

CENTRO DE INVESTIGACIÓN Y DE ESTUDIOS AVANZADOS DEL INSTITUTO POLITÉCNICO NACIONAL

UNIDAD ZACATENCO

DEPARTAMENTO DE INFECTÓMICA Y PATOGÉNESIS MOLECULAR

"Identificación de los genes replicados en la síntesis *de novo* de DNA, derivada de *priming* inmunológico en el modelo *Aedes aegypti – Dengue virus*"

TESIS

Que presenta

MARCOS PEREZ GARCIA

Para obtener el grado de

MAESTRO EN CIENCIAS

EN LA ESPECIALIDAD DE INFECTÓMICA Y PATOGÉNESIS MOLECULAR

Directores de tesis:

Dra. Rosa María del Ángel Núñez de Cáceres Dr. Cuauhtémoc Juan Humberto Lanz Mendoza

Ciudad de México

Agosto, 2022

DIRECTORES DE TESIS

Dra. Rosa María del Ángel Núñez de Cáceres

Departamento de Infectómica y Patogénesis Molecular

CINVESTAV

Dr. Cuauhtémoc Juan Humberto Lanz Mendoza

Centro de Investigación en Enfermedades Infecciosas

Instituto Nacional de Salud Pública (INSP)

ASESORES DE TESIS

Dr. Juan Ernesto Ludert León

Departamento de Infectómica y Patogénesis Molecular

CINVESTAV

Ph. D. Francisco Manuel Ochoa Corona

Institute for Biosecurity & Microbial Forensics

Oklahoma State University (OSU)

Agradezco al Consejo Nacional de Ciencia y Tecnología (CONACyT) por la beca otorgada con número CVU 1056299 durante este trabajo, el cual se realizó en el Departamento de Infectómica y Patogénesis Molecular (DIPM) del Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV) en colaboración con el Centro de Investigación en Enfermedades Infecciosas (CISEI) del Instituto Nacional de Salud Pública (INSP) y el Institute for Biosecurity & Microbial Forensics (IBMF) at Oklahoma State University (OSU).

AGRADECIMIENTOS

A toda la gente que hizo posible materializar esta investigación.

Familia, amigos, compañeros y maestros.

¡Muchas gracias!

ÍNDICE

Resi	umen.		1			
Abst	ract		2			
1	Introc	lucción	3			
1.1	El der	ngue	3			
	1.1.1	Agente etiológico	4			
	1.1.2	Transmisión	5			
1.2	Gene	ralidades de la respuesta inmunológica de insectos	6			
	1.2.1	Respuesta inmunológica antiviral	6			
1.3	Memo	pria inmunológica	7			
2	Antec	edentes	. 11			
2.1	El inte	estino del mosquito y la respuesta inmune antiviral	.11			
2.2	Primir	ng inmunológico en mosquitos	.12			
	2.2.1	Síntesis <i>de novo</i> de DNA	.14			
3	Justif	icación	18			
4	Hipót	esis	.19			
5	Objet	ivo general	20			
5.1	Objetivos particulares2					
6	Mater	iales y Métodos	.21			
6.1	Mater	ial biológico	21			
	6.1.1	Propagación de DENV	.21			
	6.1.2	Mosquitos Aedes aegypti	.21			
6.2	Induc	ción de <i>priming</i> inmunológico	22			
6.3	Diseño experimental22					
6.4	Evalu	ación de la infección viral	23			
	6.4.1	Determinación de la carga viral de DENV-2	.23			
	6.4.2	Determinación relativa de NS1	24			
6.5	Evalu	ación de la incorporación de BrdU en la síntesis <i>de novo</i> de DNA	25			
6.6	Identi	ficación de los genes contenidos en el DNA	26			
	6.6.1	Preparación de bibliotecas de DNA genómico	.26			
	6.6.2	Análisis de los datos de BrdU-seq	.27			
6.7	Predic	cción <i>in silico</i> de vías de señalización celular enriquecidas	.27			

6.8	Caracterización de biomarcadores moleculares	28
7	Resultados	30
7.1 infec	El <i>priming</i> inmunológico inducido con DENV-2 inactivo disminuye el nivel d ción en <i>Aedes aegypti</i>	e 30
7.2 intes	Los retos inmunológicos generan síntesis <i>de novo</i> de DNA en las células d tino medio de <i>Aedes aegypti</i>	el 33
7.3 inmu	El DNA <i>de novo</i> agrupa distintos genes en función de la naturaleza del nógeno y la condición inmunológica previa a cada reto inmunológico	34
7.4 enriq	El reto inmunológico con DENV-2 inactivo induce la replicación de genes q uecen significativamente a vías de señalización celular	ue 35
7.5	Biomarcadores moleculares de la respuesta inmunológica de Aedes	
aegy	pti	39
8	Discusión	42
9	Conclusión	46
10	Perspectivas	47
11	Apéndice	48
12	Referencias	69

Resumen

En insectos, se ha propuesto el término "*priming* inmunológico" para hacer referencia a la memoria inmunológica innata, inducida por la exposición previa a una dosis subletal de un agente patogénico o derivado de él, elevando su respuesta inmunológica, que lo protege ante una exposición secundaria. Los eventos moleculares que participan en la generación de memoria inmunológica en mosquitos, aún no se han dilucidado completamente, sin embargo, existe una relación entre el incremento de DNA en células involucradas en la respuesta inmunológica y el *priming* inmunológico.

El presente proyecto planteó identificar grupos de genes que enriquecen vías de señalización celular, cuando se induce *priming* inmunológico. Se identificaron alrededor de 200 genes replicados en la síntesis *de novo* de DNA, derivada de *priming* inmunológico, en las células del intestino medio de *Ae. aegypti* retadas con DENV-2 inactivo. Los datos obtenidos sugieren que el proceso de endoreplicación inducido por *priming* inmunológico, replica genes importantes en la respuesta inmune anti-DENV.

Abstract

The term "immune priming" applied to insects refers to innate immune memory induced by an initial exposure to a sublethal dose of a pathogenic agent or its derivative, which elevates its immune response, and protects it against a secondary exposure. The molecular events involved in the generation of immunological memory of mosquitoes are yet to be fully elucidated, however, there is a relationship between the increase of DNA in cells involved in the immune response and immune priming.

This research project aims to identify groups of genes that enrich the cell signaling pathways when the immune priming is induced. We identified about 200 genes replicated in *de novo* DNA synthesis, derived from immune priming, in midgut cells of *Ae. aegypti* challenged with inactive DENV-2. The obtained data suggest the process of immune priming-induced endoreplication replicates important genes in the anti-DENV immune response.

1 Introducción

1.1 El dengue

El dengue es una enfermedad viral infecciosa y representa un problema de salud pública en el mundo, se estima que alrededor de 3,900 millones de personas viven en zonas endémicas en riesgo, hay por lo menos 390 millones de casos cada año y mueren alrededor de 21,000 personas al año (OMS, 2022). En México, se han documentado varios brotes, el último importante fue en el año 2019, con 41,505 casos confirmados (Arredondo-García et al., 2020); en el año 2020 se registraron 24,224 casos; el año 2021 cerró con un total de 6,746 casos, y en la semana epidemiológica número 25 de 2022, se confirmaron 1,698 nuevos casos, de los cuales 66 corresponden a la categoría de dengue grave, 616 a dengue con síntomas de alarma, 1,016 a dengue no grave y se registraron cinco defunciones. El 73 % de los casos confirmados corresponden al Estado de México, Tabasco, Chiapas, Veracruz y Sinaloa (SINAVE/DGE/SSA, 2022).

Los pacientes con dengue grave presentan una enfermedad febril inespecífica con síntomas como dolor en los ojos, cabeza, huesos, articulaciones, erupciones cutáneas, náuseas y vómito. Las complicaciones clínicamente relevantes se caracterizan por extravasación de plasma, hemorragia grave o daño severo de órganos. Las terapias, antivirales y vacunas para prevenir o tratar la enfermedad se han desarrollado lentamente, a pesar de los grandes avances en el estudio de la patogénesis del virus. Aún no existe un tratamiento específico y solo se utilizan tratamientos de soporte como analgésicos y antipiréticos, suministro de líquidos sí existe deshidratación, y suero sí existe fuga plasmática; la mira, principalmente está puesta en el desarrollo de vacunas (Wilder-Smith et al., 2019).

Dengvaxia o CYD-TDV fue la primera vacuna que salió al mercado en el año 2015, bajo licencia de la farmacéutica Sanofi Pasteur. Es efectiva en pacientes que previamente cursaron un episodio de dengue; por el contrario, en individuos seronegativos al parecer eleva el riesgo de padecer dengue severo, ante una infección natural. Por lo que, su efectividad depende del seroestatus de cada

3

individuo. Además, existen otras dos vacunas quiméricas vivas atenuadas contra dengue, una desarrollada por el National Institute of Allergy and Infectious Diseases, y otra por la empresa Takeda, ambas están en la fase 3 de estudios clínicos. Sin embargo, no se ha evaluado sí también pueden aumentar el riesgo de padecer dengue grave en pacientes seronegativos. Este hecho permanece como la principal limitante en el desarrollo de vacunas (Wilder-Smith et al., 2019).

1.1.1 Agente etiológico

El agente etiológico de la enfermedad es el *Dengue virus* (DENV), el cual pertenece a la familia *Flaviviridae*. DENV es un virus de RNA monocatenario de sentido positivo, de aproximadamente 11 kb que contiene un solo marco de lectura abierto, flanqueado por regiones no codificantes (NCRs) en sus extremos terminales 5' y 3'. El mRNA viral codifica una poliproteína que al procesarse produce proteínas estructurales y no estructurales. El virión mide aproximadamente 50 nm de diámetro, contiene tres proteínas estructurales: la cápside (C, 11 kDa), la proteína de envoltura (E, 50 kDa) y en su forma inmadura intracelular contiene a la proteína inmadura prM (26 kDa). Esta última es escindida durante la maduración a la proteína M (8 kDa) por la enzima celular furina. Una vez que el virus infecta una célula, se sintetizan siete proteínas no estructurales: NS1 (46 kDa), NS2A (22 kDa), NS2B (14 kDa), NS3 (70 kDa), NS4A (16 kDa), NS4B (27 kDa) y NS5 (103 kDa) importantes durante el ciclo de replicación viral y para la evasión de la respuesta inmunológica (ICTV, 2022).

El DENV presenta cuatro serotipos distintos, pero estrechamente emparentados: DENV-1, DENV-2, DENV-3 y DENV-4. Se cree que un paciente al recuperarse es inmune contra el serotipo que le causó la infección. Sin embargo, durante una infección secundaria con un serotipo diferente aumenta el riesgo de padecer dengue grave, lo que significaría que un mismo individuo puede infectarse hasta cuatro veces (ICTV, 2022; OMS, 2022).

4

1.1.2 Transmisión

El DENV se transmite por la picadura de mosquitos hembra del género *Aedes*, que incluye a las especies *Ae. aegypti* y *Ae. albopictus*, vectores primario y secundario, respectivamente. Una vez que el mosquito pica a una persona infectada durante el periodo de viremia, el virus se replica en el intestino medio del mosquito de 7 a 10 días post infección, después se disemina a otros tejidos como las glándulas salivales y el sistema nervioso (Salazar et al., 2007).

El periodo de incubación extrínseco, que transcurre entre la ingestión del DENV y la transmisión a un nuevo hospedero es de aproximadamente 8 a 12 días (Tjaden et al., 2013), el cual, depende de varios factores como la oscilación de la temperatura (Carrington et al., 2013; Lambrechts et al., 2011), el genotipo del virus (Anderson y Rico-Hesse, 2006; Novelo et al., 2019) y la concentración viral inicial (Ye et al., 2015). Se ha considerado, que un mosquito infectado con DENV transmite el virus durante toda su vida. Sin embargo, datos reportados en experimentos de *priming* inmunológico, sugieren que los mosquitos son capaces de reducir la carga viral durante una infección secundaria (Vargas et al., 2020).

1.1.2.1 Prevención y control

El control de los mosquitos es la principal estrategia para prevenir y reducir los casos de dengue (Higa, 2011). Los métodos para controlar a este vector pueden ser clasificados en: 1) Control químico. El cual consiste en el uso de sustancias químicas que matan larvas o adultos de mosquitos, es ampliamente utilizado a pesar de que su uso excesivo provoca daños en el ambiente y resistencia en mosquitos, los más empleados son los compuestos organofosforados y los piretroides; 2) Control mecánico. En este caso se realizan actividades capaces de eliminar o evitar posibles lugares que funcionen como criaderos del vector o que restrinjan su paso, tales como mosquiteros o trampas, no obstante, solo se puede realizar en espacios pequeños y cerrados. 3) Control biológico. Se basa en el uso de depredadores o patógenos naturales del vector, sin embargo, se ha reportado que por sí solos, no impactan de manera significativa en la reducción de las

poblaciones de mosquitos, por ejemplo, *Wolbachia* es una bacteria que causa progenie estéril en los mosquitos, pero se requiere una liberación constante de mosquitos infectados con la bacteria (Laura de Sene Amâncio Zara et al., 2016).

1.2 Generalidades de la respuesta inmunológica de insectos

El sistema inmunológico de los artrópodos posee la capacidad de distinguir lo propio de lo no propio, así como efectores capaces de eliminar agentes infecciosos, que, de manera análoga a los animales vertebrados, pueden dividirse en mecanismos de inmunidad celular y humoral. Los eventos de inmunidad celular se llevan a cabo por los hemocitos y consisten en procesos como la fagocitosis, encapsulación y la formación de nódulos para defenderse de diversos microorganismos. Los hemocitos son células especializadas, sésiles o que circulan en la hemolinfa contenida en el hemocele de los insectos.

La inmunidad humoral utiliza mecanismos como la síntesis de péptidos antimicrobianos (p. ej., en *Drosophila melanogaster*, defensinas, diptericinas, metchnikowinas, drosomicinas, atacinas, cecropinas y drosocinas), lectinas, enzimas antimicrobianas (p. ej., lisozima), inhibidores de serin proteasas (serpinas), especies reactivas de oxígeno y nitrógeno, intermediarios de la cascada de la profenoloxidasa (factores opsonizantes y citotóxicos); en este último, la fenoloxidasa forma una cápsula de melanina sobre los parásitos y a este mecanismo se le considera análogo al sistema del complemento de los vertebrados (Davis y Engström, 2012; Rowley y Powell, 2007).

1.2.1 Respuesta inmunológica antiviral

Los hemocitos de mosquitos son susceptibles a infectarse con DENV, aunque pueden desencadenar respuestas humorales como la síntesis de intermediarios proteolíticos en la cascada de la profenoloxidasa, que inactivan a virus como el *Semliki Forest virus* (Rodriguez-Andres et al., 2012).

La autofagia media la degradación de componentes celulares, para mantener la homeostasis celular y de tejido, durante infecciones virales. En *Drosophila*, el virus

6

de la estomatitis vesicular y el *Rift Valley fever virus*, son reconocidos por el receptor transmembranal Toll-7 que activa la vía de señalización PI3K-Akt, dando lugar al proceso de autofagia (Moy et al., 2014; Shelly et al., 2009). También, la activación de otras vías de señalización del sistema inmune innato, conducen a la síntesis y secreción de moléculas efectoras antivirales (p. ej., péptidos antimicrobianos) sintetizados en el cuerpo graso, el intestino medio y que circulan a través de la hemolinfa hacia otros órganos del mosquito (Cheng et al., 2016; W.-S. Lee et al., 2019).

Las vías de señalización Toll, IMD, Jack/STAT y RNAi, participan en la respuesta inmune innata antiviral de mosquitos. Sin embargo, la vía de RNAi es fundamental en la respuesta antiviral. De los tres sistemas de RNAi: microRNA (miRNA), RNA asociado a PIWI (piRNA) y RNA pequeño de interferencia (siRNA), a este último se le considera el más importante para degradar RNA de origen viral. En este sistema, el RNA de doble cadena (dsRNA) es reconocido por Dicer-2 (DCR-2), la única proteína reportada a la fecha, capaz de reconocer el dsRNA y procesarlo en RNAs virales de ~21 nucleótidos (viRNA), posteriormente, el siRNA dúplex es reconocido por la asociación de la proteína Argonauta 2 (AGO-2) y el Complejo de Silenciamiento Inducido por RNA (RISC), que degradan la cadena pasajera y retienen a la cadena guía. La cadena guía permite el reconocimiento del RNA viral, que es cortado por AGO-2 y finalmente degradado (Bonning y Saleh, 2021; Gammon y Mello, 2015; Schuster et al., 2019; Talide y Meignin, 2019).

1.3 Memoria inmunológica

La memoria inmunológica de mamíferos es considerada una adaptación evolutiva crítica del sistema inmunitario, que propicia respuestas más rápidas y eficaces ante antígenos con los que se tuvo una exposición previa. Se considera que la memoria inmunológica está mediada por células adaptativas como son las células B y células T CD4 y CD8, que se han diferenciado para convertirse en poblaciones de "memoria" (Kirman et al., 2019).

7

A este paradigma clásico se ha sumado recientemente lo que se conoce como inmunidad entrenada. Se ha demostrado que las células del sistema inmune innato también poseen memoria, producida tras un primer encuentro con un antígeno. La inmunidad entrenada se caracteriza por ser una adaptación a largo plazo mediante remodelación epigenética, que modula la cinética de la transcripción de genes. Sin embargo, respecto a la memoria inmunológica clásica es de corta duración y menos específica (inmunidad heteróloga). Por ejemplo, los monocitos, macrófagos y células *natural killer* muestran una capacidad de respuesta aumentada ante un segundo reto inmunológico (Netea et al., 2020, 2016, 2011). En el caso de los monocitos, la memoria inducida con Bacillus de Calmette y Guérin (BCG) o β -1,3-(d)-glucano, produce un estado de memoria inespecífico. Estas células pueden responder contra diversos antígenos e incluso patógenos y células cancerosas (Netea et al., 2017).

Divangahi et al., (2021), proponen que la inmunidad entrenada es un rasgo evolutivo que aumenta el *fitness* de plantas, invertebrados y vertebrados contra agentes patógenos. La adaptabilidad de las células del sistema inmune innato demuestra una plasticidad sustancial, en función de la magnitud y duración del estímulo inmunogénico que reciben, provocando adaptaciones específicas que modulan el aumento o disminución de la respuesta inmunológica. Tales programas adaptativos incluyen la diferenciación celular, el *priming*, la tolerancia y la inmunidad entrenada *per se* (Figura 1). Cuya diferencia se centra en dos factores: el estatus inmunológico funcional y el grado de actividad inmunológica, previa a un segundo reto inmunológico. Dando lugar a eventos moleculares propios de cada uno de ellos, por ejemplo, cambios epigenéticos, transcripcionales y metabólicos. Sin embargo, una característica de la memoria en invertebrados es la especificidad, donde se ha demostrado una especificidad superior a la inmunidad entrenada de la respuesta inmunitaria innata de los mamíferos (Lanz-Mendoza y Contreras-Garduño, 2021).

El término "*priming* inmunológico" fue acuñado por Little y Kraaijeveld (2004), para describir el efecto profiláctico en invertebrados y distinguirlo de la respuesta inmune

adquirida de los vertebrados. En insectos, el *priming* inmunológico se refiere a la memoria inmunológica innata, inducida por la exposición previa a una dosis subletal de un agente patogénico o derivado de él, elevando su respuesta inmunológica, que lo protege ante una exposición secundaria. (Kurtz, 2005; Maya Maldonado et al., 2019; Sheehan et al., 2020).

Milutinović y Kurtz (2016), revisaron evidencias científicas que demuestran la capacidad adaptativa de la respuesta inmune innata de los invertebrados. Lanz-Mendoza y Contreras-Garduño (2021), actualizan esta información y discuten los probables mecanismos participantes. Entre ellos la epigenética y la endoreplicación, los cuales pueden desempeñar un papel fundamental, ya que permite a las células de distintos tejidos producir suficientes proteínas para responder adecuadamente a un segundo desafío inmunológico. Los invertebrados son un grupo diverso de animales, con diferencias evolutivas importantes entre taxones, debido a ello, los fenómenos de memoria inmunitaria y los mecanismos biológicos subyacentes pueden también ser muy diversos (Lanz-Mendoza y Contreras-Garduño, 2021; Milutinović y Kurtz, 2016).

Fig. 1 | Representación esquemática de la respuesta inmunológica en células del sistema inmune innato, durante la inducción de distintos programas adaptativos. a) Diferenciación. b) *Priming.* c) Inmunidad entrenada. d) Tolerancia. Tomado de (Divangahi et al., 2021)

La descripción del mecanismo de los programas adaptativos dará luz sobre la naturaleza de la memoria inmune innata. Especialmente, aquellas investigaciones que logren integrar y discutir la influencia del fondo genético de diversos tipos celulares del sistema inmune innato en múltiples organismos (plantas, invertebrados y vertebrados).

2 Antecedentes

2.1 El intestino del mosquito y la respuesta inmune antiviral

Los mosquitos son los principales vectores de infecciones por virus, protozoos y helmintos. Durante la interacción hospedero – parásito es fundamental que los patógenos lleven a cabo acciones de evasión del sistema inmune innato o que induzcan un estado de tolerancia, mientras que los mosquitos activan mecanismos inmunitarios para su eliminación. El intestino medio del mosquito es el órgano donde se producen las interacciones iniciales con los patógenos, y posee mecanismos para reparar el tejido y eliminar agentes infecciosos (Maya Maldonado et al., 2019).

El intestino de los dípteros está dividido en tres regiones: el intestino anterior (conformado por esófago, proventrículo y divertículo), el intestino medio y el posterior. El intestino medio secreta proteínas que forman una conexión de fibras de quitina sobre las cuales se ensamblan peritrofinas y glicosaminoglicanos, que constituyen la matriz peritrófica. Los mosquitos del género *Aedes*, forman la matriz peritrófica de 4 a 8 horas post alimentación, esta matriz tiene la función de modular la digestión de la sangre, proteger contra daños físicos, químicos y biológicos, así mismo, es una barrera para prevenir o reducir infecciones por agentes patógenos (Marquardt y Kondratieff, 2005).

Las células epiteliales debajo de la matriz peritrófica, presentan microvellosidades recubiertas por glicoproteínas y glicolípidos que forman el glicocálix. El intestino adulto de los dípteros consiste en una monocapa epitelial compuesta por cuatro tipos celulares: troncales intestinales, absortivas, secretoras y enteroblastos. Por debajo del epitelio intestinal se encuentra la lámina basal compuesta de colágeno tipo IV y laminina, rodeada de una serie de músculos circulares, longitudinales y una red neuronal (Miguel-Aliaga et al., 2018).

Los mosquitos emplean estrategias antivirales en el intestino medio, la hemolinfa, las glándulas salivales y los tejidos nerviosos para controlar las infecciones por flavivirus. Las células del epitelio intestinal son la segunda barrera que encuentran los virus, desde donde pueden invadir sistemáticamente a otros tejidos a través del hemocele. En las células del intestino medio se activan las vías de señalización Toll, IMD, Jack/STAT y principalmente la del RNAi. Los mecanismos efectores de la inmunidad humoral como la secreción de péptidos antimicrobianos y especies reactivas de oxígeno, actúan en conjunto con la microbiota para restringir las infecciones virales (Cheng et al., 2016).

2.2 *Priming* inmunológico en mosquitos

La capacidad para recordar eventos inmunológicos previos con patógenos o microorganismos ha sido demostrada ampliamente en los mosquitos *Aedes aegypti* y *Anopheles albimanus*. El primer contacto con el virus dengue inactivo o con el parásito de la malaria induce un estado de resistencia. En un segundo reto inmunológico, los mosquitos controlan y eliminan más rápidamente a los patógenos o parásitos. La Tabla1 integra evidencias que caracterizan al fenómeno de *priming* inmunológico en mosquitos.

Tabla 1	Avances	en la	caracterización	del	priming	inmunológico	en
mosquitos	S.						

Característica de	Aedes	Referencias	Anopheles	Referencias
la respuesta	aegypti		albimanus	
inmunológica				
Especificidad	\checkmark	(Moreira et al., 2009;	\checkmark	(Contreras-Garduño
		Smartt et al., 2017;		et al., 2015)
		Vargas et al., 2016; Ye		
		et al., 2013, 2015)		
Protección de larga	\checkmark	(Moreno-García et al.,	?	
duración		2015; Vargas et al.,		
		2020)		
Síntesis de novo de	\checkmark	(Domínguez-Benítez	\checkmark	(Cime-Castillo et al.,
DNA		et al., 2021; Salazar		2018; Contreras-
		et al., 2007; Serrato-		Garduño et al., 2015;
		Salas, Hernández-		Hernández-Martínez
		Martínez, et al., 2018;		et al., 2006, 2013;
		Serrato-Salas,		

		Izquierdo-Sánchez,		Maya Maldonado
		et al., 2018)		et al., 2019)
Formación de	?		\checkmark	(Hernández-Martínez
cromosomas				et al., 2006)
politénicos				
Respuesta bifásica	\checkmark	(Vargas et al., 2020)	\checkmark	(Contreras-Garduño
de efectores				et al., 2015)
Cambios	?		\checkmark	(Claudio-Piedras
epigenéticos				et al., 2020)
Transmisión	\checkmark	(Mondotte et al., 2020)	?	
transgeneracional				

Maya-Maldonado et al., (2021), estudiaron los cambios moleculares, al inducir *priming* inmunológico en el modelo *Anopheles albimanus - Plasmodium berghei*, y caracterizaron el perfil transcripcional de las células del intestino medio de *An. albimanus*. Los resultados, indicaron la participación de elementos reguladores del ciclo celular, la síntesis del DNA, la modulación de la respuesta inmune, factores epigenéticos y de señalización celular.

El perfil diferencial de expresión de genes destacó la participación de 1) *Crumbs*, *Sgg*, *Frizzled-4*, *Dsh1-2*, y *Lgr5*, probablemente implicados en la diferenciación de las células epiteliales, que se puede atribuir al *crosstalk* de la vía Notch-Wnt; 2) *Serpin-5*, *Pellino*, y *Dorsal*, relacionados con la modulación de la vía Toll; 3) *Cdc27*, *Mcm9* y *Mmss22I*, implicados en la síntesis de DNA, que hipotéticamente desencadena la producción masiva de moléculas efectoras de la respuesta inmunitaria innata; y, 4) *Metl-9*, *Jumonji* y *Ball*, reguladores epigenéticos que probablemente inducen una remodelación de la cromatina tras el *priming* inmunológico.

Interesantemente, Vargas et al., (2020) demostraron que la inducción del *priming* inmunológico en estadios larvarios protege a mosquitos adultos de *Ae. aegypti* contra infecciones de DENV, logrando una mejor respuesta inmune antiviral, reducción en la carga y replicación viral, y un declive en la producción de partículas virales infectivas, creando una condición en la cual, los mosquitos adultos son

resistentes al DENV ante una segunda exposición. Los tratamientos con *priming* inmunológico exacerbaron la respuesta inmune antiviral, a través de la cascada de siRNA, donde algunos de sus elementos se modularon positivamente (*AGO-2*, *DCR-2* y *R2D2*).

2.2.1 Síntesis de novo de DNA

En México, el estudio del *priming* inmunitario innato ha sido abordado durante varios años por el Instituto Nacional de Salud Pública en colaboración con otras instituciones como el Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional. Las investigaciones, establecen una relación entre el incremento de DNA en células involucradas en la respuesta inmunológica y el *priming* inmunológico. Por ejemplo, se observó un aumento en la síntesis *de novo* de DNA en el intestino medio de mosquitos después del *priming* inmunológico en *Anopheles albimanus* (Contreras-Garduño et al., 2015; Hernández-Martínez et al., 2006, 2013; Maya-Maldonado et al., 2020), y *Aedes aegypti* (Serrato-Salas, Hernández-Martínez, et al., 2018; Serrato-Salas, Izquierdo-Sánchez, et al., 2018) que se demostró mediante la incorporación de 5-etil-2'-deoxiuridina (EdU) o 5-Bromo-2'-deoxiuridina (BrdU), compuestos análogos a la timidina que se incorporan al DNA durante la fase S del ciclo celular (Figura 2), la formación de cromosomas politénicos y la activación del antígeno nuclear de células en proliferación (*PCNA*) en los tejidos de los mosquitos (Hernández-Martínez et al., 2006).

En el mismo sentido, se han hecho varios esfuerzos por explicar los mecanismos moleculares que subyacen al *priming* inmunológico, explorando el papel de elementos clave en el control del ciclo celular. Hindsight (*Hnt*) es un factor de transcripción aparentemente involucrado en mediar la participación de la vía Delta-Notch, en la regulación del cambio del ciclo celular mitótico a endociclo en las células de epitelio intestinal de los mosquitos (Figura 3), proceso biológico necesario para limitar las infecciones por distintos patógenos (Cime-Castillo et al., 2018; Serrato-Salas, Izquierdo-Sánchez, et al., 2018).

La endorreplicación, sin dar lugar a la división nuclear ni a la citocinesis, promueve la formación de cromosomas politénicos, a través de múltiples rondas de replicación de genes usados como plantilla en la transcripción de RNA mensajeros, que se cree codifican proteínas útiles en la respuesta inmunológica de los mosquitos, durante una infección secundaria. La endorreplicación se produce en respuesta al estrés celular, especialmente en células diferenciadas y altamente especializadas que generan grandes cantidades de mRNA y proteínas (Milutinović & Kurtz, 2016). En *Ae. aegypti* (Vargas et al., 2020) y en *An. albimanus* (Contreras-Garduño et al., 2015) se ha observado que se sintetizan múltiples copias de genes efectores de la respuesta inmunitaria del mosquito, y que al bloquear la síntesis de DNA con compuestos inhibidores como el cisplatino, la capacidad de responder a un segundo reto del patógeno o parásito se elimina (Cime-Castillo et al., 2018; Serrato-Salas, Hernández-Martínez, et al., 2018).

Aedes aegypti midguts

Fig. 2 | Ensayo de inmunofluorescencia *in situ* para evaluar la síntesis de DNA en mosquitos retados con *Dengue virus*. a) El intestino medio de *Aedes aegypti* responde aumentando la síntesis de DNA a los siete días post tratamiento, donde se aprecia una mayor incorporación de BrdU, mientras que el tratamiento control (sin DENV) no muestra evidencia de síntesis de DNA. b) Porcentaje de células de intestino medio positivas a BrdU. Tomado de (Serrato-Salas, Hernández-Martínez, et al., 2018)

Fig. 3 | El ciclo mitótico y endociclo. a) Las fases del ciclo mitótico son Gap 1 (G1), síntesis (S), Gap 2 (G2) y mitosis (M). b) El endociclo tiene dos variantes, endomitosis y endoreplicación. La endomitosis consiste en las fases G1, S y G2 y una fase M parcial. La endoreplicación consiste en sucesiones repetidas de la fase S a G, sin pasar por la fase M. La re-replicación es un tipo especial de endoreplicación, en la cual la replicación del DNA es iniciada múltiples veces en orígenes de replicación individuales dentro de la misma fase S. Tomado de (Ren et al., 2020).

3 Justificación

Los eventos moleculares que participan en la generación de memoria inmunológica (*priming* inmunológico) en mosquitos, aún no se han dilucidado completamente. Sigue sin haber claridad del papel directo de la síntesis *de novo* de DNA a través del proceso de endoreplicación en la que probablemente se replican genes específicos, usados como plantilla en la transcripción de RNA mensajeros, que codifican proteínas útiles en la respuesta inmunológica de los mosquitos, durante una infección secundaria. En este sentido, la presente investigación planteó identificar grupos de genes que enriquecen a vías de señalización celular, cuando se induce *priming* inmunológico, tomando como referencia al modelo *Aedes aegypti* – *Dengue virus*.

El entendimiento de la memoria inmune innata es crítico para descifrar nuevos enfoques para interrumpir la transmisión de dengue en los mosquitos *Ae. aegypti*. El estudio de la interacción mosquito – virus, contribuye al desarrollo de estrategias tecnológicas novedosas, que potencialmente evitarán enfermedades transmitidas por vectores, en beneficio de la salud pública y el medio ambiente.

4 Hipótesis

La síntesis *de novo* de DNA a través del proceso de endoreplicación, inducido por *priming* inmunológico, replica genes importantes en la respuesta inmune anti-DENV en las células del intestino medio de *Ae. aegypti*.

5 Objetivo general

Identificar los genes replicados en la síntesis *de novo* de DNA, derivada de *priming* inmunológico, en células del intestino medio de *Ae. aegypti* durante la infección con *Dengue virus*.

5.1 Objetivos particulares

1. Identificar los genes que contiene el DNA replicado

2. Determinar las vías de señalización celular enriquecidas por los grupos de genes replicados.

3. Caracterizar biomarcadores moleculares para monitorear la respuesta inmunológica de *Ae. aegypti*.

6 Materiales y Métodos

6.1 Material biológico

La cepa de DENV serotipo 2 Nueva Guinea C y la cepa Rockefeller de *Ae. aegypti* se obtuvieron de la colección del Instituto Nacional de Salud Pública (INSP), y se emplearon de acuerdo a la metodología descrita por Serrato-Salas, Hernández-Martínez, et al., (2018); Serrato-Salas, Izquierdo-Sánchez, et al., (2018).

6.1.1 Propagación de DENV

El DENV-2 se propagó durante cinco días, utilizando una MOI de 0.2 para infectar la línea celular C6/36 (ATCC-CRL 1660) del mosquito *Ae. albopictus,* cultivada a 28 °C en medio esencial mínimo (MEM). El virus se purificó a partir del sobrenadante de células C6/36, centrifugándolo a 600 *g* por 15 minutos y después la fase acuosa se filtró con una membrana de tamaño de poro de 0.22 μ m. La solución resultante se mantuvo a – 70 °C previamente a usarse en cada ensayo subsecuente.

6.1.2 Mosquitos Aedes aegypti

Los mosquitos se mantuvieron en condiciones de insectario controladas: 27-29 °C, 60-80 % de humedad relativa y un ciclo de luz / oscuridad de 12:12 h. Las larvas fueron alimentadas con una dieta mixta estándar de agua del grifo declorada, mezclada con extracto de levadura, lactoalbúmina y pellets de alimento para ratón en una proporción 1:1:1, y criadas en bandejas de plástico a una densidad de aproximadamente 200 larvas por bandeja hasta la pupación. Las pupas se transfirieron a botes con tela mosquitera para su emergencia. Los mosquitos adultos, a partir de tres días post-emergencia se alimentaron diariamente *ad libitum* con un algodón empapado en solución de sacarosa al 10 % (m / v), suplementada con 100 μ g/ml de BrdU; a excepción de 24 horas antes de cada reto inmunológico.

6.2 Inducción de *priming* inmunológico

Los retos inmunológicos de mosquitos *Ae. aegypti* hembra se hicieron alimentándolos oralmente *ad libitum* con una mezcla de sangre de conejo y DENV-2 propagado en células C6/36 en medio MEM a una relación 1:1, que contenía una carga viral final de 1 × 10⁶ copias del genoma de DENV-2 / ml, utilizando una membrana artificial (parafilm) en un sistema de calentamiento circulatorio. El *priming* inmunológico (primer reto) se hizo con virus inactivo, que se recuperó a partir del sobrenadante de células C6/36 expuesto a luz ultravioleta durante una hora, que se mantuvo a una temperatura de 4 °C. El segundo reto inmunológico se hizo con virus activo, que se recuperó del sobrenadante de células C6/36 infectadas con DENV-2. Como tratamiento testigo se utilizó el sobrenadante irradiado con luz ultravioleta de células C6/36 sin infectar. Método tomado y modificado de (Serrato-Salas, Izquierdo-Sánchez, et al., 2018).

6.3 Diseño experimental

Los mosquitos fueron divididos en dos grupos de 100 hembras que recibieron los tratamientos descritos en la sección 6.2, cada uno con tres réplicas biológicas de los que se obtuvieron los intestinos medios a diferentes tiempos post-emergencia, como se describe a continuación: a los cinco días post emergencia (dpe) el primer grupo de mosquitos fue alimentado con el tratamiento testigo (sobrenadante irradiado con luz ultravioleta de células C6/36 no infectadas, mezcladas con sangre de conejo); y al segundo grupo de mosquitos se le indujo *priming* inmunológico (primer reto), alimentándolos con DENV-2 inactivo (sobrenadante de células C6/36 infectadas con sangre de conejo).

Siete días post tratamiento (dpt) (12 dpe) se diseccionó el intestino medio de 50 mosquitos de cada grupo para su análisis; los mosquitos restantes de ambos grupos recibieron un segundo reto inmunológico alimentándolos con DENV-2 activo (sobrenadante de células C6/36 infectadas con DENV-2 y mezclado con sangre de conejo). Siete días después del segundo reto inmunológico (19 dpe), se diseccionaron los intestinos medios de los mosquitos, analizándolos como se

22

detalla en las siguientes secciones. La Figura 4, ilustra gráficamente al diseño experimental.

Fig. 4 | Esquematización gráfica del diseño experimental.

6.4 Evaluación de la infección viral

El nivel de infección en las muestras correspondientes a cada tratamiento se estimó determinando el número de copias del genoma y la cantidad relativa de la proteína NS1 de DENV-2.

6.4.1 Determinación de la carga viral de DENV-2

La carga viral se determinó mediante el ensayo de RT-qPCR, contando el número de copias del genoma de DENV-2 en la mezcla de sangre con virus utilizada durante el primer y segundo reto inmunológico; y en los grupos de diez intestinos medios de *Ae. aegypti* en todos los tratamientos.

El RNA total se extrajo a partir de cada muestra con TRIzol Reagent[™] (Ambion, 15596018). La calidad y cantidad del RNA se verificó por espectrometría. Posteriormente, la síntesis de cadena complementaria de DNA (cDNA) se hizo con 500 ng de RNA total, Random Hexamers (Invitrogen, N8080127) y el *kit* SuperScript

IV Reverse Transcriptase (Invitrogen, 18090010). La verificación de viabilidad de los ácidos nucleicos en ensayos subsecuentes se hizo amplificando por PCR en punto final a un fragmento de 292 pb del gen endógeno *40S ribosomal protein S7* (*Rps7*) de *Ae. aegypti*, flanqueado por los oligonucleótidos *Fwd: 5'* - GGG ACA AAT CGG CCA GGC TAT C -*3'* y *Rev: 5'* - TCG TGG ACG CTT CTG CTT GTT G - *3'*, utilizando el *kit* Q5[®] High-Fidelity DNA Polymerase (NEB, M0491). La electroforesis de los productos de PCR se realizó utilizando geles de agarosa al 2 % (m / v) en *buffer* TAE 1X, teñidos con 1 µg/ml de bromuro de etidio.

La inactivación de DENV en los intestinos medios a los siete días post – primer reto inmunológico se evaluó por RT-PCR punto final. Todos los ensayos de PCR partieron de 50 ng de cDNA como templado para amplificar un fragmento de 214 pb de la secuencia nucleotídica de la región no traducida 5' (5' UTR) y la proteína de la cápside de DENV-2, flanqueado por los oligonucleótidos *Fwd:* 5' - TAG AGA GCA GAT CTC TGR - 3' y *Rev* 5' - DAY YCC TGC TGT TGG TGG - 3'.

Los ensayos de PCR en tiempo real para determinar la carga viral además incluyeron a la sonda de hibridación interna: 5' - CAA TAT GCT GAA ACG CGW GAG AA - 3', utilizando el *kit* SsoAdvanced Universal Probes Supermix (Bio-Rad, 1725281). La cuantificación absoluta del número de copias del genoma viral se hizo tomando como referencia una curva estándar construida a partir de diluciones seriales 1:10 (v / v) del fragmento de interés (gBlocks[®] Gene Fragments, IDT) a una concentración conocida de 1 x 10⁸ copias por microlitro. La carga viral de cada muestra se extrapolo en función de los valores de Ct con el programa ROTOR-Gene Q Series Software (QIAGEN). El análisis de datos incluyó una comparación de medias con la prueba T de Student de dos colas con muestras no pareadas y corrección de Welch, utilizando el paquete estadístico GraphPad Prism 8.

6.4.2 Determinación relativa de NS1

Grupos de diez intestinos medios y carcasas de mosquitos por cada tratamiento se disgregaron en 1 ml de PBS estéril con ayuda de un pistilo. Las muestras se centrifugaron a 350 *g* durante 15 minutos y se recuperó el sobrenadante, el cual,

fue diluido en relación 1:100 (v / v) para la determinación relativa de NS1 mediante ELISA directa con el *kit* Platelia[™] Dengue NS1 Ag (Bio-Rad, 72830), siguiendo las instrucciones del fabricante. La prueba estadística utilizada para considerar la cinética de la infección fue una T de Student de dos colas para datos no pareados con corrección de Welch en GraphPad Prism 8.

6.5 Evaluación de la incorporación de BrdU en la síntesis de novo de DNA

El DNA genómico se extrajo a partir de cada muestra con el *kit* QIAamp® DNA Mini Kit (QIAGEN, 51304). La calidad y cantidad del DNA se verificó por espectrometría y la concentración de cada muestra se normalizó a 20 ng/µl. La incorporación de BrdU en el DNA se determinó por ELISA. Para ello, se sensibilizaron pozos de una placa de poliestireno con 50 µl de solución de poli L-lisina (10 µg/ml) en *buffer* de bicarbonato de sodio (NaCl 100 mM, NHCO₃ 25 mM, pH 7.2) y se incubó a 37 °C durante 2 horas. La placa se enjuagó tres veces con solución de lavado (PBS 1X, Tween 20 al 1 %).

El DNA fue desnaturalizado incubándolo a 95 °C por 15 minutos, seguido de 4 °C por dos minutos, se colocaron 50 µl en los pozos de la placa de ELISA, fue incubado a 37 °C durante dos horas y el exceso de DNA fue retirado con cinco lavados de la placa. Posteriormente, a cada pozo se le adicionaron 50 µl de solución de bloqueo (PBS 1X, BSA al 2 %), se incubó nuevamente a 37 °C por dos horas y el exceso de solución de bloqueo fue retirado realizando cinco lavados. Después, se agregó el anticuerpo monoclonal anti-BrdU IgG1 Fab de ratón acoplado a peroxidasa (Roche, 11585860001) en relación 1:500, diluyéndolo en solución de bloqueo (PBS 1X, BSA al 1 %), la placa fue incubada a 37 °C durante 2 horas y lavada siete veces para retirar los anticuerpos que no se unieron al antígeno. Como sustrato para la peroxidasa se usó 3,3',5,5'-tetrametilbenzidina (TMB) y peróxido de hidrógeno incubados durante 30 minutos (Bio-rad, 1721066). Finalmente, las lecturas de la absorbancia se obtuvieron a 450 / 620 nm con el lector de microplacas iMark [™] (BioRad).

El control positivo del ensayo fue DNA extraído a partir de células C6/36 cultivadas durante 48 horas en MEM, suplementado con BrdU (100 μ g/ml) y suero fetal bovino inactivado con calor al 10 % (v / v). El control negativo fue DNA extraído de intestinos medios de mosquitos alimentados únicamente con solución de sacarosa al 10 % (v / v). Para normalizar las lecturas de absorbancia entre tratamientos, el ensayo incluyó DNA extraído de grupos de diez intestinos procedentes de mosquitos que no recibieron reto inmunológico y que fueron alimentados con solución de sacarosa suplementada con BrdU, a cuya absorbancia media se le asignó un valor de 1. La prueba estadística utilizada fue un ANOVA de una sola vía y la prueba de Tukey en GraphPad Prism 8.

6.6 Identificación de los genes contenidos en el DNA

La plataforma de secuenciación Oxford Nanopore Technology (ONT), utiliza nanoporos compuestos de proteínas que introducen las hebras de DNA a una micro celda que monitorea cambios en la corriente eléctrica. La señal se decodifica y asocia a una secuencia específica de DNA. La tecnología es útil para detectar BrdU, compuesto análogo a la timidina que se incorpora al DNA durante la fase S del ciclo celular. El análisis bioinformático de los datos de secuenciación masiva permite identificar regiones genómicas que incorporan BrdU (Boemo, 2021).

La metodología presentada a continuación, se ejecutó de acuerdo con el diseño experimental planteado en la sección 6.3, para identificar genes replicados en la síntesis *de novo* de DNA en respuesta a cada tratamiento experimental.

6.6.1 Preparación de bibliotecas de DNA genómico

El DNA genómico (gDNA) se extrajo a partir de cada grupo de diez intestinos medios con el *kit* QIAamp® DNA Mini Kit (QIAGEN, 51304). La calidad y cantidad del DNA se verificó con el espectrofotómetro NanoDrop[®] 2000 (Thermo Scientific, ND-2000). La cantidad de DNA de doble cadena (dsDNA) se normalizó en cada muestra a una concentración de 54 ng/µl, corroborando la cantidad de dsDNA con el *kit* QuantiFluor® dsDNA System (Promega, E2670) y el fluorometro Quantus[™] (Promega, E6150). Las 12 bibliotecas de gDNA se hicieron con el *kit* Rapid

Barcoding Sequencing (Oxford Nanopore Technologies, SQK-RBK004), siguiendo las especificaciones del fabricante. Posteriormente, se procedió a hacer la corrida de secuenciación con el equipo MinION y la adquisición de datos con el software MinKNOW (Oxford Nanopore Technologies).

6.6.2 Análisis de los datos de BrdU-seq

El proceso de llamada de bases (*basecalling*) se hizo con el programa Guppy (Oxford Nanopore Technologies), que permitió traducir la señal de datos crudos a secuencias nucleotídicas y limpiar las bibliotecas de gDNA (eliminando los códigos de barras y adaptadores). Las lecturas de cada muestra se mapearon al genoma de referencia de *Aedes aegypti* (número de acceso: GCF_002204515.2) depositado en la base de datos del GenBank[®], utilizando el programa de alineamiento Minimap2 (H. Li, 2018). Las coordenadas genómicas de las secuencias que incorporaron BrdU fueron identificadas con el programa DNAscent v2 (Boemo, 2021) y la lista de genes correspondientes se anotaron con la herramienta Gene tables - NCBI Datasets, que generó un reporte detallado con los datos específicos de cada gen, incluyendo su ID, coordenadas genómicas, nombre, producto y las secuencias genéticas, transcritos y de las proteínas correspondientes.

6.7 Predicción in silico de vías de señalización celular enriquecidas

Se identificaron las vías de señalización celular enriquecidas por los genes que se replicaron en cada tratamiento experimental (Figura 5). Siguiendo la metodología descrita por Reimand et al., (2019): 1) Se definió la lista de genes a partir de los datos de secuenciación masiva que se anotaron en la sección 6.6.2; 2) Se determinaron las vías de señalización cuyos genes están enriquecidos estadísticamente de manera significativa, mediante la Prueba exacta de Fisher, que se basa en la distribución hipergeométrica, utilizando la herramienta web g:Profiler; y, 3) Finalmente se visualizaron e interpretaron los resultados utilizando las aplicaciones EnrichmentMap, clusterMaker2, Word Cloud y Auto Annotate, del software Cytoscape.

Fig. 5 | Flujo de trabajo del análisis de enriquecimiento de vías de señalización. Tomado de (Reimand et al., 2019).

6.8 Caracterización de biomarcadores moleculares

La selección de genes involucrados en el proceso de generación de *priming* inmunológico se centró en elementos reguladores del ciclo celular, síntesis de DNA, efectores de la respuesta inmune, factores epigenéticos y de señalización celular (ver Tabla 2 del apéndice). También, fueron elegidos genes endógenos para normalizar los datos resultantes entre las réplicas biológicas de los ensayos (ver Tabla 3 del apéndice). Posteriormente, se diseñaron sondas electrónicas (*e-probes*) que sirven para la identificación rápida y caracterización simultanea de los grupos de genes seleccionados, mediante la técnica E-probe Diagnostics for Nucleic acid Analysis, descrita por Espindola et al., (2018); Ochoa Corona et al., (2019); Stobbe et al., (2013). El diseño de las *e-probes* tomó en cuenta al genoma de especies representativas de la microbiota del intestino medio de *Ae. aegypti* (ver Tabla 4 del

apéndice). Las *e-probes* se curaron manualmente utilizando la herramienta Basic Local Alignment Search Tool del NCBI.

La prueba piloto de las sondas electrónicas se hizo con datos crudos de secuenciación masiva de bibliotecas de RNA generados a partir de muestras de células Aag2 de *Ae. aegypti* infectadas con DENV-2 (número de acceso: SRR12200471, SRR12200470 y SRR12200469) y de células no infectadas (número de acceso: SRR12200475, SRR12200474, SRR12200473). Los datos se recuperaron de la base de datos Sequence Read Archive (SRA) del NCBI y fueron publicados originalmente por M. Li et al., (2020). El diseño de las *e-probes* y el análisis de metagenomas se hicieron en la plataforma Microbe Finder (MiFi[®]) (Espindola y Cardwell, 2021). La cuantificación relativa de *e-probes* se analizó comparando la media aritmética de las réplicas biológicas por tratamiento, utilizando la prueba de T de Student de dos colas para datos pareados; y en las lecturas que no cumplieron los supuestos de normalidad se usó la prueba no paramétrica de los rangos con signo de Wilcoxon en GraphPad Prism 8.

7 Resultados

7.1 El *priming* inmunológico inducido con DENV-2 inactivo disminuye el nivel de infección en *Aedes aegypti*

La carga viral promedio en la mezcla de sangre con virus inactivo y activo fue de 2.3×10^6 y 9.4×10^6 copias del genoma de DENV-2 por mililitro, respectivamente. La inactivación del virus dengue con luz ultravioleta fue eficaz, los ensayos de RT-PCR mostraron que los intestinos medios a los siete días post – primer reto inmunológico, fueron negativos a la infección de dengue y no se detectó proteína NS1 por ELISA (Figuras 6 y 8 A-B).

Fig. 6 | Detección de DENV-2 por RT-PCR en grupos de diez intestinos medios de *Ae. aegypti.* 1), 2), 3) Muestra a 7 días post - 1^{er} reto inmunológico con tratamiento testigo. 4), 5), 6) Muestra a 7 días post - 1^{er} reto inmunológico con DENV-2 inactivo que induce *priming* inmunológico. 7), 8), 9) Muestra de tratamiento testigo a 7 días post - 2^{do} reto inmunológico con DENV-2 activo. 10), 11), 12) Muestra con p*riming* inmunológico a 7 días post – 2^{do} reto inmunológico con DENV-2 activo. 13) y 14) Control negativo. 15) y 16) Control positivo. Marcador de tamaño molecular (MM) GeneRuler DNA Ladder Mix (Thermo Scientific, SM0331). Amplicón esperado de 214 pb.

La carga viral promedio en los grupos de diez intestinos medios con el tratamiento testigo y de *priming* inmunológico a los siete días post – segundo reto inmunológico con virus activo fue en promedio de 3.68 x 10⁶ y 3.95 x 10⁶ copias del genoma de DENV-2 por mililitro, respectivamente. El nivel relativo de NS1 fue similar entre las muestras. Por lo que, ambos ensayos no presentaron diferencias estadísticamente significativas entre tratamientos (Figuras 7 y 8 A). Sin embargo, la determinación relativa de la proteína NS1 en las carcasas se redujo a razón de diez veces en los mosquitos tratados previamente con DENV-2 inactivo, en comparación al tratamiento control (mosquitos alimentados con la mezcla de sangre de conejo y sobrenadante de células C6/36 irradiado con luz ultravioleta) (Figura 8 B).

Fig. 8 | Cantidad relativa del antígeno NS1 determinada por ELISA. Ctrl -) Control negativo. Ctrl +) Control positivo. UnPr) Muestras con tratamiento testigo. Pr) Muestras con p*riming* inmunológico. Análisis estadístico con T de Student de dos colas con muestras no pareadas y corrección de Welch. No existen diferencias estadísticamente significativas entre los tratamientos (ns); existen diferencias estadísticamente significativas (* p < 0.05).

7.2 Los retos inmunológicos generan síntesis *de novo* de DNA en las células del intestino medio de *Aedes aegypti*

La incorporación relativa de BrdU en el DNA del intestino medio a los siete días post – primer y segundo reto inmunológico, aumentó en todos los tratamientos a razón de > 0.5 veces en comparación al grupo de mosquitos que no recibió ningún estímulo inmunológico (Figura 9).

Intestinos medios

Fig. 9 | Cantidad relativa de BrdU incorporado durante la síntesis de novo de DNA determinada por ELISA. Mock) Muestras para normalizar los datos entre tratamientos asignando a la media aritmética un valor de 1 (mosquitos sin retos inmunológicos, alimentados con solución de sacarosa suplementada con BrdU). UnPr) Muestras con tratamiento testigo. Pr) Muestras con priming inmunológico. Las barras indican la media aritmética y desviación estándar de las tres réplicas biológicas. Análisis estadístico realizado con ANOVA de una sola vía (p < 0.05) y prueba de Tukey (a y b presentan diferencias estadísticamente significativas).

7.3 El DNA *de novo* agrupa distintos genes en función de la naturaleza del inmunógeno y la condición inmunológica previa a cada reto inmunológico

Las células del intestino medio de los mosquitos replicaron genes diferentes dependiendo de su condición inmunológica preexistente y de la naturaleza del inmunógeno usado en cada tratamiento experimental. Las muestras a los siete días post – primer reto inmunológico con tratamiento testigo incorporaron BrdU en 24 genes, 23 que codifican proteínas y un solo gen de RNA no codificante; y las muestras con *priming* inmunológico incorporaron BrdU en 206 genes, 200 que codifican proteínas y seis genes de RNA no codificante. Las muestras a los siete días post – segundo reto inmunológico con DENV-2 activo con el tratamiento testigo incorporaron BrdU en 13 genes codificantes de proteínas; y las muestras que presentaban *priming* inmunológico incorporaron BrdU en 55 genes, 54 que codifican proteínas y un solo gen de RNA no codificante. Además, 26 genes codificantes se marcaron con BrdU en más de un tratamiento experimental (Figura 10). La lista de genes que incorporaron BrdU en cada tratamiento experimental se enumeran en la Tabla 1 del apéndice.

Fig. 10 | Conjunto de genes marcados con BrdU por tratamiento experimental. A) Grupo de muestras a 7 días post - 1^{er} reto inmunológico con tratamiento testigo. B) Grupo de muestras a 7 días post - 1^{er} reto inmunológico con DENV-2 inactivo que induce *priming* inmunológico. C) Grupo de muestras con tratamiento testigo a 7 días post - 2^{do} reto inmunológico con DENV-2 activo. D)

Grupo de muestras con p*riming* inmunológico a 7 días post – 2^{do} reto inmunológico con DENV-2 activo. Genes que codifican proteínas (PC); genes de RNA no codificante (ncRNA).

7.4 El reto inmunológico con DENV-2 inactivo induce la replicación de genes que enriquecen significativamente a vías de señalización celular

El enriquecimiento en términos de ontología de genes (GO) y términos KEGG (Kyoto Encyclopedia of Genes and Genomes) de vías de señalización celular, se determinó estadísticamente analizando el enriquecimiento de vías de señalización de acuerdo con el perfil funcional de los genes codificantes que incorporaron BrdU en cada tratamiento experimental (ver sección 7.3). Para facilitar la interpretación de los resultados, no se tomaron en cuenta los genes de RNA no codificante.

La lista de genes marcados con BrdU en las muestras a siete días post – primer reto inmunológico con el tratamiento testigo enriquecieron términos GO de dos funciones moleculares, seis procesos biológicos; y dos términos KEGG de la vía de señalización Hippo. Los genes que incorporaron BrdU a siete días post – primer reto inmunológico con DENV-2 inactivo que induce *priming* inmunológico enriquecieron términos GO de 11 componentes celulares, 18 funciones moleculares, 28 procesos biológicos; y tres términos KEGG que corresponden a la biosíntesis de N-glicanos, la vía de señalización de las MAPK y al termino raíz. Los genes marcados con BrdU en las muestras con tratamiento testigo a siete días post – segundo reto inmunológico con DENV-2 activo no enriquecieron términos GO y KEGG. Por último, la lista de genes marcados con BrdU en las muestras con BrdU en las muestras con tratamiento fuenta secon priming inmunológico a los siete días post – segundo reto inmunológico a los siete días post – segundo reto inmunológico a los siete días post – segundo reto inmunológico a los siete días post – segundo reto inmunológico a los siete días post – segundo reto inmunológico a los siete días post – segundo reto inmunológico a los siete días post – segundo reto inmunológico a los siete días post – segundo reto inmunológico a los siete días post – segundo reto inmunológico a los siete días post – segundo reto inmunológico a los siete días post – segundo reto inmunológico con DENV-2 activo enriquecieron términos GO únicamente de una función molecular y el término raíz de procesos biológicos (Figura 11).

Las Figuras 12, 13 y 14 esquematizan los términos GO enriquecidos en el tratamiento experimental que indujo *priming* inmunológico en las células del intestino medio de *Ae. aegypti*. La agrupación de los términos GO redundantes en las categorías de componente celular, función molecular y proceso biológico, permite observar las relaciones entre ellos. La mayoría de los genes que

35

incorporaron BrdU enriquecieron términos GO que agrupan proteínas localizadas en la membrana celular, involucradas principalmente en procesos del transporte, señalización y comunicación celular.

Fig. 11 | Análisis estadístico de enriquecimiento de vías de señalización a partir del conjunto de genes marcados con BrdU por tratamiento experimental. NoPr_7dp-1er reto) Grupo de muestras a 7 días post - 1^{er} reto inmunológico con tratamiento testigo. Pr_7dp-1er reto) Grupo de muestras a 7 días post - 1^{er} reto inmunológico con DENV-2 inactivo que induce *priming* inmunológico. NoPr_7dp-2do reto) Grupo de muestras con tratamiento testigo a 7 días post - 2^{do} reto inmunológico con DENV-2 activo. Pr_7dp-2do reto) Grupo de muestras con priming inmunológico a 7 días post - 2^{do} reto inmunológico con DENV-2 activo. Pr_7dp-2do reto) Grupo de muestras con priming inmunológico a 7 días post – 2^{do} reto inmunológico con DENV-2 activo. Análisis estadístico con Prueba exacta de Fisher. Significancia estadística ($p_{adj} < 0.05$). Términos de ontología de genes de componentes celulares (GO:CC); términos de ontología de genes de función molecular (GO:MF); términos de ontología de genes biológicos (GO:BP); términos KEGG de vías de señalización (KEGG). La figura continúa en la siguiente página.

GO:CC		NoPr_7dp-1er reto	Pr_7dp-1er reto	NoPr_7dp-2do reto	Pr_7dp-2do reto
Term Na	Term	p_adj	p_adj	p_adj	p_adj
membrane	GO:0016020	1.000	4.841×10 ⁻¹⁴	1.000	1.000
cellular_component	GO:0005575	3.631×10 ⁻¹	4.036×10 ⁻¹³	1.000	1.000
cellular anatomical entity	GO:0110165	9.476×10 ⁻¹	4.754×10 ⁻¹³	1.000	1.000
integral component of membrane	GO:0016021	1.000	6.649×10 ⁻¹²	1.000	1.000
intrinsic component of membrane	GO:0031224	1.000	8.391×10 ⁻¹²	1.000	1.000
cell periphery	GO:0071944	1.000	1.331×10 ⁻⁷	1.000	6.627×10 ⁻¹
plasma membrane	GO:0005886	1.000	1.934×10 ⁻⁶	1.000	1.000
cell junction	GO:0030054	1.000	5.066×10 ⁻⁶	1.000	1.000
synapse	GO:0045202	1.000	6.001×10 ⁻⁴	1.000	4.093×10 ⁻¹
plasma membrane region	GO:0098590	1.000	3.431×10 ⁻²	1.000	1.000
cytoskeleton	GO:0005856	1.000	3.567×10 ⁻²	1.000	1.000
4					

GO:MF		NoPr_7dp-1er reto	Pr_7dp-1er reto	NoPr_7dp-2do reto	Pr_7dp-2do reto
Term Na	Term	p_adj	p_adj	p_adj	p_adj
molecular_function	GO:0003674	7.671×10 ⁻³	4.844×10 ⁻¹⁸	1.000	2.931×10 ⁻¹
binding	GO:0005488	2.252×10 ⁻²	1.852×10 ⁻⁸	1.000	5.462×10 ⁻¹
protein binding	GO:0005515	2.716×10 ⁻¹	2.835×10-6	1.000	1.000
G protein-coupled receptor activity	GO:0004930	1.000	7.830×10 ⁻⁴	1.000	1.000
transmembrane signaling receptor activity	GO:0004888	1.000	1.081×10 ⁻³	1.000	1.000
signaling receptor activity	GO:0038023	1.000	2.178×10 ⁻³	1.000	1.000
molecular transducer activity	GO:0060089	1.000	2.178×10-3	1.000	1.000
ion binding	GO:0043167	1.000	2.579×10 ⁻³	1.000	4.136×10 ⁻¹
transferase activity	GO:0016740	1.000	3.866×10-3	1.000	1.000
metal ion binding	GO:0046872	1.000	5.310×10 ⁻³	1.000	1.000
cation binding	GO:0043169	1.000	5.819×10 ⁻³	1.000	1.000
cation channel activity	GO:0005261	1.000	5.971×10 ⁻³	1.000	1.000
protein serine/threonine kinase activity	GO:0004674	1.000	9.891×10 ⁻³	1.000	1.000
actin binding	GO:0003779	1.000	1.171×10 ⁻²	1.000	1.000
kinase activity	GO:0016301	1.000	1.210×10 ⁻²	1.000	3.624×10 ⁻¹
calcium ion binding	GO:0005509	1.000	1.460×10 ⁻²	1.000	1.000
transferase activity, transferring phosphorus-containing gro	GO:0016772	1.000	3.188×10 ⁻²	1.000	9.424×10 ⁻¹
postsynaptic neurotransmitter receptor activity	GO:0098960	1.000	3.618×10 ⁻²	1.000	1.000
NAD+ kinase activity	GO:0003951	1.000	1.000	1.000	4.273×10 ⁻²

GO:BP		NoPr_7dp-1er reto	Pr_7dp-1er reto	NoPr_7dp-2do reto	Pr_7dp-2do reto
Term Na	Term	p_adj	p_adj	p_adj	p_adj
biological_process	GO:0008150	1.776×10 ⁻²	9.840×10 ⁻¹⁵	1.000	1.195×10 ⁻³
cellular process	GO:0009987	3.149×10 ⁻²	2.702×10 ⁻¹¹	1.000	5.174×10 ⁻²
response to stimulus	GO:0050896	2.543×10 ⁻¹	1.714×10 ⁻¹⁰	3.791×10 ⁻¹	5.872×10 ⁻¹
regulation of biological process	GO:0050789	1.124×10 ⁻²	9.466×10 ⁻¹⁰	2.376×10 ⁻¹	1.000
biological regulation	GO:0065007	2.041×10 ⁻²	1.139×10 ⁻⁹	3.335×10 ⁻¹	1.822×10 ⁻¹
cellular response to stimulus	GO:0051716	1.362×10 ⁻¹	2.147×10 ⁻⁹	1.000	1.000
signaling	GO:0023052	5.798×10 ⁻²	2.790×10 ⁻⁹	1.000	1.000
cell communication	GO:0007154	5.798×10 ⁻²	2.790×10 ⁻⁹	1.000	1.000
regulation of cellular process	GO:0050794	4.523×10 ⁻²	3.304×10 ⁻⁹	1.674×10 ⁻¹	1.000
signal transduction	GO:0007165	4.595×10 ⁻²	4.451×10 ⁻⁹	1.000	1.000
anatomical structure development	GO:0048856	1.000	1.251×10 ⁻⁵	1.000	1.000
developmental process	GO:0032502	1.000	2.775×10 ⁻⁵	1.000	1.000
localization	GO:0051179	1.000	2.863×10 ⁻⁵	1.000	1.000
transport	GO:0006810	1.000	1.945×10 ⁻³	1.000	1.000
cell-cell signaling	GO:0007267	1.000	2.599×10 ⁻³	1.000	1.000
establishment of localization	GO:0051234	1.000	2.889×10 ⁻³	1.000	1.000
cell surface receptor signaling pathway	GO:0007166	1.000	5.899×10 ⁻³	1.000	1.000
anatomical structure morphogenesis	GO:0009653	1.000	6.247×10 ⁻³	1.000	1.000
transmembrane transport	GO:0055085	1.000	1.641×10 ⁻²	1.000	1.000
G protein-coupled receptor signaling pathway	GO:0007186	1.000	1.977×10 ⁻²	1.000	1.000
intracellular signal transduction	GO:0035556	3.724×10 ⁻¹	2.040×10 ⁻²	1.000	6.461×10 ⁻¹
cell surface receptor signaling pathway involved in cell-cell	GO:1905114	1.000	2.074×10 ⁻²	1.000	1.000
multicellular organism development	GO:0007275	1.000	2.622×10 ⁻²	5.791×10 ⁻¹	1.000
phosphorus metabolic process	GO:0006793	1.000	3.478×10 ⁻²	1.000	7.041×10 ⁻¹
cellular response to chemical stimulus	GO:0070887	1.000	3.566×10 ⁻²	1.000	1.000
ion transmembrane transport	GO:0034220	1.000	3.699×10 ⁻²	1.000	1.000
protein modification process	GO:0036211	1.000	4.134×10 ⁻²	1.000	1.000
cellular protein modification process	GO:0006464	1.000	4.134×10 ⁻²	1.000	1.000
4					•

KEGG		NoPr_7dp-1er reto	Pr_7dp-1er reto	NoPr_7dp-2do reto	Pr_7dp-2do reto
Term Na	Term	p_adj	p_adj	p_adj	p_adj
Hippo signaling pathway - fly	KEGG:04391	6.197×10 ⁻⁴	4.142×10 ⁻¹	1.000	1.000
KEGG root term	KEGG:00000	1.423×10 ⁻¹	6.466×10 ⁻⁴	1.000	1.000
MAPK signaling pathway - fly	KEGG:04013	1.000	9.264×10 ⁻⁴	1.000	1.000
Hippo signaling pathway - multiple species	KEGG:04392	3.078×10 ⁻³	1.000	1.000	1.000
N-Glycan biosynthesis	KEGG:00510	1.000	1.421×10 ⁻²	1.000	1.000
4					1

MEMBRANE REGION COMPONENT

Fig. 12 | Términos de ontología de genes enriquecidos en la categoría de componentes celulares en intestinos medios con *priming* imunológico.

Fig. 13 | Términos de ontología de genes enriquecidos en la categoría de funciones moleculares en intestinos medios con *priming* imunológico.

SIGNALING CELL PROCESS

7.5 Biomarcadores moleculares de la respuesta inmunológica de Aedes aegypti

Las sondas electrónicas se utilizaron para monitorear eventos biológicos relacionados a la respuesta inmunológica y se interpretan como indicadores de la interacción de *Ae. aegypti* y el virus dengue. En total, se diseñaron 81 *e-probes* altamente específicas para identificar 12 genes de interés en el estudio del *priming*

inmunológico; y seis genes endógenos para normalizar los datos entre réplicas biológicas y tratamientos experimentales (ver Tabla 5 del apéndice).

La prueba piloto de las *e-probes* se realizó satisfactoriamente y los resultados se resumen en la Figura 15. La normalización del número de lecturas en cada muestra experimental utilizó la combinación de los genes endógenos *Glyceraldehyde 3-phosphate dehydrogenase 1 (GAPDH)* y *60S ribosomal protein L8 (RPL8)*, multiplicando el cociente de *GAPDH / RPL8* por los valores en las lecturas de cada *e-probe*. Los resultados sugieren que el DENV-2 moduló negativamente la producción de especies reactivas de nitrógeno y positivamente a la vía del RNA pequeño de interferencia. La modulación negativa de la ciclina B y el aumento del número de transcritos de la ciclina E apunta a un cambio de ciclo celular mitótico a endocíclico. Asimismo, la transcripción se moduló negativamente para el receptor Notch, elemento importante en la regulación del ciclo celular. Además, aumentaron los transcritos del gen *Target of rapamycin (TOR)* que forma parte de la vía de señalización TOR; regulador maestro en la síntesis de nucleótidos, lípidos, proteínas y la biosíntesis de ribosomas.

Sin embargo, no se obtuvieron resultados con los datos de secuenciación masiva generados a partir de las muestras biológicas del presente trabajo, debido a que, es necesario elevar la profundidad en las lecturas ajustando el protocolo de secuenciación y dicha tarea queda como perspectiva.

Fig. 15 | Determinación relativa del número de transcritos asociados a la respuesta inmunológica de Aedes aegypti. MOCK) Muestra de células sanas tomada a cuatro días del inicio del experimento. DENV-2) Muestra de células a cuatro días post - reto inmunológico con DENV-2 activo. Análisis estadístico con la prueba de T de Student de dos colas para datos pareados. Nivel de significancia (*p < 0.05, **p < 0.001). Las lecturas que no presentan distribución normal fueron analizadas con la prueba no paramétrica de los rangos con signo de Wilcoxon. Nivel de significancia (##p < 0.001). No existen diferencias estadísticamente significativas (ns).

8 Discusión

El *priming* inmunológico es un fenómeno biológico que favorece respuestas más rápidas y eficaces, ante antígenos con los que se tuvo una exposición previa. Investigaciones anteriores han evidenciado la importancia de la modulación del ciclo celular y la síntesis de DNA *de novo* en las células del intestino medio de mosquitos como consecuencia de un primer estímulo inmunogénico que induce *priming* inmunológico.

La presente investigación se enfocó en elucidar los genes que contiene el DNA *de novo* e identificar moléculas que potencialmente robustecen la respuesta inmunológica en las células del intestino medio de *Ae. aegypti* ante un reto inmunológico secundario con el virus dengue. La síntesis *de novo* de DNA es una estrategia que le permitiría a la célula, adaptar selectivamente la transcripción de genes para sintetizar elementos que modifican su estructura y procesos biológicos en respuesta a estímulos externos.

Los genes identificados en el DNA *de novo* sintetizado a los siete días post – primer reto con DENV-2 inactivo, pueden asociarse a la potenciación en la respuesta inmunológica de las células del intestino medio de *Ae. aegypti* frente al segundo reto inmunológico con el virus activo; a lo que denominamos *priming* inmunológico. Tras la síntesis de los elementos moleculares que codifica el grupo de genes identificado, iniciarían eventos moleculares como cambios epigenéticos, síntesis de factores de señalización celular, regulación del ciclo celular y modulación de la respuesta inmunológica.

Entre los genes identificados en las células con *priming* inmunológico destacan: 1) Los receptores Acetylcholine receptor subunit alpha-like 2, Aryl hydrocarbon receptor, Bone morphogenetic protein receptor type-1B, Calcitonin gene-related peptide type 1 receptor, Diuretic hormone receptor, Gamma-aminobutyric acid receptor subunit alpha-6, G-protein coupled receptor 39, Low-density lipoprotein receptor-related protein 1, Membrane-associated progesterone receptor component 1, Metabotropic glutamate receptor 1, Neuronal acetylcholine receptor subunit

42

alpha-7, Octopamine receptor beta-2R, Octopamine receptor Oamb, Probable Gprotein coupled receptor B0563.6, Putative vitellogenin receptor, Somatostatin receptor type 2, Very low-density lipoprotein receptor, y el Xenotropic and polytropic retrovirus receptor 1, hipotéticamente podrían ser candidatos a actuar como receptores del virus del dengue o de algunas de las proteínas virales, aunque aún no hay evidencia al respecto; 2) 26S proteasome non-ATPase regulatory subunit 10 y E3 ubiquitin-protein ligase RNF19B, probablemente implicados en la ubiquitinación de la proteína de cobertura del virión del dengue y su degradación en el proteasoma (Troupin et al., 2016); 3) 60S acidic ribosomal protein PO, interacciona con las proteínas NS3d y NS5 del virus dengue (Mairiang et al., 2013); 4) A disintegrin and metalloproteinase with thrombospondin motifs 12, algunas metaloproteasas promueven respuestas anti-DENV (Zuo et al., 2014); 5) ABC transporter G family member 23, los transportadores ABC han sido relacionados con roles inmunitarios contra arbovirus (Kumar et al., 2021); 6) AF4/FMR2 family member 4, interacciona con la proteína de la cápside de DENV (Mun-Keat C., 2013); 7) Dual oxidase, Mitogen-activated protein kinase kinase kinase 15, Tyrosine-protein phosphatase corkscrew, Kinase suppressor of Ras 2, Protransforming growth factor alpha, Bone morphogenetic protein receptor type-1B, Mitogen-activated protein kinase ERK-A y JNK-interacting protein 1. En este sentido, hay evidencias del crosstalk entre la vía de señalización Ras/ERK y la producción de péptidos antimicrobianos como las defensinas A, C, y D, y las cecropinas B y C para mediar la resistencia de los mosquitos a la infección por el virus dengue (Liu et al., 2020). Además, la vía MAPK JNK/ERK induce la síntesis de especies reactivas de oxígeno, que activan la vía Toll y con ella la síntesis de defensinas y cecropinas (Pan et al., 2012; Xiao et al., 2017); 8) Glutathione synthetase, Peroxidasin y Collagen type IV alpha-3-binding protein, modulan el balance del estrés oxidativo. Interesantemente hay evidencias de que la peroxidasina posee efectos antimicrobianos y también promueve proliferación celular (S. Lee et al., 2020; Shi et al., 2018; Sirokmány et al., 2018); 9) Alphamannosidase 2, regula las infecciones por arbovirus en mosquitos Ae. aegypti (Urakova et al., 2022); 10) Ankyrin-2, las proteínas con repetidos de anquirina

regulan de manera negativa las infecciones del virus dengue en mosquitos (Sim et al., 2012; Tsujimoto et al., 2017); 11) Aryl hydrocarbon receptor, modulador de la inmunidad antiviral ante infecciones de flavivirus (Giovannoni et al., 2020; Torti et al., 2021); 12) Atypical protein kinase C, Protransforming growth factor alpha, y Protein scalloped, implicados en la vía de señalización Hippo que regula la sobrevivencia, proliferación y morfología celular. También, es un factor determinante durante la transición de la fase G1/S del ciclo celular, modulando la expresión de Cdc6, E2f1 y la ciclina E (Kim et al., 2019). La vía Hippo modula la infección por el virus del Zika (Garcia et al., 2020; Kandilya et al., 2019); 13) Uncharacterized LOC5574435, gen ortólogo al factor de transcripción BBX, necesario en la transición del ciclo celular de la fase G1/S del ciclo celular (Sánchez-Díaz et al., 2001); 14) CD63 antigen, media la transmisión del virus dengue a través de exosomas (Vora et al., 2018); 15) Aryl hydrocarbon receptor, ABC transporter G family member 23, Cytochrome b5 reductase 4, Cytochrome P450 4c3, Cytochrome P450 4g15 y Glutathione synthetase, forman parte de los mecanismos moleculares de resistencia a insecticidas en mosquitos (Bariami et al., 2012; Gan et al., 2021; Marcombe et al., 2012); 16) Histone deacetylase 4 e Histone-lysine Nmethyltransferase ash1, producen remodelación de la cromatina y el fenómeno de priming inmunológico se caracteriza por inducir cambios epigenéticos (Lanz-Mendoza y Contreras-Garduño, 2021; Milutinović y Kurtz, 2016); 17) Protein Wnt-5, Protein wntless y Putative vitellogenin receptor, forman parte de la vía Wingless, importante en la señalización intercelular de amplio rango durante el proceso de reproducción en los mosquitos hembra (Lucas et al., 2015); 18) Aryl hydrocarbon receptor, Chorion transcription factor Cf2, Hepatic leukemia factor, Homeobox protein B-H, Homeobox protein unc-4, Uncharacterized LOC5568122, Uncharacterized LOC5568147, Octopamine receptor beta-2R, Protein apterous, Protein scalloped, Ras-interacting protein RIP3, Uncharacterized LOC110675397, Uncharacterized LOC5574435, y Zinc finger protein 853, son factores de transcripción o proteínas que interaccionan con ácidos nucleicos, su estudio permitiría generar más información sobre la regulación en las vías de señalización y la síntesis de elementos celulares característicos del programa celular distintivo

del priming inmunológico; y, 19) Uncharacterized LOC110675975, Uncharacterized LOC110676709, Uncharacterized LOC110677884, Uncharacterized LOC110678844, Uncharacterized LOC110678990 y Uncharacterized LOC5578744, son genes de RNA no codificante candidatos a desempeñar funciones reguladoras, aún inexploradas (Palazzo y Lee, 2015).

Por otro lado, es importante resaltar que la mayoría de los genes que incorporaron BrdU aparentemente se degradan con el tiempo. Observación congruente con la cinética de incorporación de BrdU en células del intestino medio de *Ae. aegypti* en infecciones con DENV, documentadas por Serrato-Salas, Hernández-Martínez, et al., (2018). Lo que sugiere que el mecanismo adaptativo mediado por la síntesis *de novo* de DNA es capaz de encenderse, apagarse y se regula en función del contexto celular previo a un reto inmunológico. No obstante, actualmente no existe más información al respecto disponible en la literatura. En el mismo sentido, los mecanismos celulares enriquecidos por los genes identificados en esta investigación sugieren que el grado de actividad inmunológica en mosquitos con *priming* inmunológico es bifásico. En general, los resultados permiten apreciar los eventos moleculares propios del programa adaptativo en las células del intestino medio que potencialmente aumentan la sobrevivencia y progenie de mosquitos con *priming* inmunológico; protegiéndolos frente a un segundo reto inmunológico por DENV.

45

9 Conclusión

Identificamos alrededor de 200 genes replicados en la síntesis de *novo de* DNA, derivada de *priming* inmunológico, en las células del intestino medio de *Ae. aegypti* retadas con DENV-2 inactivo. Los datos obtenidos sugieren que el proceso de endoreplicación inducido por *priming* inmunológico, replica genes importantes en la respuesta inmune anti-DENV.

10 Perspectivas

- Evaluar el número de transcritos y proteínas que se sintetizan a partir de los genes identificados en este trabajo.
- Identificar los genes que se transcriben por la acción de los factores de transcripción identificados en el DNA *de novo*.
- Analizar el papel de los genes de RNA no codificante en las células con priming inmunológico.
- Elucidar la integración de las vías de señalización que participan en el programa celular adaptativo del *priming* inmunológico.
- Estudiar la regulación génica de los mecanismos moleculares relacionados al proceso de endoreplicación.
- Estudiar la correlación entre las cinéticas de la remodelación del DNA (síntesis y degradación del DNA *de novo*), la transcripción de los genes endoreplicados y la traducción de los mRNA a proteínas.

11 Apéndice

Tabla 1. Lista de genes que incorporaron BrdU en cada tratamiento experimental. La anotación de los genes se hizo con base en secuencias de referencia del genoma de *Aedes aegypti* con número de acceso en la base de datos del GenBank[®]: NC_035107.1 (cromosoma 1), NC_035108.1 (cromosoma 2) y NC_035109.1 (cromosoma 3).

ID del gen	Símbolo	Nombre del gen	Sinonimias	Tipo de gen	Cromosoma				
	Grupo de muestras a 7 días post - 1 ^{er} reto inmunológico con tratamiento testigo								
5576493	LOC5576493	atypical protein kinase C	AAEL002885, AAEL010352	protein-coding	3				
5574086	LOC5574086	collagen alpha-1(XVIII) chain	AAEL002247, AAEL002256	protein-coding	2				
5575787	LOC5575787	cytoplasmic polyadenylation element-binding protein 2	AAEL007791, AAEL012065	protein-coding	1				
23687432	LOC23687432	fibrous sheath CABYR-binding protein	AAEL017012	protein-coding	2				
5574971	LOC5574971	histone deacetylase 4	AAEL002528	protein-coding	1				
5568534	LOC5568534	homeobox protein goosecoid	AAEL006944	protein-coding	1				
5567245	LOC5567245	IQ motif and SEC7 domain-containing protein 1	AAEL000906	protein-coding	3				
5566298	LOC5566298	isocitrate dehydrogenase [NADP] cytoplasmic	AAEL000746	protein-coding	2				
5568122	LOC5568122	mucin-5AC	AAEL006555, AAEL017168	protein-coding	2				
5565116	LOC5565116	neurobeachin	AAEL003609, AAEL014730	protein-coding	1				
5578520	LOC5578520	polypyrimidine tract-binding protein 2	AAEL013723	protein-coding	1				
5564251	LOC5564251	probable G-protein coupled receptor B0563.6	AAEL004160, AAEL004189	protein-coding	1				
5575604	LOC5575604	probable maleylacetoacetate isomerase 2	GSTZ1, AAEL011934	protein-coding	1				
5564956	LOC5564956	protein scalloped	AAEL014670	protein-coding	1				
5579820	LOC5579820	putative adenosylhomocysteinase 3	AAEL005524	protein-coding	1				
5564255	LOC5564255	rhophilin-2	AAEL004193	protein-coding	1				
5566210	LOC5566210	serine-rich adhesin for platelets	AAEL007995, AAEL015101	protein-coding	1				
5575737	LOC5575737	SPARC-related modular calcium-binding protein 2	AAEL012043	protein-coding	2				
5579146	LOC5579146	transcriptional coactivator yorkie	AAEL014018, AAEL014022	protein-coding	2				
5571578	LOC5571578	tRNA dimethylallyltransferase, mitochondrial	AAEL009163, AAEL009164	protein-coding	1				

ID del gen	Símbolo	Nombre del gen	Sinonimias	Tipo de gen	Cromosoma				
5574012	LOC5574012	ubiquitin carboxyl-terminal hydrolase 2	AAEL010854	protein-coding	1				
110677257	LOC110677257	uncharacterized LOC110677257		ncRNA	2				
5565610	LOC5565610	uncharacterized LOC5565610	AAEL004878, AAEL004881	protein-coding	1				
5575615	LOC5575615	uncharacterized LOC5575615	AAEL011945, AAEL011947, AAEL011948	protein-coding	3				
	Grupo de muestras a 7 días post - 1 ^{er} reto inmunológico con DENV-2 inactivo que induce <i>priming</i> inmunológico								
5570592	LOC5570592	26S proteasome non-ATPase regulatory subunit 10	AAEL008403	protein-coding	1				
5573974	LOC5573974	60S acidic ribosomal protein P0	AAEL010821	protein-coding	3				
5566567	LOC5566567	A disintegrin and metalloproteinase with thrombospondin motifs 12	AAEL005485	protein-coding	3				
5566203	LOC5566203	ABC transporter G family member 23	AAEL005244, AAEL005249	protein-coding	1				
5563970	LOC5563970	acetylcholine receptor subunit alpha-like 2	AAEL004032	protein-coding	3				
5565598	LOC5565598	adenylate cyclase, germination specific	AAEL004876	protein-coding	1				
5579502	LOC5579502	AF4/FMR2 family member 4	AAEL015239	protein-coding	2				
5567941	LOC5567941	A-kinase anchor protein 9	AAEL006395	protein-coding	3				
5574124	LOC5574124	alpha-catulin		protein-coding	3				
5575653	LOC5575653	alpha-mannosidase 2	AAEL011978	protein-coding	1				
5578031	LOC5578031	ankyrin-2	AAEL013466	protein-coding	2				
5575425	LOC5575425	aryl hydrocarbon receptor	AAEL011825	protein-coding	3				
5576493	LOC5576493	atypical protein kinase C	AAEL002885, AAEL010352	protein-coding	3				
5566942	LOC5566942	beta-1,4-mannosyl-glycoprotein 4-beta-N- acetylglucosaminyltransferase	AAEL005535	protein-coding	2				
5575840	LOC5575840	bone morphogenetic protein receptor type-1B	AAEL012125	protein-coding	2				
5569240	LOC5569240	cadherin-23	AAEL007478, AAEL007488	protein-coding	1				
5572771	LOC5572771	calcitonin gene-related peptide type 1 receptor	GPRCAL1, AAEL010043	protein-coding	2				
5573499	LOC5573499	calcium/calmodulin-dependent 3',5'-cyclic		protein-coding	2				
		nucleotide phosphodiesterase 1							
5578934	LOC5578934	calcium-activated potassium channel slowpoke	AAEL003765	protein-coding	1				
5578194	LOC5578194	calpain-C	AAEL003476	protein-coding	3				
5578270	LOC5578270	calsyntenin-1	AAEL003499, AAEL008639	protein-coding	2				
5563952	LOC5563952	carboxylesterase 1F	AAEL004022	protein-coding	3				
5564645	LOC5564645	L casein kinase l	AAEL004351	I protein-coding	3				

ID del gen	Símbolo	Nombre del gen	Sinonimias	Tipo de gen	Cromosoma
23687858	LOC23687858	CD63 antigen	AAEL003236, AAEL017438	protein-coding	2
5571316	LOC5571316	chaoptin	AAEL008940	protein-coding	1
5578232	LOC5578232	chondroitin sulfate N-	AAEL013572	protein-coding	2
		acetylgalactosaminyltransferase 1			
5578162	LOC5578162	chorion transcription factor Cf2	AAEL013544	protein-coding	2
5569994	LOC5569994	coiled-coil domain-containing protein 186	AAEL008071	protein-coding	1
5578261	LOC5578261	collagen type IV alpha-3-binding protein	AAEL003494, AAEL007522	protein-coding	2
5569257	LOC5569257	contactin-4	AAEL001227	protein-coding	3
5573042	LOC5573042	cyclic nucleotide-gated cation channel alpha-3	AAEL010216	protein-coding	2
5566541	LOC5566541	cytochrome b5 reductase 4	AAEL005478	protein-coding	3
5569920	LOC5569920	cytochrome P450 4c3	CYP4C50, AAEL008017	protein-coding	1
5564064	LOC5564064	cytochrome P450 4g15	CYP4G36, AAEL004054	protein-coding	1
5575787	LOC5575787	cytoplasmic polyadenylation element-binding protein 2	AAEL007791, AAEL012065	protein-coding	1
5574208	LOC5574208	decaprenyl-diphosphate synthase subunit 1	AAEL002287	protein-coding	1
5567138	LOC5567138	diuretic hormone receptor	GPRDIH2_1, AAEL005894, AAEL008287	protein-coding	2
5564986	LOC5564986	dual 3',5'-cyclic-AMP and -GMP phosphodiesterase 11	AAEL004520	protein-coding	2
5569378	LOC5569378	dual oxidase	DUOX, AAEL007563	protein-coding	2
5568213	LOC5568213	dystrophin	AAEL006651, AAEL012354	protein-coding	3
5576397	LOC5576397	E3 ubiguitin-protein ligase RNF19B	MRRG, AAEL012490	protein-coding	1
5566173	LOC5566173	EF-hand domain-containing protein 1	AAEL005230	protein-coding	3
5570005	LOC5570005	elongation of very long chain fatty acids protein 7	AAEL000188	protein-coding	3
5572161	LOC5572161	elongation of very long chain fatty acids protein AAEL008004	AAEL009574	protein-coding	1
110674025	LOC110674025	epithelial chloride channel protein-like		protein-coding	1
5571886	LOC5571886	eukaryotic translation initiation factor 5B	AAEL009241, AAEL009369	protein-coding	2
5565890	LOC5565890	excitatory amino acid transporter	AAEL000714	protein-coding	2
5568263	LOC5568263	exportin-4	AAEL006687	protein-coding	3
5578809	LOC5578809	eye-specific diacylglycerol kinase	AAEL013847, AAEL013849	protein-coding	1
5575480	LOC5575480	F-box/LRR-repeat protein 16	AAEL011860, AAEL011861	protein-coding	3
5569880	LOC5569880	fibrillin-1	AAEL007976	protein-coding	2

ID del gen	Símbolo	Nombre del gen	Sinonimias	Tipo de gen	Cromosoma
5566204	LOC5566204	gamma-aminobutyric acid receptor subunit alpha-6		protein-coding	1
5574506	LOC5574506	GATA zinc finger domain-containing protein 14	AAEL002402	protein-coding	2
5564992	LOC5564992	general odorant-binding protein 69	AAEL004516	protein-coding	2
5575494	LOC5575494	glucose transporter type 1	AAEL003707, AAEL003718, AAEL011878	protein-coding	2
5571567	LOC5571567	glutathione synthetase	AAEL009154	protein-coding	1
110678383	LOC110678383	glycoprotein endo-alpha-1,2-mannosidase		protein-coding	3
23687755	LOC23687755	G-protein coupled receptor 39	GPRGHP2, AAEL017335	protein-coding	3
5578702	LOC5578702	guanine nucleotide-releasing factor 2	AAEL013817	protein-coding	1
5566219	LOC5566219	hepatic leukemia factor	AAEL005255	protein-coding	2
5574971	LOC5574971	histone deacetylase 4	AAEL002528	protein-coding	1
5572241	LOC5572241	histone-lysine N-methyltransferase ash1	AAEL009666	protein-coding	3
5570655	LOC5570655	homeobox protein B-H1	AAEL008466	protein-coding	1
5568992	LOC5568992	homeobox protein unc-4	AAEL007285	protein-coding	3
5572323	LOC5572323	influenza virus NS1A-binding protein	AAEL009706	protein-coding	3
5580002	LOC5580002	JNK-interacting protein 1	AAEL001744	protein-coding	2
5570800	LOC5570800	kinase suppressor of Ras 2	AAEL008585	protein-coding	3
5570593	LOC5570593	leucine-rich repeat serine/threonine-protein kinase 1	AAEL008398, AAEL008407	protein-coding	1
5575182	LOC5575182	leupaxin	AAEL000339, AAEL000345	protein-coding	2
5566222	LOC5566222	LON peptidase N-terminal domain and RING finger protein 2	AAEL005267, AAEL005268	protein-coding	2
5568706	LOC5568706	<i>low-density lipoprotein receptor-related protein</i>	AAEL007041	protein-coding	3
5573491	LOC5573491	maltase 2	AAEL010536	protein-coding	2
5578387	LOC5578387	mannosyl-oligosaccharide alpha-1,2- mannosidase IA	AAEL011720, AAEL013678, AAEL014721	protein-coding	1
5571955	LOC5571955	mediator of RNA polymerase II transcription subunit 13	AAEL009437	protein-coding	2
5564249	LOC5564249	membrane-associated progesterone receptor component 1	AAEL004195	protein-coding	1
23687488	LOC23687488	metabotropic glutamate receptor 1	GPRMGL6, AAEL017068	protein-coding	1
5571467	LOC5571467	mitochondrial 2-oxodicarboxylate carrier	AAEL009100, AAEL015484	protein-coding	3
23687928	LOC23687928	mitochondrial dicarboxylate carrier	AAEL017508	protein-coding	1

ID del gen	Símbolo	Nombre del gen	Sinonimias	Tipo de gen	Cromosoma
5578960	LOC5578960	mitogen-activated protein kinase ERK-A	AAEL013939	protein-coding	2
5570419	LOC5570419	mitogen-activated protein kinase kinase kinase	AAEL008306	protein-coding	1
		15			
5569699	LOC5569699	MKRN2 opposite strand protein	AAEL007859	protein-coding	2
5569782	LOC5569782	MOB kinase activator-like 2	AAEL007916, AAEL007920	protein-coding	3
5569750	LOC5569750	moesin/ezrin/radixin homolog 1	Moe, AAEL007915,	protein-coding	1
			MOEH_AEDAE		
5574699	LOC5574699	MOXD1 homolog 2	AAEL006695, AAEL011332	protein-coding	3
5568122	LOC5568122	mucin-5AC	AAEL006555, AAEL017168	protein-coding	2
5568147	LOC5568147	mucin-5AC	AAEL006567	protein-coding	3
5576734	LOC5576734	myb-like protein A	AAEL002963	protein-coding	1
5573486	LOC5573486	myb-like protein AA	AAEL008888, AAEL010518	protein-coding	2
5567609	LOC5567609	neurexin-1	AAEL006199	protein-coding	1
5565116	LOC5565116	neurobeachin	AAEL003609, AAEL014730	protein-coding	1
5569480	LOC5569480	neuronal acetylcholine receptor subunit alpha-	AAEL007664	protein-coding	1
		7			
5567765	LOC5567765	neurotrimin	AAEL000123, AAEL000156	protein-coding	1
5577899	LOC5577899	Niemann-Pick C1 protein	AAEL003325, AAEL017483	protein-coding	2
5567283	LOC5567283	octopamine receptor beta-2R	GPRDOP4, AAEL005945	protein-coding	1
5563924	LOC5563924	octopamine receptor Oamb	GPROAR1, GPROAR3B,	protein-coding	1
			AAEL014224, AAEL016990		
5575117	LOC5575117	peroxidasin	HPX4, AAEL000342,	protein-coding	2
			AAEL000349, AAEL000376		
5569544	LOC5569544	pleckstrin homology domain-containing family	AAEL007721, AAEL007723	protein-coding	3
		G member 5			
5574298	LOC5574298	plexin domain-containing protein 2	AAEL011063	protein-coding	3
5578520	LOC5578520	polypyrimidine tract-binding protein 2	AAEL013723	protein-coding	1
5564889	LOC5564889	potassium channel subfamily K member 10	AAEL004463, AAEL004478	protein-coding	3
5568798	LOC5568798	potassium voltage-gated channel protein Shaw	AAEL007143	protein-coding	2
5575386	LOC5575386	probable citrate synthase 2, mitochondrial	AAEL011789	protein-coding	3
5564251	LOC5564251	probable G-protein coupled receptor B0563.6	AAEL004160, AAEL004189	protein-coding	1
110680850	LOC110680850	proline-rich protein 36		protein-coding	1
5565277	LOC5565277	protein apterous	AAEL008689, AAEL008690,	protein-coding	2
			AAEL008694, AAEL014791		
5565680	LOC5565680	protein bicaudal D	AAEL004936	protein-codina	2

ID del gen	Símbolo	Nombre del gen	Sinonimias	Tipo de gen	Cromosoma
5568095	LOC5568095	protein brunelleschi	AAEL006512	protein-coding	2
5568959	LOC5568959	protein commissureless 2 homolog	Comm2, AAEL007250	protein-coding	3
110679566	LOC110679566	protein couch potato		protein-coding	3
5571521	dsx	protein doublesex	DSXF, DSXF1, DSXF2, DSXM1, DSXM2, DSXM3	protein-coding	1
5573842	LOC5573842	protein enabled	AAEL010747	protein-coding	3
5574388	LOC5574388	protein hu-li tai shao		protein-coding	2
5566057	LOC5566057	protein kinase C-binding protein NELL2	AAEL005131	protein-coding	3
5569576	LOC5569576	protein kintoun	KTU_AEDAE, AAEL007767	protein-coding	2
5569249	LOC5569249	protein lava lamp	AAEL007506	protein-coding	1
5572694	LOC5572694	protein Lilipod	AAEL009957	protein-coding	2
5568475	LOC5568475	protein prickle	Pk, AAEL006891	protein-coding	2
5569245	LOC5569245	protein retinal degeneration B	AAEL007503	protein-coding	1
5566642	LOC5566642	protein roadkill	AAEL005512	protein-coding	1
5564956	LOC5564956	protein scalloped	AAEL014670	protein-coding	1
5572054	LOC5572054	protein Shroom	AAEL001710, AAEL001721, AAEL001723	protein-coding	2
5570700	LOC5570700	protein sidekick	AAEL001467	protein-coding	1
5575305	LOC5575305	protein snakeskin	AAEL002578	protein-coding	3
5578376	LOC5578376	protein tramtrack	AAEL013650, AAEL013651,	protein-coding	1
			AAEL013654		
5579522	LOC5579522	protein Wnt-5	AAEL014566	protein-coding	2
5569696	LOC5569696	protein wntless	AAEL007842	protein-coding	2
5572543	LOC5572543	protein-tyrosine sulfotransferase	AAEL009867, AAEL009868	protein-coding	1
5572858	LOC5572858	protransforming growth factor alpha	AAEL010067	protein-coding	3
5566172	LOC5566172	pseudouridine-5'-phosphate glycosidase	AAEL005216	protein-coding	3
5570391	LOC5570391	pupal cuticle protein Edg-78E	AAEL008290	protein-coding	2
5575239	LOC5575239	putative tyrosine-protein kinase Wsck	AAEL011714	protein-coding	2
5569465	LOC5569465	putative vitellogenin receptor	AAEL007657, AAEL014222	protein-coding	1
110676975	LOC110676975	ras guanine nucleotide exchange factor V		protein-coding	1
5568000	LOC5568000	ras-interacting protein RIP3	AAEL006447	protein-coding	2
5565892	LOC5565892	reticulon-1-A	AAEL000713	protein-coding	2
5577066	LOC5577066	RING finger protein nhl-1	AAEL003104	protein-coding	2
5566288	LOC5566288	RNA-binding protein Musashi homolog Rbp6	AAEL000729	protein-coding	2
5569890	LOC5569890	serine protease easter	CLIPB27, AAEL007993	protein-coding	1

ID del gen	Símbolo	Nombre del gen	Sinonimias	Tipo de gen	Cromosoma
5563726	LOC5563726	serine protease inhibitor 27A	AAEL014079	protein-coding	2
5576559	LOC5576559	serine/threonine-protein kinase MARK2	AAEL012612	protein-coding	1
5577439	LOC5577439	serine/threonine-protein phosphatase PP1-	AAEL013181	protein-coding	3
		beta catalytic subunit			
5576570	LOC5576570	serine-arginine protein 55	AAEL012621	protein-coding	1
5564728	LOC5564728	serine-rich adhesin for platelets	AAEL004410	protein-coding	1
5569559	LOC5569559	sn1-specific diacylglycerol lipase alpha	AAEL007743, AAEL007756	protein-coding	1
5567814	LOC5567814	sodium-coupled monocarboxylate transporter 1	AAEL000992, AAEL001002	protein-coding	2
5580178	LOC5580178	sodium-coupled monocarboxylate transporter 1	AAEL002576	protein-coding	1
5578675	LOC5578675	sodium-dependent nutrient amino acid transporter 1	NAT8, AAEL003618	protein-coding	3
5565228	LOC5565228	solute carrier family 28 member 3	AAEL004654, AAEL004660	protein-coding	2
5577003	LOC5577003	somatostatin receptor type 2	GPRALS3, AAEL012920	protein-coding	3
5571233	LOC5571233	sushi, von Willebrand factor type A, EGF and pentraxin domain-containing protein 1	CTLSE1, AAEL008929	protein-coding	1
5573673	LOC5573673	synaptic vesicle membrane protein VAT-1 homolog-like	AAEL010652, AAEL010668	protein-coding	2
5576630	LOC5576630	syntaxin-1A	AAEL009304, AAEL012657	protein-coding	2
5575778	LOC5575778	TLD domain-containing protein 2	AAEL002705	protein-coding	3
5571578	LOC5571578	tRNA dimethylallyltransferase, mitochondrial	AAEL009163, AAEL009164	protein-coding	1
5576244	LOC5576244	tubulin beta-1 chain	B1t, B4t, AAEL002851	protein-coding	3
5570773	LOC5570773	tyrosine-protein phosphatase corkscrew	AAEL008528, AAEL008552, AAEL008554	protein-coding	3
5567644	LOC5567644	UDP-glucuronic acid decarboxylase 1	AAEL006236	protein-coding	3
5576973	LOC5576973	UDP-glucuronosyltransferase 2B15		protein-coding	3
5566910	LOC5566910	UDP-N-acetylglucosaminedolichyl-phosphate	AAEL005705, AAEL017268	protein-coding	2
		N-acetylglucosaminephosphotransferase			
110675397	LOC110675397	uncharacterized LOC110675397		protein-coding	2
110675764	LOC110675764	uncharacterized LOC110675764		protein-coding	2
110675975	LOC110675975	uncharacterized LOC110675975		ncRNA	2
110676026	LOC110676026	uncharacterized LOC110676026		protein-coding	2
110676679	LOC110676679	uncharacterized LOC110676679		protein-coding	2
110676709	LOC110676709	uncharacterized LOC110676709		ncRNA	2

ID del gen	Símbolo	Nombre del gen	Sinonimias	Tipo de gen	Cromosoma
110677884	LOC110677884	uncharacterized LOC110677884		ncRNA	3
110678844	LOC110678844	uncharacterized LOC110678844		ncRNA	3
110678990	LOC110678990	uncharacterized LOC110678990		ncRNA	3
110679213	LOC110679213	uncharacterized LOC110679213		protein-coding	3
5563749	LOC5563749	uncharacterized LOC5563749	AAEL008238, AAEL008240,	protein-coding	2
			AAEL014100		
5565109	LOC5565109	uncharacterized LOC5565109	AAEL004600	protein-coding	2
5565610	LOC5565610	uncharacterized LOC5565610	AAEL004878, AAEL004881	protein-coding	1
5565978	LOC5565978	uncharacterized LOC5565978	AAEL005091	protein-coding	3
5566766	LOC5566766	uncharacterized LOC5566766	AAEL005633	protein-coding	1
5566834	LOC5566834	uncharacterized LOC5566834	AAEL005664	protein-coding	2
5567237	LOC5567237	uncharacterized LOC5567237	ARK, AAEL000874	protein-coding	3
5569388	LOC5569388	uncharacterized LOC5569388	AAEL007579	protein-coding	1
5569552	LOC5569552	uncharacterized LOC5569552	AAEL007740, AAEL007745,	protein-coding	1
			AAEL007746		
5570536	LOC5570536	uncharacterized LOC5570536	AAEL001437	protein-coding	2
5571127	LOC5571127	uncharacterized LOC5571127	AAEL001523, AAEL001528	protein-coding	3
5571300	LOC5571300	uncharacterized LOC5571300	AAEL001543	protein-coding	2
5571683	LOC5571683	uncharacterized LOC5571683	AAEL001639	protein-coding	2
5572461	LOC5572461	uncharacterized LOC5572461	AAEL001808	protein-coding	2
5572844	LOC5572844	uncharacterized LOC5572844	AAEL010064	protein-coding	3
5573031	LOC5573031	uncharacterized LOC5573031	AAEL010205	protein-coding	1
5573743	LOC5573743	uncharacterized LOC5573743	AAEL000285	protein-coding	3
5574095	LOC5574095	uncharacterized LOC5574095	AAEL002251	protein-coding	2
5574435	LOC5574435	uncharacterized LOC5574435	AAEL011161	protein-coding	3
5574440	LOC5574440	uncharacterized LOC5574440	AAEL011152, AAEL011163	protein-coding	3
5575615	LOC5575615	uncharacterized LOC5575615	AAEL011945, AAEL011947,	protein-coding	3
			AAEL011948		
5575646	LOC5575646	uncharacterized LOC5575646	AAEL014269	protein-coding	1
5575947	LOC5575947	uncharacterized LOC5575947	AAEL012396	protein-coding	1
5576344	LOC5576344	uncharacterized LOC5576344	AAEL002862	protein-coding	1
5577223	LOC5577223	uncharacterized LOC5577223	AAEL003131	protein-coding	3
5577633	LOC5577633	uncharacterized LOC5577633	AAEL003283	protein-coding	1
5578264	LOC5578264	uncharacterized LOC5578264	AAEL003496	protein-coding	2
5578744	LOC5578744	uncharacterized LOC5578744		ncRNA	3

ID del gen	Símbolo	Nombre del gen	Sinonimias	Tipo de gen	Cromosoma				
5578848	LOC5578848	uncharacterized LOC5578848	AAEL014362	protein-coding	2				
5576021	LOC5576021	very low-density lipoprotein receptor	AAEL012251, AAEL012253	protein-coding	3				
5574272	LOC5574272	voltage-dependent calcium channel subunit	AAEL005392	protein-coding	2				
		alpha-2/delta-3							
5574521	LOC5574521	xenotropic and polytropic retrovirus receptor 1	AAEL011204	protein-coding	1				
5570740	LOC5570740	zinc finger CCCH domain-containing protein 18	AAEL004279, AAEL008513	protein-coding	2				
5578067	LOC5578067	zinc finger protein 468	AAEL015115	protein-coding	2				
110678935	LOC110678935	zinc finger protein 613-like		protein-coding	3				
5571624	LOC5571624	zinc finger protein 853	AAEL009208	protein-coding	1				
5564718	LOC5564718	zwei Ig domain protein zig-8	AAEL014590	protein-coding	2				
Grupo de muestras con tratamiento testigo a 7 días post - 2 ^{do} reto inmunológico con DENV-2 activo									
5579939	LOC5579939	atrial natriuretic peptide receptor 1	AAEL006806	protein-coding	3				
5568052	LOC5568052	calcitonin gene-related peptide type 1 receptor	GPRCAL2, AAEL006490	protein-coding	3				
5572977	LOC5572977	FH1/FH2 domain-containing protein 1	AAEL010187, AAEL010190, AAEL01014857	protein-coding	2				
5573805	LOC5573805	histone acetyltransferase KAT7	AAEL010729, AAEL014513	protein-coding	2				
5568868	LOC5568868	myb-like protein A	AAEL007178	protein-coding	2				
5574714	LOC5574714	nuclear factor of activated T-cells 5	AAEL011359	protein-coding	1				
5566784	LOC5566784	phosphatidylinositol 4-phosphate 5-kinase type-1 alpha	AAEL015255	protein-coding	2				
5574407	LOC5574407	protein app1	AAEL011133	protein-coding	3				
5566210	LOC5566210	serine-rich adhesin for platelets	AAEL007995, AAEL015101	protein-coding	1				
5578628	LOC5578628	serine-rich adhesin for platelets	AAEL003604	protein-coding	1				
5575615	LOC5575615	uncharacterized LOC5575615	AAEL011945, AAEL011947, AAEL011948	protein-coding	3				
5574362	LOC5574362	zinc finger protein Elbow	AAEL011086, AAEL801154	protein-coding	2				
	Grupo de muestras con <i>priming</i> inmunológico a 7 días post – 2do reto inmunológico con DENV-2 activo								
5578456	LOC5578456	acetylcholinesterase	Ace1, Ace-1, AchE1, AAEL000511	protein-coding	3				
5572794	LOC5572794	acidic amino acid decarboxylase GADL1	AAEL001902	protein-coding	2				
5575653	LOC5575653	alpha-mannosidase 2	AAEL011978	protein-coding	1				

ID del gen	Símbolo	Nombre del gen	Sinonimias	Tipo de gen	Cromosoma
5575109	LOC5575109	AP-1 complex subunit beta-1	AAEL011650	protein-coding	3
5576444	LOC5576444	bifunctional heparan sulfate N-deacetylase/N-	AAEL012539	protein-coding	2
		sulfotransferase			
110674038	LOC110674038	cadherin-87A		protein-coding	1
5570607	LOC5570607	cadherin-99C	AAEL008421	protein-coding	1
5571620	LOC5571620	calpain-11	AAEL009196	protein-coding	3
5579301	LOC5579301	ceramide kinase	AAEL004542, AAEL015603	protein-coding	1
5574100	LOC5574100	COP9 signalosome complex subunit 3	AAEL002271	protein-coding	2
5571877	LOC5571877	cyclin-dependent kinase 12	AAEL009364	protein-coding	3
5578948	LOC5578948	disheveled-associated activator of morphogenesis 1	AAEL013919, AAEL013920	protein-coding	3
5578262	LOC5578262	Down syndrome cell adhesion molecule-like protein Dscam2	AAEL003498, AAEL003500	protein-coding	2
5578809	LOC5578809	eye-specific diacylglycerol kinase	AAEL013847, AAEL013849	protein-coding	1
5578702	LOC5578702	guanine nucleotide-releasing factor 2	AAEL013817	protein-coding	1
5574210	LOC5574210	insulin-like receptor	InR, MIR, AAEL002317, INSR_AEDAE	protein-coding	3
5578960	LOC5578960	mitogen-activated protein kinase ERK-A	AAEL013939	protein-coding	2
5575506	LOC5575506	monocarboxylate transporter 8	AAEL011883, AAEL011885	protein-coding	2
5572949	LOC5572949	peptidoglycan-recognition protein LB	PGRPLB, AAEL010171	protein-coding	3
5578520	LOC5578520	polypyrimidine tract-binding protein 2	AAEL013723	protein-coding	1
5568128	LOC5568128	probable glutamine-dependent NAD(+) synthetase	AAEL008302	protein-coding	1
110680850	LOC110680850	proline-rich protein 36		protein-coding	1
5571753	LOC5571753	protein KTI12 homolog	AAEL009272	protein-coding	3
5571245	LOC5571245	protein phosphatase 1 regulatory subunit 16A	AAEL001539, AAEL001546	protein-coding	3
5578376	LOC5578376	protein tramtrack	AAEL013650, AAEL013651, AAEL013654	protein-coding	1
5574316	LOC5574316	protein unc-13 homolog B	AAEL002357	protein-coding	1
5568000	LOC5568000	ras-interacting protein RIP3	AAEL006447	protein-coding	2
5564087	LOC5564087	rho GTPase-activating protein 26	AAEL009688, AAEL014307,	protein-coding	3
			AAEL014308	Francis county	-
5567150	LOC5567150	serine proteinase stubble	AAEL005906	protein-coding	3
5577697	LOC5577697	serine/threonine-protein phosphatase 4 regulatory subunit 3	AAEL013334	protein-coding	1

ID del gen	Símbolo	Nombre del gen	Sinonimias	Tipo de gen	Cromosoma
5576960	LOC5576960	sodium/potassium-transporting ATPase	AAEL012913, AAEL012916	protein-coding	2
		subunit beta-1-interacting protein			
110674776	LOC110674776	struthiocalcin-2-like		protein-coding	1
5569242	LOC5569242	synaptic vesicle glycoprotein 2A	AAEL007489	protein-coding	1
5572773	LOC5572773	tensin-3	AAEL010039, AAEL010041	protein-coding	2
5567107	LOC5567107	tetraspanin-13	AAEL005835	protein-coding	1
5577029	LOC5577029	transferrin	AAEL012949	protein-coding	3
5577702	LOC5577702	transmembrane protein 245	AAEL013335	protein-coding	1
5572948	LOC5572948	trichoplein keratin filament-binding protein	AAEL010185	protein-coding	3
5577554	LOC5577554	trithorax group protein osa	AAEL013268	protein-coding	2
5573943	LOC5573943	tRNA-dihydrouridine(16/17) synthase	AAEL002182	protein-coding	2
110675970	100110675970	uncharacterized LOC110675070		ncRNA	2
110676555	LOC110676555	uncharacterized LOC110676555		notein-coding	2
110676611	LOC110676611	uncharacterized LOC110676611		protein-coding	2
110677750		uncharacterized LOC110677750		protein-coding	3
5564562	1005564562	uncharacterized LOC5564562	AAFI 004305	protein-coding	2
5566240	1005566240	uncharacterized LOC5566240	ΔΔΕΙ 003790 ΔΔΕΙ 005283	protein-coding	1
5569618	1005569618	uncharacterized LOC5569618	AAEL003730, AAEL003203	protein-coding	2
5573795	1005573795	uncharacterized LOC5573795	AAFL010722	protein-coding	1
5575615	LOC5575615	uncharacterized LOC5575615	ΔΔΕΙ 011945 ΔΔΕΙ 011947	protein-coding	3
00/00/0	2000070010		AAFI 011948		0
5576646	1 005576646	uncharacterized LOC5576646	AAFL 012673	protein-coding	2
5577031	LOC5577031	uncharacterized LOC5577031	AAFI 012946	protein-coding	3
5577700	10C5577700	uncharacterized LOC5577700	AAFL 013336	protein-coding	1
5578593	1 0C5578593	uncharacterized LOC5578593	AAFL 013776	protein-coding	2
5569342	1005569342	vacuolar protein sorting-associated protein	AAEL 007551	protein-coding	2
	200000012	13D		protoin coung	-
5574101	LOC5574101	zinc finger and BTB domain-containing protein	AAEL002248	protein-coding	2

Tabla 2. Lista de genes elegidos como biomarcadores del estado inmunológico de *Aedes aegypti*. La secuencia de los genes fue tomada del ensamble de referencia del genoma de *Aedes aegypti* (número de acceso: GCF_002204515.2) depositado en la base de datos del GenBank[®].

ID	Símbolo	Nombre del gen	Sinonimias
1	LOC5572370	Nitric oxide synthase	AAEL009745
2	LOC5569378	Dual oxidase	DUOX; AAEL007563
3	LOC5579924	Endoribonuclease Dicer	Dicer-2; AAEL006794
4	LOC5575294	Uncharacterized LOC5575294	R2D2
5	LOC23687671	Protein argonaute-2	AGO2; AAEL017251
6	LOC5570040	Uncharacterized LOC5570040	Vago protein; AaeL_AAEL000200
7	LOC5565458	G2/mitotic-specific cyclin-A	G2/mitotic-specific cyclin-A; AAEL000672
8	LOC5572876	G2/mitotic-specific cyclin-B	G2/mitotic-specific cyclin-B; AAEL010094
9	LOC5571432	G1/S-specific cyclin-E	G1/S-specific cyclin-E; AAEL009057
10	LOC5580247	Proliferating cell nuclear antigen	PCNA; AAEL012545
11	LOC5580156	Neurogenic locus protein delta	Neurogenic locus protein delta; AAEL011396
12	LOC5573035	Neurogenic locus Notch protein	Neurogenic locus Notch protein; AAEL010210
13	LOC5570422	Frizzled-4	GPRFZ4; AAEL008322
14	LOC5565894	Target of rapamycin	TOR; AAEL000693

Tabla 3. Lista de genes endógenos elegidos para normalizar el número de lecturas de los biomarcadores del estado inmunológico de Aedes *aegypti*. La secuencia de los genes fue tomada del ensamble de referencia del genoma de *Aedes aegypti* (número de acceso: GCF_002204515.2) depositado en la base de datos del GenBank[®].

ID	Símbolo	Nombre del gen	Referencia
1	LOC5563590	40S ribosomal protein S6 (Rps6)	Sigle et al., (2022)
2	LOC5572090	40S ribosomal protein S7 (Rps7)	Marcombe et al., (2012)
3	LOC11068093 9	40S ribosomal protein S17 (Rps17)	Dzaki et al., (2017)
4	LOC5567848	60S ribosomal protein L8 (RPL8)	Dzaki et al., (2017)
5	LOC5577996	60S ribosomal protein L32 (RPL32)	Dzaki et al., (2017)
6	LOC5574526	Actin-5C (Actin)	Dzaki et al., (2017)
7	LOC23687721	Elongation factor 1-alpha (eEF1a)	Dzaki et al., (2017)
8	LOC23687404	Glyceraldehyde 3-phosphate	Dzaki et al., (2017)
		dehydrogenase 1 (GAPDH)	
9	LOC5577489	Tubulin alpha-1 chain (a-tubulin)	Dzaki et al., (2017)

Tabla 4. Lista de especies representativas en el microbiota del intestino medio de *Aedes aegypti*.

ID	Phylum	Especie representativa	Ensamble de	Referencia	
			referencia (ConBonk [®])		
1	Postorio	Acatabaatar abananaia		Pomiroz et el (2012)	
	Bacteria Acetobacter gnanensis strain 430A		GCF_011510005.1	Ramiez et al., (2012)	
2	Bacteria	Acinetobacter sp.1 BN3	GCF 008632635.1	Ramirez et al., (2012)	
3	Bacteria	Aeromonas hydrophila	GCF 017310215.1	Blaire Steven et al.,	
				(2022)	
4	Bacteria	Aeromonas veronii	GCF_008693705.1	Yadav et al., (2015)	
5	Bacteria	Asaia bogorensis	GCF_001547995.1	Blaire Steven et al., (2022)	
6	Bacteria	Bacillus aerophilus	GCF_004101925.1	Yadav et al., (2015)	
7	Bacteria	Bacillus aryabhattai	GCF_002688605.1	Yadav et al., (2015)	
8	Bacteria	Bacillus subtilis	GCF_000772125.1	Ramirez et al. (2012)	
9	Bacteria	Cedecea neteri	GCF_002393445.1	Blaire Steven et al., (2022)	
10	Virus	Chikungunya virus	GCF_000854045.1	ICTV (2022)	
11	Bacteria	Chromobacterium haemolyticum	GCF_009936155.1	Ramirez et al., (2012)	
12	Bacteria	Chryseobacterium sp.	GCF_004916905.1	Blaire Steven et al., (2022)	
13	Bacteria	Comamonas testosteroni	GCF_016599875.1	Ramirez et al., (2012)	
14	Bacteria	Delftia sp.	GCF_016027815.1	Blaire Steven et al., (2022)	
15	Virus	Dengue virus 1	GCF_000862125.1	ICTV (2022)	
16	Virus	Dengue virus 2	GCF_000871845.1	ICTV (2022)	
17	Virus	Dengue virus 3	GCF_000866625.1	ICTV (2022)	
18	Virus	Dengue virus 4	GCF_000865065.1	ICTV (2022)	
19	Bacteria	Elizabethkingia meningoseptica	GCF_002023585.1	Ramirez et al., (2012)	
20	Bacteria	Enterobacter cloacae	GCF_000770155.1	Yadav et al., (2015)	
21	Bacteria	Enterobacter hormaechei	GCF_014771415.1	Ramirez et al., (2012)	
22	Bacteria	Enterobacter ludwigii strain GTR	GCF_001750725.1	Ramirez et al., (2012)	
23	Bacteria	Enterobacter xiangfangensis	GCF_014931695.1	Yadav et al., (2015)	
24	Bacteria	Klebsiella michiganensis	GCF_015139575.1	Yadav et al., (2015)	
25	Bacteria	Klebsiella pneumoniae	GCF_000364385.3	Yadav et al., (2015)	
26	Bacteria	Lactococcus lactis	GCF_020463755.1	Ramirez et al., (2012)	
27	Bacteria	Leclercia sp.	GCF_001518835.1	Ramirez et al., (2012)	
28	Bacteria	Leucobacter luti	GCF_004217175.1	Blaire Steven et al., (2022)	
29	Bacteria	Lysinibacillus fusiformis	GCF_000724775.3	Yadav et al., (2015)	
30	Bacteria	Micrococcus yunnanensis	GCF_004462905.1	Yadav et al., (2015)	
31	Bacteria	Paenibacillus sp. GP26- 03	GCF_006274405.1	Ramirez et al., (2012)	
32	Bacteria	Pantoea agglomerans strain AR_PINLBH4	GCF_019048385.1	Ramirez et al., (2012)	
33	Bacteria	Pantoea dispersa	GCF_019890955.1	Yadav et al., (2015)	
34	Bacteria	Proteus mirabilis	GCF_012516515.1	Ramirez et al., (2012)	

ID	Phylum	Especie representativa	Ensamble de	Referencia
			referencia	
			(GenBank [®])	
35	Bacteria	Proteus penneri	GCF_001049955.1	Ramirez et al., (2012)
36	Bacteria	Pseudomonas monteilii	GCF_003671975.1	Yadav et al., (2015)
37	Bacteria	Pseudomonas mosselii	GCF_002736065.1	Yadav et al., (2015)
38	Bacteria	Pseudomonas stutzeri strain 1-1	GCF_019704535.1	Ramirez et al., (2012)
39	Bacteria	Pseudoxanthomonas sp.	GCF_016820515.1	Blaire Steven et al., (2022)
40	Bacteria	Roseomonas sp. QQDPS 11	GCF_014490485.1	Ramirez et al., (2012)
41	Bacteria	Serratia marcescens	GCF_003516165.1	Blaire Steven et al., (2022)
42	Bacteria	Shinella kummerowiae	GCF_009827055.1	Ramirez et al., (2012)
43	Bacteria	Staphylococcus hominis	GCF_003812505.1	Yadav et al., (2015)
44	Bacteria	Stenotrophomonas maltophilia	GCF_900475405.1	Blaire Steven et al., (2022)
45	Fungus	Talaromyces amestolkiae	GCF_001896365.1	Angleró-Rodríguez et al., (2017)
46	Bacteria	Wolbachia sp	GCF_017896245.1	Audsley et al., (2017)
47	Virus	Yellow fever virus	GCF_000857725.1	ICTV (2022)
48	Virus	Zika virus	GCF 000882815.3	ICTV (2022)

Tabla 5. Sondas electrónicas. Las coordenadas genómicas de las *e-probes* son trazables al ensamble de referencia de *Aedes aegypti* (número de acceso: GCF_002204515.2) depositado en la base de datos del GenBank[®].

ID	Nombre del gen	Acrónimo	Sonda electrónica	Observaciones
1	Nitric oxide synthase	NOS	>sequence1 start: 564 end: 603 length: 40 GCGGTTCGTTGGGTTTGTTGGGTGTGATATTCTGCGGGCA	Detects NOS transcript variants X1 and X2
2	Nitric oxide synthase	NOS	>sequence1 start: 696 end: 736 length: 40 TACGAGCGGTGATTGTGGGGGCTCGGTTGTTGAATGTGCTC	Detects NOS transcript variants X1 and X2
3	Nitric oxide synthase	NOS	>sequence1 start: 845 end: 884 length: 40 CAAGCGGAAGTGCAACACGTCGCACAAACTGATTGCCCAT	Detects NOS transcript variants X1 and X2
4	Nitric oxide synthase	NOS	>sequence1 start: 1162 end: 1202 length: 40 GAAGAGGTGTGCTGCAGTGAGTGCACATTGATGTGAATGA	Detects NOS transcript variants X1 and X2
5	Nitric oxide synthase	NOS	>sequence1 start: 3596 end: 3636 length: 40 CGACCGACTGGACTCGCTGCGGGGATCTACCACAGACACC	Detects NOS transcript variants X1 and X2
6	Nitric oxide synthase	NOS	>sequence1 start: 3672 end: 3712 length: 40 AGGTTCGCAGTGTTTGCTCTGGGGTCGTCTGCGTATCCGA	Detects NOS transcript variants X1 and X2
7	Dual oxidase	DUOX	>sequence3 start: 13984 end: 14024 length: 40 CATACATTTTGCTCAGGGTACCAAGCGATCATGATCTTGT	Detects DUOX transcript variants X1, X2, X3, X4, X5 and X6.
8	Dual oxidase	DUOX	>sequence3 start: 16903 end: 16943 length: 40 TGCCGAATTACCAAGCATCGATGTAAGCCGCATGATCAAC	Detects DUOX transcript variants X1, X2, X3, X4, X5 and X6.
9	Dual oxidase	DUOX	>sequence3 start: 17095 end: 17135 length: 40 ATTAACGAAACTTTCAGAAATTCCATACAAAGGCAAATGC	Detects DUOX transcript variants X1, X2, X3, X4, X5 and X6.
10	Dual oxidase	DUOX	>sequence4 start: 17572 end: 17612 length: 40 GGGACTGCTTTCAAGTGCGCGATTACGTTTGCTATCCAGT	Detects DUOX transcript variants X2 and X4.
11	Endoribonuclease Dicer	Dicer-2	>sequence10 start: 48945 end: 48984 length: 40 CGATTTCATCCCGCGGGACTACCAGCGGACGATGAAGACA	Detects Dicer-2 transcript variants X1 and X2.

ID	Nombre del gen	Acrónimo	Sonda electrónica	Observaciones
12	Endoribonuclease Dicer	Dicer-2	>sequence10 start: 49156 end: 49195 length: 40 GAATTCCTGAGTCATAATCTTACCTACGACACATCGATCT	Detects Dicer-2 transcript variants X1 and X2.
13	Endoribonuclease Dicer	Dicer-2	>sequence10 start: 49184 end: 49223 length: 40 ACACATCGATCTATACCAGTGATCGAAATGTGGATGCTTG	Detects Dicer-2 transcript variants X1 and X2.
14	Endoribonuclease Dicer	Dicer-2	>sequence10 start: 49300 end: 49339 length: 40 CTGAAGCATGGTTATCTCTCGGTTAAACACATCAACTTGC	Detects Dicer-2 transcript variants X1 and X2.
15	Endoribonuclease Dicer	Dicer-2	>sequence10 start: 49365 end: 49404 length: 40 TGTAGGAGAACATCCTATGCACGGGATTATGGAACAATTT	Detects Dicer-2 transcript variants X1 and X2.
16	Endoribonuclease Dicer	Dicer-2	>sequence10 start: 49454 end: 49494 length: 40 TGTTACTCTATAAACAGATTAAAAGTGTCGCCCTAGTATC	Detects Dicer-2 transcript variants X1 and X2.
17	Endoribonuclease Dicer	Dicer-2	>sequence10 start: 50085 end: 50124 length: 40 ACGGTTCTCGGCGAAAGTTTTGTACCATTTACTGAAAATT	Detects Dicer-2 transcript variants X1 and X2.
18	Endoribonuclease Dicer	Dicer-2	>sequence10 start: 50892 end: 50931 length: 40 TAACAATTTGAAAGATGTGTATTTCCGTCATTGGAAGGAT	Detects Dicer-2 transcript variants X1 and X2.
19	Endoribonuclease Dicer	Dicer-2	>sequence10 start: 51209 end: 51249 length: 40 TCAACGTACACATAGAGGAGACTCCCATCGTGCTGCCTAA	Detects Dicer-2 transcript variants X1 and X2.
20	Endoribonuclease Dicer	Dicer-2	>sequence10 start: 51274 end: 51314 length: 40 CTACTGAGACAATTCCATGTTACAGTCTTCCGCGACGTGC	Detects Dicer-2 transcript variants X1 and X2.
21	Endoribonuclease Dicer	Dicer-2	>sequence10 start: 51490 end: 51530 length: 40 GCCGATAAGTACCGACAAGGTCATTTTACCGTGGTACA	Detects Dicer-2 transcript variants X1 and X2.
22	Endoribonuclease Dicer	Dicer-2	>sequence10 start: 51826 end: 51866 length: 40 TGGTTGAAGGCCACCCTCCTGCCCAGTGCACTTCATCGAT	Detects Dicer-2 transcript variants X1 and X2.
23	Endoribonuclease Dicer	Dicer-2	>sequence10 start: 51963 end: 52002 length: 40 TGAGTACAAGGAGCGGAAAGGAAAGCAGTTGGAGGAACTA	Detects Dicer-2 transcript variants X1 and X2.
24	Endoribonuclease Dicer	Dicer-2	>sequence10 start: 52872 end: 52911 length: 40 TCCCTCGCCAATGGCAAATTATCTCTCACAGCAGACCATG	Detects Dicer-2 transcript variants X1 and X2.
25	Endoribonuclease Dicer	Dicer-2	>sequence10 start: 53160 end: 53200 length: 40 TAGAACTTATCTCCTACAAGCACTCACCCATGCGTCATAC	Detects Dicer-2 transcript variants X1 and X2.

ID	Nombre del gen	Acrónimo	Sonda electrónica	Observaciones
26	Protein argonaute-2	AGO2	>sequence13 start: 62437 end: 62477 length: 40 CCGTGAACGCAGATTCAAGGTGGCTATGAAGGAAGCTGCC	
27	Protein argonaute-2	AGO2	>sequence13 start: 63677 end: 63716 length: 40 CTTTGCGTTGGGCTGCTCACCCAATGTATCAAGAGCTTCA	
28	Protein argonaute-2	AGO2	>sequence13 start: 63900 end: 63940 length: 40 GTGTGGTGGGAGTGGCCGCTTCATACGATCTCGAGGGTTT	
29	G2/mitotic-specific cyclin-A	Cyclin-A	>sequence15 start: 65631 end: 65671 length: 40 CGTATCGGACGGTTCCAAGTGCCAGAGCGAGACGCAAGAC	
30	G2/mitotic-specific cyclin-A	Cyclin-A	>sequence15 start: 66411 end: 66451 length: 40 CGTCCGAAGCCAGCCTACATGAAGAAACAACCGGATATCA	
31	G2/mitotic-specific cyclin-A	Cyclin-A	>sequence15 start: 68051 end: 68090 length: 40 CTTAGAATGGATAGACGTGATTAGGATTAGCTAGAAATGG	
32	G2/mitotic-specific cyclin-B	Cyclin-B	>sequence16 start: 68964 end: 69004 length: 40 CGGACTCTCCCGACACCCATTCCCACAAATTAATTGAGGA	
33	G1/S-specific cyclin-E	Cyclin-E	>sequence17 start: 70580 end: 70620 length: 40 CCAGACAGTAGTTCCGGGGTTAGGCGTTTGGTGGAAACGG	Detects Cyclin-E transcript variants X1, X2 and X3.
34	G1/S-specific cyclin-E	Cyclin-E	>sequence17 start: 70988 end: 71028 length: 40 ATTGCTACTCCACGACGGCGGATTTCGAGCTCTACCCGCT	Detects Cyclin-E transcript variants X1, X2 and X3.
35	G1/S-specific cyclin-E	Cyclin-E	>sequence17 start: 71662 end: 71702 length: 40 CTGAGTGAGCTCCAGTGGAGTATCAATCCGGTGACGGTGA	Detects Cyclin-E transcript variants X1, X2 and X3.
36	G1/S-specific cyclin-E	Cyclin-E	>sequence17 start: 72048 end: 72087 length: 40 GATTTGCGACGAGAATGAAGTTTCTCCGCTCGCGCTACTC	Detects Cyclin-E transcript variants X1, X2 and X3.
37	G1/S-specific cyclin-E	Cyclin-E	>sequence17 start: 72686 end: 72726 length: 40 AACTCGTACGTTGAATTTTCCCTAACAATCCTGATCCAAA	Detects Cyclin-E transcript variants X1, X2 and X3.

ID	Nombre del gen	Acrónimo	Sonda electrónica	Observaciones
				Detects Cyclin-E
			>sequence17 start: 72717 end: 72757 length: 40	transcript variants X1, X2
38	G1/S-specific cyclin-E	Cyclin-E	TGATCCAAATTAATACTTAACTACCCATCAAATTCCCATT	and X3.
				Detects Cyclin-E
		0	>sequence17 start: 73090 end: 73130 length: 40	transcript variants X1, X2
39	G1/S-specific cyclin-E	Cyclin-E		and X3.
			>sequence20 start: 80716 end: 80755 length: 40	
40	Proliferating cell nuclear antigen	PCNA	TGAAATGAAGCTGATGAATCTAGACCAAGAACACCTCGGA	
			>sequence20 start: 80803 end: 80843 length: 40	
41	Proliferating cell nuclear antigen	PCNA	ATTTGCGCGTATTTGCCGCGATTTGTCCCAATTTGGCGAA	
			sequence21 start: 82472 and: 82512 length: 40	Detects Dolta transcript
42	Neurogenic locus protein delta	Delta		variants X1 and X2
		Dona		
10		D	>sequence21 start: 82805 end: 82845 length: 40	Detects Delta transcript
43	Neurogenic locus protein delta	Delta		variants X1 and X2.
			>sequence21 start: 83357 end: 83396 length: 40	Detects Delta transcript
44	Neurogenic locus protein delta	Delta	ATCTGTATGAAACGCAAACGCCGACGTGAGCAGGAGAAAG	variants X1 and X2.
			>sequence21 start: 84967 end: 85006 length: 40	Detects Delta transcript
45	Neurogenic locus protein delta	Delta	GAAGGGCATGTTATCATCCTAGAATAGAAACAACTTGAAG	variants X1 and X2.
			· converse 24 starts 05400 and 05200 langths 40	Detects Delte transprint
16	Neurogenic locus protein delta	Delta		variants X1 and X2
40		Dena		
			>sequence21 start: 85390 end: 85430 length: 40	Detects Delta transcript
47	Neurogenic locus protein delta	Delta		variants X1 and X2.
			>sequence21 start: 85467 end: 85506 length: 40	Detects Delta transcript
48	Neurogenic locus protein delta	Delta	TATCAGCACTTTAACCCGATATATGGCATAATGGCTACCT	variants X1 and X2.
			sequence21 start: 85747 end: 85787 length: 40	Detects Delta transcript
49	Neurogenic locus protein delta	Delta	CCCTCACATGACAAGCGATAATGATACTTATTGTAAGCTA	variants X1 and X2.
	, ,		s acquiance 22 start: 96299 and: 96229 langth: 40	Dotosta Dolta transcript
50	Neurogenic locus protein delta	Delta		variant X2

ID	Nombre del gen	Acrónimo	Sonda electrónica	Observaciones
51	Neurogenic locus protein delta	Delta	>sequence22 start: 86318 end: 86357 length: 40 TTGGTGTTCTGTTGACACACAGTGCTCTATGAAGAGTGGG	Detects Delta transcript variant X2.
52	Neurogenic locus Notch protein	Notch	>sequence23 start: 91945 end: 91984 length: 40 CTTGGCGAAGTATTTGCGTGAAGTAAGCAGTGAATAGTGA	
53	Neurogenic locus Notch protein	Notch	>sequence23 start: 92370 end: 92410 length: 40 AAAACTAGCAGCCAGAGTTCTCGAGACAACCTTTAGCTGA	
54	Neurogenic locus Notch protein	Notch	>sequence23 start: 92402 end: 92441 length: 40 TTAGCTGAACTGAATCTGGAACTATGTGGTCGTCAACAAC	
55	Neurogenic locus Notch protein	Notch	>sequence23 start: 95761 end: 95801 length: 40 GCTCCCGGATGGACCGGTAAGCTCTGTGACGTGGAAATGG	
56	Neurogenic locus Notch protein	Notch	>sequence23 start: 96132 end: 96172 length: 40 ACCGGGAACGCTCGGAGTGCTATGCGAGATCAACACGGAC	
57	Neurogenic locus Notch protein	Notch	>sequence23 start: 96740 end: 96780 length: 40 AGTATGATACGACGTACAAGGGATGGTTCGAGAGCGACAT	
58	Neurogenic locus Notch protein	Notch	>sequence23 start: 97242 end: 97281 length: 40 GACGTTCAAGAAGAATTCCGTTCAATTCCTGCGTGACCTG	
59	Neurogenic locus Notch protein	Notch	>sequence23 start: 97486 end: 97525 length: 40 GGTGCAGAGTGCTTCGGAACGGCTAGCGAGGCTGCCGAGT	
60	Neurogenic locus Notch protein	Notch	>sequence23 start: 97547 end: 97587 length: 40 AGCATTCCCTCTCGAAACAGTTCCCAATTTACCAAGTCAA	
61	Neurogenic locus Notch protein	Notch	>sequence23 start: 98275 end: 98315 length: 40 CGTTACGCTCGTGCGGACGCTGCTAAGAGGTTGTTGGACG	
62	Frizzled-4	GPRFZ4	>sequence24 start: 100553 end: 100593 length: 40 CGAGAGAACGCTGCTGCCGTGAGAGGGCGGAATATCTCAA	
63	Target of rapamycin	TOR	>sequence25 start: 104688 end: 104728 length: 40 TTATTAGTGATTGTATGTGTTAAATTGCGATCATGTCGAC	Detects TOR transcript variants X1, X2, X3, X4, X5 and X6.
ID	Nombre del gen	Acrónimo	Sonda electrónica	Observaciones
----	---------------------------------------	----------	--	--------------------------
				Detects TOR transcript
			>sequence25 start: 105055 end: 105095 length: 40	variants X1, X2, X3, X4,
64	Target of rapamycin	TOR	GGTGCTCGTCAAGTTAGCCCTGCTACCCGGCTCCAAGGGC	X5 and X6.
				Detects TOR transcript
			>sequence25 start: 105872 end: 105912 length: 40	variants X1, X2, X3, X4,
65	Target of rapamycin	TOR	ACTGTCGTCAACTATCTTATCCTAACGATTAAGAGCAAAG	X5 and X6.
				Detects TOR transcript
			>sequence25 start: 106908 end: 106948 length: 40	variants X1, X2, X3, X4,
66	Target of rapamycin	TOR	GGTTGATATCTTCCTATATGCGTCCGATCTTGTCGATCTT	X5 and X6.
				Detects TOR transcript
			>sequence25 start: 108426 end: 108466 length: 40	variants X1, X2, X3, X4,
67	Target of rapamycin	TOR	GGCTCGAGTGGCTCCGTCGGCTCAGCATTGGTCTTCTGAA	X5 and X6.
				Detects TOR transcript
			>sequence25 start: 109681 end: 109721 length: 40	variants X1, X2, X3, X4,
68	Target of rapamycin	TOR	CTTTGCCTACGCGAAACATCTGTGGGCAĞCTGGCGAGCAA	X5 and X6.
				Detects TOR transcript
			>sequence25 start: 110207 end: 110247 length: 40	variants X1, X2, X3, X4,
69	Target of rapamycin	TOR	ATCAACACATGGCTTCAGGTCATCCCTCAGTTGATCGCCC	X5 and X6.
				Detects TOR transcript
			>sequence25 start: 110578 end: 110617 length: 40	variants X1, X2, X3, X4,
70	Target of rapamycin	TOR	CCAAATGCTTCAGAGGGGACCTCAAACCTTGAAGGAGACC	X5 and X6.
			a successful starts 40 and 00 las atta 40	
74	100 - 11			
/1	40S ribosomai protein S6	Rps6		
			>sequence4 start: 4086 end: 4125 length: 40	
72	60S ribosomal protein L8	RPL8	GAATTAACACGCGGGGTGACGAAAGTAGGAACGAGCGAAG	
	· · · · · · · · · · · · · · · · · · ·			
		554.00	>sequence5 start: 4214 end: 4253 length: 40	Detects Aedes albopictus
73	60S ribosomal protein L32	RPL32		with 90 % of identity
			>sequence5 start: 4345 end: 4385 length: 40	
74	60S ribosomal protein L32	RPL32	ATGGTCCCGCGTCCAGCTTATAAGCCCAAGATCGTCAAGA	
		1		
			>sequence5 start: 4729 end: 4768 length: 40	
75	60S ribosomal protein L32	RPL32	TGCTCGCTGGAGAACGAGTAAGCTČCCAGGAGTTTATTTT	

ID	Nombre del gen	Acrónimo	Sonda electrónica	Observaciones
76	Actin-5C	Actin	>sequence6 start: 5038 end: 5077 length: 40 CAGGACTCAGAACCGTAAAGCTCACCGATATCAACATGTG	
77	Elongation factor 1-alpha	eEF1a	>sequence8 start: 10097 end: 10137 length: 40 GTGTGGTGCTAGATAGCAAACCGGAGAGTGAAGTGTGAAA	Only detects transcript variant X1
78	Elongation factor 1-alpha	eEF1a	>sequence8 start: 10152 end: 10192 length: 40 TGGCTAGGACTGGAAACCGACCGAATTGTATTCTCAATAA	Only detects transcript variant X1
79	Elongation factor 1-alpha	eEF1a	>sequence8 start: 12515 end: 12555 length: 40 TAAGTCTCACTTTACTATGTTTAGGCGTATTAGTTCTATG	Detects eEF1a transcript variants X1, X2, X3, X4
80	Elongation factor 1-alpha	eEF1a	>sequence8 start: 12645 end: 12684 length: 40 ATAAAGAGTGATCCATCACACGGAGAGACGGACAAGGAAA	Detects eEF1a transcript variants X1, X2, X3, X4
81	Glyceraldehyde 3-phosphate dehydrogenase 1	GAPDH	>sequence12 start: 23601 end: 23641 length: 40 TACCTGTTGTGTATTGTCAAGACATTGATAACGAAGTAAA	

- Anderson, J. R., & Rico-Hesse, R. (2006). Aedes aegypti vectorial capacity is determined by the infecting genotype of dengue virus. *The American Journal of Tropical Medicine and Hygiene*, *75*(5), 886–892. PubMed.
- Angleró-Rodríguez, Y. I., Talyuli, O. A., Blumberg, B. J., Kang, S., Demby, C., Shields, A., Carlson, J., Jupatanakul, N., & Dimopoulos, G. (2017). An Aedes aegypti-associated fungus increases susceptibility to dengue virus by modulating gut trypsin activity. *eLife*, 6, e28844. https://doi.org/10.7554/eLife.28844
- Arredondo-García, J. L., Aguilar-López Escalera, C. G., Aguilar Lugo-Gerez, J. J., Osnaya-Romero, N., Pérez-Guillé, G., & Medina-Cortina, H. (2020).
 Panorama epidemiológico de dengue en México 2000-2019. *Revista Latinoamericana de Infectología Pediátrica*, 33(2), 78–83. https://doi.org/10.35366/94418
- Audsley, M. D., Ye, Y. H., & McGraw, E. A. (2017). The microbiome composition of Aedes aegypti is not critical for Wolbachia-mediated inhibition of dengue virus. *PLOS Neglected Tropical Diseases*, *11*(3), e0005426. https://doi.org/10.1371/journal.pntd.0005426
- Bariami, V., Jones, C. M., Poupardin, R., Vontas, J., & Ranson, H. (2012). Gene Amplification, ABC Transporters and Cytochrome P450s: Unraveling the Molecular Basis of Pyrethroid Resistance in the Dengue Vector, Aedes aegypti. *PLOS Neglected Tropical Diseases*, *6*(6), e1692. https://doi.org/10.1371/journal.pntd.0001692
- Blaire Steven, Jacquelyn LaReau, Josephine Hyde, & Doug Brackney. (2022). *Research Square*. https://doi.org/10.21203/rs.3.rs-1181832/v1

- Boemo, M. A. (2021). DNAscent v2: Detecting replication forks in nanopore sequencing data with deep learning. *BMC Genomics*, 22(1), 430. https://doi.org/10.1186/s12864-021-07736-6
- Bonning, B. C., & Saleh, M.-C. (2021). The Interplay Between Viruses and RNAi Pathways in Insects. *Annual Review of Entomology*, *66*(1), 61–79. https://doi.org/10.1146/annurev-ento-033020-090410
- Carrington, L. B., Armijos, M. V., Lambrechts, L., & Scott, T. W. (2013). Fluctuations at a Low Mean Temperature Accelerate Dengue Virus Transmission by Aedes aegypti. *PLOS Neglected Tropical Diseases*, 7(4), e2190. https://doi.org/10.1371/journal.pntd.0002190
- Cheng, G., Liu, Y., Wang, P., & Xiao, X. (2016). Mosquito Defense Strategies against Viral Infection. *Trends in Parasitology*, *32*(3), 177–186. https://doi.org/10.1016/j.pt.2015.09.009
- Cime-Castillo, J., Arts, R. J. W., Vargas-Ponce de León, V., Moreno-Torres, R., Hernández-Martínez, S., Recio-Totoro, B., Claudio-Piedras, F., Netea, M. G., & Lanz-Mendoza, H. (2018). DNA Synthesis Is Activated in Mosquitoes and Human Monocytes During the Induction of Innate Immune Memory. *Frontiers in Immunology*, *9*, 2834. https://doi.org/10.3389/fimmu.2018.02834
- Claudio-Piedras, F., Recio-Tótoro, B., Condé, R., Hernández-Tablas, J. M., Hurtado-Sil, G., & Lanz-Mendoza, H. (2020). DNA Methylation in Anopheles albimanus Modulates the Midgut Immune Response Against Plasmodium berghei. *Frontiers in Immunology*, 10, 3025. https://doi.org/10.3389/fimmu.2019.03025
- Contreras-Garduño, J., Rodríguez, M. C., Hernández-Martínez, S., Martínez-Barnetche, J., Alvarado-Delgado, A., Izquierdo, J., Herrera-Ortiz, A., Moreno-García, M., Velazquez-Meza, M. E., Valverde, V., Argotte-Ramos, R., Rodríguez, M. H., & Lanz-Mendoza, H. (2015). *Plasmodium berghei* induced priming in *Anopheles albimanus* independently of bacterial co-infection.

Developmental & *Comparative Immunology*, *52*(2), 172–181. https://doi.org/10.1016/j.dci.2015.05.004

- Davis, M. M., & Engström, Y. (2012). Immune Response in the Barrier Epithelia: Lessons from the Fruit Fly Drosophila melanogaster. *Journal of Innate Immunity*, 4(3), 273–283. https://doi.org/10.1159/000332947
- Divangahi, M., Aaby, P., Khader, S. A., Barreiro, L. B., Bekkering, S., Chavakis, T., van Crevel, R., Curtis, N., DiNardo, A. R., Dominguez-Andres, J., Duivenvoorden, R., Fanucchi, S., Fayad, Z., Fuchs, E., Hamon, M., Jeffrey, K. L., Khan, N., Joosten, L. A. B., Kaufmann, E., ... Netea, M. G. (2021). Trained immunity, tolerance. priming and differentiation: Distinct 2-6. immunological processes. Nature Immunology, 22(1),https://doi.org/10.1038/s41590-020-00845-6
- Domínguez-Benítez, C., Serrato-Salas, J., Condé, R., & Lanz-Mendoza, H. (2021). *Aedes aegypti* Aag-2 culture cells enter endoreplication process upon pathogen challenge. *bioRxiv*, 2021.01.13.425146. https://doi.org/10.1101/2021.01.13.425146
- Dzaki, N., Ramli, K. N., Azlan, A., Ishak, I. H., & Azzam, G. (2017). Evaluation of reference genes at different developmental stages for quantitative real-time PCR in Aedes aegypti. *Scientific Reports*, *7*, 43618–43618. PubMed. https://doi.org/10.1038/srep43618
- Espindola, A. S., & Cardwell, K. F. (2021). Microbe Finder (MiFi®): Implementation of an Interactive Pathogen Detection Tool in Metagenomic Sequence Data. *Plants*, *10*(2). https://doi.org/10.3390/plants10020250
- Espindola, A. S., Schneider, W., Cardwell, K. F., Carrillo, Y., Hoyt, P. R., Marek, S. M., Melouk, H. A., & Garzon, C. D. (2018). Inferring the presence of aflatoxin-producing *Aspergillus flavus* strains using RNA sequencing and electronic probes as a transcriptomic screening tool. *PLOS ONE*, *13*(10), e0198575. https://doi.org/10.1371/journal.pone.0198575

- Gammon, D. B., & Mello, C. C. (2015). RNA interference-mediated antiviral defense in insects. *Ecology * Parasites/Parasitoids/Biological control*, 8, 111–120. https://doi.org/10.1016/j.cois.2015.01.006
- Gan, S. J., Leong, Y. Q., bin Barhanuddin, M. F. H., Wong, S. T., Wong, S. F., Mak,
 J. W., & Ahmad, R. B. (2021). Dengue fever and insecticide resistance in
 Aedes mosquitoes in Southeast Asia: A review. *Parasites & Vectors*, *14*(1),
 315. https://doi.org/10.1186/s13071-021-04785-4
- Garcia, G., Jr., Paul, S., Beshara, S., Ramanujan, V. K., Ramaiah, A., Nielsen-Saines, K., Li, M. M. H., French, S. W., Morizono, K., Kumar, A., & Arumugaswami, V. (2020). Hippo Signaling Pathway Has a Critical Role in Zika Virus Replication and in the Pathogenesis of Neuroinflammation. *The American Journal of Pathology*, 190(4), 844–861. https://doi.org/10.1016/j.ajpath.2019.12.005
- Giovannoni, F., Bosch, I., Polonio, C. M., Torti, M. F., Wheeler, M. A., Li, Z., Romorini, L., Rodriguez Varela, M. S., Rothhammer, V., Barroso, A., Tjon, E. C., Sanmarco, L. M., Takenaka, M. C., Modaresi, S. M. S., Gutiérrez-Vázquez, C., Zanluqui, N. G., dos Santos, N. B., Munhoz, C. D., Wang, Z., ... Quintana, F. J. (2020). AHR is a Zika virus host factor and a candidate target for antiviral therapy. *Nature Neuroscience*, *23*(8), 939–951. https://doi.org/10.1038/s41593-020-0664-0
- Hernández-Martínez, S., Barradas-Bautista, D., & Rodríguez, M. H. (2013). DIFERENTIAL DNA SYNTHESIS IN Anopheles albimanus TISSUES INDUCED BY IMMUNE CHALLENGE WITH DIFFERENT MICROORGANISMS. Archives of Insect Biochemistry and Physiology, 84(1), 1–14. https://doi.org/10.1002/arch.21108
- Hernández-Martínez, S., Román-Martínez, U., Martínez-Barnetche, J., Garrido, E., Rodríguez, M. H., & Lanz-Mendoza, H. (2006). Induction of DNA synthesis in *Anopheles albimanus* tissue cultures in response to a *Saccharomyces*

cerevisiae challenge. Archives of Insect Biochemistry and Physiology, 63(4), 147–158. https://doi.org/10.1002/arch.20150

- Higa, Y. (2011). Dengue Vectors and their Spatial Distribution. *Tropical Medicine and Health*, 39(4 Suppl), 17–27. PubMed. https://doi.org/10.2149/tmh.2011-S04
- ICTV. (2022). Genus: Flavivirus—Flaviviridae—Positive-sense RNA Viruses— ICTV. Recuperado el 23 de julio de 2022, de https://talk.ictvonline.org/ictvreports/ictv_online_report/positive-sense-rnaviruses/w/flaviviridae/360/genus-flavivirus
- Kandilya, D., Maskomani, S., Shyamasundar, S., Tambyah, P. A., Shiao Yng, C., Lee, R. C. H., Hande, M. P., Mallilankaraman, K., Chu, J. J. H., & Dheen, S. T. (2019). Zika virus alters DNA methylation status of genes involved in Hippo signaling pathway in human neural progenitor cells. *Epigenomics*, *11*(10), 1143–1161. https://doi.org/10.2217/epi-2018-0180
- Kim, W., Cho, Y. S., Wang, X., Park, O., Ma, X., Kim, H., Gan, W., Jho, E., Cha, B., Jeung, Y., Zhang, L., Gao, B., Wei, W., Jiang, J., Chung, K.-S., & Yang, Y. (2019). Hippo signaling is intrinsically regulated during cell cycle progression by APC/CCdh1. *Proceedings of the National Academy of Sciences*, *116*(19), 9423–9432. https://doi.org/10.1073/pnas.1821370116
- Kirman, J. R., Quinn, K. M., & Seder, R. A. (2019). Immunological memory. Immunology & Cell Biology, 97(7), 615–616. https://doi.org/10.1111/imcb.12280
- Kumar, V., Garg, S., Gupta, L., Gupta, K., Diagne, C. T., Missé, D., Pompon, J., Kumar, S., & Saxena, V. (2021). Delineating the Role of Aedes aegypti ABC Transporter Gene Family during Mosquito Development and Arboviral Infection via Transcriptome Analyses. *Pathogens*, *10*(9), 1127. https://doi.org/10.3390/pathogens10091127

- Kurtz, J. (2005). Specific memory within innate immune systems. *Trends in Immunology*, *26*(4), 186–192. https://doi.org/10.1016/j.it.2005.02.001
- Lambrechts, L., Paaijmans, K. P., Fansiri, T., Carrington, L. B., Kramer, L. D., Thomas, M. B., & Scott, T. W. (2011). Impact of daily temperature fluctuations on dengue virus transmission by Aedes aegypti. *Proceedings of the National Academy of Sciences*, *108*(18), 7460. https://doi.org/10.1073/pnas.1101377108
- Lanz-Mendoza, H., & Contreras-Garduño, J. (2021). Innate immune memory in invertebrates: Concept and potential mechanisms. *Developmental* & *Comparative Immunology*, 104285. https://doi.org/10.1016/j.dci.2021.104285
- Laura de Sene Amâncio Zara, A., Maria dos Santos, S., Synthia Fernandes-Oliveira,
 E., Gomes Carvalho, R., & Evelim Coelho, G. (2016). Estratégias de controle
 do Aedes aegypti: Uma revisão. *Epidemiologia e Serviços de Saúde*, *25*(2),
 1–2. https://doi.org/10.5123/S1679-49742016000200017
- Lee, S., Kim, H., Naidansuren, P., Ham, K. A., Choi, H. S., Ahn, H., Kim, M., Kang, D. H., Kang, S. W., & Joe, Y. A. (2020). Peroxidasin is essential for endothelial cell survival and growth signaling by sulfilimine crosslinkdependent matrix assembly. *The FASEB Journal*, *34*(8), 10228–10241. https://doi.org/10.1096/fj.201902899R
- Lee, W.-S., Webster, J. A., Madzokere, E. T., Stephenson, E. B., & Herrero, L. J. (2019). Mosquito antiviral defense mechanisms: A delicate balance between innate immunity and persistent viral infection. *Parasites & Vectors*, *12*(1), 165. https://doi.org/10.1186/s13071-019-3433-8
- Li, H. (2018). Minimap2: Pairwise alignment for nucleotide sequences. *Bioinformatics*, 34(18), 3094–3100. https://doi.org/10.1093/bioinformatics/bty191

- Li, M., Lan, C., Gao, H., Xing, D., Gu, Z., Su, D., Zhao, T., Yang, H., & Li, C. (2020).
 Transcriptome analysis of Aedes aegypti Aag2 cells in response to dengue virus-2 infection. *Parasites & Vectors*, *13*(1), 421. https://doi.org/10.1186/s13071-020-04294-w
- Little, T. J., & Kraaijeveld, A. R. (2004). Ecological and evolutionary implications of immunological priming in invertebrates. *Trends in Ecology & Evolution*, 19(2), 58–60. https://doi.org/10.1016/j.tree.2003.11.011
- Liu, W.-Q., Chen, S.-Q., Bai, H.-Q., Wei, Q.-M., Zhang, S.-N., Chen, C., Zhu, Y.-H., Yi, T.-W., Guo, X.-P., Chen, S.-Y., Yin, M.-J., Sun, C.-F., & Liang, S.-H. (2020). The Ras/ERK signaling pathway couples antimicrobial peptides to mediate resistance to dengue virus in Aedes mosquitoes. *PLOS Neglected Tropical Diseases*, *14*(8), e0008660. https://doi.org/10.1371/journal.pntd.0008660
- Lucas, K. J., Roy, S., Ha, J., Gervaise, A. L., Kokoza, V. A., & Raikhel, A. S. (2015). MicroRNA-8 targets the Wingless signaling pathway in the female mosquito fat body to regulate reproductive processes. *Proceedings of the National Academy of Sciences*, *112*(5), 1440–1445. https://doi.org/10.1073/pnas.1424408112
- Mairiang, D., Zhang, H., Sodja, A., Murali, T., Suriyaphol, P., Malasit, P., Limjindaporn, T., & Finley, R. L., Jr. (2013). Identification of New Protein Interactions between Dengue Fever Virus and Its Hosts, Human and Mosquito. *PLOS ONE*, *8*(1), e53535. https://doi.org/10.1371/journal.pone.0053535
- Marcombe, S., Mathieu, R. B., Pocquet, N., Riaz, M.-A., Poupardin, R., Sélior, S., Darriet, F., Reynaud, S., Yébakima, A., Corbel, V., David, J.-P., & Chandre, F. (2012). Insecticide Resistance in the Dengue Vector Aedes aegypti from Martinique: Distribution, Mechanisms and Relations with Environmental

 Factors.
 PLOS
 ONE,
 7(2),
 e30989.

 https://doi.org/10.1371/journal.pone.0030989

- Marquardt, W. C., & Kondratieff, B. C. (2005). *Biology of disease vectors*. Elsevier Academic Press. http://site.ebrary.com/id/10180477
- Maya Maldonado, K., Hernandez Hernandez, F. de la C., & Lanz Mendoza, H. (2019). Cell Cycle Dynamics and Endoreplication In the Mosquito Midgut. *American Journal of Biomedical Science* & *Research*, *5*(1), 43–46. https://doi.org/10.34297/AJBSR.2019.05.000871
- Maya-Maldonado, K., Cardoso-Jaime, V., Hernández-Martínez, S., Vázquez-Calzada, C., Hernández-Hernández, F. de la C., & Lanz-Mendoza, H. (2020).
 DNA synthesis increases during the first hours post-emergence in *Anopheles albimanus* mosquito midgut. *Developmental & Comparative Immunology*, 112, 103753. https://doi.org/10.1016/j.dci.2020.103753
- Maya-Maldonado, K., Cime-Castillo, J., Maya-Lucas, O., Argotte-Ramos, R., Rodríguez, M. C., & Lanz-Mendoza, H. (2021). Transcriptome analysis uncover differential regulation in cell cycle, immunity, and metabolism in *Anopheles albimanus* during immune priming with *Plasmodium berghei*. *Developmental & Comparative Immunology*, 120, 104046. https://doi.org/10.1016/j.dci.2021.104046
- Miguel-Aliaga, I., Jasper, H., & Lemaitre, B. (2018). Anatomy and Physiology of the Digestive Tract of Drosophila melanogaster. *Genetics*, 210(2), 357. https://doi.org/10.1534/genetics.118.300224
- Milutinović, B., & Kurtz, J. (2016). Immune memory in invertebrates. *SI: Innate Immune Memory*, 28(4), 328–342. https://doi.org/10.1016/j.smim.2016.05.004
- Mondotte, J. A., Gausson, V., Frangeul, L., Suzuki, Y., Vazeille, M., Mongelli, V., Blanc, H., Failloux, A.-B., & Saleh, M.-C. (2020). Evidence For Long-Lasting

Transgenerational Antiviral Immunity in Insects. *Cell Reports*, 33(11), 108506. https://doi.org/10.1016/j.celrep.2020.108506

- Moreira, L. A., Iturbe-Ormaetxe, I., Jeffery, J. A., Lu, G., Pyke, A. T., Hedges, L. M., Rocha, B. C., Hall-Mendelin, S., Day, A., Riegler, M., Hugo, L. E., Johnson, K. N., Kay, B. H., McGraw, E. A., van den Hurk, A. F., Ryan, P. A., & O'Neill, S. L. (2009). A Wolbachia Symbiont in Aedes aegypti Limits Infection with Dengue, Chikungunya, and Plasmodium. *Cell*, *139*(7), 1268–1278. https://doi.org/10.1016/j.cell.2009.11.042
- Moreno-García, M., Vargas, V., Ramírez-Bello, I., Hernández-Martínez, G., & Lanz-Mendoza, H. (2015). Bacterial Exposure at the Larval Stage Induced Sexual Immune Dimorphism and Priming in Adult Aedes aegypti Mosquitoes. *PLOS ONE*, *10*(7), e0133240. https://doi.org/10.1371/journal.pone.0133240
- Moy, R. H., Gold, B., Molleston, J. M., Schad, V., Yanger, K., Salzano, M.-V., Yagi,
 Y., Fitzgerald, K. A., Stanger, B. Z., Soldan, S. S., & Cherry, S. (2014).
 Antiviral Autophagy Restricts Rift Valley Fever Virus Infection and Is
 Conserved from Flies to Mammals. *Immunity*, 40(1), 51–65.
 https://doi.org/10.1016/j.immuni.2013.10.020
- Mun-Keat C. (2013). The non-structural roles of *Dengue virus* structural capsid protein. Tesis de Doctorado. National University of Singapore. Singapore.
 264 p. Recuperado el 26 de julio de 2022, de https://scholarbank.nus.edu.sg/handle/10635/136019
- Netea, M. G., Domínguez-Andrés, J., Barreiro, L. B., Chavakis, T., Divangahi, M., Fuchs, E., Joosten, L. A. B., van der Meer, J. W. M., Mhlanga, M. M., Mulder, W. J. M., Riksen, N. P., Schlitzer, A., Schultze, J. L., Stabell Benn, C., Sun, J. C., Xavier, R. J., & Latz, E. (2020). Defining trained immunity and its role in health and disease. *Nature Reviews Immunology*, *20*(6), 375–388. https://doi.org/10.1038/s41577-020-0285-6

- Netea, M. G., Joosten, L. A. B., Latz, E., Mills, K. H. G., Natoli, Stunnenberg, H. G., O'Neill, L. A. J., & Xavier, R. J. (2016). Trained immunity: A program of innate immune memory in health and disease. *Science*, *352*(6284), aaf1098. https://doi.org/10.1126/science.aaf1098
- Netea, M. G., Joosten, L. A. B., & van der Meer, J. W. M. (2017). Hypothesis: Stimulation of trained immunity as adjunctive immunotherapy in cancer. *Journal of Leukocyte Biology*, *102*(6), 1323–1332. https://doi.org/10.1189/jlb.5RI0217-064RR
- Netea, M. G., Quintin, J., & van der Meer, J. W. M. (2011). Trained Immunity: A Memory for Innate Host Defense. *Cell Host & Microbe*, 9(5), 355–361. https://doi.org/10.1016/j.chom.2011.04.006
- Novelo, M., Hall, M. D., Pak, D., Young, P. R., Holmes, E. C., & McGraw, E. A. (2019). Intra-host growth kinetics of dengue virus in the mosquito Aedes aegypti. *PLOS Pathogens*, *15*(12), e1008218. https://doi.org/10.1371/journal.ppat.1008218
- Ochoa Corona, F. M., Cardwell, K. F., & Espindola, A. S. (2019). New Technologies from the Microbial World: Alternatives for Biomedical Surrogate Research.
 Advances in Biotechnology & Microbiology, 13(2).
 https://doi.org/10.19080/AIBM.2019.13.555859
- OMS, Organización Mundial de la Salud. (2022). *Dengue y dengue grave*. Recuperado el 23 de julio de 2022, de https://www.who.int/es/newsroom/fact-sheets/detail/dengue-and-severe-dengue
- Palazzo, A. F., & Lee, E. S. (2015). Non-coding RNA: What is functional and what is junk? *Frontiers in Genetics*, *6*. https://doi.org/10.3389/fgene.2015.00002
- Pan, X., Zhou, G., Wu, J., Bian, G., Lu, P., Raikhel, A. S., & Xi, Z. (2012). Wolbachia induces reactive oxygen species (ROS)-dependent activation of the Toll pathway to control dengue virus in the mosquito Aedes aegypti. *Proceedings*

of the National Academy of Sciences, 109(1), E23–E31. https://doi.org/10.1073/pnas.1116932108

- Ramirez, J. L., Souza-Neto, J., Torres Cosme, R., Rovira, J., Ortiz, A., Pascale, J.
 M., & Dimopoulos, G. (2012). Reciprocal Tripartite Interactions between the Aedes aegypti Midgut Microbiota, Innate Immune System and Dengue Virus Influences Vector Competence. *PLOS Neglected Tropical Diseases*, *6*(3), e1561. https://doi.org/10.1371/journal.pntd.0001561
- Reimand, J., Isserlin, R., Voisin, V., Kucera, M., Tannus-Lopes, C., Rostamianfar,
 A., Wadi, L., Meyer, M., Wong, J., Xu, C., Merico, D., & Bader, G. D. (2019).
 Pathway enrichment analysis and visualization of omics data using g:Profiler,
 GSEA, Cytoscape and EnrichmentMap. *Nature Protocols*, *14*(2), 482–517.
 https://doi.org/10.1038/s41596-018-0103-9
- Ren, D., Song, J., Ni, M., Kang, L., & Guo, W. (2020). Regulatory Mechanisms of Cell Polyploidy in Insects. *Frontiers in Cell and Developmental Biology*, *8*, 361. https://doi.org/10.3389/fcell.2020.00361
- Rodriguez-Andres, J., Rani, S., Varjak, M., Chase-Topping, M. E., Beck, M. H., Ferguson, M. C., Schnettler, E., Fragkoudis, R., Barry, G., Merits, A., Fazakerley, J. K., Strand, M. R., & Kohl, A. (2012). Phenoloxidase Activity Acts as a Mosquito Innate Immune Response against Infection with Semliki Forest Virus. *PLOS Pathogens*, *8*(11), e1002977. https://doi.org/10.1371/journal.ppat.1002977
- Rowley, A. F., & Powell, A. (2007). Invertebrate Immune Systems–Specific, Quasi-Specific, or Nonspecific? *The Journal of Immunology*, *179*(11), 7209. https://doi.org/10.4049/jimmunol.179.11.7209
- Salazar, M. I., Richardson, J. H., Sánchez-Vargas, I., Olson, K. E., & Beaty, B. J. (2007). Dengue virus type 2: Replication and tropisms in orally infected Aedes aegypti mosquitoes. *BMC Microbiology*, 7(1), 9. https://doi.org/10.1186/1471-2180-7-9

- Sánchez-Díaz, A., Blanco, M., Jones, N., & Moreno, S. (2001). HBP2: A new mammalian protein that complements the fission yeast MBF transcription complex. *Current Genetics*, 40(2), 110–118. https://doi.org/10.1007/s002940100241
- Schuster, S., Miesen, P., & van Rij, R. P. (2019). Antiviral RNAi in Insects and Mammals: Parallels and Differences. Viruses, 11(5). https://doi.org/10.3390/v11050448
- Serrato-Salas, J., Hernández-Martínez, S., Martínez-Barnetche, J., Condé, R., Alvarado-Delgado, A., Zumaya-Estrada, F., & Lanz-Mendoza, H. (2018). *De Novo* DNA Synthesis in *Aedes aegypti* Midgut Cells as a Complementary Strategy to Limit Dengue Viral Replication. *Frontiers in Microbiology*, *9*, 801. https://doi.org/10.3389/fmicb.2018.00801
- Serrato-Salas, J., Izquierdo-Sánchez, J., Argüello, M., Conde, R., Alvarado-Delgado, A., & Lanz-Mendoza, H. (2018). Aedes aegypti antiviral adaptive response against DENV-2. Developmental & Comparative Immunology, 84, 28–36. https://doi.org/10.1016/j.dci.2018.01.022
- Sheehan, G., Farrell, G., & Kavanagh, K. (2020). Immune priming: The secret weapon of the insect world. *Virulence*, *11*(1), 238–246. https://doi.org/10.1080/21505594.2020.1731137
- Shelly, S., Lukinova, N., Bambina, S., Berman, A., & Cherry, S. (2009). Autophagy Is an Essential Component of Drosophila Immunity against Vesicular Stomatitis Virus. *Immunity*, 30(4), 588–598. https://doi.org/10.1016/j.immuni.2009.02.009
- Shi, R., Cao, Z., Li, H., Graw, J., Zhang, G., Thannickal, V. J., & Cheng, G. (2018). Peroxidasin contributes to lung host defense by direct binding and killing of gram-negative bacteria. *PLOS Pathogens*, *14*(5), e1007026. https://doi.org/10.1371/journal.ppat.1007026

- Sigle, L. T., Jones, M., Novelo, M., Ford, S. A., Urakova, N., Lymperopoulos, K., Sayre, R. T., Xi, Z., Rasgon, J. L., & McGraw, E. A. (2022). Assessing Aedes aegypti candidate genes during viral infection and Wolbachia-mediated pathogen blocking. *Insect Molecular Biology*, 31(3), 356–368. https://doi.org/10.1111/imb.12764
- Sim, S., Ramirez, J. L., & Dimopoulos, G. (2012). Dengue Virus Infection of the Aedes aegypti Salivary Gland and Chemosensory Apparatus Induces Genes that Modulate Infection and Blood-Feeding Behavior. *PLOS Pathogens*, 8(3), e1002631. https://doi.org/10.1371/journal.ppat.1002631
- SINAVE/DGE/SSA, Sistema Nacional de Vigilancia Epidemiológica. (2022). Panorama Epidemiológico de Dengue 2022. Recuperado el 23 de julio de 2022, de http://www.gob.mx/salud/documentos/panorama-epidemiologicode-dengue-2022
- Sirokmány, G., Kovács, H. A., Lázár, E., Kónya, K., Donkó, A., Enyedi, B., Grasberger, H., & Geiszt, M. (2018). Peroxidasin-mediated crosslinking of collagen IV is independent of NADPH oxidases. *Redox Biology*, 16, 314–321. https://doi.org/10.1016/j.redox.2018.03.009
- Smartt, C. T., Shin, D., & Alto, B. W. (2017). Dengue serotype-specific immune response in Aedes aegypti and Aedes albopictus. *Memórias do Instituto Oswaldo Cruz*, *112*(12), 829–837. https://doi.org/10.1590/0074-02760170182
- Stobbe, A. H., Daniels, J., Espindola, A. S., Verma, R., Melcher, U., Ochoa-Corona, F., Garzon, C., Fletcher, J., & Schneider, W. (2013). E-probe Diagnostic Nucleic acid Analysis (EDNA): A theoretical approach for handling of next generation sequencing data for diagnostics. *Journal of Microbiological Methods*, *94*(3), 356–366. https://doi.org/10.1016/j.mimet.2013.07.002
- Talide, L., & Meignin, J.-L. I. and C. (2019). Sensing Viral Infections in Insects: A Dearth of Pathway Receptors. En *Insect Molecular Virology: Advances and*

EmergingTrends.CaisterAcademicPress.https://doi.org/10.21775/9781912530083.03

- Tjaden, N. B., Thomas, S. M., Fischer, D., & Beierkuhnlein, C. (2013). Extrinsic Incubation Period of Dengue: Knowledge, Backlog, and Applications of Temperature Dependence. *PLOS Neglected Tropical Diseases*, 7(6), e2207. https://doi.org/10.1371/journal.pntd.0002207
- Torti, M. F., Giovannoni, F., Quintana, F. J., & García, C. C. (2021). The Aryl Hydrocarbon Receptor as a Modulator of Anti-viral Immunity. *Frontiers in Immunology*, 12, 624293. https://doi.org/10.3389/fimmu.2021.624293
- Troupin, A., Londono-Renteria, B., Conway, M. J., Cloherty, E., Jameson, S., Higgs, S., Vanlandingham, D. L., Fikrig, E., & Colpitts, T. M. (2016). A novel mosquito ubiquitin targets viral envelope protein for degradation and reduces virion production during dengue virus infection. *Biochimica et Biophysica Acta (BBA) General Subjects*, 1860(9), 1898–1909. https://doi.org/10.1016/j.bbagen.2016.05.033
- Tsujimoto, H., Hanley, K. A., Sundararajan, A., Devitt, N. P., Schilkey, F. D., & Hansen, I. A. (2017). Dengue virus serotype 2 infection alters midgut and carcass gene expression in the Asian tiger mosquito, Aedes albopictus. *PLOS ONE*, *12*(2), e0171345. https://doi.org/10.1371/journal.pone.0171345
- Urakova, N., Joseph, R. E., Huntsinger, A., Macias, V. M., Jones, M. J., Sigle, L. T.,
 Li, M., Akbari, O. S., Xi, Z., Lymperopoulos, K., Sayre, R. T., McGraw, E. A.,
 & Rasgon, J. L. (2022). Alpha-mannosidase-2 modulates arbovirus infection
 in a pathogen- and *Wolbachia*-specific manner in *Aedes aegypti* mosquitoes. *bioRxiv*, 2022.03.18.484928. https://doi.org/10.1101/2022.03.18.484928
- Vargas, V., Cime-Castillo, J., & Lanz-Mendoza, H. (2020). Immune priming with inactive dengue virus during the larval stage of Aedes aegypti protects against the infection in adult mosquitoes. Scientific Reports, 10(1), 6723. https://doi.org/10.1038/s41598-020-63402-z

- Vargas, V., Moreno-García, M., Duarte-Elguea, E., & Lanz-Mendoza, H. (2016). Limited Specificity in the Injury and Infection Priming against Bacteria in Aedes aegypti Mosquitoes. *Frontiers in Microbiology*, 7, 975. https://doi.org/10.3389/fmicb.2016.00975
- Vora, A., Zhou, W., Londono-Renteria, B., Woodson, M., Sherman, M. B., Colpitts, T. M., Neelakanta, G., & Sultana, H. (2018). Arthropod EVs mediate dengue virus transmission through interaction with a tetraspanin domain containing glycoprotein Tsp29Fb. *Proceedings of the National Academy of Sciences*, *115*(28), E6604–E6613. https://doi.org/10.1073/pnas.1720125115
- Wilder-Smith, A., Ooi, E.-E., Horstick, O., & Wills, B. (2019). Dengue. *The Lancet*, *393*(10169), 350–363. https://doi.org/10.1016/S0140-6736(18)32560-1
- Xiao, X., Yang, L., Pang, X., Zhang, R., Zhu, Y., Wang, P., Gao, G., & Cheng, G. (2017). A Mesh–Duox pathway regulates homeostasis in the insect gut. *Nature Microbiology*, 2(5), 17020. https://doi.org/10.1038/nmicrobiol.2017.20
- Yadav, K. K., Bora, A., Datta, S., Chandel, K., Gogoi, H. K., Prasad, G. B. K. S., & Veer, V. (2015). Molecular characterization of midgut microbiota of Aedes albopictus and Aedes aegypti from Arunachal Pradesh, India. *Parasites & Vectors*, 8(1), 641. https://doi.org/10.1186/s13071-015-1252-0
- Ye, Y. H., Carrasco, A. M., Frentiu, F. D., Chenoweth, S. F., Beebe, N. W., van den Hurk, A. F., Simmons, C. P., O'Neill, S. L., & McGraw, E. A. (2015).
 Wolbachia Reduces the Transmission Potential of Dengue-Infected Aedes aegypti. *PLOS Neglected Tropical Diseases*, *9*(6), e0003894. https://doi.org/10.1371/journal.pntd.0003894
- Ye, Y. H., Woolfit, M., Rancès, E., O'Neill, S. L., & McGraw, E. A. (2013). Wolbachia-Associated Bacterial Protection in the Mosquito Aedes aegypti. *PLOS Neglected Tropical Diseases*, 7(8), e2362. https://doi.org/10.1371/journal.pntd.0002362

Zuo, X., Pan, W., Feng, T., Shi, X., & Dai, J. (2014). Matrix Metalloproteinase 3 Promotes Cellular Anti-Dengue Virus Response via Interaction with Transcription Factor NFκB in Cell Nucleus. *PLOS ONE*, *9*(1), e84748. https://doi.org/10.1371/journal.pone.0084748