neutrino and also
strangeness-changing meson and baryon decays involving a lepton charged current can be
studied in a coherent and comprehensive way with direct connection to the underlying the-
ory at some TeVs [187,[192,504-512]. Thus, it is possible to obtain bounds on non-standard
charged current interactions from either of these processes that can be compared among

them (assuming lepton universality if necessary). As a result, quite generic New Physics

79



(NP) is restricted in absence of deviations from the Standard Model (SM) predictions. In
the event of any such departures appearing, one would expect them to point to the underly-
ing new dynamics, as (nuclear) beta and muon decays did with the W mass value (provided
the coupling intensity can be estimated from some symmetry argument) and its left-handed
couplings.

In Ref. [250] we put forward that semileptonic tau decays are also an interesting scenario
in this respect. Particularly, our study of the 7= — 7~ (n/n’)v, decays [250] showed that they
could be competitive with superallowed nuclear beta decays in restricting scalar non-standard
interactions. Our aim in this work is to extend our previous analysis to the 7= — 7= 7%,
decays, which should not be sensitive to NP charged current scalar interactions (as generally,
they are very suppressed by the small isospin breaking effects giving rise to them in this
decay channel [379]) but could instead be very competitive restricting charged-current tensor
interactions. The recent letter [512] also addresses this question.

Only if the SM input (and particularly the hadronization) to the considered decays is
well under control one can actually set bounds on NP effective couplings. This is the case for
the vector and -to a lesser extent- the scalar interactions (where we will follow the treatment
in Refs. [513] and [19], respectively) but only a theory-driven approach is possible for the
tensor form factor (where we will complement our previous work [250] guided by Refs. [427]
and [514]). In all cases it is desirable to fulfill the requirements imposed by the approximate
chiral symmetry of QCD, which are automatically enforced in its low-energy effective field
theory, Chiral Perturbation Theory (xPT') [169,(193,[194]. If possible, it is also convenient
to use dispersion relations to warrant analyticity and comply with unitarity, at least in the
elastic region (for the w7 system it amounts to ~ 1 GeV). Within this formalism, known
short-distance QCD constraints [515,516] can also be satisfied. In the absence of data (as
it the case for the tensor form factor) enlarging the domain of applicability of xPT coupled
to tensor sources [517,518] by including resonances as explicit degrees of freedom [224}225]
could seem useful, although we showed [519] it is not the case here.

This chapter is organized as follows: in section we present the basics for an effective
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field theory treatment of the considered decays. In section the different contributions
to the matrix element are identified and the participant meson form factors defined. These
are the subject of section [3.4] with a special focus on the tensor form factor. With all
SM contributions fixed, we perform a phenomenological study in search for NP signatures,
examining the hadron spectrum and branching ratio, the Dalitz plot distributions and the
forward-backward asymmetry in section|3.5, The conclusions of this research are summarized

in section

3.2 Effective theory analysis of 7= — v,ud

For low-energy charged current processes, the effective Lagrangian with SU(2) ® U(1) in-

variant dimension six operators E| reads [504.[505]
L) =g ! Sa0; = L = 340, 3.1
- SM+E ‘O[zz SM+§ Aaz 15 ()

with &; = (v?/A?)q; the dimensionless multi-TeV NP couplings.

If we particularize it for the O(1 GeV) semileptonic strangeness and lepton-flavor conservingﬂ
charged current transitions involving any lepton (¢ = e, u, 7) and only left-handed neutrino
fields, the following Lagrangian is obtained (where subscripts L(R) stand for left-(right-
Jhandedness)

4G - _ ~ _
Loc = _T; [(1 + [vrlee)loyuver ury dr + [VR) e Cryuver UurY"dr

+ [sp)ee Crver Uirdy, + [SR)e Crver irdr (32)

+ [tr]ee ERU/WVZL ﬂRU’“’dL} + h.c..

In the previous equation G is the tree-level definition of the Fermi constant and o** =

i[y*,~v"] /2. The SM Lagrangian is recovered setting v, g = sy p = t; = 0. Heavy degrees

1See in Refs. [1,130] the most general effective Lagrangian including SM fields.
2An EFT framework study of strangeness-changing processes is carried out in Refs. [507,/509,510].
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of freedom (H, W* and Z bosons plus ¢, b and ¢ quarks) have been integrated out to obtain
Eq. . The effective couplings v g, sr,r and t;, generated by the NP can be taken real
since we are only interested in C'P conserving quantities E|

Although observables are renormalization scale and scheme independent, this scale inde-
pendence comes after the cancellation of the scale dependence of the effective couplings (vy, g,
sp.r and tr) by the corresponding scale dependence of the hadronic matrix elements. These
encode the amplitude for the quark current to produce/annihilate the measured hadrons.
As it conventional, we select ;1 = 2 GeV as the renormalization scale.

It is advantageous to shift our basis for the spin-zero currents so that the new ones have
defined parity. This is achieved by means of introducing €5 = s, + sg and €p = s;, — sg.
Although the other elements in the basis of currents remain unmodified, we also rename
them to avoid any confusion between both bases: €g 1 = vy g and ep = 1.

One can proceed with ¢ = e, u, 7 in full generality (which may be profitable if lep-
ton universality is an approximate symmetry). We focus now on the tau case (and omit
the corresponding flavor subindex in the following), in such a way that the corresponding

semileptonic effective Lagrangian is:

G _ _ .
Loc = _TSVud(l +er+er){Ty(1 - VS)VTUWL - (1= 2€R)7“75]d

+7(1 =), t(eg — epy°)d (3.3)

+ 2€T7:0',u1/<1 — 75>V7— ’lj/O"uyd} + h.C.,

where & = ¢;/(1 + ¢, + €g) for i = R, S, P,T. From this expression it is easily seen that,
working at linear order in the €;, one is insensitive to non-standard spin-one charged current
interactions because the overall dependence on €7, + €z cannot be isolated, as it is subsumed
in the determination of Gr. That is, conveniently normalized rates cancel the overall factor
(1 + € + €r) in the previous equation. We note that, at linear order in the €;’s, these agree

with Ref. [505].

3Appendix A in Ref. [505] provides with these couplings as functions of the &; couplings.
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3.3 Semileptonic 7 decay amplitude

From now on, we will study the semileptonic 7= — 7~ (Pr-) 7°(Pyo) v, (P’) decays, where
pions parity determines that only scalar, vector and tensor currents contribute. The decay

amplitude readd]

M= My + Mg+ Mr

(3.4)
= CM\/;EWO + €L + €R) {LMH“ + ésLH + 2érL,, H"|,

where the following lepton currents were introduced:

L, = a(P)y"(1 —")u(P), (3.5a)
L =a(P)(1++°)u(P), (3.5b)
Ly = (P, (1+9°)u(P). (3.5¢)

The scalar (H), vector (H*) and tensor (H*”) hadron matrix elements entering Eq. (3.4)
can be decomposed using Lorentz invariance and discrete QCD symmetries in terms of a
number of allowed Lorentz structures times the corresponding form factors, which are scalar

functions encoding the hadronization procedure. Specifically, these are

H = (1’77 |du|0) = Fs(s), (3.6a)

_ YA
H" = (77~ |dy"u|0) = Cyv Q" F, (s) + Cs ( Tz ) " Fo(s), (3.6b)
H" = (n"7"|do" u|0) = iFp(s) (Pl P/ — P P%). (3.6¢)

In the previous equations, the momentum of the meson system is ¢* = (P,- + Pro)*, with

s = ¢*. We also introduced Q" = (Pr- — Pro)* 4+ (Ajor-/5)¢", and Ayo— = m2, — m2_.

70

4As in Ref. [250], we take the short-distance electroweak radiative corrections encoded in Spw [256,274,
364},365),[520H523] as a global factor in Eq. (3.4). Although Sgw does not affect the scalar and tensor
contributions, the error of this approximation is negligible and renders simpler expressions than proceeding
otherwise.
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Clebsch-Gordan flavor coefficients are C's = Cy = v/2 for this decay channel.
The Fs(s) and Fy(s) form factors can be related by taking the divergence of the vector

current via
A0

FS(S) = Csi(md _ mu)

Fy(s). (3.7)

As in Ref. [250], the scalar contribution can be absorbed into the vector current amplitude.

This can achieved by replacing

PN JANS——

C I
o S S mT(md - mu)

in Eq. (3.6b)).

Obtaining the Fy(s), F(s) and Fr(s) form factors is discussed in the following section.

3.4 Hadronization of the scalar, vector and tensor cur-
rents

Lorentz invariance, together with the discrete symmetries of the strong interactions, deter-

mine Eqs. (3.6a) to (3.6¢). QCD dynamics is encoded in these hadron matrix elements,

although it is not possible to determine them using the Lagrangian of the underlying theory
unambiguously. Nevertheless, QCD properties are useful in restricting this hadronic input.
On the one hand, it is desirable to keep the properties derived from the (very approximate)
chiral symmetry of low-energy QCD and from asymptotic strong interactions, where known.
On the other, using dispersion relations is ideal to warrant the correct analytic structure of
the amplitudes and to comply with unitarity (at least in the elastic region). These properties

will be exploited in what follows, as we will briefly review.

As shown in Ref. [513], the scalar form factor Fy(s) can be determined in an essentially
model-independent way in the low-energy region, though it does not involve resonance con-

tributions to first order in isospin breaking. The S-wave 7~ 7" system must have isospin
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I = 2. Watson’s final-state interactions theorem [524] ensures that -in the elastic region-
the phase of the di-meson form factor with definite angular momentum (L) and isospin (/)
coincides with the corresponding meson-meson scattering phase shift having the same L and
I values (L = 0 and I = 2 in our case, so this phase shift is §2(s) according to the usual
notation). Neglecting inelastic effects (that is a good approximation up to s ~ 1 GeV? in
this case), the required di-pion scalar form factor can be obtained [513] by means of a phase

dispersive representation (F((0) = 1 has been used)

Fo(s) = eXp{S - ds’(sg(S/)} : (3.9)

T Jamz (s — s — ie)

since the phase shift 62(s) has been measured [525,526]. |Fy(s)| and §2(s) are plotted in the

upper panel of Fig. 12 in Ref. [513]. As expected, there is no hint of resonance dynamics in

Fy(s).

The vector form factor, F (s), is known with great accuracy, both theoretically and
experimentally. In absence of new-physics interactions, it can be extracted directly from
7= — 7 ', data (since the scalar form factor is negligible up to second-order isospin-
violating corrections [379], which are tiny). The di-pion invariant mass spectrum in these
decays has been most precisely measured by the Belle Collaboration [365] (it was earlier
obtained by the CLEO [12], and ALEPH [397] and OPAL [527] LEP collaborations). F(s)
can also be accessed -through a CVC violating correction [94,379|- via ete™ — 77~ cross-
section data at low energies, which has been measured very precisely by BaBar [20], BES-
III [59], CMD-2 [53], KLOE-2 [88] and SND [52,/54]. Finally, in the elastic region (s < 1
GeV?), F,(s) is related via unitarity with the spin-one isospin-one 77 scattering amplitude,
for which accurate measurements have been performed [528-530]. All previous measurements
correspond to the s > 0 region, e~ 7 scattering [14] probes Fl (s < 0).

Theoretically, F.(s) is well-constrained at low-energies by xPT [169,193|194] and in
the asymptotic regime by short-distance QCD results [515,516]. In the intermediate energy

(O(1) GeV) region, resonance dynamics is needed to interpolate between the two former

85



limits. An adequate tool to connect all energy ranges taking advantage of analyticity and
unitarity constraints on F' (s) are the dispersion relations, which have been employed widely
in this context (see i. e. Ref. [19] and references therein). We will not discuss at length
the procedure here, but only recall that an excellent description of the data can be achieved

with three subtractions (one is used to set F(0) = 1)

3 0o 51
F.(s) = exp [als + 2242 ds' 1(5)

2 7 Jamz (8)3(s' — s — ie) (3.10)

being a;, the remaining subtraction constants, to be fitted to low-energy data, and 41 (s)
the relevant phase shift. In Ref. [19], d;(s) is given (below the p’ resonance region), in
terms of the p(770) pole position and the pion decay constant, Fy. Its description in the
(M, < /s < M,] interval depends on the p’ and p” properties. We will use this framework
in what follows. The central values of the modulus and phase of F(s) are plotted and
compared to data in Figs. 1 and 2 in Ref. [19]. We will use the best fit results corresponding
to case III in this reference, which includes first-order isospin breaking corrections. Both
statistical and systematic uncertainties on F' (s) are taken into account throughout our nu-

merical analysis.

Although it is difficult to constrain the hadronization of the tensor current, Eq. ,
from first principles, this would be desirable as it turns out that the 7= — 7~ 70, decays
have the potential to set competitive bounds on (non-standard) charged current tensor in-
teractions. This is in contrast with the 7= — 777, decays explored in Ref. [250], which
are competitive for new scalar contributions but not for tensor ones, which justified using
leading-order x PT results for Eq. in that analysis. Unfortunately, there is no experi-
mental data that can guide us in building Frr(s), so we will rely only on theory to accomplish
this task.

Since s can vary from the two-pion threshold up to M2, light resonances contribution
(giving the energy dependence of the form factor) should be included in a refined analysis,

as we intend. We show in the appendix of Ref. [519] that, for Fr(s), it is not convenient
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to extend the energy range of applicability of xPT by including the resonances as explicit
degrees of freedom, in the so-called Resonance Chiral Theory [224]. Instead, it will be
more appropriate to use a dispersive construction of Fr(s) taking advantage of unitarity
constraints on its phase [427]. Fr(0) will be studied within xP7T in the following.

The lowest-order x PT Lagrangian with tensor sources, which is O(p*) in the chiral count-
ing [518], includes only four operators. Among them, only the one with coefficient Ay con-

tributes to the studied decays:
L=MAE i) — Mt wu,) + . ... (3.11)

In the preceding equation, #{” = ult*ul + ut*Ty and (---) means a flavor space trace.
Operators in Eq. (3.11) are built with chiral tensors [531], with three of them entering the

displayed operators:

o« U, =1 {u*(@u —1r,)u — u(0, — ilu)uq , which includes the left- and right-handed sources,

¢, and r,.
e The chiral tensor sources t** and its adjoint, and

o M = uFMul + u'Fi u, including the left- and right-handed field-strength tensors,

FI" and Fj", given in terms of ¢# and r*.

Let us recall the non-linear representation of the pseudo Goldstone bosons, given by

U = exp {J%F(b} [532,533], where (for two flavors)

(3.12)

ASS
|
3OS
3

F' being the pion decay constant in the chiral limit, F' ~ F, ~ 92 MeV. All resonance
multiplets considered below have analogous flavor structure to Eq. (3.12)).
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The tensor source (t#) is related to its chiral projections (#** and t**T) by means of [518]
0= PP, AP = (g - g i), (313)

where \ifawt_‘“’\lf is the tensor quark current.

From Eq. (3.11)) it can be shown [250] that, in the limit of isospin symmetry [

5£O(p4) \/§A
i<7r_7r0 52_&: 0> == 2 (pfr‘,pfo — pﬁopf_) . (3.14)

We show in Appx. [A] that it is not convenient to include the energy-dependence of the
tensor form factor by extending xP7T [169,/193}/194] including resonances [224},225].

Ref. [514] evaluated f7(0) = 2m,Fr(0) on the lattice. Their result, f7(0) = 0.1954+0.010
yields Ay = (12.0 £ 0.6) MeV, that we will use in the following. This value of A, is
roughly a factor three smaller than the prediction for A; obtained using short-distance QCD
properties [517], A; = (33 £2) MeV. Since both operators displayed in Eq. have the
same chiral counting order, one would have guessed Ay ~ Ay, resulting in an overestimation
of Ay, as in Ref. [250] [[]

We will follow Ref. [427] and obtain Fr(s) using again a phase dispersive representation.
As shown in Ref. [427], the tensor form factor phase equals the vector form factor phase,
dr(s) = d4(s), in the elastic region. We will use the previous equation also above the onset

of inelasticities in our dispersion relation

= exp{s - ds'(ST(S/)} , (3.15)

T Jam2z  §'(s' — s — i€)

and fix Frp(0) = % according to the leading-order y PT result. We plot in figure the
modulus and phase of Fr(s) obtained using Eq. (3.15). The different curves on the left

®Since Fr(s), as given by Eq. , is purely real and the sign of As was unknown, a factor ¢ was absorbed
redefining Fr(s) in Ref. [250]. As we consider a non-vanishing tensor form factor phase (see Eq.(3.15) and
related discussion), we will not follow this procedure in the present analysis.

6Fortunately, since the 7= — )7~ v, decays are quite insensitive to tensor interactions, this does not
change the limits obtained in this paper for ég.
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panel are obtained for $,,,, = M?, 4 and 9 GeV? |Z| and we will take this range for Fir(s)
as an estimate of our corresponding error (our plots will be given for s,., = 4 GeV? in
the following). We neglect the uncertainty associated to our ignorance on the inelasticities
affecting d7(s) (see the related discussion in Ref. [427]), which are small below /s = 1.3
GeV.

150

g 100+

or(

501

oF 4

0.4 0.6 0.8 1.0 1.2 14 1.6 18

V5 (Gev)

Figure 3.1: Modulus and phase, |Fr(s)| (left) and dr(s) (right), of the tensor form factor,
Fr(s), corresponding to Eq. (3.15)).

3.5 Decay Observables

In order to study possible NP effects in these decays, one should use not only the hadronic
spectrum and branching ratio, but also Dalitz plot distributions and the measurable forward-
backward asymmetry. In this section, we focus in the study of the possible effects of the non-
standard effective couplings described in section in these 7= — 7~ 7v, decay observables.
We will start with the Dalitz plots (which should contain more dynamical information, as
no integration over any of the two independent kinematical variables has been performed)
and move later on to (partially) integrated observables: differential decay rate as function

of the di-meson invariant mass, forward-backward asymmetry and, finally, branching ratio.

"The parameter S,,,, corresponds to the cutoff of the dispersive integral. The unphysical dependence
on it is a consequence of the dispersion relation being once-subtracted. Additional subtractions
would reduce the artificial dependence on s,,,4.. However, since we lack low-energy information to fix these
subtraction constants, we cannot follow this procedure. Taking this into account, we restrict the s,,4. values
in the previously quoted range.
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The differential decay width of the 7= — 7~ 7%, decays, in the 7 lepton rest frame, is

T 1
dsdt — 32(2m)3M3

M2, (3.16)

where | M|? represents the unpolarized spin-averaged squared matrix element, s being the

707~ system invariant mass, limited in the interval (my + m,-)? < s < M? and t =

(' + pr0)® = (p = pr-)? with t7(s) <t < t7(s), where

1
t£(s) = % 25(M? +m2o — 5) — (M? — 5)(s +m2_ — myo) & (M? — s)\/)\(s,mi_,mio) ,
(3.17)
and \(z,y,2) = 2% + y? + 22 — 20y — 22z — 2yz is the usual Kallen function.

3.5.1 Dalitz plot

Including possible non-standard weak charged current interactions, the unpolarized spin-
averaged squared amplitude yieldsﬁ

G%‘lvudPSEW
2

M2 = (14 €L + €r)” [Moo + My + Moy + My, + Mpo + Mpr],  (3.18)

8We note a typo writing the corresponding equation, (22), of Ref. [250], where the factor 2 should not
appear. All subsequent expressions and the numerical results of Ref. [250] are not affected by this typo.
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where the scalar, vector and tensor squared amplitudes are My, M, and Mpr, respectively.

Their corresponding interferences are denoted My, , My, Mrpy. All these readﬂ

- 2 * 0 L
Moy = 2Cy Cgm; Re [F (s)F5(s)] Aq-r (1 * me(mg — mu)>

X {5 (mi — 5 —2t+ Zﬂfﬂo) — mEAﬂwo} ,

S
) )\(s,mfr,,mfro),

2
mz

My = ACy éxm? s Re [Fr(s)Fj(s)] (1 _
Myo = 4Cs Ay o gmn s Re [Fr(s) Fi ()] (14 ——05
TO0 — S Ap—7x0 €L My SNE | L7(S) (S mT(md_mu)

X {s (mi —s—2t+ E,rwo) — mzAwwo} ,

N 2
Moo= €2 (At (1= 2 ) (16—
0= (Aesfm (1= 25 ) IR (14 )

2
mz mg — My,

T

M., =C2 \F+(s)|2{m4 (5 = Apro)® = m2s [s(s +48) — 28,20 (5 + 2t — Xrro) + (Ap-r0)?]
+ 4m?2_s* (m?ro — t) + 45°t (s +t— mio) },
Mypp = 462 |FT(3)|252{mfr (mz - 3) —2m2_ (mi - s) (s + 2t — mfro) —ml (3m3 + s)

+ 2m2, KS + mi) (s+2t) — Qmﬂ -5 {(s +2t)* —m? (s + 4t)} },
(3.19)

where the familiar definitions A;— 0 = m2_ — m?2,

and Y -0 = mfrf + mio were employed.
Noteworthy, the scalar form factor is always suppressed by A,-,o, which is tiny, in the
previous equations for Moo, Mro and My,. This makes its effect negligible even for |ég| ~ 1
(radiative pion decay limits |és| < 0.01 and, under the reasonable assumption of lepton flavor
universality, this limit should also apply for the tau flavor considered here).

We now turn to analyze possible NP signatures in Dalitz plots distributions. The left

panel of figure shows the squared matrix element |[M|?,, in the (s,t) plane, which is
obtained using the SM predictions for 7= — 7~ 7%, form factors [19,513]. The p(770)

9Comparing Egs. (3.6a)) to (3.6c) to their analogs in Ref. [250], it can be verified that Egs. (3.19) agree
with the corresponding expressions in Ref. [250].

91



meson dominance of the dynamics is clearly seen in this plot.
In order to better appreciate the modifications induced by non-vanishing ég 7 in Dalitz

plots, we introduce the observable

[M(és, ér)|* = |M(0,0)]?

Alés,er) = T . (3.20)

In the left panel of figures and , A(és, ér) (3.20) is shown for two representative

values of the set of (és,é7) parameters that are consistent with the Br(r— — 7 7%,)
(obtaining these limits will be discussed in subsection [3.5.5). Although O(1) effects are seen
in fig. [3.3] these are not realistic since two-pion tau decays are almost insensitive to €és.
Indeed, when ég is taken from more adequate processes [250,(504}505512], the left panel of
fig. shows that only a measurement of A with < 1% uncertainty could distinguish these
new physics effects. In the left plot of fig. [3.4] (with (€5 = 0,ér = —0.014)) the deviations
with respect to the SM are around 15% in a given region, but the left plot in figure 3.6
(obtained using our best fit value for ér in section reduces the size of this signal to
a 1% effect. These O(1%) effects would be difficult to measure, even at Belle-IT [500]. Our

uncertainties do not affect the conclusions drawn in this paragraph.

3.5.2 Angular distribution

The hadronic mass and angular distributions are also modified by the generic new effective
interactions that we are studying and can have different sensitivity to €5 and ér. The rest
frame of the hadronic system is convenient for this analysis. It is defined by pr- + pro =
p»— D, = 0. In this frame, the charged particle energies are given by E, = (s+ M?)/2,/s and
E.- = (s+m2_ —m?%)/2/s. The measurable angle 6 between these two particles can be

obtained from the invariant ¢ variable by means of ¢t = m2_ +m?2 —2E, E,- +2|p,-||p;| cos,

with |pu| = /E2 —m2 fora=7n",7".
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Figure 3.2: Dalitz plot distribution |M|?, in the SM, Eq. 1) Differential decay distribu-
tion for 7= — 7~ 7%, in the (s,t) variables (left). The right-hand figure shows the differential
decay distribution in the (s, cosf) variables, Eq. (3.21)). The Mandelstam variables, s and

t, are normalized to M2
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Figure 3.3: Dalitz plot distribution for A(ég, ér), , in the 7= — 7 7%, decays: left-
hand side corresponds to Eq. and right-hand side corresponds to the differential
decay distribution in the (s, cosf) variables, both with (€5 = 1.31, é7 = 0). The Mandelstam
variables, s and t, are normalized to M?.
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Figure 3.4: Dalitz plot distribution for A(ég, ér), , in the 7= — 7~ 7%, decays: left-
hand side corresponds to Eq. and right-hand side corresponds to the differential decay
distribution in the (s,cos#) variables, both with (és = 0,ér = —0.014). The Mandelstam
variables, s and t, are normalized to M?.
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Figure 3.5: Dalitz plot distribution for A(€S, ér), , in the 7= — 7~ 7%, decays: left-
hand side corresponds to Eq. and right-hand side corresponds to the differential decay
distribution in the (s, cos#) variables, both with (és = 0.008,ér = 0). The Mandelstam
variables, s and t, are normalized to M?.
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Figure 3.6: Dalitz plot distribution for A(@S, ér), , in the 7= — 7~ 7%, decays: left-
hand side corresponds to Eq. and right-hand side corresponds to the differential decay
distribution in the (s,cosf) variables, both with (ég = 0,é7 = —0.001). The Mandelstam
variables, s and t, are normalized to M?.

The Dalitz decay distribution in the (s, cos ) variables, for general ég and ér reads

2
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RelFr(s)F5 (5] .

(3.21)

T

which coincides with the SM result when these two effective NP couplings are set to zero.
The right panel of ﬁgure shows Eq. for 7=7% in the SM case. In the right panel
of figures and the (s, cosf) distributions for A(ég, ér), , are plotted; for the
same representative values of (ég, ér) used in order to obtain the left panel of these figures.
Again for non-standard scalar interactions, the large effect seen in the left panel of fig. 3.3
is unrealistic and it will be challenging to measure the reduced effect (< 6%) of fig. at
Belle-11 . For tensor interactions, the deviation from the SM depicted in the right plot
of fig. could be measurable, but this is not the case for the effect seen in the right plot
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of figure (< 1%), obtained using our preferred value for é7. Again, our uncertainties do

not affect the preceding discussion.

3.5.3 Decay rate

The di-pion invariant mass distributions is obtained integrating upon the ¢ variable in Eq.

(3.16)

dl’ G%|Vud|2miSEW 2 S ? 1/2 2 2
&= sy Gtatel|1-n) A (5. )

m (3.22)
X [XVA + ésXs + érXr + €4 Xs2 + €2TXT2] )
where
Xva = gz (RPN + IFOPCE (14 2] A (o) (3230
s m2

Xs= S |R(sPog S (3.23b)
Xy = anT Re [Fr(s) 7 (s)] Cyh (s, ma,m2- ), (3.23¢)
gt = 2:13|F0(5)|203ma (3:234)
Xy = i‘|FT<s)|2 <1 + 2%) A(s,m2o,m?) . (3.23¢)

Again, the SM limit is recovered with €, p = és7 = 0. Figure [3.7 plots the invariant mass
distribution of the di-pion system for 7= — 7 7%, decays. It is almost impossible to
distinguish the case of tensor interactions from the SM curve and, although some departure

is seen for non-standard scalar interactions, it goes away when realistic values on |€g| ~ 1072

[250,504./505] are considered.
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Figure 3.7: The 77~ hadronic invariant mass distribution for the SM (solid line) and
és = 1.31,ér = 0 (dashed line), ég = 0,ér = —0.014 (dotted line). Axes units are given in
GeV powers and the decay distributions are normalized to the tau decay width.

3.5.4 Forward-backward asymmetry

The forward-backward asymmetry is defined [513] by

d
A (S) _ fU dCOS@deCESG f dcosedsdcose ] (324)
” fO dcosedsgcosﬁ +f dCOSQdeCOS@

We can obtain it for 7= — 7 7%, decays plugging in Eq. (3.21)) into Eq. (3.24) and

integrating upon the cos @ variable,

A

0 S€g

= 1 + — AW*W
252 [Xya + ésXg + érXp + & X2 + 6 X72] < me(1mq — m“)> 0 (3.25)

X {C’VRe[Fo(s)Fj;(s)] Re[Fr(s)F (3)]}7

—3Cg/ A\ _ ., m?
A (s) = 5\/ sm ,Mm2,)

25 € €T

T

where, again, the SM forward-backward asymmetry is recovered for ep = €sp = 0. This
reference case is plotted in figure .8 which agrees with the prediction in Ref. [513] (this
asymmetry was first studied in Ref. [534]). This observable is plotted in fig. for an

unrealistically large value of ég, for which there is a large deviation with respect to the SM
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case. Since such large departures disappear for reasonable values of €g 7, in order to enhance
the sensitivity to new physics effects, we define the observable (odd under ég +» —ég)

AApp = AFB(57 €s, €T) - AFB(Sa 0, 0)7 (326)

which is plotted in figs. [3.10, Even by using this observable it does not seem possible to

evidence non-vanishing €g 7 using the forward-backward asymmetry.
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Figure 3.8: The forward-backward asymmetry in the 7= — 7~ 7%, decay as a function of

the w7 energy for the SM case. The low-energy region is shown in the left plot and remaining
energy range is represented in the right plot.
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Figure 3.9: Forward-asymmetry for és = 1.31,ér = 0 (dashed line) compared to the SM

prediction (solid line). The left plot shows the low-energy region and the right plot includes
the remaining energy range.

As advanced before, A, (s) in Eq. (3.25) is a good observable for finding non-standard

scalar interactions: despite its numerator is suppressed by the small value of A, o, its
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metry (AApp) in the case of scalar interactions (left plot, with é5 = 0.008,ér = 0) and
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denominator is further suppressed by the dependence of Xg2 on A which enhances the
sensitivity of this forward-backward asymmetry to scalar contributions. However, as just
observed, if the strict limits on |ég| obtained in other low-energy processes are applied, even

A, (s) happens to be unable of evidencing this kind of NP contributions.

3.5.5 Limits on €g and ér
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Figure 3.11: A as a function of ég for ér = 0 (left-hand) and ér for és = 0 (right-hand) for
7= — 7 mv, decays. Horizontal lines represent the values of A according to the current
measurement and theory error (at three standard deviations) of the branching ratio (dashed
line) and the hypothetical case of this value being measured by Belle-II with three times
reduced error (dotted line).

The 7= — 7~ 7%, decay width can be obtained integrating the invariant mass distribu-

tion, using the expressions for the form factors [19,[513]. Since the total decay width depends
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on the effective couplings, this process branching ratio sets bounds on é5 and ér. For that, we

92, in the presence of non-vanishing NP effective

compare the decay rate (I') for 77 — 77
couplings with respect to the one (I'°) obtained by neglecting them (SM case). Using the best
fit results of case III in Ref. [19], we obtain a value of I'y which corresponds to the branch-
ing ratio (25.53 4+ 0.24)%, in excellent agreement with the PDG value of (25.49 + 0.09)%.
Integrating Eq. we get the relative shift produced by NP contributions as follows
A= F;OFO = aég + Bér + VE% + dér (3.27)
for whose coefficients we get: o = 3.5 x 1074, 3 =3.370% v =22 x 1072, § = 4.7729. The
relative error of the coefficients o and v due to our uncertainties is < 2%. Eq. is a
quadratic function of the effective scalar and tensor couplings, which can be used to explore
the sensitivity of 7= — 7~ 7%, decays to non-standard scalar and tensor interactions. We
will do this in two steps. Firstly, we can make the analysis for one vanishing and one non-
vanishing coupling. This is shown in figure where we represent with horizontal lines
the current experimental limits on A (at three standard deviations) and use Eq. to
translate this information into bounds for ég and ér. According to this procedure, we get
the following constraint —1.33 < ég < 1.31 with ér = 0 and [—0.79, —0.57)U[—1.4,1.3] - 102
as the allowed region for é7 with és = 0 (at three standard deviations). The previous
results were used to estimate the values of €5 and ér which were employed in the preceding
subsections: ég ~ 1.31 and ép ~ —0.014 [} The dotted lines illustrate how the limits would
evolve for an error reduced by a factor three, which could be achieved at Belle-1II (the theory
error is not assumed to decrease in this exercise).
Then, we can also fix joint constraints on the scalar and tensor effective interactions
assuming both ég and ér non-vanishing and using again Eq. as before. This result is
shown in figure (3.12] where the limits on the scalar and tensor couplings are contained inside

an ellipse in the ég — ér plane. As a rough estimate of the possible impact of Belle-II data

0The value é7 ~ —0.001 could seem a bit too small, compared to the intervals just given. However, we
will see later in this section that the fits to the di-pion mass spectrum justify such an estimate.
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we repeat the exercise of assuming a threefold error improvement with respect to Belle-1.

The dashed lines of the figure (right panel) are illustrative of this effect.

0.01

T — ewo=+027% & 1 - ©.30=+0.09%
————— 6.55=-0.09%
€430=+0.27%
€.35=-0.27%

&s Es

Figure 3.12: Constraints on the scalar and tensor couplings obtained from A(7~ — 7~ 7%;)
using the Belle measurement and the theory uncertainty (at three standard deviations) of
the branching ratio. The left-hand plot shows the constraints obtained from current data.
On the right-hand plot we show a magnification of the top part of this ellipse, where the solid
line represents the upper limit on ég and ér, while the dashed lines intend to illustrate the
effect of a possible threefold improvement in the measurement at the Belle-II experiment.

Table summarizes the constraints on the scalar and tensor effective couplings that
can be obtained (at three standard deviations) from the Belle measurement of the branching
ratio for 7= — 7 7%, decays (including theory errors). The bottom part of Table
illustrates the bounds that could be achieved with a threefold reduction of the uncertainty

at Belle-II.

| Alimits | ég(ér=0) | é&(@Es=0 [ & | ér \
Belle [—1.33,1.31] | [-0.79,—-0.57] U [—5.2,5.2] | [-0.79,0.013]
[—1.4,1.3]-1072
3-fold [—1.20,1.18] | [-0.79,—-0.57]U | [-5.1,5.1] | [-0.78,0.011]
improved [—1.1,1.1] - 1072
measurement

Table 3.1: Constraints on the scalar and tensor couplings obtained (at three standard devia-
tions) through the limits on the current branching ratio measurements and the hypothetical
case where this value be measured by Belle I with a three times smaller error. Theory errors
are included.

101



Next we consider fits to the data reported by Belle [365] for the normalized spectrum
(1/Nyr)(dNyr/ds) and integrated branching ratio using the function [!]

1 dl(s,és,ér)
T(és,ér)  ds

. (3.28)

When fitting és and ér to Belle data in order to search for non-standard interactions, we
are assuming that our description of I'y (based on Ref. [19]) is a reliable estimate of the cor-
responding SM prediction (including theoretical uncertainties). Thus, we examine whether
it is possible or not to improve the agreement of the SM prediction with data by means of
non-vanishing new physics scalar or tensor interactions.

If both é5 and ér are fitted, bounds of order one on €5 and of order 0.1 on ér are
obtained. Because of this unrealistic bounds for ég, which hinder the extraction of ér, in
our reference fits we restrict |ég] < 0.8 x 1072 [504,505] and fit only ér. In this case we
find ér = (—1.35:3) 1073, which shows a small preference (0.9 sigma) for charged current
tensor interactions. We believe, however, that it is interesting to check this conclusion with
more precise measurements of these decays and scrutinizing F', (s), hopefully with improved
knowledge on the inelastic effects on Frp(s).

A caveat is, of course, in order: although chiral symmetry (at low energies) and the use of
dispersion relations together with precise measurements (especially useful outside the y PT
regime of applicability) makes us confident on our knowledge of the vector two-pion form
factor, F, (s), one should be very cautious before claiming evidence for NP from this type
of analysis E Provided a hint for an anomaly appears, different investigations should be
performed to test it: it may be worth considering a dispersive coupled-channel analysis of
the two-pion and two-kaon vector form factors [535-538], one should analyze along these
lines the compatibility between the F (s) form factor measured by Belle and the L =1 =1

m scattering amplitude...

1L All discussed uncertainties are considered in our fits.

12Tn the case of 7= — 7 (n/n')v, decays [250] this would be noticeably more difficult: although the
hadronization of the vector current is given again in terms of the precisely-known two-pion vector form
factor, the dominant scalar contribution is subject to large uncertainties still |447].
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We can finally compare the constraints in tables[3.1]and the best fit results to the di-pion
spectrum with those obtained in Ref. [505]. For this, we need to assume lepton universality
because our decays involve the tau lepton, while their analysis involves electron and muon
flavors. According to Refs. [250,504,505], it is clear 7= — 7~ 7y, decays cannot be competi-
tive setting constraints on the non-standard scalar interactions. Our three sigma upper limit
(using current data) is |ég| < 1.3 while the limit from the radiative pion decays m — evry
is |és] < 0.8 x 1072 (at 90% C.L.). Conversely, our best fit result, é7 = (—1.3%33) - 1073,
is competitive in the case of tensor interactions since the limit reported in [504}505] is
lér| < 0.1 x 1072 (at 90% C.L.). Notwithstanding, we find that the measured branch-
ing ratio only limits é7 € [—0.79, —0.57]U [—1.4,1.3] - 1072 (at three sigma), which is not
competitive with the previous value. Our results in this work and in Ref. [250] are compat-
ible with those in Ref. [512] (which also analyze semileptonic tau decays in this context):
és = (=0.6 £1.5) - 1072, ér = (—0.04 &+ 0.46) - 1072. Tt must be noted that the analysis in
Ref. [250] does not include theory errors, which explains the smaller uncertainties quoted
therein for €g. In this work, our bounds using only the measured branching ratio are less
restrictive than those in Ref. [512], and we can only achieve stronger limits with our fit to
both the branching ratio and spectrum (using the error band for I'y obtained in Ref. [19)
and restricting |és| < 1 x 1072). In the light of more precise and diverse measurements of
the 7= — 7~ 7%, decays, improved theory analysis shall be needed to pursue cornering new

physics with these decays.

3.6 Summary and conclusions

We have considered the 7= — 7~ 7%, decays in the presence of generic New Physics effective
interactions up to dimension-six operators, assuming left-handed neutrinos and that the
new dynamics scale is in the multi-TeV range. Within this setting, we have paid particular
attention to the hadron matrix elements, which are needed SM inputs in order to set bounds

on the non-standard scalar and tensor couplings, és and ér, respectively (we recall that it
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is not possible to restrict spin-one non-standard interactions in the considered processes).
For this, we have employed previous results using dispersion relations for the scalar [513],
vector [19] and tensor [427] form factors implementing the known chiral constraints at low
energies and QCD asymptotics at short distances, according to data. For the tensor form
factor, since no experimental information is available, we have pursued a purely theoretical
determination of its leading chiral behaviour using Chiral Perturbation Theory. In this work,
we improved over our previous treatment of the tensor form factor where only leading-order
chiral predictions were considered and unitarity constraints were ignored [250], motivated
here by the fact that di-pion tau decays constitute an excellent arena to set competitive
limits on ép. Lattice QCD results [514] allowed determining the only leading low-energy
constant of the tensor form factor, permitting a direct access to ér.

Within this framework, we have set bounds on ég and é7 using the measured Belle branch-
ing ratio, through our observable A. This procedure yields quite competitive limits with the
world-best bounds for the tensor case (that we have thus used in the remaining analysis),
but quite poor (unrealistic assuming some reasonable approximate lepton universality holds
for them) in the scalar case, which is a consequence of its suppression in all considered ob-
servables (but the forward-backward asymmetry) by the tiny difference between charged and
neutral pion masses squared. Because of this feature, we have assumed ég limits similar to
those obtained in light quark beta and 7= — 7~ (n/n')v,; decays in the remaining analysis.

As a result of our study, it turns out that Dalitz plot distributions (both in the Mandel-
stam variables s and ¢ and also replacing ¢ by the angle between the two charged particles)
are not very sensitive to non-zero realistic values of és and ér, as it also happens with the
forward-backward asymmetry. Apparently, the hadronic invariant mass distribution is not
sensitive either to charged-current tensor interactions. However, a fit to Belle data on this
observable (limiting |é5| < 1 x 1072 and with Ty fixed -within errors- previously) hints for
a slight preference for non-zero ér. Therefore, it is very worth measuring with extreme pre-
cision the di-pion invariant mass distribution in 7= — 7~ 7%, decays at Belle-11I, as it will

serve to further restrict é7 and this way offer complementary information to other low-energy
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processes in the searches for non-standard charged current interactions. This effort would
need to come together with both a tight scrutiny of the dominant vector form factor SM

prediction and measurements of Dalitz distributions and forward-backward asymmetry.
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Chapter 4

Effective-field theory analysis of the

T — K_n(')I/T decays

In this chapter we study the effect of NP interactions in the 7= — K~n") v, decays through
an effective field theory analysis which is complementary to another semileptonic tau decays
analysis, the 77 [519] and the 7n") [250] channels for the strangeness conserving and the

K |251] channel for the strangeness changing charged current transitions.

4.1 Introduction

Hadronic tau decays provide an important source of experimental information about QCD
at low and intermediate energies. These decays have the advantage of containing hadrons in
the final state thus avoiding the complications arising from having them in the initial state
as well. At the exclusive level, they can be used to understand specific properties of pions,
kaons, 77 and 1’ mesons, and the interactions among them. So far, we have a good knowledge
over decays into a pair of pseudoscalar mesons, the Standard Model (SM) input of which
is encoded in terms of hadronic form factors. An ideal roadmap to describe meson form
factors would require a model-independent approach demanding a full knowledge of QCD

in both its perturbative and non-perturbative regimes, knowledge not yet unraveled. An
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alternative to such enterprise would pursuit a synergy between theoretical calculations and
experimental data. In this respect, dispersion relations are a powerful tool to direct oneself
towards a model-independent description of meson form factors. For example, the analyses
of the decays 77" [15//16}[19,28] and Kgr~ [23}24,30,409,410], carried out by exploiting the
synergy between Resonance Chiral Theory [224] and dispersion theory, are found to be in a
nice agreement with the rich data provided by the experiments. Accord with experimental
measurements is also found for the K~ Kg [28] and K7 [30,428] decay modes, although
higher-quality data on these processes is required to constrain the corresponding theories or
models.

Several recent works [250,251./512/519] have put forward that semileptonic tau decays offer
also an interesting scenario to set bounds on non-standard weak charged current interactions
complementary to other low-energy semileptonic probes considered before, such nuclear beta
decays, purely leptonic lepton, pion and kaon decays or hyperon decays (see e.g. Refs. [187,
192/504-511,/539]). The aim of this chapter is to extent the analysis in Chapterfor the ™ —
771, decays [519] along with previous analyses for the 7= — (K7) v, [251] and 7= —
70", [250] decays, which were studied using the most general effective Lagrangian for
weak charge current interactions up to dimension six on several phenomenological interesting
observables, to the 7= — K~ (n"), K°)v, decays

On the theory side, a controlled theoretical determination, with a robust error band, of
the corresponding form factors within the SM is required in order to increase the accuracy
of the search for non-standard interactions. At present, we have such a knowledge for the
vector and -to a great extent- the scalar form factors, but there are no experimental data
that can help us constructing the tensor form factor and, therefore, it will be built under
theoretical considerations only.

On the experimental side, our study is presently limited by the following facts: i) for
the decay 7= — K~ K°v,, while the PDG reports a branching ratio of 1.486(34) x 1073

[541], no measurement of the corresponding decay spectrum has been released by the B-

I Although the 7= — K~ K%, decays will not be discussed in this thesis, the interested reader is referred
to Ref. [540] for detailed description of the methods and results for the K~ K decay mode.
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factories; i7) the associated errors of the brother process 7= — K~ Kgv, BaBar data [481]
are still relatively large; #ii) unfolding detector effects has not been performed for the 7= —
K~nv, Belle data [29]} iv) and, finally, the decay 7~ — K ~nv, has not been detected yet,
although an upper limit at the 90% confidence level was placed by BaBar |433]. We will not
thus attempt to extract new physics bounds from the corresponding experimental data as
competitive as those coming from other low-energy probes, like the ones mentioned before,
but rather explore the size of the deviations from the SM predictions that one could expect
in these decay channels. For these reasons, we hope that our paper strengths the case for a
(re)analysis, with a larger data sample, of the K~ K° K~ Kg and K7 decay spectra and
encourage experimental groups to measure the K7’ decay mode. All this should be well
within the reach of Belle-II [500], and of other future Z, tau-charm and B-factories where
new measurements should be possible.

This chapter is organized as follows. The theoretical framework is given in section [4.2
where we briefly present the effective Lagrangian and discuss the different effective weak
currents contributing to the decays. The hadronic matrix element and the participant form
factors are also defined in this section. The latter are the matter subject of section 4.3 where
we pay special attention to the tensor form factor. In section 4.4 we discuss the different
interesting phenomenological observables i.e. decay spectra and branching ratio, Dalitz plot
distributions and the forward-backward asymmetry, that can help us setting bounds on
non-SM interactions. We derive these bounds in section [4.4.5 Finally, our conclusions are

presented in section [£.5]

2This decay was also measured by BaBar [429]. However, the person in charge of the analysis left the
field and the data file was lost, unfortunately.
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4.2 Effective field theory analysis and decay amplitude
of T~ — v, us

The effective Lagrangian including dimension-six operators, that describes semileptonic
T~ — v,us strangeness-changing charged current transitions with left-handed neutrinos,
can be written as [2504251,519|542):

G _ _ .
Loc = —7;%5(1 +erL+ 63){7‘%(1 - 75)1/Tu['y“ —(1- 263)7“’}/5}8

+7(1 — ¥ v, u(és — épy°)s + 26770, (1 — ¥°)v, ﬂa‘“’s} + h.c., (4.1)

where G is the tree-level definition of the Fermi constant. In Eq. , we have defined
é& =¢€/(14+e+eg) fori = R, S, P, T, with €/, g and ¢; being effective couplings characterizing
NP that can be taken real since we are only interested in C'P conserving quantities. Needless
to say, if we put them to zero i.e. €1 r = €rspr = 0, we recover the SM Lagrangian. This
factorized form of Eq. is useful as long as conveniently normalized rates allow to cancel
the overall factor (1 + ¢ + €g). Note that since ¢; = €; at linear order in €.s, we may use ¢;
instead of € when comparing to works which use the former instead of the latter [505]. A
more detailed derivation of the Lagrangian of Eq. can be found above in Chapter 3| or
in Refs. [250,251]519].

The decay amplitude for 7= (P) = K~ (px)n") (p,0)v- (P') that arises from the La-
grangian in Eq. contains a vector (1), an scalar (S) and a tensor (") contribution. The

resulting amplitude can be expressed asﬂ

M= My + Mg+ Mrp
_ GFVus\/SEW
V2

3The short-distance electroweak radiative corrections encoded in Sgy [365], do not affect the scalar and
tensor contributions. However, the error made by taking +/Sgw as an overall factor in Eq. l} is negligible.

(1+ €L+ €r) [LyH" + esLH + 2ep L, H"| (4.2)
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where the leptonic currents are defined by:

Ly = a(P)y,(1 = ~°)u(P), (4.3)
L=u(P)(1+~")u(P), (4.4)
Ly = w(P)ou, (1 +~°)u(P). (4.5)

The scalar H, vector (H*) and tensor (H*”) hadronic matrix elements in Eq. (4.2)) can be
decomposed in terms of allowed Lorentz structures and a number of form factors encoding

the hadronization procedure as

H = (K3"|5ul0) = F§ " (s), (4.6)
. e e v ) s Agr\ kg
H" = (K™ 0" |s7"u|0) = Cr— o Q“Fy " (s) + C— 00 — )4 Fyo T(s), (47)

v — SV . —n" v v
H"™ = (K" [s0"ul0) = iFyp " (s) (P Pk — Picplo) » (4.8)

where ¢* = (px + p,0)*, Q" = (P, — Pr)" + (Agy0/8)d", s = ¢* and Ay = mi —mj,
and with the Clebsch-Gordan coefficients: Cl‘gn(,) = —\/g, Chry = —% and Clso;’ = % The
divergence of the vector current Eq. (4.7)) relates the form factors Fg(s) and Fy(s) via

CS Ak, ,
Fy(s) = K105 pra® gy (4.9)

Mg — My,

As in Refs. [250}251,/519,/542], the scalar and vector contributions in Egs. (4.6) and
Eq. (4.7)), respectively, can be treated jointly by doing the following replacement

A

AKﬂ' AKﬂ' SE€g

mg — mu)

in Eq. (4.7). The parametrization of the three independent form factors i.e., Fy(s), Fly(s)

and Fr(s), will be discussed in the next section.
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4.3 Hadronization of the scalar, vector and tensor cur-
rents

It is fundamental to have good control over the scalar, vector and tensor form factors since
they are used as SM inputs for binding the non-standard interactions. The frame approach
to describe the K~n") vector form factor is the following. They are calculated within the
context of Resonance Chiral Theory taking into account the effects of the K*(892) and
the K*(1410) vector resonances, and are connected to the K vector form factor through
Ff"(/) (s) = cosOp(sinbp)F ™ (s) [428], where fp is the -1/ mixing angle in the octet-singlet
basis. We will then discuss the exemplify case of the K7 vector form factor and take

0p = (—13.3 £ 0.5)° [543]. For our analysis, we follow the representation outlined in Ref.

[410]. The thrice subtracted dispersion relation reads

. . s 1 s 83 prsem 6K (")
Ff (S) = F_{_{ (O) exp alw + 50&2@ + ? /SK dS/(S/)s(;/_ T ZO) s (411)

™ ™

where sx, = (mg + m;,)? is the threshold of the K7 system, while the value of Ff”(()) is
extracted from |V, FX ™ (0)| = 0.2165(2) [541], and a; and oy are two subtraction constants
that are related to the low-energy expansion of the form factor. The use of a three-times
subtracted dispersion relation reduces the high-energy contribution of the integral where
the phase is less well-known. In Eq. , Seut 18 a cut-off whose value is fixed from the
requirement that the fitted parameters are compatible within errors with the case s¢,; — 0.
In Refs. [30,410], the value of s.,; = 4 GeV? was found to satisfy this criterion, and variations
of s.ut were used to estimate the associated systematic error. For the input phase (55”(3) we

use

Kn — tap~! Imff’r(s)
017 (s) =t [Reff”(s)] , (4.12)
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where f7(s) is taken to be of the form [410]

m2. — ke Hir(0) + s B Vs

rKr
s) = , 4.13
+ ( ) D(mK*, /VK*) D(mK*/, ’}/K*/) ( )

where we have included two resonances, the K* = K*(892) and the K* = K*(1410). The
denominators in Eq. (4.13) are

D(mna ’yn) = m721 -5 "inRe [HKw(S)] - Z.77171’771(8) ) (414)
where
1927 F Fre v, s o3 ()
o On () = oy TE\S) 4.15
N O R T W Ty )
and with the two-body phase-space factor given by ox.(s) = 2qx-(s)/+/s where
1
Grr(s) = —= M2 (s,m% m2)0(s — (mg +my)?). (4.16)

2y/s

The scalar one-loop integral function Hg,(s) is defined below Eq. (3) of Ref. [24], however
removing the factor 1/F? which cancels if &, is expressed in terms of the unphysical width ~,,.
For our analysis, we use the results of the reference fit in Ref. [30] jointly with the systematic
uncertainty obtained as explained along the lines of the same reference. One limitation of
Eq. is that the 1/s asymptotic fall-off of the form factor [544] it is not guaranteed
because the subtraction constants are fixed from a fit to experimental data. However, we
have checked that our form factor parametrization is indeed a decreasing function of s (apart
from the K*(892) and K*(1410) peak structures) within the entire range where we apply it.

Regarding the Kn() scalar form factors, we employ the well-established results of Ref.
[412] derived from a dispersive analysis with three channels (K, Kn, Kn') [

As was already pointed out in Chapter 3, the tensor form factor is one of the most
difficult inputs to be reliable estimated since there are no experimental data that can help

constructing Fr}( 77(/)(s). Therefore, we shall rely again on theoretical considerations only.

4We are very grateful to Matthias Jamin and José Antonio Oller for providing us their solutions in tables.
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Figure 4.1: Normalized absolute value of the tensor form factor Fii 7 (s) given in Eq. (4.17
(left), for seu = 4 GeV? (dotted line), 9 GeV? (dashed line) and s,y — 0o (solid line), and

tensor form factor phase o5 1 (s) (right).

The key observation is that the tensor form admits an Omnes dispersive representation

(2511427 [519]

% 0 S [Seus o5 ()
FE () = EE" (0)exp | 2 / ds/S/(T— , (4.17)
SKm

T s’ — s —10)

where in the elastic region, the phase of the tensor form factor equals the P-wave phase of

the K vector form factor ie. 657" (s) = 657 (s), with 657 (s) extracted from Eq. (4.12)).

We will assume the previous relations also hold above the onset of inelasticities until m?
where we guide smoothly the tensor phase to 7 as in Ref. [28] to ensure the asymptotic 1/s
behavior dictated by perturbative QCD [544]. Lacking of precise low-energy information, we
do not increase the number of subtractions in Eq. , which, in turn, would reduce the
importance of the higher-energy part of the integral, but rather cut the integral at different
values of s., and take the differing results as an estimate of our theoretical systematic
uncertainty for the results presented in section [£.4.5 In Fig.[.1] we show the tensor form
factor phase o5 770)(3) (right panel) together with the (normalized) absolute value of the

tensor form factor (left panel) for the cases s., = 4,9 GeV? and s,y — 00, which is taken as

the baseline hypothesis. The value of the normalization Fi " (0) required in Eq. (4.17)) can

be estimated within ChPT as explained in the following. The lowest-order ChPT Lagrangian
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with tensor sources is of O(p*) in the chiral counting and reads [518]
L= My (1 o) — 0o (1 wan) + As (#785,) + A (1) (4.18)

where t5” = uTt"u' +ut"Tu includes the tensor source and its adjoint, and (- - - ) stands for a

flavor space trace. Only terms proportional to A; contribute to the decays we are considering.

The chiral tensors entering Eq. (4.18|) are given by: u, =i [uT(@L —ir,)u —u(0, — il“)uT],

where [, and 7, are the left- and right-handed sources, and f = uF/"u' + u' F§"u, that

includes the left- and right-handed field-strength tensors for [, and r,, F7'z. The non-linear

representation of the pseudo-Goldstone bosons is given by u = exp { \/%F qﬁ} [532,533], where

rs}nq K+
2
¢ — T —71'\3/‘%‘7711 KO , (419)

K- K"

where n, = C;n+ Cyn’ and ny, = —Csn + Cyn’ are the light and strange quark components

3 coincides with the 7° when the isospin-breaking

of the n and 7' mesons, respectively.
terms are neglected. The constants describing the mixing between 7, and n, states are given

by [545,[546]

E, (cos 0o /2sinfy
C, =

_ ) O, = F, <\/§00598+sin00>
V3cos(bs — o) \ fs Jo T V/Beos(fs — by) fo fs )

E, <\/§00860+Sin68> o, = F, (coseg \/§sin90>

Cs =
\/§COS(98 —6p) /8 fo 3 cos(fs — by) Jo Js
(4.20)
and for the corresponding mixing parameters we use [547,548]
Os = (—21.2+1.9)°, Op = (—6.9+2.4)°, (4.21)
fs = (1.27 £ 0.02) F,, fo=(1.14£0.05)F,, (4.22)
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with £, = 92.2 MeV being the pion decay constant.
The tensor source (£) is related to its chiral projections (t** and t**T) by [518]

- Pfl/)‘pﬂ\p, 4P£“’>‘p = (g”)‘g”p — g“pg + ze“”/\p) (4.23)

where Wo,, "W is the tensor quark current. Taking the functional derivative of eq. (4.18)

with respect to the tensor source ¢, we get

5Lk
K_n }PT
(x|
=

5LLpr
uv

An estimation of FX™(0) = 2m,Fr(0) on the lattice was obtained in Ref. [514]. Their result
FE™(0) = 0.417 £ 0.015, together with the fact that

0> (% +C ) 22 (Pivhc — Plcrly) (4.24)

O> = <\C;q§ -G ) 22 (phypic — picmty) (4.25)

- C A
FE(0) = (\/% + cs> F% (4.26)

L c A

K™n _ q | 2
FE(0) = (ﬂ cs) =3 (.27

yields Ap = (11.1 £ 0.4) MeV, that we will use for our analysis. This value is consistent
within one sigma with the one employed for the 77 channel in Chapter 3| and in Ref. [519].

4.4 Decay observables

Now, we focus on the possible NP effects, characterized by the effective weak couplings
described in section in the following 7= — K~ n" v, decay observables: Dalitz plots, an-
gular and decay distributions, and the forward-backward asymmetry. The doubly differential
decay width for 7~ — K~ n"u., in the rest frame of the tau lepton, is given by

T 1
dsdt — 32(27)* m3

M, (4.28)
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where |/\/l\2 is the unpolarized spin-averaged squared matrix element, s is the invariant mass
of the K~n"") system, limited in the interval (m,» +mg)* < s <m?, and t = (P +p,0)? =
(P — px)? with kinematic boundaries given by ¢~ (s) < ¢t < ¢ (s), with

1
t(s) = % 25 m727<,) + (m2 — s)(s + m??(,) —m3) + (m2 — s)\/A(s,mf?(,),sz) , (4.29)

and where \(z,y, 2) = 22 + y? + 2% — 22y — 222 — 2yz is the usual Kallen function.
) ()

4.4.1 Dalitz plot

The unpolarized spin-averaged squared amplitude yields

o G%"VUS‘QSEW
- 2

IM|? (14 ez +er)? {Moo + My, + Moy + My, + Mo + Mpr} (4.30)

where My, M, and My are, respectively, the scalar, vector and tensor amplitudes, whereas
Moy, My, and Mrpg are their corresponding interferences. These expressions are given by:
" w K" ség
Moy =—2C2 ,CYV ,m?Re | 57 K A (1 )
o+ == 2030 CleyormRe [ ()5 (5)] Ao (14— =2

X {s (mg —s—2t+ EKH(,)) — mzAKn(,)} , (4.31a)

R O, | KO s
My = —4Cy, o érm}sRe [fKn (s)f377 (s )] <1 - m2> A (‘Sa mf,mm%) ; (4.31b)

0, | Ky €
Mg _4CK (/)ETAmeTSRe[ o (S)fOKn (S)} <1 + M)

X {s (mz —s—2t+ EKU(/)) - mZAKnm} , (4.31c)

in = (C)* et (1 S ) [ (14 ) 319
My, = ( Kn(’)) ‘ Kn(/)( )‘2 {mi (5 — AKn(’>> + 4mis? (mi(,) — t) + 4s%t (s +t- mz(/))

—m2s [ (s +4t) = 280 (s + 2t = 2m2, ) + A% o |} (4.31e)

My =4é2 ‘fT n(/) ‘2 2 {m‘}{ (mz — 3) - m%w (3mz + 3) —s {(s +2t)% —m? (s + 4t)}

—I—2mn(,> [(s +2t) (s + mz) - 2mﬂ —2m3% (mf — s) (s + 2t — m??(,))} , (4.31f)
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where we have defined Apg = m3p — mg) and Xpg = mp + mg,.
In order to study possible NP signatures in Dalitz plots distributions, we introduce the

following observable [519)

o (M (&5, ér)[” — | M (0,0)]
A (ég,ér) = ‘ —_— ’
M (0,0)]

, (4.32)

which measures deviations between non-SM (either ég # 0 or ér # 0, or both égr # 0) and
SM (ésr = 0) interactions.

Firstly, the Dalitz plot distributions in the SM in the (s,t) variables for the decays
7= — K nu, (upper-left plot) and 7= — K~ 1n/v, (upper-right plot) are depicted in Fig}4.2
As it can be seen from these plots, there is no evidence for a meson resonance production and
only the K*(892)-and to lesser extent- the K*(1410), and K°(1430) tails can be appreciated
for the Kn and K1’ decay channels, respectively.

Secondly, we turn to analyze possible NP signatures by allowing non-zero values of either
€g or ép. In Fig.ﬁ, first row, we show the observable A (és,ér) in Eq. for the decay
7= — K~ nu, for two representative values of the set of effective couplings (é, é7), that we
anticipated from our results in section[4.4.5] that are consistent with the measured branching
ratio. For the left plots of the figure we use (€5 = —0.38, ér = 0) and thus the variations with
respect to the SM occur due to My, and My in Eq. , while for the right ones we employ
(és = 0,ér = 0.085) with NP effects entering through My, Mpq and Mpr in Eq. . As
one can observe, the variations of scalar nature are in general small and occur close to the
s minimum, i.e. near the K7 threshold and t/m? ~ 0.47, and for s/m? ~ 0.66, while the
tensor contributions yield a sizable signal starting near the K7 threshold and populate the
diagonal of the Dalitz plot decreasingly. However, these contributions arise in zones with
very suppressed probability in the SM (see upper-left plot in Fig. and will thus be very
challenging to identify.

In the case of 7~ — K~ n'v,, shown in Fig.|4.4] we take, respectively, (és = —0.20, ér = 0)

and (és = 0,ér = 14.9) for the left- and right-plots and the corresponding variations in the
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Figure 4.2: Dalitz plot distribution in the SM, |[M (0,0)|* in Eq. (4.30), for 7= — K nu,
(left) and 7= — K~ nv, (right) in the (s,t) variables. The figures of the lower row show the
differential decay distribution in the (s, cos ) variables, Eq. (4.33)). The s and ¢ variables are
normalized to mZ.
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Figure 4.3: Dalitz plot distribution of A (ég,ér) in Eq. for 7= — K nu, with (ég =
—0.38,ér = 0) (left panels) and (é5 = 0,ér = 0.085) (right panels). The lower row shows
the differential decay distribution in the (s, cos§) variables, Eq. (4.33). The s and ¢ variables
are normalized to m?2.
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Dalitz plot distribution are seen in a reduced and similar region close to s/m?2 ~ 0.85 and
t/m2 ~ 0.35. Again, compared to the SM (see upper-right plot in Fig.[4.2)), these effects
appear in a zone of small probability density and will be therefore difficult to be measured.

If we had used another set of values of effective couplings e.g. [509], we would have

obtained qualitatively similar results.
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4.4.2 Angular distribution

The hadronic mass and angular distributions are also modified by the inclusion of the NP
interactions that we are studying. It is convenient to work in the rest frame of the hadronic
Kn") system defined by px + Pyor = Pr — Py, = 0. In this frame, the tau lepton and kaon
energies are given by E, = (s+m?)/2+/s and B = (S+m%(—m727<,))/2\/§, and the measurable
angle 6 between these two particles can be obtained from the invariant ¢ variable through

t =m? +m% — 2E, Ex + 2|px||p,| cos 8, where |px| = \/E% — m3% and |p,| = \/E2 — m2.

The decay distribution in the (s, ) variables is given by:

42T G2V, |2Spw m? 2 %
dy/sdcosf ngﬂsm (1+ez+er)’ - 1 P8 (Cyn)* (Akca)* | Fo ™ (5)

2

. 2 1%
C
S€s S 12 2| YKn0) LKnt) ~ pEn®)
X1+ —— 16 —F — érF
( ma(ms —mu)> + 16[pk["s om, T (s) = érfy™ (s)

o S Q) R )
s (1= 55 o[ (Clogn PIFS ()P — asi | ()]

T

+ 40}3170) Ak |Pr|V's cos b (1 + SES)
m(

mg — mu)
/ / 2 ¢ / /
X lcgn<,)Re[F§"<)(s)F;K"‘)(s)]— ;ETRe[an“(s)FgK"‘)(s)]]}, (4.33)

which coincides with the SM result [428] when the effective couplings of new interactions
are set to zero.

The SM Dalitz plot distribution in the (s, cos ) variables is shown, for the same set of
effective couplings discussed previously, in the second row of Fig. for the K—n (left) and
K~n' (right) decay modes.

The effects of non-SM interactions on the angular distributions is displayed in the second
row of Figs. and for the K—n and K~ n' decay modes, respectively. For the K™ n
channel, the enhanced region near the Kn threshold in the (s,t) upper-left diagram (the one
close to s minimum) is slightly enhanced in a limited region (cosf > 0) as it can be seen on

the lower-left plot of Fig.|4.3] while NP tensor contributions show that the enhanced area
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for large t translates to nearly minimum values of cosf as it can be observed on the plots
of the right. For the K7’ system, both NP scalar and tensor contributions have similar
effects in the (s,cosf) plot. These are given in Fig. by the red sunshine area centered
at s/m?2 ~ 0.85. Altogether, we conclude that possible deviations from the SM patterns in

near future data will be hard to disentangle in (s, cos @) Dalitz plot analyses.

4.4.3 Decay rate
Integrating Eq. (4.28)) upon the ¢ variable we obtain the K7 invariant mass distribution

AU G|V FE" (0)2m3 Spw
dy/s 19273,/

2
s
(1+er +€r)? (1 - m2> A2 (s, mi(/),mf()

T

x [Xva+ésXs+ erXr + & Xe + & X2, (4.34)

where
Xya= W[3|FJ<H(/)(S)|2A§<n<I> + [FE" (s)]? (1 + ;) s, m2,m)| , (4.35)
Xg = Sj%<cxn<,>>2|ﬁ§”“<s>|2m , (4.36)
Xp = —anT z‘gr,m Re[Fﬁ;;gi))(FOi?(/)(S)])\(s,mim,m%) , (4.37)
Xg = 2jﬁ<0§nm>2\ﬁ5‘"(’><s>rzm, (438)
Xpe = jm (1 + 2m3_> )\(s,mi(,),m%). (4.39)

In Eq. (4.34) we use | Vo FX(0)] = |Vie FE™(0) cos 0p| and |Vy FE 7 (0)] = [Vie FE ™™ (0) sin 6p),
with [V, FE ™ (0)| = 0.2165(2) [541]. Notice that if one takes ez p = ég7 = 0 we recover
the SM result from Eq. (2.8) of Ref. [428]. The decay distribution in terms of the K7 and

Kn' invariant mass is given, respectively, on the left-and right-plots of Fig.[4.5] for the rep-
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Figure 4.5: Left: K~ n invariant mass distribution in the SM (solid line), and for és =
—0.38, ér = 0 (dashed line) and ég = 0, ér = 0.085 (dotted line). Right: K7’ invariant
mass distribution in the SM (solid line), and for és = —0.20, é2 = 0 (dashed line) and
és = 0, ér = 14.9 (dotted line). Units in axes units are given in GeV powers and the decay
distributions are normalized to the tau decay width.

resentative values of the effective couplings. For the decay 7= — K nv,, it can be observed
that the deviations with respect to the SM result (solid line) are sizable in the entire energy
region of the decay spectrum. For the 7= — K n'v, decay spectrum, we predict a SM
branching ratio of BRgy =~ 1.03 x 107%. This value is found to be totally in line with [428]
and respects the current experimental upper bound BRey, < 2.4x107% at 90 % C.L. [541]. In
this regard, a measurement of this decay mode will be very welcome to further constrain the
SM hadronic inputs, a requirement for searches of non-SM interactions. This measurement

should be feasible at Belle-II [500].

4.4.4 Forward-backward asymmetry

The forward-backward asymmetry for the hadronic K~n) system is defined in analogy to

the previous di-meson modes we have studied [250,251,519]

1 d2r 0 d’r
A _ fo dcosedsdcos@ — f—ldCOSGdeCOSG 4.4
Ko (8) = : (4.40)
! JidcosOLE 4 [0 dcos 4L
0 dsdcos -1 dsdcosf

Inserting Eq. (4.33)) into the previous expression and integrating upon the cos  variable
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Figure 4.6: Left: Forward-backward asymmetry for the decay 7= — K nv, in the SM (solid
line), and for ég = —0.38, ér = 0 (dashed line), and é = 0.085, é¢ = 0 (dotted line). Right:
Forward-backward asymmetry for the decay 7= — K~ nv, in the SM (solid line), and for
és = —0.20, ér = 0 (dashed line), and é7 = 14.9, ég = 0 (dotted line).

we obtain its analytical expression

3C%,0 AKW\/)\(S, m2.), mi)

Ak (s) = ;
! 282|Ff77<)<0>’2[XVA + ésXg + érXp + €%X52 + é%vXTQ]
sésg Kn® [\ prkn®
X (1 + mT(ms—mu)> {CXMRG[FO TS ()]
2 € / /
- ;ETRe[F;?"(’(S)FJK””(S)]}. (4.41)

The forward-backward asymmetry in the SM case i.e. €sp = 0, corresponds to the solid
line in Fig.[4.6) for the decays K ~n (left plot) and K7’ (right plot). For the K7 mode, it
should not be difficult to measure a non-zero (negative) value near the K7 threshold. A,
increases with s, crosses zero at around 1.28 GeV and reaches its maximum near 1.45 GeV,
when it decreases up to the upper kinematical limit. For the K1’ case, the forward-backward
asymmetry is a positive increasing observable from the K7’ threshold until around 1.64 GeV
where it has a plateau and decreases afterwards.

In these figures, we also display the results arising from considering non-SM scalar and
tensor interactions. For the K ~n channel, one observes that the tensor case (dotted line)
overlaps with the SM prediction thus being difficult to unveil its possible effects from the SM

contribution. On the contrary, for non-SM scalar interactions (dashed line), A, flips sign
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with respect to the SM slightly before 1.3 GeV and it gets larger in magnitude as s increases.
If it is possible to measure this observable eventually, this would ease the identification of
NP contributions in Ag,. The non-standard scalar contribution to the forward-backward
asymmetry of the Kn' decay mode is negative and has, to great extent, the same size than the
SM ones but with opposite sign. The NP tensor contribution, also negative, has a clear non-
zero value near threshold and then becomes a decreasing function until the kinematical upper
limit of 4/s. It is clear then that noticeable differences with respect to the SM contribution

will be appreciated for quite large values of the new effective couplings.

4.4.5 Limits on ég and ér

Integrating the invariant mass distribution Eq. upon the s variable one obtains the
total decay width which, in turn, depends on the NP effective couplings ésr. One can
therefore use the experimental branching ratio to set bounds on égr. For this purpose, we
compare the decay width as obtained by including non-SM interactions, and that we denote
by I', with respect to the SM width, I'°, obtained by neglecting NP interactions i.e. setting
€s,r = 0. The relative shift produced by the NP contributions is better accounted for through
the following observable:
r—1°

A= = g + Bér + yéx + déx. (4.42)

The numerical values of the coefficients «, 8,7 and ¢ for the processes under consideration
are found to be: o = 0.857003, B = 3.7713, v = 4.3705 and § = 3.9739 for the K7 decay
channel; o = 24.2%35 8 = —0.267037, v = 175.97333 and § = 0.107025 for the K5’ mode.
The errors carried by the previous coefficients come from the uncertainty associated to the
corresponding form factors (see section . Eq. is a quadratic function of the effective
scalar and tensor couplings that can be used to explore the sensitivity of the corresponding
decays to the effects of non-SM interactions. As in Refs. [250,251,519], we will do this in two

different ways. Firstly, we set one of the couplings to zero and obtain bounds for the other,
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Figure 4.7: A as a function of ég for ér = 0 (left-hand) and ér for ég = 0 (right-hand) for
the decay 7= — K nv,. Horizontal lines represent the values of A according to the current
measurement and theory errors (at three standard deviations) of the branching ratio (dashed
line).

and vice versa. The result is shown in Figs.[4.7 and for the two decays concerning us,
respectively. In these figures, the horizontal lines represent the current experimental limits
on A (at three standard deviations), and the resulting bounds for the effective couplings are

found to be

—0.38<¢é3<0.16, ér=0, (4.43)

es =0, ér=[—14,-0.7]U[0.047,0.085], (4.44)
from the decay 7= — K nuv; (BRexp = 1.55(8) x 107* [541]), and

—0.20 < 5 < 0.05, ép=0, (4.45)

es=0, —T76<ér<149, (4.46)

from the transition 77 — K 1/v; (BRexp < 2.4 x 107% at 90 % C.L. [541]).

Secondly, we have also set constraints on these couplings from the general case where
both are non-vanishing using Eq. as before. These results are graphically represented
by ellipses in the és-ér plane in Fig.[4.9] for the two decay channels under consideration.

Altogether, our results for the bounds in the scalar and tensor effective couplings ég

126



-020 -0.15 -0.10 -0.05 0.00 0.05 -5 0 5 10 15

€s éT

Figure 4.8: A as a function of ég for ér = 0 (left plot) and ér for és = 0 (right plot) for
the decay 7= — K~ n'v,. Horizontal lines represent the values of A according to the current

measurement and theory errors (at three standard deviations) of the branching ratio (dashed
line).
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Figure 4.9: Constraints on the scalar and tensor couplings obtained from A(7~ — K nv;)

(left plot) and A(7— — K~ n'v,) (right plot) using, respectively, the measured branching
ratio (at three standard deviations) and the upper limits of the branching ratio at 90 % C.L.
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Decay channel és (ér =0) ér (és =0) €s ér
= K v, [pA2) [~0.38,0.16] 14,07 U[-47,85 107 [~0.7,0.5] —15,0.1]
= K-ifv, BA2] [~0.20,0.05] [~7.6,14.9] [~0.21,0.05] | [~10.4,17.7]
7 = K K%, [542] | [<0.12, —0.08] U [0.08,0.12] | [—0.12, —0.06] U [0.92, 0.99] [~0.2,02] [~0.12,0.08]
7 = 7 %, [519) [~1.33,1.31] [~0.79, —0.57) U [~1.4,1.3] - 10~2 [~5.2,5.2] [~0.79,0.013]
7 = (K7) v, [251] [-0.57,0.27] [-0.059,0.052] U [0.60,0.72] [-0.89,0.58] [-0.07,0.72]
7 — 7w, [250] [-8.3,3.9] - 103 [-0.43, 0.39] [—0.83,0.37] - 1072 | [~0.55,0.50]
7 = v, 250 [~1.13,0.68] - 102 ler] < 114 [~1.13,0.67] - 1072 | [~11.9,11.9]

Table 4.1: Constraints on the scalar and tensor couplings obtained (at three standard deviations)
through the limits on the current branching ratio measurements. Theory errors are included.

and ép that can be obtained at three standard deviations from the current experimental
measurement are gathered in Table[£.1} The constraints on the scalar coupling obtained from
the K~n decay channel is quite symmetric while the tensor coupling has a mild preference
for é7 < 0. The allowed region has the same size for both. Limits on the scalar coupling
from the K—n' mode favor slightly és < 0 while the constraints on the tensor one are much
weaker in this case.

In this table, we also compare the results of this work with the constraints we have
obtained in previous analyses from the 770 [519], K~ K° [540,542], (Km)~ [251},540] and
7~ [250] decay channels. The constraints for the scalar couplings are found to be more
precise than those obtained from the di-pion mode, competitive with the limits set from the
(Km)~ decays, and weaker than the bounds coming from the decays 7—n!"). For the tensor
couplings, we notice that the K7’ channel gives a much looser limits than the decays with
Knand K~ K°. The allowed region of the last two, in turn, is similar than that obtained in
previous analyses but for 7—7, which is not competitive restricting tensor interactions.

As a final exercise, we have also determined the effective couplings from a x? function in

the following way:

th ex 2 ex 2
= (BRK_” — BRKP”) + (BR%_KO — BRKPKO) : (4.47)

ag exp g exp
BRI BROP

where BR%?, and TBRE and BR? o and OpRO® ), Are the measured branching ratio

and the corresponding uncertainties of the K~n and K~ K° decay mode, and BR?QW7 and
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BRtf(i o are the analogue theoretical expressions obtained upon integrating Eq. (4.34)). The
x? function defined above depends solely on ég and é7. Using the experimental value given
below Eq. (4.44) and the branching fraction of the 7= — K~ K%, decay (BRey, = 1.486(34)-
1073 [541]), we obtain the constraints:

és = 0.088100% &7 = 0.015100% (4.48)

where variations up to 3¢ of the measured branching ratios have been taken into account.
Comparing our results with bounds obtained from other low-energy probes, our previous
limits are not competitive with semileptonic kaon decays, é5 = (—3.9 & 4.9) x 10™* and
ér = (0.5 £ 5.2) x 1072 [509], while they are similar than those obtained from hyperon
decays [507], where |és| < 4x 1072 and |é7| < 5x 1072 are found at a 90% C.L[| Concerning
the results of Ref. [512], obtained also from hadronic tau decays (strangeness-conserving
transitions only), our corresponding limits are less precise. However, the use of all available
data of all possible di-meson tau decays (see Table could allow us improve the knowledge

in this respect. Such analysis is presented in the next chapter.

4.5 Conclusions

Hadronic tau lepton decays remain to be an advantageous tool for the investigation of the
hadronization of QCD currents in the non-perturbative regime of the strong interaction.
In this paper, we have studied the decays 7~ — K~ nJu, in the presence of non-Standard
Model scalar and tensor interactions. We have focused our analysis on setting bounds on the
corresponding New Physics couplings from the current experimental measurements of these
decays. This has been possible due to the satisfactory knowledge we have on the necessary

Standard Model hadronic input, the form factors. For the description of the participating

5For the comparison, we need to assume lepton universality because our study involves the tau lepton,
while theirs electrons and muons. Given the smallness of possible lepton universality violations, this is
enough for current precision. We have also assumed that the corresponding CKM matrix elements do not
change under NP interactions, which is the case if e(lud) = e(lus) [549].
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vector and scalar form factors, we have employed previous results based on constraints
from Chiral Perturbation Theory supplemented by dispersion relations and experimental
data. On the contrary, there are no experimental data to help us constructing the required
tensor form factor and, therefore, it has been described under theoretical arguments solely.
Within this framework, we have set limits (see Table on the non-standard scalar and
tensor couplings, €5 and ér, respectively, using the measured branching ratios, and have
studied their effects on different phenomenological observables including Dalitz plot and
angular distributions, the decay rate and the forward-backward asymmetry. The present
analysis completes our series of dedicated studies of two-meson tau decays [250,1251}[519]
that have shown the complementary role that tau decays can play in restricting non-standard
interactions. Despite our bounds on the NP couplings are not as precise as those placed,
for example, from semileptonic kaon decays [509], and the corresponding effects are very
challenging to identify, we hope our works can serve as a motivation for the experimental

tau physics groups at Belle-II to measure the different observables we have discussed.
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Chapter 5

Global Fit of non-standard
interactions in exclusive semileptonic

tau decays

In this chapter we perform a global fit using exclusive semileptonic tau decays for one and two

pseudoscalar mesons, as a outcome we get powerful constraints on non-standard interactions.

5.1 Introduction

The 7 lepton is the only known lepton heavy enough (m, = 1.77686 GeV [541]) to decay
into hadrons; the ~ 65% of its partial width contains hadrons in the final state. In the
Standard Model (SM), hadronic tau decays proceed through the exchange of W bosons
which couple the 7 and the generated neutrino v, together with a quark-antiquark pair
that subsequently hadronizes. Such decays thus offer an advantageous laboratory to study
low-energy effects of the strong interactions under clean conditions [4] since half of the
process is purely electroweak and, therefore, free of uncertainties at the required precision.
At the inclusive level, these decays allow to extract fundamental parameters of the SM,

most importantly the strong coupling aig [550,551], but also the CKM quark-mixing matrix
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element |V,;| [380,/552,553] and the mass of the strange quark at high precision [554-560].
On the other hand, exclusive hadronic decays can be used to learn specific properties of
the hadrons involved and the interactions among them. These can be classified according
to the number of hadrons in the final state. The simple one-meson transitions 7= — P~ v,
(P = m, K) are very well-known due to the precise determinations of the pion and kaon
decays constants obtained by the Lattice collaborations [377]. At present, we also have
a very good knowledge on the decays into a pair of mesons, the SM input of which is
encoded in terms of hadronic form factors. An ideal road map to describe meson form
factors would require a model-independent approach demanding a full knowledge of QCD
in both its perturbative and non-perturbative regimes, knowledge not yet unraveled. An
alternative to such enterprise would pursuit a synergy between theoretical calculations and
experimental data. In this respect, dispersion relations are a powerful tool to direct oneself
towards a model-independent description of meson form factors. For example, the analyses
of the decays 77" [15,/16}[19,28] and Kgr~ [23}24,30,409,410], carried out by exploiting the
synergy between Resonance Chiral Theory [224] and dispersion theory, are found to be in a
nice agreement with the rich data provided by the experiments. Accord with experimental
measurements is also found for the K~ Kg [28] and K7 [30,428] decay modes, although
higher-quality data on these processes is required to constrain the corresponding theories
or models, while the predictions for the isospin-violating 7=n") channels [447,513] respect
the current experimental upper bounds. The latter are very challenging processes for Belle-
IT [500]. Higher-multiplicity decay modes involve a richer dynamical structure but accounting
for the strong rescattering effects is not an easy task when three or more hadrons are present.

So far, all experimental results with the 7 lepton are found to be in accord with the
SM, with the exception of the 2.60(2.40) deviation from lepton flavour universality in
19-/ 9,1 (19+/ge|) from W= — 7=ir, 541|617} of the BaBar measurement of the CP asymme-
try in 77 — Ksm v, Acp = —3.6(2.3)(1.1) x 1073 [423], which is 2.8¢ off the SM prediction,

Acp = 3.6(1) x 1073 [426], and of the anomalous excess of 7 production observed in some B

1See also Ref. [562], where the authors show that a NP explanation of this tension is not very plausible.
This anomaly disappeared after the ATLAS [563] and CMS [564] measurements.
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decays. As seen, these effects are not statistically large. However, the increased sensitivities
of the most recent experiments yield interesting limits on possible New Physics contributions
in the hadronic tau sector.

Several recent works [250,251,512,/519,(542] have put forward that semileptonic tau decays
are not only a clean QCD laboratory but also offer an interesting scenario to set bounds on
non-standard weak charged current interactions complementary to the traditional low-energy
semileptonic probes such nuclear beta decays, purely leptonic lepton, pion and kaon decays
or hyperon decays (see e.g. Refs. [187.{192,504-511,539]).

The aim of the present work is to close the circle by extending our previous individual
analyses of the decays 7= — 7~ 7%, [519], 7~ — (K7)"v, [251], 7~ — K~ (K° n")v, [542]
and 7= — 7 v, [250], carried out using the low-energy limit of the Standard Model
Effective Field Theory Lagrangian (SMEFT) [1},/130] up to dimension six, to a global analy-
sis of the strangeness-conserving (AS=0) and strangeness-changing (|AS|=1) semileptonic
exclusive tau decays into one and two pseudoscalar mesons. The main advantage of this
EFT framework is that experimental measurements and their implications for New Physics
can be compared unambiguously either at low energies or at the high LHC energies in a
model-independent way [512].

We can anticipate that the bounds for the NP couplings that we get in this work (in the
MS scheme at the scale 1 = 2 GeV), obtained from all data available on exclusive 7 decays
only, are competitive and found to be in line with those of Ref. [512], which were obtained
analyzing data including both exclusive and inclusive decays. This agreement represents a
good consistency test between exclusive and inclusive determinations.

On the theory side, a controlled theoretical determination, with a robust error band, of
the corresponding form factors within the SM is required in order to increase the accuracy
of the search for non-standard interactions. At present, we have such a knowledge for the
vector and -to a great extent- the scalar form factors, but there are no experimental data
that can help us constructing the tensor form factor and, therefore, it has to be built under

theoretical considerations only.
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The fantastic possibilities offered by the Belle-1I experiment [500], and other future Z,
tau-charm and B-factories, to study 7 physics and low multiplicity final states with high
precision make these studies of timely interest.

This chapter is organized as follows. The theoretical framework is given in section [5.2
where we briefly present the effective Lagrangian for weak charge current interactions in-
volving light flavours up to dimension six, assuming left-handed neutrinos. The expressions
for the one-and two-meson partial decay width to be used in our fits are also defined in
this section. The description of the corresponding form factors is the subject of section |5.3|
In sections and we perform fits to the strangeness-conserving (AS=0) and changing
(JAS|=1) transitions, respectively, and set bounds on the New Physics effective couplings.
A global fit to both sectors i.e. (JAS| =0 and 1), is performed in section [5.6] Finally, our

conclusions are presented in section 5.7

5.2 SMEFT Lagrangian and decay rate

We start out writing the low-energy limit of the Standard Model Effective Field The-
ory Lagrangian including dimension six operators that describes semileptonic 7= — v,uD
strangeness-conserving (D = d) or strangeness-changing (D = s) charged current transitions

with left-handed neutrinos. Such Lagrangian reads [504}505]:

GrV, o ]
Foe =~ i/§D* (14 D)7l =" )vs - " (1 = 7°)D

+epTYu(1 — )y - uy*(1 +~4°) D
+7(1 = ¥°)v, - u(eg — €p7°) D

+e770,,(1 = ¥°)v, uo™ (1 — 4°)D| + h.c. (5.1)

where o = i[y",7"]/2, GF is the tree-level definition of the Fermi constant and ¢; (i =

L,R,S,P,T) are effective couplings characterizing NP. These can be complex, although we

134



will assume them real in first approximation since we are only interested in C'P conserving
quantitieﬂ. The product GrV,p in Eq. denotes that its determination from the super-
allowed nuclear Fermi 3 decays carries implicitly a dependence on €7 and €% that is given
by [509]

GpVep =Gr(1+€ +¢%) Vp, (5.2)

and that we use for our analysis. Setting the coefficients ¢; = 0, one recovers the SM
Lagrangian.

The simplest semileptonic decays that can be calculated with the low-energy effective
Lagrangian of Eq. are the one-meson decay modes 7= — P~ v, (P = m, K). The
expression for the 7= — 7~ v, decay rate reads

_ GRlVg P

Lt~ =7 v, 16
T

2
(1 — ﬁ) (L4000 + 20T + O(e])? + O(67mel)) ((5.3)
where f, is the pion decay constant, the quantity 0.7 accounts for the electromagnetic
radiative corrections and the term A7 contains the tree-level NP corrections that arise from
the Lagrangian in Eq. that are not absorbed in V¢,. For the channel 7~ — K~ v,, the
decay rate is that of Eq. but replacing V¢, — V¢, fr — fx, mz — mg, and 677 and
A™ by 07K and AT respectively.

The amplitude for two-meson decays 7= — (PP’)"v, that arises from the Lagrangian
in Eq. contains a vector, an scalar and a tensor contribution. The structure of the
amplitude, including a detailed definition of the corresponding hadronic matrix element, can
be found in our previous works i.e in Ref. [519] for 7~ 7%, in Ref. [251] for the (K7)~ system,
and in Ref. [542] for the cases K~ (K° 7)), and we therefore have decided not repeat it here
once again.

The resulting partial decay width for two-meson decays is given by (the variable s is the

2The only coupling sensitive to an imaginary part is €% from the decay 7= — 7 nv, [512] that we do not
consider in this work for lack of data.
3In Eq. 1) we have expanded up to linear order on the €] couplings.
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invariant mass of the corresponding two-meson system):

dl’ G%«““}ueD’QmiSEW s\ 1/2 2 2
ds  384rSs L=z | A7 (smpmp)

2

T

m

X [(1 +2(e] — €7 + € —€3)) Xva+ €5 Xs + e Xr + (eg)QXSQ + (e})QXTQ] ,(5.4)

where
Xya = — 3(C3 ,)2|FPP’(S)|2A2 +(C¥ ,)2|FPP’(3)|2 14 25 ) s, m, md)
232 PP 0 PP PP + mz ) P> P 3
3 s \2 ppr oz Abp
Xs = s (Cpp/) [Fo " (s)] g —
X =l Re[ P () (EF7(5)) A s, ).
sm, +
3 2 , A%,
X _ v OS ’ FPP 2  =pPpP
S2 sz ( PP) | 0 (S>| (md . mu)2 )
X2 = §|FPP’(3)|2 1+ ) A(s,m2,m3) (5.5)
st T 2m?2 TR

with C¥p and C2p, being the corresponding Clebsch-Gordan coefficients and where we have

defined Appr = m% — m%,. In Eq.(5.4), Sew = 1.0201 [365] resums the short-distance
electroweak corrections and the function \(x,y, z) = 2% + y* + 2% — 22y — 222 — 2yz is the

usual Kallen function.

The functions F/ 7' (s), FIT'(s) and FET'(s) in Eq. (5.5) are, respectively, the scalar, the
vector and the tensor form factors, and their respective parametrizations is the subject of

the next section.

5.3 Two-meson form factors

In this section, we provide a brief overview of the description of the scalar, vector and tensor

form factors that we employ in our analysis. It is fundamental to have good control over
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them since they are used as SM inputs for binding the non-standard interactions. We will
not discuss them here at length but rather provide a compilation of the main formulae to
make this work self-contained.

To describe the pion vector form factor we follow the representation outlined in Ref. [28§],
and briefly summarized below for the convenience of the reader, and write a thrice subtracted

dispersion relation

3 / /
amr ay 5 80 [Sent ds o(s")
FT™(s) = exp [als + st — ez (97 (7 —5—10)| (5.6)

where a1 and as are two subtraction constants that can be related to the slope and curvature
appearing in the low-energy expansion of the form factor. The use of a three-times subtracted
dispersion relation reduces the high-energy contribution of the integral where the phase is
less well-known. In Eq. , Seut 18 a cut-off whose value is fixed from the requirement that
the fitted parameters are compatible within errors with the case s.,; — 0o. The value of
Seut = 4 GeV? was found to satisfy this criterion [28], and variations of s., were used to

estimate the associated systematic error. For the input phase ¢(s) we use [28]

51(s) 4m2 < s < 1GeV?,
P(s) = ¥(s) 1GeVE< s <m2, (5.7)
oo (8) m2<s.

This phase consists in matching smoothly at 1 GeV the phase 9 (s), that we will explain in
the following, to the phase-shift d](s) solution of the Roy equations of Ref. [231]. We thus
exploit Watson’s theorem [227]] The phase 6}(s) encodes the physics of the p-meson, it is
totally general and provides a phase which perfectly agrees with the P-wave w7 experimental
data within the elastic region. For v(s), we use a physically motivated parametrization that

contains the physics of the inelastic regime until m?2. This phase can be extracted from the

4Watson’s theorem applied to the pion vector form factor tells us that the form factor phase equals that
of the two-pion scattering within the elastic region.
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Figure 5.1: Belle measurement of the modulus squared of the pion vector form factor [18] as
compared to our fits |28].

relation
_ Imf(s)
Ref™(s)’

where f77(s) includes the contributions from the excited resonances p’ and p” that cannot

tan v(s) (5.8)

be neglected. The expression of fi"(s) that we use for our study is given by Eq.(17) of
Ref. [28]. Finally, for the high-energy region, we guide smoothly the phase to 7 at m?
(1 (s)) to ensure the correct asymptotic 1/s fall-off of the form factor [544J]

Armed with this parametrization, in [28] we have analyzed the high-statistics Belle data
[18] on the pion vector form factor. The outcome that better illustrates the resulting analysis,
and that we use for this work, is displayed in Fig.|5.1| where the red error band denotes the
statistical fit uncertaintyf}

The corresponding vector form factors for the (K7)~, K~ K° and K5 systems can
be obtained following a similar dispersive procedure. We do not show here the explicit
expressions that we use for our analysis but rather provide a graphical account of their
applications (of some) against the Belle 7= — Kgm v, (red solid circles) [22] and 7= —
K~nu, (green solid squares) [29] experimental data (Fig.[5.2)) and refer the interested reader
to Refs. [28,130,410,428], where they are derived and explained in detail. As seen, the Kgm™

5In fact, this behavior it is not guaranteed because the subtraction constants in Eq. are fixed from a
fit to data. However, we have checked that our form factor is indeed a decreasing function of s (apart from
the resonance peak structures) within the entire range where we apply it.

6In [28], we have also estimated potential systematic uncertainties.
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Figure 5.2: Belle 77 — Kgn~ v, (red solid circles) [22] and 7= — K~ nu; (green solid squares) [29)
measurements as compared to our best fit results in [30] (solid black and blue lines, respectively)
obtained from a combined fit to both data sets. The small scalar contributions are represented by
black and blue dashed lines.

spectrum is dominated by the K*(892) resonance, whose peak is neatly visible, followed by
a mild shoulder due to the heavier K*(1410). There is no such a clear peak structure for
the K~n channel as a consequence of the interplay between both K™ resonances. In all,
satisfactory agreement with data is seen for all data points.

Regarding the scalar form factors we take: the phase dispersive representation of the
7 m¥ scalar form factor from Ref. [513] while for the K~ K° ones, we use the results of
Refs. [5657567]|Z|. These were obtained after the unitarization, based on the method of
N/ D, of the complete one-loop calculation of the strangeness conserving scalar form factors
within U(3) ChPT. Finally, for the K7 and Kn!") scalar form factors, we employ the well-
established results of Ref. [412] derived from a dispersive analysis with three coupled channels
(Km, Kn, Kn') | As one can observe in Fig.[5.2 the K scalar form factor contribution,
although small, is important to describe the data immediately above threshold, while the
Kn one is irrelevant for the decay distribution.

We next turn to the tensor form factor. This is the most difficult input to be reliably

"We thank very much Zhi-Hui Guo for providing us tables with the unitarized 77, 7' and K 0K
scalar form factors. We translate the result of K°K° to the K~ K° concerning us through Ff £ (s) =

—FfR (5)/ V2.

8We are very grateful to Matthias Jamin and Jose Antonio Oller for providing us their solutions in tables.
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estimated since there are no experimental data that can help its construction. Therefore,
we shall rely on theoretical considerations only. The key observation is that the tensor form
factor admits an Omneés dispersive representation [251,1427,(519,/542,|568|. We thus write the

general two-meson (PP’) tensor form factor as

s 1 SPP/(

Fr"(s) = F£7(0) exp [; /} f&% , (5.9)
where sy, = (mp + mpr)? is the corresponding two-meson production threshold, and where
in the elastic region, the phase of the tensor form factor equals the P-wave phase of the
corresponding vector one i.e. 627 (s) = 6L (s). We will assume the previous relations also
hold above the onset of inelasticities until m? where we guide smoothly the tensor phase to
7 as in Ref. [28] to ensure the asymptotic 1/s behavior dictated by perturbative QCD [544].
Lacking precise low-energy information, we do not increase the number of subtractions,
which, in turn, would reduce the importance of the higher-energy part of the integral, but
rather cut the integral at different values of sey €.g. Sewt = 4,9 GeV2, and consider the
difference with respect to the case s.,; — 00, that we take as a baseline hypothesis, as an
estimate of our (uncontrolled) theoretical systematic uncertainty for the results presented in
the following sections. For the required normalization FZ7'(0), we take the corresponding
ChPT based results derived in 251,519,542 obtained with the use of the corresponding
determination on the lattice [514]. In these references, a graphical account of the energy-

dependence of the tensor form factors is also shown.

5.4 New Physics bounds from AS = 0 decays

We start with the individual analysis of the decay mode with lowest multiplicity, 7= — 77 v;.
Taking the decay rate given in Eq. (5.3)) and using f, = 130.2(8) MeV from the latticd| [377]

together with 077 = 1.92(24)%, obtained from a combination of the values given in Refs.

9The pion decay constant determined from data cannot be employed as it may be contaminated with NP
effects.
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[277,1291,569], and the PDG reported values [541] for: [V¢,| = 0.97420(21) from nuclear 3
decays, the measured branching ratio BR(t7~ — 7~ v,) = 10.82(5)%, m, = 0.13957061(24)
GeV, m, = 1.77686(12) GeV, T, = 2.265 x 1012 GeV and G = 1.16637(1) x 10~5 GeV~2,

we get the constraint:

€7 — € — €T — ¢S — n’w(??:ﬁmd)# = (—0.12 £ 0.68) x 1072, (5.10)
where the uncertainty is dominated by f,, followed by the error of branching ratio and the
radiative corrections uncertainty. The central value in Eq. shows a slight difference
with respect to the result of [512], (—0.15 + 0.67) x 1072, that we may attribute to a different
numerical input.

We next perform a simultaneous fit to one and two meson strangeness-conserving ex-
clusive hadronic tau decays. For our analysis, we consider the following observables: the

high-statistics 7= — 7~ 7°

v, experimental data reported by the Belle collaboration [18], in-
cluding both the normalized unfolded spectrum and the branching ratio, and the branching
ratios of the decay 7= — K~ K%, and of the one-meson 7= — 7 v, transition. The y?

function to be minimized in our fits is

_ _ 2
NN (o BRzpf
k 0BRGP

g N}ixp

XQZZ(

. (BR;?K - BR%%)Q . (BRE; - BR?’;">2
0BRSS O BR%P ’

(5.11)

where NP relates the decay rate of Eq. (5.4)) for 7~ — 7~ 7%, to the normalized distribution

of the measured number of events through

1 dNoyvent 1 dU(s,€],€5)
events _ ) Abm 512
Nevents  ds [(e7, €9) ds ’ (5.12)
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where Neyents i the total number of measured events and AP™ is the bin width. N and
O e in Eq. are, respectively, the experimental number of events and the corresponding
uncertainties in the k-th bin. The unfolded distribution measured by Belle is available in 62
equally distributed bins with bin width of 0.05 GeV2. The second, third and fourth terms
in the x? function Eq. are data points that are used as a constraint of the branching
ratios of 77 — 777, (BRZP = 25.49(9)%), of 7~ — K~ K%, (BR3} = 1.486(34) x 1073)
and of 77 — 7 v, (BRZP =10.82(5)%) [b41].

The bounds for the non-SM effective couplings resulting from the global fit are found to
be (in the MS scheme at scale u = 2 GeV)

€7 — € +ep— € 0.5+0.6773 107 £ 0.4

R+ e} | 03+ 05458 400 £0.2 1 51
€r 9.792 £ 2154994+ 0.2 ’ '
€r, —0.1+£0.271 152 +0.2

with x?/d.o.f.~ 0.6, and where the first error is the statistical fit uncertainty while the

associated (statistical) correlation matrix (p;;) is

1 0.684 —0.493 —-0.545

1 —0.337 —-0.372
pij = : (5.14)
1 0.463

1

The second error in Eq. is the dominant one and comes from the theoretical uncer-
tainty associated to the pion vector form factor (cf. Fig., while the third and fourth ones
are systematic uncertainties coming, respectively, from the error of the quark masses and
from the uncertainty associated to the corresponding tensor form factors. The systematic
errors, here and hereafter, have been obtained by taking the difference of the central values
that are obtained while varying the corresponding inputs with respect to the reported central

fit values.
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Comparing our limitﬂ in Eq. with the bounds, € = (—0.039 £ 0.049) x 1072 and
e = (0.05 £ 0.52) x 1072 [509], obtained from semileptonic kaon decays involving muons,
and with those from hyperon decays [507], where |es| < 4 x 1072 and |ez| < 5 x 1072 are
found at a 90% C.L., we conclude that while it is impossible to compete with the limits on
€s coming from K3 decays, our analysis yields a very competitive constraint on the coupling
€r.

Our results are in accord with those of [512]@, which were obtained through a combina-
tion of inclusive and exclusive (strangeness-conserving) tau decays, but for the limit on the
coefficient €. Ours is much weaker, but still compatible within errors with, the bounds set
in [250,512], since we are not using the 7= — 7 nv, decay in the global fit for lack of exper-
imental measurements. The differing bound on eg obtained with and without the 7 mode
increases the interest of its measurement and demands improved theoretical understanding

accordingly.

5.5 New Physics bounds from |AS| =1 decays

The lowest multiplicity strangeness-changing tau decay is 7= — K~ v,, which can be used
to restrict the combination of the couplings of the left-hand side of Eq. , but replacing
mgq — ms and m, — myg and with the €’s corresponding to u — s transitionﬂ. Using the
lattice calculation of fx = 155.7(7) MeV [377], the radiative corrections 675 = 1.98(31)%
from Refs. [277,[291,[569] and |V¢,| = 0.2231(7), BR(t~ — K~ v;) = 6.96(10) x 10~% and

10For the comparison, here and throughout the rest of the paper, we need to assume lepton universality
because our study involves the tau lepton, while theirs electrons and muons. Given the smallness of possible
lepton universality violations, this is enough for current precision. We have also assumed that the correspond-
ing CKM matrix elements do not change under NP interactions, which is the case if e(lud) = e(lus) [549].

'We would like to notice that our fit to AS = 0 processes is not sensitive to the coefficients €% and €}
individually but rather to a combination of them (given by the second row in Eq. ) However, as we will
see in section 5.6 one can still fit them separately if one performs a global fit including strangeness-changing
decays. This is also the case in the next section.

2In the chiral limit €} is the same as in Eq. .
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my = 0.493677(16) GeV from the PDG [541] as numerical inputs, we obtain the constraint:

o mie
M (My, + M)

T e

e
€L — €L

€h — €5 — €p = (—0.4140.93) x 1072, (5.15)
where the error is dominated by fx and |V,| followed by the branching ratio and the radiative
corrections uncertainty.

Analogously to the previous section, we next analyze strangeness-changing exclusive tran-
sitions with one and two mesons in the final state simultaneously. In particular, we fit the
77 — Kgm v, Belle spectrum IQQ]H including the measured branching ratio, BRy, =
0.404(2)(13)%, as experimental datum to constrain the fit. The PDG branching ratio [541]
of the decays 7= — K nuv. (BRyY, = 1.55(8) x 10*4)E and 7 — K v, (BRIY =
6.96(10) x 1073) are also added as external restrictions to the fit. The decay 7= — K n'v,
has not been detected yet, there is only an upper limit at the 90% confidence level placed

by BaBar [433] and we therefore have decided to not include it in our analysis. Hence, the

x? function to be minimized in this case is chosen to be

N Nee\® (BRY — BRP\?
X2 — Z k k + ( Kn KW)

P\ N s

2
. (BR}?n —BR?};) . (BRE}( - B 3»%))2

9BRYY OBRZ?
(5.16)
where now N ™ refers to the Kgm~ decay mode and its expression is given by
dNeven S Neven S dF 8’ 6:7 Ee i
8 _ Novets ALV 6) i, (5.17)

dys  T(,¢5)  dys

13We thank the Belle collaboration, in particular S. Eidelman, D. Epifanov and B. Shwartz, for providing
their data and for useful discussions.

4While the 7= — K~ nv, decay spectrum has been measured by Belle [29], unfolding detector effects has
not been performed and we therefore have decided to include only the branching ratio in our study.
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The number of events is Neyents = 53113.21, the bin width is AP® = 11.5 MeV [22] and the
number of fitted data points is 86 for the spectrum[®] together with the respective branching
ratios used as a constraint: thus 89 data points in total.

In this case, the limits for the NP effective couplings are found to be (in the MS scheme

at scale = 2 GeV)

€ — € 6T — e 0.5+ 1.5+0.3
R+ T || 0409502 102 (5.18)
e 0.879§ £0.3
. 0.940.7+0.4

where the first error is the statistical fit uncertainty while the second one is a systematic
uncertainty due to the tensor form factor. Differently to Eq. (5.18]), the uncertainty associated
to the kaon vector form factor and to the quark masses is negligible.

The (statistical) correlation matrix associated to the results of Eq. (5.18)) is

1 0.854 —0.147 0.437
1 —0.125 0.373
Pij = ’ (5.19)
1 —0.055

1

with x?/d.o.f.~ 0.9.

Notice that pi2 in Eq. is large (it was also the largest element in Eq. (5.14)). As we
will see in section 5.6, where we will perform a global fit to both AS = 0 and |AS| = 1 sectors
and obtain both €f and €} independently, this is due to the strong correlation between €f
and €p.

The limits obtained from the |AS| = 1 transitions in Eq. (5.18)) serve as a consistency

15The points corresponding to bins 5,6 and 7 are difficult to bring into accord with theoretical parametriza-
tions, even when non-standard interactions are considered [251], and have been excluded from the minimiza-
tion. The first point has not been included either, since the centre of the bin lies below the Kgm~ production
threshold. We have furthermore excluded data corresponding to bin numbers larger than 90 following a sug-
gestion from the experimentalists.
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check upon comparison with those of Eq. from the AS = 0 ones. As one can observe,
the results of the first and second lines in Eq. are found to be in line with those from
Eq. (5.13). As for the central value of the coefficient €5(e],) from the |[AS| = 1 sector, it has
decreased (increased) by about one order of magnitude with respect to the AS = 0 one; the
€5 coupling is now more competitive while €7 has changed sign. We can anticipate, however,
that the global fit in section benefits from er from the AS = 0 decays and from eg from
the |[AS| =1 ones.

5.6 New Physics bounds from a global fit to both AS =
0 and |AS| =1 sectors

In this section, we close our exploratory analysis by performing a global fit to both AS =0
and |AS| = 1 sectors simultaneously. The participant |V,4| and |V,s| elements of the CKM

matrix to be used in this case are not independent but rather correlated according to [377]

Vs
’Vud’

= 0.2313(5).. (5.20)

For our analysis, we take |V,s| = 0.2231(7) [541] and extract |V,4| through Eq. (5.20)).
The x? function to be minimized in the global fit includes all the quantities in Eqgs. (5.11))
and ([5.16)) that were used for the individual analysis of the AS = 0 and |AS| = 1 transitions,

respectively. The resulting limits for the NP effective couplings are (in the MS scheme at
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scale =2 GeV)

2.9 406 1 406 +00 +04 *32
€, — €7 +€p — €5 ' ’
e 7.1 £49 05 H3 A2 402 H99
€T, =| =76 63 +0.0 2 FT 400 99 | x107%,
€5 50 fos 5 T 200 0.2 g
r 0.5 402 % 400 +0.0 +0.6 +0.1

(5.21)

where the first error is the statistical error resulting from the fit, the second one comes from

the uncertainty on the pion vector form factor, the third error corresponds to the CKM

TK

em ?

elements |V,4| and |V,s|, the fourth one is due to the radiative corrections 677 and 9§
the fifth estimates the (uncontrolled) systematic uncertainty associated to the tensor form
factor, while the sixth, and last error, is due to the errors of the quark masses.

The (statistical) correlation matrix associated to the limits of Eq. (5.21)) is

1 0.055 0.000 —-0.279 -0.394
1 —-0.997 —-0.015 —-0.022

A= 1 0.000  0.000 |, (5.22)
1 0.243
1

with x?/d.o.f.~ 1.38.

As anticipated in the previous section, the combined fit yields an independent determina-
tion of the couplings €}, and €} which, in turn, carry a large statistical (and systematic) error.
This originates in the fact that these parameters are almost 100% correlated (cf. Eq. )
For the combination of the couplings of the first line in Eq. , our limits are competitive
and within errors with [512]. Regarding €7, our limit is not competitive and disagrees with
the values of Refs. [250,512], where a constraint for €5 was placed from the isospin-violating

decay 7~ — m nv,. We do not take into account this channel here since it has not been mea-
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sured yet; only an upper bound exists. Finally, our bound for €% is competitive and found
to be in agreement with [512,519]. We would like to note that the uncertainty associated
to the CKM elements dominates the error of those coefficients in Eq. for what we get
competitive bounds. Therefore, future lattice results can result in tighter constraints. After
the completion of this work, Ref. [570] appeared, analysing both the strangeness-changing
and -conserving sectors. A very interesting study of solutions to the unitarity puzzle in the
u quark couplings is given therein.

Our limits on the NP effective couplings Eq. can be translated into bounds on the

corresponding NP scale A through the relation
A~ (Vape) ™7, (5.23)

where v = (v2Gr)™Y/? ~ 246 GeV. Our bounds can probe scales as high as ~ O(5) TeV,
which are quite restricted compared to the energy scale probed in semileptonic kaon decays

i.e. O(500) TeV [509].

5.7 Conclusions

This work highlights that hadronic tau lepton decays remain to be not only a privileged
tool for the investigation of the hadronization of QCD currents but also offer an interesting
scenario as New Physics probes.

In this work, we have performed a global analysis of strangeness-conserving (AS = 0)
and strangeness-changing (|AS| = 1) exclusive hadronic 7 decays into one and two mesons.
From the current experimental measurements of the corresponding decay spectra and/or
branching ratios, we have set bounds on the NP effective couplings of the low-energy (di-
mension six) Standard Model Effective Field Theory Lagrangian. This has been possible due
to a controlled theoretical determination of the necessary Standard Model hadronic input
i.e. the form factors. For the description of the corresponding vector and scalar form factors,

we have employed previous results, based on constraints from Chiral Perturbation Theory
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supplemented by dispersion relations, that show a nice agreement with the rich experimental
data provided by the experiments. On the other hand, as there is no experimental data that
can help us constructing the corresponding tensor form factors, they have been built under
theoretical arguments only.

In general, our bounds on the NP couplings, Egs. , and , are compet-
itive. This is specially the case for the combination of couplings €] — €} + € — €3, which
is found to be in accord with the constraints placed from a combination of inclusive and
exclusive (strangeness-conserving) tau decays [512], and for €7., that can even compete with
the constraints set by the theoretically cleaner K3 decays (for the comparison, lepton flavor
universality is assumed as mentioned throughout the main text). Our separate fits to both
AS =0 and |AS| = 1 decays reflect that we are not sensitive to the coefficients €} and €},
individually but rather to a combination of them. It is still possible to fit them separately
performing a global fit to both AS = 0 and |AS| = 1 sectors simultaneously. However, they
carry a large error bar whose origin stems from the very strong correlation between them.
As for €%, it is impossible to compete with the limits coming from K3 decays. Our limit,
however, is found to be much weaker than previous constraints from tau decays. This is
due to the fact that, for lack of experimental data, the decay 7= — 7 nv, has not been
taken into account in our analysis. These different bounds on €5 obtained with and without
the 7mn mode thus increase the interest of its measurement and demands refined theoretical
descriptions accordingly.

Our study is presently limited by the fact that the Standard Model form factors, the
input parameters of which have been fitted to data previously, may have absorbed some
NP information, if this is in the data. We have tried to address this drawback through fits
where not only the NP effective couplings are treated as free parameters to fit but also the
Standard Model input parameters entering the corresponding form factors. In doing so, we
have too many free parameters to fit and found no sensitivity to the NP couplings. This is
indeed interesting to prove in the future, with a higher-quality data, but at present is not

feasible. We thus hope our work can serve to encourage the experimental tau physics groups
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at Belle-II to measure these decays with higher accuracy.
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Chapter 6

Hadronic contribution to the vacuum
polarization of the muon anomalous

magnetic moment

6.1 Introduction

The muon (p~), like the much lighter electron (e™) or the much heavier tau (77) particle, is
one of the 3 known charged leptons: elementary spin 1/2 fermions of electric charged —1 (in
units of the positron charge e). Each of the leptons has its positively charged antiparticle, the
positron e, the u* and the 7T, respectively, as required by any local relativistic quantum
field theory [571]. Ome of the most precisely measured quantities in particle physics is the
muon anomalous magnetic moment (a,,) EI A long-standing discrepancy between theory and
experiment about 3 — 4 standard deviations has been observed.

The agreement between the latest measurement performed at Fermilab National Acceler-

ator Laboratory (FNAL) Muon g — 2 Experiment [96] with the previous one at Brookhaven

LOnly a, is more precise, its measurements allow to fix a/(0).

151



[95], allows to combine them and get

a;P = 116592061(41) x 10~'"  (0.35 ppm).
The latest SM prediction [6] is

a;M =116591810(43) x 107" (0.37 ppm).

Therefore, the difference, Aa, = aEXp — aiM = (251 & 59) x 107! increases the significance
to 4.2 0. This deviation from the Standard Model could be a sign of New Physics around
the corner.

In this chapter, we will discuss briefly the SM contributions to a,, and a description of
the data used as input in the data-driven computation of the HVP contribution. Further

details can be found in the White Paper (WP) of the Muon g — 2 Theory Initiative [6] or in

the several reviews concerning this topic (e.g. Refs. [31,572,573]).

6.2 Theoretical calculations of a,

The prediction of the anomalous magnetic moment in the SM is determined from the sum

of all sectors of the SM [31]:

SM _ QED , ,EW , HVP , HLbL
a, =a; t+a, ta, +a,"", (6.1)

where a/C}ED are the QED contributions, aEw are the electro-weak (EW) contributions,

HLbL

HVP
a w

I

tributions from hadronic light-by-light (HLbL) scattering, see Fig. [6.1]

are the hadronic vacuum polarization (HVP) contributions and a are due to con-

6.2.1 QED contributions

The QED contributions to a, include those from leptons and photons alone and have been

completely calculated up to five-order. All contributions up to and including four-loop have
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Figure 6.1: SM contributions to a,. The diagrams shown (from left to right) correspond to the
one-loop QED diagram, the one-loop EW diagram involving Z-boson exchange, the leading-order
HVP diagram and HLbL contributions. Reprinted from Ref. [31].

been determined and verified by different groups, from both numerical and analytical cal-
culations [6]. The four-loop universal contribution has been calculated analytically with an
impressive precision (~ 1100 digits) [574] and is consistent with the numerical computa-
tions [575]. The overall five-loop contribution, which includes 12 672 Feynman diagrams, has
been calculated numerically [32L[576] with independent cross checks [577H580]. The five-loop
Feynman diagrams are shown in Fig. The value for the QED contribution is then

a " = 116584 718.931(104) - 107", (6.2)

where the given error is the quadrature sum of errors because of the 7-lepton mass, four-
loop QED, five-loop QED, an estimate of the six-loop QED [6,32,[576] and the fine-structure

constant a |581].

6.2.2 EW contributions

Diagrams that contain at least one of the EW bosons (W, Z, or Higgs) comprise the EW
contributions to a,. The one-loop Feynman diagrams are depicted in Fig. [6.3] These sorts
of contributions may include QED and hadronic effects, but no EW processes enter in the
estimation of the QED, HVP and HLbL parts. Thanks to the masses of the EW bosons, the
EW contributions are highly suppressed. These have been computed up to two-loop and the
three-loop contributions have been estimated [582}583].

The value for af;"V is [6,582,583]

PV =153.6(1.0) - 1071, 6.3
172
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Figure 6.2: Five-loop QED diagrams. The overall QED contribution to a, involves 12672 dia-
grams. The straight and wavy lines denote lepton and photon propagators, respectively. Reprinted

from Ref. .

Figure 6.3: One-loop EW Feynman diagrams. Reprinted from Ref. [|§|]
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Figure 6.4: HVP Feynman diagrams at LO and NLO (a)-(c). The gray blobs refer to hadronic
VP while the white one refers to leptonic VP. Reprinted from Ref. [6].

where the uncertainty involves the two-loop hadronic effects, neglected two-loop terms,
and unknown three-loop contributions. The non-perturbative hadronic insertions that enter
at two loops significantly govern the uncertainty of the EW contributions and are small

compared to the HVP or HLbL sector uncertainties, due to the EW suppression.

6.2.3 HVP contributions

The contributions in the third diagram in Fig. [6.1] account for the so-called HVP con-
tributions. This sector can be estimated from data-driven approaches, using measured

ete” — hadrons data as input into dispersion relations, or from Lattice QCD.

Data-driven HVP

The HVP contribution can be computed utilizing a combination of all ete~ — hadrons cross
section data, op.q(s) = o%(eTe™ — hadrons + (7)), which is inclusive of final state radiation
effects and where the superscript ‘0’ indicates the cross section is bare, i.e. excluding all
vacuum polarization effects. The LO and NLO HVP contributions are shown in Fig. (6.4}
More than 35 exclusive hadronic channels (final states) from different experimental col-
laboration must be combined (Fig. [6.5). Hadronic cross-section data are either obtained
from direct scan measurements (for instance, CMD-2, SND, KEDR) or via the method of
radiative return (for instance, BaBar, KLOE, BESIII), see below for more details. The com-

binations of data are accomplished channel-by-channel to determine individual contributions

HVP

. » which are then summed. These combinations are not trivial, since the combined

to a

result needs to be an accurate representation of the differing data and their uncertainties.
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Figure 6.5: Contributions to the total hadronic cross section (expressed as the hadronic R-ratio,
R(s) = onaa(s)/(4ma?/(3s))) from different final states below /s ~ 2GeV. The total hadronic
cross section is depicted in light blue and each final state is included as a new layer on top in
decreasing order of the size of its contribution to al}}VP LO Reprinted from Ref. .

The dominant channel corresponds to the two pion channel, that contributes more than 70%
of the total HVP. Fortunately, final states, thresholds contributions, or resonances for which
there are no data are safely estimated. The estimation of the missing channels amounts to
less than 0.5% of aj;'" [@,.

There are some data-driven evaluations of a;; " that differ in the treatment of the data as
well as the assumptions made on the functional form of the form factors. The DHMZ
and KNT , groups use directly the bare cross section. The CHHKS group reach
an alternative approach, where they applied additional constraints from analyticity and
unitarity to evaluate the 7%y, 27 and 37 channels , , ﬂ The outcomes from

these three groups have been combined in a conservative procedure to account for differ-

HVP LO _
“w

6931(40) - 101 [@] with the corresponding results for the af/V" N = —98.3(7) - 107! [47]
and a, V" "N =12.4(1) - 107" [586] amounting the total HVP contribution of [@]

ences between groups and tensions between data sets. The combination yields a

a; "’ = 6845(40) - 107 (6.4)

2DHMZ also applied similar constraints for the two-pion channel .
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HVP

. which include those from

Further details about all data-driven determinations of a
other groups not used in the merged result, can be found in Ref. [6]. Prospects to improve the
data-driven estimation of ),V lie in new e*e™ — hadrons cross section measurements, spe-
cially those of the 777~ channel. New 77~ data sets are expected from CMD-3, BABAR,
BESIII [587] and Belle-II. The CMD-3 result is projected to be the most statistically precise
of all the current measurements in the 27 channel, with systematic uncertainties ranging
from 0.6 — 1%.

Similarly, the ete™ data is used to evaluate the five-flavor hadronic contribution to the
running QED coupling at the Z-pole, Aaﬁz)d(M 2). This quantity is an essential input to
global EW fits and, then, predictions of the EW fit parameters (for instance, the Higgs
mass). This connection has been exploited in various works [588-592]. In order to bridge
Aay,, shifts in op,q were studied in Ref. [590], they found that these shifts are excluded above
Vs ~ 0.7GeV at 95% C.L. Nonetheless, prospects for Aa, originating below that energy
were deemed improbable given the required increases in the hadronic cross section.

Further opportunities to study the HVP contributions are expected from the MUonE ex-
periment [593/594], which is a proposed approach to evaluate the leading hadronic corrections
to the muon g — 2 purely from experiment (spacelike data instead of timelike measurements,

which avoids the difficulties intrinsic to resonances).

HVP from Lattice QCD

Determining the HVP contribution from lattice QCD is achieved by applying Euclidean
spacetime discretization of the vacuum polarization tensor II,,,(Q?) for space-like Q? in finite
volumes and with finite lattice spacing, which is thus taken to continuum and infinite-volume
limits. It is possible to perform comparison between different lattice groups thanks to the
ability to split the calculation of aj; V" O at O(a?) according to quark-connected (conn) and

quark-disconnected (dis) contributions as

IO = O + afNE 05
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Since the different quark flavor-connections result in different statistical and systematic

uncertainties, it is suitable to separate them as

a;li\c/;rI;O — QEVP LO(ud) + QEVP LO(S) + GEVP LO(C) + aHVP LO(b)’ (66)

where ud represents the contributions of the light v and d quarks (m, = my) and s, ¢

and b are the strange, charm and bottom quark contributions, respectively. Current lat-

tice calculations include strong and electromagnetic isospin-breaking corrections 5a5vp LO
as a, "0 = a VP 19(a?) + da,V" O, The determination of the isosymmetric flavor terms

in Eq. and the corrections daj, " "9 are prescription and scheme dependent, giving
rise to different and comparable results between lattice calculations. A complete discussion
of the different methods and analysis choices is given in Ref. [6]. Fortunately, all lattice
prescriptions have common features. Thus, all results are extrapolated to the continuum
and infinite-volume limits and interpolated or extrapolated to the physical point. The errors
contain both statistical and systematic uncertainties, where the systematics appear from
common issues faced by all analyses: long-distance effects, finite-volume effects, discretiza-
tion effects, scale setting, chiral extrapolation/interpolation and quark mass tuning.

Outcomes from several lattice groups of the different flavor contributions and the to-

HVP LO
w

cedure from the ETM18/19 [34}35], Mainz/CLS-19 [36], FHM-19 [37,38], PACS-19 [39],
RBC/UKQCD [40] and BMW-17 [41] leads to [6]

tal estimate of a are shown in Fig. A combination using a conservative pro-

a, "0 =711.6(18.4) - 107" (6.7)

This value is also shown by a blue band in Fig. [6.6l These results are in the range
between the data-driven approaches and a no-new physics (green band), but generally with
errors too large to make a definitive statement. In consequence, the error on the average
is consistent with both the data-driven approaches and the no-new physics scenario. After
the publication of the WP, there have been two new results from the LM-20 and BMW-20
analyses, aj, " “O[LM — 20] = 714(30) - 107'% [42] and a;/V" *°[BMW — 20] = 707.5(5.5) -
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Figure 6.6: Results for (aiM - aEXP) -10'° when aEVP LO is taken from several lattice
and data-driven estimates. The filled dark blue circles are lattice results that are
included in the lattice average in Ref. [@], which is indicated by the light-blue band. The unfilled
dark blue circles are those results not included in the averages . The red squares show
results from data-driven estimation of afIVP IO where filled squares are those included in the
merged data-driven result and unfilled are not . The purple triangle shows a hybrid
result where noisy lattice data at very short and long distances are replaced by ete™ — hadrons
data . The yellow band indicates the “no New Physics” scenario, where aEVP LO yresults are large
enough to bring aEM into agreement with experiment. The grey band in the center of the yellow

one indicates the projected experimental uncertainty from the Fermilab Muon g — 2 experiment.
Reprinted from Ref. .
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10710 [43], respectively. The BMW-20 value is the first lattice result for CLEVP LO with sub-
percent precision. This is 1.3 o below the no-new physics scenario and 2.1 ¢ higher than the
recommended data-driven result.

Recently, a new lattice analysis [595] found aj™ = 237.30(1.46) - 107" at the physical
point that agrees with the BMW-20 results in the so-called “intermediate” window observ-

ables [40] ﬂ for which both the short-distance and long-distance contributions in the integral

HVP
m

the recent data-drive estimation in Ref. [596], which is a}™ = 229.4(1.4) - 107", In fact,

representation of a are reduced. However, this result is at odds (~ 3.8 ¢ above) with
this result shows further evidence for a strong tension between lattice calculations and the

data-driven approach.

HVP LO

" are also ex-

Improvements in the precision of several lattice evaluations of a
pected [6]. The main difficulties in reducing the uncertainties come from finite-volume ef-
fects, exponentially growing signal-to-noise problems at large Fuclidean times, disconnected

contributions, and strong isospin breaking and QED corrections.

6.2.4 HLDbL contribution

Contributions from HLbL scattering (Fig. represent the process in which an external
soft and on-shell photon interacts though a hadronic blob with three off-shell photons that
are coupled to the muon. These contributions are classified by a four-point function and thus
require calculations that are more difficult than those of the two-point HVP function. Since
the HLbL contributions enter at O(a?), they are suppressed by an additional order o mak-
ing them two orders of magnitude smaller than the HVP ones. The hadronic contributions
to LbL scattering emerge from single mesons (e.g. 7°, 1, 7/, f0(980), ao(980)), axial-vector
mesons (e.g. ai, f1), tensor mesons (e.g. fa, ag) and charged pion and kaon loops. Formerly,
these contributions have been determined through model-dependent estimates from meson

exchanges, the large N, limit, chiral perturbation theory estimates and short distance con-

3The observable al"jin accounts for about one third of the total aEVP. When the data-driven evaluation
of ay™" is subtracted from the WP estimate [6] and replaced by this number, the tension between the SM

prediction for a, and experiment is reduced to 2.90.
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- - - -

Figure 6.7: HLbL Feynman diagram at LO. The shaded blob represents all possible intermediate
hadronic states. Reprinted from Ref. [46].

straints from the operator product expansion and pQCD [49,/597-600]. Luckily, motivated

HLbL

" is now improved

by the muon g— 2 theory initiative [6], the status of the estimations of a

because of newer calculations from data-driven dispersive approaches and from lattice QCD.

Data-driven and dispersive HLbL

HLbL

Current data-driven and dispersive methods to calculate a,

supply a model-independent
evaluation, where possible experimental data are used as input for several hadronic insertions
and, when data are not available, theoretical calculations of the amplitudes can be employed.
Additionally, there are being some improvements in the model-dependent estimates for the
sub-leading contributions [601-607]. The HLbL tensor can be splitted into the sum of all
intermediate states in direct and crossed channels as I\, = Wo_pOIQ—I—sz_ DO LTI e

2N, 2N,
It turns out that

0__ _
HLbL __ a” pole i a; box + a™ 4.

ay Iz jz

. (6.8)

alI}LbL is realized to be dominated by contributions arising below 1.5 GeV, with the 7%pole

being the most dominant contribution. Other single-particle states ( and ') are suppressed,
and even more two-pion and two-kaon effects. The expressions for n) and two-kaon effects
are straightforward. The main experimental inputs to determine these contributions come
in the form of 7,  and 7’ transition form factors (TFFs). These data are obtained as either

single-virtual TFFs in the space-like regime from ~*v collisions or in the time-like region
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from radiative production in eTe™ collisions, single or double Dalitz decays of pseudoscalars,
double-virtual TFFs, or from Dalitz decays of vector mesons.

Detailed descriptions of the dispersive calculations and experimental inputs of each of
the contributions to ay**" are given in Refs. [608618]. The values obtained from dispersive
approaches are consistent with those from older estimates, with improved uncertainties.

Summing all the values from the different contributions, the overall dispersive estimate for

aHLbL

M is then

a, "t =92(19) - 107, (6.9)

where the final uncertainty is a sum of data-driven errors added in quadrature and model-
dependent errors added linearly [6,608-618]. The NLO contribution is a0 = 2(1) -
1071,

HLDbL from Lattice QCD

Thanks to the efforts of the Muon g — 2 Theory Initiative 6], the total aELbL has been
calculated by two lattice groups [619,620]. In discretized Euclidean spacetime, it has been
determined treating QED both perturbatively and non-perturbatively, in both finite (QED,)

and infinite volumes (QED_)). Large uncertainties arise from volume errors and non-zero

HLbL

" is recovered by extrapolating to infinite-volume and con-

lattice spacings. In QED;, a
tinuum limits. Further details about derivations and the methodologies can be found in
Refs. [6,/619,620]. These two approaches have been tested by replacing quark loops with
lepton loops and have been shown to perform well. Moreover, cross checks have been carried
out between the results of both groups, which exhibit compatibility when checking effects
from lattice spacings and finite/infinite volumes.

After the infinite volume and continuum extrapolations, the outcome from the RBC

computation, with both QED and QCD gauge fields on the finite-volume QED; is [619)

ay "t = 78.7(30.6)stas (17.7)sys - 1071 (6.10)
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Contribution Valuex10''  References

Experiment (BNL) 116592 089(63) Ref.

Experiment (FNAL) 116592 040(54) Ref. @

Experiment (Average) 116592061(41) Refs. |95 |%]

HVP LO (ete) 6931(40) Refs. [33
HVP NLO (e*e ) —98.3(7) Ref. 47

HVP NNLO (e*e™) 12.4(1) Ref. [586

HVP LO (lattl(‘e udsc) 7116 (184) Refs. [35361[381/41/46|/621
HLbL (phenomenology) 92(19) Refs. [49]|597(608H618

HLbL NLO (phenomenology) 2(1) Ref. [622

HLbL (lattice, uds) 79(35) Ref. (619

HLbL (phenomenology + lattice) 90(17)  Refs. [49]|5 T"_8|

QED 116584 718.931(104)  Refs.

Electroweak 153.6(1.0) Refs.

HVP (ete”, LO 4+ NLO + NNLO) 6849(40) Refs. [81][237][585]/556]
HLbL (phenomenology + lattice + NLO) 92(19) Refs. 597(/608{/619|/622
Total SM Value 116591810(43) Refs. [32|33]/47]148]81]237||576||582| 583585586/ 597|608 613]619]/622]
Difference: Aay, = aS® — ™ 251(59)

Table 6.1: Summary of the contributions to aﬁM . Adapted from Ref. [|§|]

This number was obtained using several lattice ensembles, with different lattice spacing
and volume, with all particles at their physical masses and including contributions from con-
nected and disconnected diagrams. Although this result is not as precise as the dispersive
HLbL computation, some improvements in precision are expected in the future. In QED_,
the RBC group has performed preliminary calculations of both connected and leading dis-
connected diagrams with physical masses. A recent estimate from the Mainz group found
ap ™" = 107(15) - 107" [620], which is consistent with the result in Ref. , but with a

smaller uncertainty.

6.2.5 The SM prediction for a,

The recommended value for the SM prediction of the anomalous magnetic moment of the

muon is @

M = 116591810(43) - 107'* (0.37 ppm). (6.11)

The several contributions that enter into aiM are summarized in Table .
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6.3 Data-driven calculations of HVP

Due to the properties of analyticity and unitarity, the loop integrals containing insertions
of HVP in photon propagators can be expressed in the form of dispersion integrals over the
cross section of a virtual photon decaying into hadrons (optical theorem). This cross section
can be determined in e*e™ annihilation, either in direct scan mode, where the energy of the
beam is adjusted to measurements at different center-of-mass (CM) energies, or by relaying
on the method of radiative return, where a collider is operating at a fixed CM energy. The
high statistics on the second one provides with an effective scan over different masses of
the hadronic system through the emission of initial-state photons, whose spectrum can be
calculated and, even in some cases, measured directly. Besides, it is possible to use hadronic
7 decays to determine hadronic spectral functions, which can be related to the required cross

section by means of an isospin rotation.

At leading-order (LO), i.e., O(a?), the dispersion integral is given by [623}624]

2
mvero a0 [= K(s)
af = /Mg ZR(s) ds, (6.12)
with the kernel function
x? (1+ 2% (1 + x)?

2
1
K(s) = ?(2 —2%) + (log(l +x)—x+ x) + A logz,  (6.13)

2 2 1—=z

where v = ig“, By = /1 — 4mi/ s. The kernel is a slowly varying monotonic function,
N

which goes from the two pion threshold up to large s. R(s) is the so-called (hadronic)
R-ratio defined by

o%(ete” — hadronic(+ Ao
R(s) = ( ( 7))’ o — AT

6.14
Opt 3s ( )

The factor K(s)/s in Eq. (6.12]) enhances the contributions at lowest energies. The super-

script in ¢ indicates that the total hadronic cross sections in the dispersion integral must
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be the bare cross section, excluding effects from vacuum polarization (VP) that lead to the
running of the QED coupling. If these effects are included as part of the measured hadronic
cross section, this data has to be “undressed”, i.e., VP effects must be subtracted. Other-
wise, there would be a double counting and, therefore, iterated VP insertions are taken into

account as part of the higher-order HVP contributions.

Contrarily, the hadronic cross section used in the dispersion integral is normally taken to
be inclusive with respect to final-state radiation of additional photons. While this is in con-
tradiction to the formal power counting in «, it is impossible to subtract the real and virtual
photonic FSR effects in hadron production, especially for higher-multiplicity states for which
these QED effects are difficult to model. Since these FSR effects are not included explicitly
in the higher-order VP contributions, this procedure is fully consistent. The threshold for
hadron production is provided by the 7%y cross section and thus the lower limit of the dis-

persion integral is M?.

There are similar expressions to Eq. for the HVP contributions at next-to-leading
order (NLO) [625] and next-to-next-to-leading order (NNLO) [586]. They are more diffi-
cult and require double and triple integrations. The NLO contributions are numerically of
the order of the HLbL contributions, but negative in sign. The NNLO contributions turn
out to be somewhat larger than naively expected and, therefore, should be evaluated as a
nonnegligible component of a

HV P,LO
m .

6.3.1 Hadronic cross sections at low energies

At low energies, the total cross section is obtained by summing all possible different final
states. Measurements for more than 35 exclusive channels from different experiments have
been published over many years. At low energies the most important channel is the two-pion
channel, that contributes more than 70% of aL{VP’LO. This channel comes mainly from decays

of the p meson, with an admixture with the w. Sub-leading contributions arise from decays
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of the w and ¢ in the three-pion and two-kaon channels, and from four-pion final states with
more complicated production mechanism. The interferences between different production
mechanisms are taken into account since we are taking the incoherent sum over distinct final
states. In order to achieve an accurate description of the total cross section it is necessary
to include higher-multiplicity final states (up to six pions) and final states containing pions
and kaons or the 7. Contributions for which no reliable data exists, but which are expected
to be non-negligible, have to be estimated, e.g., the case for multi-pion channels consisting
mainly of neutral pions. Such final states can be approximated by assuming isospin symme-
try, which can be used to model relations between measured and unknown channels. The
reliability of such relations is difficult to quantify and is usually mitigated by assigning a
large fractional error to these final states. Nonetheless, with more channels having been
measured in recent years, the role of these isospin-based estimates has been largely reduced.
For leading contributions very close to the threshold, where data is limited, the hadronic

cross section can be estimated based on additional constraints, e.g., from chiral perturbation

theory (xPT).

Input data

Exclusive measurements

o wTw~ channel
Since the contribution from this channel is very important, there has been a large
experimental effort to obtain reliable and precise data. Most old measurements are
now essentially obsolete. The most recent evaluations only use the results obtained in
the last decade or so.
Precise measurements in the p region came from Novosibirsk with CMD-2 [626] and
SND [54], revising older results [] Also, CMD-2 has obtained results above the p

region [628], as well as a second set of data across the p resonance [629]. Neither

4There were problems with large radiative corrections in previous analyses of CMD-2 [627] and SND [396].
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Figure 6.8: CMD-2 [52,53] (left) and SND [54] (right) data for ete™ — w77~ in the p region.
Reprinted from Ref. [55].

experiment can separate pions and muons, except for near threshold using momentum
measurement and kinematics for CMD-2, with the purpose that the measured quantity
is the ratio (Nzx + N,.)/Nee. The pion-pair cross section is obtained after subtracting
the muon-pair contribution and normalizing to the Bhabha events, using computed
QED cross section for both, including their respective radiative corrections. In Fig. [6.8]
these results are corrected for leptonic and hadronic VP, and for photon radiation by
the pions, in such a way that the deduced cross section corresponds to 777~ including

pion-radiated photons and virtual final-state QED effects.

The KLOE [56] and BABAR [20,21] ISR analyses are initially very different. First, the
CM energy is close to the studied energy in the case of KLOE (soft ISR photons), while
it is very far in the BABAR case (hard ISR photons). In KLOE-2008 and KLOE-2012
the ISR photon is not detected and reconstructed kinematically, assuming no extra pho-
tons. Since the cross section strongly peaks along the beams, a large statistics of ISR
events is get. Pion pairs are separated from muon pair with kinematical constraints.
In BABAR, the ISR photon is detected at large angle (about 10% efficiency) with the
intent that the full event is observed, and an additional photon can be included in
the kinematical fit (undetected forward additional ISR or detected ISR/FSR photon).
Another big difference concerns the ISR luminosity: in the KLOE-2008 and KLOE-
2010 analyses it is computed using the NLO PHOKHARA generator [402], while in
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Figure 6.9: The KLOE eTe™ — 777~ measurement in the p region obtained in three experimental
configurations [56-58]. Adapted from Ref. [58].

BABAR both pion and muon pairs are measured and the ratio wm(y)/pup(y) directly
gives the wm () cross section. The small-angle ISR photon provides a suppression of the
sizeable LO |FSR/|? contribution in KLOE, and the remaining part is computed from
PHOKHARA. In BABAR, the |[FSRJ|? contribution is negligible because of the large
value of s. The KLOE method with small-angle undetected ISR photons also reduces
the range of 7w masses on the low side because of the limited angular acceptance of
the detector. To solve this problem, the analyses of KLOE-2010 were performed with
large-angle ISR [57]. Finally, the KLOE-2012 measurement [58] was obtained using
the same ratio method as BABAR (Fig. [6.9), but with undetected small-angle ISR
photons. This ratio is taken in small mass bin (6 MeV) for KLOE, while for BABAR
larger intervals (50 MeV) are used in order to reduce statistical fluctuations on the
individual cross sections values, using the expected variation of the ppu(v) cross section

within each interval and the bin-to-bin correlations in the covariance matrix.

The three KLOE measurements have been recently combined utilizing the correlations
between the different data sets [88]. The combination method was intended at pro-

viding a coherent KLOE data set with a fully consistent treatment of uncertainties
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Figure 6.10: BABAR results [20,[21] using the large-angle ISR method: ete™ — ptu~ compared
to NLO QED (top) and ete™ — w7~ from threshold to 3 GeV utilizing the w7 /uu ratio (bottom).
Reprinted from Ref. [21].

between the three analyses.

To reduce systematic uncertainties, the BABAR method includes the simultaneous
measurement of the process ete™ — ptu~, which by itself can be inspected against
the QED prediction taking into account the e*e™ luminosity. The comparison of the
BABAR data with NLO QED displays a good agreement from threshold to 3 GeV
within a total uncertainty of 1.1%, governed by the luminosity uncertainty (Fig. [6.10)).

Recent results with the ISR method in the charm region and large-angle ISR tagging
have been obtained by BESIII [59] and a group utilizing the data from CLEO-c [60].
Both have a larger statistical uncertainty. This is shown in Fig. [6.11}

Although lots of data for the 77~ channel with an improved precision over time have

been recorded, the consistency among them is far from excellent.

e Other two-body channels
The 7y final state is the first open hadronic channel and defines the lower limit of
integration of the dispersion integral. Moreover, recent measurements with better

precision from SND over the full spectrum up to 2 GeV are now available [6304/631].

Cross section for the final states with Kt K~ and KgK|, are depicted in Fig. for
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Figure 6.11: Results from BESIII (left, reprinted from Ref. [59]) and CLEO-c (right, reprinted
from Ref. [60]) on ete™ — w77~ in the p region using large-angle detected ISR photons.

CMD-2 [62,[632], SND [61,/633], and BABAR [63]. They are governed by the ¢ reso-
nance. Here, the broad mass range available through the ISR approach is impressive.
Recent results were obtained at VEPP-2000 by CMD-3 [90] and SND [634], which differ
substantially from the earlier CMD-2 and SND measurements at VEPP-2M. Although
experiments are in good agreement for K¢K, the situation is more problematic for
KTK~.

BABAR [635-637] and CMD-3 [638] have achieved precise measurements of the pp final
state. The cross section for eTe™ — pp displays little energy dependence from threshold
to 2GeV. Here the ISR method also allows the measurements to be performed over
a large energy range up to 6 GeV. A cross section compatible to that of pp from
threshold to 2GeV is observed in the measurement of ee”™ — nn from SND [639)].
The nuclear-pair production at 2 GeV accounts for about 4% of the total hadronic

cross section.

e Multi-hadronic channels
The cross section for different exclusive channels has been measured with the scan
method up to 1.4 GeV by CMD-2 and SND and extended more recently up to 2 GeV
using the VEPP-2000 collider and the upgraded CMD-3 and SND detectors. BABAR
has used extensively the ISR approach, covering the range from threshold to typically
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3 —5GeV. An almost complete set of exclusive measurements up to about 2 GeV is
represented by the BABAR results. Above 2 GeV, many channels with higher multi-
plicity open up that in practice cannot be studied independently, in such a way that
the method that uses the sum of exclusive cross sections is no longer applicable. There
is an excellent agreement between BABAR and the final state measurements by the

scan method at VEPP-2000, which provides a nice consistency check.

The largest multi-hadronic cross sections below 2 GeV are for the 3-pion and 4-pion
final states. The 3-pion cross section is dominated at low energies by the w (see Fig.
and ¢ resonances as measured by the CMD-2 [64],640] and SND [66] experiments.
Above the ¢ region, results are at hand from BABAR [65] and SND [641], which
agree with each other as in Fig. [6.14] albeit both disagree strongly with the earlier
results from DM2 [642]. For the final states of 2727~ [68,/69] and 77— 27° [70],
the development provided by the ISR BABAR results is striking both in terms of
precision and mass coverage, see Fig. [6.14] Previous results from VEPP-2M [643-645]
and VEPP-2000 [646] only extended to 1.4 GeV. Results on exclusive final states
containing up to 6 quasi-stable hadrons are available [647,/648]. The limitation on
hadron multiplicity, set to a great extend by the difficulty to select and identify multi-
70 final states, does not allow a reliable reconstruction of the full hadronic rate above

2 GeV as a sum over individually measured exclusive cross sections.

Several processes with smaller cross sections have to be considered to saturate the total
hadronic rate. Some results on final states including 1 mesons are shown in Fig. [6.15]
specifically nrtr~ from BABAR [71},[72], CMD-2 [73], and SND [74], and nat7—n°
from CMD-3 [75]. Besides, recent data sets for nmt7n~ are at hand from SND [649]
and CMD-3 |650]. For the final states of 74w only results from BABAR are available,
both for n2x+7~ [71] and nrtm—27Y [651]. A lot of progress was recently achieved
by BABAR on K Kn pions final states with the complete set of measurements for all
charge configurations n = 1,2 [76-80] owing to the detection of Kg, K, charged pions
and kaons, and multiple 7° (Fig. [6.16]).
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Figure 6.13: The w resonance in the 77~ 7% mode from CMD-2. Reprinted from Ref. [64].

There are additional measurements for some specific channels, K™K~ 7"7~ [652] and
KsKm° [653]. Finally, cross sections for K™K~ [77] and KsKn [79] are also avail-
able from BABAR.

Narrow resonances
The contributions of the very narrow resonances .J/1¢ and ¢ (2S5) are obtained by numerically
integrating their undressed Breit-Wigner line shapes. The uncertainties in the integrals are
dominated by the knowledge of their bare electronic widths available from experiment |3},654].
Inclusive R measurements
Above 2 GeV the annihilation cross section needs to be measured inclusively due to the large
number of open exclusive channels. Precise results from BESII [82-84] are in the 2 —4.5 GeV
range. The KEDR collaboration has recently published results from an inclusive R scan
from /s = 1.84 to 3.05 GeV [85,86], complementing their preceding measurements obtained
between 3.12 and 3.72 GeV [85]. This data is the most precise and complete in this energy
range with a typical systematic uncertainty of 3%. It constitutes a very valuable input to

test the validity of the pQCD estimate (Fig. [6.17]). Between 2 GeV and the charm threshold,
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Figure 6.17: The total hadronic ete™ annihilation cross section ratio R as a function of /s [81].
Inclusive measurements from BES [82-84] and KEDR [85-87] are depicted as data points, while
the sum of exclusive channels from this analysis is given by the narrow blue bands. The prediction
from massless pQCD is also shown (solid red line). Reprinted from Ref. [4§].

the R value (hadronic cross section scaled to the s-channel point-like fermion-pair lowest-
order cross section) behaves smoothly with a weak energy dependence, and it agrees with
the pQCD prediction within experimental uncertainties. Fig. depicts the results on
R, which are based on the sum of exclusive channels below 2GeV [81] and the inclusive
measurements above. The coincidence between the measurements in the two regions is good

enough and consistent with the quoted uncertainties.

6.3.2 Tensions in hadronic data

The precision of the data-driven approach is affected by some discrepancies among the dif-
ferent data sets.

Tensions in the w7~ channel

Approximately 3/4 of the full hadronic contribution to the muon g — 2 is accounted by
the 7T~ channel. Hence, there is a need for the highest precision. Many experimental
measurements have been performed in the last four decades, however it is only in the last

fifteen years that sufficient statistics and small systematic uncertainties have been reached.
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Figure 6.18: The 7*7~ cross section from the KLOE combination compared to the BABAR,
CMD-2, SND, and BESIII data points in the 0.6 — 0.9 GeV range [88]. The KLOE combination is
represented by the yellow band. The uncertainties shown are the diagonal and systematic uncer-
tainties added in quadrature. Reprinted from Ref. [88].

Nevertheless, the situation is not very good since the two most precise measurements by
KLOE and BABAR do not agree well within their quoted uncertainties. The state worsens
after combining [88] the three KLOE measurements based on different ISR methods since the
uncertainty is reduced. Fig. displays the ratios of the recent measurements by CMD-2,
SND, BABAR, and BESIII to the combined KLOE cross section in the 0.6 — 0.9 GeV mass
region, where the KLOE band and the data points involve the full diagonal error. Some
features are evident: (1) the normalization at the peak is generally higher than KLOE, (2)
there exists a trend for a linear increase on the ratio with mass, and (3) a clear disagreement
is seen in the narrow p—w interference region. Because of the higher precision of the BABAR
data, these characteristics are most clearly visible there, but they are also present for the
other experiments. Although there is a fair agreement below 0.70 — 0.75 GeV, the KLOE

data seems noticeably lower on the p peak and above by a factor rising to a few percent.
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Figure 6.19: The 77~ cross section from KLOE combination, BABAR, CMD-2, SND, and BESIII
in the p — w interference region [8§]. Reprinted from Ref. [8§].

A common oscillatory pattern is shown by the ratios in the p — w interference region.
In Ref. [88] the ratio of a particular experiment was computed with respect to the linearly
interpolated value between adjoining KLOE points, some bias is expected especially in the
interference region with its fast-changing cross section. This oscillation is not present for
the ratio KLOE to BABAR [20], where the fit to the BABAR data is used as reference to
avoid these effects. The interference pattern is more eradicated in KLOE (Fig. , most
likely because of the choice of wide mass bins. A vertical offset is evident in the plot on
the p peak. However, the effect of the p — w interference pattern is mostly cancelled when
integrating over the mass spectrum. Therefore, differences in this region among experiments
are not expected to produce large biases for the integral values.

The most salient discrepancy between the KLOE and BABAR data aims to one or various
systematic effects not properly covered by the estimated systematic uncertainties. At this
moment, other experiments are barely precise to resolve this discrepancy, lying between those
of KLOE and BABAR, and overlapping with both. The contributions to the dispersion
integral from the region between 0.6 and 0.9 GeV for each experiment is shown in Fig. [6.20]
One-parameter fits give x?/d.o.f values of 4.5/4 and 3.6/4 when all experimental data sets
are included except BABAR and all experimental data sets are included except KLOE.
Hence, BESIII/CLEO/CMD-2/SND are compatible with either KLOE and BABAR.
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Figure 6.20: Comparison of results for aEVP [r7] evaluated between 0.6 GeV and 0.9 GeV for the
different experiments. Reprinted from Ref. [6].

In the combination procedure performed by both DHMZ and KNT, local tensions were
treated by introducing scaling factors for the uncertainties. Global tension was also accounted
for in the DHMZ analysis. Further details can be found in the WP [6].

There is also some tension when the three KLOE measurements [88] are combined. The
ratios of the cross section values between KLOE-2012 and KLOE-2008, along with KLOE-
2010 and KLOE-2008, were computed using all the correlations between the measurements,
for both the statistical and systematic uncertainties. Some systematic deviations from unity,
which are statistically significant and not completely taken into account by the local scaling
procedure, are depicted in Fig. [6.21] This effect is probably an underestimated systematic
uncertainty in the combined result. Given the fact that these deviations are canceled out
when integrating the spectrum, the integral values are consistent [88]. These discrepancies
are not present in the ratio between the KLOE-2012 and KLOE-2010 measurements, see
Fig. [6.21]

Recently the SND collaboration has presented their results at VEPP-2000 on the 77~
mode [89] with increased statistics and reduced systematic errors (0.8%) compared to their
analysis at VEPP-2M. A fit of the pion form factor taking into account a vector-meson dom-
inance (VMD) ansatz for the p resonance along with w and p’ contributions was performed.

This description of their data is used to compare with existence data. The resulting com-
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parison ratios are illustrated in Fig. for BABAR, KLOE-2008 and KLOE-2012, and
VEPP-2M results from SND and CMD-2. Here, the most severe discrepancies were found
with the KLOE and BABAR data. At first instance, below 0.7 GeV both KLOE-2008 and
BABAR are higher than SND by 2—4%, while KLOE-2010 is more in agreement. Conversely,
above 0.7GeV SND agrees well with BABAR, while both KLOE measurements are below
by 2 — 3%. More experimental studies with high precision are needed to understand the
KLOE-BABAR discrepancy. These new results from SND are not included in the current
version of the WP [6].

Tensions in the K™K~ channel

Tensions among data sets are also present in the K™K~ channel (Fig. top panel). A
discrepancy up to 20% between BABAR and SND [633] was observed for masses between
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1.05 and 1.4 GeV. However, this problem has been resolved with the most recent SND
result [6], despite the fact that the origin of the previous systematic shift is not discussed.

There are also some concerns regarding data on the ¢(1020) resonance. Formerly, a 5.1%
difference between CMD-2 [62] at VEPP-2M and BABAR [63], with the CMD-2 data being
lower, was observed. SND [61] results are also low compared to BABAR, but the difference
is not significant in view of the larger SND systematic uncertainty (6.8%). New results from
CMD-3 at VEPP-2000 [90] display the opposite effect: they are 5.5% higher the BABAR
(Fig. [6.23] middle). The quoted systematic uncertainty of 2.2%, of which only 1.2% is
assigned to the detection efficiency, is greatly exceeded by the discrepancy of almost 11%
between the two CMD-2/3 data sets. The upward cross section shift is claimed to originate
from a better understanding of the detection efficiency of kaons with very low energy in
the CMD-3 data, given the fact that the ¢(1020) is very close to the K™K~ threshold. In
comparison with the CMD-2/3 data and SND data sets, the ISR method of BABAR benefits
from higher-momentum kaons with better detection efficiency thanks to the final state boost.

Since the situation is unresolved, both CMD-2/3 data sets should be kept, which, owing
to the uncertainty of the rescaling procedure, gives a deterioration of the precision (by a
factor of ~ 2) of the combined data (Fig. bottom). A better understanding of the data
from CMD-2/3 and SND is necessary to improve this situation.

6.3.3 Use of hadronic tau decay data

In 1997 precise T-spectral functions became available |11}12}18,397,|455|/527,655] which, to
the extent that flavor SU(2) in the light hadron sector is a good symmetry, allows one to

obtain the isovector part of the ete™ cross-section [249]. The idea to use the 7 spectral

had

¢ was realized by Alemany,

data to improve the evaluation of the hadronic contributions a
Davier and Hocker [656]. It is based on the fact that in the limit of isospin invariance, the
spectral function of the vector current decay 7~ — X v, is related to the ete™ — XY cross

section of the corresponding isovector final state X (the so-called conserved vector current

(CVC) relation),
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Figure 6.23: Top left: bare cross sections for ete™ — KTK~. Top right: comparison between
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dra®

oxo (s) = 5 vy x-(8), (6.15)

where s is the CM energy-squared or equivalently the invariant mass-squared of the 7
final state X, a is the fine-structure constant, and v; x- is the non-strange, isospin-one

vector spectral function given by
m2 Bx- 1 dNx s\’ 25
R — — x [[1-=) (1+2=2
vLX 6|Vul?> Be Nx ds m?2 * m2

Here, m, is the 7 mass, |Vy| the CKM matrix element, Bx- and B, are the branch-

-1
RIB(S)
Sew

(6.16)

ing ratios of 7= — X~ (y)v, (final-state photon radiation is implied for 7 branching ratios)
and of 77 — e v, (1/Nx)dNx/ds is the normalized 7 spectral function (invariant mass
spectrum) of the hadronic final state, R represents s-dependent isospin-breaking (IB) cor-
rections, and Sgw is the short-distance electroweak radiative corrections [7].

Both spectral functions and branching ratios for the tau have been precisely measured at
LEP and at the B factories under independent conditions. Despite the fact that B factories
have much larger statistics, the immense QCD backgrounds must be reduced at the cost
of small efficiencies with corresponding irreducible systematic uncertainty. The opposite
happened at LEP with Z decays into two boosted 7’s and small well-understood back-
grounds inducing small systematic uncertainties, however with moderately high statistics.
Thus, branching ratios are well measured at LEP, while the determination of normalized
spectral functions exploit the high statistics at B factories. For the dominant 27 channel
the branching ratio has been measured by ALEPH [397] in agreement the other experi-
ments [12}|18]|487,527,/657] and the most precise spectral function has been achieved by
Belle [18]. A combined spectral function from all experiments is available in Ref. [7].

Focusing on the dominant 27 channel, the IB correction term Rig(s) is given by

_ FSR(s) 53(s) |Fo<s> i

RIB(S) = GEM(S) Bi(s) F,(s) s (617)

where FSR(s) corresponds to the final-state radiative corrections [658,659], Grm(s)

denotes the long-distance radiative corrections of order a to the photon-inclusive 7= —
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771, () spectrum [7], 33(s)/B33 (s) considers the impact on the ratio of phase space fac-

tors of the 7% — 7° mass splitting and is important only close to threshold (Fig. , and
Fo(s) and F_(s) are the time-like electromagnetic and weak pion form factors, respectively.

The ratio |Fy(s)/F_(s)|?* is the most difficult to estimate reliably, because of some IB
effect that need to be taken into account. Among them, the ratio from the IB part of the
p — w interference and the impact of IB differences in the masses and widths of the charged
and neutral p mesons can be estimated from data, although with some residual dependence.
On the other hand, contributions produced by an IB difference in the charge and neutral
p isovector current decay constants and/or a purely IB p° isoscalar current decay constant,
both of which are expected to exist, would manifest themselves as small IB differences in
the broad p distributions for which there is no clear phenomenological method of estimating
their impact. A possibility is to assume that those contributions are numerically negligible,
estimate the contributions one is able to constrain phenomenologically, and then check if
the sum of the partial set of corrections, when applied to the 7 — wrr, distribution, brings
the result into agreement with ete™ — w77~ distribution results. If that was the case,
this would provide post facto evidence for the smallness of the IB contributions that are
difficult to estimate phenomenologically. A huge effort has been spent on investigating this
possibility. At present we are unable to take advantage of the 7 data, since the sum of the
partial set of IB corrections that result does not yet provide an understanding of the IB
difference between the 7 and ee™ — 77~ distributions. An alternative possibility consists
in using lattice simulations to include all sources of IB simultaneously and evaluate the IB
inclusive 7-ete” aEVP’LO difference.

Below 1 GeV, the pion form factors are governed by the p meson resonance. Important 1B
effects are then expected from the mass and width differences between the p* and p° mesons,
and p — w mixing. The difference between the corrections used in Ref. [7] and those from
Refs. [91] is mostly because of different width differences considered. The width difference
0T, (s) =T —TI'p)- used in Ref. [7] was based on [660]

_ Gpen V5
487

O (s) [B3(s)(1 +60) = B2(s) (1 +6.)] , (6.18)
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Figure 6.24: Comparison of IB corrections used by Davier et al. [7] and by F. Jegerlehner [91]. The
different plots correspond to FSR. (top left), 1/Ggy (top right), 33(s)/B2 (s) ratio term (middle
left), the effect of the p mass and width difference in the |Fy/F_| term (middle right), the effect of
the p — w interference in the |Fy/F_| term (bottom left), and the total corrections (bottom right).
The difference between the open blue points and the solid black one in the last plot come from the
p — 7 mixing corrections proposed in Ref. [91]. Reprinted from Ref. [92].
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where g, is the strong coupling of the isospin invariant prm vertex and dg — represents
the radiative corrections for photon inclusive p — 77w decays and other electromagnetic
decays, in contrast to

2
o gp7r7r

5Fp 487

(B3(s) Mo — B (s)M,-) , (6.19)

used in Ref [91]. The numerical values of Eqs. (6.18) and at M, = 775MeV
are +0.76 MeV and —1.3 MeV, respectively. Another small difference that contributes to
the IB difference originates from the mass difference 6M, = M, — M, of 1.0(9) MeV [7]
and 0.814 MeV [91]. This explains the systematic uncertainties when estimating the IB cor-
rections related to phenomenological form factor parameterizations. To avoid a circularity
problem, the p parameters need to be determined from other reactions than ete™ — w7~
and 7= — 7 v, but since, for instance, the Breit-Wigner parameters are reaction depen-
dent, this induces a systematic uncertainty that is difficult to control, one aspect of which
is the need to define a p® in the presence of electromagnetic interactions and therefore a
convention for p° — v mixing.

The impact of the IB corrections applied to af; V™" are depicted in Table [7] using
7-data in the dominant 77 channel for the energy range between the threshold and 1.8 GeV.
The short-distance correction, Sgw = 1.0235(3) [7] is dominant. The uncertainty of the FSR
and 77y electromagnetic corrections is an estimate of the structure-dependent effects (pion
form factor) in virtual corrections and of intermediate resonance contributions to real photon
emission |7]. The uncertainty of Ggu(s) is evaluated using the two models depicted in Fig.
6.24] The systematic uncertainty assigned to the p — w interference contribution accounts
for the difference in a; V"9 between two phenomenological fits, where the mass and width
of the w resonance are either left free to vary or fixed according to the world-average values.
The IB corrections were also tested using two different parameterizations of the form factor,
the total uncertainty takes into account the full difference between the Gounaris-Sakurai
(GS) [661] and the Kithn-Santamaria (KS) parameterizations |7].

An important independent cross-check is provided by the 7= — 7~ 7%y, branching frac-
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Source AaEVP’LO [rm, 7] ABEYS

Sew —12.21(5) +0.57(1)
ey —1.92(90) —0.07(17)
FSR +4.67(47) —0.19(2)
p — w interference +2.80(19) —0.01(1)
M+ — Mo effect on o —7.88 +0.19

M+ — Mo effect on T’ +4.09 —0.22

My — My +0.2015-% +0.08(8)
7y, electromagnetic decays —5.91(59) +0.34(3)
d(GS — KS) —0.67 —0.03

Total —16.07(1.85)  +0.69(22)

Table 6.2: Contributions to 100 . aEVP’LO [w7](7) and 10% - BEYG from the IB cor-
rections [6]. Corrections shown correspond to the Gounaris-Sakurai (GS) parameteri-
zation [7]. The total uncertainty includes the difference with Kiithn-Santamaria (KS)
parameterization quoted as §(GS — KS).

tion By-r0 = I'(1~ — 7 7n%,) /T, another key quantity that can be directly measured [49)].
This "7-observable”, which is a genuine charged channel quantity, can be evaluated in terms
of the I = 1 part of the ete™ — w77~ cross section after taking into account the IB cor-
rections. The effects of these to the branching fraction are also shown in Table |6.2] Using
CVC, the branching fraction of 7 decaying into a G-parity even hadronic final state X~ is
given by

2 2 2
2 P
BYYC = 3BE|Vud|/ ds s0o(s) % (1 — S) (1 + S) Sw (6.20)
Sth

o 2,2 2 2 ’
2 ma®m? m2 m2 ) Rig(s)

where sy, is the threshold of the invariant mass-squared of the final state X in ete”
annihilation. CVC comparisons of 7 branching fractions are of special interest because they
are particularly insensitive to the shape of the 7 spectral function, so avoiding biases in the
unfolding of the raw mass distributions from acceptance and resolution effects.

Regardless of the improved IB corrections, there still exists a sizable discrepancy between
the ete™ based prediction of 692.3(4.2) - 107! and the 7 based one of 703.0(4.4) - 1071 [655].
This difference amounts to 10.7(4.9) - 1071°, corresponding to a deviation of 2.20. After the

IB correction, the shape of the combined 7 spectral function is also different from the one
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Figure 6.25: Relative comparison between the combined 7 after the IB corrections and ete™ —
7t~ spectral function contributions. Reprinted from Ref. [93].

from ete™ data, see Fig. [6.25] The discrepancy reflected in the 7 branching ratios is shown
in Fig. [6.26]

A model-dependent p — v mixing, which appears only in the e*e™ data, was proposed
in Ref. [91] to explain the eTe™-7 discrepancy. This correction corresponds to the difference
between the open blue points and the solid black points in Fig. |6.24] (bottom right), showing
an uncomfortably increasing effect above the p peak. Contrary to v — Z mixing on the
7 resonance, well established theoretically and experimentally, the description of photon
mixing with strongly interacting p may be affected by some uncertainties that are difficult
to estimate. The correction [91], shown in Fig. seems to overestimate the observed
difference.

At present, our understanding of the IB corrections to 7 data is sadly not yet at the
level of precision to match the ete™ data, which does not allow their use for the HVP
dispersion integral. Since it remains a possibility, in Chapter [6 we revisit the tau-based
data-driven approach by extending previous work by Cirigliano et al. [94,379] , using ChPT

with resonances.
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Figure 6.26: The measured branching ratios for 7~ — 7~ 7%, decays compared to the predictions
from the ete™ — 777w~ spectral functions, after applying the IB corrections. The long and short
vertical error bands represent the 7 and ete™ averages, respectively. Reprinted from Ref. |7].
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Figure 6.27: Same as Fig. apart from the p — « mixing correction proposed in Ref. [91] has
been applied to the 7 data.
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Chapter 7

Isospin-breaking corrections to

0

T~ — w w v+ decays and the muon

g—2

7.1 Introduction

The anomalous magnetic moment of the (first electron, and then) muon (a, = (g, — 2)/2)
has been crucial for the development of quantum field theory and the understanding of
radiative corrections within it. Over the years, it has validated those computed in QED
at increasing precision and (in the muon case) started probing the other Standard Model
sectors, electroweak and QCD, setting also -and more interestingly- stringent constraints
on new physics contributions. In the absence of any direct hint for heavy new particles or
interactions at the LHC, clean observables both from experiment and theory -among which
a, stands out- are reinforced as a promising gate for the eagerly awaited further (indirect)
discoveries in high-energy physics.

With the forthcoming measurement of a, at FNAL [662] we will finally have an experi-

mental update on the long-standing discrepancy (at 3 to 4 sigmas) between the SM prediction
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of this observable (recently refined in [6]) []and its most accurate measurement, at BNL [95].
On the theory side, a tremendous effort driven by the Muon g-2 Theory Initiative E] has
been reducing (and making more robust) the SM errors during the last few years, in order
to profit maximally from the new data. In the near future, both the FNAL [662] and the
J-PARC [676] experiments will shrink the current experimental uncertainty (63 - 107'!) by
a factor four. A commensurate improvement on the theory error is essential in maximizing
the reach on new physics of these measurements.

The SM uncertainty on a, (43-107'") is saturated by that of the hadronic contributions,
where the error of the dominant hadronic vacuum polarization (HVP,LO) part has been
reduced to 40 - 107! versus 17 - 107! of the light-by-light piece [6]. In turn, the HVP,LO
contribution is dominated by the w7 cut (yielding ~ 73% of the overall value), where good-
quality data of the corresponding eTe™ hadronic cross-sections [20,21,52}54.(56,57},59,88,628,
629] enables its computation by dispersive methods [623],/624]. Alternatively, one can also
use isospin-rotated 7 — 7wy, measurements with that purpose, as was put forward in LEP
times [656], despite the required IB corrections cannot be computed in a model-independent
way presently. Still, while a lattice QCD computation of these is achieved, the authors find

convenient testing the consistency of both extractions of a , in light of the tensions

HVP,LOxx
n
between different sets of ete™ — 777~ data that has not been resolved so far [6].

In addition to the previous data-based determinations of af VPLO attice QCD is also
achieving computations with reduced errors, although not yet competitive with the ete™
evaluations [6]. One notable exception to this being the recent very accurate result (5310711
error) of the BMW Coll. [43], according to which the difference with respect to the SM
prediction is at the one sigma level.

Concerning the tau based determination, Refs. [94]379] computed the required isospin

violating and electromagnetic corrections using Resonance Chiral Theory (RxT') [224,225]

and Refs. [677,/678] using Vector Meson Dominance (VMD). These series of articles were

L'The SM prediction [6] is based on [3233]35 4146/ [49]81|237/576//582]583585,586/597]/608 |6 19,6211/622]
(see also the last developments in Refs. [43}[5841(596L|/603H605.|607./620L/663H675]).
2Its website is https://muon-gm2-theory.illinois.edu/.
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employed by Ref. [7] (updated in Refs. [406,/655]) which, remarkably, found that the dis-
crepancy of the SM prediction with the measurement is reduced substantially when tau data
is employed E| Notwithstanding, as precise measurements of o(ee~ — hadrons) became
available in the last fifteen years, the e*e™ based evaluation gained preference over using tau
data. Indeed, Ref. [6] concludes that ‘at the required precision to match the ete™ data, the
present understanding of the IB (isospin breaking) corrections to 7 data is unfortunately not
yet at a level allowing their use for the HVP dispersion integrals’, despite Ref. [91] claiming
that (the model-dependent) p — v mixing in the neutral channel makes it agree with the
results in the charged current. It is the purpose of this work E| to extend previous RxT
analyses [94,379] of the required IB corrections to di-pion tau decays so that they can again
be useful, when combined with o(ete™ — 77w~ (7)), to increase the accuracy of the SM
prediction of afvp 'LO " In this spirit, we note that F. Jegerlehener [681] indeed combines
both sets of data (using the IB corrections of Ref. [91]), which reduces the error of a
by ~ 17% [681].

HVP,LO
o

Within the global effort of the Muon g-2 theory initiative, we revisit in this work the
RXT computations including operators that -in the chiral limit- start to contribute at O(p").
This is possible by the knowledge acquired after the analyses of Cirigliano et al. [94,1379]
(where operators contributing at O(p*) were considered), through a series of works studying
operator product expansion (OPE) restrictions on RxT' couplings on several relevant 3—point
Green functions (and related form factors) [385-387,453,459.,|461}|465]471],472,517, 548,618,
682-692] EHﬂ This procedure will also allow us to evaluate an uncertainty for the results by
Cirigliano et al. [94], which is one of the main outcomes of this work, together with the new

results, including operators that start contributing to the O(p®) chiral low-energy constants

3The difference between the SM prediction of a,, and the BNL measurement is 3.7¢ [6]. If isospin-rotated
tau data is employed for aff VPLO it amounts to 2.40 [655], instead. This difference could in principle be due
to new physics effects, hinting at a lepton universality violation in the corresponding non-standard vector
and/or tensor couplings at low-energies [512,[519/679]. See the most updated discussions of its connection
with agrp in the electroweak fit in Refs. [589({592].

4Currently, a lattice evaluation of IB for using tau data in af VALO

5See also e.g. Refs. [693-699).

6Similar radiative corrections were computed for the 7 — nrv,~ decays in RxT' |700|, even though part
of our contributions here were suppressed (and thus neglected) there because of G-parity.

== is in progress |680].
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(LECs).

The chapter is organized as follows. In section we review the main features of the
7= — 7 7’y decays and split the model-independent part from the hadron form factors,
computed in Rx7 including new terms, subleading in the chiral expansion. We then recall the
short-distance (SD) QCD constraints on the Lagrangian couplings, their phenomenological
determinations and explain our estimation of the remaining free couplings, based on chiral

counting. After that, in section we recap the radiative corrections needed for the tau-

HVP,LO

" and predict several observables for the processes where the real

based calculation of a

HVP,LO|xx

photon is detected together with the pion pair. Then, in section ﬂ we evaluate a;

using tau data, which is the main result of this investigation. Finally, our conclusions are
presented in section [7.5] Several appendices complement the main material, explaining how
the coefficients dominating uncertainties were fitted, giving a full account of the kinematics,
and providing with the complete expressions for the structure-dependent (axial-)vector form

factors of the 7= — 7~ 7%, decays.

7.2 1 — 7wy, decays

7.2.1 Amplitude

For the radiative decay 7= (P) — 7 (p_) 7 (po) v» (¢) v (k), we can split the contribution
due to the bremsstrahlung off the initial tau lepton from the one coming from the hadronic
part.

We write down the general structure for these processes [944|701]

T = e GrVye' (k) {Fa(q) v (1= ) (m. + P — ) 3,u(P)
+(Viw — Aw)u(q)y” (1 =) u(P)},

(7.1)

where F, = (po — p—), f+ (s) /2P - k, with the charged pion vector form factor f (s) defined
through <7r07r_|ny“u|O> = V2f:(s)(p— — po)* and s = (p_ + po)?. Gauge invariance (e, —
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€, + k,) implies the Ward identities

k VI = (p— —po)” f+(s), kA" =0. (7.2)

Imposing Eq. (7.2) and Lorentz invariance, we have the following expression for the vector

structure-dependent tensor

v = g (- g PRSI g g
AR
' +[(p0 prwf B0t (o =) (73)

+v1 (¢" p— -k — p k) + v (9" po - k — pHk")
+ s (po - kpt —p— - kpy) pL +va(po-kpt —p- - kpp) (po+p- + k)",
and for the axial one
AP = day €"P7 (py — p_)p k, + ias WY ety P—p Poo (7.4)
+iaz "k, W, +iay (po + k)" € kxp_, Doo, .
where W = P — g = p_ 4+ po + k. We could use the basis given in Ref. [700] but instead
we prefer a modified one that resembles the decomposition in Ref. [94] (see also Ref. [701]).
These tensor structures depend on four vector (v;) and four axial-vector (a;) form factors.
For the axial structure, the Schouten’s identity has been used.
Taking into account that (P —q)> = s + 2(py +p_) - k, the Low’s theorem [702] is

manifestly satisfied

V= )L o ) (2 - )
i) (k. N (75)
t2= = (= | (- = po)” + O ()
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7.2.2 Theoretical framework

We will present in the following the model-dependent contributions to the V,, and A,
tensors. We will closely follow Ref. [94] [Z], extending it to include subleading terms in the
chiral expansion. In this reference, a large-N¢ [388H390] inspired computation was carried
out. Specifically, it was restricted to the dominant (for No — o0) tree level diagrams,
although the relevant loop corrections for the 7= — 7~ 70,y decays —giving the p (and ay,
for completeness) off-shell width ﬂ were taken into account Ff] Also, given the limited phase
space of tau decays and the fact that the region £ S M, +I', is the most important one
for the IB corrections needed for a)/V*"O== [94], the contribution of the p(1450) and other
heavier resonances was neglected in this reference (despite the fact that, in the large-N¢o
limit, there is an infinite tower of resonances per channel), as we will also do H Within this
setting, our computation will include all RxT operators contributing to the O(p®) chiral low-
energy constants. Our results agree with those in Ref. [94], providing the new contributions
with resonance operators that are suppressed by one chiral order in the low-energy limit
(where possible, our computations have been checked against the results in Ref. [700]).

As explained in Ref. [94], this procedure warrants the correct low-energy limit (as given
by Chiral Perturbation Theory [169,/193],[194,215,531]) and includes consistently the most
general pion and photon interactions with the lightest resonances. Demanding the known
QCD SD constraints results in relations among the Lagrangian couplings, and chiral counting
can be employed to estimate those still unconstrained after using phenomenological infor-
mation. It should then provide an accurate description of the 7= — 7~ 7%, decays for

s < 1GeV?, which gives ~ 99.8% of the whole aVF£Cl= contribution.

"Using this approach a first prediction of the 7= — 7~ 7%+ ¢~ v, decays (¢ = e, 1) was given in Ref. [703].

8We will introduce them following Ref. [383] for the p(770) and Refs. [453/467| for the a; (1260) resonances.

9See Refs. [218]/382,/704-708] for next-to-leading order (NLO) computations in 1/N¢, allowing to include
the scale dependence of the Chiral Perturbation Theory LECs in the low-energy limit of RxT.

ONevertheless, we will include the dominant effect of the p(1450) and p(1700) resonances in our dispersive
pion form factor [19,28] and check the negligible impact of heavier resonances in the v; and a; form factors
in our analysis.
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7.2.3 Vector Form Factors

Within RxT [224,225,385//684], the diagrams contributing to the vector form factors of the
7= — 7 79y, decays including operators that start contributing to the O(p%) LECs are
shown in Figs. , and E The first three diagrams in fig. and the first diagram
in fig. contribute to the pion vector form factor entering the structure-independent (SI)

piece [

GVFV S \/_Fvs
F?2 m2 —s FQ(m2—s

P
2\/_Gvs

fo(s)=1+ ) 2 (20 4+ A +2Mg) m2 — s\, |

oo (7 "
+ FQ(:L‘E_S) [0 m2 — sAL] [2 (208 + 2 + 221 ) m2 — s\, | -

The contribution of both the last diagram in fig. and the last diagram in fig. vanishes
for a real photon, as the corresponding (f;(0) = 1 part) contribution is already in the SI
piece. We note we are using F' ~ 92 MeV for the pion decay constant and that QCD OPE
constraints Ay, = Ay, = 0 [385]. In fact, we will see in sec. that all modifications
induced by the A" couplings to f(s) (7.6 vanish once SD QCD constraints are accounted

for.

For the vector form factors, we get

vp = 0 + off + oft 4 fRR | BRE (7.7a)
vy = v9 + i + R 4 fRR Ly BERR (7.7b)
v = 0§ + v + vfF 4 fRR o BERR (7.7¢)
vy = 0] + vl 4 oRE 4 RRE 4 vgﬂRR, (7.7d)

"The contributions involving scalar and pseudoscalar resonances are discussed at the end of section
?Relevant RxT couplings are introduced after Eq. (7.7) and in sec. below.
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Figure 7.1: One-resonance exchange contributions from the RxT to the vector form factors
of the 7= — 7~ 7%yv, decays.
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Figure 7.2: Two-resonance exchange contributions from the Rx7 to the vector form factors
of the 77 — 7~ 7%y, decays.

Figure 7.3: Three-resonance exchange contributions from the Rx7T" to the vector form factors
of the 77 — 7~ 7%, decays.
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where v? is the contribution in Ref. [94] (Dy' stands for the inverse resonance propagator)

W9 = ?ZZE (2+2M2D;" [(P = )] + 5D, (s) + sM2D, " (s) D, [(P = q)°])
z;& (-1 -0, [(P—a)"] + (P~ a)* D, [(P—a)?])
=Gy (0= M0, ) D, (P —a))
sy (41080, (P =] = (P =025 [(P— 07
FQF 15431 (M2 =m2 —k-p_) D [(0- + k)],
v = Ffzégl Da! |- +07]
V) = —QFEZGVD;I (s) D;l [(P - Q)Q} + FSJ‘ZPZ D;1 {(P - ‘1)2} )

and vft, vFR REE and o8FER Y correspond to contributions including operators which do

not contribute to the NLO chiral LECs. Due to their length, the expressions for these form
factors are in App. . In writing the new contributions to v;, the basis given in Ref. [385]

has been used for the even-intrinsic parity operators (with couplings A;*) and the basis given

X
7

in Ref. [684] has been employed for the odd-intrinsic parity operators (k;* couplings). Both
sets of AX and kX couplings have dimensions of inverse energy.

Including operators with at most one resonance, only the contribution from the exchange
of p and a; resonances on the vector form factor appeared [94]. Allowing for multi-resonance
operators we also have contributions with w exchange, coming from the odd-intrinsic parity
sector, for both vector and axial-vector form factors (as well as resonance contributions on the
axial form factor, absent in Ref. [94]). Apparently, such w contributions were responsible for

the larger effect of the IB corrections obtained in Refs. [677/678] with respect to Refs. [94379].

13We recall that F gives the coupling of the R = V, A resonance to the r = v, a external current and the
prm vertex receives contributions both from Fy and Gy .

4Tn general, diagrams are gauge-invariant by themselves. Those giving the contribution vglt-RR need to
be summed to achieve gauge invariance. These are the first three diagrams in fig. [7.I] and the first diagram

in fig. [7.2]
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As aresult, Ref. |7] (and later evaluations by this group) ascribed an error to these corrections
covering both contradictory evaluations. As we include (among others) contributions with
an w — p — 7 vertex in this work, closer agreement with the VMD evaluation should, in
principle, be expected.

We have verified that all diagrams including scalar mesons vanish in the isospin symmetry
limit. We point out that all contributions involving pseudoscalar mesons can be obtained
from those with an axial-vector resonance by replacing it by a pseudoscalar resonance. Then,
at leading chiral order, the saturation of the LECs by spin-one mesons [224] shows that
diagrams including pseudoscalar resonances are suppressed. If we assume that this feature
also holds at the next chiral order, then pseudoscalar resonance exchanges could be safely

neglected [7]

7.2.4 Axial-Vector Form Factors

The axial form factors at chiral O (p*) get contibutions from the Wess-Zumino-Witten func-
tional [212,213]:

1 -1
a? , ad = ) 7.8
LT 8m2F? 27 Ar2 R [(P —q) - mﬂ 78)

The diagrams that receive contributions due to the anomaly are shown in fig. H

LT , m
ENNNNNN- ’Y R--------- AONNANNN- ’Y
\\\ ﬂ'_ \\

Figure 7.4: Anomalous diagrams contributing to the axial tensor amplitude A* at O (p%).

15Since contributions from scalar and pseudoscalar resonances are suppressed, we will neglect them for the
axial form factors in the next section.
16The first diagram, when coupled to a vector current, contributes to the SI piece in V*¥.
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Figure 7.5: One-resonance exchange contributions from the Rx7 to the axial-vector form
factors of the 7= — 7~ 7%y, decays.

Figure 7.6: Two-resonance exchange contributions from the RxT to the axial-vector form
factors of the 7= — 7~ 7%y, decays.

Figure 7.7: Three-resonance exchange contributions from the RxT to the axial-vector form
factors of the 7= — 7~ 7%yv, decays.

201



For the axial form factors, we get

RRR

ap = al + alt + aftf 4 oIPRE (7.9a)
ag = a3 + alf + aftf 4 ofIRE (7.9b)
az = af + aff + afFE (7.9¢)
as = all + aftf 4 ofRR, (7.9d)

R ol and af'*® include O (p°) vertices. Due to their length, the expressions for

AR E)

where a

these form factors appear in App.

7.2.5 SD constraints

Including operators which start contributing to the O (p®) LECs, we have now so many
parameters (see Table allowed by the discrete symmetries of QCD and chiral symmetry
that, in practice, prevent making phenomenological predictions. It is possible to find relations
between these couplings by means of SD properties of QCD and its OPE. We summarize
these results in this section.

For the parameters contributing to 2-point Green Functions (and related form factors),

the constraints [224-226,412,1413,|709}/710]:

FyGy =F*  F:-F3=F?
FZME = FAM3,  dcqem = F2, (7.10)
$(ck—dh) =F  cp=ca=V2p=F/2
are set, respectively, by the known asymptotic behaviour of: the pion vector form factor, the
V — A correlator (yielding the Weinberg sum rules), the scalar form factor and the S — P
correlator.
We note that the vanishing of the axial pion form factor (giving the m-to-y matrix element)

at infinite momentum transfer demands -if only the original RxT Lagrangian [225] is used-
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2FyGy = FZ. This, together with the two first Eqs. in (7.10)), determine

F

FV:\/§F7 GV:ﬁa

F,=F, (7.11)

all in terms of the pion decay constant. These relations were employed in Ref. [94]. We
emphasize that -once operators contributing to the NLO chiral LECs are considered [385),
684]-, the relations no longer hold true (see Ref. [687]). Seen from another perspective,
consistent sets of SD relations on n-point Green functions vary with n. For n = 2 one has
the set [224]. We shall also consider the set obtained for n = 3 [385,/684,687] (where
operators with more than one resonance field start to appear) in the following. We will
come back to discussing the actual values of the Fy,, Gy and F4 couplings before closing this
section, as they are essential to assess the error associated to the IB corrections computed
in Ref. [94].

Now, we consider RxT operators which do not contribute to the NLO chiral LECs. For
the even intrinsic parity sector [385}548] E:

Mz =0, A7 =Xg=0,

(7.12)
ME=0, A =\ =) =0,

using these SD constraints in Eq. (7.6) and the Brodsky-Lepage behaviour [515516] of

f+(s), we get:
2\ + Ay +2A], =0, (7.13)

The study of the (VAP) and (SPP) Green functions yield the following restrictions on the

R

7 7

I"The corresponding coefficients are denoted A\, with the upper index showing the resonance fields in-

volved.
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resonance couplings [385-387] (the Weinberg sum rules in Eq. (7.10]) were used below):

\/§A :_4AVA_AVA_AXA_)\VA: 1 (A,‘i‘)\//)
Ay 4 F
VaN = A YA AL A
2 2,/F% — F?
7.14
2 TN
MYV = -V = P A4 = i :
4v/2dm Fy 16v/2d,,\/F2 — F2
For the odd-intrinsic parity sector [684] [}
N N N
1% c 1% 1% ¢ 1% ¢
iy = ——————, 2k{pth{ig=————"—, K{r=——-—"—), =0,
U osevenEy TR T vl YT eaveriRy (715)
2 32F2 512m2F2° 7 T 8FY
The analysis of the (VAS) Green’s function yields [684]:
F2
Hg = K‘,1144 = 0, HX = 2/{}/5, I{é/A = 732FAFV’
o (7.16)
Fy (265Y + 15Y) = 2Fanit = ———— |
|4 ( 1 2 ) ARy 16\/§cm
and through the study of the (VV' A) Green’s function in Ref. [618]:
NeM?
Fyr¥d = — v 7.17
v 6472 F s (7-17)

A comparison between two basis for the odd-intrinsic operators [682}/684] was given in Ref.

R

1

18The corresponding coefficients are denoted &
volved.

with the upper index showing the resonance fields in-
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[687], which is consistent with those in Eq. (7.15)) [

My, (2%}/2 + 4Ky, + kY — /<;Y7) = degz + ¢ =0,
My (2/-@}/2 + KkYg — 2/{}/7) = c1 — ¢ +cs =0,

~Myri; = €~ ¢ - 64]\\[/%%2‘1/%’

My i = “ ’ (7.18)
eV = ditsdy = - 2 '

Ky = ds :_614\1[7?2%%2/?

14 S22 dani g
FZ =312,

For the even- and odd-intrinsic parity sectors, there are 115 (EIP)+67 (OIP)=182 operators
saturating the O (p%) LECs but only a few of them contribute to a given process. The form
factors of the 7= — 7~ 7%y, decays at O (p°) are given by 32 (EIP)+23(OIP)=55 operators
(Table [7.1). Taking into account the relations in Eqgs. (7.12)-(7.18) we get 24 (EIP)+17
(OIP)=41 undetermined couplings.

In order to estimate the unknown parameters, we basically followed (but for the results

Even-intrinsic parity (EIP) [385]
OV |6,7,8,9,10,12,13,14,15,16,17,18,19,20,21,22
OA 4,12,13,15,16,17
ovv 2,3,4,5,7
ovA 1,2,3,4,5
Odd-intrinsic parity (OIP) [684]
OY s 1,2,3,6,7,8,9,10,11,12,14,16,17
Of s 5,6,7
oVY s 2,3,4
oV s 2,345

Table 7.1: Operators contributing at O (p°) to the vector and axial-vector form factors.

in appendix the strategy devised in Ref. [700]. We will restore to the available phe-
nomenological information on these couplings and estimate -based on chiral counting- those

for which we lack it.
19We note, particularly, the last of these Egs., which is at odds with |D
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Eq. (7.14)) leaves two A\Y'4 couplings undetermined, the numerical values of the restricted

combinations (see their definitions in terms of the A\Y'4 in [387]) are:
N~ 0.4, AN~ —0.14, Xg~0.07. (7.19)

Since the same linear combination of A} 4 and AY4 is in all couplings in Eq. (7.19)), we choose

A4 as independent. By similar reasons we take A4 as the other independent coupling.

Based on Eq. ([7.19]), we conservatively estimate ‘A;/A‘ ~ ’)\XA‘ < 04.

According to Ref. [385] the A couplings can be estimated from low energy couplings C/*

of the O (p°) xPT Lagrangian as m

3ME
A~ TFVQR ~ 0.025 GeV 1,
(7.20)

M4
NV~ S s Gl v 0,

_1
F2(47)*

to the typical size of the O (p*) LECs. This sets a reasonable upper bound on [AY| ~ [A4] <
0.025GeV ™" and |AYV| ~ [AV4] < 0.1.

For the anomalous sector, we have the following predictions from the Eq. : —MykY; =
cs —cg ~ 0.016, 853"V = dy +8dy ~ —0.070 and kY'Y = d3 ~ —0.112. There is a sign ambigu-

where we take the relation |Cf| ~ linked to |Lf| ~ ﬁ ~ 5-1072 which corresponds

ity on the determination of c3 from 7= — nr~ 7%, decays [461]. We will take c3 = 0.0070 075

according to the determinations by Y. H. Chen et al. in Refs. [685]/688,711] (which is also
in agreement with the most elaborated ete™ — (n/7%)m 7~ fit [465]). Although c; was first
evaluated by studying o(ete™ — K K) in Ref. [453], this yielded an inconsistent result for
7~ — K~ vv, branching ratio [471], so we will use ¢4 = —0.0024 £ 0.0006 [688] as the most
reliable estimation. In view of all these results, we will take |¢;| < 0.015 as a reasonable
estimate, which is translated to x| < 0.025GeV ™. Since there is not enough information

on &k, we will take |k ~ |x}| < 0.025GeV™'. We will see in the following sections that

7 7

HVP,LO|rx

the observables that we consider and the IB corrections for a,

depend mostly on the
v

r;{ couplings (besides Fy, Gy and F,) for this reason we perform a global fit to better bind

20Couplings of operators with two resonance fields are dimensionless [385}|684].
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these couplings (see App. [G]) P

We turn now to the remaining couplings. We will employ d, = 0.08+0.08, which has been
determined simultaneously with ¢z [465,685,688,711]. For dy we will assume |dy| < 0.15, or
in terms of kY, we get |k)V] < 0.1. Again we will adopt |k)4| ~ |)V] < 0.1, which agrees
with the prediction k¥4 ~ —0.14 in Eq. (7.17).

Using only operators contributing to the O (p*) LECs we have the consistent set for
2-point Green functions . However, including operators which start contributing at
O (p®), we shall use the relations for 2 and 3-point Green functions (Eq. and Egs.
to ) In particular, Fy, = /3F, which implies (via ) Gv = F/v/3 and
Fy = v/2F. Therefore, we will also be showing the Cirigliano et al. results [94] with the
latter set of constraints (inconsistent for 2-point Green functions) so that the impact of the
change of Fy, F4 and Gy between these two cases is appreciated.

We will refer to the original [94] constraints as ‘Fy = 2F" and by ‘Fyy = /3F"
to their consistent set of values (Fyy = /3F, Gy = F//3, F4 = v/2F) up to 3-point Green
functions. In this last way, we stress that the consistent set of SD constraints in both parity
sectors [385,387,/684,687] determines the Fy, = v/3F relations (among many others, reviewed

in this section).

7.3 Radiative corrections for hadronic vacuum polar-
ization
The four-body differential decay width is given by [94] |

o)t ——s d3p_ d3 d3 d3k
dF:7< )|M|254(P—p_—p0—k:—q) f fo 3q —
2m, (2m)"2E_ (2m)" 2E, (2m)° 2E, (27)° 2E,

(7.21)

21 The results obtained assuming |x) | < 0.025GeV ™! can be found in https://arxiv.org/abs/2007.11019v1.
While both results agree remarkably, the errors are reduced in the current procedure.

22 Although the analytical results in this section were presented in the quoted reference, we include them
here given their importance in the evaluation of the relevant IB corrections, and take advantage to add a
few explanations to previous discussions of this subject [94,/678].
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dp_dpy __

35 2B = InZ ds dudzr and integrating over the three-momentum of the

using the relation

photon and neutrino @, we get

3 31,
s 1 [ Bq Pk

MPPSH(P—p_ —py— k — q)| dsdudx, 7.22
e | 3 sE M (P qﬂsw (7.22)

working at leading order in the Low expansion and in the isospin limit m, = my, we have

e O P-n _ Fu 0
M—ee“(k)/\/lm<p_k P_k>+(9(k), (7.23)
where M) = GpVi/Sew f+ () (p— —po), u(q) 7 (1 —v5) u (P) is the amplitude at lead-
ing order for the non-radiative decay that includes the SD electroweak radiative corrections
(Spw). At O (k™1), the amplitude for the radiative decay is proportional to the amplitude

of the non-radiative decay according to the Low’s theorem [702].

The unpolarized spin-averaged squared amplitude is given by

* v p—# PH
|M|? :47704\/\/(7(22\226 H(k)e” (k) ( — )
> p—-k+5M2  P-k—iM?
b (7.24)
P—v v 1
- i
X<p-k+;M3 P.k—;m)“?( )

using the relation 3, € (k) ¢ (k) = —g"” and massive photons (k*k, = M?). The sum over
photon polarizations should include the longitudinal part, since our photon has mass and
the amplitude is no longer gauge invariant. We do not take into account this contribution

because it will vanish in the limit M, — 0.

Thus, Eq. (7.24) becomes

2
™

(- k4 502) (P k= §02)  (p_ kot 40s2)°

e 2P - p_
M2 =4ma| M2 D =

2 (7.25)
ms _
_(p.k_lM2)2 +(9(k 1)7
277y

23The kinematics for these decays are in App.
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where

M2 = 4G Vil S | £+ (5)]7 (D (5,u) + O (k) , (7.26)

with D(s,u) = m2 (m2 — s)+2m2 —2u(m? — s+2m2)+2u®. Eq. (7.25) does not contribute
at O (k™1), these terms are canceled out by those in Eq. (7.26)) according to the Burnett-Kroll
theorem [712].

Replacing Eqgs. (7.25)) and ((7.26) in Eq. (7.22)), we get

ar

aG%|Vaal*Sew 2 9
= ‘f (S>| D(S,U) 2Pp—] (SauwI) _mﬂ‘I (S,u,.I)
42n)tme ( ! " (7.27)

—m? Ing (8,1, x)) dsdudx + O (k0> ,
the Ly, (s, u,x) is defined as

Lo (s.,2) = - dq &’k (P —p-—py—k—q (7.28)
mn 2 Y, 2 2EI,2E7 (Pk_%Mg)m(p—k‘i‘%Mg)n’ .

performing an integration over x, we can split the decay width according to the integration

region
d’T d’T d’T
= K° 2
dsdu  dsdu|p; * dsdu|pnrv i o ( ) 7 (7.29)
where
d*T QG| Veua*Sew 2
pr— D
ds du| g 4(2m)tm3 7+ 6D () (7.30)
(Jll (37 Uu, Mw) + J02 (Sa u, M'\/) + J2O (37 u, M’Y)) )
and
4’7 aG% |Vl Sew 2
= s)° D (s,u) X
ds du S 4(27r)4m?; ‘er( )’ ( ) (731)

(KH (S,U) + KQQ (S, U) + KQ() (8, u)) s
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with

x4 (s,u)
I (S, u, My) = cmn/ T dw L (s, u, ), (7.32)
M3
24 (s,0)
Ko (s,u) = cmn/ o) dx Ly (s,u, ), (7.33)

and
2P-p- m=n=1,

m=2n=0, (7.34)

- m=0,n=2.

Cmn = —m

ISR

—m

Eq. (7.28)) is an invariant, so we can evaluate it in any reference frame in order to simplify

the integration, working in the v — v, center of mass, we have

1 — M?
Loun (5,1) = = / L sdcost, do-_. (7.35)
22m) ) w(Pk—3M2)" (po -k + 3M2)

Integrating this equation over x in Dy rr; and Dyyy, as in Refs. [94,[713] we get (Lig(z) =

— Jy % log(1 — at))

Ji1(s,u) = log (W) %log (ig)
v

(7.36)
1, ‘
+3 (Lia(1/Y2) = Lia(Yy) + log*(=1/Y2) /4 — log*(—1/Y1) /4) ,
M., (m?2 — s)
=1 A S )
Jao (s, u) = log ( R ) , (7.37)
M., (m2 +m2, — s —u)
=1 2l T i )
Joz (s,u) = log < =2 (5.1 , (7.38)
Koo (5,14) = Ko (s,u) = log [ 259 (7.39)
20 (S, U) = fo2ls,u) = 10g zi(s,u)) :
where the expressions in Eq. ((7.36)) are given by
1—2a4/(1—2a)%— (1 — 2
Yip = - \/( o~ -8 >, (7.40)

1483
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with

(m2 = s)(m? +m2 —s —w) Al,m?_,m?)

= (m2_ +m2 —u) 20 ’

_ AMu,m2_,m2)

p=- mi_+m2—u’

P md)

= NG )

§ = —miomZ +m2_(m? — s)(m20 — u) — su(—m? + s+ u)

+mZo(—m2 + su + m2s + miu).

Experimentally, it is impossible to measure the full photon spectrum because of acceptances,
efficiencies and cuts. For this reason, we need to calculate the inclusive decay width, since
we can not distinguish the radiative decay from the non-radiative decay for low-energy (or
collinear) photons.

For the non-radiative decay, we have

¢’ GH|Vial*Sew
dsdu — 64m3m3

()2 (14 felm (u, M) D (s,), (7.42)

elm

that includes isospin violation and photonic corrections according to Ref. [379], where f,7" (u, M)

is given by

i (M) == (= m2)A(w) + (= m2 — m2)B(u)
mﬂm7> (7.43)
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with

1 1 2—vy, x
A(u)=u< 50% = 1—3:210“7)’
Blu) = 2 (11 Y T

u)=—|=logr, + 0gz, |,
u\2® ,/TT 1—2a2 &
1

Ty 1 T 1.
C(u,MV):m . —§log x7+210gx710g(1—x)—6+§10g Tr

T

M2
+Lig (mi) + Liy (1 — = > + Lis (1 — x.4/r;) — log z, log - T;’L ) ,

in terms of the variables

<
3
I
:‘Sw ‘ ﬂsw
[\]
8
\]
|
—
N
<
B
<
\]
B~
=
\]
N~

yT:1+rT_7

Thus, the inclusive decay width is

d2T G2 | Vo2 Spw ,
e — D 3 A 3 y 7‘45
dsdul ., 64m3m3 |f+(s)]" D (s,u) A (s,u) (7.45)
where
A(s,u) =1+ 2fom (u, My) + Graa (s,u, M) . (7.46)

In the previous expression we neglected the quadratic term for ff(fg; (u, M), and

Grad (87 u, M’y) = Gbrems (87 u, M’y) + Grest (57 U) 5 (747)
with
«
Gorems (8, u, M) = - (Jia(s,u, M) + Joo(s, u, M) + Joo(s, u, M), (7.48a)
«
Grest (S,u) = P (K1 (s, u) + Koo(s, u) + Koa(s,u)) . (7.48b)
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Integrating Eq. ((7.45) over u, and using

we have

d£ _G%|VUd|2m§'SEW ‘f (S)F 1 o i 2 1 . 4m3r 3/2 y
ds| .., 384n° * m2 :
o (7.49)
2s
<1 + ) Geu(s),
mT
for this we follow the same notation as in Ref. [94],
D A d
GEM(S) _ fRIV (S, U) (8, u) u' (7‘50)

U—

fw((:)) D (s,u) du

We can split the electromagnetic correction factor (Ggp(s)) in two parts, Gg&(s) and

G5L(s), the first one corresponds to taking gre: (s, w) — 0 and the second one is the remain-

der of Ggu(s),

St D (s,u) (14 28 (u, My) + Gorems (5,1, M) du

Gin(s) = : 7.51a
£ (9) f;j‘-‘r((s)) D (s, u) du ( )
D rest d
Eir(s) :fRIWmmE)S )97 o) (7.51b)
[l D (s,u) du

In Eq. " the term 2fl%l:;5( . M,) + Gorems(s, u, M,) is finite when M, — 0,

QfZi}:;(u M ) + gbrems(s u, M ) 40; ((U — mfr)A(u) + (u — 'rn72r — m?_)B(u)
+2(m? +m2 = u)C (u)) (7.52)

+ % (J11(s,w) + Jao(s,u) + Joa(s, u)) -
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In this limit, we have

C(u) = mewl—imi (—2 log® x, + 2log x log (1 — a:T) % + 3 log”r, .
FLia (a2) + Li (1= —Z | 4 Lia (1 = 2,7
T \/E 9
1 Aq? 2\ 1 1+ 5
I(s.u) = Slog (MSUW> L og ( +5>
° Mt ) 0 1-5 (7.54)
1 . .
+ 3 (le(l/yﬁ — Lig(Y1) + log*(—1/Y3) /4 — 10g2(—1/Y1)/4) :
m2—s
=] T )
Joo(s,u) = log <x+(s,u)> , (7.55)
m24+m2—s—u
—1 T T '
Joz(s,u) = log ( ) > , (7.56)

where x4 (s,u) is defined in Eq. (H.19).

The leading Low approximation for G%]])V[ (s) is plotted in fig. . This function has two

2
T

poles, one at s = 4m? and the other at s = m

We will use the same conventions as Ref. [94], so we denote as ‘complete Bremsstrahlung’
the amplitude where the structure-dependent (‘SD’) part vanishes, i.e. v3 = v = v3 = vy =
a; = ay = az = a4 = 0. For convenience, we will refer in the following simply as O (p*) and
O (p°) to the contributions from RxT including operators that contribute up to O (p*) and
up to O (p°) chiral LECs, respectively ]

In Ggum(s), the difference between using the Fy = V2F or Fy = \/3F constraints at
O (p*) is only appreciated for s < 0.35 GeV?, with the latter set producing the largest
deviation with respect to the SI result (fig. . It is important to note that -as put forward
in Ref. [94]- with I}, = +/2F constraints (those consistent for 2-point Green functions) the
impact of the ‘SD’ corrections on Gpp(s) is negligible and the evaluation with SI gives

already an excellent approximation. On the contrary, we find that using the Fy, = v/3F set

this is no longer true, which will increase the Ggj(s) correction in afj VPLOlr ysing 7 data

24The different SD constraints applying in each case were discussed at length in section
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(even before adding the O(p®) contributions).

In fig. several contributions to the Gy (s) function are shown: the G(EQL part by
a dashed blue line and the complete Bremsstrahlung (SI) contribution with a solid black
line. The full amplitude including all RxT operators which contribute at O (p*) (O (p%))
are represented by black dashed/dotted (red dashed-dotted) lines in fig. [7.8, For the O (p?)
contribution we distinguish between using Fyy = v/2F (Fy, = v/3F), represented by dashed
(dotted) lines. Compared to previous results [94,379,/677,(678], we note the appearance of a
bump near the end of the phase space on Gy (s) due to the inclusion of the p(1450) and
the p(1700) resonances in the dispersive representation of the vector form factor [19,28]. The
blue band in fig. shows the uncertainty of the O(p°) contribution, evaluated according to
that on the couplings which were determined phenomenologically or estimated from chiral
counting in section m (see also appendix El While the central values of the O (p%)
corrections change mildly the results obtained at O (p*) m, their huge uncertainty band
suggests that our estimate of the RxT couplings which start contributing at O (p°) was
very conservative (one naively expects a ~ 1/N¢ uncertainty for a large-No expansion E[)
Lacking a better way for this estimation, we consider this uncertainty band as a conservative
upper limit on the corresponding uncertainties. Therefore, our error bands at O (p®) should
be regarded accordingly in the following. On the contrary, the small modification induced
by those O (p®) couplings fixed by SD constraints (with all remaining ones vanishing) with
respect to the O (p?) [94] results, suggests that the difference between those is a realistic
estimate of the missing subdominant terms in Ref. [94] @ and will be given as such in the

remainder of the chapter.

25These were varied assuming Gaussian errors, and the band was generated so as to cover all data points
obtained in 100 spectrum simulations. Results were stable upon increasing statistics. The corresponding
blue bands were obtained similarly in Figs. [7.12]to[7.

26This is reasonable, since ST is basically unchanged by the O (p4) contributions.

2TThis rough estimate of the parametric uncertainty is supported by the computation of yPT LECs
including such corrections (see e. g. Refs. [218}[705,(707]). We note that in this work resonance widths
(dominant next-to-leading order effect in the large-N¢ expansion for the considered decays) are included.
Also the uncertainty corresponding to including excited resonances (an infinite number of them appears for
N¢ — o0) was checked to be negligible.

28These were not estimated in Ref. [94] as SI was already an excellent approximation to the result up to
O (p*) (using the Fyy = v/2F set).
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Figure 7.8: Correction function Gy, (s) in Eq. (7.51a) (blue dashed line). The solid line
shows the Gga(s) function neglecting the structure-dependent part (SI), i.e. by taking
V] = Uy = VU3 = Vg = a; = ay = az = ay = 0, the dashed and dotted lines are the O (p*)
G'gar(s) function (with either Fy, = /2F or Fyy = v/3F constraints). The blue shaded region
is the full O (p°®) contribution, including (overestimated) uncertainties. The left-hand side
plot corresponds to the dispersive parametrization [19] while the right-hand side corresponds
to the Guerrero-Pich parametrization |15] of the form factor (the latter was used in Ref. [94]).

7.3.1 Radiative decay

The differential decay width [713] is given by

o A2 s )
2 (47)° m2s

\M|?dE. dz ds dcos6_ dep_, (7.57)

where \/\/l|2 is the unpolarized spin-averaged squared amplitude that corresponds to the
7~ = 7 'y v, decays, and E, is the photon energy in the 7 rest frame. It is not worth to
quote here the full analytical expression for [M|>.
For these decays, we have the following integration region
D= {E:;mm S Ey S E;naz’ Tmin S x S Tmazs Smin S S S Smazx,

(7.58)
—1<cosf_<+1,0<¢_ <27},
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with boundaries

m2—s+x A2 (s,xm2 2_gig A2 (s,@m2
( Clm;_ ) _ SmT >§ E, (s, ) S( zlm:r) ng )7
< s(@) < (mo— V@) (7.59)
0< T < (m, 2m,,)2,
or interchanging the last two limits,
2
0< x(s) <(m;—+/5)",
4m2 < s <mi
There are other ways to write these,
mr—2E~,)2m-E~—x
4m2 < s(z,E,) < ( 72)1(97 1)
2E. (m2—4m2—2m,E
0< 2(B,) <hlmiminb) (7.61)
m2—4m?2
E;ut S E’y S T 2m,
or exchanging x <+ E,,
(m2ta—am2) A2 (zm?dm?) < B (5) < (m2te—im2) A2 (2,m2 4m2)
4m, dm, — 'Y< ) — 4m, dm, ’ (762)
0 S x S (mT - 2m7r>2a
and
2F mg—s—2E mr
0< z(s, B,) < Znlm—s b
4m2 < s(E,) < m,(m, —2E,), (7.63)
Eeout < E < m2—4m?2
o= gl = Tom,

Further, interchanging s <+ E,, we get

Ecut S E,y (S) S TZ-Zr*s7
K m (7.64)
4m2 < s < mg(m, —2ES).

We recall that this amplitude has IR divergences due to soft photons, i.e. £, — 0, which
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is the same problem with A, — 0 outlined in the previous section. Correspondingly, the
experiment is not able to measure photons with energies smaller than some EfY“t (which is
related with the experimental resolution).

Concerning the O (p°®) contributions, once we employ the relations obtained from the SD
behaviour of QCD and its OPE, it is seen that observables are basically insensitive (at the
percent level of precision) to O(1) changes of all the couplings but ) (the p —w — 7 vertex
is described by these couplings), which will saturate the (overestimated) uncertainty of our
predictions at this order.

If we integrate Eq. using the limits in Eq. and the dispersive vector form
factor [19,28], we get the 7~ 7" invariant mass distribution, the photon energy distribution
and the branching ratios as a function of ES*, shown in Figs. [7.10} [7.11} [7.12} [7.13| and [7.14|
and summarized in Table[7.2] In these figures, the dotdashed red line corresponds to taking

the limit where all the couplings at O (p®) vanish except for those constrained by SD and

the band overestimates the corresponding uncertainties.

| B¢ | BR(Brems) | BR(Fy = v2F) [0 (p")] [ BR(Fy = v3F) [0 (p")] |

100MeV | 8.6 x 102 9.0 x 1074 9.5 x 104
300MeV | 1.7 x 1074 1.9 x 1074 2.3x 1074
500 MeV | 2.8 x 107° 3.9 x 1075 5.4 x 107°

Table 7.2: Branching ratios Br(r~ — 7 7’yr,) for different values of ES*. The second
column corresponds to the complete Bremsstrahlung and the third and fourth to the O (p?)
contributions.

ES" [BRSD) [0(°)] [ BR[O(F)] |

100 MeV 1.3 x 1073 (1.9+0.3) x 1073
300 MeV 5.1 x 1074 (1.140.3) x 1073
500 MeV 2.4 x 1074 (0.6 £0.2) x 1073

Table 7.3: Branching ratios Br(r~ — n~ 7 yv;) for different ES* values at O (p°).

As it can be observed from Table and fig. [7.14] the main contribution at O (p*) cor-
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responds to the complete Bremsstrahlung (SI) amplitude (in agreement with Ref. [94]), and
the value for the branching ratio becomes smaller with larger values of E;:“t. The values in
Table[7.2are slightly different from those reported in Ref. |94], this effect is mainly due to the
parametrization of the pion vector form factor (see fig. . The form factor obtained from
the dispersion relation [19] is above the one obtained using the Guerrero-Pich parametriza-

tion [15] at s ~ M?, and also the former includes the p (1450) and p (1700) resonances.

150+

100

AC)]

50 -

0.5 1.0 1.5 2.0 25 3.0 0.5 1.0 1.5 2.0 2.5 3.0
s[GeV?] s[GeV?]

Figure 7.9: Modulus and phase of the pion vector form factor, f(s). The solid line corre-
sponds to the dispersive representation used in Ref. [19] while the dashed line corresponds
to the Guerrero-Pich parametrization [15] employed by Ref. [94].

According to our discussion on error estimation of the O (p?) result (including the un-
certainty coming from missing higher-order terms from the result at O (p®) when only SD
constraints are used), we have -for E** = 300 MeV- BR(t~ — 7 %) = (1.9737) - 107,

The spectrum for these decays with v; = a; = 0 is plotted in fig. [7.10} the dominant peak
corresponds to bremsstrahlung off the 7~ and the secondary receives two contributions: one
from bremsstrahlung off the 7 lepton and another from a resonance exchange in V,, (for
Eﬁ“t < 100 MeV, these two are merged into one single peak). The rate and spectrum are

dominated by the complete bremsstrahlung (SI) contribution.

In fig. |7.11, we show the distribution for Esu'f = 300 MeV taking into account the SI
contribution (dotted line) and the O (p*) amplitude obtained using Fy, = v/2F (dashed line)
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Figure 7.10: The 7~ 7° hadronic invariant mass distribution for the 7= — 7~ 7%, decays for
B¢ =100 MeV (black), ES*" = 200 MeV (brown), ES* = 300 MeV (blue), ES** = 400 MeV
(gray) and ES" = 500 MeV (red) using only the Bremsstrahlung (ST) contribution.

and Fyy = /3F (solid line), the most important contribution corresponds to the p resonance
exchange at s ~ 0.6 GeV2 The main difference between these two approaches is seen in
fig. m, where up to s ~ 0.4GeV? the dashed line is below and the solid line is above
the bremmstrahlung (SI) contribution (dotted line). The dashed line is quite similar to the
distribution in fig. 2 of Ref. [94] while the solid line resembles closely the distribution in fig.
4.6 of Ref. [713] obtained from the vector meson dominance (VMD) model [714] neglecting

the w-resonance contribution.

In fig. we show a comparison between the di-pion distribution at different orders.

As we can see, the inclusion of the corrections at O (p®) gives a noticeable enhancement at

low s.

For the photon energy distribution, fig. [7.13| we can differentiate between the full am-
plitude (solid, dashed lines up to O (p*) and dotdashed red line up to O (p°)) and the
bremsstrahlung contribution (dotted line) but, as in the case of the branching fraction, the
distribution decreases for high-energies. In the case of the O (p%) distribution there is an

enhancement at middle and high photon energies.

According to Figs. to [7.14] measurements of the 77 invariant mass, of the photon

220



dr/ds [107"° GeV™']

c o o9
) D [oe]

o
o

o
o

s [GeVz]

Figure 7.11: The 7~ 7° hadronic invariant mass distributions for Ef/“t = 300MeV. The

solid and dashed lines represent the O (p*) corrections using Fy = V3F and Fy = 2F,
respectively. The dotted line stands for the Bremsstrahlung contribution (SI).
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Figure 7.12: The 77" hadronic invariant mass distributions for Eﬁ“t = 300 MeV. The solid
and dashed line represent the O (p*) corrections using Fy = V3F and Fy, = /2F, respec-
tively. The dotted line represents the Bremsstrahlung contribution (SI). The dotdashed red
line corresponds to using only SD constraints at O (p®) and the blue shaded region overesti-

mates the corresponding uncertainties.
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Figure 7.13: Photon energy distribution for the 7= — 7~ 7%, decays normalized with the
non-radiative decay width. The dotted line represents the Bremsstrahlung contribution. The
solid and dashed lines represent the O (p*) corrections using Fyy = /3F and Fy, = /2F,
respectively. The dotdashed red line corresponds to using only SD constraints at O (p°)
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Figure 7.14: Branching ratio for the 7= — 7~ 7%, decays as a function of Eg“t. The dotted
line represents the Bremsstrahlung contribution, the solid line and dashed line represent the
O (p*) corrections using Fyy = v/3F and Fy, = /2F, respectively. The dotdashed red line
is the O (p°®) contribution using only SD constraints and neglecting all other couplings. The

0.005

1.x107*

5.x107°

1.x107°

0.8

BHSI]
Br[O(p*)] with F,=+/3 f
Br{O(p*)] with F,=/2 f

- Br[O(p®)] only SD constraints

L
0.1

. . .
0.2 0.3 0.4
E;“‘ [GeV]

blue shaded region overestimates the O (p®) uncertainties.

222

L
0.5 0.6



spectrum and the partial decay width, for a reasonable cut on E, (at low enough energies
the inner bremmstrahlung contribution hides completely any structure-dependent effect),
could decrease substantially the uncertainty of the O (p®) computation. This was already
emphasized in Ref. but remained unmeasured at BaBar and Belle. We hope these data
can finally be acquired and analyzed at Belle-II.

In fig. we show the branching ratio for Efy“t = 100, 300, and 500 MeV from top to

bottom. The outcomes were summarized in Table [7.3]

Counts
Counts

0
0.0015 0.0020 0.0025 0.0030 0.0035 0.0005 0.0010 0.0015 0.0020
BR(r-yv,) BR(r-ryv,)

0.0005 0.0010 0.0015
BR(ronmyv.)

Figure 7.15: Predictions for the branching ratio at O (p°®) for a sample of 1000 points, with
E.; = 100, 300, and 500 MeV from top to bottom.
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7.4 1B corrections to aﬁ[ VP,LO nw

We can evaluate the leading contributions to the hadronic vacuum polarization (HVP) by

means of the dispersion relation [715],

1 0
CL/I;IVP’LO = R i ds K(S)Ug—e""ahadrons(‘s)? (765>

where K (s) is a smooth QED kernel concentrated at low energies, which increases the F <

M, contribution,

K(s)zZ(Z—x2)+(1+m (14 )

<ln(1 +z)—z+ x2> + (1+ x)I2 In(x), (7.66)

2 2

with
1 -5,
xr = , =./1—4m?/s
1 + ﬁu 5# u/ I
and 0%, ., . (s)is the bare hadronic cross section E’} We can relate the hadronic spec-

tral function from 7 decays to the eTe™ hadronic cross section by including the radiative

corrections and the IB effects. For the 7w final state, we have [94}379:

KU(S) dFﬂ-ﬂ-[ ] R[B(S)
0 _ 2l 7.67
O'T”T [Kp(S) dS SEW ’ ( )
where
2 2.3 2
Fop(s) = GrlVadlms (s 7y 280
2
TQ
KO’ = 5
(s) %5
and the IB corrections )
FSR(s) B3, __ | Fy(s)
Rig(s) = RS ) 7.69
)= Gond(s) oo | 11(5) (769)

29 Although final state radiation would belong to HVP,NLO it is always included in HVP,LO (and not in
HVP,NLO) as eliminating this radiation from the measured data is unfeasible. Thus, a final state radiation
(FSR) factor is also needed in the radiative corrections discussed below.
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The Sgpw term encodes the SD electroweak corrections [256, 274} 364,365, 520-523] and
FSR(s) accounts for the radiation from the final-state pions [658,/659]. The Ggps(s) term
was already discussed at length in section the 82, _ /B3, , term is a phase space factor
and the last term in R;p(s) is a ratio between the neutral (Fy(s)) and the charged (fi(s))
pion form factor.

7|, we have

In order to study the effect of the radiative correction Gga(s) on alfVFH9

evaluated the following expression [94]

1 52 K (8) dl’ R[B(S)
Dafv PO — o [T ds K(s) |20 S -1 7.70
CL“ 47'('3 S1 s (S) KF(S) ds SEW ’ ( )
3
taking Spw = 1, [;”3”_ = 1 and ‘IZ((;))  — 1. The results are summarized in Table

using DR form factor. The results obtained for the Gg&(s) and the complete O (p*) con-
tribution (with Fy, = v/2F) agree with those in [94], which are 4+16 - 107" and —10- 107,
respectively (for the whole integral). In Table , we summarized the results obtained us-
ing the Guerrero-Pich [15] parametrization of the form factor (which only accounts for the
completely dominant p exchange), which are in nice agreement with those found with the
dispersive form factor (that also includes the p(1450) and p(1700) effects). This checks,
a posteriori, that excited resonance contributions make a negligible effect in the Ggy(s)
corrections to alfVF10 m

The values in the last column of Tables [7.4] and were obtained evaluating the Eq.
according to the couplings discussed in section for a sample of 200 points for
each interval of integration (results were stable under increasing this number).

The other contributions are summarized in Table [7.6l

e The Spw contribution Sgyw = 1.0201 gives Aal/VF'O = —103.1 x 107", consistent
with earlier determinations (using slightly different values of Sgy ) and with a negligible

error.

9By replacing D, ' (z) by (14 8,)" (D, " () —&-ﬂp,D;l(m)L with 5, € [0.12,0.15] [28] throughout the v;

and a; form factors, we have verified that the impact of the p’ on the Ggas(s) correction to afVP’LO‘”’T is

negligible. Similarly, the error induced by other excited resonances shall also be irrelevant.
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ol | A0 | Al [ AdTEES T Aol T A0 | Aaione)
4m?2,1GeV? +17.8 —11.0 —11.3 —17.0 —324 | —74.8+44.0
4m2,2 GeV? +18.3 —-10.1 -10.3 —~16.0 —31.9 | —75.94+45.5
4m2,3 GeV? +18.4 —-10.0 ~10.2 —~15.9 —31.9 | —75.94+45.6
[4m2, m2] +18.4 —-10.0 -10.2 —-15.9 —31.9 | —75.94+45.6

Table 7.4: Contributions to Aaf VPLO in units of 10~ using the dispersive representation
of the form factor. From the two evaluations labelled O (p*), the left(right) one corresponds

to Fy = V2F(Fy = \/3F).

AgHVPLO [ A HVPLO ACLEVP,LO AgHVPLO [ A HVPLO AGEVP,LO

[51, 52 | A (0] | 2% 06")] | 2%, (5D )
4m2,1GeV? +17.3 —10.2 ~10.4 ~15.9 283 | —63.2+£16.5
4m2,2 GeV? +17.7 9.4 —9.6 ~15.2 —28.1 | —58.1+12.2
4m?2,3 GeV? +17.8 -9.3 —9.5 ~15.1 —28.0 | —67.8+17.5

[4m2, m2] +17.8 —-9.3 —9.5 —15.1 —28.0 | —64.9+13.4

Table 7.5: Contributions to Aafvp "LO in units of 107" using the GP parametrization of
the form factor. From the two evaluations labelled O (p*), the left(right) one corresponds to

Fy = V2F(Fy = /3F).
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« The phase space (PS) correction induces Aa//V?"? = —74.5x 107" (trivially in agree-

ment with previous computations), again with tiny uncertainties.

« The final state radiation (FSR, which is formally N LO) yields Aa/]V " = 445.5(4.6) x
107, in accord with Ref. [7] (its value was not quoted in Ref. [94]).

» The correction due to the ratio of the form factors (fig. [7.16]) is harder to evaluate. We
have considered two alternatives, labelled FF1 and FF2, that we explain next. We use
the following numerical inputs for the p — w mixing parameter 6,, = (—3.5 £ 0.7) x
1073 GeV? [94] and Tpo — T+ = 0.3 £ 1.3 MeV, m,+ — myu = 0.7 £ 0.8 MeV and
myo = 775.26 = 0.25 MeV from PDG [541].

In FF1, as in Ref. [94], we include the measurement of the 77y channel of the p°
I sntr—y = 1.540.2 MeV, and the measurement of I'jo_, 0, and I'j+_ 1+, which are
approximately 0.1 MeV [3]. Thus, we estimate I'jo_, 7y — I'ptptp0, = 1.5 £ 1.3
MeV. In this way, we get a positive correction of Aa//VF'O = 4+40.9(48.9) x 107",
The uncertainty on the third column of Table [7.6| (FF1) corresponds to sum the errors
due to uncertainties of p — w mixing (8.5), the p™ — p” mass difference (15.9), and the

pt — p® width difference (45.5) in quadrature (in units of 107).

On the other hand, in FF2 we use the same numerical inputs for I' jo_, -+ r— ="t ra 70, =
0.45+0.45 MeV as in Ref. [94] (and all the others as we did before), we obtain a positive
correction of Aaf VPLO — 177.6(24.0) x 1071, The uncertainty on the fourth column
Table [7.6| (FF2) corresponds to sum the errors due to uncertainties of p — w mixing
(8.6), the p* — p° mass difference (15.9), and the p™ — p° width difference (15.8) in

quadrature (in units of 107).

This correction was +(61 £ 26 + 3) - 10~ in [94] and +(86 + 32+ 7) - 107! in [7], in

agreement (despite the big errors) with our FF2 and FF1 determinations, respectively.

o Finally, we get (—15.9737)-1071 ((—=76+£46)-107'1) for the Gy (s) correction at O(p*)
(O(pY)), versus —10 - 107! in [94] and —37- 107! in [677] (from the last two results,
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(—19.249.0) - 107" was used in [7]). As explained before, the previous uncertainty on
the O(p®) can only be taken as an upper bound on it. Also interesting is the Ggs(s)
correction when only the couplings restricted by SD are used (with all others at this
order set to zero), which allows us to estimate the effect of missing higher-order terms
on the O(p*) result quoted above. This O(p?) result, which is our reference value, is
consistent with both the earlier Rx7 [94] and the VMD [7] evaluations, albeit with a

larger (asymmetric) error.

| [s1,s2] | Sew | PS [ FSR | FF1 FF2 EM

4m2,1GeV?| | —101.1 | —74.1 | +44.7 | +41.84+49.0 | +78.4+24.5 | —17.075,
4m2,2GeV?| | —103.1 | —74.4 | +45.5 | +40.9£48.9 | +77.6 +24.0 | —16.0737,
4m2,3GeV?| | —103.1 | —74.5 | +45.5 | +40.9+48.9 | +77.6+24.0 | —15.9%57,
[4m2,m2] | —103.1 | —74.5 | +45.5 | +40.94+48.9 | +77.6 +£24.0 | —15.973/,

| [s1, 52] | Aa,(FF1) | Aa,(FF2) |

4m2,1GeV?| | —105.77390 | —69.172%S

4m2,2GeV?| | —107.17304 | —70.47251

4m?2,3GeV?| | —107.17307 | —70.41253

[4m2,m2] | —107.1+89% | —70.4725

Table 7.6: Contributions to Aa//V"* in units of 107" using the DR form factor as the
reference one.

In fig. [7.17, we show the full IB correction factor R;p(s) for the different orders of
approximation in the Gg/(s) factor using the DR parametrization of the form factor. As
we can see, there is a difference between the contributions at O(p*) and those at O(p°) for
energies below ~ 0.5GeV? and above ~ 0.7GeV?.

An important cross-check is the branching fraction By = I'(t — 7n7%v,)/T'; which is
a directly measured quantity. It can also be evaluated from the I = 1 component of the
ete™ — mh 7w () cross section after taking into account the IB corrections. The branching

fraction is given by
2

BEVC _ B, i ds Uﬂ+7r—(,y)(8)./v(8)

w0 5
4m=

SeEw
R[B(S) ’

(7.71)
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Figure 7.16: Ratio of the form factors (FF1) for 6, = (3.5 £0.7) x 107 GeV*. The solid
line represents the mean value.
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Figure 7.17: Full IB correction factor R;p(s) for the different orders of approximation in
Gpum(s) using the central values given in (FF1). The blue region corresponds to the (over-
estimated) corrections at O(p°) in Gga(s).
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where

N(s) = 31Vaal” (1—8>2 <1+28>. (7.72)

-~ 2madm? m2 m2
Using the most recent data obtained from BaBar [20] [T for the efe™ — atn~(7) cross

section and taking the same numerical inputs as we did for FF1, we get

24.76 +0.11 £ 0.25 £ 0.01 £ 0.01 £ 0.02)%, SI,
24.7740.11£0.25+0.01 +0.01 £0.02)%, Fy = V2F,
)
)

a0

24.77+£0.11 £0.25 £ 0.01 = 0.01 £ 0.02)%, Fy, = /3F,

(
cve _ (
(
(24.80 £ 0.11 +0.25 +0.01 +0.01 +0.02)%, SD,

where ‘SI’, ‘Fyy = v2F, ‘Fy, = /2F’ and ‘SD’ correspond to the different approximations
of the Ggp(s) factor. The result for Fy = V2F is our reference one, with a negligible
uncertainty from the missing higher-order terms starting at O(p°).

On the other hand, when we use the same numerical inputs as in the case of FF2, we get

(again our reference result is the [y, = v/2F one, with the uncertainties quoted below)

24.57+0.11 £ 0.08 £ 0.01 £ 0.01 £ 0.02)%, SI,

( )
pove | (ASTHOILE£0.08:£0.01+0.01+£0.02)%, Fy = v2F,
( )
( )

w0

(7.74)
24.58 & 0.11 £ 0.08 & 0.01 + 0.01 £ 0.02)%, F, = /3F,

24.61 +0.11 £0.08 £ 0.01 £ 0.01 £ 0.02)%, SD.

In both cases, the first error corresponds to the statistical experimental uncertainty on
Oxn(y), the second is related to uncertainty on the p* — p® width difference, the third to the
uncertainty in the p™ — p° mass difference and the fourth to the uncertainty of the p — w
mixing. The last error corresponds to the corrections induced by FSR on BSY%Y, which

reduces ~ —0.20(2)% the 77 branching fraction.
If we include all the couplings contributing to Gpa(s) at O(p®) according to section [7.2.5]

31We thank to Alex Keshavarzi and Bogdan Malaescu for providing us tables with the measurement of
the eTe™ — w77~ () cross section.
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we have an additional error associated to the EM contributions. Thus, we get

BEYY = (24.80 £0.11 4 0.25 £ 0.01 £ 0.01 + 0.0275:2)%, (7.75)
for FF1, and
BEYKY = (24.61 £0.11 4 0.08 £ 0.01 & 0.01 + 0.0275:2) %. (7.76)

for FF2. Both previous results match perfectly our reference determinations obtained with
Fy, =2F.

These results are in good agreement (though better for FF1) with the value reported by
the Belle [18] collaboration,

T o =(25.24 +0.01 + 0.39)%, (7.77)

70

where the first uncertainty is statistical and the second is systematic. Nonetheless, they are
in some tension with the very precise ALEPH measurement (25.471 £ 0.097 £ 0.085)% [397].

We show in fig. the prediction for the ete™ — 777~ cross section using the data
reported by Belle [1§] (as it is the most precise measurement of this spectrum) for the
normalized spectrum (1/Ny;)(dNy/ds) compared to the last measurements from BaBar |20]
and KLOE [58] %

We recall that the e"e™ — 777~ cross section obtained using 7 data is given by [1§]

0o 1 er 1 der R[B(S)
Tnm = N(s) ( B, ) % <NM ds ) ( Spw ) ' (7.78)

In fig. the 7-based prediction is obtained using the O(p?) result for Ggy(s), with

the estimated uncertainty from missing higher-order corrections given by the result at O(p%)

(employing only the SD constraints). The blue dotdashed line shown overestimates the error

32We have chosen to show in the comparison these two ete™ data sets as the results from both Colls. are
those deviating the most, and thus mainly responsible from the tension in o(ete™ — ntn ™).
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at O(p%).

From fig. [7.18] we observe good agreement between the BaBar data and the 7 decays
prediction (slightly better for FF1) ﬂ The previous comparisons make us consider our
evaluation with FF1 the reference one (so that its difference with FF2 will assess the size of

the error induced by IB among the p — 7my decay channels) ﬁ
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Figure 7.18: Comparison between the different data sets from BaBar (above) and KLOE
(below) with A, = 1.5 MeV (left-hand) and ALy, = 0.45 MeV (right-hand) for FF1 and
FF2, respectively. The blue region corresponds to the experimental error on o). The
solid and dashed lines represent the contributions with Fy, = v/3F and Fy, = /2F at O(p?),
respectively. The dotted line is the SI contribution. The red line depicts the envelope of
Ggu(s) at O(p®), that overestimates the uncertainty at this order. The blue dotdashed line
is the O(p®) contribution using only SD constraints.

Using Eq. 1) we evaluate the IB-corrected af VPLO[zr 7] from the Belle mass spec-

trum. We use the PDG values [541] for m,, V,4 and B..

330ne can also check how important the p* — p® width difference is around s ~ MPQ.
34We, nevertheless, recall that recent BESIII data and evaluations within the Hidden Local Symmetry
model 718] agree better with the KLOE data than with BaBar’s.
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In tables we show IB-corrected af VPLOrr 7] in units of 107'° using the mea-
sured mass spectrum by Belle (ALEPH). For each dataset, results for the different ap-
proximations to G'gp(s) are shown. We choose showing first the results with both Belle
and ALEPH datasets as the first (second) one yields the most accurate spectral function
(branching ratio) measurement. As in Ref. [7] (and later works by the Orsay group), the
contributions are split in two intervals. In the first one, /s € [2m,+,0.36 GeV], (the very
scarce) data is not used, as this affects the precision of the integral. Instead, we use the
results of the dispersive fits in Ref. [28]. We proceed analogously in tables [7.9 and with
the CLEO [12] and OPAL [527] "] measurements.

FF1
[s1, s2] SI Fy =+2F | Fy = /3F SD min max | mean
0.1296 GeV?, 1 GeV? 499.43 499.42 499.05 498.16 | 492.18 | 498.41 | 495.30
0.1296 GeV?2, 2 GeV? 509.47 | 509.46 509.09 | 508.14 | 501.87 | 508.40 | 505.13
0.1296 GeV?, 3 GeV? 509.68 |  509.67 509.30 | 508.35 | 502.08 | 508.61 | 505.34
[0.1296 GeV?,3.125 Gevﬂ 509.72 | 509.71 509.34 | 508.40 | 502.12 | 508.65 | 505.39
FF2
[s1, s2] SI Fy =+V2F | Fy = 3F SD min max | mean
0.1296 GeV2, 1 GeV? 503.03 |  503.02 502.65 | 501.75 | 495.76 | 502.01 | 498.88
0.1296 GeV?2, 2 GeV? 513.08 | 513.06 512.70 | 511.75 | 505.46 | 512.00 | 508.73
0.1296 GeV?, 3 GeV? 513.29 |  513.28 512.91 511.96 | 505.66 | 512.21 | 508.94
0.1296 GeV?,3.125 Gevﬂ 513.33 | 513.32 512.95 | 512.01 | 505.71 | 512.26 | 508.98

Table 7.7: IB-corrected af VPLO[zr 7] in units of 1071° using the measured mass spectrum by
Belle with B, = (25.24£0.01+0.39)%. Different approximation to Ggy(s) are displayed in
the various columns. The last three of them show the results at O(p®) and their differences
overestimate the error at this order. The error of the O(p*) prediction (obtained with
Fy = V/2F) can be quantified from its difference with the SD value (corresponding to the
O(p®) contribution using only SD constraints).

Taking into account all di-pion tau decay data from the ALEPH [397], Belle [18], CLEO
[12] and OPAL [527] Colls. (the latter yielding the largest contribution to afV”£Cl ex-

35We thank to Jorge Portolés for providing us with the OPAL data set.
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FF1

Fy =V2F

Fy =+/3F

[s1, s2] ST SD min max | mean

0.1296 GeVZ, 1 GeV? 495.28 495.27 494.92 494.05 | 488.25 | 494.30 | 491.27
0.1296 GeVQ, 2 GeV? 506.57 506.56 506.21 505.29 | 499.15 | 505.53 | 502.34
0.1296 GeV2, 3 GeV? 506.82 506.81 506.45 505.53 | 499.38 | 505.77 | 502.58
{0.1296 GeV?,3.125 GeVﬂ 506.82 506.81 506.46 505.53 | 499.39 | 505.78 | 502.58

FF2

[s1, s2] SI Fy =+V2F | Fy = 3F SD min max | mean

0.1296 GeV?,1 GeV? 498.86 498.85 498.50 497.63 | 491.81 | 497.87 | 494.84
0.1296 GeVQ, 2 GeV? 510.16 510.15 509.80 508.87 | 502.72 | 509.12 | 505.92
0.1296 GeV2, 3 GeV? 510.41 510.40 510.04 509.12 | 502.95 | 509.36 | 506.16
0.1296 GeV?,3.125 GeVﬂ 510.41 510.40 510.05 509.12 | 502.96 | 509.36 | 506.16

Table 7.8: IB-corrected aff VPLO[rr 7] in units of 10719 using the measured mass spectrum
by ALEPH with B, = (25.471 + 0.097 £ 0.085)%. The rest is as in Table (7.7}

FF1
[s1, s2] SI Fy =+V2F | Fy = /3F SD min max | mean
0.1296 GeV?, 1 GeV? 498.51 498.50 498.14 497.27 | 491.43 | 497.52 | 494.47
0.1296 GeV?2, 2 GeV? 508.98 |  508.97 508.61 507.69 | 501.54 | 507.93 | 504.74
0.1296 GeV?, 3 GeV? 509.15 |  509.14 508.79 | 507.86 | 501.70 | 508.11 | 504.91
[0.1296 GeV?,3.125 Gevﬂ 509.20 |  509.18 508.83 | 507.91 | 501.75 | 508.15 | 504.95
FF2
[s1, s2] SI Fy =V2F | Fy = 3F SD min max | mean
0.1296 GeV?2, 1 GeV? 502.10 | 502.09 501.74 | 500.86 | 495.00 | 501.11 | 498.06
0.1296 GeV?2, 2 GeV? 512.58 | 512.57 512.22 | 511.29 | 505.12 | 511.58 | 508.33
0.1296 GeV?, 3 GeV? 512.76 |  512.75 512.39 | 511.47 | 505.29 | 511.71 | 508.50
0.1296 GeV?, 3.125 Gevﬂ 512.80 | 512.79 512.43 | 511.51 | 505.33 | 511.75 | 508.54

Table 7.9: IB-corrected af VPLO[r 7] in units of 107! using the measured mass spectrum

by CLEO with By, = (25.36 4 0.44)%. The rest is as in Table[7.7]
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FF1

[s1, s2] SI Fy =+V2F | Fy = 3F SD min max mean

0.1296 GeVQ, 1GeV? 509.50 509.51 509.07 508.04 | 501.31 | 508.34 | 504.82
0.1296 GeV?, 2 GeV? 521.29 521.29 520.86 519.77 | 512.69 | 520.06 | 516.34
0.1296 GeV2, 3 GeV? 521.49 521.49 521.06 519.96 | 512.88 | 520.25 | 516.56
{0.1296 GeVQ, 3.125 GeVﬂ 521.49 521.49 521.06 519.97 | 512.88 | 520.26 | 516.57

FF2

[s1, s2] SI Fy =+2F | Fy = V3F SD min max mean

0.1296 GeVQ, 1GeV? 512.99 512.99 512.56 511.53 | 504.78 | 511.82 | 508.30
0.1296 GeV?, 2 GeV? 524.79 524.79 524.36 523.27 | 516.17 | 523.56 | 519.86
0.1296 GeV2, 3 GeV? 524.99 524.99 524.56 523.46 | 516.36 | 523.76 | 520.06
0.1296 GeVQ, 3.125 GeVﬂ 524.99 524.99 524.56 523.46 | 516.36 | 523.76 | 520.06

Table 7.10: IB-corrected a))V""©[rr, 7] in units of 107 using the measured mass spectrum
by OPAL with B, = (25.46 £ 0.17 + 0.29)%. The rest is as in Table[7.7]

aﬁVP’LO [WW’ 7_]
Experiment 2m .+ — 0.36 GeV 0.36 — 1.8 GeV TOTAL
Belle 8.81+0.00 £ 0.14703% | 511.14 £ 1.94 +7.997055 | 519.95+1.94 +7.99737;
ALEPH | 8.89+0.00 +0.05702% | 508.26 4+ 4.48 +2.827350 | 517.15 +4.48 +2.82729]
CLEO | 8.85+0.00 +0.15%01% | 510.63 4+ 3.40 £8.937190 | 519.48 + 3.40 £ 8.937140
OPAL | 8.8940.00 4 0.12701> | 522.81 4 10.04 & 7.0072%7 | 531.70 + 10.04 + 7.007357

Table 7.11: IB-corrected afVP’LO (77, 7] in units of 107!% at O(p*). The first error is related
to the systematic uncertainties on the mass spectrum, and also include contributions from
the 7-mass and V4 uncertainties. The second error arises from B0 and B,, and the third
error from the isospin-breaking corrections.

aI};IVRLO [7.”.‘.’ 7_]
Experiment 2m + — 0.36 GeV 0.36 — 1.8 GeV TOTAL
Belle 7.774+0.00 £ 0.12752) | 507.18 £ 1.91 + 7.887372 | 514.95 + 1.91 + 7.887 357
ALEPH | 7.84+0.00 & 0.0472} | 504.37 £4.35 £ 2.79735 | 512.21 & 4.35 + 2.79747%
CLEO | 7.80+0.00 4+ 0.14732) | 506.74 4+ 3.28 + 8.84 735} | 514.54 4+ 3.28 + 8.84137%
OPAL | 7.8440.00 £0.107120 | 518.32 4 9.69 + 6.92732 | 526.16 + 9.69 + 6.92+73

Table 7.12: IB-corrected a!fV""©[rr, 7] in units of 107'° at O(p°). The rest is as in Table

711}
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ceeding ~ 10.7 - 1071° the mean, although with the largest errors as well) in Tables and
at O(p*) and O(p%), respectively, we get the combined tau-data contribution

1010 . afLIVP,LO‘TI'TI',T data — K196 4 2-85pectra+BRsir§:£1)IB s (779)

at O(p*) and

1010 aﬁle,Lo\m,T data — 514.6 + 2,8spectm+BR5j§:8[B 7 (7.80)

at O(p%).

The IB errors come from the uncertainty on I'(p — w7y) (FF1 vs FF2) and either from
the difference between the Fy, = v/2F and SD results (in Eq. ) or from the difference
between the 'mean’ and 'min’/’max’ results (in Eq. (7.80])).

Contrary to previous estimates |7,/91,94}406,(655], the errors in afVP’LO‘”’T 4 happen
to be dominated by the uncertainty on the IB contributions (but for the lower error on
Eq. (7.79)).

When Eqgs. and are supplemented with the four-pion tau decays measure-
ments (up to 1.5 GeV) and with ete™ data at larger energies in these modes (and with ete”

data in all other channels making up the hadronic cross section), we get |48}/655]

100+ @TVPLOl asa: = 7057 £ 2.8, pectrarrs 51 5 T 2-0ete~ £ 0. Lnarrowres £0.7gcp , (7.81)

at O(p*), and

1010+ @fIVPLOl asa: = 700.7 £ 2.8, pectrarBrs 5.9, 5 T 2.0+ e~ £ 0. Lnarrowres £0.7gcn , (7.82)

at O(p°®) and we have also included the uncertainties corresponding to using e™e~ data for
those contributions not covered by tau decay measurements and to the inclusion of narrow
resonances and the perturbative QCD part.

Adding errors in quadrature, an uncertainty of *439 (T23) is obtained at O(p*) (O(p°)).
These numbers (all in units of 107'°) have to be compared with the error of 4.0 in Ref. [6].

When all other (QED, EW and subleading hadronic) contributions are added to egs.
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(7.81) and (7.82) according to Ref. [6], the 4.20 [6] deficit of the SM prediction with respect
to the experimental average (FNAL+BNL) is reduced to

Aay, = a? — a3 = (125+£6.0)- 10717, (7.83)
at O(p?), and
Aa, = aj? — aiM = (17.5758) . 10719, (7.84)

at O(p%), which are 2.1 and 2.3 o, respectively.
In figure we show a comparison between our O(p?) and O(p®) calculation with
respect to the estimation based in the eTe™ data driven ﬂ@] and the lattice results from the

BMW collaboration )

BNL

FNAL
SM Experiment
(Data driven) Average

I L L
0.00116591810 0.00116591954 0.00116592061

A

Figure 7.19: Comparison between the experimental values of a,, from BNL and FNAL |m\ with
respect to the Muon g — 2 Theory Initiative recommended value @, the lattice QCD calculation
from the BMW collaboration and our results .
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7.5 Conclusions

In this work we have revisited the resonance chiral Lagrangian computation of the isospin-
breaking and radiative corrections to the 7= — 7~ 7%, decays in Ref. [94], by including the

terms that start to contribute to the O(p®) chiral LECs. Our main motivation for that was to

HVP,LO

" using tau decay data, so that it could -when combined

revisit the determination of a
with the ete™ measurements- reduce the Standard Model error on a,, thus enhancing the
sensitivity to new physics of the current BNL and future FNAL and J-PARC measurements.

Our isospin breaking corrections improve the agreement between 7 and e*e™ di-pion data
(both in the spectrum and its integral), which endorses our evaluation of afVFEOl s Qur
main results are affV7EOlaaa = (705.7417) - 1071 (including the same contributions as in
Ref. [94]), and afVPLOl axa = (700.753) - 10710 (when the operators starting to contribute
to the O(p®) LECs are also considered). These reduce the anomaly Aa, = af™ — a3 to 2.0
and 2.3 o, respectively.

We also provide with a detailed study of the 77 spectrum, £, distribution and branching
ratio, for different cuts on the photon energy. These 7= — 7~ 7%, decays observables have

the potential to reduce drastically the error of our predictions, so we eagerly await their

measurement at Belle-11I.
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Chapter 8

Lamb shift and hyperfine splitting in

muonic hydrogen

8.1 Introduction

The energy levels of muonic atoms are very sensitive to effects of quantum electrodynamics
(QED), nuclear structure, and recoil, thanks to the muon mass, which is about 206 times
heavier than the electron [719]. The enhancement factor, as compared to H, is of order
(my,/m.)?® ~ 107, making muonic hydrogen (1H) a neat laboratory for studies of the proton
structure.

The measurement of the Lamb shift in muonic hydrogen [103| has encouraged great
renewed interest in the energy levels of muonic atoms. Precise research of the Lamb shift
(LS) and hyperfine structure (HFS) of light muonic atoms is an elemental issue for testing
the Standard model, particularly the QED calculations, establishing the exact values of SM
parameters, like the Rydberg constant, detailed study of the proton structure, and searching
for effects of new physics [720]. A number of theoretical analyses of the Lamb shift (the 2p—2s
transition) in light muonic atoms have been published [721H730] before the measurement was
performed.

The last decade has witnessed a remarkable breakthrough in the laser spectroscopy of
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muonic atoms, starting from the long-awaited observation of the 25 — 2P transition in uH
by the CREMA Collaboration [102,103]. This measurement appears to be quite far from
the predicted value, which made it very hard to find, and very fascinating when observed. It
presumed a proton charge radius, rp, which was 70 smaller than the state-of-the-art value
at that time (see CODATA ’10 [100] in Fig. 8.1)). The CODATA value encompasses decades
of rp determinations using the traditional techniques: ep scattering and H spectroscopy.
This huge discrepancy, known as the proton-radius puzzle, motivated a wealth of activity
at the intersection of nuclear, particle, and atomic physics, reaching out to physics beyond
the Standard Model [731H734]. The subsequent measurements of the D Lamb shift [121]
showed a similar discrepancy for the deuteron charge radius, r4, see Fig. [8.2l These two
measurements are related by the H — D isotopic shift measurement of the 1.5 —25 transitions
[735], which restraint the difference, 13 — 7“5. They are sometimes commonly referred to as
the “Z = 1 radius puzzle”, highlighting that no such discrepancy has been found in muonic
helium [736]. When the theory updates in Refs. [101,120] are used, the r, value obtained
from pD via the isotopic shift is in agreement with the value extracted from pH at the
permille level.

At present, more than a decade after the radius-puzzle installment, there is some consen-
sus, adopted also by the CODATA group [98], that the pH value is an order-of-magnitude
more precise, and also, more accurate. The discrepancy with the previous extractions may
simply lie in unaccounted systematic uncertainties. This view is supported by some of the
recent measurements using H. Aside from the H(1S — 35) transition measurement by the
Paris group [107], the other four new measurements in H gave smaller radii than the CO-
DATA ’10: three of them agree with the muonic results [105,/106|,108], while a very recent
measurement of the H (25 — 8D) [104] shows a slightly tension.

On the side of ep scattering, the recent PRad experiment [109] has found a smaller value
of r,, in agreement with pf, confirming different analysis of scattering data that agree with
the muonic result [110,111,[115-118|. The initial-state radiation experiment at MAMI does

not allow to discriminate between the small and large scenarios at this time [737] since it
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Figure 8.1: Selection of recent proton charge radius determinations . The band corresponds
to the pH’13 value. The references are (from top to bottom): CODATA [98-100], muonic atoms

101H103], H spectroscopy [99[104-108], ep scattering [109-114], dispersive analysis of ep scattering

115H118§].

has a larger uncertainty.

In Fig. the discrepancy is diffused quite considerably by the latest results. However,
this problem has not become clear and a new round of experiments is underway, which include
the first measurements from up scattering by MUSE and AMBER collaborations ,
improved ep scattering measurements from PRAD-II and the PRES Collaboration at
MAMI, as well as spectroscopy measurements of H in Rydberg states [741], He* (15 — 25)
, and simple molecules such as HD%, Hy and H,.

Even if the proton-radius puzzle vanishes, several aspects of the underlying theory can be
studied just by performing more precise measurements. For instance, the proton radius from
uH  in combination with the 1.5 —2.S transition in H, leads to the most precise determination

of the Rydberg constant R.,. When it is combined with the H — D isotopic shift, the most
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Figure 8.2: Deuteron charge radius determinations [§]. The results here correspond to: CODATA
[98,199], ed scattering [119], uD spectroscopy [101}/120,/121], H — D isotopic shift and uH Lamb
shift [102], D spectroscopy [122].

precise determination of the deuteron radius can be obtained. Subsequently, in combination
with the measured Lamb shift in pD, it provides a stringent test for the theory of the
deuteron structure, viz., the nucleon-nucleon interaction. The proton radius in combination
with the spectroscopy of H, D, HD" and other simple systems, can be used to achieve
precision tests of bound-state QED for few-body systems, which impacts the precision of
several fundamental quantities. Although the current H D™ results barely favor the muonic
ones [744], its potential is huge. On the scattering side, the precise value of r, permits a
better determination of the proton electric form factor Gg,(Q?). Thanks to the increased
precision, one becomes sensitive to some scenarios of physics beyond the Standard Model,
in addition to those proposed as explanation of the puzzle in the first place [745-748].
Another important topic concerns the ongoing efforts to measure the ground-state hfs in
wH. The CREMA Collaboration aims to measure with a precision of 1ppm by means of
pulsed laser spectroscopy. Besides, two other collaborations, at J-PARC [749] and RIKEN-
RAL [126],750-753], are planning measurements of these transitions using different tech-

niques. The hfs resonance is two orders of magnitude narrower than the 25 — 2P line width,
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(a) (b) (c) (d) (e)

Figure 8.3: Main corrections in uH. Here, the cyan blobs represent the finite-size effects, thin and
thick lines the muon and proton, respectively.

and therefore, difficult to find. Further details can be found in Ref. [§].

8.2 Nuclear effects in hydrogen-like atoms

Muonic atoms have a small Bohr radius, and thus, a larger sensitivity to nuclear structure,
and short-range effects in general. Whilst the finite-size contribution is improved by a factor
of 107, relative to normal atoms, the QED effects contributing to the 2S5 — 2P splitting is
increased only by a factor of 50, promoting the finite-size contribution to be the second largest
contribution, surpassed only by the one-loop eVP, shown in Fig. (a). There are plenty
of Refs. [721}722754-756] accounting for these effects. However, a more precise calculation
will always be welcome, as soon as a more precise measurement emerges. Important for this
program is the progress on the nuclear side, since many of the corrections require the input
of nuclear and nucleon form factor and structure functions.

The first contribution comes from solving the Coulomb problem by using either the Dirac
or Schrodinger equation [757]. It assumes a point-like nucleus with the electric charge Ze,
thus the effects beyond this approximation arise as perturbative corrections to the Lamb shift,
fine and hyperfine structure; organized in powers of the fine-structure constant o = e? /4,
and mass ratios. Among the nuclear-structure effects, (i) the finite-size effects come from the
fact that the nucleus is not a point but it has a smeared electromagnetic distribution, Fig.
B.3[b-d), and (ii) the polarizability effects in Fig. [8.3|(a) is caused by deformations of this
distribution within the atom. The finite-size effects can be entirely described by the elastic
form factors, like Gg(Q?) and Gj/(Q?) in case of a spin-1/2 nucleus, while the polarizability

ones require a more complicated input, viz., structure functions.
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8.3 Theory updates and future uH

Perturbation theory is used to calculate the various corrections to the energy levels, involving
an expansion of both operators and wave functions. The radiative (QED) corrections are
obtained in an expansion in «, binding effects and relativistic effects in (Z«), and recoil
corrections in the ratio of the masses of the two-body system (m/M), where Z = 1 is the
atomic charge number and « is the fine structure constant [758]. The contributions related

to the proton structure are in part described by an expansion in powers of rg and r.

8.3.1 Lamb shift in uH

Two transition frequencies in muonic hydrogen have been measured. One starts from the
2S-triplet state v, = 2Pf;? — 25{ 5" [102] and the other from the 2S-singlet state v, =
2P7" — 257730 (102,103, Fig. . The principle of the muonic hydrogen Lamb shift
experiment [102] is to form muonic hydrogen in the 25 state (Fig. [8.4A) and measure the
25 — 2P energy splitting (Fig. [8.4C) by means of laser spectroscopy (Fig. [8.4B).

From these two transition measurements, the Lamb shift (AE, = AE,p, 1225, /2) and the

2S-HF'S splitting (AFyrg) can be deduced independently by the linear combination [75§]

ihus + %hyt = AFEp + 8.8123(2)meV
hvs — hyy = AFEpps — 3.2480(2)meV .

Finite size effects are included in A;, and AFpps. This terms include the calculated
values of the 2P fine structure, the 2P/, hyperfine splitting, and the mixing of the 2P
states [722,[754}759,760]. The finite proton size effects on the 2P fine and hyperfine structure
are smaller than 1 -10"*meV because of the small overlap between the 2P wave functions
and the nucleus. Their uncertainties arising from the proton structure are then negligible.

Using the measured transition frequencies vs and 14 and Eq. (8.1), they found [102]

AEPP = 202.3706(23) meV,
(8.1)

AE™® =22.8089(51) meV,
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Figure 8.4: (A) Formation of pH in highly excited states and subsequent cascade with emission
of “prompt” K, g +. (B) Laser excitation of the 25 — 2P transition with subsequent decay to the
ground state with K, emission. (C) 25 and 2P energy levels. The measured transitions vs and vy
are indicated along with the Lamb shift, 25-HFS, and 2P-Pine and hyperfine splitting. Reprinted

from Ref. .
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The statistical and systematic uncertainties of v, and 1, have been added quadratically
to get the final result.

On the theory side, the updated summary for the pH Lamb shift is given in Eq. .
Its accuracy is limited by the 2y exchange, finite-size effects and the hVP.

2
Erpog(pH) = l205.oo74 +1.0153 +0.0114(3) +0.0006(1) — 5.2275(10) (rp>

. fm
Uehling  r;, indep. hVP

f.s. corr. (82)

— 5257) ]me\/,
—_——

2+ exchange

Utilizing the data-driven evaluation of the 2y-exchange in Ref. [761], AE%V) = —33(2) ueVv,
one gets [§]

ry(H) = 0.84099(12)4ys(23)stat (3)1vp (8)es. (23)2, fm = 0.84099(36) fm, (8.3)

where r, is the root mean square (RMS) charge radius given in fm and defined as r =
[ d*rr?pg(r) with pg being the normalized proton charge distribution.

The uncertainty of the radius is restricted by the precision of the 25 — 2P measurements
and the prediction of the 2v-exchange contribution, with the measurement accuracy limited
by statistics. The frequency uncertainty of the laser pulses delivered by the Raman cell
(the last stage of the laser system used to generate the pulses at 6 um) gives the systematic
uncertainty of 300 MHz. The typical atomic physics systematics like Stark, collisional and
Zeeman shifts are strongly suppressed in the tightly-bound pH atom.

The CREMA setup can be upgraded to improve the 25 — 2P measurements by a factor
5, accessible by increasing the statistics by 25 and reducing the systematics by 3. On the one
hand, by having a longer data-taking time (from 1 week to 5 weeks) and by increasing the
laser pulse energy (from 0.2mJ to 1 mJ), in addition to a slight improvement of the setup, the
statistics could be improved. On the other hand, the systematics could be reduced by using
novel optical parametric down-conversion technologies under progress for the measurements

of the HFS in uH. Developments in this technology enable increasing both the laser pulse
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energy and the frequency control.

8.3.2 Hyperfine splitting in uH

The interaction between the bound particle and the magnetic field induced by the magnetic
moment of the nucleus give rise to shifts and splittings of the energy levels dubbed hyperfine
effects. In classical electrodynamics, the interaction between the magnetic moments p,, and

,, of proton and muon, respectively, is described by [762]

. 2
Hps™ = =Sty - 1 6(7), (8.4)
where §(7) is the delta-function in coordinate space. A similar Hamiltonian can be
derived in quantum field theory from the one-photon exchange diagram. Using coulomb
wave function, this gives rise in the first-order perturbation theory to an energy shift for

muonic hydrogen nS-states of [754]

Furs(F) = W(HH)(H%); [F(F+1) —g] -

1 3
:AEmm{FF 1-}
Fermig (F+1) 2

where AEpemi = 22.8320meV [754] is the Fermi energy, m,, is the proton mass, F' is the
total angular momentum, ~ and a, are the proton and muon anomalous magnetic moments,
respectively. The F' = 1 state is shifted by 1/4 x 22.8320meV while the F' = 0 state by
—3/4 x 22.8320 meV, see Fig. . A summary of the corrections arising from QED, recoil,
nuclear structure, hadronic and weak interactions effects can be found in Table 3 in Ref. [758].

The structure-dependent corrections, scaling as the reduced mass of the system, become
large in uH compared to hydrogen. The largest correction is given by finite-size effect which,

in the non-relativistic limit, is given by the well-known Zemach term [763,|764]

AE1Z13r11ach - _AEFermi : 2(Z05)mr7nZ7 (86)

where r is the Zemach radius defined as
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ry = /d3 /d3r’r pe(T)pym(r —7'), (8.7)

with py; and pg being the normalized proton magnetization and charge distributions,
respectively. The convolution between charge and magnetization distribution in rz is a con-
sequence of the interaction of the proton spin distributed spatially (given by the magnetic
form factor) with the spatial distribution of the muon spin which is described by the atomic
muon wave function. The latter is slightly affected, particularly at the origin, by the charge-
finite-size effect and consequently by pg. In a quantum field framework, this contribution
arises from two-photon exchange processes. The intermediate virtual proton may be either
“on-shell” or “off-shell”, as in the case of the Lamb shift. Therefore, proton polarizability
contributions need to be accounted for |[765]. This term has the largest uncertainty. It
emerges from the uncertainty of the polarized structure functions g; [766,[767] and g, [76§]
(measured in inelastic polarized electron-proton scattering) needed as an input to evaluate
this contribution. For the HFS (contrary to the Lamb shift), no subtraction term is re-
quired for the calculation of the two-photon exchange diagram via Compton scattering and
dispersion analysis [769).

The Zemach-radius contribution can be evaluated based on empirically known form fac-

tors [§]

_ _7/ dQ [GE (Q@*)Gm(Q?) _1l (8.8)

1+ kN

A recent dispersive analysis of the nucleon electromagnetic form factors from the Bonn

group [115] yields:

"z, = 1.054(¥5:005)stat (F0.001 Jsysfm, Az (pH) = —7403%{5ppm. (8.9)

On the other hand, one can determine this contribution from the experimental HF'S, given
predictions for the remaining theory contributions. At the moment, only the 1S-HFS in H
and the 25-HFS in uH have been measured. The corresponding extractions of the Zemach

radius are depicted in Table and compared with the form-factor determinations. Given
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ep scattering | wH 2S HFS H H 1S HFS

Lin et al. [115] Borah et al. [770] | Antognini et al. |[102] BxPT [771] | Volotka et al. [125] BxPT [771]
1.0540003 1.0227(107) 1.082(37) 1.041(31) 1.045(16) 1.012(14)

Table 8.1: Determinations of the proton Zemach radius rz,, in units of fm [8].
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Figure 8.5: Correlation between the Zemach and charge radius of the proton.

that baryon x PT (BxPT) gives a smaller prediction for the polarizability contribution than
data-driven evaluations, it also gives a smaller Zemach radius.

There is a considerable linear correlation between the Zemach and charge radius, see
Fig. [8.5| The black dashed line represents the usual dipole approximation, 1/(1 + Q%/A?)?,
for the form factors Gg and G);. This correlation is more general since the proton size is
set predominantly by one QCD scale, Agcp. In Fig. the current determination of rz,
from H is represented by the blue band, while 7, from pH corresponds to the solid red line.
The upcoming 1S-HFS measurement in pH is expected to have a big impact on the precise
determination of rz,.

The leading recoil correction to the HF'S is caused by the same two-photon exchange dia-
gram and is of order (Za)(n/M )Epermi, where Eremi is the Fermi energy without contribution
of the muon anomalous magnetic moment [721].

The main HFS contributions have been confirmed and refined by Indelicato [755] by nu-

merical integration of the hyperfine Hamiltonian with Bohr-Weisskopf (magnetization distri-
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bution) correction using Dirac wave functions. The latter has been computed for Coulomb
finite-size and Uehling potentials. All-order finite size, relativistic, and eVP effects are then
included in the wave function. This calculation is performed for various rg and rz, assuming
exponential charge and magnetization distributions.

The improved 25 — 2P measurements considered above will improve the precision of the
2S5 HFS measurement. Nonetheless, a new level of precision will be reached in the upcoming
CREMA measurements of 1.5 HFS [772]. On the theory side, a comprehensive account of

the different contributions to these HFS transitions has been made in Ref. [§]:

Brs_nrs = [ 182.443 +1.350(7) +0.004
— T ———

EF  QED+weak hVP

—1.30653(17) (;Zn> + Ep (1.01656(4) Arecoil + 1.00402Ap01)]me\/, (8.10a)

2+ incl. radiative corr.

Esg_nrs = l 22.8054 4+0.1524(8) +0.0006(1)
1Er  QED+weak hVP

er

fm

1
—0.16319(2) ( ) + g B (101580(4) Asecoi + 1.00326Ap01)]me\/. (8.10b)

2~ incl. radiative corr.

When a high-precision measurement of the 15 HFS in uH is at hand, it can be used
together with H to accurately disentangle the Zemach and polarizability contributions, Az
and A, with extraordinary precision. This can be achieved thanks to the difference between
H and pH for the eVP corrections to the 2y exchange, see Egs. and (8.12). With
an anticipated uncertainty of 1ppm for the uH 15 HFS experiment, the Zemach radius
will be determined with a relative uncertainty of 5- 1073 and A, (uH) with an absolute
uncertainty of 40 ppm. Thus, it will lead to the best empirical determination of the proton
Zemach radius from spectroscopy, without the uncertainty related to the polarizability.

The 15 HFS in H has already been measured with § = 7- 107" accuracy [773}774]:

ESP s (H) = 1420.405 751 768(1) MHz. (8.11)
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The corresponding theory prediction is given in Eq. (8.12). Compared to a previous
compilation by Volotka [125], the eVP correction has been recalculated in Ref. [8] which
agrees with those in Ref. [775],

Eis_nrs(H) = { 1418840.082(9) +1612.673(3) +0.274 4-0.077
Ep QED+weak wVP hVP

(8.12)
—54.430(7) (;i) + Er (0.99807(13) Arecoit + 1.00002A 1) | kHz.

2+ incl. radiative corr.

The high-precision in HFS measurements was already used to constrain the 2y-exchange
contribution and its effect in the HFS of pH in Refs. [776,777]. In Ref. [8], an update
of the pVP and hVP contributions was obtained from a rescaling of the recent results from
muonium [778|, giving rise to considerably larger results (by a factor of 3 and 5, respectively)
compared to those in Ref. [125].

Through a rescaling from H to pH, a complete prediction of the HFS in pH is found [§]:

EIS—HFS (/LH) = 182634(8) meV, EQS_HFS<,LLH) = 228130(9) meV, (813)

where an uncertainty due to possible scaling violation of A, at the level of 2% (assuming
Apo = 400 ppm) has also been included. This result is shown in Fig. together with
other existing uH 25 HFS measurements. All theory predictions agree, even though the
data-driven dispersive evaluations and the ByPT prediction disagree in the polarizability
contribution (see Ref. [8] for a summary). This is because most works use the experimen-
tal H HFS to refine their prediction for the total 2y-exchange effect. The discrepancy in
polarizability is then compensated by slightly different Zemach radii.

Eventually, a prediction of the hadronic contributions to the 15 HFS in H from the
measurement of the 15 HF'S in pH might allow for a test of the H HFS theory. Nevertheless,
this would need further improvements for the recoil corrections from 2v-exchange and for

the uncertainty from missing contributions in the uH theory.
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Figure 8.6: Experimental values and theoretical predictions for the 1S and 25 HFS in H and
wH [8].

8.4 New Physics searches

Precision spectroscopy of atoms and molecules could sense energy shifts caused by physics
beyond the standard model (BSM) involving a low-mass and weakly coupled sector that
escapes detection in high-energy colliders [746,747,779]. These searches typically involve
a contrast between theoretical predictions and experiments that eventually will be limited
by hadronic effects. Thus, the search for BSM physics consists in looking for deviations
between 7, values extracted from the various systems: ep scattering, H, pH and molecules.
Any deviation might reveal an inconsistency of the theoretical framework pointing to the
existence of BSM physics [§]. Currently, these searches are limited by the uncertainty of the
rp as determined from measurements other than pf.

In Ref. [104], the authors highlighted that R, extracted from H tends to decrease as the
n of either the upper or lower state increases. This trend could be explained by a fifth-force
expressed as a Yukawa-like potential with a large scale [780] which mitigates the tension
between pH and recent H measurements [104].

A peculiar sensitivity of pH, uD and H(1S — 2S) to a dark sector with masses in the
keV to GeV was highlighted in Ref. [781]. The sensitivity showed in this study is greatly
enhanced when accounting for the upcoming measurements of the 1S HFS in puH, and
improved determinations of r,.

In order to exploit r, for BSM searches, one needs to use its accuracy to improve other

fundamental constants which increases the predictive power of our theories. For that purpose,
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boosting the 27- and 3vy-exchange contributions is crucial.
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Chapter 9

Axial-vector contributions to the HFS

of muonic hydrogen

9.1 Introduction

The electromagnetic interactions of axial-vector mesons have attracted much attention re-
cently. In particular, in the context of the hadronic light-by-light (HLbL) contribution to the
anomalous magnetic moment of the muon [6,49,/601H603}/614,/618, 671,673, 782,783|, but also
concerning their contribution to the hyperfine structure (HFS) of muonic hydrogen [784}785].

In the present study [786], we revise different aspects of their role in the HFS, briefly
discussing axial-vector mesons decays into ¢¢~ that enter the HFS calculation. On the
one hand, we analyze the role of the high-energy behavior. This was missing in previous
pioneering studies of the HFS [784],[785], but has been found to play an important role in
the context of the HLbL [601-603]. We find that the impact is by no means negligible,
representing a 50% effect. On the other hand, we use short-distance constraints connecting
the Compton scattering tensor and the axial form factor of the nucleon. This allows to
unambiguously fix the sign of the HFS contribution and to better understand potential
off-shell effects [784,(785]. Overall, we obtain a value with opposite sign with respect to

previous estimates that, together with the non-negligible impact of the high-energy behavior,
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represents the main result of this work. Besides, a discussion concerning the uncertainties
on the relevant coupling constants and off-shell effects complements this study.

This chapter is organized as follows: in Sect. , we discuss the amplitude for A — ¢/~
decays, a necessary ingredient in our calculation. Building on the former, section |9.3|outlines
the contribution to the HFS on a general basis. The particular models are outlined in
section based on resonance saturation. The final results and conclusions, including the
impact on the Zemach radius are given in section 9.5 Further information, including the

form factor description, is relegated to the appendices.

9.2 A — ("0 decays

The axial-vector meson decays to a lepton pair play a central role in computing their con-
tribution to the HFS, to be discussed in the section below. Furthermore, they can provide
important information regarding A — ~*v* transitions [783,787|(see also the comments at
the end of this section). We outline next the evaluation of the relevant matrix element
appearing in these decays, which comparison to existing results will provide an additional
(intermediate) cross-check of our evaluation.

The aforementioned process occurs through the electromagnetic interactions and involves
the A — ~*y* transition, which can be expressed on the basis of Lorentz invariance and CP

symmetry as [618]]

I Macsyrys = i62{32(6ﬁ7 03) €uapp 47 0562 — 95 03] + Ba(43,47) i€vap 45 [d5'1, — 9 41

Fi€uwap 0705 D12y Calah, 43) + q120 Cs(ai, 43))| } (@) (g2)e” (1) = 1€° Ma ™ (@1)e™ (g2)€” (qr2),

We use €923 = +1. The interested reader is referred to Ref. [618] for relations to other bases. Comparing

to the basis in [784], Ay—A3 = Ba, Ay— Az = By, 205 = A3+A3, 204 = A3—As, as well as Ff&w*(q%, %) =

—Bss(q?,¢3). Also, comparing to the basis in [783,/788], m% By = —F3, m% By = Fo, m4Ca = F;. In

addition, the form factors with well-defined symmetry are related by 2m? Bas = Fs, —2m? Bay = Fa,,
2

mACA = .Fal .
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Figure 9.1: The leading contribution to A — ¢7¢~ decays (left). The axial-vector meson contri-
bution to the {~p — ¢~ p amplitude relevant to the HFS (right). The grey blob includes structure-
dependent axial-photon-photon interactions.

where 12 = ¢1 + g2 = q and 12 = ¢1 — qo. Here, €*(q;) and €% (qo) are the polarization
vectors of the photons, while €’(q) is the polarization vector of the axial-vector meson with
A=ay, fl(’). Importantly, the basis in eq. is free of kinematic singularities, see also [788].
The form factors, By(q?,¢3), Ca(q?, ¢3) and Cs(q?, ¢3), encode the strong interaction dynam-
ics. To guarantee Bose symmetry, C4(¢?, ¢5) must be antisymmetric and Cs(q?, ¢3) must be
symmetric under ¢, <+ ¢2. The contribution from Cs vanishes when the axial-vector meson
is on-shell and, in this basis, can be omitted when considering high-energy constraints [603],
which is not necessarily the case in other bases (see also Refs. [783,788|). In the last expres-
sion, C'4 corresponds to transverse photons (7'7') and B, is a combination of 77" and LT
polarization states (L standing for longitudinal).

The leading order contribution to A — ¢T¢~ decays is given by the diagram shown in

fig. which corresponding amplitude can be expressed by means of Eq. (9.1)) as

o d'k wy [(F = p) + meyo
M= — p/(

pvp
o)1 gl g ] A ) 0:2)

with ¢ = k and ¢ = ¢ — k. In the following, it will be useful to express the most general
amplitude for these decays, that based on Lorentz invariance and CP symmetry can be

written as

iM=itu(g—p) [Ai(®) 7" + Aa(¢®) @] Vv(p) €p(q) = iM’,_ yen(a). (9-3)
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Note that the Ay amplitude is a pure off-shell effect and, as such, it does not contribute to the
decay width, while we keep it here as it will generally contribute to the Compton-scattering
tensor that appears in the HFS.

The scalar functions A; 5(¢?) given in Eq. can be obtained by means of the following

projection operators (py(2) corresponds to the ¢~ (¢*) momentum)

A = Mﬁ l(% —my) <vp + Qqn;eqp> 7 (p, +me) Mﬁx—wz] ) (9-4)
9 m > —6m; 5 P
)= g ™ () (= ) ) 46
=) = e (= ) 0 (1, ) ). ©9

Thus, the A;(¢?) amplitudes are given by

Al(q = /d4 q17q2 wA+BQS(Q1aQ2)w25+BQA((]1,(]2)W2A
27r2 12q " Q2[(k )’ _me]

was = +(gt £GP ) (g~ @) — (k- Do - ¢ — ¢} = 1P¢° {gql%} ,

wa= (¢ — @)~ (k-1 (g1~ @)+ K ¢ — (k- q)?},

, (9.6)

A2(q2> _ _7141( ZC:TQ 4me/d4 k2 q_ q [(_k(k p(_)Z) ]{ q CS(qucb)

—(@} — ) [Cala}, 8) — Boalal, 63)] — (47 + 63) Bas(a?, )}, (9.7)

where we have defined | = py- — py+.

In the previous equations, we have used form factors with well-defined symmetry fol-
lowing Refs. [603,/618]: Ba(q7,q3) = Bas(qi: ¢3) + B2a(qi, ¢3) and Ba(g3,¢7) = Bas(di, 43) —
Boal(q?, 43).

Noteworthy, the current evaluation allows to cross-check our results for A;(m?%) against

those in Refs. [783,/787], finding a nice agreement and reinforcing our results, to be used
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VMD eVMD heVMD  DIP  heDIP  OPE
Bero-  1.90(77) L55(3) 1.66(33) 287(7F) 2.73(355) 2.67(775)

Table 9.1: Branching fraction for f; — eTe™ decays in units of 107 with the different form
factors outlined in appendix (ideal mixing case). In particular the first three columns correspond
to models incorporating a vector meson mass my = 0.77 GeV, whereas the last three columns
have effective masses around 1 GeV, illustrating the relevance of the intermediate V-~ state. For
reference, this branching ratio is < 9.4 x 107 at 90% confidence level [9].

below in the ¢ — 0 limit for the HFS.

Finally, we would like to comment on an important aspect. Namely, that A — ete™
decays are particularly sensitive to the intermediate Vv contributions (and thereby to the
timelike region), showing less sensitivity to high-energies or the spacelike regime. This
is a consequence of the Landau-Yang theorem [789,790] and is opposite to w(n) — €T~
decays [791], where the imaginary part is dominated by the intermediate 2v state. Due to
this reason, and the fact that several form factors appear (in contrast to the HF'S where the
knowledge of Bsg suffices), we refrain from discussing this further. Still, we use different
models for the Byg form factor (see appendix |Lj) to illustrate our claim for the f;(1285)
case. In particular, taking the unpolarized spin-averaged squared matrix element M2 and
the corresponding partial decay width

__ 4 1
M= S@BIAP)E, Tane = oo Ma IR, (5 =1 dmifs),  (93)

we find the results in table using the form factors discussed in appendix [[] From the
results therein, we find that the form factors including an explicit vector meson mass of
my = 0.77 GeV (VMD, eVMDm, heVMD) display similar results, with mild corrections
from their different high-energy behavior. On the contrary, they differ substantially from
those employing an effective mass that successfully describes the L3 data [792,793] in the
(singly-virtual) spacelike region, regardless of their high-energy behavior. As we will show,
this is the opposite for the HF'S that, as such, might not benefit substantially from a precise

knowledge of A — ete™ decays.
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9.3 The contribution to the HF'S

Having computed the M” . (¢*) amplitude in eq. (9.3), the contribution of axial-vector
mesons to the HFS is straightforward. In particular, the relevant amplitude of the £=p — ¢7p
process driven by axial-vector mesons, fig. [0.1b] can be expressed as

_ quqv
G + m2

iMyy = igann[a( A" + AZq”)v%]eqLizA[wfu]N, (9.9)

ma

where we have introduced the coupling of the axial-vector mesons to the nucleons, gany, via
Lo NN = _ga1NN(N7;4755:N)C_L41La Lynn = —gleN(NVMVSN)f{L' (9.10)

Determining the couplings above will be an important part of our study, that we postpone
to section Pursuing further the nonrelativistic potential for the HFS, and making use
of the relation My, = —ngQme/NR(qQ), we obtai

VNR(q2> = gANN m {(&E . &N) + (q . 6'52”(; . &N)} . Azfn—iqz) (q ‘ &z)(q ' &N) |

(9.11)

where &y are Pauli matrices acting on the lepton(nucleon) spinors and 2myAy = Ay. In
the following, we restrict ourselves to the leading-order contribution in a. This justifies, in
analogy with [784], to neglect the terms proportional to (q - 6,)(q - &), as well as to take
Ai(—¢q*) — A1(0), both effects being suppressed by mea/A (see appendix . Furthermore,
this justifies to keep with the leading term in the spinors’ nonrelativistic expansion [781].

Neglecting those terms, the expression above corresponds to a nonrelativistic potential

A(0) _ gannAi(0) -mar R
mi+q°

VNR(QQ) >~ JANN (5'13 : 5’N); VNR(T) - (5'4 : O'N) . (9-12)

_ NR _ NR
*We use @(p2, s2)7°u(p1, 51) — (p1 —p2) €], 05, ] and @(pa, s2) vy u(pr, s1) —2ml¢], (0, 0) &, ], where
p1 — p2 — *q for nucleons(leptons).
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This agrees with the recent study in Ref. [781] upon identifying their coupling constants
gg) — A(0), gf) — —gann. The corresponding shifts for each level can be obtained
through AE = (U, ;| Var (1) |V im), with U, ,,, the hydrogen atom wavefunctions. In par-
ticular, for the HFS we are interested in, corresponding to the energy difference £ (nSfEl) -

E(nsS{3°) [781], it leads to:

Ai(0) (per)? 1 gannAi1(0) (pa)’ 4
AEHFS _ JANN A1 Aa _
1 T m124 (1+%)2 (Ue 0'N>(AF) T mi (14_?#7:)2 )
(9.13)
« 2 o 2
AEHFS _ gannAL(0) (pa)® 2+ (TI:TA) (60 G) _ gannA1(0) (pa)® 2+ (#TA)
2 167 m?% (1+ %)4 ¢ IN/(AF) A m%4 (1+ %)4 ’
(9.14)

for n = 1,2, where p is the reduced mass, and the factor of 4 in the right-hand side arises

from the spin expectation value. We note that A;(0) can be expressed following the notation

in Ref. [784] as
4 fa\?2 [®
Al(O):?)(W) /0 Ak Lo(k?) Bas (—k?, —k?), (9.15)

with Ly(k?) defined in Ref. [784] (see Eq. (14) therein)[| The previous results show
that only the Bsg form factor contributes to the HFS to leading order in «, simplifying
the calculation as compared to A — ete™ decays. Likewise, it is straightforward to check
that the general results in Ref. [784] amount to our egs. and times a factor of
(—2). While we could not trace the factor of 2, the relative sign appears comparing to their

0123

Egs. (5),(20). Still, the sign depends on their photon momentum flow and e convention,

that are unclear. More importantly, the final sign arising from eqs. (9.13]) to (9.15)) will

depend on the relative sign for Byg(0,0) and ganny, that was fixed in Ref. [784] on the
basis of quark-loop models. In the following section, we introduce our setting to compute

the HF'S, that unambiguously fixes the sign in a transparent manner, finally confirming our

3We further note that, for the dipole (DIP) parametrization employed in Ref. [784], A;(0) =
3 (g)2 Bss(0,0)I(myg), with I(my) defined in the Eq. (27) from Ref. [784].

s
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opposite sign for the numerical results. In any case, our agreement with Refs. [783,787]

regarding A;(m?), and Ref. [781] in deriving the nonrelativistic potential, further reinforces

our findings, eqs. (9.13) and (9.14])).

9.4 Model results

In order to obtain a numerical estimate for the HF'S, determining the gayy couplings is al-
most as important as fixing the sign of Byg(0,0)gann. In the following, we use short-distance
constraints, that allow to relate the nucleon Compton scattering tensor to the nucleon axial
form factors in a transparent manner. This allows to fix the sign and, eventually, obtain the
desired couplings within a resonance saturation scheme. In particular, the relevant short-
distance constraint follows from the operator product expansion (OPE) of two vector currents
in the limit where ¢} ~ ¢35 ~ ¢* > {7, A4cp}, Where we have introduced § = (¢1 — ¢2)/2
and q12 = ¢1 + g2. This reads [597,/603]:

: -2 4 AZ
/d4xd4yel(fh-x+q2-y)T{jM<x)jV(y)} — @Guuaq/d4zezq12-z‘j5a<z> + 0( (%;JD) : (916)

with j& = qgyHy°Q?%q, etrii = etPoq,,, and €°'?% = 1. Note actually that, since the typical
momentum in the atomic system is of O(mya), this is indeed the relevant limit in this
calculation when the loop momentum in fig. is large. Regarding the axial-vector meson
form factor, this implies |603}/618,783,788]

lim §'Bas(4,¢%) =D _tr(Q°A")maFy, (9.17)

§2—o0

where we have introduced the axial decay constant (0| gy/v°%¢|A) = F¢m4. This fixes
sgn Byg(0,0) = sgn Fam 4 provided the form factor does not change sign in the spacelike
region (which is the case here and in Ref. |[784]), thus reducing the problem to determine the

sign for F'4magann. The latter combination appears indeed in the axial form factors of the
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proton (a = 3,8,0),

(p(K)|avr" g

p(E)) = (k) |1Gald) + 5 Gp(a)] Fulk). (08)

when adopting a resonance saturation scheme. In particular, one finds [794]

u 2F3magann
Gald”) =2 = 5 (9.19)
A A4

where the sum goes over the (infinite number of) axial-vector meson resonances. As we
shall show, this ultimately allows to fix sgn gaynymaF$ in terms of G%(0), which sign is
well-known. Ultimately, the previous modelling guarantees to fulfill the corresponding OPE

constraint for the Compton scattering tensor

lim, [t € ()| T @O} (k) = 2 (k)] dsa(0) (1) (920

q2>>{‘I%2 7A2QCD}

provided eq. (9.17) is satisfied. In the following, we discuss the results obtained when trun-
cating the sum in eq. (9.19)) with either one or two resonances.

9.4.1 Omne-resonance saturation

First, we start truncating the sum in eq. (9.19) with the lightest resonance. Then, the value

of the coupling constants can be determined in terms of G%(0) as follows

Fy

G4(0) = g4 = 20—, (9.21)
8 [ /
G5(0) = jg = 2F, g;;;]fN cos(¢ — o) + g;;ff sin(¢) — %)] , (9.22)
0 2, [ JHNN . 9fINN
G4(0) = 394 = 2F | — =——=sin(¢ — ¢g) + cos(¢p — ¢o) | , (9.23)
myg, my
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VMD eVMD DIP heVMD  heDIP OPE

f1(1285)  1.68(35) 1.21(37) 0.99(17) 1.34(}]) 1.33(35) 1.53(33)
a1(1260) 1.68(3%) 1.03(53) 0.91(32) 1.17(3%) 1.14(33) 1.41(3))
f1(1420)  2.99(33) 0.78(}3) 0.78(33) 0.96(12) 0.96(33) 1.20(3%)

Table 9.2: The results forA;(0)/[a®Bas(0,0)] for £ = pu. For simplicity, we take ideal mixing in
VMD models, implying that my = 0.77 GeV ~ m,, for a1, fi and my = my for the fj.

with ¢ the f; — f] mixing angle in the flavor basis and ¢y = arctan v/2 (cf. appendix .
This implies (we adopt a positive Fly),

Ja NN = 56(11), gnNN = 201(017), gf{NN = —033(008), (¢ = 0), (924)

GaNN = 5.6(1.1), gpnn = 1.93(0.16), gfNN = 0.71(21), (¢ = 26.7(5.0)°), (9.25)

where we used ¢ = 1.2730(13) [796], ¢5 = 0.530(18), ¢ = 0.392(24) [797|, F4 = 140(10) MeV [453,
467,603] and the PDG [798] masses with an additional uncertainty accounting for the half-
width rule [799]. The errors obtained for g.,nn, g5 NN, gynn are dominated by mag,, Fla,

and gi’o, respectively. Our results are similar to [784], with a slight departure in the fl(/) cases
—partly related to their use of the OZI rule (that in our scheme would require g5 = ¢9).

At this point, it is worth emphasizing that the ad hoc 1/e off-shell factor introduced in

Ref. [784] spoils the appropriate normalization for the axial form factors precisely at the

¢*> — 0 point and should be avoided. Further discussions on this point are included in the
following section.

Having estimated the axial couplings, we move on to our results for A;(0). Taking the
models from appendix [[] we obtain the values in table[0.2 There, we find that models failing
to incorporate the doubly-virtual high-energy Q? scaling (eVMD, DIP) underestimate the
value for A;(0) —even if correctly reproducing the singly-virtual L3 data. This is the case

for the form factor in Ref. [784], that corresponds to our DIP column. This implies that

4In the basis from Refs. [792}/793], the relation is ¢ = 64 + ¢g — m/2 which, for the mixing angle given

there using yv* — fl(’) reaction, results in ¢ = 26.7(2)°. Recent studies |795] suggest a range for the mixing
angle ¢ € (—7,23)°.

263



A1(0) B35(0,0) AEHFS(1S) AEIFS(29)

A a? B [GeV™2] [ eV] [meV]
f1(1285)  1.53(25)(T99)  0.269(30)  0.011(2)(1)(1)(0)[0]  0.0014(F2)(1)(2)(0)[0]
a1(1260)  1.41(30)(T99) 0.245(63)  0.029(*5)(6)(7)(2)[0 ] 0.0036(*$,)(7)(9)(2)[0]
f1(1420)  1.20(22)(*9%) 0.197(30) —0.001(0)(0)(0)(0)[F3] —0.0001(0)(0)(0)(0)[F2]
TOTAL 0.039(T12)[3] 0.0049( ) []

Table 9.3: Results for the HFS of muonic hydrogen. The central values for the ganyyx couplings
are those from ideal mixing, eq. . The second column displays results from OPE column
in table including as an additional uncertainty the difference with other models therein (see
details in the text). The final two columns include uncertainties from A;(0), gann, Bag, ma and
an additional uncertainty from the mixing within brackets (see details in the text).

in the present calculation one should employ only those form factors describing L3 data
and incorporating the high-energy behavior (heVMD, heDIP, OPE). Among them, the OPE
model represents our preferred choice since: (i) it reproduces L3 data [792,793]; (ii) it is
the only one that fulfills the pQCD scaling for a large virtual photon regardless the second
photon virtuality; (iii) for two virtual photons, it fulfills the OPE, eq. (find further
details in appendix . As such, we take it as the central value, incorporating the difference
with respect to heVMD and heDIP models as an additional uncertainty. Having determined
the value for A;(0), we estimate the contribution of the lowest-lying axial-vector mesons
to the HFS, that are collected in table In the following section, we extend the model
including an additional multiplet of axial-vector mesons. While this induces further model
dependence concerning the transition form factors, it is known that at least two resonances
are required to have a satisfactory description of the axial form factors of the nucleon. As
such, it will serve as an estimate of our systematic uncertainties and to discuss off-shell

effects.

9.4.2 'Two-resonance saturation

The one-resonance saturation employed in the previous section to describe the axial form

factors of the nucleon and to estimate the gsyny couplings does not provide a satisfac-
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tory description of the axial form factor of the nucleon, that is better parametrized by
a dipole form either in electroproduction [800] or lattice QCD data [801-806]. This can
be partly understood on the basis of the high-energy behavior of the axial form factor,
limgz 00 G4(—Q?) ~ 2(—Q*)Q~* [807-809], that requires the presence of at least two res-
onances to recover a Q~* behavior [794]. This suggests the necessity to go beyond the one
resonance saturation scheme, while this comes at the cost of non-negligible modeling of the
poorly known heavy axial-vector meson resonances, including their masses and form factors.
In order to estimate the masses of the heavier multiplets, we use the Regge trajectory from

Ref. [799]: m? ,y = m&, +nps3, mfm = mfc(,) +npg, with 113, = 1.36/1.19 GeV?. Imposing
1 1

(n)
the normalization and the Q% behavior of the axial form factors, we obtain the following

coupling constants using ideal mixing

Gaa NN = 118, gnNN = 478, gf{NN = —0.90, (926)

Jay(1)NN = —8.6, gr NN = —3.64, gr Ny = 0.71 (9.27)

The next part concerns the description of the Bsg form factor of the heavy resonances.

Lacking any experimental data, we resort to a Regge-like model from Ref. [603]

B3 (0,0)(M?2 + nA?)?
g7 + @5 — (M2 4+ nA2)]2’

B38(0,0)Mima,
(M2 +nA2)2my,

B3y (47, 43) = B34(0,0) = (9.28)
that was created to describe some features of the (VV A) Green’s function. As this induces
further model dependence for the second multiplet (n = 1), for which no data is available , we
will use our results in this section to estimate systematic uncertainties in the one resonance
saturation approach. Our results are given in table [0.4]

We find that the enhanced couplings for the lowest-lying multiplet essentially double the
HF'S contribution with respect to the previous section. Such enhancement is partially can-
celled by the contribution of the second multiplet, that reduces the final shift to a 60% effect.

Such variation could be taken as an off-shell effect, as it induces additional ¢®> dependence

besides the lowest-lying multiplet. However, its complexity goes beyond the 1/e factor in
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A A1(0) . B3s(0,0) AEHFS(1S) AEHFS(29)
a? Bk [GeV™?] [meV] [meV]
f1(1285) 1.53 4.78 0.269 0.0269 0.0034
f1(1%¢ excitation) 3.05 —3.64 0.093 —0.0082 —0.0010
Subtotal 0.0187 0.0024
a1 (1260) 141 118  0.245 0.0605 0.0076
a1 (1% excitation) 2.93 —8.6 0.082 —0.0162 —0.0020
Subtotal 0.0443 0.0056
£1(1420) 1.20 —0.90 0.197 —0.0024 —0.0003
Fl(1% excitation) 272 0.71  0.051 0.0007 0.0001
Subtotal —0.0017 —0.0002
Total 0.0613 0.0078

Table 9.4: The contributions from the ground and first excited states contribution to the HFS
(errors not included, see details in the text). The results compare to those in table The first
resonance contribution is enhanced with respect to table [0.3] as a result of the ganyy coupling,
whereas the first excited states partially damp this effect.

Ref. [784] and a precise estimate would demand a better knowledge of the properties of the
heavy axial-vector mesons, including their g4 nn couplings and form factors.

Given the large theoretical uncertainties in the results derived, especially owing to the
masses and form factors of the second multiplet, we stick to our results in the previous
section and will assign the difference between the results in this and the previous subsection
as an additional systematic uncertainty of our results. Overall, this points to a substantially

larger contribution from the first multiplet and a partial reduction from heavier states.

9.5 Results and conclusions

As our final result for the HF'S, we take as our central value the result obtained with the one
resonance saturation, incorporating as an additional systematic uncertainty the difference

with respect to the two-resonance saturation approach. This gives
ABFT(18) = 0.039(113) (F) (£50) meV,  AEFT5(2S) = 0.0049(*15) (15) (*55) meV. (9.29)
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Compared to Ref. [784], we find an opposite sign (and a factor of 2 difference) in the cal-
culation. Our results for the A — ¢*¢~ amplitude and the nonrelativistic expansion are in
good agreement with existing studies, that further reinforces our findings. Besides, we find
an important role (a 50% effect roughly) of the doubly-virtual high-energy behavior of the
transition form factor, that was one of our main goals in this study —such effects should be
included in future calculations of AEXFS.

In addition, to fix the relevant signs of the form factors and coupling constants, we made
use of the OPE. This provides a connection among the Compton scattering tensor and the
axial form factors of the nucleon, that unambiguously defines the relevant signs when using
a resonance saturation scheme. For the simplest scenario, that incorporates the lowest-lying
resonance, we find similar couplings to those in Ref. [784], while substantial effects are found
when two resonances are included. These are required to achieve a reasonable description of
the axial form factors of the nucleon and points to a larger contribution of the lowest-lying
multiplet together with a mild effect from the next one. The latter could be considered as
an off-shell effect and discourages the use of ad hoc suppression factors as in Ref. [784]. The
difference between the two scenarios is accounted for as an additional systematic uncertainty
and points to the necessity of a better understanding of the nucleon to axial-vector meson
couplings in order to improve in precision.

Finally, we address the impact of this effect on the Zemach radius extraction by the
CREMA Collaboration [102,/103], that measured the HFS of the 2S5 state, obtaining AE} P =
22.8089(51) meV. Comparing to the theoretical results for the HFS, AEW,. ¢ = 22.9843(30) —
0.1621(10) rz meV, see 754,765,810, 811] and Table 3 from Ref. [758|, they obtained r; =
1.082(37) fm [102]. Incorporating the missing contributions from the axial vector mesons
to the theoretical estimate in eq. together with the pseudoscalar contribution [812],
AEF g = —(0.09 £ 0.06) peV, we obtain

77 = 1.112(31)exp(19)en (730 ascials - (9.30)

The value is in mild tension with other estimates, rz = 1.086(12)fm [123] and r; =
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Figure 9.2: The Zemach radius (rz) from the references in the text and this work. The blue band
represents the average from Refs. [123126].

1.045(4) fm [124], from electron-proton scattering, rz = 1.045(16) fm [125] and r; = 1.037(16) fm
[126] from Hydrogen spectroscopy, and rz = 1.054(3) fm [115] from electron-proton scattering
and ete” annihilation. We summarize these results in Fig. where the blue band cor-

responds to the average for electron-proton (eP) scattering and hydrogen (H) spectroscopy.
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Appendix A

Fr(s) including resonances as explicit

degrees of freedom

We show in this appendix that it is not convenient to build Frr(s)/Fr(0) including resonances
as explicit degrees of freedom.

As we will see, the tensor current couples to the J¥¢ = 17~ and J©“ = 1%~ resonances,
but the contribution of the second tower of resonances is suppressed in the processes under
consideration. This can be seen phenomenologically, since the b (1235) resonance (which
shares all quantum numbers with the p(770) meson but has opposed parity) is not known
to couple to the two-pion system (precisely because of parity b; cannot decay into two
pseudoscalars, though it could be exchanged in meson-meson scattering, but 77 scattering
data do not show any hint for exchange of the b; meson). Therefore, the p(770) is the
lightest resonance whose exchange provides an energy-dependence to Fr, increasing its effect
and allowing us to set more restrictive bounds on ér (we neglect the contributions from p
excitations in this study).

We shall now discuss the chiral couplings of meson resonances to the pseudoscalar Gold-
stone fields in the presence of tensor currents. We use the antisymmetric tensor representa-
tion [224,225] in order to describe the relevant spin-one degrees of freedom. To determine

the resonance exchange contributions to the 7= — 7~ 7%, decays (or to the effective chiral
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Lagrangian) we need the lowest order operators in the chiral expansion which are linear in

the resonance fields. Using the P and C' transformation properties of given J7¢

fields: V(177), A(17F), S(0TF), P(0~") (see Table 2 in ref. [224]), and H(17~) and T'(27+)

resonance

(see ref. [813]), we can, for the first time, construct the RyT Lagrangian linear in resonance
fields and coupled to the tensor source of lowest chiral order, which has the following two

pieces:

LIV = FE My (Vuth) (A.1a)
LIHOAT)] = iFy My (H,, ") . (A.1b)

In the following, we neglect the effect of the latter operator (assuming F} negligible)
because of the seemingly small b;7w7 coupling commented above. A straightforward compu-

tation of the contribution of the former operator to the relevant hadronic matrix element

yields
(7077 |do"u|0) = iFr(s) (Phopl- — Pr-pho) , (A.2)
where
V24, GyFl M,
FT(S) = F2 A2 M2 — g ) (AS)
p
iGy

in which the operator 7% (V,,utu"”) [224] was used in order to obtain the pmm coupling.
Eq. depends on three a priori unknown couplings. Fortunately, short-distance
QCD properties can shed light on their values, as we explain next. First, it is known from
the analysis of two-point correlators within RyT that Gy = F/v/2 [224] (also Fyy = v/2F,
which is used next). The large- N asymptotic analysis of (V'V'), (T'T) and (VT') correlators
determines Ft/Fy = 1/4/2 [814], in such a way that only A, remains unrestricted and
eq. (A.3) simplifies to
Fr(s) = Vahy | M,

F? Mp2—s

(A.4)

The p meson contribution shifts the value of Fr(0) by ~ 65%, which is unphysical.
As in the case of the vector form factor, the p-propagator in eq. (A.3]) is modified by the
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inclusion of the width I',(s) (proportional to the imaginary part of the corresponding loop
contributions) and also by shifting the pole mass value (according to the real part of the

loop contribution), as required by analyticity. Specifically,

~1
2 —1 2 z Ak (x) .
(M7 —z)" — {Mp (1 + WRe lAW(I) + 2]) —r— szI‘p(x)} . (A.D)
with
_ My 2\ 3 2\ Ok(T)
I',(z) 06 2 [Q(x Am2)o;(x) + 0(x — 4mi;) 5
M,z m2 m? 1 (m3% m%
“gomzr ™ [A ( M) T34 <x e
and (Ap(z) is short for A (WfD, ﬁ;))
p
m? m% 5 op(z) +1
Ap(z) = Log® 4 8™ _ 2 4 ;3 (1) [og| T\ T~ A.
ReAp(z) ogMg +8 = T3 + op(x)Log or(@)—1| (A.6)

being op(x) =1/1 — @.

The tensor form factor, Fr(s), given by eq. (A.4), and using the substitution eq. (A.5),
is plotted in figure for Ay = 12 MeV [514]. There, it is seen how the p(770) meson
contribution modifies the constant xPT' lowest-order result for |Fp(s)|. The form factor
phase, dr(s), grows from zero to ~ 110° for 0.85 < /s < 0.90 GeV and decreases softly to
zero for larger energies. Both |Frr(s)| and dr(s) are influenced by the on-shell p(770) meson
width as expected, according to its value of ~ 145 MeV.

At this point unitarity arguments may convince us that this description of Frr(s) cannot
be complete E| As explained in ref. [427], the phase of Fr(s) must coincide with the phase

of F(s) in the elastic region (in this paper this was shown for the tau decays into the K

system, but it is completely analogous to the 77 one considered here). We briefly review the

'We thank Bastian Kubis for pointing this to us.
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Figure A.1: Modulus and phase, |Fp(s)| (left) and d7(s) (right), of the tensor form factor, Fr(s),
corresponding to the description explained in this appendix.

argument in what follows.

The unitarity relation for F, (s) can be written
I mF (s) = o(s) Fy (5)(£1(5))"6(s — 4m2) (A7)

where f](s) is the the corresponding partial wave in 77 scattering. The previous equation
implies that, in the elastic region, d;(s) = d(s), which is again Watson’s theorem. The

crucial point is that an analogous unitarity relation holds for Fip(s):
ImmFPr(s) = ox(s) Fr(s)(fi (s))"0(s — 4mz), (A-8)

from which one can immediately derive that, in the elastic region, d7(s) = d,(s), a feature
that is not satisfied by our expression for Fr(s) considered up to now (and it will not be
satisfied for any value of Ay). This should not be understood as a failure of eq.  (A.4))
(together with eq. ), but rather as a manifestation of its incompleteness. Indeed, the
contributions from the next-to-leading order xy PT Lagrangian with tensor sources (O(p®) in
the chiral counting [518]) should provide with the needed energy-dependence to satisfy eq.
. However, since the number of such operators is 75 (plus 3 contact terms) even in the

SU(2) case [518], we refrain from proceeding this way as any predictability would be lost.
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Appendix B

Chiral ward Identities among four-

and five-point Green functions

In xPT, the Green functions are obtained through functional derivatives of the generating
functional Z (v,a,s,p). This functional is constructed in order that it is invariant under

transformations generated by the vector currents

Z(v,a,s,p) =Z(V,d,s,p), (B.1)

where
v, £al, =g v, +a,) g +i0.g' (B.2a)
St =g(stin)g,  glx) € SUE). (B.2b)

In particular, seagulls and Schwinger terms are automatically taken into account for an

infinitesimal transformation g = 1 +ia + O (a?),

dv, =ila,v,) + 0,00 = Dya, (B.3a)

o0l =i, I], I'=ay,s,p. (B.3b)
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One obtains from Eq.

<aDM(SUiZ($)> = ZZZ: <[a,[(x)] 5?é)>, (B.4)

differentiating Eq. With respect to v, (y), v3(2), vat*?(w) and v3(t) we get an expression

that relates the divergence of the Green function of five points with that of four points.
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Appendix C

Amplitude for the 7= — 777 yu;

decays

For the radiative decay 7= (P) — 7~ (p_) ©° (po) v+ (¢) v (k), we can split the contribution
due to the bremsstrahlung off the initial tau lepton and the other coming from the hadronic

part, this is shown in the figure[C.I] We write down the general structure for these processes

'7T0

vy

Figure C.1: Feynman diagrams for the 7= — 7~ 7%/, decays.

T = eGpVe (k) {F,a(g) 7" (1— ) (me + P — §) . (P)
+ (Vi — Aw) u (@) 7" (1 =) u (P)},

(C.1)
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where F, = (po —p-), f+ (s) /2P - k. Gauge invariance (¢, — €, + k,) implies the ward

identities

B = (o —po)” fi(s),  with s = (p_ +po)? (C.2a)
B AR — 0, (C.2b)

In order to determine the general structure for V,, and A,,, we followed the same technique
as in Ref. [701], first we isolate the photon off the final 7=, this process W~ (P —¢q) —
7 (p-) 7 (po) v (k) is shown in the diagram [C.2] the effective coupling is:

' = —ie(p +p), (C.3)

this contribution is proportional to the form factor f. {(P — q)g].

We can write V# as V# = V" 4V | where V/* is the contribution that we have found

7
e
,
;
7
e
,
ANNANNN
N
— A
W . v
N
N
N

Figure C.2: Bremsstrahlung off the charged-pion.

before.
P (po —po+ k)’ 2
V'llw:p (pp_.pk_F ) f+[(P—Q)], (C4a)
VI = (- —po+ k) f1 [(P = )], (C.4b)
and finally
k" = (0= —po)” f4 () = (- —po+ k)" f1 [(P—)*] (C.5)
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We propose an structure for V* using the four momentum (P —q), p—, po and k but only

three of them are 1. i., so we have
V™ = by g™ + by p" k¥ + by phk” + by p ply + bs php” + be p 0" + b7 phpf (C.6)
or through a change of basis,

V™ = by g" + by "k + by phk” + b, (po + p-)" Pl + b5 (po +p-)" p* )

+ b (po —p-)" P+ 05 (po — p-)" s
imposing the ward identity and making the change by — —v; + (po - k) vy, by — —vy —
(p— - k) v, by = — (p— - k) vg, by = — (p— - k) (v3+vy) (or by — — (po +p-) - kvy/2, by —
— (po +p-) - k (v3 +vy) /2), we obtained these two equivalent expressions for V#”

w pL (p- —po)” o1 (PR L,

Ve = o) P (P - (p__k_g )
+u1 (" p_ -k —phEY) + vy (g™ po - k — phk") (C.8)
+vs(po-kpt —p_ - kpy)p” +valpo-kp —p_-kpp) (po+p- +k)"

and
v = g [P -] EEEIL g [ g g
[+ {(P—Q)Q} = [+ (s) " v

e ) e p) ©9)

+v1 (" p- -k — pLE") 4+ v2 (¢" po - k — po k")

v

+ s (po-kp —p_ - kpo)p” +va(po-kpt —p_-kpt) (po+p-+ k).
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The second is the more useful than the first one because if we take into account that

(P—q)>=s+2(po+p_) -k, the Low’s theorem [702] is manifestly satisfied

14 %
v p— 174 p—k v
V= )L o ) (2 - )
p-- p--
af. (s) " (C.10)
S Do - v
p s L —ph ) (- —po)’ + O (k
2 (p_.kp Po) (- — po) ()
For the axial structure, we followed the same method
AR = ¢ €77 p_ pog + C2 €777 p_ ok + 3 € oy kg + cap? €Ny po ki
+ ¢5 b €7 p_x pop ko + Co k7 €N p_x poy kg + 7 D € p_x po, (C.11)
+ csph € p_y Pop ko
imposing the ward identity for A", we found one equation that satisfied k, A" = 0
ci—cr(k-po)—cs(k-po) =0 (C.12a)
with this equation and using the Schouten’s identity we get
A=Ay P p_ ks + Ay € o, ki
(C.13)

+ Az p” 7 p_y pop ko + Ad Dl P\ pop ko,

where Ay = ey +erp_-po+esmi —cok-po, Ay = c3—crmi —cgp_-po+cek-po, Az = catcy
and A4 = c5 + cg. For this case, there are only four Lorentz structures contributing to A*”.

We can chose the basis given in Ref. [700]

AP = e (apoyks + ayk, W) + i€ kxp_, poo (ay WY+ aly (po + k)”), (C.14)

which is a linear combination of the basis in eq. [C.I3] where W = P — ¢ = p_ + py + k,

but instead we're going to use a modified one that resembles the decomposition given by
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Ref. [94]

AR =jay "7 (pg — p_) ko +iag (P —q)” "MLy D) Dow
g ’ (C.15)

+ taz €7k, W, +ias (po + k)" MM oy P—p Doo-

C.1 Anomaly

We have a contribution to these two diagrams (Fig. |C.3) due to the chiral anomaly. The

T ST
ANNNNNANANNANN- Y ANNNNN— - - - m oo ANANNANAN Y
W= W= T
70 0

Figure C.3: Anomalous diagrams for the transition W~ (P — ¢q) — 7~ (p_) 7° (po) v (k) con-
tributing to the axial tensor amplitude A*”

Wess-Zumino-Witten functional O (p*) [212,213] can be expressed in two terms which are

) 1
M sy <T+ {UTDgU, Q-+ UTQU}> +he,
44/27 sin Oy K 2 (C.16)
_ Vg vap 0 + + 0 '
= T %rsin o 2 waze“ W, Foa (7r O™ — T Ogm ) 4

'Canom (W’}/) -

where D, U = 0,U +ieA, [@, U] is the covariant derivative with respect to electromagnetism

only, and
Lanom (67) = =157 A, (Q [,U0,U19,UU" — 0,U'9,U0,0'U]) o
C.17
— 47; € Aoy O
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where F,, = 9,4, — 9,A,. Eq. give us the coupling between W~ 77,

N gw € VJd praf

w = 167T2f2 € (Po _p—)a kﬁ?

while Eq. give us the coupling between 77~ 7%

e
_ af _
FM - _47T2f3 Eu r (P Q)a p—,B pOpa
then we get
1 -1
1= 9 50 = 2 7
82 f 4m? f2 (P = q)° — m2]
or
/ 1 a’ 1 a —1
A = —— = — g
L 4prfr 2 8r2f?’ S 4prpe [(P—q)Q—mﬂ

C.2 RxT contributions

(C.18)

(C.19)

(C.20)

(C.21)

Using the antisymmetric formalism for spin-one fields, we write the RyT Lagrangian as

[224, 225, 813]
£reS(R) = Z [Ekm(R) + EQ(R)] )

R=T,V,A,H,S,P
with
1 LV, po
Lin(R) = —5 (TuDF*" L), R=T
1 1 1
Lhin(R) = = <VARMVVR”“ - 2M§RWRW> — SO R OB

1
+ ZM]%lRLWR’f”, R=V,AH

1 1
Lyin(R) = 5 (V'RV,R - MRR?) + 5 [0"Ri0u Ry — M}, ), R=SP

where

V,R=0,R+[T,, R,
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1

Ip=75 {UT[au — (v, + a)]u + uld, —i(v, — au)]UT} )

k9

and

1
Dy = (99, + M3) [2 (9"°9"" +g"g"") — g"”g”"]

1
+ gPm D + g PO — 5 (g7 O1OP + g OHO” + ghT P + gPrOT DY)

Mp and Mg, are the masses in the chiral limit. Interactions with the V', A, S and P fields

start to order p? and are given by

L[V =%

Ly[AQT)] = LA, 1y,
}

Lo [5(0M)

Thus, we get

V2
/

v
JW— —pO7—

T smro0 = \/_f2 (4va w (P q)“> <

Ty = V2{E (™ (po + p-) 0° (k) | A0 "| 0)

— (0420 (P~ (po+p-) 2 (k) |
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(2va w=Fv (P =4q),) (¢ (po+ k) |p™]0

(C.24a)
(C.24b)

(C.24c)
(C.24d)

(C.25)

(C.26)

(C.27)

(C.28)

(C.29)

(C.30)



T ue = —V2F4 (P =q), (a7 (P =) o™

0)
T ruy = 1€V/2Faes (k) (a7 (p- +po) a7 0)

V2F,

Kor-msarm = =5 (P =), (ay (p- + k) [a™|0)
T sam- = ﬂfF (P —q), (af (po + k) a2 | 0)
2Gy

Gora0 = “p2 Poubos (07| p™ (p- + 1))

Gresmp0 = —2?; (P+p-), 0 (0" (P)|o"] 0)
G0y = QJCZ;V (P —4q),pov <p‘ (p- + k) ],0‘“” 0>

Gy = e Fyr ke (k) (0

P (k)

0
Puv

1
Gy = ge Fy ke (k) 0w | w (k)

(&

Gp—ﬁﬂ.—ﬂ.o,y = 2f2 (4GV p‘o‘ + FV /{Z‘u) e (k) <0

P P (P =)

G py = —ie ey (k) {(p— +10)* (p~ (0- +p0) |l 07| 0~ (P = 0))
+(P =9 (p™ (- +p0) |p™" P3| 0™ (P =)}

l

27 {8 (po = p-), (0" (k) %, 07" ™ (P = q))

+(P = q)* (po — p-),, (p° (k) |0 o3, o~ (P = 0))}

GpSpor—m0 =

F
Goryry = —ie%k“e*” (k) <0 ‘al_w

ar (p-+k))
For the first diagram, we have

YRRV P00 D [P~ 0] (ko)

_ QﬂjiVGveez (k) D,* [(P - qﬂ pe kot po+p-)"
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Figure C.4: p and a; exchange diagrams for the model at O (p?)

for the second diagram, we get

V2R, Gy, B o
= ]027]\/[‘/2‘/66/1 (k) D, (s) M7 (p'"pl — p" 1) (C.45)
P
for the third diagram
2\/§F G * N N 1 v v
A 0007 ] (e
P
1 ) |
—spp” — (P —q)*pbp” + (P — q)* pph + SPSLPS} ;
for the fourth diagram
== 306 B D (P = )| M {(k - p- g™ = )+ (k- po g = pK))
p
V2R, Gy, B ) )
FiMZV“M (k) DM [(P = q)*] M2 {(k-p_ g™ — p"K") (C.47)
P
1
+ppt + Pl + PR — 5 (P —q)’ gW} ,
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for the fifth diagram

V2RV Gy, B i} ) ) )
e (D, (9) (s (k- po g — P) = (k- po g™ — pk))
o

for the sixth diagram

V2F}
= ec€
2f2M2

—(P—q)* (k- pog"™ — pbk") + 2 (k- pop’ — k-p_ph) (- +po+ k)" },

(k) D, [(P =)’ {(P = a)” (k- p_ g™ — )

for the seventh diagram

== 2fQMg@q,,(ff){(/f-p—g“ — PEEY) + (k- pog* — pGk")}
W2 Gy ) ,
W‘y[@ﬁ#(lﬂ)(/ﬂ-p—g“ - PLEY),
p

and finally, for the a; exchange diagram

\/§Ff21 * —1 2 2 2 1 v Wy
:f2M3166,u (k> Dal {(p* +k) } {(Mal _mﬂ+28> (kpigu _pfk )

+ (M2 = m2 = k-p_) (k-pog" — phk") + (k- popt — k- p_pb)p” },

with D,(s) = M2 — s the resonance propagators.

The overall contribution for these diagrams is

=/2¢ e (k) [v1 (g™ p- -k — pLE”) + 02 (g po - k — pok”)
+ws (po-kpt —p_ - kpy)p”

vy (po - kpt —p— - kpg) (po +p— + k)" + X",

284

(C.48)

(C.49)

(C.50)

(C.51)

(C.52)



where

o= O (o a2 [P -] 405 )+ 5020, () 0 [(P = o)
p
+3 f% (—-1=M;D;" [(P—q)’| + (P =)D, |[(P—0q)])
iy (M8 =t 5a) O [ 4]
2 G1
vy = szMV; (=D, (s) - M2D," () D, [(P — ¢)?])
2
b o (<1- 220, [(P = 0] = (P = 0 D, [(P - o]
+ fiéi (M7 —m2—k-p ) D' [(0- +F)],
U3 = fQMngm [(p* +k> } ’
o= =2 ) 0 [P = 0] + i 07 [P~ 0.
p
X = 2FJVCQGVD,01 () D, [(P—)*| [(2M; — s) ot — M, php” — sp"p”

v v 1 2 v
+M? phph + (Mg —s)p’ik - §(P—q) (Mz —s) g" } :
The term proportional to ¢ in X* is a contribution to the diagram shown in Fig. [C.5]

and the others are contributions to {er [(P - q)ﬂ —n (s)} in eq. [C.9, Thus,

s T
MNNNNANT Q) L\/\/\/\« 8
0 0

Figure C.5: Diagrams that receives contribution from X"
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2FvGV

X ==

DM [(P =) P (p- +po+ k)", (C.54)

is not gauge invariant and receives contributions from diagram 3 and 4 which is canceled out
by the contribution of the first diagram.

There is no contribution coming from the transverse part, Q7 for the p-exchange dia-

HV,po )

grams.

Using the contributions to O (p%) for the even- and the odd-intrinsic parity sectors [385}/684]

, we get
)4
G oy = 8V2\em2e ke (k) <O ’pgy o° (k:)> (C.55)
Gy = 8\/_)\6m 2e k"e (k) (0 |w,u| w (k) (C.56)
2
Gppn0 = }é_ (4m Ag +2m2 g + 4mZ Ao — s)\zl) plpy < ‘plw “(p_ +p0)> (C.57)
2
wa_m—po = — \é_ (4m )\8 + 2m )\9 + 4m )\10 —-P )\21) (P -I—p_)“pi
f (C.58)
x (0" (P) |5,] 0)
Gorsmop =212 (425 + 3m200 + 4o — (b + ) ) (P — 0)" 7
f (C.59)

0)

x (p~ (p-+ k) |p},
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2

G pm0y = }é— {2)\6m Kre (k) + Ahsm2phe™ (k) + 2 gm2plhe™ (k)
+4)\10m72rp6be*” (k) — 2X12 (p— - po) K*e™ (k) + 4/\20m2 kte (k)
—l—)\lg[‘i(pmk;go”’—k”pg)—i-pff(p_'kg — kY a)}e (k

(
)
(po- kg™ = k'pg) — b (p- - kg™ — k"p%)] €& (k)
(k)

A {
+is [P (po - kg™ = KpE) — b (- - kg™ — K*p2)] €t (k (©60)
+A16 (0— + E) (po - kg™ — k"pg) €, (k)
~ 17 (s = 2m2 + 2k - po ) k€™ (k)
—Nas (p— - kg™ — K"p% ) phes, (k) + Mo (po - k g™ — k"0 pes, (k)
—Xa1 [(P = )’ phe™ (k) = 2 (p— + po)o € (k) P}
—A22 <;S + 2k - po) ke (k’)} <0 ‘P;y p~ (p- +po+ k)>
T =41 (=40 + A2 (P = 0)*) (P =), (p™ (P = q) |p""| 0) (C.61)

ng =P =die {(“Wiﬁz (k) = Az [(k - p— Gua — kup—a) + (K - Do Gua — kupoa)] € (k)
Aoz [s e (k) +2(P = q)" e, (k) (P = q),]) (0~ (p- +p0) [p™*]0)
+ (M (P = )" (k7€ (k) — kPe™ (k) — Aaakte™ (k) (p— + po — k)7)

0)}

x (p™ (p- +po) |y
(C.62)
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Ty om0 = fz{( 226m2 (P — q),, +2(2Xs + Ao) m2p_, + Mz (s — 2m2) (P —q),,

Tt

W——p07—

—p~—m0

o

1
— i3 [28 (po+p-), + (k- p_pou +k 'popu)}
1
+ (Mg — Ais) [28 (po —p-), + (k- p-pou — k- po pu)]

e (;s +k -p_> (k+p-), = s (m2 +k-p_) (P —q),
+)\18<;s+2k p_+k- p())p pt Mg (s+2k-p_)p_,

—4Xoom (P —q), + Aaa (k- po — k- p-) u) <p0 ‘POW‘O>
+ (As (P = @)” (b2 + p206) — (Ma — Ais) (P = @)” (6P~ — ppf)
+ Ao (P = @) (k+p-)"p2 + Mis (P — @) (k+p-)°"p2

+219 (P = @) 02 = dor ol (p— + po — K)”) (° (k) |,

0)}

(C.63)

4
= {(40em2 (P — q),, — 2(2\s + Ao + Awo) m2p_,

f
— (M6 —2Mi7)p- - (P —q) (P —q),

— s (P — q)Qp—# —2Mop— - (P —q)p—y + 4)\20771,2T (P — q)u
FAar (o + k)P = Doz (o + B)* (P = 0),,) (0 (o + k) [ 0)

— (s (P =)' " (P = 0) +2\10 (P — 0)" ") {p (po + K) |,

0)}

(C.64)

4
{(—4)\6m3r (P — Q)M + 2 (2)\8 + )\9 + )\10) mfrpou

+ (M6 — 2M17)po - (P —q) (P — Q)u
+ Mg (P — q)onu + 2M19p0 - (P — q) poy — 4haomis (P — 1),
— g1 (pf + k)2p0u + Aoa (p, + k>2 (P _ q) ) <p— (p, + k}) ‘er,up‘ O>

+ (Mg (P — )" pi (P — q)" + 210 (P — )" pgpt) <p (p- +k) ]p,fu

0)}

(C.65)
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pr_mow—ﬂo :Zf2 {2>\VV pP— p()

V=M (% pos — pip-s)

5= (A
+225" (% pos + pip- 5)}<P0 )| O 97 07 (P = )
Gppy = —i2eN)Y (ke k) (p™ (- + o) | 0| 07 (P = q))
G sy = —12eNYV (K€, <a1 P+ 10) | 0| a7 (P = q))
Gy sp- = —4idg 'm; <p‘ (P =) |ppa 0| p~ (P q))
Ty g0 =2V2NYV (P =) {(0° (k) p™ (0~ + o) |07 pla] 0)

— (0" (k) p~ (p- +po) |p

AV A
O

Gy arr0 :; {2\ 2 + X po - (P =) (ar (p- + k)

Oap +
Pra

0)}

P 01" 07 (P = q))

+ (=20 Phpoa + A5 (P = @) poa — A6 (P = a),)

x (ar (p- + k)

p~—ajm :;{<_2)\¥A 72r
+

(20" p-a

x (af (po + k)

2
T
_|_

x (p~ (p-+k)

VA
_ )\5

p/,l,l/ ay

)\VA (

Ova
plLl/ ay

(22 *Phpoa + Ay (- + k) poa — A

-+ —rvo
p,u,l/ ay

+ra

p-(P—q)}

p- - (P =) (af (o +F)

Ouu
Py A1

p(P—q))

— )" pa+ A (P —q),)

p(P—q))}

ar (P—q))}

Gormspon- :; {2 ml =X p - P) (0 (P)

+ (—QA;/Ap’ip,a — N APEp_, + N AP, )

x (o (P)

0 —va
p;u/ ay

ar (P+p2))}
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" =22 {(=\* g7 (P — q),, + 05 (P — @)°] + Ay kg™ — A4k

W——plal
+AE 97 (P = q), — 8(P = )°]) x (o° (k) ar (p— +po) [p™" ] 0)
A (0" (k) ay (- + po) [p™af,, | 0)}
(C.75)
Ty =2V2{(N* [ (P = 0), + 62 (P = @) = N (- + p0),, 9" + AV (p— +po)* 0
Mg (P =), = 00(P = q)°]) x (o (p- +po) af (k) [p™" a3, 0)
~N A (p- +p0)’ {p~ (p- +po)af (k) |p"al,,| 0)}
(C.76)
o1
Ty = =i [ANgm2 = A (P = q)*| (P — ), (ar (P = q)|ai"|0) (C.77)

4
T a0 =7 {(=axim2 (P = q), + 2\, po - (P — @) pou — 2\ po - (P — ¢) (P = q),,
+A (P = q)° poy — 4Mgm3 (P = q),, + My (0- +k)* (P —q),,)
x (ar (p- + k) |af*] 0)

+ (205 (P = 0)" s + M5 (P = 0)" 5 (P = 0)°) (a7 (p- + k) |a,

0)

(C.78)

T satn- jc {(IMm2(P—q), —22\hyp - (P =) pp+ 20 - (P =) (P —q),
~A5 (P = @)* pou + 4Xigm2 (P — ), + MY (po + )* (P — q),,)
x (a (po + ) |a1""] 0)
— (AL (P =) Pt + M (P = ) 97 (P = )) (af (po + ) |af,,

0)

(C.79)
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Gal_—>7r*'y - ZTe [4/\214 mik,ue*l/ (k> + 2)\142 (k " p- gua - pgk”) E:ypl:
=2y (- po) K€ (k) + ANgmER €™ (k) = M (p- + k) ke
x (0]ar,,| ar (p- +k))
8 v/ _
W ary = e k- (P =) g — (P — )" K] ¢, {ag (po + p-) [ag |0)
4
- =i [4)\gmip’i + 205m2p” — 2X5m2p” — NS, (po + k) p”

+ANmZey (k) = A [s e (k) +2 (- +po), € (k) (P = q),,))

+ [(Afh = M) (P = @) (ke (k) — ke () — 22X ke (k)]

% (ar (p- +po)|ai"’]0)

0))

X <a1_ (p— +p0) ‘aﬁw

22

5 (P= )2 = p- - (P —q) (P = 9))] {fo (po + k) | fo] 0)
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o)

ipvaf

Y — =f42 {2(sY = kY +5Y) 06 9” (po +p-)°
+2[(kY = kY + 53 ) o po+ (265 — KY5) m2] g°* (po — p-)°
— (Y =Y kY +m +ry = w) (P —a)* (0o — p71h)
— (WY = ry +wY —rg =+ R) ¢ [(P—a)-p-pb — (P —q) - pop”]
+ 2615 [(P =) (Db = P2 %) — ¢** (P =) -pows — (P —q) - p-p")]
+ k35 (P — @) [(po + k) 6 — (p— + k)7 p]
— kY7 (P = q)* [(po + k) pg — (p— + k) pL]
— K1 9" (P —a) -po (po+K)" = (P =) - p (p— + k)]
+r17 g™ (P —q) - (po+ k) py — (P —q) - (- + k) p2]}

X Cuves (w0 (R) ] 0)

(C.84)
T pn :436 {(=s0 +55) (P = 0)" [P (k) — k2e (k)]
= (sl +a0) o [k (P=q)g” = (P=q) W] s (k) (C55)

— 1o K€ (k) k) € (o~ (0— + po) [

0)
4 . .
T suom =7 {2615 (P = )" p2p + [261y (P = @) - p- = Y (P — )] 9

+ [4ryym + Kigp- - (P—q)| g** (P = @) + kY7 (P = )" (P =)'}

X €uvap <W (p() + k) ‘wlﬂf| O>

(C.86)
42 o

G7r*—>w7r*7r0 :? {(I{Y - '%;/ + /{;/) [(P —q +p—) pg (P - q) " P-
— (P —q+po)* P2 (P —q) - po| + (265 — 1) m2 p5p? (C.87)

+ = (s =8y +6Y) o po — (265 — sl) m2] (P =) (po —p-)"}

X €ap (W (k) ] 0)
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2v/2
3f

Gomoy = { =21, [k - po g — phk) € (k) pg + (4rYym2 — ki - po) k% (k) }

X €pwas (0 ]ﬂo“”\ P’ (po + k)
(C.88)

2v2

G0y :Te {—2/1‘1/2 [k - po g™ — pOk°] e; (k) pg + (45}/4771727 — /4;}% k 'po) Lee*P (k)}

X €uvas (0w w (po + k)

(C.89)
2\/§ * Q%
Gp-sn—ry I?e {—2&}/2 [k-p_g™ —p2k €, (k) p” + (4/1}/4mfr — gk ~p,) keeP (k:)}
X €uvap <0 \p“” p-(p-+ k)>
(C.90)
72\/5 1% po P .o * _\B
Y e{=2s\,[k- (P —q) g™ — (P —q) k"€, (k) (P - q) o

+ (4kYim2 + kY5 k- (P = @) k¢ (B)} €was (o~ (p— + o) [0

2v/2

G0 po 37 ¢ {2% po - (o + k) ¢"* — 1§ (po + k)] Pl

0)

+ (48Yym?2 + KYgpo - (Do + k) ) ¢ (po + k)"

iz (o +8)* g™ = (b0 + k)" (o + K)”] 90 } €uvaas (0 () |0 A7 (P~ )
(C.92)

22

Cromo =—¢ {2k1s o - (po + k) 9 — 1 (po + K)°] pf
+ (4/1}/4mi + KYspo - (po + k)) 9" (po + k)’

—k (o + k) g7 = (po + K)* (po + k)°| PG } €y (w () |0 A,| ¥ (P = q))
(C.93)
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ipvaf

=~

Thrpe =1 {[ (53 + 515) p- - (P = @) + 4rim2 ]| 9" (P — ¢

~

+ 26 p- - (P = q) = k{5 (P — q) + 26ym2 | g*°p” (C.94)

— [268 2 — 575 (P = @) (P — )" P2} € (f1 (w0 + K) | ££]0)

2¢/2

G om0y =1 372 (k8 — g+ 57) e (k) [(k - po g™ — pgk*) p” — (k- p- g™ — p7k) p{]

X €uaf <O ‘af‘“" aj (P — q)>
(C.95)

ARR
Oiuuaﬂ

oo =12V 2605 { (55" 0 ko 5V 00K) (07 (0 + po)w (k) |07 0)

+ (Iiéf‘/gﬂ@ (Po+p-), + /{XV(;g (po —f-p_)a) <p_ (p— + po) w (k) ‘p-&-m/wﬂa‘ 0>}
(C.96)

GP*—WW* :ijzceuuaﬁ {_4K¥Vm72r <w (P) ‘p_uywaﬁ‘ p_ (P + p,)>
+ (/fgvpf P, + k) po 730‘) <w (P) ‘p‘ﬁ"w"” p~ (P+ p_)>

— (5502 P4p)y + 51 Do (P+p)") (w(P) |pw™| o~ (P+p))}

(C.97)
Gysant =i s { =458V (600 [0 (oo + 1)
+ (15" 56 Ko+ 1} Y poo k) (w (R) [ 07770 | 6° (po + ) (C.98)
= (15" (oK), + 51V pos (po +K)*) (w (R) [0 | p° (po + R)) }
Gy po0 :i;eumﬁ {—4n¥vmi <p0 (k) ’po’“’wo‘ﬁ‘ w (po + k‘)>
+ (ﬁ}{vpg“ ko + K3 Y poo k‘a) <p0 (k) ‘po“”wﬁ" w (po + k)> (C.99)

— (K¥VDE (po + k), + 51 pos (po + k)%) (p° (k) | p"wr”

w (po + k)>}

294



— &y = kY] (oo 2% = Do 1) €uas (w () [0 a; ™ ay (P —q))
(C.100)

ar (P—q))
(C.101)

(ke (k) = ko€ (k) € (7 (0 +po) | ar ™
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Appendix D

Magnetic dipole moment of the p

meson

Measurement of the magnetic dipole moment of vector mesons is not an easy task because
they have a very short lifetime about 10724 s, but it is possible to infer it indirectly through
its impact on some low energy processes.

The electromagnetic vertex for a vector particle (V') is defined by [815]

(V(g2,m) [ 5ar (0) V(@ €)) = mjenI™™?, (D.1)

where ¢;’s are the momenta, 1 and € are the polarization vectors. The most general Lorentz

structure that preserves C', P and C'P is the following

2
q v
gl )(Ch + ¢2)!q q’\

I = a(g®) g Ma + @)" + B(*) (9" ¢ — 9"*q") — Ve
v (D.2)

— a1 9" — gh g,

where a(q?), 8(¢*) and y(q?) are the electromagnetic form factors [816},817]. The magnetic
dipole moment of the p meson can be obtained from the V (q1,€) — V (qa, ) v (q) electro-
magnetic vertex using the Eqgs. (C.41)) and (C.67)), and for a spin 1 particle in the formalism
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of antisymmetric tensor fields [224}225]

(01Wouw| W, p) = iM ™ [pues(p) — preu(p)] (D.3)

with the usual polarization vector €,(p).

Thus, we get
5‘CRXT i f VA o Vv v A ULV
V(q%lr]) 51} V(QIJ 6) =1,6XN\ 9 <QI + QZ> + (]' - 2A7 )[g k* — g k ]
o
e A (D.4)
+ W(% +q2)"q"q },

comparing with eq. (D.2)), we have Qy = a(0) = 1 (in units of ), uy = 5(0) = 1 — 2\
(in units of e/2My) and X, = 1 — 3(0) +27(0) = —2\YY (in units of e/M2) where v(0) =
—2\YV At tree level, the prediction for the W gauge boson is a(0) = 1, 3(0) = 1+ k+\ = 2
and ¥(0) = A =0 (k =1 and A = 0) [816,817], which correspond to Qw = 1, puw = 2 and
Xp,, =—1.

w
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Appendix E

Pseudoscalar resonances in radiative

di-pion tau decay

Taking into account the pseudoscalar resonances, we have the following contributions:

Or

T a0 = = ijif (P—q)° o —po- (P—q) (P—q)f] (#~ (o + k) [7|0)  (E.1)
Ty mn- =jiA5 (P=q*p" —p - (P—q) (P=q)| (x° (po+ k) [7°|0)  (B2)
Ty = =8ie A (P = ), [ €7 (k) — K €7 (k)] (7'~ (p_ +po) [T 0)  (E3)
G gy = —z'4\f/§e Aam2p_et (k) <0 7 (po + k)> (E4)

orv
G- = =MV P (i (P) o |~ (P4 10) (E5)
G opno = 2NV (p_ + k)" 1§ (p™ (p- +k)|py, |7~ (P =) (E.6)

f
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Gy = f»fv (p— + k)" P (7~ (0— + k) |p ™| p~ (P = @) (E.7)

P
Oiw/aﬂ
14 32 P Y Vo *08 /— 14
Ky = =5 €58 o g (P = 0)" k7 (k) (7~ (p-+po) |[7*]0) (BB
4\/5 . N .
G- m—r0y = sz (/@2 + 2K3 ) e k'™ (k) p™ pl €uvap <O |7 (P — q)> (E.9)
PV
Oi/u/ozﬁ
2 |
G- —som—m0 = 7 (2I€fv - mfv) €wap D™ Do <w (k) ‘w’“’ |7 (P — q)> (E.10)
4 . - v -
Gripy = 3045 €uvag k€7 () (P~ (p-+po) [p™ '~ | 7'~ (P = q)) (E.11)

E.1 Mixing

We have a mixing between the P resonance and the m meson

1 1
L=-— imfr [71'071'0 + 27~ ﬂ —3 (mfr, - 4/\§Pm72r) [7?/07?'0 + 27T/_7T/+}
/3 (E.12)
+T fr(d + 4\Em? )\13m)[7r'07r0+7r T+ 7r+]+---,
this equation can be rewritten in a similar way
1 1
L= — §HTIM1H — 5Hgﬂ\AOHO SR (E.13)
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m2 0 —Lfmfr d 0
0 m2 0 —L*;ﬁmfr dl,
Ml = 9

—L\;imfr d, 0 m? 0

0 Lfmfr d, 0 my

and
m2 _Lﬂm2 d’
Mo _ ™ f ™ 'm ’
—2—‘f/§m2 d m?

with m? = m?2, —4\PPm?2 and d, = d,, + 4\ym2 — Aym?.

(E.14)

(E.15)

The flavor eigenstates (I, I1y) are related to the mass eigenstates (ﬁ, ﬁo) via their mixing

angle 6’
7t cos &' 0 sin @’ 0 T
T 0 cos 6’ 0 sin 6’ T
- b
s —sin#’ 0 cos ' 0 't
7 0 —sin & 0 cos &' '~
70 cosf  sin 0
- )
70 —sin® cos®’ 70
with

Jond = w27+ Bnldg — (md = m2) 23 wid,

‘an 0, —
\;7 ﬂ'dén

fomi—mz

The masses are MY = diag (m_,m_,m,,m,) and M{ = diag (m_, m, ), where

1 9 9 2 32 m?2 8m4d/2
_ 1 + 2 2 Q& 4d/2 ~ { 1}:|:7rm.
ms = o (m1+m7r \/(ml m2) +f2m7r m> m2 F2(m2 = m2)

After this change of basis, we have the following contributions

T

Ty e = —iV2fsinf (P —q) (x~ (P —q)

0)
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(E.17)

(E.18)

(E.19)
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4
Ty =m0 = {—Aff cos’ 0 [(P = q)* pf —po - (P —q) (P — )"

f

f
—V2sin@ cos b (p_ +k — po)p} <7r’_ (p— + k)

4\/§ *U «
GW,7%F7W07 = {ng‘Q (Iig + 2/{5) C083 6/6 kfe (k) pP_ pg

—1

42

7

47T§f3 cos? 0 sin 6’ (P . q)u & (k) pﬁpg} Epvaf <0

£ IS0 [(P = g (b + k) — (b + ) - (P—q) (P —q)]

0)

~—
™

Grrm gy = —1i { cos? @' AymZ p_e (k) + 2sin 6 cos 0'p_ e (k)}

f

X <O T (p- + k)>
2
Gy == FALY 080" PIp (o (P) |of, 7| 7'~ (P + )
—sin® cos ' G-, por—
2 _ |
Grinyyoso =N 080" (p- + k)" B} (p~ (p-+ k) |pf, 7|7~ (P = q))
—sin cos 0 Gr-_, o
2 _ _ o _
G om0 =M cos” 8 (p- + k)" 15 (7 (0 + k) |pp, 7| p~ (P =)
—sin@ cos 0 G p—ro
4 |
G ypry =3e K2V cos 0 € s k* € (k) <p* (p— + po) ‘p*’“’ 7|7 (P — q)>
—sing G-,
2 |
Crr=—som=m> =13 (25" = K5Y") c08® 0' €y p* g (w0 (k) [ 7| 7'~ (P = q))

—sinf cos? 0 G- yr—mno
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(E.21)

(E.22)

(E.23)

(E.24)

(E.25)

(E.26)
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Appendix F

Virtual corrections to di-meson tau

decays

The radiative corrections to the 7= — P~ P%, decays at O(p*) in ChPT are shown along

with Egs. (F.7HF.9). The Feynman rules needed for this calculation are:

<7T_7T0 iﬁ 0> =V2(p_ —po)H, <7T_770'y iﬁ O> = —V2ee(k), (F.1)
Uy Uy

<KK0 % 0> = —(p_ —po)¥, <KK07 % o> =ee'(k), (F.2)

1 1
<K_7T0 (;fj O> = \2(});( — pa)H, <K_7r07 ?555 0> = —\}56 e(k), (F.3)
<7T_I_(O % O> = —(pr —pK)", <7T_I_(O'y % O> =ee'(k), (F.4)

" 1
(m™(p)y(k) [iL2] 7~ (p)) = —ie(p + p')u € (K), (F.5)
(K~ (p)y(k) liLe] K~ (p)) = —ie(p + p)p €™ (k). (F.6)

The results in Egs. (F.5) and (F.6) are in perfect agreement with the prediction from sQED.
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where

, d*k 2(P + k)~

SH(t,u) = i€2Cy / AT MWQ& ( lj . )k)Q — (F.10)
, d*k 2 — k)M

SHY (t,u) = zeQCV/ )i = Mé]ﬁp— — 3{:)2 —mZ] (F.11)

and C’V’KK’KWO’KOf = {V2,—1, %, —1}. We have omitted the analytic expression for
dHY (t,u) due to its length. The overall contribution is given by
SH*(t,u) = 6HY (t,u) + 0HY (¢, u) + §HE (¢, u)

= Cyv of(u) (p1 — po)* + Cy o f—(u) (p1 + po)H,

(F.12)

where
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1 2
dfy(u) :Zf;{Q + - e + log 41 — log m—; + (u —m2)A(u) + (u — m?: —m?2)B(u)
H . (F.13)
+2(m?% +m2 — u)C(u, M) + 2log ]\_42 - },
b
o 1 m2 m2 9 9
0f_(u) :{ —5—-3(—-—7E +logdn ) +log — + 2log — + (3u+mZ — 2m3)A(u)
47 € 2 12
(F.14)
+ (u+m? —ma)l’)’(u)},
1 2—y
Au) = - l—Zlong + f T logm] , (F.15)
1 2rr —y
— = |Zlogr, logz| | F.1
B(u) lQ ogr, + N ogx (F.16)
1 T 1 7 1
C(u, M,) = P [ - §log2x+ 210ga:10g(1 — xz) s + glogQrT
+ Lig(2?) + Lia { 1 i I (1 —x/r;) —logzlo My }
1 - - T) :
2\ 2 e 2 g ngm,
(F.17)

Here, A(u), B(u) and C(u, M,) are written in terms of the variables
m?2 u 1
= Y= lEro o “’:zﬁ@‘vy?“*“)’ (F-18)

and the dilogarithm

) L dt
Lig(z) = —/ v log(1 — xt). (F.19)
0
The radiative corrections to these decays induce dependence in the u—variable. From a

comparison with the results in Ref. [380], we get the following relation

5F ) (u) = 4‘;];(0) [T, m2,m2) + T, m, m2)] + -+ -
& f+1(0) [(u—m2 ) Aw) + (= —m2)Bu)] +--
and
5f—(u) = ;jwf(o) [Ty, m2,m2) — Palu, m,m2)] + -+
: (F.21)
= % f+1(0) |(Bu+m?2 —2m2)A(uw) + (u+m? — m2)B(u)] + -

RxT contributions will be shown elsewhere and the phenomenological application of these

results (apart from the 77 mode) is work in progress.
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Appendix G

Fit of leading odd-intrinsic parity
resonance couplings to the O(p’) LECs

Since the %) couplings are related with the w exchange which is known to give an important
contribution to the 7 — w7y, decays, we perform a global fit using the relations for the
resonance saturation of the anomalous sector LECs at NLO [684], the eqs. (7.10)-(7.18)) in
section and the estimation of the LECs in [81§].
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Neglecting all the other contributions, we get

Ky = (=2.14£0.7)-1072 GeV ', (G.1a)
Ky = (—8.849.1)-107% GeV !, (G.1b)
Ky = (2.245.8)-107° GeV ', (G.1c)
ke = (—=2.140.3)-1072 GeV ', (G.1d)
Ky =(1.240.5)-1072 GeV ', (G.1e)
Ky = (3.140.9)-1072 GeV 1, (G.1f)
Ky = (—0.1+5.9)-107° GeV ™, (G.1g)
KYg = (=5.949.6)-107° GeV !, (G.1h)
kY, =(=3.0£0.6)-1072 GeV !, (G.1i)
KYy = (1.0£0.8) - 1072 GeV 1, (G.1j)
Ky = (—5.3+£1.1)-107° GeV !, (G.1k)
KYg = (4.74+0.8)-1073 GeV . (G.11)

These values are in good agreement with our earlier estimation in section kY| <
0.025 GeV ™.
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Appendix H

Kinematics of four body tau decays

H.1 7 (P)— 7 (p_)7°po)y(k)v-(q) kinematics

In order to describe this type of decays we need five independent variables. We choose
s=(p_+po) u=(P—p_)? z=(k+q)? 0, which is the angle between the direction of
the 7~7% CM frame in the 7 lepton rest frame and the direction of ¢ in the 7= 7% CM frame
(see fig. and ¢_, which is angle between the plane of the 7~7% CM frame and the plane
of the v, CM frame.

We can write the invariants in terms of these variables

Figure H.1: The 7= — 7~ 7%, decay in the 7-lepton rest frame.
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P'po_ 9 )
x — M?
k= o]
q 9 )
s—m3_ —m2,
pb— Do = 9 )
2
u—x—m
po.(q+k): 2 7r0’
x — 5+ m?
P(qg+k)=——F—,
2
Py O s ) | N At
; 4s 4s a
_mﬁ%—mi_—u
— : ,
m?2 — s+ x)(z + M? x — MONY2 (s, 2, m?
b (s (M (sad)
4o 4o
(x+M2)(m2—s—u+m2) (ZE—MQ)COSQ
k= il . A ! . (s,u,x)
b= 4x 4 \V/2 (s,2,m2) T

(ZL’ B MWQ) )\1/2 (87 mi— ) mer) in 6. sind ¢
- Sin sSmé_ COS Q_
4,/1/5 Y ’
(2= MEAV2 (5,2 mi2a) A2 (s, 2, m2)

8v/s\/x

sinf, sinf_sin¢_,

e“”“BkMPVp_aqﬁ = X

Euyaﬁkupup—apoﬁ = ijaﬁk,uPVPOaQ,B = euyaﬁk,up—VPOOcqﬁ = Ew}aﬁPpP—uPOaQﬁ
- —Ewaﬂkupup—a(ﬂiy

where

As,u,2) =mi+s(s+u) +x(u—s—2m2) +m2(m? — s+ z) —m2(2s +u+ ).

Working in the 7-lepton rest frame, we have

m2 — s+ x)(z + M? z — MOV (s, x,m?
p (Mot M) (e MO (s )
dm.,x dm. x
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(m2— s+ a)(a = M) (z = MOV (s,a,m2)

E,=|q = y pr cos@,, (H.9)
i = <_ (z + MvQ):W (5, 2,mz) | (mz — Six)(x — M) cose,,> ‘.
m,x m,x
) (H.10)
T — Mv 9
sind,é,,
2\/x
(e MIONE(swmd)  (mEosta)(e - MDY
=\~ dm.x B dm,x cos by ) &
) ’ T (H.11)
T — M,y
— sinf,é,,

— m? +s — :IZ')(S + m72r* — mgro) + A2 (&»’&mz) A2 (s,mi,,mio)

cos_
4dm.s im.s
T T H.12
B mz + mfr_ —u ( )
N 2m., ’
g s —a)(s—md md) NP (s m) N (smd )
47721Ts 4dm., s (H.13)
_Sstu—z—m, -
N 2m., ’
. A2 (u,m2 m2 )
| = e ), (H.14)
2 2 ))\1/2 2 2 2N/ 2 2
]5»_ _ (S + m. TZWO) (S? L, mr) + (mT + s ZL')4 (S’ me 7m7r0) COS 0_) éz
m.s m;s
H.15
)\1/2 (37 m72r* ) m72r0) . N ( )
sinf_é,,
2V/s
ﬁO = <(S — m72r— + TZ?TO))‘UZ (S,ZL’,’ITL,ZF) _ (m72- +s— x)jl/Z <S7m721-—7m3r0) COSQ) e,
m,s m,s
12 ) ) (H.16)
A2 (s,mz_,m2,) . 0.5
— sinf_é
2\/5 P
6 — 2s(m2 +m2_ —u) — (m2+s—1x)(s+m2. —m2) (1.17)
cosv- = A2 (s,,m2) AV2 (s, m2_, m2,) ’ '
m2 —s+z)(x+ M?) —4dm, E.x
cosf, = (m- )( ) 7 (H.18)

(0= MONE (s, zm2)

where \(z,y,z) = 2* +y* + 22 — 2zy — 22z — 2yz is the Kallen function, and é, = cos ¢_é, +
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sin ¢_é,.

From eq. (H.17), we get

rs (5,1) = —my- + (M7 — s)(m? —w) + m3_(m7 + mio + s +u)

. (H.19)
LAV (g m2 2 ) N2 (s, ) -
27717%, 3
and
ux (8, ) —m2+m2_ — (mi +s—x)(s _|_m72T7 _ mio)
+ ) T T 9 <H20)
A2 (5,2, m2) AV2 (s,m2_ m2,)
2s )

these bounds on u and = correspond to the forward and backward direction, i.e. by taking
0_ =0, .

For the non-radiative decay, we have
DI = {u_ (5,0) <u<ug(s,0), (My +mp)’ <s< mz} : (H.21)

this region is plotted in fig. which corresponds to the projection R*/! onto the su-plane.
In the case of the radiative decay, we have

DIV = {xmm (S,U) S X S Tmax (S,U) y Umin (3) S u S Umaz (S) )

(H.22)
(My 4+ my )’ < s < (m, — MW)Q},

with
(s.) z_(s,u) uy (S,M,%) <u<(me—me)?, (Mme- +mp)’ <s<s*
Tmin (S, U) =
Mg U_ (S,Ms) <u<uy (s, Mg) , s <s<(m, — MW)Q,
(H.23)
Tmaz ($,u) = x4 (8,u), (H.24)
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Upnin (S) = u_ (s, M,?) , (H.25)

2 2
My — My— Mp— +Mypo)” <5< 5%,

Umaz (3) = ( ) ( 0) (H26)
U4 (8, Mg) s <s< (mT - M’y)27

T T —+ 2 —m?2 _M2 — . . . .
where s* = = (7, wT’fmm_"_) "™~ is the value that maximizes Uyt (s, MWQ) We will be
working in the isospin-limit (m, = mq), i.e. m2_ = m?2, and thus many of the last expres-

sions will be simplified.

We use a non-vanishing M, in order to deal with the IR divergences, at the end these diver-
gences are canceled out by those divergences of the non-radiative decay so we can take the
limit M, — 0. The projection RV = RIVIIL Gy RHIT of the D'V is plotted in fig. for
M, — 0.

25

2.0 [

15 [

1.0

05 -

00 &

L L L I I 1
0.5 1.0 15 20 25 3.0

s( )

Figure H.2: Projection of the kinematic region for the non-radiative decay R/! (gray) and
the radiative decay RV = RIV/HI y R (black and gray) onto the su—plane. RIV/!I
(black) is the kinematic region which is only accessible to the radiative decay.
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Appendix 1

Vector Form Factors in radiative

di-pion tau decays

We present here the vector form factors in 7= — 7~ 7%,y decays.

V2Fy
M2

p

o L (16K - po(2nty + rig) (=(2K - p- + 5)(2k15 + Ktg) + 2(P — 9)*17)
' D, [(k + po)?]

+

(2SA1V2 — (k- po+8) (A + AV = M) + 2k po + s)AY — 4k - p A

e dk o p N+ A 4k - p A+ 250V, 4k - poA) + 2k - poAY, — 2k -p_AZVz)
!
_|_
Mz Dq, [(k +p-)?]

(2MZ, + 5))(Ay)* = 8k - p_(2k - po + ) (2M, + 5)(Afy)* — 2V2Fa (k - po) sATs
—2V2F (k- p_) sAjs — V2Fas® s — 8V2Fuk - p- M2 Ny — 4V2F (k- p_) s\i

+16 (k- po) (k- p-) sAEATL + 16 (k- po)® sAAL + 8 (k- po) AL

(— 8(—2k - poM. s+ (k-p- — M2)s* +2(k-po) (k- p-)

+ 32 (k 'pf)Q le()‘iA?)z + 16 (k .pi)z s(Ay)2+ A58 (k- po) s(P — q)* M
+ (2k - po — 2k - p_ + 8)(2M2, + 8)(V2F4 — 8k - p_\h)) + Aiy(—8(s(2k - p_ (M7, — )

+ M2 s) + 2k - po(4k - p- M2 =2 (k-p_)s+ M2 s)Ay — 8(k-p_— M7 )s(P — q)°Afy
+ (k- po(4M2, — 25) — s(2M2 + 8) + k - p_(—4M2, + 25))(V2F4 — 8k -p_Af7)))>
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oA

1 64k - poFy (—(2k - p_ + 5)(26Yy + KYg) + 2(P — q)*ki7)KY Y
2V/2F? MZD,, [(k + po)?]

64k - po(4k - po + 2k - p_ + 5) (2kT, + KYs)RE Y (= Fv + 2v2(P — q)°A3,)
D, (P —q)*] Do, [(k + po)?]

(2(2\/§FAk p- M2 —V2F4 (k-p_)s+ V2FAM2 s

. 2Fy,
Mg M2 Do, [(k +p-)?]

+4(=2k - poMZ s + (k- p = MZ)s* + 2 (k- po) (k- p_) (2M, + 5)) ATy

A2k o+ 8) 2k p M2, — (o p)s + ME )N + 8 (k- po) (k- p) s
+8(k-p_)s\L — 8k poMZ Ay — 8k - p_ M2 sAis + 4 (k- p_) s*Afy

— AM7 A — 16 (k- po) My Ay +8 (k- po) sAfy — 8k - po M sA)A;
— k- p_(2V2FAM? + V/2F s + A4k - poM? — 2 (k- po) s — s°) A\

+ 4(2k - po + 8)(2M2 + s)A5 — 8 (k- po) sAjs — 8 (k- p_) sAjy — 4sAi5

— 16k - p- M2 A = 8 (k- po) sADOA + 2004))

(V2Fy — 4(P — q)?\})
Mg Dy, [(k +p-)* D, [(P — q)?]

2 (ko) (- p_) (M2, + )X + (4k - po M2, — 2 (k- po) 5 — )

(Fa = 4V2k - p Ay — 4V2k - p M)A = 25(P — q)*(Fa +4V2(k - p- — M2,
—4V2k - p Ay — 4V2k - p MO 4 (2K - po + 5)(—4V2(2k - p M — (k-p_)s
+ M2 AL + (2M2 + 8)(Fi — 4v/2k - p_ M — 4v/2k - p L) (VA + 2A5VA))

2Fy 2\V 2 8%
T D, (P - )7 ( —2(P = a) An((P = q)" = 8sAz

< — 2(—4V2(=2k - poM2 s + (k- p- — MZ)s*

—2(4k - po + )NV + 8k - poAy Y 4+ 25A) Y — 16k - pody ¥ — 4sAyY)

VRE (=AY — (4k - po + 5) Y — ATV 4+ 2A5VV))>

B 4Fy (V2(4k - po + 8)GyAYY + s\ (s — 2(4k - po + s)AYV))
M;?DP[S]
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RRR

Ul _- =

R+RR _
Vg =

Fy(—V2Fy +4(P — q)?\),)
V2F2M2 M2D,, [(k+p-)?] D, [(P — q)?]

+(k-p- — Mg )s* +2(k-po) (k- p-) (2MZ, +5))(Ay*)?

(—4(=2k - po M2 s

— ke po (A + 20 (=25(P = g)* A + (2K - po + 5)(2M2, + 5) (AT + 2014))
+ A2k po = M2)s(P = g\ + (s(2k - p_ (M2, — 5) + M)
+ 2k - po(4k - p- M7, =2 (k- p_) s+ M2 s)) (A" +20)))

(1.3)

1
F2D, [(P = q)*] D[]

(ﬂFV(z(Mg — 8)sAy — (M2 — s)(4k - po + s) A

— Ak - poM2AY, + 4 (k- po) sA{y — M2sAY, + s* Ay + 4k - poM2AY; — 4 (k - po) sAls
+ M2sA{5 — $* A5 — 2k - po MY + 2 (k - po) sAfg + 4k - poMIAT; — 4 (k - po) sA);
+ QMPQS)\}/? —25°A\); — 4k -poMz)\yé +4 (k- po)sAg — Mgs)\}% + 52\

— 2k - poMZ Mg + 2 (k- po) sAjg — 4k - p_ M2XS, + 4 (k- p_) sAgy — 2M7sAy;

+ §°AY + 6k - poMIAG, + 2k - p_M2AY, — 6 (k- po) sAgy — 2 (k- p—) sAY,
+2M2sAY, — 25° A5 + 8 (k- po) A A Y + 28 AN M) + 2Gy (V2(4k - po + 5)
(P —q)* = M)A — (4k - po + ) Fy AV 4+ V2A5(=16 (k- po)* — (2M] — s)
(2k-p_+s) — 2k -po(8k - p_ — 2M§ +35) + 2(4k - po + 8)(P — q)*A¥V))

— 4(s(4k - po+ 5) (P = q)" = MDA A, + Aa(2(M) — s)s(P — q)* AL,

— (M} — s)(4k - po + 8)(P — q)*Afs — 8 (k- po)* MY, — 8 (k- po) (k- p-) MY,
+8(k-po)’ s\, +8(k-po) (k-p_)sAY, — 6k -pOMpQS)\Y4 — 2k -QD_MES)\Y4

+6 (k- po) s*AY + 2 (k- po) s2AYy — M2s*AY, + s°Afy + 8 (k - po)? MYy

+8 (k- po) (k- p—) MZAY; — 8 (k- po)” sAls — 8 (k- po) (k- p—) sAls

+ 6k - poM2sAYs + 2k - p_M2sA(5 — 6 (k - po) s°Als — 2 (k- p_) °Af5 + M2s* Al

— $* A5 — 4 (k- po)? MoAYs — 4 (k- po) (k- p—) MIAT + 4 (k- po)® s\
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+4 (k- po) (k- p-) sATg — 2k - poM2sAg + 2 (k - po) s*AYg + 8 (k - po)” M2
+8 (k- po) (k- p-) MIA; =8 (k- po)” sAl; = 8 (k- po) (k- p-) s}

+ 8k - poM2sAY; + 4k - p_M2sAY; — 8 (k - po) s’ Az — 4 (k- p_) $°A);
+2M25* A — 25°AY; — 8 (k- po)® M2ATs — 8 (k - po) (k- p—) M2ATy
+8(k-po)? sAVy + 8 (k- po) (k-p_) s\l — 6k - poM2sAYg — 2k - p_ M7 sA{g
+6 (k- po) AV + 2 (k- p_) $2AYy — M22AY, + PV, — 4 (k - po)” M2A,

— 4 (k- po) (k- p-) MIAYg +4 (k- po)* sAlg +4 (k- po) (k- p-) sAfy

— 2k - poM7sA\fg + 2 (k - po) s*AYy — 8 (k- po) (k- p_) MY, — 8 (k- p_)* M2AY, (1.4)
—16 (k- po)> sAY, — 8 (k- po) (k- p_) s\Y, + 8 (k- p_)? sAY, + 4k - poM sy

— 8k - p_M2sAy; — 6 (k- po) s°A3y 4 6 (k- p_) $*Ay) — 2M2s* A3, + s° Ay

+8 (k- po)” MIAS, +8 (k- po) (k- p) MJAS, — 8 (k - po)” sAz,

— 8 (k- po) (k- p=) sAzy + 6k - poM2sAy, + 2k - p_M?2s\y, — 6 (k - po) s* A3,

—2 (k- p_) $?A%, + M2s*AY, — A%, + 16 (k - po)” sAp Ay Y

+16 (k- po) (k- p_) sAIAY +12 (k- po) SPANAY +4 (k- p_) 2V

+ 253A§1A7VV))>
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vy’

1 ( 8(2k - p_ + s)
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RRR __ ) ) 2 VA2
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= (k- = M2+ 205 (2(P = 0)*A5 = (2K - po + ) (A +205™))

(L7)
— 2\ (2k - p_ (P — q)* Ay + (=4 (k - po) (k- p—) + 2k - po M,

+2k-p_ M2 —2(k-p_)s+ M2 s) (A + 2A5VA)))

V2Fy,
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ol =FaD, (P — g D (P T e oM oM kM A

—4(k-p_)sAY, + MPQS)\¥4 — 82\, — 4k -p_Mpz)\‘l/5 +4(k-p_)sAls — Mgs)\}%
+ A5 = 2k - poM2AYg — 2k - p_ MY + 2 (k- po) sAfs + 2 (k- p-) sAlg

— M?2sAg + Mg + 4k - poM2A7 — 4 (k- po) sA{; + 2M2sAj; — 25° A,

+ 2k - p_ MM — 2 (k- p_) sAJg + 2k - poM2AYg + 2k - p- MYy — 2 (k - po) sAly
—2(k-p_) s\l + Mgs)\}/g — 2\ — 4k -p_Mg)\gl +4 (k- p_) sy, + 82\

+ 6k - po M2y, + 2k - p_ MZA35 — 6 (k- po) sAyy — 2 (k - p_) sAyy + 2M2sAy,

— 252\, — 8 (k- p_) sAUAY —22AY XYV — 2Gy (V2(4k - p_ + 5)
(P —q)° = MON — (4 - p_ + s)FyAYY + V2A5(—16 (k- p_)* + 8k - p_M?
—10(k-p_)s— 8> —2k-po(8k - p_ +5) +2(P — q)*(4k - p_ + s)\V'V))
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+8(k-p_)° Mg)\}% —8(k-po) (k-p_) s\ —8(k-p_)> s\l + 2k -pOMgs)\};
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— 4 (k- po) s°Ag — 4 (k- p_) " Alg + M2s* Ay — s°Alg — 8 (k - po)” M2AY;
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+ 53\ 4 16 (k- po) (k- p_) sSAYAYY 416 (k- p_)? sAUANY +4 (k- po) S2AL NV
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- \/EFAS)‘{‘E, — 4V2F 1k -p-Nig +16 (k- po) (k- p-) MisAiy + 16 (k -p_)2 AsAiy
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+ 2k - po (M2, + )Mz — 8(k - p- — MZ,)(P — q)* X5 + (2k - po — 2k - p— + 4M_,

+ 8)(=V2F, + 8k -le‘g))))

321



RR __

1 165\/ ( v 9 vV 5
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Hhopo(=2M7 + 8))Ay + (2k - po + 2M7 + 8)(Fa — 4V2k - p_ A
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Yors = map (=g TV T 2V2(P = q)*A3) (M5 + Al + Al + Aly) (1.12)
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((—M§ + s) (Alvg + A — A5+ Mg + AY;)) +2M7AS) — sAy)

+25A0 M ) + 4Gy (V2((P — q)* = MOAY — Fy AYY + V2AY,(—4k - p — 4k - p_
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+ 252A¥1A¥V))

(I.16)

324



Appendix J

Axial Form Factors in radiative

di-pion tau decays

We copy here the axial-vector form factors in 7= — 7~ 7°v,y decays.

“ T3 M2

4((P — q)%kY, + skly — (k-po + k- p_)kYs) (—Gyv + V250
Dp[s]

(Fv (@ p-+ )20k p = M2ty — k- psly)

R_ﬁ(_2(p_q)2Fv<ﬁy—m2v+ﬁg+mg+ﬁ7v—ﬁg_z%_%mm

+

1
T MID, [(h+p )2

+ Gy (=42 (k- p_)* + (k- p_) s — M2s)kYy + 2k - p_(2k - p_ — 2M? + s)kYg)
+V2(=2615((k - p- — M2)(2k - po + 8)(2k - p— + $)A[g — 2(k - p— — M)

(2K - po + 5)(2k - - + $)A7 + 8 (k- po) (k- p-)” Alg +8 (k- p-)” Al
+4(k-po) (k-p_)sAy+8(k-p_)? s\ — 4k ~poMp23)\¥é — 4k -p_MPQS)\Yg3
+2(k-po) s*Alg = 2M2s* Vg + 8 (k- po) (k- p-)* Mg + 8 (k - po) (k- p—) My Al

+2(k-p_

( )

+8 (k- po)’ M2X\ig +4 (k- po) (k- p-) sATy + 4 (k- p_)* sAly — 4k - poM2sAly
( ) $*ATy — 2M2s* Ay — 8 (k- p_)° Ay — 4 (k- p_)? sAy, + 4k - p_ M2sA},
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+8(k-p_

Ay — 8 (k- p_ )2 M2AY, + 4 (k- p_)? s\, — 4k - p_MsA},)
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— 2615((k - po — M2)(2k - p— + s)(4k - po + 2k - p— 4 s)A}g + 2(—(k - po — M?)

(2k - p— + 5)(4k - po+ 2k - p_ + $)A; + (P — q)*(4 (k- po)* — M2 (2k - p_ + s)
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—4(k-po) (k-p-) MpQ)‘}/s) —4(k ~p,)2 MSAYQ +4(k -p0)2 5)\}/9 +4(k-po) (k-p-) 5>\¥9
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— (2k - p_+8)((4 (k- p-)® = 2k - p_M2 + 2k - po(k - p— — M) + (k- p_) s
= M)A+ 2k p_ — M2)(2k - po + s)AgA)))

2(Fa — 2V2(P — q)*\i7)
MZD, [(P = q)*] D, [(k + po)?]

— 2M? + $)Ay A = 2M2(2k - p- + )N+ (4k - po + 2k - p- + 5)((4k - po + 2k -p- (J.2)

< — k- pokyg(—2(2k - p_ + 8)(4k - po + 2k - p_

— M2+ AV 22k p + SN + 26 (=2(2Kk - p_ + 8)(4 (k - po)’
— M2(2k - p_ +s) + k- po(2k - p— — 2M2 + $))Ay A + 2k - po M (2k - p_ + s)Ay 4

+ (4k - po + 2k - p_ +s)((4(k:-p0)2 —M§(2k:~p_ +3s)+k-po(2k - p_ —2M§+s))

M 20k po = MZ)(2k - p-+ s)A%)))

iR Fy(V2F, — 4(P — q°X) 2ok
N SVAPAEMED,, (P~ 0 D, (k -+ o) D, (k4 p-) <_ ek

D, [(k +p-)?] K57 (2(2k - p- + )M + 4k - poA}* — (4k - po + 2k - p_ + 5)

(
A+ 20) + D, [(k+ po)?] (2D, [(k +p-)?] kY (=2(3k - po + k- p_ + )

(

2k -p_ +s)MNA+ (8 (k-po)*+6(k-p )" +5(k-p_)s+ s>+ 5k - po
(2k - p_ + )N A+ 203k -po+k-p_+8)(2k-p_ + )AL ) + Mry"
(

212 (ko) (k- p_) + 8 (k- p )2 — 2k po)s + 2 (k- p_) s — AL
—dk - p_(4k - po + 2k - p- + AT+ (2k - po + 5)(2k - po + 5) (AL + %5“))))

(J.3)

328



o W2 2P = PR =k 4 )
e MZD, (P =)

Fy(3kY — 3kY 4+ 3kY + k§ + kY — kY — 2K{5 — Kig + KY7)

M3
2v2k - po(2kY5 + K1) (Mg +2Mg) 2k - po(2k15 + K1) (= Gy + 2v/2k - poAy))
D, [(k + po)?] N D [(P = q)*| D, [(k + po)?]
2k p (26Yy + K16)(=Gv +2v2k - p_AY) N 2(kY, + k) (Gy — V/25)\Y)
D (P —q)*| D, [(k +p-)?] Dy[s]
2(k - po + k- p-) (2875 + K1p) (Gv — V25)3)) 1
- D [(P —q)*| D,[s] M2D, [(k + p-)?]

(Gv(4(k P — M))RYy — 2k - p_kyg) + Fy(=2(k - p- — M)KYy + k - p_ri)
+V2(=k - p_kYs((2Kk - po + )NV — 2(2k - po + $)AV + 4k - poAYg + 4k - p_ )y
— 2M2AYg + 25AYg + 4k - poAYy + 25A}g — 4k - p_ Ay + 4k - p_AY,) + 261,

(k- p-— M2)(2k - po + $)AYs — 2(k - p- — M2)(2k - po + $)AY7 + 2(2 (k- p_)°
+2k - po(k-p- — M2) = M2s+k-p_(—M; + )\ + 2(k - p_ — M?)

(k8 — kg + £7)(Fa — 2v2(P — q)*Afy)
Da1 [(P - Q)Z]

(k- po -+ )N + 2K - p- (=5 + M) +

(J.4)

329



L _2V2 <8k PoFy YV + 200 4k - poFykYY (V2Gy — 4k - podY,)

2 T 3p? M2D, [(k + po)?] M2D: [(P = q)*] D, [(k + po)?]
4k - p_FyrYV (V2Gy — 4k -p_\Y)  2FykYY (V2Gy — 25MY)
MzDx (P — q)*] D, [(k + p-)?] MZD,[s]
Iy

M2M2D [(k + p-)?] <\/§FV(M5”?‘YV + Dy [+ p )] 1Y)

= 2V2Gy (MY + D, [k + )% 5) = 2M3 Y ((2k - po + 5)Aig
— 2(2k - po + 8)A\Y7 4 4k - podig + 25\ + 4k - poAYy + 28A 19 — 4k - p_AY;
+ 4k - p_Ay,) +2(2k - po — M2k ((2k - po + $)A)g — 2(2k - po + 5) AV
+ 4k - poATg + 4k - p_ Mg + 25\g + 4k - poATy + 25AYy — 4k - p_ Ay,
FV(’% - “3 - ’{4 )(\/_FA —4(P — C])z)‘ﬂ)
M2D,, [(P = )7 (J.5)
N 2654 (V2Gy = 250])(Fa — 2v2(P — 9)° M)
Dy, [(P = q)*] D,ls]
4k p0<2’f12 + “16)(FA - 2\/_( - 9)2/\f7)(2>‘¥A - )‘XA)
Do, [(P = q)?] D, [(k + po)?]

2(Fa —2V2(P — q*Xfy) o V(oo AN
M2D,, (P = ¢)] D, [(k +p-)’] (k P-rs(=2(2k - po + 5)A;

+ 4k -p_AQV;)) +

+ (2k - po + 4k - p_ — 2M72 + )AL + 22k - po + $)AY ) + 2KV,
(2(k - p- = MZ)(2k - po + )My + (=2 (k- po) (k- p-) —4(k-p_)°

+ 2k - poM? + 2k - p-M? — (k-p_) s+ M2s)A[* = 2(k - p_ — M)

(2% po -+ s>A¥A>))

RRR _ _ 2V2Fy (V2F4 — 4(P — ¢)’M%)
SEPMEMEDay [(P = a)*] Dy [(k +po)?] Dy [(k +p-)?]

(4k: - poM?

D, [(k+p-)?] 6y Y (=20 + M) + D, [(k + po)?| (M2(2k - po + 5)} ¥

(J.6)
(A4 = AV =20 4 D, [(k + p-)?| 5y Y (2(2k - po + 5)AY

— (2k - po + 4k - p_ + )AL = 2(2k - po + S)AE/A)))
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R V2 APy (k- po—k-p ) (kY — kY + kY + kY + Y — kY —KD)
3F? ]\42

_ 4(k - po — k- p-) (261 — w15)(Gv — V2s)3))
Dp[s]

(= 26V (204 (k- po)® + M2k p-+5) ~ 7o

1
MZD, [(k + po)?]

(2k - p— +2M? + 8))kYy + k- po(—4k - po + 2k - p_ + 2M? + s)k1g)

+

+ Fv(2(4 (k- po)* — k- po(2k - p— +8) + M2(2k - p_ + 5))k15 + k- po

(—4k - po + 2k - p_ + 4M?2 + 5)kYg) — V2(k - pors(—(4k - po — 2k - p_

—AM? — 5)(2k - p— + $)A\jg + 2((4k - po — 2k - p— — AM? — 5)(2k - p— + 5)A;
+ (=8 (k-po)? +4(k-p ) =2k -po(2k - p_ —2M2 + ) + 4k - p_(M? + 5)
+5(2M2 + 8)AYg — 8 (k- po) (k- p-) Al + 4 (k- p_)* Mg + 4k - p_M2\},

— 4 (k- po) sAfg + 4 (k- p_) sAfg + 2M2sATy + $*Aly + 8 (k - po)* A,

— 4 (k- po) (k- p-) Ay, — 4k - poMAS, — 2 (k- po) sA3, — 8 (k- po)” A3,

+4 (k- po) (k- p-) Ay + 8k - po M7y, + 2 (k - po) sA33)) + 2675((2k - p + 5)
(4(k-po)* — k- po(2k-p_+5) + M2k - p_ + 8))Alg + 2(—(2k - p_ + s)
(4(k - po)” — k- po(2k - p— +5) + M (2k - p_ + )\l + (8 (k- po)* — k- po

2k -p_+ )2+ M2k -p_+5)>+2(k-po)° (2k-p- —2M} + s5))Alg

+8(k - po)* (k-p-) Mg — 4 (k- po) (k- p-)* Al — 4 (k- po) (k- p-) MyAJy

+4 (k- po)* MyAYg + 4 (k- po)” sy — 4 (k- po) (k- p-) shy — 2k - poMys )]y

+ 4k - p_M2sAy — (k- po) Ao + M2 Ay — 8 (k- po)° Ay + 4 (k- po)? (k- p—) A},
+4 (k- po)” MaAy, — 4 (k- po) (k- p-) MIAS, +2 (k- po)® sAyy — 2k - poM7sA3,
+8(k - po)’ Ay — 4 (k- po)” (k- p-) Ay + 4 (k- po) (k- p-) MyA3, — 2 (k- po)” 575,

1 ) )
MZD, [(k+p_)? (2GV(2(2 (k-p)” = (k-p)s+ M; S)KYy

+ 2k ~p0M§S)\¥2))>) +

+k-p_(=2k-p_+ 2Mp2 +5)kVs) — Fy(2(2 (k- p_)” + 2k p- M2 —(k-p_)s
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+ Mgs)% +k-p(=2k-p_+ 4Mp2 + 8)KYg) + \/5(/{ p_kyg(—(2k - p_ — 4M3 —35)
(2k - po + $)Mg + 2((2k - p— — AM? — 5)(2k - po + s)A|7 — (2k - p_ — 2M? — s)

(P —q)*Ms — 4 (k- po) (k- p-) Ao+ 4k - p- MIAfg + 2 (k- po) sAfg — 2 (k- p_) s\,
+2M2sAYy + "N\ fg + 4 (k- po)’ Ay — 4k - p_MIAY — 2 (k- p_) sAy, — 4 (k- p-)* AL,
+ 8k - p_ MM, +2 (k- p_) sA%y)) + 2615((2k - po + ) (2 (k - p-)* + 2k - p_M?
—(kp_) s+ M2s)Alg +2((2k - po + 5) (=2 (k- p_)” — M2s + k- p_(—2M? + 5))\];
+ (P = @2 (k-p-)" = (k-p-) s+ Mys)A\js + 4 (k- po) (k- p-)* Ay — 4 (k - po)

(k- p) MYy +4 (k- p)* M2AYy —2(k - po) (k- p-) sAlg +2 (k- p-)” sAl

+ 2k -poMgs)\Yg —(k-p_)s*Ajy + MPQSQ)\YQ —4(k -p_)3 Ay +2(k -p_)2 s\yy

— 2k p_M2sAY, + 4 (k-po)’ Ay +4 (k- po)  MINY, — 2 (k- p_)? sAY,

+ 2k ~p-M§8A¥2))>) LAk po R po)(kg — R+ K7 (Fa = 2V2(P — q)%))

D, [(P = q)?]
(J.7)
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1 Fy < 7a%
2F 4k - 2k -
oI (MpzMo%Dp [k + po)?] V2 v(M ( Do+ p— + 5)k4

+ (—4k - po+ 2k - p_ + 5)D, [(k +po)?] 5YY) = 2(v2Gy (MZ(2k - p_ + 5)rY ¥
+ (—4k -po + 2k -p_+s)D, [(k +p0)2} Ry ")+ (2K - po — M7)(4k - po

— 2k -p_ — sy V((2k - p_ 4+ 8)A — 2(2k - p_ + s)AY, + 4k - podig

4k - p_Ag + 28AYg + 4k - p_ ATy + 251y — 4k - poAY, + 4k - poAY,)

+ M2ky " ((2k - p— 4 ) (4k - po + 2k - p_ + $)A\fs + 2(—(2k - p— + s)
(4k - po + 2k - p_ + 8)\s + (2k - p_ 4+ 8)(P — q)* N +4 (k- p_)* Al
+4(k-p_) sy + 82Ny — 4 (k-po) (k- p_) A, —2(k-po) sAyy + 8 (k- po)* Ay

+4 (k- po) (k-p-) Ay + 2 (k- po) 5>‘¥2)))> + MZMzD/JF[‘Ek +p_)?

( — V2F(M2(6k - p- + s)eY "+ (=2k - p_ +$)D, [(k+p)*] }V)

+2(V2Gy (M2 (2k - p— + s)k ¥ + (—2k - p_ + 5)D, [(k‘ +p-) } Ky )
+ (2k - po — M2)(2k - p— — s)ry " ((2k - po + $)A(g — 2(2k - po + 5)A7
+ 4k - poAYg + 4k - p_ Vg + 25A\]g + 4k - podly + 25A\Yy — 4k - p_AY;

+ 4k - p_Ag) + M2kYY((2k - po + 5)(6k - p— + s)A)g + 2(—(2k - po + )
(6k - p— + s)A7 + (2k - p_ + ) (P — q)* Mg — 4 (k- po) (k- p-) Mg

+8(k-p_ ) N4+ 2(k-po) sAVy +2(k-p_) s\, 4+ 2\ —4 (k- p_)* A,

—2(k-p_) s\ +12(k-p_)* Ay + 2 (k- p_) 5)‘;/2)))> T M2Da4[]€1‘; —q)?

(ke pot k- po) (s = w4 = R{)(VBFL = A(P = gPA))

8(—k-po+k-p)uy” (ﬂGV — 25\ ) (Fa — 2V2(P — q)°\)
Do, [(P — q)?] Dy[s]
2(Fa — 2V2(P — q)*A\fy) i
M2Dq, (P —q)!] D, [(k + p-)?] (k - p-kyg((=8 (k- po) (k- p-) + 8k p-M;

+4(k-po)s—4(k-p-)s+4M2s +25)A)* + 2M>(4k - po — 2k - p— + s)Ay "
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+4(k-po) (k-p_) N +8(k-p_)’ {4 — 8k - po M2A{* — Ak - p_ M2A]*

— 2 (k- po) sAy A — 2 (k- p_) sAY A — 2M2sAY A — $PAYA + 8 (k- po) (k- p—) AL A
— 16k - poMIAY A — A (k- po) sAY* + 4 (k- p_) sALY = BM2sAY A — 257 A04)

+ 2k15(2(2k - po(k - p— — M2)(2k - p_ — ) — (k- p_) s° + M s*

+2(k-p)? (2M2 + )N + 2k - p_ M2 (4k - po — 2k - p— + s)AY

— 4 (k- po) (k- p-)? A =8 (k- p-)> \{* =4 (k- po) (k- p-) MZAY

+ 4 (k-po ) MAN] A +2(k - po) (k- po) sAY* +2 (k- po)? sAy?

— 2k - poM2sAY A — Ak - p_ M2\ + (k- po) PAL A — M2s* A4

—8(k-po) (k-p)* A =8 (k- po) (k-p) MIAS +4 (k- po) (k- p-) sAy ™

— 4 (k- p )P sAVA — 4k poMZsAY A — Ak - p_ MZsAYA + 2 (k-p_) ALY

2(Fa — 2v2(P — ¢)’M{})
MgDal [(P - Q)Q] Dﬂ [(k: + pO)z]

—2M?2 — 5)(2k - p_ + s)AY P — 20 (2k - p_ + s)AY = 16 (k - po)® A

- 2Mp232)\¥A)> + <k - pokye(2(4k - po — 2k - p_

(J.8)

+ 4 (k- po ) A+ 8k - poMAN] A + Ak - p_ MIA]A + 4 (k- po) sAYA

+ 2M 2SN 4+ SN =16 (k- po) (k- p) AVA + 8 (k- p_)? AV A

+ 16k - p- M2AYA — 8 (k- po) sSAY Y + 8 (k- p_) sAL A + 8M2sAY A + 25° A7)
+2615(—2(2k - p_ + 5)(4 (k- po)® + M2(2k - p_ +s) — k- po

(2k - p_ 4+ 2M) + s))AS* — 2k - poM2(2k - p— + $)AY A + 16 (k - po)® AL *

— 4 (k- po) (k 'p—)z)\XA —8(k 'P0)2M5)\XA+4U<?'P0) (k"P—)MpQ)\XA
+4 (k- po)’ MEN]A — A (k- po) (k- po) sAY ™ + 2k - pgM2sA)#

Ak po M2 — (k- po) SPAY A + M2sPAYA +16 (k- po)” (k- p—) A

—8(k-po) (k-p ) N A+8(k-p )" MJA " +8 (k- po)” sAY*

—8(k-po) (k-p_) s\ + 8k -p_MpQS)\})/A —2(k - po) *AV A + 2Mp252)\¥A)))
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RRR __

Fy(V2F, — 4(P — q)2\4) .
3V2F2M2M2D,, [(P — q)%] D, [(k + po)?] D, [(k + p-)?] ( ~ MR )

D, [(k+p-)?| 65V (2(2k - p- + s)AY A + 4k - poA* — (4k - po + 2k - p_ + 5)
(

A2+ 205) = D, [(k + po)?| (2(k - po — k- p-) D, [(k + p-)?] sV
(—2(2k - p_ +38)AYA 4+ (8k - po + 6k - p_ 4+ 8)AY A 4+ 2(2k - p_ + 35)AYH)

+ M7ryY (2(4 (k- po) (k- p-) =8 (k-p-)* = 2(k-po) s — 2 (k-p_) s — s*)A)*
— 4k -p_(4k - po — 2k - p_ 4+ )Ny + (2k - po + 8)(6k - p_ + 8)(A) A + 2A5VA)))>

(1.9)
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n 4\/5( 1

"7 3F2MZ\ D, [(k + po)?] (GV(4(k po = My)iry = 2k posi)

+ Fy(—2(k - po — Mﬁ)/@}/g + k- pokls) + V2(=k - porYs((2k - p_ 4 ) AYg

—2(2k - p— + 5)A]7 + 4k - poAls + 4k - p_Ag + 25A(5 + 4k - p_ A + 4M 2]

+ 25Mg — 4k - oY) + 4k - poAyy) + 26Y5((k - po — M) (2k - p— + 5) Ay

—2(k - po — M)(2k - p— + $)AT; + 4 (k- po)” Al + 4 (k- po) (k- p-) My

— 4k -poMz)\}/é — 4k -p_Mg)\‘l/g +2(k - po) sAg — 2M§S>\¥8 +4(k-po) (k-p_) Ay

— Ak - poM2X\Yg — 4k - p_ M2 Mg + 2 (k - po) sAYy — 2M2sAfy — 4 (k - po)® A
N 1
D, [(k+p-)?]

(Fo@p- = M2l — k- pnle) + Gr(=4(k - p- = M)ty + 26 o)

+ 4k - poMIAY, + 4 (k- po)® Ay, — 4k 'poM,f)\;/z)))

+V2(k - p_rYs((2k - po + )\ — 2(2k - po + $)AV + 4k - poAYg + 4k - p_ )y

+ 25AYg + 4k - poAYy + AMEAYy + 2]y — 4k - p_ Ay + 4k - p_A3)

+ kify(—=2(k - p— — M2)(2k - po + s)A}g + 4(k - p— — M2)(2k - po + 5)A7
—4(k-p-— M) (P = q)* Ny = 8 (k- po) (k- p-) Mg + 8k - poMIAg + 8k - p_ MYy
— 4 (ko) sATy + 4M2sAYy + 8 (k- p_)? A, — 8k - p_M2NY, — 8 (k- p_)* A},

+ 8k -pM§A2V2))>)

(J.10)
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(\/§FV(MP2/£§/V + D, [(k+po)?] 5§")

4 _3F2Mg M2D, [(k + po)?]

altR 2\/i ( Fy
— 2V2Gy (Ms3"Y + D, [(k +po)*] 5V + 2(2k - po — M)wy

(2 - p_ + 8)A[g — 2(2k - p_ + 8)A}; + 4k - poAlg + 4k - p_ A5 + 2s\]5

+ 4k - p_ My + 25A\fg — 4k - poAg; + 4k - poAy,) — 2M2ky Y (2 - p— + 5) A
—2(2k - p_ 4 )N 4 4k - poAVy + 4k - p_Ag + 25\g + 8k - poAYy + 4k - p_AYy

FV 2 VV
—V2F (M
T el GRCITL

+ D, [(k+p-)*| wYY) + 2V2Gy (MY + D, [(k+p-)*| w}")

42\ — k- poAY: + 4k -pOA;g))

—2(2k - p_ — M2)ky YV ((2k - po + 8)Alg — 2(2k - po + s)A)7 + 4k - pof
+ 4k - p A + 25A\)g + 4k - podg + 25A1g — 4k - Ay + 4k - p_A3,)

+2M 255 ((2k - po + $)A\fg — 2(2k - po + 5)A]7 + 4k - poAls + 4k - p_Alg
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4250V, 4 4k - oAV + 8k - p AV 4 250V, — dk - p AV 4 4k -p_/\;g))

AR AP o
Do [(P = )?] D, [(k +p_)?] (k P—rirs(—2(2k - po + 2M, + 5)A;

A+ 2MINYA + 2k - po A+ Ak - p N = 2NN+ sAYA Ak po Al 4 250

+ 2615(2(2 (k- po) (k- p-) — 2k - poM? — 2k - p_M> + (k- p_) s — M2s)Ay "
+2k - p MIASA =2(k - po) (k- p-) M/ — 4 (k- p_)* AN/ + 2k - po MY
+ 2k - po MONA — (K- po) sA{ A+ M2sA{ A — 4 (k- po) (k- p-) AL4

2(Fa — 2v2(P — q)*Xi3)
Da, (P = q)*) D, [(k + po)°]

(k poly(=2(2k - p + 2MZ 4+ $)AYA £ 2MIAYA 4 4k - po AL A 4 2k - p_ AL

+ 4k - poMIAYA = 2(k - po) sAL A + 2M§SA5VA)) +

— 2MIA[A 4 A Ak p AV 250 ) + k(4= M2 (2K - p_ + s)
+kpo(2k - po — 2M7 + 8))AA + Ak - poMIAYA — 8 (ko) AL A
— 4 (k- po) (k- p-) Ay + 4k - poMIA]A + 4k - p_ MZAY A — 2 (k- po) sAY

+2M2sAY N = 8 (k- po) (k- p-) AV + 8k - p_ M2 — 4 (K - po) sAY*
+ 4M33A5VA)))
(J.11)

oRRR _ _ AW2Fy (k- po — k- p-)(V2F4 — A(P — q)*\})
! 3F2MZMZDo, [(P = q)*] D, [(k + po)?] D, [(k + p-)?]

( — D, [(k+p0)?] D, [(k+p_)?] 6V (204 + AV4 — 2204

ARV 4 (P— AV — 20BN+ D, [(P - 0] (4 + w»)

(J.12)
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Appendix K

Axial structure of the nucleon

The axial current expressed in terms of the light quarks fields

A = G T, (K.1)

where for the two and three flavor case T = % and T* = ’\2—(1, being 7® the Pauli matrices

and \* the Gell-Mann matrices for SU(2) and SU(3), respectively.
The matrix-element of the SU(2) isovector axial quark current between nucleon states is

given by [800}319]820]

/

(V6 |45 V) = 50 [0+ LGt T

A

with ¢ = (p —p)? the invariant momentum transfer squared and m = (m,+m,,)/2. However,
we will work in the isospin limit m, = m,, (m, = my).

The eq. follows from Lorentz invariance and C, P, T and isospin conservation and
the absence of second class currents [436], which is consistent with the experimental obser-
vations [821]. G(t) is the nucleon axial form factor and Gp(t) is the induced pseudoscalar

form factor.
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If we take the divergence of eq. (K.2), we obtain

T u(p) (K.3)

" (N(p) 5

A

N(p)> =iu(p) {2m Gal(t) + 2l;nGp(t)

Furthermore, we can use the Ward identity, eq. (K.4]), and the PCAC hypothesis

5 5 g2 WY A N, 62 a0
"~ _ 9= : S Vi e v
0" gy, q =2qMiy’ q + ng 167r2Gi G, — ( 3 ) 167r2FWF , (K.4)
where M = diag(my, - -- ,my), ny = 2, 3 is the number of flavors being considered and N, is

the number of colours. Thus, in the chiral limit we have

0" (N(p)) |4z N(p)) = 0. (K.5)
Therefore, from egs. (K.3) and (K.5) we get
Am? Am?
Gp(t) = — Z’L Gat) or Gp(t) = Mgm -Ga(t) + O(Mp), (K.6)
7 _

which is the well-known pion pole term. This term arises from a direct coupling between a

pseudoscalar and an axial current.

K.1 The coupling of P to the nucleon

According to Ref. [822], the coupling of a pseudoscalar meson to a nucleon is given by the
xPT Lagrangian
£O_ g (m m+ 920;475) v, (K.7)
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where D, =9, + T, I, =1 {u* (0 —iry)u+u (0, —il,) uq and ¥ = (pn)".

From this expression, we get

1 9o _ 0 do _ 0
Ly = — Fp’y“’y‘r’p@uﬂ + En'y“’y‘r’nﬁuﬂ +---
=+ go}anw p’ — go?Nﬁz’anO + .-

which corresponds to the SU(2) limit. In the case of SU(3), we have [132,/133]
(B) B IS D D, = [T F JT)
Ly = <Bw VMB> —mp <BB> + Bl <37 v {uy, B}> + 5 <37 v [uM,B]>

where

150, 1 AO +
20+ A by P
_ - 1 y0 1 AO R — RtA0
B= Y — 5520+ ZEA n , B = B'v",
=— =0 2 AO
= = —\/éA
and V,B = 0,B + [I',,, B] with I, defined as before.
From this, we obtain
(B) _ 90 _ 90 9n -
Ly = 2pr7 Y p o’ + 2f. =yt yon 0,0 — szm Y’ pun 2f7rm ¥°n oum
9n'
2fﬂm Y pdun — Env von o’
where
905D+F7
= (C,— c)D+(C,+ LcyF
gn— q \/§ S q \/§ S 9
1 1
r = C/+7CS/D+ C/——C'S/F.
9n (Cy V2 ) (Cq V2 )
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After an integration by parts and using the Dirac equation, we get

0o MmN

m m m
L) 9N Bty 0 — SN it 20 SN s+ I N i
fﬂ fvr f“ fﬂ
T (K.13)
7 PP +f7nw I

which comply with the well-known Golberger-Treiman relation [823].

The coupling between a pseudoscalar meson to a nucleon is given by

Ta

Ly = gpNN Q_WE)EQ Ta, (K.14)

where 7% are the Pauli matrices.

From eq. (K.14)), we get the pseudoscalar contribution to the axial current

1

N(p)) = —gpyx u(p)) 75LaU(p) [—ifp(0" = p)4]

2 (' = p)? —mp +ic

(N (@)

Ay

grNN TP (K.15)
_ P (! o 5
- Zp: 7= p) —m Fic W)W = Ph i),
where the following equation has been used,
(0|43 P(g)) = ifp g (K.16)
Finally, from the Lagrangian in eq. (K.7)) we get
/ a =/ 5 T
(N A5 N ) = g0 alp) 77" up), (K17)

putting all these together, we have

N(p)) = u(p)) [90 Ty — T _g;NiV{r’:% H.E(p’ — D)’ %u(p), (K.18)

(N (@)

A

where the second term contains the pole contribution of Gp(t).
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K.2 The coupling of A to the nucleon

K.2.1 Antisymmetric tensor field (A*")

If we use the antisymmetric tensor field representation for the axial vector meson instead of
the more familiar vector one, we get the most general structure describing the coupling of

the axial-vector resonance to the nucleon:

1 v v ~ 1 v v ~
) |5(dl'ds — a7 d5)°Gr + (V') — " dl )G

Il
I

(N'(p") |[A*| N (p))

2 2
1 . )
+ 500" =1 8)7 Gy + €7 4100, Gl (K.19)
1 n n v
+5 (@1 — a( ) Fy + €77 410007 Fo | u(p) (A(a) [477]0)

where ¢ = p— p' and ¢o = p+ p/, and Gy, Gs, G5 and G4 are C- and P-conserving form
factors while F} and F} are form factors that break the intrinsic parity. Also, G, and Fy are
CP—odd. All the form factors, as expected, are G-conserving.

At O (p*) in xPT, we have

FA %
Ly = W (A f27) - (K.20)
Thus,
<o ‘;f; A(q)> = —iV2F4 40 (0|4 A(q)). (K.21)

The longitudinal and transverse part of the propagator of A" are given by

Q7 (k) = iD3' (k) (979" = 9"79"") (K.22a)
Q%u,pa(k) _ ZMiDZl(k’Q) (gupkuk,a — gk ET — kzgﬂﬂgVU _ (M VRN y)) . (K.22b)

where D4 (k?) = M3 — k>

343



We are interested in the neutral current. The contribution from A*" to the axial current is

p—p — \/5}714(12~ \/§FAq2 ~ 2My ~
= 500) G B o (0 ) e
i ! ! ! (K.23)
V2Fa ¢ - ( 2MN
———= LGy (V' + @y | | u(p),
Da(g?) * @ (»)

where only the longitudinal part contributes to this diagram.

K.2.2 Proca field (/AIM)

From RxT, the Lagrangian that describes the coupling between an axial-vector meson and

an external source is given by [225]

fA 1 v

E”:—XEQMﬁ>, (K.24)

where A, =V, A, -V, A,.

From eq. (K.24)), we get
5£U o, B
(0555 | 4@) = varse (5 - T8 ) et (K29
ag q
If we use
/ / . —_—— T * /

(NW)Ap = P)IN()) = —iHau(p) "y Fulp)le),  a=p—1, (K.26)

which is similar to the one employed in Ref. [824], we obtain

(N(p) |74 N(p)) =

DA(Q%) 1

V2FeHA ¢ 2M T¢
N ALl i S B XD (K.27)

where D(s) = M3 — s.
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It is possible to write the propagator in a subtracted term (s.t.) and contact term (c.t.)

according to eq. (K.28)) [603]

2 a a a a
R R SN L
also we can split the propagator as we did before in eq. ,
D2 (q) = R il mas 2y, 9 o
(o) =gy = D)+ (K.29)
and ,
Dy’0) = S (K.30)
with the projectors given by
Pr'(q) = ¢ — ngy, (K.31a)
P (q) = q;g (K.31b)

It is clear, from eq. (K.31)), that eq. (K.25) only has the transverse contribution. Also, eq.
(K.30) can be understood as the longitudinal part of the contact term.

If, instead of eq. (K.25]), we use the relation in eq. ([K.32))

(045

Alg)) = Fimaes(q), (K.32)
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FaMAHA _ N T¢
N/JapN EA u/[p{)_,_ P5]u
(N@)[(J2)’ N (p)) D) ) |7 2 5 (p)
FXMAHA7 /[pf) MNp5]7'a
= D) |V + q\7’ | =u(p T} (s.t. + c.t.
DAl () al 5 u(P) {T} ( )
FiHa ,  |2MN , 5| T°
— — L .t.
S ) | 22| o (L} (et),
(K.33)
where T and L refer to the contributions from eqs. (K.29) and (K.30]), respectively.
Now, if we start from the Lagrangian
L = gann ?/_1%75(9;4121“”% (K.34)
we get the following contribution to the axial current
V2gann f4 at [ 2My T
iM = =2 u(p) | + 5 | Sulp (K.35)
Da() W) g W)z
using eq. (K.25) and
. gannFiMaq [ 5, 2Mn , 5| T°
WM = u(p’) |7y + @y’ | =u(p K.36
Dat) W) g 4|3 (K.36)
using eq. (K.32).
Finally, we return to the eq. (K.19) and using the eq. (A.11) from Ref. [224]
(Aq) |[A™]0) = —iM7" [¢"9"" = ¢"9""] €5(q), (K.37)
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we get

p—p \/ifgqil 7 ﬁfZQ% ~ 2JMN S
— () [F1q5+ G- M ) e
Ma D(g? MaD A(q? 2
aZ A A(Ql) A A(Ql) q1 (K.38)
\/ﬁfj qil ~ < 2M N T¢
_76; M 5_|_ n_5 ~u
L D) 2 2 D)5 (p)
using eq. (K.25) and
p—p _ g q2 ¢ q2 ~ 2My =~
) | s o+ gy (6= 2 6) a0
b 1 ! ! (K.39)
ng% ~ ( 5 2My s\ | T
- Go (V" + —di" || 5 ulp
Dal(g}) * @ 7 )

using eq. (K.32).

K.2.3 Effective coupling in BxPT

In a similar way to Dorokhov, where the effective coupling is given by the Hamiltonian of

nucleon-axial-vector meson interaction

Hi(ayNN) = go,nwNTYv,7° N alf,  for a; exchange and (K.40a)
Hi(fiNN) = gs,xnN7v,7°N ff',  for fi exchange. (K.40Db)

We find the lowest-order x PT" Lagrangian that contributes to the ANN coupling using the

antisymmetric tensor field representation of the axial-vector resonances, which is given by

LXn = 91 (BY"Y{V" A BY) + g2 (BY"°[V" A, B)) - (K.A1)
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Other related terms, like

(BY" (" A, V' BY), (BY" ()[4, V7B,
<Ba’“’(v5){AW, B}> , <BO"‘W(’75)[A,W, B]> ;

(K.42a)

(K.42b)

are not C'—conserving. In order to build these operators, we have to recall that the A, field

transforms under C' and P as

A, —CA,C=(A,)T,
— PA,, P=—-A"

where
a% +4 af K
Ay = ay —j—% +4 K?
KT K, A

Finally, we get from eq. (K.41)

Eﬁfjjﬂv = Ya1NN 157“7511 01 — GaNN ﬁ’V”’YE)n 0" aru

T 9pHNN ]57u’75p ayfluy + JANN ﬁ7M75n a,}fl,uz/
— 9NN DY YO [, — gpnn Y ROV 1,

where
1

1
Ja;NN = §f1NN = ﬁ(gl +g2), and gfINN = ﬁ(gl — g2)-

The Lagrangian in eq. (K.41) contributes to G, in eq. (K.19).
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K.2.4 Coupling axial-vector to two photons
The most general structure that describes this coupling is given by
(AP) [T, 75| 0) = { (k5 kS — KRS ) [Gr (R3KS 0 + ko - o REKS — B3 R, — KRG RY)

+Go (KSRY — k- ey g™) + Gy €kl |

+ G,y (gW eaﬂpakzlpk% — kY Euaﬂpk2p Ky - kg 0P 4 el Euaﬂpk1p>

+ G [ (ko ko kY — kDR ) €k, — (Ky - ko b — k3 kY ) 70k, |
+ By [(by - ko bt — KRS ) €%y, + (Ry - ko b — K3 BY) €%ky, | |
X (A(P)|Aqp|0),

(K.47)

where the Schouten identity has been used.
Here, GG; and éz are antisymmetric and FZ is symmetric under k£ <> ko. E and C:*l are

C— and P—conserving. G; and G5 are only C-conserving.

The eq. (K.47) complies with the Ward identity,

B (N) | T2, T2 N(p) = 0, (K.48)
and
o (N(D') | 78,75 N (p)) = 0. (K.49)

K.2.5 (N(p')|JE J” | N(p))

m

Defining X = ky+ko, W1 = p'+k; and Wy = p' + ks, we can write the most general structure
that describes the coupling NN~ (see fig. [K.1)):
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(N (") [T T2 N(p)) =u(p’) {F1 A" + Fy BY + F3CM + Fy D' 4 F5 EM
+ Fy [Dp(W3) 4" (W1 +mp) 3" + Dp(W2) 5" (Wa +mp) 7]
+ (Fy FH' 4+ Fy GM + G1 HM 4 Go THY) ~°
+(Ga FM + GaG" + Fy H* + Fio ") (fy — #2)7°
+ (151 A 4 Fy B 4 By CM + Fy DM+ F 5“”) i
+ Fg F™ + F; G + Gy HMY + Go TM
+ (ég A L Gy B"™ 4+ G4 CM + G4 DM + Gg 5“”) (b, — ) 75} u(p)

(K.50)
where F; is symmetric and G; is antisymmetric under the interchange k; <> k. F; and

G; are C- and P-conserving while F; and G; are only C-conserving.

Ty
)ﬁ\

Figure K.1: Two photon exchange vertex.

With

AW =(k2 — k3 —2P - (k1 — ko)) (ki + k3 + (P - (k1 — k2))2 + k3 (2k2 — P - (ky — ko) — 2P - (k1 + k2))

+ k3(P-(ky — ko) —2P - (k1 + ko)) + (P- (k1 + k2))?) g +2(k? — k3 — P (k1 — k2))
(K34 k3 —2P - (ky + ko)) WIWY —2P - (ky — ko) (k2 + k3 —2P - (ki + ko)) WEWY

+2(KE (= P (ki = k2) + P~ (ks + k2)) + (k3 + P (k1 — ka) = P (ki +k2)) (P (k1 — k2)

+ P (k14 ko)) (WIWY = WEWE) = (K + k3 + (P - (ki = k2))® + k3 (P (k1 = k2) = 2P - (k1 + k2))

+ (P (k1 + ko))? — E2(—2k3 4+ P - (ky — ko) +2P - (k1 + k2))) (XFWY — X"W4)
+(—kt— ks — (P (k1 — k)2 — k2(P - (k1 — ko) —2P - (k1 + ko)) — (P - (k1 + k2))?
+ B (—2k3+ P- (k1 — ko) + 2P - (k1 + ko)) (XHWY — XYW,

(K.51)
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B =(ki — ki — 2P (ki — ka))(ki + k3 — P (ky + ko)) (ki + k3 + (P (k1 — k2))® + k(243
— Po(ki—kp)—2P - (ki + ko)) + k2(P- (k1 —k2) —2P - (ki + k2)) + (P - (k1 + k2))?) XF XV
— (K — k3 —3kIP - (k1 + ko) +3k3P - (k1 + ko) +2P - (k1 — ko) P~ (k1 + ko)) (K} + k3
+ k3(P- (k1 — ko) —2P - (ky + ko)) +2(P - (k1 + k2))> — k2(2k3 + P - (k) — ko)
+ 2P (ky + ko)) WHWSY + (ki — kg — k3P - (ky + ko) + k3P - (ky + ko) —2P - (k1 — ko)
P (ky+ ko)) (k2(P-(ky — ko) —2P - (ky + ko)) +2(P- (k1 + k2))? — k3(P - (k1 — k)
+ 2P (ki + ko)) WEWY + (K3 (P~ (k1 — ko) —2P - (k1 + k2)) + 2 (P (k1 + k2))?
— k3(P- (k1 — ko) + 2P (ky +k2))) (ki + ki + k3(P- (k1 — ka) =2 P (k1 + k2))
+2(P- (k14 k2))? — k2(2k3 + P (k1 — ko) +2P - (k1 + k2))) (WIWY — WEWE) + (ki + k3
+ (P-

ky — + k22k3 — P (k1 — ko) —2P - (k1 + ko)) 4+ k3(P - (ky — ko) — 2P - (k1 + k)

(
+ (P (

ka))?
k14 k2))?) (KT (P - (ky — k) =2 P - (k1 + ko)) + 2 (P (k1 + k2))* — k3(P - (k1 — k2)
2P )

)

)
(k1 + k2))) (XFWY — XYW + (kT 4+ k3 + (P - (k1 — ko))? + k}(2k3 — P - (k1 — ko)
— 2P (k1 + ko)) + k3(P- (k1 — k) — 2P - (k1 + ko)) + (P (k1 4+ k2))>) (K} + k3

+ k2(P-(kp — ko) —2P - (k1 + ko)) +2(P- (k1 + k2))? — k2(2k3 4+ P - (ky — ko)

+2P - (ky + k2))) (XFWY — XYW,

(K.52)

CH =(2k3 — P-(ky — ko) — P- (k1 +ko))(2k3 + P- (k1 — ko) — P~ (k1 + ko)) WI'WY
+(kt+ k4 (P (k1 — ko)) + K22Kk2 — P (ky — ko) — 2P - (k1 + ko)) + k3( P - (k1 — ko)
— 2P (k1 + ko)) + (P~ (k1 + k2))?) (WIWY + WEWE) + (ki + k5 — (P (k1 — ko))?
+2k7 (k3 — P (ki +ka)) — 2k3 P (ki + k) + (P (k1 + ka))?) WEWY
+ (K = k= 2P (k1 — ko)) (ki + k3 — P (ki + ko)) (W{WY — WHWY),
(K.53)
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DY = — (2k? — P- (k1 — ko) — P- (k1 + k2))(2k3 + P - (kg — ko) — P (k1 + ko)) (k} — k3
—3k2P - (ki + ko) +3k3P - (ki + ko) +2P - (ki — ko) P- (k1 + ko)) WFWY + (K2 — k2
— 2P (k1 — ko)) (K2 + k3 — P (k1 + ko)) (ki + k3 + (P (k1 — k2))* + ki(2k3 — P (k1 — k2)
—2P (k1 + ko)) + k3(P- (k1 — ko) — 2P - (k1 + k2)) + (P (k1 + k2))?) (XFWY + XYW
+ (k] — k) (KT + k)% — 2(kT — K3) P - (ki — ko) + 3 (P (k1 — k2))?) — ((kf — k3)(k] + k3)°
+A(kT AR EE 4 k) P (ky — ko) + (B2 — K3) (P (k1 — ko)) +2(P - (k1 — k2))®) P - (ky + ko)
— (B + k(= k2 —12P - (k1 — ko)) (P - (k1 + k)2 + (k¥ — k2 —6 P - (k1 — ko))
(P (k1 + k) ) WEWY 4 (2k% — P - (k1 — ko) — P~ (k1 + k2))(2k3 + P (k1 — ko)
— P (ki +k2))(KF(P- (k1 —k2) =2 P (k1 +k2)) +2(P- (k1 + k2))* = k3(P - (k1 — ko)
+ 2P (k1 + ko)) (WIWY — WEWE) + (ki + k3 + (P (k1 — k2))? + ki (2k3 — P+ (k1 — ko)
— 2P (k1 + ko)) + k3(P- (k1 — ko) —2P - (k1 + ko)) + (P (k1 + k2))?)? (XFWY — X"WH)
—(2k3+ P-(ky — ko) — P- (k1 + ko)) (—2k} + P- (k1 — ko) + P - (k1 + ko)) (K} + k3
+ (P (k1 —ko))? + K3 2k3 — P (k1 — ko) —2P - (k1 + ko)) + k3(P - (k1 — ko) — 2P - (k1 + k2))
+ (P (ki + k2))?) (XMWY — X"WY),

(K.54)
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gm

=2k} —2K8 —4kS(P- (k1 — ko) —2P - (k1 + ko)) + k3(TP - (ky — ko) — 5P - (k1 + k2))

g

5(
(P'(k‘l—k‘g)—P'(kl—i-k‘g))P'(k'l—i-k‘Q) 4k‘1( (k‘l k‘g)—l—?P (kl—i-k‘g))
+ ky(=3 (P (k1 —k2))? + 12 P (ky — ko) P~ (k1 + ko) — 11(P - (k1 + k2))?)

(

+2P (ki —ko) P (k1 + ko) (P - (k1 — k2))2 +3(P - (k1 + k2))?) 4+ k13 (P - (k1 — k2))?

+4k3(P- (k1 — ko) — P- (k1 + ko)) +12P - (k1 — ko) P - (k1 + k2) + 11 (P - (k1 + k2))?)
+ k(P (ky — ko) + P- (k1 + ko)) (dky — P-(ky + ko) (TP - (ky — ko) +5P - (k1 + k2))))
WHEWY + (k3 — k3 —2P - (ky — ko)) (k3 4+ k3 — P (k1 + k2)) (K} + K5 + (P - (k1 — ko))?
+ k3(2k3 — P (k1 — ko) —2P - (k1 + k2)) + k3(P- (k1 — ko) — 2P - (k1 + k2))

+ (P~ (ky + k))?) (XPWE + X"WI) — (B34 k3 — P (k1 — ka) — P (k1 + k2))
k

) (
(K3 + k3 + P (ki — ko) — P- (k1 + ko)) (ki — k3 — kI P - (ky + ko) + k3 P (k1 + ko)
—2P (k1 — ko) P+ (k1 + ko)) WEWY — (kT + k3 — P (k1 — ko) — P+ (k1 + k2))
(k3 4+ k3 + P-(kp—ko) — P (k1 + ko)) (ki + k3 + k3(P - (k1 — ko) —2P - (k1 + ko))
+2(P-(ky +k2))? — k3(2k3 + P- (k1 — ko) +2P - (ky + k) (WIWY — WEWY)
— (ki 4+ k3 — P (ki — ko) — P (ks + ko)) (k? + k3 + P- (k1 — ka) — P- (k1 + ko))
(kf+ ki+ (P-(ky — k)2 + k2(2k2 — P- (k1 —ky) —2P - (ky + k) + k2(P - (ky — k3)
— 2P (k1 + ko)) + (P~ (k1 + k2))?) (XPWY — XYW — (ki + kg + (P - (k1 — k2))?
+ k2(2k3 — P (k1 — ko) —2P - (k1 + ko)) + k3(P- (k1 — ko) — 2 P (k1 + k2))

+ (P (k1 +k2)?)? (XFWE — XYW,
(K.55)

FH = i o X (W) — Wa)s, (K.56)

1
= (K} + k3 — P X) i "7 W, Way — b (Wi = W) i 7 X (W + Wa),

(K.57)
+ Wf 7 €VprXp ng WQw W2 E'upan ng WQw,

H = (6 — k3) 0 0T W, Wy — P+ X i 7 X, (W + Wa), -
XM X, Wiy Wy + XY 0 €979 X, Wiy Wa,
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and

1
IH =P (Wi = Wa) i 77 W1,Wae — 5 (K + k3 — P X) i e X, (W1 + W)),

(K.59)
+ W# 1 EVprXp Wie Woy, + W2V ) eupopr Wie Wow,
The eq. (K.50) complies with the Ward identity,
ke (N (') |6 T N (p)) = 0, (K.60)
and
ko (N () |6 T2l N(p)) = 0. (K.61)

In eq. (K.50), Fy and F} to Fj receives contributions from the interchange of a pseu-
doscalar.

In the case of the proton, Fg receives contributions from QED at tree level
Fy = Dy (WY) D' (W3), (K.62)

where Dp(s) = m% — s.

Some useful relations that we get using the Schouten identity are:

u(p') i e P X ,(Wy — Wa)oy® u(p)

1 — - VPO v . log
= —au(p) { (17 i€ — 77" i) X,(Wy + Wa)o(W1 = Wa)s  (K.63)

- 2mB

+i PP X, (Wh + Wa)g (K — Ky) 75} u(p),

and

i P X, (Wh — Wa), (K, — ¥y) 75
= (W1 — Wh)?i €Wpﬁ’Y,B’Y5Xp — X - (W —Wy)i €MVGB’VB’V5(W1 —Ws), (K.64)
= [(Wy = W) 2o — (W — Wa)” i 7] gy X, (W — Wa),.
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If we recall

YA = g AP = g g A T, (K.65)
using eq. (K.64) and eq. (K.65), we get

u(p') i P X, (Wi — Wa)y (Ky — Ku) 7 u(p)
=MM“M—%WW+%V%W—%WW+%M%—M
X (W — W) AR — [, = Wo)¥ — (W — Wa)o] (W7 — 103)

+wwwww4m+mwmm—mfwm

(K.66)
and
u(p') i 77 X ,(Wy — W)y u(p)
— _2”113 u(p’){ [XH(Wy + Wa)” — XY (W + Wa) ] (K, — Ky)
h (K.67)
o XP AR — (Xt = X (W - W)
+wm%ww4m+mwﬂxmm%@ﬁw
where
AR = H (W1 — Wg) v = (W1 — VX/2) v, (K.68)
with
ki u(p") AM u(p) = a(p') {2k - (W1 + Wa)y” — 2k, (W + W)} u(p) (K.69a)
ko u(p') A* u(p) = u(p') {2ks - (W1 + Wa)y* — 2k, (W1 + Wa)*}u(p). (K.69b)
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The term proportional to Fg in eq. (K.50)) can be written as

u(p) [DB<W )" <W1 + mB) v+ Dp(W7)y (W2 + mB) 7“] u(p)

— ) { (DB(W;> + Dp(W2)) AW ; (D3<w§> — Dp(WE)) g (W1 = 17)
— 5 (Ds(W3) — D)) [ 7
+;(DB(W2 + Dp(W)) (W1 + Wa)"~" + (Wi + Wa)"y
+; (Ds(W3) — Ds(W3)) (W )iy + (W — Wz)”'y“]}U(p)

(K.70)

Hence Fg is already in F; and G for7 = 7,8,9,10 and j = 1, 2, 3, 4, respectively. Therefore
it should be omitted in the decomposition eq. (K.50]).

K.3 Goldberger-Treiman (GT) relation

It is posible to split the contributions of the eq. (K.2)) using the projectors in eq. (K.31)),

(N0 45| N ) =) [ Gal0) + 53— Gol0)] (0 = p® True) (L) o
vt - @ - )] a0 T (1),

if we take the divergence of eq. (K.71|), we recover eq. (K.3|). Including the results from eqs.

(K.18) and (K.33) for t =0,

2MNFYH 5T
0" (NG [ A5 Np)) = |2Mgt + A i ), (7Y
My 2
we get
My F$H
gaMy =Y gpnnfp+ ) A (K.73)
P A My
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where G4(0) = ga = 1.2762(5) 798| is the axial-vector coupling constant which is measured
in (polarized) neutron beta decays. The relation in eq. (K.73|) reminds us the usual GT
relation [823], goMy = gann fr-

K.4 P — /¢ decays

We know that the most general structure for P — ~*y* transitions, which complies with

gauge and Lorentz invariance, is given by [825]
(P |JEnTeml 0) Z{FPv*w*(’ff, k3) € kiphzg + Fp hn (K7, K3) (k1 - ke g™ — K5 KY)

+ FER2. (k3 K3) (K3RE g™ + oy - Ky KRS — K3 RYRY — k3 KRS ) } & (k1)ep (k)
(K.74)

FCPl

CP2
CFL. and F

« and Fp..7. are C-conserving. The last two

where Fpy«+ is C- and P-conserving,

are both CP—violating. Fpy-+, F5X\. and FEE2. are symmetric under ki > ks.

From the eq. (1.111)), we can obtain the Pyy Lagrangian (after interchanging €, , by

—etvP7):

V2aNe

Lpy, = wob R, 2
i STF € Twler <¢Q1> 1 (K.75)
_ alNc ;u/aﬂF I3 < 0 - — /2 _ , 20, />
SYPyL whas (T +3(5C’q \/_05)77+3(5Cq +v2C0)1' ) .
Thus,
0 . v . aNC vpo
(PO(ky + k2 | 3] 0) = i7p e €7 ki phao €, (K )€y (K2) (K.76)
3mF
where
1 if P=nY,
rp =19 1(6C, —V2C,) if P=n, (K.77)
1(5Cy +V2Cy) if P =1
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Therefore, the WZW action is responsible for the decays 7°

— 2v and n — 27, and
the interaction vertices v3w and ynt7 7. The chiral anomaly makes a very stringent non-

perturbative prediction for the 7° decay width,

N¢ > 2 a’m?

Pl = 1] = ( G432

3 ~ 776V, (K.78)

which is in excellent agreement with the experimental measurement, I'[7 — 7] =
(7.72 +£0.12) &V [3).
Using the Eq. (K.74)), we can calculate the amplitude for P — ¢¢ decays (see fig. [K.2]).

ot (p)
k
P
q—k
I
£7(q —p)

Figure K.2: Contributions to the P — (¢ decays via a P coupling to .

Thus,
iM =i |gpi(q —p) iV’ v(p) + gs il — p)v(p)] , (K.79)
with
ap = —2042mé A(QZ)FPW(O) (K'80)
and
T [ p B (2 (g = R wn + FE5. (2, (0 = ) wy (K.81)
ey k*(q —k)*[(p — k)? — mj]

where wy = k-(q—k) P+k-1[k* + (k — q)%], wo = k* (k—q)* |- (1—2k), | = pp- —pe+ = q—2p,
and 5, = /1 —4my/q*. As we can see from Egs. (K.80)) and (K.81)), gp and gs are C'P-even

and C'P-odd, respectively.
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A(g?) is given by the loop integral

2y _ 20 2, (PR = (g k>2)ﬁP7*w*(k2a (¢ —Hk)?
)= [ Rl (52

which is written in terms of the normalized TFF Fp . (k?, (¢ —k)?), where Ep.-.-(0,0) = 1.
The expression for gg in Eq. (K.81)) is equal to that in Eq. (3.4) in Ref. [825] when py+
and p,- are interchanged.

The unpolarized spin-averaged squared matrix element M?2 is given by
M2 =2¢%gp* + 2¢°B|gs|*. (K.83)
Then, the decay width is

1
Lpoe = & Mp By (|9P|2 + ﬁg\gsm

(K.84)

?>=Mp

K.4.1 Pseudoscalar meson exchange

The contribution to the HFS in muonic hydrogen due to the exchange of a pseudoscalar

meson is shown in fig. [K.3]

w=(p1) —p1—k u” (p2)

M— k

|

|
rq
|

|

1

I
Q
=

|
Q
0

r(q1) p(q2)

Figure K.3: Muon-proton interaction produced by a pseudoscalar exchange.

The amplitude of this interaction is given by
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iMp = [N(CIQ)F(p)N(Ch)W DP(QQ)][Z(pz)F(M)E(pl)]
= [igPNN ﬂ(%ﬁ’f”(%)} qg_Zm%
= iz, gesn @ Fr (0) e falan)yu(an) (0"l

[igp w(p2)in*u(py)] (K.85)

where we have neglected the contribution from the gg coupling in Eq. . This is a
good approximation since CP is conserved approximately. A(¢?) is defined according to Eq.
(K.82) with ¢ =ps —p1 = ¢1 — g2 and p = —py.

We can use the relations given in Egs. and ,

virak \ _ [Exm [ (1-F5)6

u(p) = 5 , (K.86)
Vit 2\ ()6
wp = VT ] = B (= ) , (K.87)

—\/D o 20\ -+ 22)m

where o = (1,5) and ¢* = (1, —&), to write the amplitude in terms of the two-component

Spinor.
Therefore,
Uy 5 7! = Ei+ By + T|: 6ﬁ1 B 6ﬁ2 r!
i (p2)2 " (p1) = (B1 -+ ma) (B + o)l | 228 — R (K.88)
~ (G- (P — )] &,
and
. :wa+mm&+m>ﬁ oy TR T (o gy
u(p2)y" 7 u(p1) 5 o e e T B )
- ﬁ? - u
Es + meo (o E1 + my }
=€l [mlo — 0"+ (0 + )" 7 (i + )] o
(K.89)

when m = my = ms in the nonrelativistic limit.
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Thus,

: : A(g? Lo Lo
iMp = i2my, gpn OéZFPw(O)qQ_(qu[fi - q&iEld - qes), (K.90)
P
where ¢*> = (q1 — ¢2)? = (p2 — p1)? =~ —|q1? since B ~ Ey ~ m.

The pseudoscalar exchange contribution to the nonrelativistic Yukawa potential in mo-

mentum space is given by

Mop v . gaw . g
AVIFS () = — = NA(-|7) —=—5—
@ = = e = M ol
2Fpyq (0 '
\ = gpPNN & Pyy( )
QmN

where my is the proton mass. We can obtain the potential in the configuration space by

performing a Fourier transform

37 .- g . gew . g
AVHFS 2\ )\/ iq-T 172
P (7”) (271')36 -A( |(ﬂ ) |(ﬂ2 T m%‘ s (KQQ)

Il
8y
<y

,r—,’

We split the corrections induced by the ¢?-dependence on A by using the dispersion

relation representation of A(—|q]?),

A(=1q1*) = A(0) - ";ﬂr /Om ds/s,(s,lf r(;](;i i)’ (K.93)

neglecting the second term in Eq. (K.93) (¢*> — 0), we get

q iwg(p) Sqam . q
€
(27)? 4% + mp
. d3q—' eiq’-F

~ XA(0) [7 - ¥,] [60)- V] / T

AVHFS (7) = X A(0) /
(K.94)

the integral corresponds to the static Yukawa potential

&y e 1 R
—  emmer, K.95
/ CreE |2 +ms  dnrs (K.95)
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Performing the differentiation, we obtain

2
AVEPS(F) = LN A(0) [59) - 60 VD () + 81 Vi (7)] (K.96)

where 7 . ®) is called a spin exchange force and Sy, = 3" . 7@ .7 — G . ) 4

tensor force, and

(P) = _
Vs () = —— @53(7?)7 (K.97a)
(P) 3 3 e~ mer
= (1 K.97b
V() ( +mpr+m§3r2> . (K.97b)

S1o is the so-called tensor operator and it vanishes for the S wave. Since p and p have

spin 1/2, we find

1 S=1
g . g0 — (K.98)

-3 S=0

For the S wave, we have the following 2-S' states: 25{7° and 25{/5". Now we can compute

the expectation values for the Yukawa potential using the radial wave function for 2.5 states,

Pas(r) = (,ugz)?’eugr (1 — Mg”) : (K.99)

where p is the muon-proton reduced mass 1/ =1/m, +1/my.

Thus,
P P (pa)* 8 + 11a + 8a?% + 2a°
(25 Vi (7] 25) = V3" (mp) = — aiaf
. P (K.100)
a="1
mp

Finally, we get the expressions for the shifts in the 25 states of the muonic hydrogen,

ABETS(28) = AY{  (mp)  for 2815, (K.101a)

ABETS(28) = —3AY{" (mp)  for 28137, (K.101b)
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where \ = —%)\ A(0). We recover the same results as in Ref. [812].

The ¢*-dependence on A induces a correction to the potential in Eq. (K.94), which is

given by
Ao Im A(s")
HFS (= _ = = (P) (P)
OVp™(T) = 15 /0 dS/s/(sf_mzpﬂe) 7P -G B (8 + S by ()] (K.102)
where
12 7\/37’7"_ 4 ,—mpr
hgp)(ﬂ s') = S Tp e — 47 (s —m%) 8 (7) (K.103)
T
and
3 3\ eV 3 3\ e
WP (r,s') = §'% (1 —mb (1 . (K104
5 (r,s')=s +\/;T+s,r2 . mp +mpr+m%r2 . (K.104)

Using the Egs. (K.96) and (K.102), which are compatible with the results in [812], we
get

AVEFS(F) = 28751 — 287 3°

o QgPNNazFPV’Y(O) m2P —mpr
=T AWO) [o(r) — e (K.105)
1 ee /ImA(S/) — 1 4 _—mpr 12 7\/si’r
—;A dST 5<T)+47rr(s’—m%)(mpe P — s“e )
with
1 if P =m0,
N,
Fpon(0) = rpyy o TP =1 3(6C,—V2C,) it P =y, (K.106)

1(5Cy +V2Cy) if P =1

for P = 7, we recover the expression in Eq. (17) for the potential in Ref. [785].

Therefore, the expectation value for a 25 state is

<2S ‘hﬁp) (r,s")

28) = 52V (Vs') = mp Y7 (mp). (K.107)
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So, the overall contribution to the shifts for a 25 state is given by

2
ABEFS = U7\ (500 50) (—A(0) + 5.4) V" (my)

™

where

2 o ImA(m%2?)
/0 d

6A:% xm(x2—1+i€)

Y mpr)
s (mp) ’

which is the same result for 0.4y in Ref. [812] when A, — oo.
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Appendix L

Transition form factors

In this appendix, we describe the different models for the Bag(q?,¢3) form factor used in
the main text. Specifically, we discuss different variants in order to study the relevance
of the asymptotic behavior. In particular, for the doubly-virtual symmetric kinematics
one has the result in eq. (see also Ref. [788]), enforcing Bag(—Q? —Q?) ~ O(Q™%)
for large Q% values. In addition, in the singly-virtual kinematic regime, it is also known
from the light-cone expansion that, for large Q? values, Bys(—Q? —¢*) ~ O(Q™?), where
q? < Q% [7831|788], that is also suggested by L3 data [792,[793].

The most simple form factor corresponds to the standard VMD prescription

VMD 2\ B2S( ) my
Bys™ (a1, 43) = @ —m2) (@ —m2)’ (L.1)

that, however, fails to describe the singly- and doubly-virtual asymptotic behavior, but is
relevant to our discussion regarding A — eTe~ decays. A variant that incorporates the
appropriate high-energy behavior for singly-virtual kinematics is an extended VMD (eVMD)

model with two resonances

Bss(0,0)ymi, M*
REVMD/DIP 2. q2) = 25\Ys v , L.2
s %) = e\ — mE) (@ = ) (L-2)

that still fails reproducing the OPE. A simplified variant of this model is the common dipole
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parametrization used in [784}792}793], where my = M and that we denote as DIP. We can
amend this in a VMD incorporating the high-energy behavior (heVMD /heDIP) as follows

Bas(0,0)mi M* |1+ g3 A5 ]
(qi —mi) (i — M?)(q5 —mi) (g5 — M?)

he(VMD/DIP
Byg MBI (2 2) =

(L.3)

Still, we note that such a form factor does not fulfill the appropriate high-energy behavior for
Bys(—Q?% —¢?) unless ¢*> = 0. To better reproduce the high-energy behavior, we introduce
the following form factor from Ref. [603] inspired in [60§|, that we label as OPE,

Basg(0,0)A%
(@ + @3 — A%)?

B (4}, 43) = (L.4)
It describes L3 Collaboration results provided A 4 is chosen according to the dipole parame-
ters in L3 [792,793] and its doubly-virtual space-like behavior is in good agreement with the
holographic results in Ref. [601], representing our preferred choice.

For the normalization, we take the values for fi, f| from L3 [792,793] together with
our estimate in [603,618] for the a,: Bys(0,0) = {0.269(30),0.197(30),0.245(63) }GeV > for
{f1, f1,a1}. Regarding the mass parameter, we take both, for the OPE and (he)DIP variants,
my = M = Ay ={1.04(8),0.926(79),1.0(1)} GeV , see Refs. |603}/618}792,793]. Concerning
the eVMD and heVD models, we fix the M parameter to reproduce the slope from the L3
Collaboration dipole in order to share the same low-energy behavior, which is accomplished
adopting M? = Qi\n%i@‘f(g ~ 2 GeV for my = 0.77 GeV. Finally, to ensure the OPE behavior

A

in eq. (9.17) in he(VMD/DIP) models, we find for ideal/L3 mixing

AL 0 M= {1.28(4)/1.37(5), 1.58(7)/1.26(6), 1.44(10)} GeV ™!, (L.5)

respectively. In the equation above, we have employed the following mixing scheme

f1 cosf) —siné 18
1 sinf  cosf f°
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where 6 is the mixing angle between the SU(3) singlet (f°) and octet (f®) states. Also, it is

possible to write the last expression as

e NS
fi _ cos¢ —sin¢ f ’ (L.7)

fi sing  cos ¢ f°
where ¢ is the mixing angle between the non-strange (fV°) and strange (f°) states. 6 and ¢
are related through 6 = ¢ — ¢ with ¢y = arctan v/2 and the ideal mixing angle corresponds
to ¢ = 0. The angles above relate to the one used in L3 Coll. [792,793] (64 = 62(5)°) as
0 =04—7% (¢ =04+¢o— 7). In this study, and following Ref. [61§], we take as our preferred
value ¢ = 0, while we will take into consideration the L3 mixing angle as an additional

uncertainty. Note also recent discussions concerning the mixing angle in Refs. [795]826].
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Appendix M

Higher-order effects in the

non-relativistic potential

In this section we justify the suppression of the terms that have been neglected in evaluating
the nonrelativistic potential in eq. (9.11]). In particular, we start noticing the suppression
corresponding to the potential of the kind Vyr(q®) = (g - &¢)(q - &n)[m%4(m? + ¢2)] 7", that

in position space reads

16®), . 1 e~mar 3 3 o
VNr(r) = 5 (r) (6¢-6N) =€ [512 (1 + . + )2> + (6 - mv)} ;

3 m3 3 dnr ma  (rma

1 5(3)(7“) e~ mAT

- — 50 O M.1
= 3 [ m3 4drr ] (G- o), ( )

where in the last line we have omitted Sy, = (3#'#/ — §)&é%, that is a rank-2 symmetric
tensor and does not contribute to S-wave states. Accounting for this, the result reduces to
the combination of the 6®(r) contribution and the Yukawa part in egs. and .
Noting that [Wy(2)0,0(0)]* = (pa)?/[(8)7], the cancellation of the Yukawa and § terms in
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eq. (M.1)) to leading order in (pa/my) is clear, with the final result reading

d(pa)t 1+e
A 7t ON)(rei-r- M.2
' l37rm3A (1+ 2¢)? (60 ON)(F=1-F=0); ( )

N (pa)* 8+ 11e + 8¢ 4 263
48mm3, (1+e)

] (G ON)(F=1-F=0), (M.3)

where € = pa/my. With these results at hand, it is straightforward to show the suppres-
sion from the A;(q?) dependence. Noting A;(¢*) = A(0) + & fdfthqz , the first term

corresponds to our main result, whereas the second one leads to a potential of the kind

V(r) = %fdﬁ' Im A(£)E {6_\/@ — 5(3;(7")} that, in parallel with eq. (M.1]), is «a suppressed.

drr

Note in addition that the lower threshold in the previous integral corresponds to the inter-

mediate V' state, so one expects the relevant scale to be above my .
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