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Abstract

Coherent elastic neutrino-nucleus scattering (CEvNS) is a well-described process in the
Standard Model. We needed more than 40 years to be detected for the first time by
the collaboration COHERENT using a Cesium-Iodine detector and later one of liquid
Argon. In this thesis, we study the possible application of this process to find bounds
on different parameters that describe new physics, such as sterile neutrino oscillations,
non-unitarity of the neutrino mixing matrix, and magnetic properties of the neutrino.
We analyze futures detectors from the same COHERENT collaboration and new ex-
periments still under construction using coherent elastic neutrino-nucleus scattering
(CEvNS) or neutrino scattering with electrons (EvES).
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Resumen

La dispersión elástica coherente entre neutrino y núcleo (CEvNS) es un proceso bien
descrito en el modelo estándar. Necesitamos más de 40 años para que se detectara por
primera vez por la colaboración COHERENT utilizando un detector de Cesio-Iodo y
posteriormente uno de Argon líquido. En esta tesis estudiamos la posible aplicación de
este proceso para encontrar cotas en distintos parámetros que describen nueva física
como es el caso de oscilaciones de neutrinos estériles, no unitariedad de la matriz
de mezcla de neutrinos y propiedades magnéticas del neutrino. Analizamos los fu-
turos detectores de la misma colaboración COHERENT, y nuevos experimentos que
aún están en construcción usando CEvNS o bien dispersión del neutrino con elec-
trones(EvES).
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Introduction

Within the Standard Model, neutrinos are particles that have no charge and zero mass.
However, the discovery of neutrino oscillations has shown that neutrinos do actually
have mass. This leads us to search for new physics beyond the Standard Model to
explain how they obtain their mass. These considerations have guided us to new prop-
erties like a neutrino magnetic moment, NSI interactions, and non-unitarity of the neu-
trino mixing matrix, among others. Also, some anomalies that still cannot be explained
in the context of neutrino oscillations between active states suggest the possible exis-
tence of sterile neutrinos, which are defined as having no SM gauge interactions.

Coherent Elastic Neutrino-Nucleus Scattering is a very useful process in the study of
new physics. Since its cross section is well-determined within the Standard Model, any
deviation from its prediction may be a sign of new physics. We take advantage of this
and study the future perspective on different beyond the standard model physics with
different experimental setups that have already measured and are planning to measure
this process. The thesis is organized as follows:

First, we give a general introduction to neutrino physics and particle physics. In Chap-
ter 3, we give a theoretical framework of all the physics scenarios considered, starting
with the process of neutrino oscillations in the presence of light sterile neutrino states.
Then, we study the non-unitarity of the neutrino mixing matrix that arises if the ex-
tra lepton states are heavy enough to forbid its participation in neutrino oscillations.
And finally, we talk about neutrino magnetic properties in the context of a sterile neu-
trino dipole portal, in which a sterile neutrino state is produced at an electromagnetic
interaction between a neutrino and a nucleus or an electron.

In chapters 4, 5, and 6, we present the formalism of the processes under study and the
experimental setups considered for each case. Then in Chapter 7, we present the re-
sults obtained for each scenario, showing the different sensitivities that can be reached.
Finally, in chapter 8, we give our conclusions to this thesis.

xi
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Chapter 1

Particle physics introduction

Particle physics studies the fundamental building blocks of matter, from the protons
and neutrons that form the nucleus of the atoms to the quarks that form each of these
particles. The study of the particles dates back to ancient Greece, where the Greek
philosophers asked themselves what the matter was made of. Due to the technology
available by then, their first answers emerged from thought experiments. They imag-
ined that if one bread is cut by half continuously, there must be a piece that is impos-
sible to cut further. This minimum piece of bread is what they called the atom, which
means indivisible. It was not until the end of the 19th century when the discovery of
the electron by J.J. Thomson started a more in-depth and formal study of the particles.

Figure 1.1: Rutherford scattering experiment was the first proof that the nucleus of a
atoms was a very small concentration of mass and positive charge. The effect observed
was like if a bullet got reflected by a paper sheet [1].

John Dalton gave the first scientific approach to solve the problem of the atom. By

1
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studying the properties of gases, Dalton wrote some postulates that described the in-
teraction of atoms in chemical reactions [2] . A century later, Thomson discovered that
electrons were constituents of atoms, and imagined that they were suspended in a kind
of positively charged paste like a pudding [3]. Rutherford’s scattering experiment con-
tradicted this idea. Rutherford’s experiment consisted of a thin sheet of gold foil bom-
barded by a beam of α-rays [4], see Fig. 1.1. In accordance with Thomson’s model, the
α-rays should have been deflected in small angles since the atoms of gold were con-
sidered as diffusive spheres. With big surprise, Rutherford observed that most of the
α-rays passed undisturbed, and some of them scattered at big angles, even a few of
them scattered completely back to the beam source. With this result, Rutherford con-
cluded that all the mass and positive charge of the atom were concentrated in a tiny
volume at the center of the atom. He called hydrogen to the nucleus of the lightest
atom.

Finally, in 1914 [5]Niels Bohr proposed a planetary-like model for hydrogen in which
the electron is circling the proton like a planet going around the Sun. With this model,
Bohr calculated the hydrogen spectrum and supposed that heavier atoms were com-
posed of more protons supporting the same number of orbiting electrons. The problem
with this idea was that larger atoms resulted in heavier than predicted by Bohr’s Model.
The solution to this problem came in 1932 with the discovery of the neutron by Chad-
wick. The neutron is an electrically neutral twin of the proton that solves the missing
mass of the atoms by adding a certain number of neutrons to the nucleus of each el-
ement. Since the neutron is electrically neutral, the number of neutrons is somewhat
flexible. This means that atoms of the same element could have a different number
of neutrons, these atoms with a different number of neutrons but the same number of
protons are called isotopes. In this way, by 1932, the protons, neutrons, and electrons
were thought to be the only blocks of matter.

Despite the great progress achieved on the understanding of the composition of matter,
there was still a question remaining. If the protons have positive charge, then there
must be a repulsive force acting between them so what is holding them together in
the nucleus. This force must be stronger than electromagnetism and also must have
a very short range since we don’t notice it in our daily lives. This force is called the
strong force, and the first theory was proposed by Yukawa in 1934 [2]. As an analogy to
electric and gravitational force, Yukawa assumed that the protons and neutrons where
attached together due to some kind of field, and this field needed to be quantized. since
the force has very short range, the mediator would be heavy with a mass between the
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electron and the proton, that’s why it was called the meson. Around 1937, different
experiments observed a particle that matched Yukawa’s meson, but there were some
problems like the lifetime and the mass seemed to be different from the prediction. The
problem was solved in 1947 [2] when Powell discovered that there were actually two
particles from the cosmic rays, they called them the pion (π) and the muon (µ). The
pion is the actual meson from Yukawa’s theory, and it is produced on the atmosphere
but decays to muons before reaching ground.

Later on, different particle decays were studied and in order to explain the possibility of
certain interactions, different conservation rules were developed like Baryon number,
Lepton number, and Strangeness conservation. With these new properties, Murray
Gell-Mann introduced the so called Eightfold Way in 1961 [2] which is an arrange of
Baryons and Mesons according to their charge and strangeness, this was useful for
the prediction of new particles with properties that matches the missing spots in this
configurations.

With all this particles, properties and interactions it was necessary to establish a frame-
work to work with. The Standard Model(SM) is a periodic table like organization for
elementary particles. In this theory, the building blocks of matter are classified into two
groups called leptons and quarks. Each group consists of six particles, which are sub-
divided into three generations. The mass of these particles increases in each generation
while their stability decreases. The first generation is formed of the lightest and most
stable particles. Therefore all stable matter is made from these particles; the heavier
particles decay to a more stable group.

The first generation of quarks consists of the "up quark" and the "down quark", the
second by the "charm quark" and the "strange quark" and the third by "top quark"
and "bottom quark". Each quark can come in three different "colors" and always mix
in a "colorless" way, so they do not exist individually. This idea of the nonexistence
of isolated quarks is called confinement. The particles formed by the quarks are called
hadrons, and they are subdivided into two groups called baryons and mesons. Baryons
are built with three quarks, while mesons with a quark and an anti-quark.

In the case of the Leptons, the first generation consists of the "electron" and the "electron
neutrino", the second of the "muon" and the "muon neutrino" and the third one of the
"tau" and the "tau neutrino". The electron, muon, and tau have electric charge and
mass, while the neutrinos are electrically neutral and have negligible mass.

We can also classify the particles in fermions and bosons, the first ones with half-integer
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spin and the second ones with integer spin. The name of each group corresponds to the
statistics that describe them, that is, Fermi-Dirac or Bose-Einstein statistics. Each force
has its own strength, range of action and boson, the gluon for the strong force, the
photon carries the electromagnetic force, the W and Z bosons the weak force and the
graviton for the gravity although it has not yet been found. Finally, the Higgs gives
mass via the Higgs mechanism.

The four fundamental forces ordered from the weakest to the strongest are:

• The gravitational force: responsible for the attraction between objects with mass.

• The weak force: responsible for the radioactive processes like nucleus decays.

• The electromagnetic force: responsible for the interaction between charged parti-
cles.

• The color force: responsible for maintaining the quarks forming hadrons together.

Although gravity is not yet part of the Standard Model, it will still work well because
the effect of gravity on the minuscule scale of particles is so weak that it can be neg-
ligible. However, the search for the graviton and the unification of gravity is an open
problem nowadays.

1.1 Standard Model

The Standard Model is described by the gauge group

GSM = SU(3)C × SU(2)L ×U(1)Y (1.1)

with three fermion generations. Neutrinos have neither strong nor electromagnetic in-
teractions, and we call active neutrinos to those having weak interactions. Since leptons
do not have color charge, they do not participate in strong interactions. On the other
hand, since neutrinos have no electric charge, they do not experience electromagnetic
processes.

Despite Fermi theory of weak interaction described beta decay with great accuracy,
there were some interactions at a different energy scale that the theory proved to be
"wrong". The turning point in understanding this phenomenon was the hypothesis that
weak interaction violates parity [6]. It was confirmed by the experiment of Wu (1957)
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and was the key to understand the structure of weak interaction, allowing to conclude
that for neutrinos, the spin and momentum have opposite directions, while, for anti-
neutrinos the directions are the same. This is called positive and negative helicity for
anti(neutrinos). The theoretical picture was completed by the universal V-A nature of
the charged-current weak interaction.

The weak interaction can be due to a weak charge current (CC) between neutrinos and
their corresponding charged leptons given by the Lagrangian [7]

−Lcc =
g√
2

∑
l

ν̄Llγ
µlL̄W+

µ + h.c. (1.2)

This interaction can be represented by the fundamental vertex shown in Figure 1.2, in
which a negative lepton (e−, µ−, τ−) converts into its corresponding neutrino, emitting
a W−, or if considered as an absorption, a W+

W−

l−

νl

Figure 1.2: Fundamental weak charged current vertex.

On the other hand, the weak interaction can also be due to a neutral current (NC) given
by [7]

−LNC =
g

2cosθW
∑

l
f̄ γµ f Z0

µ, (1.3)

where f stands for any lepton or quark, with a fundamental vertex of the form shown
in Figure 1.3.

Z0

f

f

Figure 1.3: Fundamental weak neutral vertex.
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With Eq. (1.3) it is possible to determine the decay width of the Z0 boson into neutrinos.
This value is proportional to the number of left-handed neutrinos and has the value
Nν = 2.9963± 0.0074, as reported by [8]. In this way, the SM must contain only three
active neutrinos.

According to the SM, fermions masses come after a spontaneous symmetry breaking
from the Yukawa interaction by coupling right-handed fermions with its left-handed
doublet and the Higgs field. Since neutrinos do not have a right-handed counterpart
in this model, Yukawa’s mechanism leaves them massless. In the Fermi theory, the
transition from a neutral lepton to a charged one is described by the leptonic charged
current. This current is given by the V-A structure of weak interaction, so the current
has the form:

V lept
µ − Alept

µ = eγµν− ēγµγ5ν = 2ēγµPLν, (1.4)

where PL = (1− γ5)/2. This indicates that the wave-functions of the neutrinos(anti-
neutrinos) need to be of the form

Ψν(x) = e−ipxPLu, (1.5)

Ψν̄(x) = e−ipxPRu, (1.6)

where u is a 4-spinor that obeys the Dirac equation. Considering the case of plane
waves and in the ultra-relativistic limit where p >> m we have E ≈ p so the Dirac
Hamiltonian can be written as

HD =~α · ~p + βm ≈~α · ~p = ~Σ · ~pγ5 ≈ ~Σ ·~nγ5E, (1.7)

with

~α =

[
0 ~σ

~σ 0

]
, (1.8)

and where ~n = ~p/p is the momentum direction.The projection of the spin in the direc-
tion of the momentum is called helicity and is given by ~Σ ·~n in the previous formula.
For the case when the kinetic energy is much larger than the mass, we find that the
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energy eigenstates satisfy

~Σ ·~nΨν(x) ≈ −Ψν(x), (1.9)

~Σ ·~nΨν̄(x) ≈ +Ψν̄(x). (1.10)

This means that in the ultra-relativistic limit, neutrinos have negative helicity whereas
anti-neutrinos have positive helicity. But a problem arises if the mass of the neutrinos
is non-zero, and there are two possible scenarios for this.

In the first case, the mass of neutrinos has the same character as the mass of other spin
1/2 charged particles. This type of mass shows a strict separation between particle and
antiparticle states. This means that there are four distinct states in the rest frame, as for
the neutron or the electron. Namely, two spin states for the neutrino and the two spin
states for the anti-neutrino. The second hypothesis is the one proposed by Majorana.
In this case, there are just 2 spin states, in other words, the particle and antiparticle co-
incide, the question of which of these hypothesis is correct is one of the most important
open question in neutrino physics up to date. In theory, it may be possible to observe
the difference between this two types of masses in some experiments.

The flavor neutrino fields νlL(x) are included into the SM charged and neutral current
interactions

LCC
I = − g√

2
jCC
α Wα + h.c. (1.11)

LNC
I = − g

2cosθw
jNC
α Zα, (1.12)

where

jCC
α = ∑

l=e,µ,τ
¯νlLγαlL, (1.13)

jNC
α = ∑

l=e,µ,τ
¯νlLγανL, (1.14)

are the charged leptonic and neutral leptonic currents.
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In the Standard Model, fermions acquire their masses via a Yukawa coupling of the
scalar Higgs doublet φ with a fermion right-handed and left-handed component. So
for leptons we can create the coupling with their left-handed doublets LL and their
right-handed charged lepton fields ER [9]

−LYukawa = Yl
ij L̄LiφERj + h.c. (1.15)

Then, after the spontaneous symmetry breaking we get the masses

ml
ij = Yl

ij
v√
2

, (1.16)

with v the vacuum expectation value of the Higgs field. Since there is no right-handed
neutrinos, we can’t build this Yukawa mass term for them, so neutrinos are massless at
Lagrangian level. On the other hand, a neutrino mass term may be generated at loop
level, but the only possible term that could be constructed is the bilinear L̄LLc

L, where
Lc

L is the charged conjugate field, Lc
L = CL̄T

L and C is the charge conjugation matrix.
But this term violates the total lepton symmetry by two units so it cannot be induced
by loop corrections and is forbidden in the SM.

1.2 Neutrino physics

The understanding of neutrinos started in 1930, in this year the problem of the Beta
decay, which is described by A → B + e−, emerged. From the theory of two-body
decays, the energy of the electron is expected to have a constant energy that is function
of the mass of the particles A and B given by

E =

(
m2

A −m2
B + m2

e
2mA

)
c2. (1.17)

However, when the energy of the electron is measured, we find that the electrons vary
considerably in energy. Equation (1.17) only describes the maximum possible electron
energy for a particular beta decay (see Fig. 1.4 ).

Wolfgang Pauli who was born in Vienna in 1900, at twenty-five, he recognized a fourth
degree of freedom in the atomic spectra, which resulted to be the spin, whose impli-
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Figure 1.4: Electron energy spectrum for the Beta decay. The maximum energy is the
one given by Eq. (1.17). This observation suggested that this process was violating
energy conservation, but Fermi proposed the neutrino to solve this problem [2].

cations are now called Pauli Exclusion Principle, winning a Nobel Prize in 1945. On
December 1930, he sent a letter talking about a possible solution to the beta decay spec-
trum, where he suggested that the process was a three-body decay and that the new
particle was taking some of the electron energy as kinetic energy. Pauli suggested that
this new particle had to be neutral, to conserve charge and called it neutron. It was on
October 1931 in an International congress of Nuclear Physics, where Enrico Fermi got
interest on Pauli’s hypothesis.

In 1933 Fermi presented a theory of beta decay that incorporated Pauli’s particle (which
he called neutrino), in this theory (anti)neutrinos are created in association with β rays
in certain nuclear decays. Since it was not detected, it should not have charge, and
since the energy spectrum had a maximum energy equal to Eq. (1.17), it should be very
light( presumably with zero mass).

On 1948, the existence of a new neutrino different from the one produced by elec-
trons were suggested, this was demonstrated by Lederman,Schwartz, Steinberger in
1962(Nobel prize in 1988). Finally, evidence of the τ lepton, were collected since 1974.
This τ neutrino was first observed by DONUT experiment on 2000. Nevertheless, the
number of neutrinos was previously known from measurements of the invisible decay
width of the Z boson on LEP experiment

Nν =
Σinvisible

Z
Σ(Z→νν̄)SM

= 2.9963± 0.0074. (1.18)

In order to differentiate between the neutrino and the anti-neutrino they were assigned
a Lepton number, been +1 for the e−, µ−, τ− and the ν’s: and -1 for e+, µ+, τ+ and
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the ν̄’s. The Lepton number for the rest of the particles is 0. In this way, every decay
should conserve the Lepton number, and so it could be determined which decays where
possible and in which of them the neutrinos and anti-neutrinos were present.

Since there are three different neutrino flavors, each one has its own conservation law.
The Lepton number is divided into the conservation of three new quantities called the
electron, muon and tau number. With this information, we know which interactions
are possible.

Dirac’s theory played an important role for Fermi in his first development of the β

decay theory. Therefore, we will show some of the most important results of the early
studies of Quantum Mechanics.

We start with the stationary, one-dimensional Schrodinger equation [2]

ĤΨ =

(
− h̄2

2m
∂2

∂x2 + V

)
Ψ = EΨ. (1.19)

In this formulation, the physical quantities are expressed as differential operators

x → x̂ = x, p→ p̂ =
h̄
i

∂

∂x
, E→ Ê− h̄

i
∂

∂t
, (1.20)

where x is the position, p is the momentum and E is the energy. If we use the non-
relativistic expression for energy E = p2

2m + V on a wave function Ψ using this relation,
we get

EΨ =

(
p2

2m
+ V

)
Ψ =

(
− h̄2

2m
∂2

∂x2 + V

)
Ψ. (1.21)

Therefore, the Schrodinger equation is a statement of energy conservation.

If we make the same process but consider the relativistic formulation of energy

E2 = (pc)2 + (mc2)2, (1.22)

we get the so called Klein-Gordon equation, sometimes called the relativistic Schrodinger
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equation,

(
− h̄2

c2
∂2

∂t2 + h̄2 ∂2

∂x2

)
Ψ = (mc)2Ψ, (1.23)

which can be written in more simplified form by using the special relativity notation
and the Einstein’s summation convention

(∂µ∂µ + m2)Ψ = 0. (1.24)

The problem with this equation is that it neglects spin and is unable to model the Hy-
drogen spectrum, which has good experimental data in that times. The first attempt
to include spin in quantum mechanics was developed by Jordan and Heisenberg in
1926, but later, Pauli developed his own theory which fit into the current understand-
ing much better.

If we consider now the time-independent Schrodinger equation in the Heisenberg’s
formalism

ĤΨ = EΨ, (1.25)

this is an eigenvalue equation with H an operator, Ψ an eigenvector, and E the energy
eigenvalue. We can also have, in the same manner, an operator associated to orbital an-
gular momentum L. In this case, a particle with angular momentum l, and z projection
m, can be described by an angular wave function Ylm,

L2Ylm = (l(l + 1)h̄2Ylm, (1.26)

LzYlm = mh̄Ylm. (1.27)

As an analogy, Pauli defined a new operator S associated to spin which had three com-
ponents, each of which was a 2x2 Pauli matrix

Sx =
h̄
2

σx, Sy =
h̄
2

σy, Sz =
h̄
2

σz, (1.28)
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where

σx =

[
0 1
1 0

]
, σy =

[
0 −i
i 0

]
, σz =

[
1 0
0 −1

]
. (1.29)

He discovered that with this operator, the eigenvalue equation is exactly analogous to
the original angular momentum one. Therefore, defining s as the spin quantum number
and sz as its projection into the z− axis he found

S2χ± = s(s + 1)h̄2χ±, (1.30)

Szχ± = szh̄χ±, (1.31)

with eigenvectors given by

χ+ =

[
1
0

]
, χ− =

[
0
1

]
. (1.32)

The problems with Pauli’s theory were its non-relativistic character and that it failed to
predict the gyro magnetic ratio by a factor of two.

The solution to all this problems was developed by Dirac in his equation. He forced this
equation to be first order in all variables, as opposed to Schrodinger and Klein-Gordon
equations, and he got to the final equation form

(iγµ∂µ −m)Ψ = 0, (1.33)

which holds for the following 4x4 Dirac or γ-matrices

γ0 =

[
I 0
0 −I

]
, γ1 =

[
0 σx

−σx 0

]
, (1.34)

γ2 =

[
0 σy

−σy 0

]
, γ3 =

[
0 σz

−σz 0

]
. (1.35)
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Dirac equation looks explicitly as

4

∑
k=1

(
3

∑
µ=0

i(γµ)jk∂µ −mδjk

)
Ψk = 0; j ∈ {1, 2, 3, 4}. (1.36)

The object Ψ is called Dirac spinor and is analogous to the χ from Pauli except that in
this case the Dirac spinor has 4 components, two of these components provide infor-
mation about the possible spin value states, while the other two correspond to their
negative energy states, that was a mystery for some years. Later, Dirac proposed that
they represent new type of particles with negative energy, and the anti-electron was
discovered on 1932, making Dirac’s equation a great success. Dirac equation explained
correctly the Hydrogen spectrum and predicted the correct value of the gyro magnetic
ratio.

Beta decay was described by Fermi using Dirac’s theory, which was the available theory
for describing Quantum electrodynamics. In QED, the process p→ p + γ described by
the Lagrangian

L = ej(em)
µ Aµ = e(ūpγµup)Aµ, (1.37)

where e is the charge of the proton, up is the proton Dirac spinor, γµ is a Dirac ma-
trix, and Aµ is the photon Dirac spinor. The current in this case is the electromagnetic
current of the proton given by j(em)

µ = ūpγµup. Fermi used this current to describe
the β decay. He replaced the electromagnetic current with a term that corresponds
to the transition between the neutron and the proton jn→p

µ = (ūpγµun). He also re-
placed the photon spinor, Aµ, with the transition between the electron and the neutrino
jν→e = (ūeγ

µuν). The electric charge constant was replaced with a new coupling con-
stant, G, that we know as the Fermi coupling constant, GF. All this analysis results
in

Lβ = GF jn→p
µ jµ

ν→e = GF(ūpγµun)(ūeγ
µuν). (1.38)

This interaction is a contact interaction, which means that it is evaluated at the same
point in space and time. This theory of β decay also explains other processes such
as electron-capture (e− + p → n + ν) or inverse β Decay (ν̄ + p → n + e+). Despite
different problems that the theory had, it was a great step in the understanding of the
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Symmetry Conserved quantity
Translation in space Momentum
Translation in Time Energy
Rotation in Space Angular momentum

Reflection in Space Parity

Table 1.1: Symmetries with their associated conserved quantities

weak interaction and is useful for low energy processes.

Parity Violation and the θ − τ puzzle

Symmetries and conservation laws are related in physics. Noether’s theorem states that
if a system is symmetric under some transformations, there must be a conserved quan-
tity within the system associated with that symmetry. The simplest example is when
a system is identical when using a translation in a certain direction. The momentum
along that direction conserves. Some of the most fundamental symmetries are shown
in table 1.1.

One important conserved quantity for particle physics is parity. This is the result of
a transformation of the form~r → −~r. A system is symmetric under parity if Ψ(r) =

Ψ(−r) and anti-symmetric if Ψ(r) = −Ψ(−r). The parity of the system is the result of
the eigenvalue equation P̂Ψ(r) = pΨ(r). Parity is a multiplicative quantum number.
That is, the product of the constituents is the one that should be preserved, rather than
the sum.

In 1924 [2], German-American physicist Otto Laporte, noted that when an atomic state
transition from one state to another emitting a photon, the wavefunction always changes
its parity. This is called "Laporte’s rule" and it is just a statement of the law of conser-
vation of parity. Later, in 1927, Eugene Wigner proved that Laporte’s rule is a direct
consequence of reflection symmetry of the electromagnetic force. Parity conservation
was used to derive different particle quantum numbers and properties. But there raised
a problem with two positively charged strange particles, the τ+ and the θ+, in which
the following decays had been observed:

τ+ → π+π+ + π−, (1.39)

θ+ → π+π0. (1.40)
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Let’s analyze the parities of these decays. The pions have an intrinsic parity of −1.
This parity is obtained from applying parity conservation to pion capture by deuteron
(π + d → n + n). Now we need to take into account the spatial contribution to parity.
The τ, θ, and the pions have intrinsic spins of 0. The total angular momentum is given
by J = L + S, where L is the external angular momentum which is 0 for this case. For
both decays the total initial angular momentum is 0.

• θ decay: The orbital angular momentum of the π’s is zero [10] to conserve the
total angular momentum. With this, the spatial contribution to parity is (−1)L =

(−1)0 = +1 (This extra term comes from the angular part of the spatial wave
function, Ym

l (θ, φ)). So the total parity is P = Pπ+Pπ0 Pspatial = (−1)(−1)(+1) =
+1. So at the end by parity conservation P(θ) = +1

• τ decay: In this case, the orbital angular momentum has 2 components, one given
the angular momentum between the two π+ and the other by the remaining π−

and the center of mass of the two π+. Again, this sum must be equal to 0 to
conserve to conserve total angular momentum. So the two components must
have equal magnitude. So for this case, the spatial component of the parity is
the product of both parities Pspatial = (−1)L(−1)L) + 1. So at the end P(τ) =

Pπ+Pπ+Pπ−Pspatial = (−1)3(+1) = −1

As can be seen, there were two particles with almost identical properties such as mass
and lifetime, but with apparently two different parities. This was a question that Lee
and Yang attempted to solve on April 1956 at the sixth Rochester conference on High
Energy Nuclear Physics in Rochester , New York.

As a first attempt, Lee and Yang proposed a solution called parity doubling, in which
particles with odd strangeness were hypothesized to come in pairs, one with even par-
ity and the other with odd. With this solution they were trying to maintain the principle
of parity conservation in Weak interaction safe. At the 1956 Rochester Conference, Mar-
tin Block and Richard Feynman discussed if parity conservation was really inviolable,
this conversation resulted on Feynman proposing that parity violation may be a possi-
bility. With this, Lee and Yang began an analysis of the experimental data available to
evaluate if the law of parity conservation held.

They noticed that there was no evidence of parity conservation in weak interactions,
contrary to the strong interaction in which there was solid evidence. Lee and Yang men-
tioned that if parity violation were true, then certain quantities called pseudoscalars
would have a non-zero average value and suggested different experiments to measure
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these quantities.

The experiment proposed by Lee and Yang was the analysis of the process 60Co(Jp =

5+) →60 Ni(4+) + e− + ν̄e decay. In this case, the pseudoscalar to be measured was
the projection of the electron’s momentum on the spin (J) of the Cobalt nucleus. This
experiment was performed by Madame Wu (Chien-Shiung Wu) [11]. On December 27,
Wu’s group came up with the amazing results. The average value of the pseudoscalar
given by the projection of the electron’s momentum onto the spin of the Cobalt nucleus
was not zero and reflection symmetry was violated. This was not the only experimental
evidence of parity violation, as different experiments confirmed this observation.

After this result, Lee and Yang suggested [10] that all neutrinos are left handed and all
anti-neutrinos, right handed. This was proven to be correct a year later by Goldhaber
measuring the neutrino helicity directly. Let us mention some consequences of the
parity violation in weak interaction.

For neutrinos, the Dirac equation reads

iγµ∂µΨ−mνΨ = 0. (1.41)

We will work in the chiral representation since it is easier to account the helicity of the
neutrino, so the Dirac matrices takes the form

γ0 =

[
0 I
I 0

]
, ~γ =

[
0 −~σ
~σ 0

]
, (1.42)

where~σ is Pauli’s spin operator. For the 4-component Dirac spinor in the chiral repre-
sentation we will use

Ψ =

(
ΨR

ΨL

)
, (1.43)

where ΨR and χ are two component Weyl spinors. From Eq. (1.41) we get

i

[
0 I
I 0

] [
∂ΨR

∂t
∂ΨL
∂t

]
+ i

[
0 −~σ
~σ 0

] [
~∇ΨR
~∇ΨL

]
−mν

[
ΨR

ΨL

]
= 0. (1.44)

This gives two coupled equations
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i
∂ΨL

∂t
− i~σ · ~∇ΨL = mνΨR, (1.45)

i
∂ΨR

∂t
+ i~σ · ~∇ΨR = mνΨL, (1.46)

Since the neutrino mass was either zero or negligibly small, these equations decoupled
leading to

pΨL +~σ · ~pΨL = 0, (1.47)

pΨR +−~σ · ~pΨR = 0, (1.48)

or

hΨL =
~σ · ~p

p
ΨL = (−1)ΨL, (1.49)

hΨR =
~σ · ~p

p
ΨR = (1)ΨR. (1.50)

These are the eigenvalue equations for helicity, so we get that the two component spinor
ΨR is right-handed and that χ is left-handed. The observation that neutrinos were only
left-handed leads to vanishing components of ΨR, resulting in a two component theory
for the neutrino.

Finally, in Eq. (1.38) we talked about Fermi theory for the β decay as an analogy to
QED. If we wanted to treat this process in a general form, we would need to start from
the generalized Hamiltonian for the process

Hw = ∑
i

Gi

2
(ūpOiun)(ūeOiuν) + h.c., (1.51)

where Oi can be any of the bilinear forms. Note that the product for any case is a
scalar, i.e. remain unchanged under a spatial inversion~r → −~r. And considering that
as we mentioned, weak interaction do not conserve Parity, this Hamiltonian is not a
satisfactory description since it is not symmetric under spatial inversion. If we add a
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pseudoscalar which have odd parity we can make this product with odd parity, so

(ūpOiun)(ūeOiuν) + (ūpOiun)(ūeOiCiγ5uν) = [ūpOiun][ūeOi(1 + Ciγ5)uν], (1.52)

where the first term is a scalar and the second one a pseudoscalar with Ci a constant.
With this, the new parity violation Hamiltonian reads

Hw = ∑
i

Gi

2
[ūpOiun][ūeOi(1 + Ciγ5)uν] + h.c. (1.53)

After some work and remembering that neutrinos are left-handed, it was specified that
Fermi theory was only a particular case of a more general V-A theory for the weak
interaction, so the final Hamiltonian is

Hw =
G f√

2
[ūpγµ(1− gAγ5)un][ūeγ

µ(1− γ5)uν] + h.c. (1.54)



Chapter 2

Theoretical framework

Now we will set the formalism of the different physics scenarios beyond the Standard
Model considered in this thesis. All of them consider the existence of extra sterile neu-
trino states with different characteristics. If the neutrinos are light enough, they will
take place into oscillations, if they are heavy then they won’t participate but the unitary
of the neutrino mixing matrix is violated. Finally, we talk about the neutrino magnetic
properties from which a "dipole portal" may allow a transition from the active to the
sterile states, induced by a magnetic coupling.

2.1 Neutrino oscillations

The first idea of neutrino oscillations was introduced by Bruno Pontecorvo on 1957 [12].
He proposed that leptons might have a phenomenon analogous to K0 � K̄0 oscillation,
and mentioned in his paper the possibility of neutrino oscillations. Later, a special pa-
per dedicated to neutrino oscillations was published by him on 1958 [13]. He suggested
that neutrino-antineutrino oscillations could take place if the lepton number were vi-
olated. This phenomenon requires neutrinos to be massive, in contradiction with the
then common belief that they were massless. At that time, only the electron neutrino
was known, so he assumed that there must exist a weaker interaction which does not
conserve the lepton number. By assuming maximum mixing, he concluded that neutri-
nos and anti-neutrinos are particle mixtures, this is, combinations of two neutral Majo-
rana particles

19
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|ν̄R〉 =
1√
2
(ν1 + ν2), (2.1)

|νR〉 =
1√
2
(ν1 − ν2), (2.2)

where ν̄R is the state of the right-handed anti-neutrino, νR is the state of the right-
handed neutrino, which does not take part in weak interaction. As a result of the
mixing, oscillations between νR ↔ ν̄R become possible. Pontecorvo suggested that
this oscillations may only be observable on astronomical scale due to the big oscillation
length.

Later, around the time when the muon neutrino was discovered oi 1962, the idea of
neutrino masses and mixing was discussed by Maki, Nakagawa, and Sakata [14]. They
assumed that the fields of the neutrinos νe, νµ are connected with the fields of neutrinos
with definite mass ν1, ν2 by an orthogonal transformation

νe = cos θν1 + sin θν2,

νµ = − sin θν1 + cos θν2.
(2.3)

In their paper, they didn’t consider the phenomenon of neutrino oscillations, however,
they mentioned the possibility of a transmutation of νµ into νe and the possible influ-
ence in the interpretation of the Brookhaven experiment, which was working at the
time. On 1967, B. Pontecorvo published a second paper on neutrino oscillations [15],
in which he considered the transition νe ↔ νµ and also oscillations between flavor and
sterile neutrinos. He also considered the solar neutrino oscillations, so he predicted that
the flux of the solar electron neutrino could be half the expected one, anticipating the
solar neutrino problem. The existence of neutrino oscillations were confirmed between
1998 and 2002 with the discoveries of atmospheric and solar neutrino oscillations by
the Super-Kamiokande [16] and the Sudbury Neutrino Observatory (SNO) [17], [18],
and later confirmed by the KamLAND experiment [19].

Neutrino oscillations have been used to explain phenomena like the solar neutrino
deficit, the anomaly in atmospheric neutrinos, and the excess of events in the LSND
(Liquid Scintillation Neutrino Detector) experiment that reports evidence of the transi-
tion ν̄µ → ν̄e among others [20]. However, some of these new phenomena are difficult
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to explain considering only three neutrino flavors. For this reason, it has been pro-
posed the existence of a fourth sterile neutrino that does not interact due to charged
or neutral current. Moreover, the effect of two or three sterile neutrinos has also been
analyzed [21].

2.1.1 Neutrino oscillation formalism

As mentioned earlier, for each lepton ( e−, µ− and τ−) there exists a neutral state called
neutrino, which is associated to each of them separately. These states are called flavor
eigenstates or weak interaction eigenstates.

Lets assume that neutrinos have masses. Thus, there is a spectrum of neutrino mass
eigenstates vi = ν1, ν2, ... each with mass mi. However, experimentally we can only
distinguish between neutrinos by its flavor, depending if the neutrino interacts with a
e,µ, or τ. The mixing may be described with the observation of each flavour of neutrinos
as a superposition of mass eigenstates. Thus, we can consider a linear combination
of three mass states, which are the physical neutrinos traveling freely. The relation
between these states is

|να〉 = ∑
i

U∗αi |νi〉 . (2.4)

Where Uαi may be written in a matrix form that would look like

U =

Ue1 Ue2 Ue3

Uµ1 Uµ2 Uµ3

Uτ1 Uτ2 Uτ3

 , (2.5)

where U is unitary, so

UU+ = U+U = I. (2.6)

So we can express each mass eigenstate as a superposition of flavours

|νi〉 = ∑
α

Uαi |να〉 . (2.7)
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If we assume that there are only 3 mass eigenstates, the Lagrangian can be expressed in
mass eigenstates terms as

L = ν̄mν =
(

ν̄1 ν̄2 ν̄3

)m1 0 0
0 m2 0
0 0 m3


ν1

ν2

ν3

 , (2.8)

but it can also be expressed in a flavour basis, as

L =
(

ν̄α ν̄µ ν̄τ

)M11 M12 M13

M21 M22 M23

M31 M32 M33


να

νµ

ντ

 . (2.9)

If there was no mixing, M would be diagonal.

Since neutrinos only participate in weak interactions and very weakly in gravity, it is
difficult to detect them. But recalling Fig. 1.2 the fundamental weak charged current
vertex shows that neutrinos can interact on the flavor base with its corresponding lep-
ton, and this charged lepton can be easily detected. At the end of the travel of the
neutrino through a distance L, the neutrino reacts with the detector making it possible
to identify its flavor in some experiments. If the flavour of the neutrino has changed
through its journey, we can identify this as due to neutrino flavor oscillation.

Since each να is a superposition of νi’s we have to individually add the contribution
from each mass state in order to find the oscillation probability P(να → νβ).

The total amplitude will depend on three factors:

• The amplitude for νi when ν̄α is produced at the source.

• The amplitude for νi to propagate from source to detector.

• The amplitude for νi when ν̄β is detected at the detector

The total amplitude of flavor changing is given by:

Amp(να → νβ) = ∑
i

UαiProp(νi)U∗βi. (2.10)

Now we will find the value of Prop(νi). If we consider the rest frame of the neutrino,
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its state vector as a function of time τ, follows the Schrodinger equation:

i
∂

∂τ
|νi(τ)〉 = mi |νi(τ)〉 , (2.11)

whose solution is given by

|νi(τ)〉 = e−miτ |νi(0)〉 , (2.12)

so the amplitude of νi travelling for time τ0 is given by

〈νi(0)|νi(τ0)〉 = e−miτ0 . (2.13)

So, if τi is the proper time of the neutrino to travel from the source to the detector,

Proprest(νi) = 〈νi(0)|νi(τi)〉 = e−miτi , (2.14)

we need it in the Lab frame, so we need a Lorentz transformation to find the corre-
sponding expression in the lab frame. By Lorentz invariance xµ pµ,

miτi = Eit− piL. (2.15)

Using the relation and considering that neutrinos are extremely light m2
i << E2,

pi =
√

E2 −m2
i ≈ E− m2

i
2E

, (2.16)

so we have

miτi ≈ Et− EL +
m2

i
2E

L. = E(t− L) +
m2

i
2E

L (2.17)

Where we have used the same energy for different mass eigenstates.This is possible
because only phases with same energy are detected. The term E(t− L) is common to
every interfering mass eigenstates. Thus, considering only the i-dependent part we
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have

Prop(νi) = e−
m2

i
2E L. (2.18)

So we have

Amp(να → νβ) = ∑
i

Uαie−
m2

i
2E LU∗βi. (2.19)

Finally,the oscillation probability P(να → νβ) is given by

P(να → νβ) = |Amp(να → νβ)|2, (2.20)

(
∑

i
Uαie−

m2
i

2E LU∗βi

)∗(
Ubetai ∑

j
Uαje−

m2
j

2E LU∗βj

)
, (2.21)

∑
i

∑
j

U∗αiUβiUαjU∗βje
i L

2E (m
2
j−m2

i ), (2.22)

= ∑
i

U∗αiUβiUαiU∗βi + ∑
i 6=j

U∗αiUβiUαjUβje
i L

2E ∆m2
ji , (2.23)

where

∆m2
ji = (m2

j −m2
i ). (2.24)

In order to proceed,we need to consider the following relation for the exponential func-
tion

eiA = cos A + i sin A→ 1− 2 sin2 A
2
+ i sin A. (2.25)

Now, by expanding the exponential function in Eq. (2.23) we get
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P(να → νβ) = ∑
i

U∗αiUβiUαiU∗βi+

∑
i 6=j

U∗αiUβiUαjU∗βj − 2 ∑
i 6=j

U∗αiUβiUαjU∗βjsin2(∆m2
ji

L
4E

)+

i ∑
i 6=j

U∗αiUβiUαjU∗βjsin(∆m2
ji

L
2E

).

Now we will work with every single term, first we have

P3 = ∑
i 6=j

U∗αiUβiUαjU∗βjsin2(∆m2
ji

L
4E

) (2.26)

= ∑
i>j

U∗αiUβiUαjU∗βjsin2(∆m2
ij

L
4E

) + ∑
i<j

U∗αiUβiUαjU∗βjsin2(∆m2
ji

L
4E

) (2.27)

= ∑
i>j

U∗αiUβiUαjU∗βjsin2(∆m2
ij

L
4E

) + ∑
i>j

U∗αjUβjUαiU∗βisin2(∆m2
ij

L
4E

) (2.28)

= ∑
i>j

sin2(∆m2
ij

L
4E

)(U∗αiUβiUαjU∗βj + U∗αjUβjUαiU∗βi) (2.29)

= ∑
i>j

sin2(∆m2
ij

L
4E

)(U∗αiUβiUαjU∗βj + UαiU∗βiU
∗
αjUβj) (2.30)

= ∑
i>j

sin2(∆m2
ij

L
4E

)(U∗αiUβiUαjU∗βj + (U∗αiUβiUαjU∗βj)
∗) (2.31)

= 2 ∑
i>j

Re(U∗αiUβiUαjU∗βj)sin2(∆m2
ij

L
4E

). (2.32)

Now for the last term we have
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P4 = ∑
i 6=j

U∗αiUβiUαjU∗βjsin(∆m2
ji

L
2E

) (2.33)

= −∑
i>j

U∗αiUβiUαjU∗βjsin(∆m2
ji

L
2E

) + ∑
i<j

U∗αiUβiUαjU∗βjsin(∆m2
ji

L
2E

) (2.34)

= −∑
i>j

U∗αiUβiUαjU∗βjsin(∆m2
ji

L
2E

) + ∑
i>j

U∗αjUβjUαiU∗βisin(∆m2
ij

L
2E

) (2.35)

= ∑
i>j

sin(∆m2
ij

L
2E

)(U∗αjUβjUαiU∗βi −U∗αiUβiUαjU∗βj) (2.36)

= ∑
i>j

sin(∆m2
ij

L
2E

)((UαjU∗βjU
∗
αiUβi)

∗ −U∗αiUβiUαjU∗βj) (2.37)

= ∑
i>j

sin(∆m2
ij

L
2E

)(−2iIm(U∗αiUβiUαjU∗βj)) (2.38)

= −2i ∑
i>j

Im(U∗αiUβiUαjU∗βj)sin(∆m2
ij

L
2E

). (2.39)

Now for the first two terms we have

P1 + P2 = ∑
i

U∗αiUβiUαiU∗βi + ∑
i 6=j

U∗αiUβiUαjU∗βj (2.40)

= ∑
i

∑
j

U∗αiUβiUαjU∗βj (2.41)

= ∑
i
(U∗αiUβi)∑

j
(UαjU∗βj) (2.42)

= |∑
i

UαiU∗βi|2. (2.43)

In order to evaluate this term, we will use the unitary property of U. We have

U =

Ue1 Ue2 Ue3

Uµ1 Uµ2 Uµ3

Uτ1 Uτ2 Uτ3

 , U+ =


U∗e1 U∗µ1 U∗τ1

U∗e2 U∗µ2 U∗τ2

U∗e3 U∗µ3 U∗τ3

 , (2.44)
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UU+ =


∑
i

UeiU∗ei ∑
i

UeiU∗µi ∑
i

UeiU∗τi

∑
i

UµiU∗ei ∑
i

UµiU∗µi ∑
i

UµiU∗τi

∑
i

UτiU∗ei ∑
i

UτiU∗µi ∑
i

UτiU∗τi

 =

1 0 0
0 1 0
0 0 1

 . (2.45)

In other words, we can write this as

∑
i

UαiU∗βi = 1→ α = β,

0 = δαβ → α 6= β.
(2.46)

Where δ is the Kronecker delta function.

So finally we get

P1 + P2 = δαβ. (2.47)

Finally we have the expression for the oscillation probability

P(να → νβ) = δαβ − 2 · 2 ∑
i>j

Re(U∗αiUβiUαjU∗βj)sin2(∆m2
ij

L
4E

)

+ i

(
−2i ∑

i>j
Im(U∗αiUβiUαjU∗βj)sin(∆m2

ij
L

2E
)

)

= δαβ − 4 ∑
i>j

Re(U∗αiUβiUαjU∗βj)sin2(∆m2
ij

L
4E

)

+ 2 ∑
i>j

Im(U∗αiUβiUαjU∗βj)sin(∆m2
ij

L
2E

).

For anti-neutrinos we assume CPT invariance so under this assumption the process
ν̄α → ν̄β is the CPT-mirror image of νβ → να,

P(ν̄α → ν̄β) = P(νβ → να). (2.48)

The results of this is just a change in the last term of the oscillation probability, so:
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P(ν̄α → ν̄β) = δαβ − 2 · 2 ∑
i>j

Re(U∗αiUβiUαjU∗βj)sin2(∆m2
ij

L
4E

)

+ i

(
−2i ∑

i>j
Im(U∗αiUβiUαjU∗βj)sin(∆m2

ij
L

2E
)

)

= δαβ − 4 ∑
i>j

Re(U∗αiUβiUαjU∗βj)sin2(∆m2
ij

L
4E

)−

2 ∑
i>j

Im(U∗αiUβiUαjU∗βj)sin(∆m2
ij

L
2E

).

If neutrinos were massless, then all the mass squared differences would be zero, so
at the end the oscillation probability would become zero too. It is useful to note that
neutrino oscillations do not arise from interaction with matter because we considered
vacuum since the beginning. Also, if there was no leptonic mixing, all off-diagonal
terms in Uαi would be zeros, so again the oscillation probability would become zero.

It is useful to change from natural units to SI, this allow us to use more easily the
different experimental setups considered in this thesis. By dimensional analysis, it is
possible to find that the correct expression on S.I. is

∆m2
ij

L
4E
|Natural = ∆m2

kg
Lmeter

4RJoule

c3

h̄
(2.49)

= 1.27∆m2
ij(eV2)

L(km)

E(GeV)
. (2.50)

Note that in the final equation we only have square mass differences and it doesn’t
contain the mass of each mass eigenstate explicitly, we cannot find out the mass of
each eigenstates, so we have two possible orderings for the mass of the eigenstates, as
shown in Fig. 2.1. The left one is called normal ordering (NO) and the right one inverted
ordering (IO). The absolute mass scale is not known, but future neutrino experiments
aim to solve this problem.

Lets consider the case in which only two mass eigenstates ν1 and ν2 were significant,
and correspondingly the two flavour states are νe and νµ. The matrix representing this
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Figure 2.1: Possible orderings for the mass eigenstates of neutrinos. Left case(NO)
considers ν3 in the top of the scale and right case(IO) takes ν3 to the bottom [?].

mixing is of the form

U =

(
Ue1 Ue2

Uµ1 Uµ2

)
=

(
cosθ sinθ

−sinθ cosθ

)
(2.51)

and

U+ =

(
U∗e1 U∗µ1

U∗e2 U∗µ2

)
=

(
cosθ −sinθ

sinθ cosθ

)
. (2.52)

Using this we can find the relation that simplifies

4U∗α2Uβ2Uα1U∗β1 = −4 sin θ cos θ cos θ sin θ. = − sin2 2θ (2.53)

Thus for α 6= β we find

P(να → νβ) = δαβ − (− sin2 2θ) sin2(∆m2
ij

L
4E

+ 2(0) sin
(

∆m2
ij

L
2E

)
(2.54)

= sin22θ sin2
(

∆m2
ij

L
4E

)
. (2.55)
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It is useful to note that the same relation applies for anti-neutrinos since the last term
vanishes for a real U matrix.

We don’t know the total number of mass eigenstates for sure. However, the fact that
there are at least three, can be easily understood from studying solar and atmospheric
neutrinos. We attribute solar neutrinos to the splitting to ν1 and ν2

Assuming mixing among the three known neutrinos (νe, νµ, ντ), as a superposition of
three massive states, the mixing matrix can be parametrized as [22]

U =

 c12c13 s12c13 s13e−iδCP

−s12c23 − s12s13s23eiδCP c12c23 − c12s13s23eiδCP c13s23

s12s23 − c12s13s23eiδCP −c12s23 − s12s13c23eiδCP c13c23

 , (2.56)

where cij = cosθij and sij = sin θij.

In order to understand these phenomena, let us suppose that a neutrino is produced
in the time t = 0 with a well-defined momentum p, from Eq. (2.4), we have that, for a
time t, the wave function is given by

ψ(x, t) = ∑
m

Ulmνmeipνxe−iEmt. (2.57)

If we assume that Mm << pv we have that Em ≈ pν +
M2

m
2pν

, and the neutrino will be
traveling at a speed close to the speed of light, and so for a time t we will have that
x = t (taking c = 1). If we write the mass eigenstates as a linear combination of the
flavor states inverting the matrix U we get

ψ(x, x) = ∑
l′

(
∑
m

Ulme−i( M2
m

2pν
)xU∗l′m

)
νl′ . (2.58)

So we see that the wave function is a superposition of all the neutrino flavors. The
probability amplitude that the neutrino changes from a flavor l to l’ traveling a distance
x is given by the coefficient of νl′ . If we assume that CP is conserved, we can take U as
a real matrix and the probability that a neutrino changes its flavor to l’ given a distance
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x will be given by

P(l → l′, x) = ∑
m

U2
lmU2

l′m + ∑
m′ 6=m

UlmUlm′Ul′m′Ul′mcos
(

2π
x

Lmm′

)
(2.59)

where we can see that the function has an oscillatory pattern through the distance of
the form

cos
(

2πx
Lmm′

)
, (2.60)

where the term Lmm′ is called the oscillation length between νm and νm′ , and is given by

Lmm′ =
4πpν

∆m2
mm′

. (2.61)

Note that if x << Lmm′ the neutrino maintains in its original flavor, and if x >> Lmm′

the oscillatory pattern vanish. The distance X in which the oscillatory pattern vanishes
is given by

X ≈ pν

δpν
Lmm′ , (2.62)

where δpν is the momentum spread of the beam. Therefore, if the distance x is greater
than X, the pattern vanishes. However, it is still possible to find a neutrino that changed
flavor, but the probability is no longer a function of the distance traveled. It is impor-
tant to say that the oscillatory pattern can be seen if the distance is of the order of the
oscillation length. Neutrino oscillations can be detected in two ways: With appearance
experiments in which νl → νl′ is sought, or disappearance, in which a reduction in the
neutrino flux of a certain flavor is observed.

For the particular case in which there are only two neutrino flavors and two mass eigen-
states participating appreciably in the mixing, we have the relation

να = ν1 cos θ + ν2 sin θ, (2.63)

νβ = −ν1 sin θ + ν2 cos θ. (2.64)



32 CHAPTER 2. THEORETICAL FRAMEWORK

In this way, the oscillation length will be given by

L =
4πpν

∆m2 ; (2.65)

therefore, the probability for a transition from one flavor to another is

P(να → vβ, x) = sin2(2θ) sin2(π
x
L
), (2.66)

and the probability that a neutrino remains in the same flavor eigenstate at a distance x
is given by

P(να → νβ, x) = 1− sin2 2θ sin2 δ12. (2.67)

With δ12 = 1.27
∆m2

1eV2 · x
1km

pν
1GeV

.

Neutrino oscillations were confirmed for the first time in 1998, in the Super-Kamiokande
experiment [23], where the neutrinos produced by the collisions of cosmic rays in the
atmosphere were analyzed. More evidence of the existence of the neutrino oscillations
have been found in appearance and disappearance experiments ( [20], [24]). Since the
Standard Model assumes that neutrinos do not have mass, neutrino oscillations are
physics beyond Standard Model.

2.2 Sterile neutrinos

As mentioned in the previous chapters, there are three generations of leptons in the
Standard Model that are grouped in SU(2)L doublets. Where L indicates that these
quantum fields are eigenstates of the left-handed helicity operator PL = 1

2(1 − γ5).
They have a definite mass and obey the Dirac equation, and the flavor eigenstates να

are linear combinations of νi fields

νe

νµ

ντ

 = V

ν1

ν2

ν3

 , (2.68)

where V is the 3x3 unitary matrix.
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The interactions of leptons with the W boson mix all mass eigenstates as can be seen
from the Lagrangian

L = − g√
2

∑
α=e,µ,τ

∑
i=1,2,3

Vαiν̄iγ
µPLlαWµ + h.c., (2.69)

where Vαi is the matrix element of V. ν̄i, lα and Wµ are quantum fields of the neutrino
with mass mi, lepton of flavor α and W-boson, respectively and γµ is a Dirac 4x4 matrix.

The smallness of the masses an their mixture in the interactions with the W-boson and
charged leptons give rise to the previously discussed effect of neutrino oscillations. This
effect was useful to explain the Solar and atmospheric neutrino problems. But, there
are some anomalies that cannot be described by a three neutrino model with the given
values of ∆m2 as can be seen in Fig. 2.2, in which the region for atmospheric and solar
neutrinos is well explained in a 3-neutrino active oscillation scenario, but for reactor
antineutrinos the existence of a fourth sterile neutrino may explain the anomaly.

Figure 2.2: Observed/predicted ratio for different baselines [25].

2.2.1 Experimental hints for eV-mass sterile neutrinos

There are different experiments that find some anomalies when measuring neutrino
fluxes. These anomalies may be explained by considering neutrino oscillations from
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active to sterile states, if so, the ∆m2 needed is of the order of 1eV2. In this thesis, we
will work with this scenario and find the possible constraints on these parameters.

Reactor antineutrino anomaly (RAA)

These anomalies refer to a deficit observed in reactor experiments. Reactor neutrino ex-
periments were important for the understanding and determination of neutrino oscil-
lation parameters in the 3-neutrino model. KamLAND experiment provides the most
precise determination of the "solar" parameters ∆m2

21 and improved our knowledge
of θ12. Double Chooz [26], Daya Bay [27] and Reno [28] experiments determined the
smallest of the three known neutrino mixing angles, θ13 and confirmed to be non-zero.
These experiments are also sensitive to the effective mass-squared difference |∆m2

31|
with a precision comparable to that of accelerator based experiments.

The RAA problem arose in experiments that measured the θ13 parameter after the neu-
trino flux at nuclear reactors were re-evaluated. With this calculations, an increase of
the fluxes prediction of few percent as compared to the Schreckenbach et al. prediction
was revealed. Earlier predictions were in good agreement with the experimental data,
but in updated predictions, an electron antineutrino rate deficit of more than 6% is ob-
served for neutrino experiments between 6-100 meters from reactor.Fig. 2.3 shows the
ratios between experimental and expected rates. This deficit is known as the RAA and
the significance is about 2.8σ.

Figure 2.3: Ratio of reactor data and predicted flux as a function of reactor detector
distance L [29].

Despite the RRA triggered the search for sterile neutrino oscillations as a possible sce-
nario, other alternative explanations based on nuclear physics were also considered. In
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the case that the disappearance of ν̄e due to short-baseline oscillation provide the expla-
nation of the RAA, this suppression should depend only on the neutrino energy and
not on the emitting fission isotope. Daya Bay tested this assumption as well as RENO
experiment. These experiments observed a fuel-dependent variation of the inverse beta
decay with respect to the predictions. This disfavors the oscillation hypothesis as sole
source of the RAA as well as different modelling of fission isotopes [30]. However, a
combined analysis with global rate data shows a preference for oscillations with respect
to individual isotope-dependent suppression [31]. It is also possible to have hybrid
models.

Double Chooz, Daya Bay, and RENO observed a distortion in the neutrino spectrum
known as the reactor "shape anomaly" that consists of an excess in the measured reactor
neutrino spectrum compared to the predicted around 5 MeV. A similar pattern was
observed by NEOS data. But the spectra shape reported by Bugey 3 seems inconsistent
with the previous experiments. This anomaly is more likely attributed to nuclear and
reactor physics, so sterile neutrinos may not explain it.

Gallium Anomaly

Another problem is observed in the calibration of radio chemical experiments using ra-
dioactive sources in this case, a deficit in the detection of neutrinos is observed with re-
spect to the prediction. The neutrino experiments GALLEX [32] and SAGE [33], which
study solar neutrinos, tested their performance using neutrinos from 51Cr and 37Ar
sources. Both GALLEX and SAGE used a 51Cr source for calibration, if the calibra-
tions are averaged and compared to the predicted neutrino signal, a deficit of 15% is
observed with a 3σ significance, this comparison is shown in Fig. 2.4. This is known as
the Gallium anomaly.

Figure 2.4: Measured to predicted ratio of neutrino-induced signal rate in the gallium
experiments GALLEX and SAGE [29].
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LSND anomaly

The first anomalies that arose the idea of sterile neutrinos is the one of the Liquid Scin-
tillator Neutrino Detector (LSND) experiment, in which the result can be interpreted as
an appearance of ν̄e in a pure ν̄µ beam [34]. In this experiment, protons of 800 MeV were
aimed at a target to generate low-energy pions which then are stopped by a material
before decaying. This produces νe, νµ and ν̄µ but no ν̄e. The decay of π− is suppressed
by capture on the target atoms.

LSND observed an unexpected excess of ν̄e-like events that can be interpreted as ν̄µ →
ν̄e appearance oscillations. The problem is that it needs a high ∆m2 incompatible with
the present three active flavor oscillation picture. It is useful to mention that KARMEN
experiment did not observed such excess, KARMEN excludes great part of the allowed
parameter space when interpreted as an active flavor oscillation, but still if both exper-
imental results are considered, the range of allowed values is still considerable.

MiniBooNE anomaly

The Mini Booster Neutrino Experiment (MiniBooNE) was considered initially as a test
for the results obtained by the LSND experiment. The neutrino sources as well as the
experimental conditions were changed so that it was not affected by the same uncer-
tainties, but the L/E ratio was the same since it determines the sensitivity to the oscil-
lation frequency and to ∆m2

For this experiment, protons of energy 8 GeV from the Fermilab Booster collision on a
fixed beryllium target, producing π’s and K’s. Then, these mesons are focused by long
magnetic collimators and decay-in-flight. The polarity can be selected by the magnetic
field of the collimator, so that neutrinos and antineutrinos can be studied. This results
on a spectrum with maximum energy of 1250 MeV. In both modes neutrinos and an-
tineutrino, it was discovered an excess of electron-like events in the low-energy region.
This is compatible with the l/E ratio of the LSND result. Later in 2018, the significance
of the anomaly was corroborated to 4.7σ.

Interpretation of the anomalies

If the previous anomalies are interpreted as due to neutrino oscillations from active
to sterile neutrino states, the measured deviations allow us to determine the preferred
regions of the oscillation parameters. Fig. 2.5 shows the best regions obtained for the
different experiments previously mentioned.

The first two panels shows the allowed parameter space of the reactor and gallium
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Figure 2.5: Regions allowed for the different anomalies [29].

anomalies, respectively. The interpretation as sterile neutrino oscillations relies on
electron (anti) neutrino disappearance. They are sensitive to the mixing amplitude
sin2(2θ14), corresponding to the mixing matrix element Ue4, as well as the correspond-
ing mass square splitting ∆m2

41.

The lower panels shows the preferred region for the LSND and MiniBooNE experi-
ments where they looked for ν̄µ → ν̄e appearance searches. It can be seen that there is a
good agreement between the results in the panel (d). For this case, the effective mixing
angle corresponds to the product of mixing matrix elements |Ue4|2|U2

µ4|, also, the ob-
served ∆m2can be almost directly related to the νe disappearance anomalies. All four
are very well described under the (3+1) oscillation framework including the additional
sterile state. Comparing this with the mass eigenstates associated to the active flavors,
the preferred region for ∆m2

41 is large as of order of 1eV2.
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2.2.2 Vacuum oscillations in the presence of sterile neutrinos

Suppose that in addition to the three flavor eigenstates, there exist one extra single
neutrino state. Then as an extension we will have


νe(x)
νµ(x)
ντ(x)
νs(x)


L

= U


ν1(x)
ν2(x)
ν3(x)
ν4(x)


L

=


Ue1 Ue2 Ue3 Ue4

Uµ1 Uµ2 Uµ3 Uµ4

Uτ1 Uτ2 Uτ3 Uτ4

Us1 Us2 Us3 Us4




ν1(x)
ν2(x)
ν3(x)
ν4(x)


L

. (2.70)

The oscillation formula is the same as the one for oscillation between active states, given
in Eq.(2.49). For this case, the matrix can be parametrized by 6 mixing angles, 3 "Dirac
phases" and in the case of Majorana neutrinos, 3 additional "Majorana phases". The ad-
ditional mixing angles are denoted by θ14, θ24 and θ34. Also, it is possible to parametrize
the active-sterile mixing by the matrix entries Ue4, Uµ4 and Uτ4. We can write the 4x4
matrix as U = U34U24U14U23U13U12P, where Uij is a unitary rotation in the (i,j) plane
and P a diagonal matrix containing the Majorana phases, for the Dirac case P=1, from
which we have

Ue4 = s14, (2.71)

Uµ4 = c14s24, (2.72)

Uτ4 = c14c24s34. (2.73)

If we focus on the case in which the forth neutrino mass m4 >> m1,2,3 is well separated
from the other mass eigenstates, we get

∆m2
SBL ≡ ∆m2

41 ' ∆m2
42 ' ∆m2

43 >> |∆m2
31|, |∆m2

32|, ∆m2
21. (2.74)

where ∆m2
SBL represents the value reported by short-baseline experiments which is

around 1eV2. The spectrum of the case (3+1) in which m4 '
√

∆m2
SBL >> m1,2,3 is

favored with respect to the (1+3) case m1,2,3 '
√

∆m2
SBL >> m4 by cosmological consid-

erations, in the later case the sum of the masses would be much larger. For short base-
line experiment, we have the condition ∆m2

atmL/E << ∆m2
SBLL/E . 1 we can do the

approximation ∆m2
31 = ∆m2

21 = 0 which implies that ∆m2
43 = ∆m2

42 = ∆m2
41 = ∆m2

SBL.
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From this, we get that the survival probability is given by

P(να → να) = sin2 2θSBL
αα sin2

(
∆m2

41L
4E

)
, sin2 2θSBL

αα ≡ 4|Uα4|2(1− |Uα4|2), (2.75)

and for appearance probabilities

P(να → νβ) = sin2 2θSBL
αβ sin2

(
∆m2

41L
4E

)
, sin2 2θSBL

αβ ≡ 4|Uα4Uβ4|2. (2.76)

2.3 Non-unitarity

The understanding of neutrinos has changed over the years. Nowadays, we know that
these particles have mass, but the process from which they obtain it is one of the current
challenges of neutrino physics. One possibility is that its mass comes from mixing with
heavy-fermion states. These leptons can come in an arbitrary number. The mixture of
heavy leptons with the usual three neutrinos makes the mixing matrix a non-unitary
one since these states are not kinematically accessible.

For this thesis, we will relax the unitarity approximation and study its consequences.
We consider isosinglets neutrinos above 100 GeV, too heavy to participate in oscillations
or low-energy decay processes. We will see that current experiments involving electron
and muon neutrinos can be effectively described in terms of three real parameters and
one CP violation phase.

We will work with a representation of the mixing matrix, which factorizes the param-
eters associated with the heavy leptons from those describing oscillations of light neu-
trinos.

Now, we will show the effects of the heavy leptons couplings to the light states in the
light-neutrino sector. We can write the rotation matrix Unxn using Okubo’s notation
as [35]

Unxn = wn−1nwn−2n...w1nwn−2n−1wn−3n−1...w1n−1...w23w13w12, (2.77)
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where wij(i < j) stands for the usual complex rotation matrix

w13 =

 c13 0 e−iφ13s13

0 1 0
−eiφ13s13 0 c13

 , (2.78)

with sij = sinθij and cij = cosθij. This matrix can be expressed in general as

(wij)αβ = δαβ

√
1− δαiδβjs2

ij − δαjδβis2
ij + ηijδαiδβj + ¯ηijδαjδβi, (2.79)

where i < j and s2
ij = sin2θij, ηij = e−φij sinθij and η̄ij = −eiφij sinθij.

This expression can be decomposed as

Unxn = Un−NUN, (2.80)

with

UN = wN−1NwN−2N...w1N (2.81)

Un−N = wn−1nwn−2n...w1nwn−2n−1wn−3n−1...w1N+1. (2.82)

When working with more than three neutrinos, we can write Unxn as

Unxn = UNPUSM (2.83)

with

UNP = wn−1nwn−2n...w1nwn−2n−1wn−3n−1...w3n−1w2n−1w1n−1...w34w24w14 (2.84)

and
USM = w23w13w12. (2.85)
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The complete n× n matrix, Unxn may be written as

Unxn =

[
N S
V T

]
, (2.86)

where N is the 3× 3 matrix with the standard neutrino terms.

N can be parametrized as

N = NNPU3x3 =

α11 0 0
α21 α22 0
α31 α32 α33

U3x3, (2.87)

where U3x3 is the usual unitary form of the 3x3 leptonic mixing matrix.

From the previous considerations, the coupling of the n charged current interaction
states can be described by a rectangular matrix

K = (NS) (2.88)

The extra heavy fermions mixed with the light neutrinos would imply the effective
nonunitary of the 3x3 light neutrino mixing matrix. The unitary condition takes the
form

KK+ = NN+ + SS+ = I, (2.89)

NN+ =

 α11 α11α∗21 α11α∗31

α11α21 α2
22 + |α2

21| α22α∗32 + α21α∗31

α11α31 α22α32 + α31α∗21 α2
33 + |α31|2 + |α32|2

 . (2.90)

By considering this new matrix, we will see that for this case, if we consider the oscil-
lation of neutrinos between two active states, there will appear an oscillation effect at
zero distances which is a result of the non-unitarity of the neutrino mixing matrix. In
an analogous way, it is possible to obtain that the oscillation probability for this case is
the same as for the unitary case except for the first term
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P(ν̄α → ν̄β) = (2.91)

= |∑
i

NαiN∗βi|2 − 4 ∑
i>j

Re(N∗αiNβiNαjN∗βj)sin2(∆m2
ij

L
4E

) (2.92)

− 2 ∑
i>j

Im(N∗αiNβiNαjN∗βj)sin(∆m2
ij

L
2E

). (2.93)

To find the first term, we can see that the tern NN+ explicitly is

NN+ =


∑
i

NeiN∗ei ∑
i

NeiN∗µi ∑
i

NeiN∗τi

∑
i

NµiN∗ei ∑
i

NµiN∗µi ∑
i

NµiN∗τi

∑
i

NτiN∗ei ∑
i

NτiN∗µi ∑
i

NτiN∗τi

 . (2.94)

Now if we consider the case where the distances between the detector and the source
are very small, the terms with the sines will become zero. As a result, the value of
the oscillation probability for these zero distances won’t be zero, so the final oscillation
probability for each case is

Pµe = α2
11|α21|2, (2.95)

Pµµ = (|α21|2 + α2
22)

2, (2.96)

Pµτ = |α22α∗21 + α21α∗31|2. (2.97)

and for the case of the transition from electron neutrino, we find

Pee = α4
11, (2.98)

Peµ = (α11α∗21)
2, (2.99)

Peτ = |α11α∗31|2. (2.100)

These parameters need to obey the following triangular inequalities
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|α21| ≤
√
(1− α2

11)(| − α2
22), (2.101)

|α31| ≤
√
(1− α2

11)(| − α2
33), (2.102)

|α32| ≤
√
(1− α2

22)(| − α2
33). (2.103)

2.4 Neutrino electromagnetic properties

Neutrino electromagnetic properties were first mentioned in 1930 by Pauli when he
postulated its existence. In extended versions of the Standard Model with right-handed
neutrinos, the magnetic moment of massive neutrinos is not zero in general, and the
value depends on the neutrino mass. These properties are important because of their
connection to the fundamentals of neutrino physics. They can help distinguish between
Dirac and Majorana neutrinos. It is also helpful to prove physics beyond the Standard
Model since the only electromagnetic property expected in the SM for the neutrinos is
the charge radius. Also, discovering new electromagnetic properties would lead us to
new physics beyond the Standard Model [36–39].

We can describe the interaction between a fermionic field f(x) and the electromagnetic
field Aµ(x) with the Hamiltonian [40]

H( f )
em = j( f )

µ (x)Aµ(x) = q f f̄ (x)γµ f (x)Aµ(x) (2.104)

with q f the charge of the fermion. We do not have electromagnetic interactions with
neutrinos at tree-level since their charge is zero. However, we can have such interac-
tions from loop diagrams at higher order of perturbative expansion of the interaction.
The electromagnetic interaction of a neutrino field ν(x) in the one-photon approxima-
tion is described by the effective Hamiltonian

H(ν)
em = j(ν)µ (x)Aµ(x) = ν̄(x)Λµν(x)Aµ(x) (2.105)

where j(ν)µ (x) is the neutrino effective electromagnetic current four-vector and Λµ is a

4x4 matrix in spinor space, such that j(ν)µ (x) transforms as a four-vector. The Feynman
diagrams in Fig. 2.6 show the one-photon coupling of a neutrino.
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Figure 2.6: Tree-level coupling of a charged fermion with a photon and a neutrino with
a photon [40].

The Diagram in Fig. 2.6 includes charge and magnetic form factors. The neutrino part
of the diagram is considered by the matrix element

〈
ν(p f , h f )

∣∣ j(ν)µ (x) |ν(pi, hi)〉 , (2.106)

where pi(p f ) and hi(h f ) are the four-momentum and helicity of the initial (final) neu-
trino. This can be written as

〈
ν(p f )

∣∣ j(ν)µ (x) |ν(pi)〉 = ei(p f−pi)·x 〈ν(p f )
∣∣ j(ν)µ (0) |ν(pi)〉 . (2.107)

If we consider that the neutrinos are free particles described by free Dirac fields, we
have

〈
ν(p f

∣∣ j(ν)µ (0) |ν(pi)〉 = ū(p f )Λµ(p f , pi)u(pi). (2.108)

The electromagnetic properties of the neutrinos are included in the function Λµ(p f , pi),
which we can write in their most general form as

Λµ(p f , pi) = f1(q2)qµ + f2(q2)qµγ5 + f3(q2)γµ (2.109)

+ f4(q2)γµγ5 + f5(q2)σµνqν + f6(q2)εµνργqνσργ, (2.110)

where fk j(q2) are six Lorentz-invariant form factors and q is the four-momentum of the
photon. We know that the Hamiltonian and the electromagnetic field are Hermitian, so
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the effective current needs to be Hermitian too. From this, we can find that

Λµ(q) = γ0Λ†
µ(−q)γ0. (2.111)

From this, using the properties of the Dirac matrices, we can find the following con-
straints on the form factors

f2, f3, f4 → real, (2.112)

f1, f5, f6 → imaginary. (2.113)

These number of independent parameters can be reduced by imposing current conser-
vation. This is something required by gauge invariance, in which the Hamiltonian is
invariant under a transformation Aµ(x) → Aµ(x) + ∂µφ(x). This requirement implies
that

〈
ν(p f )

∣∣ [Pµ, j(ν)µ (0)] |ν(pi)〉 = 0, (2.114)

so in the momentum space, we have this constrain as

qµū(p f )Λµ(q)u(pi) = 0. (2.115)

This implies that

f1(q2)q2 + f2(q2)q2γ5 + 2m f4(q2)γ5 = 0. (2.116)

If we use the fact that γ5 and the unity matrix are linearly independent, we obtain

f1(q2) = 0, f4(q2) = − f2(q2)q2/2m. (2.117)

Therefore, in the most general case, we have the function Λµ(q) defined in terms of
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four form factors

Λµ(q) = fQ(q2)γµ − fM(q2)iσµνqν + fE(q2)σµνqνγ5 + fA(q2)(q2γµ − qµ/q)γ5, (2.118)

where fQ = f3, fM = i f5, fE = −2i f6 and fA = −2 f2/2m are the real charge, dipole
magnetic and electric, and anapole neutrino form factors. If we only consider the cou-
pling with a real photon (q2 = 0), we get

fQ(0) = q, fM(0) = µ, fE(0) = c, fA(0) = a, (2.119)

where q, µ, c, and a are, respectively, the neutrino charge, magnetic moment, electric
moment, and anapole moment. Finally, it is useful to note that for Majorana neutrinos,
the diagonal charge and dipole magnetic and electric form factors are zero. Anapole
form factor is the only possible diagonal non-zero term for Majorana neutrinos [40].
But they can have as many off-diagonal(transition) form factors as Dirac neutrinos.



Chapter 3

CEvNS

The first theoretical approach to Coherent elastic neutrino-nucleus scattering (CEvNS)
was made by Daniel Z. Freedman in 1974 [41] after an observation of a possible weak
neutral current neutrino-nucleus interaction. The interaction between a neutrino and a
nucleus may be complex, but if the momentum transfer is small enough, the internal
structure of the nucleus can be ignored. As a result, an enhancement of the scattering
cross-section, can be observed. In this section we will discuss this process and the
detectors capable of detecting it.

3.1 Theory

Despite its theoretical prediction in 1974, this process took more than four decades
to be detected. Its neutral-current nature implies that the only experimental signature
consists of nuclear recoils with very low energy of about eV to keV. Since measuring this
process is different for each detector technology, from now on, when we refer directly
to the energy of the nuclear recoil, we will use the term eVnr.

Neutral current neutrino-nucleus scattering occurs due to the exchange of a Z0 boson,
as seen in Fig.3.1. The CEvNS occurs when the neutrinos interact with two or more par-
ticles, and the particles amplitude in the target adds up. Consequently, the differential
cross section is proportional to the square of the number of particles in the target.

As a basic condition, the wavelength of the incident particle, or the wavelength of the
momentum transfer (q = |~q|), has to be very big compared to the nucleus or atom
radius (R), that is, qR << 1. CEvNS can be observed by measuring the very low recoil
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Z0

A

ν

A

ν

Figure 3.1: Feynman diagram of the neutrino-nucleus scattering. This process is neutral
current mediated by the Z0 boson.

energy of the nucleus (T). If E is the neutrino energy, we will have that T << E and the
momentum transfer can be approximated to q2 ≈ 2MT with M the nuclear mass and
Tmax ≈ 2E2/M [42]. The cross-section of this process is obtained in the Appendix and
is given by

dσ

dT
=

G2
F

4π
Q2

w|F(q2)|2M[1− T
E
− MT

2E2 ] (3.1)

Since the CEvNS is predicted in the Standard Model, it can be very useful to detect it
and test its validity; this process can be sensitive to other types of physics beyond the
Standard Model [43].

3.2 EvES

Electron-neutrino elastic scattering (EvES) is a process quite similar to CEvNS. In this
case, a neutrino scatters from an electron. For this process, the cross-section is given by

(
dσνα−e−

dEr

) f ree

SM
=

2G2
Fme

π

(
g2

L + g2
R

(
1− Er

Eν

)2

− gLgR
meEr

E2
ν

)
, (3.2)

where the left handed, gL = (gV − gA)/2 and right-handed, gR = (gV − gA)/2 are
expressed as

gV = −1
2
+ 2 sin2 θw + δαe, (3.3)

gA = −1
2
+ δαe, (3.4)
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in which α represents a neutrino flavor e, µ, or τ, and the δαe ensures that for any case
different from the electron, the only contribution is from the neutral current. This equa-
tion applies to free electrons. To consider binding effects, we weight the free EvES
cross-section using the step approximation

(
dσνα−e−

dEr

)
SM

=
1
Z

[
Z

∑
i=1

Θ(Er − Bi)

](
dσνα−e−

dEr

) f ree

SM
(3.5)

where Bi is the i-th atomic sub(shell) binding energy, and Θ is a step function. In this
manner, it is possible to quantify the impact of the atomic ionization.



50 CHAPTER 3. CEVNS



Chapter 4

Experimental setups for CEvNS

Despite the utility of CEvNS to probe the Standard Model, its experimental measure-
ment was not easy to realize due to the low recoil energies of the nucleus. The CO-
HERENT collaboration, whose primary objective was to measure CEvNS, observed
this process for the first time in 2017 using a CsI[Na] detector [44]. Up to date, there are
more experimental measurements and different experiments under construction which
aim to measure this process for different studies. The following chapter, introduces the
different experiments considered for the analysis. We will present all the important
details for each experiment, and in the next chapter, we will talk about the statistical
analysis used and the results for each case.

4.1 COHERENT COLLABORATION

As we mentioned, COHERENT COLLABORATION reported the first measurement of
CEvNS in 2017. They have already reported two new measurements, one using a LAr
detector [45] and the second using CsI [44]. For this reason, different subsystems are
considered in the present work. Here, we will explain the details of each experimen-
tal setup considered for the different physics analyses. We will mention each detec-
tor subsystem and specify its properties, such as mass, threshold, baseline, etc. The
COHERENT experiments consist of a set of four detectors capable of observing low-
energy nuclear recoils: a CsI[Na] scintillating crystal, p-type point-contact germanium
detectors, a single-phase liquid argon, and an array of NaI[Ti] crystals, located at the
Spallation Neutron Source(SNS) at Oak Ridge National Laboratory(ORNL). Before ex-
plaining each one of the detectors, let us introduce one of the most relevant aspects of
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the collaboration, the neutrino source.

π-DAR neutrino source

The Coherent Collaboration uses a process called pion decay at rest to produce neutri-
nos. In this process, protons are accelerated to high energies (hundred of MeV to GeV)
and collide with a target to produce hadrons. Some of these protons will produce a
large number of pions. These pions are focused into a decaying pipe. Some will de-
cay in flight (DIF) and transfer some of their momenta to the emitted neutrinos. On the
other hand, if the pions lose energy in a dense material, they will stop and decay-at-rest
(DAR). Here, negative pions are captured by nuclei.

The final neutrino production is from stopped pions with the decay π+ → µ+ + νµ

producing a prompt mono-energetic beam of 29.792 MeV of νµ [44]. On the other hand,
the µ+ produced in the pion decay decay-at-rest produces a ν̄µ and νe in the form µ+ →
e+ + ν̄µ + νe with a well-defined spectrum which is shown in Fig. 4.1. The respective
fluxes from 0 to 52.8MeV are given by [46]

dNνµ

dE
= ηδ

(
E−

m2
π −m2

µ

2mπ

)
,

dNν̄µ

dE
= η

64E2

m3
µ

(
3
4
− E

mµ

)
, (4.1)

dNνe

dE
= η

192E2

m3
µ

(
3
4
− E

mµ

)
.

The pion decays at τ = 26.033 ns, while the muon decays at 2.187 µs [47]. This dif-
ference in production time allows us to separate the neutrinos in prompt and delayed
beams. This can be seen in Fig. 4.2. It reduces the background by considering the timing
information for the expected neutrino flux for each time interval. For proton energies of
about 1 GeV, the decay-in-flight component is suppressed, resulting in a clean neutrino
flux. A dense material improves the likelihood of pions stopping before decaying. This
kind of neutrino source has been used in different experiments, but now we will talk
about what makes the SNS a specially good choice considering its properties.
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Figure 4.1: The energy spectrum of the neutrinos produced at the SNS is well defined
in the interval 0− 52.8MeV. The mono-energetic beam of νµ is represented as a vertical
line [48].

Spallation Neutron Source

The Spallation Neutron Source (SNS) located at Oak Ridge National Laboratory started
as a neutron source for different purposes in 2007. The SNS runs at 1 GeV proton en-
ergy and 1.4 MW beam power [47]. Hydrogen ions are accelerated through a linear
accelerator, losing their two electrons and passing a thin foil before entering an accu-
mulator ring. Around 1000 proton pulses are accumulated in the ring to create short
bunches of ≈ 1014 protons. These protons are directed to a liquid mercury target. Pro-
tons move around the accumulator ring about 262 meters each loop, and the time it
takes sets the maximum duration of the proton pulse on the target. The SNS generates
400 nanosecond bursts of protons on target at 60 Hz frequency, allowing good control
of the backgrounds and simultaneously measuring neutrino signals and backgrounds.

The neutrinos produced per flavor per proton on target are between 0.15 to 0.5 for
protons between 0.775 and 1.425 GeV. For 1 GeV protons at 1.4 MW, the predicted flux
is 4.7× 107cm−2s−1 at 20m from the target, with a 99% of the total flux from π+ DAR.
There is a plan for a second target station using solid tungsten as a target [47]. For this,
the power will increase to 2.8 MW, and the proton beam will be split into two targets,
one with 45 Hz and the other with 15 Hz, improving the steady-state background.
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Figure 4.2: Timing distribution of the neutrino flux [48].

Experimental program

The COHERENT collaboration consists of multiple detector subsystems. These detec-
tors have been implemented since their creation in 2014. The main objective of each de-
tector is to measure Coherent Elastic neutrino-nucleus Scattering (CEvNS) at the SNS,
but they also can be used for dark matter searches. Table 4.1 shows the different detec-
tors as well as their main properties, such as mass, technology, and distance from the
source.

Table 4.1: Current and future COHERENT detector subsystems [47, 49].
Target Technology Mass(kg) Distance(m) Date

Csi[Na] Scintillating crystal 14.6 19.6 2015
Pb,Fe Liquid scintillator 1000 19 2015

NaI[Ti] Scintillating crystal 185 21 2016
LAr Noble scintillator 24 27.5 2017
LAr Noble scintillator 612 27.5 proposed
D2O Cherenkov 600 600 2022
Ge HPGe PPC 18 21 2022

NaI[Ti] Scintillating crystal 3388 24 2022
CryoCsI Scintillating crystal TBD TBD proposed

There are different backgrounds that need to be considered in CEvNS detection. Any-
thing that may be detected as a signal of nuclear recoil is considered in this background.
We can separate this into two kinds of backgrounds, steady-state and beam-related. The
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steady-state background is anything that is not related to the production of the neu-
trino flux. This depends on the type of detector and its location, and the beam-related
background depends on the neutrino flux production. As we mention, the timing in-
formation of the SNS helps in the reduction of these backgrounds. The most important
backgrounds are due to neutrons generated during the neutrino flux production, which
can be divided into:

• Beam-related Neutrons(BRN). This background result from the neutrons produced
at the SNS that arrives in time with the beam. So it is important to shield the de-
tector from this and use a correct model to characterize it.

• Neutrino-induced Neutrons(NIN). Neutrinos from the beam may interact with
the shielding materials producing neutrons, these neutrons may be detected by
the CEvNS detector, and it is a non-negligible background

COHERENT measurements

The first ever measurement of CEvNS was performed by the COHERENT collaboration
using a 14.6 kg CsI[Na] scintillator exposed to the SNS. This process was observed at
a 6.7-sigma confidence level. The detector was deployed at a distance of 19.6 m from
the SNS target. Table 4.2 shows some of the parameters that are represented by a single
value.

Table 4.2: Parameters for the first measurement of CEvNS by COHERENT collaboration
using a CsI detector [48].

Parameter Unit Value
DEcay-at-rest neutrino production ν/ f lavor/SNSproton 0.08 ±0.008

SNS beam exposure GW-hr 7.47594
CsI[Na] quenching factor % 8.78 ±1.66

CsI[Na] light yield at 59.94 keVee PE/KeVee 13.348 ±0.019

The quenching factor is a particularly important parameter. It tells us the ratio be-
tween the energy measured from the electron-recoil process and the real energy from
the nuclear-recoil of the nucleus caused by the neutrino. This is especially useful since
the number of events is calculated using the nuclear-recoil energy, but the experimental
data is usually given in electron-equivalent energy or Photo-electrons. We can obtain
this magnitude by multiplying Tee by the light yield.
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Figure 4.3: Measurements for the determination of the quenching factor [48].

The efficiency represents the fraction of the total number of events that actually need to
be considered. This value depends on the energy of the photoelectron measured. For
this case, the acceptance efficiency is given by the equation [48]

f (x) =
a

1 + exp(−k(x− k0))
Θ(x− 5) (4.2)

where Θ(x) is a modified Heaviside step function with the parameters:

a = 0.6655+0.0212
−0.0384, (4.3)

k = 0.4942+0.0335
−0.0131, (4.4)

x0 = 10.8507+0.1838
−0.3995, (4.5)

with the function defined as

0, x < 5, (4.6)

0.5, 5 ≤ x < 6, (4.7)

1x ≥ 6. (4.8)
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Figure 4.4: Acceptance efficiency curve for the CsI[Na] detector [48].

Fig 4.5 shows the experimental data obtained for these measurements. With all the con-
siderations mentioned and after a likelihood analysis, the observed number of events
was 134± 22, and the SM prediction was 173± 48. The systematic uncertainties con-
sidered were [50] 5% for signal acceptance, 5% form factor, 10% neutrino flux, and 25%
quenching factor for a total of 28%.

Figure 4.5: 2-D data from for coincidence region. The data is reported in both photo-
electrons and Arrival time [48].

Later on 2020, a new measurement was reported by COHERENT using a LAr detec-
tor called CENNS-10, which consists of an active mass of 24 kg single-phase argon
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detector, deployed at a distance of 27.5 m from the SNS target. This detector can sup-
press background by pulse-shape discrimination, distinguishing between nuclear re-
coils from electronic recoils. The Quenching factor for this detector reduces its uncer-
tainty with respect to the CsI one, as the relation is given by [45]

QF = (0.246± 0.0006) + ((7.8± 0.9)× 10−4keVnr−1)T, (4.9)

Figure 4.6: Quenching factor for the CENNS-10 experiment [45].

the fit and error bands are shown in Fig. 4.6. The analysis was performed with 13.7×
1022 protons-on-target by two independent groups, and both of them observed an ex-
cess of more than 3σ over the background. The results are shown in Fig. 4.7, and the
detectors keeps collecting data for more precise results.

Figure 4.7: Best fit for one of the analysis on reconstructed energy [45].

Finally, on 2021, new results with more data collected were reported by the COHER-
ENT collaboration using the previous CsI detector. This was more than double the data
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previously reported with reduced systematic uncertainties and an updated quenching
factor model. The new analysis resulted in an observation of 306± 20 CEvNS events,
which is consistent with the prediction of 341± 11 and is shown in Fig. 4.8.

Figure 4.8: Results from the new data obtained for CsI detector. For each plot the excess
counts are represented in bins that have a width of two PE each. The events for each
flavor of the neutrinos are shown [45].

After we have discussed the most important experiment regarding CEvNS, we will
mention more experiments under construction that aim to measure CEvNS with differ-
ent technologies and configurations. When we talk about the sensitivity obtained for
each type of physics we will talk in more detail about the analysis performed for each
case.

4.2 Coherent Captain Mills and European Spallation Source

Coherent "CAPTAIN" Mills (CCM) is a short baseline neutrino experiment located at
Los Alamos National Laboratory in the Lujan FAcility. This experiment plans to detect
neutrinos via CEvNS using a liquid Argon detector. This is a Cryogenic Apparatus for
Precision Test of Argon Interaction with neutrinos. For this experiment, the neutrino
source is produced just as in the case of the SNS, the difference is that, in this case, the
target is made of tungsten. This experiment plans to install a large 7 ton liquid argon
detector with an expected threshold of 1keV. This will be placed 20m from the source
with the goal of searching for sterile neutrinos.
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The European Spallation Source(ESS) which is located in Lund, Sweden, is a European
Research Infrastructure Consortium(ERIC) constructed with the most powerful neu-
tron source in the world. There is no official information ab the exact configurations
that the experiment will consider, but for this work, we follow two proposals: i) a 10kg
liquid argon detector with ultra-low 0.1 KeV threshold, ii)a 1ton liquid argon detector
with 20 KeV threshold, both of them located at 20m from the source.

The main difference between ESS, SNS, and CCM is the power reached in each experi-
ment. The CCM is scheduled to reach 5MW with a goal energy of 2 GeV by 2023, SNS
aims to reach 1.3MW, and the CCM 80kW. As a result, a magnitude increase of about
one order in the ESS neutrino flux with respect to SNS is expected. Although the power
of the proton beam at Lujan is 1-2 orders of magnitude smaller than in SNS and ESS,
in contrast to the other two, the CCM experiment can deploy very large ton-scale de-
tectors. Another big difference is that of the proton beam pulse timing. For the SNS,
it provides 60 Hz of 1 µ wide proton on target spills, while for ESS, we have a 14 Hz
fo 2.8ms spills, reducing the relative capability of separating the neutrino flavors with
timing information.



Chapter 5

Experimental setups for EvES

The nature of electron-neutrino scattering allows us to study some of the physics con-
sidered in this thesis with experiments that can measure this process. There is not
much difference between this process and CEvNS, so making an analysis using EvES
experiments is a straightforward process. We will see that the region covered by this
experiment is different from the one of CEvNS, so this is useful as a complement.

XENON1T

The XENON1T experiment reported results from searches with low-energy electron
recoil [51]. We considered this experiment primarily to calibrate our computations with
previous studies of these results. But we also observed the effect of including the step
function correction commented on Eq. (3.5), which was not used in previous works.

TEXONO

TEXONO collaboration has already reported a measurement of EvES using reactor neu-
trinos at the Kuo-Sheng Nuclear Power Station with a CsI[Ti] scintillating crystal array
[52]. The mass of the detector was 187 kg with an average ν̄e flux of 6.4× 1012cm−2s−1.
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51Cr Source

Besides using the different neutrino sources previously discussed. We explored dif-
ferent prospects using a low-energy monochromatic νe

51Cr source for both EvES and
CEvNS. For EvES we examined a LXe detector with three different configurations. The
important parameters of each case are resumed in Fig. (5.1). The cylindrical LXe detec-
tor is at 1 m from the source. It has a height and diameter of 1.38m, corresponding to a
6 tonnes mass.

For CEvNS we focused on a proposal previously done [53] with various detectors with
different sub-KeV capabilities. We considered a cylindrical 2000 cm3 detector for dif-
ferent targets, with materials such as Si, Ge, sapphire (Al2O3) and calcium tungstate
(CaWO4). The detector will be placed at 25 cm from the source, with an average neu-
trino flux of 1.1× 1013cm−2s−1. For this case we consider a fixed threshold of 8eVnr,
and for the neutrino flux we need to consider for different contributions with neutrino
energies (427, 432, 747, 752) keV from the 51Cr decay, with a relative strength of 9, 1, 81,
and 9 % with an exposure time of 55.4 days.

Figure 5.1: 51Cr decay process [53].



Chapter 6

Experimental results

In this section, we will show all the different analyses we performed for each new
physics scenario in their corresponding experimental setup. We will explain how we
performed the statistical calculation for each case and show the plots obtained. For
each subsection, we show the results for the corresponding beyond the standard model
physics from all the experiments that we studied.

6.1 Sensitivity to weak mixing angle and nuclear physics

The weak mixing angle parameter is one of the most important parameters of the SM,
and any deviation from its prediction will be an indicator of new physics. With this
motivation, we performed a χ2 analysis of this parameter for three future configura-
tions of the COHERENT experiment and for the actual experimental results obtained
with the Liquid Argon detector.

First, for the future configurations we used a χ2 function given by

χ2 =

(
Nexp − (1 + α)Nth(X)− (1 + β)Nbg

σ

)2

+

(
α

σα

)2

+

(
β

σβ

)2

(6.1)

where Nexp is the measured number of events, which we will consider as the one given
by the SM since we are working with futuristic experiments; Nth(X) is the predicted
number of events as a function of the weak mixing angle; Nbg is the expected back-
ground which we will consider to be 10% of the predicted number of events; the statis-
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tical uncertainty given by σ = Nexp; finally, the nuisance parameters α and β will have
the uncertainties σα and σβ, respectively.

The final results are shown in Fig. 6.1 and summarized in table 6.1. We present four
different scenarios for each detector material. Each one considers different systematic
uncertainties to illustrate what would be the sensitivity to this parameter. We can see
that a first measurement with a big uncertainty will lead to large errors due to normal-
ization and quenching factors, among other systematic uncertainties.
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Figure 6.1: Expected sensitivity to sin2 θW for the different detectors under consider-
ation: Germanium, Argon, and NaI, respectively. The different curves are for a 100 %
efficiency and no systematic errors (solid), for a systematic error of 5 % (dashed), 15 %
(dashed-dotted), and 30 % (dashed double-dotted). Finally, the case of an efficiency of
50 % and no systematic error is also shown (dotted line) [54].

The first scenario of σ = 30% is similar to the first measurement reported by the CO-
HERENT collaboration. A case with σ = 15% is more realistic after the detectors are
better characterized, and the background is reduced. A case with σ = 0 is also dis-
played to see what may be the best possible results and to have a better idea of the
potential of each detector. Finally, a scenario with an efficiency of 50% and σ = 5% is
also shown. For all the previous cases, except for the case of no error, we considered
a background error of σ = 10%. Table 6.1 shows the expected sensitivity at 90 % C.L.
As expected, the detector with the larger mass, such as the NaI case, will give the best
constraints, considering that the systematic errors must be under control. But also, the
Ge detector, with its modest mass of 10 kg, may give competitive measurements for
this parameter if the errors are well controlled.

Now, we will work with actual measurements obtained from the COHERENT collab-
oration. These results were obtained after the publication of the previous results. The
measurements are from the CENNS-10 experiment, which is a LAr detector with a mass
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Experiment 50 % eff 100 % eff σsyst = 5 % σsyst = 30 %
Ge 5.9 4.2 5 20
Ar 1.2 0.9 3 19
NaI 1.0 0.7 3 19

Table 6.1: Expected sensitivity, in percent, to the weak mixing angle. For each experi-
ment we show the 1σ expected sensitivity in the case of a 50 % (100 %) efficiency of the
experiment. For a non-zero systematic error of 5 (30) %, the efficiency was considered
to be of 100 %.

of 10 kg. For this, we used the following χ2 function

χ2(X) = min
α

(
(Nmeas − Ntheor(X)[1 + α])2

σ2
stat

+

(
α

σα

)2
)

(6.2)

where Nmeas represents the 159 events measured and Ntheor(X) is the theoretical predic-
tion. For this case we got, σstat =

√
Nmeas + NBRN, where NBRN = 563 is the number

of background due to beam related neutrons. Finally, the systemic error is σα = 8.5%.
The result obtained is shown in Fig. 6.2 with a comparison to the previous result from
the CsI detector, which can be seen that it is a notable improvement. With this, we can
obtain that the result from the CENNS-10 data is

sin2 θW = 0.258+0.048
−0.050. (6.3)

Figure 6.2: Sensitivity for the weak mixing angle. Results of CsI and LAr for compari-
son [55].
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Finally, another parameter that can be obtained from this data is the neutron mean
radius Rn for the Argon isotope. This parameter is predicted theoretically with a value
of Rn = 3.36 f m. Still, its determination helps to better understand the background for
CEvNS for experiments that aim to detect Dark Matter. The analysis for this parameter
is shown in Fig. 6.3. The average neutron rms radius for the CsI is also displayed just
for convenience. Note that Rn for Argon is more constrained with respect to the CsI. In
the end, the limit at 90 % C.L. for the rms radius of Argon is

Rn < 4.33 f m. (6.4)

Figure 6.3: Sensitivity to the neutron rms radius [55].

6.2 Sensitivity to sterile neutrino oscillations

In this section, we study the possibility of measuring the neutrino oscillations param-
eters. First, we make this analysis for the NaI, LAr, and Ge detectors with the first
considerations proposed by the COHERENT COLLABORATION. For this case, the ex-
pected number of events at each detector is given by

Nth = ND

∫
T

A(T)dT
52.8MeV∫
Emin

dE ∑
α

dNα

dE
dσ

dT
(6.5)
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Table 6.2: Experimental setups considered for the first analysis from the COHERENT
collaboration detectors

Threshold Baseline Det. Tec. Fid. Mass
72Ge 5keV 22m HPGe PPC 10kg

23Na127 I 13KeV 28m Scintillator 2000kg
40Ar 20keV 29m Liquid Scintillator 1000kg [1ex]

In order to find the number of events, we need to consider the correct parameters for
each experimental configuration. The number of N and Z, and the acceptance function
must be in accordance with the detector used. In a previous chapter, we discussed the
experimental setups we would consider. Some of the proposals have changed over
time, so we will give the exact parameters used at the moment when needed. For
this first approach, we used the setups resumed in Table. 6.2. From this, one of the
parameters that will change for each case is the number of protons on target

N =
NAMdet

M
, (6.6)

where NA is the Avogadro Number, Mdet is the mass of the detector, and M is the molar
mass of the material.

Once we have the theoretical number of events, we perform a likelihood analysis using
a χ2 function. The form of this function will vary over each experiment and the physics
under consideration, so that we will specify it in each case. For the present analysis, we
will use a least-squares function given by

χ2 =

(
Nexp − (1 + α)Nth(X)− (1 + β)Nbg

σ

)2

+

(
α

σα

)2

+

(
β

σβ

)2

, (6.7)

Nexp and Nth are, respectively, the experimental and theoretical number of events in
each bin; α and β are nuisance parameters that quantify the systematic uncertainty of
the signal rate, with a standard deviation that may vary for different cases. Since these
experiments are still in installation, we don’t have experimental data to compare and
analyze the possible values for the oscillations parameters. The theoretical number of
events will be given by taking the SM interactions of the neutrinos with the detector.
On the other hand, the experimental number of events will be calculated considering
the neutrino oscillations from the source to the detector. This effect will be considered
in a 3+1 scheme in which one sterile neutrino is considered. This is possible due to
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the short distance from the neutrino source to the detector. By neglecting oscillation
between the three active states, the oscillation probability from active to sterile states
can be studied in a two-flavor approximation

Pνανs = sin2 2θαβ sin2

(
1.27∆m2

i4L
Eν

)
. (6.8)

We will consider two different cases. First, the νe → νs oscillation and then the cor-
responding case for muon (anti)neutrinos. That is, we only consider either sin θee or
sin θµµ different from zero at a time and compute its effect in the electron (muon) neu-
trino number of events. To take into account the possible sterile neutrino oscillation,
we consider the survival probability as

Pα = 1− sin2 2θαα sin2

(
1.27∆m2

i4L
Eν

)
. (6.9)

After multiplying the oscillation probability by the neutrino flux and integrating it over
the neutrino energy spectrum, the expected number of events in these two cases will
be given by

Nth = ND

∫
T

A(T)dT
∫ 52.8MeV

Emin

dE ∑
α

dNα

dE
Pα(θαα, ∆m2

i4)
dσ

dT
, (6.10)

With these considerations, the chi-squared function will be calculated using Eqs. (6.5)
and (6.10) as the theoretical and experimental number of events, respectively. In this
case, since neutrino oscillation probability is a function of two variables ( sin2 2θαα, ∆m2

i4),
we will take the χ2 function as the one described in Eq. (6.7) with Nth(X) = Nth(sin2 2θαα, ∆m2

i4)

as in Eq. (6.10).

Table 6.3: Significance for different number of parameters
Significance Number of parameters

α 1 2 3
0.68 1 2.30 3.50
0.90 2.71 4.61 6.25
0.99 6.63 9.21 11.30

The confidence limits are given as a function of the number of varying parameters and
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summarized in Table 6.3.

In Figs. 6.4 and 6.5, we show the sensitivity to the allowed regions of the parameters
sin2 2θαα and ∆m2

i4 for the different systematic errors and efficiencies that we have al-
ready discussed. The results are shown at 90 % CL.

Figure 6.4: Expected sensitivity for muon neutrino oscillation into a sterile neutrino
state for each experiment under consideration: Gr (left), Ar (middle), and NaI (right),
respectively. The different curves are for different combinations of the considered un-
certainties [54].

The material that presented the best sensitivity in the delimitation was the very massive
NaI detector, thanks to the large number of events that are expected. The difference
between the argon and germanium expectations was limited; however, the germanium
showed a better result with respect to the Argon, despite being a less massive detector.

From the analysis carried out, we can conclude that of the three proposed materials, the
one that could present the best results according to the given conditions is the NaI. We
can also conclude that the increase in mass is not the only important factor in improv-
ing the sensitivity of the results. This way, NaI can be considered the best candidate for
future experiments focused on oscillations to sterile states. Among the considerations
that could be improved for the analysis presented here is the acceptance taken for each
material. Although we consider it as a step function from the energy threshold in these
cases, this is not the reality, as can be seen in the case of acceptance for the CsI. In addi-
tion, the distance to each detector could have been varied to study if it could improve
the sensitivity. Finally, the study could be done by combining the detectors to improve
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Figure 6.5: Expected sensitivity for electron neutrino oscillation into a sterile neutrino
state for each experiment under consideration: Gr (left), Ar (middle), and NaI (right),
respectively. The different curves are for different combinations of the considered un-
certainties [54].

the sensitivity of the final results.

It should be mentioned that the results presented here do not plan to be competitive
in the current delimitation of the parameters used but rather to give an idea of how
the results of the COHERENT experiment could be used in the area of sterile neutrino
oscillations.

For the previous results, we used a fixed distance of the detector to the source that
was established by the experimental proposals. But we mentioned that the oscillation
probability is a function of this distance, so there must be a value that gives the best
results because the oscillation probability is at maximum. This analysis can be pushed
further by studying the effect of varying the distance to each detector. For this study,
we will consider the CCM, the ESS with two configurations, one with 10kg and one
with 1 ton of mass, and the CENNS-610, which corresponds to the LAr detector from
the COHERENT COLLABORATION but with a mass of 610 kg. For the ESS, the 1-ton
configuration is to be considered more like an ideal case since it is not a real considera-
tion for the experiment at the moment. But the high intense neutrino beam motivated
us to consider also this case.

First, we explore the best baseline for light sterile neutrino searches. For this, we fix the
important parameters for this process, that is ∆m2

41 = 1eV2 and sin2 θ2
14 = 0.1 for the
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Table 6.4: Experimental setups considered
CENSS CCM ESS

mass 610 kg 7 ton 10kg(1 ton)
threshold(keVnr) 20 1 0.1(20)

NPOT(1023/yr) 1.5 0.177 2.8
r 0.08 0.0425 0.3

baseline (m) 28.4 20 20

electron neutrino and sin2 θ2
24 = 0.1 for the muon neutrino. With this, we evaluate the

following χ2 as a function of the baseline L

χ2 =

(
NSM − Nnew√

NSM

)2

, (6.11)

where NSM is the number of events expected in the SM case, and Nnew is the number
of events with the extra contributions, which for this case is the neutrino oscillation
process.

Figure 6.6: (left) sensitivity with respect to the baseline L for a fixed mass splitting
∆m2

41 = 1eV2 for sin2 2θ14 = 0.1 for both νe and νµ. (right) sensitivity with respect to
the mass splitting ∆m2

41 for a fixed value of L = 30m and sin2 2θ14 = 0.1 [56].

The results obtained with this study are shown in Fig. 6.6. Here. we can see a com-
parison of the experiments. Note that the ESS with a mass of 1 ton is on a different
plot due to the big difference with respect to the other three in Fig. 6.7. We also show
the sensitivity to the distances for electron and muon neutrinos separately to see each
contribution. In all cases, the maximum sensitivity is around L = 30m, which is close to
the baseline considered in each experiment. From these plots, we also see that we can
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expect the best results from CENNS and CCM and also that we get better results for
muon-like events. We get very similar sensitivities for CENNS and CCM despite the
large difference in their masses. This is explained by the high neutrino flux available
from the SNS, which can compensate for the low mass with respect to the CCM. Also,
considering a 1-ton mass on the ESS combined with its very intense neutrino beam can,
of course, give a better result that all the previous considerations.

We also found it useful to study the sensitivity of these experiments to mass splittings.
For this, we fixed sin2 2θ14 = 0.1 or sin2 2θ24 = 0.1 and the baseline at L = 30m. With
this, we confirm that CENNS and CCM have better performance, and also, we get a
better sensitivity with muon-like events. For our chosen values of the mixing angle, the
best mass splitting values are at 1.5 and 6 eV2

Figure 6.7: same as Fig. 6.6 for the future ESS of 1 ton detector [56].

Now we can find the sensitivities to the sterile neutrino oscillation parameters. For
this, we simultaneously vary the mixing angle sin2 2θi4 and the mass splitting ∆m2

42 for
different baselines. For each case in Fig. 6.8, we find the curves at 90% C.L. The results
are quite promising. We can observe overall the same behavior that we observed when
varying only the distance and the mass splitting. The future configuration of the ESS
may become competitive with current oscillation studies.

Finally, the CENNS-610 is the experiment that gives us more information about its
planned configuration, so for this case, we can go a little further and perform a more
realistic analysis considering the expected baseline of 28.4 m and adding a systematic
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Figure 6.8: 90 % C.L. sensitivity curves for different baselines and experiments [56].

uncertainty. So for this case the χ2 is calculated as:

χ2 = mina

(
(NSM − Nosc(1 + a))2

(σstat)2 +

(
a

σsys

)2
)

. (6.12)

The regions obtained for this are shown in Fig. 6.9 with σsys = 2% and σsys = 5%.

Figure 6.9: Sensitivity for the CENNS-610 to the parameters with a baseline of L = 28.4
m [56].
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6.3 Non- unitarity

As mentioned in previous sections, the unitarity violation in neutrino oscillations due
to the presence of neutral heavy leptons may be detectable in experiments that detect
neutrino through a neutral current. CEvNS represent a good approach for this kind of
new physics as, shown for sterile neutrinos. In this section, we focus on the next gener-
ation of detectors subsystems of COHERENT, namely CENNS, as well as on Coherent
Captain-Mills (CCM) experiment at the Los Alamos Neutron Science Center-Lujan fa-
cility and on the CEvNS program developed at the European Spallation Source(ESS).
We take the same considerations as the previous analysis.

First, we will discuss the CENNS detector of the COHERENT experiment at the SNS.
This detector aims to replace the CENNS-10 detector with which the first detection of
CEvNS in argon was made. This configuration is planned to contain a 750kg (610kg
fiducial) liquid argon scintillation detector, with a 20 KeV threshold and a baseline of
28.4m.

There are two more proposals that we considered for this case since they are planning to
measure CEvNS in similar ways, such the as COHERENT collaboration. The first one
is the proposed CCM experiment located at Los Alamos National Laboratory, in the
Lujan facility. For this experiment, it is planned to install a very large 7 ton liquid argon
detector, with an expected threshold of 1 keV. This detector is planned to be placed 20m
from the source to reach for sterile neutrinos. The second experiment is the ESS located
in Lund, Sweden. This combines the world’s most powerful superconducting proton
linac with an advanced hydrogen moderator, generating the most intense neutron beam
for different purposes.

With this proposal, we will consider two different configurations, the first one consid-
ered with a 10kg liquid argon detector with ultra-low 0.1 KeV threshold, and a future
next-generation configuration with 1 ton liquid argon detector and a 20 KeV threshold,
both of them are located at 20m from the detector.

The major difference between ESS, SNS, and Lujan facilities is the neutrino flux pro-
duced in each case. Since ESS is scheduled to reach a power of 5 MW with goal energy
of 2GeV by 2023, while SNS (Lujan) will have a power of 1.3 MW, there will be a differ-
ence of about one order of magnitude enlargement in the ESS flux with respect to SNS.
Finally, it is worth mentioning that in contrast to SNS, the CCM experiment can de-
ploy a very large ton-scale detector. This compensates for the 1-2 orders of magnitude
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difference in the proton beam power with respect to SNS and ESS.

As we mentioned, the existence of heavy lepton neutrinos affects the unitarity of the
mixing matrix. As a result, we get a zero-distance effect oscillation probability. These
probabilities are

Pee = α4
11, (6.13)

Pµµ = (|α2
21|2 + α2

22)
2, (6.14)

Pµe = α2
11|α21|2, (6.15)

Peτ = α2
11|α31|2, (6.16)

Pµτ = α2
22|α32|2. (6.17)

It is important to mention that these parameters must obey some triangle inequalities

|α21| ≤
√
(1− α2

11)(1− α2
22), (6.18)

|α31| ≤
√
(1− α2

11)(1− α2
33), (6.19)

|α32| ≤
√
(1− α2

22)(1− α2
33). (6.20)

This oscillation probability will affect the initial neutrino flux that comes from the spal-
lation source. As a result, the modified fluxes will look like this

dφNU
e

Eν
=

dφNU
νe

dEν
+

dφNU
ν̄e

dEν
= Pee

dφ0
νe

dEν
+ Pµe

(
dφ0

νµ

dEν
+

dφ0
ν̄µ

dEν

)
, (6.21)

dφNU
µ

dEν
=

dφNU
νµ

dEν
+

dφNU
ν̄µ

dEν
= Peµ

dφ0
νe

dEν
+ Pµµ

(
dφ0

νµ

dEν
+

dφ0
ν̄µ

dEν

)
, (6.22)

dφNU
τ

dEν
=

dφNU
ντ

dEν
+

dφNU
ν̄τ

dEν
= Peτ

dφ0
νe

dEν
+ Pµτ

(
dφ0

νµ

dEν
+

dφ0
ν̄µ

dEν

)
, (6.23)

where the terms with super index 0 represent the un-oscillated neutrino energy fluxes
given in previous sections.
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Note that there will be an additional tau neutrino flux for this case due to the zero-
distance effect. Also, this oscillation probability will change the initial energy spectrum
of the fluxes. Fig. 6.11 shows the energy spectrum for the initial case and the energy
spectrum for the fluxes considering the zero-distances oscillation. As we can see, the
effect on the νe and νµ have a noticeable change with respect to the initial one, on the
other hand, the new τ neutrino flux is two orders of magnitude smaller with respect to
the other ones, so it is possible to ignore this flux for the present calculations.
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Figure 6.10: Neutrino flux as expected from a π-DAR source (solid line) compared with
the excepted flux when considering the zero distance effect (dashed line) [56].

Now we will present an estimate on the prospects for probing the unitarity violating
parameters at the future liquid argon detectors. We will do the same analysis using the
χ2 function, but since we do not have information about the different uncertainties of
each detector, we consider a reduced χ2 analysis in the form

χ2 =

(
NSM − Nnew√

NSM

)2

. (6.24)

For definiteness, we will focus on detecting electron and muon neutrinos, so the only
relevant parameters become α11, α21, and |α21|. First, we only vary one parameter at
a time and marginalize the other two. It is necessary to consider the triangular in-
equalities that exclude some combination of parameters. Fig. 6.11 shows the sensitivity
profile for future CEvNS experiments considering the diagonal parameters α11 and α22.
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We can compare these sensitivities with those derived from global neutrino oscillation
data. This is represented in the vertical dashed line. It is possible to see that the CEvNS
future experiments, such as CCM and ESS, may become competitive with the current
searches. For both cases, the ESS experiment considering 10 kg of mass detector won’t
be competitive since the intersection at 90% C.L. is more to the left than the vertical
line. This is the same for CENNS for both parameters. But, for the case of CCM and
the future perspective of ESS with 1 ton detector, it may be possible to improve with
respect the current oscillation results.

Figure 6.11: Sensitivity to the diagonal parameters α11 and α22. For comparison we
show the sensitivity obtained from global oscillation data [56].

Fig. 6.12 shows the analysis for the case of the modulus of the non-diagonal parameter
α21. Again we compare the results with the upper limits obtained from global oscil-
lation fits and also with the sensitivity of future ICARUS data. For this case, CEvNS
experiments can not be competitive with the current bounds, but it is still possible to
significantly improve the situation.

We consider possible backgrounds and systematic uncertainties in the calculation for
a more realistic approach. Now we explore the projected sensitivities assuming a χ2

function but considering uncertainties in the following way

χ2(α11, |α21|, α22) = mina

(
(NSM − NNU(α11, |α21|, α22)(1 + a))2

(σstat)2 + (
a

σsys
)2
)

, (6.25)

where the statistical uncertainty is defined as σstat =
√

NSM + Nbg, and the number
of background events are taken to be Nbg = 10%NSM. In this case, a denotes a total
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Figure 6.12: Sensitivity to the non-diagonal parameter |α21|. The left panel shows the
results with no systematic uncertainties and the right panel the systematic uncertainties
for the CENNS-610. [56]

normalization nuisance parameter accounting for the systematic uncertainty. For this
case, we consider only σsyst = 2%, 5%. The right panel of Fig. 6.12 shows that there
may be a reduction in the sensitivity of around 2-4 times with respect to the ideal case,
the same maintain for the rest of the experimental setups.

Finally, it is possible to perform a combined χ2 analysis by simultaneously varying two
NU parameters, and marginalizing over the third one. The analysis for the three ex-
periments, CENNS, CCM, and ESS, are presented in the next figure. In this case the
triangular inequalities that allow only certain values of the NU parameters are more
evident. In both cases, the values below the dashed line represent the physically possi-
ble values. The dark-shaded areas in both α11− |α21| and α22− |α21| planes are allowed
at 90% C.L. The final possible values for the parameters are determined by the intersec-
tion of the gray shaded areas with the allowed region determined by each experiment.
From this, it is clear that CENNS and CCM have the potential to probe part of the cur-
rently allowed parameter space. But again, the most promising experimental setup is
provided by the next phase of ESS.
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Figure 6.13: Allowed regions at 90 % C.L. in the planes α11 − |α21| (left) and α22 − |α21|
(right). The gray shaded represents the bound given by the triangular inequalities pre-
viously mentioned. The upper panel is for the CENNS, CCM, and ESS (10kg) experi-
ments, and the lower panel for the ESS (1ton) [56].

6.4 Neutrino Magnetic Moment

Now we will finish this section with the results obtained from the electromagnetic prop-
erties of the neutrinos. In this case, we used both CEvNS and EvES to find the sensi-
tivity to the so-called dipole neutrino portal. First, we assume the neutrino magnetic
moment as an effective parameter. Fig. 6.14 shows a summary of our results for all the
experiments considered at 90 % C.L. The result for XENON1T for the transition νµ → νs

and νe → νs are shown here for comparison.

For the case of COHERENT, we used the CsI and LAr detector measurement data. For
the CsI-detector, we considered a mass of 14.57 kg and a light yield LY = 13.348PE/KeVee
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Figure 6.14: Sensitivity of CEvNS and EvES experiments to the effective sterile neutrino
transition magnetic moments [57].

to convert the signal into photoelectrons (PE). The statistical analysis was performed
using a χ2 function

χ2(S) =
15

∑
i=4

Nexp
i − NCEvNS

i (S)[1 + a1]− Bi
0n[1 + a2]√

Nexp
i + B0n

i + 2Bss
i

2

+

(
a1

σa1

)2

+

(
a2

σa2

)2

(6.26)

where Nexp
i and NCEvNS

i are the measured and theoretical number of events in each
bin. For this analysis, we only focused on the 12 bins from i = 4 to i = 15, which
corresponds to 6 ≤ PE ≤ 30. B0n

i is the beam-on prompt neutron background, and
Bss

i is the steady-state background from the AC-ON data. The nuisance parameters a1

and a2 quantify the systematic uncertainties of the signal and the background, with
σa1 = 12.8% and σa2 = 25%.

Analogously, for the LAr, we used the 24 kg mass CENNS-10 detector subsystem. First
we evaluated the expected signal in keVee with the reported quenching factor QF =

0.246 + 7.8× 10−4keV−1
nr . Then we convert the signal to reconstructed energy using a

normalized Gaussian function with a resolution power σ
E = 0.58√

E(KeVee
. The χ2 function

used for this case reads as follows
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χ2(S) =
12

∑
i=1

(Nexp
i − ηCEvNSNCEvNS

i (S)− ηPBRNBPBRN
i − ηLBRNBLBRN

i )2

(σ
exp
i )2 + [σBRNES(BPBRN

i + BLBRN
i )]2

(6.27)

+

(
ηCEvNS − 1

σCEvNS

)2

+

(
ηPBRN − 1

σPBRN

)2

+

(
ηLBRN − 1

σLBRN

)2

For this case, we consider the 12 bins in the range of [0, 120] KeVee of the reconstructed
energy, with each bin of 10 KeVee sizes. Nexp

i denotes the measured signal with uncer-
tainty σ

exp
i , BRNES is the Beam Related Neutron Energy Shape, while PBRN and LBRN

are the Prompt and Late Beam Related Neutron Background data, with σPBRN = 32%
and σLBRN = 100%. The BRNES uncertainty is 1.7%, and the systematic uncertainty of
the signal rate is 13.4%.

This data rules out the region with µνµ ≥ 3 × 10−9µB and m4 ≤ 40MeV, and we can see
that the CsI detector is a little better in comparison with the LAr detector. Since these
experiments are under improvement, we also performed the analysis for the next gen-
eration CENNS-750 detector with 610 kg fiducial mass and 3 years of data acquisition.
These experiments increased little bit the region compared with the experimental data
available.

Now for the case of EvES, the restrictions come from the TEXONO experiment, which
reported measurements of EvES using a 187 kg CsI(Ti) detector. The χ2 function used
for the analysis of this is given by

χ2 =
10

∑
i=1

(
Nmeas

i − Nnew
i (S)[1 + a]

σstat
i

)2

+

(
a

σsys

)2

, (6.28)

with Nmeas
i the detected events. We considered the reported 10 bins distributed over the

energy range [3, 8] MeV with their associated errors. The systematic uncertainties are
σsys = 20%. From here, µν̄e ≥ 3× 10−10µB is excluded. This means that the constraint
is improved by an order of magnitude for the neutrino dipole moment coupling with
respect to COHERENT results. However, there is a sensitivity loss at m4 ≈ 10MeV due
to the kinematic cut imposed by the low energy reactor neutrinos.

Finally, we also made this analysis for a 51Cr source for neutrinos. This is useful for both
CEvNS and EvES measurements. For this case, we use a simplified statistical analysis
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because there is no experimental data available

χ2(S) =
n

∑
i=1

(
NSM

i − Nnew
i (S)[1 + a]
σstat

i

)2

+

(
a

σsys

)
, (6.29)

with σstat
i =

√
NSM

i + Nbg
i . For this case we assumed a fixed background of 20 % from

the SM rate, that is Nbg
i = σbgNSM

i with σbg = 20% with systematic uncertainties to
be σsys = 20%. For CEvNS, we used n = 12 bins on the energy range [Ethres

r , Emax
r ],

with Emax
r being the maximum recoil energy for each target. For EvES we took 5keVee

bins in the range [1, 601]keVee. This leads to a neutrino magnetic moment sensitivity
improving in the region µνe ≈ 10−12µB. However, just as in the reactor neutrino case,
the low energy of the neutrinos leads to sensitivity loss for masses m4 ≥ 750KeV.

Before finishing this section, it is relevant to note the complementarity of the bounds
from the analysis of CEvNS and EvES experiments, with those from oscillation exper-
iments. For the νµ → νs channel in COHERENT, experiments such as MiniBooNE,
NOMAD, IceCube, Borexino, and DUNE near-detector are complementary. While not
placing strength constraints on the NMM, the COHERENT experiments cover a larger
portion of the previously unexplored parameter space. These regions overlap with
other regions probed by the already mentioned large-scale experiments. Similarly, for
the TEXONO and 51Cr-based CEvNS and EvES experiments, the relevant experiments
to complement are XENON1T, SHiP, and DUNE ND. Also, the Cr-LXe can provide
another test of the region indicated by the XENON1T excess.

Finally, we can explore the sensitivities for the TMMs. Adopting this more general
TMMs formalism allow us to compare the sensitivities at different experiments in terms
of the same parameter λij. Also, we can combine the full data set of experiments with
multiple neutrino flavors. So, for example, for COHERENT and XENON1T, we don’t
need to consider one non-zero effective magnetic moment µνα(α = e, µ, τ) at a time.
For the final Fig. 6.15, the relevant parameters µνα are assumed non-vanishing and are
expressed in terms of the TMMs λij. Fig. 6.15 shows the results taking only one non-
vanishing TMM at a time and neglecting the associated CP phases, and it can be seen
that the same behavior is observed as for the effective dipole moment.
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Figure 6.15: Sensitivity to the general TMM formalism. [57]
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Chapter 7

Conclusions

Neutrinos are fascinating particles, and it is a fact that we still have a lot to learn about
them. The great change in their understanding upon discovering that they actually do
have mass has left its mark on their study and continues to date. There are still many
questions to answer, and we hope that the future experiments can answer them.

Detecting coherent elastic neutrino neutrino-nucleus scattering has shown us the great
progress we have made in technologies for particle detection. It has allowed us to
continue studying the Standard Model and its possible extensions, obtaining more and
more precise results. In this thesis, we have studied different types of physics beyond
the Standard Model and obtained the sensitivity to its different parameters. The results
yield four article publications [54–57]. For the case of the experimental results, we have
observed that the results obtained can become competitive, as in the case of the mixing
angle and the rms radius of the neutron.

For the case of neutrino oscillations into sterile states, we observed that the baselines
considered for each experiment are favorable for their study. A distance around 20-
30 m is optimal for the values expected for the mass splitting and the mixing angle.
The possible existence of sterile neutrinos is still under doubt,but finding more ways
to prove or refuse its existence is still important. CEvNS has shown that it is possible
to reach the limits actually imposed by other experiments with an increase in mass and
data obtained. This is the case of the ESS with the proposed 1-ton mass, which gave the
best results of all our analysis.

The non-unitarity neutrino mixing matrix is studied in our analysis by introducing the
zero-distance effect. This gives an oscillation probability even though the neutrino was
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just produced at the source. From here, we observed that, again, CEVNS experiments
with a big mass could be competitive with results obtained from oscillation experi-
ments. Still, if this configuration becomes possible, the results are expected to improve
significantly.

Finally, for the neutrino electromagnetic properties, the regions that we reach using
CEvNS are unexplored by other experiments, and this is due to the energies considered
for this process. This can be complemented using EvES and a Cr51 source. Also, the
analysis using the fundamental TMM, we were able to study the transitions νe → νs

and νµ → µ separately.

CEvNS is a relatively new process that has opened the doors to many different analyses
and has shown their importance. The next step is to combine the different physics
scenarios to constrain multiple parameters that are related. Also, the new results and
information about the experimental setups will improve our understanding and future
perspectives of the results presented in this thesis. We hope that with this thesis, we
can set our contribution to a better understanding of our universe.



Appendix A

Cross section calculation

Following Feynman rules, we have that the amplitude is

iM =
−ig

2cosθw

(
1
2

)
ūr′(p1)γ

µ(1− γ5)ur(k1)
−i(gµν − pµ pν

M2
z
)

q2 −M2
z

Jν
nuc. (A.1)

The nuclear current can be represented as

Jν
nuc =

g
2cosθw

(gu
LūLγµuL + gu

RūRγµuR + gd
Ld̄LγµdL + gd

Rd̄RγµdR). (A.2)

For nuclei of spin 0, and assuming that parity is not violated, we have

ūLγµUL = ŪRγµUR = ūγµu, (A.3)

d̄LγµdL = d̄RγµdR = d̄γµd, (A.4)

for a nucleus of Z protons and N neutrons

u− quarks→ 2Z + N, d− quarks→ 2N + Z. (A.5)

For the case of EM current in quarks we get

Jµ
EM =

2
3

ūγµu− 1
3

d̄γµd. (A.6)
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From Feynman rules for this case, we know that the vertex is proportional to (p2 + k2)
µ,

Jν
nuc = γ(k2 + p2)

ν, (A.7)

but also,

Jν
nuc =

g
2cosθw

(gu
L(2Z + N) + gu

R(2Z + N) + gd
L(2N + Z) + gd

R(2N + Z))(k2 + p2)
ν,

(A.8)

and from this

α =
g

2cosθw
((2Z + N)gu

V + (2N + Z)gd
V), (A.9)

=
g

2cosθw
((2Z + N)(

1
2
− 4

3
sin2θw) + (2N + Z)(−1

2
+

2
3

sin2θ2)), (A.10)

=
g

2cosθw
(Z− 8

3
Zsin2θw +

N
2
− 4

3
Nsin2θw − N +

4
3

Nsin2θw −
1
2

Z +
2
3

Zsin2θw),

(A.11)

=
g

2cosθw
[(1− 4 sin2 θw)Z− N] =

g
2cosθw

Qw. (A.12)

Including the form factor for the nucleus

Jν
nuc =

g
2cosθw

QwF(q2)(k2 + p2)
ν, (A.13)

and we get to

iM =
−ig2

8cos2θw

(
1
2

)
ūr′(p1)γ

µ(1− γ5)ur(k1)QwF(q2)
−i(gµν − pµ pν)

M2
z

q2 −M2
z

(k2 + p2)µ. (A.14)

On the limit of q2 << M2
z we get that the propagator reduces to −gµν

M2
z

,

iM = −i
GF√

2
QwF(q2)gV

L ūr′(p1)γ
µ(1− γ5)ur(k1)(k2 + p2)µ. (A.15)



89

Now we can find the sum over the spins

∑
rr′
|iMrr′ |2) = ∑

rr′

G2
F

2
Q2

wF2(q2)(gv
L)

2(k2 + p2)µ(k2 + p2)ν×

× ūr′(p1)γ
µ(1− γ5)ur(k1)ur(k1)γ

ν(1− γ5)ur′(p1)

= C ∑
rr′
[ūr′(p1)γ

µ(1− γ5)ur(k1)][ūr′γ
ν(1− γ5)ur]

†

= CTr[γµ(1− γ5)(/k1γν(1− γ5)/P1]

= CTr[γµ/k1γν/P1 − γµ/k1γνγ5/P1 − γµγ5/k1γν/P1 + γµγ5/k1γνγ5/P1]

= C(2)Tr[γµ/k1γν/P1(1− γ5)]

= C(2)[4][kµ
1 Pν

1 + Pµ
1 kν

1 − gµν(k1 · P1)− iερµσνk1ρP1σ],

we get

∑
rr′
|M|2 =

8G2
F

2
Q2

wF2(gv
L)

2(k2 + p2)µ(k2 + p2)ν[k
µ
1 Pν

1 + Pµ
1 kν

1−

gµν(k1 · p1)− iερµσνk1ρP1σ]

= 4G2
FQ2

wF2(gv
L)

2[2k1 · (k2 + p2)P1 · (k2 + P2)− (k2 + P2)
2(k1 · P1)−

iερµσνk1ρ(k2 + P2)µP1σ(k2 + P2)ν]

= 8G2
FQ2

wF2(gv
L)

2[(k1 · k2)(p1 · k2) + (k1 · k2)(p1 · p2) + (k1 · p2)(p1 · k2)+

(k1 · p2)(p1 · p2)− (M2 + k2 · p2)(k1 · p1)].

On the Lab. system

k1 = (E,~k1), (A.16)

k2 = (M,~0), (A.17)

P1 = (E− T, ~P1), (A.18)

P2 = (T + M, ~P2), (A.19)

q = k1 − P1 = k2 − P2 = (T,~q), (A.20)
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with this, we can find the following relations

k1 · k2 = EM, (A.21)

P1 · P2 =
1
2
((P1 + P2)

2 − P2
1 − P2

2 ) =
1
2
((k1 + k2)

2 − 0−M2) (A.22)

=
1
2
(k2

1 + k2
2 + 2k1 · k2 −M2) (A.23)

=
1
2
(M2 + 2EM−M2) = EM, (A.24)

k2 · P1 = M(E− T), (A.25)

k2 · P2 = M(T + M), (A.26)

k1 · P1 = (P1 + P2 − k2) · P1 = P2
1 + P1 · P2 − k2 · P1 (A.27)

= EM− EM + MT = MT, (A.28)

k1 · P2 = k1 · (k1 + k2 − P1) = k2
1 + k1 · k2 − k1 · P1 = EM−MT = M(E− T), (A.29)

q2 = (k1 − P1)
2 = k2

1 − 2k1 · P1 + P2
1 = −2MT, (A.30)

So we get



91

|M|2 = 8G2
FQ2

wF2(gv
L)

2[EM(M(E− T)) + EM(EM) + M2(E− T)2

+ M(E− T)EM− (M2 + M(T + M))MT]

= 8G2
FQ2

wF2(gv
L)

2[E2M2 − EM2T + E2M2 + EM2 − 2EM2T + M2T2+

E2M2 − EM2T −M3T −M2T2 −M3T].

After reducing terms

|M|2 = 8G2
FQF

w
2(gv

L)
2[4E2M2 − 4EM2T − 2M3T] (A.31)

= 32G2
FQ2

wF2
(

1
2

)
E2M2[1− T

E
− MT

2E2 ]. (A.32)

Using Fermi’s golden rule we can find

dσ =
|M|2

2EaEb|va − vb|
(2π)4δ(Pa + Pb −∑

f
Pf )∏

f

d3Pf

(2π)32E f
, (A.33)

which for this case results

dσ =
|M|2

2Ea2Eb|va − vb|
(2π)4δ(Pa + Pb − P1 − P2)

d3~P1

(2π)32E1

d3P2

(2π)32E2
. (A.34)

On the center of mass frame ~Pa = −~Pb and ~P1 = −~P2

From which we can get

2EaEb|va − vb| = 2Ea2Eb|
Pz

a
Ea
− Pz

b
Eb
| (A.35)

= 2Ea2Eb|
~Pa

Ea
−

~Pb
Eb
| (A.36)

= 4EaEb|
~Pa

Ea
+

~Pb
Eb
| = 4EaEb

EaEb
|~Pa|(Ea + Eb), (A.37)
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d3~P = |~P|2d~PdΩ = 4|~Pa|(Ea + Eb), (A.38)

so

dσ =
|M|2

16(2)2(Ea + Eb)|~Pa|
δ(Ea + Eb − E1 − E2)δ

3(~Pa + ~Pb − ~P1 − ~P2)
d3~P1d3~P2

E1E2
. (A.39)

Integrating over ~P2

dσ =
|M|2

16(2π)2(Ea + Eb)|~Pa|
δ(Ea + Eb −

√
|~P2

1 | −
√
|~P1|2 + M2)

d3~P1

|~P1|
√
|~P1|2 + M2

(A.40)

=
|M|2

16(2π)2(Ea + Eb)|~Pa|
δ(Ea + Eb −

√
|~P2

1 | −
√
|~P1|2 + M2)

|~P1|2d|~P1|dΩ

|~P1|
√
|~P1|2 + M2

.

(A.41)

Using the change of variable

u = |~P1|+
√
|~P1|2 + M2, (A.42)

we get that

du
d|~P1|

= 1 +
2|~P1|

2
√
|~P1|2 + M2

(A.43)

=

√
|~P1|2 + M2 + |~P1|√
|~P1|2 + M2

(A.44)

=
u√

|~P1|2 + M2
, (A.45)
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by doing the substitution

dσ =
|M|2

16(2π)2(Ea + Eb)|~Pa|
δ(Ea + Eb − u)

|~P1|dudΩCM

u
. (A.46)

If we integrate over u

dσ =
|M|2

16(2π)2(Ea + Eb)2|~Pa|
|~P1|dΩCM, dΩCM = sφd(cosθCM), (A.47)

and from the kinematics of the interaction on the CM-frame

~q = ~Pa − ~P1 → q2 = |~Pa − ~P1|2, (A.48)

q2 = |~Pa|2 + |~P1|2 − 2~Pa · ~P1 (A.49)

= |~Pa|2 + |~P1|2 − 2[|~Pa||~P1|cosθCM] (A.50)

dq2

dcosθCM
= 0 + 0− 2|~Pa||~P1|, (A.51)

and

dΩCM =
dφdq2

−2|~Pa||~P1|
. (A.52)

Integrating over φ

dσ =
|M|2

16(2π)2(Ea + Eb)2|~Pa|

(
|~P1|2πdq2

−2|~Pa||~P1|

)
(A.53)

dσ

dq2 = − |M|2
64π(Ea + Eb)2|~Pa|2

. (A.54)

Finally

S = (Pa + Pb)
2) = (k1 + k2)

2, (A.55)
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we have

P2
a + P2

b + 2Pa · Pb = K2
1 + K2

2 + 2K1 · K2, (A.56)

M2 + 2(EaEb − ~Pa · ~Pb) = M2 + 2EM, (A.57)

EaEb − |~Pa|2 = EM, (A.58)

|~Pa|Eb − |~Pa|2 = EM, (A.59)

|~Pa|(Ea + Eb) = EM, (A.60)

|~Pa|2(Ea + Eb)
2 = E2M2. (A.61)

So finally

dσ

dq2
−|M|2

64πE2M2 , (A.62)

then, since q2 = −2MT → dT
dq2 = − 1

2M

dσ

dq2 =
dσ

dT
dT
dq2 , (A.63)

dσ

dT
= −2M

(−|M|2
642M2

)
=

|M|2
32πE2M

, (A.64)

and finally we get

dσ

dT
=

(
1

32πE2M

)(
32G2

FQ2
wF2(

1
2
)E2M2[1− T

E
− MT

2E2 ]

)
, (A.65)

dσ

dT
=

G2
F

4π
Q2

w|F(q2)|M[1− T
E
− MT

2E2 ]. (A.66)
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