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Abstract

Since the discovery of neutrino oscillations, a prove that neutrinos are massive, there

has been a strong e↵ort to find new physics through the neutrino sector of particle

physics. In this thesis, we study several well-motivated scenarios of physics beyond the

Standard Model, both from a theoretical as well as from a phenomenological point of

view. That is the case of non-standard interactions (NSI) or a non-zero neutrino mag-

netic moment. We discuss the expected size of the NSI induced from the type II seesaw

mechanism, where charged scalars are introduced to the theory. From a phenomenolog-

ical point of view, we mainly study the process of Coherent Elastic Neutrino-Nucleus

Scattering (CEvNS). We discuss how this process is useful to perform tests of the SM, to

study nuclear physics, and to constrain NSI parameters. Our analyses consider current

data, and also explore the sensitivities from future experiments, including a proposal

to measure CEvNS by using isotopically enriched detectors. We also study the theory

of neutrino electromagnetic properties, and the sensitivities that are expected through

the process of CEvNS from solar neutrinos in future Dark Matter detectors.
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Resumen

A partir del descubrimiento de las oscilaciones de neutrinos ha habido un gran esfuerzo

para encontrar señales de nueva f́ısica a través del sector de neutrinos de la f́ısica de

part́ıculas. En este trabajo estudiamos diversos escenarios de f́ısica más allá del Modelo

Estándar desde una perspectiva teórica y fenomenológica. Nos enfocaremos en el for-

malismo de interacciones no estándar de neutrinos (NSI) y en el momento magnético del

neutrino. Estudiaremos la magnitud de los acoplamientos NSI inducidos por el mecan-

ismo seesaw tipo II, mediante el cual se introducen escalares cargados en la teoŕıa.

Desde el punto de vista fenomenológico, estudiaremos el proceso de dispersión elástica

coherente neutrino-núcleo (CEvNS). Discutiremos cómo este proceso puede ser útill

para realizar pruebas al Modelo Estándar, f́ısica nuclear y parámetros NSI. Nuestros

análisis incluyen datos actuales, aśı como expectativas a futuro, incluyendo una prop-

uesta de utilizar un arreglo de isótopos de germanio para medir CEvNS. Finalmente,

estudiaremos el momento magnético del neutrino y la sensibilidad a este parámetro que

se espera mediante detectores de Materia Oscura.
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Chapter 1

Introduction

The main goal of Particle Physics is to study the matter and its interactions at the most

fundamental level. Now we know that, at this level, the matter is formed of elementary

particles, defined as those that do not have an internal structure and which can interact

by one or more of the four known forces: gravity and electromagnetic interactions, which

we are familiar with; the weak force, which is responsible for particle decays, and the

strong force, responsible of keeping nuclei together. Examples of elementary particles

are electrons and the up and down quarks which are common matter constituents. In

addition, we also have one of the most intriguing elementary particles, which is the main

topic of this work: neutrinos. Discovered in 1956 [1, 2], these particles play an essential

role in the study and understanding of weak interactions. Neutrinos are sometimes

called ghost particles since, although they can be produced in large amounts, they

hardly ever interact with matter, making it very di�cult for us to probe their intrinsic

properties.

From a historical perspective, we have faced many theoretical and experimental

issues in understanding and describing the interactions between particles. It was in

the 1960s and the 1970s that the theory that we use today to describe interactions

started being widely accepted and adopted in its current form. We call this theory the

Standard Model (SM) of particle physics, and it has been tested innumerable times

since 1978, becoming one of the most precise theories we have today. However, it still

lacks to explain for some observed phenomena. For instance, years ago, it was widely

believed that neutrinos were massless. There were strong theoretical and experimental

motivations to think so, and, in fact, the SM was constructed under this assumption.

However, the observation of a phenomenon called neutrino oscillations, which we will

describe in chapter 3, corroborated that this was not the case and that there are at least

two massive neutrinos. Observations like this have opened the window to the search for
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CHAPTER 1. INTRODUCTION

new physics. These are exciting news for us as particle physicists since there are still

many issues that remain unanswered in the study of neutrinos.

Throughout this thesis, we will address di↵erent questions. What Standard Model

tests and new physics probes can be studied through neutrino interactions? What sen-

sitivity can we reach with current and future experimental data? What is the neutrino

mass nature? We will be interested in probing new physics beyond the SM through

di↵erent processes that involve neutrinos scattering o↵ electrons and nuclei. Indeed,

the process of neutrino-electron scattering is one of the pioneers in the study of neutri-

nos. In contrast, in the case of nuclei scattering, we will study the process of Coherent

Elastic Neutrino-Nucleus Scattering, which was recently observed for the first time in

2017.

As examples of new physics scenarios, we will study two di↵erent approaches: the

theory and phenomenology of what we call Non-Standard Interactions (NSI) and the

description of neutrino electromagnetic properties. Within the NSI formalism, the ef-

fects of new physics are contained in coupling constants parametrizing interactions that

are not allowed in the SM. We will see that interactions like these can naturally arise

from theoretical models that intend to explain, for instance, the origin of the neutrino

mass. In other words, NSI parameters have di↵erent interpretations depending on the

specific model under consideration and allow for a general study of new physics beyond

the SM. Setting bounds to these parameters through the analysis of experimental data

can give information on fundamental theoretical parameters, such as the mass of new

mediators or the strength of an interaction. Regarding electromagnetic properties, it is

well known that neutrinos have no electric charge within the SM. However, electromag-

netic couplings appear in SM extensions where massive neutrinos are considered. In

particular, we will study the theoretical description and the sensitivity of di↵erent ex-

periments to the e↵ective neutrino magnetic moment, which has di↵erent forms when

expressed in terms of fundamental parameters, depending on the nature of neutrino

masses.

How do we test a theory involving particles that we can not even see? Basically, we

first need to produce the desired particles, make them interact with other particles, and

confirm that the theory matches the observed results to a certain degree. In general,

particle sources can be classified into three main groups: cosmic rays, which are particles

coming from outer space, including solar neutrinos; then we have nuclear reactors,

where, as the name suggests, particles are produced as a byproduct of induced nuclear

reactions; and last but not least, we can also produce particle beams in linear and

circular accelerators to make them collide and produce other particles. Once particles

2



Figure 1.1: Structure of this thesis.

are produced we need to detect them. Depending on the nature of the particle, there

are also di↵erent ways to do so. For instance, we can detect particles by tracking the

signal they leave when traveling through a detector and we can use photomultiplier

tubes to measure photons produced due to the interaction. For our main analyses, we

will use solar, reactor, and accelerator sources and we will briefly describe how these

neutrinos have been detected.

In Fig. 1.1, we present the structure of the thesis. In chapter 2, we introduce

an overview of the SM. In chapter 3 our attention is turned to neutrino physics by

describing the current picture of neutrinos within the SM and introducing the concept

of neutrino masses and the NSI formalism. In chapter 4, we discuss one of the neutrino

mass generation models, called the type II Seesaw mechanism, and we will see how this

theory relates to NSI. In chapters 5 and 6, we study the phenomenology of NSI for

neutrino interactions with nuclei. In chapter 5, we focus on the results obtained from

current data, while in chapter 6, we analyze the expectations from future experiments.

At the same time, we propose a di↵erent approach to measure these interactions that

is viable with current technology. Chapter 7 focuses on the theory and phenomenology

of neutrino electromagnetic properties. Finally, chapter 8 gives the conclusions and

perspectives for neutrino physics.
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Chapter 2

The Standard Model of Particle

Physics

This work aims to study the phenomenology of parameters that account for physics

beyond the SM. As we will see, these parameters can be related to new gauge mediators

and may result from the manifestation of the origin of neutrino masses at low energies,

just as the Fermi theory of beta decay describes a low energy manifestation of the SM.

In order to explore these underlying physics, we first give a brief review of the main

ideas that were used to develop the SM as a gauge field theory [3, 4, 5] and how the

concept of symmetry is essential for the description of interactions between particles.

We have referred to the SM as a gauge field theory since, within this formalism, particles

are described by fields. On the other hand, gauge theories are those based on local

symmetries of an underlying Lagrangian that dictate the interactions between particles.

The set of symmetries has a group mathematical structure whose elements act on a

representation of the group. In the particular case of the SM, the Lagrangian of the

theory is written in terms of the matter fermion fields, and the elements of the symmetry

group act on di↵erent representations of these fermions, which are accommodated in a

convenient way so that the theory reproduces experimental observations. A consequence

of gauge invariance is the existence of vector fields, which we refer to as gauge fields, and

which will mediate the di↵erent forces between fermion fields. Apart from determining

the form of the interactions, the chosen gauge symmetry group also fixes the number of

gauge bosons, which corresponds to the number of generators of the group. It is worth

mentioning that the SM also has a chiral character. In general, a free Dirac fermion field

 can be decomposed as the sum of two independent components,  L and  R, called

left and right-handed chiralities, respectively. Di↵erent experiments have shown that

the W boson, responsible for what we will define as charged current weak interactions,

5



CHAPTER 2. THE STANDARD MODEL OF PARTICLE PHYSICS

only couples to fermions with left-handed chiralities. This means that the SM needs

to be constructed in a way such that left and right-handed particles behave di↵erently

under the symmetry group.

We may wonder why we use gauge theories to describe particles and their inter-

actions. The reason is simple: because it works. The first hint indicating that gauge

theories can be used in particle physics came from the description of quantum elec-

trodynamics (QED), a gauge theory based on the abelian U(1) symmetry group with

only one generator, whose associated gauge boson can be identified with the photon. In

addition, Noether’s theorem states that for each symmetry, there is an associated con-

served quantity. For QED, the corresponding symmetry group is responsible for current

conservation. After the discovery of the weak and the strong forces, it was in 1954 that

Yang and Mills [6] proposed the idea of generalizing the concept of gauge invariance

to non-abelian groups. This generalization allowed for introducing more gauge fields,

which were necessary for the description of strong and weak interactions. Neutrinos are

not sensitive to the strong force, so we will focus only on the description of electroweak

interactions in the following section.

2.1 Electroweak interactions

For the construction of the theory, we first need to choose the gauge symmetry group.

It turns out that the groups SU(3), SU(2), and SU(1) have eight, three, and one

generator, respectively, which coincides with the number of mediators needed for the

description of the three di↵erent forces described by the SM: eight gluons for the strong

force, three bosons for the weak force, and one photon for the electromagnetic interac-

tions. This suggests the SU(3)C ⇥SU(2)L ⇥U(1)Y group as a plausible election for our

symmetry group1, where the subscripts make reference to color charge (C), left-handed

chirality (L), and weak hypercharge (Y ). Within the SM, the color group is unbroken,

which allows us to separately study the electroweak interactions, and from now on, we

will focus on the SU(2)L ⇥ U(1)Y sector, which will be essential for the description of

neutrinos.

Once the gauge symmetry group is fixed, then the fermions need to be accommo-

dated in convenient representations such that the interactions and the corresponding

phenomenology consistent with experiments are reproduced. Fermions can be classified

in two di↵erent groups: leptons are those which do not interact by the strong force,

1Historically, SU(2) was proposed for the description of weak interactions before the Z boson was
discovered.

6



2.1. ELECTROWEAK INTERACTIONS

Figure 2.1: Fundamental particles of the SM.

while quarks are those that interact by the strong force through the color charge. Lep-

tons are in addition classified in neutrinos and charged leptons, while quarks are divided

in up-type and down-type quarks. The number of fundamental fermions is dictated by

the experiments and until now we have three copies of each fermion type, called fam-

ilies, which are summarized in the first three columns of Fig. 2.1. As charged leptons

we have the electron (e), the muon (µ), and the tau (⌧), each with its corresponding

neutrino, denoted as ⌫e, ⌫µ, and ⌫⌧ , respectively. The up-type quarks are the up (u),

charm, (c), and the top (t), while the down-type quarks are the down (d), strange (s),

and bottom (b) [7].

As we have mentioned, within the SM the left and right-handed chiralities of a

field  behave di↵erently. These components can be obtained through the projection

operators, defined such that:

 L = PL =
1 � �

5

2
 ,  R = PR =

1 + �
5

2
 , (2.1)

with �
5 a 4 ⇥ 4 matrix called the chirality matrix. This distinction is important

since, among many representation possibilities, the one that reproduces the correct

phenomenology of interactions is that where left-handed chiral fields are taken as weak

isospin doublets. In the case of leptons, we denote the doublets:

LeL =

✓
⌫eL

eL

◆
, LµL =

✓
⌫µL

µL

◆
, L⌧L =

✓
⌫⌧L

⌧L

◆
. (2.2)

7



CHAPTER 2. THE STANDARD MODEL OF PARTICLE PHYSICS

I I3 Y Q

Lepton doublet
⌫eL 1/2 1/2 -1 0
eL 1/2 -1/2 -1 -1

Lepton singlet eR 0 0 -2 -1

Quark doublet
uL 1/2 1/2 1/3 2/3
dL 1/2 -1/2 1/3 -1/3

Quark singlets
uR 0 0 4/3 2/3
dR 0 0 -2/3 -1/3

Higgs doublet
�+(x) 1/2 1/2 1 1
�0(x) 1/2 -1/2 1 0

Table 2.1: Quantum numbers for leptons, quarks, and the scalar sector of the SM. We show the
values for weak isospin (I), the corresponding third component (I3), weak hypercharge (Y ), and
electric charge (Q) [8].

And for quarks we define:

Q1L =

✓
uL

dL

◆
, Q2L =

✓
cL

sL

◆
, Q3L =

✓
tL

bL

◆
. (2.3)

The right-handed chiral components of charged leptons and quarks are taken as singlets

under the SU(2) gauge group:

eR, µR, ⌧R, uR, dR, cR, sR, tR, bR. (2.4)

Since only left-handed components are observed for neutrinos, then the SM does not

include their corresponding right-handed counterparts, an assumption that leads to a

zero mass for these particles. For charged leptons and quarks, it will be sometimes

useful to follow the notation:

`eX = eX , `µX = µX , `⌧X = ⌧X , (2.5)

q
U
uX = uX , q

U
cL = cX , q

U
tX = tX , (2.6)

q
D
dX = dX , q

D
sX = sX , q

D
bX = bX , (2.7)

with X = L,R denoting the two di↵erent chiralities. Once the fermion content is set,

we need to construct a Lagrangian that is locally invariant under the symmetry gauge

group. First, we need to specify the transformation for lepton doublets and singlets. In

general, any element of a group can be parametrized by the group generators and a set

8



2.1. ELECTROWEAK INTERACTIONS

of local parameters. For our particular case of interest, an element of SU(2)L ⇥ U(1)Y

can be represented by the local parameters ✓↵(x) (with ↵ = 1, 2, 3) and ⌘(x), such

that [8]

U(✓↵(x), ⌘(x)) = exp

✓
i✓↵(x)I↵ + i⌘(x)

Y

2

◆
, (2.8)

where I↵ (with ↵ = 1, 2, 3) are the generators of SU(2). These generators have a matrix

representation which is not unique but needs to be fixed. We use the convention:

I↵ =
⌧↵

2
(↵ = 1, 2, 3), (2.9)

with ⌧↵ the Pauli matrices. On the other hand, the quantity Y accounts for the action

of the U(1) abelian group, which will be fixed for each fermion chiral field through the

Gell-Mann-Nishijima relation:

Q = I3 +
Y

2
, (2.10)

where I3 is the corresponding isospin component, and Q refers to the electric charge.

The quantum numbers for each particle are summarized in Table 2.1.

The Lagrangian of the theory should also contain kinetic terms for the fermion fields,

which involve factors of the form @µ . It turns out that terms like these are not gauge

invariant when we apply the transformation in Eq. (2.8). However we can recover

gauge invariance by introducing a covariant derivative, which consists on adding to the

derivative a boson field for each group generator. Then, we introduce the boson fields

W
a
µ (a = 1, 2, 3) and Bµ such that we define the covariant derivative:

Dµ = @µ + igW
a
µIa + ig

0
Bµ

Y

2
, (2.11)

where g, and g
0 are coupling constants associated to the symmetry groups SU(2)L and

U(1)Y , respectively. Now a locally gauge invariant Lagrangian can be constructed if

the covariant derivative and the introduced boson fields transform as [8]:

Dµ ! D
0
µ(x) = U(✓↵(x), ⌘(x))DµU

�1(✓↵(x), ⌘(x)), (2.12)

Aµ · I ! A
0

µ · I = U(✓↵(x), ⌘(x)) (Aµ · I � i/g @µ)U
�1(✓↵(x), ⌘(x)), (2.13)

Bµ
Y

2
! B

0

µ

Y

2
= U(✓↵(x), ⌘(x))

✓
Bµ

Y

2
� i/g

0
@µ

◆
U

�1(✓↵(x), ⌘(x)). (2.14)

For simplicity, we consider for the moment just the first family of fermion fields. Then,

9



CHAPTER 2. THE STANDARD MODEL OF PARTICLE PHYSICS

the Lagrangian that is locally invariant under the defined transformations reads

L = i
�
LeL��DLeL + eR��DeR

�
+ i

�
Q1L��DQ1L + uR��DuR + dR��DdR

�
, (2.15)

where we have used the notation ��D = �
µ
Dµ, with �µ the Dirac matrices, and the bar

notation indicates  =  
†
�
0. The Lagrangian in Eq. (2.15) is now gauge invariant and

gives rise to interactions between fermions and gauge bosons. This can be seen by using

the explicit form of the covariant derivative. Then, omitting the kinetic terms, we get

the interaction Lagrangian LI :

LI = � 1

2
LeL

�
g⇢⇢W

a
⌧a � g

0
��B
�
LeL + g

0
eR��BeR

� 1

2
Q1L

✓
g⇢⇢W

a
⌧a +

1

3
g
0
��B

◆
Q1L � 2

3
g
0
uR��BuR +

1

3
g
0
dR��BdR.

(2.16)

For the leptonic part, the first line in Eq. (2.16), we get the explicit form

LI,L = �1

2

⇣
⌫eL eL

⌘ 
g��
W

3 � g
0��B g(��

W
1 � i��

W
2)

g(��
W

1 + i��
W

2) �g��
W

3 � g
0��B

! 
⌫eL

eL

!
+ g

0
eR��BeR. (2.17)

From this equation we can distinguish two di↵erent interactions, a charged current

interaction (CC), given by the o↵-diagonal terms of Eq. (2.17), and a neutral current

interaction (NC), characterized by the diagonal terms in the same equation together

with the remaining last term. We then define the field Wµ = (W 1
µ � iW

2
µ)/

p
2 so the

charged current interaction Lagrangian reads:

LCC
I,L = � g

2
p
2
j
µ
W,LWµ + h.c., (2.18)

where h.c. refers to the hermitian conjugate, and we have defined the leptonic charged

current, jµW,L, as

j
µ
W,L = ⌫e�

µ(1 � �
5)e = 2⌫eL�

µ
eL. (2.19)

The charged current is given its name since the interacting fermions di↵er by one charge

unit. Equation (2.18) explicitly shows the coupling of left-handed leptons to what we

have defined as the W boson. This is in accordance with experimental observations,

where only left-handed fields participate in charged current interactions. In general,

interactions between particles can be illustrated by what we call Feynman diagrams.

These are graphical representations of interactions and their strength. The Feynman

diagram corresponding to the CC weak interaction is depicted in Fig. 2.2, where, as

10



2.1. ELECTROWEAK INTERACTIONS

Figure 2.2: Feynman diagrams for the SM lepton charged current.

a general rule, fermions are represented by straight lines, and gauge bosons by curvy

lines. The first diagram in Fig. 2.2 corresponds to the first term in Eq. (2.18), while

the second diagram corresponds to the hermitian conjugate. When accounting for three

lepton families, Eq. (2.19) needs to be generalized by adding equivalent terms to the

electron CC but for muon and tau fields.

Now we focus on the NC part of the Lagrangian in Eq. (2.17). Expanding the

diagonal terms in this equation, we get

LNC
I,L = �1

2

�
⌫eL(g�

�
W

3 � g
0
��B)⌫eL � eL(g�

�
W

3 + g
0
��B)eL � 2g0eR��BeR

�
. (2.20)

The neutral current character makes reference to the fact that the fermions involved in

the interaction are of the same kind and have the same electric charge. At this point

we should remember that the general theory must reproduce an interaction Lagrangian

that describes the electromagnetic interactions. As a reminder, the QED Lagrangian

predicts an interaction between the electron (or any charged lepton) and the photon of

the form

L�
I,L = �qej

µ
�,LAµ, (2.21)

where Aµ is the electromagnetic field, qe is the absolute value of the elementary electric

charge, and j
µ
�,L is the electromagnetic current

j
µ
�,L = �e�

µ
e. (2.22)

The problem with the Lagrangian in Eq. (2.20) is that both the W
3
µ and Bµ fields

couple to the neutrino fields when g
0 and g are di↵erent form zero. This forbids us from

identifying any of the gauge fields with the photon, since it is experimentally observed

that photons do not couple to neutrinos, which are neutral particles. To fix this, we

can use a unitary matrix to perform a rotation of the fields W 3
µ and Bµ. By defining

11



CHAPTER 2. THE STANDARD MODEL OF PARTICLE PHYSICS

Figure 2.3: Left panel: Feynman diagram for the coupling of charged leptons with the photon. Right
panel: Feynman diagram for the coupling of neutrinos and charged leptons to the Z boson.

the resulting fields Aµ and Zµ, we get

 
Aµ

Zµ

!
=

 
cos ✓W sin ✓W

� sin ✓W cos ✓W

! 
Bµ

W
3
µ

!
, (2.23)

with ✓W the only constant needed to parameterize a 2 ⇥ 2 unitary matrix. Within the

frame of the SM, this constant (actually, its value depends on the energy scale) is called

the weak mixing angle. In terms of the rotated fields, Eq. (2.20) reads

LNC
I,L = � 1

2
{⌫eL(g cos ✓W + g

0 sin ✓W )��Z⌫eL � eL(g cos ✓W � g
0 sin ✓W )��ZeL}

� 1

2
{⌫eL(g sin ✓W � g

0 cos ✓W )��A⌫eL � eL(g sin ✓W + g
0 cos ✓W )��AeL}

� g
0
eR sin ✓W��ZeR + g

0
eR cos ✓W��AeR.

(2.24)

From the second line in the last expression, we can now identify the field Aµ with the

electromagnetic field if we set the condition

g sin ✓W = g
0 cos ✓W . (2.25)

This way, the first term in the second line of Eq. (2.24) vanishes and we ensure that

the Aµ field does not couple to neutrinos for g and g
0 di↵erent from zero. Moreover,

we ensure that Aµ couples to the left and right chiralities of charged fermions with the

same strength, a second characteristic that the photon field satisfies. Notice from Eq.

(2.25) that the weak mixing angle does not represent another free parameter of the

theory, since now it depends on the gauge coupling constants. It is common to write

the NC Lagrangian in terms of the weak mixing angle instead of the coupling constant

g
0, so we get the form

LNC
I,L = � g

2 cos ✓W
(⌫eL��Z⌫eL � (1 � 2 sin2

✓W )eL��ZeL + 2 sin2
✓W eR��ZeR)

+ g sin ✓W e��Ae.
(2.26)

12



2.1. ELECTROWEAK INTERACTIONS

Now the last term in Eq. (2.26) has the exact form of that in Eq. (2.21), which

strengthens our previous statement of identifying Aµ as the electromagnetic field. As

this term has to give us the correct coupling of charged fermions to the photon, we

further set the condition

g sin ✓W = qe, g
0 cos ✓W = qe. (2.27)

The Feynman diagram representing the coupling of charged fermions with the photon

is illustrated in the left panel of Fig. 2.3. In addition, from the last conditions we can

obtain the relation between the coupling constants g, g0, and the fundamental charge

qe:
1

g2
+

1

g02
=

1

q2e

. (2.28)

Regarding the coupling of fermion fields to what we defined as the Zµ boson, we can

write the first line of Eq. (2.26) in the form

LZ
I,L = � g

2 cos ✓W
j
µ
Z,LZµ, (2.29)

where we have defined the weak neutral current

j
µ
Z,L = 2g⌫L⌫eL�

µ
⌫eL + 2g`LeL�

µ
eL + 2g`ReR�

µ
eR, (2.30)

with the values of g⌫L, g
`
L, and g

`
R given in Table 2.2. Notice from the table that these

constants are the same for each of the three lepton families and, for this reason, we

say that there is a universality of the weak force. Equivalently, we can write the weak

neutral current in terms of the fields ⌫e and e = eL + eR:

j
µ
Z,L = ⌫e�

µ(g⌫V � g
⌫
A�

5)⌫e + e�
µ(glV � g

l
A�

5)e. (2.31)

Where we have used the vector coupling constant g⌫V = g
⌫
L + g

⌫
R, and the axial coupling

constant g⌫A = g
⌫
L�g

⌫
R, which values are also given in Table 2.2. The Feynman diagrams

corresponding to the interactions in Eq. (2.31) are illustrated in the central and right

panels of Fig. 2.3. Again, we can generalize the currents defined in Eqs. (2.30) and

(2.31) to the case of three families by adding the corresponding terms for muon and tau

fields. Notice that the Zµ boson has a particular behavior when compared to the other

gauge bosons. In contrast to the Wµ boson, it couples to both left and right-handed

chiralites, while in contrast to the photon, it does so with di↵erent strengths, both

properties being a consequence of the mixing of the original gauge fields.

13



CHAPTER 2. THE STANDARD MODEL OF PARTICLE PHYSICS

Fermion (f) g
f
L g

f
R g

f
V g

f
A

⌫ (⌫e, ⌫µ, ⌫⌧ )
1
2 0 1

2
1
2

` (e, µ, ⌧) �1
2 + sin2

✓W sin2
✓W �1

2 + 2 sin2
✓W �1

2

q
U (u, c, t) 1

2 � 2
3 sin

2
✓W �2

3 sin
2
✓W

1
2 � 4

3 sin
2
✓W

1
2

q
D (d, s, b) �1

2 +
1
3 sin

2
✓W

1
3 sin

2
✓W �1

2 +
2
3 sin

2
✓W �1

2

Table 2.2: Neutral current left, right, vector, and axial couplings for leptons and quarks.

Until now, we have studied the interaction terms for the leptonic sector of the SM.

We can then follow the same procedure to obtain the corresponding expressions for the

quark sector. By doing so, from the second line of the interaction invariant Lagrangian

in Eq. (2.16), we end up with a CC Lagrangian of the form

LCC
I,Q = � g

2
p
2
j
µ
W,QWµ + h.c., (2.32)

with the corresponding weak quark charged current:

j
µ
W,Q = u�

µ(1 � �
5)d = 2uL�

µ
dL, (2.33)

which can be also generalized to the case of three families. In the case of neutral

currents, the main di↵erence between lepton and quark sectors is that, for the latter,

we have terms including the coupling of the original gauge boson, Bµ, to up-type quarks,

which correspond to the doublet components with the largest I3 value. However, after

rotating the neutral boson fields, we end up again with an interaction Lagrangian of

the form

LZ
I,Q = � g

2 cos ✓W
j
µ
Z,QZµ, (2.34)

with the quark weak neutral current

j
µ
Z,Q = 2guLuL�

µ
uL + 2guRuR�

µ
uR + 2gdLdL�

µ
dL + 2gdRdR�

µ
dR. (2.35)

The values of guX and g
u
X are given in Table 2.2. Again, we can define the corresponding

axial and vector couplings to write the neutral current in the form:

j
µ
Z,Q = u�

µ(guV � g
u
A�

5)u+ d�
µ(gdV � g

d
A�

5)d. (2.36)

As seen in Table 2.2, the couplings for leptons and quarks are di↵erent, which is a

consequence of the fractional electric charge of quarks, which translates into di↵erent
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2.2. HOW DO PARTICLES ACQUIRE THEIR MASS?

couplings between the original gauge bosons and the dL, dR, and uR fields. Finally, from

the neutral part of the quark interaction Lagrangian, we also have an electromagnetic

interaction for quarks, with the same form as in the leptonic case, but with a current

of the form

j
µ
�,Q =

2

3
u�

µ
u � 1

3
d�

µ
d. (2.37)

From the above discussion, we now have a description of interactions between par-

ticles that is consistent with experimental data and that reproduces the correct phe-

nomenology. Notice that kinetic terms for fermions are also included when expanding

the covariant derivatives. However, there is an important thing that is missing. So far,

the Lagrangian does not include mass terms for any of the particles. These need to be

included since, except for the photon, all the observed particles in nature are massive.

Particle mass terms in the Lagrangian can be interpreted as the coupling between left

and right chiralities of a given field. Forthis purpose, it would be enough to add terms

of the form

mfff = mffLfR +mffRfL, (2.38)

with f a generic field and mf its corresponding mass. In practice, this can not be done

directly by hand since left and right-handed fields transform in di↵erent ways under the

considered gauge group. Hence, terms like that in Eq. (2.38) are not gauge invariant.

To introduce them in a consistent way, we will need to add scalar fields to the theory,

which we discuss in the next section.

2.2 How do particles acquire their mass?

As we have seen, the introduction of mass terms for fermions and gauge bosons would

spoil gauge invariance. However, we can add these terms by hiding the symmetry of

the theory through what we call the Higgs mechanism [9, 10]. The idea is to introduce

a complex scalar doublet of the form

� =

✓
�+

�0

◆
, (2.39)

with quantum numbers as given in Table 2.1. This way, the most general gauge invariant

Lagrangian for the scalar sector under SU(2)L ⇥ U(1)Y will be

LH = (Dµ�)
†(Dµ�) � m

2
��

†�� �

4
(�†�)2, (2.40)
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Figure 2.4: Standard Model Higgs potential.

where we assume m2
� < 0, and � > 0. The second and third terms in the last expression

are the Higgs potential. We see that this potential has a minimum whenever � satisfies

the condition

|�|2 ⌘ v
2
�

2
= �m

2
�

�
. (2.41)

Since m
2
� < 0, then there are infinite possibilities to fulfill this condition as we can

see from the potential in Fig. 2.4. In Quantum Field Theory, the minimum of the

potential, v�, corresponds to the vacuum, the state of minimum energy. However, only

neutral fields can have a non-zero value in vacuum, which we call vacuum expectation

value (vev). Then, we take the direction of non-zero vev in the �0 direction:

h�i =
1p
2

 
0

v�

!
. (2.42)

The action of taking a particular direction for the minimum energy state is called

spontaneous symmetry breaking, and we say that the neutral component of the scalar

field induces a vev, v�. We can now expand the neutral component �0(x) around this

minimum and express the Higgs doublet as:

�(x) =
1p
2
exp

✓
i

2v�
⇠a(x)⌧a

◆ 
0

v� +H(x)

!
, (2.43)

with ⇠a(x) complex fields and H(x) a real field that we call the Higgs field. We can

now exploit the gauge invariance of the theory to perform a convenient transformation

U(�⇠a(x)/v�, 0), with U defined in Eq. (2.8), such that we rotate out the fields ⇠a(x)
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and we are left with

�(x) =
1p
2

 
0

v� +H(x)

!
. (2.44)

When using �(x) as in Eq. (2.44) we refer to the unitary gauge, and substituting in

Eq. (2.40) we get

LH =
1

2
(@H)2 � �v

2
�

4
H

2 � �v�

4
H

3 � �

16
H

4 +
g
2
v�

2
W

†
µW

µ
H +

g
2
v�

4 cos2(✓W )
ZµZ

µ
H

+
g
2

4
W

†
µW

µ
H

2 +
g
2

8 cos2(✓W )
ZµZ

µ
H

2 +
g
2
v
2
�

4
W

†
µW

µ +
g
2
v
2
�

8 cos2(✓W )
ZµZ

µ
.

(2.45)

The first two terms in Eq. (2.45) represent a kinetic and a mass term for the Higgs field,

respectively. Then we have trilinear an quartic self interactions of H. The next four

terms are trilinear couplings of the Higgs field with gauge bosons. The most interesting

part of Eq. (2.45) comes from the last two terms, where we can identify mass terms for

the W and Z bosons, respectively. We see that the unitary gauge allows us to see the

physical particle content of the theory.

Now we focus on generating mass terms for fermions. First, notice that the SM

symmetry group allows us to add invariant terms to the Lagrangian of the theory by

coupling the scalar doublet to fermion fields. For instance, in the lepton sector, for the

general case of three families, we can generate the term

LH,L = �
X

↵,�

Y
0`
↵�L

0
↵L�`

0

�L + h.c., (2.46)

where ↵, � = e, µ, ⌧ , and we have used primed fields to denote the original massless

fermion fields. Couplings as those in the previous equation are known as Yukawa

couplings and Y
0 is the Yukawa coupling matrix, which is in general a complex matrix.

Again, to see the physical content of the theory, we can use the unitary gauge for �,

ending up with

LH,L = � 1p
2

X

↵,�

Y
0`
↵�`

0
↵L`

0

�RH � v�p
2

X

↵,�

Y
0`
↵�`

0
↵L`

0

�R + h.c. (2.47)

The first term in the previous equation gives trilinear couplings between charged leptons

and the Higgs field. The second term, in addition, represents the coupling between left

and right-handed fields as that in Eq. (2.38). However, these include couplings between

di↵erent fields so we can not identify these terms with definite mass states. To fix this,
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it will be useful to accommodate the Lagrangian in matrix form and use the notation:

`
0
L =

0

B@
e
0
L

µ
0
L

⌧
0
L

1

CA , ⌫
0
L =

0

B@
⌫
0
eL

⌫
0
µL

⌫
0
⌧L

1

CA , q
0U
L =

0

B@
u
0
L

c
0
L

t
0
L

1

CA , q
0D
L =

0

B@
d
0
L

s
0
L

b
0
L

1

CA , (2.48)

and similarly for right-handed chiralities. It is very important to understand the mean-

ing of the di↵erent notations. Equations (2.2) and (2.3) denote doublets of SU(2). In

contrast, the definitions in Eq. (2.48) denote column matrices with no transformation

rules, these are matrices defined just to simplify the Lagrangian notation. Using this

definition, we can express Eq. (2.47) in a matrix form:

LH,L = �
✓
v� +Hp

2

◆
`
0
LY

0`
`
0

R + h.c. (2.49)

Now, in general, a complex matrix can be diagonalized by a biunitary transformation [8],

which means that there exist two unitary matrices, which we denote as V
`
L, and V

`
R,

such that

V
`†
L Y

0`
V
`
R = Y

` = diag(y1, y2, y3), (2.50)

with Y
` a diagonal matrix and y↵ real [11]. If we define now

`L = V
`†
L `

0

L =

0

B@
eL

µL

⌧L

1

CA , (2.51)

and similarly for right-handed fields, then, after diagonalizing Y
0` in Eq. (2.49), and

using `↵ = `↵L + `↵R, we end up with

LH,L = �
✓
v� +Hp

2

◆
`LY

`
`R + h.c. = � 1p

2

X

↵

y
`
↵`↵`↵H � v�p

2

X

↵

y
`
↵`↵`↵. (2.52)

The first term in the previous equation represents a coupling of the Higgs field to lepton

fields, and the corresponding Feynman diagram is illustrated in Fig. 2.5. Notice that,

as a general rule, scalar fields in Feynman diagrams are depicted with dashed lines.

The second term in Eq. (2.52) can now be identified with a mass term for leptons since

it now couples leptons only of the same flavor. Then, unprimed fields, such as those

in Eq. (2.51), denote states with definite mass. We see that the Higgs field provides a

mathematically consistent manner to incorporate lepton masses into the theory.

Now we want to see what happens to the charged and neutral current interactions
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Figure 2.5: Feynman diagram for the SM coupling of the charged leptons with the Higgs field.

when using the definite mass fields. Rotating the charged lepton fields in Eq. (2.19),

we have

j
µ
W,L = 2⌫

0
L�

µ
V
`
L`L. (2.53)

However, we are free to redefine the neutrino flavor fields as ⌫L = V
`†
L ⌫

0
L and the charged

current keeps the original form. In the case of neutral current, it also preserves its form

due to the unitarity of the rotating matrices, a phenomenon which is called the GIM

mechanism [12].

In a similar way, we can also generate masses for the quark sector. For the case of

down-type quarks, we can add a term to the Lagrangian that has the same shape as

that used for charged leptons. However, here we also have to generate masses for the

up-type quarks. Then, the most general invariant term needed for the quark sector will

be of the form

LH,Q = �
X

↵�

Y
0D
↵�Q

0
↵L�q

0D
�R �

X

↵�

Y
0U
↵�Q

0
↵L�̃q

0U
�R, (2.54)

where �̃ = i⌧2�⇤. Using the unitary gauge, and expressing the result in the matrix

notation introduced in Eq. (2.48), we have

LH,Q = �
✓
v� +Hp

2

◆h
q
0D
L Y

0D
q
0D
R + q

0U
L Y

0U
q
0U
R

i
. (2.55)

The two matrices Y
0D,U can be diagonalized by biunitary transformations as in

Eq. (2.50), by replacing ` ! D,U to indicate that the rotation matrices are di↵erent

for each type of fermions. After diagonalizing, we get a Lagrangian in terms of the

massive states (unprimed fields):

LH,Q = �
✓
v� +Hp

2

◆h
q
D
L Y

D
q
D
R + q

U
LY

U
q
U
R

i

= �
X

↵

y
D
↵ v�p
2

qD↵ q
D
↵ �

X

↵

y
U
↵ v�p
2
qU↵ q

U
↵ �

X

↵

y
D
↵p
2
qD↵ q

D
↵H �

X

↵

y
U
↵p
2
qU↵ q

U
↵H.

(2.56)
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Figure 2.6: Feynman diagram for the SM quark charged current after considering mixing e↵ects.

The first two terms of the second line represent mass terms for the case of down and up

type quarks, respectively, while the third and fourth terms correspond to the coupling

of these particles to the Higgs field. Now, if we substitute the definite mass states in the

neutral current in Eq. (2.36), then, this current will have again the same form as with

the original fields because of the GIM mechanism. However, there is a di↵erence in the

case of charged current when compared to the lepton sector. Rotating the corresponding

fields in Eq. (2.33), we have

j
µ
W,Q = 2qULV �

µ
q
D
L , (2.57)

where we have defined the product V = V
U†
L V

D
L . The matrix V is known in the

literature as the CKM matrix. In contrast to the lepton sector, here we do not have the

freedom of redefining the up type quark fields, and the couplings of the quark fermion

fields to the W gauge boson are weighted by the elements of V , as illustrated in the

Feynman diagrams of Fig. 2.6. We will be more interested in a similar e↵ect when

considering neutrino masses as an extension of the SM, where we will have an analogue

matrix to the CKM one.

In summary, to create an SM-like theory, the following steps are needed:

• Choose the gauge group which determines the interaction-mediating fields.

• Choose the primary fermions to underlie the model and the representations of the

gauge group in which the fermions are placed.

• Write the globally invariant Lagrangian for the model and the corresponding

locally invariant Lagrangian.

• Introduce an appropriate number of multiplets of scalar as well as of interaction

terms of these multiplets with the fermions to obtain massive particles through

spontaneous symmetry breaking.

• Specify the final composition of the model.
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Any other gauge theory attempting to incorporate new physics should follow the pre-

vious steps to give a complete description of particles and their interactions.

2.3 E↵ective CC and NC Lagrangians

So far, we have seen that within the SM, fermions couple to gauge bosons through

neutral and charged currents. The advantage of using Feynman diagrams is that we

can then join them to describe many observed processes. For instance, the charged

current contribution to a scattering process of the form f1 + f3 ! f2 + f4 is illustrated

in the left diagram of Fig. 2.7. External lines represent the initial and final fermion

states, while internal lines account for particles that mediate the interaction. Physically,

we say that the fermions interact by exchanging a W boson. The main goal of Feynman

diagrams is to provide a simple tool to calculate event amplitudes, which eventually

account for the probability of an event to be observed. To this end we can follow

the well known Feynman rules. Following these rules, we can take, for instance, the

⌫e + e
� ! ⌫e + e

� process. Then, the amplitude associated to the diagram in Fig. 2.7

reads [8]

A = u(p2)

✓
�i

g

2
p
2
�
µ
�
1 � �

5
�◆

u(p1)


i
�gµ⌫ + pµp⌫/M

2
W

q2 � M
2
W

�
⇥

⇥ u(p4)

✓
�i

g

2
p
2
�
⌫
�
1 � �

5
�◆

u(p3),

(2.58)

where u(pi) are the Dirac spinors corresponding to each particle of momentum pi, q is

the momentum transfer, and gµ⌫ is the metric tensor. In general, most of the processes

that we measure are at relatively low energies below the scale of the W mass. In this

case, the term between square brackets in Eq. (2.58), which contains the information

of the boson propagator, can be approximated to igµ⌫/M
2
W , with MW the mass of the

W boson. Then, we can arrange some terms and we get the amplitude:

A = �i
g
2

8M2
W

u(p2)�
µ
�
1 � �

5
�
u(p1)u(p4)�µ

�
1 � �

5
�
u(p3). (2.59)

By using this approximation, we say that we have integrated out the degrees of freedom

of the W gauge boson. For convenience, we now define the Fermi constant, GF , so that

GFp
2
=

g
2

8M2
W

, (2.60)
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Figure 2.7: Neutrino-electron scattering charged current interaction reduced to point four-fermion
interaction.

and the amplitude for charged current neutrino-electron scattering now reads

A = �i
GFp
2
u(p2)�

µ
�
1 � �

5
�
u(p1)u(p4)�µ

�
1 � �

5
�
u(p3). (2.61)

Notice that the information about the W boson is now thoroughly contained in GF . In

fact, the amplitude in Eq. (2.61) is only written in terms of the initial and final fermion

states, which can be obtained from an e↵ective Lagrangian that couples the charged

currents involved in the process with an strength parametrized by the Fermi constant:

LCC
e↵ = �GFp

2
⌫e�

µ(1 � �
5)ee�µ(1 � �

5)⌫e. (2.62)

The corresponding Feynman diagram is illustrated in the right diagram of Fig. 2.7.

Notice that the W boson mediated interaction has been now reduced to a four-fermion

point interaction. In terms of the projection operators, the e↵ective Lagrangian can be

written as

LCC
e↵ = �2

p
2GF⌫e�

µ
PLee�µPL⌫e. (2.63)

Similarly, we can analyze the case of a NC contribution to a process of the form

f1i + f2i ! f1f + f2f , as illustrated in the left Feynman diagram of Fig. 2.8. Taking

again the particular case ⌫e + e
� ! ⌫e + e

�, we have an amplitude of the form [8]

A =u(p1f )

✓
�i

g

2 cos ✓W
�
µ
�
g
⌫
V � g

⌫
A�

5
�◆

u(p1i)


i
�gµ⌫ + pµp⌫/M

2
Z

q2 � M
2
Z

�
⇥

⇥ u(p2f )

✓
�i

g

2 cos ✓W
�µ

�
g
e
V � g

e
A�

5
�◆

u(p2i).

(2.64)
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Figure 2.8: Neutrino-electron scattering neutral current interaction reduced to point four-fermion
interaction.

Again, we can approximate the quantity between square brackets to igµ⌫/M2
Z , and using

the relation MW = MZ cos ✓W , we can express

A = �i
2GFp

2
u(p1f )�

µ
�
g
⌫
V � g

⌫
A�

5
�
u(p1i)u(p2f )�µ

�
g
e
V � g

e
A�

5
�
u(p2i). (2.65)

We can now follow a similar approach to that of the charged current and obtain the

amplitude in the previous equation from an e↵ective Lagrangian of the form

LNC
e↵ = �2GFp

2
⌫e�

µ
�
g
⌫
V � g

⌫
A�

5
�
⌫ee�µ

�
g
e
V � g

e
A�

5
�
e. (2.66)

The resulting Feynman diagram is illustrated in the right diagram of Fig. 2.8, where

we can see that the original diagram has been again reduced to a four fermion point

interaction. Using gV = gL+gR, gA = gL�gR, and the fact that for neutrinos g⌫L = 1/2,

and g
⌫
R = 0, we have

LNC
e↵ = �2

p
2GF⌫e�

µ
PL⌫ee�µg

f
LPLe � 2

p
2GF⌫e�

µ
PL⌫ee�µg

f
RPRe. (2.67)

We can generalize the Lagrangian in Eq. (2.67) for a neutral current interaction of a

neutrino of flavor ↵ = e, µ, ⌧ with a fermion f :

LNC
eff = �2

p
2GF⌫↵�

µ
PL⌫↵f�µg

f
XPXf. (2.68)

In general, f represents any charged lepton or quark, but we will be particularly

interested in the interaction of neutrinos with common matter, which means that we
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will take the case where f = e, u, d. In Eq. (2.68), X = R,L is the chirality, and the

values of gfX are given in Table 2.2. Notice that the SM e↵ective NC Lagrangian in Eq.

(2.68) satisfies the following important properties:

• The strength of the interaction is independent of the neutrino flavor, a property

that is known as the universality of the weak force.

• It does not allow for neutrino flavor transitions between the initial and the final

states.

This will be important when we introduce the concept of Non-Standard Interactions

(NSI) in the following chapter, a type of interactions that will be widely studied in the

remainder of this work.
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Chapter 3

Neutrino Physics

Now that we know the fundamental concepts of the SM, we will focus our attention on

the study of neutrinos and their interactions. Historically, the existence of the neutrino

was theoretically proposed by Pauli in 1930 [13] as a solution for energy conservation

in the process of beta decay. By that time, it had been observed that several nuclei,

like 40K and 3H, could decay through a reaction of the type

A ! B + e
�
, (3.1)

with A and B nuclei that di↵er in one charge unit. If this was the case, the energy

conservation laws dictate that the energy of the emitted electron should have a fixed

value, determined by the masses of the involved particles:

E =
m

2
A � m

2
B +m

2
e

2mA
. (3.2)

However, experimental observations indicated that the electrons were detected with

a continuous energy spectrum as that shown in Fig. 3.1. Such an spectrum could

be explained if more particles were involved in the process, which motivated Pauli

to propose the emission of a third particle along with the nucleus and the electron.

This new particle was eventually called neutrino. To preserve charge conservation, this

particle had to be neutral, which until now we know is true, and given the shape of

the spectrum, it had to be massless, which now we know it is not. Years later, in 1933,

Fermi took this idea and presented his theory of beta decay [14], explaining the nucleus

decay as a result of a neutron conversion into a proton by the simultaneous emission of
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Figure 3.1: Neutrino energy spectrum observed for beta decay [7].

an electron and what we now know as anti-neutrino:

n ! p
+ + e

� + ⌫. (3.3)

The experimental evidence of the existence of the neutrino was observed in the mid-

1950s at the Savannah River nuclear reactor [1], where Cowan and Reines observed the

inverse reaction of Eq. (3.3), that is

⌫ + p
+ ! n+ e

+
. (3.4)

Similar observations lead to the conclusion that neutrinos also participate in reactions

that involve the decay of particles as pions and muons. For years, it was thought that

it was the same neutrino the one involved in all the reactions. However, in 1962, an

experiment was carried out in Brookheaven by Lederman, Schwartz, and Steinberger,

where they observed the reaction [15]

⌫ + p
+ ! µ

+ + n. (3.5)

In contrast, there was no evidence of the reaction:

⌫ + p
+ ! e

+ + n. (3.6)

If there was only one neutrino type, then both reactions should occur at the same

rate. This experiment represented clear evidence that there were at least two di↵erent

types of neutrinos, each associated with the flavor of the charged lepton involved in

the production reaction. Years later, in 1975, the ⌧ lepton was discovered [16], and
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Figure 3.2: Neutrino energy spectrum on earth. Image taken from [18].

its corresponding neutrino was observed by the DONUT experiment at Fermilab in

2000 [17], completing the three neutrino picture that we have today.

In this chapter, we present a general picture of neutrino physics. We begin by dis-

cussing some of the main sources of neutrinos, each with its corresponding spectrum

and flux. Then, we will focus on how neutrinos interact with electrons and nuclei

within the SM picture. In addition, we discuss the theory of what we call neutrino

oscillations, and we introduce the current status of the parameters that result from this

phenomenon. Then, we present two di↵erent mechanisms by which neutrinos can ac-

quire their mass, and finally, we will introduce the concept of non-standard interactions,

which phenomenology will be studied in detail in the next chapters.

3.1 Neutrino sources

A unique property of neutrinos is that their di↵erent sources cover an extremely large

range of energies that goes from µeV (cosmological sources), to the highest neutrino

energy ever detected by IceCube, with an energy of PeV (1015 eV) [19], which is believed

to have an origin from active galactic nuclei. We summarize in Fig. 3.2 all the neutrino

sources present on Earth [18]. The di↵erent spectra cover astrophysical sources such as

solar and cosmological measurements, neutrinos naturally produced on Earth such as
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atmospheric and geoneutrinos, and artificial sources that include reactor and accelerator

neutrinos. The spectra in the figure are summed over the three flavors, so oscillation

e↵ects, which we will discuss later, do not a↵ect the presented distribution. Solid

lines refer to neutrino sources, while dashed lines refer to anti-neutrino sources. For

instance, the solar spectrum is completely made of electron neutrinos, while reactor

sources are of electron anti-neutrinos. In the case of atmospheric neutrinos, produced

by the collision of particles from outer space with nuclei in the atmosphere, we have the

production of both neutrinos and anti-neutrinos. Cosmogenic neutrinos are predicted

sources which have not been observed yet, but di↵erent experiments aim to get the

first measurements in the upcoming years. In the next subsections we discuss the three

main sources of neutrinos that will be used in this work; which are solar, accelerator,

and reactor neutrinos.

3.1.1 Terrestrial neutrino experiments

Terrestrial neutrino experiments include those like reactor and accelerator neutrinos,

which are artificially created in the laboratory. Regarding reactor sources, a small

fraction of the energy produced at thermal power plants is released in the form of

anti-neutrinos, which result from the decay of fission products inside the reactor. In

this case, the anti-neutrinos are produced by the beta decay of neutron-rich elements.

The main contribution to the flux comes from the decay of four elements with di↵erent

average proportions: 235U (56%), 239Pu (30%), 238U (8%), and 241Pu (6%). It is true

that these percentages vary with time as the fuel inside the reactor is burnt, but they

represent an average relation within the operation time. Each of the fission events

releases around 200 MeV of energy, producing on average 6 anti-neutrinos in the range

of a few MeV. As a consequence, a total of 2⇥1020 s�1 neutrinos are produced per GW of

thermal power. Indeed, this large flux allowed for the first experimental observation of

neutrinos by Cowan and Reines in the Savannah River nuclear power plant [1]. Usually,

the detection of these anti-neutrinos is done by an inverse beta decay process

⌫e + p ! n+ e
+
. (3.7)

As a two body process, the energies of the involved particles are well determined. Then,

considering the initial proton at rest, we have the relation

E⌫ = Ee + Tn +mn � mp ⇡ Ee + 1.293MeV, (3.8)
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Figure 3.3: Left panel: Reactor anti-neutrino spectrum for the Hubber model; dashed distribution
corresponds to neutron capture contribution [18]. Right panel: Typical normalized neutrino spectra
for ⇡-DAR sources.

where Ee is the energy of the positron and Tn is the kinetic energy of the final neutron,

which we can neglect since it is very small. The anti-neutrino spectrum can be obtained

by measuring the positron spectrum for each fission line and using Eq. (3.8). Since

2011, the standard references for these measurements above 2 MeV are those performed

separately by Muller [20] and Huber [21]. We show in the left panel of Fig. 3.3 the

di↵erent spectra for the four fission lines. The vertical dashed line in the figure shows

a neutrino energy threshold of E⌫ ⇡ 1.8 MeV. Below this energy regime, neutrinos are

also produced in the fission lines but they do not have enough energy to undergo the

inverse beta decay reaction given in Eq. (3.7). For energies below this threshold, there

is also a contribution to the anti-neutrino flux coming from neutron captures during the

fission process, which is very di�cult to model. Therefore there are a lot of uncertainties

in the reactor flux below E⌫ ⇡ 1.8 MeV.

A second type of terrestrial human-made neutrinos are those coming from acceler-

ator sources, on which neutrinos are produced by the decay of pions, kaons, or muons,

which are produced as a byproduct of the collision of a high energy proton beam into

a nuclear target. They can be classified in two main di↵erent groups:

Pion Decay In Flight (⇡-DIF): In this case, a high energy proton beam collides

with a target, usually made of low density materials like beryllium or graphite. As a

result of the interaction, there is a production of high energy pions and kaons, which

have enough energy to leave the target material before being stopped. As charged

particles, these mesons can then be focalized inside a magnetic tunnel with a length

of about 100 m, where the mesons decay. Depending on the polarity of the magnets,

they can guide only positively or negatively charged particles, and we can have the
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production of pure muon neutrinos, or anti-neutrinos, respectively, through the decay

channels:

⇡
+
, K

+ ! µ
+ + ⌫µ, (3.9)

⇡
�
, K

� ! µ
� + ⌫µ. (3.10)

The energy of these neutrinos depends on the energy of the original proton beam and

can be as large as a few GeV.

Pion Decay At Rest (⇡-DAR): In this case, neutrinos are also produced by

smashing a proton beam into a target material. In contrast to ⇡-DIF neutrinos, here

the proton beam has a lower energy and the target is a high density material so that the

resulting pions are stopped inside it. Most of the negatively charged pions are absorbed

by nuclei, while the positively charged pions decay at rest through the decay channel

in Eq. (3.9). The neutrinos produced at this step are usually called prompt neutrinos

and have a definite energy determined by the kinematics of a two body decay, with

E⌫µ ⇡ 29 MeV. On the other hand, the resulting positively charged muons also decay

at rest within the material, this time through the reaction

µ
+ ! e

+ + ⌫e + ⌫µ. (3.11)

Here, the decay channel is a three body process, and the two produced neutrinos, called

delayed neutrinos, do not have a fixed energy. Rather, they have a spectrum, which can

be analytically obtained by energy conservation laws [7]. The three contributions to

the neutrino flux for ⇡-DAR sources are shown in the right panel of Fig. 3.3. Spallation

neutron sources, which we will study in detail in the remaining of this work, fall in this

category of neutrino sources.

3.1.2 Solar neutrinos

Astrophysical neutrino sources include those that are produced within star cores. In

this section, we particularly focus on the description of neutrinos coming from stars

like the Sun. Inside a star core, neutrinos are produced by a variety of thermonuclear

fusion processes that release energy. The main channels of neutrino production in the

Sun are the pp chain and the CNO cycle. The di↵erent paths by which neutrinos are

produced in both cases are illustrated in the two panels of Fig. 3.4. Regardless of the

mechanism, the basic process summarizes to the conversion of four protons and two
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Figure 3.4: Electron neutrino production within the Sun core through the pp chain (left panel), and
the CNO cycle (right panel) [8].

electrons into neutrinos and, after a line is complete, we have the conversion

4p+ 2e� !4 He + 2⌫e +Q, (3.12)

where Q ⇡ 26.7 MeV is energy released either in the form of photons or as kinetic

energy of neutrinos throughout the process and, in consequence, the spectrum of solar

neutrinos must be below this limit.

The basis of neutrino production inside the Sun is the pp fusion, which results in the

production of He nuclei. In a classical mechanics picture, the fusion process within a

star like the Sun would not be possible for two particles of the same sign charge because

the electric Coulomb potential is dominant over the strong force for distances above

an average nucleus of radius RN . To undergo fusion, a particle should need enough

energy to overpass this Coulomb barrier ; otherwise, the same sign particles would be

repelled, as illustrated in the left panel of Fig. 3.5. For a proton-proton interaction,

the Coulomb barrier is of around 550 keV, while the mean energy of the protons inside

the Sun is about 1.5 keV, so in principle, the reaction would not be possible. However,

under a quantum mechanics picture, there is a probability for the protons to overcome

the barrier through quantum tunneling [22]. The same argument is valid for each step

of the pp chain and the CNO cycle, allowing for the fusion process and the production

of neutrinos. The resulting fluxes are shown in the right panel of Fig. 3.5.

The solar neutrino fluxes strongly depend on the specific model considered to de-

scribe di↵erent solar properties. These models require to reproduce the current values
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Figure 3.5: Left panel: Coulomb barrier that forbids neutrino production in a classical mechanics
picture [8]. Right panel: Solar neutrino spectra for the GS98 model [8].

of luminosity, solar radius, as well as the ratio of heavy elements relative to the H

abundance in the surface of the Sun. Also, a specific solar model can be tested through

measurements coming from helioseismology, such as sound speed profile, the depth of

the outer-most layer of the solar interior (the convective zone), and the abundance

of He at the surface. A model constructed with the best available physics and input

data is called a Solar Standard Model. Two of the most widely accepted models in

the determination of the neutrino fluxes are the BSB05(GS98) and the BSB05(AGS05)

models from Bahcall’s group [23], which di↵er on the adopted input of heavy elements

abundance in the Sun. The GS98 model uses the old heavy elements abundances from

Ref. [24], while the AGS05 uses the new abundances in Ref. [25]. Although these

new measurements are more precise, they are in disagreement with helioseismological

observations, in contrast to the old measurements, which are in excellent agreement.

Currently, there is not an agreement on the origin of this discrepancy, which is referred

to as the solar abundance problem. The flux for each neutrino line is given in Table 3.1

for the two di↵erent models. Since there is a better agreement with helioseismological

observations, we will consider the GS98 model for the computations in this work, which

are those illustrated in Fig. 3.5.

3.2 Neutrino interactions in the Standard Model

It has been explained that neutrinos interact with other particles through the weak

force, which means that they interact by exchanging W and Z bosons. As we have

seen, there are di↵erent decay processes, like the beta and the muon decay, in which

neutrinos are involved. However, we are also interested in processes where neutrinos

scatter with other particles. That is the case, for instance of neutrino-electron elastic
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Line BSB05 (GS98) BSB05 (AGS05)

�pp/1010 5.99 6.06

�pep/108 1.42 1.45

�hep/103 7.93 8.25

�Be/109 4.84 4.34

�B/106 5.69 4.51

�N/108 3.05 2.00

�O/108 2.31 1.44

�F/106 5.83 3.25

Table 3.1: Solar neutrino flux in units of cm�2s�1 for the GS98 and AGS05 models.

scattering, and the scattering of neutrinos with nuclei, which will be of interest for our

work and that we describe below.

3.2.1 Neutrino-electron elastic scattering

This process makes reference to an interaction of the form

⌫↵ + e
� ! ⌫↵ + e

� (↵ = e, µ, ⌧). (3.13)

The elastic character of this interaction comes from the fact that the initial and

final particles are the same, and hence, the e↵ect of the interaction is a redistribution

of the energy and momentum of the involved particles. Being a pure leptonic process,

and because of the clear abundance of electrons in matter, an interaction as that in

Eq. (3.13) is one of the most studied and well known weak processes. For incoming

electron neutrinos, there are two contributions to the process, one from charged current,

mediated by a W boson, and one from neutral current, mediated by a Z boson, as

illustrated in the Feynman diagrams of Fig. 3.6. In contrast, for an incoming muon or

tau neutrino, the charged current contribution is not present and the process is only

mediated by the neutral current contribution in the right diagram of Fig. 3.6. For low

energy experiments, as is the case for reactor and solar neutrinos, among other sources,

gauge bosons can be integrated out, which allows us to describe the interaction through

e↵ective Lagrangians as those presented in section 2.3. Explicitly, for an incoming ⌫e,

the charged and neutral current contributions for this process are, respectively:
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Figure 3.6: Feynman diagrams representing charged and neutral current contributions to neutrino-
electron scattering.

LCC
eff = �GFp

2

⇥
⌫e�

⇢(1 � �
5)e

⇤ ⇥
e�⇢(1 � �

5)⌫e
⇤
, (3.14)

and

LNC
eff = �GFp

2

⇥
⌫e�

⇢(1 � �
5)⌫e

⇤ ⇥
e�⇢(g

l
V � g

l
A�

5)e
⇤
. (3.15)

Now, because of the properties of gamma matrices, it has been proven that interac-

tions of the form of Eqs. (3.14) and (3.15) can in general be expressed in terms of

other gamma matrices by exchanging two of the involved fields. These relations are

known as Fierz Transformations [26], and are widely used in scattering processes to

simplify some calculations. In particular, for a V-A four fermion interaction, we have

the transformation

⇥
 1�

⇢(1 � �
5) 2

⇤ ⇥
 3�⇢(1 � �

5) 4

⇤
=
⇥
 1�

⇢(1 � �
5) 4

⇤ ⇥
 3�⇢(1 � �

5) 2

⇤
, (3.16)

with  i fermionic fields. Notice that in this case the matrix products remain the same,

but there is an exchange between the fields labeled as  2 and  4. Then, we can exchange

the electron and neutrino fields in Eq. (3.14) so that the charged and neutral currents

have the same form. This way, for an incoming electron neutrino, the scattering is

⌫e ⌫e ⌫µ,⌧ ⌫µ,⌧

g1
1
2 + sin2

✓W sin2
✓W �1

2 + sin2
✓W sin2

✓W

g2 sin2
✓W

1
2 + sin2

✓W sin2
✓W �1

2 + sin2
✓W

Table 3.2: Neutrino-electron scattering SM couplings.
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Figure 3.7: Standard Model interaction between a neutrino and a nucleon through neutral current
(left) and charged current (right).

described by the e↵ective neutral current form Lagrangian:

LNC
eff = �GFp

2

⇥
⌫e�

⇢(1 � �
5)⌫e

⇤ ⇥
e�⇢((1 + g

`
V ) � (1 + g

`
A)�

5)e
⇤
. (3.17)

In the case of an incoming muon or tau neutrino, the interaction Lagrangian is only

given by Eq. (3.15). We see that both Lagrangians in Eqs. (3.15) and (3.17) have the

same form. Then, their contributions to the total cross-section can be added and in

general we have [8]

d�

dT
(E⌫ , T ) =

2G2
Fme

⇡

"
g
2
1 + g

2
2

✓
1 � T

E⌫

◆2

� g1g2
meT

E2
⌫

#
, (3.18)

with me the mass of the electron, T its recoil energy, and E⌫ the energy of the incoming

neutrino. The values of g1 and g2 depend on the flavor of the incoming neutrino or

anti-neutrino and are given in Table 3.2. As we will see, the introduction of NSI will

modify the constants involved in the SM cross-section.

3.2.2 Coherent Elastic Neutrino-Nucleus Scattering

At tree level, neutrinos can interact with composite particles, like nucleons, by two dif-

ferent processes. The first one is carried on by a neutral current, which is characterized

by a purely kinematic interaction and has a neutral Z boson as a mediator. In this

case, particles before and after the interaction are the same but with di↵erent energies.

On the second type of process, the interaction is given through a charged current, so

it is mediated by W
± bosons, and particles before and after the interaction may be

di↵erent. Both processes are illustrated in Fig. 3.7 for a neutrino-neutron interaction.
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Figure 3.8: Left panel: Feynman diagram for the process of CEvNS. Right panel: Kinematic e↵ects
resulting from the CEvNS interaction. Image taken from [27].

The cross-section for this type of processes is di↵erent depending on the energy of

the incident neutrino. For small energies, below 100 MeV, the dominant term of the

interaction corresponds to that of the neutral current. If the neutrino’s energy increases,

then the interaction is dominated by the charged current and the probability for the

nucleon to remain intact decreases.

Within the SM, neutrinos can also interact with an entire nucleus. In this case,

the analysis turns out to be more di�cult due to the internal structure of the nucleus,

considered as a set of individual nucleons. We distinguish again di↵erent types of

processes, but we will focus on the case of Coherent Elastic Neutrino-Nucleus Scattering

(CEvNS), theoretically proposed by Freedman in 1974 [28]. After the interaction, the

initial and final state of the nucleus is the same, and we have a process of the form

⌫↵ + A(Z,N) ! ⌫↵ + A(Z,N), (3.19)

where A stands for a nucleus with Z protons and N neutrons. The CEvNS interaction

is a neutral current process, which means that, at tree level, it is mediated by a Z

boson, as illustrated in the Feynman diagram on the left panel of Fig. 3.8. As a result

of the interaction, there is a redistribution of the energies of the involved particles

so the nucleus acquires a small kinetic recoil energy, T , determined by the momentum

transfer q2 = 2MT , withM the mass of the nucleus. The interaction process is depicted

in the right panel of Fig. 3.8. The coherent character of CEvNS comes from the fact

that, under certain conditions, the individual scattering amplitudes from all nucleons

add up coherently to contribute to the total cross-section. This is achieved when the

magnitude of the momentum transfer to the nucleus is negligible compared with the

inverse of the nucleus radius, which is only true for relatively low energy neutrinos. This
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Figure 3.9: Comparison between total CEvNS cross-section and other neutrino processes in a low
energy regime [27].

can be explained from a quantum mechanics picture. For a low energy neutrino, there

is an associated de Broglie wavelength that is much larger than the dimensions of an

average nucleus. In that case, the neutrino can not distinguish the internal scatterers

of the nucleus individually, and the contributions from each nucleon to the process

add up coherently. For larger energies, the associated wavelength of the neutrino is

comparable to the nucleus dimensions, and the coherence e↵ect is lost since now the

neutrino distinguishes the internal structure of the nucleus.

The main advantage of CEvNS, when compared to other processes involving neu-

trinos, comes from its relatively large cross-section, which is given by [29, 30]

✓
d�

dT

◆coh

SM

=
G

2
FM

⇡


1 � MT

2E2
⌫

�
[ZgpV F

V
Z (q2) +Ng

n
V F

V
N (q2)]2, (3.20)

where gpV = 1/2� 2 sin2
✓W and g

n
V = �1/2 are the SM vector coupling constants, M is

the mass of the nucleus, E⌫ is the incoming neutrino energy, and T is the nucleus recoil

energy. Notice that, within the SM, |gpV | << |gnV |. Therefore, there is an enhancement of

the CEvNS cross-section that e↵ectively goes as the squared number of neutrons, N2, of

the target material, which is a consequence of the coherent character of the interaction

described above. As a result, the CEvNS interaction is dominant at low energies when

compared to other processes, as can be seen in Fig. 3.9, where we show the cross-section

of a neutrino with a Cs and I nuclei. Notice that in the range that goes from five to some

tens of MeV, the CEvNS cross-section is around two orders of magnitude larger than

the neutrino-electron scattering and the inverse beta decay cross-sections. In principle,

this should make the CEvNS process relatively easier to measure; however, the kinetic
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Figure 3.10: Schematic representation of proton and neutron root mean square (rms) radius [34].

recoil energy of the nucleus, which is measured on an experiment, is very small, and

for current technologies it can be very di�cult to reach the necessary thresholds. In

addition, systematic uncertainties regarding the description of the internal structure of

the nucleus (see below) make this measurement a challenging task. Fortunately, the

COHERENT collaboration reported the first measurement of the process of CEvNS in

2017 by using a CsI based detector. We will discuss this experiment in detail in the

following chapter.

Since axial contributions to the process are negligible [31], the cross-section in

Eq. (3.20) applies for both neutrinos and anti neutrinos. In addition, the expression is

flavor independent, with small corrections that have no significant impact for current

experimental sensitivities [32]. Equation (3.20) also depends on the vector nuclear form

factors F V
Z,N(q

2), which were introduced in Ref. [33] to mathematically account for the

coherent structure of the cross-section in nucleus scattering. These form factors corre-

spond to the Fourier transform of the nucleus distribution. In a general analysis, the

form factors are di↵erent for protons and neutrons, and they are specially important at

a higher momentum transfer. The main characteristic of these functions is that they

are normalized to unity for q2 = 0, or equivalently for T = 0, and vanish at a large mo-

mentum transfer, which is consistent with the coherency conditions already discussed.

Depending on the considered nucleus distribution, we can find in the literature many

di↵erent models to describe the proton and neutron form factors. Here we will mainly

consider two approximations. First we have the symmetrized Fermi distribution, which

results in a form factor of the form

F
SF
X

�
q
2
�
=

3

qc
�
(qc)2 + (⇡qa)2

�
✓

⇡qa

sinh (⇡qa)

◆✓
⇡qa sin (qc)

tanh (⇡qa)
� qc cos (qc)

◆
, (3.21)

where X represents Z or N and q
2 = 2MT . The parameter a quantifies the surface
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Figure 3.11: Left panel: Neutron form factor for Cs and Ge using the Helm parametrization. Vertical
dashed lines show average maximum nuclear recoil energy for neutrinos from reactor and ⇡-DAR
sources. Right panel: Comparison between SF and Helm form factors for a Ge nucleus.

thickness, defined as the width of the region in which the nuclear density falls from

90% to 10% of the central density [35]. On the other hand, the parameter c is related

to what we call the nucleon rms radius, RA:

R
2
A =

3

5
c
2 +

7

5
(⇡a)2. (3.22)

The proton and neutron rms radii, illustrated in Fig. 3.10, represent the average radius

within which the corresponding nucleon is confined inside the nucleus.

We illustrate in the left panel of Fig. 3.11 the neutron form factor for a Cs and

a Ge nuclei as a function of the nuclear recoil energy. The more energetic a neutrino

is, the larger the kinetic energy that it can transfer to a nucleus. Hence, the impact

of the form factor will depend on the neutrino source. The vertical dashed lines in

Fig. 3.11 represent the maximum T that neutrinos from reactors and ⇡-DAR sources

can give to an average nuclear target. We conclude that the impact of the form factor

will be significant for ⇡-DAR sources, but can be well approximated to unity in the

case of reactor neutrinos. This will be important for further analyses on which we will

study how the combination of experiments with di↵erent neutrino sources can be used

to constrain parameters that describe physics beyond the SM and nuclear physics.

As a second parametrization, we have the Helm form factor, which is given by

F
Helm
X (q2) = 3

j1(qR0)

qR0
e

�q2s2

2 , (3.23)
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where j1(x) is the spherical Bessel function of order one, and R0 is the box radius. This

parameter is also related to the nucleon rms radius by

R
2
A =

3

5
R

2
0 + 3s2. (3.24)

Here the constant s quantifies the surface thickness. Any of the two parametrizations

presented here can be used to describe the form factors. In fact, we show in the right

panel of Fig. 3.11 a comparison between the Symmetrized Fermi and Helm form factors

for a Ge nucleus. As we can see, they are almost equal in the range of interest, being

the maximum di↵erence between their values below 1%. As a result, regarding the

chosen form factor, all of the observables considered in this work turn to be model

independent, and we will follow the convention of considering the Symmetrized Fermi

distribution for protons and the Helm one for the case of neutrons.

Experimentally, the proton rms radius can be studied through electromagnetic in-

teractions, and there have been measurements of this parameter for many nuclei. In

contrast, the neutron rms radius is more di�cult to study due to the lack of charge

of the neutron and for most nuclei we only have theoretical predictions. However, the

CEvNS process can be used to study the neutron rms radius through its cross-section

dependence on nuclear form factors [36].

3.3 Neutrino oscillations

The SM in its original form can explain di↵erent phenomena with great accuracy.

However, there are di↵erent experimental observations that can not be explained within

this theory. For instance, we have the case of solar neutrinos, atmospheric neutrinos,

and long baseline neutrino experiments. One of the most known mismatches came in the

case of solar neutrinos through what we call the Solar Neutrino Problem. In summary,

di↵erent experiments measuring the solar neutrino flux were having a considerable

deficit when comparing their results with theoretical predictions. Today we know that

this deficit can be explained if neutrinos change their flavor during their propagation,

a phenomenon called neutrino oscillations. Through this mechanism, a neutrino that

was created, for instance, as an electron state, has a probability of being measured as a

muon or a tau neutrino state. Here we give a brief review of the Solar Neutrino Problem

to motivate the idea of neutrino oscillations.

Historically, the Homestake Experiment (South Dakota, USA) was the first one to

ever measure solar neutrinos in 1968 [37]. This was done with a Cl detector, through
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the charged current reaction

⌫e +
37Cl ! e

� + 37Ar. (3.25)

The experiment was sensitive only to electron neutrino interactions from the 8B flux

(see Fig. 3.5), and the events were measured by extracting the resulting Ar atoms by

radiochemical processes, with a reported e�ciency of 90%. In addition, the experiment

was expected to measure less events than the theoretical prediction because it was

known that many of the Ar atoms would decay before being extracted. However, the

discrepancy was far from the expected, and the collaboration reported an event rate of

around 0.3 when compared to theoretical calculations. This result represented the first

hint of a neutrino deficit for solar neutrinos.

After the Homestake experiment observations, the GALLEX detector (Gran Sasso,

Italy), was designed in 1991 to measure solar neutrinos [38], this time by means of a

detector based on Ga, through the reaction

⌫e +
71Ga ! e

� + 71Ge. (3.26)

This detector was sensitive mainly to neutrinos from the pp, 8B, and 7Be lines. As

in the Homestake experiment, the events were counted by extracting the Ge nuclei

by radiochemical methods, and the e�ciency was tested with a Cr source to be sure

that the experiment was working properly. Despite all the e↵orts, eventually, it was

also reported around a 0.5 event rate when compared to theoretical predictions. The

GNO experiment, its successor, reported similar results [39]. Independently from the

GALLEX experiment, the SAGE detector (Russia) was another gallium-based experi-

ment [40], built in 1990, that intended to measure solar neutrinos through the reaction

in Eq. (3.26). The e�ciency of the experiment was also tested with a Cr source, but it

also reported a rate of around 0.5 when compared to the theoretical prediction, which

confirmed the GALLEX-GNO measurement.

Another experiment that intended to measure solar neutrinos was the Kamiokande

experiment (Kamioka, Japan) in 1986 [41]. In contrast to the other experiments, this

detector was made of pure water, and was able to measure neutrinos in real time by

the Cherenkov radiation that resulted from the final state electrons in the reaction

⌫↵ + e
� ! ⌫↵ + e

�
. (3.27)

Although this reaction is sensitive to all active neutrino flavors, the detector was mainly
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sensitive to electron neutrinos since its cross-section is around six times larger than that

for muon and tau neutrinos. The experiment was only sensitive to the 8B line, and it

also reported a deficit of 0.5 when compared to the SM prediction. The upgrade of this

experiment is Super-Kamiokande, which reported similar results [42].

What all these experiments had in common was that they were mainly sensitive

to electron neutrinos. It was the SNO experiment (Ontario, Canada) the one that

eventually overcame this issue [43]. This experiment consisted of a detector made of

heavy water (D2O), where neutrinos from the 8B line were also detected by the trace

left from Cherenkov radiation. In addition to interactions of the form in Eq. (3.27),

the experiment was also sensitive to the reaction channels [44]:

CC: ⌫e + d ! p+ p+ e
�
, (3.28)

NC: ⌫↵ + d ! p+ n+ ⌫↵, (3.29)

with d denoting the deuterium in heavy water. The neutral current reaction in Eq. (3.29)

allowed for the measurement of the three neutrino flavors, reporting a rate of 0.8 when

compared to theoretical predictions, which is consistent, after accounting for the di↵er-

ent uncertainties, with the hypothesis of flavor transitions during neutrino propagation.

This represented one of the final proofs for neutrino oscillations as the solution to the

solar neutrino problem. As an interesting fact, neutrino oscillations were proposed in

1957 by Pontecorvo [45] in analogy to the observed oscillations of K0 hadrons. By

that time, the only known neutrino was the electron neutrino. Therefore, Pontecorvo

originally proposed transitions between a neutrino and an anti-neutrino. However, by

1967 the muon neutrino had already been observed, and it was in that year that he pre-

dicted the solar neutrino problem as a consequence of oscillations of electron neutrinos

to either a muon neutrino or a hypothetical sterile neutrino state [46].

From the theoretical point of view, oscillations are only possible if neutrino inter-

action states are di↵erent from propagation states. In the standard theory of neutrino

oscillations, a neutrino of flavor ↵ is created as a result of charged current interactions.

Then, within a quantum mechanical approach, this flavor state |⌫↵i can be represented

as a linear combination of three massive states |⌫ki:

|⌫↵i =
X

k=1,2,3

U
⇤
↵k|⌫ki , |⌫ki =

X

↵=e,µ,⌧

U↵k|⌫↵i, (3.30)

where U is a unitary matrix, and the two basis are orthonormal. The above mas-

sive states are solutions of the free Hamiltonian H, which means that they obey the
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Schröedinger equation:

H|⌫ki = Ek|⌫ki, (3.31)

with Ek =
p

p2 +m
2
k the energy of the massive states, and we are assuming that these

states carry the same momentum p. As a solution to the Schröedinger equation, the

mass states evolve in time as plane waves in the form |⌫k(t)i = exp(�iEkt)|⌫ki, which
combined with the right hand expression in Eq. (3.30), gives

|⌫↵(t)i =
X

�

 
X

k

U
⇤
↵ke

�iEktU�k

!
|⌫�i. (3.32)

This last equation shows that the neutrino state at a time t becomes a superposition

of the di↵erent neutrino flavor states. Then, the probability of finding the neutrino on

a flavor state |⌫�i is given by

P⌫↵!⌫� = |h⌫�|⌫↵(t)i|2 =
X

k,j

U
⇤
↵kU�kU↵jU

⇤
�je

i(Ek�Ej)t. (3.33)

For ultrarelativistic neutrinos, which has been the case for currently detected neu-

trinos since their masses are tiny, we have Ek ⇡ E + m
2
k/2E, with E the neutrino

energy neglecting the mass contribution. In addition, in this approximation, where we

use natural units, we can use t ⇡ L, with L the distance traveled by the massive states.

Then, Eq. (3.33) can be expressed as

P⌫↵!⌫� =
X

k,j

U
⇤
↵kU�kU↵jU

⇤
�je

i
�m2

kjL

2E . (3.34)

The anti-neutrino case can be obtained in a similar way and the corresponding expres-

sion is given by taking the conjugate of Eq. (3.34), that is

P⌫↵!⌫� =
X

k,j

U↵kU
⇤
�kU

⇤
↵jU�je

�i
�m2

kjL

2E . (3.35)

From Eqs. (3.34) and (3.35) , we can see that the oscillation probability is only sen-

sitive to neutrino squared mass di↵erences. As we will see, oscillation data gives us

information about these squared mass di↵erences, but we do not know the correct sign

of �m
2
32. Then, there is the question of what is the correct mass ordering of neutrinos.

We refer to the Normal Ordering (NO) and to the Inverted Ordering (IO) of neutrino

mass when we consider ⌫1 and ⌫3 as the lightest neutrino, respectively. Both scenarios
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Figure 3.12: Neutrino mass pattern in the Normal Ordering (left) and Inverted Ordering (right).

are illustrated in Fig. 3.12.

3.4 Oscillations in matter

The theory of neutrino oscillations in vacuum during their propagation from the sun

to the earth seemed to be a good explanation for the Solar Neutrino Problem. If this

was the correct explanation, it was expected a seasonal variation on the solar neutrino

flux since the distance between the earth and the sun changes significantly throughout

the year. However, not significant variations were observed, and this hypothesis was

disfavored. A solution was given in 1978 by L. Wolfenstein [47], who proposed that

neutrino flavor transitions were enhanced by matter e↵ects during neutrino propagation

within the sun, which we briefly summarize.

When neutrinos propagate in matter, they experience an e↵ective potential that

modifies their evolution equation. In principle, it is well known that neutrinos barely

interact with matter so we may wonder how they even notice the surrounding matter

when they propagate in a medium. The answer comes from the process of neutrino-

electron coherent elastic forward scattering, depicted in Fig. 3.13 for the case of neutral

current interactions. As described in section 3.2.1, for a neutrino elastic collision, there

is a rearrangement of the momenta of the involved particles. When the momentum of

the initial and final neutrino are di↵erent, then the cross-section involved in the process

is very small since the neutrino interacts with only one particle. However, when a

neutrino propagates in matter, they can interact with the surrounding particles with

no momentum exchange. In this case, we ignore the particle with which the neutrino

interacts, so we need to sum up coherently the contributions from all the particles of

the medium, which in regular matter are mainly protons, electrons, and neutrons. This
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Figure 3.13: Neutral current contribution for neutrino-electron coherent elastic forward scattering
in a medium.

way, the cross-section of the process is enhanced and becomes the dominant process for

neutrino interactions in a medium. This process is analogous to a refraction index for

a photon propagating through a medium. In general, both charged and neutral current

interactions can contribute to the coherent forward scattering. Then, assuming neutral

matter, the potential that a neutrino ⌫↵ feels during the propagation in matter is given

by1 [8]

V↵ =
p
2GF

✓
Ne�↵e � 1

2
Nn

◆
, (3.36)

with Nn the density of neutrons and Ne the density of electrons, which is the same

as that of protons for neutral matter. The physical meaning of V↵ is that of a poten-

tial energy of ultra-relativistic left-handed neutrinos of flavor ↵ propagating through

a medium. This potential needs to be included in the evolution equation of neutri-

nos. Then, denoting the amplitude of ⌫↵ ! ⌫� transitions as  ↵�(x) = h⌫�|⌫↵(x)i, the
evolution equation for this amplitude in the matrix form reads

i
d

dx
 ↵ =

1

2E

�
UM

2
U

† + A
�
 ↵, (3.37)

where we have used the matrix notation:

 ↵ =

0

B@
 ↵e

 ↵µ

 ↵⌧

1

CA , M
2 =

0

B@
0 0 0

0 �m
2
12 0

0 0 �m
2
13

1

CA , A =

0

B@
ACC 0 0

0 0 0

0 0 0

1

CA , (3.38)

with ACC = 2
p
2EGFNe. The expression in Eq. (3.37) represents a Schrodinger-like

equation, with the Hamiltonian, in the flavor basis, HF = (2E)�1
�
UM

2
U

† + A
�
. There

is an interesting e↵ect when we consider matter e↵ects, which enhances the oscillation

probability. To illustrate the general concept, we consider the case of two neutrino mix-

1In neutral matter the density of protons and neutrons is the same. Hence, the neutral current
contribution to V↵ of protons is canceled by the neutral current contribution of electrons.
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ing, which, as we will see, ends up being an excellent approximation for solar neutrinos.

Denoting by ✓ and �m
2 the mixing angle and the squared mass di↵erence in vacuum

for two neutrino mixing, respectively, and after removing common phases, Eq. (3.37)

explicitly reads

i
d

dx

 
 ee

 eµ

!
=

1

4E

 
��m

2 cos 2✓ + 2ACC �m
2 sin 2✓

�m
2 sin 2✓ �m

2 cos 2✓

! 
 ee

 eµ

!
. (3.39)

The Hamiltonian matrix in Eq. (3.39) can then be diagonalized by a unitary transfor-

mation UM of the form

UM =

 
cos ✓M sin ✓M

� sin ✓M cos ✓M

!
, (3.40)

with ✓M the weak mixing angle in matter. The unitary transformation is such that

U
T
MHFUM = HM =

1

4E
diag

�
��m

2
M ,�m

2
M

�
. (3.41)

Being �m2
M the squared mass di↵erence in matter, and HM denotes the Hamiltonian

in the mass basis. In terms of their vacuum counterparts, the matter parameters are

given by

�m
2
M =

q
(�m2 cos 2✓ � ACC)

2 + (�m
2
M sin 2✓)2, (3.42)

tan 2✓M =
tan 2✓

1 � ACC
�m2 cos 2✓

. (3.43)

Notice from Eq. (3.43), that there is a resonance for ACC = �m
2 cos 2✓, where the

mixing angle in matter is ⇡/4, leading to a maximal neutrino mixing. This is the

so-called MSW e↵ect [48]. In normal matter, ACC is positive and from Eq. (3.43)

we see that a resonant condition can exist only if ✓ < ⇡/4. Therefore, the oscillation

probability behaves di↵erently in matter than it does in vacuum, where the probability

is symmetric under ✓ ! ⇡/2 � ✓. If possible, the resonance condition can be achieved

if the electron density satisfies

(Ne)res =
�m

2 cos 2✓

2
p
2GFE

. (3.44)

In the case of antineutrinos, there is a change of sign in Acc, and hence, there can only

be a resonance if ✓ > ⇡/4. This means that there can only be a resonance either for

neutrinos or for antineutrinos, but not for both.

If the propagation medium has a constant density, it is hard to find the conditions
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for resonance. However, if the matter density is variable, then we can find a region

where the resonance is satisfied, opening the possibility to enhance transitions between

states. To explain this, we consider the rotation of the flavor fields:

 
⌫e

⌫µ

!
=

 
cos ✓M sin ✓M

� sin ✓M cos ✓M

! 
⌫
M
1

⌫
M
2

!
)

 
 ee

 eµ

!
=

 
cos ✓M sin ✓M

� sin ✓M cos ✓M

! 
�e1

�e2

!
.

(3.45)

The ⌫Mi fields can be interpreted as the e↵ective neutrino mass eigenstates in matter,

and �ei = h⌫e|⌫Mi i is the amplitude of ⌫e in the e↵ective mass basis. Expressing Eq.

(3.39) in terms of the new rotated fields probabilities:

i
d

dx

 
�e1

�e2

!
=

1

4E

 
��m

2
M �4Ei

d✓M
dx

4Ei
d✓M
dx �m

2
M

! 
�e1

�e2

!
. (3.46)

In general, the e↵ective mass eigenstates vary with time and, just as flavor fields, there

can be transitions between them. Then, the amplitudes �ei also vary in time. However,

if the non-diagonal terms in Eq. (3.46) are negligible, then there will be no transitions

between e↵ective matter states and the e↵ect on the amplitude will be a phase factor

with respect to the initial amplitude. This is called the adiabatic approximation, and

the details about the conditions that need to be satisfied for this approximation can

be found in Ref. [8]. The most important feature of this approximation is that in this

case the survival probability will depend only on the initial e↵ective mixing angle, that

is, on the angle at the point where the neutrino was produced:

P
adiab
⌫e!⌫e =

1

2
+

1

2
cos 2✓M cos 2✓. (3.47)

We will use this approximation in chapter 7 to study neutrino electromagnetic properties

with solar neutrinos.

3.5 Massive neutrinos

The observation of neutrino oscillations has provided a definite proof that at least two

of the neutrinos are massive. However, questions like what is the absolute neutrino

mass scale, what is the correct mass hierarchy, and what is the origin of their so tiny

masses, are still open. Since neutrinos are considered massless within the SM, then the

theory needs to be extended so that we account for their little masses. To do so, we

first need to know that, in contrast to the other elementary fermions, neutrinos have
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no electric charge and, in consequence, the fields describing these particles can have a

Dirac or a Majorana nature. For Dirac fermions, particles and anti-particles correspond

to di↵erent states, while in the case of Majorana fields both particle and anti-particle

correspond to the same state. Here we summarize how Dirac or Majorana terms for

neutrino masses can be added to the SM Lagrangian.

Dirac masses: In this case, we can generate neutrino masses with the same Higgs

mechanism that gives masses to the other fermions. This can be done by the intro-

duction right-handed neutrinos ⌫↵R. A theory that only adds these states is called

a minimal extension of the SM because we are only adding right-handed states to

the existing neutrino fields. However, these right-handed neutrino states are not ob-

served to participate in weak interactions, so they must be added as singlets under the

SU(2)L⇥U(1)Y gauge group. In consequence, they are not sensitive to any forces other

than gravity, and they are called sterile states. To generate Dirac masses with the new

introduced right-handed fields, we only have to replicate the mechanism used in section

2.2 to generate the masses of up-type quarks. That is, we add to the Lagrangian a

Yukawa-type interaction of the form

Lmass
D = �

X

↵,�

Y
0`
↵�L↵L�`

0D
�R �

X

↵,�

Y
0⌫
↵�L↵L

e�⌫ 0

�R, (3.48)

where ↵, � = e, µ, ⌧ and Y
0⌫ is a completely general complex matrix of Yukawa cou-

plings. After spontaneous symmetry breaking, and using the unitary norm, we can

write the previous equation in the form

Lmass
D = �

✓
v� +Hp

2

◆⇣
`
0
LY

0`
`
0
R + ⌫

0
LY

0⌫
⌫
0
R

⌘
+ h.c., (3.49)

where we have used the matrix notation introduced in Eq. (2.48), adding the right-

handed neutrinos ⌫ 0R =
⇣
⌫
0
eR ⌫

0
µR ⌫

0
⌧R

⌘T

. Each of the Yukawa matrices in the previous

equation can be diagonalized by a biunitary transformation. For Y
0` we use the same

matrices as in Eq. (2.50), when we introduced the Higgs mechanism, and for Y
0⌫ we

use the unitary matrices V ⌫
L and V

⌫
R , such that

V
⌫†
L Y

0⌫
V
⌫
R = Y

⌫
, (3.50)

with Y
⌫ = diag(y⌫1 , y

⌫
2 , y

⌫
3 ) a diagonal real matrix. We now define the neutrino massive
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chiral states:

nL = V
⌫†
L ⌫

0

L =

0

B@
⌫1L

⌫2L

⌫3L

1

CA , (3.51)

with a similar expression for ⌫R states. By substituting the last two equations in the

Dirac masses Lagrangian (Eq. (3.49)) and using ⌫ = ⌫L + ⌫R, we get the diagonalized

Lagrangian:

Lmass
D = �

X

↵

y
`
↵v�p
2
`↵`↵ �

X

k

y
⌫
kv�p
2
⌫k⌫k �

X

↵

y
`
↵p
2
`↵`↵H �

X

k

y
⌫
kp
2
⌫k⌫kH. (3.52)

From the second term in this equation we can identify the Dirac neutrino masses with

the form

mk =
y
⌫
kv�p
2
. (3.53)

We see that, as in the case of the other fermions, the masses of Dirac neutrinos are

proportional to v�, and the smallness of their masses is not explained. Also, the last

term in Eq. (3.52) represents the coupling of neutrinos to the SM Higgs field, which

is expected since in this case they acquire their mass through the same mechanism as

the other fermions. It is interesting to see the e↵ect that the introduction of massive

neutrinos has for the interaction with other fermions. In the case of charged current,

we have

j
⇢
W,L = 2⌫ 0L�

⇢
`
0
L = 2nLV

⌫†
L V

`
L�

⇢
`L. (3.54)

The matrix U ⌘ V
⌫†
L V

`
L is the lepton sector analogue of the CKM matrix defined for

quarks. This matrix is usually called the PMNS matrix, and we can write the charged

current in the form

j
⇢
W,L = 2nLU

†
�
⇢
`L. (3.55)

In the case of the neutral current, the GIM mechanism is preserved given the unitarity

of V ⌫
L and V

`
L. This can be noticed from the definition of the massive states

j
⇢
W,L = 2g⌫` ⌫

0
L�

⇢
⌫
0
L = 2g⌫` nLV

⌫†
L V

⌫
L �

⇢
nL = 2g⌫` nL�

⇢
nL, (3.56)

and the neutral current has the same form in the mass basis as in the flavor basis.

There are two important comments regarding neutrino mixing. First, it is useful to

define the neutrino flavor states as

⌫L = UnL. (3.57)
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In this way, the neutrino charged current in Eq. (3.55) has the same form as that in the

SM. In contrast to the quark sector, this can be done in cases where the e↵ects of the

neutrino masses are neglected. Otherwise, we need to use the charged current in terms

of neutrino mass states. Secondly, the mixing in the lepton sector is given to neutrinos

since the charged leptons can be distinguished by their mass. In contrast, we cannot

distinguish neutrinos by measuring their mass, but only by the charged lepton involved

in their production process.

Majorana masses: To understand the concept of Majorana masses, we need to

remember that, in general, we can write a fermion field  as the sum of two independent

chiral fields  =  L + R, each with two independent components. Also, we know that

a fermion field is described by the Dirac equation (i�µ@µ � m) = 0. Then, expressing

 in terms of the chiral fields we have:

i�
µ
@µ L = m R, (3.58)

i�
µ
@µ R = m L. (3.59)

In the case of a massless fermion, the system in Eqs. (3.58) and (3.59) is decoupled, and

the field can be thoroughly described by two degrees of freedom. Within the SM this

is the case of neutrino fields, but we now know that neutrinos are massive. However,

Majorana realized that also neutral massive fields can be described by two degrees of

freedom if we assume  L and  R are not independent [49]. Indeed, we can take the

relation

 R = C L
T
, (3.60)

with C the charge conjugation operator, which transforms particle states into anti-

particle states. Notice that this represents a valid choice since, defined in this way, the

field  R is actually a right-handed field. We can see this by applying the PL projection

operator, which satisfies PL(C L
T
) = 0. Then, if the condition in Eq. (3.60) is satisfied,

the two Eqs. (3.58) and (3.59) are the same, so the particle can be described with only

one independent field  L. Then, by denoting  C
L = C L

T
, a Majorana fermion field

can be written as

 =  L +  
C
L , (3.61)

which represents the Majorana condition for a fermion field. In general, it can be shown

that under the C operation, a field transforms as  !  
C and vice versa. Then, from

Eq. (3.61), we can see that a Majorana field is the same as its anti-particle field. This

means that only neutral particles, like neutrinos, can be Majorana fields. It is true
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that in general we can also write the field  L in terms of  R but, within the SM, the

left-handed neutrino fields are those that participate in weak interactions and we take

the convention of writing the field in terms of  L. From the condition in Eq. (3.61),

the Majorana mass Lagrangian takes the form

LM
mass = �m

⇣
⌫
C
L ⌫L + ⌫L⌫

C
L

⌘
= �m

�
�⌫TLC†

⌫L + ⌫LC⌫L
T
�
, (3.62)

where the notation defined above Eq. (3.61) was used. It is important to mention that

a Lagrangian as that in Eq. (3.62) is not allowed within the symmetries of the SM.

In fact, Weinberg [50] showed that the lowest energy dimension operator constructed

with SM fields that can generate a Majorana mass Lagrangian, without spoiling gauge

symmetry, is the dimension five operator:

L5 =


M
�
L
T
L⌧2�

�
C

† ��T
⌧2LL

�
+ h.c. (3.63)

In this Lagrangian,  is a dimensionless coupling constant and M is a constant with

dimensions of mass that is introduced for a correct renormalizability of the theory,

which needs the operator to be of dimension four at most. In this sense, the Majorana

mass terms would result as a low energy manifestation of a more general theory than

the SM, that is valid above the electro weak scale, just as the Fermi theory of the beta

decay is a low energy manifestation of the SM theory. After spontaneous symmetry

breaking, and using the unitary norm, the operator in Eq. (3.63) gives the Lagrangian

term

LM
mass = �v

2
�

2M
�
�⌫TLC†

⌫L + ⌫LC⌫L
T
�
, (3.64)

where we can identify the mass given by m = v
2
�/2M. Another notable di↵erence

when considering Majorana neutrinos comes in the case of neutrino mixing. If we

consider three Majorana neutrinos, then we can construct the Majorana mass term

LM
mass = ⌫

0T
L C

†
ML⌫

0
L + h.c. (3.65)

HereML is a symmetric complex matrix, in contrast to the Dirac case, where the matrix

was completely general. In consequence, the matrix ML can be diagonalized with only

one unitary matrix V
⌫
L through the transformation

V
⌫T
L MLV

⌫
L = M = diag(m1,m2,m3), (3.66)

with mk real. Then, we can use the same transformation between the primed fields and

51



CHAPTER 3. NEUTRINO PHYSICS

the mass fields as in Eq. (3.51), and defining ⌫k = ⌫kL + ⌫
C
kL, we end up with the mass

Lagrangian for three Majorana neutrinos

LM =
3X

k=1

mk⌫
C
kL⌫kL +H.c. = �

3X

k=1

mk⌫k⌫k. (3.67)

With the applied rotation, we can write the charged current as in Eq. (3.54) by defining

U = V
`†
L V

⌫
L , and we end up again with

j
⇢
W,L = 2nLU

†
�
⇢
`L. (3.68)

Then, if we define the flavor fields as in Eq. (3.57), we again have a charged current

with the same form as in the SM. From the previous discussion, it would be interpreted

that the matrices U in Eqs. (3.55) and (3.68) are the same. However, this is not the

case, and the di↵erence does not come from the charged current interaction. Instead,

it has to do with the origin of the mass terms for neutrinos and whether or not these

terms are invariant over a transformation of the form

⌫kL ! e
i'k⌫kL. (3.69)

In general, a 3 ⇥ 3 complex matrix can be parametrized by three mixing angles and

six phases. For Dirac neutrino masses, the mass Lagrangian in Eq. (3.52) is invariant

under a transformation of the form in Eq. (3.69), and we can eliminate five of the

non-physical phases with a proper transformation choice. We denote the remaining

phase as � and it is called the Dirac phase. In contrast, the Majorana mass Lagrangian

in Eq. (3.64) is not invariant under this transformation. Hence, we can only eliminate

three of the non physical phases. The remaining two extra phases, denoted as ↵2 and

↵3, can be factored out in a diagonal matrix of phases:

U
M = diag

�
1, ei↵2 , e

i↵3
 
, (3.70)

Then, if we denote U
D the Dirac mixing matrix, parametrized by three mixing angles

and the � phase, we can in general write

U = U
D
U

M ) U�k = U
D
�ke

i↵k . (3.71)

With no summation over the k index. In this way, the Dirac mixing matrix can be

obtained using Eq. (3.71) with U
M = I, while the Majorana mixing matrix by taking
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U
M as in Eq. (3.70). Notice that the quartic products of U elements in the oscillation

probability in Eq. (3.34) are invariant over the transformation U↵k ! e
i ↵U↵ke

i�↵ ,

which means, according to Eq. (3.71), that oscillations are not sensitive to Majorana

phases.

Many parametrizations are given in the literature for U
D. In this work we will

use the convention adopted by the Particle Data Group (PDG), where we denote the

three mixing angles as ✓12, ✓13, and ✓23, and the physical Dirac CP phase as �, so we

express [51]

U
D =

0

B@
c12c13 s12s13 s13e

�i�

�s12c23 � c12s23s13e
i�

c12c23 � s12s23s13e
i�

s23c13

s12s23 � c12c23s13e
i� �c12s23 � s12c23s13e

i�
c23c13

1

CA , (3.72)

where cij = cos ✓ij and sij = sin ✓ij. As we will see, di↵erent experiments are sensitive

to di↵erent parameters of the mixing matrix.

Another characteristic of the Majorana mass Lagrangian in Eq. (3.64) is that, in

contrast to the Dirac case, it is not invariant to a global transformation of the form

⌫kL ! e
i'
⌫kL (k = 1, 2, 3), (3.73)

where we are using the same phase for the three di↵erent massive neutrinos. It can be

shown that this implies a non-conservation of the total lepton flavor number, a quantity

that is conserved within the SM. This leads to the possibility of observing the process of

neutrinoless double beta decay, in which two neutrons simultaneously decay, producing

two electrons and two protons with no neutrinos in the final state. The process is

illustrated in Fig. 3.14 and it represents one of the most promising ways to prove, if it

is the case, a Majorana nature for neutrinos.

Apart from the parametrization for the U matrix adopted by the PDG, we can find

in the literature another paramterization that is more suitable for the study of Majorana

neutrinos. This is called the symmetric parametrization, and it has the form [52]

U =

0

B@
c12c13 s12s13e

�i�12 s13e
�i�13

�s12c23e
i�12 � c12s23s13e

�i(�23��13) c12c23 � s12s23s13e
�i(�12+�23��13) s23c13e

�i�23

s12s23e
i(�12+�23) � c12c23s13e

i�13 �c12s23e
i�23 � s12c23s13e

�i(�12��13) c23c13

1

CA .

(3.74)

Here the physical CP phases are �12, �13, and �23. Notice that the number of free

parameters has not changed with respect to the PDG parametrization. The � CP
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Figure 3.14: Feynman diagram for neutrinoless double beta decay process.

phase in Eq. (3.72) is related to the phases in Eq. (3.74) through [52]

� = �13 � �12 � �23. (3.75)

In fact, the symmetric parametrization provides a cleaner picture of CP processes that

are thoroughly a consequence of Majorana phases. For instance, the e↵ective mass

parameter that characterizes the amplitude of the neutrinoless double beta decay, il-

lustrated in Fig. 3.14, is given by [52]

hmi =

�����
X

j

U
2
ejmj

����� . (3.76)

In the PDG parametrization, considering Majorana phases, this amplitude reads

hmi =
��c212c213m1 + s

2
12c

2
13m2e

2i↵2 + s
2
13m3e

2i(�+↵3)
�� . (3.77)

Since neutrinoless double beta decay is a process related to Majorana neutrinos, we

would expect the phase � not to be present in this expression. However, in terms of the

symmetric parametrization, as given in Eq. (3.74), we have

hmi =
��c212c213m1 + s

2
12c

2
13m2e

2i�12 + s
2
13m3e

2i�13
�� . (3.78)

In this way, we see that the symmetrical parametrization provides a transparent de-

scription in which only two phases appear in the e↵ective mass parameter, as it should.

These two phases represent precisely the CP violating Majorana phases.
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Parameter Best fit 1� range 2� range 3� range

�m
2
21 [10�5eV2] 7.50 7.30 - 7.72 7.12 - 7.93 6.94 - 8.14

|�m
2
31| [10�3eV2] (NO) 2.55 2.51 - 2.57 2.49 - 2.60 2.47 - 2.63

|�m
2
31| [10�3eV2] (IO) 2.45 2.42 - 2. 47 2.39 - 2.50 2.37 - 2.53

sin2
✓12/10�1 3.18 3.02 - 3.34 2.86 - 3.52 2.71 - 3.69

sin2
✓23/10�1 (NO) 5.74 5.60 - 5.88 5.41 - 5.99 4.34 - 6.10

sin2
✓23/10�1 (IO) 5.78 5.61 - 5.88 5.41 - 5.98 4.33 - 6.08

sin2
✓13/10�2 (NO) 2.200 2.138 - 2.269 2.069 - 2.337 2.000 - 2.405

sin2
✓13/10�2 (IO) 2.225 2.155 - 2.289 2.086 - 2.356 2.018 - 2.424

�/⇡ (NO) 1.08 0.96 - 1.21 0.84 - 1.42 0.71 - 1.99

�/⇡ (IO) 1.58 1.42 - 1.73 1.26 - 1.85 1.11 - 1.96

Table 3.3: Status of oscillation parameters from global analyses [53] for NO and IO of neutrino mass
hierarchy.

3.6 Status of neutrino oscillation parameters

From the previous sections we know that neutrino oscillations are only sensitive to

the U
D matrix elements. Then, the physical parameters in neutrino oscillations are

the three mixing angles, the � CP phase, and the squared mass di↵erences �m2
21 and

�m
2
31. The current picture includes robust experimental constraints for the case of ✓12,

✓13, and �m
2
21. However, many of the main questions of neutrino physics remain in

this sector. Here are some of the things that we still do not know:

• Robust constraints for the � CP phase.

• Whether ✓23 is below or above ⇡/4.

• The correct sign of �m
2
31.

• The absolute scale of the neutrino mass.

According to the ratio L/E, neutrino oscillation experiments can be divided in

four di↵erent groups: solar neutrino experiments, short baseline reactor experiments,

atmospheric experiments, and long baseline accelerator experiments. We summarize

the current constraints for oscillation parameters in Table 3.3 [53], which are obtained

from global analyses.

Solar neutrino experiments are sensitive to the (sin2
✓12,�m

2
21) parameter space.

The global analyses of solar neutrinos include data from the radiochemical experiments
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Figure 3.15: Left panel: Black and blue contours show the allowed values for oscillation parameters
for solar neutrinos and KamLAND experiment, respectively, at 90% (dashed lines) and 99% (solid lines)
C. L. Colored regions show the results for combined global analyses at 90% (gray) and 99% (magenta)
C. L. Image taken from [57]. Right panel: Di↵erent regions in the (sin2

✓12,�m
2
21) parameter space.

described in the previous section, as well as data from BOREXINO [54], and Super

Kamiokande [55]. Since it is sensitive to the same parameters, global analyses in this

channel also include data from KamLAND [56], which is a reactor experiment. The 90%

C. L. regions for these experiments, together with a combined analysis are shown in the

left panel of Fig. 3.15 [53]. Historically, di↵erent regions in the parameter space were

proposed to solve the solar neutrino problem. These are shown in the right panel of

Fig. 3.15, where we distinguish five regions: the Small Mixing Angle (SMA), the Large

Mixing Angle (LMA), the low �m
2
21 (LOW), the quasi-vacuum-oscillations (QVO), and

the vacuum oscillations (VAC) regions. In the case of SMA, LMA, and LOW regions,

matter e↵ects are the most relevant for neutrino oscillations to a di↵erent degree. For

QVO, both matter and vacuum e↵ects are important, while for VAC, matter e↵ects are

negligible, and vacuum e↵ects are responsible for oscillations. From the results in the

left panel of Fig. 3.15, we conclude that current global data favors an LMA solution

for neutrino oscillations.

The group of short baseline reactors is mainly sensitive to the mixing angle ✓13.

They now have greater power than old reactors, and most of these experiments were

developed with multiple same kind detectors located at di↵erent distances from the

reactor, which enhanced the total measured number of events. The data for global

analyses comes from detectors as Daya Bay [58], RENO [59], and Double Chooz [60],

all of them favoring a non-zero value of ✓13. Actually, this non-zero value helps to

reconcile the tension between solar data and KamLAND.

Atmospheric neutrino experiments are sensitive to the parameter space (sin2
✓23,�m

2
31).
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The first observation of the atmospheric neutrino flux was done by the Super-Kamiokande

collaboration, which reported a dependence of the observed number of events on the

zenith angle [61]. This represented a clear signature of neutrino oscillations because

it was observed that neutrinos from below the detector, which traveled the longest

distance, were less than those coming from the upper direction. The reported data

was consistent with the theory of neutrino oscillations and shows a small preference

for ✓23 > ⇡/4 and a normal mass ordering. Current global analyses also include data

from the ANTARES [62], and Ice Cube DeepCore [63] experiments, first intended to

measure very high energy neutrinos, but eventually adapted for atmospheric neutrino

energies. Their results are consistent with Super-Kamiokande observations.

Finally, long baseline accelerator neutrino experiments have been analyzed to con-

firm oscillations of muon neutrinos, which means that these experiments are also sen-

sitive to the (sin2 ✓23,�m
2
31) parameter space. For global analyses we have the mea-

surements of T2K [64] (initially KEK experiment), MINOS [65], and NO⌫A [66], all of

which show consistent results with neutrino oscillations. In the case of T2K, the analy-

sis shows a preference for maximal mixing (✓23 ⇡ ⇡/4), while NO⌫A and MINOS favor

the case below maximal mixing. In addition, since accelerators are a source of muon

neutrinos and anti-neutrinos, experiments like T2K have provided a mild sensitivity to

the � CP phase.

3.7 Non-Standard neutrino Interactions

As we have mentioned, the phenomenon of neutrino oscillations represents a clear ev-

idence that the SM is not complete and that neutrinos can give special hints in the

search for new physics. Indeed, there has been a lot of interest in modeling di↵erent

extensions of the SM to explain, for instance, the neutrino mass pattern. A useful phe-

nomenological approach is that of Non-Standard Interactions (NSI), which can a↵ect

the production, propagation, and detection of neutrinos. In the low energy regime,

these interactions can be formulated by an e↵ective four-fermion Lagrangian. In gen-

eral, there are two di↵erent types of NSI considered in the literature. The charged

current interactions, described by

LCC�NSI = �2
p
2GF⌫↵�

µPL`�f
0�µPX✏

ff 0X
↵� f (3.79)
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and the neutral current NSI, which is of the form

LNC�NSI = �2
p
2GF⌫↵�

µPL⌫�f�µPX✏
fX
↵� f, (3.80)

where PL and PR denotes the projection operators. Here, f and f
0 stand for charged

fermions. The strength of the interactions is measured by the parameters "fX↵� (with

X = L,R) and we have factorized GF for convenience. We are interested in neutrino

interactions with matter, so we will mainly consider the case of neutral current inter-

actions of neutrinos with electrons and with up and down quarks. The subscripts ↵

and � run over the three lepton flavors e, µ, ⌧ , and there are two main di↵erences when

comparing the e↵ective NSI Lagrangians in Eqs. (3.79) and (3.80) with those predicted

by the SM and discussed in section 2.3. First, we see that when ↵ = �, Eq. (3.80)

allows for interactions with di↵erent strengths depending on the neutrino flavor. This

contrasts with the SM, where there is a universality of the weak force and, for this rea-

son, we refer to such parameters as non-universal NSI. In addition, we also parametrize

interactions with ↵ 6= �, where the incident neutrino flavor is di↵erent from the final

state. These are called flavor-changing NSI. In the limit "fX↵� ! 0 we recover the SM,

while the case "fX↵� ⇡ 1 corresponds to new interactions that are comparable to the

weak interactions scale. We do not expect these couplings to be of order larger than

1 since in that case they would be dominant when compared to the SM interactions.

Instead, they are proposed as small deviations from the SM predictions.

The e↵ects of NSI can be present in neutrino production, propagation, and detection.

In the case of neutrino propagation, they modify the potential to which neutrinos are

sensitive when traveling through matter. By considering NSI, the small tension between

solar and KAMLand results can be solved [57]. However, it also opens the window for

degeneracy in the determination of the ✓12 parameter [57]. For simplicity, we can explain

this from a perspective of a two neutrino picture. In the case of standard oscillations, the

equation describing neutrino propagation was given in Eq. (3.39). Then, we concluded

that matter e↵ects could be considered by using an e↵ective mass squared di↵erence

and an e↵ective weak mixing angle, which in terms of the vacuum parameters can be

written:

cos 2✓M =
�m

2 cos 2✓ � 2
p
2EGFNeq�

�m2 cos 2✓ � 2
p
2EGFNe

�2
+ (�m2 sin 2✓)2

. (3.81)

On the other hand, in the adiabatic approximation, the flavor survival probability can
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be expressed in the form

P (⌫e ! ⌫e) =
1

2
(1 + cos 2✓ cos 2✓m) . (3.82)

According to experimental observations, the deficit in solar neutrino experiments re-

quires a probability P (⌫e ! ⌫e) < 0.5, which is not possible for cos 2✓ < 0 since, from

Eq. (3.81), we would also have cos 2✓m < 0 and the second term between parenthesis

in Eq. (3.82) would be positive. For this case, it is enough to consider the parameter

space 0 < ✓ < ⇡/4. Instead, if we consider the presence of NSI, then, by following

Ref. [67], we need to add the corresponding contribution to the SM Hamiltonian, that

is

HNSI =
p
2GFNd

 
0 "

" "
0

!
, (3.83)

with Nd the density of d quarks in the propagation medium. The e↵ective parameters

✏ = � sin ✓23(✏dLe⌧ + ✏
dR
e⌧ ) and ✏

0 = sin ✓223(✏
dL
⌧⌧ + ✏

dR
⌧⌧ ) � (✏dLee + ✏

dR
ee ) account for the NSI

e↵ects. Again, diagonalizing the complete Hamiltonian H = HF + HNSI, we get the

mixing angle in matter:

cos 2✓NSI
M =

�m
2 cos 2✓ � 2

p
2EGF (Ne � ✏

0
Nd)q�

�m2 cos 2✓ � 2
p
2EGF (Ne � ✏0Nd)

�2
+
�
�m2 sin 2✓ + 4

p
2EGF ✏Nd

�2 ,

(3.84)

which means that the product cos 2✓ cos 2✓m in Eq. (3.82) can be negative for cos 2✓ < 0,

and the experimental data would be consistent for 0 < ✓ < ⇡/2. We can see that the

introduction of NSI results in a degeneration in the mixing angle. This region was first

studied in Ref. [67] and is called the LMA-D solution. Experiments like KamLAND are

not able to disentangle this degeneracy since they are not sensitive to matter e↵ects.

The presence of NSI not only a↵ects neutrino propagation, but they can also have

a measurable e↵ect in the production and detection of neutrinos. For instance, if we

account the e↵ects of NSI in neutrino electron-scattering, then the cross-section for an

incoming electron neutrino reads

d�(E⌫ , T )

dT
=

2G2
Fme

⇡

(
(gL + "

eL
ee )

2 +
X

↵ 6=e

��"eL↵e
��2 + ((gR + "

eR
ee )

2 +
X

↵ 6=e

��"eR↵e
��2)

✓
1 � T

E⌫

◆2

�((gL + "
eL
ee )(gR + "

eR
ee ) +

X

↵ 6=e

��"eL↵e
�� ��"eR↵e

��)meT

E2
⌫

)
,

(3.85)
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NSI Bound Experiment Reference

✏
eL
ee (-0.021, 0.052) Solar + KamLAND [68]

✏
eL
⌧⌧ (-0.120, 0.060) Solar + KamLAND [68]

✏
eR
⌧⌧ (-0.990, 0.230) Solar + KamLAND [68]

✏
eV
µ⌧ (-0.035, 0.018) Atmospheric [69]

✏
dV
µ⌧ (-0.0067, 0.0081) IceCube [70]

✏
dL
ee (-0.3, 0.3) CHARM [71]

✏
dR
ee (-0.6, 0.5) CHARM [71]

✏
qL
e⌧ (-0.5, 0.5) CHARM [71]

✏
qR
e⌧ (-0.5, 0.5) CHARM [71]

✏
eR
e⌧ (-0.19, 0.19) TEXONO [72]

Table 3.4: Current NSI bounds from experiments with di↵erent neutrino sources and detection
technologies [57]. We have used the notation "fV

↵�
= "

fL

↵�
+ "

fR

↵�
and q = u, d.

with similar expressions for the case of an incoming muon or tau neutrino. We summa-

rize in Table 3.4 the NSI constraints given by di↵erent experiments when considering

only one parameter to be di↵erent from zero. For instance, the combination of Super-

Kamiokande and KamLAND, and the Borexino detector separately, can give constraints

to the non-universal parameters ✏eXee and ✏eX⌧⌧ . Constraints to parameters involving ini-

tial muon neutrinos can be obtained through atmospheric neutrinos. Data from Super-

Kamiokande has given strong constraints for ✏dVµ⌧ and ✏
dV
µµ , which result from the fact

that the presence of these couplings downgrade the consistency of neutrino oscillations

with the deficit observed for atmospheric neutrinos. In addition, data from the Deep-

Core experiment (IceCube collaboration), which has been able to measure neutrinos

down to 5 GeV, has been used to set more robust constraints in the flavor changing

parameter ✏dVµ⌧ . Regarding short base-line experiments, several constraints have been

obtained from accelerator based neutrinos such as LSND and CHARM, the latter be-

ing sensitive to neutrino-nucleus scattering. Also, short base-line reactor experiments

like TEXONO have been used to set bounds on NSI parameters, which are shown in

Table 3.4.

In further analyses, we will also use data from current and future experiments that

are sensitive to the CEvNS process to set constraints on many of the NSI parameters.
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In this case, the cross-section after including those contributions reads [31]

d�

dT
(E⌫ , T ) 'G

2
FM

⇡

✓
1 � MT

2E2
⌫

◆n⇥
Z
�
g
p
V + 2"uVee + "

dV
ee

�
F

V
Z (q2) +N

�
g
n
V + "

uV
ee + 2"dVee

�
F

V
N (q2)

⇤2

+
X

↵

⇥
Z
�
2"uV↵e + "

dV
↵e

�
F

V
Z (q2) +N

�
"
uV
↵e + 2"dV↵e

�
F

V
N (q2)

⇤2
)
,

(3.86)

where we have assumed an incoming electron neutrino and we have used the notation

"
fV
↵� = "

fL
↵� + "

fR
↵� . (3.87)

The corresponding cross-section for a muon source can be directly obtained by replacing

the index e $ µ in Eq. (3.86). As we will see, the introduction of NSI parameters

brings degeneracies not only for oscillation parameters, but also for other fundamental

parameters of weak interactions. We will study how di↵erent experimental arrays can

help to remove such degeneracies.
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Chapter 4

Neutrino mass generation models

and NSI

As we have seen, the discovery of neutrino oscillations is a clear evidence that at least

two neutrinos have a non-zero mass, which implies that the SM is not complete. Many

theories that intend to explain the origin of neutrino masses have in common that they

naturally give rise to e↵ective couplings with the same form as the NSI Lagrangians

given in Eqs. (3.79) and (3.80). This allows us to interpret NSI parameters in terms of

the fundamental quantities of a theory such as the mass of a new mediator, an scalar

induced vev, or even as Yukawa-like couplings. In this chapter, we study the theory

and phenomenology of a particular model that gives rise to these NSI couplings.

One of the most promising neutrino mass generation models is the seesaw mech-

anism, by which neutrinos acquire their tiny masses through the exchange of heavy

leptons or scalar bosons. Among the most common seesaw schemes, we distinguish

three main variations: the Type I, where heavy right-handed neutrino fields are intro-

duced, the Type II 1, where an scalar triplet is introduced, and the Type III, where

charged leptons are responsible for the neutrino mass generation. All of these schemes

are most generally formulated in a way that they respect the SU(2)L⇥U(1)Y symmetry

group of the SM [73]. Here we focus our discussion on the type II seesaw mechanism.

In this model, we introduce a triplet scalar � that is invariant over the SU(2)L gauge

group, with hypercharge Y� = 2. In its matrix form, we denote

� =

 
�+

/
p
2 �++

�0 ��+
/
p
2

!
, (4.1)

1Because of its simplicity, the seesaw mechanism with charged scalars was originally called the type
I seesaw mechanism
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with �++
,�+, and �0 complex fields. The scalar triplet can couple to the SM fields as

long as any added operator is invariant under the SM symmetries, and only if it is of

dimension four, which ensures that we keep the renormalizability of the theory. Under

these conditions, the most general Lagrangian that can be added to the theory is of the

form

Ltype II =
⇥
iY�↵�L

T
↵C

�1
⌧2�L� + h.c.

⇤
+ (Dµ�)† (Dµ�) � V (�,�), (4.2)

where C is the charge conjugate operator. The first term in the previous equation can

be identified as a Yukawa-type coupling and Y� is the associated Yukawa matrix, which

is complex and symmetric [74]. The second term corresponds to the scalar triplet kinetic

operator, with Dµ a covariant derivative, and the last term is the potential associated

to the scalar fields. In its most general form, we have

V (�,�) = � m
2
��

†�+
�

4
(�†�)2 +M

2
�Tr

⇥
�†�

⇤
+ �2

⇥
Tr�†�

⇤2
+ �3Tr

⇥
�†�

⇤2

+
⇥
µ�T

i�2�
†�+ h.c.

⇤
+ �1(�

†�)Tr
⇥
�†�

⇤
+ �4�

†��†�,
(4.3)

with the first two terms corresponding to the SM Higgs potential, and the �i are di-

mensionless coupling constants. Since the triplet � is assigned a lepton number L = 2,

then the term proportional to µ represents the only source of lepton number violation.

Once the scalar triplet is introduced, the number of degrees of freedom does not allow

us to have a graphical representation of the potential as in the case of the SM. However,

the conditions for the potential to be bounded from below, which is necessary to have

a stable minimum, have been studied in Ref. [75]. In analogy to the SM Higgs po-

tential, the neutral components of the scalar doublet and triplet can induce a vacuum

expectation value, which we denote as v� and v�, respectively. Then, after spontaneous

symmetry breaking, we separate the real and complex components of these fields

� =
1p
2

 
�+

p
2�++

v� + h� + i⌘� � �+

!
, � =

1p
2

 p
2�+

v + h� + i⌘�

!
, (4.4)

with h�, ⌘�, h�, and ⌘� real fields. Minimization of the potential in Eq. (4.3), in terms

of the fields in Eq. (4.4), leads to the relations

M
2
� =

v
2
�µp
2v�

� 1

2

⇥
2v2�(�2 + �3) + v

2
�(�1 + �4)

⇤
, (4.5)

m
2
� =

1

2


v
2
��

2
+ v

2
�(�1 + �4) � 2

p
2µv�

�
. (4.6)
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Since we expect the scale of new physics to be larger than the electroweak scale, we

can assume v� << M�. Then, solving Eq. (4.5) for v�, and keeping only terms of

O(v2�/M
2
�), we have:

v� ⇡ µv
2
�p

2M2
�

. (4.7)

From this expression, we see that a small vev v� can be induced by either a small µ,

a large M�, or a combination of both. In fact, a small coupling µ is in agreement

with the t’Hooft’s naturalness argument, which states that, at a given energy scale, a

quantity is allowed to be small only if the system becomes more symmetrical when the

referred quantity vanishes [76]. In the specific case of the type II seesaw, the system

becomes more symmetrical in the sense that in the limit µ ! 0 we recover lepton

number conservation. Then, it is expected to have a very small µ.

From the definitions in Eq. (4.4), we see that the theory has now 10 degrees of

freedom from the scalar sector; three of them are used to generate gauge boson masses,

and only seven remain as physical fields. Now, expanding the potential in Eq. (4.3), we

can see that there are mixed terms that does not allow us to identify definite masses for

the fields in Eq. (4.4). Then, in analogy with the lepton and quark sectors, we need to

arrange the fields into a matrix form and diagonalize the resulting mass matrix. After

performing this procedure, we get the following physical fields:

• A doubly charged Higgs field, H++, which coincides with the field �++, and with

mass

m
2
H++ = M

2
� � v

2
��3 � �4

2
v
2
�. (4.8)

• A singly charged field, H±, that is a mixture of the fields �± and �±, with mass

m
2
H+ =

✓
M

2
� � �4

4
v
2
�

◆✓
1 +

2v2�
v
2
�

◆
. (4.9)

• A CP odd scalar field, A0, that is a mixture of ⌘� and ⌘�, with mass

m
2
A0 = M

2
�

✓
1 +

4v2�
v
2
�

◆
. (4.10)

• A SM Higgs-like field, h, that is a mixture of h� and h�, with mass

m
2
h =

1

2
[A+ C �

p
(A � C)2 + 4B2]. (4.11)

• A heavy Higgs boson field, H0, that is also a mixture of h� and h�, with mass
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Figure 4.1: Feynman diagram for neutrino mass generation within the type II seesaw mechanism.

m
2
H0 =

1

2
[A+ C +

p
(A � C)2 + 4B2]. (4.12)

Where the parameters A, B, and C satisfy:

A =
�

2
v
2
�, B = v�(�

p
2µ+ (�1 + �4)v�), C = M

2
� + 2(�2 + �3)v

2
�. (4.13)

Within the singly charged sector, the mixture is determined by a mixing angle �± that

at first order satisfies tan �± =
p
2v�/v� ⇡ 0. Then, in the case v� << v� we can

safely consider H± ⇡ �±. In addition, the masses of the physical scalar bosons in this

limit can be approximated to the form:

m
2
H±± ' M

2
� � �4

2
v
2
�, m

2
H± ' M

2
� � �4

4
v
2
�, m

2
h ' 2�v2�, and m

2
H0 ⇡ m

2
A0 ' M

2
�.

(4.14)

Notice that the mass splitting of the triplet comes from the quartic coupling constant

�4, which is expected to be small because a relatively large value of this coupling at the

electroweak scale can become non-perturbative at high energies, even below the Planck

scale.

Now that we understand the physical masses of the scalars involved in the theory,

we can study the origin of neutrino masses. After spontaneous symmetry breaking, the

first term in Eq. (4.2) induces a neutrino Majorana mass term of the form

LMajorana = ⌫
c
↵Lm↵�⌫�L + h.c., (4.15)

where the flavor basis matrix m↵� is given in terms of the Yukawa couplings:

m↵� ⌘ (Y�)↵�
v�p
2
. (4.16)
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The Feynman diagram responsible for neutrino masses through this mechanism is

illustrated in Fig. 4.1. The neutrino fields ⌫↵L in Eq. (4.15) are flavor states; in order

to have neutrino fields with definite mass, we diagonalize the matrix m↵� by rotating

the flavor fields to the mass states ⌫i with definite masses mi. This can be done with

the unitary transformation U , getting the result

m = U
⇤diag(m1,m2,m3)U

†
. (4.17)

As we have seen, the matrix U depends on three mixing angles ✓12, ✓13, and ✓23, one

“Dirac” CP phase �, and two CP Majorana phases, which we denote ↵2, and ↵3. In

addition, we know that oscillation data from solar and long base-line neutrinos provide

tight restrictions on the determination of the allowed neutrino mass and mixing param-

eters. These restrictions apply to any model that intends to explain the mass origin of

neutrinos, like the type II seesaw mechanism. If this is the mechanism responsible of

neutrino mass generation, then Eq. (4.17) must be satisfied and we can use oscillation

data to determine the allowed regions for each matrix element. The blue regions in the

panels of Fig. 4.2 show the allowed values for each matrix element, as a function of

m1, that are consistent with oscillation data in the normal ordering scheme, where m1

is precisely the lightest neutrino mass. To generate these regions, we perform a scan

over the oscillation parameters at their 3� ranges, consistent with the global analyses as

reported in Ref. [53] and summarized in Table 3.3. In the case of the Majorana phases,

we allow them to take values between the whole range of [0, 2⇡). In the di↵erent panels,

we show the region corresponding to a neutrino mass in a range from 10�4 to 1 eV.

However, we also show shaded bands that correspond to mass values that are ruled

out from di↵erent measurements. Cosmological observations give the vertical regions

ruled out from Barion Acoustic Oscillations (BAO) [79], and from Cosmic Microwave

Background (CMB) alone [80]. These observations give constraints to the sum of the

three neutrino masses, and we have used the best fit values of the squared mass dif-

ferences to give an approximate constraint to the lightest neutrino mass. Another way

to set constraints to neutrino masses is by measuring the endpoint of the energy spec-

trum of an electron emitted through beta decay, which endpoint is shifted for massive

neutrinos. In this case, the most robust constraint comes from the latest measurement

of KATRIN experiment [81], which measures the tail of the spectrum of the tritium

beta decay. Again, this experiment constrains a parameter that depends on the three

neutrino masses, and the approximate limit for the lightest neutrino is indicated as the

remaining vertical shaded region in the di↵erent panels of Fig. 4.2.
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Figure 4.2: Blue regions represent the allowed neutrino mass matrix element magnitudes, |m↵� |,
as a function of m1, for normal ordering (NO) of neutrino mass [77]. Oscillation parameters are
taken within their 3� limits as reported in [53]. The vertical shaded regions illustrate the m1 upper
limits from KATRIN and cosmological observations. The |mee| panel coincides with the e↵ective
mass from neutrinoless double beta decay hm��i, where the shaded horizontal bands are excluded by
KAMLAND-Zen [78] and dotted lines correspond to future experimental sensitivities.
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The panel corresponding to |mee| in Fig. 4.2 also has another physical meaning

because it coincides with the neutrinoless double beta decay amplitude for Majorana

neutrinos, which is given by

hm��i =

�����

3X

j=1

U
2
ejmj

����� = |mee|. (4.18)

Horizontal shaded regions in the corresponding panel refer to the current KamLAND-

zen upper limits for hm��i [78], each obtained under di↵erent assumptions for the

nuclear matrix elements in the search for neutrinoless double beta decay. The hori-

zontal dashed lines show the sensitivity that future experiments SNO+ [82], LEGEND

1000 [83], and nEXO [84] will reach. Clearly, these limits are only valid for the |mee|
case, but they have a direct impact on the upper bounds for the lightest neutrino mass.

Notice from the first panel in Fig. 4.2, that there are some combinations of values that

result on a vanishing amplitude hm��i = |mee|. This is an e↵ect of a destructive inter-

ference between the Majorana phases, which is characteristic of the NO scheme. The

same e↵ect can be noticed on the other panels of the figure. Therefore, it is possible to

have combinations of parameters for which one or more of the |m↵�| vanish, while the

others take relatively large values.

We perform a similar analysis for the case of the IO scheme, which corresponding

regions are shown in the panels of Fig. 4.3. Here, the lightest neutrino mass corresponds

to m3 and the panel corresponding to |mee| has still the same physical meaning as in

the case of NO. However, notice that in this case there are no combinations of phases

that allow for a cancellation of the amplitude hm��i = |mee|, a feature that can be

exploited with future sensitivities to determine the nature of the neutrino mass.

4.1 NSI from type II seesaw model

So far, we have discussed the terms of the type II seesaw Lagrangian that produce

Majorana mass terms for neutrinos. Now, we focus on the terms that are responsible

of introducing NSI in the form of the neutral current Lagrangian given in Eq. (3.80).

Again, after spontaneous symmetry breaking, the first term in Eq. (4.2) gives terms of

the form

L�± =
p
2Y�↵�⌫

T
L↵C`L��

+ + h.c.. (4.19)

We show the corresponding Feynman diagram in the left panel of Fig. 4.4. At low

energies, we can integrate out the degrees of freedom of the heavy �± ⇡ H
±, giving as
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Figure 4.3: Blue regions represent the allowed neutrino mass matrix element magnitudes, |m↵� |, as
a function of m3, for inverted ordering (IO) of neutrino mass [77]. Oscillation parameters are taken
within their 3� limits as reported in [53]. The vertical shaded regions illustrate the m3 upper limits
from KATRIN and cosmological observations. The |mee| panel coincides with the e↵ective mass from
neutrinoless double beta decay hm��i, where shaded horizontal bands are excluded by KAMLAND-Zen
[78] and dotted lines correspond to future experimental sensitivities.
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Figure 4.4: Left panel: Feynman diagram responsible for NSI mediated by the singly charged Higgs.
Right panel: Feynman diagram illustrating the contribution from doubly charged Higgs to three lepton
decays at tree level.

a result

L � �
Y↵↵0Y

⇤
��0

2m2
H±

⌫c↵(1 � �
5)`↵0`�0(1 + �

5)⌫c�. (4.20)

Then, we can Fierz transform the previous Lagrangian to get the vector-form interac-

tion2

L � �
Y↵↵0Y

⇤
��0

4m2
H±

⌫c↵�
µ(1 + �

5)⌫c�`�0�µ(1 � �
5)`↵0 . (4.21)

Using di↵erent properties of the C operator and the �µ matrices, we can express the

previous result in the form

L � �
Y�↵↵0Y

⇤
���0

m
2
H±

⌫��
µ
PL⌫↵`�0�µPL`↵0 , (4.22)

where we have used PL = (1 � �
5)/2. In the particular case where `�0 = `↵0 ⌘ `, with

` a charged fermion, this expression has the same form as that given in Eq. (3.80) for

neutral current NSI by identifying

✏
`L
↵� = � Y

⇤
�↵`Y��`

2
p
2GFM

2
�

, (4.23)

where we have taken the limit m2
H± ⇡ M

2
�. Equation (4.23) illustrates an example of

how NSI can be translated into fundamental parameters of a specific theory. Here, the

NSI are in terms of the Yukawa couplings and the mass of the charged scalar. As we

have seen, several experimental bounds currently exist for NSI as those in Eq. (4.23),

which are obtained through neutrino-electron scattering experiments (see Table 3.4).

2We used the identity �2
⇥
 1(1 � �

5) 2

⇤ ⇥
 3(1 + �

5) 4

⇤
=
⇥
 1�

µ(1 + �
5) 4

⇤ ⇥
 3�µ(1 � �

5) 2

⇤
.
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4.2 NSI consistent with LFV limits

For the particular case of the type II seesaw, the introduction of charged scalars allows

for Lepton Flavor Violation (LFV) processes [85], which are characterized by a non

conservation of the lepton family number in transitions between e, µ, and ⌧ states.

These processes are forbidden within the SM, and they include rare decays such as

µ ! e�, and three lepton decays like µ ! 3e. Experimentally, LFV processes have not

been observed yet, but they are somehow expected after the confirmation of neutrino

oscillations and, regardless of their theoretical origin, their search is still active at

particle colliders. In this section, we study how current bounds on LFV processes can

give information about the expected size of the NSI if the type II seesaw is responsible

for neutrino masses. We will determine whether the expected size of NSI, consistent

with LFV limits, are below the experimental bounds given in Table 3.4, where we have

NSI bounds of order 10�1 and, in some cases, of order 10�2.

We begin by presenting the possible LFV processes allowed by the type II seesaw

mechanism. For instance, three lepton decays are possible at tree level by considering

the Feynman diagram on the right panel of Fig. 4.4. The branching ratio (BR) for

processes like these have been computed in di↵erent references, showing a dependency

on the Yukawa couplings and the masses of the scalar mediators. In the case of a muon

decaying to three electrons we have [85]

BR(µ ! eee) =
1

G
2
F

���(Y †
�)ee(Y�)µe

���
2

m
4
H++

, (4.24)

with similar expressions for other three-lepton decays such as ⌧ ! 3e or ⌧ ! µee.

Another case of interest are processes of the type `↵ ! `��, which are possible at a

quantum loop level through the exchange of a charged scalar and a lepton. The left

and central diagrams in Fig. 4.5 show the contribution to this process from the doubly

charged scalar, where there is also an exchange of a charged lepton. The right panel

of the same figure corresponds to the contribution from the singly charged scalar, for

which we also have the exchange of a Majorana neutrino. After considering these three

contributions, the branching ratio for the process µ ! e� is given by [85]

BR(µ ! e�) ⇡ ↵

192⇡

���(Y †
�Y�)eµ

���
2

G
2
F

✓
1

m
2
H+

+
8

m
2
H++

◆2

, (4.25)
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Figure 4.5: Feynman diagrams illustrating the contribution from singly charged and doubly charged
Higgs to flavor lepton violation processes at one loop order.

with similar expressions for the other decays like ⌧ ! e� and ⌧ ! µ�. These processes

have been experimentally studied within di↵erent collaborations. In particular, ⌧ decays

have been recently studied at ⌧ factories like BaBar [86]. Theoretical expressions like

Eqs. (4.24) and (4.25), together with the experimental limits for each branching ratio,

can be used to set constraints for Yukawa couplings and charged scalar masses of the

type II seesaw. We summarize in Table 4.1 the current experimental status for the

di↵erent decays, with the branching ratios adapted from Ref. [87]3. For the limits in

the last column we have assumed m
2
H±± ⇡ m

2
H± ⇡ M

2
�. Notice from the table that

three lepton decays can be useful to constrain the product of Yukawa coupling pairs,

while the other decays are sensitive to the sum of three of such pairs. As we have seen,

such Yukawa coupling products are also present in the NSI expressions, which means

that we can set bounds for the expected NSI signals from the type II seesaw by using

experimental LFV limits. To see this, we determine the maximum NSI of each type that

is consistent with the limits given in the last column of Table 4.1. For instance, in the

case of the diagonal parameter "eLee , we take the modulus of Eq. (4.23), for ↵ = � = e,

and we express the Yukawa couplings in terms of the flavor matrix elements through

Eq. (4.16), giving the relation

|mee|2p
2GF

= |"eLee |M2
�v

2
�. (4.26)

On the other hand, we can also express the Yukawa couplings on the third column of

Table 4.1 in terms of the corresponding mass matrix elements. In this way, we get

inequalities that depend on LFV limits and that also involve the product M�v�. For

instance, from the µ ! e� process (first row on the table), we have

|m†
m|eµ
GF

< L1 M
2
�v

2
�, (4.27)

3There is an updated value of BR(⌧ ! µ�) < 4.2⇥10�8 from Belle II [88] that does not significantly
modify our results.
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Processes Experimental limits on BR Bounds on G
�1
F M

�2
� Y

2
�

µ ! e� BR < 4.2 ⇥ 10�13
G

�1
F M

�2
� |Y †

�Y�|eµ < 2.1 ⇥ 10�5 = L1

µ ! 3e BR < 1.0 ⇥ 10�12
G

�1
F M

�2
� |Y †

�|µe|Y�|ee < 2.0 ⇥ 10�6 = L2

⌧ ! 3e BR < 2.7 ⇥ 10�8
G

�1
F M

�2
� |Y †

�|⌧e|Y�|ee < 7.9 ⇥ 10�4 = L3

⌧ ! e
+
e
�
µ
� BR < 1.8 ⇥ 10�8

G
�1
F M

�2
� |Y †

�|⌧e|Y�|eµ < 4.5 ⇥ 10�4 = L4

⌧ ! e� BR < 3.3 ⇥ 10�8
G

�1
F M

�2
� |Y †

�Y�|e⌧ < 1.4 ⇥ 10�2 = L5

⌧ ! µ� BR < 4.4 ⇥ 10�8
G

�1
F M

�2
� |Y †

�Y�|µ⌧ < 1.6 ⇥ 10�2 = L6

⌧ ! µ
+
µ
�
e
� BR < 2.7 ⇥ 10�8

G
�1
F M

�2
� |Y †

�|⌧µ|Y�|µe < 5.6 ⇥ 10�4 = L7

⌧ ! e
+
µ
�
µ
� BR < 1.7 ⇥ 10�8

G
�1
F M

�2
� |Y †

�|⌧e|Y�|µµ < 6.3 ⇥ 10�4 = L8

⌧ ! µ
+
e
�
e
� BR < 1.5 ⇥ 10�8

G
�1
F M

�2
� |Y †

�|⌧µ|Y�|ee < 5.9 ⇥ 10�4 = L9

⌧ ! 3µ BR < 2.1 ⇥ 10�8
G

�1
F M

�2
� |Y †

�|⌧µ|Y�|µµ < 6.9 ⇥ 10�4 = L10

Table 4.1: Constraints from LFV processes on the Yukawa coupling matrix Y�. Experimental limits
on the branching ratios (BR) are taken from Ref. [51], and the bounds on G

�1
F

M
�2
� Y

2
�, Li, are adapted

from Ref. [87].

where L1 is the corresponding limit indicated in the third column of the same table.

Using the previous two equations to eliminate the product M�v�, and repeating the

process for the ten di↵erent limits, we get expressions of the form:

|m†
m|↵�

|mee|2
<

Li

2
p
2 |"eLee |

(i = 1, 3, 4), (4.28)

|m†|↵�|m|�⇢
|mee|2

<
Li

2
p
2 |"eLee |

(i 6= 1, 3, 4). (4.29)

Now, we want to determine the maximum value of |"eLee | that can satisfy the ten Eqs.

in (4.28) and (4.29). To do so, notice that the left hand side in each of the equations

depends only on di↵erent |m↵�|, which as we know from Eq. (4.17), are a function

of parameters obtained from oscillation data. We perform a scan over the matrix

elements by generating random numbers for the oscillation parameters between their
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Figure 4.6: Blue regions represent the allowed neutrino mass matrix element magnitudes |mee| (left)
and |meµ| (right) as a function of m1 for normal neutrino mass ordering (NO). Oscillation parameters
are taken within their 3� limits as reported in [53]. The vertical shaded regions illustrate the m1

upper limits from KATRIN and cosmological observations. The left panel coincides with the e↵ective
mass from neutrinoless double beta decay hm��i and the shaded horizontal bands are excluded by
KAMLAND-Zen [78], while dotted lines correspond to future sensitivities. Magenta dots represent the
regions where the corresponding matrix elements satisfy the LFV limits and allow for |"eL

ee
| > 1⇥10�4.

Brown dots represent the analogue for |"eL
e⌧

| [77].

3� ranges shown in Table 3.3 for the NO scheme. For each combination, we vary the

value of |"eLee | until we find the maximum for which the ten inequalities in Eqs. (4.28)

and (4.29) are satisfied. This gives us the strength of the NSI that is consistent with

both oscillation data and LFV constraints. No combinations of parameters were found

such that they allow for an |"eLee | of order 10�3 or larger. However, there were several

combinations that allowed for an NSI of order 10�4 and, after performing the scan, we

found |"eLee | < 8 ⇥ 10�4. Magenta dots in Fig. 4.6 show the region in the parameter

space, as a function of m1, for which we found |"eLee | of order 10�4. The panels in the

figure give a perspective of the relation between the flavor mass matrix entries that need

to be satisfied in order to have an NSI of this order. Notice that the di↵erence between

|mee| (left) and |meµ| (right) should be of around one order of magnitude, which is

mainly a consequence of the tight experimental bound for the process µ ! 3e, which

depends on the product |mee||meµ|, as seen in Table 4.1. The vertical and horizontal

shaded regions, as well as the dotted lines in the left panel follow the same notation as

that in Fig. 4.2. We followed a similar procedure to look for the largest possible value

of the other non-universal NSI, with the results summarized in Table 4.2. In all cases,

we see that the maximum expected NSI parameters are below the current experimental
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NSI Explicit Form Estimated Limit (NO) Estimated Limit (IO)

|✏eLee | (2
p
2GF )�1

M
�2
� |Y ⇤

�eeY�ee| < 8.0 ⇥ 10�4
< 8.0 ⇥ 10�4

|✏eLeµ | (2
p
2GF )�1

M
�2
� |Y ⇤

�eeY�µe| < 7.0 ⇥ 10�7
< 7.0 ⇥ 10�7

|✏eLe⌧ | (2
p
2GF )�1

M
�2
� |Y ⇤

�eeY�⌧e| < 2.0 ⇥ 10�4
< 2.1 ⇥ 10�4

|✏eLµµ| (2
p
2GF )�1

M
�2
� |Y ⇤

�µeY�µe| < 6.8 ⇥ 10�6
< 2.5 ⇥ 10�6

|✏eLµ⌧ | (2
p
2GF )�1

M
�2
� |Y ⇤

�µeY�⌧e| < 4.8 ⇥ 10�6
< 2.5 ⇥ 10�6

|✏eL⌧⌧ | (2
p
2GF )�1

M
�2
� |Y ⇤

�⌧eY�⌧e| < 9.5 ⇥ 10�5
< 9.9 ⇥ 10�5

Table 4.2: Constraints on NSI parameters consistent with LFV processes in the type II seesaw
mechanism [77].

limits, which are of order 10�2 at least.

For the analysis of flavor changing NSI, we again look for inequalities that depend

on the flavor matrix elements. For instance, in the case of |"eL⌧e | we get the conditions:

|m†
m|↵�

|me⌧ ||mee|
<

Li

2
p
2 |"eL⌧e |

(i = 1, 3, 4), (4.30)

|m†|↵�|m|�⇢
|me⌧ ||mee|

<
Li

2
p
2 |"eL⌧e |

(i 6= 1, 3, 4). (4.31)

We again generate random numbers for oscillation parameters under the NO scheme,

and we look for the maximum value of the NSI for which conditions (4.30) and (4.31)

are satisfied. In this case we found |"eL⌧e | < 2.0 ⇥ 10�4. The parameter space region for

which we have a flavor changing NSI of order 10�4 is shown as brown dots in the two

panels of Fig. 4.6. Notice that, again, the rate between |mee| (left) and |meµ| (right)
should be of around one order of magnitude. Similar regions can be directly obtained

for the other matrix entries and the results for the other flavor changing NSI are shown

in the third column of Table 4.2.

Apart from setting bounds to the expected NSI from the type II seesaw, we can

use the information from the previous analysis to see what values of M� and v� can

reproduce a desired order of the NSI. First, notice that for fixed values of |"eLee | and
|mee|, there can be infinite combinations of M� and v� that satisfy Eq. (4.26). On

the other hand, for each dot in the magenta region in Fig. 4.6, which translates into a

value for |mee|, it is possible to find a fixed NSI consistent with LFV limits, such that
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Figure 4.7: Magenta region shows the combinations of M� and v� that allow for |"eL
ee

| > 1 ⇥ 10�4

consistent with LFV limits for normal neutrino mass ordering, NO. The corresponding region for
|"eL

e⌧
| > 1 ⇥ 10�4 is shown in brown [77]. Shaded regions are excluded by collider data and the vertical

dashed line corresponds to v� = 0.1 MeV.

1⇥ 10�4
< |"eLee | < 8⇥ 10�4. Then, from Eq. (4.26), we can generate a curve M� vs v�

with |"eLee | of order 10�4. The combination of all these curves gives the magenta region

shown in Fig. 4.7. Any point inside this region represents a combination of M� and v�

such that |"eLee | > 1⇥ 10�4. The region in brown shows the corresponding result for the

case of |"eLe⌧ |. For completeness, the shaded bands in the same figure correspond to the

values of M� that are excluded from accelerator experimental data, where, according

to di↵erent analyses, the limit depends on the value of v�. This dependency arises from

the fact that for small v� the H
++ mainly decays in two leptons, while for relatively

large v� it mainly decays to two W bosons (see section 4.3). As we can see, for v� < 0.1

MeV, the mass of the charged scalar is constrained to the condition M� > 870 GeV

[89], while for the case v� > 0.1 the constraint is less robust and we have M� > 220

GeV [90].

As a final test, we can also comment on the consistency of the expected NSI with the

current limits of µ ! e conversion in nuclei, another process that is forbidden within

the SM but which observation would be a clear signal of new physics. Within the type

II seesaw mechanism, the singly and doubly charged scalars contribute to this process.
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Figure 4.8: Same as Fig. 4.6 but for the case of inverted neutrino mass ordering, IO. Magenta
dots denote the regions where the corresponding matrix elements obey LFV limits and allow for
|"eL

ee
| > 1 ⇥ 10�4. Brown dots show the analogue for |"eL

e⌧
| [77].

In the case of relatively light nuclei, the branching ratio is given by [91]

BR(µ ! e) ⇡ ↵
5

36⇡4
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(4.32)

with F (q2) the nuclear form factor, mµ the mass of the muon, ↵ the fine structure

constant, �capt the capture rate, and Ze↵ an e↵ective nuclear charge. The function f

has the form

f(m↵,mH++) = 4
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2
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m2
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2
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(4.33)

We can find in the literature many experimental limits for µ ! e conversion using

di↵erent nuclei such as Au, Ag, and Ti. The most stringent result comes from the

SINDRUM II experiment, where an upper bound of BR(µ ! e) < 4.2⇥ 10�12 has been

reported for Ti [92]. To test the consistency of the NSI bounds found here, we evaluate

the BR in Eq. (4.32) using the oscillation parameters, as well as the product v�M�,
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Figure 4.9: Magenta region shows the combinations of M� and v� that allow for |"eL
ee

| > 1 ⇥ 10�4

consistent with cLFV limits for inverted neutrino mass ordering, IO. The corresponding region for
|"eL

e⌧
| > 1 ⇥ 10�4 is shown in brown [77]. Shaded regions are excluded by collider data and the vertical

dashed line corresponds to v� = 0.1 MeV.

with m
2
H++ ⇡ m

2
H+ , that reproduce NSI bounds of order 10�4. In each case we get

limits that are consistent with the experiment. For instance, if we take the oscillation

parameters for which |"eLee | = 8 ⇥ 10�4, then we find a predicted branching ratio in

Eq. (4.32) of BR(µ ! e) = 1.6 ⇥ 10�13, which is one order of magnitude below the

current experimental limit from SINDRUM II. We conclude that the lepton conversion

in nuclei has no impact in the determination of NSI of order 10�4, which is the largest

magnitude expected in the particular case of type II seesaw.

Until now, we have focused our discussion assuming the case of NO for neutrino

masses. Indeed, we can perform a similar analysis for the case of IO mass hierarchy.

By following the same procedure, we again found only two NSI for which we can have

a strength of order 10�4. The largest bound for each NSI is shown in Table 4.2. In

addition, we show in Fig. 4.8 the region in parameter space for which an NSI of the

referred order is allowed, this time as a function of m3, which is the lightest neutrino

mass under the IO scheme. Magenta dots in the figure show the parameter space

for |"eLee |, while brown dots correspond to |"eLe⌧ |. Again, we can see the panels in the

figure show the expected relation between |mee| (left) and |meµ| (right) needed for this

strength of interaction. Shaded regions and dotted lines have the same meaning as in

Fig. 4.3. We also show in Fig. 4.9 the values of the product M�v� that allow for an

NSI of order 10�4 in the case of an IO of the mass hierarchy.

From this section we conclude that, in order to be consistent with LFV limits, NSI
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Figure 4.10: H
±± branching ratios as a function of v� for mH±± = 500 GeV. Red and green lines

correspond to H
±± ! `

±
`
± and H

±± ! W
±
W

±, respectively.

signals from the type II seesaw mechanism are expected to be of order 10�4 or less.

Current experiments are far from this sensitivity, since, as we can see from Table 3.4,

they can give constraints of order 10�1 and 10�2 at best. Many experimental proposals,

like using Cr neutrino sources, have been considered to enhance current sensitivities,

but limits will still remain far from needed to corroborate this theory as the definite

mechanism for neutrino mass. However, we want to stress that, apart from NSI signals,

the type II seesaw mechanism can be manifested through charged scalar decay modes.

For instance, within this theory, some decay rates behave di↵erently depending on

neutrino properties that can be probed in collider physics [93], and that we briefly

discuss in the following section.

4.3 Type II seesaw at colliders

For the type II seesaw mechanism, neutrino mass ordering can be probed for the v�

scale allowed in Fig. 4.7. To see this, let us focus on the H++ decay modes at colliders.

In the case of mH++ ⇡ mH+ ⇡ mH0 , the doubly charged scalar can decay into two same

charge leptons or into two W
+ bosons, with decay widths [94]:

�(H±± ! l
±
i l

±
j ) = �lilj =

m
±±
H

(1 + �ij)8⇡

����
m
⌫
ij

v�

����
2

, (4.34)
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�(H±± ! W
±
W

±) = �W±W± =
g
2
v
2
�

8⇡mH±±

s

1 � 4

r
2
W

⇥�
2 + (rW/2 � 1)2

�⇤
, (4.35)

where rW = mH±±/MW . In particle physics, we define the branching ratio of a given

process as the decay width of the process, divided by the sum of the decay widths of

all the possible decay channels. In other words, the branching ratio is a measure of

the fraction of times that a process, or processes, will happen among all the possible

decays. We compare in Fig. 4.10 the branching ratio of H++ decaying into two leptons

with the corresponding one to two bosons, as a function of v�, for MH++ fixed and

using central values for oscillation parameters. Notice that the v� region that allows

for an NSI of order 10�4 in Fig. 4.7 falls within a range where the leptonic channel

is dominant. In fact, we can see that the leptonic channel is dominant for v� < 10�5

GeV, which means that under this condition, MH++ mainly decays into two leptons. In

this case, the branching ratio of each two-lepton decay mode is given by

BR(H++ ! `↵`�) =
(2 � �↵�)|m↵�|2

|mee|2 + |mµµ|2 + |m⌧⌧ |2 + 2(|meµ|2 + |me⌧ |2 + |m⌧⌧ |2)
. (4.36)

Depending on the neutrino mass ordering, the di↵erent |m↵�| are determined by

oscillation data. Top panels in Fig. 4.11 show a comparison of the flavor conserving (↵ =

�) branching ratios depending on the lightest neutrino mass for normal ordering (left

panel), and inverted ordering (right panel) when varying oscillation parameters within

their 3� ranges. We see an evident di↵erence between the two di↵erent hierarchies. In

the case of normal ordering, the branching ratios corresponding to µµ and ⌧⌧ channels

are dominant for m1 below approximately 10�2 eV. In contrast, for the case of inverted

ordering, the ee channel is dominant in the same mass region. The above discussion

suggests that H
++ can decay to either µµ, ⌧⌧ (for NO) or ee (IO) with relatively

large strength, depending on the ordering of the light neutrino masses. Hence, it might

be possible to probe the ordering (NO or IO) by looking into the decay patterns of

H
++ to same-flavor leptonic final states. For completeness, we also show in the bottom

panels of Fig. 4.11 the case of non-diagonal (↵ 6= �) branching ratios. However, in this

case both regions look very similar, with the µ⌧ channel dominant and the only notable

di↵erence being the width of the allowed region for the other two channels.
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Figure 4.11: Top panels: H
++ branching ratio to same-flavor dilepton final states as a function of

the lightest neutrino mass for NO (left) and IO (right). Bottom panels: H
++ branching ratio to

two di↵erent flavor dilepton final states as a function of the lightest neutrino mass for NO (left), and
IO (right)[93]. In all cases we assume v� < 10�4 GeV and mH±± = 1 TeV, and we vary oscillation
parameters within their 3� ranges.
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Chapter 5

CEvNS experiments with neutrinos

from spallation neutron sources

We studied in the previous chapter how a specific theoretical model can induce inter-

actions that can be interpreted within the NSI formalism. In particular, we focused on

the NSI couplings that result from the type II seesaw mechanism in the lepton sector.

However, we have seen that NSI can also be present in neutrino-quark interactions,

which can be studied through processes that involve neutrino-nucleus interactions. As

an example we can consider CEvNS interactions, which were introduced within the SM

theory in section 3.2.2. This process is relatively new in the sense that the COHER-

ENT collaboration reported the first experimental observation of CEvNS in 2017. This

was achieved through a CsI based detector located at the Spallation Neutron Source

(SNS) at Oak Ridge National Laboratory (ORNL) [27]. A few years later, in 2020, the

same collaboration reported a second measurement with a 3� significance level [95],

this time by using a Liquid Argon (LAr) detector. Then, a second data set from the

CsI detector run was released in 2021 [96]. In this chapter, we study the implications

of these measurements in the context of the SM and NSI. We begin by using data from

the experiments to constrain standard model and nuclear physics parameters. Then,

we will also study di↵erent bounds that can be obtained from this process for NSI by

independently analyzing data from the two di↵erent detectors. Before presenting the

analysis, we start by giving a general overview of the experiment that allowed for the

observation of CEvNS.
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Figure 5.1: Left panel: Schematic representation of the COHERENT experiment. Image taken from
[97]. Right panel: Normalized fluxes for prompt and delayed neutrinos at the SNS.

5.1 The COHERENT experiment

Neutrinos produced in ⇡-DAR sources were discussed in section 3.1.1. Spallation Neu-

tron Sources are a particular case of this production mechanism that o↵ers significant

advantages for the study of CEvNS. Particularly, the SNS at ORNL provides the cur-

rent most intense pulsed neutron beam source in the world1. As we have seen, neutrinos

from ⇡-DAR sources are produced as a byproduct of the collision of high energy proton

beams with a heavy target material. A special feature of the SNS is that the incident

proton beams are pulsed, which means that they are produced with a certain frequency

(60 Hz), and with a full Width at Half Maximum (FWHM) of 380 ns. To give some

perspective, the interval between two consecutive pulses, 0.017 s, is around 4.2 ⇥ 104

times the FWHM. This plays an important role for background discrimination, and

hence, for a cleaner measurement of CEvNS. For the particular case of the SNS, the

pulsed proton beams hit an Hg target as sketched in the left panel of Fig. 5.1. As a

result of the collision, there is a production of charged pions. Most of the negatively

charged pions are captured back in the nucleus, while the ⇡+ decay at rest in the form

⇡
+ ! µ

+ + ⌫µ, producing a mono-energetic beam of muon neutrinos, which are called

prompt neutrinos. For a two body decay, the energies of the involved particles are fixed

and can be determined directly by energy and momentum conservation. Then, the

corresponding flux for prompt neutrinos is given by a Dirac delta distribution

dN⌫µ

dE
= ⌘�

✓
E �

m
2
⇡ � m

2
µ

2m⇡

◆
. (5.1)

1This may change in the following years since the European Spallation Source is currently under
construction [98] and will have a significantly increased power when compared to the SNS.
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Eventually, the µ+’s also decay almost at rest, producing electrons, electron neutrinos,

and muon anti-neutrinos. These two final neutrino states are jointly referred to as

delayed neutrinos. For a three body decay, the energies of the final particles are no

longer fixed, and we end up with two di↵erent spectra for the emitted neutrinos. These

spectra can be analytically calculated when the decaying muon is at rest, and are given

by:
dN⌫µ

dE
= ⌘

64E2

m3
µ

✓
3

4
� E

mµ

◆
, (5.2)

dN⌫e

dE
= ⌘

192E2

m3
µ

✓
1

2
� E

mµ

◆
. (5.3)

Being ⌘ = rNPOT/4⇡L2 a normalization factor with NPOT the total number of protons

on target (POT), which depends on the time of exposure of the experiment; r = 0.08

accounts for the number of neutrinos of each flavor produced per proton on target,

and L is the distance between the source and the detector. For the COHERENT

experiment, detectors were located in an aisle surrounded by concrete and gravel to

reduce backgrounds, as illustrated in the left panel of Fig. 5.1, where we show the

actual location of the CsI and LAr detectors. The total neutrino flux on each detector

is considered to be the sum of the three di↵erent contributions, which are shown in the

right panel of Fig. 5.1. From the shape of the distributions, we see that neutrinos from

this source have a maximum energy of around 52.8 MeV, which is small enough to still

fulfill the coherence condition that is necessary for the CEvNS process.

The main advantage of using a pulsed proton beam relies on the fact that the whole

process of pion and muon decays takes some tens of µs. Therefore, every event that is a

candidate for CEvNS interaction has plenty of time to be detected between two pulses,

and it must arrive a few microseconds after the POT trigger. Then, timing information

will be crucial to discriminate between actual CEvNS and background events coming

from other natural sources and cosmic rays, which are dominant for CEvNS exper-

iments. Actually, these backgrounds, commonly known as steady-state backgrounds

(SSB), are reduced in the SNS by three orders of magnitude when compared to other

neutrino production mechanisms where no pulsed beams are used [99]. For SNS exper-

iments there are two other main sources of backgrounds. First, we have the production

of Beam Related Neutrons (BRN), which are neutrons produced as the result of the

original proton collisions; after all, the main goal of an SNS is the production of high

energy neutrons! However, only a few neutrons related to this background can cross a

lead shielding that surrounds the detectors, and for many of the cases they are negligi-

ble [100]. Additionally, we have the production of Neutrino-Induced Neutrons (NIN),
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which are neutrons produced at the lead shield as a result of charged and neutral cur-

rent neutrino interactions with lead nuclei. As a result of this interaction, we have

the production of gamma rays and neutrons, which can produce signals that can be

confused with neutrino-induced events in the detector.

As for the detection process, what it is experimentally measured is the number of

photoelectrons emitted as a result of the neutrino-nucleus interaction. In a general

picture, the process is the following: within a scintillating material, the kinetic recoil

energy originally acquired by the nucleus is transferred to the crystal lattice of the

material. An event can then be detected if a scintillating agent is carried to an excited

state, which eventually returns to a base state, emitting a photon that is detected

through photomultiplier tubes. Ideally, the number of the emitted photoelectrons would

be proportional to the initial kinetic energy of the nucleus. This is true for light target

particles like electrons. However, for heavy particles, it is experimentally known that the

initial kinetic energy can be quenched, meaning that only a fraction of the deposited

energy is available for its detection as photoelectrons. This can be explained since

heavier particles are more prone to release energy in the form of heat. In these cases,

the number of released photoelectrons PE is given by

PE = QF(T )Y T, (5.4)

with Y the light yield, and QF a quantity defined as quenching factor, which accounts

for the energy loss, and in general depends on the nuclear kinetic recoil energy, T , as

well as in specific properties of the detector material. The quenching factor represents

the fraction of kinetic recoil energy detected for the recoil of a heavy particle when

compared to an incident electron of the same energy. A detailed knowledge of the QF

is needed since, apart from giving the relation between the true and the observed en-

ergy, it can have a huge impact on the total number of detected events, specially if the

quenched signal is near the detector threshold. This is one of the main reasons why

there were more than forty years between the theoretical prediction of CEvNS and its

first detection. At low energy thresholds, the quenching factor, and the form factors

introduced in section 3.2.2 represent one of the main sources of systematic errors. Cur-

rently there are many e↵orts to reduce their systematic e↵ects. For comparison,the first

data set from the COHERENT CsI detector reported a QF contribution to systematic

errors of 25%, while for the second run it was reported below 5% [96].
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5.2 The analysis

Now that we know the detection mechanism, we use data from CEvNS experiments to

perform tests of the SM, as well as to study new physics scenarios. For counting experi-

ments, we compare the experimentally measured number of events with the theoretical

prediction of the model under study. For this purpose, we perform a �2 analysis. We

will use the data from the first CsI run and LAr detectors of the COHERENT collab-

oration to test di↵erent parameters of the SM, and we will explore the sensitivity of

these experiments to NSI parameters. In addition, in following chapters we will perform

similar tests, but we will focus on the sensitivity of future experiments.

In general, the number of events expected from an experiment depends on the

neutrino source, as well as on the intrinsic characteristics of the detector and on the

model under study. We denote this theoretical prediction by N
th, which is given by

N
th = N

Z

T

A(T )dT

Z

Emin

dE⌫
dN⌫

dE⌫

d�

dT
, (5.5)

with dN⌫/dE⌫ the total neutrino flux, and d�/dT the predicted di↵erential cross-

section, which may change depending on the theoretical model considered for the com-

putation. For instance, NSI contributions, as well as the assumption of electromagnetic

properties for neutrinos introduce a di↵erent cross-section than that of the SM. The

function A(T ) accounts for the detectors e�ciency, and N is the number of targets

within the detector that are available for scattering throughout the experimental run.

This factor depends on the material density and the detectors weight, and is given by

N = NAMdet/MD, with NA the Avogadro’s number, Mdet the mass of the detector,

and MD its molar mass. The lower limit of the T integral in Eq. (5.5) depends on

the detector’s threshold and the upper one on the maximum recoil energy dictated by

momentum conservation laws. On the other hand, the upper limit of the integral over

E⌫ depends on the maximum energy of the produced neutrinos.

To compare the theoretical expectation given by Eq. (5.5) with actual experimental

data, we follow the pull method, and minimize a least square function �2. This allows

us to set bounds for di↵erent parameters at a desired confidence level (C.L.). For low

statistics experiments, we can use the square function

�
2 =

nX

i=1

⇣
N

exp
i � (1 + ↵)N th

i (X) � (1 + �)N bg
i

⌘2

�
2
i

+
↵
2

�2
↵

+
�
2

�
2
�

, (5.6)

where the index i indicates the number of data bins. N
exp
i corresponds to the exper-
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��2

Degrees of freedom 68.39% C. L. 90% C. L. 95% C. L.

1 1 2.71 3.84

2 2.3 4.61 5.99

Table 5.1: ��2 values for di↵erent confidence level intervals depending on the degrees of freedom.

imentally observed number of events, and N
bg
i are the background events, which are

associated to SSB, BRN, and NIN backgrounds. On the other hand, N th
i (X) is the

theoretical prediction for the CEvNS events, which depends on a set of parameters, X,

to be tested. These parameters can be associated, for instance, to the weak mixing

angle in the case of SM tests, or to non-standard interactions in the case we want to

study new physics. The parameters ↵ and � in Eq. (5.6), called nuisance parameters,

account for normalization uncertainties for CEvNS and background measurements, re-

spectively. Regarding the di↵erent uncertainties, �2
i is the statistical variance of the ith

bin, while �↵ is the systematic uncertainty associated to CEvNS and �� the systematic

uncertainty associated to backgrounds. With this method, we evaluate the �2 function

for di↵erent values of the set of parameters under test, X, each time minimizing with

respect to the nuisance parameters ↵ and �. After doing this, there will be a minimum

for the �2 function, which we denote as �2
min, and which gives us the best fit param-

eters. Then, confidence level regions for the parameter space X are determined by

the combination of parameters X for which the �2 values lie below a certain distance

��2 = �
2 � �

2
min. We show in Table 5.1. the C.L. achieved for di↵erent values of

��2 [51]. These values depend on the degrees of freedom of the analysis; that is, the

number of free parameters that are being tested.

Considering the neutrino flux for the SNS discussed in section 5.1, we can proceed to

calculate the expected number of events in the context of the SM by using Eq. (5.5). In

general, the maximum kinetic energy of the recoiling nucleus associated to this process

holds the condition Tmax(E⌫) = 2E2
⌫/M , particularly being 52.8 MeV the maximum

neutrino energy for SNS neutrinos, as seen from the right panel of Fig. 5.1. So far,

the COHERENT collaboration has reported CEvNS measurements with two di↵erent

detectors, CsI and LAr. The e�ciency function of each detector depends on the number

of measured photoelectrons, or equivalently, in the nuclear recoil energy. In the case of

LAr, the e�ciency was given in Ref. [101] as a function of the nuclear recoil energy, while

for CsI, it was given in terms of the measured photoelectrons in Ref. [102]. In this case,

to perform the integral in Eq. (5.5), we need to convert the measured photoelectrons
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Figure 5.2: Acceptance function (left panel) and quenching factors (right panel) reported by the
COHERENT collaboration for CsI and LAr detectors. The QF for CsI was only reported in the range
of interest from 10 to 30 keV. Images adapted from [101, 102].

to nuclear recoil energy through Eq. (5.4). For reference, we show the e�ciencies and

quenching factors for both CsI and LAr detectors in the left and right panels of Fig.

5.2, respectively. Notice that in the case of CsI, the collaboration reported a constant

QF for the first run, which we used for this analysis.

To calculate the SM prediction of the number of events, we use the CEvNS cross-

section given in Eq. (3.20), with the weak mixing angle value at low energies, in the

MS scheme, such that sin2
✓W = 0.23857(5) [51]. As for the form factor assumptions,

we use the convention of a Symmetrized Fermi distribution for protons, and a Helm

parametrization for neutrons. A list with other parameters that are relevant for the

computation of the number of events in each case is given in Table 5.2. After all of these

considerations, we obtain 171 and 140 predicted events for CsI and LAr, respectively. In

contrast, the experimental measurements reported by the COHERENT collaboration

are 136 ± 31 events for CsI [96] and 159 ± 43 for the LAr detector [101], a di↵erence

that gives room to test SM parameters and new physics scenarios. Notice that for CsI,

the predicted number of events is larger than the observed result, while for the LAr

Detector Mdet (kg) L (m) NPOT Rp (fm) Rn (fm) s (fm)

CsI 13.9 19.3 1.76 4.81 - 4.74 5.12 0.9

LAr 24 27.5 1.37 3.14 3.36 0.9

Table 5.2: Parameters used for the computation of the predicted number of events for COHERENT
CsI and LAr detectors. For CsI, the two values of Rp correspond to Cs and I, respectively, which are
slightly di↵erent.
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Figure 5.3: Weak mixing angle energy dependence. The blue line represents the theoretical predic-
tion, and the dots represent di↵erent experimental measurements. Image taken from [51].

we have the opposite situation. This will be an important fact during the discussion

of our results in the following subsections, where we present the implications of these

measurements in the context of SM physics, nuclear physics, and NSI.

5.2.1 Sensitivity to standard parameters

We begin our discussion by testing SM and nuclear physics parameters independently.

To this end, we perform the �2 analysis introduced in section 5.2. As we are testing

SM parameters, for these computations we employ the cross-section given in Eq. (3.20)

to calculate the predicted number of events. Also, it is important to highlight that for

the CsI analysis we used the binned data as presented in Ref. [36], while for LAr we

only used the total number of events as given in [95].

Regarding SM parameters, we study the sensitivity of the CEvNS process to the

weak mixing angle value at low energies and in the MS scheme. This parameter has

been widely studied with data from di↵erent experiments, and at di↵erent energy scales,

as shown in Fig. 5.3. As we can see from the figure, at low energies the uncertainty

is large, and any deviation from the predicted value would be a clear indicator of new

physics involved in a scattering process. To perform the analysis, we vary the value of

the weak mixing angle, with all the other parameters fixed, and compare the predicted

events with the experimental measurement by minimizing the �2 function in Eq. (5.6).

The di↵erent uncertainties for the analyses were extracted from Refs. [101, 102], and

we use the reported values of �↵ = 0.25 for CsI, and �↵ = 0.05 for LAr. The results

are shown in the left panel of Fig. 5.4 [103]. Notice that both detectors exhibit a

displacement with respect to the current accepted value of sin2
✓W = 0.23857(5), each
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Figure 5.4: Sensitivity of COHERENT data to the weak mixing angle (left) and to the neutron rms
radius (right). Solid lines show the results for the CsI detectors while the dashed lines show the results
for LAr [103]. The horizontal dashed line indicates the 90% C.L. sensitivity.

of them in opposite directions. This is because one of the experiments (CsI) counted less

events than the SM prediction, while the other (LAr) counted more. The improvement

in the width of the constraint given by the LAr detector is remarkable, and it is a

consequence of its better characterization of systematic errors when compared to the

CsI case.

For the case of nuclear physics, we have seen that the CEvNS process is also sensitive

to relevant nuclear parameters like the proton and neutron rms radii through the form

factors present in the associated cross-section. In general, the electric charge of protons

allows for a good experimental determination of Rp. However, in the case of neutrons

there are many experimental limitations since electromagnetic interactions can not be

used for their study. We can take advantage of the sensitivity of CEvNS to nuclear form

factors to get information of the neutron rms radius, Rn, of the target material. Again,

we perform a �2 analysis while fixing all the other parameters of the theory. The right

panel in Fig. 5.4 shows the results for the neutron rms radius on each of the detection

materials. Notice that the results are not directly comparable since they correspond to

di↵erent elements. However, an important remark is that, given the small value of its

neutron nuclear radius, for LAr we only have an upper bound for Rn. In both cases,

lower values for Rn than those shown in the figure can not be tested since Eq. (3.24)

puts a restriction on its minimum physical value. In the case of CsI, we have assumed

the same radius for both Cs and I nuclei. The result is consistent with the measurement

reported in Ref. [104] for a Pb nucleus, a heavier element than both Cs and I, and for

which the authors found a value of Rn = 5.75 ± 0.18 fm.
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Figure 5.5: Sensitivity of the COHERENT experiments to flavor changing (left) and non-universal
(right) NSI parameters. LAr results are shown as solid lines while CsI sensitivities as dashed lines
[103]. The horizontal dashed line indicates the 90% C.L. sensitivity.

5.2.2 Sensitivity to NSI

Now we focus on testing the sensitivity of the COHERENT experiment to physics

beyond the SM by following the NSI formalism introduced in section 3.7. To calculate

the predicted number of events, we now have to consider the cross-section given in

Eq. (3.86), which explicitly includes the contribution from NSI parameters. Again,

we compare the theoretical prediction to the experimental results by performing a �2

analysis. As a first step, we only take one NSI parameter to be non-zero at a time.

Since we have muon and electron neutrinos from the SNS source, and since the source

to detector distance is small, then we are sensitive to all NSI except for the diagonal

"
fV
⌧⌧ . The results for di↵erent parameters are shown in Fig. 5.5 [103]. Left panel shows

the sensitivity for the case of flavor changing parameters, where we have indicated the

CsI analyses with dashed lines and the corresponding results for LAr by solid lines.

We can see that the allowed region for the LAr case is more constrained than that

corresponding to CsI. However, the main di↵erence between the results is the location

of the minimum on each case. To explain this, notice that as we have repeatedly

pointed out, the CsI experiment reported less events than the SM prediction. On the

other hand, from Eq. (3.86) we can see that the contribution to the number of events

from a flavor changing parameter is always positive, and in consequence, we do not

have a physical manner to have less number of events than that predicted by the SM,

explaining the minimum at zero. In contrast, the LAr experiment reported more events

than the SM prediction, so in this case the NSI contribution adds more predicted events
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Figure 5.6: 90% C.L. allowed regions from the analysis when varying two NSI parameters at a
time using CsI (magenta) and LAr (purple) data. Left panel considers the simultaneous presence of
non-universal and flavor-changing NSI with d quarks, while the right panel corresponds to the case
of non-universal NSI couplings with u and d quarks [103]. The dot and the star indicate the best fit
point for CsI and LAr, respectively.

to match the experimental result. Therefore, the �2 takes its minimum value for non-

zero NSI. The results for non-universal parameters are shown in the right panel of the

same figure. Again, the LAr measurement gives better constraints for the parameters,

and the minimum presents the expected opposite shifts as in the case of the weak mixing

angle when comparing the same parameter for di↵erent detectors. The presence of two

minima in this analysis is a consequence of the linear and quadratic dependence of the

cross-section on the corresponding NSI parameter.

Now we go a step further and perform an equivalent analysis but assuming two NSI

parameters to be di↵erent from zero at a time. As we have seen, for the case of "fX↵µ ,

atmospheric neutrino experiments such as Super-Kamiokande and IceCube DeepCore

have already set constraints of O(10�2). Therefore, we will focus on the sensitivity

of CEvNS to NSI involving e and ⌧ flavors. Figure 5.6 shows the allowed region for

two di↵erent combinations of NSI parameters at a 90% confidence level [103] for CsI

(magenta) and LAr (purple). The left panel shows the allowed values in the ("dVee , "
dV
⌧e )

parameter space. We can see that the LAr measurement gives more robust constraints

and in this case we see an allowed region delimited by an outer and an inner circle rather

than a filled disk as in the CsI result. We perform a similar analysis for the ("dVee , "
uV
ee )

parameter space. The results are shown in the right panel of the same figure, where

we can see two independent bands for the LAr case, in contrast to the single wide one

obtained with the CsI data. Again, the improvement is due to the better management

of systematic uncertainties for the LAr detectors. From these results we see that there
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Figure 5.7: 90% C.L. allowed regions in the ("dV
ee

, Rn) parameter space for the analysis of the
COHERENT data. Left panel shows the results for CsI and left panel for LAr [103]. The dot and the
star indicate the best fit point for CsI and LAr, respectively.

are some degeneracies when we consider two NSI parameters at a time. In a further

analysis, we will see how we can combine di↵erent future detectors in order to reduce

(or even to break) these characteristic degeneracies.

At this point, we have already studied the sensitivity of the CEvNS process to SM

and non-standard e↵ects separately. Nevertheless, it is important to remark that the

mismatch between the theoretical prediction and the experimental results in the two

experimental observations can be due to either the presence of new physics, as well as

to uncertainties in nuclear parameters. Hence, this interaction can open the window

to new studies in both areas. Motivated by this, we can also perform a simultaneous

analysis to constrain both the neutron rms radius and non-standard parameters at the

same time. In other words, we can study the correlations between these parameters.

Left panel in Fig. 5.7 shows the 90% confidence level region for the CsI detector in the

("dVee , Rn) parameter space [105]. In order to get this region, we assumed a constant

quenching factor as reported in Ref. [106] and shown in Fig 5.2. We can see that

the obtained region is not symmetric, which again is a consequence of the mismatch

between the experimental results and the theoretical prediction. Similarly, the right

panel in Fig. 5.7 shows the corresponding results for the LAr detector at a 90% C.L.

Again, we can not quantitatively compare the results between detectors because their

target materials are of di↵erent nature and we expect them to have a di↵erent Rn.

Nonetheless, we notice qualitatively similar results, the only di↵erence being the value

of Rn for which the degeneracy on the NSI is broken. In other words, the value of Rn
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for which the allowed NSI values are separated in two di↵erent intervals. While for the

LAr case we notice this for values around 2.6 fm, in the case of CsI the degeneracy

is broken for values above 6.5 fm, a value that is not physically possible due to the

expected size of the nucleus. Overall, what the results in Fig. 5.7 tell us is that, if

from another experiment we can constrain one of the involved parameters alone, then

we will have information about the other parameter because they are correlated. As we

will see, CEvNS from nuclear reactor sources will be helpful for these analyses since,

as we have mentioned, these neutrinos are on an energy regime where the e↵ects of the

nuclear form factors are not relevant for CEvNS.
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Chapter 6

Expectations from future

experiments

In the previous chapter, we used the results from the current measurements of CEvNS

to constrain parameters like the weak mixing angle at low energies, the neutron rms

radius, and NSI parameters. Currently, there are many other experiments that aim

to get results from this process, each with di↵erent sources and di↵erent technologies.

This has both theoretical and practical motivations. For instance, so far we only have

measurements from two di↵erent target materials, which are not enough to see the

characteristic N
2 dependence of the cross-section predicted by the SM (see Fig. 6.1).

In addition, as we have studied, the process can be used to test di↵erent theoretical

models and give a hint in the search for new physics. Regarding some applications, it

has been suggested that once the CEvNS process is accurately characterized, it could

be used for reactor monitoring, and to enhance nuclear security [107]. For neutrinos

produced at spallation neutron sources, the most promising future experiments include

the next generation detectors of the COHERENT collaboration at the SNS [108]. These

include germanium detectors, a sodium iodide detector, and an upgrade of the current

LAr detector to one ton of fiducial mass. Another promising experiments are those

planned to run at the European Spallation Source (ESS) [109] once the facility initiates

operations. As for the first half of 2022, the ESS is already under construction, and

the suggested detectors include materials like cesium iodine, argon, germanium, xenon,

and silicon.

In the case of neutrinos from reactor sources, the process of CEvNS has never been

observed due to the very low recoil energy thresholds needed. However, a suggestive

evidence of its first observation, by using a Ge detector, has been recently reported in

Ref. [110]. In addition, collaborations like CONUS [111] and CONNIE [112] are still
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Figure 6.1: CEvNS total cross-section as a function of the number of neutrons, N , of the target
material. Black line indicates a prediction when form factor is taken as unity and green line when form
factor e↵ects are considered. Black dots are the SM prediction and blue dots the current experimental
measurements. Image taken from [101].

working to get this first measurement. One of the main advantages of using reactor

neutrinos to measure CEvNS is that the energy regime of these neutrinos is such, that

nuclear form factors do not play a significant role in the predicted number of events.

However, the di�culty from these experiments relies on the fact that extremely low

thresholds are needed to perform these measurements. This chapter is divided in three

main sections. First, we focus on the COHERENT collaboration future detectors and

we study the sensitivity that can be expected to constrain SM and NSI parameters.

Then, we study how the data from future experiments that use SNS and reactor sources

can be combined to give more robust constraints on certain parameters. Finally, we

suggest a method that could be used to minimize the impact of systematic uncertainties

by using an array of detectors of di↵erent isotopes. In this case, we also present the

expected results when studying SM physics and NSI.

6.1 Future COHERENT experiments

In the following years, the COHERENT program will include a set of four detectors,

each based on di↵erent materials and technologies capable of observing low-energy nu-

clear recoils; these include the current CsI[Na] scintillating crystal, the single-phase

liquid argon detector, which will eventually have a fiducial mass of one ton, and two

other experiments that are still under construction: a set of p-type point-contact Ge

detectors, and an array of NaI crystals. Each detector will have a di↵erent expected

threshold, baseline, and mass, all of which are summarized in Table 6.1 [97]. Following
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the analysis used in the previous chapter, we now explore the sensitivity that these

experiments can reach for di↵erent parameters.

6.1.1 Sensitivity to the weak mixing angle

As in the cases of CsI and LAr, we can also test the sensitivity of future COHER-

ENT detectors to SM parameters. Specifically, we start by testing the weak mixing

angle. Although the current estimates to this quantity from the recent measurements

of CEvNS are not competitive, we insist on its importance because any deviation from

its current accepted value can be a hint for new physics and future information from

CEvNS may be relevant at very low energies. We will make the analysis by following

the same procedure of minimizing the squared function given in Eq. (5.6). As we are

now dealing with future experiments, we will need to make some assumptions for our

�
2 analysis, and from now on, we will consider the experimental measurement N exp as

that corresponding to the SM prediction.

The expected number of events, N th, will be a function of sin2
✓W , and is calculated

through Eq. (5.5) by fixing all the other parameters of the theory. For the computation,

we assume the same experimental running time as for the first measurement with CsI,

which implies NPOT = 1.76 ⇥ 1023, and we set a source to detector distance for each

case as indicated in Table 6.1. Since the experiments are still being characterized, in

all cases we have considered an acceptance function given by a step function delimited

by the expected threshold for each experiment [113], also given in Table 6.1. Regarding

backgrounds, we have considered them to contribute with a 10% of the SM CEvNS

prediction. The results are shown in Fig. 6.2, where we can see the expected allowed

intervals at a 90% C.L. for Ge (left panel), Ar (central panel), and NaI (right panel).

For each detector, we show four di↵erent results, each based on specific assumptions

regarding systematic uncertainties for CEvNS (�↵) and backgrounds (��). We show

the ideal case in which �↵ = �� = 0%, another with �↵ = 15% and �� = 10%, and

Tthres Baseline Det. Tec. Fid. Mass
133Cs127I 5 keV 19.3 m Scintillator 14.6 kg
72Ge 5 keV 22 m HPGe PPC 10 kg
23Na127I 13 keV 28 m Scintillator 2000 kg
40Ar 20 keV 29 m Liquid scintillator 1000 kg

Table 6.1: Current and future experimental setups of the COHERENT collaboration.
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Figure 6.2: Expected sensitivity to sin2
✓W for the three future COHERRENT detectors: Ge (left

panel), Argon (central panel), and NaI (right panel). The di↵erent curves are for a 100 % e�ciency
and no systematic errors (solid), for a systematic error of 15 % (dashed-dotted), and 30 % (dashed).
Finally, the case of an e�ciency of 50 % and 5% systematic error is also shown (dotted line) [113].
The horizontal line indicates the 90% C.L. sensitivity.

another with �↵ = 30% and �� = 10%, all of these cases assuming 100% of e�ciency.

To study the impact of the detectors e�ciency in our results, we also show a case in

which we assume a 50% of e�ciency, while keeping the systematic uncertainties low,

with �↵ = 5% and �� = 0%.

Although quite similar results, there are some notable di↵erences when comparing

the three panels shown in Fig. 6.2. We can see that the weak mixing angle is more

constrained for the cases of LAr and NaI. The main reason is that the mass of these

detectors is projected to be around two orders of magnitude larger than that of Ge,

leading to a larger number of events, and thus, better statistics when considering the

same experimental running time for all of the detectors. We can also explicitly recognize

the importance of identifying and having the systematic errors under control, specially

for the Ge detector, for which we also deal with low statistics and the restriction on the

mixing angle value is wider than that from the other detectors.

6.1.2 Sensitivity to NSI parameters

We can also study the sensitivity that future detectors will have to physics beyond

the SM through the NSI formalism. We start again by assuming only one of the NSI

parameters in the cross-section to be di↵erent from zero at a time [113]. In particular,

we will analyze the parameters "uVee and "uV⌧e under the same experimental assumptions

used in the previous subsection for the study of the weak mixing angle. The results for

"
uV
⌧e , at a 90% C.L., are shown in Fig. 6.3 for Ge (left panel), LAr (central panel), and

NaI (right panel). Again, for each case we show four di↵erent curves, each based on
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Figure 6.3: Expected sensitivity to flavor changing NSI for the three future COHERENT detectors:
Ge (left panel), Ar (central panel), and NaI (right panel). We assume di↵erent combinations of
e�ciencies and systematic uncertainties as in Fig. 6.2 (see text for details) [113] The horizontal line
indicates the 90% C.L. sensitivity.
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Figure 6.4: Expected sensitivity to non-universal NSI for the three future COHERENT detectors: Ge
(left panel), Ar (central panel), and NaI (right panel). We assume di↵erent combinations of e�ciencies
and systematic uncertainties as in Fig. 6.2 (see text for details) [113]. The horizontal line indicates
the 90% C.L. sensitivity.

specific assumptions regarding e�ciency and systematic uncertainties just as in Fig. 6.2.

Notice that, in contrast to the LAr results presented in chapter 5, in these cases we

do not have a bump around zero. Instead, the minimum of the analyses are precisely

located at zero. This is a consequence of assuming the experimental measurement to

be the same as the SM prediction. Since the e↵ect of the flavor-changing NSI is to

contribute in a positive way to the expected number of events, then we can not have

less events than those predicted by the SM, and then, we expect the minimum of the

�
2 function to be at a zero NSI value. Again, better constraints are obtained for NaI

due to the better statistics that is expected for this detector because of its relatively

large mass.

Regarding non-universal parameters, Fig. 6.4 shows the corresponding results for

"
uV
ee when considering Ge (left panel), Ar (central panel), and NaI (right panel) detec-

tors. We can see that, in most of the cases, the parameters are constrained to be in two

di↵erent intervals. The presence of two minima is a result of the linear and quadratic
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Figure 6.5: Expected sensitivity to NSI parameters at a 90% C. L. for the three future COHERENT
detectors: Ge (left panel), Ar (central panel), and NaI (right panel). The di↵erent regions are for a
100 % e�ciency and no systematic errors (gray), for a systematic error of 15 % (magenta), and 30 %
(dashed contour). Finally, the case of an e�ciency of 50 % and 5% systematic error is also shown
(blue) [113].

dependence of the cross-section on the corresponding NSI parameter. We see that the

expected constraints for both NSI parameters are competitive with the current values

shown in Table 3.4.

As a final step, we can study the correlation between NSI by assuming both of

the analyzed parameters to be di↵erent from zero at a time. The results are shown

in Fig. 6.5 for the same configurations of systematic uncertainties as in the previous

analysis. We see a degeneracy for these parameters that is not broken in the pessimistic

case of �↵ = 30%, which corresponds to the region enclosed by a dashed contour. For all

the other results, we see that the degeneracy is broken and the results can be expected

to be better than those shown in the case of LAr and CsI measurements.

6.2 SNS and reactor experiments

In addition to spallation neutron sources, there are other experimental collaborations

that aim to measure the CEvNS process by using reactors as a neutrino source. Among

the main candidates we have CONUS [111], CONNIE [112], NUCLEUS [114], MINER

[115], and RICOCHET [116]. An important progress on the detection mechanism has

been achieved, but for now there is not a confirmed measurement. The main problem

when dealing with reactor sources comes from the very low energy thresholds needed

for the detection. Moreover, the quenching factor uncertainties at such thresholds are

high, and the characterization of backgrounds is di�cult. Nonetheless, we can study the

implications that future reactor experiments can have within di↵erent physics scenarios.

In this section, we show how the combination of experiments, that are di↵erent in nature

(source and detection), could be used to study the interplay between NSI and nuclear
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Figure 6.6: Left panel: Blue contour shows the 1� level allowed region in the (✏dV
ee

, Rn) parameter
space consistent with the CsI COHERENT data. The red contour shows the expected results when
combining the CsI analysis with the expected sensitivity from the CONUS experiment. Right panel:
Blue contour shows the expected sensitivity from an NaI detector at the SNS. The inner regions repre-
sents the combination of this experiment with the expected results from the CONNIE experiment [105].

physics parameters.

Let us first recall the results from section 5.2, specifically Fig. 5.7, where we have

given constraints that are consistent with COHERENT data in the parameter space

("dVee , Rn). We can see that the introduction of NSI induces a degeneracy on the param-

eter space that opens the possibility for nonphysical values of the neutron rms radius

for Cs and I nuclei. By non-physical, we mean that the radius is too large (or too small)

for what we expect by comparing with heavier (or lighter) nuclei for which these param-

eters are known. These e↵ects are a consequence of the dependence of the cross-section

on the nuclear distribution, which is not thoroughly understood, and which contributes

as a major source of systematic uncertainties. Fortunately, the form factor sources of

systematic errors can be avoided by using reactor neutrinos, for which the energy regime

is such that we have F
V
N (q2) ! 1 (see Fig. 3.11). This means that reactor neutrinos

are not sensitive to nuclear information. Then, the analysis on NSI parameters from

reactor sources, when combined with the SNS results, will help to remove some of the

degeneracies present in the parameter space ("dVee , Rn) [105].

For our analysis, we will study the expectations from future reactor neutrino ex-

Tthres Baseline Z/N Det. Tec. Fid. Mass

CONNIE 28 eV 30 m 1.0 CCD (Si) 0.1 � 1 kg
CONUS 100 eV 10 m 0.79 HPGe 4 � 100 kg

Table 6.2: Experimental proposals to detect CEvNS from reactor neutrinos.
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periments. In particular, we consider experiments with the characteristics of CONUS

and CONNIE, which are listed in Table 6.2, and we assume a reactor antineutrino

spectrum given by the Huber model. In Ref. [105], we have studied the sensitivity of

these experiments to NSI parameters in the ("dVee , "
uV
ee ) parameter space by performing

a �2 analysis as that in Eq. (5.6), by using the information in Table 6.2 to compute

the expected number of events and using the SM prediction as the experimental mea-

surement. Since there are no correlations between reactor experiments and the SNS,

then we can combine the results by adding the two independent �2 functions. That

is, we combine the results from the current CsI measurement presented in the previous

section with the expectation from the future analyses using reactors. The results for

the combination of a CONUS-like detector, and the CsI data, at a 1� level, are shown

in the left panel of Fig. 6.6. The blue contour shows the results of the CsI analysis

alone, and the red contour shows the combined analysis. Notice that the allowed region

has been significantly reduced, and that we have recovered mainly physical values of

Rn when allowing for the presence of new physics through NSI. Our analysis can be

extended to other combinations of future experiments. For instance, we consider the

case of CONNIE as a reactor anti-neutrino experiment, in combination with the future

NaI detector at the SNS, which contains iodine nuclei in the same rate as the CsI detec-

tor. The results, at a 1� level, are shown in the right panel of Fig. 6.6, where the blue

contour corresponds to the NaI detector alone, and the red contour shows the results

for the combined analysis.

For our last futuristic combination, we have the freedom to study the impact on the

parameter space of an hypothetical scenario in which one of the experiments reports

a measurement that is significantly deviated from the SM prediction. For instance, in

Fig. 6.6 we also show the impact that a measurement 30% above (green line), and 30%

below (dashed line) the SM prediction from the CONNIE experiment would have in

our results. This assumption is only illustrative and can be interpreted in the following

manner: a reactor neutrino experimental measurement that significantly di↵ers from

the SM prediction would result in a displacement of the central value of the �2 analysis

in the parameter space, but with the width of the allowed region unchanged. If in a

reactor experiment it is measured an excess above the SM prediction, then the NSI

contribution would be responsible for this excess, and for the data to be consistent with

the SNS result, we would need larger values of the neutron rms radius. In contrast,

when the measured number of events in the reactor experiment is significantly lower

than the SM prediction, the neutron radius would need lower values to compensate the

observed deficit in a reactor experiment. This analysis illustrates the interplay that
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we have between the measurement of CEvNS in reactors and SNS experiments when

exploring the e↵ects of nuclear physics and NSI together.

6.3 Use of isotopically enriched detectors

Currently, the status of CEvNS reduces to two experiments that have successfully

achieved a measurement of this process. For the more skeptical, these measurements

would not be enough to corroborate the most characteristic feature of CEvNS, which

at leading order, is the quadratic dependence of its cross-section on the number of

neutrons, N , of the scatter material. Unfortunately, with current data it is not su�cient

to observe this behavior since two measurements are not enough to unambiguously

establish a correlation between the cross-section and N
2. Then, a third experiment

with another target material that di↵ers in the number of neutrons from the previous

two is needed. Indeed, there are many experimental collaborations that aim to achieve

another measurement by using detection technologies that include xenon, germanium,

and silicon nuclei, among others. The main issue with this approach of using materials

that are so di↵erent in nature is that systematic uncertainties are di↵erent for each

detector, and there are no correlations between them. Recently, several advances have

been made to have these uncertainties under control but, eventually, this may hide the

e↵ect of the quadratic dependence that we want to see.

Rather than using detectors of di↵erent materials, in this section we propose a fea-

sible low time-scale experiment that could improve the CEvNS accuracy in the near

future with the help of a detectors array of the same element, but di↵erent isotopes,

taking data at the same time [117]. We show in Fig. 6.7 a graphical sketch that illus-

trates our experimental proposal, where we have a neutrino source, and three detectors

of di↵erent isotopes located at the same distance from the source. It is true that the

setup can be generalized to a number of detectors as large as the di↵erent isotopes, but

three are enough to illustrate our point. The idea is to set the three detectors simulta-

neously, all with the same fiducial mass, and to compare the measured relative number

of events between detectors after a certain amount of time. Under these conditions,

any variation on the neutrino flux through the running time of the experiment will

be common to all detectors and, more importantly, there will be a strong correlation

between systematic errors, which can be of di↵erent nature. For instance, systematic

uncertainties can be originated from quenching and form factors of target materials, as

well as from the neutrino flux itself, having an impact on the relative expected number

of events between detectors.
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Figure 6.7: Array of detectors of the same element A, but di↵erent isotopes, located at the same
distance, L, from a neutrino source.

For illustration, we perform our computations assuming a set of Ge detectors, which

is an ideal candidate since it has five known stable isotopes: 70Ge, 72Ge, 73Ge, 74Ge,

and 76Ge. Certainly, the analysis can be extended to other target materials that also

have stable isotopes such as silicon and nickel. However, germanium seems to be the

most feasible option since the technology of enriching Ge detectors to a desired isotope

has seen a lot of progress in recent years. In fact, highly enriched 76Ge detectors have

been used for neutrino physics in the searches of processes like neutrinoless double beta

decay [118]. We will compare the results for two di↵erent neutrino sources: a ⇡-DAR

source like the SNS, and a hypothetical anti-neutrino reactor flux characterized by the

Huber model above the 2 MeV neutrino energy threshold.

Before getting into the analysis, we discuss some kinematic features that can be

exploited in our further computations when considering this kind of array. As we have

pointed out, the CEvNS cross-section has a characteristic dependence on the quadratic

number of neutrons of the target material. Then, it can be expected that an isotope

with more neutrons will measure a larger number of events than one which has less.

However, due to kinematic e↵ects, this is only true if we consider the whole spectrum

of kinetic recoil energy, which is di�cult for actual detectors due to their di↵erent

thresholds and e�ciencies. For instance, Fig. 6.8 shows the expected di↵erential rate

as a function of the recoil energy, T , for 70Ge and 76Ge, where we assumed a one year

data taking (NPOT = 1.5⇥ 1023) and a 100% e�ciency, for a 10 kg fiducial mass in the

case of an SNS source (left panel) and 1 kg for reactor neutrinos (right panel). In both
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Figure 6.8: Di↵erential event rate for Ge isotopes assuming one year data taking for SNS neutrinos
(left panel) and reactor antineutrinos (right panel).

panels, there is a point close to the tail of the spectrum where the di↵erential rates of the

di↵erent isotopes intercept, which is expected since, the heavier the nucleus, the lower

kinetic energy limit it can reach. In consequence, there will be recoil energy regions

for which, despite the N2 dependence, a target with less neutrons would measure more

events. As we will see, this does not have a significant impact for an experiment with

SNS neutrinos, but will be important for a nuclear reactor source experiment, where,

experimentally, very low energy thresholds are not easily achieved, and we can mainly

study the high energy part of the spectrum.

In the following sections, we introduce some of the applications that such an exper-

imental array with three detectors can have. Since we are dealing with stable detector

materials that only di↵er in the number of neutrons, then it is expected that there

will be correlations between the di↵erent systematic uncertainties, which needs to be

considered in our di↵erent analyses. We will do this by following the covariant matrix

approach, where, instead of using Eq. (5.6), we minimize the squared function

�
2 =

X

ij

(N theo
i � N

exp
i )[�2

ij]
�1(N theo

j � N
exp
j ), (6.1)

where �2
ij is the covariant matrix. The indexes i, j run over the di↵erent detectors

used during the analysis, and the total number of events is calculated in the same

way as in our previous analyses. We will use this method to explore the sensitivity of

our proposed experiment to di↵erent parameters that involve SM and NSI parameters,

assuming in all cases the experimental measurement to be the SM prediction.
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6.3.1 Testing the N
2 dependence

We begin by using the proposed array to test the quadratic dependence of the cross-

section on the number of neutrons. From now, we consider an array of three di↵erent

isotopes, `Ge, mGe, and nGe, with ` 6= m 6= n indicating the total number of nucleons.

To test the sensitivity to the quadratic dependence on the number of neutrons, we now

express the expected number of events for each detector in the form

N
th
i = N
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(6.2)

where we use the index i = `,m, n to distinguish between the di↵erent detectors. Notice

that Eq. (6.2) is the same as Eq. (5.5), but we have explicitly expanded the SM cross-

section, and we have also replaced the number of neutrons for the ith detector, Ni, by

a factor N
0
i that will quantify the deviation of an experimental measurement from the

expected quadratic dependence. For a given neutrino source, we can now calculate the

expected number of events N
th
i as a function of the N

0
i factor for each detector, and

we can perform a �2 analysis using Eq. (6.1), where correlations between detectors

are considered. For a general analysis, we assume that the systematic uncertainties

will be dominated by two di↵erent sources, which we denote as A and B, each with a

contribution to the total systematic uncertainty of �A
i , and �

B
i , respectively. These can

refer to uncertainties coming, for instance, from quenching factors, form factors, or the

neutrino flux itself, among others. Since we are considering three di↵erent detectors,

and two main sources of systematic errors, the covariance matrix has the form

�
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with �
stat
i the statistical error of the ith detector. When no correlations are present,

then the non-diagonal matrix elements are set to zero. However, for this proposed array

we expect a strong correlation between systematic uncertainties since we are dealing

with detectors from stable nuclei that only di↵er in the number of neutrons. Calculating

the inverse of Eq. (6.3), and substituting in Eq. (6.1), we can test the sensitivity of
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Figure 6.9: Allowed values of the N
0 factor at a 90% C. L. , for the three di↵erent detectors using

neutrinos from SNS (left panel) and reactor (right panel) sources. We compare the results by pairs,
labeling each detector by the number of nucleons of the corresponding isotope. The contours show
the di↵erent projections after marginalizing the information over the third detector and the heavier
isotope is shown on the vertical axis. [117].

such an array to the quadratic dependence on the number of neutrons. To do so, we

vary the N
0
i factors for each of the isotopes and compare with the experimental result,

which we assume as the SM prediction, obtained when the N
0
i factors coincide with the

corresponding number of neutrons. We perform the analysis by using neutrinos from

both SNS and reactor sources.

For the case of an SNS source, we take 70Ge, 72Ge, and 76Ge detectors, each with

a mass of 10 kg, and a one year data taking. Regarding systematic uncertainties, the

main contributions for current SNS experiments come from quenching and form factors.

As discussed in [96], several progress has been made for CsI detection technology such

that these uncertainties have been lowered within 5%. Similar advances are expected in

the case of Ge detectors, and we consider a realistic case in which both form factors and

quenching factors have a contribution of 5% to systematic uncertainties. In addition,

we consider a scenario in which background measurements contribute to the statistical

error with 10% of the SM prediction. The results assuming a nuclear recoil energy region

from 5 to 30 keV are shown in left panel of Fig. 6.9, where we show the allowed three

di↵erent projections, at a 90% C.L., that result after marginalizing the information

of the missing component on each panel. For instance, the green region shows the

allowed values of N 0 for 70Ge (x-axis) and 72Ge (y-axis) that are compatible with a

quadratic dependence on the number of neutrons at a 90% C.L., after marginalizing

over 76Ge. The allowed region corresponds to an ellipse that is separated from the

diagonal according to the ratio between the isotopes that are compared, being the

major and minor axis determined by the systematic uncertainties. Similar regions are
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Figure 6.10: Expected number of events, for the three di↵erent Ge detectors, consistent with an N
2

dependence of the CEvNS cross-section at a 90% C.L. We compare the results by pairs, labeling each
detector by the number of nucleons of the corresponding isotope. The rate from the heavier isotope
is shown on the vertical axis. We assume a one year data taking, using a reactor source, for three
di↵erent thresholds: 1 - 2 keV (left), 0.7 - 1 keV (central), and 0.4 -0.8 keV (right). For reference,
the dashed contour shows the results for the pair (70,76) when no correlations between detectors are
considered [117].

shown in blue and magenta for the pairs (70Ge, 76Ge) and (72Ge, 76Ge), respectively.

Since the sensitivity of the array is limited, then we can see that in this case, the ellipses

are not well separated.

We now analyze the case of nuclear reactors as a neutrino source, for which we

consider the same Ge isotopes, with a mass of 1 kg each, and a recoil energy range

from 1 to 2 keV, which is above the crossing point of the spectra shown in Fig. 6.8.

Here the main contributions to systematic uncertainties are considered from quenching

factors and the neutrino flux, each contributing with a 5%. We show the results of

the analyses in the right panel of Fig. 6.9, at a 90% C.L., and with the same color

code used for the SNS case. Again, we can see elliptical regions for which the minor

and major axes are governed by systematic and statistical uncertainties. In contrast

to the SNS case, and because of the very large statistics, here we can see three regions

that are completely separated from one another, a feature that we can exploit for a

more complete analysis. Clearly, the ultimate goal of an experiment can not be the

determination of the parameters N
0
i since, after all, these are not physical observables.

Instead, we want to examine whether a counting experiment like this would measure a

number of events that is consistent with the quadratic dependence on the number of

neutrons, of the CEvNS cross-section, by comparing the relative measurements between

detectors. Indeed, our previous analysis can be mapped into regions that show this

number of events. Left panel in Fig. 6.10 shows the number of events obtained by

varying the parameters N
0
i for reactor neutrinos as in Fig. 6.9. For clarity we only

show the corresponding blue and green regions. From this figure, we conclude that

a relative measurement between detectors, that is consistent at a 90% C. L. with a
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cross-section that goes as N
2, will fall on each of the well separated contour regions.

We can explicitly see that, even if the quadratic dependence in the number of neutrons

of the cross-section holds, we expect to have more events from the lighter isotope in

the analyzed recoil energy region. For comparison, we also show as a dashed contour,

the case corresponding to the blue region when no correlations are taken into account.

We conclude that the e↵ects of the correlations allow us to have these well separated

regions.

So far, we have used for the analysis a conservative case in which we assume a

threshold of 1 keV for the nuclear recoil energy. As a next step, and to see the quadratic

dependence e↵ects, we can consider a more optimistic case in which we assume a lower

threshold and perform the same analysis from this lower threshold to 2 keV. In contrast,

we can get more information by exploiting the shape of the recoil energy spectrum

discussed above, and computing the predicted number of events in convenient regions

of this spectrum. We choose the intermediate region from 0.7 to 1 keV, and the very

low energy region that goes from 0.4 to 0.8 kev. The results are shown in the central

and right panels of Fig. 6.10, respectively. For the intermediate region we see that

the ellipses come together, which is expected since we are in a neighborhood of the

intersection point of the di↵erential rates from the isotopes (see Fig. 6.8), which means

that the three detectors will measure a very similar number of events. In the case of

the low energy region we see that the order of the ellipses is now inverted with respect

to the high energy region counterpart, which means that in this region, the quadratic

dependence in the number of neutrons becomes dominant. This comparison at di↵erent

recoil energy ranges provides a clear signature of the SM CEvNS cross-section by taking

advantage of systematic correlations, which can not be achieved when using di↵erent

detectors.

6.3.2 Neutron rms radius

The proposed experiment can also be used to study other parameters, with di↵erent

sensitivities depending on the neutrino source. To illustrate this, we study the e↵ect of

systematic correlations in the determination of the neutron rms radius of the germanium

isotopes, which is only accessible for SNS neutrinos. This analysis will be important

not only for the field of high energy and nuclear physics, but also for some areas like

in Dark Matter (DM) searches, where Ge detectors are widely used. For instance,

a correct characterization of these detectors is needed for a complete understanding

of backgrounds that constitute the so called neutrino floor [119]. The results for the

corresponding analyses, under the same assumptions as in the previous SNS scenario,
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Figure 6.11: Allowed projections at a 90% C. L. for the neutron rms radius of the three Ge isotopes.
Colored regions show the results when correlations between detectors are considered. For reference,
the regions enclosed by dashed contours show the case when no correlations are considered [117].

are shown in the three panels of Fig. 6.11, where we display the results by pairs (at a

90% C. L.), after marginalizing the information from the detector that is not shown. We

can see the pairs (70Ge, 72Ge) , (70Ge, 76Ge), and (72Ge, 76Ge) in the left, central, and

right panels, respectively. For comparison, we also show the projection corresponding to

the case where no correlations are considered. Although the sensitivity is not the best,

the e↵ects of the correlations are present, and the resulting contours can be reduced by

having more statistics, which can be achieved either with a larger fiducial mass, or by

means of a larger running time of the experiments.

6.3.3 NSI

We also discuss on the applicability of the intended experiment for the study of NSI by

showing how this approach can help to remove typical degeneracies that appear when

we introduce new physics scenarios. An example of interest is that of the degeneracy

for the weak mixing angle value. For the analysis we will assume nuclear reactors as

a neutrino source under the same assumptions as when we studied the N
2 dependence

of the cross-section. The results of the �2 analysis when varying the SM weak mixing

angle and the non-universal parameter "dVee are shown in the left chart of Fig. 6.12,

where we have considered the contribution from the two main sources of systematic

errors as 5% each. Dashed contours represent the results when systematic correlations

are not considered, and we can see a clear degeneracy in both parameters under study.

However, this degeneracy can be reduced by introducing the correlation e↵ects between

systematic uncertainties. These are illustrated by colored regions in the same figure,

where we display the results for the three di↵erent recoil energy regions used to test the

N
2 dependence of the SM cross-section. The magenta, blue and gray regions correspond

112



6.3. USE OF ISOTOPICALLY ENRICHED DETECTORS

Figure 6.12: Allowed values at a 90% C.L. in the (sin2
✓W , "

dV

ee
) parameter space for an array of

three Ge detectors of di↵erent isotopes. Colored regions indicate the results when correlations between
detectors are considered for three di↵erent nuclear recoil energy thresholds: 1 - 2 keV (magenta),
0.7 - 1 keV (blue), and 0.4 - 0.8 keV (gray). We show between dashed contours the result when no
correlations are considered for 1 - 2 keV [117]. For reference we also show the current limits obtained
from the LAr measurement when analyzing the NSI for a fixed value of sin2

✓W [103].

to 0.4 keV - 0.8 keV, 0.7 keV - 1 keV, and 1 keV - 2 keV, respectively. Notice that the

upper band is removed in the three cases, making clear the advantage of this approach

when studying this kind of degeneracies. For comparison, we show in the right chart the

current result of the analysis for the LAr detector when only varying the NSI parameter

while fixing the weak mixing angle to the standard best fit value at low energies. Notice

that in this analysis the degeneracy on the NSI parameter is also present, meaning that

with current data we can not restrict the value of "dVee around a single value.

To end this section, we explore the case when we study two NSI parameters at a

time, where we can also use our method to break some degeneracies. The results of the

analysis are shown in Fig. 6.13 for the case of the the parameter space ("dVee , "
dV
⌧e ). Again,

the region between dashed contours represent the case where no systematic correlations

are considered, giving as a result the characteristic ring found in many analyses for

the specific case of these NSI parameters. In contrast, colored regions represent the

correlated case according to the same color code as in the previous analysis. In the

remaining charts we show the current status from the LAr data when varying only one

of the NSI parameters. When comparing, we see that our proposed method can help

to remove the degeneracy present in the case of "dVee around ⇡ 0.38.

For all of our previous analyses, we assumed a 5% contribution from each of the

dominant systematic uncertainties. This was motivated by the progress that the CO-

HERENT collaboration has made for other detection technologies like in the case of

CsI. In Ref. [117] we have also studied the more pessimistic case in which the main
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Figure 6.13: Allowed NSI values at a 90% C.L. for an array of three Ge detectors of di↵erent
isotopes. Colored regions indicate the results when correlations between detectors are considered for
three di↵erent nuclear recoil energy thresholds: 1 - 2 keV (magenta), 0.7 - 1 keV (blue), and 0.4 - 0.8
keV (gray). We show between dashed contours the result when no correlations are considered for 1 -
2 keV [117]. For reference we also show the current limits obtained from the LAr measurement when
analyzing one of the parameters at a time [103].

systematic contributions are of 25% and 10%. Qualitatively the results are the same

as presented here, the only di↵erence being that the obtained regions were a little less

constrained but the e↵ects of the correlations are still present and they still have a

significant impact on the results.
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Chapter 7

Neutrino electromagnetic properties

After discussing the general formalism of NSI, we now focus on neutrino electromagnetic

interactions. These interactions can be present when considering theories on which neu-

trinos are massive and, in general, can not be described through NSI. In this chapter,

we mainly discuss the theory and phenomenology of what we call the neutrino mag-

netic moment. In particular, we will focus on the minimal extension of the SM where

only three massive neutrino states are considered. However, as we have seen from the

discussion in section 3.5, the symmetries of the SM allow for a more general case in

which N right-handed neutrinos, and hence N massive states, are introduced.

7.1 Electromagnetic form factors

In the SM, the interaction of a charged fermion, f , with the electromagnetic field, Aµ,

is described through the Hamiltonian:

Hem = qf̄�µfA
µ
, (7.1)

where q is the fermion charge. Within the SM, an interaction of the form in Eq. (7.1)

is not possible for neutrinos because they have no electric charge. However, when

right-handed neutrino states are introduced, an electromagnetic coupling is possible for

them at quantum loop levels. In this case, the interaction of a massive neutrino with

the photon can be described through an e↵ective matrix operator ⇤µ such that

H
⌫
em =

3X

k,j=1

⌫k⇤
kj
µ ⌫jA

µ
, (7.2)
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Figure 7.1: Feynman diagram representing the coupling of a neutrino with the electromagnetic field.
The bubble in the diagram accounts for quantum loop e↵ects responsible of the interaction.

where ⌫i denotes massive states. Notice that, in general, Eq. (7.2) allows for transitions

between di↵erent massive states, so the states before and after the interaction can

be di↵erent. Loop e↵ects are represented by the bubble in the Feynman diagram of

Fig. 7.1. In general, the matrix operator ⇤µ must respect Lorentz symmetries and the

electromagnetic current gauge invariance. Then, the most general form of ⇤µ, consistent

with these symmetries, can be parametrized through four form factor matrices F⌦ [120]:

⇤fi
µ =

�
�µ � qµ�q/q

2
� ⇣

Ffi
Q (q

2) + Ffi
A (q

2)q2�5 � i�µ⌫q
⌫
h
Ffi
M(q

2) + iFfi
E (q

2)�5
i⌘

, (7.3)

where FQ, FA, FM, and FE are 3 ⇥ 3 matrices in the massive neutrino states space.

When q
2 = 0, the electromagnetic form factors can be identified as the neutrino charge,

the magnetic dipole moment, the electric dipole moment, and the anapole moment,

respectively. This can be done by taking the classical limit of the di↵erent operators

and identifying the corresponding Hamiltonian with the associated physical quantity

in this limit [121]. In the literature, it is common to denote the magnetic and the

electric dipole moments as µ ⌘ FM(0) and ✏ ⌘ FE(0), respectively. On the other hand,

while in the SM neutrinos have no charge, there are many extensions where neutrinos

acquire a milicharge, and in general, FQ(q2) 6= 0 [122]. Notice that the form factors

introduced in Eq. (7.3) are di↵erent in nature from those used in the CEvNS cross-

section. Here the form factors parametrize information of higher orders in scattering

theory, while the form factors in CEvNS contain information of the internal structure

of the nucleus. Also, it is important to insist on the fact that, as fundamental particles,

the origin of electromagnetic properties of neutrinos comes from quantum loop e↵ects.

This is exactly the same origin as, for instance, the magnetic moment of the electron
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and muon, and it is di↵erent from the magnetic moment origin for composite particles

like neutrons, for which electric and magnetic form factors are a consequence of their

internal quark structure.

The properties of the form factor matrices are di↵erent depending on the neutrino

mass nature. For example, in the case of Dirac neutrinos we have [122]

F⌦ = F†
⌦ (⌦ = Q,M,E,A), (7.4)

which means that diagonal moments are real. For the corresponding anti-neutrinos,

the form factors are denoted as F⌦, and they can be expressed in terms of the neutrino

form factors [122]:

F⌦ = �F⇤
⌦ (⌦ = Q,M,E) , (7.5)

FA = F⇤
A ,

which means that, for diagonal moments, the theoretical neutrino charge, as well as the

electric and magnetic moments have the same strength but opposite sign.

For the case of Majorana neutrinos, particle and antiparticle states are the same and

the degrees of freedom are reduced so, by equating Eqs. (7.4) and (7.5), we conclude

that in this case

F⌦ = �FT
⌦ (⌦ = Q,M,E) , (7.6)

FA = FT
A.

We see that for Majorana neutrinos, the charge, dipole electric, and dipole magnetic

form factors are anti-symmetric matrices, which means that diagonal moments are zero.

In contrast, the anapole moment matrix is symmetric and the diagonal moments are

constrained to be real. Here we will focus on the phenomenology of magnetic and

electric dipole moments, which interaction form can not be directly translated into

the NSI formalism presented in the previous section. The cases of electric charge and

anapole moments have been widely studied in Ref. [123].

7.2 Neutrino magnetic moment

From the above discussion we see that, by considering electromagnetic properties of

neutrinos, we are now introducing a huge number of free parameters to the theory. This

can be seen from Eq. (7.3), where each matrix element is in general a complex number

described by a modulus and a phase. The good news are that not all the parameters

are independent. In addition, for the particular case of the electric and magnetic dipole
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moments we can reduce all these parameters to a single e↵ective coupling, which can

be studied in a phenomenological approach.

As shown on appendix A, in the presence of electric and magnetic dipole moments,

the di↵erential cross-section for neutrino-electron scattering can be parametrized in

terms of one single coupling µ⌫l :

d�µ⌫`

dT
=
⇡↵

2
µ
2
⌫l

m2
e

✓
1

T
� 1

E⌫

◆
, (7.7)

where ↵ is the fine structure constant. The quantity µ⌫l , parametrized in units of the

Bohr magneton, µB, is called the e↵ective neutrino magnetic moment, and it has been

widely studied from a phenomenological and experimental point of view. In terms

of the fundamental parameters, the expression for µ⌫l is di↵erent depending on the

neutrino source, and hence the sub-index l in the notation. In fact, from Appendix A

we have [122]

µ
2
⌫l
=
X

j

�����
X

k

U
⇤
lke

�i�m2
kjL/2E⌫

�
0

jk

�����

2

, (7.8)

where we have used the notation �
0
ij = µij � i✏ij. The matrix �0 is usually called the

neutrino magnetic moment matrix. However, notice that it contains information of both

magnetic and electric dipole moments. The corresponding e↵ective magnetic moment

for anti-neutrinos can be obtained by taking the complex conjugate of the exponential

in Eq. (7.8) [122]. We summarize in Table 7.1 the current experimental limits for µ⌫l ,

which have been obtained through accelerator, reactor, and solar neutrino sources.

The e↵ective coupling µ⌫l in Eq. (7.8) has been obtained assuming neutrino massive

states (see appendix A). Then, the operator �
0
in the same equation is written in the

mass basis. However, it is sometimes useful to express the magnetic moment operator,

and hence the e↵ective coupling, in the flavor basis. The transformation rule between

mass and flavor basis for �
0
can be obtained from the interaction Hamiltonian when

rotating the neutrino fields, and we have [124]

�
0
= U

T
�U, (7.9)

where � is the magnetic moment matrix in the flavor basis. In the following sections, we

study the relationship between the e↵ective coupling and the fundamental parameters

for the specific cases of short baseline (SBL) and solar neutrinos, in the two di↵erent

bases, for both Majorana and Dirac neutrinos.

Considering that the maximum squared mass di↵erence of neutrinos is very small,
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Type Experiment µ⌫l 90% C.L. Reference

Reactor GEMMA µ⌫e < 2.9 ⇥ 10�11 [125]

Accelerator LSND µ⌫µ < 6.8 ⇥ 10�10 [126]

Accelerator DONUT µ⌫⌧ < 3.9 ⇥ 10�7 [127]

Solar Borexino µ⌫e,sol < 2.8 ⇥ 10�11 [128]

Solar XENON1T µ⌫e,sol (1.4, 2.9) ⇥10�11 [129]

Table 7.1: Experimental limits for the e↵ective neutrino magnetic moments from experiments with
di↵erent neutrino sources [122].

for short baseline neutrinos we can approximate the argument of the exponential in

Eq. (7.8) to zero, so the exponential itself can be approximated to unity. Since the only

di↵erence between the e↵ective coupling for neutrinos and anti-neutrinos comes from

the phase of the exponential, then both are equal in this case, and we can write

µ
2
⌫l
= µ

2
⌫l

'
X

j

�����
X

k

U
⇤
lk�

0

jk

�����

2

=
⇣
U · �0† · �0 · U †

⌘

ll
(SBL mass basis), (7.10)

where we have used the matrix notation in the last equality, which results more con-

venient when transforming between di↵erent bases. Applying the basis transformation

rule in Eq. (7.10), in the flavor basis we have

µ
2
⌫↵ =

�
�
† · �

�
↵↵

(SBL flavor basis). (7.11)

On the other hand, for solar neutrinos, Eq. (7.8) needs to be modified to take into

account matter e↵ects in neutrino propagation. To this end, it is enough to replace

Ulk ! U
M
lk , with U

M denoting the leptonic mixing matrix in matter, described by an

e↵ective mixing angle that takes into account matter e↵ects as discussed in section 3.4.

As a result, oscillations, and the e↵ective coupling itself, become energy dependent.

Then, for solar neutrinos we have

µ
2
⌫l
=
X

j

�����
X

k

(UM
lk )

⇤
e
�i�m2

kjL/2E⌫
�

0

jk

�����

2

. (7.12)

In this equation, L corresponds to the Earth-Sun distance, so L/E � 1 and, in contrast

to the short baseline case, the phases of the exponential can not be considered small.

Instead, we can consider the finite energy resolution of the detector and average over
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L/E. This can be done by assuming a smearing function given by a Gaussian distribu-

tion with median hL/Ei and averaging over the propagation phases. The e↵ect of this

average is [124]

he±i(�m2
ij/2)(L/E⌫)i = e

±(�m2
ij/2)hL/E⌫ie��m4

ijhL/E⌫i2/8 , (7.13)

which implies that interference terms are exponentially suppressed and can be ignored.

Then, for solar neutrinos in the mass basis we have

µ
2
⌫e =

X

k

��UM
ek

��2
X

j

����
0

jk

���
2

=
3X

k=1

��UM
↵k

��2 ��0† · �0
�
kk

(Solar mass basis), (7.14)

where, according to the discussion of neutrino oscillations in matter, the elements of

the lepton mixing matrix in matter are given by:

|Ue1|2 = c
2
13P

2⌫
e1 , |Ue2|2 = c

2
13P

2⌫
e2 , |Ue3|2 = s

2
13, (7.15)

with P
2⌫
ei = P

2⌫
ei (E⌫) denoting the two-flavor approximation probability of observing

the i-th mass eigenstate ⌫i at the scattering point. Applying the transformation rule

for the �0 matrix, in the flavor basis we have

µ
2
⌫↵ =

3X

k=1

|UM
↵k|2

�
U

† · �† · � · U
�
kk

(Solar flavor basis). (7.16)

7.3 Majorana neutrinos

From the discussion in section 7.1, we know that for Majorana neutrinos the matrices

µij and ✏ij are anti-symmetric, and hence the matrix �
0
is also anti symmetric. Then,

to simplify the computations we can use the notation

⇤i = "ijk�
0

jk, (7.17)

where "ijk denotes the Levi-Civita symbol and ⇤i = |⇤i|ei'i , with 'i magnetic moment

CP phases. However, only two phases are physical [130]. Then, under this parametriza-

tion, the magnetic moment matrix in the mass basis explicitly reads

�
0

M =

0

B@
0 |⇤3|ei'3 �|⇤2|

�|⇤3|ei'3 0 |⇤1|ei'1

|⇤2| �|⇤1|ei'1 0

1

CA . (7.18)
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Neutrino Magnetic Moment short baseline Majorana neutrinos

Mass Basis

µ
2
⌫e

|⇤1|2 + |⇤2|2 + |⇤3|2 � |⇤1|2 c213c212 � |⇤2|2 c213s212 � |⇤3|2 s213
� 2c12c

2
13s12 |⇤1| |⇤2| cos(�'1) � 2c13s12s13 |⇤2| |⇤3| cos('3 � �)

� 2c12c13s13 |⇤1| |⇤3| cos('3 � '1 � �)

µ
2
⌫µ

|⇤1|2
�
c
2
12c

2
23 + s

2
23(c

2
13 + s

2
12s

2
13) � 2c12c23s12s13s23 cos(�)

�

+ |⇤2|2
�
c
2
23s

2
12 + s

2
23(c

2
13 + c

2
12s

2
13) + 2c12c23s12s13s23 cos(�)

�

+ |⇤3|2 (c223 + s
2
13s

2
23) + 2 |⇤1⇤2| (c212c23s13s23 cos(�'1 � �)

� c23s
2
12s13s23 cos(�'1 + �) + c12s12(c

2
23 � s

2
13s

2
23) cos(�'1))

+ 2 |⇤1| |⇤3| (c13s23(c12s13s23 cos('3 � '1 � �) + c23s12 cos('3 � '1)))

+ 2 |⇤2| |⇤3| (c13s23(s12s13s23 cos('3 � �) � c12c23 cos('3)))

µ
2
⌫⌧

|⇤1|2 (c223(c213 + s
2
12s

2
13) + c

2
12s

2
23 + 2c12c23s12s13s23 cos(�))

+ |⇤2|2 (c223(c213 + c
2
12s

2
13) + s

2
12s

2
23 � 2c12c23s12s13s23 cos(�))

+ |⇤3|2 (s223 + c
2
23s

2
13) + 2 |⇤2| |⇤3| c23c13(c12s23 cos('3) + c23s12s13 cos('3 � �))

� 2 |⇤1| |⇤3| c13c23(s12s23 cos('3 � '1) � c12c23s13 cos('3 � '1 � �))

� 2 |⇤1| |⇤2| (c12s12(c223s213 � s
2
23) cos(�'1) + c

2
12c23s13s23 cos(�'1 � �)

� c23s
2
12s13s23 cos(�'1 + �))

Flavor Basis

µ
2
⌫e |⇤µ|2 + |⇤⌧ |2

µ
2
⌫µ |⇤⌧ |2 + |⇤e|2

µ
2
⌫⌧ |⇤µ|2 + |⇤e|2

Table 7.2: Magnetic moments in terms of fundamental parameters for short baseline neutrinos in the
mass and flavor bases for Majorana neutrinos.

After applying the mass to flavor transformation rule, the anti-symmetry of the �0

matrix in the mass basis is preserved in the flavor basis. Then, in the flavor basis we

denote

�M =

0

B@
0 |⇤⌧ |ei�⌧ �|⇤µ|

�|⇤⌧ |ei�⌧ 0 |⇤e|ei�e

|⇤µ| �|⇤e|ei�e 0

1

CA . (7.19)

Explicit expressions for µ2
⌫l
can then be obtained by substituting Eqs. (7.18), and (7.19)

in Eq. (7.8), and they are summarized in Table 7.2, where we can see the explicit

dependence of the e↵ective coupling on the di↵erent physical phases in the mass basis.

Some interesting properties of the e↵ective coupling can also be explored for Majo-

121



CHAPTER 7. NEUTRINO ELECTROMAGNETIC PROPERTIES

rana neutrinos in the mass basis if we define the vectors:

~⇤ =
3X

j=1

|⇤j|bej, (7.20)

~⇤↵ =
3X

j=1

|U↵j| |⇤j| bej↵, (7.21)

with bej the rectangular coordinates unitary vectors and bej↵ unit vectors such that

bei↵ · bej� = �↵� cos [� arg (U↵i) + arg (U�j) � 'i + 'j] . (7.22)

Then, the neutrino magnetic moment can be expressed as the di↵erence between the

moduli of the two vectors:

µ
2
⌫↵ =

���~⇤
���
2

�

�����

 
3X

j=1

|U↵j| |⇤j| bej↵

!�����

2

. (7.23)

Several analyses have been done in the literature to set bounds for the fundamental pa-

rameters |⇤i| by assuming specific values for the di↵erent magnetic moment phases [131].

However, we now show that these phases can have a significant impact on the order of

magnitude of the fundamental couplings given a specific limit for the e↵ective coupling.

To simplify our computations, we now set the Dirac CP phase � = ⇡, which is consistent

with the current global analyses as reported in [53]. Similar results can be obtained for

a di↵erent value of � but this will clarify our point.

7.3.1 Reactor neutrinos

Within the formalism given in Eq. (7.23), for the case of electron (anti)neutrinos, the

presence of magnetic moment CP phases can be interpreted as a misalignment between

the three defined beje vectors, as visualized in Fig. 7.2. We can then study the e↵ect

of these magnetic moment CP phases in the following way: for fixed values of |⇤i|, we
calculate the critical points with respect to the phases 'i in Eq. (7.23). We find a total

of five critical points, four of which are trivial (when cos'i = ±1), and are listed in

Table 7.3. In addition, a non-trivial critical point is given when the phases satisfy:

cos('1) =
�c

2
12c

2
13|⇤1|2 � s

2
12c

2
13|⇤2|2 + s

2
13|⇤3|2

2c12c213s12|⇤1||⇤2|
, (7.24)
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Figure 7.2: Graphical representation of the vectors defined in Eq. (7.21) for reactor neutrinos. The
misalignment can be interpreted as a consequence of electromagnetic CP phases.

('1,'2) Critical Point Condition for max or min ⌘

(0,0) max/saddle s13|⇤3| > c12c13|⇤1| + c13s12|⇤2| c12c13|⇤1| + c13s12|⇤2| � s13|⇤3|
(0, ⇡) min Always c12c13|⇤1| + c13s12|⇤2| + s13|⇤3|
(⇡, 0) max/saddle c13s12|⇤2| > c12c13|⇤1| + s13|⇤3| c12c13|⇤1| � c13s12|⇤2| + s13|⇤3|
(⇡, ⇡) max/saddle c12c13|⇤1| > c13s12|⇤2| + s13|⇤3| c12c13|⇤1| + c13s12|⇤2| � s13|⇤3|

Table 7.3: E↵ective magnetic moment critical points in the case of reactor neutrinos for fixed |⇤i|.

cos('3) =
�c

2
12c

2
13|⇤1|2 � s

2
12c

2
13|⇤2|2 + s

2
13|⇤3|2

2c13s12s13|⇤2||⇤3|
. (7.25)

Among all the critical points, one and only one will be a maximum, one a minimum, and

the others will be saddle points depending on the relative values between the di↵erent

|⇤i|. For instance, the non-trivial critical point determined by Eqs. (7.24) and (7.25),

corresponds to a maximum when the |⇤i| are such that in these equations we have the

condition | cos('i)| < 1. If this is the case, the second term in Eq. (7.23) vanishes and

the e↵ective coupling has a maximum value given by

µ
2
⌫e |max = |⇤|2 ⌘ |⇤1|2 + |⇤2|2 + |⇤3|2. (7.26)

If this is not the case, then, depending on the relationship between the |⇤i|, the

maximum will be located at one of the trivial critical points listed in Table 7.3, where

the condition for each combination to be a maximum point is also indicated. Only one

of the conditions among the maximum point candidates can be satisfied at once, and

the other critical points will become saddle points. In the case of the trivial critical
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Figure 7.3: Contour regions for the e↵ective neutrino magnetic moment (in units of µB) for reactor
neutrinos as a function of the electromagnetic CP phases for fixed |⇤i|. Left panel shows the results
for |⇤1| = |⇤2| = 1 ⇥ 10�11

µB and |⇤3| = 1.7 ⇥ 10�11
µB . Right panel shows the contour for |⇤1| =

1 ⇥ 10�11
µB , |⇤2| = 6.8 ⇥ 10�12

µB , and |⇤3| = 1.8 ⇥ 10�12, a combination for which the relations in
Eq. (7.28) are satisfied and the e↵ective coupling can vanish.

points, the maximum (or minimum) will take the value:

µ
2
⌫e |max /min = |⇤|2 � ⌘

2
, (7.27)

with ⌘ also given in Table 7.3 for each case. We can see that there is a di↵erent

relative sign for the e↵ective coupling value among all the maximum candidates. A

more interesting feature arises from the minimum, which, regardless of the relative

values between |⇤i|, it will always be located at (0, ⇡). The value of the e↵ective

coupling at this point is also given by Eq. (7.27), with its corresponding ⌘ defined

in Table 7.3. In general, this minimum will be di↵erent from zero. For instance, the

contour plot in the left panel of Fig. 7.3 shows the e↵ective coupling as a function of

the magnetic moment phases for |⇤1| = |⇤2| = 1 ⇥ 10�11
µB and |⇤3| = 1.7 ⇥ 10�11

µB.

Dark regions show that, indeed, the minimum is at (0, ⇡), with a value for the e↵ective

coupling of 1.5 ⇥ 10�11
µB. In addition, bright regions show that the maximum is near

one of the trivial critical points, which is consistent with our previous discussion. An

important feature comes when the moduli satisfy the relations:

|⇤2| =
s12

c12
|⇤1|, |⇤3| =

s13

c12c13
|⇤1|. (7.28)

Under these conditions, ⌘2 = |⇤|2 in Eq. (7.27), and the e↵ective coupling vanishes.

The contour plot in the right panel of Fig. 7.3 shows the case where |⇤1| = 1 ⇥
10�11

µB, |⇤2| = 6.8⇥ 10�12
µB, and |⇤3| = 1.8⇥ 10�12, a combination that satisfies the
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Figure 7.4: Projections in the fundamental parameter space that are consistent with current limits
of the e↵ective magnetic moment coupling for reactor neutrinos (GEMMA). Blue regions show the
results for '1 = 0, '3 = ⇡, with the dashed line indicating the blind spot region. Green regions show
the case '1 = ⇡, '3 = ⇡ and brown regions show the case for which there are no CP phases, '1 = 0,
'3 = 0 [124].

relations in Eq. (7.28), and hence the minimum possible e↵ective coupling is zero.

From the previous analysis, we conclude that there are some directions in the pa-

rameter space on which the fundamental couplings |⇤i| can be di↵erent from zero but

the e↵ective coupling µ⌫e vanishes and, in that case, we can not have a measurable

electromagnetic e↵ect in neutrino interactions. We refer to these directions in the pa-

rameter space as blind spots [124, 132]. To illustrate this, we show in Fig. 7.4 the

di↵erent values of |⇤i| that are consistent with the GEMMA limit for di↵erent combi-

nations of phases ('1,'3). The panels in the figure show the three di↵erent projections

in the (|⇤i|, |⇤j|) parameter space. The blue regions on each panel correspond to the

pair of phases (0, ⇡), with the dashed line indicating the direction of blind spots, where

the e↵ective magnetic moment is zero. We also show in brown the case where the two

phases are zero, and in green the combination (⇡, ⇡), where there are no blind spot

e↵ects.

The property of blind spots can equivalently be seen in the flavor basis. From

Table 7.2, notice that for the electron neutrino case in the flavor basis, the e↵ective

coupling only depends on two of the independent moduli that parametrize the Majorana

magnetic moment matrix. This means that the e↵ective coupling can be zero even in

the case when |⇤e| has a relatively large value. Actually, it can take any value and the

e↵ects of the e↵ective coupling will remain zero!
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Figure 7.5: Projections in the fundamental parameter space that are consistent with current limits
of the e↵ective magnetic moment coupling for accelerator neutrinos (LSND). Blue regions show the
results for '1 = ⇡, '3 = 0, with the dashed line indicating the blind spot region. Green regions show
the case '1 = ⇡, '3 = ⇡ and brown regions show the case for which there are no CP phases, '1 = 0,
'3 = 0 [124].

7.3.2 Accelerator neutrinos

Now we focus on the neutrino magnetic moment for muon neutrinos, which can be

studied from accelerator sources, where we have the production of both muon neutrinos

and anti-neutrinos. Explicit expressions for µ2
⌫µ can be obtained from Eqs. (7.10) and

(7.11), and they are shown in Table 7.2. The most stringent bound for this coupling

comes from the LSND experiment as indicated in Table 7.1.

We performed a similar analysis as that for electron neutrinos; the most important

result being that in this case the minimum is now located at the point (⇡, 0), where we

have access to what we defined as blind spots, and hence, for relatively large values of

|⇤i| that still satisfy the experimental bounds. We show in Fig. 7.5 the di↵erent values of

|⇤i| that are consistent with current LSND bounds for di↵erent values of electromagnetic

CP phases. On each panel, the blue region shows the allowed parameters for (⇡, 0), with

the dashed line indicating the blind spot region. Again, the brown region shows the

projections when both electromagnetic phases are zero and the green region for (⇡, ⇡).

Notice that the blind spot regions for µ2
⌫e and µ

2
⌫µ can not be accessed simultaneously

because each of them appears for di↵erent combination of phases. This means that it

is possible to have a large signal of one of these couplings, while the other remains zero.

In the next section we will come back to this point.

Considering now the operator � in the flavor basis, for muon neutrinos we are again

only sensitive to the moduli of two fundamental parameters. In fact, from Table 7.2, we

see that in this case, the e↵ective coupling is sensitive to |⇤e| and |⇤⌧ |. The absence of
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the term |⇤µ| tells us that it can take any value, no matter how large, and the e↵ective

coupling can still satisfy the corresponding limit, allowing for a consistent result with

the electron (anti)neutrino case.

7.3.3 Tau neutrinos

For completeness, we also show the e↵ective coupling expressions for the case of tau

(anti)neutrinos in Table 7.2, for both mass and flavor bases. As in the case of the

µ
2
⌫µ coupling, the minimum here is also found at the physical phases (⇡, 0), so the

conclusions are basically the same for these two flavors. The experimental bound for

this e↵ective coupling comes from the DONUT experiment, which is less restrictive

with respect to the other flavors and we do not show here. Future experiments like

Faser will be also sensitive to this neutrino flavor [133].

7.3.4 Solar neutrinos

By using Eq. (7.14), the explicit form of the neutrino magnetic moment in the mass

basis, for Majorana neutrinos reads

µ
2
⌫e,sol

= |⇤1|2 + |⇤2|2 + |⇤3|2 � c
2
13 |⇤2|2 + (c213 � 1) |⇤3|2 + c

2
13P

2⌫
e1 (|⇤2|2 � |⇤1|2). (7.29)

As discussed in section 3.4, the oscillation probabilities introduce an energy dependence

on the e↵ective coupling. For the particular case of electron-neutrino scattering exper-

iments, that dependence is to a large degree determined by the energy range of the

solar pp flux, while for CEvNS by the energy range of the 8B one. Since these processes

peak at ⇠ 0.4MeV and ⇠ 10MeV, respectively, one can then evaluate the probability

for those energies and then map into parameter space. Notice that in this case the

e↵ective coupling does not depend on the physical phases. Moreover, it only depends

on terms that are proportional to |⇤i|2 and the only way to have a vanishing magnetic

moment is through the trivial solution |⇤i| = 0, which means that we do not have blind

spot regions and, in order to satisfy the experimental limits, |⇤i| can not be arbitrarily

large. Currently, the most stringent bound for the neutrino magnetic moment in solar

neutrinos comes from Borexino. In addition, the XENON1T experiment has reported

an excess on the number of events for electron recoils in the low energy part of the

spectrum. Among many possibilities, the excess can be justified by magnetic moment

e↵ects, constraining its value to the range indicated in Table 7.1. The magenta regions

in the top panels of Fig. 7.6 show the mapping of XENON1T limits into the funda-
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mental parameter space for fixed values of |⇤3|. We can notice that for low values of

|⇤3|, the allowed region for the other two moduli results on a defined band.

Regarding the flavor basis, the explicit form of the e↵ective coupling for solar neu-

trinos is lengthy and we do not show it here.

7.3.5 Consistency between short baseline and solar measure-

ments

From the previous analysis, we have found that it can be possible to have a large mag-

netic moment e↵ect for reactor neutrinos and, at the same time, have no signal for

accelerator neutrinos. This makes us wonder whether there are combinations of fun-

damental parameters that reconcile the di↵erent experimental limits for SBL and solar

neutrinos. With current measurements, it is easy to see that there are di↵erent values

of |⇤i| in the parameter space for which the three experimental limits (reactor, acceler-

ator and solar neutrinos) are consistent. However, in the case of future measurements,

the presence of blind spots may be necessary to reconcile all the results. To see this,

we take the limits given by GEMMA and LSND, and we consider that the XENON1T

excess is due to neutrino magnetic moments. We know that this has not been confirmed

yet but it will help to illustrate our point.

In the top panels of Fig. 7.6, we show the allowed values in the (|⇤1|, |⇤2|) parameter

space (for |⇤3| fixed), that satisfy the current limits of the e↵ective magnetic moment

coupling for GEMMA (reactor), LSND (accelerator), and XENON1T (solar) as given

in Table 7.1. The blue and gray regions correspond to allowed values for reactor and

accelerator bounds, respectively, when electromagnetic CP phases are fixed to (0, ⇡), a

combination of phases that activates the blind spots for reactor neutrinos. In addition,

the magenta region corresponds to the solar bound, which is phase independent. The

intersection of these three regions represents the parameter space for which the three

measurements are consistent. We can see that in the three di↵erent panels (di↵erent

values of |⇤3|) it is easy to reconcile the three measurements since the solar (magenta)

region is totally contained in the reactor (blue) region, which in turn is totally contained

in the accelerator (grey) region. As a second scenario, the regions behind dashed and

dash-dotted contours represent the allowed values for accelerator and reactor bounds

when the CP phases are fixed to (⇡, ⇡), a combination of phases that hides the blind

spot e↵ects of reactor neutrinos. To reconcile the three measurements we look for

the intersection of these two regions with the solar (magenta) region, which is phase

independent. We can see that, again, it is easy to reconcile the measurements since
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Figure 7.6: Allowed values in the (|⇤1|, |⇤2|) parameter space that are consistent with experimental
limits of reactor, accelerator, and solar experimental limits for a fixed |⇤3| and two di↵erent combina-
tions of CP phases. Colored regions assume '1 = 0, '3 = ⇡, while the regions under dashed contours
assume '1 = ⇡, '3 = ⇡. Top panels show the results assuming current limits for the e↵ective magnetic
moment coupling while bottom panels assume future limits for reactor and accelerator neutrinos.

in the three cases the reactor (dash-dotted) region is contained in the solar (magenta)

region, which in turn is contained within the accelerator (dashed) region. We conclude

that, independently of the value of |⇤3|, blind spots are not necessary to reconcile

current magnetic moment limits.

To illustrate how blind spots may be useful to reconcile the three measurements,

now we assume a future scenario on which the e↵ective coupling limits for reactor

and accelerator sources are reduced by one order of magnitude, lets say, µ⌫e = 4 ⇥
10�12

µB, and µ⌫µ = 3.5⇥10�11
µB, while the solar measurement remains the same. The

corresponding regions in the parameter space (|⇤1|, |⇤2|) that satisfy these limits are

shown in the bottom panels of Fig. 7.6, under the same color code used for the top

panels. This means that blue and grey regions correspond to reactor and accelerator

limits for fixed phases of (0, ⇡), for which blind spots for reactor neutrinos are activated.

To reconcile the three measurements, we need again the blue, grey, and magenta regions

to intersect, which can be achieved in the left and central panels, when |⇤3| has a

relatively small value. The overlap in these cases is a consequence of blind spots since

they allow for large values of |⇤1| and |⇤2| while keeping the e↵ective coupling small.

However, the overlap is lost for a large value of |⇤3| since, for the reactor coupling to

remain small, we need even larger values of |⇤1| and |⇤2|, that eventually exceed the
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allowed ones for the other e↵ective coupling limits.

On the other hand, the regions behind dashed and dash-dotted contours represent

again the allowed values for accelerator and reactor limits, respectively, for fixed phases

of (⇡, ⇡), when blind spots for reactor magnetic moment are not present. To reconcile

the three measurements we need these regions to overlap with the solar (magenta)

region. In the left panel, we see that this is not possible since the reactor region falls

bellow the solar band. This happens because for this particular combination of phases,

the e↵ects of blind spots are hidden, and the (|⇤1|, |⇤2|) allowed values fall below the

assumed e↵ective coupling limit. The situation is even worse for the central and right

panels, where the allowed regions for reactor fall bellow 10�12
µB and are not visible

in the figures. We conclude that in this case, where blind spots are not accessed, it is

impossible to reconcile the three measurements.

7.4 Dirac diagonal-mass basis

We now comment on the form of the e↵ective coupling µ
2
⌫l
for Dirac neutrinos, where

the �
0
matrix is completely general. Again, some of the phases are not physical [130],

but still, the number of free parameters becomes very large. Because of this, we limit

ourselves to the particular case where we only have diagonal couplings, which contrasts

with the Majorana case. Then, for Dirac neutrinos in the mass basis we can express

�
0
D =

0

B@
�11 0 0

0 �22 0

0 0 �33

1

CA , (7.30)

where �ii = |�ii|ei�ii , being �ii the electromagnetic CP phases in this case. Applying

the transformation rule to �
0
, we conclude that in the flavor space the matrix is not

diagonal. However, it is a symmetric matrix and takes the form

�D =

0

B@
�ee �eµ �e⌧

�eµ �µµ �µ⌧

�e⌧ �µ⌧ �⌧⌧

1

CA . (7.31)

However, not all the matrix elements in Eq. (7.31) are independent since the number

of degrees of freedom needs to be the same upon a change of basis. Had we assumed

a diagonal flavor mass matrix, then the mass basis would not be diagonal, but would

be a symmetric matrix. For short baseline sources, Eq. (7.10) is again valid, and the
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Neutrino Magnetic Moment short baseline Dirac neutrinos diagonal

Mass Flavor

µ
2
⌫e c

2
12c

2
13 |�11|2 + c

2
13s

2
12 |�22|2 + s

2
13 |�33|2 |�ee|2 + |�µe|2 + |�⌧e|2

µ
2
⌫µ

|�11|2 (c223s212 + c
2
12s

2
13s

2
23 + 2c12c23s12s13s23 cos(�))

+ |�22|2 (c212c223 + s
2
12s

2
13s

2
23 � 2c12c23s12s13s23 cos(�))

+ |�33|2 c213s223

|�eµ|2 + |�µµ|2 + |�µ⌧ |2

µ
2
⌫⌧

|�11|2 (c212c223s213 + s
2
12s

2
23 � 2c12c23s12s13s23 cos(�))

+ |�22|2 (c223s212s213 + c
2
12s

2
23 + 2c12c23s12s13s23 cos(�))

+ |�33|2 c213c223

|�e⌧ |2 + |�µ⌧ |2 + |�⌧⌧ |2

Table 7.4: Magnetic moments in terms of fundamental parameters for short baseline neutrinos in the
mass and flavor bases for Dirac neutrinos assuming only diagonal matrix elements.

corresponding explicit expressions for µ⌫l in the mass and flavor bases are given in

Table 7.4.

We can see that, in the mass basis, these expressions only depend on the moduli of

the three di↵erent complex elements of the magnetic moment matrix. In consequence,

the only trivial solution that allows for a vanishing magnetic moment is when |�ii| = 0,

and we do not have the presence of blind spots in the mass basis. This can be seen in

Fig. 7.7, where we have used the experimental limits in Table 7.1 for µ⌫l to set bounds

for the fundamental parameters. Notice that in each case, the maximum for each |�ii|
is just above the corresponding limit for the e↵ective coupling.

In the case of solar neutrinos, from Eq. (7.14), for the mass basis we have the

expression

µ
2
⌫e,sol

= c
2
13P

2⌫
e1 |�11|2 + c

2
13(1 � P

2⌫
e1 ) |�22|2 + s

2
13 |�33|2 , (7.32)

depending again on the three moduli of the magnetic moment parameters. The mapping

of the experimental limit from XENON1T is also shown in Fig. 7.7. Notice that the

regions corresponding to GEMMA and XENON1T are entirely overlapped, which is

expected since their expressions for the e↵ective coupling are very similar (see Eq. (7.32)

and first row in Table 7.4). The analogue in the flavor basis can be obtained from Eq.

(7.16), which is lengthy and we do not show it here.

In conclusion, a Majorana neutrino nature allows for couplings in fundamental pa-

rameter space that are larger than one of the limits for the e↵ective coupling. This

e↵ect can help to reconcile measurements from di↵erent experiments if the limits di↵er

in several orders of magnitude, as it is the case for present limits. In contrast, for the

case of Dirac diagonal neutrinos, the fundamental couplings are only allowed to be just
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Figure 7.7: Allowed values for diagonal neutrino magnetic moments in the mass basis for Dirac
neutrinos consistent with LSND (magenta), GEMMA (blue) and XENON1T (green) experimental
limits. The regions for GEMMA and XENON1T are entirely overlapped, and hence the dark-green
color in the figure [124].

above the limits of the e↵ective coupling.

7.5 NMM from solar neutrinos in Dark Matter ex-

periments

We have seen in previous sections that neutrino magnetic moment e↵ects can be

parametrized by one single e↵ective coupling, and that the di↵erent bounds on this

parameter can be used to constrain the more fundamental parameters of the theory.

This has been done, for instance, in the case of neutrino-electron scattering, and more

recently in the context of CEvNS [131] by using SBL neutrinos. In this section we

explore the feasibility of using experiments sensitive to solar neutrinos to constrain the

e↵ective neutrino magnetic moment.

Among active solar neutrino experiments, we only have the case of Super-Kamiokande,

for which electromagnetic properties were studied in [134]. Here we focus our attention

on the sensitivity of future direct detection Dark Matter (DM) experiments to neutrino

electromagnetic properties. As their name suggest, these experiments have the search

of DM signals as their main purpose. However, as they reach lower energy thresholds,

they will eventually become sensitive to solar neutrinos that produce nuclear and elec-

tron recoils as backgrounds in their measurements. Among these experiments we have

current detectors as XENON1T [135] and future proposals like XENONnT [136] and

DARWIN [137]. These experiments share the property of being xenon based scintil-

lating detectors, and they will have the technology capable of distinguishing between

132



7.5. NMM FROM SOLAR NEUTRINOS IN DARK MATTER EXPERIMENTS

electron and nuclear recoils [135]. In the case of XENON1T, the collaboration has al-

ready reported low recoil energy thresholds of 1 keV, which are enough to detect recoil

backgrounds coming from CEvNS and neutrino-electron scattering produced by solar

neutrinos. This will allow to probe physics beyond the SM in the neutrino sector at

very low energies. In fact, the same collaboration has reported an excess on the elec-

tron recoil channel at the edge of this low energy threshold [129]. Among the possible

explanations for this excess we have a tritium contamination, or indeed the presence of

physics beyond the SM such as the signature from axion particles, or neutrino electro-

magnetic properties from which the limit in Table 7.1 is obtained.

The concept of neutrino magnetic moment as an e↵ective coupling was introduced

in section 7.2. Since the associated cross-section has a dependence on T
�1, its e↵ects

become dominant at low energies, so we can exploit the DM detector low thresholds

to study this new physics scenario separately in electron and nuclear recoils. Here we

study the sensitivity to magnetic moment e↵ects when considering current and future

expected thresholds for the XENON1T experiment [138], which consists of a 1-ton Xe

detector. In addition, we will consider experimental arrays representative of its future

upgrade XENONnT (10 ton), and the DARWIN proposal [139], which will be a 40-ton

Xe based experiment.

7.5.1 NMM from CEvNS

We begin by studying the e↵ective neutrino magnetic moment for solar neutrinos, µ⌫e,sol ,

through CEvNS. The corresponding cross-section can be obtained through the neutrino-

electron scattering one in Eq. (7.7) by adding the form factor to account for the nucleus

distribution and weighting to the number of protons inside the target nucleus. Then,

the magnetic moment cross-section for CEvNS is given by [140]

d�µ⌫`

dT
=
⇡↵

2
Z

2
µ
2
⌫l

m2
e

✓
1

T
� 1

E⌫

◆
F

2
Z(q

2) . (7.33)

We use this cross-section to test the sensitivity of DM experiments to the e↵ective neu-

trino magnetic moment. To this end, we compare experimental data with the predicted

di↵erential rate by minimizing the squared function

�
2 =

nX

i=1

�
dRi
dT

��
exp � dRi

dT

��
th

�2

�
2
i

, (7.34)
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Figure 7.8: CEvNS sensitivity to the e↵ective neutrino magnetic moment coupling in 1, 10 and 40
tons active volume detectors during a one-year data taking. The result assumes a 1 keV (left) and
0.3 keV (right) thresholds, 100% detector e�ciency and backgrounds for XENON1T, XENONnT and
DARWIN experiments, respectively [143].

where the index i is running over the number of bins, and �i is the statistical un-

certainty. Notice that Eq. (7.34) compares the di↵erential rate rather than the total

number of events. We perform the analysis in this form since it is common for direct de-

tection experiments to present their results in units of events/(ton·keV·year). This rate
corresponds to the quantity obtained before performing the integral over T in Eq. (5.5).

The predicted di↵erential rate is obtained by adding the cross-section in Eq. (7.33)

to the SM one and varying µ⌫e,sol while fixing all the other parameters of the theory to

their best fit values. For the analysis, we assume the experimental measurement to be

the one predicted by the SM and a bin width of 0.3 keV. Regarding backgrounds, several

studies for our considered experiments have been performed in Refs. [141] and [142].

We use these data to incorporate background contributions to the expected statistical

uncertainty for each bin. We also assume a one year data taking, with an e�ciency

given by a step function delimited by the corresponding threshold. In addition, we

consider two di↵erent thresholds, one at 1 keV and the other at 0.3 keV [143]. For

these thresholds, the main contribution for the cross-section is driven by the solar

neutrino 7Be line. We consider a detector mass of 1, 10 and 40 tons, representative of

XENON1T, XENONnT, and DARWIN, respectively.

The results for each of the experiments are shown at di↵erent confidence levels in

Fig. 7.8. Left panel in the figure corresponds to 1 keV threshold and the right panel

to 0.3 keV. We can see that experiments with a 40-ton fiducial mass, representative

of DARWIN, will be sensitive to experimental values of an e↵ective neutrino magnetic

moment of the order 10�10
µB. We also conclude that achieving lower thresholds has

a significant impact on the expected sensitivity, giving an enhancement of a factor of
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Figure 7.9: Neutrino production distribution in the sun as a function of the distance from its center
(and normalized to its radius) under the BSB(GS98) model. Left panel shows the the pp chain and
the right panel shows the CNO cycle fluxes [8].

two for the future 0.3 keV projection when compared to the 1 keV case. This result is

remarkable since it shows that if a 0.3 keV threshold is attainable, experiments with

characteristics as those like DARWIN, will be able to explore regions in parameter

space comparable to those currently explored by Borexino (see Table 7.1), but now

using nuclear recoil signals rather than neutrino-electron scattering. Furthermore, it

demonstrates that even in its nuclear recoil data sets, DARWIN will be able to test

regions close to those not yet ruled out, for instance, by astrophysical arguments [144].

7.5.2 NMM from neutrino-electron scattering

We have mentioned that future DM experiments will be able to distinguish between

nuclear and electron recoils in their measurements. Then, we can also explore the

sensitivity to neutrino magnetic moments for the case of neutrino-electron scattering in

these experiments by following a similar method as that used in the previous section. To

calculate the predicted di↵erential rate, this time the total cross-section will be given

by the sum of the SM neutrino-electron scattering presented in Eq. (3.18), and the

magnetic moment contribution given in Eq. (7.7). For the SM contribution, we need

to account for the transition probability since neutrino-electron scattering depends on

the neutrino flavor as explained in section 3.2.1. In general, to account for neutrino

oscillations, we need to consider the three neutrino mixing case. However, in the special

case of �m
2
31 dominance, and active �m2

21, the problem can be e↵ectively described by

two-neutrino mixing. For solar neutrinos both conditions are satisfied [8], which means

that we can use the results from section 3.4. Then, the survival probability can be

calculated in terms of a two neutrino mixing scenario, and we have
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P
eff
⌫e!⌫e = cos4 ✓13P

(1,2)
⌫e!⌫e + sin4

✓13, (7.35)

with P
(1,2)
⌫e!⌫e the survival probability in the case of two-neutrino mixing. As the matter

density in the sun varies slowly, we can assume an adiabatic approximation and P
(1,2)
⌫e!⌫e

will be given as discussed in section 3.4:

P⌫e!⌫e(E⌫ , R) =
1

2
(1 + cos 2✓ cos 2✓M(E⌫ , R)) (7.36)

Where we explicitly wrote the dependence of ✓M on the neutrino energy E⌫ and the

production point, R, measured from the center of the Sun and normalized to its ra-

dius. This is important to consider since neutrino production regions are not fixed.

Instead, there is a production distribution as a function of R, as illustrated in Fig. 7.9,

where the left panel shows the distributions corresponding to the pp chain, and the

right panel those of the CNO cycle. For very low thresholds, as it is the case of our

experimental scenarios, the number of events will be sensitive to all the solar neutrino

contributions. Then, by using the solar neutrino fluxes, �↵, as well as the production

distributions, ⇢↵(R), we can average over all the contributions to obtain the e↵ective

survival probability

hP⌫e!⌫ei =
P

↵�↵(E⌫)
R 1

0 dR⇢↵(R)P⌫e!⌫e(E⌫ , R)P
↵�↵(E⌫)

, (7.37)

where the index ↵ runs over the di↵erent solar neutrino spectra. Then, having calculated

the e↵ective probability, and since the cross-section for muon and tau neutrinos is the

same, the final recoil spectrum for solar neutrinos will be given by

dR

dT
= Ne

Z Emax

Emin

X

↵

d�↵
dE⌫


hP⌫e!⌫ei

d�⌫e
dT

+ (1 � hP⌫e!⌫ei)
d�⌫a
dT

+
d�µ⌫`

dT

�
, (7.38)

where we have denoted d�⌫e/dT as the SM cross-section for an incoming electron neu-

trino and similarly d�⌫a/dT for either an incoming muon or tau neutrino. We perform

the �2 analysis under the same assumptions as in the case of CEvNS, where we assume

the experimental measurement to be the one obtained through the SM prediction. The

results for each of the experimental setups are shown in Fig. 7.10. Notice that the

expected sensitivities are competitive with current bounds of magnetic moment. We

conclude that future DM experiments will be sensitive to neutrino magnetic moment

e↵ects in both neutrino-electron scattering and CEvNS. Then, if electromagnetic e↵ects

are measured in one of the two channels, we will have the sensitivity to see these e↵ects
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Figure 7.10: Electron recoil sensitivities to the e↵ective neutrino magnetic moment coupling in 1,
10 and 40 tons active volume detectors during a one-year data taking. The result assumes a 0.3
keV threshold, 100% detector e�ciency and backgrounds for XENON1T, XENONnT and DARWIN
experiments, respectively [143].

on the other and the measurement would be unambiguously determined.
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Chapter 8

Conclusions

Along this thesis, we studied how neutrino interactions can be used to search for signals

that can give a hint of physics beyond the SM. During the first part, we discussed how

NSI terms could arise from theoretical models that intend to explain neutrino masses. In

particular, we studied the type II seesaw mechanism, where the induced NSI are related

to Yukawa couplings and the triplet scalar mass. We analyzed the impact that current

limits on lepton flavor violation processes have on the expected size of these NSI. The

applied method can be adapted to di↵erent mass generation mechanisms. Our results

show that the expected NSI from the type II seesaw are below current experimental

sensitivities [77]. However, we showed how neutrino properties, characteristic of the

type II seesaw, can also be studied in particle colliders [77, 93].

In the second part, we studied how data from the recently observed CEvNS inter-

actions can be used to test SM parameters and nuclear physics and to constrain NSI

parameters [103]. We show in Table 8.1 a summary of the results obtained for NSI

by using the COHERENT data from CsI and LAr detectors when assuming only one

parameter to be di↵erent from zero at a time. The allowed regions when considering

two parameters to be di↵erent from zero were also given in chapter 5. In addition, we

studied the interplay between NSI and nuclear parameters like the neutron rms radius,

which uncertainties can be responsible for discrepancies between experimental data and

theoretical predictions for CEvNS interactions. We also studied the expected sensitivity

of future CEvNS experiments to NSI parameters [113]. We focused on experiments that

will be developed by the COHERENT collaboration, which include an enhanced LAr

detector, together with Ge and NaI-based detectors. As a future perspective, similar

analyses can be done by using the second data set of CsI from the COHERENT collab-

oration [145], as well as di↵erent future proposals like the ESS [146], where detectors

with di↵erent technologies like Xe, Si, and C3F8 aim to be used.
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Current

NSI CsI LAr (24 kg)

"
dV
ee (-0.12, 0.47) (-0.11, 0.05) [ (0.28, 0.44)

"
dV
µµ (-0.07, 0.10) [ (0.24, 0.42) (-0.06, 0.02) [ (0.31, 0.39)

"
dV
eµ (-0.18, 0.18) (-0.15, 0.15)

"
dV
e⌧ (-0.25, 0.25) (-0.22, 0.22)

"
dV
µ⌧ -0.15, 0.15 (-0.13, 0.13)

Table 8.1: Current NSI bounds from CEvNS experiments.

Future

Magnetic Moment Xenon 1T Xenon nT Darwin

µ
sol
⌫ < 2.29 ⇥ 10�10

µB < 1.29 ⇥ 10�10
µB < 9.18 ⇥ 10�11

µB

Table 8.2: Expected NMM bounds for solar neutrinos from CEvNS.

Apart from neutrinos produced at spallation neutron sources, there are many exper-

imental proposals that aim to measure CEvNS in the upcoming years but using reactor

anti-neutrino sources. As for August 2022, the release date of this thesis, there is a

strong evidence suggesting that the detection of CEvNS from reactor detectors can be

achieved soon. In this sense, we have seen that the combination of experiments from

di↵erent sources can be used to reduce some degeneracies that appear when studying

parameters related to nuclear physics and NSI [105]. In line with these searches, we

have proposed an experimental array that can take advantage of correlations between

systematic uncertainties and which can help to get a cleaner measurement of CEvNS,

as well as to break some degeneracies that are characteristic when introducing NSI

e↵ects [117].

Regarding the electromagnetic properties of neutrinos, in the last part of this work,

we mainly studied the e↵ective magnetic moment coupling and its relation to more

fundamental parameters of the theory. We illustrated how measurements from di↵erent

experiments could be reconciled to be consistent with this scenario of new physics [124].

In addition, we explored the expected limits for the e↵ective coupling that can be

achieved through neutrino-electron scattering and CEvNS in future experiments whose

main purpose is the detection of DM. The expected sensitivities we found for CEvNS

are listed in Table 8.2 [143]. We found that we can achieve better constraints for

neutrino-electron scattering than in current neutrino-dedicated experiments. In the

case of CEvNS, the limits are not that competitive, but we will be able to explore
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regions that have been achieved only through neutrino-electron scattering.

Overall we can say that neutrino physics will still be one of the main fields in

searching for physics beyond the SM in the upcoming years. Particularly for CEvNS,

we have shown only a part of the potential that this process has for this purpose. We

can find many other physics scenarios in the literature that can be explored through

this interaction. Therefore, we expect this relatively new process to continue giving

important hints to answer some of the main questions that govern neutrino physics.

We insist that a correct understanding of CEvNS has a lot of interest not only from

the particle physics point of view but also in other physics fields such as DM searches,

where the corresponding detectors will measure CEvNS as an important contribution to

their backgrounds. These backgrounds constitute the famous neutrino floor, which has

been proven sensitive to NSI e↵ects, hence the importance of having robust constraints

for these parameters. In addition, there has also been explored the possibility of using

CEvNS for practical purposes as nuclear safeguards and for reactor monitoring. With

all of these, we can say that the future of CEvNS, and in general neutrino physics, is

bright and surely will lead us to a better understanding of nature, which is eventually

the main goal of physics.
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Appendix A

Magnetic moment e↵ective coupling

In this appendix we show that the magnetic moment cross-section can be described

by one single parameter which we have called the e↵ective neutrino magnetic moment.

From the Feynman diagram in Fig. 7.1 we have the scattering amplitude:

M = �ige

3X

k=1

1

q2
uj(p3)�µ⌫q

⌫
�jkU

⇤
`ke

�i
�m2

kjL

2E⌫ uk(p1)u(p4)�
µ
u(p2). (A.1)

Taking the squared modulus of Eq. (A.1), we have

|M |2 = g
2
e

3X

k=1

3X

m=1

1

q4
�jk�

⇤
jme

�i
�m2

kj��m2
mj

2E⌫
L
U

⇤
`kU`m [uj(p3)�µ⌫q

⌫
uk(p1)] [uj(p3)�⇢⌧q

⌧
um(p1)]

⇤

⇥ [u(p4)�
µ
u(p2)] [u(p4)�

µ
u(p2)]

⇤
.

(A.2)

We now need to sum over the all possible spin orientations. Then, we can use Casimir’s

trick to express the spinor products in the form:

A ⌘ [uj(p3)�µ⌫q
⌫
uk(p1)] [uj(p3)�⇢⌧q

⌧
um(p1)]

⇤ = Tr [�µ⌫q
⌫
�p1�⇢⌧q

⌧
�p3] , (A.3)

B ⌘ [u(p4)�
µ
u(p2)] [u(p4)�

µ
u(p2)]

⇤ = Tr [�µ (�p2 +me) �
⇢ (�p4 +me)] , (A.4)

where we have neglected the neutrino masses. Using trace techniques to calculate the

right hand side of the previous equations we have:

A = 4(�q
2
p1µp3⇢ + (p3 · q)p1µq⇢ � q

2
p1⇢p3µ + (p1 · q)p3µq⇢

� (p1 · q)(p3 · q)gµ⇢ + (p1 · q)p3⇢qµ � (p1 · p3)q⇢qµ + q
2(p1 · p3)gµ⇢

� (p3 · q)(p1 · q)gµ⇢ + (p3 · q)p1⇢qµ),

(A.5)
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B = 4(p2µp4⇢ + p2⇢p4µ � (p2 · p4)gµ⇢ +m
2
eg

µ⇢). (A.6)

Multiplying the two quantities, and using properties of the metric tensor we have

AB = 32(p1 · p3)[(p1 · p2)(p3 · p4) + (p1 · p2)(p1 · p4) � (p1 · p3)(p2 · p4)

+ (p1 · p4)(p2 · p3) + (p2 · p3)(p3 · p4) +m
2
e(p1 · p3)].

(A.7)

Expanding the dot products, we end with the expression:

AB = 128E2
m

3
eT

✓
1 � T

E

◆
. (A.8)

Substituting in Eq. (A.2) and summing over the three neutrino mass states we have

|M |2 =
3X

j=1

32e2E2
me

T

3X

k=1

3X

m=1

�jk�
⇤
jme

�i
�m2
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2E⌫
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`kU`m, (A.9)
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2

. (A.10)

On the other hand, the cross-section for a two body process where the mass of one of

them is negligible is given by
d�

dT
=

|M |2
32⇡meE

2
. (A.11)

Then, using Eq. (A.10), and rearranging terms we have

d�

dT
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We notice that the information of the magnetic moment couplings has been factored out

from the last expression. Then, we can define an e↵ective neutrino magnetic moment,

weighted by the Bohr magneton, as

µ
2
⌫ ⌘

3X

j=1

�����

3X

k=1

U
⇤
`ke

�i
m2

kL

2E⌫ �jk

�����

2

, (A.13)

so that we now recover the cross-section given in section 7.2

d�

dT
=
⇡↵

2
µ
2
⌫

m2
e

✓
1

T
� 1

E⌫

◆
, (A.14)
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which shows that, regardless of the neutrino mass nature, the dipole magnetic and

electric moment e↵ects can be parametrized by a single e↵ective coupling.
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[85] Y. Cai, J. Herrero-Garćıa, M. A. Schmidt, A. Vicente, and R. R. Volkas, “From

the trees to the forest: a review of radiative neutrino mass models,” Front. in

Phys., vol. 5, p. 63, 2017.

[86] B. Aubert et al., “Searches for Lepton Flavor Violation in the Decays tau+- —>

e+- gamma and tau+- —> mu+- gamma,” Phys. Rev. Lett., vol. 104, p. 021802,

2010.

155



BIBLIOGRAPHY

[87] P. S. B. Dev, C. M. Vila, and W. Rodejohann, “Naturalness in testable type II

seesaw scenarios,” Nucl. Phys. B, vol. 921, pp. 436–453, 2017.

[88] A. Abdesselam et al., “Search for lepton-flavor-violating tau-lepton decays to `�

at Belle,” JHEP, vol. 10, p. 19, 2021.

[89] M. Aaboud et al., “Search for doubly charged Higgs boson production in multi-

lepton final states with the ATLAS detector using proton–proton collisions at
p
s = 13TeV,” Eur. Phys. J. C, vol. 78, no. 3, p. 199, 2018.

[90] M. Aaboud et al., “Search for doubly charged scalar bosons decaying into same-

sign W boson pairs with the ATLAS detector,” Eur. Phys. J. C, vol. 79, no. 1,

p. 58, 2019.

[91] M. Lindner, M. Platscher, and F. S. Queiroz, “A Call for New Physics : The

Muon Anomalous Magnetic Moment and Lepton Flavor Violation,” Phys. Rept.,

vol. 731, pp. 1–82, 2018.

[92] C. Dohmen et al., “Test of lepton flavor conservation in mu —> e conversion on

titanium,” Phys. Lett. B, vol. 317, pp. 631–636, 1993.

[93] S. Mandal, O. G. Miranda, G. S. Garcia, J. W. F. Valle, and X.-J. Xu, “High-

energy colliders as a probe of neutrino properties,” Phys. Lett. B, vol. 829,

p. 137110, 2022.

[94] E. J. Chun, K. Y. Lee, and S. C. Park, “Testing Higgs triplet model and neutrino

mass patterns,” Phys. Lett. B, vol. 566, pp. 142–151, 2003.

[95] D. Akimov et al., “First Constraint on Coherent Elastic Neutrino-Nucleus Scat-

tering in Argon,” Phys. Rev. D, vol. 100, no. 11, p. 115020, 2019.

[96] D. Akimov et al., “Measurement of the Coherent Elastic Neutrino-Nucleus Scat-

tering Cross Section on CsI by COHERENT,” 10 2021.

[97] D. Akimov et al., “The COHERENT Experiment at the Spallation Neutron

Source,” 9 2015.

[98] R. Garoby et al., “The European Spallation Source Design,” Phys. Scripta,

vol. 93, no. 1, p. 014001, 2018.

[99] D. Marko↵, “Background studies for the coherent experiment at the spallation

neutron source,” Journal of Physics: Conference Series, vol. 888, p. 012152, 09

2017.

156



BIBLIOGRAPHY

[100] B. J. Scholz, First Observation of Coherent Elastic Neutrino-Nucleus Scattering.

PhD thesis, Chicago U., 2017.

[101] D. Akimov et al., “First Measurement of Coherent Elastic Neutrino-Nucleus Scat-

tering on Argon,” Phys. Rev. Lett., vol. 126, no. 1, p. 012002, 2021.

[102] D. Akimov et al., “COHERENT Collaboration data release from the first obser-

vation of coherent elastic neutrino-nucleus scattering,” 4 2018.

[103] O. Miranda, D. Papoulias, G. Sanchez Garcia, O. Sanders, M. Tórtola, and
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