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Resumen

La tecnología en redes neuronales ha llamado mucho la atención en años recientes; su habilidad para aprender

relaciones no lineales es ampliamente apreciada y se utiliza en diferentes aplicaciones: el modelado de sistemas

dinámicos, procesamiento de señales y diseño de sistemas de control son de las más comunes. La teoría de

neurocomputación ha madurado considerablemente durante la pasada década y muchos problemas de redes

neuronales: diseño, entrenamiento y evaluación han sido resueltos.

La teoría de sistemas de estructura variable ha mostrado un enorme potencial en varios campos de investi

gación. En particular, el control de estructura variable ha probado ser una valiosa herramienta para diseñar

sistemas de control, debido, entre otras cosas, a la robustez contra las perturbaciones que cumplan la llamada

condición de acoplamiento. Otra característica del control de estructura variable es la descomposición del diseño

del controlador en dos pasos; primero se selecciona una variedad deslizante donde el sistema se comporta de

una manera adecuada, y segundo se diseña un control discontinuo que lleve al sistema a dicha variedad y lo

mantenga ahí.

El objetivo principal de esta tesis es proponer un esquema de control basado en identificación por redes

neuronales y en sistemas de estructura variable. Dicho esquema es aplicable para un amplio conjunto de sistemas

no lineales, llamados sistemas controlables a bloques. Una red neuronal recurrente se usa para identificar la

planta, con una ley de adaptación de pesos que garantiza esta tarea. Basado en este identificador neuronal, se

diseña el controlador de modos deslizantes que lleva el estado del identificador a la variedad deslizante deseada;

dicha variedad se diseña usando la técnica de control a bloques. El sistema completo de control garantiza que la

salida del sistema real siga a una señal de referencia pre-especificada. Adicionalmente, esta estrategia de control

permite usar identifícadores de orden parcial; esto reduce considerablemente la complejidad computacional del

controlador.

La aplicabilidad de este esquema de control se prueba en un motor de inducción y en un generador síncrono,

por medio de simulaciones. El control neuronal a bloques para el motor de inducción muestra gran robustez

contra las perturbaciones de par de carga y las variaciones en la resistencia del rotor. Además, se derivaron dos

leyes de control alternativas para este motor: un controlador de modos deslizantes singulares y un controlador

neuronal a bloques con restricciones de entrada. Ambos presentan un desempeño muy similar al mostrado por el

controllador neuronal a bloques original. Por otro lado, el controlador del generador síncrono se diseñó haciendo

ciertos cambios al controlador neuronal propuesto anteriormente. Sin embargo, esta nueva estrategia de control

muestra gran robustez bajo las perturbaciones de corto circuito en las barras terminales.

Finalmente, se presenta un nuevo tópico; las redes neuronales recurrentes de estructura variable. La teoría

de sistemas de estructura variable se utiliza para analizar el comportamiento de estas redes. El objetivo de este

esquema de identificación es seleccionar una estructura adecuada para el identificador neuronal. Los resultados

obtenidos en simulación son muy prometedores cuando se aplica este esquema a la identificación de sistemas

caóticos; en particular el esquema se prueba en el sistema caótico de Chen y en el circuito caótico de Chua.
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Abstract

The technology of neural networks has attracted much attention in recent years; their ability to learn nonlinear

relationships is widely appreciated and are used in many different classes of applications; modelling of dynamics

systems, signal processing and control-system design being some of the most common. The theory of neural

computing has matured considerably over the last decade and many problems of neural-network; design, training
and evaluation have been yet solved.

The Variable Structure Systems (VSS) theory has revealed an enormous potential in several interesting

research trends. In particular, Variable Structure Control (VSC) has become an effective tool for control

systems design, due to, among other things, the robustness in presence of disturbances that satisfy the so-called

matching condition. Other feature of Variable Structure Control is the decomposition of the controller design
in two steps: first, the selection of the sliding manifold where the system exhibits a well-behavior, and second.

the design of a discontinuous control law which drives the system into the desired sliding manifold and keep it

there.

The main goal of this thesis is to propose a control scheme based on neural networks identification and Variable

Structure Systems. Such scheme is applicable to a wide class of nonlinear systems called Block Controllable

(BC) systems. A recurrent neural network is used to identify the plant, with an update law that guarantees

such task. The sliding modes controller is designed to drive the identifier state into the desired sliding manifold,

which is designed using the Block Control technique. The overall control system guarantees that the output

of the real system tracks a pre-specified reference signal. Additionally, this strategy allows to use partial state

identifiers; this fact reduce considerably the computational complexity of the Neural Block Controller (NBC).

The robustness of this control scheme is tested on an induction motor and a synchronous generator. The

Neural Block Controller for induction motors shows to be robust respect to load torque and rotor resistance

variations. Additionally, two altemative control laws are derived to control this motor: Singular Sliding Mode

(SSM) controller and the Neural Block Control with input constrains. Both controllers present a performance

very similar as the Neural Block Controller proposed originally. On the other hand, the synchronous generator
controller was designed doing slight changes to the NBC, in order to fit this scheme to the plant model.

Nevertheless, this new control strategy shows to be robust respect to short circuit disturbances. Simulations

results are presented for both systems.

Finally, a new topic is presented; the Variable Structure Recurrent Neural Networks (VSRNN) for nonlinear

system identification. VSS theory is used to analyze the VSRNN behavior. The aim of this identification

scheme is to select an adequate neural identifier structure. The simulation results are very encouraging when

the scheme is applied to chaos identification. In particular the scheme is tested with the Chen's chaotic system

and the Chua's chaotic circuit.
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Chapter 1

Introduction

Artificial Neural Networks (ANN) are systems inspired from how the human brain works. The

brain is a highly complex, nonlinear, and parallel information-processing system. It has the

capabiUty of organizing its structural elements, called neurons, which interact massively among

them, through synaptic connections. So, the biological neural networks are capable to perform

certain tasks (e.g. pattern recognition, perception, motion control, etc.) in approximately

100-200 ms, whereas tasks of much less complexity may take days on a conventional computer

[19]*

An ANN consists of a finite number of neurons, which are interconnected to each other. The

strength of the connections is quantified by means of synaptic weights. The property of primary

significance for a neural networks is its ability to learn from its environment, and to improve

its performance through learning [46]. The performance improvement takes place over time in

accordance with some prescribed measure. A neural network learn about its environment by

an active process of adjustment appUed to its synaptic weights. IdeaUy, the network becomes

more knowledgeable about its environment as the learning process goes through.

Other basic feature of neural architectures is that they work in paraUel. Although ANNs can

perform human brain-Uke tasks such as object and pattern recognition or associative memory,

there is still a big distance between them and the biological ones. Nevertheless, they are

certainly a powerful tool to deal with a large set of interesting problems. Indeed, ANNs have

provided good solutions to many problems in various fields: such as classification, visión, speech,

signal processing, time series prediction, modelling and control, robotics, optimization, experts

systems and financial applications, among others [62] .

Several motives have originaUy leaded researchers to study neural networks. One of the

primary motives was to créate a computer program able to learn from experience. When the

experience mentioned is interpreted as knowledge about how certain inputs affecting a plant, it

5



6 CHAPTER 1. INTRODUCTION

is obvious that neural networks must have something in common with the techniques applied

in control systems.

1.1 Neural Networks in Control Systems

Frequently, modern control systems require a very structured knowledge about the system to be

controlled; such knowledge should be represented in terms of differential or difference equations.

This mathematical description of the dynamic system is named as the model. BasicaUy, there

are two ways to obtain a model; it can be derived in a deductive manner using physics laws, or it

can be inferred from a set of data coUected during a practical experiment with the system. The

first method can be simple, but in many cases it is excessively time-consuming. Sometimes, it

may be even considered unreaUstic or impossible to obtain an accurate model in this way. The

second method, which is commonly referred as identification system, it could be a useful short

cut for deriving mathematical models. Although system identification not always results in

equally accurate model, a satisfactory model can often be obtained with reasonable effort. The

main drawback is the requirement to conduct a practical experiment which brings the system

through its range of operation. Also a certain knowledge about the plant is stiU required.

System identification are widely used in relation to control systems design and many suc

cessful applications have been made over the years. Sometimes system identification is even

implemented as an integral part of the controller. This is known as an adaptive controller and

it is typicaUy designed to control systems whose dynamical characteristics vary with time. In

the typical adaptive controUer a model that is vaüd under the current operating conditions is

identified on-line, and the controller is then, in such way, redesigned in agreement with this

model.

Much literature is available on system identification, adaptive control and control system

design in general, but traditionally most of it has focused on dealing with models and controllers

described by linear differential or difference equations. However, motivated by the fact that

all systems exhibit some kind of nonlinear behavior. Recently, there has been much focus on

different approaches to nonUnear system identification and controller design. One of the key

players in this endeavor are the ANNs. The foUowing features of ANNs makes them particularly

attractive for application to modelUng and control of nonlinear systems [21]:

• Artificial Neural Networks are universal approximators [8]. It has been proven that any

continuous nonlinear function can be approximated arbitrarily well over a compact set by

a multilayer neural network which consist of one or more hidden layers.

• Learning and adaptatiun. The intelligence of neural networks comes from their gener-

alization ability with respect to unknown data. On-line adaptation of the weights is
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possible.

• Multivariable systems. ANNs have many inputs and outputs, which makes it easy to

model multivariable systems.

Henee, unknown nonlinear functions in dynamical models and controllers can be parametrized

by means of neural networks architectures. Although this fact has enormous potential abilities,

there are also a number of weak points, for example: the existence of many local óptima in

learning algorithms, the choice of complexity of the neural networks and the stability analysis

of dynamical systems which contains ANN architectures.

Most of the apphcations of neural networks to nonUnear identification and control is based

on the feedforward ones [18], [21]. Lately, the use of recurrent neural networks which allows a

more efficient modeling of dynamic systems, is increasing [57], [47]. A recurrent neural network

distinguishes itself from feedforward ones because it has at least one feedback loop. For example,

a recurrent neural network may consist of a single layer of neurons with each neuron feeding

its output signal back to the inputs of all the other neurons [19].

In this research, the neural identifier is built using High Order Recurrent Neural Networks

(RHONN) [28]; which are an efficient tool for nonUnear identification and ensures error ex

ponential convergence [29]. However, such algorithm requires too much computations, so a

simpler adaptation parameters algorithm is used [48] .

1.2 Variable Structure Control

Usually, the Variable Structure Control (VSC) algorithms [59] enforce sliding mode motion into

some manifold of the state space. The methodology for sliding mode control consists basically

of two steps. SUding motion is govemed by a reduced order system depending on the equations

of some surfaces, whose intersection describes a manifold, which is called the sliding manifold.

The first stage of design is the selection of the sUding manifold where the shding motion

exhibits desired properties. For this stage, many standard control methods can be applied;

stabiUzation, pole replacement, dynamic optimization, etc. In this research work, the so-called

NonUnear Block Control technique [34] is used to design such sUding manifold.

The second stage is to find a discontinuous control law which enforces sUding mode on the

sliding manifold selected at the first stage. This second problem is of reduced order as well,

since its dimensión is equal to the number of discontinuity surfaces, which is usually equal to

the dimensión of the control space.
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By separating the control problem in two motions of lower dimensions — the first motion pro-

ceeds sUding mode within a finite time interval and the second motion is the sUding mode with

the desired properties
—

,
the design procedure is considerably simplified. Additionally, sUding

modes are insensitive with respect to unknown plant parameters and external disturbances

which satisfies the so-called matching condition.

This thesis proposes a trajectory tracking control scheme which combines VSC and neu

ral networks approach [52] [36] [12]. So that, the matched disturbances are rejected by VSC

and the effect of unmatched ones is compensated by neural identification. Modifying existing

identification schemes based on recurrent neural networks [28], a neural network identifier of

block controllable form is proposed. Based on this model, a discontinuous control law which

combines block control [34] and VSC with sliding mode techniques [58], is derived. The block

control approach is used to design a nonUnear sUding surface such that the resulting sliding
mode dynamics is described by a desired Unear system. The proposed neural identifier and

control strategy allow trajectory tracking for systems which are represented in the nonUnear

block controllable form.

1.3 Thesis Outline

The outhne of this thesis is as follows:

• Chapter 2. The neural model used through this work is introduced. This model, called

Recurrent High Order Neural Networks (RHONN) ,
is a polynomial extensión of the well-

known Hopfield neural network.

• Chapter 3. The neural block control is explained for a the block controüable systems; a

particular case when the relative degree equal or less than 2, is analyzed in detail.

• Chapter 4. Three control strategies are derived for induction motor control appUcation;
Neural Block Control (NBC), Singular Sliding Modes (SSM) control and NBC with input

restrictions. The results are pubUshed in [36] and [13].

• Chapter 5. A control law is derived to reject the effect of the short circuit disturbance

in a synchronous generator connected to a infinite bus; a three-order model is used to

simúlate this generator. [12] resumes the obtained results.

• Chapter 6. Based on RHONN identifiers, the nonUnear systems identification via Variable

Structure Recurrent Neural Network (VSRNN) is proposed. This scheme is not only a

parametric identification but also a structural identification. [49] and [50] are fruits of

this research.
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• Chapter 7. Finally, the conclusions of this work are presented.

• Appendix A. The block control with input constrains for inductions motors is explained.



CHAPTER 1. INTRODUCTION



Chapter 2

Recurrent High-Order Neural

Networks

The use of multilayer neural networks is well known for pattern recognition and for modelUng

of static systems. The network is trained to learn an input-output map [46]. Theoretical works

have proven that, even with one hidden layer, a neural network can uniformly approximate any

continuous function over a compact domain, provided that the network has a sufficient number

of synaptic connections.

A typical nonUnear identification problem consists of selecting an appropriate model and

adjusting its parameters according with some adaptive law, such that the response of the

model to an input signal approximates the response of the real system.

Depending on the level of a priori knowledge about the plant, the identification problem
can

be approached in different ways. If the identification is based exclusively on measured data,

assuming no knowledge about the physics of the plant, the identification process
is called black-

box modelling, which is the typical approach used for neural networks identification schemes.

In contrast to this, the white-box modelling is used for a puré physical modelUng of the system.

When certain level of insight about the system exists and is utilized to improve the empirical

modelUng, the phrase gray-box modelling is used. This is the approach used in this work; we

take some information about the plant structure and use it to select the identifier structure. In

particular, the block controllable form and the relative degree are taken into account to build

the neural identifier.

11



12 CHAPTER 2. RECURRENT HIGH-ORDER NEURAL NETWORKS

2.1 Neural Model

For the identification task, expansions of the first order Hopfield model called High Order

Recurrent Neural Networks (RHONN) are used [28], which presents more interactions among

the neurons [29] . Additionally, the RHONN model is very flexible and allows to incorpórate to

the neural identifier a priori information about the plant structure.

A recurrent high-order recurrent neural network of n neuron and m inputs is defined as [29]

L,

±i = -üíXí + ^wik Yl víj{k\ i = 1, *•*,"*

J'64

(2.1)
fc=i

where x¿ is the z-th neuron state, Li is the number of high order connections, {/-., I2, ..., IL} is

a collection of non-ordered subsets of {1,2, ...,m + n}, az > 0, ui^ are the adjustable weights

of the neural network, dj(k) are non-negative integers, and r¡ is a vector defined as

V
=

with u — [tíi, u2, ..., um]T being the input to the neural networks, and S(-) a smooth hyperbolic

tangent function formulated by

2

Vi

'

S(xi)
"

Vn S(xn)

V(n+1) Ul

. V[n+m) .
'U'm

S(x)
1 + exp(—¡3x)

-1.

Henee S(x) € [—1,1]. As can be seen, (2.1) aUows the inclusión of high order terms.

Let define the vector

ft(x,u)
Pi,2

Pi,L,

n ndiW1 lj6/l Vj

n ndji2)

.

1 IjeiL Vj

It is worth mentioning that the entries of p{(x, u) are multiplying combination of elements of

77(2:, ti). In a more compact notation, (2.1) can be rewritten as

U

xx
= -aixl + ^2wikpik, i = l,...,n

fc=i
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Figure 2.1: A 2nd-order RHONN example.

or

±i = -OiXi + wJpifau), i = l,...,n

where w¿
= [ií-¿,i***^¿,¿í]T

Figure 2.1 shows a RHONN example, where

ii = -aix1+wnS(xi) + w12S(xi)2 + w13S(x1)S(x2) + wuui

x2
= -a2x2 + w21S(x2) + w22S(x2)2 + w23S(xi)S(x2) + w2iui

with n = 2, m = 1, L\ = L2 = 4.

(2.2)

2.2 On-line Identification

In this section, we consider the problem of identifying a nonUnear system given by

* = f(X-u) (2*3)

where x£S",ue 3?m, f is a smooth vector field and /¿(x,u) its entries. In order to identify

system (2.3), as discussed in [29], we assume that it is fully described by a RHONN, with each
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neuron state given by

Xi = -o-íXí + w*Tp¿(x> u) + Vi(x, u) (2-4)

with w*, pi 6 3ftL* The optimal unknown parameters vector w* is defined as

w* = arg min \ sup |/¿(x, u) + aiXi
- w*TPi(x, u) - vt(x, u)| \ (2.5)

w* U," J

Let define the modelUng error term i/¿ as

Mt) = fÁX, u) + OíXí
- w*TPi(X, u). (2.6)

The proposed neural model (2.3) aUows to match the identification algorithm to the real

plant.

In order to identify model (2.3), it is assumed that the plant is represented by the proposed

RHONN (2.4). Then two possible models can be built.

• Parallel model

ii = -üíXí + w7pí(x,u), t = l,...,n (2.7)

• Series-Parallel model

ibi = -aixi + w7pí(x-u), i = l,...,n (2.8)

where x¿ is the z-th component of the RHONN, and x **s the plant state. To develop the

weight update law, the series-paraUel model is used.

2.2.1 On-Line Weight Update Law

Let define the i— th identification error

@i Xj \j

and the i—th parameter error

w¿
= w¿

- w*.
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Assuming that the error modelUng term is zero, from (2.3) and (2.4) the identification error

dynamics is obtained as

éi = -üiei + wjpi. (2.9)

The next lemma is needed to develop the adaptive law (see Theorem 4.4 in [26]).

Lemma 2.1 Consider the system

x = f(x) (2.10)

where x € 3ín and f (x) is locally Lipschitz. Assume that there exists a function V : 5?n —> SR+

radially unbounded and continuously differentiable such that

V = ^-f(x) < - Wlx) < 0
dx

Vx 6 5Rn. where W(x) is a positive semidefinite function, then all trajectories of (2.10) are

bounded for t > 0, moreover

lim W(x(t)) = 0.
t—*oo

Using Lemma 2.1 we propose a positive definite function V¿(e¿, w¿) and a parameter adaptive
law such that limt_oc, V¿(e¿(í), w¿(í)) exists and V¿ is uniformly continuous and Vi(t)

—* 0 implies

that e¿(í)
—-> 0, when t

—» oo. Thereafter, let consider the Lyapunov function candidate

Vi = ±(e2i+v,Jriñi) (2.11)

where r¿ is a symmetric positive definite matrix. Differentiating (2.11) along the trajectories

of (2.9), we obtain

Vi = -a¿e,2 + eiYíJpi + wtTr¿ w¿ (2.12)

If we define the weight adaptive law [48] as

w, = -e¿r-V, (2.13)

then the equation (2.12) becomes

V¡ = -ate2 < 0.

Using Lemma 2.1, the adaptive law (2.13) ensures that the weights are bounded and the

identification error converges to zero, with x — [e¿ vrj)
r

V(x) = V¿(e¿, w¡), and W(x) = a-e2.
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2.2.2 Robust Weight Update Law

For the case when the modelUng error term is not zero we can guarantee neither the boundness

of the parameters ñor the convergence to zero of the identification error. Then we need to apply

the adaptive law (2.13) with the a-modification [23] in order to guarantee at least, that the

identification error and the weights are bounded for any time. Henee we propose the adaptive

law

wi = -r;1(eipi-aiwi) (2.14)

where cr¿ is given as:

0, if||w<||<Aái

(^)9í7*-' ifMi<||wí*||<2Mí

dio, if ||w¿|| >2M¿

with integer q > 1
,
and aio and M¿ positive constants.

Lemma 2.2 Assume that the system (2.4) and the RHONN (2.9) and all parameters are

adapted using the law (2.14)- Then, e¿ and Wi converges into a bounded set.

Proof. The time derivative of V (2.11) along the trajectories of (2.9) and (2.14) is given by

V¡ = -a¿e2 - ffiwjwi -

e<w,*(x, u).

Applying the triangular inequality and defining do — maxt<o(u¿(x>u)), we have

T e2 d02
Vi < -aiei

- ffiwjwi + -± +
—

.

„2

Since w¿ = w¿
— w*

therefore

-wJwí = -(wJwí + wTw*) < --||w¿||2 + -||w'||2

Vl<-aie2 + Í-¡ai\\vri\\2+1-al\\w:\\2 + $

Selecting a¿ > |, we define a^
= a¿

-

\, so that

Vi < -ate2 - -^IKH2 + -a,||w'||2 + -j



2.2. ON-LINE IDENTIFICATION

Substituting ei from (2.11) in the above inequality, we have

lid2
V < -aVi + oavfjTiVfi - -o-i\\ñi\\2 + ¿^IKII2 + J

■

Taking the worst case, when ||w¿|| > 2Mj, we select aio > 2a||r,||, so that

K<-aiK + ^io|K||2 + ^.
Therefore, [ei vrJ]T converges on the residual set

A-^j^wzr^^i-^iKip+l)}
and stay there. So the proof is completed. ■
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Chapter 3

Neural Block Control

In this scheme, the control law is based on the neural networks, whose inputs are the states

of the plant and the RHONN weights are updated depending on the identification error [48] .

Figure 3.1 explains the proposed control scheme.

The identification and control scheme used in this research is based on the foUowing property:

Given a desired output trajectory, expressed on output variables asyn a nonUnear system

with output yp, and a neural network output y;v, then it is possible to estabUsh the inequality

||yr
-

y>||2 < ||yjv
-

yP||2 -+- ||yr-yw||2

with ||*||2 as the EucUdean norm.

where yr
—

yp is the system output tracking error, y^
—

yp is the output identification error

and Yn— yr is the RHONN output tracking error. Henee, it is possible to divide the tracking

problem in two parts:

1. Minimization of ||yjv
-

yp||2,which can be achieved by the proposed on-Une identification

algorithm.

2. Minimization of ||yw—yr||2* f°r which a tracking algorithm is developed on the basis of

the neural identifier (2.8).

The second goal can be reached by designing a control law based on the RHONN model.

To design such controUer we propose to use of the so called Neural Block Control [52], [51].
This control technique requires the plant to have the Block Controllable Form (BCF) [34], so a

RHONN identifier with BCF is proposed. Based on this neural model a discontinuous control

19
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Figure 3.1: Block Control Scheme.

law, which combines block control [34] and VSC with sliding mode technique [58], is derived.

The block control approach is used to design a nonlinear sUding surface such that the resulting

sliding mode dynamics is described by a desired Unear system.

One additional advantage about using VSC is the separation of the system dynamics in two

motions, so that, only a partial state RHONN is needed to derive the control law. This strategy

is used to control an induction motor in Chapter 4 and a synchronous generator in Chapter 5.

3.1 Nonlinear Block Controllable Form

Let consider the nonlinear system

X=f(x,t) + B(X,t)u (3.1)

where x € Z?xc3ín, and u <E U C W1 is bounded by

|u| < Uq, Uq > 0 (3.2)

The vector field f (*, t) and the columns of B (x, t) = [ bi (x, t) b2 (x. t) • • • bm (*, t) ]
are sufficiently smooth. Additionally assume that f (0,í) = 0.



3.2. GENERAL NEURAL BLOCK CONTROLLER 21

Definition 3.1 Let the system

Xi
= fi(Xi,t) + B1(xi,t)x2

X2
= f2(Xl*X2.í)+B2(Xl-X2*í)X3

Xi
= fi(Xi,***,Xi,í) + Bi(Xi,-**.Xi,í)i+i, z = 3,...,r-l (3.3)

Xr
= tr{Xl.~-.Xr+l>*)+'Br{Xv-.Xr+l.t)*

Xr+1
= fr+l(Xl.*** ,Xr+l.*)+Br+l(Xl.*** .Xr+l.O"

and the output

Yp
= h (x) = Xi

It is said that this system has the Nonlinear Block Controllable Form with Zero Dynamics,

where

rank[Bi] = n¿ Vx G DxcW andt€[0,oo), i = 1, .... r (3.4)

and xT = (Xi*X2-*** -Xr+i)- The numbers nX)n2,... ,nr are known as the controllability

indexes and satisfies

n-i <n2<
■ ■ ■ < nr < m

with Y1í=i fh = n.

It is easy to see that the relative degree of the system (3.3) is r with respect to the output

yp

3.2 General Neural Block Controller

Let consider a system with NBC form (3.3) with nx
=
n2
=

n3
=

...
= nr. Additionally, assume

that the system has a Block ControUable (BC) RHONN representation given by

Xi
= fí,(Xi,w*) + BÍ(Xl,w')x2-+i/1(0

X2
= f2,(Xl.X2W*)+B^(Xi,X2,W*)X3 + ^(í)

X,
= f7(Xi,X2****,Xi,w*) + B*(x1,x2,...,xI,w*)xl+1 + IA(í) (3.5)

Xr
= £(x,w)+B;(x,w)u + i/r(í)
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Let define qx = nu q2
=

qx + n2, ..., $
=

<j¿_i + n¿,...,(jr
=

n, with t = 1,2, ...,r Then

f!T(Xi.X2.-.Xi.w) = A¿x¿ + [A(,,+i)(W(íi+1),Xi,X2>***-Xi)I A(9i+2)(w^+2),Xi-X2.-*Xi)---

\*3i+ni)(W(?.+n.),Xi,X2. -.X¿)]T, Ai=diag{-a(flt+1), -a{qi+2), ..., -a,qi+ni)} i
= 1,2, ...,r. Where,

Mw* • X) * = 1> 2, -, n and the entries of B¡ (xi, X2» -Xi, w*) xi+i i = 1,2, ..., r are of high-

order connections, with wj, w2, ...,w* as the optimal weight vectors and Ui(t) is the vector of

modeUng error terms; Additionally we assume that ||i/í(í)|| < ¿o¿ for aU time.

So we propose the RHONN identifier with the Block Controllable form, expressed by

xi = fi(xi,Xi,w) + B1(xi,w)x2

x2 = f2(x2,Xi,X2*w) + Bl(Xl,X2>w)X3

x¿ = f¿(x¿,Xi,X2*****Xi*w) + Bi(xi,X2-***>Xi*w)x¿+i (3*6)

x,. = fr(xr,x,w) + Br(x,w)u

whitf¿(xi,X2;-.X¿,w)=Aixi+[A(gi+1)(w(,i+i),Xi),A(9¡+2)(w(9i+2),Xi),*.*,A(,i+ni)(w(gi+ni),Xi)]
Ai=diag{-a{qi±i),-alqi+2),...

-

a(íi+n¡)} i = 1,2, ...,r. Where, A¿(w¿,x) i = l,2,...,n and

the entries of B¿ (XnX2> ***X¿! w) X¿+i * — 1-2, —,r are of high-order connections, and w*,

w2, ...,wni are the adaptive weight vectors. AdditionaUy, B¿ (X1-X2- ■■■Xiiw) X¿+i are full raQk

matrices and their weights are constants.

As mentioned before, we have separated the tracking problem in two almost independent

problems; the first is treated as an identification problem in Chapter 2 and the other is treated

as a control problem. In this Section a control technique is developed to drive the neural output

yn, whose dynamics are given by equation (3.5), to a desired output yr.

3.2.1 Sliding Manifold Design

Define the error vector Zi as

zi
=

xi
-

yT

where yr is the desired output. Then the dynamics for z- is

¿1 =fi(xi,Xi-w)+Bi(xi-w)x2-yr* (3.7)

Substitution of e2 = x2
—

X2 -*n tl***3 above equation yields
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¿i = fi (xi,Xi-w)
- yr+B! (Xi,w) (x2

-

e2). (3.8)

Let the fictitious control x2, in the block (3.7) be chosen as

x2 = Bf1 (Xi,w) -f! (xj, Xi, w) + KiZj - Bj (xi, w) e2
-

yT + z2 (3.9)

where Ki is a Hurwitz matrix, Bj
1

(xi, w) is the inverse of Bi (xi,w). We can have a new

desired dynamics for the block (3.8) selecting eigenvalues of Ki . Then zi dynamics is given by

¿i = KiZi+Bi(x1,w)z2.

Then z2 is obtained from (3.9) as

Z2= Bj
1

(Xi,w) [fi (xi, Xi, w)
- KiZi + Bx (xi, w) e2 + yr +x2 = a: (xuXi,w, yr) .

Now, differentiating z2 along the trajectories of (3.6) results

¿2 = f2(xi , x, yr, yr,y--,w) + B2x3

where f2(Xl, x, w,yr, yr,yr) = x2 + (fe*i + _%Xi + g¿X2 + T^+i^+f^y,*) * Substi-

tuting e3
=

X3
—

X3, the above equation can be rewritten asequation can be rewritten as

¿2 = f2(x2,x,y-*,yr,yr,w) + B2(xi,X2>w)(x3-e3)

¿2 = f2(X,W*,I/(í))+f2(x2,X,yr,yr,yr,w) + B2(Xi,X2,W)X3

(3.10)

withf2*(x,W,i/(í)) = xj+ (f^-Xi + 1^X2) andf2(x1,x,yr,yr,yr,w) = -B2 (Xi,X2* w)e3 +

(t^xi + ^W+^">r*-+^'y'-) Notice tnat f2 is measurable and f2*
- -~* —

is bounded.

f| is not measurable but it

Let the fictitious control x3, in the block (3.10), be selected as

X3
= B21(Xl,w) [-f2(x2,X,yr,yr,yr,w)+K2Z2] +Z3

Then the z2 dynamics is given by

z2
= K2z2+B2(x1,X2,w)z3 + f2*(x,wv,i/(í)).

We continué along this way until we obtain
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(*)

Zt = fi(Xi, x, yP,YrSr- Yr ,w) + B¿ (Xi, X2, -, Xi, w) X¡+i + tffo, wv, í/(t)) (3.11)

where i = 3, . . . ,r
— 1 and x¿+1 is the fictitious control for (3.11) giving as

x¿+i=B¿ (Xi,X2»-»X¿,w)
W

-fi(xi,x,y7*,yr,yr- yr ,w)+K¿z. +Zi+1-

Then (3.11) can be rewritten as

ii = KíZí+Bí (xi,X2, -, Xi, w) zi+i + f^*(x,w\ i/(i)).

This procedure yields the nonlinear transformation

zi = xi
-

yr

-i

z2 = x2+B1 (xi,w) fi(xi,Xi,w)-KiXi

Z3
= X3+B2 (Xl,X2>W) [f2(X2,X,yr*,yr,yr,w)-K2Z2] (3.12)

z¿
= Xí+Bí (Xi,X2,-,X¿,w)

(«')

f¿(x¿,x,yr,yr*,yr- y*- ,w) -K¿z¿

where i = 3, . . .

,
r — 1.

The dynamics for system(3.3) in z-coordinates is

¿1 = KiZi+BiZ2

Z2
= K2z2+B2z3 -1- f2*

¿3 = K3z3+B3z4 + f3*

¿r-l = K,— iZr_i+Br_iZr +¿;

Zr
= fr+Bru+F;.

(3.13)

(3.14)
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3.2.2 Discontinuous Feedback

Now, the variable structure control action is selected by

u = -tioB^sign (Zr) •

Substitution of (3.15) into (3.14) yields

z2
= fr + fr*

- u0sign(zr).

Assume now that the foUowing bound is satisfied

||f-, + f;||2 <9o,and9o >0 Vi

then the controUer (3.15) with u0 chosen as

(3.15)

(3.16)

u0 >
go

+ d0, do > 0

guarantees a sUding mode on the surface zT = 0 in a finite time. Indeed, taking the Lyapunov

function candidate VT = \zTTxr, we have that along the trajectories of (3.14)

Vr = -UoHZr^+z/^ + f;]

< -[uoy/rh
- -7o] ||zr||2 < -

d0
&r\\2 S

v^do
\/K

lnT
" "*

y/n~T

which shows that the Lyapunov function vanish in a finite time. This fact impUes the
existence

of the sUding motions on the manifold zr
= 0. This motion is described in new variables z by

the linear system n —

rir order

¿i = Kizi+Biz2

¿2 = K2Z2+B2Z3 + f2

z3
= K3z3+B3z4 + f3* (3.17)

Zr_i
= Kr_iZr_i + fr_!.

Now, rewriting the system (3.17) as

Zl

¿2

Zr-l

Ki 0

0 K2

0

0

Zl

z2

Zr-l

Biz2

B2z3 + f2*

f*
lr-l0 0 0 Kr_!

which can be consider as a Unear stable one, perturbed by the last term. So, if such term is

bounded, we can conclude that the trajectories of [zX_2,zJ_i, ...,zj] are ultimate bounded

[26].
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3.3 Neural Block Control with Relative Degree 2

First, recaü that the control problem with relative degree is trivial for VSC. Now, let consider a

system with NBC form (3.3) and relative degree equal to 2 and nx
=

n2. Additionally, assume

that the first block of this system has a Block ControUable (BC) RHONN representation given

by

Xi= fi* (Xi,í) + B{ (Xi,í)X2 + "(*) (3*18)

where f*(Xi,¿) = Axi + [Ai(w*,Xi), A2(w2,Xi), ••-, Ani(w;i,Xi)]T, A=diag{-a1:-a2,... -

a-m }, A¿(w*, Xi) ¿ = 1,2, ..., n\ and the entries of B\ (Xi, ■-) X2 are of high order terms. With

wj, w2, ...,ví*ni as the optimal weight vectors and u(t)
= [ui(t),v2(t), ...,uni (í)]T is the vector of

modeling error terms.

So we propose, for the block (3.18), a partial state RHONN identifier with the Block Con

trollable form, expressed by

Xi=fi(x1,xi,í) + Bi(xi,í)x2 (3*19)

wherefi(xi,Xi,í) = Axi+[Ai(w1,Xi),A2(w2,Xi),-*,Ani(wni,Xi)]T Ai(wi,Xi) i = 1,2, ...,nx

and the entries of Bi (Xi,**)x2 are the same of high-order terms than in (3.18), but w-,

w2, ...,wni are the adaptive weight vectors

3.3.1 Sliding Manifold Design

Define the error vector Zi as

zi
= Xi

-

yr.

Then the dynamics for Zi is

¿i = fi(xi,Xi,w)+Bi(xi,w)x2-yr* (3.20)

let the fictitious control x2> **n the block (3.19), be chosen as

X2
= -Br1(xi,w) -fi(xi,Xi,w) + K1z1 -yr + z2 (3.21)

■Jt

where Ki is a Hurwitz matrix, Bj"1 (xi, w) is the inverse of Bx (xx, w). It is worth mentioning
that due to the time-varying nature of some RHONN parameters, B: (x-. , w) may lose rank, so
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we assume that w varíes in such a way that Bi (xi, w) keeps its rank for all time. With the

fictitious control x2 (3.21), we have a new desired dynamics for the block (3.20) selecting the

eigenvalues of K¡.

Then z2 is obtained from (3.21) as

z2
= Bf1 (xx,w) [fi (xi.Xi-w)

- KlZi +yr] +x2

and the dynamics for zx is rewritten as

¿i = KiZi-+*B1(xi,w)z2.

Now, differentiating z2 along the trajectories of (3.3) it results

¿2 = f2(x1,x,yr,yr,yr,w) + B2U (3-22)

where f2(xllX, w,yr,yr,yr) = f2(x)- (fefi + fe* + fefe + l^*+§^+t^)

3.3.2 Discontinuous Feedback

Now, the VSC action is selected as

u - -uoB^sign (z2) (3*23)

Substitution of (3.23) into (3.22) yields

z2
= f2(xi,x,w,yr,yr,yr)

- íx0sign(z2). (3.24)

Let assume now that the foUowing bound is satisfied

||f2(xi,x,w,yr,yr,yr)||2<*7o,andg0>0 Vi (3.25)

then the controUer (3.23) with u0 chosen as

u0>-^= + do, d0>0 (3*26)
y/nr

guarantees a sUding mode on the surface z2
= 0 in a finite time. Indeed, taking the Lyapunov

function candidate VT = -jZ2Tz2, we have that along the trajectories of (3.24)

VT = *-u0||z2||1-t-z2T [?2(xi,x,w,yr,^r,yr)]
v^d0

< -Kv^-*]INl2<—1= llalla<-^V^
V"t v r
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which shows that the Lyapunov function vanishes in a finite time. This fact impües the existence

of the sUding motions on the surface z2 = 0. This motion is described in new variables zi by
the linear system nx-th order

¿i = Kizj (3.27)

Therefore, we have guaranteed the convergence of the neural output yjv to the desired output

yr. Note that if the relative degree is 2 then the disturbances [f2T, ...jf*^] of the general

NBC, do not appear in the dynamics of Zi , assuring its convergence to zero.

3.3.3 Stability Analysis without Modelling Error

Lemma 3.1 Let a system with BCF with output yw= Xi, relative degree equal to 2 and nx —

n2
= m. Additionally, its first block has a neural representation as (3.18) and the modelling

error terms are zeros. Suppose that

• A partial state RHONN as described in (3.19) is used to identify (3.18), the RHONN

adaptive parameters are updated as in (2.13).

• The desired output yr, yr and yr are bounded.

• The matrix Bx (Xi> 0 does not lose rank, for all t.

• The stability margin (3.26) is satisfied.

• A neural block controller based on model (3.19) is applied to the system, as done in Section

3.3.

Then, the output ya* tracks for a desired output yr.

Proof. Let propose the foUowing Uke Lyapunov candidate function.

V = oeTe + o £ *Tl\wt + -z^Pzi (3.28)
¿ ¿ ¿=i ¿

where R is a symmetric positive definite matrix and e = [ei5 e2, .., e„JT

Assuming that aU of the modelUng error terms u(t) are zeros and the manifold z2 = 0 has

been reached, the time derivative of (3.28) along the trajectories of (2.9), (2.13) and (3.27), is

expressed as

V = -eTQe-z1Sz1
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where Q = —(A + AT), and S = —

(RK -f KTR) are a positive definite matrices and A =

diag{ax,a2, ... ,0,^}.

Then, by using Lemma 2.1, we conclude that e and zx are asymptotically stable in the

manifold z2 = 0. Therefore y¿v
—► yp and ya*

—* yr, so we conclude that yp -*yr- ■

3.3.4 Stability Analysis with Modelling Error

Lemma 3.2 Let assume the same BC system and the same assumptions as in Lemma 3.1,

with the parameters update law 2. 14 and the modeling error terms not zero but bounded. Then

the vector [eT,wT,wJ, ...jwj^zj"]"1" converges to a bounded set

Proof. RecaU Lemma 2.2, then [e¿ vrJ]T i — 1, 2, ...,nx converges into the residual set

Di = {[« wtT]T : V < 1 Qaio|K||2 + f) }
Assuming that the matrix Bi (Xn1-) has fuü rank and the stabihty margin (3.26) is satisfied,

the neural block controUer of this Section guarantees the convergence of Zi to zero. Henee the

proof is complete. ■
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Chapter 4

Induction Motor Neural Control

Induction motors are widely used in industrial applications due to their reliability, simpler

construction and reduced cost with respect, for example, to D.C. motors. However, the control

of induction motors can be a difficult problem since the dynamics are highly nonUnear and

the parameters, mainly rotor resistance and load torque, could de considered as time varying.

Provided that all state variables are measured and all parameters are known, different controllers

can be, and indeed have been proposed, including the field oriented controller [3], [32], VSC

sUding mode controller [56], [59], and more recently, exact input-output Unearization [31], [37]
and passivity-based controUers [43] .

Comparing with other approaches, VSC sUding controUer achieves robust performance prop

erties for the closed-loop system. However, this robustness property can be provided only with

respect to uncertainties which satisfy the so-called matching condition. On the other hand,

the uncertainty, caused by rotor resistance and load torque variations, does not satisfy the

matching condition. On-Une identification of the load torque was proposed first in [56]. In

[40] ,
a nonUnear input-output state feedback Unearizing control scheme, which is adaptive with

respect to both load torque and rotor resistance, was proposed. In our researches, we assume

that all of the induction motor parameters can change in a wide range.

In the Section 4.4 of this chapter the Neural Block Control [52] [51] approach is used to

design a nonUnear süding surface such that the resulting süding mode dynamics is described

by a desired Unear system. An altemative control law is derived in Section 4.5, using Singular

Sliding Modes technique [11] [35].

For some applications, it is important however to take into account the discrete feature of

the electrical drives, as done in [9], where the Direct Torque Control (DTC), a heuristic control

strategy for high power induction motor application, is proposed. The DTC is particularly

appeaUng for slow-sampUng appUcations, where the average approximation used for the im-

31
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plementation of modulation-based control may be inadequate. There has been some eftbrts

to study the DTC controller StabiUty, for example [44] and [6]. As well as DTC strategy, the

approach of Section 4.6 switches the power electronic devices just one time, per sample time.

The proposed neural identifier and control strategies allow trajectory tracking for induction

motors.

4.1 Induction Motor Model

For electrical motors applications, the drives are basically constant voltage sources connected

to the motor windings by power electronic switching devices (BJT, GTO, IGBT, etc.). Figure
4.1 shows a switched inverter, connected to a three-phase induction motor [33]. The switching
elements may be, for example, IGBT(Insulated-Gate Bipolar Transistor). Each IGBT pair can

be manipulated by one of the control binary variables a, b and c. The power transistors are

commuted from the ON (saturation) to the OFF(cut-off) state and vice versa, depending on

theirs corresponding binary variables, as illustrated in Figure 4.1. All binary variables may

change their states independently. Henee, there are eight possible combinations.

Figure 4.1: The inverter and induction motor connection.

A three-phase circuit can be reduced to a more convenient twc-phase model. Let define the

input voltage vector u = [ua u0}T ,
in the two-phase a

- ¡3 reference frame [5], where ua and uq

stand, respectively, for the voltage applied to the induction motor stator windings. Then, the

available input vectors are restricted to a discrete set U. The relation between these voltages
vectors and the binary variables (a, b and c) is formulated as
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Figure 4.2: Avaliable Stator Voltages Vectors

abe U ua Up

000 u0 0 0 |
100 Ul 2v;/3 0

110 u2 Va/3 Vs/s/3 |
010 U3 -VJ3 Vs/V3 |
011 u4 -2VJ3 0 1
001 U5 -Va/3 -V/V3
101 u6 VJ3 -V/V3
111 u7 0 0

Table 1. Binary variables and theirs corresponding input voltages vectors

where Vs is given by the constant voltage source, which feeds the inverter. Figure 4.2 is the

phase portrait of the available input vectors.

In many appUcations the discrete constrains (Table 1) imposed by the inverter (Figure 4.1)

are solved by using a PWM (Pulse Width Modulator) approach [33] . So one may assume that

the input u can be any bounded time function, as done in Section 4.4 and 4.5. In Section 4.6

the control law is derived considering such constrains without using PWM.

The foUowing equation set is presented in the stator-fixed a— (3 coordinate system (see for
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instance [5]); they describes the induction motor dynamics

du
— =

CxWJp-lppi^-CoTL

dÍ>a
dt

dipp

= -C2lpa
~

npUJ-lp0 + C3la

= -c2i/j0 + npu,il>a + c3i0 (4.1)

= C4i/ja + c^npüji¡}0
-

c5iQ + c7ua

=

Cilpp
-

cbnpujipa
-

C5ip + C7Up

dt

dia

~dt
di

¡j

dt

where ui represents the angular velocity ofthe motor shaft, ipa and ip0 are, respectively, the rotor

magnetic flux leakage components, ia and ip are, respectively, the stator current components,

ua and up stand, respectively, for the voltage applied on the stator windings, and T¿ represents

the load torque perturbation. The constants Cj, i = 0, ..., 7 are defined as foUows:

1 3Mnp Rr RrM Rr M
co

=

~^,Ci
= --T-rE,c2 = —,c3

= ——

,c4
J'

l

2JLV
'

U' U
' 9

LrLsLr-M2

M
_

RSL2 + RrM2
_

Lr
°5 ~

LSLT - M2
' °6

~

LS(LSLT - M2)
' °7

~

LsLr - M2

where Ls, Lr and M, are respectively the stator and rotor inductances and mutual inductance

between the rotor and the stator. Rs and Rr, the stator and rotor resistances, J the rotor

moment of inertia and np the number of stator winding pole pairs.

It is more suitable for neural network identification to present the induction motor model in

new variables defined as Xj
= w- X2 =^a,X3

=

V^- X4
— ¿a, X5

— ip- Henceforth, the model

(4.1) can be rewritten as

Xl
= CÁX2X5

~

X3X4)
-

CqTl

X2
=

~C2X2
~

n-pXiXz + C3X4

X3
=

-C2X3 + nPXiX2 + C3X5 (4.2)

X5
=

C4X2 + C5«*pXlX3
-

C6X4 + crua

X6
=

C4X3
~

C5"*pXlX2
~

C6X5 + c7u0

This system is in a quasi-nonhnear block controllable (NBC) form. Then the above model

can be expressed in block form as

X1 = fiíX^ + BxíxV (4.3)

X2' = f2(x\x2) + B2u (4.4)
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with x
= [x[ XÍ]7 Xi

= [Xi X2 X3]T. Xi = [X4 X5]T u = \ua up)T nx = 3 and n_
= m = 2.

fi(Xi) =
-CoTL

-C2X2
~

nPXiX3 + C3X4

-C2X3 + "*PXiX2 + C3X5

Bi(Xi) =
-C1X3 C1X2

'

C3 0

0 C3

h(Xi,Xi) =
C4X2 + c5"pXlX3

-

C6X4

L C4X3
~

C5"pXlX2
~

C6X5
B2 =

c7 O

O c7

Commonly, induction motor applications require not only shaft speed regulation, but also

flux magnitude <f> = \\ + X3 regulation. Based on this model, the so-caUed dynamic block

controUable neural network is proposed in the Section 4.3.

4.2 Flux Observer

Since the currents and velocity are the only measurable variables the rotor fluxes estimation

is required for neural networks identification. This flux estimator was proposed in [36]; it is

a partial state observer with adjustable convergence rate. This features enables to reduce the

number of calculations comparing with a fuU state observer. To obtain the flux estimation,

only the stator currents dynamics is used. The proposed observer has the foUowing form

X.4
=

-C5X4 + C6Ui+Va

X5
=

-C5X5 + C6"2 + Vp

where X4 and \s are the estimation of currents X4 and X5 and v
= [va vp]Tis the observer input.

Let define current observer error as ea = X4
—

Xj and ep
=

X5
—

X5, whose dynamics is given

by

¿a =

C4X2 + c5^pXlX3
_

V<*

¿a =

C4X3
~

c5"pXlX2
~

vp.

Then, on the süding surface ea, ep
— 0, the foUowing invariance equation is satisfied

0 =

C4X2 + C5TlpXlX3
-

vaeq (4.5)

0 =

C4X3
-

C5npX!X2
~

Vpeq

with veq
— [vaeq, vpeq]T as the equivalent valué of v.

Now, based on unit control, va and vp are selected as

va = h 1
—

r~~l and vp
= l2

\e_\ + 6 \ep\+6
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with Zi , l2 and <5 are positive observer parameters.

If Zi , l2 are enough large and 6 is sufficiently smaU we guarantee a sliding motion on surface

ea, sp
= 0. So v is taken as an estimated of veq. Therefore we can express (4.5) as

C4 c5nPXi

-c^npXi c4

X2

X3

va

V0

from the this equation, it is possible to obtain the estimation of X2 and X3 as

X2

Xs c2 + (c5nPXi)2 [ c5nPXi Q

c4 -c5nPXi va

VP

where the estimated fluxes are x2 and x3 ■ F°r the rest of the calculations on this chapter, the

estimated fluxes are considered as the real ones.

4.3 Neural Model for Induction Motors

UsuaUy, for nonlinear control systems, the plant model is obtained from the plant physics. For

neural control, we propose to build a neural model based on a given plant model structure.

The RHONN scheme is very flexible and allows to incorpórate a priori information about the

plant structure to the neural identifier.

So, let assume that the model (4.2) has the RHONN representation given by

Xi
=

-aiXi + vJ*nS(xi) + w*12S(x3)X4 + vJ*13S(x2)X5 + vjU + ^i{t)

X.2
= -a2X2+^2lS'(X2)+"'225'(Xl)'S'(X3)+u;23X4 + '/2(í)

X3
=

-^X3 + vj\xS(x3) + w\2S(xx)S(x2) + ^33X5 + "3(0

where wj 'fx2,w*n,w*u}T v/*2 = [w*2l,w*22,w^Y and w*3 [^31, wh, wh\
T

are the opti

mal weight vectors, which are constant and unknown, and px
= [S(xx),S(x3)Xi, S(x2)Xs, 1]T

P2
= [S'(x2),S,(Xi)*S'(X3),X4]T and p3

= [S(x3),S(xx)S(x2),X5}J are the high order term vec

tors. FinaUy, ux(t), v2(t), u3(t) are the modelUng error terms.

Henee, second-order RHONN is used as the identifier. In order to introduce as much infor

mation as possible about the induction motor and based on the mathematical model (4.2), the

following neural model is proposed

ii = -axxx +wxxS(xx) + ujx2S(x3)X4 + wx3S(x2)x5 + vju

i2 = -a2x2 + w2iS(x2) + ui22S(Xi)S(x3) + uj23x4

x3
=

-a3x3 + w3xS(x3) + u>32S(xx)S(x2) + vJ33X5-

(4*6)
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According to Chapter 2, for this model wi = [wxx,wx2,wx3,wu}T w2 = [w2x,w22,w23}J and

W3 = [w3x,w32,w33]T are the adaptive RHONN parameters.

For this neural model, xx is the neural speed or velocity, and x2 and x3 are the neural fluxes,

so they are used to identify Xi, X2 an^ X3 respectively. The neural weights w¿ i — {1, 2, 3} are

updated according to the adaptive law (2.14) from Chapter 3. The term Wu is a kind of bias

[19] and has the function of compensating the load torque effect; this term does not contradict

any assumption used to develop the weight adaptive law.

The output variables to be controUed are the speed Xi and the neural flux magnitude cf>,

respectively. Now, let define the neural flux magnitude as tp
= x\ + x2, then, according to

Chapter 2, the plant output is yp = [xi 4>]T the neural output is y¡v
= [xx ip]T and the

reference signal is yr = [u)r </v]T

As can be seen in Section 4.4, neural currents are no required, due to the control strategy

used in this work.

4.4 Neural Block Control

In this Section, based on the neural identifier (4.6), a control law is developed. Such control law

is derived using block control strategy [34] and sUding modes control [59] . Due to the relative

degree of the induction motor, the neural block controller for systems with relative degree 2 is

appüed from Section 3.3.

The neural model (4.6) and the stator currents model (4.4) are combined to obtain a quasi

NBC form, consisting of two blocks:

xi = fi(x1,Xi,w) + B1(x1,w)x2

X2
= f2(Xi,X2) + B2u

with x1 = [xx,x2, x3]T X2
= [X4, Xs]1" u = [uaup}T nx ■= 3 and n2 = m = 2.

(4.7)

fi(-*i,Xi,w)

/íifci.Xi.w)
/i2(x-.,Xi,w)
/ufo-Xi-w)

-axxx +wnS(xi) +WX4

-a2x2 + w2xS(x2) + w22S(xx)S(x3)
-a3x3 + w3xS(x3) + w32S(xx)S(x2)

Bi(xj,w) =
~uinS(x3) wl3S(x2)

w23 0

0 1033
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For shorter notation aU the weights are ordered in one vector w = [wx w2 wj] This model

can be reduced to the NBC-form [34], and therefore the block control methodology is applied.

At first, the tracking error for the neural output is rewritten as

Zl

z2

Xi
—

Ur

ip-ifr
(4.8)

Then, the tracking error dynamics can be expressed as the first block of the NBC-form:

¿i= fi(xi,Xi,w,yr)+Bi(x1,w)x2 (4.9)

where fi(x1,Xi,w,yr) =
/n(xi,Xi,w,yr)

/i2(xi,Xi,w,yr)
, Bi(xi,w)

u)i2S(x3) wx3S(x2)

2tü23x2 2w33X3
,
with

/n(xi,Xi,w,yr) = -axxx + wxxS(xx) + wX4
- ür and

/i2(xi, Xi, w,yr) = 2x2 (-a2x2 + w2xS(x2) + w22S(xx)S(x3)) +

2x3(-a3x3 + w3xS(x3) + w32S(xx)S(x2))
-

<fr-

Due to time varying nature of RHONN weights, we can not guarantee that rank(Bi)= 2 for

all time, so we assume that those parameters do not change their signs, keeping Bx as a full

rank matrix.

4.4.1 Control Law

FoUowing the block control strategy, the quasi-control vector X2 1S selected as

where K =

X2
=

-fci 0

0 -fc2

X4

Xs

= Bi ^Xi-w) (-fiíx^Xi, w,yP) + Kzi) 4* z2

BI
1

_
1

6

2^33X3 ~2w23x2

-u>i3S(x2) wx2S(x3)
2wx2w33x3S(x3)

-

2wx3w23x2S(x2), and kx,k2 > 0.

Then, (4.9) can be rewritten as

z1=Kzi+Bi(Xi,w)x2*

and z2
z4

25

with 6

Now, the new variables z2 are expressed as
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z2 = Bx 1(xx,w) (fi(x1,Xi,w,yr) - Kzj) + x2
= a2(xi,Xi,X2-w*yr*yr,X2) (4*10)

Taking the time derivative of (4.10), the second block of the NBC-form for the variables z4

and z5 is presented as

Z2 = f2(x1,x,r,r,?,w) + B2u (4.11)

where f2(Xl, X, w,yr, yr,yr) = f2(x)~ (^1 + fefi + %U + fe*+ft*r+ft*r)
Now, the VSC control strategy formulated as

u -
—

u0sign (z2)

under the condition

c7u0 > |f2(xi,x,w,yr,yr,yr)|, Vi

guarantees a sUding mode on the surface

z4
= 0, z5 = 0

in finite time. Then the sUding dynamics, for the tracking errors variables zx and z2, is govemed

by the second order Unear system

¿1 —
—

kxzx

¿2 = -fc2^2

with desired eigenvalues — fci and — k2. Henee, we conclude that the neural output tracks the

reference, but for the motor outputs we cannot conclude the same. This topic is analyzed in

the foUowing Subsection.

4.4.2 Stability Analysis

Assuming that aU the modehng error terms are zeros and the surface zx = 0 has been reached,

let propose the foUowing candidate Lyapunov function.

V = \eTe + \ ¿ wjF.Wi + iz^Rzi (4.12)
2 2 i=i ¿
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where R is a symmetric positive definite matrix and e = [ei, e2, e3]T

Under the assumption that all of the modelling error terms are zeros, the time derivative of

(4.12) along the trajectories of (2.13), (4.2), (4.6), (4.9) and (4.11), is expressed as

V = -eTQe - z^Szj

where A = diag{ax,a2,a3}, Q = —

(A + A ) and S = —

(RK + KTR) are positive definite

matrices

Then, by using Lemma 3.1, we conclude that e and zi are asymptotically stable in the

manifold Zi = 0. Then yp —> yyv and yw
—

■ yr- So we conclude that yp
—> yr.

4.5 Neural Control with Singular Sliding Modes

In this section, the goal is to forcé the induction motor position to track a specified speed

reference without flux tracking. In order to achieve this tracking, a control law based on the

singular sUding modes technique [35] [54] [53] is developed. Given a reference ur, we propose the

next change of variables

Zl
=

Xi
—

ur

Differentiating zx along the trajectories of (4.6), we obtain.

zx
=

-axxx + wxxS(xx) + vjX2S(x3)Xa + u>i3S(x2)X5
-

¿r = -<Mi + z2 (4.13)

Solving for z2 the above equation, it yields

z2
= kxzx -

axxx + wxxS(xi) + wi2S(x3)Xi + ™i3*S(x2)X5 ~

"--V

Then the z2 dynamics is given by

¿2 = /2(Zl, X,W1, «r) + VJX2C7S(x3)ua + UtX3C7S(x2)u0 (4.14)

where h(xx,X,wuür) = f*ii + gt (fi(xj + B1(Xl)x2) + $$Ux) + fewj -

ür

Now, we design the control law

ua
= -sign(wx2S(x3))sign(z2)xio

u0
= -sign(wx3S(x2))sign(z2)u0.



4.5. NEURAL CONTROL WITH SINGULAR SLIDING MODES 41

Then (4.14) can be rewritten as

¿2 = /2(zi,x,Wi,wr,wr) -uoC7(\wx2S(x3)\ + \wx3S(x2)\) sign(z2)

A sufficient condition to guarantee that z2 converges to zero is

(K2c7S(x2)| + \wi3C7S(x3)\)u0 > \f2{xi, X-Wi.w-Of, Vi

and then (4.13) is expressed by

¿i = —kxzx.

Therefore, zx converges asymptotically to zero.

Because of the induction motor is Bounded-Input-Bounded-Output BIBO [26] and the input
is bounded, the internal dynamics are bounded for any time. Notice that this controUer does

not require the neural fluxes, because the flux magnitude regulation is not one of the goals for

this controUer.

4.5.1 Stability Analysis

Let propose the foUowing candidate Lyapunov function

V
'

= \e* + \^Tl*1 + \% + \Z2 (415)

Assuming that the modeUng error terms are zeros and differentiating (4.15) along the tra

jectories of (2.9), (2.13),(4.2), (4.13) and (4.14). it yields

V= -a1e2-fc1z2 + z2(zi + /2(xi,x,Wi,ó;r,íJr) -

u0 (\wx2wi5S(x3)\ + \u)x3w55S(x2)\) sign(z2))

Additionally, assume that the foUowing bounds are satisfied

\zx + f2(xx,x,^i,ÜJr,ü>T)\ < tfo, and g0 > 0

K (H2C7S(x3)| + \u<i3c7S(x2)\)\ > qo + d0, d0 > 0, i = 1, 2
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then

z2(+zx + /2(xi,x,Wi,cLv,¿v) -ito(K2c7S(x3)| + \vji3c7S(x2)\) sign(z2)) < -d0\z2\

which shows that the time derivative V satisfies the foUowing inequaUty

V < —axe\ — kxz\ —

do|z2|

Analogously to Subsection 4.4, we conclude that, ex, zx and z2 converge to zero, therefore

Xi -* ur.

4.6 Neural Block Control with Discrete Input Constrains

For induction motor drives, the PWM is used to approach the desired control signal. Such

modulator forces each power device to switch several times per sample time. However, if the

devices are operated at high frequency, this switching PWM strategy may destroy the electronic

devices in a short time period, since for every switching (on and off) there is a dissipated power

peak and frequently voltage overshooting.

In this Section, based on the Variable Structure Control (VSC) method [58], we propose a

discontinuous control strategy for induction motors. Such control scheme enables to reduce the

device switching to only one during the sample time, instead of the two switching required by

the PWM. This enables to reduce the power electronic devices wearing, and increase theirs life

span. This control scheme is based on the Block Control with Input Constrains for induction

motors; see Appendix A.

To derive the control law, let start from equation (4.8), but with a slight change, which yields

Zi=fi(x1,Xi,w,yr) + B1(x1,w)x1=-Kz1+z2. (4.16)

Solving the equation (4.16) for z2 results

z2=fi(x1,Xi,w,yr) + B1(x1,w)x2+Kz1.

Then the dynamics for z2 are

z2= f2(x1; X, w, yr, yr) + B2(xx,w)u (4.17)
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where ?2(x1,x,w,yr,yr) =

¿?Z

jfa(Xi,X.w,y„£P)

.
/»(x11x.w,yr,yP)

—

flv, rl + Sxi
l

dX2
2 :>v-yr^ ovryT9xi dyrJT

'

dyr

-^w and Ba(Xi, w) = B1(x1,w)B2.

Now, we select the desired sUding manifold as z2
= 0. The next scope is to design a control

law which forces the system to reach the desired manifold. This controller must be a logic

function which maps from the continuous state x to the admissible input vectors set U (see

Table 1), in order to switch the control binary variables, such that, the desired voltage feeds

the induction motor.

4.6.1 Sliding Modes Controller Design

Assumption 4-1- There exists at least one discrete valué uk € U, such that

sign(B2tei, w)ufc) = -sign(z2),for aU z2 with x2,X3 7a 0. (4.18)

The controUer must select one element of U that satisfies (4.18), and then change the binary
variables such that the selected input vector is fed to the stator windings. By using the model

(4.2) instead of (4.6), the above assumption is a fact; the proof can be found in Appendix A,

Section 2.

Now we analyze the controUer stabiUty. Let b2i, b22 be the rows of B2(Xi,w), then it can

be expressed as

B2(Xi,w)ufe
b-uUA,

b22Ufc

sign(b2xuk)\b2xuk\

SÍfl7?,(b22UjS.)|b22Ufe|
|b21u*| _

0

0 |b22uj
sign(b2xuk)

sign(b22uk)

(4*19)

Using (4.18), the expression (4.19) can be formulated as

Batei.w)ufc =
|b2iufe|

_

0

0 |b22uJ
sign(B2(x1,w)uJ =

- |b2iufc|
_

0

0 |b22uJ
sign(zi).

Henee, (4.17) is rewritten as

¿2= fa(x1( x, w, yr)
- B'(xi, w , u)sign(z2)

where

B'(v wul=[ lB2lUfcl
-

°

«(Xi,w,u)
Q b22u.

(4.20)
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which guarantees a sUding mode on the surface z2
= 0 in a finite time. Under the condition

|/2i(x1,X,w,yJ.,yr)| < |b2iufc| and \f22(x\x,^,r,r)\ < |b21ufc| ,
Vi. (4.21)

The sliding dynamics, in the tracking errors variables zi and z2 (4.8), is govemed by the

second order linear system

ii = — fciZi

z2
= —k2z2

with desired eigenvalues —kx and — fc2.

Note that some of the available input vectors, presented in Table 1 may satisfy the condition

(4.18), at the same time; we select the input vector that maximizes ||B2(x ,w)ufc||, in order

to increase the sUding motion stability margin given by (4.21).

4.6.2 Stability Analysis

In order to analyze stabiUty, let propose the following candidate Lyapunov function

V = ieTe + i ¿ wtTriW¿ + iz^Rzi + ¿z2Tz2 (4.22)

where R is a symmetric positive definite matrix and e = [ei,e2,e3]T Assuming that the

modeUng error terms are zeros and differentiating (4.22) along the trajectories of (2.13), (4.2),

(4.6), (4.16) and (4.20), it yields

V = -eTQe -

ZjSzi + zj (2Rzi + f2-B'sign(z2))

with Q = -(A + AT) and S = -(RK + KTR) as positive definite matrices. Additionally,

assume that the foUowing bound is satisfied

||f2 + 2Rzi ||2 < q0, and q0 > 0

If the matrix B' satisfies

|b2i¿ufc| > q0 + d0, d0 > 0, i = 1, 2

then

zjB'sign(z2) 4zJ [2Rz! + f2] < -{q0 + d0) ||z2||j 4 9o||z2||2 < -d0 \\z2\\x
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which shows that the time derivative V satisfies the foUowing inequality

V < -eTQe - z[Szj - d0 ||z2||1

Using Lemma 3.1, we conclude that plant output yp = [xi, V] tracks the reference signal

yr
= [Ur, <pr]T

For the three control strategies developed in this chapter, it is possible to prove that vector

[eT,zT,wjr,w2r,wJ]T converges into a bounded baU, when the modeling errors are not zero but

bounded. The proof is straight forward (see Lemma 3.2).

4.7 Simulations

In this section, we present the results obtained using the identification scheme and the control

laws proposed above. The nominal valúes of the induction motor parameters are given in the

next table:

Parameter Valué Description

Rs 140 Stator Resistance

Ls 400mií Stator self Inductance

M 377mH Mutual Inductance

Rr 10.1Í2 Rotor Resistance

Lr H2.8mH Rotor self Inductance

np 2 Number of pairs of poles

J O.QlKgm Inertia Momentum

The design parameters for the fluxes observer are ¿i,Z2 = 3500; for the neural network,

we selected ax
= 100, a2 = a3 = 500, 0 = 0.1, Tf1 = diag{500,500, 500}, T2 = T3 =

diag{500, 500, 50}. In order to test the proposed scheme performance, a variation of 2 Ohm

per second is added to the rotor resistance, in addition we include a square torque disturbance

(see Figure 4.3 and Figure 4.4).

4.7.1 Neural Block Controller Simulation

The results for velocity and flux are presented in Figura 4.5 and Figure 4.6, respectively. As

can be seen, the performance of the proposed scheme is very satisfactory. Figure 4.7 shows
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Resistance (Ohm)

i i r 1 *T T

14.5 - -

14 -

13.5 - -

13 - -

12.5 - -

12 -

*' /^^
-

11.5 -

11 -

10.5

1(1 i i

Time (s)

-

Figure 4.3: Rotor resistance Rr.

2.5

Load Torque (Nm)

0.5 -

Time (s)

« 3

Figure 4.4: Load torque T¿
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the flux observer and flux identifier response. The current in phase a an its estimated can

be compared in Figure 4.8. Figure 4.9 is a phase portrait of the stator currents. Finally, the

identifier parameters are plotted in Figure 4.10.

4.7.2 SSM Controller Simulation

Figure 4.11 shows the speed behavior, using the SSM controUer. Although the robustness of this

control law is very good, the currents harmonics may be unacceptable, as can be appreciated

in Figure 4.12.

4.7.3 Simulation of Neural Block Controller with Discrete Input

Constrains

Figures 4.13 and 4.14 show the performance of this control strategy. Figure 4.15 is a phase

portrait of the stator currents, it can be verified that the harmonics are low.

4.7.4 Modification for robustness improving

instead of z1
Xl~Wr

<ü-tpT

XX
—

UT

tp-tp

inThe robustness is improved by substituting z1 =

the control laws. Although, the control law is more robust than the explained in Sections 4.4,

4.5 and 4.6, it does not fit the stated stabiUty analysis, so this work are left as a future research

topic. Figures 4.16-4.20 show the improved robustness of this modification.

4.8 Conclusions

Based on recurrent neural networks and VSC methodology, three control strategies for induction

motors are presented. The stability, for both the identifier and the controller, is analyzed, and

it is proved that the proposed control laws forces the closed loop trajectory to converge and

stay in a manifold, which guarantees that the tracking error tends to zero. The robustness of

these control scheme is tested in presence of different kind of disturbances such as load torque

variations and changes on the induction motor parameters. The simulation results are very

encouraging, AdditionaUy [36] and [13] are two pubUcations, which resume the results of this

chapter..
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Figure 4.5: NBC; Real speed Xi, reference speed uT and neural speed xx.
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Figure 4.7: NBC; Flux x2, flux observer estimation x2 and flux identifier estimation x2.
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Figure 4.9: NBC; Stator currents phase portrait.

1000 I-

32 "¡3

Time (s)

-1000

Figure 4.:10: NBC; RHONN weights
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Figure 4.11: SSM control; Real speed Xi, speed reference ur, neural speed xx.
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Figure 4.12: SSM control; Stator currents phase portrait.
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Figure 4.13: NBC with input constrains; Real speed Xi, speed reference ur, neural speed xx.
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Figure 4.14: NBC with input constrains: Flux magnitude <f> neural flux magnitud ip and flux

reference tpr.
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Figure 4.15: NBC with input constrains; Stator currents phase portrait.
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Figure 4.16: Robust NBC; Real speed \x, speed reference uT, speed identifier estimation xx.
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Figure 4.18: Robust SSM control; Real speed X'i, speed reference ur, neural speed xx.
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Figure 4.19: Robust NBC with input constrains; Xi, <*>r and xx.
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Figure 4.20: Robust NBC with input constrains: <f>, tp and tpT.
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Chapter 5

Synchronous Generator Neural Control

Modern human society needs an ever-increasing supply of electrical power. Very complex

power systems have been built to satisfy this increasing demand. The trend in electric power

production is toward an interconnected network of transmission Unes Unking generators and

loads into large integrated systems. Successful operation of a power system depends largely on

the engineer's abiUty to provide reUable and interrupted service to the loads; ideaüy the loads

must be fed at constant frequency at aU times.

The first requirement of a reliable service is to keep the synchronous generators running in

parallel and with adequate capacity to meet the load demand. If at any time a generator loses

synchronism with the rest of the system, significant voltage and current fluctuations may occur

and transmission Unes may be automaticaUy tripped by their relays at undesired locations.

Feedback linearization was one of the early strategies to be explored, with applications pro

posed to both single and multimachine systems, even with output feedback and state observers

[39], [27], [24], [61] and [41]. Robustness issues, both against parameter uncertainties and not

modeUed dynamics are still open, as well as stability analysis for the output feedback case.

Others recent works on energy related design techniques, have been developed for the weU-

known single machine third-order flux decaying [45]; most of these results are based on the

apphcation of damping injection controUer [2], [14]. As done in Chapter 4, Block Control and

Neural Networks are combined to obtain a robust control law, capable to reject disturbances

which affect the system.
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5.1 Mathematical Model

Commonly an electric power network consists ofN generators connected by lossless transmission

Unes. It is assumed tUat the mechanical input power of each generator is constant. The machine

model considered here is the classical flux-decay model (the one axis model) given in [1] and

[15]; exciters and governors are not included in this model. Thus, we have for k = 1, ...,N :

6k = Auk

Mk
Mkuk = Pmk - Pek - Dkuk -

-¡-j-Pcoi
iWj*

*¿tXkVk+n cos{6k
_

9k+n) + Efdk
_

x*

Adk *-dk
T'dOkEqk =

y,
Vk+n COS(<5/fc

-

6k+n) + Efdk
~

-^TE'qk

where subscript k relates to the generator number, 6k is the load angle, Auk = uk
—

us is the

speed deviation, and Eqk is the quadrature axis internal voltage, Pmk is the mechanical power,

Efdk is the excitation field voltage, Pcoi — Ylk^L'mk
—

Pek) and Pek is the generated electrical

power. FuU details of the model and definitions of parameters can be found in [15] and [1].

For the single machine infinite bus (SMIB) case, the above model simpUfies to the well-known

third-order model [45], which is used in most transient stability studies in power systems. The

dynamics of a single synchronous generator is described by the following equations [2]

Xi
=

X2 (5-la)

X2
= -•5iX3sin(Xi)-&2X2 + **D (5.1b)

X-,
= b3cos(xx) -b4x3 + E + u (5.1c)

The state variables of this system are the load angle Xi , *ne shaft speed deviation from the

synchronous speed x2, and the quadrature axis internal voltage x3- The inputs P — ^^ and

E — -Jr are held constant, and a supplementary signal u is added to the field voltage which
**

dO

represents the control input. The coefficients 6¿, i = 1, ...,4 are positive.

5.2 Neural Model for Synchronous Generators

Notice that the model (5.1) has relative degree 3, so we cannot apply the control scheme used

for the induction motor in Chapter 4. On other hand, the general neural block control of Section

3.2 may be inadequate due to the uncertainties involved in such controller. Nevertheless, we

can take advantage from the model (5.1a), it is has not parameters which may vary with time,

so it is vahd to consider no adaptive parameter for its neural identifier state. Then, some slight

changes are made to the identification scheme of Chapter and to the control strategy of Chapter

3, in order to fit them to this generator model.
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So, let assume that the model (5.1a)-(5.1b) has the RHONN representation given by

Xi
=

X2 (5-2a)

X2
= -X2+™*2lS(X2)+U>*22S(Xl)S(X3) + P + V2(t) (5.2b)

where w2
= [íü21,iü22]t is the optimal weight vector, which is constant and unknown, p2 =

[•-^(ta), •S'(Xi)'S'(x3)]T *s tne high order term vector and v2(t) is the modelling error term.

For this application some modifications are done with respect to the identification scheme

used before. Based on the neural model (5.2a)-(5.2b), we propose the next neural model to

identify the synchronous generator (5.1)

xx = -ax(xx
-

xx) + x2

x2 =
-a2x2 + w2xS(x2) + u¡22S(xx)S(x3) + P

(5.3)

According to the neural structure explained in Chapter 2; x = [Xn X2> X3Y x = [^í

x2]T w2 - [w2x, w22]T p2
= [S(X_), S(Xx)S(x3)]T

Now, assirming a zero modeling error term, the identification error dynamics is

where e = [ex e2]T A =

Lyapunov function

—ai 1

0 -a2

é = Ae 4- b(w2 p2)

.and b = [0 1]T Let define the foUowing candidate

V = ^eTe+iw2Tr2w2T
by selecting axa2 > ~, Q = —

(A +A) is a positive definite matrix, then

. T

V = -eTQe + e2wjp2 + wjr2 w2

RecalUng Chapter 2 and using the adaptive law

w2=e2r2~1p2

the convergence to zero of e and the boundness of w2, are assured.

(5.4)

If the modehng error term is no zero, the -r-modification (?.14) is applied to guarantee the

identification and parametric errors boundness; see Lemma 2.2.
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5.3 Neural Block Control

The goal of the proposed scheme is to forcé the synchronous generator to track a specified

reference. In order to achieve this tracking, we develop a control law based on the sliding modes

technique. Let define 6r as the desired constant valué for the load angle. Then according to

Chapter 3 the plant output is yp = Xi, th.e neural output is y¿v = xx and the reference signal

is yr
= 6r.

The tracking error is given by

zi
= Xi

— 6r (5.5)

and the dynamics for the new variable zx can be obtained from (5.3) and (5.5) as

¿i = —

oi<5i + x2
= -hzi + z2 (5.6)

with the new variable

z2
= kxzx —

aiei + x2

whose dynamics is given by

¿2 = kx(-axex + x2)
-

ai (a^! + x2)
-

a2x2 + w2xS(x2) + w22S(xx)S(x3) + P = -k2z2 + z3

with

z3 = /2(x, x) + w22S(xi)S(x3)

where /2(x,x) = k2Z2 + kx(-axex + x_) - ax(axex + x2)
-

a2x2 + w2xS(x2) + P

Then the time derivative of z3 is expressed by

¿3 = ^^ +^ + ^5(Xi)5(x3)+,225(x3)^^ (5J)

+u)22S(xi)^^-(b3 co-bCi)
~

&4X3 + E + u)
°X3

Taking into account that the control should be bounded, |u| < uq, uq > 0, we propose the

foUowing discontinuous control law:

u= -u0sign(w22S(xx)—
—

—)sign(z3) (5.8)
&X3

Then the closed system (5.7), (5.8) becomes

¿3 - h
~ u0\w22S(xx)?§^\sign(z3) (5.9)

OX3
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where /3 = -^x +^x + t¿225(Xl)5(x3) +U;225(x3)^Xi+^25(xi)^(63Cos(Xl)-
biXs + E).

If the foUowing condition is satisfied

|/3| > uo\w22S(xx)^^-\, Vi

°X3

a sUding motion on the nonUnear surface z3
= 0 is guaranteed [58]. Then the control error

shding mode dynamics on this surface is described by the second order linear system

¿i = -kxzx + z2

¿2 = — k2z2

(5.10)

which is stable for kx > 0 and k2 > 0. Henee, we can assure asymptotic convergence for the

control errors. Notice that (5.10) can be rewritten as

¿i = Kzi

where Zi
Zl

22

K
-fci 1

0 -fea

5.3.1 Stability Analysis

In order to analyze the stability, let propose the following candidate Lyapunov function

rr
1 T 1 Tt-* 1 Tx, 1 T

V = -e e + -w2 r2w2 + -zx Rzi + -z3 z3 (5.11)

where R is a symmetric positive definite matrix and e = [ex, e2]T Assuming that the modeUng

error term is zero and differentiating (5.11) along the trajectories of (5.3), (5.4), (5.2) and (5.9),
it yields

V = -eTQe -

ZjSzi + zj ( 2bRz: + f3-u0 w22S(xx)
dS(X3)

dx3
sign(z3)

with S = — (RK -I- K R) are a positive definite matrices. Additionally, assume that the fol

lowing bound is satisfied

|/3 4- 2bRzi2| < q0, and q0 > 0
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If "o w22S(xx)a-^l satisfies

u0 w22S(xx)
dS(X3)

dx3
> qo + d0, d0>0, i = 1,2

then

z3u0 w22S(xx)
9S(X3)

dx3
sign(z3)z3+z3 [f3 + 2bRzx] <

-

(q0 + d0) \z_\ + q0\z3\ < -d0\z3\

which shows that the time derivative V satisfies the following inequality

V < —eTQe — zJ"Szi — do\z3\ (5.12)

Using Lemma 3.1, we conclude that plant output yp = Xi tracks the reference signal yr = 6r.

It is possible to prove that vector [eT,w2 ,zx, z2, z3]r converges into a bounded ball, when the

modeling errors are not zero but bounded. The proof is straight forward (see Lemma 3.2).

5.4 Simulations

The parameters ofthe model (5.1), given on the next table, are taken from [1], and the operating
conditions are as in [14].

Parameter Valué (p.u)

bi 34.29

b2 0.0

b3 0.149

b2 0.3341

P 28.22

E 0.2405

We analyze the response of the system to a short circuit generated by the connection of a small

impedance between the machine's terminal and the ground; this impedance is disconnected after

a certain time, called the clearing time. Then, the system goes back to its pre-disturbance state;

during the fault occurrence, trajectories could diverge, if no control action is introduced. The

largest time interval, before instabiUty, is named the critical clearing time.

The design parameters for the neural network were selected asa2 = 10,/?=l, r^1-^
díag{200, 200}, and fcx = 5 and k2 = 5 were used for the control law. In order to test the
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-*

1.3

Figure 5.1: Plant angle (xi), identified angle (xx) and reference angle (<5r).

robustness of the proposed scheme, the described short circuit is added at t = 1, with an

clearing time, t_ = 40ms. The load angle is shown in Figure 5.1, In Figure 5.2 the angular

velocity for the plant and for the neural identifier can be seen; the weights w2 are plotted in

Figure 5.4, and the input signal is shown in Figure 5.5.

5.5 Conclusions

Simüarly as done for induction motors, a neural identifier was proposed for the generator, but

with some sUght changes due to the relative degree of the plant. Nevertheless, the proposed

control scheme shows good robustness under short circuit disturbance. The results of this

chapter were presented in [12].



64 CHAPTER 5. SYNCHRONOUS GENERATOR NEURAL CONTROL

Figure 5.2: Plant speed (x2), identified speed (x2) and reference speed (uT).

Fi&ure 5.3: Interna! Voltage x3
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Figure 5.5: Control signa! u.
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1



Chapter 6

Variable Structure Recurrent Neural

Networks

A challenger problem for nonUnear systems identification is to select a suitable structure for

the identifier; recurrent neural networks offer the advantage of weU approximating a nonUnear

system to an arbitrarily accurate level [8], provided that the neural identifier has sufficiently

large number of synaptic connections [29]. However, it is quite difficult to determine the number

of sufficient synaptic connections to approximate a given dynamical system in general. If the

neural identifier does not have enough synaptic connections, it is not possible to assure that

the parameters converge to their optimal valúes, even using persistently excited inputs, and in

many cases the identification error does not converge to zero. On the other hand, if there are

too many synaptic connections, computational burden will be huge and the suggested solution

becomes impractical.

In this chapter, to aUeviate the aforementioned troublesome situation, the Variable Structure

Neural Network (VSRNN) [49] are proposed, for continuous-time nonlinear dynamical systems
identification. In this approach, an initial configuration for the neural identifier is first assumed.

If a pre-specified error bound is not reached, more synaptic connections will be added, and an

other cycle of experimentation will begin, until the output performance of the network satisfies

the pre-desired criterion. Complex chaotic systems are used to illustrate the capability and

appUcabüity of the proposed identification scheme.

6.1 Switching Systems

First it is convenient to define a switching system. Let the family of vector fields be P =

{P(x, u,í), f
°

: 3?n x Km -» Kn, a 6 T}, where T is an index set, P(0, 0, •) = 0 Ver € T, and for

67
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each a G T, f is locally Lispchitz on x and uniformly on t [38]. Such vector fields are usually

referred as subsystems.

Given the family P, consider a switched system,

x = fs«(x,u,í) (6*1)

where x € 3?", u G D?n t < 0, and s is the switching signal, defined as a time discontinuous

function [0,oo) -> T, and associated with the signal s(t) there is a sequence of real numbers

T = t0 < tx < ... < tk <
...,

caUed switching time sequence, and a index sequence £
=

cr0, ci, •■-, c/t, •■*, such that s(t) = ak for aU tk < t < tk+x.

Switched systems are of variable structure; they are a simple model of (the continuous por-

tion) of hybrid systems [63]. So, s(t) can be changed at any time by some higher process,

such as a controller, computer, or human operators [4]. We focus specially on the continuous

switched systems, which have the additional constraint
that the switched subsystems agree at

the switching time. More specifically, consider (6.1) with switching time sequence T and index

sequence E, such that is^-^(x(tk),u(tk),tk) = p(ífc)(x(ífc),u(ífc),ífc). So continuous switched

systems require that the vector field is continuous over time.

6.2 VSRNN model

Define the dynamics of each neuron of a Variable Structure Recurrent Neural Networks (VS

RNN) [49] by

xi = -aiXi + f°i(x,u,xvi), i = l,...,n. (6.2)

For the t-th neuron, consider a family of functions: P¿ = {/f(x,u, w»), ff : *K" xJT x5RLi -» R,

a G Ti}, where I\ = {0, 1,2, ..., A¿}, s¿(í) : [0,oo) -» I\ is the switching signal, and A¿ is the

maximal number, which is finite, of the high-order connections for the ith neuron.

It is suggested here to select P¿ such that F¿ = {ff = wfp?, f¡ = f° + ™¿,(l°+i)Pí,(l?+i)>
• *■>

f° = frl+u,iÁL^a)Pim+a),a
= 2, ..., Ai}, where w°, p\ G RL«9, and L\ is the number of initial

high-order connections. Henee, the maximal number of high
order connections is L° + A,.

For simpUcity, P- is rewritten as F, = {/° = w?Tp?, f¡ = vf¡TP¡, ~-,_f!
= ™fpí, o =

2,...,A¿}, where w| = [w?T ^,(Lo+1)]T P,1 = \fiV ft,(L0+i)]T. <
= K wi^i+a)Y and

Pí = [pf"1)T Phl°+o-)Y with a = 2, ..., A¿.

Let f° = w^Tp° and /¿Ai =t* w/p¿ be the initial or minimal structure and the maximal

structure, respectively, for* the ¿th neuron state. Let the high-order connections, which have
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not been connected at t„ < t < ta+x, be denoted by w?Tp? It is noted that for the VSRNN,

the time function s¿, defined for the t-th neuron, is increasing, with s¿(0) = 0.

The function s¿ is determined by an external agent, caUed supervisor; this agent evaluates

the VSRNN performance and, depending on this evaluation, it calculates the valúes of s,(í)
on-Une. According to the definitions of the family of functions F¿, and of the switching function

s^ the indexes sequence £¿, which is 0, 1,2, ..., A¿, is defined off-line. Henee, only the switching
time sequence T¿ is determined, on-Une, by the supervisor.

As stated above, the weights are time functions; henee, every w¿j, j
= 1,2, ...,L°, for the

initial structure, is a solution of the differential equation

Wij=Vij(t), Wíj(0) eU. (6.3)

For l = Z,? + 1, Ll + 2, ..., Ll + fc, ..., L\ + A¿, the weights are given by

wü = p,(t -

tk)vü(t), wü(0) = 0, (6.4)

where u»¿(-) is a bounded time function defined in Subsection 6.3.1, and u() is the well-known

unit step function. The above equations imply that all the not included weights are zeros, until

the respective high-order connections are added. Notice that (6.2) is a continuous switched

system, due to the way as we have defined the weights behavior, which are zero until the are

connected to the VSRNN.

6.3 Nonlinear System Identification with VSRNN

As done in Chapter 2, consider a nonlinear system of the form (2.3), which can be represented

by (2.4) and the optimal weight w* defined as in (2.5), with zero modelUng error term.

Assumption 6.1. The optimal weight vector w* can be expressed as

w; = [W;<T w**T]T

where the entries of w*9 can be any finite valué and the ones of w*q are zeros.

This assumption imphes that there could exist a neural structure, simpler than the maximal

one, which can approximate arbitrary weU the system (2.4). It is worth mentioning that, here,
the dimensions of w*9 and w*9 are unknown.

To develop an on-Une weights update law, the Series-Paiallel model (2.8) is used. The idea

is to propose an initial structure for the RHONN and then adapt the neural parameters in

such a way that if an error criterion is not satisfied during a period of time, then an extra
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Figure 6.1: Identication block scheme

high-order connection is added. It continúes adding different high-order connections, until

the error criterion is satisfied or the maximal neural structure is reached. Figure 6.1 shows a

block diagram of this scheme, where the supervisor evaluates the VSRNN's performance. For

simplicity of notation, the subindex i in the switching function s is dropped.

As in the definition of a VSRNN, one can define w* = [w*sT w*sT]T where w*sTp, are

the added connections to the VSRNN, while w*sTp¿ are the not added connections for all

ts < t < ts+i.

Define the i—th identification error as

6j Xi Xi,

and the i—th parameter error at ts < t < ta+i as

Then, from (6.2) and (2.4), one can obtain the error equation

¿i = -a¿e¿ + w*sTpts - w*sTpsa (6.5)

6.3.1 On-line Identification

Consider the Lyapunov function candidate

1
J =§(7e? + w7w¿), (6.6)
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where 7 is the learning rate. Differentiating (6.6) along the trajectories of (6.5) gives

V = -7aie? + 7eiw,sTp? - 7eiW*sTp,s + w,T w¿ (6.7)

If one defines the weight adaptive law as [48]

w¡ = -^pl (6.8)

w{
= 0

then (6.3) and (6.4) are satisfied, and the equation (6.7) becomes

Vi = -jaie2 - 7eiwi*iTp?

Considering Assumption 6.1, it is possible to find some intermediate structures, simpler than

the maximal structure, such that the term wísTp? = 0. Henee, there exists some finite time,

tq, such that

V = -7a¿et?,

for all t > tq. This means that, after the qth. connection has been added to the VSRNN, one

wül not consider to add more high-order terms to the network.

Using Lemma 2.1 and Assumption 6.1, it is easy to see that if one further reduces the

modelUng error term, by adding sufficient connections at a finite time tq, then with the adaptive

law (6.8) one can guarantee that the weights are bounded and the identification error converge

to zero after tq.

6.3.2 Robust On-line Identification

When the modeUing error term is not zero, the adaptive law (6.8) does not guarantee either

the boundness of the weights or the convergence of the identification error to zero. Therefore,

the learning law (6.8) has to be modified in order to avoid the parameters drift problem. For

this, the weU-known <7-modification scheme [23] is appUed to (6.8):

wf = -7e¿pf
- aw*, (6.9)

where <7¿ is given as

0, if||wf||<Mi

(W)'"*-' ifMi<t|wf||<2Mi

oia, Íf||w?||>2M<

with integer q > 1
,
and aio and M¿ are positive constants.

oi
— <
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Lemma 6.1 Let consider the system (2.4) and the VSRNN (6.2), whose parameters are adopted

using the law (6.9). Then, e¿,wf converge into a bounded set.

Proof. The differential of V¿ along the trajectories of (6.5) and (6.9) is given by

V = --yoie2 - o-iwfwf - 7e¿w*sTpf .

Applying the inequahty

-wfV = -(wfwf - wfwD < -\\ fwf|[2 + i| |wm2

and defining do = nxax£<o(w*SIpf), one obtains

V < -iaie2 +^f- Iffi||wJ ||2 + \o-i\\w?\\> + |

Define a = Oj
—

57; then

V < -7ae2 - i^Hwf ||2 + iaiHwni2 + f .

Substituting e¿ from (6.6) in the above inequahty yields

Vi < -aV + awjw, - iff,||wj ||2 + ^||wri|2 + f

Considering the worst case, when ||wf|| > 2M¿, one can select aio > 2a, so that

V < -aV + a||wri|2 + ^io||wn|2 + f

Therefore, [e¿ wfT]T converges exponentiaUy on the residual set

Dt = {fc wff : V < 1 (^io||wf*||2 + f) }
and the proof is completed. ■
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6.4 VSRNN Supervisor

The aforementioned supervisor criterion, for evaluating the VSRNN performance, is described

as follows. Time is divided over the evaluation intervals; each one with a length T called the

evaluation period. Define the evaluation function as

Éi = e2, Tk<t<T(k + 1), E{(Tk) = 0, fc - 1, 2, .... (6.10)

Obviously, E{ > 0, and it is monotonicaUy increasing for Tk < t < T(k + 1). If, at the end

of each evaluation interval, E{(T(k + 1)) > Ci, then the supervisor adds the next high-order

connection; otherwise, the neuron keeps its current structure, with c¿ being a pre-specified

positive bound for Ei.

6.5 Chaos Identification via VSRNN

Recently, controUing and ordering chaos has received increasing attention from various scien

tific and engineering communities. To control a chaotic system, as for the control of a general

nonUnear system, an important requirement usually is to have a good model of the under

lying system. For many nonlinear systems, particularly chaotic systems in apphcations, it is

often difficult to obtain an accurate and faithful mathematical model, regarding their physi-

cally complex structures and hidden parameters [50]. Therefore, system identification becomes

important and even necessary before system control can be discussed.

In order to test the capabiUty and appUcabiUty of the proposed scheme, the complex chaotic

Chen's system is selected as an example. This chaotic system is described by the foUowing

differential equations [55]:

Xi
= a(x2-Xi)

X.2
= (c

~

a)Xi
~

X1X3 +%

X3
=

X1X2
~

bX3 ,

which is chaotic when a — 35, b = 3, c — 28.

The RHONN fixed parameters used in the simulation are the foUowing: ai — 18, a2 = 38,

a2
= 28,/3 = 0.15, Ix = {[1 0 0], [0 1 0], [3 0 0], [0 3 0], [o 0 0], [0 5 0], [7 0 0], [0 7 0], [9 0 0], [0 9

0]}, I2 = {[1 0 0], [0 1 0], [1 0 1], [3 0 0], [0 3 0], [3 0 3], [5 0 0], [0 5 0], [5 0 5], [7 0 7]}, I3 = {[0 0

1], [1 1 0], [0 0 3], [3 3 0], [0 0 5], [5 5 0], [0 0 7], [7 7 0], [0 0 9], [9 9 0]}.

The supervisor parameters used are: cx
= 0.005, c2 - 0.3, c = 0.1, T = lOs.



74 CHAPTER 6. VARIABLE STRUCTURE RECURRENT NEURAL NETWORKS

As can be seen from Figure 6.2, Figure 6.3, and Figure 6.4, the proposed scheme is able

to reproduce the Chen's chaotic attractor. Figure 6.5 shows the evaluation functions Ex, E2,

and E3. The initial and added weights are plotted in Figure 6.6. FinaUy, in Figure 6.7, the

switching signáis sx , s2 and s3 are shown.

For further testing of the proposed scheme, the complex chaotic Chua's circuit is considered

here. This chaotic system is given by the foUowing differential equations [55] :

Xi
- P(-Xi+X2-/(Xi))

X2
=

Xi
-

X2 + X3

X3
=

--7X2,

which is chaotic when p = 10, q = 14.87 and f(x) = mox + \(mx
-

m0)(|x + 1| - \x - 1|), with

mo
= —0.68 and mx

= —1.27.

The RHONN fixed parameters used in the simulation are the foUowing: ai
= 8, a2

= 8,

a2
= 8, /? = 0.15, Ix = {[1 0 0],[0 1 0],[3 0 0],[0 3 0],[5 0 0],[0 5 0],[7 0 0],[0 7 0],[9 0 0],[0 9 0]},

I2 = { [1 0 0],[0 1 0],[0 0 1],[3 0 0],[0 3 0],[0 0 3], [5 0 0],[0 5 0],[0 0 5], [7 0 0]}, I3 = {[0 1 0],[0 0

1],[0 3 0],[0 0 3],[0 5 0],[0 0 5],[0 7 0],[0 0 7],[0 9 0],[0 0 9]}.

The supervisor parameters used are: Ci
= 0.0001, c2 = 0.00005, c3 = 0.00005, T = lOs.

As weU as in the first reported simulation, Figure 6.8, Figure 6.9 and Figure 6.10 show that

the proposed scheme is able to reproduce the Chua chaotic attractor. The evaluation functions

Ex, E2 and E3 are shown in Figure 6.11, and the xx weights and switching signáis are plotted

in Figure 6.12 and Figure 6.13, respectively.

6.6 Conclusions

In this chapter, the VSRNN has been proposed for nonUnear system identification. This scheme

aims to trade off between the identifier performance and the computational complexity. The

results are very encouraging, particularly when the scheme is appUed to chaos identification.

Let us make an analogy between the VSC and the VSRNN scheme, both are divided in two

parts; first, sliding mode controUer forcé the system to converge into a desired manifold and

the VSRNN supervisor reduces the modelling error term by adding high-order connections,

second, once the system is on the sUding manifold it is well-behaved, on the other hand when

the modelUng error is reduced, such that the error identification tends to zero.

As mentioned in this Chapter the index sequence E¿, is defined before the identification

process starts. In order to fur,ther improve the VSRNN identification performance, the £•

sequence could be given by the supervisor, it means that the high-order connections would be
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connected or disconnected in a arbitrary order. It is worth to mention that [49] and [50] present

the results of this chapter.
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Chapter 7

Conclusions and Future Work

This thesis, combines VSC and neural networks, in particular the Neural Block Control, which

is proposed in Chapter 3 for any block controUable system, resulting in an output tracking

controUer. Such control strategy consists of proposing a block controUable neural identifier,

which updates the adaptive weights, such that, the identification error converge into bounded

set (or to zero when the modelUng error is zero). For a given output reference the block

control algorithm based on the identifier is appUed, yielding a discontinuous control law which

guarantees the tracking error being ultimate bounded. The overaU control system assures that

the real plant output tracks the desired output with a small error tracking.

The RHONN are used to design the neural identifiers [28]; the parameter update law was

inspired from [48] . To assure the trajectory tracking is needed to guarantee that some identifier

parameter do not cross by zero, because the RHONN would lose the controllability property.

Such condition is assumed as true for the overaU stabiUty analysis. An interesting topic would

be to design a parameter adaptive law which assures such weights do not change sign, as

weU as, the convergence of the identification error to zero, or at least, the convergence into a

bounded baU. This problem is left as future research. Other drawback of this scheme is that

the controller does not drives the neural outputs error to zero, this obstacle can be ehminated

if the relative degree of real plant is equal to 2. Moreover if the modelUng error terms are

neglected, the overaU control strategy guarantees that the real plant output tracks the desired

output signal.

This strategy was used to control induction motors, whose model has relative degree equal

to 2. In addition to Neural Block ControUer, other two controUer were designed following the

same phfiosophy; the Singular SUding Mode (SSM) controller and the Neural Block Control

with input constrains. Because the main goal for induction motor control applications is the

shaft angular speed regulation, the SSM controller does :iot control the magnetic flux; this

control strategy achieved the best robust performance, but it may genérate spurious current

83
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harmonics, making this scheme inviable. For the third control strategy, the Neural Block

Control was modified to fit one of the hardest technological constraints, the switching nature

of the electrical drives; this control scheme lets to avoid the PWM approach, and yields an

actuator model closer to the real one. Additionally this control scheme may reduce the energy

dissipated by the motor drive, decreasing heating of the power electronics.

In Chapter 5 the synchronous generator control problem was stated, this system has relative

degree 3, so the neural block controUer are not able to drive the neural output to the desired

one. This disadvantage may makes unrehable this controller, due to the capital importance the

output regulation for this kind of systems. Nevertheless, we take advantage from the original

model, for which the load angle model has not uncertainties. So an altemative neural block

identifier was proposed; based on this identifier the block controller ensures the neural output

tracking and therefore the real output tracking when the modelling error is zero. Work is

progress to apply this scheme to the decentralized control for multi-machine power systems.

Notice that modelUng error term plays an important role on the robustness of these control

strategies; if such term is too large, it may makes inviable the proposed control scheme. As

mentioned before, the modelling error term can be reduced with a suitable identifier structure,

but frequently such structure is not easy to find. In Chapter 6, the VSRNN is proposed to

select an accurate structure of the neural identifier before to cióse the feedback control loop.

This identification system is used to establish a model structure, it is useful for tuning and

simulation before applying the controller to the real plant. Although the results are very

encouraging, particularly when the scheme is applied to chaos identification, VSRNN were

not able to find suitable neural structure to identify and control neither induction motors ñor

synchronous generators. So that, the selection of the identifier structure can be still considered

as an open problem for some applications. Nevertheless, the VSRNN identification scheme can

be considered as a first step for the structural neural identification, for nonUnear dynamical

systems. The VSRNN imposes several constrains; the neurons has to be continuous switched

systems, the subsystems are ordered in an increasing complexity way, the index sequence is

given off-line, the error criterion is based on the identification error, the high-order connection

can only be added. So for future research we propose to relax such constrains, allowing; index

sequence given on-Une, subsystems not ordered, error criterion based on modelling error and

check for not useful high-order connections removing them.
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Appendix A

Block Control with Input Constraints

for Induction Motors

In this Appendix, the Block Control with input constrains for the induction motor is developed

based on the regular model (4.1). FoUowing the sliding mode control strategy, the first step

is to design a manifold in the state space, where the tracking errors are asymptotically stable.

The block control technique [34] is used to derive such sliding manifold. The next step is to

select a discontinuous control law, which guarantees that such manifold is attractive.

The model (4.1) has a quasi NBC ( Nonlinear Block Controllable) form, consisting of two

blocks:

xi = fi(x1) + B1(x1)x2

xx
= f2(x) + B2u

with x = [XpXj]1 xj
= [u,ipQ,i)p)T x2

= [ia,ip}T u = [uaup]T

(A.1)

fi(*i) =
-coTL

-c2ipa
-

npui¡)p
-c2ipp + nvutpa

Bi(Xl) =

f2(x) =
c4ipa + c5npuipp

-

ceia

_ c4ipp
-

c5npu'4)a
-

c^ip
B2 =

-cxtpp cxi/,Q

c3 0

0 C3

c7 0

0 c7

This model can be reduced to the NBC-form, and therefore the block control methodology

[34] can be appUed. ur and tpr are the reference signáis for the output variables u and tp
=

1*1 = V'q + V-0, respectively. The tracking errors for the speed and the flux magnitude are

defined as

Zl
Zl

z2

u
—

u.

ip-tp.
(A.2)

91



92APPENDIXA. BLOCK CONTROL WITH INPUT CONSTRAINTS FOR INDUCTIONMOTORS

Then, the tracking error dynamics can be expressed as the first block of the NBC-form:

z1=fi(x1)+B1(x1)x2-yr (A.3)

where z2
zA

z5

-CX1pp cxipa

2c--'!/',, 2c3il>3

is the vector of the new variables, fi(xt) —

fx(xx) = fx(xx)

Í2{xx) = -2c2tp

,yr
UT

K
fcx 0

0 fc2
and rank(Bi(x1)) = 2.

The desired Unearized dynamics for (A.1) is chosen as

¿1= -Kzi+z2

BitxJ

(A.4)

Solving the equations (A.1) and (A.4) for z2 results on

z2=fi(x1) +B^x^ -yr+Kzi :=a2(xi,x2,yr,yr)

Then the dynamics for z2 is

Z2=f2(x,yr,yr) + B2(x1)u

where f2(x) =^xx + %*f2 + f-fyr + ^yr, B2(x2) = Bi(Xl)B2 and rank(B2(x1))=2.

(A.5)

Now, we select the desired sliding manifold as z2
= 0. The next step is to design a control

law which forces the system to reach the desired manifold. This controller must be a logic

function which maps from the continuous state x to the admissible input vectors set U (see

Table 4.1), in order to switch the control binary variables, such that, the desired voltage feeds

the induction motor.

A.1 Sliding Modes Controller Design

Notice that the term B2(x1)u describes a Xi -dependent biUnear transformation, which maps

from the discrete input space U to the continuous space, or B2(x1)u : U —» 3?2 Because the

matrix B^xJ has fuU rank for all i¡)a,i>p i= 0, it maps from two different elements of U onto

different vectors in 3R2 Now, we rewrite

B2(x1) = B'2B0(x1)

where B2
C1C7 0

0 2c3c7
BoíxJ-

-4>P ^a
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Henee, the mapping B2 can be seen as a composition of two transformations defined by

Bo(x1) and B2.

In order to have a simple terminology, we estabUsh the foUowing definition:

Definition A.1 A 2-by-l vector set covers all the quadrants in 3?2 space, if at least one of

them lies on each one of the space quadrants.

As can be seen in Figure 4.2, U covers all the quadrants of the input space. Let V be the

image of the set U under the mapping B0. By the following lemma states that V also covers

all the quadrants.

Lemma A.1 The angle between any pair of vectors of U is equal to the one between their

corresponding images under the mapping Bq-

Proof. B0 is a symmetric type matrix, whose columns b0i and bp2 are orthogonal and

bjjboi— bo2b02 = tp. It foUows that BqBq = tpl, henee ||B0u|| = -*/uTBorB0u = ^||u||. Let

u¿ and u* be two different elements in U. By the Euclidean inner product, we have

uJuj = ||ui||||u.*||cos(0)

where 9 is the angle between the vectors. Let v¿,Vj e V be the images of u¿ and Uj, respectively,

then

v7vj = ||v<||||vi||cos(e') (A.6)

with tf the angle between v¿ and v¿. Now substituting v = B0u in (A.6) we obtain

u^B^BoUj = <puj\ij= í/>||ui|¡||u.,||cos(/9')

then cos(0') = cos(0), and the proof is completed. ■

The foUowing lemma states the sliding mode controUer viabiUty, using only the available

input vectors given by the Table 4.1.

Lemma A.2 There exists at least one available input v°ctor \xk G U, such that

sign(B2(x1)uA.) — -sign(z2), for all -¿2and ipa,ipp t*- 0 (A.7)
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Proof. This lemma statement is equivalent to say that the images of U under B2 covers all

the quadrants. From Lemma A.1, it follows that V covers aU the quadrants. Now let W be the

image of V under B'2. It is clear that this mapping just changes the axes scale. Henee, it does

not move any vector from its original quadrant, henee W covers aU the quadrants too. Then,

we can conclude that there exists, at least, one image of the elements of U under B2 on each

quadrant of 5R2. Henee, there is one or more available input vectors that satisfies (A.7). ■

The controller must select one element of U that satisfies (A.7), and then change the binary

variables such that the selected input vector is fed to the stator windings.

A.2 Controller Stability Analysis

At this stage, we analyze the controUer stabiUty. Let b2i and b22 be the rows of B2(x1), then

the term B2(x1)ufc can be expressed as

B2{xx)\ik =
b2xuk

b22Ujfc

sísn(b2iufc)|b2iUfc|
s¿a7?,(b22ufc)ib22u¡fc|

|b2iufc|
_

0

0 |b22uJ
sign(b2xuk)

sign(b22uk)

Using (A.7), the expression (4.19) can be formulated as

|b2iuJ 0

B2(x1)uA. = 0 b22uJ
sign(B2(x1)ufc) =

- |b2iufc|
_

0

0 |b22uJ
sign(zi)

Then (A.5) can be rewritten as

z2= f2(x,yr,yr)
- B'sign(z2)

where

(A.8)

B' = |b2iUjfe|
_

0

0 |b22uJ

The state (A.8) reaches the sliding manifold z2
= 0 in a finite time. It can be checked by the

Lyapunov function V(z2) = jzjz***, whose time derivative is definite negative, if the following

inequaUties about the entries f2(x, yr,yr) are satisfied

|/2i(x,yr,yr)| <|62iUfc| and |/22(x,yrlyr)| <|621ufc|, Vi (A.9)

see [34] and [58] for more details.

The sliding dynamics, on the tracking errors variables zx and z2 (A.2), is govemed by the

second order linear system

zx
= —kxzx

¿2 = -fc2z2
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with desired eigenvalues —kx and —k2.

Note that some of the available input vectors, presented in Table 4.1 may satisfy the condition

(A.7); we select the vector which maximizes ||B2(x1)ufe||, in order to increase the sUding motion

stabiUty margin given by (A.9).
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