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Abstract

The purpose of this work is to bring the latest results about Reproducing Kernel
Banach Spaces to a non-specialist public with some mathematical maturity.
A Reproducing Kernel Hilbert Space H is a space of functions defined on a fixed set
X with an associated reproducing kernel k, i.e.:

f (x) = 〈 f , k(·, x)〉H ∀ f ∈ H.

The extension of the reproducing property to Banach spaces is done by bilinear
forms and feature maps. We chose the framework given in [27] due to its gener-
ality and conciseness.

The first chapter begins with the essentials of Reproducing Kernel Hilbert Spaces
and the equivalent ways to construct one. The second part consists of extending
some results to Reproducing Kernel Banach Spaces, like the way to construct them,
continuity of the functions, and boundedness properties. The third part fills in the
details of constructions that have appeared in literature ([45] [16] [38] [37] [43] [27])
and expands on some of the concrete examples.

The second chapter starts with an explanation of SVM applied to classification
tasks and its extension through reproducing kernels. The second part is about the
Representer theorem for RKHS and its extensions to some classes of RKBS.
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Resumen

El propósito de este trabajo es acercar resultados recientes sobre los Espacios de Ba-
nach con Núcleo Reproductor a un público no especializado con cierta madurez
matemática. Un Espacio de Hilbert con Núcleo Reproductor es un espacio de fun-
ciones definidas sobre un conjunto fijo X con un núcleo reproductor k, es decir:

f (x) = 〈 f , k(·, x)〉H ∀ f ∈ H.

La extensión a espacios de Banach se realiza mediante formas bilineales. Elegimos
la estructura dada en [27] debido a su generalidad y brevedad.

El primer capítulo comienza con los fundamentos de los Espacios de Hilbert con
Núcleo Reproductor formas equivalentes para construir uno. La segunda parte con-
siste en extender algunos resultados a los Espacios de Banach de Núcleo Reproduc-
tor, como maneras de construirlos, la continuidad de las funciones y propiedades de
ser acotadas. La tercera parte rellena los detalles faltantes en las construcciones que
han aparecido en la literatura ([45] [16] [38] [37] [43] [27]) , y desarrolla algunos de
los ejemplos concretos.

El segundo capítulo comienza con una explicación de la SVM aplicada a tareas
simples de clasificación y su extensión por medio de núcleos reproductores. La se-
gunda parte del capítulo trata sobre el teorema de Representación para RKHS y sus
extensiones a algunas clases de RKBS.
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Introduction

A problem that has appeared repeatedly through every branch of science is to
find a function which satisfies some constraints. A common example is forcing a
function f to take certain prescribed target values {yi}N

i=1 at some fixed input points
{xi}N

i=1. This can be resumed in the following equations:

f (xi) = yi, i = 1, · · ·N.

Machine Learning methods attempt to solve these problems in multiple ways. The
family of algorithms collectively known as Support Vector Machines (SVM) is made
of tools for solving this kind of problems.

The simplest form of a SVM solves a binary classification problem in Rn by sepa-
rating the points using hyperplanes. The SVM algorithm originally consists of find-
ing an optimal hyperplane that separates points {xi} ⊆ Rn into two categories. To
classify them we want a function which is positive if applied to one class, and neg-
ative if applied to the other class. The key to find the solution is knowing the inner
products

〈xi, xj〉.

This comes with a caveat: hyperplanes are often not enough to correctly classify
into two classes. But the idea of using separating hyperplanes can be rescued by
mapping the original points to another space by using feature maps. The feature map
sends the samples in a non-linear way to a new normed space where we can classify
correctly. A convenient tool that allows us to exploit the full potential of the new
space is reproducing kernels.

The ideas described above take place in Reproducing Kernel Hilbert Spaces (RKHS)
and Reproducing Kernel Banach Spaces (RKBS). These are spaces of functions F de-
fined on a set X. This means that we want to be able to evaluate the objects f ∈ F
on points of X. These points thus induce evaluation functionals which we will ask
to be continuous with respect to the space’s norm. Moreover, these spaces also are
coupled with another space, its dual space, and a bilinear form defined on these two.

When working with Hilbert spaces, due to the Riesz Representation theorem we
can associate a vector to each continuous functional. Using this fact and associating
the evaluation functional evalx to a point x, we define a feature map from the set X
to the Hilbert space. The descriptive "Reproducing kernel" comes from this, since
for every point x, we associate a vector kx ∈ H such that for every function f ∈ H
the following holds:

f (x) = evalx( f ) = 〈 f , kx〉,

In particular, for two points x, y ∈ X we have the function

k(x, y) = evaly(kx) = 〈kx, ky〉.

Therefore we can extend the algorithm by constructing a new space with its inner
product induced by a reproducing kernel function k. By mapping the original points
to a more appropriate space, we can then apply the separation algorithm with the
new points. And now the inner product between the new points is then represented
by the evaluations k(xi, xj). This fact is sometimes known as the kernel trick, since it
allows to compute the inner product by just evaluating the reproducing kernel.
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Since we can do the mapping to a Hilbert space beforehand, there is no need for
the original set X to have a particular structure. This means that we can interpret
the mapping translating a inner product structure to the original set. Or if there is
a prior structure, it can be seen as a deformation of the space in a non-linear way to
make classification possible.

Reproducing kernels and their induced Hilbert spaces have been thoroughly
studied since last century. More recently, Boser, Guyon and Vapnik [8] found that
they could also be used in the context of Machine Learning. They noticed that the
Support Vector Machine algorithm, designed by Vapnik [40], could be extended by
replacing the inner product with an arbitrary reproducing kernel.

The study of general reproducing kernel spaces go back to the last century. Pos-
itive definite kernels have been studied due to their relation to Hilbert spaces. The
Reproducing Kernel Banach Spaces (RKBS) for Machine Learning purposes were
proposed first in the context maximal margin classification for metric spaces [21].
Later in [45], they proposed using semi-inner products to generalize RKHS. The
semi-inner product approach was not implemented until [16] constructed a special
class of RKBS specifically made for this purpose. Another road that took place in
RKBS research was developing a RKBS with a `1-type norm for the purpose of `1

regularization [37, 38, 26]. There is also current research aiming to explain other Ma-
chine Learning achievements for approximating seemingly arbitrary functions, like
the Transformer model [42], as well as other Neural Networks [5].

This work is intended to be an introduction to some results from the past decade
about Reproducing Kernel Banach Spaces in Machine Learning. As such, we will
focus on its theory, some particular constructions and how they can be used for
SVM’s. We will be omitting essential related topics such as error bounds for the
error or its probabilistic treatment [9].

The work is divided into two ideas: abstracting the useful points of the RKHS
framework and making a RKBS version of them. These are distributed over three
chapters.

The first and second chapters are an introduction to the theory of RKHS and
RKBS respectively. We set up some key ideas of a RKHS in the first chapter, these
being the relation between the reproducing kernel, the feature maps and the inner
product. These ideas will be further developed when we generalize them to RKBS.
We then approach the construction of RKBS spaces using feature maps and bilinear
forms. This mimics closely the way RKHS are constructed, and later we show that
this idea arises naturally by pairing vectors and functionals with the bilinear maps.

The second chapter goes further into particular constructions. This is to empha-
size the flexibility of RKBS:

• If convenient, the choice of the bilinear form can be changed to a large degree,
an inner product does not allow that.

• For a RKHS we need the Hilbert space H, its dual H′ = H and the inner prod-
uct as a bilinear form. A RKBS needs a Banach space B and a space C just "big
enough" to separate the functions in B. And a bilinear form between them.
So C does not need to be made of functions defined on the same set as B’s
functions.

The freedom of choosing these two give place to multiple ways to find reproducing
kernels for one fixed space.

The third chapter is concerned with the application of reproducing kernel spaces
to SVM. We briefly give the derivation that justifies the algorithm of the original



SVM. We then highlight some parts that let us connect this algorithm to a non-linear
version where RKHS are used. Then we show the reason the kernel trick found its
place within Machine Learning algorithms: the Representer theorem. This theorem
shows that a large class of problems can be solved by functions living in a finite-
dimensional subspace, independently of the dimension of the Hilbert space. More
specifically, it says that a solution takes the form

f = ∑
j

αjk(·, xj).

The second part of the chapter shows that this idea can be generalized to the RKBS
studied previously. This is where the feature maps and bilinear forms find their
use by translating some Hilbert space concepts to Banach spaces. Finally, we con-
clude the chapter with various versions of the Representer theorem for two classes
of RKBS. The problem of finding "Representer theorems" for general spaces is not
limited to these classes. To read more on it we recommend reading [4, 34].
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Chapter 1

Reproducing kernel Banach space
(RKBS)

1.1 Reproducing kernel Hilbert spaces (RKHS)

In this section we give an overview of Reproducing Kernel Hilbert Spaces to draw
parallels from when we define the Reproducing Kernel Banach Spaces.

Definition 1.1.1 (RKHS). A Hilbert space of functions over a set X is called a Repro-
ducing Kernel Hilbert Space (RKHS) if the evaluation functionals are continuous.

Now we define what it means for a RKHS to have a reproducing kernel function:

Definition 1.1.2. Let H be a Hilbert space of functions H over X with a function
k : X× X → C such that

kx := k(·, x) ∈ H, ∀x ∈ X (1.1)

f (x) = 〈 f , k(·, x)〉, ∀ f ∈ H (1.2)

then k is called a reproducing kernel for the Hilbert space H.

The Riesz representation theorem assures that every continuous functional is
represented by the inner product with a fixed element of the Hilbert space. Then
with the previous definition we can easily derive the so-called reproducing property
of the kernel function for a RKHS. In a way this will motivate the coming definitions
for the Banach spaces, despite the general absence of an inner product.

Definition 1.1.3. A mapping from a non-empty set X to a Banach space V will be
called a feature map and V will be called a feature space.

As we mentioned before, every evaluation functional is represented by a unique
vector, that means there is a mapping x 7→ vx from the set X to the Hilbert space
such that evalx = 〈·, vx〉, thus this is an example of a feature map.

Theorem 1.1.1. Let H be a Hilbert space of functions. The following statements are
equivalent [39].

(i) H is a RKHS.

(ii) H has a reproducing kernel function.

Proof. (i) =⇒ (ii)
Let Φ : X → H be a feature map and I : H′ → H the Riesz map. Note that vx =
Φ(x) = I(evalx) is true for all x ∈ X. Next we define a complex-valued function by:

k(x, y) = 〈vx, vy〉, ∀x, y ∈ X.
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Then by the observation above we have that

k(x, y) = 〈vx, vy〉 = 〈I(evaly), I(evalx)〉 = evalx(I(evaly)) = I(evaly)(x) = vy(x).

So we have that k(·, y) ∈ H, moreover we showed that vy(·) = k(·, y). Next we
prove that this function has property 1.2: Let f ∈ H be an arbitrary function, then:

f (x) = evalx( f ) = 〈 f , vx〉 = 〈 f , k( , x)〉.

So k(x, y) is a reproducing kernel for the RKHS.
(ii) =⇒ (i)
This follows from the reproducing property: take an arbitrary x ∈ X and f ∈ H,
then

|evalx( f )| = | f (x)| = |〈 f , k(x, )〉| ≤ ‖ f ‖‖k(x, )‖

An so we have that evaluation functionals are continuous, making H a RKHS.

A function with property 1.2 is said to have the reproducing property. A repro-
ducing kernel for a Hilbert space has many properties that come from its relationship
with the inner product of the space itself.

Definition 1.1.4. A function k : X× X → C such that:

n

∑
i,j=0

aiajk(xi, xj) ≥ 0 for all xi ∈ X, ai ∈ C (1.3)

will be called a positive definite kernel.

Theorem 1.1.2. Let H be a RKHS and k be its reproducing kernel, then:

1. k is conjugate symmetric, i.e. k(x, y) = k(y, x).

2. k(x, y) is positive definite.

Proof. Let x, y ∈ X. From the properties in 1.1.2 we have

k(x, y) = ky(x) = 〈ky, k(·, x)〉 = 〈ky, kx〉 = 〈kx, ky〉 = 〈kx, k(·, y)〉 = kx(y) = k(y, x).

Therefore k(x, y) = k(y, x). Consider arbitrary ai ∈ C and xi ∈ X for i = 1, . . . , n. The
function fa1...an(·) = ∑n

i=1 aik(·, xi) is an element of H, and as such 0 ≤ 〈 fa1...an , fa1 ...an〉,
but this last expression is ∑n

i,j=0 aiajk(xi, xj) because k has the reproducing property.
The uniqueness is a consequence of the reproducing property and the first property:

k′(x, y) = k′y(x) = 〈k′y, kx〉 = 〈kx, k′y〉 = kx(y) = k(y, x) = k(x, y).

Given a conjugate symmetric and positive definite function k, we can construct
the associated RKHS by using finite linear combinations of the form k(·, x) see [33]
for the details.

Theorem 1.1.3. Let
k : X× X → C

be a conjugate symmetric, positive definite function, then the function space
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H0 = { f (y) =
n

∑
i=0

aik(xi, y) : n ∈N, ai ∈ C} (1.4)

is a pre-Hilbert space with the inner product

〈
n

∑
i=0

aikxi ,
m

∑
j=0

bikzi〉 :=
n,m

∑
i=0,j=0

aibjk(xi, zj). (1.5)

And its completion H is a RKHS with kernel function k(x, y) and feature map
x 7→ k(x, ·).

Due to Theorems 1.1.2 and 1.1.3 we can say that there is a bijection between
positive semi-definite functions and RKHS. When moving the theory from Hilbert
spaces to Banach spaces such relationship is lost. The above construction could be
used for a vector space which would be a first attempt of a reproducing kernel Ba-
nach space, but it would find the issue of which norm to give the vector space. This
characteristic is what will give rise to non-isometric Banach spaces having the same
reproduction kernel. Manipulating evaluation functionals in Hilbert spaces can be
reduced to studying one particular bilinear form due to the Riesz representation
Theorem, but for the Banach spaces there is no natural or unique mapping from the
given space B to its dual B′.
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1.2 Reproducing Kernel Banach Spaces (RKBS)

In the previous section we only worked in the context of Hilbert spaces, which are
endowed with an inner product. This gives us a way to represent linear functionals
in an unique way by using vectors of the space. To generalize that idea of rep-
resenting abstract linear functionals as a concrete relation between two vectors in
Banach spaces, we will use bilinear maps between the two spaces. This will allow us
to bring the reproducing property to more general Banach spaces, but accordingly
some things will not be guaranteed like uniqueness of a reproducing kernel for a
given Banach space, nor a norm induced by the kernel function.

We first define what it means for a space to be a Reproducing Kernel Banach
Space [27].

Definition 1.2.1. [27] Let B be a Banach space of functions defined on a set X such
that a function has zero norm if and only if it vanishes at every point. Then B is
called a Reproducing Kernel Banach Space (RKBS) if every evaluation functional
is continuous.

The only difference between the definitions of RKHS and RKBS for us is the
choice of a Banach space B over a Hilbert space. That means there may not be
an inner product to use and consequently there may not be one way to represent
functionals with vectors from the Banach space. In some particular cases where the
bilinear form has a stronger relation to the space’s geometry we will recover some
of the properties a kernel function has in the case of a RKHS. In each section we
will be showing different ways to find these bilinear maps, and then we will show
that the follow the next construction. For this general construction, we will require
another Banach space and a non-degenerate1 bilinear mapping, but we will not force
the norms to be determined by the bilinear form, instead we only ask for the two
previous conditions. For our purposes we will only consider bilinear forms which
are both continuous and non-denegerate and will call them only bilinear forms or
bilinear maps.

Definition 1.2.2. [27] Let B1 be a RKBS defined on a set X. Suppose there exists
a second Banach space B2 defined on a set Y, a continuous2 and non-degenerate
bilinear form 〈·, ·〉 : B1 ×B2 → C, and a function k : X × Y → C such that k(x, ·) ∈
B2 for all x ∈ X with the right-sided reproducing property:

f (x) = 〈 f , k(x, ·)〉 for all x ∈ X, f ∈ B1. (1.6)

Then k is called a reproducing kernel for the RKBS B1 with respect to the bilinear
form 〈·, ·〉.

Definition 1.2.3. Consider a Banach space B2 defined on a set Y and a RKBS B1
defined on a set X, with reproducing kernel k : X×Y → C with respect to a bilinear
form 〈·, ·〉 defined on B1 ×B2. Assume also that k(·, y) ∈ B1 for all y ∈ Y and that
it has the left-sided reproducing property:

g(y) = 〈k(·, y), g〉 for all y ∈ Y, g ∈ B2. (1.7)

1We say that a bilinear form B : V ×W → C is non-degenerate if for every pair of non-zero vectors
v ∈ V, w ∈W the linear functionals B(v, ·) and B(·, w) are not trivial.

2A bilinear form B defined over two normed spaces (V, ‖·‖V) and (W, ‖·‖W) will be called con-
tinuous if for every pair of vectors (v, w) ∈ V ×W we have |B(v, w)| ≤ Cx‖v‖V‖w‖W for a constant
Cx > 0.



Then the second condition implies that B2 is a RKBS and we call B2 an adjoint
RKBS for B1. We will call B1 and B2 a pair of adjoint RKBS’s. When there is no
risk of ambiguity, we will refer to them as an adjoint pair.

We also have that a reproducing kernel for B2 can be defined by swapping the
roles of both the sets X and Y and the spaces B1 and B2.

Theorem 1.2.1. Let B1 and B2 be an adjoint pair. Then the function k̃(x, y) := k(y, x)
is a reproducing kernel for B2 .

To give intuition of how we will proceed, we see a Hilbert space and its inner
product from another perspective. In Theorem 1.1.3, we see that the RKHS we de-
fined consists of functions given by series expansions on the terms

x 7→ Φ(x) := k(·, x),

and the inner product, which is defined by the kernel function [33]. On the other
hand, the kernel function can also be given in terms of the inner product and the fea-
ture map by the equation k(x, y) = 〈Φ(x), Φ(y)〉 = 〈k(·, x), k(·, y)〉. Since a Hilbert
space is isometric to its dual, we can interpret the second argument Φ(y) as being
a linear functional in H′, which is a Banach space, and regard the inner product as
the evaluation of the functional Φ(y). To make this function a bilinear form, we give
another scalar product to H′ by defining α • v := αv for every v ∈ H′, bestowing it
the structure of Banach space with the norm induced by H. Furthermore, by leaving
the second argument fixed, k(x, y) = 〈Φ(x), Φ(y)〉 is a function defined on X which
lies in the spanned space seen in Theorem 1.1.3. The next construction is inspired
from such representation.

Definition 1.2.4. [27] Let V, W be Banach spaces and 〈·, ·〉V×W : V ×W −→ C a
bilinear form. We say that a subspace E ⊂ V is dense in W with respect to the
bilinear form 〈·, ·〉V×W if for a given v ∈W we have that

〈u, v〉V×W = 0, ∀u ∈ E

then v = 0.

A necessary and sufficient condition for a bilinear form to satisfy this property is
that the subspaces Span {〈x, ·〉W1×W2}x∈W1 , Span {〈·, y〉W1×W2}y∈W2 are weak-∗ dense
in W∗2 and W∗1 respectively [1]
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Construction 1.2.1.1.

Construction of RKBS by feature maps. Let X and Y be sets, W1 and W2 be a
couple of Banach spaces, 〈·, ·〉W1×W2 : W1 ×W2 → C a continuous bilinear form and
Φ1 : X → W1 and Φ2 : Y → W2 a pair of feature mappings such that the span of
their images are dense subspaces with respect to the bilinear form. Consider the
following functions spaces and their norms:

B1 := { fw(·) = 〈Φ1(·), w〉 | w ∈W2},

‖ fw‖B1 := ‖w‖W2 ,
(1.8)

B2 := {gv(·) = 〈v, Φ2(·)〉 | v ∈W1},

‖gv‖ := ‖v‖W1 .
(1.9)

And the bilinear map is
〈 fw, gv〉B1×B2 := 〈v, w〉.

The next result is a direct consequence of how these spaces were constructed.

Theorem 1.2.2. Let W1, W2, B1 and B2 be as in Construction 1.2.1.1. Then W1 is
isometrically isomorphic to B2 and W2 is isometrically isomorphic to B1.

From this point onward, whenever we say that two Banach spaces form an ad-
joint pair, we will assume they come from a construction like above with their re-
spective feature maps.

When we showed that a kernel function defines a Hilbert space in Theorem 1.1.3,
we derived the uniqueness of the norm by the properties of the positive definite
function. In contrast, we only ask for continuity from the bilinear form, and this
does not force a relation with the norms besides continuity. This makes up for one
of the differences between RKHS and RKBS along the following:

• A second Banach space W2 which does not necessarily have a relation with
the space W1, besides the bilinear map between them. Functions in it may be
defined on an entirely different set Y. With Hilbert spaces this role was taken
by the dual space, and both were spaces of functions defined on the same set,
with the anti-isomorphism given thanks to the Hilbertian structure.

• A continuous bilinear map between the spaces W1and W2 which will serve the
role the inner product did with RKHS. We ask for two things: continuity, and
that it defines two monomorphisms, one from W1 to W ′2 and the other from
W2 to W ′1. The second condition makes it so there is a copy of W1 in w′2 and a
copy of W2 in w′1. The first condition makes it so the respective copies have a
norm that is weaker 3 than their original norm. In other words, the conditions
imposed on the bilinear form translate to relations between spaces and their
duals.

3We say that a norm ‖·‖1 defined on a Banach space B is weaker than the norm ‖·‖B if there exists
a constant c> 0 such that ‖x‖1 ≤ ‖x‖B for all x ∈ B.
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The next result says that for RKBS, convergence of a Cauchy sequence to a func-
tion is equivalent to pointwise convergence. This is due to the requirement of the
continuity of evaluation functionals and the properties of the bilinear form.

Theorem 1.2.3. Let B1 and B2 be as above, then a Cauchy sequence in B1 with
respect to its norm converges to 0 if and only if the limit is 0 pointwise.

Proof. The fact that convergence in norm implies pointwise limit is clear.
As for the other implication, let {〈Φ1(·), vm〉}m∈N be a Cauchy sequence which con-
verges pointwise to 0. Since it is a Cauchy sequence there is a v ∈ B2 such that

〈Φ1(·), vm〉 −→ 〈Φ1(·), v〉

in norm. Since evaluation functionals are continuous, then 〈Φ1(x), v〉 = 0 at every
point, as such we have that 〈Φ1(·), v〉 = 0. But this is impossible since we asked for
the bilinear form to be non-degenerate and Span (Φ1(x)x∈X) to be a dense subspace
of B1

We show next that the spaces constructed in Construction 1.2.1.1 are truly RKBS
as we defined before:

Theorem 1.2.4. Let B1, B2 be as 1.8 and 1.9, then, together with Theorem 1.2.3 we
can deduce that:

• B1 is a RKBS.

• k(x, y) := 〈Φ1(x), Φ2(y)〉W1×W2 is a reproducing kernel for B1 with respect to
the continuous bilinear form

〈 fv, gw〉B1×B2 := 〈w, v〉W1×W2 .

• B2 is an adjoint RKBS for B1.

Proof. First we choose two arbitrary functions fw1 , fw2 ∈ B1 and a scalar λ ∈ C.
Since 〈·, ·〉W1×W2 is a bilinear form we have for every x ∈ X:

fw1(x) + λ fw2(x) = 〈Φ1(x), w1〉+ λ〈Φ1(x), w1〉 =
〈Φ1(x), w1〉+ 〈Φ1(x), λw1〉 = 〈Φ1(x), w1 + λw2〉 = fw1+λw2(x).

(1.10)

So B1 is a vector space. The fact that B1 is a Banach space of functions comes
from the non-degeneracy of the bilinear map together with the fact that W2 is com-
plete with the ‖ ‖W2 norm, and it has the property we ask in definition 1.2.1. Now we
need to show that all evaluation functionals are continuous: Let x ∈ X be an arbi-
trary point and ψx the induced evaluation function. By the continuity of the bilinear
form we have for an arbitrary fu ∈ B1:

|ψx( fu)| = | fu(x)| = |〈Φ1(x), u〉| ≤ C‖Φ1(x)‖W1‖u‖W2 = C‖Φ1(x)‖W1‖ fu‖B1 .

Therefore B1 is a RKBS. To show that k is a reproducing kernel for B1 we first prove
that the bilinear form is continuous, take fu ∈ B1, gv ∈ B2, then

|〈 fu, gv〉B1×B2 | = |〈v, u〉W1×W2 | ≤ C‖v‖W1‖u‖W2 = C‖gv‖B1‖ fu‖B1 .
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Now we only need to verify that k is a reproducing kernel for B1, note first that

k(x, ·) = 〈Φ1(x), Φ2(·)〉 = gΦ1(x)(·) ∈ B2.

So we have the next equalities by definition of the bilinear form= 〈·, ·〉B1×B2 :

fu(x) = 〈Φ1(x), u〉W1×W2 = 〈 fu, gΦ1(x)〉B1×B2 = 〈 fu, k(x, ·)〉.

The proof that B2 is a RKBS with reproducing kernel k̃(y, x) = k(x, y) is similar.

Remark. It is worth mention that we can still obtain a RKBS if we weaken the hypoth-
esis on the bilinear form 〈·, ·〉W1×W2 by asking only non-degeneracy for the second
space, meaning that for every v ∈ W2 there exists u ∈ W1 such that 〈u, v〉 6= 0. This
is because this property ensures that the second space is embedded continuously in
the dual space of W1. If we weaken the hypothesis this way, the constructed space
B1 continues to be a RKBS with the same space B2 and the associated bilinear form.
It also retains the reproducing property for B1, which would coincide with the def-
inition for right-sided reproducing property. Nevertheless B2 may have non-zero
functions with zero norm. It could also lose its reproducing property with respect to
the reproducing kernel.

When working with sets X, Y with extra structure, we can restrict their behavior
accordingly, like asking for them to be bounded functions, as seen in [18].

Theorem 1.2.5. If B1, B2 are an adjoint pair RKBS and the feature maps Φ1(x) =
k(·, x), Φ2(y) = k(y, ·) are such that that supx∈X{‖k(·, x)‖B1}, supy∈Y{‖k(y, ·)‖B2}
are both finite. Then every function in B1 and B2 is bounded and the identity maps
I1 : B1 → Cb(X), I2 : B2 → Cb(Y), are bounded.

Proof. Let fv ∈ B1 and c ≥ supx∈X{‖k(·, x)‖B1}, then

| fv(x)| = |〈 fv, k(·, x)〉| ≤ C‖ fv‖‖k(·, x)‖ ≤ Cc‖ fv‖.

The proof for B2 is similar.

Similarly, if the sets X and Y are topological spaces, we can impose conditions
on the feature maps to exploit their structure. In applications, it is not unusual that
the sets X, Y have a metric space structure, and since the range of the feature maps
lie in Banach spaces, the following result becomes useful.

Theorem 1.2.6. [18] Let X and Y be topological spaces and B1 and B2 be as in con-
struction 1.2.1.1. The function spaces B1 and B2 consist of continuous functions if
any of these conditions hold:

• The feature maps Φ1 : X → B1 and Φ2 : Y → B2 are continuous.

• k is bounded and continuous with respect to each variable separately.

The first condition also implies that the reproducing kernel is continuous.

Proof. We will show that any function f ∈ B1 is continuous. First suppose that the
feature maps are continuous. Then any function fv ∈ B1 has the form:

fv(x) = 〈Φ1(x), v〉.
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So fv is the composition of continuous functions, hence it is continuous. Likewise
for the kernel we have that:

k(x, y) = 〈Φ1(x), Φ2(y)〉,

making it also continuous on each variable.
Now assume the second set of conditions. Since k is continuous separately on

each variable, each function k(·, y) = 〈Φ1(·), Φ2(y)〉 ∈ B1 is continuous for each
y ∈ Y. Remember that Span (Φ2(Y)) is a dense subspace, so when we construct
B1 we induce another dense subspace of functions of the form 〈Φ1(·), Φ2(y)〉which
are continuous. That means that if we show that functions in B1 are uniform limits
of these, then we are done. But this is a consequence of the previous theorem and
Theorem 1.2.2.

Since we ask for Span(Φ1(X)) ⊂ W1 and Span(Φ2(Y)) ⊂ W2 to be dense sub-
spaces, due to the isometry, these images also conserve separability [31].

Theorem 1.2.7. Let X and Y be non-empty sets, B1 and B2 an adjoint pair defined on
them. Suppose that the feature maps Φ1 : X → B1 and Φ2 : Y → B2 are continuous
and that both X and Y are separable. Then B1 and B2 are also separable Banach
spaces.

Proof. Due to the continuity of the feature maps, both Φ1(X) and Φ2(Y) are separa-
ble subsets of W1 and W2 respectively. Choose countable, dense subsets D1 ⊂ Φ1(X),
D2 ⊂ Φ2(Y) and consider linear combinations of their elements where the coef-
ficients are complex numbers with rational coordinates, then we obtain countable
sets which are dense in W1 and W2. And from Theorem 1.2.2 we know that these
spaces are isometrically isomorphic to B2 and B1 respectively.

As the first example of a reproducing kernel Banach space, we show that the con-
cept generalizes a RKHS as expected.

Theorem 1.2.8. Let H be a RKHS defined on a set X, with feature map Φ : X →H ,
and with reproducing kernel k. Then H is a RKBS of the form 1.2.1.1 with the same
reproducing kernel.

Proof. Since there is no change in the chosen norm the valuation functionals are con-
tinuous and H is a RKBS. To see that the it fits scheme 1.2.1.1, let R : H ′ → H be
the Riesz mapping, which is anti-linear and:

X = Y.
W1 = H , W2 = H ′.

Φ1 = Φ, Φ2 = R−1 ◦Φ.
〈u, v〉W1×W2 = 〈u, R(v)〉H

So the spaces B1 and B2 end up being:

B1 = { fu(·) = 〈Φ1(·), u〉W1×W2 = 〈Φ1(·), R(u)〉H | u ∈H }.
B2 = {gv(·) = 〈v, Φ2(·)〉W1×W2 = 〈v, R(R−1(Φ(·)))〉H = 〈v, Φ(·)〉H | v ∈ H}.

If we show that H ∼= B2, since B1 and B2 form an adjoint pair, we are done. But
this is a consequence of how the space was constructed.
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Chapter 2

RKBS Constructions

This section will be devoted to examples and constructions of diverse RKBS. Start-
ing from the candidates to RKBS, we will explain the particular way each approach
choose to represent evaluation functionals, which will involve Banach spaces that
can be embedded into the dual space of the RKBS candidates, explain the particular
construction given and some concrete examples, and finally show that they fit the
construction outlined 1.8 and 1.9 for some of them.

2.1 Reflexive spaces

The first class of spaces we develop are the reflexive spaces. A Banach space B is
said to be reflexive if it is isometric to its double dual B′′ [45].

Definition 2.1.1. [45] Let B be a reflexive Banach space of functions defined on non-
empty set X. If its dual B′ is isometric to some Banach space of functions with
non-empty domain Y 1, and evaluation functionals are continuous for both spaces
then we will call B a Reflexive reproducing kernel Banach space.

The main tool here is the natural bilinear form 〈 f , φ〉B := 〈 f , φ〉B×B′ = φ( f ),
which is continuous in both arguments. By the Hahn-Banach theorem, we also know
that this form is non-degenerate. Furthermore, since B = (B′)′ we automatically
obtain that B′ is also a reflexive RKBS because if we identify f with its evaluation
eval f , then 〈 f , φ〉B = φ( f ) = f (φ) = 〈φ, f 〉B′ also defines a continuous nondegen-
erate bilinear form. For a given reflexive RKBS, we will assume that B′ is already
under the identification from the definition, so B′ is another space of functions de-
fined on the same set as B.

Since the second space and its norm are fixed in this case, the existence and
uniqueness of the kernel function follows from that, just as in the RKHS case.

Theorem 2.1.1. Let B be a reflexive RKBS defined on X. Then:

• There exists an unique kernel function k : X× X → C such that

k(x, ·) ∈ B′, k(·, y) ∈ B,

and k has the reproducing property on both B and its dual, in other words
f (x) = 〈 f , k(x, ·)〉B∀ f ∈ B and g(y) = 〈k(·, y), g〉B′∀g ∈ B′.

• Moreover, the subspaces Span {k(·, x)|x ∈ X} ⊂ B and Span {k(y, ·)|y ∈ X} ⊂
B′ are dense.

1In [45] the authors asked for functions in both B and its dual to have the same domain but as
pointed out in [16] such a requirement is unnecessary. Despite that, most worked examples we will
see are of this kind so we will assume they both share the same domain unless otherwise noted.
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Proof. Note that evaluation functionals for both spaces lie in their respective dual
space, that is to say, if δx ∈ B′ is an evaluation functional for B and δy ∈ B′′ = B
is one for B, so they really are function of two variables, one on the Banach space
where they act on, and the other elements from X. So the natural way to define the
kernel function is by using the natural bilinear form between a space and its dual:

k(x, y) := 〈δx, δy〉B .

Going by the observation above we can change notation to δy = gy and that way our
kernel is written like

k(x, y) = gy(x).

We only show the reproducing property for B, because the argument for its dual
follows the same reasoning. Let f ∈ B be a function, then

f (x) = δx( f ), ∀x ∈ X,

but since the evaluation functionals are continuous and the dual is isometric to a
Banach space of functions, then the evaluation functional δx can be though of as a
function = g(·) with domain X, then

f (x) = δx( f ) = 〈 f , δx〉 = 〈 f , gx〉 = 〈 f , k(x, ·)〉.

That show that k has the reproducing property. So if there were another function
l : X× X → C with the reproducing property, then:

f (x) = 〈 f , k(x, ·)〉 = 〈 f , l(x, ·)〉.

From where we can deduce that for every f ∈ B

〈 f , k(x, ·)− l(x, ·)〉 = 0.

So k(x, ·) − l(x, ·) is the 0 functional, but since B′ is a Banach space of functions,
k(x, y)− l(x, y) = 0 for all y ∈ X. So k is unique. Now suppose that Span {k(·, x)|x ∈ X}
is not dense in B. Then by the Hahn-Banach Theorem we can choose a nontriv-
ial continuous functional h ∈ B′ such that h(k(·, x)) = 0 for all x ∈ X. But
since h is also a function of X, and by the reproducing property, that means that
h(x) = 〈k(·, x), h〉 = h(k(·, x)) = 0, so h = 0, which contradicts why we chose it.
And consequently we have Span {k(·, x)|x ∈ X} = B.

If Construction 1.2.1.1 is done with a reflexive Banach space and its dual, the
result falls within the class of reflexive RKBS’s.

Theorem 2.1.2. Let W be a reflexive Banach with continuous dual space W ′. Then
the space B1 constructed with W and W ′ as in construction 1.2.1.1 is a reflexive RKBS
with reproducing kernel k(x, y) = 〈Φ1(x), Φ2(y)〉.

Proof. We already know that B1 is a Banach space of functions, if its dual space
is isometric to B2 then we are done. But this is exactly the result from Theorem
1.2.2.

On the other hand, one kernel function can act as a reproducing kernel for mul-
tiple Banach spaces.
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Example. [45] Let p, q ∈ (1, ∞) such that 1
p + 1

q = 1, X = R, I = [− 1
2 , 1

2 ] and fix the
spaces W1 = Lp(I), W2 = Lq(I) and the bilinear map 〈 f , g〉W =

∫
I

f g. Consider the
feature maps Φ1(x)(·) := exp−2πix· ∈ Lp(I) and Φ2(x)(·) := exp2πix· ∈ Lq(I). For a
function f ∈ L1 denote its Fourier Transform by [41] [32]

f̂ (x) := (2π)
−1
2

∫ ∞

−∞
f (t)e−itxdx,

and its inverse transform by

f̌ (t) := (2π)
−1
2

∫ ∞

−∞
f (t)e2πitxdt.

The linear combinations of functions Φ1(x) form a self-adjoint algebra of C(I) which
separates points, so by the Stone-Weierstrass theorem, it is dense in C(I), and since
C(I) is dense in Lp then the density condition is fulfilled. By the previous theorem,
the space

B1 = { f (x) = ȟ(x) = 〈h, e2πix· 〉 ∈ C(R) : h ∈ Lp(I)}

is a reflexive RKBS with dual

B2 = {g(x) = ĵ(x) = 〈e−2πix· , j〉 ∈ C(R) : j ∈ Lq(I)}.

And its reproducing kernel is

k(x, y) = 〈e−2πix·, e2πiy·〉 =
∫

I
e−2πixte2πiytdt =

sinπ(x− y)
π(x− y)

.

Given two different exponents, the resulting Banach spaces are not isometric but
share the same reproducing kernel nevertheless.

If the set X is finite, then any non-zero function on X × X can be a reproducing
kernel for a finite-dimensional Banach space.

Theorem 2.1.3. Let X be a finite set and k : X × X → C such that it is not the zero
function. Then there exists a RKBS B such that k is its reproducing kernel.

Proof. Let X = {x1, . . . , xn} and k : X × X → C be as above. Then the set S :=
{k(·, x1), . . . , k(·, xn)} is a set of functions defined on X, which generates a linear sub-
space of CX. We take B = Span (S), which is isomorphic to a Cm for some m ≤ n,
and choose a p ∈ [1, ∞] to endow B with the p-norm of Cm. This is a reflexive Banach
space, moreover its dual B′ is itself and the evaluation functionals are also continu-
ous. We define a bilinear for B by selecting a basis B = {k(·, x1), . . . , k(·, xm)} ⊂ S :
Given k(·, xi1), k(·, xi2) we define

〈k(·, xi1), k(·, xi2)〉B×B′ = k(x2, x1),

and extend by linearity to B. By the linear independence B this is a non-degenerate
bilinear form which is also continuous. Moreover, for an arbitrary f (·) = ∑l

j=0 αjk(·, xj)
we have the reproducing property:

〈 f , k(·, y)〉B×B′ =
l

∑
j=0

αj〈k(·, xj), k(·, y)〉B×B′ =
l

∑
j=0

αjk(y, xj) = f (y).
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Summary

Let B be a reflexive Banach space and Φ : X → B, Φ∗ : X → B∗ two feature maps
such that their images have a dense span. Then an adjoint pair of RKBS can be
constructed as in 1.2.1.1 by setting

W1 := B∗, W2 := B,

and
〈u, v〉W1×W2 := 〈v, u〉B = u(v).

This choice yields the adjoint pair

B1 = {〈Φ∗(·), v〉|v ∈ B} ' B,

B2 = {〈u, Φ(·)〉|u ∈ B∗} ' B∗.

And the induced two-sided reproducing kernel is

k(x, y) := 〈Φ∗(x), Φ(y)〉W1×W2 = Φ∗(x)(Φ(y)).
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2.1.1 RKBS of slowly increasing functions with measures induced by pos-
itive definite functions.

The following approach to producing an adjoint pair of RKBS was for the purpose
of developing adequate spaces to use for computations for machine learning [16]. In
this subsection, the non-empty sets X and Y will be subsets of Euclidean Rd spaces.

First we define what is a positive definite function.

Definition 2.1.2. A continuous even function Ψ : X ⊂ Rd −→ R will be called
positive definite if for every finite subset of pairwise distinct points {x1, · · · , xn} ⊂
X and for every choice of scalars {α1, · · · , αn} we have that

n

∑
i=1

n

∑
j=1

αiαjΨ(xi − xj) > 0.

For this section we require the use of the distributional Fourier transform, prop-
erties of which are briefly discussed in the appendix. One of the reasons to use it
is because it is useful for the next two results which characterize positive definite
functions, one shows how to get one from a finite Borel measure and the next one
how to tell if a function is positive definite [41].

Theorem 2.1.4. A continuous function Ψ : Rd −→ R is positive definite if and only
if it is bounded and its Fourier transform is nonnegative and nonvanishing.

To ensure that the Fourier transform works as an isometry of Banach spaces, we
will restrict the kind of functions we work with.

Definition 2.1.3. The space of Slowly increasing functions (SI) is the set of func-
tions f such that there exists a constant m ∈ N0 such that f (x) = O(‖x‖m

2 ) for
‖x‖2 −→ ∞. In other words, there exists c, M > 0 such that

| f (x)|
‖x‖2

m < c

if ‖x‖2 > M.

Let p and q be conjugate exponents, i.e., 1
p + 1

q = 1, and suppose that Ψ ∈
C(Rd)

⋂
L1(Rd) is positive definite. We define the spaces which we will work with

by:

B
p
Ψ(R

d) := { f ∈ C(Rd)
⋂
SI :

f̂

Ψ̂
1
q
∈ Lq(Rd), }

with norm defined by

‖ f ‖q
B

p
Ψ(R

d)
:=

1

(2π)
d
2

∫
Rd

| f̂ |q

Ψ̂
dx.

Since Ψ̂ is nonnegative and nonvanishing, 1
Ψ̂

defines a positive measure µ by
integrating with respect to Lebesgue measure:

µ(A) :=
∫

Rd

dx
Ψ̂(x)

.

What comes next is showing that the spaces defined above are isometrically isomor-
phic to the spaces Lq(Rd, µ) by using the Fourier transform.
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Theorem 2.1.5. Let Ψ be a positive definite function such that Ψmin(p,q)−1 ∈ L1(Rd).
Then the space B

p
Ψ(R

d) is isometrically isomorphic to Lq(Rd, µ) and the isomor-
phism is the distributional Fourier transform (See appendix). Moreover, its dual
B

p
Ψ(R

d)∗ is isometrically isomorphic to B
q
Ψ(R

d)

Proof. From the definition of B
p
Ψ(R

d) we see that the Fourier transform defines a
monomorphism to Lq(Rd). If f ∈ B

p
Ψ(R

d) then we have that its norm is:

‖ f ‖q
B

p
Ψ(R

d)
=

1

(2π)
d
2

∫
Rd

| f̂ (x)|q

Ψ̂(x)
dx. =

1

(2π)
d
2

∫
Rd
| f̂ (x)|qdµ(x) = ‖ f̂ ‖q

Lq(Rd,µ).

So ˆ is an isometric isomorphism, the only thing left to show is the surjectivity. Given
an element h ∈ Lq(Rd, µ), its inverse Fourier transform is well defined since h ∈
L1(Rd), because

‖h‖L1(Rd) =
∫

Rd
|h(x)|dx =

∫
Rd

|h(x)|
Ψ̂(x)

1
q

Ψ̂(x)
1
q (x)dx ≤ (

∫
Rd

|h(x)|q

Ψ̂(x)
)

1
q (
∫

Rd
Ψ̂(x)

p
q )

1
p > ∞.

Since ȟ ∈ C(Rd)
⋃ SI ⊂ Ł1

loc(R
m)
⋃ S ⊂ S ′, we can take its distributional Fourier

transform to deduce that
ˆ̌h = h,

and since ȟ ∈ B
p
Ψ(R

d) we conclude that ˆ is surjective. We can prove the equivalent

statement for B
q
Ψ(R

d) because Ψ̂
q
p = Ψ̂q−1 ∈ L1(Rd).

Thus we conclude that B
q
Ψ(R

d) is isometric to the dual space of B
p
Ψ(R

d) by
means of these isometries.

Corollary 2.1.5.1. B
q
Ψ(R

d) is isometrically isomorphic to B
p
Ψ(R

d)∗

Now we show that the positive definite function works as a reproducing kernel
for these spaces with feature maps Φi(x)(·) := Ψ(·+ x).

Theorem 2.1.6. Let Ψ be a positive definite function such that Ψmin p,q−1 ∈ L1(Rd),
then the spaces B

p
Ψ(R

d) and B
q
Ψ(R

d) form an adjoint pair of RKBS with with respect
to the bilinear form

〈 f , g〉Bp
Ψ×B

q
Ψ

:=
∫

Rd
f̂ (x)ĝ(x)dµ(x)

and the feature maps Φ1(y)(·) := Ψ(·+ y), Φ1(y)(·) := Ψ(y + ·) induce the repro-
ducing kernel

k(x, y) := Ψ(x + y).

Proof. Due to the isometry with Lp(Rd, µ), we know that the bilinear form above has
what we require in the definition, it suffices to show that the feature maps’ images
fall in the respective spaces and the reproducing property of Ψ(x+ y). Since Φ1(x) =
Ψ(·+ x), from the properties of the Fourier transform we get that Φ̂1(x)(y) = Ψ̂(y)ei〈x,y〉

Rd .
Therefore

‖Φ1(x)‖Lq(Rd,µ) =
∫

Rd

Φ̂1(x)
q
(y)

Ψ̂(y)
=
∫

Rd

Ψ̂q(y)
Ψ̂(y)

=
∫

Rd
Ψ̂q−1(y) < ∞.

So Φ1(x) ∈ B
p
Ψ and similarly Φ2(y) ∈ B

q
Ψ. To see that Ψ(x + y) has the reproducing

property, let f ∈ B
p
Ψ be a function, then:

〈 f , Φ2(x)〉Bp
Ψ×B

q
Ψ
=
∫

Rd
f̂ (t)Φ̂2(x)(t)dµ(t)
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=
∫

Rd

f̂ (t)Ψ̂(t)ei〈x,t〉
Rd

Ψ̂(t)
dt =

∫
Rd

f̂ (t)ei〈x,t〉
Rd dt = f (x).

Following the same steps, we have that

g(x) = 〈k(x, ·), g〉Bp
Ψ×B

q
Ψ

,

therefore we have that they form an adjoint pair of RKBS.
Since Φ1(x) = k(x, ·) ∈ B

p
Ψ and k(·, y) = Φ2(y) then k(x, y) = 〈k(x, ·), Φ2(y)〉 =

〈Φ2(x), Φ2(y)〉 is the reproducing kernel.

In the same way we can construct spaces of functions defined on non-empty
subsets Ω ⊂ Rd. We consider the subspace N0 of functions in B

p
Ψ(R

d) which vanish
on Ω. Since convergent Cauchy sequences also converge pointwise, we know that
this is a closed subspace of B

p
Ψ(R

d). Moreover, by considering the quotient space
B

p
Ψ(R

d)/N0 we can show that the space

B
p
Ψ(Ω) = { f : there exists F ∈ B

p
Ψ(R

d) such that F|Ω = f }

is a Banach space. Using the isomorphism between the dual space of B
p
Ψ(R

d)/N0
and N⊥0 , we will show that k(x, y)|Rd×Ω is a reproducing kernel for B

p
Ψ(Ω). Since

the reproducing kernel k worked for functions defined on Rd, this property is kept
while restricting it to the domain Ω. We just need to check that it is well defined on
the equivalency classes. We first define what it means for a space to be uniformly
convex.

Definition 2.1.4. [32] A Banach space B is uniformly convex if for every two se-
quences {xn}, {yn} ⊂ B such that ‖xn‖, ‖yn‖ ≤ 1 and ‖xn + yn‖ −→ 2, we have that
limn−→∞‖xn − yn‖ = 0.

Example. If µ is a positive measure defined on the measurable space Ω, then the
space Lp(Ω, µ) is uniformly convex [12].

Theorem 2.1.7. B
p
Ψ(Ω) is a RKBS with reproducing kernel k(x, y)|Rd×Ω.

Proof. We will show that the evaluation functionals are well defined by using the
kernel function. For this, we need to see first that they can be regarded as an element
of B

p
Ψ(Ω)′. Let y ∈ Ω and f ∈ N0, from the reproducing property of k we know that

0 = f (y) = 〈 f , k(·, y)〉Bp
Ψ(R

d),

therefore k(·, y) ∈ N⊥0 for every y ∈ Ω. Since for every function f ∈ B
p
Ψ(Ω) the set

{F ∈ B
p
Ψ(R

d) | F|Ω = f } 6= ∅. Moreover, it is convex, closed subset of B
p
Ψ(R

d)
which is uniformly convex and reflexive, therefore there exists a unique F ∈ f + N0
such that ‖ f ‖Bp

Ψ(Ω) = ‖F‖Bp
Ψ(R

d) by 3.2.2. We use the isomorphism discussed above

and the existence of F for every f ∈ B
p
Ψ(Ω) to define a function T by T f := F.

We propose the next bilinear form [15] [20] between B
p
Ψ(Ω) and the subspace of N⊥0

generated by the functions k(·, y):

〈 f , k(·, z)〉Bp
Ψ(Ω) := 〈T f , k(·, z)〉Bp

Ψ(R
d) = T f (z) = f (z).

With this we proved that evaluation functionals are continuous and that the pair
(B

p
Ψ(Ω), Span {k(·, x)}x∈X} form an adjoint pair of RKBS with reproducing kernel

k|Rd×Ω.
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2.2 Spaces with semi-inner products defined by Gateaûx dif-
ferentials.

The authors in [45] started exploring RKBS by subtracting the conjugate symmetry
property from the inner product, to obtain a semi-inner product.

Definition 2.2.1. Let B be a Banach space. A function [·, ·] : B ×B → C is called a
semi-inner product (SIP) if it has the next properties:

• [x, x] ≥ 0 ∀x ∈ B and [x, x] = 0 ⇐⇒ x = 0

• [λx, y] = λ[x, y] and [x, λy] = λ[x, y] ∀x, y ∈ B, λ ∈ C.

• [x + z, y] = [x, y] + [z, y] ∀x, y, z ∈ B.

• |[x, y]| ≤ [x, x]2[y, y]2

In general a semi-inner product is not necessarily conjugate symmetric. In fact,
being conjugate symmetric is equivalent to being an inner product [16]. The first
and second property implies that a norm can be defined by a semi-inner product like
with the inner product case [45]. Moreover, given a Banach space B, one can always
choose a semi-inner product which induces an equivalent norm by mapping each
x ∈ B to a x∗, where x∗ ∈ B′ is a functional such that x∗(x) = ‖x‖2, which always
exists by the Hahn-Banach theorem. A semi-inner product is therefore defined by
[x, y] := y∗(x) [28] [19]. However, such a selection may not be unique since the set
Jx := {φ ∈ B′ : φ(x) = ‖x‖2} may contain more than one point for some x. For
a fixed choice of a mapping x 7→ x∗, we will call such a function a dual mapping,
duality mapping or duality map.

From Construction 1.2.1.1, we see that the resulting spaces’ properties and be-
havior are dependent on the bilinear form between spaces W1 and W2. In other
words, if we find a way to get a reproducing kernel starting from a semi-inner prod-
uct, the way we chose the functionals for the semi-inner product will affect the re-
producing kernel induced by it. If what we seek is to make it so there is a unique
kernel function related to the semi-inner product, we must give sufficient conditions
to make this mapping unique.

The next definitions are about the geometry induced by the norm.

Definition 2.2.2. [23] A Banach space is called smooth if for every point on the unit
sphere there is a unique support hyperplane.

Jx being a one-point set is equivalent to the space being smooth, and the latter is
also equivalent to the next property [23].

Definition 2.2.3. A normed vector space B is called Gâteaux differentiable if for
every fixed pair x, y ∈ B \ {0} and for t ∈ R the next limit exists:

lim
t−→0

‖x + ty‖B − ‖x‖B

t
. (2.1)

A space will be called uniformly Fréchet differentiable if the limit above is uniform
on {(x, y) ∈ B× B : ‖x‖B = ‖y‖B = 1}.

When restricted to finite dimensional spaces, this just says that for the unit ball to
be smooth at a point there must be a unique tangential plane that touches the sphere
at that point [29].
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The next theorem says that Gateaux differentiable spaces are spaces where there
is a unique semi-inner product which induces the norm, and it is given in terms of
the limit (2.1) [45] [28].

Theorem 2.2.1. Let B be a Gateaux differentiable Banach space, then the semi-inner
product which induces its norm is unique and it is given by:

[y, x] := ‖x‖
(

lim
t−→0

‖x + ty‖B − ‖x‖B

t
+ i lim

t−→0

‖ix + ty‖B − ‖x‖B

t

)
.

With these we can show that if we define a reproducing kernel using the unique
semi-inner product, this will also be unique. Up until here the semi-inner product
has not been explicitly connected with the geometry. To connect them we will work
towards proving a version of the Riesz Representation Theorem.

On Hilbert spaces, when exposing an element to represent a given linear func-
tional, an essential concept is that of orthogonality. For the given functional, we
choose a vector orthogonal to its kernel. Now since we lack an inner product, the
following result shows that there is a way to tell when a vector is orthogonal without
resorting to an inner product. For this we next show that a semi-inner product has a
similar property.

Theorem 2.2.2. Let H be a Hilbert space with inner product 〈·, ·〉H. Then two vectors
x, y ∈ H are orthogonal if and only if ‖x + λy‖H ≥ ‖x‖H, for all scalars λ ∈ C.

To show the analogous result for a semi-inner product space, we need first a
technical lemma.

Lemma 2.2.3. [19] A Banach space B with a SIP is Gâteaux differentiable if and only
if for any pair x, y ∈ B we have that

lim
λ→0

[x, y + λx] = [x, y].

Since we work with a semi-inner product, the orthogonality relation may not be
symmetric.

Theorem 2.2.4. [19] Let B be a S.I.P. space such that (∀x, y ∈ B)

lim
λ→0

[x, y + λx] = [x, y].

Then [y, x] = 0 if and only if ‖x + λy‖ ≥ ‖x‖ for all λ ∈ C.

Proof. Let x, y ∈ B be such that [y, x] = 0. Then

‖x‖2 = |[x, x]| = [x, x] + [λy, x] = [x + λy, x] ≤ ‖x + λy‖‖x‖.

Conversely, let x, y ∈ B be such that ‖x + λy‖ ≥ ‖x‖ for all λ ∈ C. We know that

[y, x] = ‖x‖( lim
t−→0

‖x + ty‖B − ‖x‖B

t
+ i lim

t−→0

‖ix + ty‖B − ‖x‖B

t
)

because of the preceding lemma. The limit

Re([y, x]) = ‖x‖( lim
t−→0

‖x + ty‖B − ‖x‖B

t
)
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must be the same whether we approximate from below or above 0, and since

‖x + ty‖B − ‖x‖B ≥ 0

for t ∈ R, it can only be 0. Similarly, we have that Im([y, x]) = 0, then it must be
that [y, x] = 0.

Finally, to show the Riesz’ representation Theorem for S.I.P. spaces we also need
ensure the existence of orthogonal vectors to proper subspaces. To this end we give
the next enunciate a lemma followed by the theorem.

Lemma 2.2.5. [19] Let B be a Banach space which is uniformly convex. Then for
every proper subspace V there exists a vector u ∈ B such that for every v ∈ V:

[v, u] = 0.

Theorem 2.2.6. Let B be a reflexive, uniformly convex and uniformly Fréchet differ-
entiable space, then for every continuous functional φ there exists a unique xφ ∈ B
such that:

φ(y) = [y, xφ],

in other words φ = x∗φ Moreover ‖φ‖ = ‖xφ‖.

The Riesz representation Theorem for S.I.P. spaces says that the duality map ∗ is
a bijection from the Banach space to its dual space. And as in Hilbert spaces, we can
use the representation of functionals to make the dual space a S.I.P. space.

Corollary 2.2.6.1. With the same hypothesis as Theorem 2.2.6, B∗ is a S.I.P. space,
with the semi-inner product:

[x∗, y∗] := [y, x].

Example. We have seen that the Banach spaces Lp(X, µ) for p ∈ (1, ∞) are uniformly
convex and uniformly Fréchet differentiable spaces [12]. Therefore there is a unique
semi-inner product, and it is given by the formula [12] [2] :

[ f , g] =
1

‖g‖p−2
p

∫
f ĝ|g|p−2dµ, (2.2)

for f , g ∈ Lp(X, µ). It is well known that every bounded linear functional on Lp(X, µ)
can be represented by a formula like above. The Riesz representation Theorem for
S.I.P. says that every function in Lq(X, µ) are exactly of this form.

In summary, this section will exclusively deal with uniformly convex and uni-
formly Fréchet differentiable spaces. The uniform differentiability makes it so that
there is a unique choice of semi-inner product which induces the norm. With this,
we have an unambiguous condition that can be interpreted as orthogonality. The
uniform convexity implies the reflexivity and it is the last piece we needed for a
version of Riesz’ theorem for S.I.P. spaces [12].

Definition 2.2.4. We say that a RKBS B of functions defined on a non-empty set X
is a S.I.P. RKBS if it is uniformly convex and uniformly Fréchet differentiable.

Back with the Hilbert case, the kernel could be recovered using the inner product.
RKBS have the same property, but we deal with the extra condition that the bilinear
form is defined on two possibly different spaces. So we use the dual mapping to
make sense of the bilinear form which will give rise to our kernel function.
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The condition of uniform convexity implies that the spaces here are all reflexive
[23].

Theorem 2.2.7. Let B be a S.I.P. RKBS of functions defined on a set X, and consider
its reproducing kernel as seen in Theorem 2.1.1. Then there exists a unique function
G(·, ·) : X× X −→ C such that {G(x, ·) : x ∈ X} ⊂ B and

f (x) = [ f , G(x, ·)], ∀ f ∈ B.

And this function G is related to the reproducing kernel k by the next equation:

k(·, x) = (G(x, ·))∗,

which in turn implies that
f ∗(x) = [G(x, ·), f ]

where ∗ denotes the dual mapping.

Proof. We know from the Riesz Representation Theorem for S.I.P. spaces that for each
evaluation functional δx there exists an element Gx ∈ B such that

δx(·) = [·, G∗x ].

Since B is a functions space, we set G(x, y) := Gx(y). Theorem 2.1.1 says that this
space has a reproducing kernel k(·, ·), then for every f ∈ B we have

f (x) = 〈 f , k(·, x)〉B

but from the definition of Gx we get that

〈 f , k(·, x)〉 = [ f , G(x, ·)∗].

Because of the uniqueness of the duality map, we have that G(x, ·)∗ = k(·, x) ∈ B.
Since k is a left and right-sided reproducing kernel, he have that for an element
f ∗ ∈ B′:

f ∗(x) = 〈k(x, ·), f ∗〉 = [k(x, ·), f ].

The last equality comes from the property of the unique duality map.

Just as before, there is also the a way to construct a S.I.P. RKBS from a feature
map.

Theorem 2.2.8. Let X be a non-empty set, W be a uniformly convex and uniformly
Fréchet differentiable with semi-inner product [·, ·]W , and Φ : X −→ W such that
Span (Φ(X)) is dense in W and Span ((Φ(X))∗) is dense in W∗. Then the spaces
defined in Construction 1.2.1.1 take the form

B1 = {[u, Φ(·)] : u ∈ B},
B2 = {[Φ(·), v] : v ∈ B}.

(2.3)

And each of them has the respective semi-inner product:

[[u, Φ(·)], [v, Φ(·)]]B1 := [u, v]W , [[Φ(·), v], [Φ(·), u]]B2 := [u, v]W . (2.4)

Moreover the function

〈[u, Φ(·)], [Φ(·), v]〉B1×B2 := [u, v]W
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is a bilinear form on B1 and B2 and the associated reproducing kernel is

G(x, y) := [Φ(x), Φ(y)]W .

Remark. The notation Φ∗ indicates the composition Φ ◦ ∗, where ∗ denotes the dual-
ity map. The bilinear mapping above is linear on its second argument despite having
that [Φ(·), v] + [Φ(·), w] 6= [Φ(·), v + w] in general. What has to be done to show the
linearity is taking z ∈ B such that [Φ(·), v] + [Φ(·), w] = [Φ(·), z].

Proof. For an element 〈v, Φ(·)∗〉B1 , by the Riesz representation Theorem for S.I.P.
spaces, we have for every x ∈ X:

〈v, Φ(x)∗〉 = [v, Φ(x)].

This is also the case for B2, since the mapping ∗ is a bijection. It is clear that the first
equation in 2.4 defines a semi-inner product. The linearity of the second equation
may not be so clear, but from the remark, we know that given v1, v2 ∈W there exists
a v3 ∈ B such that [·, v1] + [·, v2] = [·, v3]. Then we have that

[[Φ(·), v1] + [Φ(·), v2], [Φ(·), u]] =[[Φ(·), v3], [Φ(·), u]] = [u, v3] = [u, v1] + [u, v2] =

[[Φ(·), v1], [Φ(·), u]] + [[Φ(·), v2], [Φ(·), u]]

As for the last claim, we know that k(·, x) = (G(x, ·))∗, then

k(x, y) = 〈Φ(x), Φ(y)∗〉 = [Φ(x), Φ(y)] = G(x, y).

Summary

Let B be a uniformly convex and uniformly Fréchet differentiable Banach space
and Φ : X → B a feature map such that Span Φ(X) is dense in B. Assume
also the same for the mapping Φ∗, where ∗ denotes the bijective duality map
∗ : B→ B∗ as defined by 2.2.6. Then an adjoint pair of RKBS can be constructed
as in 1.2.1.1 by setting

W1 := B, W2 := B∗,

and
〈u, v∗〉W1×W2 := 〈u, v∗〉B = [u, v]

This choice yields the adjoint pair

B1 = {[u, Φ(·)] : u ∈ B},
B2 = {[Φ(·), v] : v ∈ B}.

And the two-sided reproducing kernel is

k(x, y) := 〈Φ(x), Φ(y)∗〉W1×W2 = Φ∗(x)(Φ(y)) = [Φ(x), Φ(y)].
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2.3 RKBS from Borel measures.

The previous section dealt with reflexive spaces. In [38], the authors constructed
Banach spaces with `1 norm, which makes them non-reflexive. The purpose of such
constructions was to show that they could be used for machine learning, like the
space constructed by positive definite functions.

Based on these results, the authors of [37] generalized the construction by using
finite Borel measures, which contain a copy of the space with `1 norm constructed.
They made this generalization to find a bound for the error that came from using
a RKBS with `1 norm in the machine learning algorithm from [38]. The general
construction in [37] started with a locally compact space X and the associated space
of functions which vanish at infinity C0(X). Then they consider its dual space M(X)
which consist of the signed Borel measures with finite variation defined on X [13].
The proof of the next result is similar to the verification that Construction 1.2.1.1
yields a RKBS.

Theorem 2.3.1. If k : X × X −→ C is a function such that Span (k(·, x)) is dense in
C0(X), the function space

B := { fµ := 〈k(·, x), µ〉C0(X) =
∫

X
k(t, x)dµ(t) | t ∈ X, µ ∈ M(X)}

with norm ‖ fµ‖B := ‖µ‖M(X) is a RKBS.

It can be seen that C0(X) is isometric to a subspace (possibly a proper one) of
B. Likewise, the space `1 can be regarded as a subspace of M(X) by considering an
element as a measure supported on a countable subset.

One of the problems [37] tried to address finding conditions a kernel function
needs to satisfy to construct a RKBS with `1 norm. The issue is that a space with the
mentioned norm would not be uniformly convex due to the lack of reflexivity. Their
solution was adding an extra condition which the reproducing kernel must abide to,
condition which is listed at the end of the next definition. This property will not be
exploited in this section but will appear in the next chapter.

Definition 2.3.1. We say that a function k : X × X −→ C is an admissible kernel for
a RKBS space with `1 norm if it has the following properties:

• A1- For every finite subset {x1, · · · , xn} ⊂ X of pairwise distinct elements, the
matrix k[x] := (k(xi, xj))i,j=1,··· ,n is non-singular.

• A2- There exists a positive constant M such that |k(x, y)| ≤ M for all x, y ∈ X

• A3- For any sequence of pairwise distinct points xj ∈ X and any (cj)j∈N ∈
`1(N), the fact that

∞

∑
j=1

cjk(x, xj) = 0

for all x ∈ X implies that cj = 0 for all j.

• A4- For any finite subset of pairwise distinct points x1, · · · , xn+1 ⊂ X we define
the column vector Kx(xn+1) := (k(xn+1, xj))j=1,··· ,n. Then

‖(K[x])−1 Kx(xn+1)‖`1 ≤ 1.
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This approach starts from a space defined by a kernel function k as seen in The-
orem 1.1.3, and shows that the conditions above are sufficient to show that the `1

norm makes it a RKBS with k as its reproducing kernel.
For this space to be a RKBS we need the evaluation functionals to be continu-

ous. The next results will be shown for a dense subspace, which means they can be
extended to their closure.

Theorem 2.3.2. Let B0 be the space Span {k(·, x)}x∈X with norm ‖∑ cik(·, xi)‖B0 :=
∑i |ci| where k is bounded by a positive constant M. Then the evaluation functionals
are continuous.

Proof. We have that

| f (x)| = |
m

∑
i=1

cik(x, xi)| ≤ |
m

∑
i=1
|ci|M = ‖ f ‖B0 M.

Next we prove that for a space with this norm, conditioning its kernel to verify
condition A3 is equivalent to our requirement of functions having zero norm if they
vanish everywhere.

Theorem 2.3.3. Let B0 be the space Span {k(·, x)}x∈X with norm ‖∑i cik(·, xi)‖B0 :=
∑i |ci| where k is bounded. Then the next conditions are equivalent:

• The norm satisfies condition A3 in Definition 2.3.1.

• A Cauchy sequence converging pointwise to zero implies the sequence of norms
also converge to zero.

Proof. Suppose that the norm satisfies condition A3, and consider a Cauchy sequence
{ fn}n∈N. By construction, we have that for every n ∈ N there exists scalars cn

j ∈ C

and pairwise distinct xj ∈ X such that fn(x) = ∑j∈N cn
j k(x, xj) where only finitely

many cn
j are not zero. Since the sequence fnis a Cauchy sequence, from the definition

of the norm for functions in B0, for a fixed j we can define another Cauchy sequence
{cn

j }n. These sequences are also Cauchy sequences in C because

|cn
j − cm

j | ≤ ∑
i∈N

|cn
i − cm

i | = ‖ fn − fm‖B0 −−−−→n,m→∞
0

For every j ∈N let cj = lim
n−→∞

cn
j . Since k is bounded, we can define for every x ∈ X

the pointwise limit of the Cauchy sequence as

f (x) := ∑
n

cjk(x, xj).

This is the pointiwise limit of the Cauchy sequence, this follows from

| fn(x)− f (x)| = | ∑
i∈N

(cn
j − cj)k(xj, x)| ≤ M‖cn − c‖`1 → 0.

Thus we can conclude that f (x) = 0 everywhere, since the evaluation functionals
are continuous. From condition A3 we know that this means cn = 0 for every n ∈N,
therefore

lim
n→∞
‖ fn‖B0 = lim

n→∞
‖cn‖B0 = ‖c‖`1(N) = 0.
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Conversely, suppose that for a Cauchy sequence, converging to zero pointwise
is equivalent to convergence to zero in norm and let

f (x) =
∞

∑
n=1

ank(x, xn) = 0

for every x ∈ X, where = {cn}n∈N ∈ `1(N). We define the sequence f j by

f j(x) :=
j

∑
n=1

ank(x, xn).

This is a Cauchy sequence because ∈ `1(N) and by fixing an arbitrary x, we get that

lim
j→∞

f j(x) = 0.

By hypothesis, this means that

lim
j→∞
‖ f j(x)‖B0 = lim

j→∞

j

∑
n=1
|cn| =

∞

∑
n=1
|cn| = 0.

Thus we conclude that the kernel has property A3.

Next we will consider the space B# spanned by the linear combinations ∑ aik(xi, ·).
To define the norm we will consider a bilinear form that takes f (·) = ∑i cik(xi, ·) ∈
B0 and g(·) = ∑j djk(·, yj) ∈ B# to

〈 f , g〉 := ∑
i

∑
j

cidjk(xi, yj). (2.5)

We consider them as linear functionals on B0 and bestow it with the norm defined
on the dual space:

‖∑
j

djk(·, xj)‖B# := sup
f∈B0

|〈 f , ∑j djk(·, xj)〉|
‖ f ‖B0

.

This space is a subspace of the space of bounded functions, since k is bounded on
X. The supremum norm inherited from the bounded functions coincides with the
norm here defined.

Theorem 2.3.4. For a function h ∈ B# we have that ‖h‖B0 = ‖h‖∞.

Proof. From the definition of the norms ‖ ‖B0 and ‖·‖B# we see that ‖h‖B# ≤ ‖h‖∞
because if f (·) = ∑i aik(xi, ·) then:

|〈 f , h〉| = |∑
i

aih(xi)| ≤∑
i
|ai||h(xi)| ≤ ‖ f ‖B0‖h‖∞.

For the other inequality, we have that for an arbitrary point x0, the function k(x0, ·)
has norm 1, and from Equation 2.5, we know its action on an arbitrary function
h ∈ B# is an evaluation on x0, therefore:

‖h‖B# = sup
f 6=0

〈 f , h〉
‖ f ‖B0

≥ |〈k(x0, ·), h〉|
‖k(x0, ·)‖B0

= |h(x0)|.



24 Chapter 2. RKBS Constructions

We can prove that evaluation functionals are continuous by adapting the proof
for B0. Due to condition A3, we have that B0 and B# form an adjoint pair of RKBS.
The reproducing kernel clearly is k(x, y) and this is proved by showing it has the
reproducing property for the dense subsets Span {k(x, ·)}x∈X and Span {k(·, y)}y∈X.

Theorem 2.3.5. The spaces B0 and B#, defined from a kernel function k : X×X −→
C with properties listed in Definition 2.3.1, form an adjoint pair of RKBS with respect
to the bilinear form defined in Equation 2.5 and the corresponding reproducing ker-
nel is the function k.

We constructed here an adjoint pair where one of them was a space of continuous
functions. The authors of [27] took this approach of taking subspaces of dual capable
of separating points. This way, they proved that the space of continuous functions
could be realized as a RKBS. Previous definitions of RKBS avoided this space on
purpose by considering exclusively reflexive spaces [45].

Consider again the space C[0, 1], and the following families of functions:

|x− •|, ex•

with x ∈ X = [0, 1]. We know that every function in ex• is holomorphic as a complex
function. Therefore, the bilinear form applied to any one of its members cannot be
zero for every element in [0, 1], thus it spans a weak−∗ set. The span of the family
|x− •| contains the piecewise linear functions, therefore it is also a dense subspace
of C[0, 1]. For the next results, we will label both either of them as η whenever it
makes no difference considering one or the other.

In [27] they considered the subspace `1([0, 1]) of M([0, 1]) as W2. This space is
seen as a subspace of the finite Borel measure, therefore they doted these two spaces
with the integral as the bilinear form, which is non-degenerate.

Lemma 2.3.6. The bilinear form

〈·, ·〉 : C([0, 1])× D −→ C

where D = `1([0, 1]) or `1(sn), is non-degenerate, where {sn} ⊂ [0, 1] is a dense
subset of [0, 1].

Proof. It is enough to show that the lemma is true for `1(sn), since this space can be
regarded as a subspace of `1([0, 1]). Suppose that for a fixed f ∈ C([0, 1]) we have
that

〈 f , a〉 = 0

for any given a = {asn}. Consider the elements of aj of `1(sn), where

aj
sn := δj,n.

From the hypothesis we have that 〈 f , aj〉 = 0, but from the definition of the bilinear
form we get that

〈 f , a〉 = f (sn) = 0.

Since sn is dense in [0, 1], this implies that f = 0.
Conversely, for a fixed sequence {asn}, what we want to prove comes directly

from the choice of space, since we consider `1(sn) as a subspace of the finite Borel
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measures, which is the dual space of C([0, 1]). Therefore we have proved that the
bilinear form is non-degenerate.

Consequently we can proceed with Construction 1.2.1.1 with these two spaces.

Theorem 2.3.7. Let W1 = `1([0, 1]) and W2 = C([0, 1]) along with the bilinear form
above and the following feature maps:

Φ1 : [0, 1] −→W1, t 7→ {δt}

Φ2 : [0, 1] −→W2, x 7→ η(x)(·).

Then the spaces

B1 := {h f (t) := 〈Φ1(t), f 〉 = f (t) | t ∈ [0, 1], f ∈W2} = C([0, 1]),

B2 := {ga(x) := 〈a, Φ2(x)〉 = ∑
t∈supp(a)

atΦ2(x)(t) | a = {as}s∈[0,1] ∈W1, x ∈ [0, 1]}

form an adjoint pair of RKBS with η(·)(·) : [0, 1]2 −→ C as its reproducing kernel.

If we choose W1 = `1(sn) instead, we recover the continuous functions defined
on the dense subset, which we know are isometrically isomorphic to C([0, 1]) be-
cause of Theorem 1.2.2.

Theorem 2.3.8. Let W1 = `1(sn), W2 = C([0, 1]), Φ1 : [0, 1] −→ W1, be as in the
previous result, and define Φ2 : {sn} −→ C([0, 1]) by

Φ2(sj)(t) := η(sj)(t).

Then B1 and B2 form an adjoint pair of RKBS with the reproducing kernel k(x, sn) :=
η(sn)(x).

With these last examples we show that the definition of RKBS can cover the
case of continuous functions spaces, by using the Construction 1.2.1.1. And also
we showed that it is enough to consider subspaces of the dual space, or spaces em-
bedded in it, to make use of Construction 1.2.1.1. As we will see in the next section,
if we consider the whole dual space we may run into a degenerate bilinear form,
which would fall into the case stated in Remark 1.2.

Summary

Let X be a locally compact Hausdorff space and Φ : X → C0(X) a feature map
such that the image has dense span. Let Φ∗ : X → M(X) such that its image’s
span is a total subspace, call the closure of its span B. Then an adjoint pair of
RKBS can be constructed as in 1.2.1.1 by setting

W1 := C0(X), W2 := B,

and
〈u, v〉W1×W2 := 〈v, u〉B = u(v).

This choice yields the adjoint pair

B1 = {〈Φ∗(·), v〉|v ∈ B} ' B,
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B2 = {〈u, Φ(·)〉|u ∈ B∗} ' B∗.

And the two-sided reproducing kernel is

k(x, y) := 〈Φ∗(x), Φ(y)〉W1×W2 = Φ∗(x)(Φ(y)).

Let X be a locally compact Hausdorff space and k : X × X 7−→ C a continu-
ous kernel which satisfies assumptions 2.3.1 and C0(X) = Span {k(·, x) : x ∈ X}.
Then we set Φ1(x) := k(·, x) ∈ C0(X), Φ2(y) := δy ∈ `1(X) and

W1 := C0(X), W2 := `1(X),

and
〈 f , µ〉W1×W2 :=

∫
X

f dµ = ∑
u(x) 6=0

u(x) f (x).

This choice yields the following adjoint pair of RKBS

B1 := {〈Φ1(x), a〉W1 = ∑
s∈suppa

Φ1(x)(s)a(s)| a ∈ `1(X), x ∈ X},

B2 = {〈u, Φ2(y)〉W1 = u(y)| u ∈ C0(X), y ∈ X} = C0(X)

with bilinear form

〈〈Φ1(·), a〉W1 , 〈u, Φ2(y)〉W1〉 := ∑
t∈supp a

a(t)u(t).

The two-sided reproducing kernel coincides with the continuous kernel k(x, y).
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2.4 RKBS with p-norm

Previous sections can be divided between constructions of reflexive spaces and non-
reflexive spaces. The way reflexive RKBS were constructed cannot be used to obtain
a non-reflexive space, and similarly for the non-reflexive space constructions. How-
ever, in [43] both reflexive and `1 cases are unified in one construction. We will
explain in this section the relevant results from their work.

When working with a finite dimensional subspace of the Hilbert space of func-
tions L2([−1, 1]), say H, with an orthonormal basis ϑ1, · · · , ϑm, one can easily check
that the kernel function

k(x, y) :=
m

∑
j=1

ϑj(x)ϑj(y)

has the reproducing property for functions in H with its inner product. Since every
norm is equivalent in finite dimensions, we can choose another p-norm for the space
H, and this will not affect the reproducing properties of the kernel k. Moreover, the
bilinear forms associated with the new spaces will be consistent with the integral
form ∫ 1

−1
f (x)g(x)dx = ∑

j
∑

k
ajbk

∫ 1

−1
ϑj(x)ϑk(x)dx = 〈 f , g〉`p ,

where ak and bk are the coefficients that represent f and g respectively. Therefore,
if we want to study spaces of functions with `p norm in general, we must impose
conditions on the reproducing kernel so

• The infinite sum representation ∑
k

ϑk(x)ϑk(y) is well defined at every pair of

points.

• The infinite sums of the kind ∑
j

ajϑj(x) and ∑
j

bjϑ
′
j(x) for some sequences {an}, {bn}

are both well defined and only vanish everywhere if every coefficient is zero.

For the rest of the section we will assume the sets Ω and Ω′ are locally compact
Hausdorff spaces, both with a regular Borel measure µ and µ′ respectively.

Definition 2.4.1. [43] Let Sk = {ϑn} and S′k = {ϑ′n} be families of measurable func-
tions. A measurable function k : Ω×Ω′ −→ C is called a generalized Mercer kernel
induced by the expansion-sets Sk and S′k, if k can be represented by:

k(x, y) := ∑
n∈N

ϑn(x)ϑ′n(y).

Where the convergence of the sum is assumed to be pointwise. We assume the
expansion terms are countably infinite so we can work with infinite dimensional
spaces of functions.

To define a RKBS starting from the kernel function induced by two families of
functions, we first need to make sure that the kernel is well-defined for every pair of
points. To construct these kind of spaces, it is enough for the sum of the expansion-
sets to verify some kind of convergence everywhere. A sufficient condition would
be imposing that the expansion-sets send the spaces Ω, Ω′ to some `p and `q respec-
tively.

Assumption. (A-p) Let 1 < p, q < ∞ be conjugate exponents. Assume the expansion-
sets are linearly independent sets and that for every pair (x, y) ∈ Ω×Ω′, the next
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conditions can be verified:

∑
n∈N

|ϑn(x)|q , ∑
n∈N

|ϑ′n(y)|p < ∞.

Assumption. (A-1) Suppose that the expansion-sets are linearly independent sets
and that for every pair (x, y) ∈ Ω×Ω′, the next conditions can be verified:

∑
n∈N

|ϑn(x)| , ∑
n∈N

|ϑ′n(y)| < ∞.

To simplify notations, we name the sums from the assumptions above by:

Θq(x) := ∑
n∈N

|ϑn(x)|q

Θ′p(y) := ∑
n∈N

|ϑ′n(y)|p

for 1 ≤ p, q < ∞. These conditions ensure that the induced generalized Mercer
kernel can be evaluated on every point.

The next result is consequence of applying Hölder’s inequality to the expansion-
sets.

Theorem 2.4.1. Let Sk,S′k be sets that satisfy either assumption A-p or A-1. Then
function

k(x, y) := ∑
n∈N

ϑn(x)ϑn(y)

is a generalized Mercer kernel.

If the expansion-sets have the property A-p, we define the following spaces with
the help of the expansion-sets by

Bp
k (Ω) := { f (·) = ∑

j
ajϑj(·) | {aj} ∈ `p},

Bq
k′(Ω

′) := {g(·) = ∑
j

bjϑ
′
j(·) | {bj} ∈ `q}.

Each of them accompanied by their respective norm

‖ f ‖Bp
k (Ω) := ‖{aj}‖`p = (∑

j
|aj|p)

1
p ,

‖g‖Bq
k′ (Ω

′) := ‖{bj}‖`q = (∑
j
|bj|q)

1
q .

If they satisfy assumption A-1 then the spaces

B1
k(Ω) := { f (·) = ∑

j
ajϑj(·) | {aj} ∈ `1},

B∞
k′ (Ω

′) := {g(·) = ∑
j

bjϑj(·) | {bj} ∈ c0 ⊂ `∞}
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are also Banach spaces if equipped with the norms

‖ f ‖B1
k (Ω) := ‖{aj}‖`1 = ∑

j
|aj|,

‖g‖B∞
k′ (Ω

′) := ‖{bj}‖`∞ = sup
j∈N

|bj|.

Since the space `∞ does not have a Schauder basis, we restricted the coefficients
used for the space B∞

k′ (Ω
′). This does not hinder the reproducing properties of the

kernel functions.
To prove that these constructions yield adjoint pairs of RKBS we first show that

the spaces above defined are isometric to `p spaces. This property is attained even
if the expansion-sets are only linearly independent and not necessarily verify condi-
tions A-p or A-1. We begin by showing that the evaluation functionals are continuous
on Span {ϕn}.

Theorem 2.4.2. Let Sk and S′k be expansion-sets that satisfy either assumption A-p or
A-1. Then the evaluation functionals are continuous on Span {ϕn} endowed with its
corresponding norm.

Proof. If the expansion-sets satisfy assumption A-p, then by Hölder’s inequality we
the following for any f (·) = ∑

n∈N

an ϕn(·) ∈ Bp
k (Ω) and g(·) = ∑

n∈N

bn ϕ′n(·) ∈ Bp
k′(Ω

′):

| f (x)| ≤ ∑
n∈N

|an ϕn(x)| ≤ ( ∑
n∈N

|an|p)
1
p (Θq(x))

1
q = ‖ f ‖Bp

k (Ω)Θ
1
q
q (x)

|g(y)| ≤ ( ∑
n∈N

|bn|q)
1
q (Θ′p(x))

1
p .

Similarly, if they satisfy A-1 and we choose functions f (·) = ∑
n∈N

an ϕn(·) ∈ B1
k(Ω)

and g(·) = ∑
n∈N

bn ϕ′n(·) ∈ B∞
k′ (Ω

′), then we have for every x ∈ Ω that

‖ f ‖B1
k (Ω)Θ1(x), ‖g‖B∞

k′ (Ω
′)Θ
′
1(y) < ∞.

Then we get that its evaluation functional is continuous because

| f (x)| ≤ ∑
n∈N

|an ϕn(x)| ≤ ‖ f ‖B1
k (Ω)Θ1(x).

The inequalities for g come from the uniform norm applied to the coefficients in
c0.

Theorem 2.4.3. Let p ∈ [1, ∞) and the expansion-sets be linearly independent. Then
the space Bp

k (Ω) is isometrically isomorphic to the space `p.

Proof. Consider the standard Schauder basis of `p consisting of the elements {en}.
We set up an isomorphism by sending each ϕn ∈ Sk to the element en and extending
linearly to their spans. In other words, we define the next operator for every element
f ∈ Span {ϕn} :

f (·) = ∑
n

an ϕn(·) 7−→∑
n

anen,

where only a finite amount of the an are not zero. From the definition of the norm for
Bp

k (Ω), we know that this defines an isometry. Furthermore, every element ∑
n

bnen is
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the image of an element g ∈ Bp
k (Ω) under this isometry, namely, g(·) = ∑

n
bn ϕn(·).

Therefore the claim is proved by extending the isometry to their respective closures.

Due to these isomorphisms, the pairs Bp
k (Ω) and Bq

k′(Ω′) form an adjoint pair of
RKBS.

The spaces B1
k (Ω) and B∞

k′ (Ω
′) can also be shown to be isomorphic to sequence

spaces, but these are not reflexive spaces, unlike the ones above.

Theorem 2.4.4. The space B∞
k′ (Ω

′) is isometrically isomorphic to the subspace c0 ⊂
`∞(Ω′) of sequences which converge to 0.

Proof. The idea of the proof is to follow the same steps as in Theorem 2.4.3, with the
space c0 replacing the space `p.

Theorem 2.4.5. Let p, q ∈ (1, ∞) be conjugate exponents and k be a generalized
Mercer kernel induced by the expansion-sets Sk = {ϑn} and S′k = {ϑ′n}which satisfy
condition A-p. Then the spaces B

p
k (Ω) and B

q
k′(Ω

′) form an adjoint pair of RKBS
with reproducing kernel k(x, y) = ∑

n∈N

ϕn(x)ϕ′n(y).

Proof. The previous results show that the spaces B
p
k (Ω) and B

q
k′(Ω

′) are RKBS,
moreover they are dual to each other. We use the isometries to define the bilinear
form between f (·) = ∑ an ϕn(·) and g(·) = ∑ bn ϕ′n(y) as

〈 f , g〉 = 〈 f , g〉Bp
k (Ω)×B

q
k′ (Ω

′) := ∑
n∈N

anbn.

We just need to verify that the kernel function has the reproducing property with
respect with this bilinear form. Fix an element f = ∑

n
an ϕn ∈ B

p
k (Ω) and for a

x ∈ Ω, consider the element k(x, ·) = ∑
n

ϕn(x)ϕ′n(·). Given that ∑
n
|ϕn(x)|q < ∞, this

element lies in B
q
k′(Ω

′). Therefore the next equality follows:

〈 f , k(x, ·)〉 = ∑
n

an ϕn(x) = f (x).

The same line of reasoning leads us to conclude that k also has the right-handed
reproducing property.

We know that the space `1 is the dual space of c0, therefore we know that the
same reasoning as above will give us that the kernel function k has the reproducing
property for functions in B

q
k′(Ω

′) which is isometrically isomorphic to c0. But as we
have seen in the previous section, we do not need the whole dual space to construct
an adjoint pair of RKBS. This is the case for these two spaces.

Theorem 2.4.6. Let k be a generalized Mercer kernel induced by the expansion-sets
Sk = {ϑn} and S′k = {ϑ′n} which satisfy condition A-1. Then the spaces B1

k (Ω) and
B∞

k′ (Ω
′) form an adjoint pair of RKBS.

Proof. Since B1
k (Ω) and B∞

k′ (Ω
′) are isomorphic to `1 and c0 ⊂ `∞, we define the

bilinear form in the same way as the previous theorem. Both spaces are RKBS be-
cause of Theorem 2.4.2, and the deduction of reproducing property from both sides
follows the same argument as in the previous theorem.
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The definition of RKBS in [43] was limited by forcing a condition on the whole
dual space. The space B1

k (Ω) was only a right-sided RKBS because of this restrictive
condition. Definition 1.2.1 and Construction 1.2.1.1 do not have this limitation.

Summary

Let Ω1, Ω2 be locally compact Hausdorff spaces and k : Ω1 × Ω2 7−→ C be a
generalized Mercer kernel induced by the families Sk = {ϑn} and S′k = {ϑ′n}
which satisfy assumption A-p for 1 < p < ∞. Then the induced adjoint pair of
RKBS by setting

W1 := `q W2 := `p

with the feature maps Φ1 : Ω1 7−→W1, Φ2 : Ω2 7−→W2 and the bilinear form

〈{an}, {bn}〉W1×W2 := 〈{an}, {bn}〉`q = ∑
n∈N

anbn.

The induced adjoint pair of RKBS is

Bp
k (Ω) := { f (·) = ∑

j
ajϑj(·) | {aj} ∈ `p},

Bq
k′(Ω

′) := {g(·) = ∑
j

bjϑ
′
j(·) | {bj} ∈ `q}.

and the associated reproducing kernel

k(x, y) := ∑
n∈N

ϑn(x)ϑ′n(y)

Let g : Ω1×Ω2 7−→ C be a generalized Mercer kernel induced by the families
Tg = {ϑn} and Tg′ = {ϑ′n} which satisfy assumption (A-1). Then the induced
adjoint pair of RKBS by setting

W1 := c0 W2 := `1

with the feature maps Φ1 : Ω1 7−→W1, Φ2 : Ω2 7−→W2 and the bilinear form

〈{an}, {bn}〉W1×W2 := 〈{an}, {bn}〉c0 = ∑
n∈N

anbn.

The induced adjoint pair of RKBS is

B1 = B1
g(Ω) := { f (·) = ∑

j
ajϑj(·) | {aj} ∈ `1},

B2 = B∞
g′ (Ω

′) := {h(·) = ∑
j

bjϑj(·) | {bj} ∈ c0 ⊂ `∞}

and the associated reproducing kernel

g(x, y) := ∑
n∈N

ϑn(x)ϑ′n(y).
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Chapter 3

Applications: Support vector
machines.

In this section, we introduce an application of RKBS to Machine Learning. We will
use some results from the previous chapter but applied to spaces of real-valued func-
tions. Those results can be stated and proven for real Banach spaces with the appro-
priate modifications.

First, we introduce some standard terminology from Machine Learning litera-
ture. Through this section, the input set denoted by X , will be the set from where
patterns, inputs or observations {xi} will be taken. The output set Y will be the set
of predictions. The functions will map inputs to {yj} ⊂ Y called labels, outputs or
targets. As we will focus on real-valued functions, we will assume that the labels are
a subset of R.

A loss function will be understood as any function that "measures" how good
a solution candidate f is for a given task. This measure of "goodness" is not only
about counting the mistakes a function makes. It usually can be seen as a function
L : X ×Y ×R −→ R+ but the arguments can be grouped together in different ways.
We refer the reader to [35] and [39] for more details on loss functions.

The set of functions from where we will pick our solutions will be occasionally
referred to as the hypothesis space. For example, we can restrict our search to a
Banach space of functions B, a Hilbert space H or a more specific subset of them.

The results presented here are the essentials which we will need to develop an
application of RKBS to Machine Learning. To read further on this topic, we recom-
mend reading [35] [39] [30]. We will only develop the parts which explicitly connect
with the application of RKBS to the algorithm.

A typical problem in machine learning is classifying. We want a classifier that
gives the correct labels to the samples and at the same time can label correctly future
observations. We illustrate this point with the following example. Suppose that you
want to predict whether a person will contract a certain disease or not. What is given
to you is a database of the clinical data of a number m of patients. Part of this data
is given as real numbers, so we can associate to each patient a vector xp ∈ Rm.

You can categorize the patients into those who have contracted the disease and
those who have not contracted it. With the clinical data available, one must find
a reliable classifier. In this context, reliable means whether it can predict if a new
patient is in risk of contracting the disease or not with enough accuracy.

An important part of modeling these problems is the loss function. The loss
function will depend on how the model is proposed. A simple way to construct
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a loss function for classification would be to count the amount of mistakes a clas-
sifier f makes, i.e., L(x, y, f (x)) :=

n
∑

i=1
1 f (xi) 6=yi

. But depending on our hypothesis

space and the approach to solve it, it could be a difficult function to optimize. We
could for example choose Lagrange polynomials if we were looking for functions of
one real variable, or we could extend the search to a bigger hypothesis set. For this
loss function, any function that interpolates those points is the best it can find. An-
other example is the ε insensitive loss: ∑

i
max{| f (xi)− yi| − ε, 0}. This loss allows a

certain error as long as it does not pass a threshold defined beforehand. This is to ac-
commodate the cases where the data is noisy. So the problem of classification could
very well begin from the choice of our loss function. Another thing that must be
considered, not every choice of loss function will be adequate from a computational
perspective.

The problem of how to choose a loss function adequate for the problem will not
be covered in this work. From here onwards we will either give a specific loss func-
tion, it will appear while working through an example, or we will assume one is
already given.

Support vector machines were introduced by Vapnik [8] for classifying, assum-
ing the points can be classified by a hyperplane. That means that given points
x1, · · · , xn ∈ Rm, each one labeled by y1, · · · , yn ∈ {−1, 1}, there exists a linear
functional f such that all the points with the same label all lie on the same half-plane
determined by {x| f (x) = a}, for some a ∈ R. Thus the linear functional classifies
them with their signs. Given the existence of this functional, a classifier can be taken
to be sign ( f (x) + a).

Suppose that we have a set of sample points x1, · · · , xn ∈ Rm and their labels
y1, · · · , yn ∈ {−1, 1}. A support vector machine returns a classifier of the form

h(x) := sign (w · x + b) ,

where w ∈ Rn and b ∈ R. To find the parameters w and b of this function, we will
assume first that there is at least one linear classifier. For this classification problem
with m samples, we will optimize the loss function

L(x, y, h(x)) :=
1
m ∑

i
max{0, 1− h(xi)yi},

where x = (x1, · · · , xm) , y = (y1, · · · , ym) and h(x) = (h(x1), · · · , h(xm)).

Given the existence of one linear classifier, we can change it by transforming
the defining linear functional, and still manage to classify correctly the patterns.
But the purpose of a classifier does not exclusively lies on classifying correctly the
training points, but to make as few mistakes as possible when classifying new ones.
Therefore if the hyperplane is too close to some labeled points, it may incur in some
errors if given a new pattern xn+1. A way to make this less likely to happen is to find
a classifier which does it correctly with the current samples, and at the same time
maximizes its distance to all the pattern points. Simply speaking, we are looking for
a hyperplane which lies right in the middle of the two classes. This is sometimes
called the maximal margin classifier [14].

We impose the extra condition that the hyperplane is as far as possible to all the
sample points x1, · · · , xn. The distance from a point x to a hyperplane w · x + b can
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FIGURE 3.1: The points lying on the plane are labeled by squares
or triangles. A linear classifier is chosen such that the hyperplane

separates the points by their label.

be calculated by
|w · x + b|
‖w‖ ,

this is because w is perpendicular to the hyperplane it defines, so we can use orthog-
onal projection of the point x on w. Therefore, we find that the problem to optimize
is

Max margin. = max
w,b∈Rn :

min
i

yi(w·xi+b)≥0

min
xi

|w · xi + b|
‖w‖ = max

w,b∈Rn
min

xi

yi (w · xi + b)
‖w‖ .

The second equality comes from how the classifier separates the patterns with its
sign, so the expression yi (w · xi + b) is positive if the problem is linearly separable.
This quantity has the property of being invariant if we multiply the pair (w, b) by a
positive constant β, so if we choose a βw,b for every expression of the form yi(w·xi+b)

‖w‖
we can simplify the expression. In particular, since

min
i

yi (w · xi + b)

is positive by our assumption, we can divide the expressions by it so we have that
min yi (w · xi + b) = 1. This means that those points that reach the minimum lie on
two "margins" that run parallel to the separating hyperplane, these margins being
w · x + b = ±1. Thus we end up with the following expressions:

max
w,b∈Rn :

min
i

yi(w·xi+b)=1

1
‖w‖ = max

w,b∈Rn :
yi(w·xi+b)≥1

1
‖w‖ .
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FIGURE 3.2: Different choices of linear classifiers for the same prob-
lem which do correct classification of the training points. Some hy-

perplanes lie closer to the sample points than others.

Furthermore, maximizing 1
‖w‖ is equivalent to minimizing

1
2
‖w‖2.

This means that we are looking to solve the following optimization problem:

min
(w,b)

1
2
‖w‖2 (3.1)

subject to:
yi (w · xi + b) ≥ 1, ∀i = 1, · · · , n. (3.2)

As this is a convex and quadratic optimization problem, we can look at its La-
grangian dual problem to solve it [30][35]. The Lagrangian of the primal problem
3.1 is

L (w, b, α) =
1
2
‖w‖2 +

m

∑
i=1

αi [yi(w · xi + b)− 1] ,

where the coefficients αi ≥ 0 are the Lagrange multipliers. We are optimizing with
respect to the primal variables, therefore we look for the saddle points:

∇wL = w−
m

∑
i=1

αixi = 0, (3.3)

∇bL = −
m

∑
i=1

αiyi = 0.

From these we derive the following relations:
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w =
m

∑
i=1

αixi, (3.4)

n

∑
i=1

αiyi = 0. (3.5)

And the conditions applied to the constraints end up being

αi [yi (w · x + b)− 1] = 0.

From this last equation we get that those samples whose coefficients are non-zero are
those who completely determine the solution, this is because they lie on the margin
yi (w · x + b) = 1 , so the remaining samples did not affect the solution. We call these
vectors support vectors. Since for any support vector xi0 we have that w · xi0 + b = yi,
we can solve for b by using the relations above:

b = yi −
m

∑
j=1

αjxj · xi0 . (3.6)

By plugging in the obtained vector w, applying the second relation 3.5 and sim-
plifying, we obtain the following expression for the Laplacian:

L =
1
2
‖

m

∑
i=1

αixi‖2 +
m

∑
i,j=1

αiαjyiyj〈xi, xj〉+
m

∑
i=1

αi =
m

∑
i=1

αi −
1
2

m

∑
i,j=1

αiαjyiyj〈xi, xj〉.

This leads to the following dual optimization problem to 3.1.

max
α

n

∑
i=1

αi −
1
2

n

∑
i,j=1

αiαj〈xi, xj〉 (3.7)

subject to:

αi ≥ 0 and
n

∑
i=1

αiyi = 0. (3.8)

This expression shows that the solutions depend on the inner product between
the representation Φ(xj) of the sample points. In this case Φ(xj) = xj, and the
representation itself does not need to be explicitly known. This observation is what
will motivate the use of kernel functions.

Remark. The loss function is only implicitly used here. At first we choose the hy-
pothesis set as the set of affine functions. Over this set the loss function

1
m ∑

i
max{0, 1− h(xi)yi}

can take multiple values. But we restrict the hypothesis set to affine functions which
make no mistakes, i.e. we restrict it to where the loss function is 0. And finally the
hard margin algorithm looks for the affine functions which maximize the margin.
These considerations gave us a clue what form solutions can take with more general
loss functions.
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FIGURE 3.3: Four points, labeled by color. Any linear classifier will
give a wrong label to at least a couple of them, therefore making the

problem of classifying them a non-linearly separable one.

For solving real-life problems, the family of linear classifiers is not enough. As a
trivial example, consider the colored four points in Figure 3.3. Any hyperplane will
classify wrongly at least two of them. One way to surmount this problem would be
mapping the points to a higher dimensional space where they can be separated by a
hyperplane.

But mapping to a higher dimensional space would need finding the appropri-
ate feature map, and then perform the separation after mapping the sample points.
Equation 3.7 leads us to think that the formulation of the problem can put in terms
of the inner product between the mapped points. This is where the theory of repro-
ducing kernel spaces helps to solve this new problem.

We will see in the following sections that we can change the loss function to more
general functions and the solutions obtained will retain a similar form to (3.3).

Note that with our assumptions of linear separability, the loss function reaches
0. Our derivation’s purpose was to show that we could take a look at the dual
problem for hints about the solution’s properties. And what we found is that it
takes the form (3.5). But in the following sections we will not restrict the results to
a classification problem. Therefore we do not necessarily choose the loss function
1
m ∑

i
max{0, 1− h(xi)yi}.

3.1 Representer theorem for RKHS

The original purpose of the algorithm above is to find a classifier trained on a set of
examples, and we want one that is less likely to make a mistake when classifying
a new point. In this sense is that we refer about the generalization, the capacity of
providing a sufficiently accurate prediction for unseen patterns. A way to improve
the generalization ability of the algorithm is to expand the set of classifiers to a set
with more complex functions. The problem is that, doing it blindly would possibly
be overfitting, which means that the selected classifier has "memorized" the samples.
New patterns fall outside of what it has memorized and its performance is poor on
these new examples. On the other hand, a hypothesis set could be too small. In
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FIGURE 3.4: The points in Figure 3.3 are mapped to R3, transform-
ing the original problem to one that is linearly separable in this new

space.

this case there is no function with an acceptable accuracy even within the training
examples. This is referred to as underfitting. So one must find a way to balance
the complexity of the hypothesis set to avoid both. The model of maximal margin
classification with kernels deals with the underfitting aspect. For overfitting we will
work with regularization [39].

Regularization consists of restricting the search of the classifier to smaller subsets
by adding a penalization term φ( f ), sometimes accompanied by a coefficient λ as a
weight. This is to add some extra information when doing the search of the solution
[25].

Other forms of avoiding overfitting and the theory behind it is beyond the scope
of this work, so we refer the reader to [35] [36].

The discussion at the end of the previous section argues that loss functions is
identically zero on the hypothesis set. Therefore, we can think our solution f(w,b) =
〈·, w〉+ b is a minimizer of the function

L(x, y, f(w,b)(x)) + λφ( f(w,b)).

Thus the problem which we solved has the form

min
(w,b)∈Rj+1

L(x, y, f(w,b)(x)) + λφ( f(w,b)).

We call a problem of this form a regularized problem.
Support vector machines, as formulated at the beginning of the chapter, find

affine functions as solutions. This hypothesis set may not be enough to face a real
problem, since linear separability is a very strict condition. But this approach can be
adapted to deal with more general problems. To see how this can be achieved, we go
back to the first expression in (3.7), where we see that the solution is given in terms
of inner products between the sample points.
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In the previous section, the resulting loss function came naturally after the clas-
sification with the geometrical margin. As we discussed at the beginning of the
chapter, depending on the model and what you want out of it, you can use different
loss functions. We also found that our solution could be expressed as

∑
i

αik(·, xi) = ∑
i

αi〈·, xi〉.

We want this feature to be preserved when we change loss functions, and that is
what we will work towards.

Remember that a RKHS with a reproducing kernel k and an associated feature
map Φ has the property of representing the inner product between Φ(x1) and Φ(x2)
by the evaluation k(x1, x2). By the expression of the dual problem

max
α

n

∑
i=1

αi −
1
2

n

∑
i,j=1

αiαj〈xi, xj〉 (3.9)

we can propose searching for solutions of this form. This is because the solution
depends on the evaluations of the functionals 〈·, xj〉. More concretely, to find the
solution to the dual problem we need the coefficients of the positive definite matrix(
k(xi, k j)

)
i,j=1,··· ,n .

We know from Section 1.1 that a positive definite kernel function will map the
sample points to a RKHS. Therefore we could use this idea to implement a SVM
that returned functions more complex than affine functions. The issue is that by
changing spaces to a higher dimensional one could make the solution much more
computationally expensive to find, even unfeasible to compute.

The Representer theorem for RKHS says that this is not necessarily the case for
a big class of loss functions. Moreover, this theorem extends the studied case to the
regularized problems

L + λφ

where L is a loss function and the function φ is a function with certain properties we
will explain later. This theorem is consequence solely of the convexity of the func-
tions and the orthogonal decomposition of a Hilbert space. Solving the optimization
problem with a regularizer biases the search of solutions towards smaller class, mak-
ing it less likely to overfit [35]. The regularization term φ we use will be dependent
on the norm of the function, this means φ( f ) = φ(‖ f ‖).

We assume the sets of m samples xi with their m labels yi are fixed.

Theorem 3.1.1. (Representer Theorem for RKHS) [33] Let L : (X ×R×R)m −→
R ∪ {∞} be an arbitrary loss function, G : X × X −→ R a strictly increasing func-
tion and k : X × X −→ R a PDS kernel with associated Hilbert space H. Then a
minimizer of the problem

min
h∈H

L((x1, y1, h(x1)), · · · , (xm, ym, h(xm))) + G(‖h‖H) (3.10)

always has a representation of the form h∗ =
m
∑

i=1
aik(·, xi).

Proof. Let M = Span {k(·, xi)}i=1,···n. For any given function h ∈ H, we can decom-
pose it in h = ∑ aik(·, xi)+ h⊥ = h1 + h⊥, where h⊥ ∈ M⊥. By the reproducing prop-
erty of the kernel k we have that h(xj) = 〈h, k(·, xj)〉 = 〈h1, k(·, xj)〉+ 〈h⊥, k(·, xj)〉 =
〈h1, k(·, xj)〉 = h1(xj). Thus the evaluation of the loss function is the same on h and
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h1, i.e.

L((x1, y1, h(x1)), · · · , (xm, ym, h(xm))) = L((x1, y1, h1(x1)), · · · , (xm, ym, h1(xm))).

By the orthogonality of h1 and h⊥ we have that ‖h‖H =
√
‖h1‖2

H + ‖h⊥‖2
H, and since

G is non-decreasing the next inequalities follow

G(‖h1‖H) ≤ G(
√
‖h1‖2

H + ‖h⊥‖2
H) = G(‖h‖H),

so if h is a solution to the optimization problem, its orthogonal projection h1 is also
a solution. If G is assumed to be strictly increasing, then the last inequality is also
strict, showing that any solution must be such that h⊥ = 0.

So the search for the solution can be found in the finite dimensional space M
spanned by the functions k(·, xi). And the dual form (3.7) allows us to calculate
it independently of the dimension of the Hilbert space H, since we only need the
evaluations k(xi, xj).

An aspect we want to recover from this result is the representation of a solution
through linear combinations of k(·, xi). As we will see, this exact same result will not
be achieved every time. What we will do is show that solutions can still be obtained
by working on a finite dimensional space.

Going from solutions expressed through affine functions to the solutions ex-
pressed through kernel functions has some drawbacks. A solution to the regularized
problem has the form ∑

i
αik(xi, ·), those xi whose coefficients αi are not 0 are called

support vectors. In theory these can be any number n ≤ m. But in practice, it is
found that without specific regularizers most if not all samples are support vectors.
One may find that some of these coefficients are much smaller than the rest, which
means that when computing f (x) = ∑

i
αik(xi, x), they will contribute very little.

This brings storage and computation difficulties for little gain, since this means that
we will use every support vector in the training and the evaluation of the solution
[46]. Solving a regularized problem with the `1 norm has been shown to reduce the
amount of support vectors without a dramatic impact on its prediction capabilities
[46][44]. Another possible issue is that the input data could have a meaningful met-
ric defined a priori. This could be incorporated in the choice of reproducing kernel,
but not every metric space can be embedded into a Hilbert space.

3.2 Representer theorem for RKBS

The Representer theorem for RKHS shows that by using a positive definite function
(i.e. a kernel function for the RKHS), we can solve optimization problems, including
the hyperplane separation problem from the beginning of the chapter [see 35, exam-
ple 4.6] in a higher dimensional space. If a coefficient αj0 is not zero, the evaluation
must take it into account , whether it is significant or not for the solution. One way
that has been found to mitigate this problem is to use regularization with respect to
the `1 norm applied to the coefficients. This approach has been shown to yield solu-
tions with fewer support vectors [44] [10]. There exist other choices of regularization
terms but for any p 6= 2, the problem lies outside the scope of the Representer the-
orem for RKHS, see Figure 3.5. Actually, a necessary and sufficient condition for a
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FIGURE 3.5: Coefficient based regularization, the curve-levels of the
equations ‖ f ‖p = 1, for p = 29

29−1 , 28

28−1 , · · · , 28, 29, illustrate that a
regularizer of the form Ω1 = ‖·‖p cannot be thought as a regularizer
f the form Ω(‖·‖q) for p 6= q, therefore the Representer theorem does

not apply to this case, in particular for p = 1 .

regularization problem to have a solution that can be expressed as
m
∑
1

αik(·, xj), is for

the regularizer to be of the form φ(‖·‖H) [3]. Therefore it is in our interests to extend
the results obtained for RKHS to Banach spaces to expand this result to regularizers
that depend on other non-Hilbertian norms.

The Representer Theorem for Hilbert spaces uses the geometric properties of
Hilbert spaces to show the existence of solution in the finite dimensional subspace
M. To show that any solution must be of the same form, we also used the hypoth-
esis of strict monotony, but it essentially came from the orthogonality to the space
spanned by the functions k(·, xj). This means that if we can give algebraic or geo-
metric conditions similar to those given by an inner product we could potentially
prove the same result.

It turns out that an useful problem related to the regularized problem is minimum
norm interpolation. This is to find the minimum of

‖ f ‖B

over all functions which f (xi) = yi. This problem can be obtained from regulariza-
tion problems by making λ → 0 [3]. Furthermore we will see that the solutions to a
minimum interpolation problem (if any exists) can be used to justify the existence of
a solution to the regularization problem.

The reason to consider minimum norm interpolation problems is that their so-
lutions are related to the solutions of regularized problems. This is because the as-
sumptions on the loss functions make them compatible with evaluation function-
als. We say this in the sense that they keep the weak convergence with respect
to the evaluation functionals, i.e. if evalxi( fν) = fν(xi) → f (xi) = evalxi( f ) then
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L(x, y, fν) → L(x, y, f ). Thus they serve as base for solutions to regularized prob-
lems.

Since a minimum interpolation problem and a regularization problem are differ-
ent a priori, we will separate their respective results unless proven to be equivalent.

Definition 3.2.1. Remember the Construction 1.2.1.1 of an adjoint pair of RKBS. With
the same notation and hypothesis, and given an adjoint pair of RKBS B1, B2 induced
by the spaces W1 and W2, we define the following sets for vectors , x, y ∈ Rm and an
arbitrary subset A ⊆W1:

Sx,y := { f ∈ B1 : f (xi) = yi, i = 1, · · · , m},
Vx,y := {u ∈W2 : 〈Φ1(xi), u〉 = yi, i = 1, · · · , m}

Sx := Span {k(xj, ·) : j = 1, · · · , m},
A` := {g ∈W2 : 〈a, g〉W1×W2 = 0 ∀a ∈ A}.

We begin with a lemma that gives conditions for Vx,t to be non-empty given the
samples x := (x1, · · · , xm).

Lemma 3.2.1. The set Vx̄,t̄ is non-empty for all t ∈ Rm if and only if {Φ1(xi)}I=1,··· ,m
is a linearly independent set in W1.

Proof. Since the sample set {xj} is arbitrary but fixed, we denote by fu for any given
u ∈ W2 the vector ( fu(x1), · · · , fu(xm)). Suppose that the vector c ∈ Rm is such that

gc =
m
∑

j=1
cjΦ1(xj) = 0. Then for an arbitrary u ∈W2 we have that

〈gc, u〉 = 〈
m

∑
j=1

cjΦ1(xj), u〉 = 0.

Due to the bilinear form, this last expression is equivalent to

m

∑
j=1

cj〈Φ1(xj), u〉 =
m

∑
j=1

cj fu(xj) = 0

for all u ∈ W2. But this is the inner product in Rm, therefore the set {Φ1(xi)} is
linearly dependent if and only if the the span of {fu : u ∈ W2} is not Rm. And this
last condition if equivalent to Vx̄,t̄ = ∅ for t = c.

At the end of the previous section, we brought up some problems that appear
when training SVM with kernels. We proposed `1 regularization as a way to address
one of them. And we also went over why the Representer theorem for RKHS cannot
cover this regularization. So the rest of the chapter will be devoted to unify these
tools to some degree.

3.2.1 Representer theorem for uniformly convex and Gateaux differen-
tiable spaces.

We will work first with uniformly convex and Gateaux differentiable spaces. The
reason is that their geometry allows for orthogonality arguments, even if we do not
explicitly use the semi-inner product, as seen in Section 2.2. We now define the
Gateaux differential of a point.
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Definition 3.2.2. [6] Let V be a uniformly convex and Gateaux differentiable space.
The Gateaux differential at f , G( f ) is the unique linear functional defined by the
limit

G( f )(g) = lim
t→0

(
‖ f + tg‖V − ‖ f ‖V

t

)
.

The limit is called the differential at f in the direction of g.

Remark. The Gateaux differential at a point f coincides with the semi-inner product
with f in its second argument, as seen in Section 2.2.

The Representer theorem for Hilbert spaces relied on the following:

• Strict monotony to show that any solution can be projected onto the space we
want.

• Orthogonality to show that any solution must be of the same form.

From Section 2.2 we know that with some extra assumptions, the notion of or-
thogonality can be translated to the Banach spaces by the inequality 2.2.4. Thus the
following results can be proven by adapting the ideas, considering the appropriate
modifications.

The following lemmas will help when showing the existence of solutions to the
problem of minimal norm interpolation.

Lemma 3.2.2. [29] Every convex and closed non-empty subset C of a reflexive and
strictly convex space B has the best approximation property. This means that for
every x ∈ B, there exists a unique c ∈ C such that

‖x− c‖ = min
y∈C
‖x− y‖.

Lemma 3.2.3. In a Gateaux differentiable Banach space B, x is orthogonal to y if and
only if 〈y,G(x)〉B = G(x)(y) = 0.

Proof. This is a rephrasing of Theorem 2.2.4.

We first show that the minimal norm interpolation can be covered by the Repre-
senter theorem.

Theorem 3.2.4. (Representer theorem for minimal norm interpolation in strictly
convex and Gateaux differentiable spaces) Assume W1, W2, 〈·, ·〉W1×W2 are as in
Construction 1.2.1.1. Assume further that W2 is a strictly convex and Gateaux dif-
ferentiable space. Then the problem of finding a function that interpolates the data
{yi, i = 1...m} of minimum norm, i.e.

min
f∈Sx,y
‖ f ‖B

has a solution f ∈W2 with the following property:

G( f ) ∈
(

Φ1(X)`
)⊥

.

Proof. Note that for a fixed vector t the set Vx,t =
⋂

δ−1
xi

({ti}) is closed due to the
continuity of the evaluation functionals. It also is a convex set, therefore by Lemma
3.2.2 we have that there exists an element with minimum norm, we denote it by v0.
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We will show next that this element is orthogonal to Vx,0 in the sense of Theorem
2.2.4. It is easy to see that the following statement is true:

Vx,t = v0 + Vx,0.

So the inequality
‖v0‖ ≤ ‖v0 + ν‖

is trivially true for every ν ∈ Vx,0, showing that our claim is true. Finally, from
Lemma 3.2.3, we know that this is equivalent to having that 〈ν,G(v0)〉 = 0, which is
to say that G(v0) lies in the annihilator of Vx,0, and this last one if equal to (Φ1(X))`.

If we assume that W2 = W∗1 then we will have that A⊥ ⊆ A`, so the following
corollary is a direct consequence of the theorem above.

Corollary 3.2.4.1. Assume the same hypothesis as in the previous theorem, and
further let W2 = W∗1 . Then for a set A ⊂ W1 we have that A` = A⊥, therefore
(Φ1(X))` = (Φ1(X))⊥ and G(v0) ∈ Span Φ1(x).

Finally to show the Representer theorem for regularized problems we need a
lemma to make sure that there is at least one solution, even if it may not lie in the
finite dimensional space Sx. This result is a particular case of the Generalized Weier-
strass Theorem [24].

Lemma 3.2.5. Let B be a reflexive Banach space and F : B −→ R ∪ {∞} be a lower
semi-continuous convex function. If for some M > 0 the set {x ∈ B : F(x) ≤ M} is
non-empty and bounded, then F attains its minimum in B [27].

Now we set up what we need for the regularized problem. We fix a set of sam-
ples {xi} and their labels {yi}, a continuous and convex loss function Ly( f (x) :=
L(y, f (x)), a continuous, convex, strictly increasing and unbounded function φ. For
a function f in B1 and λ ∈ R+ we define

Ez,λ( f ) := Ly( f ) + λφ(‖ f ‖B1),

where z = {(xi, yi)i=1,··· ,n.}

Theorem 3.2.6. (Representer theorem for regularized problems in strictly convex
and Gateaux differentiable spaces) With the same hypothesis as Theorem 3.2.4, the
problem

inf
f∈B1
Ez,λ( f ) (3.11)

has a solution fv0 , where v0 ∈W2 is such that G(v0) ∈
(
(Φ1(X))`

)⊥
Proof. We first show the uniqueness of the solution. Assume f1, f2 ∈ B1 are two
different solutions and let f3 = f1+ f2

2 . From Theorem 1.2.2 we know that B1 is re-
flexive, Gateaux differentiable and strictly convex space. Therefore, due to the strict
convexity of the space, ‖( f1 + f2)/2‖B1 < (‖ f1‖B1 + ‖ f2‖B1)/2 and

Ez,λ( f3) = Ly(
f1 + f2

2
) + λφ(‖ f1 + f2

2
‖B1) < Ly(

f1 + f2

2
) + λφ(

‖ f1‖B1 + ‖ f2‖B1

2
)

≤ LY( f1)

2
+

Ly( f2)

2
+ λ

(
φ(‖ f1‖B1)

2
+

φ(‖ f2‖B1)

2

)
.
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Since f1 and f2 minimize (3.11), then the last member is Ez,λ( f1), so we conclude

Ez,λ( f3) < Ez,λ( f1),

which contradicts the choice of f1. For the existence, given any f ∈ B1 such that
‖ f ‖B1 > φ−1(

Ez,λ(0)
λ ) we have

Ez,˘( f ) ≥ λφ(‖ f ‖B1) > Ez,λ(0).

Then the minimum over the whole space is the same if we restrict it to the set

{ f ∈ B1 : ‖ f ‖B1 ≤ φ−1(
Ez,λ(0)

λ
)} = { f ∈ B1 : Ez,λ( f ) ≤ Ez,λ(0)}.

This set is thus non-empty and Ez,λ is convex and continuous, so Lemma 3.2.5
assures that there the minimum is attained in B1. Let fv ∈ B1 be the solution,
with v ∈ W2. Let yi = fv(xi), by Theorem 3.2.4 there exists a v0 ∈ W2 such that fv0

interpolates the data {yi} and is solution to the problem of minimum norm, in other
words

‖ fv0‖ ≤ ‖ fv‖.

So fv0 is a solution to the regularized problem, and by uniqueness fv = fv0 .

We remember a bit about the duality mapping from Chapter 1. We know that for
a Gateaux differentiable space, the Gateaux differential defines a bijective mapping
from B to its dual. In the case of a Hilbert space, this mapping ends up being the
identity map [11]. So the Representer theorem for RKHS hides the use of the duality
map. In the general case, the duality map is not even linear, not to mention it is not
the identity. Therefore these theorems are a step shy of the actual solution. What
they give instead is J( f ), where J is the unique duality map induced by the Gateaux
differential [17] and f is the actual solution. To read more about duality mappings,
we refer the reader to [19] [11] [29].

One approach to solve the `1 regularization problem posed in the previous sec-
tion is to first solve the problem for pn → 1 regularization. This gives solutions
lying in reflexive, uniformly convex and Gateaux differentiable spaces. Under some
hypothesis these solutions converge to the solution to the `1 regularization problem.

Theorem 3.2.7. [43] Consider a set of pairwise distinct samples {x1, · · · , xm} ⊂ X
and associated labels {y1, · · · , yn} ⊂ R. Let B1, B2 be an adjoint pair of RKBS with
a generalized Mercer kernel k induced by expansion sets which satisfy property A1
and the set {k(x, ·)}x∈X is linearly independent. We define

Fz,λ( f ) :=
1
N

n

∑
j=1

L(xj, yj, f (xj)) + R(‖ f ‖B1).

If furthermore R is like in Theorem 3.2.6 and t 7→ L(x, y, t) is convex for fixed (x, y) ∈
X ×R, then the problem of minimizing F has a global solution s1 ∈ B1 and there
exists a sequence spm ∈ B

p
1 , where spm are the solutions to the regularized problem

(3.11) posed in B
pm
1 , such that

lim
pm→1

spm(x) = s1(x)
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for every x ∈ X and
F (spm)→ F (s1).

In [16], the authors developed a RKBS with the intent to show the viability of
working with RKBS for learning tasks. What they did is work with the spaces con-
structed in Section 2.1.1 but considering the bilinear form

〈 f , g〉Bp
Ψ×B

q
Ψ

:=
∫

Rd

f̂ ĝdµ.

This yields the reproducing kernel k(x, y) := Φ(x− y). Their version of the Repre-
senter theorem is a particular case to this one, but it gives an even more explicit form
given the known duality map of Lp(Rd, µ) we see in (2.2).

Theorem 3.2.8. Assume the same hypothesis as Theorem 3.2.4, with the RKBS con-
structed in Theorem 2.1.5 with the bilinear form and kernel defined above. Then the
regularized problem

min
f∈B

p
Ψ

1
m

m

∑
i=1

L(xi, yi, f (xi)) + R(‖ f ‖Bp
Ψ
)

has the form

f ∗(x) =
(

1
2π

)− d
2 ∫

Rd

Φ̂(y)p−1
m

∑
k=1

ckei(x−xk)

∣∣∣∣∣ m

∑
j=1

cjei(x−xj)

∣∣∣∣∣ dy.

If p is an even integer this can be further simplified to [16]:

f ∗(x) =
m

∑
j1,··· ,jp−1=1

cj1 cj2 · · · cjp−1 Φ(x− xj1 + xj2 − · · · − xjp−1).

The spaces used in this subsection were all isometric to lp spaces as seen in Sec-
tion 2.3. But the case for p = 1 is not directly treated here, since this space is not
uniformly convex [29]. This means that the dual mapping cannot be defined by
Gateaux differentials or semi-inner products in a natural way. Instead we will be
imposing conditions on the reproducing kernel to find solutions to the problem of
minimal norm interpolation.

3.2.2 Representer theorem for minimum norm interpolation in spaces with
`1 norm.

The following approach we treat here is to solve the problem in the space with `1

norm. This one imposes conditions on the kernel function to make up for the lack of
smoothness and uniform convexity. As a RKBS constructed in Section 2.3 will not be
reflexive, it will not be uniformly convex either. This is the reason why the previous
approach does not work.

In this case minimal norm interpolation satisfying the Representer theorem is
equivalent to the regularized problem satisfying it.

Definition 3.2.3. Let k : Ω×Ω −→ R be a kernel function. For a set of examples
x1, · · · , xm we define the following the matrix

K[x] :=
(
k(xi, xj)

)
i,j=1,··· ,m ,
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and the vectorial functions

kx(y) := (k(xi, y))i=1,··· ,m,

kx(y) := (k(y, xi))
T
i=1,··· ,m.

Remark. We do not assume any symmetry of the kernel function, so k[x] is not nec-
essarily symmetric, and kx is not necessarily the transpose of kx. But k[x] can be see
as the matrix made of columns kx(xj) or rows kx(xj).

For the remainder of the section, we will assume that for the regularized problem
with sample set {x1, · · · , xm}

min
f∈B1

L( f (x)) + λφ( f )

both L and φ are continuous, L is everywhere finite, φ is non-decreasing and

lim
t→∞

φ(t) = +∞.

Lemma 3.2.9. A RKBS B1, constructed as in 2.3.5, satisfies the Representer theorem
for regularized problems if and only if it satisfies the Representer theorem for mini-
mum norm interpolation.

Proof. Let V, φ, λ be as the assumption above. Assume first that the minimum in-
terpolation has a solution for any y ∈ Rm. Choose an arbitrary f ∈ B1. Then by

hypothesis, we can find a solution f0 =
m
∑

j=1
ajk(xj, ·) to

inf
g∈Ix( f (x))

‖g‖B1 .

Since it interpolates f (x) we have that L( f (x)) = L( f0(x)), and it also satisfies
λφ(‖ f ‖B1) ≥ λφ(‖ f0‖B1) because f0 has the minimum norm from those functions
that interpolate f (x), and the regularizer is non-decreasing. So the next equation
follows

inf
f∈B1

L( f (X)) + λφ(‖ f ‖B1) = inf
f∈Sx

L( f (X)) + λφ(‖ f ‖B1).

Now since φ(x) −−−→
x→∞

∞, we can restrict the problem to { f ∈ B1 : ‖ f ‖B1 ≤ M}
for some M > 0, thus the following is true

inf
f∈Sx

L( f (X)) + λφ(‖ f ‖B1) = inf
f∈Sx,‖ f ‖B1≤M

L( f (X)) + λφ(‖ f ‖B1).

Since Sx is finite dimensional, the set over which the problem is taken is compact
and the minimum is reached there.

Now assume that for every regularization problem there is a solution lying in Sx.
Choose a minimizer f0,λ for the regularization problem

inf
f∈B1
‖ f (x)− y‖2

2 + λ‖ f ‖B1

where ‖·‖2 is the usual euclidean norm for Rn. The form of each f0,λ implies that
there exists a set cλ ⊂ Rm such that f0,λ(·) = kx(·)cλ. We now show that the set of
cλ is bounded. Indeed,

‖k[x]cλ − y‖2
2 = ‖ f0,λ(x)− y‖2

2 ≤ L( f0,λ) + λ‖ f0,λ‖B1 ≤ V(0) + 0 = ‖y‖2
2.
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So the triangle inequality implies that

‖k[x]cλ‖2 ≤ 2‖y‖2,

thus {cλ} must be bounded in Rm. We choose a sequence of cλn as λn → 0 which
converges to a point c0 ∈ Rn and let f0 be its associated function. By construction of
f0 and fλn we have that

lim
n→∞
‖ f0 − fλn‖B1 = lim

n→∞
‖cλn − c0‖1 = 0. (3.12)

Let g be an arbitrary interpolant of y. This means that

g(x) = y.

The choice of f0,λn and g makes it so that λn‖g‖B1 = ‖g(x) − y‖2
2 + λn‖g‖B1 ≥

‖ f0,λn(x)− y‖2
2 + λn‖ f0,λn‖B1 . By continuity of the evaluation functionals, we have

f0,λn(xj)→ f0(xj), and coupled with the continuity of the chosen V and φ we obtain
that f0,λn(x) = y by letting λn tend to 0. This shows that f0 ∈ Ix(y) and is the
solution to the problem of minimum norm interpolant.

This means that we can focus on solving only the minimal norm interpolation
problem. One of the first results we need for this is related to assumption A4.

Assumption. A4 - For any finite subset of pairwise distinct points x1, · · · , xn+1 ⊂ X
we define the column vector Kx(xn+1) := (k(xn+1, xj))j=1,··· ,n. Then

‖(K[x])−1 Kx(xn+1)‖`1 ≤ 1.

The following result gives a condition that is equivalent to assumption A4. This
condition is for the solution of the minimal interpolation problem formulated in Sx

to stay the same even if we add a finite number of dimensions.

Lemma 3.2.10. Let k be a kernel function which satisfies assumptions A1 to A3. Then
condition A4 is equivalent to the solution to the minimum norm interpolation in
Sx being the same as the one formulated in Sx where x = (x1, · · · , xm, xm+1) and
xm+1 6= xii = 1, · · · , m.

Proof. The set Ix(y) ∩ Sx consists solely of the function f = kx(·) (k[x])−1 y. A func-
tion g ∈ Ix(y) ∩ Sx is completely determined by where it sends xm + 1. We label
g(xm+1) = c and let y :=

(
yT, c

)T . Moreover, the function g has the explicit form
g = kx(·)k[x]y so we proceed to bound its norm. We consider the matrix

k[x]−1 =

[
k[x] kx(xm+1)

kx(xm+1) k(xm+1, xm+1)

]−1

.

This can be calculated by blocks [7] which yields the following:

k[x]−1y =

(
k[x]−1y + q

p k[x]−1kx(xm+1)

− q
p

)

where p := k(xm+1) − kx(xm+1)k[x]−1kx(xm+1) and q := kx(xm+1)k[x]−1y − c. The
norm for a function in B0 was defined in Theorem 2.3.2. Also from its definition it
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can be shown that

‖k[x]−1y‖B0 = ‖k[x]−1y +
q
p

k[x]−1kx(xm+1)‖+ |
q
p
|.

We now estimate ‖g‖B1 = ‖g‖B0 :

‖g‖B0 = ‖k[x]−1y +
q
p

k[x]−1kx(xm+1)‖B0 + |
q
p
| ≥

‖k[x]−1y‖B0 − |
q
p
|‖k[x]−1kx(xm+1)‖B0 |+

q
p
|.

If k satisfies 3.2.2 then | qp | − |
q
p |
(
‖k[x]−1kx(xm+1)‖B0

)
≥ 0 thus

‖g‖B1 ≥ ‖k[x]−1y‖B0 = ‖ f ‖B1 .

This means that
min

f∈Ix(y)∩Sx
‖ f ‖B ≥ min

f∈Ix(y)∩Sx
‖ f ‖B ,

so we can conclude these are equal.
Conversely, suppose that

min
f∈Ix(y)∩Sx

‖ f ‖B = min
f∈Ix(y)∩Sx

‖ f ‖B

for any vector y ∈ Rm. Then we choose y = kx(xm+1) and c = kx(xm+1)k[x]−1kT
x (xm+1).

By doing this we get the following norms:

‖k[x]−1y‖B1 = ‖
(

0
1

)
‖1 = 1 and ‖k[x]−1y‖B1 = ‖(k[x])

−1 kx(xm+1)‖B1 . (3.13)

And finally by the property of the being the function of minimum norm we have

‖(k[x])−1 kx(xm+1)‖B1 ≤ 1.

This theorem can be applied repeatedly to show that adding a finite amount of
does not change the solution.

Theorem 3.2.11. (Representer theorem for spaces with `1 norm.)Every solution to
the minimum norm interpolation posed on a space constructed as in Section 2.3.5
can be represented as ∑

i
αik(xi, ·), if and only if, k satisfies assumption A4.

Proof. Assume we have condition A4. We will show that ‖g‖B1 ≥ min
f∈Ix(y)∩Sx

‖ f ‖B1

for g ∈ B0. If we show that, then for an arbitrary g ∈ B1 we can choose a sequence
gj ∈ B0 which converges to it. Then by the continuity of the norm and the previous
inequality we have that

‖g‖B1 = lim
n→∞
‖gn‖B1 ≥ min

f∈Ix(y)∩Sx
‖ f ‖B1 .

From where we deduce that

min
f∈Ix(y)∩Sx

‖ f ‖B1 = min
f∈Ix(y)

‖ f ‖B1 .
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Let g ∈ B0 ∩ Ix(y) be arbitrary. By construction of B0, by possibly adding zero coef-

ficients along with extra sample points xj, g has an expression of the form
l

∑
j=1

αjk(xj, ·)

for one l ≥ m. We define for 1 ≤ i ≤ l the vector ui := (g(xn) : 1 ≤ n ≤ i) and the set
vi := {xn : 1 ≤ n ≤ i}. With this we see that g ∈ Ivl ∩ Sul , therefore the following is
true:

‖g‖B1 ≥ min
f∈Ivl (ul)∩Sul

‖ f ‖B1 ≥ min
f∈Ivl−1 (ul−1)∩Sul

‖ f ‖B1 .

Last inequality is justified because Ivl (ul) ⊆ Ivl−1(ul−1). Now by applying Lemma
3.2.10 we get that

‖g‖B1 ≥ min
f∈Ivl−1 (ul−1)∩Sul

‖ f ‖B1 = min
f∈Ivl−1 (ul−1)∩Sul−1

‖ f ‖B1 .

We repeat the same argument until we reach um, so we get the following result:

‖g‖B1 ≥ min f ∈ Ivm(um) ∩ Svm‖ f ‖B1 = min
f∈Ix(y)∩Sx

‖ f ‖B1 .

Thus it can be concluded that

min
f∈Ix(y)∩Sx

‖ f ‖B1 = min
f∈Ix(y)

‖ f ‖B1

by using properties of the min function. For the other implication, note that every
minimal norm interpolant being in Sx is equivalent to

min
f∈Ix(y)∩Sx

‖ f ‖B1 = min
f∈Ix(y)

‖ f ‖B1 .

And since Ix(y)∩ Sx ⊆ Ix(y)∩ Sx ⊂ Ix for every y ∈ Rm, if we apply the minimum
of the norms over these sets, we obtain the assumption A4 by Lemma 3.2.10.

As examples of kernels which satisfy conditions A1 through A4, the authors of
[38] show that the Brownian bridge kernel

k(x, y) := min{x, y} − xy , x, y ∈ (0, 1)

and the exponential kernel

k(x, y) := e−|x−y| , x, y ∈ R

both satisfy all the requirements. They also point out that other known kernels like
the Gaussian kernel do not verify assumption A4.
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Appendix A

A.1 Fourier transform and Positive definite functions

In this section we give a summary of results about the Fourier Transform and posi-
tive definite functions that we need to develop the theory of RKBS.

First are the space of Schwarz and its dual.

Definition A.1.1. We denote by C∞(Rm) the space of infinitely differentiable func-
tions.

Definition A.1.2. [22] The Schwartz space S or S(Rm) is the subspace of C∞(Rm) of
functions f such that

sup
x∈Rm

|xβ∂α f (x)| < ∞

where α, β are any pair of multi-indices. Its topology is defined by the seminorms

|xβ∂α f (x)|.

Its continuous dual space S ′ will be referred to as the space of temperate distribu-
tions.

We follow with the definition of the Fourier transform and its inverse on a func-
tion in L1(R

d).

Definition A.1.3. [41] Let f ∈ L1(R
d) with respect to Lebesgue measure. We define

its Fourier transform by:

f̂ (ω) := (2π)−
d
2

∫
Rd

f (x)e−i〈ω,x〉dx

and its inverse
f̌ (ω) := (2π)−

d
2

∫
Rd

f (x)ei〈ω,x〉dx.

If µ is a tempered distribution, then we define its distributional Fourier transform
by the equation [22] :

µ̂(φ) := µ(φ̂).

This tool is necessary for establishing some properties of positive definite func-
tions. It was also used extensively for the RKBS defined in section 2.1.1.

Theorem A.1.1. [22] The distributional Fourier transform is an isomorphism of S ′

and we have that Fourier’s inversion formula ˆ̌φ = φ.

Definition A.1.4. A function Φ : Rd −→ C is called a positive definite function if it is
continuous and for any x1, · · · , xj ∈ Rd, and α1, · · · , αj ∈ C the following is always
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true
n

∑
i,j=1

αiαjΦ(xi − xj) > 0.

The following results are characterizations of positive definite functions in terms
of the Fourier transform.

Theorem A.1.2. (Bochner’s Characterization of positive definite functions) A continuous
function Φ : Rd → C is a positive definite function if and only if it is the Fourier
transform of a finite non-negative Borel measure on Rd [41].

Theorem A.1.3. Assume Φ : Rd → C is absolutely integrable and continuous. Then
it is positive definite if and only if it is bounded and its Fourier transform is non-
negative and non-vanishing everywhere.[41]

This last theorem was what allowed us to define the B
p
Φ(R

d) spaces. It also
allowed us to construct the isomorphism to Lq(Rd, µ).

A.2 Banach spaces and Optimization

In this section, the field K represents either R or C.

Definition A.2.1. A norm on a Vector spaces B is a function defined on ‖‖ : B 7−→ R

with the following properties:

• ‖x‖ ≥ 0 ∀x ∈ B and ‖x‖ = 0 ⇐⇒ x = 0.

• ‖λx‖ = |λ|‖x‖, ∀x ∈ B, λ ∈ K.

• ‖x + y‖ ≤ ‖x‖+ ‖y‖.

Definition A.2.2. A K vector space B is called a Banach space if it is endowed with
a norm ‖·‖B : B −→ R such that every Cauchy sequence converges with respect to
the norm.

One of the most important aspects of this approach to RKBS is the emphasis on
the natural duality between a Banach space and its continuous dual.

Definition A.2.3. The dual space B∗ of a Banach space B is defined as the space of
all the continuous linear functionals. It is also a Banach space with the norm

‖ f ‖B′ := sup
‖x‖=1

| f (x)|.

From Definition 1.2.4 and the discussion following shortly after 1.2.2 we know
that Construction 1.2.1.1 asks for an embedding of Banach spaces. It follows easily
from this definition and the non-degeneracy of the bilinear form.

Definition A.2.4. A bilinear form defined on a pair (V, W) of vector spaces is a func-
tion 〈·, ·〉 : V×W 7−→ K such that for any vectors v1, v2 ∈ V, w1, w2 ∈W and scalars
α, β ∈ K:

• 〈v1 + αv2, w1〉 = 〈v1, w1〉+ α〈v2, w1〉.

• 〈v1, w1 + βw2〉 = 〈v1, w1〉+ β〈v1, w2〉.
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A class of RKBS that gets used often due to their geometric properties is the class
of Reflexive Banach spaces.

Definition A.2.5. A Banach space B is said to be reflexive if it is isometrically iso-
morphic to its double dual (B∗)∗.

We generalized many arguments from their Hilbert space version. One of the
tools to translate orthogonality was the annihilator of a subset.

Definition A.2.6. Let V and W be Banach spaces and 〈·, ·〉V×W a bilinear form such
that V and W are dense with respect to it. For subspaces M ⊂ V N ⊂ W we define
their annihilators M⊥ and ⊥N as [1]:

M⊥ := {g ∈W : 〈 f , g〉V×W = 0, ∀ f ∈ V},

⊥N := { f ∈ V : 〈 f , g〉V×W = 0, ∀g ∈W}.

Theorem A.2.1. If V and W are Banach spaces with a bilinear map 〈·, ·〉 : v×W 7−→
K and M1, M2 ⊂ V, the following properties can be established:

• If M1 ⊂ M2 then M⊥2 ⊂ M⊥1 .

• M ⊂ M⊥⊥.

• M⊥ = M⊥⊥⊥.

A set which has this last property is said to be orthogonally closed with respect to
the bilinear form.[29] Furthermore, if W is the dual space of V and M is a subspace,
then the following properties hold.

• There exists an isometric isomorphism that identifies the dual space M∗ with
V∗/M⊥ such that an element x∗ ∈ M∗ identified with x∗+ M⊥ has the follow-
ing action on the elements m of M:

(x + M∗)(m) = x∗(m) = 〈m, x∗〉.

• If M is closed then there exists an isometric isomorphism that identifies (X/M)∗

with M⊥ such that an element in (X/M)∗ identified with x∗ ∈ M⊥ has the fol-
lowing action on the elements m + M of X/M:

x∗(m + M) = x∗(m) = 〈m, x∗〉.

An important property of Banach spaces is that their dual space has always
"enoguh" functionals to separate different points.

Theorem A.2.2. Hahn-Banach Let V be a Banach space over K and f a bounded
linear functional defined over a subspace Z ⊆ V. Then there exists a bounded linear
functional F ∈ V∗ such that

f (z) = F(z), ∀z ∈ Z

and
‖ f ‖Z∗ = ‖F‖V∗ .

Another prominent tool is the semi-inner product.
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Definition A.2.7. Let B be a Banach space. A function [·, ·] : B×B → K is called a
semi-inner product (SIP) if it has the next properties:

• [x, x] ≥ 0 ∀x ∈ B and [x, x] = 0 ⇐⇒ x = 0

• [λx, y] = λ[x, y] and [x, λy] = λ[x, y] ∀x, y ∈ B, λ ∈ K.

• [x + z, y] = [x, y] + [z, y] ∀x, y, z ∈ B.

• |[x, y]| ≤ [x, x]2[y, y]2

A semi-inner product induces a norm by defining

‖ f ‖[·,·] := ([ f , f ])1/2 .

As a consequence of the Hahn-Banach theorem, there always exists a semi-inner
product that induces the norm.

Definition A.2.8. Let B be a Banach space. A function 〈·, ·〉 : B ×B → K is called
an inner product on B if it has the following properties:

• 〈x, x〉 ≥ 0 ∀x ∈ B and 〈x, x〉 = 0 ⇐⇒ x = 0

• 〈λx, y〉 = λ〈x, y〉 .

• 〈x + z, y〉 = 〈x, y〉+ 〈z, y〉 ∀x, y, z ∈ B.

• 〈x, y〉 = 〈y, x〉 for all x, y ∈ B.

An inner product defines a norm ‖·‖〈·,·〉 on B by the formula

‖x‖2
〈·,·〉 := 〈x, x〉.

A Banach space with an inner product which induces its norm will be called a Hilbert
space.

The only difference between these two concepts is the linearity of the second
argument. This has some geometric implications.

Theorem A.2.3. A semi-inner product on a K vector space is an inner product if and
only if it is linear on its second argument [45]. Equivalently, a semi-inner product is
an inner product if and only if its induced norm verifies the parallelogram law [28] :

2‖x‖2 + 2‖y‖2 = ‖x + y‖2 + ‖x− y‖2.

Since a semi-inner product lacks structure to replicate every property of an inner
product, we need to make more use of the norm to define orthogonality.

Definition A.2.9. Let B be a Banach space. We say that x ∈ B is orthogonal to y ∈ B
if for any scalar quantity λ we have

‖x‖B ≤ ‖x + λy‖B.

If B is a Hilbert space then this orthogonality is equivalent to the following defi-
nition.

Definition A.2.10. Let H be a Hilbert space. We say that x ∈ H is orthogonal to
y ∈ H if we have

〈x, y〉 = 0.
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We defined smoothness in terms of functionals (2.2.2, and later mentioned how
it is equivalent to a condition on the duality map and to differentiability of the norm.
Thus we can expect that the geometric structure of the Banach space affects the geo-
metric structure of its dual.

Definition A.2.11. [29] A Banach space is said to be strictly convex if ‖tx1 + (1−
t)x2‖ < 1 for any 0 ≤ t ≤ 1 and any unitary x1, x2.

Definition A.2.12. A Banach space B is uniformly convex if for every two sequences
{xn}, {yn} ⊂ B such that ‖xn‖, ‖yn‖ ≤ 1 and ‖xn + yn‖ −→ 2, we have that
limn−→∞‖xn − yn‖ = 0.

Theorem A.2.4. A Banach space is uniformly smooth if and only if its dual is strictly
convex and it is strictly convex if and only if its dual is uniformly smooth [6].

Theorem A.2.5. A Banach space is smooth if and only if the Gateaux differential
exists at every point in any direction [23].

Theorem A.2.6. Milman-Pettis Every strictly convex space is reflexive [29].

In the last sections we dealt with functions from the Banach space to R. To ensure
the existence of solutions or convergence to solutions we needed the convexity and
weak lower-semicontinuity.

Definition A.2.13. Let B be a Banach space. A function f : B→ R∪ {∞} is a :

• Convex function if for 0 ≤ t ≤ 1 and x, y ∈ B:

f (tx + (1− t)y) ≤ t f (x) + (1− t) f (y).

• Lower semi-continuous function if

{x ∈ B : f (x) > c}

is open for every c ∈ R.

A result in analysis says that any continuous function from a compact to R∪{∞}
meets its infimum. The following result is a generalization to lower semi-continuous
functions.

Theorem A.2.7. (Generalized Weierstrass Theorem) Let B be a reflexive Banach
space and f : A ⊆ B→ R∪ {∞} a weakly lower semicontinuous function, where A
is a bounded and weakly sequentially closed subset. Then f attains its minimum in
A [24]





59

Bibliography

[1] C.D. Aliprantis and K.C. Border. Infinite Dimensional Analysis: A Hitchhiker’s
Guide. Springer, 2007.

[2] J.P Antoine and K Gustafson. “Partial inner product spaces and semi-inner
product spaces”. In: Advances in Mathematics 41.3 (1981), pp. 281–300.

[3] Andreas Argyriou, C. Micchelli, and M. Pontil. “When is there a representer
theorem? Vector versus matrix regularizers”. In: J. Mach. Learn. Res. 10 (2009),
pp. 2507–2529.

[4] Andreas Argyriou, Charles A. Micchelli, and Massimiliano Pontil. “When Is
There a Representer Theorem? Vector Versus Matrix Regularizers”. In: J. Mach.
Learn. Res. 10 (Dec. 2009), pp. 2507–2529.

[5] Francesca Bartolucci et al. Understanding neural networks with reproducing kernel
Banach spaces. 2021. arXiv: 2109.09710 [stat.ML].

[6] B. Beauzamy. Introduction to Banach Spaces and their Geometry. Information Re-
search and Resource Reports. North-Holland, 1985.

[7] D.S. Bernstein. Matrix Mathematics: Theory, Facts, and Formulas (Second Edition).
Princeton reference. Princeton University Press, 2009.

[8] Bernhard E. Boser, Isabelle M. Guyon, and Vladimir N. Vapnik. “A Training
Algorithm for Optimal Margin Classifiers”. In: Proceedings of the Fifth Annual
Workshop on Computational Learning Theory. COLT ’92. Pittsburgh, Pennsylva-
nia, USA: Association for Computing Machinery, 1992, pp. 144–152.

[9] Liangzhi Chen and Haizhang Zhang. “Margin Error Bounds for Support Vec-
tor Machines on Reproducing Kernel Banach Spaces”. In: Neural Computation
29.11 (Nov. 2017), pp. 3078–3093. eprint: https://direct.mit.edu/neco/
article-pdf/29/11/3078/1024162/neco\_a\_01013.pdf.

[10] Liangzhi Chen and Haizhang Zhang. “Margin Error Bounds for Support Vec-
tor Machines on Reproducing Kernel Banach Spaces”. In: Neural Computation
29.11 (2017), pp. 3078–3093.

[11] C. Chidume. Geometric Properties of Banach Spaces and Nonlinear Iterations. Lec-
ture Notes in Mathematics. Springer London, 2009.

[12] I. Cioranescu. Geometry of Banach Spaces, Duality Mappings and Nonlinear Prob-
lems. Mathematics and Its Applications. Springer Netherlands, 2012.

[13] J.B. Conway. A Course in Functional Analysis. Graduate Texts in Mathematics.
Springer New York, 2019.

[14] N. Cristianini et al. An Introduction to Support Vector Machines and Other Kernel-
based Learning Methods. Cambridge University Press, 2000.

[15] Frank Deutsch. “Linear selections for the metric projection”. In: Journal of Func-
tional Analysis 49.3 (1982), pp. 269–292.

https://arxiv.org/abs/2109.09710
https://direct.mit.edu/neco/article-pdf/29/11/3078/1024162/neco\_a\_01013.pdf
https://direct.mit.edu/neco/article-pdf/29/11/3078/1024162/neco\_a\_01013.pdf


60 Bibliography

[16] Gregory E Fasshauer, Fred J Hickernell, and Qi Ye. “Solving support vector
machines in reproducing kernel Banach spaces with positive definite func-
tions”. In: Applied and Computational Harmonic Analysis 38.1 (2015), pp. 115–
139.

[17] Francisco Garcia-Pacheco, Alejandro Miralles, and Daniele Puglisi. “Selectors
of the duality mapping”. In: Mathematical Proceedings of the Royal Irish Academy
116A (Jan. 2016), p. 105.

[18] PANDO G GEORGIEV, LUIS SÁNCHEZ-GONZÁLEZ, and PANOS M PARDA-
LOS. “REPRODUCING KERNEL BANACH SPACES”. In: ().

[19] J. Giles. “Classes of semi-inner-product spaces”. In: Transactions of the American
Mathematical Society 129 (1967), pp. 436–446.

[20] H. Haghshenas, A. Assadi, and T. D. Narang. “A look at proximinal and Cheby-
shev sets in Banach spaces”. In: Le Matematiche 69 (2014), pp. 71–87.

[21] M. Hein, Olivier Bousquet, and Bernhard Schölkopf. “Maximal Margin Clas-
sification for Metric Spaces”. In: Journal of Computer and System Sciences, v.71,
333-359 (2005) 71 (Jan. 2003).

[22] L. Hörmander. The Analysis of Linear Partial Differential Operators I: Distribution
Theory and Fourier Analysis. Classics in Mathematics. Springer Berlin Heidel-
berg, 2015.

[23] G. Köthe. Topological Vector Spaces. Die Grundlehren der mathematischen Wis-
senschaften in Einzeldarstellungen n.º 1. Springer-Verlag, 1969.

[24] A.J. Kurdila and M. Zabarankin. Convex Functional Analysis. Systems & Con-
trol: Foundations & Applications. Birkhäuser Basel, 2006.

[25] L. Li. Selected Applications of Convex Optimization. Springer Optimization and
Its Applications. Springer Berlin Heidelberg, 2015.

[26] Zheng Li, Yuesheng Xu, and Qi Ye. “Sparse Support Vector Machines in Repro-
ducing Kernel Banach Spaces”. In: Contemporary Computational Mathematics - A
Celebration of the 80th Birthday of Ian Sloan. Ed. by Josef Dick, Frances Y. Kuo,
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