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para obtener el Grado de
Doctora en Ciencias
en la Especialidad de

Matemáticas
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ABSTRACT

Let G be a simple graph with vertex set and edge set: V(G) = {x1, . . . , xn} and
E(G), respectively. We take an edge orientation O and a vertex-weight w of G.
In this thesis, we study the following algebraic objects associated to G: the homo-
geneous monomial subring of G, the toric ideal of (G,O) and the edge ideal of
(G,O, w).

An ideal is unmixed if each one of its associated primes has the same height. The

edge ideal of D = (G,O, w) is I(D) :=
(
xix

w(xj)

j | (xi, xj) ∈ E(D)
)
⊆ R where

R := K[x1, . . . , xn] and K is a field. In Chapter 2, we characterize when I(D) is
unmixed, if G is in one of the following families: perfect, König, SCQ, simpli-
cial, chordal, without 3- and 5-cycles, without 4- and 5-cycles, girth(G) ⩾ 5 or
girth(G) ⩾ 6.

A monomial algebra is Gorenstein if it is Cohen–Macaulay and its canonical mod-
ule is a principal ideal. The homogeneous monomial subring of G is S :=
K[x1t, . . . , xnt] [{xixjt | {xi, xj} ∈ E(G)}] ⊆ R[t] where t is a new variable. As-
sume S is normal. In Chapter 3, we study when S is Gorenstein. We prove that
if S is Gorenstein, then G is unmixed with a strong ⌈n

2 ⌉-τ-reduction. Also, we
give sufficient conditions for S to be Gorenstein when G is unmixed with a ⌈n

2 ⌉-τ-
reduction.

An ideal I is a binomial complete intersection if it can be generated with ht(I)
binomials. The toric ideal PD of D = (G,O) is the kernel of the morphism of
K-algebras φ : K[{y | y ∈ E(D)}] → K[x±1

1 , . . . , x±1
n ] given by φ(y) = xix−1

j
where y = (xj, xi) ∈ E(D). In Chapter 4, we define the Q-sums, the Q-ring graphs
and we prove the following results: the binomial complete intersection property
is closed under Q-sums; the toric ideal of a Q-ring graph is a binomial complete
intersection; and a theta-ring graph is a Q-ring graph. Also, we characterize when
PD is a binomial complete intersection if G is a Truemper configuration.





RESUMEN

Sea G una gráfica simple cuyos conjuntos de vértices y de aristas son: V(G) =
{x1, . . . , xn} y E(G), respectivamente. Tomamos una orientación de aristas O y
una función de pesos w de G. En esta tesis, estudiamos los siguientes objetos alge-
braicos asociados a G: el subanillo monomial homogéneo de G, el ideal tórico de
(G,O) y el ideal de aristas de (G,O, w).

Un ideal es no mezclado si cada uno de sus primos asociados tiene la misma altura.

El ideal de aristas de D = (G,O, w) es I(D) := (xix
w(xj)

j | (xi, xj) ∈ E(D)) ⊆ R
donde R := K[x1, . . . , xn] con K un campo. En el Capı́tulo 2, caracterizamos
cuando I(D) es no mezclado, si G está en alguna de las siguientes familias: per-
fectas, König, SCQ, simpliciales, cordadas, sin 3- ni 5-ciclos, sin 4- ni 5-ciclos,
girth(G) ⩾ 5 o girth(G) ⩾ 6.

Un álgebra monomial es Gorenstein si es Cohen–Macaulay y su módulo canónico
es un ideal principal. El subanillo monomial homogéneo de G es S :=
K[x1t, . . . , xnt] [{xixjt | {xi, xj} ∈ E(G)}] ⊆ R[t] donde t es una nueva variable.
Asumimos que S es normal. En el Capı́tulo 3, estudiamos cuando S es Goren-
stein. Probamos que si S es Gorenstein, entonces G es no mezclada con una ⌈n

2 ⌉-
τ-reducción fuerte. Además, damos condiciones suficientes para que S sea Goren-
stein cuando G es no mezclada con una ⌈n

2 ⌉-τ-reducción.

Un ideal I es una intersección binomial completa si se puede generar con ht(I)
binomios. El ideal tórico PD de D = (G,O) es el núcleo del morfismo de K-
álgebras φ : K[{y | y ∈ E(D)}] → K[x±1

1 , . . . , x±1
n ] dado por φ(y) = xix−1

j donde
y = (xj, xi) ∈ E(D). En el Capı́tulo 4, definimos las Q-sumas, las gráficas Q-
anilladas y demostramos los siguientes resultados: la propiedad de intersección bi-
nomial completa es cerrada bajo Q-sumas; el ideal tórico de una gráfica Q-anillada
es una intersección binomial completa y una gráfica theta-anillada es una gráfica
Q-anillada. Además, caracterizamos cuando PD es una intersección binomial com-
pleta si G es una configuración de Truemper.
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INTRODUCTION

In this thesis, we study three algebraic objects associated to graphs: 1) unmixed
edge ideals of weighted oriented graphs; 2) Gorenstein homogeneous monomials
subrings of graphs; and 3) complete intersection toric ideals of oriented graphs.
In Chapter 1, we give the algebraic and combinatorial definitions, properties and
known results that we will use in the following chapters. In Chapters 2, 3 and 4 we
give the original results of this thesis. The results of these chapters are published
in [9], [10] and [11].

We consider G a simple graph with vertex set V(G) = {x1, . . . , xn} and edge set
E(G). The edge ideal of G is the ideal I(G) = ({xixj | {xi, xj} ∈ E(G)}) in the
polynomial ring R := K[x1, . . . , xn] over a field K. An edge orientation is a func-
tion O : E(G) → V(G) × V(G) which gives an orientation to each edge of G as
follows: O({xi, xj}) = (xi, xj) or O({xi, xj}) = (xj, xi). Furthermore, a vertex-
weight is a function w : V(G) → N, in this case w(xi) is the weight of a vertex
xi ∈ V(G). The triplet D = (G,O, w) is a weighted oriented graph (Definition

1.60) whose edge ideal is I(D) = ({xix
w(xj)

j | (xi, xj) ∈ E(D)}) ⊆ R. The edge ideal
I(D) (introduced in [33] and [23]) generalizes the usual definition of edge ideal of
a graph I(G), since I(D) = I(G) if w(x) = 1 for each x ∈ V(D). Some algebraic
properties of I(D) are studied in [40], [23], [26], [33], [34] and [48]. In Chapter
2, we study when I(D) is unmixed (Definition 1.72 and Theorem 1.85) if G is in
one of the following families of graphs: perfect (Definition 1.13); SCQ (Definition
1.39); simplicial (Definition 1.36); chordal (Definition 1.9); without 3- and 5-cycles;
without 4- and 5-cycles; and girth(G) ⩾ 5 (Definition 1.8). In Section 2.1, we intro-
duce the generating ⋆-semi-forests of D (Definitions 2.4 and 2.10). Furthermore, in
Theorem 2.13 we prove that if G is a perfect graph, then G has a τ-reduction (Defi-
nition 1.28) in complete graphs (Definition 1.4) and we characterize when I(D) is
unmixed.

Theorem 2.13 Let D = (G,O, w) be a weighted oriented graph where G is a per-
fect graph, then G has a τ-reduction H1, . . . , Hs in complete subgraphs. Further-
more, I(D) is unmixed if and only if each Hi has no generating ⋆-semi-forests.

The SCQ-graphs are special well-covered graphs (Definition 1.17 and Proposition
1.40). These graphs have a τ-reduction in: simplexes (Definition 1.36), basic 5-
cycles (Definition 1.37) and edges. In Section 2.2, we introduce the ⋆-property of a



5-cycle (Definition 2.17). Using this property and V+ = {x ∈ V(D) | w(x) > 1}
(Definition 1.60), in Theorem 2.23, we characterize when I(D) is unmixed if G is
an SCQ-graph.

Theorem 2.23 Let D be a weighted oriented graph where G is an SCQ graph.
Hence, I(D) is unmixed if and only if D satisfies the following conditions:

(a) Each basic 5-cycle of G has the ⋆-property.
(b) Each simplex of D has no generating ⋆-semi-forests.
(c) ND(b) ⊆ N+

D (a) when a ∈ V+, {b, b′} ∈ QG and b′ ∈ N+
D (a).

Recall G is well-covered if and only if G is unmixed (Remark 1.22). Furthermore,
unmixed chordal graphs and unmixed simplicial graphs are SCQ-graphs (Theo-
rem 1.38). Hence, using Theorem 2.23, in Corollary 2.24 we characterize when
I(D) is unmixed if G is chordal or simplicial.

Corollary 2.24 Let D be a weighted oriented graph where G is chordal or simpli-
cial. Hence, I(D) is unmixed if and only if D satisfies the following conditions:

(a) Each vertex is in exactly one simplex of D.
(b) Each simplex of D has not a generating ⋆-semi-forest.

In Section 2.3, we study I(D) when G has at most one of the following families of
cycles: 3-cycles, 4-cycles and 5-cycles. In particular in Theorem 2.28, we character-
ize when I(D) is unmixed if G has no 3- and 5-cycles.

Theorem 2.28 Let D be a weighted oriented graph such that G has no 3- and 5-
cycles. Hence, I(D) is unmixed if and only if D satisfies the following conditions:

(a) G is well-covered.
(b) If (z, x) ∈ E(D) and z ∈ V+, then ND(x′) ⊆ N+

D (z) for some x′ ∈ ND(x) \ z.

Furthermore, we introduce the ⋆-property for 1-simplexes and 2-simplexes (Defi-
nition 2.37). The k-cycle and n-complete graph are denoted by Ck and Kn, respec-
tively. A vertex x ∈ V(D) is a sink if N+

D (x) = ∅ (Definition 1.57). Also, the graph
T10 (Figure 1.1) is a well-covered graph (Theorem 1.42). With these properties and
graphs; in Theorem 2.38, we characterize when I(D) is unmixed if G is a graph
without 4- and 5-cycles.

Theorem 2.38 Let D be a connected weighted oriented graph without 4- and 5-
cycles. Hence, I(D) is unmixed if and only if D satisfies one of the following
conditions:

(a) G ∈ {K1, C7, T10} and the vertices of V+ are sinks.
(b) 1-simplexes and 2-simplexes have the ⋆-property and {V(H) | H is a

1-simplex or a 2-simplex} is a partition of V(G).



In Corollary 2.40, using Theorem 2.38, we characterize when I(D) is unmixed if
girth(G) ⩾ 6.

Corollary 2.40 Let D be a connected weighted oriented graph with girth(G) ⩾ 6.
Hence, I(D) is unmixed if and only if D satisfies one of following properties:

(a) G ∈ {K1, C7} and the vertices of V+ are sinks.
(b) G has a perfect matching y1 = {x1, x′1}, . . . , yr = {xr, x′r} with degD(x1) =

· · · = degD(xr) = 1, furthermore, (xj, x′j) ∈ E(D) when x′j ∈ V+.

Corollary 2.40 permits to prove that if girth(G) ⩾ 6, then I(D) is unmixed if and
only if I(D) is Cohen-Macaulay (see Corollary 2.41). Now, the graphs P10, P13, P14
and Q13 (Figure 1.1) are special well-covered graphs (Theorem 1.46). With these
graphs in Theorem 2.43, we characterize when I(D) is unmixed if girth(G) ⩾ 5.

Theorem 2.43 Let D be a connected weighted oriented graph with girth(G) ⩾ 5.
Hence, I(D) is unmixed if and only if D satisfies one of the following properties:

(a) G ∈ {K1, C7, Q13, P13, P14} and the vertices of V+ are sinks.
(b) G = P10, furthermore if x is not a sink in V+, then x = d1 with N+

D (x) =
{g1, b2} or x = d2 with N+

D (x) = {g2, b1}.
(c) {V(H) | H is a 1-simplex or a basic 5-cycle} is a partition of V(G), further-

more the 1-simplexes and the basic 5-cycles of G have the ⋆-property.

On the other hand, the homogeneous monomial subring of G is the ring S :=
K[x1t, . . . , xnt, xv1t, . . . , xvm t, t] ⊆ R[t] with R = K[x1, . . . , xn] and t a new variable.
A monomial algebra A is Gorenstein if A is Cohen-Macaulay and its canonical
module ωA is a principal ideal. In [14], Dupont, Renterı́a and Villarreal prove
that if G is bipartite, then S is Gorenstein if and only if G is unmixed (Proposition
1.98). Recall that S is normal if G is bipartite (Corollary 1.97). In Chapter 3, we
study when S is Gorenstein if S is normal. Danilov characterizes the canonical
module ωS when S is normal (Proposition 1.101) in terms of NB ∩ (R+B)◦ where
R+B is a cone (Definition 1.99). In Section 3.1, we study this cone, in particular in
Proposition 3.2 and Lemma 3.5, we characterize the elements of (R+B)◦. We set
the characteristic vectors v1, . . . , vm of G (Definition 1.91) and by Proposition 3.2,
we have that R+B = H+

(e1,0) ∩ · · · ∩ H+
(en,0) ∩ H+

(−ℓ1,1) ∩ · · · ∩ H+
(−ℓq,1). If G is not

bipartite, in Lemma 3.8, we give a proof of
(1

2 , . . . , 1
2

)
∈ {ℓ1, . . . , ℓq}. In Section 3.2,

we study when S is Gorenstein if S is normal.

Using S ≃ K[x1z, . . . , xnz, xv1 , . . . , xvm , z] and some results of [3] and [32], we can
show that if S is normal and n is even, then S is Gorenstein if and only if G is a
unmixed bipartite graph. In Corollary 3.11, we give a new proof of this result. In
Definition 3.12, we introduce the strong ⌈n

2 ⌉-τ-reduction. Using the strong ⌈n
2 ⌉-τ-

reduction, in Theorem 3.14, we given necessary conditions for S to be Gorenstein



if S is normal.

Theorem 3.14 If S is normal and Gorenstein, then G is unmixed, τ(G) = ⌈n
2 ⌉ and

G has a strong ⌈n
2 ⌉-τ-reduction.

In Definition 3.16, we define the principal representation of a vector in NB. Fur-
thermore, using this definition, in Theorem 3.17, we give sufficient conditions for
S to be Gorenstein

Theorem 3.17 If S is normal, G is unmixed with a ⌈n
2 ⌉-τ-reduction and each w ∈

(R+B)◦ ∩ NB has a principal representation, then S is Gorenstein.

Finally, we conjecture (Conjecture 3.19) that the necessary conditions of Theorem
3.14 are sufficient if n is odd.

Conjecture 3.19 Assume S is normal and n is odd. Then, S is Gorenstein if and
only if G is unmixed with a strong ⌈n

2 ⌉-τ-reduction.

On the other hand, the toric ideal PD of an oriented graph D = (G,O) is the kernel
of the epimorphism of K-algebras φ : K[y1, . . . , ym] → K[D] given by yi → xvi

where K[D] := K[xv1 , . . . , xvm ] and v1, . . . , vm are the edge characteristic vectors
of D (Definition 1.104). The toric ideal PD is a binomial prime ideal of height
ht(PD) = m − n + r where r is the number of connected components of D. Fur-
thermore, PD is a binomial complete intersection if it can be generated with ht(PD)
binomials. The complete intersection has been studied for some families of toric
ideals in [1], [2], [22], [25], [29] and [42]. Others algebraic properties of these toric
ideals are studied in [5] and [27]. In [30], Morris studies when PD is a binomial
complete intersection if D has not oriented cycles. In Chapter 4, we study the gen-
eral case, i.e. when D can have oriented cycles. In Definition 4.2, we introduce the
Q-sums and in Theorem 4.6, we prove that binomial complete intersection proper-
ty is closed under Q-sums.

Theorem 4.6 Let D the Q-sum of D1 and D2. If PD1 and PD2 are binomial complete
intersections, then PD is a binomial complete intersection.

Furthermore, in Definition 4.8, we introduce the Q-ring graphs. In Corollary 4.9,
we prove this family of oriented graphs has the binomial complete intersection
property.

Corollary 4.9 If D is a Q-ring graph, then PD is a binomial complete intersection.

Give a graph G, there is an edge orientation O of G such that PD is a binomial
complete intersection where D = (G,O) ([25] and [38]). A graph is a CIO-graph
if the toric ideals associated to each edge orientation of this graph is a binomial
complete intersection (Definition 1.116). In [24], Gitler, Reyes and Vega prove that



the theta-ring graphs (Definition 1.51) are the CIO-graphs (Theorem 1.120). In
Theorem 4.14, we prove the Q-ring graphs generalize the theta ring graphs.

Theorem 4.14 If G is a connected theta-ring graph, then D is a Q-ring graph.

Thetas, pyramids, prisms (Definition 1.47) and θ-partial wheels (Definition 1.48)
are the Truemper configurations. These graphs appear in the study of β-balanceable
graphs and the excluded minor of ternary matroids (see [44]). Also, the minimal
forbidden induced subgraphs (obstructions) of the theta-rings graphs are the
Truemper configurations (Theorem 1.53). In Section 4.2 (Propositions 4.16, 4.22,
4.24 and 4.25), we study the edge orientations of the Truemper configurations
whose toric ideals are binomial complete intersections. In the following results
we use the description and notation of the Truemper configuration given in Figure
1.2.

Proposition 4.16 If G is a theta graph, then PD is a binomial complete intersection
if and only if at least one principal path of D is oriented.

Proposition 4.22 Let G be a pyramid. Then, PD is a binomial complete intersection
if and only if (xi, xj,Lj, z) is an oriented path for some i, j ∈ {1, 2, 3} with i ̸= j.

Proposition 4.24 Let G be a prism. Then, PD is a binomial complete intersection if
and only if at least one path (xi, xj,Lj, zj, zk) is oriented with i, j, k ∈ {1, 2, 3} and
j /∈ {i, k}.

Proposition 4.25 Let D be an oriented partial wheel with center z and rim C. If z is
neither a source nor a sink; or C = (x,L, x′,L′, x′′,L′′, x) where L,L′′ are oriented,
x, x′, x′′ ∈ ND(z), ND(z) ∩ V

(
(L′)◦

)
= ∅ and (z, x,L, x′) or (z, x,L′′, x′′) is an

oriented path, then PD is a binomial complete intersection.

In Example 4.35, D′ is an induced oriented subgraph of D and PD is a binomial
complete intersection, but PD′ is not a binomial complete intersection. Hence, the
binomial complete intersection property is not closed under induced subgraphs.
Nevertheless, in Proposition 4.26, we prove the binomial complete intersection
property is closed under some special induced subgraphs.

Proposition 4.26 Let D = (G,O) be an oriented graph with a non-oriented path P
such that degG(x) = 2 for each x ∈ V(P◦) and G′ = G \ V(P◦) is connected. If PD
is a binomial complete intersection, then PD′ is a binomial complete intersection
with D′ = G′

O.

Although binomial complete intersection is not closed under induced oriented
subgraphs, in Proposition 4.33, we prove that special oriented theta is an obstruc-
tion of the binomial complete intersection property.



Proposition 4.33 Let θ be a theta of G with end vertices x and z such that degG(a) =
2 for each a ∈ V(θ) \ {x, z}. If D is connected and D has not oriented paths between
x and z, then PD is not a binomial complete intersection.
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CHAPTER 1
PRELIMINARIES

1.1 GRAPHS AND ORIENTED GRAPHS

In this section we give the combinatorial definitions and properties and some
known results that we will use in chapters 2, 3 and 4.

1.1.1 BASIC DEFINITIONS OF GRAPHS

Definition 1.1 A finite simple graph G is an ordered pair of finite sets
(V(G), E(G)), where the elements of E(G) are subsets of cardinality two of V(G).
V(G) is called the vertex set of G and E(G) is called the edge set of G.

In this thesis all graphs are finite and simple. We assume G is a graph.

Definition 1.2 A vertex x is incident with an edge y ∈ E(G) if x ∈ y. Furthermore,
if y = {x, x′} ∈ E(G), then we say x and x′ are adjacent vertices or neighbours.
The set of all neighbours in V(G) of a vertex x is the neighbourhood of x in G
and it is denoted by NG(x) and the closed neighbourhood of x in G is the set
NG[x] := NG(x) ∪ {x}.

Definition 1.3 The degree of a vertex x of G is degG(x) = |NG(x)|. Furthermore, a
vertex is isolated if its degree is zero.

Definition 1.4 A graph G is complete if NG[x] = V(G) for each x ∈ V(G). In this
case, G is denoted by Kn where n = |V(G)|.

Definition 1.5 A graph H is a subgraph of G if V(H) ⊆ V(G) and E(H) ⊆ E(G).
Given a subset A of V(G), the subgraph induced by A in G, denoted by G[A], is
the subgraph G1 of G with V(G1) = A and E(G1) = {y ∈ E(G) | y ⊆ A}. A
subgraph H of G is induced if there is B ⊆ V(G) such that H = G[B].



2 PRELIMINARIES

Definition 1.6 If H1 and H2 are subgraphs of G; we define the subgraphs H1 ∪ H2
and H1 ∩ H2 where V(H1 ∪ H2) = V(H1) ∪ V(H2), E(H1 ∪ H2) = E(H1) ∪ E(H2);
V(H1 ∩ H2) = V(H1) ∩ V(H2) and E(H1 ∩ H2) = E(H1) ∩ E(H2).

Definition 1.7 A walk of G is a sequence of vertices P = (x1, . . . , xk) such that
{xi, xi+1} ∈ E(G) for i = 1, . . . , k − 1. In this case, P is a subgraph of G, where
V(P) = {x1, . . . , xk} and E(P) = {{xi, xi+1} | i ∈ {1, . . . , k − 1}}. It is possible
that xi = xj for some i ̸= j. If x1, . . . , xk are different, then P is a path and its length
is the number of its edges.

Definition 1.8 A walk C = (z1, z2, . . . , zk, z1) is an k-cycle if (z1, . . . , zk) is a path.
A k-cycle C is even (resp. odd) if k is even (resp. odd), in this case C is denoted
by Ck. A cycle C of G is induced if C is an induced subgraph of G. The minimum
length of a cycle (contained) in a graph G, is called the girth of G.

Definition 1.9 If G has no odd-cycles, then G is called bipartite. Furthermore, G
is a chordal graph if the induced cycles are 3-cycles.

Definition 1.10 [21] A graph G satisfies the odd cycle condition, if for any two
odd cycles either have a common vertex, or there exists a pair of vertices, one from
each cycle, which are joined by an edge.

Definition 1.11 A k-colouring of G is a function c : V(G) → {1, 2, . . . , k} such that
c(x) ̸= c(x′) if {x, x′} ∈ E(G). The smallest integer k such that G has a k-colouring
is called the chromatic number of G and it is denoted by χ(G).

Proposition 1.12 [13, Proposition 1.6.1] A graph G is 2-colouring if and only if G
is bipartite.

Definition 1.13 The clique number, denoted by ω(G) is the size of the largest
complete subgraph of G. Furthermore, if χ(H) = ω(H) for every induced sub-
graph H of G, then G is a perfect graph.

Definition 1.14 The complement of G, denoted by G, is the graph with V(G) =
V(G) such that for each pair x, x′ ∈ V(G), we have that {x, x′} ∈ E(G) if and only
if {x, x′} /∈ E(G).
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Theorem 1.15 [13, Theorem 5.5.3] G is perfect if and only if G is perfect.

The following Theorem (called the strong perfect graph Theorem) characterizes
the forbidden induced subgraphs for perfect graphs.

Theorem 1.16 [7] A graph G is perfect if and only if neither G nor Ḡ contains and
odd cycle of length at least 5 as an induced subgraph.

1.1.2 WELL-COVERED GRAPHS

In this subsection, we give some definitions and known results related with the
well-covered property of graphs.

Definition 1.17 A stable set of G is a subset of V(G) containing no edge of G. The
stable number of G, denoted by α(G), is α(G) := max {|S| | S is a stable set of G}.
A graph G is well–covered if |S| = α(G) for each maximal stable set S of G.

Remark 1.18 Let A be a subset of V(G), then A is a stable set of G if and only if
G[A] is a complete subgraph of G. Hence, α(G) = ω(G).

Definition 1.19 A vertex cover C of G is a subset of V(G), such that if {x, x′} ∈
E(G), then x ∈ C or x′ ∈ C. A vertex cover C of G is minimal if each proper subset
of C is not a vertex cover of G. The cover number of G is τ(G) := min {|C| | C is a
vertex cover of G}. A graph G is unmixed if every minimal vertex cover has τ(G)
elements.

Remark 1.20 Let C be a vertex cover of G and x ∈ V(G). We take y ∈ E(G), then
C ∩ y ̸= ∅. Hence, y ∩ (C \ x) ̸= ∅ if x /∈ y, furthermore x′ ∈ ND(x) if y = {x, x′}.
Therefore, (C \ x) ∪ ND(x) is a vertex cover of G.

Remark 1.21 Let C be a vertex cover of G with x ∈ V(G) \ C. If x′ ∈ NG(x), then
y := {x, x′} ∈ E(G) and y ∩ C ̸= ∅. So, x′ ∈ C, since x /∈ C. Hence, NG(x) ⊆ C.

Remark 1.22 If S is a stable set of G and y ∈ E(G), then y ̸⊆ S. Thus, y ∩ (V(G) \
S) ̸= ∅. Hence, a subset F of V(G) is a (maximal) stable set if and only if V(G) \ F
is a (minimal) vertex cover. Therefore, τ(G) + α(G) = |V(G)| and G is unmixed if
and only if G is well-covered.
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Definition 1.23 A collection of pairwise disjoint edges of G is called a matching. A
perfect matching is a matching whose union is V(G). The maximum cardinality of
a matching of G is denoted by ν(G). Furthermore, G is a König graph if τ(G) =
ν(G).

Definition 1.24 Let y = {b, b′} be an edge of G. We say that y has the property (P)
if for each pair of edges {a, b}, {a′, b′} ∈ E(G), we have that {a, a′} ∈ E(G). On
the other hand, we say that a matching P of G has the property (P) if each edge of
P has the property (P).

Lemma 1.25 [34, Lemma 3.1] Let P be a matching of G with the property (P). If
b1, b2 ∈ NG(a) and {b1, b′1}, {b2, b′2} ∈ P, then {b′1, b′2} /∈ E(G).

Proof. By contradiction, suppose {b′1, b′2} ∈ E(G). Since {a, b1} ∈ E(G), {b1, b′1} ∈
P and P has the property (P), we have {a, b′2} ∈ E(G). Similarly, {a, a} ∈ E(G),
since {a, b2}, {a, b′2} ∈ E(G), {b2, b′2} ∈ P and P has the property (P). A contradic-
tion, since G is a simple graph. Therefore, {b′1, b′2} /∈ E(G).

□

Proposition 1.26 [47, Theorem 1.1] Let G be a bipartite graph without isolated ver-
tices. Then, G is unmixed if and only if G has a perfect matching with the property
(P).

Theorem 1.27 [6, Proposition 15] Let G be a König graph without isolated vertices.
Then, G is well–covered if and only if G has a perfect matching with property (P).

Definition 1.28 A τ-reduction of G is a collection of pairwise disjoint induced sub-
graphs G1, . . . , Gs of G such that V(G) = ∪s

i=1V(Gi) and τ(G) = ∑s
i=1 τ(Gi).

Remark 1.29 If G1, . . . , Gs is a τ-reduction of G, then |V(G)| = ∑s
i=1 |V(Gi)| and

τ(G) = ∑s
i=1 τ(Gi). Furthermore, by Remark 1.22, α(G) = |V(G)| − τ(G). Hence,

α(G) = ∑s
i=1 |V(Gi)| − ∑s

i=1 τ(Gi) = ∑s
i=1

(
|V(Gi)| − τ(Gi)

)
= ∑s

i=1 α(Gi).

Lemma 1.30 If G is unmixed with a τ-reduction G1, . . . , Gs, then for each F maxi-
mal stable α(Gi) = |F ∩ V(Gi)| for i = 1, . . . , s.

Proof. Let F be a maximal stable set. Then, F ∩ V(Gi) is a stable set of Gi.
Thus, |F ∩ V(Gi)| ≤ α(Gi). Hence, by Remark 1.29, α(G) = ∑s

i=1 α(Gi) ≥ ∑s
i=1
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|F ∩ V(Gi)| = |F|. But G is well-covered, then |F| = α(G). Therefore α(Gi) =
|F ∩ V(Gi)|. □

Definition 1.31 G is very well-covered if G is well-covered without isolated ver-
tices and |V(G)| = 2α(G) (equivalently, |V(G)| = 2τ(G)).

Proposition 1.32 [15, Theorem 1.2] G is very well-covered if and only if there is a
perfect matching {y1, . . . , ys} with the property (P).

Remark 1.33 In the previous proposition y1, . . . , ys is a τ-reduction.

Proof. Since {y1, . . . , ys} is a perfect matching V(G) = ∪s
i=1yi implies |V(G)| =

2s. Also, G is very well-covered, then τ(G) = s. Furthermore, α(yi) = 1, then
τ(G) = s = ∑s

i=1 τ(yi). Therefore, y1, . . . , ys is a τ-reduction of G. □

Proposition 1.34 [36, Lemma 14] If G is unmixed, with τ(G) = n+1
2 , then there

exists a τ-reduction G1, . . . , Gs of G such that Gi ∈ E(G) for 1 ≤ i ≤ s − 1 and Gs is
a j-cycle where j ∈ {3, 5, 7}.

Remark 1.35 In the previous proposition, {G1, . . . , Gs−1} has the property (P).

Proof. By contradiction, suppose that Gj = {x, x′} has no the property (P). Thus,
there are {x, z}, {x′, z′} ∈ E(G) such that {z, z′} /∈ E(G). Then, there is a maximal
stable set F such that {z, z′} ⊆ F. Hence, |F ∩ V(Gj)| = 0, since F is a stable set. A
contradiction, by Lemma 1.30, since α(Gj) = 1. Therefore, {G1, . . . , Gs−1} has the
property (P). □

Definition 1.36 A vertex x of G is a simplicial vertex if the induced subgraph H =
G[NG[x]] is a complete graph. In this case, H is called k-simplex (or simplex) where
k = |V(H)| − 1. The set of simplexes of G is denoted by SG. Furthermore, G is
a simplicial graph if every vertex of G is a simplicial vertex or is adjacent to a
simplicial vertex.

Definition 1.37 An induced 5-cycle C of G is called basic if C does not contain two
adjacent vertices of degree three or more in G.

Theorem 1.38 [35, Theorems 1 and 2] If G is a chordal or simplicial graph, then G is
well-covered if and only if every vertex of G belongs to exactly one simplex of G.
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Now, we define SCQ-graphs. These graphs generalize the graphs defined in [37].

Definition 1.39 G is an SCQ graph (or G ∈ SCQ) if {V(H) | H ∈ SG ∪ CG ∪ QG}
is a partition of V(G), where CG is the set of basic 5-cycles and QG = ∅ or QG is a
matching with the property (P).

Proposition 1.40 If G is an SCQ-graph, then G is well-covered and α(G) = |SG|+
2|CG|+ |QG|.

Proof. We take a maximal stable set S of G and H ∈ SG ∪ CG ∪ QG.
First assume H ∈ SG, then H = G[NG[v]] is a complete graph for some v ∈ V(H).
So, |S ∩ V(H)| ⩽ 1. But if S ∩ V(H) = ∅, then S ∪ {v} is a stable set. A contradic-
tion, since S is maximal. Hence |S ∩ V(H)| = 1.
Now, suppose H ∈ CG. So, H = (z1, z2, z3, z4, z5, z1) is a 5-cycle with degG(z1) =
degG(z3) = degG(z4) = 2. Thus, |V(H)∩ S| ⩽ 2. If {z3, z4}∩ S = ∅, then z2, z5 ∈ S,
since degG(z3) = degG(z4) = 2 and S is a maximal stable set. Then, |V(H)∩ S| = 2.
Now, if {z3, z4} ∩ S ̸= ∅, then we can assume z3 ∈ S implies z2 /∈ S. Consequently,
z1 ∈ S or z5 ∈ S, since degG(z1) = 2 and z2 /∈ S. Hence |V(H) ∩ S| = 2, since
|V(H) ∩ S| ⩽ 2.
Finally, assume H ∈ QG, then H = {x1, x2} ∈ E(G) and H has the property (P).
Thus, |V(H) ∩ S| ⩽ 1. But if V(H) ∩ S = ∅, then there are x′1, x′2 ∈ S such that
{x1, x′1}, {x2, x′2} ∈ E(G), since S is maximal . So, {x′1, x′2} ∈ E(G) since H has the
property (P). A contradiction, since x′1, x′2 ∈ S. Hence, |V(H) ∩ S| = 1.
Then |S| = |SG|+ 2|CG|+ |QG|, since {V(H) | H ∈ SG ∪ CG ∪ QG} is a partition
of V(G). Therefore G is well-covered and α(G) = |SG|+ 2|CG|+ |QG|. □

Remark 1.41 If G is König well-covered graph, then G is an SCQ graph.

In the following results, we use the graphs of Figure 1.1.

Theorem 1.42 [17, Theorem 1.1] Let G be a connected graph without 4- and 5-
cycles. Then, G is well-covered if and only if G ∈ {C7, T10} or {V(H) | H ∈ SG} is
a partition of V(G).

Remark 1.43 Suppose G is a well-covered graph such that G /∈ {C7, T10}. If G is
simplicial, or G is chordal or G is a graph without 4- and 5-cycles, then by Theo-
rems 1.38 and 1.42, {V(H) | H ∈ SG} is a partition of V(G). Therefore, G is an
SCQ graph with CG = QG = ∅.
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v

a1 a3
a2

b1

c1

b3

c3

b2

c2

T10

ỹ1
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Figure 1.1 Special well–covered graphs

Definition 1.44 An edge y is pendant if y has a vertex of degree 1 in G.

Corollary 1.45 If G is connected and unmixed with girth(G) ⩾ 6 such that G /∈
{K1, C7}, then its pendant edges form a perfect matching of G.

Proof. Since girth(G) ⩾ 6, we have G has no 3-, 4- and 5-cycles. Thus, by Theorem
1.42, A = {V(H) | H ∈ SG} is a partition of V(G), since G ̸= C7 and T10 has a
3-cycle. Now, if H ∈ SG, then |V(H)| = 2, since G has no 3-cycles and G ̸= K1.
Hence, H ∈ SG if and only if H is a pendant edge. Therefore, the pendant edge of
G is a perfect matching of G, since A is a partition of V(G). □

Theorem 1.46 [16, Theorems 2 and 3] If G is connected without 3- and 4-cycles,
then G is well-covered if and only if G ∈ {K1, C7, P10, P13, P14, Q13} or {V(H) | H ∈
SG ∪ CG} is a partition of V(G).
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1.1.3 TRUEMPER CONFIGURATIONS AND THETA-RING GRAPHS

Truemper configurations (see Definitions 1.47, 1.48 and 1.49) appear in the study of
β-balanceable graphs and the excluded minor for ternary matroids. In [44], Truem-
per showed that G is β-balanceable if and only if for every induced subgraph H
such that H is K4 or a Truemper configuration, we have that H is βH-balanceable.
After, in [8], Conforti, Cornuéjols, Kapoor and Vušković proved that G is a univer-
sally signable graph if and only if G has no Truemper configurations as induced
subgraphs. On the other hand, theta-ring graphs (see Definition 1.51) are intro-
duced in [24], in that paper Gitler, Reyes and Vega proved that G is a theta-ring
graph if and only if the toric ideal PGO (see Definition 1.105) is a binomial com-
plete intersection for each edge orientation O of G. Also, they proved in [24] that
the minimal forbidden induced subgraphs for theta-ring graphs are the Truemper
configurations. Hence, theta-ring graphs and universal signable graphs are equi-
valent. In this subsection, we give the definitions and some known results about
Truemper configurations and theta-ring graphs.

Definition 1.47 A theta is a graph consisting of two non adjacent vertices x and z,
and three paths L1,L2,L3 with ends x and z, such that the union of every two of
L1,L2,L3 is an induced cycle.
A pyramid is a graph consisting of a vertex z, a triangle C = (x1, x2, x3, x1), and
three paths L1,L2,L3, such that: Li is a path between xi and z; V(Li) ∩ V(Lj) =
{z} for different i, j ∈ {1, 2, 3} and at most one of the L1,L2,L3 has only one edge.
A prism is a graph consisting of two vertex-disjoint triangles C = (x1, x2, x3, x1)
and C′ = (z1, z2, z3, z1), and three vertex-disjoint paths L1,L2,L3 such that Li is a
path between xi and zi for i = 1, 2, 3.
A partial wheel W is a graph where V(W) = {z, x1, . . . , xs}, such that C = (x1, . . . ,
xs, x1) is a cycle in W and the edges of W are the edges of C and some edges
between z and vertices of C. In this case, C is the rim of W and z is the center of W.

If G is a theta or a pyramid or a prism and L1,L2,L3 are as in the last definition,
then L1,L2,L3 are called principal paths of G.

Definition 1.48 A partial wheel W with rim C and center z is a θ-partial wheel if
there exist two non adjacent vertices in V(C) ∩ NW(z).

Definition 1.49 Thetas, pyramids, prisms and θ-partial wheels are the Truemper
configurations.
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Figure 1.2 Truemper configurations

Definition 1.50 A chorded-theta subgraph T of G is a subgraph induced by three
paths L1,L2,L3 each between two different non adjacent vertices x, x′ such that
V(Li) ∩ V(Lj) = {x, x′} for 1 ⩽ i < j ⩽ 3. A transversal triangle C of T is a
3-cycle such that V(C) = {z1, z2, z3} with zi ∈ V(Li) \ {x, x′} for i = 1, 2, 3.

Definition 1.51 A graph G is called a theta-ring graph if each chorded-theta of G
has a transversal triangle.

Definition 1.52 If G1 and G2 are subgraphs of G such that H = G1 ∪ G2 and K =
G1 ∩ G2 is a complete subgraph, then H is the clique-sum of G1 and G2.

Theorem 1.53 [24, Theorem 4] The following conditions are equivalent:

(i) G is a theta-ring graph.
(ii) G can be constructed by 0, 1, 2-clique-sums of chordal graphs and/or cycles.

(iii) G can be constructed by clique-sums of complete graphs and/or cycles.
(iv) G has no Truemper configurations as induced subgraphs.



10 PRELIMINARIES

1.1.4 ORIENTED GRAPHS

Definition 1.54 An oriented graph D is an ordered pair (G,O) where G is a graph
and O is a function O : E(G) → V(G)× V(G) such that O({x, x′}) = (x, x′) or
O({x, x′}) = (x′, x). In this case, G is the underlying graph of D, O is an edge
orientation of G. Furthermore, the vertex set of D is V(D) := V(G) and the edge
set of D is E(D) := {O(y) | y ∈ E(G)} ⊆ V(G)× V(G).

In this subsection, we assume that O is an edge orientation of G and D = (G,O).

Definition 1.55 An oriented graph H is an oriented subgraph of D if V(H) ⊆
V(D) and E(H) ⊆ E(D).

Definition 1.56 If H is a subgraph of G and D = (G,O), then HO is the oriented
subgraph of D where V(HO) = V(H) and E(HO) = {O(y) | y ∈ E(H)}.

Definition 1.57 Let x be a vertex of D, the sets N+
D (x) = {z | (x, z) ∈ E(D)}

and N−
D (x) = {z | (z, x) ∈ E(D)} are called the out-neighbourhood and the

in-neighbourhood of x, respectively. If N+
D (x) = ∅ or N−

D (x) = ∅, then x is
called sink or source, respectively. Furthermore, the neighbourhood of x is the set
ND(x) = N+

D (x) ∪ N−
D (x). If A ⊆ V(D), then N+

D (A) =
⋃

a∈A N+
D (a).

Remark 1.58 If x ∈ V(D), then ND(x) = NG(x).

Definition 1.59 An oriented walk in D is a walk P = (x1, . . . , xk) of G such that
(xi, xi+1) ∈ E(D) for i = 1, . . . , k − 1. If furthermore P is a path, we say that P is
an oriented path. A cycle C = (z1, z2, . . . , zk, z1) of G is an oriented k-cycle of D if
(z1, . . . , zk) is an oriented path.

Definition 1.60 A vertex-weight of a graph G is a function w : V(G) → N and if
x ∈ V(G), then w(x) is called the weight of x. An oriented graph D = (G,O) is
called a weighted oriented graph if G has a vertex-weight w and we denote it by
D = (G,O, w). In this case, we denote the set {x ∈ V(D) | w(x) > 1} by V+.
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1.2 COMBINATORIAL COMMUTATIVE ALGEBRA

1.2.1 BASIC DEFINITIONS

In this subsection, we consider R is a commutative ring with unit 1.

Definition 1.61 An ideal I of R is a subset of R such that I is an additive subgroup
and if r ∈ R and a ∈ I, then ra ∈ I. A subset X of I is called a generator set of the
ideal I, if I = {∑s

i=1 riai | ri ∈ R, ai ∈ X and s ∈ N} and we denoted by I = (X).
In this case, if X is a finite set, then we say that I is finitely generated. Furthermore,
X is called a minimal generator set of I, if no one proper subset of X is a generator
set of I.

Definition 1.62 An ideal I is principal if I is generated by one element of R.

Definition 1.63 An ideal P of R is prime if P ̸= R and ab ∈ P implies a ∈ P or
b ∈ P. The height of a prime ideal P is

ht(P) := max{s | P0 ⊊ P1 ⊊ · · · ⊊ Ps = P is a chain of prime ideals}.

Definition 1.64 An ideal J of R is primary if J ̸= R and ab ∈ J implies a ∈ J or
bk ∈ J for some k ⩾ 0.

Definition 1.65 The radical of an ideal I is the ideal r(I) := {r ∈ R | rk ∈ I for
some k ∈ Z+ \ {0}}.

Proposition 1.66 [39, Proposition 6.110] If J is a primary ideal, then r(J) is a prime
ideal.

Definition 1.67 We say I has a primary decomposition if I =
⋂s

i=1 qi where qi is a
primary ideal for each i = 1, . . . , s. In this case, the decomposition is irredundant
if q1 ∩ · · · ∩ q̂j ∩ · · · ∩ qs ̸= I for each 1 ⩽ j ⩽ s.

Proposition 1.68 gives the existence and Proposition 1.71 gives the uniqueness un-
der radicals of the irredundant primary decompositions of each ideal in a Noethe-
rian ring. This result is called Lasker-Noether Theorem.
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Proposition 1.68 [39, Theorem 6.115] If R is Noetherian and I is an ideal of R with
I ̸= R, then I has a primary decomposition.

Definition 1.69 If I is an ideal of R and x ∈ R, we define the ideal (I : x) := {a ∈
R | ax ∈ I}.

Definition 1.70 Assume R is Noetherian and I is an ideal of R. A prime ideal P of
R is an associated prime of I if P = (I : x) for some x ∈ R. The set of associated
primes of I is denoted by Ass(I).

Proposition 1.71 [39, Theorem 6.116] Assume R is Noetherian and I is an ideal of
R. If I =

⋂s
i=1 qi is an irredundant primary decomposition of I, then Ass(I) =

{r(q1), . . . , r(qs)}.

Definition 1.72 An ideal I of R is unmixed if each one of its associated primes has
the same height.

Definition 1.73 Let M be a finitely generated R-module where R is Noetherian.
If I is an ideal of R such that IM ̸= M, then the grade of M in I, denoted by
G(I, M) is the length of a maximal M-regular sequence in I. Furthermore, if R
is Noetherian and local where the maximal ideal is m, then the depth of M is
depth(M) := G(m, M).

The depth and regular sequence of monomial ideals and their powers are studied
in [18], [19] and [20].

Definition 1.74 A monomial algebra A is Gorenstein if A is Cohen-Macaulay and
its canonical module ωA is a principal ideal.

Proposition 1.75 [28] If A is normal, then A is Cohen-Macaulay. Hence, if A is
normal, then A is Gorenstein if and only if ωA is principal.

1.2.2 EDGE IDEALS

In this subsection, we assume D = (G,O, w) is a weighted oriented graph (see
Definition 1.60) and K[x1, . . . , xn] is a polynomial ring where V(G) = {x1, . . . , xn}
and K is a field. We give some known results of edge ideals of G and D. In par-
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ticular, we study the primary decomposition and the unmixed property of these
ideals.

Definition 1.76 The edge ideal of the graph G is the ideal

I(G) =
(
{xixj | {xi, xj} ∈ E(G)}

)
of K[x1, . . . , xn].

Proposition 1.77 [46, Corollary 6.1.18] If G is a graph, then ht
(

I(G)
)
= τ(G).

Remark 1.78 [34, Remark 2.12] I(G) is unmixed if and only if G is well-covered.

Definition 1.79 The edge ideal of the weighted oriented graph D is the ideal

I(D) =
(
{xix

w(xj)

j | (xi, xj) ∈ E(D)}
)

of K[x1, . . . , xn].

Definition 1.80 C is a vertex cover of D if C is a vertex cover of G.

Remark 1.81 Consider the weighted oriented graph D̃ = (G,O, w̃) where
w̃(x) = 1 if x is a source and w̃(x) = w(x) if x is not a source. Hence, I(D̃) = I(D).
Therefore, in this thesis, we can assume that if x is a source, then w(x) = 1.

Definition 1.82 Let C be a vertex cover of D, we define the following three sets:

• L1(C) := {x ∈ C | N+
D (x) ∩ Cc ̸= ∅} where Cc = V(D) \ C,

• L2(C) := {x ∈ C | x /∈ L1(C) and N−
D (x) ∩ Cc ̸= ∅},

• L3(C) := C \ (L1(C) ∪ L2(C)).

Remark 1.83 Let C be a vertex cover of D, then x ∈ L3(C) if and only if ND[x] ⊆ C.
Hence, L3(C) = ∅ if and only if C is minimal.

Definition 1.84 A vertex cover C of D is strong if for each x ∈ L3(C) there is
(x′, x) ∈ E(D) such that x′ ∈ L2(C) ∪ L3(C) = C \ L1(C) with x′ ∈ V+ (i.e.
w(x′) > 1).

Theorem 1.85 [33, Theorem 31] The following conditions are equivalent:

(1) I(D) is unmixed.
(2) Each strong vertex cover of D has the same cardinality.
(3) I(G) is unmixed and L3(C) = ∅ for each strong vertex cover C of D.
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Remark 1.86 We have τ(G) = |C1|, for some vertex cover C1. So, C1 is minimal.
Thus, by Remark 1.83, L3(C1) = ∅. Hence, C1 is strong. Now, if I(D) is unmixed,
then by (2) in Theorem 1.85, |C| = |C1| = τ(G) for each strong vertex cover C of D.

Theorem 1.87 [34, Theorem 3.4] If G is König, then I(D) is unmixed if and only if
D satisfies the following two conditions:

(1) G has a perfect matching P with property (P).
(2) If a ∈ V(D), w(a) > 1, b′ ∈ N+

D (a) and {b, b′} ∈ P, then ND(b) ⊆ N+
D (a).

Proposition 1.88 [33, Proposition 51] If I(D) is Cohen-Macaulay, then I(D) is un-
mixed.

Theorem 1.89 [34, Theorem 4.3 and Proposition 4.5] If G is König or G has neither
3- nor 5-cycles, then I(D) is Cohen-Macaulay if and only if D satisfies the following
two conditions:

(1) G has a perfect matching P with property (P) and G has no 4-cycles with two
edges in P.

(2) If a ∈ V(D), w(a) > 1, b′ ∈ N+
D (a) and {b, b′} ∈ P, then ND(b) ⊆ N+

D (a).

Corollary 1.90 [34, Corollary 4.4] Let D be a weighted oriented graph, where G
is a König graph without 4-cycles. Hence, I(D) is unmixed if and only if I(D) is
Cohen–Macaulay.

1.2.3 HOMOGENEOUS SUBRINGS OF GRAPHS

In this subsection, we give some properties of the homogeneous monomial sub-
rings associated to graphs. In particular, we give some known results of Gorenstein
and normal properties of these monomial subrings. We assume G is a connected
graph with V(G) = {x1, . . . , xn} and |E(G)| = m ̸= 0.

Definition 1.91 If y = {xi, xj} ∈ E(G), then the characteristic vector of y is the
vector in {0, 1}n ⊆ Zn such that its i-th entry is 1, its j-th entry is 1, and the re-
maining entries are zero.

We assume v1, . . . , vm the characteristic vectors of the edges of G.
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Definition 1.92 Let R = K[x1, . . . , xn] be a polynomial ring over a field K, the
homogeneous monomial subring of G is the ring:

S = K[x1t, · · · , xnt, xv1t, · · · , xvm t, t] ⊂ R[t], where t is a new variable.

Remark 1.93 S is a standard K-algebra, where a monomial xatb has degree b. We
assume S has this grading.

Definition 1.94 Let Gz be the graph with loops where V(Gz) = V(G) ∪ {z} and
E(Gz) = E(G) ∪

{
{z, xi} | i = 1, . . . , n

}
∪ {(z, z)}. The edge ring of Gz is R(Gz) :=

K[x1z, . . . , xnz, xv1 , . . . , xvm , z2].

The following Lemma is the result of change of grading.

Lemma 1.95 [46, Lemma 8.4.15] If G is a graph, then S ∼= R(Gz).

Since we assume G is connected, we have:

Proposition 1.96 [14, Theorems 3.2 and 3.3] S is normal if and only if G satisfies
the odd cycle condition.

Others proofs of Proposition 1.96 are given in [41, Proposition 2.1] and [31, Coro-
llary 2.3].

Corollary 1.97 If G is bipartite, then S is normal.

Proof. G has no odd cycles, since G is bipartite. Then, G satisfies the odd cycle
condition. Hence, by Proposition 1.96, S is normal. □

Proposition 1.98 [14, Corollary 4.3] If G is bipartite, then S is Gorenstein if and
only if G is unmixed.

Definition 1.99 We consider the set B := {(e1, 1), . . . , (en, 1), (v1, 1), . . . , (vm, 1),
en+1} ⊆ Rn × R where e1, . . . , en are the canonical vectors in Rn and en+1 =
(0, . . . , 0︸ ︷︷ ︸

n

, 1). Furthermore,
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R+B =
{ m

∑
i=1

αi(vi, 1) +
n

∑
i=1

βi(ei, 1) + λen+1 | αi, βi, λ ∈ R+

}
⊆ Rn × R.

Remark 1.100 We have aff(R+B) = Rn+1, since (e1, 1), . . . , (en, 1), en+1 are linearly
independent.

The following is a result given by Danilov in [12]. This result permits to characte-
rize the canonical module of S when S is normal.

Proposition 1.101 [4, Theorem 6.3.5] If S is normal, then the canonical module of
S is given by

ωS =
(
{xatb | (a, b) ∈ NB ∩ (R+B)◦}

)
,

where (R+B)◦ is the interior of R+B relative to aff(R+B).

The following results characterize the generator of ωS if S is normal and ωS is
principal.

Proposition 1.102 [11, Proposition 3.7] If S is normal and ωS is principal, then
ωS = (x1tβ) where β ≤ ⌊n

2 ⌋+ 1 and 1 = (1, . . . , 1) ∈ Rn.

Proposition 1.103 [11, Proposition 3.12] If G is not bipartite, S is normal and Go-
renstein, then G is unmixed, τ(G) = ⌈n

2 ⌉ and ωS = (x1tb) with b = ⌊n
2 ⌋+ 1 and

1 = (1, . . . , 1) ∈ Rn.

1.2.4 TORIC IDEALS OF ORIENTED GRAPHS

In this subsection, we assume that D = (G,O) is an oriented graph (see Definition
1.54) where V(D) = {x1, . . . , xn} and E(D) = {y1, . . . , ym}.

Definition 1.104 For each oriented edge y = (xi, xj) ∈ E(D), the characteristic
vector (or edge characteristic vector) of y is vy = (v1

y, . . . , vn
y) ∈ {0, 1,−1}n ⊆ Zn

such that vi
y = −1, vj

y = 1 and vl
y = 0 for l /∈ {i, j}.

In this subsection, we assume v1, . . . , vm are the characteristic vectors of y1, . . . , ym,
respectively.
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Definition 1.105 The toric ideal of D, denoted by PD, is the kernel of the epimor-
phism of K-algebras:

φ : K[y1, . . . , ym] → K[D] where yi → xvi (1.1)

where K[y1, . . . , ym], K[D] := K[xv1 , . . . , xvm ] ⊆ K[x±1
1 , . . . , x±1

n ] and K is a field.

Proposition 1.106 [24] PD is a binomial prime ideal of height ht(PD) = m − n + r
where r is the number of connected components of D.

Definition 1.107 PD is a binomial complete intersection if PD can be generated by
m − n + r binomials.

Definition 1.108 Let L = (x = x1, . . . , xr = x′) be a walk in D. Then, we define
L+ = {(xi, xi+1) | (xi, xi+1) ∈ E(D)} and L− = {(xi−1, xi) | (xi−1, xi) ∈ E(D)}.
Thus, L = L+ ∪ L− and we define the monomials

yL+ = ∏
yj∈L+

yj and yL− = ∏
yj∈L−

yj.

In particular, if L = C is a cycle of D, then we define the binomial yC = yC+ − yC− .

Remark 1.109 If L is an oriented walk, then L+ = ∅ or L− = ∅, i.e., yL+ = 1 or
yL− = 1 respectively.

Proposition 1.110 [24] and [25] If C is a cycle of D, then yC ∈ PD.

Theorem 1.111 [24, Theorem 1] If 0 ̸= yα − yβ ∈ PD then there exist a cycle C of D
such that yC = yα′ − yβ′ , yα′ | yα and yβ′ | yβ.

Corollary 1.112 [24, Corollary 2] If 0 ̸= yα − yβ = f in PD with gcd(yα, yβ) = 1,
then there exist cycles C1, . . . , Cs of D such that yα = yα1 · · · yαs and yβ = yβ1 · · · yβs

where yCi = yαi − yβi for i = 1, . . . , s.

Proposition 1.113 [25, Corollary 4.5] PD is generated by the set of binomials co-
rresponding to cycles without chords.

Remark 1.114 Let B be a binomial generating set of PD. If u − u′ ∈ B, then we can
assume gcd(u, u′) = 1.
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Definition 1.115 Let A be a binomial subset of R = K[y1, . . . , ym]. Then, we define
Mon(R) = {m ∈ R | m is a monomial} and

Mon(A) = {m ∈ Mon(R) | m − m′ ∈ A or m′ − m ∈ A with m′ ∈ Mon(R)}.

Definition 1.116 G is a CIO graph if for each edge orientation O of G we have
P(G,O) is a binomial complete intersection.

Proposition 1.117 [45, Proposition 2.51] Truemper configurations are not CIO-
graphs.

Lemma 1.118 [24, Lemma 2] Let C1, C2 be two cycles of D whose intersection is an
oriented path L. Then C3 = (C1 ∪ C2) \ V(L◦) is a cycle and yC3 ∈ (yC1 , yC2).

Proposition 1.119 [24, Lemma 7 and Proposition 11] Let G1, G2 be two connected
graphs and let G be the k-clique-sum of G1 and G2 with k ∈ {0, 1, 2}. If G1 and G2
are CIO graphs, then G is a CIO graph.

Theorem 1.120 [24] G is a CIO-graph if and only if G is a theta-ring graph.



CHAPTER 2
UNMIXED WEIGHTED ORIENTED

GRAPHS

In this chapter we assume D = (G,O, w) is a weighted oriented graph. By Remark
1.81, if x is a source of D, then w(x) = 1. In this chapter, we characterize the
unmixed property of I(D) when G is in one of the following families of graphs:
SCQ, chordal, simplicial, perfect, graphs without 3- and 5-cycles, graphs without
4- and 5-cycles, or graphs with girth ⩾ 5.

2.1 STRONG VERTEX COVER AND ⋆-SEMI-FOREST

In this section we introduce the ⋆-semi-forest (Definition 2.4). With this definition,
we characterize when a subset of V(G) is contained in a strong vertex cover (Theo-
rem 2.11). Furthermore, we characterize when I(D) is unmixed if G is perfect
(Theorem 2.13).

Proposition 2.1 If C is a vertex cover of D and A ⊆ V+ such that N+
D (A) ⊆ C, then

there is a strong vertex cover C ′ of D, such that N+
D (A) ⊆ C ′ ⊆ C.

Proof. First, we prove that there is a vertex cover C ′ such that L3(C ′) ⊆ N+
D (A) ⊆

C ′ ⊆ C. We take L := N+
D (A). If L3(C) ⊆ L, then we take C ′ = C. Now, we suppose

there is a1 ∈ L3(C) \ L, then by Remark 1.83, ND[a1] ⊆ C. Thus, C1 = C \ {a1} is
a vertex cover and L ⊆ C1, since L ⊆ C and a1 /∈ L. Now, we suppose that there
are vertex covers C0, . . . , Ck, such that L ⊆ Ci = Ci−1 \ {ai} and ai ∈ L3(Ci−1) \ L
for i = 1, . . . , k where C0 = C and we give the following recursively process: If
L3(Ck) ⊆ L, then we take C ′ = Ck. Now, if there is ak+1 ∈ L3(Ck) \ L, then by
Remark 1.83, ND[ak+1] ⊆ Ck. Consequently, Ck+1 := Ck \ {ak+1} is a vertex cover.
Also, L ⊆ Ck+1, since L ⊆ Ck and ak+1 ̸∈ L. This process is finite, since |V(D)| is
finite. Hence, there is m such that C ′ = Cm, i.e. L3(Cm) ⊆ L ⊆ Cm ⊆ C.

Now, we prove that C ′ is strong. We take x ∈ L3(C ′), then x ∈ L = N+
D (A),

since L3(C ′) ⊆ L. Thus, (x′, x) ∈ E(D) for some x′ ∈ A ⊆ V+. Hence, x′ ∈ C ′,
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since x ∈ L3(C ′). Also, x′ ̸∈ L1(C ′), since N+
D (x′) ⊆ N+

D (A) ⊆ C ′. Hence, x′ ∈(
C ′ \ L1(C ′)

)
∩ V+. Therefore, C ′ is strong. □

Definition 2.2 If B is a weighted oriented subgraph of D with exactly one cycle C,
then B is called unicycle oriented graph when B satisfies the following conditions:

(i) C is an oriented cycle in B and for each x ∈ V(B) \ V(C), there is an oriented
path (in B) from C to x.

(ii) If x ∈ V(B) with w(x) = 1, then degB(x) = 1.

Definition 2.3 A weighted oriented subgraph T of D without cycles, is a rooted
oriented tree (ROT) with root v ∈ V(T) when T satisfies the following properties:

(i) If x ∈ V(T) \ {v}, there is an oriented path P in T from v to x.
(ii) If x ∈ V(T) with w(x) = 1, then degT(x) = 1 when x ̸= v or V(T) = {v}

when x = v.

Definition 2.4 A weighted oriented subgraph H of D is a ⋆-semi-forest if there
are rooted oriented trees T1, . . . , Tr whose roots are v1, . . . , vr and unicycle oriented
subgraphs B1, . . . , Bs such that H =

(
∪r

i=1 Ti
)
∪
(
∪s

j=1 Bj
)

with the following
conditions:

(i) V(T1), . . . , V(Tr), V(B1), . . . , V(Bs) is a partition of V(H).
(ii) There is W = {w1, . . . , wr} ⊆ V(D) \ V(H) such that wi ∈ ND(vi) for i =

1, . . . , r (it is possible that wi = wj for some 1 ⩽ i < j ⩽ r).
(iii) There is a partition W1, W2 of W such that W1 is a stable set of D, W2 ⊆ V+

and (wi, vi) ∈ E(D) if wi ∈ W2. Also, N+
D (W2 ∪ H̃) ∩ W1 = ∅, where

H̃ = {x ∈ V(H) | degH(x) ⩾ 2} ∪ {vi | degH(vi) = 1}.

Remark 2.5 If vi is a root vertex of Ti, with degH(vi) ⩾ 1, then vi ∈ H̃. Further-
more, by (ii) in Definition 2.2 and Definition 2.3, we have H̃ ⊆ V+.

Remark 2.6 Let H be a connected ⋆-semi-forest, then H is a ROT or H is an uni-
cycle oriented graph. If H is a ROT with root v, then W = W1 ∪ W2 = {w} and
w ∈ ND(v). Furthermore, (iii) in Definition 2.4 is equivalent to: w /∈ N+

D (H̃) if
w ∈ W1; or w ∈ N−

D (v) ∩ V+ if w ∈ W2.

Lemma 2.7 If H is a ⋆-semi-forest of D, then

V(H) ⊆ ND(W1) ∪ N+
D (W2 ∪ H̃).
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Proof. We take x ∈ V(H). Since H =
(
∪r

i=1 Ti
)
∪
(
∪s

j=1 Bj
)
, we have two

cases:

Case 1) x ∈ V(Bj) for some 1 ⩽ j ⩽ s. Let C be the oriented cycle of Bj. If x ∈
V(C), then there is z1 ∈ V(C) such that (z1, x) ∈ E(C). Furthermore, degH(z1) ⩾
degC(z1) = 2, then z1 ∈ H̃. Hence, x ∈ N+

D (z1) ⊆ N+
D (H̃). Now, if x ∈ V(Bj) \

V(C), then there is an oriented path P in Bj from C to x. Thus, there is z2 ∈
V(P) such that (z2, x) ∈ E(P). If |V(P)| > 2, then degH(z2) ⩾ degP (z2) = 2. If
|V(P)| = 2, then z2 ∈ V(C) and degH(z2) > degC(z2) = 2. Therefore, z2 ∈ H̃ and
x ∈ N+

D (H̃).

Case 2) x ∈ V(Ti) for some 1 ⩽ i ⩽ r. First, assume x = vi, then there is wi ∈ W =
W1 ∪ W2 such that x ∈ ND(wi). If wi ∈ W1, then x ∈ ND(W1). Also, if wi ∈ W2,
then by (iii) of Definition 2.4, x ∈ N+

D (wi) ⊆ N+
D (W2). Now, we suppose x ̸= vi,

then there is an oriented path L, from vi to x. Consequently, there is z3 ∈ V(L)
such that (z3, x) ∈ E(D). If z3 ̸= vi, then degH(z3) ⩾ degL(z3) = 2. Thus, z3 ∈ H̃
and x ∈ N+

D (H̃). Finally, if z3 = vi, then degH(z3) ⩾ 1. Hence, by Remark 2.5,
z3 ∈ H̃ and x ∈ N+

D (H̃). □

Remark 2.8 Sometimes to identify the relation between W and H in Definition 2.4,
W is denoted by WH. Similarly, WH

1 and WH
2 . Furthermore, {v1, . . . , vr} is denoted

by VH. If {T1, . . . , Tr} = ∅, then WH = WH
1 = WH

2 = ∅. Also, if H = ∪s
i=1 Bi, then

VH = ∅.

Lemma 2.9 Let K be a weighted oriented subgraph of D. If H is a maximal ROT
in K with root v, or H is a maximal unicycle oriented subgraph in K whose cycle is
C, then there is not (x′, x) ∈ E(K) with x′ ∈ V(H) ∩ V+ and x ∈ V(K) \ V(H).

Proof. By contradiction, suppose there is (x′, x) ∈ E(K) with x′ ∈ V(H) ∩ V+

and x ∈ V(K) \ V(H). Thus, H ⊊ H1 := H ∪ {(x′, x)} ⊆ K. If H is a unicycle
oriented subgraph (resp. H is a ROT) with cycle C (resp. with root v), then there
is an oriented path P from C (resp. from v) to x′. Consequently, P ∪ {(x′, x)} is an
oriented path from C (resp. from v) to x in H1. Furthermore, H1 has exactly one
cycle (resp. has no cycles), since degH1(x) = 1 and V(H1) \ V(H) = {x}.

Now, we take z ∈ V(H1) with w(z) = 1, then z = x or z ∈ V(H). We will prove
degH1(z) = 1. If z = x, then degH1(x) = 1. Now, if z ∈ V(H), then z ̸= x′,
since x′ ∈ V+. So, degH1(z) = degH(z), since NH1(x) = {x′}. If H is a ROT with
V(H) = {v}, then x′ = z = v. A contradiction, since w(z) = 1 and x′ ∈ V+.
Consequently, by (ii) in Definitions 2.2 and 2.3, degH1(z) = degH(z) = 1. Hence,
H1 is a unicycle oriented subgraph with cycle C (resp. is a ROT with root v) of K.
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This is a contradiction, since H ⊊ H1 ⊆ K and H is maximal. □

Definition 2.10 Let K be a weighted oriented subgraph of D and H a ⋆-semi-forest
of D. We say H is a generating ⋆-semi-forest of K if V(K) = V(H).

Theorem 2.11 Let K be an induced weighted oriented subgraph of D. Hence, the
following conditions are equivalent:

(1) There is a strong vertex cover C of D, such that V(K) ⊆ C.
(2) K has a generating ⋆-semi-forest.

Proof. (2) ⇒ (1) Let C1 be a minimal vertex cover of D. By (2), K has a
generating ⋆-semi-forest H. Now, using the notations of Definition 2.4, we take
C2 =

(
C1 \ W1

)
∪ ND(W1) ∪ N+

D (W2 ∪ H̃). By Remark 1.20, C2 is a vertex cover
of D. Since W1 is a stable set, ND(W1) ∩ W1 = ∅. Then, C2 ∩ W1 = ∅, since
N+

D (W2 ∪ H̃) ∩ W1 = ∅. By Remark 2.5 and (iii) in Definition 2.4, H̃ ∪ W2 ⊆ V+.
So, by Proposition 2.1, there is a strong vertex cover C of D such that N+

D (W2 ∪
H̃) ⊆ C ⊆ C2. Consequently, C ∩ W1 = ∅, since C2 ∩ W1 = ∅. Thus, by Remark
1.21, ND(W1) ⊆ C. Then, by Lemma 2.7, V(H) ⊆ ND(W1) ∪ N+

D (W2 ∪ H̃) ⊆ C.
Furthermore, V(K) = V(H), since H is a generating ⋆-semi-forest of K. Therefore,
V(K) ⊆ C.

(1) ⇒ (2) We have C is a strong vertex cover such that V(K) ⊆ C. If A :=
L1(C) ∩ V(K) = {v1, . . . , vs}, then there is wi ∈ V(D) \ C ⊆ V(D) \ V(K) such
that (vi, wi) ∈ E(D). We take the ROTs M1 = {v1}, . . . , Ms = {vs} and sets
W i

1 = WMi
1 = {wi} and W i

2 = WMi
2 = ∅ for i = 1, . . . , s.

Now, we will give a recursive process to obtain a generating ⋆-semi-forest of K.
For this purpose, suppose we have connected ⋆-semi-forests Ms+1, . . . , Ml of K \ A
with subsets Ws+1

1 , . . . , W l
1, Ws+1

2 , . . . , W l
2 ⊆ V(D) \V(K) and Vs+1, . . . , V l ⊆ V(K)

such that for each s < j ⩽ l, they satisfy the following conditions:

(a) W
Mj
1 = W j

1, W
Mj
2 = W j

2 and V j = {vj} if Mj is a ROT with root vj; or W j
1 =

W j
2 = ∅ and V j is the cycle of Mj if Mj is a unicycle oriented subgraph.

(b) Mj is a maximal ROT in K j := K \ ∪j−1
i=1V(Mi) whose root is vj or Mj is a

maximal unicycle oriented subgraph in K j whose cycle is V j.
(c) W j

1 ∩ C = ∅ and W j
2 ⊆

(
C \ (L1(C) ∪ V(K))

)
∩ V+.

Continuing with the recursive process, we take Kl+1 := K \
(
∪l

i=1 V(Mi)
)
. This

process begins with l = s; in this case, Ks+1 := K \
(
∪s

i=1 V(Mi)
)
= K \ A; fur-

thermore, if A = ∅, then K1 = K. Now, if Kl+1 = ∅, then V(K) = ∪l
i=1V(Mi)
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and we end the process. On the other hand, if Kl+1 ̸= ∅, then we will construct a
connected ⋆-semi-forest Ml+1 of Kl+1 in each one of the following cases:

Case (1) There is z ∈ L2(C)∩V(Kl+1). Thus, there is (z′, z) ∈ E(D) with z′ /∈ C. We
take a maximal ROT Ml+1 in Kl+1, whose root is z. Also, we take V l+1 = {vl+1} =

{z}, WMl+1
1 = W l+1

1 = {z′} and WMl+1
2 = W l+1

2 = ∅. Furthermore, V(Ml+1) ⊆
V(Kl+1) ⊆ V(K) \ A ⊆ C \ L1(C), then z′ /∈ N+

D (Ml+1), since z′ /∈ C. Hence, by
Remark 2.6, Ml+1 is a connected ⋆semi-forest. Furthermore, Ml+1 satisfies (a), (b)
and (c), since z′ ∈ ND(z) \ C and W l+1

2 = ∅.

Case (2) L2(C) ∩ V(Kl+1) = ∅. So, V(Kl+1) ⊆ L3(C), since V(Kl+1) ⊆ V(K) \ A ⊆
C \ L1(C). Consequently, if x ∈ V(Kl+1), then there is x1 ∈

(
C \ L1(C)

)
∩ V+

such that (x1, x) ∈ E(D), since C is strong. If x1 ∈ V(Kl+1), then there is x2 ∈(
C \ L1(C)

)
∩V+ such that (x2, x1) ∈ E(D), since C is strong. Continuing with this

process we obtain a maximal path P = (xr, xr−1, . . . , x1, x) such that xr−1, . . . , x1, x
are different in V(Kl+1) and x1, . . . , xr ∈

(
C \ L1(C)

)
∩ V+. Then, xr /∈ ∪s

j=1V(Mj),
since xr /∈ L1(C). Now, suppose xr ∈ V(Mj) for some s < j ⩽ l. Thus, (xr, xr−1) ∈
E(K j), xr−1 ∈ V(K j) \ V(Mj) and xr ∈ V+ ∩ V(Mj). A contradiction, by Lemma
2.9, since Mj is a maximal ROT in K j with root vj. Hence, xr /∈ ∪l

j=1V(Mj). This

implies xr /∈ V(K) or xr ∈ V(Kl+1).

Case (2.a) xr /∈ V(K). We take a maximal ROT Ml+1 in Kl+1 whose root is xr−1.

Also, we take V l+1 = {vl+1} = {xr−1}, W l+1
1 = WMl+1

1 = ∅; and W l+1
2 =

WMl+1
2 = {xr}. Thus, by Remark 2.6, Ml+1 is a connected ⋆-semi-forest. Fur-

thermore, Ml+1 satisfies (a), (b) and (c), since W l+1
1 = ∅, xr ∈

(
C \ L1(C)

)
∩ V+

and xr /∈ V(K).

Case (2.b) xr ∈ V(Kl+1). Then, xr ∈ L3(C), since V(Kl+1) ⊆ L3(C). Consequently,
there is xr+1 ∈

(
C \ L1(C)

)
∩ V+ such that (xr+1, xr) ∈ E(D), Then P̃ = (xr+1,

xr, . . . , x1, x) is an oriented walk. By the maximality of P , we have that xr ∈
{xr−1, . . . , x1, x}. So, P = (xr, . . . , x1, x) contains an oriented cycle C. We take a
maximal unicycle oriented subgraph Ml+1 of Kl+1 with cycle C, V l+1 = C and
W l+1

1 = W l+1
2 = ∅. Hence, Ml+1 satisfies (a), (b) and (c).

Therefore, we obtain a connected ⋆-semi-forest Ml+1 such that it satisfies (a), (b)
and (c). We take Kl+2 = K \

(
∪l+1

j=1 V(Mj)
)

and we continue with the recursive
process. Since K is finite, the recursive process stops and we obtain M1, . . . , Mt ⊆
K such that V(K) = ∪t

j=1 V(Mj), W j
1 ∩ C = ∅ and W j

2 ⊆
(
C \ L1(C)

)
∩ V+ for

j = 1, . . . t. Now, we take H := ∪t
j=1 Mj and W i = ∪t

j=1 W j
i for i = 1, 2. So,

V(H) = V(K). Also, W1 ∩ C = ∅, then W1 is a stable set, since C is a vertex cover.
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Furthermore, W2 ⊆ V+ and W2 ⊆ C \ L1(C), then N+
D (W2) ⊆ C. Thus, N+

D (W2) ∩
W1 = ∅, since C ∩ W1 = ∅. On the other hand, if x ∈ L1(C) ∩ V(K) = A, then
there is 1 ⩽ i ⩽ s such that x = vi and Mi = {vi}. So, degH(x) = degMi(vi) = 0.
Consequently, H̃ ∩ L1(C) = ∅ implies N+

D (H̃) ⊆ C, since V(H) ⊆ C. Hence,
N+

D (H̃)∩W1 = ∅, since W1 ∩ C = ∅. Therefore, H is a generating ⋆-semi-forest of
K, with WH

i = W i for i = 1, 2. □

Corollary 2.12 Let K be a complete weighted oriented subgraph of D. Hence, the
following conditions are equivalent:

(1) V(K) ̸⊆ C for each strong vertex cover C of D.
(2) K has no generating ⋆-semi-forests.
(3) |C ∩ V(K)| = |V(K)| − 1 for each strong vertex cover C.

Proof. (1) ⇔ (2) By Theorem 2.11.

(3) ⇒ (1) If C is a strong vertex cover of D, then |V(K) ∩ C| = |V(K)| − 1. So,
V(K) ̸⊆ C.

(1) ⇒ (3) If C is a strong vertex cover of D, then CK := C ∩ V(K) is a vertex
cover of K. Hence, |CK| ⩾ τ(K) = |V(K)| − 1. Therefore, |CK| = |V(K)| − 1, since
V(K) ̸⊆ C. □

Theorem 2.13 Let D = (G,O, w) be a weighted oriented graph where G is a per-
fect graph, then G has a τ-reduction G1, . . . , Gs in complete subgraphs. Further-
more, I(D) is unmixed if and only if each Gi has no generating ⋆-semi-forests.

Proof. First, we prove G has a τ-reduction in complete graphs. By Theorem 1.15,
G is perfect. Thus, s := ω(G) = χ(G). So, there is a s-colouring c : V(G) →
{1, . . . , s}. We take Vi := c−1(i) for i = 1, . . . , s. Then, Vi is a stable set in G, since c
is a s-colouring. Hence, by Remark 1.18, Gi := G[Vi] is a complete graph in G and
s = ω(G) = β(G). Furthermore, V1, . . . , Vs is a partition of V(G) = V(G), since c
is a function. Consequently,

s
∑

i=1
τ(Gi) =

s
∑

i=1

(
|Vi| − 1

)
=

( s
∑

i=1
|Vi|

)
− s = |V(G)| − β(G).

By Remark 1.22, |V(G)| − β(G) = τ(G), then G1, . . . , Gs is a τ-reduction of G.

Now, we prove that I(D) is unmixed if and only if each Gj has no generating ⋆-
semi-forests. Recall, Vj = V(Gj).

⇒) By contradiction, assume Gj has a generating ⋆-semi-forest, then by Theorem
2.11 there is a strong vertex C such that Vj ⊆ C. Furthermore, C ∩ Vi is a vertex
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cover of Gi, then |C ∩ Vi| ⩾ τ(Gi) = |Vi| − 1 for i ̸= j. Thus, |C| = ∑s
i=1 |C ∩ Vi| ⩾

|Vj|+∑s
i=1
i ̸=j

(|Vi| − 1), since V1, . . . , Vs is a partition of V(G). Hence, by Remark 1.22,

|C| > |V(G)| − s = τ(G), since s = β(G). A contradiction, by Remark 1.86, since
I(D) is unmixed.

⇐) Let C be a strong vertex cover, then C ∩ Vi is a vertex cover of Gi. So, |C ∩
Vi| ⩾ τ(Gi) = |Vi| − 1 for i = 1, . . . , s. Furthermore, by Theorem 2.11, Vi ̸⊆ C.
Consequently, |C ∩ Vi| = |Vi| − 1. Thus, |C| = ∑s

i=1
(
|Vi| − 1

)
, since V1, . . . , Vs is a

partition of V(G). Therefore, by (2) in Theorem 1.85, I(D) is unmixed. □

2.2 UNMIXEDNESS OF WEIGHTED ORIENTED SCQ GRAPHS

In this section (in Theorem 2.23) we characterize when I(D) is unmixed if G is an
SCQ-graph (see Definition 1.39). Using this result, we characterize (in Corollary
2.24) the unmixedness of I(D) when G is chordal or simplicial (see Definitions 1.9
and 1.36).

Proposition 2.14 If y ∈ E(G), then the following conditions are equivalent:

(1) |C ∩ y| = 1 for each strong vertex cover C of D.
(2) y has the property (P); furthermore, ND(b′) ⊆ N+

D (a) if (a, b) ∈ E(D) where
y = {b, b′} and a ∈ V+.

Proof. (1) ⇒ (2) First, we show y = {b, b′} has the property (P). By contra-
diction, suppose there are {a, b}, {a′, b′} ∈ E(G) such that {a, a′} /∈ E(G). This
implies, there is a maximal stable set S such that {a, a′} ⊆ S. By Remark 1.22,
C̃ := V(G) \ S is a minimal vertex cover. So, by Remark 1.83, C̃ is strong. Further-
more, a, a′ /∈ C̃, then b, b′ ∈ C̃, since {a, b}, {a′, b′} ∈ E(G). A contradiction by (1).
Now, assume (a, b) ∈ E(D) with a ∈ V+, then we will prove that ND(b′) ⊆ N+

D (a).
By contradiction, suppose there is c ∈ ND(b′) \ N+

D (a). We take a vertex cover C1.
By Remark 1.20, C =

(
C1 \ {c}

)
∪ ND(c) ∪ N+

D (a) is a vertex cover. Furthermore,
c /∈ C, since c /∈ N+

D (a). By Proposition 2.1, there is a strong vertex cover C ′ such
that N+

D (a) ⊆ C ′ ⊆ C, since a ∈ V+. Consequently, b ∈ C ′ and c /∈ C ′, since
b ∈ N+

D (a) and c /∈ C. Then, by Remark 1.21, b′ ∈ ND(c) ⊆ C ′. Hence, {b, b′} ⊆ C ′.
A contradiction, by (1).

(2) ⇒ (1) By contradiction, assume there is a strong vertex cover C of D such that
|C ∩ y| ̸= 1. So, |C ∩ y| = 2, since C is a vertex cover. Hence, by Theorem 2.11,
there is a generating ⋆-semi-forest H of y. We set y = {z, z′}. First, assume H
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is not connected. Then, using the Definition 2.4, we have H = M1 ∪ M2 where
M1 = {v1}, M2 = {v2} and w1, w2 ∈ WH such that wi ∈ ND(vi) for i = 1, 2. Thus,
{z, z′} = {v1, v2} and {w1, w2} ∈ E(G), since y satisfies the property (P). This
implies |WH

1 ∩ {w1, w2}| ⩽ 1, since WH
1 is a stable set. Hence, we can suppose w2 ∈

WH
2 , then w2 ∈ V+ and z = v2 imply (w2, z) ∈ E(D) and z′ = v1. Consequently,

by (2) with a = w2, w1 ∈ ND(z′) ⊆ N+
D (w2), then (w2, w1) ∈ E(D). Furthermore,

by (iii) in Definition 2.4, N+
D (WH

2 ) ∩ WH
1 = ∅, then w1 ∈ WH

2 . So, w1 ∈ V+

and (w1, z′) ∈ E(D). Thus, by (2) with a = w1, we have (w1, w2) ∈ E(D). A
contradiction, then H is connected. Hence, H is a ROT with V(H) = {z, z′}. We
can suppose v1 = z and WH = {w1}, then (z, z′) ∈ E(D), w1 ∈ ND(z) and z =
v1 ∈ H̃, since degH(v1) = 1. If w1 ∈ N+

D (z), then w1 ∈ WH
1 , since z = v1. A

contradiction, since N+
D (H̃) ∩ WH

1 = ∅. Then, w1 /∈ N+
D (z). By Remark 2.5, z =

v1 ∈ H̃ ⊆ V+. Therefore, by (2) (taking a = b′ = z and b = z′), we have ND(z) ⊆
N+

D (z), since (z, z′) ∈ E(D), y = {z, z′} and z ∈ V+. A contradiction, since w1 ∈
ND(z) \ N+

D (z). □

Corollary 2.15 [34, Theorem 3.4] Let D be a weighted oriented graph, where G is
König without isolated vertices. Hence, I(D) is unmixed if and only if D satisfies
the following two conditions:

(a) G has a perfect matching P with the property (P).
(b) ND(b′) ⊆ N+

D (a), when a ∈ V+, {b, b′} ∈ P and b ∈ N+
D (a).

Proof. ⇒) By Theorem 1.85, I(G) is unmixed. Thus, by Remark 1.78 and Theorem
1.27, G has a perfect matching P with the property (P). Thus, ν(G) = |P|. Also,
τ(G) = ν(G), since G is König. So, τ(G) = |P|. Now, we take a strong vertex cover
C of D and y ∈ P, then |C ∩ y| ⩾ 1. Furthermore, by Remark 1.86, |C| = τ(G) = |P|.
Hence, |C ∩ y| = 1, since C = ∪ỹ∈P C ∩ ỹ. Therefore, by Proposition 2.14, D satisfies
(b).

⇐) We take a strong vertex cover C of D. By Proposition 2.14, |C ∩ y| = 1 for each
y ∈ P, since D satisfies (a) and (b). This implies |C| = |P|, since P is a perfect
matching. Therefore, by (2) in Theorem 1.85, I(D) is unmixed. □

Lemma 2.16 If there is a basic 5-cycle C = (z1, z2, z3, z4, z5, z1) with (z1, z2), (z2, z3) ∈
E(D), z2 ∈ V+ and C satisfies one of the following conditions:

(a) (z3, z4) ∈ E(D) with z3 ∈ V+

(b) (z1, z5), (z5, z4) ∈ E(D) with z5 ∈ V+,

then there is a strong vertex cover C such that |C ∩ V(C)| = 4.
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Proof. We take C1 =
(
C0 \ V(C)

)
∪ ND(z1) ∪ N+

D (z2, x) where C0 is a vertex
cover such that x = z3 if C satisfies (a), or x = z5 if C satisfies (b). Thus, x ∈
V+. Also, z4 ∈ N+

D (z3) if C satisfies (a) or z4 ∈ N+
D (z5) if C satisfies (b). Hence,

{z2, z3, z4, z5} ⊆ ND(z1) ∪ N+
D (z2, x) implies {z2, z3, z4, z5} ⊆ C1. So, by Remark

1.20, C1 is a vertex cover. Furthermore, z1 /∈ C1, since z1 /∈ ND(z1)∪ N+
D (z2, z3) and

z1 /∈ N+
D (z5) if C satisfies (b). By Proposition 2.1, there is a strong vertex cover C ′

such that N+
D (z2, x) ⊆ C ′ ⊆ C1, since {z2, x} ⊆ V+. Also, z1 /∈ C ′, since z1 /∈ C1.

Then, by Remark 1.21, ND(z1) ⊆ C ′. Hence, {z2, z3, z4, z5} ⊆ ND(z1)∪ N+
D (z2, x) ⊆

C ′. Therefore, |C ′ ∩ V(C)| = 4, since z1 /∈ C ′. □

Definition 2.17 Let C be an induced 5-cycle, we say that C has the ⋆-property if
for each (a, b) ∈ E(C) such that a ∈ V+, we have that C = (a′, a, b, b′, c, a′) with the
following properties:

(⋆.1) (a′, a) ∈ E(D) and w(a′) = 1.
(⋆.2) N−

D (a) ⊆ ND(c) and N−
D (a) ∩ V+ ⊆ N−

D (c).
(⋆.3) ND(b′) ⊆ ND(a′) ∪ N+

D (a) and N−
D (b′) ∩ V+ ⊆ N−

D (a′).

Remark 2.18 Let C = (a′, a, b, b′, c, a′) be a 5-cycle with the (⋆.1) property of Defi-
nition 2.17, such that (a, b) ∈ E(C) and a ∈ V+. So, (a′, a) ∈ E(D) and w(a′) = 1.
Now, suppose N−

D (a) ⊆ V(C), then N−
D (a) = {a′} ⊆ ND(c) and N−

D (a) ∩ V+ =
∅ ⊆ N−

D (c). Hence, C satisfies (⋆.2). On the other hand, if N−
D (a) ̸⊆ V(C) with

C a basic cycle, such that satisfies (⋆.2) property of Definition 2.17, then there is
w ∈ N−

D (a) \ V(C) ⊆ ND(c). Thus, degD(b′) = 2, since C is basic. Consequently,
ND(b′) = {b, c} ⊆ ND(a′) ∪ N+

D (a). Hence, C satisfies the first part of (⋆.3) in
Definition 2.17.

Lemma 2.19 Let C = (a′1, a1, b1, b′1, c1, a′1) be a basic 5-cycle of D such that (a′1, a1) ∈
E(D), degD(a1) ⩾ 3, degD(c1) ⩾ 3 and w(b1) = 1. If there is a strong vertex cover
C of D, such that V(C) ⊆ C, then C has no the ⋆-property.

Proof. By contradiction, suppose C has the ⋆-property and there is a strong vertex
cover C, such that V(C) ⊆ C. Then, degD(a′1) = degD(b′1) = 2, since C is a basic
cycle and degD(a1), degD(c1) ⩾ 3. Hence, a′1, b′1 ∈ L3(C) and N−

D (a′1) ⊆ {c1},
since V(C) ⊆ C and (a′1, a1) ∈ E(D). Thus, (c1, a′1) ∈ E(D) and w(c1) ̸= 1, since
a′1 ∈ L3(C) and C is strong. By (⋆.1) with (a, b) = (c1, a′1), we have that (b′1, c1) ∈
E(D). Hence, N−

D (b′1) ⊆ {b1}, since degD(b′1) = 2. This is a contradiction, since
b′1 ∈ L3(C), w(b1) = 1 and C is strong. □
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Lemma 2.20 Let C be a vertex cover of D and C a 5-cycle. If A ⊆ V+ and B ⊆ V(D)
such that N+

D (A) ⊆ C, B ∩ C = ∅ and |V(C) ∩
(

N+
D (A) ∪ ND(B)

)
| ⩾ 4, then there

is a strong vertex cover C ′ such that |C ′ ∩ V(C)| ⩾ 4.

Proof. By Proposition 2.1, there is a vertex cover C ′ such that N+
D (A) ⊆ C ′ ⊆ C. So,

B ∩ C ′ = ∅, since B ∩ C = ∅. Thus, by Remark 1.21, ND(B) ⊆ C ′. Then, N+
D (A) ∪

ND(B) ⊆ C ′. Therefore, |V(C) ∩ C ′| ⩾ 4, since |V(C) ∩
(

N+
D (A) ∪ ND(B)

)
| ⩾ 4.

□

Proposition 2.21 Let C be a basic 5-cycle, then C has the ⋆-property if and only if
|C ∩ V(C)| = 3 for each strong vertex cover C of D.

Proof. ⇒) By contradiction, we suppose there is a strong vertex cover C such that
|C ∩ V(C)| ⩾ 4. Thus, there is a path L = (d1, d2, d3, d4) ⊆ C such that V(L) ⊆ C.
Then, degD(d2) = 2 or degD(d3) = 2, since C is basic. We can suppose degD(d2) =
2, then ND[d2] ⊆ C. This implies b1 := d2 ∈ L3(C). So, there is (a1, b1) ∈ E(D)
with a1 ∈

(
C \ L1(C)

)
∩ V+, since C is strong. Since, ND[b1] ⊆ C, we can set C =

(a′1, a1, b1, b′1, c1, a′1). Consequently, {a1, b′1} = ND(b1) = ND(d2) = {d1, d3} ⊆ C.
By (⋆.1), (a′1, a1) ∈ E(D) and w(a′1) = 1. If b1 ∈ V+, then by Remark 1.81, b1 is not a
sink. This implies, (b1, b′1) ∈ E(D). Then, by (⋆.1) with (a, b) = (b1, b′1), w(a1) = 1.
A contradiction, since a1 ∈ V+. Hence, w(b1) = 1.

Now we prove a′1 ∈ C. By contradiction assume a′1 ̸∈ C, then {a1, b1, b′1, c1} ⊆ C,
since |C ∩ V(C)| ⩾ 4. Suppose b′1 ∈ L3(C), then there is x ∈

(
C ∩ V+

)
\ L1(C) such

that (x, b′1) ∈ E(D), since C is strong. Then, by (⋆.3) with (a, b) = (a1, b1), we have
that x ∈ N−

D (a′1), i.e. (x, a′1) ∈ E(D). Consequently, x ∈ L1(C), since x ∈ C and
a′1 /∈ C. This is a contradiction. Hence, b′1 /∈ L3(C), i.e. there is x′ ∈ ND(b′1) \ C,
since b′1 ∈ C. By (⋆.3), x′ ∈ ND(a′1) ∪ N+

D (a1). Furthermore, by Remark 1.21,
ND(a′1) ⊆ C, then x′ ∈ N+

D (a1), since x′ /∈ C. This implies a1 ∈ L1(C), since a1 ∈ C
and x′ /∈ C. A contradiction, since a1 /∈ L1(C). Therefore, a′1 ∈ C.

Thus, {a1, a′1, b1, b′1} ⊆ C. Now, we prove c1 ∈ C, degD(a1) ⩾ 3 and degD(c1) ⩾
3.

Case (1) a1 ∈ L3(C). Thus, there is z ∈ N−
D (a1)∩ V+ such that z ∈ C \ L1(C). Then,

z /∈ V(C), since N−
D (a1) ∩ V(C) = {a′1} and w(a′1) = 1. Furthermore, by (⋆.2),

z ∈ N−
D (c1) i.e., (z, c1) ∈ E(D). Consequently, c1 ∈ C and degD(a1), degD(c1) ⩾ 3,

since z ∈ C \ L1(C) and z ∈ ND(a1) ∩ ND(c1).

Case (2) a1 /∈ L3(C). Then, there is z′ ∈ ND(a1) such that z′ /∈ C. So, z′ /∈ V(C),
since ND(a1) ∩ V(C) = {a′1, b1} ⊆ C. Thus, z′ ∈ N−

D (a1), since a1 ∈ C \ L1(C).
Consequently, by (⋆.2), z′ ∈ ND(c1). Hence, by Remark 1.21, c1 ∈ C, since z′ /∈ C.



2.2 UNMIXEDNESS OF WEIGHTED ORIENTED SCQ GRAPHS 29

Furthermore, degD(a1), degD(c1) ⩾ 3, since z′ ∈ ND(a1) ∩ ND(c1).

This implies, V(C) ⊆ C. A contradiction, by Lemma 2.19, since C has the ⋆-
property.

⇐) Assume C = (a′, a, b, b′, c, a′) with (a, b) ∈ E(C) such that w(a) ̸= 1. We take a
minimal vertex cover C of D. We will prove (⋆.1), (⋆.2) and (⋆.3).

(⋆.1) First we prove (a′, a) ∈ E(D). By contradiction, suppose (a, a′) ∈ E(D). By
Remark 1.81, there is x ∈ N−

D (a), since a ∈ V+. Thus, x /∈ V(C) and degD(a) ≥ 3.
Consequently, degD(a′) = degD(b) = 2, since C is basic. Also, degD(b′) = 2 or
degD(c) = 2, since C is basic. We can assume degD(c) = 2, then ND(c) = {a′, b′}.
So, by Remark 1.20, C1 =

(
C \ {x, c}

)
∪ ND(x, b) ∪ N+

D (a) is a vertex cover, since
ND(c) = {a′, b′} ⊆ N+

D (a) ∪ ND(b) ⊆ C1. Furthermore, c /∈ ND(x) and c /∈
ND(b) ∪ N+

D (a), since degD(c) = 2 and C is induced. Then, c ̸∈ C1. Also, ND(b) =
{b′, a}, implies x ̸∈ C1, since x ̸∈ N+

D (a). Hence, N+
D (a) ⊆ C1, {x, c} ∩ C1 = ∅

and {a, a′, b, b′} ⊆ N+
D (a) ∪ ND(x, c). A contradiction, by Lemma 2.20, since a ∈

V+.

Now, we prove w(a′) = 1. By contradiction, assume w(a′) ̸= 1. So, we have
(a′, a) ∈ E(D) and a′ ∈ V+. Hence, by the last argument, (c, a′) ∈ E(D). A
contradiction, by (a) in Lemma 2.16.

(⋆.2) We will prove N−
D (a) ⊆ ND(c). By contradiction, suppose there is x ∈

N−
D (a) \ ND(c). Also, N−

D (a) ∩ V(C) ⊆ {a′} ⊆ ND(c), since (a, b) ∈ E(D). Thus,
x /∈ V(C). By Remark 1.20, C2 =

(
C \ {x, c}

)
∪ ND(x, c) ∪ N+

D (a) is a vertex
cover. Furthermore, {x, c} ∩ C2 = ∅, since x ∈ N−

D (a) \ ND(c) and c /∈ ND(a, x).
Also, {a, a′, b, b′} ⊆ N+

D (a) ∪ ND(x, c). A contradiction, by Lemma 2.20, since
a ∈ V+.

Now, we prove N−
D (a) ∩ V+ ⊆ N−

D (c). By contradiction, suppose there is x ∈
N−

D (a)∩V+ \ N−
D (c). By Remark 1.20, C3 = (C \ {c})∪ ND(c)∪ N+

D (a, x) is a vertex
cover. Furthermore, c /∈ N+

D (a, x), since x /∈ N−
D (c). Then, c /∈ C3. Furthermore,

{b, a, a′, b′} ⊆ N+
D (a, x) ∪ ND(c). A contradiction by Lemma 2.20, since {a, x} ⊆

V+.

(⋆.3) We prove ND(b′) ⊆ ND(a′) ∪ N+
D (a). By contradiction, we suppose there

is x ∈ ND(b′) \
(

ND(a′) ∪ N+
D (a)

)
. Thus, x /∈ C, since ND(b′) ∩ V(C) = {c, b} ⊆

ND(a′)∪ N+
D (a). By Remark 1.20, C4 =

(
C \ {x, a′}

)
∪ ND(x, a′)∪ N+

D (a) is a vertex
cover. Also, x /∈ C4, since x /∈ ND(a′) ∪ N+

D (a). By (⋆.1), (a′, a) ∈ E(D), then
a′ /∈ C4, since a′ /∈ ND(x) ∪ N+

D (a). So, {x, a′} ∩ C4 = ∅ and {b, b′a, c} ⊆ N+
D (a) ∪

ND(x, a′). A contradiction, by Lemma 2.20.

Finally, we prove N−
D (b′) ∩ V+ ⊆ N−

D (a′). By contradiction, we suppose there is
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x ∈
(

N−
D (b′) ∩ V+

)
\ N−

D (a′). By (⋆.1), (a′, a) ∈ E(D). By Remark 1.20, C5 =
(
C \

{a′}
)
∪ ND(a′) ∪ N+

D (x, a) is a vertex cover. Furthermore, a′ /∈ N+
D (x, a), since x /∈

N−
D (a′) and (a′, a) ∈ E(D). Consequently, a′ /∈ C5. Also, {b, b′, a, c} ⊆ N+

D (a, x) ∪
ND(a′) and {a, x} ⊆ V+. A contradiction, by Lemma 2.20. □

Lemma 2.22 Let C be a vertex cover of D where G is an SCQ graph. Hence, |C| =
τ(G) if and only if |C ∩ V(K)| = |V(K)| − 1, |C ∩ V(C)| = 3 and |C ∩ y| = 1 for
each K ∈ SG, C ∈ CG and y ∈ QG, respectively.

Proof. We set C a vertex cover of D, K ∈ SG, C ∈ CG and y ∈ QG. Then, there
are a, a′ ∈ V(C) and z ∈ V(G) such that degG(a) = degG(a′) = 2, {a, a′} /∈ E(G)
and K = G[NG[z]]. We set AK := V(K) \ {z} and BC := V(C) \ {a, a′}. Also,
C ∩ V(K) is a vertex cover of K, so |C ∩ V(K)| ⩾ τ(K) = |V(K)| − 1. Similarly,
|C ∩ V(C)| ⩾ τ(C) = 3 and |C ∩ y| ⩾ τ(y) = 1. Thus,

|C| = ∑
K∈SG

|C ∩ V(K)|+ ∑
C∈CG

|C ∩ V(C)|+ ∑
y∈QG

|C ∩ y|

⩾ ∑
K∈SG

(
|V(K)| − 1

)
+ 3|CG|+ |QG|,

(2.1)

since H = {V(H) | H ∈ SG ∪ CG ∪ QG} is a partition of V(G). Now, we take a
maximal stable set S contained in V(QG) := {x ∈ V(G) | x ∈ y and y ∈ QG}. So,
|S ∩ y| ⩽ 1 for each y ∈ QG, since S is stable. If S ∩ y = ∅ for some y = {x1, x2} ∈
QG, then there are z1, z2 ∈ S such that {x1, z1}, {x2, z2} ∈ E(G), since S is maximal.
But QG satisfies the property (P), then {z1, z2} ∈ E(G). A contradiction, since S
is stable. Hence, |S ∩ y| = 1 for each y ∈ QG. Consequently, |S| = |QG| and
|S′| = |QG|, where S′ = V(QG) \ S. Now, we take

C(S′) =
( ⋃

K∈SG

AK

)⋃ ( ⋃
C∈CG

BC

)⋃
S′.

We prove C(S′) is a vertex cover of D. By contradiction, suppose there is ŷ ∈ E(G)
such that ŷ ∩ C(S′) = ∅. We set z′ ∈ ŷ, then ŷ = {z′, z′′}. If z′ ∈ V(K̃) for some
K̃ ∈ SG, then z′ = z̃ where K̃ = G[NG[z̃]], since AK̃ ⊆ C(S′) and z′ /∈ C(S′). So,
z′′ ∈ NG(z′) ⊆ K̃ \ {z′} = AK̃ ⊆ C(S′). A contradiction, since ŷ ∩ C(S′) = ∅.
Now, if z′ ∈ V(C̃) for some C̃ ∈ CG, then z′ /∈ BC̃. Thus, degG(z′) = 2 implies
z′′ ∈ BC̃ ⊆ C(S′), since {z′, z′′} ∈ E(G). A contradiction. This implies, ŷ ⊆ V(QG),
since H is a partition of V(G). Also, ŷ ∩ S′ = ∅, since ŷ /∈ C(S′). Consequently,
ŷ ⊆ V(QG) \ S′ = S. But S is a stable set, a contradiction. Hence, C(S′) is a vertex
cover of D. Furthermore,

|C(S′)| = ∑
K∈SG

|AK|+ ∑
C∈CG

|BC|+ |S′| = ∑
K∈SG

(
|V(K)| − 1

)
+ 3|CG|+ |QG|.
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Therefore, by (2.1), τ(G) = ∑K∈SG

(
|V(K)| − 1

)
+ 3|CG| + |QG|. Furthermore,

|C| = τ(G) if and only if |C ∩ V(K)| = |K| − 1, |C ∩ V(C)| = 3 and |C ∩ y| = 1 for
each K ∈ SG, C ∈ CG and y ∈ QG, respectively. □

Theorem 2.23 Let D be a weighted oriented graph where G is an SCQ graph.
Hence, I(D) is unmixed if and only if D satisfies the following conditions:

(a) Each basic 5-cycle of G has the ⋆-property.
(b) Each simplex of D has no generating ⋆-semi-forests.
(c) ND(b) ⊆ N+

D (a) when a ∈ V+, {b, b′} ∈ QG and b′ ∈ N+
D (a).

Proof. ⇒) We take a strong vertex cover C of D, then by Remark 1.86, |C| =
τ(G). Consequently, by Lemma 2.22, |C ∩V(K)| = |V(K)| − 1, |C ∩V(C)| = 3 and
|C ∩ y| = 1 for each K ∈ SG, C ∈ CG and y ∈ QG. Thus, V(K) ̸⊆ C. Consequently,
by Theorem 2.11, D satisfies (b). Furthermore, by Propositions 2.21 and 2.14, D
satisfies (a) and (c).

⇐) Let C be a strong vertex cover of D. By (a) and Proposition 2.21, we have
|C ∩ V(C)| = 3 for each C ∈ CG. Furthermore, by (b) and Corollary 2.12, |C ∩
V(K)| = |V(K)| − 1 for each K ∈ SG. Now, if y ∈ QG, then by Definition 1.39,
y has the property (P). Thus, by (c) and Proposition 2.14, |C ∩ y| = 1. Hence, by
Lemma 2.22, |C| = τ(G). Therefore I(D) is unmixed, by (2) in Theorem 1.85. □

Corollary 2.24 Let D be a weighted oriented graph where G is chordal or simpli-
cial. Hence, I(D) is unmixed if and only if D satisfies the following conditions:

(a) Each vertex is in exactly one simplex of D.
(b) Each simplex of D has not a generating ⋆-semi-forest.

Proof. ⇒) By (3) in Theorem 1.85 and Remark 1.78, G is well-covered. Thus, by
Theorem 1.38, G satisfies (a). Furthermore, by Remark 1.43, G is an SCQ graph
with CG = QG = ∅. Hence, by Theorem 2.23, D satisfies (b).

⇐) By (a), {V(H) | H ∈ SG} is a partition of V(G). Hence, G is an SCQ graph with
CG = ∅ and QG = ∅. Therefore, by (b) and Theorem 2.23, I(D) is unmixed. □
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2.3 UNMIXEDNESS OF WEIGHTED ORIENTED GRAPHS WITH-

OUT SOME SMALL CYCLES

In this section we characterize the unmixedness of I(D) when G is a graph with at
most one of the following families of cycles: 3-cycles, 4-cycles and 5-cycles (Theo-
rems 2.28, 2.38 and 2.43). In particular, we obtain an easy characterization of the
unmixedness of I(D) if girth(G) ⩾ 6 (see Corollary 2.40).

Proposition 2.25 If for each (z, x) ∈ E(D) with z ∈ V+, we have that ND(x′) ⊆
N+

D (z) for some x′ ∈ ND(x) \ z, then L3(C) = ∅ for each strong vertex cover C of
D.

Proof. By contradiction, suppose there is a strong vertex cover C of D and x ∈
L3(C). Hence, there is z ∈

(
C \ L1(C)

)
∩ V+ with (z, x) ∈ E(D). Then, ND(x) ⊆ C

and N+
D (z) ⊆ C, since x ∈ L3(C) and z ∈ C \ L1(C). By hypothesis, there is a vertex

x′ ∈ ND(x) \ z ⊆ C such that ND(x′) ⊆ N+
D (z) ⊆ C. Thus, x′ ∈ L3(C). Since C is

strong, there is (z1, x′) ∈ E(D) with z1 ∈ V+. So, z1 ∈ ND(x′) ⊆ N+
D (z). On the

other hand, (z1, x1) ∈ E(D) where x1 := x′ and z1 ∈ V+, then by hypothesis, there
is x2 ∈ ND(x1) \ z1 such that ND(x2) ⊆ N+

D (z1). Hence, x2 ∈ ND(x1) = ND(x′) ⊆
N+

D (z). Consequently, z ∈ ND(x2) ⊆ N+
D (z1). A contradiction, since z1 ∈ N+

D (z).
□

Corollary 2.26 If G is unmixed and V+ is a subset of sinks, then I(D) is unmixed.

Proof. If x′ ∈ V+, then x′ is a sink. Thus, (x′, x) /∈ E(D) for each x′ ∈ V(D).
Hence, by Proposition 2.25, L3(C) = ∅, for each strong vertex cover C of D. Fur-
thermore, by Remark 1.78, I(G) is unmixed. Therefore I(D) is unmixed, by (3) in
Theorem 1.85. □

Lemma 2.27 Let (z, x′), (x′, x) be edges of D with x′ ∈ V+ and ND(x) = {x′, x1, . . . ,
xs}. If there are zi ∈ ND(xi) \ N+

D (x′) such that {z, x, z1, . . . , zs} is a stable set, then
I(D) is mixed.

Proof. We have A ∪ {x} is a stable set where A := {z, z1, . . . , zs}. We can take
a maximal stable set S of V(G), such that A ∪ {x} ⊆ S. So, C̃ = V(G) \ S is a
minimal vertex cover of D. Hence, C = C̃ ∪ N+

D (x′) is a vertex cover of D. Also
A ∩ C = ∅, since A ⊆ S, z ∈ N−

D (x′) and zi /∈ N+
D (x′). By Proposition 2.1, there

is a strong vertex cover C ′ of D such that N+
D (x′) ⊆ C ′ ⊆ C, since x′ ∈ V+. Thus,
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A ∩ C ′ = ∅, since A ∩ C = ∅. Then, by Remark 1.21, ND(A) ⊆ C ′. Furthermore
ND(x) = {x′, x1, . . . , xs} ⊆ ND(A). Consequently, ND[x] ⊆ C ′, since x ∈ N+

D (x′) ⊆
C ′. Hence, x ∈ L3(C ′). Therefore, by (3) in Theorem 1.85, I(D) is mixed. □

Theorem 2.28 Let D be a weighted oriented graph such that G has no 3- and 5-
cycles. Hence, I(D) is unmixed if and only if D satisfies the following conditions:

(a) G is well-covered.
(b) If (z, x) ∈ E(D) and z ∈ V+, then ND(x′) ⊆ N+

D (z) for some x′ ∈ ND(x) \ z.

Proof. ⇐) By Proposition 2.25 and (b), we have that L3(C) = ∅ for each strong
vertex cover C of D. Furthermore, by (a) and Remark 1.78, I(G) is unmixed. There-
fore, by (3) in Theorem 1.85, I(D) is unmixed.

⇒) By (3) in Theorem 1.85 and Remark 1.78, D satisfies (a). Now, we take (z, x) ∈
E(D) with z ∈ V+. Then, by Remark 1.81, there is z′ ∈ N−

D (z). Thus, z′ ̸= x
and z′ /∈ ND(x), since G has no 3-cycles. We set ND(x) \ {z} = {x1, . . . , xs}, then
z′ /∈ {z, x1, . . . , xs}. We will prove (b). By contradiction, suppose there is zi ∈
ND(xi) \ N+

D (z) for each i = 1, . . . , s. So, x /∈ {z1, . . . , zs}, since x ∈ N+
D (z). If

{zi, zj} ∈ E(G) for some 1 ⩽ i < j ⩽ s, then (x, xi, zi, zj, xj, x) is a 5-cycle. But G has
no 5-cycles, then {z1, . . . , zs} is a stable set. If z = zi, then (z, x, xi, z) is a 3-cycle.
A contradiction, this implies z /∈ {z1, . . . , zs}. Now, if {x, zk} ∈ E(G) or {z′, zk} ∈
E(G) for some k ∈ {1, . . . , s}, then (x, xk, zk, x) is a 3-cycle or (z′, z, x, xk, zk, z′) is a
5-cycle. Hence, {x, z′, z1, . . . , zs} is a stable set. A contradiction, by Lemma 2.27,
since I(D) is unmixed. □

In the following results, we use the notation of Figure 1.1.

Remark 2.29 Let G be a graph in {C7, T10, P10, P13, P14, Q13}. Hence,

(a) G does not contain 4-cycles. Furthermore, if G has a 3-cycle, then G = T10.
(b) If degG(x) = 2, then x is not in a 3-cycle of G.
(c) If G ̸= C7 and ỹ = {v, u} ∈ E(G) with degD(v) = degD(u) = 2, then ỹ ∈

{ỹ1, ỹ2, ỹ3}. Also, if ỹ is in a 5-cycle C, then G ∈ {P10, P13}, ỹ ∈ {ỹ1, ỹ2} and
C ∈ {C1, C2} or G = Q13, ỹ = ỹ1 and C = C1.

(d) If P = (z1, z2, z3) is a path in G with degG(zi) = 2 for i = 1, 2, 3, then G = C7.

Proof. (a) By Theorems 1.42 and 1.46, G has no 4-cycles. Now, if G has a 3-cycle
then, by Theorem 1.46, G = T10.

(b) By (a), the unique 3-cycle is (c1, c2, c3, c1) in T10 and degT10(ci) = 3 for i =
1, 2, 3.
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(c) By Figure 1.1, ỹ ∈ {ỹ1, ỹ2, ỹ3} and G ∈ {T10, P10, P13, Q13}, since G ̸= C7. Now,
assume ỹ is in a 5-cycle C. By Theorem 1.42, G ̸= T10. If G = P10, then ỹ3 is not in
a 5-cycle. Thus, ỹ ∈ {ỹ1, ỹ2} and C ∈ {C1, C2}. Now, if G = P13, then ỹ ∈ {ỹ1, ỹ2}
and C ∈ {C1, C2}. Finally, if G = Q13, then ỹ2, ỹ3 are not in a 5-cycle. Hence, ỹ = ỹ1
and C = C1.

(d) By contradiction, suppose G ̸= C7. If ỹ ∈ E(P), then by (c), ỹ ∈ {ỹ1, ỹ2, ỹ3}.
But, ỹi ∩ ỹj = ∅ for i ̸= j. A contradiction, since P is a path. □

Lemma 2.30 Let G be a graph in {C7, T10, P10, P13, P14, Q13} with I(D) unmixed. If
(z, x′), (x′, x) ∈ E(D) with x′ ∈ V+ and ND(x) \ {x′} = {x1}, then degD(x1) = 2.

Proof. By contradiction, suppose degD(x1) ⩾ 3. Hence, there are z1, z′1 ∈ ND(x1) \
{x}. By hypothesis, degD(x) = 2. Then, by (b) in Remark 2.29, x is not in a 3-cycle.
So, x1 ̸= z and x′ /∈ {z1, z′1}. Furthermore, by (a) in Remark 2.29, G has no 4-cycles.
Thus, z /∈ {z′1, z1} and z1, z′1 /∈ ND(x′). If z′1, z1 ∈ ND(z), then (x1, z′1, z, z1, x1) is a
4-cycle. A contradiction, then we can assume z1 /∈ ND(z). Consequently, {x, z, z1}
is a stable set, since x is not in a 3-cycle. A contradiction, by Lemma 2.27, since
I(D) is unmixed. □

Lemma 2.31 If I(D) is unmixed, G ∈ {C7, T10, P10, P13, P14, Q13} and ỹ = (x′, x) ∈
E(D) with degD(x) = 2 and x′ ∈ V+, then G = P10 and ỹ = (di, bj) with {i, j} =
{1, 2}.

Proof. By Remark 1.81, there is z ∈ N−
D (x′). We set ND(x) = {x′, x1}. Thus,

by Lemma 2.30, degD(x1) = 2. Now, we set ND(x1) = {x, z1}. By (b) in Remark
2.29, x is not in a 3-cycle. So, z, z1 /∈ ND(x) implies z ̸= x1 and z1 ̸= x′. Also,
by (a) in Remark 2.29, G has no 4-cycles. Then, z1 ̸= z and z1 /∈ ND(x′). If z /∈
ND(z1), then {x, z, z1} is a stable set. A contradiction, by Lemma 2.27, since I(D)
is unmixed. Hence, {z1, z} ∈ E(G) and C := (z, x′, x, x1, z1, z) is a 5-cycle. Suppose
x′′ ∈ N−

D (x′) \ {z}, then x′′ /∈ ND(z1), since (z1, z, x′, x′′, z1) is not in a 4-cycle in
G. Consequently, {x′′, x, z1} is a stable set, since degD(x) = 2. A contradiction, by
Lemma 2.27, since (x′′, x′), (x′, x) ∈ E(D). Hence, N−

D (x′) = {z}. Now, by (c) in
Remark 2.29 and by symmetry of P10 and P13, we can assume {x, x1} = ỹ1, C = C1

and G ∈ {P10, P13, Q13}.

First, assume G = P13. By symmetry and notations of Figure 1.1, we can suppose
x1 = a1 and x = a2, since ỹ1 = {x, x1}. Then, x′ = b2, z1 = b1 and z = c1.
Thus, (b2, d2) ∈ E(D), since x′ = b2 and N−

D (x′) = {z} = {c1}. Furthermore,
(c1, b2) = (z, x′) ∈ E(D), (b2, d2) ∈ E(D), b2 = x′ ∈ V+ and ND(d2) = {b2, b4, v}.
Also, a4 ∈ ND(b4) \ N+

D (b2), d1 ∈ ND(v) \ N+
D (b2) and {c1, d2, a4, d1} is a stable set.
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A contradiction, by Lemma 2.27, since I(D) is unmixed.

Now, suppose G = Q13. By symmetry of Q13, we can suppose x = a2 and x1 = a1,
then d2 = x′ ∈ V+, z = h and (h, d2) = (z, x′) ∈ E(D). So, (d2, c2) ∈ E(D),
since N−

D (d2) = N−
D (x′) = {z} = {h}. A contradiction, by Lemma 2.27, since

(h, d2), (d2, c2) ∈ E(D), d2 ∈ V+, ND(c2) = {d2, b1}, g1 ∈ ND(b1) \ N+
D (d2) and

{h, c2, g1} is a stable set.

Hence, G = P10 and {x, x1} = ỹ1 = {a1, b1}. If x = a1 and x1 = b1, then g1 =
x′ ∈ V+, (d1, g1) = (z, x′) ∈ E(D), since C = C1. Furthermore, (g1, c1) ∈ E(D),
since N−

D (g1) = N−
D (x′) = {z} = {d1}. A contradiction by Lemma 2.27, since

(d1, g1), (g1, c1) ∈ E(D), g1 ∈ V+, ND(c1) = {g1, c2}, g2 ∈ ND(c2) \ N+
D (g1) and

{d1, c1, g2} is a stable set. Therefore, x = b1 and x1 = a1, imply x′ = d2 and
(x′, x) = (d2, b1), since C = C1. □

Remark 2.32 Assume I(D) is unmixed, G ∈ {C7, T10, Q13, P13, P14}, C is a strong
vertex cover of D and x ∈ C ∩ V+ such that NG(x) \ C ⊆ V2 := {a ∈ V(G) |
degG(a) = 2}. We take b ∈ NG(x) \ C. By Lemma 2.31, (x, b) /∈ E(D), since
G ̸= P10. Then, (b, x) ∈ E(D). Consequently, ND(x) \ C ⊆ N−

D (x), i.e. N+
D (x) ⊆ C.

Hence, x ∈ C \ L1(C).

Proposition 2.33 If I(D) is unmixed, with G ∈ {C7, T10, Q13, P13, P14}, then the
vertices of V+ are sinks.

Proof. By contradiction, suppose there is (x′, x) ∈ E(D) with x′ ∈ V+. Then, by
Lemma 2.31, degD(x) ⩾ 3, since G ̸= P10. Thus, G ̸= C7. By Remark 1.81, x′ is
not a source. So, there is (z, x′) ∈ E(D). We set V2 := {a ∈ V(G) | degG(a) = 2}.
By Theorem 1.85, L3(C̃) = ∅ for each strong vertex cover C̃ of D, since I(D) is
unmixed. Hence, to obtain a contradiction, in each one of the following cases, we
will give a vertex cover C of D such that L3(C) = {x} and x′ ∈ C \ L1(C), since
with these conditions C is strong and L3(C) ̸= ∅. We will use the notations of
Figure 1.1.

Case (1) If D = T10, then x ∈ {v, c1, c2, c3}, since degG(x) ⩾ 3.

Case (1.a) x = v. Then, C1 = {v, a1, a2, a3, c1, c2, c3} is a vertex cover with L3(C1) =
{x}. By symmetry of P10, we can suppose x′ = a1. Consequently, z = b1 and
N+

D (x′) = {v} ⊆ C1, since a1 ∈ V2. Hence, x′ ∈ C1 \ L1(C1).

Case (1.b) x ∈ {c1, c2, c3}. By symmetry of P10, we can assume x = c1 and x′ ∈
ND(c1) = {b1, c2}. Thus, C2 = {v, a2, a3, b1, c1, c2, c3} is a vertex cover with L3(C2) =
{x} and x′ ∈ C2. If x′ = b1, then z = a1 and N+

D (x′) = {c1} ⊆ C2, since b1 ∈ V2.
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So, x′ /∈ L1(C2). Now, if x′ = c2, then by Lemma 2.31, (c2, b2) /∈ E(D), since
c2 = x′ ∈ V+, b2 ∈ V2 and I(D) is unmixed. Consequently, N+

D (x′) = N+
D (c2) ⊆

{c1, c3} ⊆ C2. Hence, x′ /∈ L1(C2).

Case (2) If D = P14, then, by symmetry, we can assume x′ = a1 and x ∈ {a2, b1}.

Case (2.a) x = a2. Thus, z ∈ {a7, b1}. We take C3 = {a1, a2, a3, a4, a6, b1, b2, b5,
b6, b7} if z = a7, or C3 = {a1, a2, a3, a5, a7, b2, b3, b4, b5, b6} if z = b1. So, C3 is a
vertex cover of D, x′ ∈ C3 and L3(C3) = {x}. Furthermore, ND(x′) \ C3 = {z} and
z ∈ N−

D (x′), then x′ ∈ C3 \ L1(C3).

Case (2.b) x = b1. By symmetry of P14, we can suppose z = a2. Then,
C4 = {a1, a3, a4, a5, a7, b1, b2, b3, b6, b7} is a vertex cover of D with L3(C4) = {x}
and x′ = a1 ∈ C4. Also, N+

D (x′) ⊆ {b1, a7} ⊆ C4, since z = a2. Hence, x′ ∈
C4 \ L1(C4).

Case (3) If D = P13, then we can assume x ∈ {b1, c2, d1}, since degG(x) ⩾ 3.

Case (3.a) x = c2. Then, x′ ∈ ND(c2) = {b3, b4, c1}. Without loss of generality, we
can suppose x′ ∈ {b3, c1}. We take C5 = {a1, a4, b2, b3, b4, c1, c2, d1, v}, then C5 is a
vertex cover of D with L3(C5) = {x} and x′ ∈ C5. If x′ = c1, then z ∈ {b1, b2}.
By symmetry, we can assume z = b1 so N+

D (x′) = N+
D (c1) ⊆ {b2, c2} ⊆ C5. Now,

if x′ = b3, then b3 ∈ V+ ∩ C5. Hence, by Lemma 2.31, (a3, b3) ∈ E(D), since
a3 ∈ V2 and I(D) is unmixed. Consequently, N+

D (x′) ⊆ {c2, d1} ⊂ C5. Therefore,
x′ ∈ C5 \ L1(C5).

Case (3.b) x = b1. Hence, C6 = {a1, a3, b1, b2, b3, b4, c1, d1, d2} is a vertex cover of
D with L3(C6) = {x} and x′ ∈ ND(b1) = {a1, c1, d1} ⊆ C6. If x′ ∈ {a1, d1}, then
ND(x′) \ C6 ⊆ {a2, v} ⊆ V2. Consequently, by Lemma 2.31, (b, x′) ∈ E(D) for
each b ∈ ND(x′) \ C6, since x′ ∈ V+. So, N+

D (x′) ⊆ C6 implies x′ ∈ C6 \ L1(C6).
Now, if x′ = c1, then we can assume (c2, c1) ∈ E(D), since in another case we have
the case (3.a) with x = c2 and x′ = c1. Thus, N+

D (x′) ⊆ {b1, b2} ⊂ C6. Hence,
x′ ∈ C6 \ L1(C6).

Case (3.c) x = d1. So, x′ ∈ NG(d1) = {b1, b3, v}. By symmetry, we can assume x′ ∈
{b1, v}. Furthermore, C7 = {a2, a4, b1, b2, b3, b4, c1, d1, v} is a vertex cover of D with
L3(C7) = {x} and x′ ∈ C7. If x′ = b1, then ND(x′) \ C7 ⊆ {a1}. Also, by Lemma
2.31, (a1, b1) ∈ E(D), since a1 ∈ V2 and b1 = x′ ∈ V+. Thus, N+

D (x′) ⊆ {c1, d1} ⊆
C7. Now, if x′ = v, then z = d2, since degD(v) = 2. Then, N+

D (v) = {d1} ⊆ C7.
Hence, x′ ∈ C7 \ L1(C7).

Case (4) D = Q13. Hence, x ∈ {d1, d2, g1, g2, h, h′}, since degD(x) ⩾ 3. By symme-
try, we can suppose x ∈ {d2, g2, h, h′}.



2.3 UNMIXEDNESS OF WEIGHTED ORIENTED GRAPHS WITHOUT SOME SMALL CYCLES 37

Case (4.a) x ∈ {d2, g2}. We take C8 = {a2, c1, c2, d1, d2, g1, g2, h, h′} if x = d2, or
C8 = {a1, b2, c2, d1, d2, g1, g2, h, h′} if x = g2. Thus, C8 is a vertex cover of D with
L3(C8) = {x} and V(G) \ C8 = {a1, b1, b2, v} ∪ {a2, b1, c1, v} ⊆ V2. Consequently,
by Lemma 2.31, ND(x′) \ C8 ⊆ N−

D (x′), since x′ ∈ V+. This implies N+
D (x′) ⊆ C8.

Therefore x′ ∈ C8 \ L1(C8).

Case (4.b) x ∈ {h, h′}. We take C9 = {a2, b1, b2, d1, d2, g1, g2, h, v} if x = h, or C9 =
{a2, c1, c2, d1, d2, g1, g2, h′, v} if x = h′. Thus, C9 is a vertex cover of D with L3(C9) =
{x}. Also, x′ ∈ NG(x) ⊆ {v, d1, d2, g1, g2}. If x′ = v, then {x, z} ⊆ ND(x′) =
{h, h′}. Hence, N+

D (x′) = {x} ⊆ C9, then x′ ∈ C9 \ L1(C9). Now, if x′ ̸= v, then
x′ ∈ {d1, d2} when x = h or x′ ∈ {g1, g2} when x = h′. Then, ND(x′) \ C9 ⊆
{a1, c1, c2} ⊆ V2 if x = h, or ND(x′) \ C9 ⊆ {b1, b2} ⊆ V2 if x = h′. Consequently,
by Lemma 2.31, ND(x′) \ C9 ⊆ N−

D (x′), since x′ ∈ V+. Therefore, N+
D (x′) ⊆ C9 and

x′ ∈ C9 \ L1(C9). □

Corollary 2.34 If G ∈ {C7, T10, Q13, P13, P14}. Then I(D) is unmixed if and only if
the vertices of V+ are sinks.

Proof. ⇐) By Theorems 1.42 and 1.46, G is well-covered. Thus, by Remark 1.78,
I(G) is unmixed. Therefore, by Corollary 2.26, I(D) is unmixed.

⇒) By Proposition 2.33. □

Proposition 2.35 Let H be a 1-simplex of G with V(H) = {z, z′} and H = G[NG[z]],
then the following conditions are equivalent:

(1) |V(H) ∩ C| = 1 for each strong vertex cover C of D.
(2) If z′ ∈ V+, then (z, z′) ∈ E(D).

Proof. (2) ⇒ (1) If {x, z}, {x′, z′} ∈ E(G), then x = z′, since NG(z) = {z′}. So,
{x, x′} = {z′, x′} ∈ E(G). Hence, H has the property (P). Now, we take (a, b) ∈
E(D) with a ∈ V+ and {b, b′} = {z, z′}. If b = z, then a = b′ = z′, since ND(z) =
{z′}. So, (z′, z) = (a, b) ∈ E(D). A contradiction by (2), since z′ = a ∈ V+. Thus,
b = z′ and b′ = z. Consequently, ND(b′) = ND(z) = {z′} = {b} ⊆ N+

D (a), since
(a, b) ∈ E(D). Therefore, by Proposition 2.14, H satisfies (1).

(1) ⇒ (2) By contradiction, suppose z′ ∈ V+ and (z′, z) ∈ E(D). Hence, by
Proposition 2.14 (with a = b′ = z′ and b = z), ND(z′) ⊆ N+

D (z′). A contradiction,
by Remark 1.81, since z′ ∈ V+. □

Proposition 2.36 Let G be a graph with a 2-simplex K such that E(K) ∩ E(C) = ∅
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for each 4-cycle C of G. Hence, the following conditions are equivalent:

(1) |V(K) ∩ C| = 2 for each strong vertex cover C of D.
(2) V(K) ̸⊆ V+ and if (a, c) ∈ E(K) with a ∈ V+ and N−

D (a) ̸⊆ V(K), then
(b, a) ∈ E(K), degD(b) = 2 and we have that w(c) = 1 or (b, c) ∈ E(K),
where V(K) = {a, b, c}.

Proof. (1) ⇒ (2) First, we suppose (a, c) ∈ E(K) with a ∈ V+ and N−
D (a) ̸⊆ V(K),

then there is w ∈ N−
D (a) \ V(K).

If (a, b) ∈ E(K), then H1 is a generating ⋆-semi-forest of K where E(H1) = {(a, b),
(a, c)}, VH1 = {a} and WH1 = WH1

1 = {w}, since H̃1 = {a} and N+
D (a)∩WH1

1 = ∅.
A contradiction by (1) and Corollary 2.12. Hence, (b, a) ∈ E(D).

Now, assume degD(b) ̸= 2, then there is w′ ∈ ND(b) \ V(K). If {w, w′} ∈ E(G)
or w′ ∈ N+

D (a), then C1 = (w, w′, b, a, w) or C1 = (a, w′, b, c, a) is a 4-cycle. So,
{a, b} ∈ E(K) ∩ E(C1) or {b, c} ∈ E(K) ∩ E(C1). A contradiction, by hypothesis,
then {w, w′} /∈ E(G) and w′ /∈ N+

D (a). Thus, H2 = T1 ∪ T2 is a generating ⋆-
semi-forest of K where E(T1) = {(a, c)}, V(T2) = {b}, VH2 = {a, b} and WH2 =
WH2

1 = {w, w′}, since WH2
1 is a stable set, H̃2 = {a} and N+

D (H̃2) ∩ WH2
1 = ∅. A

contradiction by (1) and Corollary 2.12. Hence, degD(b) = 2.

On the other hand, if w ∈ N+
D (c), then C2 = (a, w, c, b, a) is a 4-cycle and {a, b} ∈

E(K) ∩ E(C2). A contradiction, then w /∈ N+
D (c). Hence, if c ∈ V+ and (c, b) ∈

E(K), then H3 is a generating ⋆-semi-forest of K where E(H3) = {(a, c), (c, b)},
VH3 = {a} and WH3 = WH3

1 = {w}, since H̃3 = {a, c} and N+
D (H̃3) ∩ WH3

1 = ∅. A
contradiction, then w(c) = 1 or (b, c) ∈ E(K).

Now, assume V(K) ⊆ V+. We can suppose ND[c] = V(K) = {a, b, c}. By Remark
1.81, we can assume, (a, c) ∈ E(D), since c ∈ V(K) ⊆ V+. If N−

D (a) ̸⊆ V(K), then
by the first argument (b, a) ∈ E(D), degD(b) = 2 and (b, c) ∈ E(D), since c ∈ V+.
A contradiction, by Remark 1.81, since b ∈ V+. This implies, N−

D (a) ⊆ V(K).
Hence, (b, a) ∈ E(D), since a ∈ V+. Consequently, by the last argument, (c, b) ∈
E(D), since (b, a) ∈ E(D) and V(K) ⊆ V+. Therefore, H4 = K is a generating
⋆-semi-forest of K with VH4 = WH4 = ∅. A contradiction by Corollary 2.12.

(2) ⇒ (1) By contradiction, using Corollary 2.12, we suppose there is a generating
⋆-semi-forest H of K. We set V(K) = {z1, z2, z3} such that ND[z3] = V(K). Then,
z3 /∈ VH, since ND(z3) ⊆ V(K). So, there is z ∈ V+ such that (z, z3) ∈ E(H). We
can assume z = z2.

Case (1) There is w ∈ N−
D (z2) \ V(K). Then, by (2), (z1, z2) ∈ E(K), degD(z1) = 2

and we have that w(z3) = 1 or (z1, z3) ∈ E(D). Thus, z1 /∈ VH, since ND(z1) ⊆
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V(K). Consequently, there is z′ ∈ N−
D (z1) ∩ V+ ∩ V(K). Hence, z′ = z3, since

(z1, z2) ∈ E(D). But w(z3) = 1 or (z1, z3) ∈ E(D). A contradiction.

Case (2) N−
D (z2) ⊆ V(K). This implies by Remark 1.81, (z1, z2) ∈ E(D), since

z2 ∈ V+. Thus, by Definition 2.4, z2 /∈ VH, since degH(z2) ⩾ 1 and N−
D (z2) ⊆

V(K) = V(H). So, there is z′′ ∈ N−
H (z2) ∩ V+. Then, z′′ = z1 and w(z3) = 1, since

by (2), V(K) ̸⊆ V+. Hence, H is a ROT with VH = {z1}. Consequently, there is
w1 ∈ N−

D (z1) \ V(K). Hence, by (2) (with a = z1, b = z3 and c = z2), w(z2) = 1 or
(z3, z2) ∈ E(D). A contradiction. □

Definition 2.37 If K is a 1-simplex (resp. 2-simplex) such that K satisfies (2) of
Proposition 2.35 (resp. (2) of Proposition 2.36), then we say K has the ⋆-property.

Theorem 2.38 Let D be a connected weighted oriented graph without 4- and 5-
cycles. Hence, I(D) is unmixed if and only if D satisfies one of the following
conditions:

(a) G ∈ {K1, C7, T10} and the vertices of V+ are sinks.
(b) 1-simplexes and 2-simplexes have the ⋆-property and {V(H) | H is a

1-simplex or a 2-simplex} is a partition of V(G).

Proof. ⇒) By (3) in Theorem 1.85 and Remark 1.78, G is well-covered. Thus,
by Theorem 1.42, G ∈ {C7, T10} or {V(H) | H ∈ SG} is a partition of V(G). If
G ∈ {C7, T10}, then by Proposition 2.33, D satisfies (a). Now, if {V(H) | H ∈ SG}
is a partition of V(G), then G is an SCQ graph with CG = QG = ∅. If SG has a
0-simplex, then G = K1, since G is connected. In this case, V+ = ∅ and D satisfies
(a). Hence, we can assume that if H ∈ SG, then H is a 1-simplex or a 2-simplex,
since G has no 4-cycles. Also, by Theorem 2.23 and Corollary 2.12, if H ∈ SG, then
|C ∩V(H)| = |V(H)| − 1 for each strong vertex cover C. Therefore, by Propositions
2.35 and 2.36, D satisfies (b), since G has no 4-cycles.

⇐) If D satisfies (a), then by Theorem 1.42, G is well-covered, since K1 is well-
covered. Consequently, by Corollary 2.26, I(D) is unmixed. Now, we can sup-
pose G ̸= K1, then G has no 0-simplexes, since G is connected. Hence, SG =
{V(H) | H is a 1-simplex or a 2-simplex of D}, since G has no 4-cycles. Now, as-
sume D satisfies (b), then G is an SCQ graph with CG = QG = ∅. Furthermore, by
Propositions 2.35 and 2.36 and Corollary 2.12, each simplex of D has no generating
⋆-semi-forests. Therefore, by Theorem 2.23, I(D) is unmixed. □

Remark 2.39 Let H be a basic 5-cycle or a 1-simplex. By Propositions 2.21 and
2.35, H has the ⋆-property if and only if |C ∩ V(H)| = τ(H) for each strong vertex
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cover C. By Proposition 2.36, we have the same result if H is a 2-simplex such that
E(H) ∩ E(C) = ∅ for each 4-cycle C of G.

Corollary 2.40 Let D be a connected weighted oriented graph with girth(G) ⩾ 6.
Hence, I(D) is unmixed if and only if D satisfies one of following properties:

(a) G ∈ {K1, C7} and the vertices of V+ are sinks.
(b) G has a perfect matching y1 = {x1, x′1}, . . . , yr = {xr, x′r} with degD(x1) =

· · · = degD(xr) = 1, furthermore, (xj, x′j) ∈ E(D) when x′j ∈ V+.

Proof. ⇐) If D satisfies (a), then I(D) is unmixed by (a) in Theorem 2.38. Now,
assume D satisfies (b). G has no 2-simplexes, since G has no 3-cycles. We take
f = {z, z′} a 1-simplex of G. We can suppose ND[z] = {z, z′}. Since, y1, . . . , yr is a
perfect matching, there is some yi such that z ∈ yi. Then, yi = {xi, x′i} ⊆ ND[z] =
{z, z′} = f . Thus, y1, . . . , yr are the 1-simplexes of D. Also, by (b), y1, . . . , yr has the
⋆-property. Hence, by Theorem 2.38, I(D) is unmixed.

⇒) G has no 2-simplexes and G ̸= T10, since G has no 3-cycles. Hence, by Theo-
rem 2.38, D satisfies (a) or B := {V(H) | H is a 1-simplex} is a partition of V(G)
and the 1-simplexes have the ⋆-property. We can suppose B = {y1, . . . , yr} where
yi = {xi, x′i} and degD(xi) = 1. Therefore, D satisfies (b), since each yi has the
⋆-property. □

Corollary 2.41 Let D be a weighted oriented graph with girth(G) ⩾ 6. Hence,
I(D) is unmixed if and only if I(D) is Cohen-Macaulay.

Proof. ⇐) By Proposition 1.88.

⇒) By (b) in Corollary 2.40, G is König. Furthermore, G has no 4-cycles, since
girth(G) ⩾ 6. Hence, by Corollary 1.90, I(D) is Cohen-Macaulay. □

Proposition 2.42 If G = P10, then the following properties are equivalent:

(1) I(D) is unmixed.
(2) If x′ ∈ V+ and x′ is not a sink, then x′ = d1 with N+

D (x′) = {g1, b2} or x′ = d2
with N+

D (x′) = {g2, b1}.

Proof. (2) ⇒ (1) Let C be a strong vertex cover of D. Suppose x ∈ L3(C). So,
there is x′ ∈

(
C \ L1(C)

)
∩V+ such that x ∈ N+

D (x′). Thus, by (2), x′ ∈ {d1, d2} and
x ∈ N+

D (x′) ⊆ {b1, b2, g1, g2}. Hence, L3(C) ⊆ {b1, b2, g1, g2}. By symmetry of P10,
we can assume x′ = d1. Then by (2), x ∈ N+

D (x′) = {g1, b2}. Also, {g1, d1, b2} =
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N+
D [x′] ⊆ C, since x′ ∈ C \ L1(C). But x′ = d1 /∈ L3(C) ⊆ {b1, b2, g1, g2}, then

ND(x′) ̸⊆ C. Thus, d2 /∈ C. So, by Remark 1.21, {b1, d1, g2} = ND(d2) ⊆ C.
Furthermore, {a1, a2} ∩ L3(C) = ∅, since L3(C) ⊆ {b1, b2, g1, g2}. Consequently,
{a1, a2} ∩ C = ∅, since ND(a1, a2) = {g1, b1, g2, b2} ⊆ C. But, x ∈ {g1, b2} ∩ L3(C),
then a1 ∈ ND(g1) ⊆ C or a2 ∈ ND(b2) ⊆ C. A contradiction, then L3(C) = ∅. Also,
by Theorem 1.46 and Remark 1.78, I(G) is unmixed. Therefore, by (3) in Theorem
1.85, I(D) is unmixed.

(1) ⇒ (2) We take V2 := {a ∈ V(G) | degG(a) = 2} and x′ ∈ V+, such that
x′ is not a sink, then there is (x′, x) ∈ E(D). Also, by Remark 1.81, there is
z ∈ N−

D (x′).

We will prove x′ ∈ {d1, d2}. If degD(x) = 2, then by Lemma 2.31, x′ ∈ {d1, d2}.
Now, we assume degD(x) ⩾ 3, then by symmetry of P10, we can suppose x ∈
{g1, d1}.

First suppose x = g1. Thus, C1 = {a1, a2, c1, d1, d2, g1, g2} is a vertex cover of D
and L3(C1) = {x}. Furthermore, x′ ∈ ND(g1) = {a1, c1, d1}. If x′ ∈ {a1, c1},
then x′ ∈ C1 ∩ V2. So, ND(x′) = {x, z} implies N+

D (x′) = {x} = {g1} ⊆ C1.
Consequently, x′ ∈ C1 \ L1(C1). Hence, C1 is strong, since L3(C1) = {x} and x′ ∈
V+. A contradiction, by Theorem 1.85, then x′ = d1.

Now, suppose x = d1. Then, C2 = {a1, b2, c2, d1, d2, g1, g2} is a vertex cover of D
with L3(C2) = {x}. Also, x′ ∈ ND(x) = {g1, b2, d2}. If x′ ∈ {g1, b2}, then ND(x′) \
{d1} ⊆ ND(g1, b2) \ {d1} = {a1, a2, c1} ⊆ V2. So, by Lemma 2.31, ND(x′) \ {d1} ⊆
N−

D (x′), since x′ /∈ {d1, d2}. Thus, N+
D (x′) = {d1} = {x} ⊆ C2 implies x′ ∈

C2 \ L1(C2). Consequently, C2 is strong with L3(C2) ̸= ∅. A contradiction, by
Theorem 1.85, then x′ = d2.

Now, we will prove N+
D (x′) = {gi, bi′} if x′ = di and {i, i′} = {1, 2}. By symmetry

of P10, we can assume x′ = d1. By contradiction, suppose N+
D (x′) ̸= {g1, b2}.

Hence, g1 /∈ N+
D (d1) or b2 /∈ N+

D (d1), since x′ = d1 and z ∈ N−
D (x′).

Case (1) g1 /∈ N+
D (d1) and b2 ∈ N+

D (d1). So, N+
D (d1) ⊆ {b2, d2} and C ′

1 =
{a1, a2, b2, c1, c2, d1, d2} is a vertex cover of D with L3(C ′

1) = {b2}. Also, (d1, b2) ∈
E(D) and x′ = d1 ∈

(
C ′

1 \ L1(C ′
1)
)
∩ V+, since N+

D [d1] ⊆ {d1, b2, d2} ⊂ C ′
1. Hence,

C ′
1 is a strong vertex cover of D with L3(C ′

1) ̸= ∅. A contradiction, by Theorem
1.85.

Case (2) b2 /∈ N+
D (d1) and g1 ∈ N+

D (d1). Then, N+
D (d1) ⊆ {g1, d2} and C ′

2 =
{a1, a2, c1, d1, d2, g1, g2} is a vertex cover of D with L3(C ′

2) = {g1}. Furthermore
(d1, g1) ∈ E(D) and d1 = x′ ∈

(
C ′

2 \ L1(C ′
2)
)
∩ V+, since N+

D [d1] ⊆ {d1, g1, d2} ⊂



42 UNMIXED WEIGHTED ORIENTED GRAPHS

C ′
2. Consequently, C ′

2 is a strong vertex cover of D. A contradiction, since L3(C ′
2) ̸=

∅.

Case (3) b2, g1 /∈ N+
D (d1). Thus, x = d2, N+

D (d1) = {d2} and C ′
3 =

{a2, b1, c1, d1, d2, g1, g2} is a vertex cover of D with L3(C ′
3) = {d2}. Also, (d1, d2) ∈

E(D) and d1 = x′ ∈
(
C ′

3 \ L1(C ′
3)
)
∩ V+, since N+

D [d1] = {d1, d2} ⊂ C ′
3. Hence, C ′

3
is a strong vertex cover of D. A contradiction. □

Theorem 2.43 Let D be a connected weighted oriented graph with girth(G) ⩾ 5.
Hence, I(D) is unmixed if and only if D satisfies one of the following properties:

(a) G ∈ {K1, C7, Q13, P13, P14} and the vertices of V+ are sinks.
(b) G = P10, furthermore if x is not a sink in V+, then x = d1 with N+

D (x) =
{g1, b2} or x = d2 with N+

D (x) = {g2, b1}.
(c) {V(H) | H is a 1-simplex or a basic 5-cycle} is a partition of V(G), further-

more the 1-simplexes and the basic 5-cycles of G have the ⋆-property.

Proof. If G ̸= K1, then G has no 0-simplexes, since G is connected. Hence,
SG = S1

G := {H | H is a 1-simplex}, since G has no 3-cycles.

⇒) By (3) in Theorem 1.85 and Remark 1.78, G is well-covered. So, by Theorem
1.46, G ∈ {K1, C7, P10, P13, P14, Q13} or {V(H) | H ∈ SG ∪ CG} is a partition of
V(G). If G ∈ {C7, Q13, P13, P14} or G = P10, then by Proposition 2.33 and Propo-
sition 2.42, D satisfies (a) or (b). Now, if G = K1, then by Remark 1.81, V+ = ∅.
Finally, if G ̸= K1 and {V(H) | H ∈ SG ∪ CG} is a partition of V(G), then G is an
SCQ graph with QG = ∅ and SG = S1

G. Thus, {V(H) | H ∈ S1
G ∪ CG} is a par-

tition of V(G). By Theorem 2.23, Corollary 2.12 and Proposition 2.35, D satisfies
(c).

⇐) If D satisfies (b), then by Proposition 2.42, I(D) is unmixed. Now, if D satis-
fies (a), then by Theorem 1.46, G is well-covered. So, by Corollary 2.26, I(D) is
unmixed. Finally, if D satisfies (c), then G is an SCQ-graph, QG = ∅ and G ̸= K1.
Thus, SG = S1

G. Hence, by Theorem 2.23, Corollary 2.12 and Proposition 2.35, I(D)
is unmixed. □

Remark 2.44 A graph is well-covered if and only if each connected component is
well-covered. Hence, when D is no connected in Theorem 2.38 and Corollary 2.40
(resp. Theorem 2.43), I(D) is unmixed if and only if each connected component of
D satisfies (a) or (b) (resp. (a), (b) or (c)).
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Example 2.45 Let D = (G,O, w) be the weighted oriented graph of Figure 2.1.

b′
w > 1

d′1

1

b
1

d′2

1

c
1

d1
w > 1

a
w > 1

d2
w > 1

a′1

C

y1 y2

• G has no 3- and 4-cycles. Moreover, girth(G) = 5.
• G is an SCQ-graph with SG = {y1, y2}, CG = {C}

and QG = ∅, where y1 = {d1, d′1}, y2 = {d2, d′2}
and C = (a′, a, b, b′, c, a′).

• C and y1 has the ⋆-property. But y2 has no the ⋆-
property. Hence, by Theorem 2.43, I(D) is mixed.

Figure 2.1 Mixed weighted oriented graph without 3- and 4-cycles

Example 2.46 Let D be the weighted oriented graph of Figure 2.2.
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2
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2

2
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We take the weighted
oriented subgraph
K of D induced by
V(D) \ {w1, w2, w4, w5}. In
the figure: Ti is a ROT with
root vi for i = 1, . . . , 5; and
B1 is an unicycle oriented
subgraph. Furthermore,
H = ∪5

i=1 Ti ∪ B1 is
a ⋆-semi-forest with
WH = {w1, w2, w4, w5}
(where w3 = w2),
WH

1 = {w1, w5} and
WH

2 = {w2, w4}. Finally,
since V(H) = V(K), H is
a generating ⋆-semi-forest
of K.

Figure 2.2. A generating ⋆-semi-forest of the graph K = G[V(D) \ {w1, w2, w4, w5}]



44 UNMIXED WEIGHTED ORIENTED GRAPHS

Example 2.47 Let D = (G,O, w) be the weighted oriented graph of Figure 2.3.

b 1

a
w > 1

a′ 1

c 1

b′1

z1

1

z
1

z2
w > 1

z3
1

d′
w > 1

d
1

K

C

y

• G is an SCQ-graph, with SG = {K}, CG =
{C} and QG = {y}, where K = D[ND[z]],
C = (b, a, a′, c, b′, b) and y = {d, d′}.

• If H is a generating ⋆-semi-forest of K,
then by Lemma 2.7, z ∈ ND(WH

1 ), since
z is a source and V(H) = V(K). But
ND(z) ⊆ V(K) and WH

1 ∩ V(H) = ∅.
Thus, K has not a generating ⋆-semi-
forest.

• C has the ⋆-property.
• Furthermore, V+ ∩ N−

D (d, d′) = {z2},
N+

D (z2) ∩ y = {d′} and ND(d) =
{d′, z1} ⊆ N+

D (z2).
• Hence, by Theorem 2.23, I(D) is un-

mixed.

Figure 2.3 Unmixed weighted oriented SCQ-graph

Example 2.48 Let D = (G,O, w) be the weighted oriented graph of Figure 2.4.

z1

1

a1
w > 1

c1
w > 1

z′1
w > 1

b1
1

z2

1

a2
w > 1

c21

z′2
1

b2
1

C1 C2

y1 y2

• G has no 4- and 5-cycles.
• G is an SCQ-graph with SG = {C1, C2, y1, y2}

and CG = QG = ∅, where y1 = {z1, z′1},
y2 = {z2, z′2}, C1 = (a1, b1, c1, a1) and C2 =
(a2, b2, c2, a2).

• C1, C2, y1 and y2 have the ⋆-property.
• Hence, by Theorem 2.38, I(D) is unmixed.

Figure 2.4 Unmixed weighted oriented graph without 4- and 5-cycles
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Example 2.49 Let D = (G,O, w) be the weighted oriented graph of Figure 2.5.

w > 1
d

1

1

1

1

1

1

11

1

• G = P10, then by Theorem 1.46 and Remark 1.78, G
is well-covered and I(G) is unmixed.

• V+ = {d} and d is not a sink. But, by Proposition
2.42, I(D) is unmixed.

Figure 2.5 Unmixed weighted oriented graph where G = P10





CHAPTER 3
GORENSTEIN HOMOGENEOUS

SUBRINGS OF GRAPHS

In this chapter, we study the homogeneous monomial subring S of a graph G (see
Definition 1.92). In particular, we study when S is Gorenstein if S is normal.

3.1 POLYHEDRAL CONE OF SUBRINGS OF GRAPHS

In this section we study the polyhedral cone R+B (see Definition 1.99). In particu-
lar, we characterize: the elements of (R+B)◦ (Proposition 3.2 and Lemma 3.5) and
some support hyperplanes (Lemma 3.8).

Remark 3.1 By Theorem 1.1.29 and Proposition 1.1.51 in [46], R+B has the unique
irreducible representation R+B = H+

λ1
∩ · · · ∩ H+

λq1
where H+

λi
= {w ∈ Rn+1 |

w · λi ≥ 0}. Also, by Theorem 1.1.44 in [46], if Fi = Hλi ∩ R+B and Hλi = {w ∈
Rn+1 | w · λi = 0} for 1 ≤ i ≤ q1, then F1, . . . , Fq1 are the facets of R+B.

Proposition 3.2 There exist ℓ1, . . . , ℓq ∈ Rn such that R+B = H+
(e1,0)∩ · · · ∩ H+

(en,0)∩
H+
(−ℓ1,1) ∩ · · · ∩ H+

(−ℓq,1). Also, w = (w̃, a) ∈ (R+B)◦ if and only if w̃ · ei > 0 for

1 ≤ i ≤ n and w · (−ℓj, 1) > 0 for 1 ≤ j ≤ q.

Proof. We have R+B = H+
λ1

∩ · · · ∩ H+
λq1

. We will prove λj = (λ̃j, 0) ∈ Rn × R

if and only if Hλj ∈ {H(e1,0), . . . , H(en,0)}. Assume λj = (λ̃j, 0), then λ̃j · ei ≥ 0,
since (ei, 1) ∈ R+B ⊆ H+

λj
for 1 ≤ i ≤ n. We take I = {i | λ̃j · ei = 0}, then

(ei, 1) ∈ H(λ̃j,0)
if and only if i ∈ I. Furthermore, (vk, 1) ∈ H(λ̃j,0)

if and only

if yk = {xi1 , xi2} with i1, i2 ∈ I, since λ̃j · ei ≥ 0. Thus, dim Fj = |I| + 1 where
Fj = Hλj ∩ R+B, since en+1 ∈ Hλj . But Fj is a facet, then |I| = n − 1. Hence,
H(λ̃j,0)

∈ {H(e1,0), . . . , H(en,0)}. Now, we prove H(ek,0) ∈ {Hλ1 , . . . , Hλq1
}. Since

(ek, 0) · en+1 = 0 and (ek, 0) · (ei, 1) = 0 for i ̸= k, we have en+1, (ei, 0) ∈ Ak :=
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R+B ∩ H(ek,0) for i ̸= k. Also, (ek, 0) · (ek, 1) = 1 and (ek, 0) · (vi, 1) ≥ 0, then
R+B ⊆ H+

(ek,0). Hence, Ak is a facet of R+B, so H(ek,0) ∈ {Hλ1 , . . . , Hλq1
}.

Now, we take λj = (λ̃j, aj) ∈ Rn × R with aj ̸= 0. Since en+1 ∈ R+B ⊆ H+
λj

,

aj = en+1 · λj > 0. Hence, H(λ̃j,aj)
= H(δj,1) where δj =

λ̃j
aj

.

Therefore, R+B = H+
(e1,0) ∩ · · · ∩ H+

(en,0) ∩ H+
(−ℓ1,1) ∩ · · · ∩ H(−ℓq,1).

Now, by Theorem 1.1.44 in [46], w = (w̃, a) ∈ (R+B)◦ if and only if w · (−ℓj, 1) > 0
for 1 ≤ j ≤ q and w̃ · ei = (w̃, a) · (ei, 0) > 0 for 1 ≤ i ≤ n. □

Notation 3.3 In this section we take |a| = a · 1 = ∑n
i=1 ai, where 1 = (1, . . . , 1) ∈

Rn and a = (a1, . . . , an) ∈ Rn. Furthermore, 0 = (0, . . . , 0) ∈ Rn and if C is a cycle,
then 1C = ∑xi∈V(C) ei.

Lemma 3.4 Let w = (w̃, b) be a vector in NB with w̃ ∈ Nn and b ∈ N. Hence,

1) |w̃| ≤ 2b.

2) If |w̃| = 2b, then w ∈ N
(
(v1, 1), . . . , (vm, 1)

)
.

Proof. Since (w̃, b) ∈ NB, (w̃, b) = ∑m
i=1 αi(vi, 1) + ∑n

i=1 βi(ei, 1) + λen+1, where
αi, βi, λ ∈ N. Thus, b = ∑m

i=1 αi + ∑n
i=1 βi + λ. Also, |w̃| = w̃ · 1 = ∑m

i=1 αi(vi · 1)
+∑n

i=1 βi(ei · 1) = 2
(

∑m
i=1 αi

)
+ ∑n

i=1 βi. Hence, 2b = |w̃| + ∑n
i=1 βi + 2λ ≥ |w̃|.

Furthermore, if |w̃| = 2b, then ∑n
i=1 βi = 0 and λ = 0. Consequently, βi = 0 for

1 ≤ i ≤ n. Therefore, w ∈ N
(
(v1, 1), . . . , (vm, 1)

)
. □

Lemma 3.5 If w = (w̃, b) = ∑m
i=1 αi(vi, 1) + ∑n

i=1 βi(ei, 1) + λen+1 with αi, βi ∈ R+,
λ > 0 and w̃ · ej > 0 for each 1 ≤ j ≤ n, then w ∈ (R+B)◦.

Proof. We have (vi, 1), (ej, 1) ∈ R+B ⊆ H+
(−ℓk,1) for 1 ≤ i ≤ m and 1 ≤ j ≤ n,

then ( m

∑
i=1

αi(vi, 1) +
n

∑
i=1

βi(ei, 1)
)
· (−ℓk, 1) ≥ 0.

Furthermore, λen+1 · (−ℓk, 1) = λ > 0. Hence, w · (−ℓk, 1) > 0 for 1 ≤ k ≤ q.
Therefore, by Proposition 3.2, w ∈ (R+B)◦ since w̃ · ei > 0 for 1 ≤ i ≤ n. □

Remark 3.6 If τ is a spanning tree of G, then |E(τ)| = n − 1.

Lemma 3.7 If τ is a spanning tree of G, e ∈ E(G) and τ ∪ {e} has an odd cycle C,
then the characteristic vectors of the edges of E(τ) ∪ {e} are linearly independent.
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Proof. We can assume E(C) = {y1, . . . , yk} with yi = {xi, xi+1} for 1 ≤ i ≤ k − 1
and yk = {xk, x1}. Also, we can suppose E(τ) ∪ {e} = {y1, . . . , yn}, since |E(τ)| =
n − 1. We will do the proof by induction on n − k. If n − k = 0, then E(τ) ∪ {e} =
E(C). Thus, ∑k

i=1(−1)i+1vi = (e1 + e2) − (e2 + e3) + · · · + (ek + e1) = 2e1. So,
e1 ∈ R(v1, . . . , vk). Similarly, ei ∈ R(v1, . . . , vk) for 1 ≤ i ≤ k. Hence, v1, . . . , vk
are linearly independent. Now, assume n − k > 0. Then, there is x ∈ V(G) such
that degτ∪{e}(x) = 1. We can suppose x = xn ∈ yn and xn /∈ yj for 1 ≤ j ≤ n − 1.
Thus, C ⊆ (τ \ {xn}) ∪ {e} ⊆ G′ := G \ xn and τ \ {xn} is a spanning tree of
G′. Hence, by induction hypothesis, v1, . . . , vn−1 are linearly independent, since
E(τ \ {xn}) = E(τ) \ {yn}. Therefore, v1, . . . , vn are linearly independent, since
xn ∈ yn and xn /∈ yj for 1 ≤ j ≤ n − 1. □

In the following results ℓ1, . . . , ℓq are as in Proposition 3.2.

Lemma 3.8 If G is not bipartite, then
(1

2 , . . . , 1
2

)
= 1

2(1) ∈ {ℓ1, . . . , ℓq}.

Proof. We take ℓ := 1
2(1) ∈ Rn, then (ei, 1) · (−ℓ, 1) = 1

2 , (vj, 1) · (−ℓ, 1) = 0
and en+1 · (−ℓ, 1) = 1 for 1 ≤ i ≤ n and 1 ≤ j ≤ m. Hence, R+B ⊆ H+

(−ℓ,1) and
{(v1, 1), . . . , (vm, 1)} ⊆ H(−ℓ,1). Now, since G is not bipartite, there is an odd cycle
C of G. We take e ∈ E(C), then C − e is a path and there is a spanning tree τ such
that C − e ⊆ τ. So, we can assume E(τ) ∪ {e} = {y1, . . . , yn}, since |E(τ)| = n − 1.
Now, if (0, 0) = ∑n

i=1 αi(vi, 1), then ∑n
i=1 αivi = 0. But, by Lemma 3.7, v1, . . . , vn

are linearly independent, then α1 = α2 = · · · = αn = 0. Hence, (v1, 1), . . . , (vn, 1)
are linearly independent in H(−ℓ,1) ∩ R+B. Thus, H(−ℓ,1) ∩ R+B is a facet of R+B.
Therefore, by Proposition 3.2, ℓ ∈ {ℓ1, . . . , ℓq}. □

3.2 NORMAL GORENSTEIN SUBRINGS OF GRAPHS

In this section we study when the homogeneous subring S (of a graph G) is Go-
renstein if S is normal. In particular, we prove that if S is normal and G is not
bipartite, then G is unmixed, τ(G) = ⌈n

2 ⌉ and G has a strong ⌈n
2 ⌉-τ-reduction

(Definition 3.12 and Theorem 3.14). Finally, we give necessary conditions for S to
be Gorenstein if S is normal (see Theorem 3.17).

Lemma 3.9 Assume ωS = (xαtβ), then xw̃ta ∈ ωS if and only if (w̃, a)− (α, β) ∈
NB.

Proof. We have xw̃ta ∈ ωS = (xαtβ) if and only if xw̃ta = (xuta′)(xαtβ) with
xuta′ ∈ S. Equivalently, (w̃, a)− (α, β) = (u, a′) ∈ NB. □
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Proposition 3.10 Assume S is normal and C is an odd cycle with |V(C)| = k.

1) If w = (w̃, a) = w′ +
(
1C, k+1

2

)
where w′ ∈ NB, w̃ · ei > 0 for each 1 ≤ i ≤ n,

then xw̃ta ∈ ωS. Furthermore, if ωS = (x1tb), then w − (1, b) ∈ NB.

2) If ωS =
(
x1t

n+1
2
)

and
(
1 + ej, n+1

2

)
∈ NB, then there is y ∈ E(G) such that

xj ∈ y and y ∩ V(C) ̸= ∅.

Proof. 1) We can assume C = (y1, . . . , yk) where {x1} = y1 ∩ yk. Then,
(
1C, k+1

2

)
=

∑1≤i≤k
i even

(vi, 1) + (e1, 1) ∈ NB (Recall 1C = ∑xi∈V(C) ei). Thus, w ∈ NB since w′ ∈

NB. Also, w = w′ + 1
2 ∑k

i=1(vi, 1) + 1
2 en+1, since

(
1C, k+1

2

)
= 1

2 ∑k
i=1(vi, 1) + 1

2 en+1.
Hence, by Lemma 3.5, w ∈ (R+B)◦ since w̃ · ei > 0 for 1 ≤ i ≤ n. So, by Proposi-
tion 1.101, xw̃ta ∈ ωS. Now, if ωS = (x1tb), then by Lemma 3.9, w − (1, b) ∈ NB.
2) We take w1 = (w̃1, a1) =

(
1 + ej, n+1

2

)
+

(
1C, k+1

2

)
, then w̃1 · ei > 0 for 1 ≤ i ≤ n.

Hence, by 1), w1 −
(
1, n+1

2

)
∈ NB, since

(
1 + ej, n+1

2

)
∈ NB. But w1 −

(
1, n+1

2

)
=(

1C + ej, k+1
2

)
. Thus, by 2) in Lemma 3.4,

(
1C + ej, k+1

2

)
= ∑

q
i=1 αi(vi, 1) with

αi ∈ N, since |1C + ej| = 2
( k+1

2

)
. So, there is i1 ∈ {1, . . . , m} such that vi1 = ej + ej′

where xj′ ∈ V(C). Therefore, xj ∈ y := yi1 and y ∩ V(C) = {xj′}. □

Since S ∼= K[x1z, . . . , xnz, xv1 , . . . , xvm , z], using [32, Theorem 2.1] and [3, Theorem
1.7], we obtain that if G is not bipartite and S is normal and Gorenstein, then n is
odd. Now, in Corollary 3.11, we obtain another proof of this result using Proposi-
tion 3.10.

Corollary 3.11 If S is normal and n is even, then S is Gorenstein if and only if G is
an unmixed bipartite graph.

Proof. ⇒) By contradiction suppose G is not bipartite, then G has an odd k-
cycle C. By Proposition 1.103, ωS = (x1tb) where b = n

2 + 1, τ(G) = n
2 and G

is unmixed. Then, G is very well-covered and by Proposition 1.32, there is a τ-
reduction G1, . . . , Gs with Gi ∈ E(G). We can assume Gi = yi for 1 ≤ i ≤ s. We
take w = (w̃, a) := ∑s

i=1(vi, 1) +
(
1C, k+1

2

)
. Since y1, . . . , ys is a partition of V(G),

∑s
i=1(vi, 1) = (1, s) and s = n

2 . Thus, w̃ · ei > 0 for 1 ≤ i ≤ n. Hence, by 1) in
Proposition 3.10, w − (1, b) ∈ NB. But w − (1, b) =

(
1C, k−1

2

)
, since b = n

2 + 1.
Then, by 1) in Lemma 3.4, 2

( k−1
2

)
≥ |1C| = |V(C)| = k. A contradiction, therefore

G is bipartite. Also, by Proposition 1.98, G is unmixed.
⇐) By Proposition 1.98, S is Gorenstein. □

Definition 3.12 A τ-reduction G1, . . . , Gs is a ⌈n
2 ⌉ − τ-reduction if G1, . . . , Gs−1 ∈
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E(G) and Gs ∈ E(G) or Gs ∈ {C3, C5, C7} (i.e. Gs is a 3-, 5- or 7-cycle). A ⌈n
2 ⌉-

τ-reduction G1, . . . , Gs is strong when: Gs ∈ E(G) ∪ {C3, C5, C7}, then for each
x ∈ NG[Gs] and each odd cycle C of G, there is {x, x′} ∈ E(G) with x′ ∈ V(C).

Proposition 3.13 If S is normal, ωS = (x1t
n+1

2 ) and G1, . . . , Gs is a ⌈n
2 ⌉-τ-reduction

with Gs ∈ {C3, C5, C7}, then G1, . . . , Gs is strong.

Proof. Let C be an odd k′-cycle and x ∈ NG[Gs]. We can suppose G1 = y1, . . . , Gs−1
= ys−1 and Gs = (yj1 , . . . , yjk). First assume x ∈ V(Gs), then we can assume
x = x1 ∈ yj1 ∩ yjk . Thus, (1 + e1, n+1

2 ) = ∑s−1
i=1 (vi, 1) + ∑1≤i≤k

i odd
(vji , 1) ∈ NB, since

y1, . . . , ys−1, V(Gs) is a partition of V(G). Now, suppose x ∈ NG[Gs] \ V(Gs), then
there is yj′ = {x, x′} ∈ E(G) with x′ ∈ V(Gs). We can suppose x′ ∈ yj1 ∩ yjk and
x = x1, then

(
1 + e1, n+1

2

)
= ∑s−1

i=1 (vi, 1) + ∑1≤i≤k
i even

(vji , 1) + (vj′ , 1) ∈ NB.

Hence, in both cases by 2) in Proposition 3.10, there is y ∈ E(G) such that x = x1 ∈
y and y ∩ V(C) ̸= ∅. Therefore, G1, . . . , Gs is a strong ⌈n

2 ⌉-τ-reduction. □

Theorem 3.14 If S is normal and Gorenstein, then G is unmixed, τ(G) = ⌈n
2 ⌉ and

G has a strong ⌈n
2 ⌉-τ-reduction.

Proof. By Propositions 1.98 and 1.103, G is unmixed. Also, by Propositions 1.26
and 1.103, τ(G) = ⌈n

2 ⌉. Thus, by Propositions 1.32 (if n is even) and 1.34 (if n
is odd), there is a ⌈n

2 ⌉-τ-reduction G1, . . . , Gs. If Gs ∈ E(G), then G1, . . . , Gs is
strong. Now, assume Gs ∈ {C3, C5, C7}. So, G is not bipartite and n is odd, since
V(G1), . . . , V(Gs) is a partition of V(G). Then, by Proposition 1.103, ωS = (x1t

n+1
2 ).

Hence, by Proposition 3.13, G1, . . . , Gs is strong. □

Now, we will give sufficient conditions for S to be Gorenstein if S is normal and G
is unmixed with a ⌈n

2 ⌉-τ-reduction (see Theorem 3.17).

Proposition 3.15 Let y1, . . . , yu be disjoint edges with the property (P). If w =
(w̃, a) = ∑m

i=1 αi(vi, 1) + ∑n
i=1 βi(ei, 1) + λen+1 with αi, βi, λ ∈ N and ∑u

i=1 αi maxi-
mal, then for each k ∈ {1, . . . , u}, αk = w̃ · ej1 or αk = w̃ · ej2 , where yk = {xj1 , xj2}.

Proof. Assume yk = {xj1 , xj2} with k ∈ {1, . . . , u}. First, we prove β j1 = 0 or
β j2 = 0. By contradiction, suppose β j1 > 0 and β j2 > 0. Since (ej1 , 1) + (ej2 , 1) =

(vk, 1)+ en+1, we have w = ∑m
i=1 α̃i(vi, 1)+∑n

i=1 β̃i(ei, 1)+ λ̃en+1 where α̃k = αk + 1
and α̃i = αi if i ̸= k; β̃ j1 = β j1 − 1 ≥ 0, β̃ j2 = β j2 − 1 ≥ 0 and β̃ j = β j if j /∈ {j1, j2};
and λ̃ = λ + 1. But, ∑u

i=1 α̃i =
(

∑u
i=1 αi

)
+ 1. A contradiction, since ∑u

i=1 αi is
maximal. Hence, β j1 = 0 or β j2 = 0. We can assume β j2 = 0 and we have two
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cases:

Case β j1 > 0: We prove αl = 0 if xj2 ∈ yl and l ̸= k. By contradiction, suppose there
is yl ∈ E(G) with xj2 ∈ yl, αl ̸= 0 and l ̸= k. Then, l /∈ {1, . . . , u}, since y1, . . . , yu
are disjoint. We can assume yl = {xj2 , xj3}, then (vl, 1) + (ej1 , 1) = (vk, 1) + (ej3 , 1).
Thus, w = ∑m

i=1 α′i(vi, 1) +∑n
i=1 β′

i(ei, 1) + λen+1 where α′k = αk + 1, α′l = αl − 1 ≥ 0
and α′i = αi if i /∈ {k, l}; β′

j3
= β j3 + 1, β′

j1
= β j1 − 1 ≥ 0 and β′

j = β j if j /∈ {j1, j3}.
But, ∑u

i=1 α′i = ∑u
i=1 αi + 1 since l /∈ {1, . . . , u}. A contradiction, since ∑u

i=1 αi is
maximal. Hence, αl = 0 if xj2 ∈ yl and l ̸= k.

Case β j1 = 0: We prove αl = 0 if xj1 ∈ yl with l ̸= k or αl = 0 if xj2 ∈ yl with l ̸= k.
By contradiction, suppose there are l1, l2 ∈ {1, . . . , n} \ {k} such that xj1 ∈ yl1 , xj2 ∈
yl2 , αl1 ̸= 0 and αl2 ̸= 0. Then, l1, l2 /∈ {1, . . . , u}, since y1, . . . , yu are disjoint. We
assume yl1 = {xj1 , xj′1

} and yl2 = {xj2 , xj′2
}. So, {xj′1

, xj′2
} ∈ E(G), since yk has the

property (P). We assume yl′ = {xj′1
, xj′2

}, then (vk, 1) + (vl′ , 1) = (vl1 , 1) + (vl2 , 1).
Thus, w = ∑m

i=1 α′′i (vi, 1) + ∑n
i=1 βi(ei, 1) + λen+1 where α′′k = αk + 1, α′′l′ = αl′ +

1, α′′l1 = αl1 − 1 ≥ 0, α′′l2 = αl2 − 1 ≥ 0 and α′′i = αi if i /∈ {k, l′, l1, l2}. But ∑u
i=1 α′′i ≥

∑u
i=1 αi + 1, since l1, l2 /∈ {1, . . . , u}. A contradiction. Hence, we can suppose αl = 0

if xj2 ∈ yl and l ̸= k.
In both cases, w̃ · ej2 = αk, since w̃ · ej2 = ∑xj2∈yl

αl + β j2 and β j2 = 0. □

Definition 3.16 Let G1 = y1, . . . , Gs−1 = ys−1, Gs be a ⌈n
2 ⌉-τ-reduction. A repre-

sentation w = ∑m
i=1 αi(vi, 1) + ∑n

i=1 βi(ei, 1) + λen+1 ∈ NB (with αi, β j, λ ∈ N) is
principal if it satisfies the following conditions:

1) ∑u
i=1 αi is maximal where u = s if Gs ∈ E(G) or u = s − 1 if Gs /∈ E(G).

2) If Gs ∈ E(G), then λ > 0.
3) If Gs ∈ {C3, C5, C7}, then Gs = (yj1 , . . . , yjk) such that αji > 0 for each i even

in {1, . . . , k} and βl > 0 where xl ∈ yj1 ∩ yjk .

Theorem 3.17 If S is normal, G is unmixed with a ⌈n
2 ⌉-τ-reduction and each w ∈

(R+B)◦ ∩ NB has a principal representation, then S is Gorenstein.

Proof. Let G1, . . . , Gs be a ⌈n
2 ⌉-τ-reduction. We can assume G1 = y1, . . . , Gs−1 =

ys−1; and Gs = ys if Gs ∈ E(G). First we prove x1tb ∈ ωS with b = ⌊n
2 ⌋+ 1. If Gs ∈

E(G), then n = 2s and by Lemma 3.5, (1, b) = ∑s
i=1(vi, 1) + en+1 ∈ NB ∩ (R+B)◦,

since y1, . . . , ys is a partition of V(G). Thus, by Proposition 1.101, x1tb ∈ ωS. Now,
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if Gs ∈ {C3, C5, C7}, then

(1, b) =
s−1

∑
i=1

(vi, 1) +
(

1C,
k + 1

2

)
(3.1)

where C := Gs and k := |V(C)|, since y1, . . . , ys−1, Gs is a τ-reduction. Hence, by
1) in Proposition 3.10, x1tb ∈ ωS.
Now, we take xw̃ta ∈ ωS and we prove xw̃ta ∈ (x1tb). By Proposition 1.101, w :=
(w̃, a) ∈ (R+B)◦ ∩NB. Thus, w has a principal representation w = ∑m

i=1 αi(vi, 1) +
∑n

i=1 βi(ei, 1) + λen+1. We take u = s if Gs ∈ E(G) and u = s − 1 if Gs /∈ E(G).
So, by Proposition 3.15, for each l ∈ {1, . . . , u}, w̃ · ei1 = αl or w̃ · ei2 = αl where
yl = {xi1 , xi2}. Also, by Proposition 3.2, w̃ · ei1 > 0 and w̃ · ei2 > 0, since w ∈
(R+B)◦. Then, αl > 0 for 1 ≤ l ≤ u. If Gs ∈ E(G), then u = s, λ > 0 and
w′ := w − (1, b) = ∑m

i=1 α′i(vi, 1) + ∑n
i=1 βi(ei, 1) + λ′en+1, where α′i = αi − 1 ≥ 0

if i ∈ {1, . . . , u}, α′i = αi in another case; and λ′ = λ − 1 ≥ 0. Hence, w′ ∈ NB
implies (by Lemma 3.9) xw̃ta ∈ (x1tb). Now, assume Gs ∈ {C3, C5, C7}. Thus,
u = s − 1 and Gs = C = (yj1 , . . . , yjk) with αji > 0 for each i even in {1, . . . , k}
and β1 > 0 where x1 ∈ yj1 ∩ yjk . Since

(
1C, k+1

2

)
= ∑1≤i≤k

i even
(vji , 1) + (e1, 1), by (3.1),

w′′ := w − (1, b) = ∑m
i=1 α′′i (vi, 1) + ∑n

i=1 β′′
i (ei, 1) + λen+1, where β′′

1 = β1 − 1 ≥ 0,
β′′

i = βi if i ̸= 1; α′′i = αi − 1 ≥ 0 if i ∈ {1, . . . , u} ∪ {j2, j4, . . . , jk−1} and α′′i = αi in
another case. So, w′′ ∈ NB. Hence, by Lemma 3.9, xw̃ta ∈ (x1tb).
This implies, ωS = (x1tb), i.e. ωS is principal. Therefore, by Proposition 1.75, S is
Gorenstein, since S is normal. □

Corollary 3.11 characterizes when S is Gorenstein if S is normal and n is even.
Now, we give two conjectures when n is odd.

Conjecture 3.18 If S is normal, n is odd and G is unmixed with a strong ⌈n
2 ⌉-τ-

reduction, then each w ∈ (R+B)◦ ∩ NB has a principal representation.

If Conjecture 3.18 is true, then by Theorems 3.14 and 3.17, the following Conjecture
is also true.

Conjecture 3.19 Assume S is normal and n is odd. Then, S is Gorenstein if and
only if G is unmixed with a strong ⌈n

2 ⌉-τ-reduction.

Conjecture 3.20 Let G be a graph whose pendant edges form a perfect matching.
If S is Gorenstein, then G is bipartite and S is normal.
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3.3 EXAMPLES

Example 3.21 Let G be the graph of Figure 3.1. By Proposition 1.96, S is normal.
Furthermore, by Proposition 1.34, G is unmixed with τ(G) = n+1

2 and y1, y2, C =
(y3, y4, y5, y6, y7) is the unique ⌈n

2 ⌉-τ-reduction. But it is not strong, since C′ =
(y8, y9, y10) is a 3-cycle and there are not edge between x3 ∈ NG[C] and C′. Then,
by Theorem 3.14, S is not Gorenstein, since S is normal. Hence, ωS is not principal.

x7

x6

x2

x8

x9

x5

x1

x3 x4

y1 y2

y3

y5

y7

y9

y10 y8

y4 y6
C

Figure 3.1 G is unmixed and S is not Gorenstein

Example 3.22 Let G be the graph of Figure 3.2. Then, n = 6 and G is not bipartite,
since C = (y4, y5, y6) is a cycle. By Proposition 1.96, S is normal. Also, y1, y2, y3
is a perfect matching with the property (P). Thus, by Proposition 1.32, G is very-
well-covered, i.e. G is unmixed and τ(G) = n

2 . Furthermore, y1, y2, y3 is a strong
⌈n

2 ⌉-τ-reduction. But, by Corollary 3.11, S is not Gorenstein.

x1 x2
x3

x4 x5 x6

y1 y2 y3

y4 y5

y6

Figure 3.2 G is unmixed with a strong ⌈n
2 ⌉-τ-reduction. But S is not Gorenstein



CHAPTER 4
TORIC IDEALS OF ORIENTED GRAPHS

Let D = (G,O) be an oriented graph whose toric ideal is PD (see Definition 1.105).
In this chapter, we study when PD is a binomial complete intersection (see Defini-
tion 1.107).

4.1 Q-SUMS AND Q-RING GRAPHS

In this section we define the Q-ring graphs (Definition 4.8) and we prove their toric
ideals are binomial complete intersections (Corollary 4.9). Furthermore, we prove
that if G is a theta-ring graph (see Definition 1.51), then D = (G,O) is a Q-ring
graph for each edge orientation O of G (Theorem 4.14).

Definition 4.1 If D1 and D2 are oriented graphs, then D = D1 ∩ D2 is the oriented
graph, such that V(D) = V(D1) ∩ V(D2) and E(D) = E(D1) ∩ E(D2).

Definition 4.2 Let D1 and D2 be two oriented graphs such that D1 ∩ D2 = Q is an
oriented path. Then, the Q-sum of D1 and D2 is the oriented graph D = D1 ∪ D2.

Definition 4.3 Let Q = (z1, z2, . . . , zk) be a path of G. If C is a cycle of G, then
a subintersection between Q and C is a subpath I = (zi, zi+1, . . . , zj) of Q such
that E(I) ⊆ E(C) (i.e. {zi, zi+1}, . . . , {zj−1, zj} ∈ E(C)), {zi−1, zi} /∈ E(C) and
{zj, zj+1} /∈ E(C). It is possible that i = j, i.e. I = (zi). We denote I(Q, C) =
{I | I is a subintersection between Q and C}.

Lemma 4.4 Let D = (G,O) be the Q-sum of D1 = (G1,O1) and D2 = (G2,O2). If
C is a cycle of G such that |I(Q, C)| ⩽ 1, then C ⊆ G1 or C ⊆ G2.

Proof. By contradiction suppose C ̸⊆ G1 and C ̸⊆ G2. Without loss of gene-
rality, we can assume C = (a1, . . . , ak, a1) such that {a1, a2} /∈ E(G2) and s =
min {i | {ai, ai+1} /∈ E(G1)}. Thus, {a1, a2} ∈ E(G1), s > 1, and {as−1, as} ∈ E(G1),



56 TORIC IDEALS OF ORIENTED GRAPHS

since E(G) = E(G1) ∪ E(G2) and s is minimal. So, {as, as+1} ∈ E(G2) and as ∈
V(G1) ∩ V(G2) = V(Q). Consequently, there is I = (ai1 , . . . , as) ∈ I(Q, C) for
some 2 ⩽ i1 ⩽ s, since {a1, a2} /∈ E(G2) and {as, as+1} /∈ E(G1). We set ak+1 := a1
and ak+2 := a2 and we can take s′ = min {i | i > s such that {ai, ai+1} /∈ E(G2)}.
Hence, s′ ⩽ k + 1, since {ak+1, ak+2} = {a1, a2} /∈ E(G2). So, {as′ , as′+1} ∈ E(G1)
and {as′−1, as′} ∈ E(G2). Then, as′ ∈ V(G2) ∩ V(G1) = V(Q) and there is s +
1 ⩽ i2 ⩽ s′ such that I′ = (ai2 , . . . , as′) ∈ I(Q, C), since {as, as+1} /∈ E(G1) and
{as′ , as′+1} /∈ E(G2). Hence, I ̸= I′ and |I(Q, C)| ⩾ 2. A contradiction, therefore
C ⊆ G1 or C ⊆ G2. □

Proposition 4.5 Let D be the Q-sum of D1 and D2, and C a cycle of D. If B1 and
B2 are generating sets of PD1 and PD2 respectively, then yC ∈ (B1 ∪ B2).

Proof. By induction on |I(Q, C)|. If |I(Q, C)| ⩽ 1, then by Lemma 4.4, C ⊆ D1 or
C ⊆ D2. Thus, yC ∈ (B1) or yC ∈ (B2) respectively. Now, assume |I(Q, C)| ⩾ 2.
So, we can suppose Q = (z1, z2, . . . , zk) and I = (zi1 , zi1+1, . . . , zj1), I′ = (zi2 , zi2+1,
. . . , zj2) ∈ I(Q, C) such that i1 = min {i | zi ∈ V(C)}, i2 = min {i | i > j1 such that
zi ∈ V(C)}. Also, we can assume C = (a1, . . . , as, a1) such that a1 = zi1 , a2 =
zi1+1, . . . , as1 = zj1 and s1 = j1 − i1 + 1. Now, we take s2 = min {i | ai ∈ V(I′)},
then s2 > s1. Since I′ ∈ I(Q, C), we have as2 = zi2 or as2 = zj2 . If as2 = zi2 , then
as2+1 = zi2+1, . . . , as3 = zj2 where s3 = s2 + (j2 − i2); also, we take C1 = (zj1 =

as1 , as1+1, . . . , as2 = zi2 , zi2−1, . . . , zj1) and C2 = (a1 = zi1 , . . . , as1 = zj1 , zj1+1, . . . , zi2 ,
. . . , zj2 = as2 , as2+1, . . . , as, a1). Now, if as2 = zj2 , then as2+1 = zj2−1, . . . , as′3

= zi2
where s′3 = s2 + (i2 − j2) since I′ ∈ I(Q, C); and we take C1 = (a1 = zi1 , a2 =
zi1+1, . . . , as1 = zj1 , zj1+1, . . . , zi2 = as′3

, as′3+1, . . . , as, a1) and C2 = (zj1 = as1 , as1+1,
. . . , as2 = zj2 , as2+1 = zj2−1, . . . , as′3

= zi2 , zi2−1, . . . , zj1). In both cases, C1 and C2 are
cycles with |I(Q, C1)| < |I(Q, C)| and |I(Q, C2)| < |I(Q, C)|. Then, by induction
hypothesis yC1 , yC2 ∈ (B1 ∪ B2). Furthermore, C = (C1 ∪ C2) \ Q′, where C1 ∩
C2 = Q′ = (zj1 , zj1+1, . . . , zi2). Therefore, by Lemma 1.118, yC ∈ (yC1 , yC2) ⊆
(B1 ∪ B2), since Q′ is an oriented path. □

Theorem 4.6 Let D the Q-sum of D1 and D2. If PD1 and PD2 are binomial complete
intersections, then PD is a binomial complete intersection.

Proof. Assume |V(Di)| = ni, |E(Di)| = mi, then ht(PDi) = mi − ni + 1 for
i = 1, 2. Since D is the Q-sum of D1 and D2, we have |E(D)| = m1 + m2 − q,
|V(D)| = n1 + n2 − (q + 1) where Q = D1 ∩ D2 is an oriented path of D and
|E(Q)| = q. Hence, ht(PD) = |E(D)| − |V(D)| + 1 = (m1 − n1 + 1) + (m2 −
n2 + 1) = ht(PD1) + ht(PD2). Since PDi is a binomial complete intersection, there
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is a binomial set of generators Bi of PDi such that |Bi| = ht(PDi). We take B =
B1 ∪B2. Hence, by Propositions 1.113 and 4.5, PD = (yC | C is a cycle of D) ⊆ (B).
Furthermore, |B| ⩽ |B1|+ |B2| = ht(PD1) + ht(PD2) = ht(PD). Therefore, PD is a
binomial complete intersection. □

Remark 4.7 In Example 4.35, PD is a binomial complete intersection and D is a Q-
sum of a θ-partial wheel D′ and the cycle without chords C5 = (x′,L6, z4,L3, z3,L5,
x′), where Q = (z4,L3, z3). But PD′ is not a binomial complete intersection.

In the following results, we use the notation of oriented subgraphs of Definition
1.56.

Definition 4.8 We define inductively the sets of oriented graphs Hi in the follo-
wing form: H1 := {CO | C is a cycle or an edge and O is an orientation of C} and
Hj := {D | D is a Q-sum of D1 and D2 such that D1 ∈ Hi1 , D2 ∈ Hi2 and i1 + i2 =
j}. We say that an oriented graph D is a Q-ring graph if D ∈ ∪∞

j=1Hj.

Corollary 4.9 If D is a Q-ring graph, then PD is a binomial complete intersection.

Proof. If D ∈ H1, then by Theorem 1.120, PD is a binomial complete intersection,
since cycles and edges are theta-ring graphs. Now, if D ∈ Hj with j ⩾ 2, then D is
a Q-sum of D1 and D2 where D1 ∈ Hi1 , D2 ∈ Hi2 and i1 + i2 = j. By induction hy-
pothesis, PD1 and PD2 are binomial complete intersections. Therefore, by Theorem
4.6, PD is a binomial complete intersection. □

In Lemmas 4.10, 4.12, 4.13 and Theorem 4.14, we assume D = (G,O) is an oriented
graph.

Lemma 4.10 If G = Kn, then D has an oriented path L such that V(L) = V(G).

Proof. By induction on n. If n = 3 is clear. We set V(Kn) = {x1, . . . , xn}. By induc-
tion hypothesis, D′ :=

(
Kn \ {xn}

)
O has an oriented path L′ with V(D′) = V(L′).

We can assume L′ = (x1, . . . , xn−1) with (xi, xi+1) ∈ E(L′) for 1 ⩽ i ⩽ n − 2. Now,
we prove D = (Kn)O has an oriented path L with V(D) = V(L). By contradiction
assume D has no an oriented path L with V(D) = V(L). Thus, (x1, xn) ∈ E(D),
because if (xn, x1) ∈ E(D), then (xn, x1, . . . , xn−1) is an oriented path. Now, if
(xn, x2) ∈ E(D), then (x1, xn, x2, . . . , xn−1) is an oriented path. So, (x2, xn) ∈ E(D),
implies (x3, xn) ∈ E(D), because if (xn, x3) ∈ E(D), then (x1, x2, xn, x3, x4, . . . , xn−1)
is an oriented path. Continuing with this process, we obtain (xn−1, xn) ∈ E(D).
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Hence, (x1, . . . , xn−1, xn) is an oriented path. A contradiction. □

Definition 4.11 Let H be a graph and x /∈ V(H), then the cone of H on x, denoted
by C(H, x) is the graph such that V

(
C(H, x)

)
= V(H) ∪ {x} and E

(
C(H, x)

)
=

E(H) ∪ {{x, a} | a ∈ V(H)}.

Lemma 4.12 If L is a path of D such that G = C(L, x), then D is a Q-ring graph.

Proof. We assume L = (a1, . . . , as). We prove the result by induction on s. If
s = 1 or s = 2, then G = K2 or G = C3. Thus, D is a Q-ring graph. Now, assume
s ⩾ 3. By induction hypothesis, if G′ := C(L′, x) where L′ = (a1, . . . , as−1), then
D′ = G′

O is a Q-ring graph. Furthermore, D is the Q′-sum of D′ and the triangle
C = (x, as−1, as, x), where Q′ = (x, as−1). Hence, G is a Q-ring graph. □

Lemma 4.13 If G is a clique sum of G′ and a complete graph Kn and G′
O is a Q-ring

graph, then D is a Q-ring graph.

Proof. Since G is a clique-sum of G′ and Kn, then G = G′ ∪ Kn and G′ ∩ Kn = Ks
with s ⩽ n. By Lemma 4.10, there is an oriented path L1 ⊆ (Ks)O such that
V(L1) = V(Ks). We set V(Kn) \ V(Ks) = {as+1, . . . , an}. By Lemma 4.12, H1

O
is a Q-ring graph where H1 = C(L1, ar+1). We take D2 = (G2,O2) the L1-sum
of D1 := G′

O and H1
O, then D2 is a Q-ring graph. Since, G2[V(Kr) ∪ {ar+1}] is

a complete graph, by Lemma 4.10, there is an oriented path L2 of D2 such that
V(L2) = V(Ks) ∪ {as+1}. Also, by Lemma 4.12, H2

O is a Q-ring graph where
H2 = C(L2, ar+2). We take D3 = (G3,O3) the L2-sum of D2 and H2

O, then D3 is a
Q-ring graph. Continuing with this process, we obtain that D1, D2, . . . , Dn−s = D
are Q-ring graphs. □

Theorem 4.14 If G is a connected theta-ring graph, then D is a Q-ring graph.

Proof. By Theorem 1.53, G can be constructed recursively by clique sums of cycles
and/or complete graphs, i.e. G =

(
. . . ((H1 ⊕ H2)⊕ H3) . . .

)
⊕ Hs where Hi is a

cycle or Hi is a complete graph. We continue the proof by induction on s. If s ⩾ 2,
then we have G = G′⊕ Hs where G′ =

(
. . . (H1 ⊕ H2)⊕ . . .

)
⊕ Hs−1. By induction

hypothesis (G′)O is a Q-ring graph. Thus, by Lemma 4.13, D is a Q-ring graph, if
Hs is a complete graph. Now, if Hs is a cycle , then G is 1- or 2- clique sum of G′

and Hs. Consequently, D is a Q-sum of (G′)O and (Hs)O. Hence, D is a Q-ring
graph, since (G′)O is a Q-ring graph. Finally, assume s = 1, i.e. G = Cn or G = Kn.
If G = Cn, G = K2 or G = K3, then D is a Q-ring graph. Now, assume G = Kn with
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n ⩾ 4. We prove D is a Q-ring graph by induction on n. By induction hypothesis,
we have D̃ = (Kn−1)O is a Q-ring graph. Furthermore, by Lemma 4.10, there is
an oriented path L in D̃ such that V(L) = V(D̃). We set {x} = V(G) \ V(Kn−1),
then by Lemma 4.12, HO is a Q-ring graph where H = C(L, x). Therefore, D is a
Q-ring graph, since D is the L-sum of D̃ and HO. □

4.2 ORIENTED TRUEMPER CONFIGURATIONS

In this section we study when the toric ideal PD is a binomial complete intersection
if G is a Truemper configuration: thetas (Proposition 4.16), pyramids (Proposition
4.22), prisms (Proposition 4.24) and partial wheels (Proposition 4.25). Furthermore,
in this section we assume D = (G,O) is an oriented graph and we use the notation
of Figure 1.2.

Lemma 4.15 Let L be a non-oriented path of D such that degD(x) = 2 for each
x ∈ V(L◦). Hence,

1) If C is a cycle of D such that E(C) ∩ E(L) ̸= ∅, then L ⊆ C and C is not
oriented.

2) If u − u′ ∈ PD with gcd(u, u′) = 1 and there is y ∈ E(L) such that y | u,
then yL+ | u and yL− | u′ when y ∈ E(L+) or yL− | u and yL+ | u′ when
y ∈ E(L−).

3) If B is a binomial generating set of PD, then B′ = { f ∈ B | f ∈ PD′} is a
binomial generating set of PD′ , where D′ = D \ V(L◦).

Proof. Since L is not oriented, we have L+ ̸= ∅ and L− ̸= ∅.

1) We can assume L = (x1, . . . , xs) and (xj, xj+1) ∈ E(C) ∩ E(L) or (xj+1, xj) ∈
E(C) ∩ E(L) for some 1 < j < s. Then L ⊆ C, since degD(xi) = 2 for each
1 < i < s. Hence, C is not oriented, since L is a non oriented path.

2) Without loss of generality, we can suppose y ∈ E(L+), By Corollary 1.112,
there are cycles C1, . . . , Cs such that yCi = ui − u′

i for 1 ⩽ i ⩽ s, and u =
u1 · · · us and u′ = u′

1 · · · u′
s. We can assume y | u1, since y | u. Thus, y ∈

E(C1)∩ E(L). So, by 1), L ⊆ C implies yL+ | u1 and yL− | u′
1, since y | u1 and

y ∈ E(L+). Hence, yL+ | u and yL− | u′.

3) Since L is not oriented, L+ ̸= ∅ and L− ̸= ∅. Then, yL+ ̸= 1 and yL− ̸=
1. We set E(L) = {y1, . . . , yk}. We take f ∈ PD′ , then f = ∑gi∈B′ figi +

∑gi∈B\B′ figi for some polynomials fi, since B is a binomial generating set of
PD. If gi = ui − u′

i ∈ B \ B′, then there is y ∈ E(L) such that y | uiu′
i. By 2),
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yL+ | ui and yL− | u′
i or yL− | ui and yL+ | u′

i. In both cases, gi |y1=···=yk=0=
0− 0 = 0, since yL+ ̸= 1 and yL− ̸= 1. Hence, f = f |y1=···=yk=0= ∑gi∈B′ f ′i gi,
where f ′i = fi |y1=···=yk=0, since f ∈ PD′ and gj |y1=···=yk=0= gj for gj ∈ B′.
Therefore, B′ is a generating set of PD′ . □

Proposition 4.16 If G is a theta graph, then PD is a binomial complete intersection
if and only if at least one principal path of D is oriented.

Proof. We assume L1,L2 and L3 are the principal paths of D between x and
z, so the cycles of D are C1 = (x,L1, z,L2, x), C2 = (x,L2, z,L3, x) and C3 =
(x,L1, z,L3, x).

⇐) Without loss of generality, we can suppose L2 is a principal oriented path of
D. Thus, D is the L2-sum of the cycles C1 and C2 where C1 ∩ C2 = L2. Hence, by
Theorem 4.6, PD is a binomial complete intersection.

⇒) By contradiction, suppose L1, L2 and L3 are not oriented. We have

yC1 = yL+
1

yL−
2
− yL−

1
yL+

2

yC2 = yL+
2

yL−
3
− yL−

2
yL+

3

yC3 = yL+
1

yL−
3
− yL−

1
yL+

3
.

Let B = { f1, . . . , fs} be a minimum binomial set of generators of PD. Since yC1 , yC2 ,
yC3 ∈ PD, there is a monomial yα ∈ Mon(B) such that yα | m1, for each m1 ∈ A :=
Mon({yC1 , yC2 , yC3}) = {yL+

1
yL−

2
, yL−

1
yL+

2
, yL+

2
yL−

3
, yL−

2
yL+

3
, yL+

1
yL−

3
, yL−

1
yL+

3
}.

Also, yL+
i
̸= 1 and yL−

i
̸= 1, since Li is not oriented. Then, |A| = 6. By Theorem

1.111, there is a cycle C such that yC = m2 − m′
2 and m2 | yα. Hence, m2 = yα =

m1, since C1, C2 and C3 are the cycles of D. Then, A ⊆ Mon(B) implies |B| ⩾
|A|/2 = 3. But ht(PD) = 2. Therefore, PD is not a binomial complete intersection.
A contradiction. □

Definition 4.17 An oriented chordless cycle C of D is called contractible if
|ND(x)∩ V(C)| ⩽ 1 for each x ∈ V(D) \ V(C). In this case, the contraction of C in
D is the oriented graph D⧸C with V(D⧸C) =

(
V(D) \V(C)

)
∪ {v} and E(D⧸C) =(

E(D) \ E(C)
)
∪ {(v, x) | (a, x) ∈ E(D) with a ∈ V(C)} ∪ {(x, v) | (x, b) ∈ E(D)

with b ∈ V(C)}.

Definition 4.18 If u is a monomial of R = K[y1, . . . , ym], then supp(u) = {yi | yi |
u}. Furthermore, if f = m1 − m2 is a binomial of R, then supp( f ) = supp(m1) ∪
supp(m2).
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Proposition 4.19 Let C be a contractible cycle of D. If B is a binomial generating
set of PD with |B| = ht(PD) and { f ∈ B | supp( f ) ⊆ E(C)} ̸= ∅. Then, PD′ is a
binomial complete intersection, where D′ = D⧸C.

Proof. We set E
(

D \ V(C)
)
= {y1, . . . , yk}, {y ∈ E(D) | |y ∩ V(C)| = 1} =

{yk+1, . . . , yk+s}, E(C) = {yk+s+1, . . . , ym}. Furthermore, for each k + 1 ⩽ i ⩽
k + s, we take ỹi = (v, x) or ỹi = (x, v) if yi = (z, x) or yi = (x, z) respectively,
where z ∈ V(C). Then, E(D′) = {y1, . . . , yk, ỹk+1, . . . , ỹk+s} and ỹi ̸= ỹj, since C is
contractible. We consider the morphism of k-algebras:

ϕ : k[y1, . . . , ym] → k[y1, . . . , yk, ỹk+1, . . . , ỹk+s]

given by ϕ(yi) = yi for 1 ⩽ j ⩽ k, ϕ(yi) = ỹi for k < i ⩽ k + s and ϕ(yi) = 1
for k + s < i ⩽ m. We will prove ϕ(yC′) ∈ PD′ , where C′ is a cycle of D. If
E(C′) ⊆ E(C), then C′ = C and supp(yC′) ⊆ E(C). So, ϕ(yC′) = 0 ∈ PD′ . Now,
assume E(C′) ̸⊆ E(C), then we can suppose C′ = (L1, L̃1, . . . ,Ll, L̃l), where Li, L̃i
are paths such that E(Li) ⊆ E(D) \ E(C) and E(L̃i) ⊆ E(C) for i = 1, . . . , l (it is
possible that L̃i ⊆ V(C) or l = 1 with L̃1 = ∅). If L̃1 = ∅, then C′ ⊆ D \ V(C) ⊆
D′ and E(C′) ⊆ {y1, . . . , yk}. Thus, C′ is a cycle of D′ and ϕ(yC′) = yC′ ∈ PD′ .
Now, assume L̃1 ̸= ∅, then we can assume Li is a path between ai and bi such
that ai, bi ∈ V(C), i.e. Li = (ai, yji , . . . , yki , bi) where yji , yki ∈ E(D), yji ∩ V(C) =

{ai}, yki ∩ V(C) = {bi} and E(L′
i) ⊆ E

(
D \ V(C)

)
, where L′

i = Li \ {yji , yki}.
Then, Ci = (v, ỹji ,L′

i, ỹki , v) is a cycle of D′. Thus, ϕ(yC′) = y(C1)+ · · · y(Cl)+ −
y(C1)− . . . y(Cl)− , since yC′ = yL+

1
yL̃+

1
· · · yL+

l
yL̃+

l
− yL−

1
yL̃−

1
· · · yL−

l
yL̃−

l
, ϕ(yL̃+

i
) =

ϕ(yL̃−
i
) = 1, ϕ(yL+

i
) = y(Ci)+ and ϕ(yL−

i
) = y(Ci)− . Hence, ϕ(yC′) ∈ PD′ , since

yCi = y(Ci)+ − y(Ci)− ∈ PD′ . Therefore, by Proposition 1.113, ϕ(PD) ⊆ PD′ .

We set B = { f1, . . . , fu} where u = ht(PD) = m − n + 1 and n = |V(D)|. We
take a cycle C1 of D′ and we prove that there is a cycle C2 of D such that yC1 =
ϕ(yC2). If v /∈ V(C1), then V(C1) ⊆ V(D) \ V(C) implies C1 ⊆ D and E(C1) ⊆
E
(

D \ V(C)
)
= {y1, . . . , yk}. Thus, ϕ(yC1) = yC1 , we can take C2 = C1. Now,

assume v ∈ V(C1), then C1 = (v, ỹi1 , xj1 , . . . , xjl−1 , ỹil , v) such that L = C1 \ {v}
is a path in D \ V(C) and yi1 , yil ∈ {yk+1, . . . , yk+s}. So, ϕ(yi1) = ỹi1 , ϕ(yil) = ỹil
and there are z, z′ ∈ V(C) such that z ∈ yi1 and z′ ∈ yil . Furthermore, there
is a path L′ in C between z and z′, (we take L′ = (z) if z = z′). So, we take
C2 = (z′,L′, z, yi1 , xj1 ,L, xjl−1 , yil , z′), then ϕ(yC2) = yC1 , since L ⊆ D \ V(C),
L′ ⊆ C, ϕ(yi1) = ỹi1 and ϕ(yi2) = ỹi2 . Furthermore, yC2 = ∑u

i=1 gi fi for some
g1, . . . , gu ∈ k[y1, . . . , ym], since B is a generating set of PD. Thus, yC1 = ϕ(yC2) =

∑u
i=1 ϕ(gi)ϕ( fi) ∈

(
ϕ( f1), . . . , ϕ( fu)

)
⊆ k[y1, . . . , yk, ỹk+1, . . . , ỹk+s]. Hence, by

Proposition 1.113, PD′ ⊆ (B′), where B′ = {ϕ( f1), . . . , ϕ( fu)} \ {0}. Also, B′ ⊆ PD′ ,
since ϕ(PD) ⊆ PD′ and B ⊆ PD. Then B′ is a binomial generating set of PD.
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Now, if f = m1 − m2 with m1, m2 ∈ Mon(k[y1, . . . , ym]) and supp( f ) ⊆ E(C), then
ϕ( f ) = 0 since ϕ(m1) = ϕ(m2) = 1. Thus, |B′| < |B| = m − n + 1, since { f ∈ B |
supp( f ) ⊆ E(C)} ̸= ∅. Also, by Principal Ideal Theorem, |B′| ⩾ ht(PD′) = m′ −
n′+ 1, where m′ = |E(D′)| = m− q, n′ = |V(D′)| = n− q+ 1, where q = |V(C)| =
|E(C)|. Hence, m − n + 1 > |B′| ⩾ ht(PD′) = (m − q)− (n − q + 1) + 1 = m − n.
Therefore, PD′ is a binomial complete intersection. □

Lemma 4.20 Let C be the set of oriented cycles in D. If 1 ⩽ |C| ⩽ 2, then there is a
minimum binomial generating set B′ of PD where { f ∈ B′ | supp( f ) ⊆ E(C) with
C ∈ C} ̸= ∅.

Proof. Let B be a minimum binomial generating set of PD. Since C ̸= ∅, there is
C ∈ C and yC = 1 − u′. Then, there is g = 1 − u ∈ B. If |C| = 1, then C = {C} and
by Corollary 1.112, u = (u′)α. Thus, supp(g) ⊆ E(C). Now, assume C = {C1, C2},
then by Corollary 1.112, u = uα1

1 uα2
2 where yC1 = 1 − u1 and yC2 = 1 − u2. By

Remark 1.114, we can suppose that if m1 − m2 ∈ B, then gcd(m1, m2) = 1. We take
A = {h ∈ B | supp(h) ⊆ E(C1) ∪ E(C2)}, then by Corollary 1.112, g ∈ A, since
C = {C1, C2}. Furthermore, if h ∈ A, then by Corollary 1.112, h = 1 − uβ1

1 uβ2
2 or

h = uβ1
1 − uβ2

2 , since C1 and C2 are all the cycles in E(C1) ∪ E(C2). Thus, (A) ⊆
(yC1 , yC2). If |A| ⩾ 2, then B′ = (B \ A) ∪ (yC1 , yC2) is a minimum generating set
of PD, since |B′| ⩽ |B|. Also supp(yC1) ⊆ E(C1).

Now, assume |A| ⩽ 1, then A = {g} and g = 1 − uγ1
1 uγ2

2 . We take m′
1 − m′

2 ∈ B
such that supp(m′

1) ⊆ E(C1) ∪ E(C2). We prove m′
1 − m′

2 = g. By contradiction,
suppose there is ỹ ∈ E(D) \

(
E(C1) ∪ E(C2)

)
such that ỹ | m′

2. Thus, by Corollary
1.112, there is a cycle C′, such that yC′ = n1 − n2, n1 | m′

1, n2 | m′
2 and ỹ | n2. Then,

ỹ ∈ E(C′), implies C′ is not oriented cycle and n1 ̸= 1, since ỹ /∈ E(C1)∪ E(C2). We
take a maximal path L such that ỹ ∈ E(L), L ⊆ C′ and E(L) ∩

(
E(C1) ∪ E(C2)

)
=

∅. Then, E(L) ⊆ supp(n2), since supp(n1) ⊆ supp(m′
1) ⊆ E(C1) ∪ E(C2). So, L

is an oriented path. We set a, b the end-vertices of L, then by the maximality of L,
a ∈ V(Ci) and b ∈ V(Ci′) with i, i′ ∈ {1, 2}. We prove i ̸= i′. By contradiction,
suppose i = i′, then Ci = L1 ∪ L2 such that L1 and L2 are oriented paths between
a and b. Thus, L ∪ L1 or L ∪ L2 is an oriented cycle of D. A contradiction, since
C = {C1, C2}, ỹ ∈ E(L) and E(L) ∩

(
E(C1) ∪ E(C2)

)
= ∅. Hence, i ̸= i′. Without

loss of generality, we can assume i = 1, i′ = 2 and L is an oriented path from a to b.
Since C′ is a cycle, there are paths L̃2,L′ such that L̃ := (a,L, b,L2, b′,L′, a′) ⊆ C′,
L2 ⊆ C2, E(L′) ∩

(
E(C1) ∪ E(C2)

)
= ∅ and a′ ∈ V(C1) ∪ V(C2). By last argument

(on L), we have L′ is an oriented path and a′ ∈ V(C1), since b′ ∈ V(L2) ⊆ V(C2).
Also, E(L ∪L′) ∩ E(C1 ∪ C2) = ∅, then yLyL′ | n2 and L′ is an oriented path from
b′ to a′, since L̃ ⊆ C′. Since C1 and C2 are oriented cycles, there are oriented paths
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P1 from a′ to a in C1 and P2 from b to b′ in C2. Hence, (a,L, b,P2, b′,L′, a′,P1, a) is
an oriented cycle in D. A contradiction, since C = {C1, C2}. Therefore, m′

1 − m′
2 =

g.

Consequently, if f = m1 − m2 ∈ B \ {g}, then there are yi1 , yi2 ∈ E(D) \ E(C1 ∪C2)
such that yi1 | m1 and yi2 | m2. So, f |y1=···=ys=0= 0 where E(D) \ E(C1 ∪ C2) =
{y1, . . . , ys}. Now, yC1 = ∑gi∈B fi · gi with fi ∈ k[y1, . . . , ym], since B is a generating
set. If we evaluate y1 = · · · = ys = 0 in the last equation, we obtain 1 − u1 =
yC1 |y1=···=ys=0= h · g, where g1 = g and f1 |y1=···=ys=0= h. So, 1 − u1 = h · (1 −
uα1

1 uα2
2 ). If y ∈ E(C2), then 0 = degy(1 − u1) ⩾ degy(1 − uα1

1 uα2
2 ) ⩾ α2. Hence,

α2 = 0, g = 1 − uα1
1 and supp(g) ⊆ E(C1). □

Lemma 4.21 If G is a pyramid and each path (xi, xj,Lj, z) is not oriented with i ̸= j,
then some Lk is not oriented with k ∈ {1, 2, 3}. Furthermore, if C = (x1, x2, x3, x1)
is an oriented cycle, then L1,L2 and L3 are not oriented.

Proof. By contradiction, we can suppose L1,L2,L3 are oriented and E(L1) =
L+

1 . Thus, (x1, xi) ∈ E(D) for i = 2, 3, since (xi, x1,L1, z) is not an oriented path.
So, E(Li) = L−

i , since (x1, xi,Li, z) is not oriented path. Hence, (x2, x3,L3, z) or
(x3, x2,L2, z) is an oriented path, since (x3, x2) ∈ E(D) or (x2, x3) ∈ E(D). A
contradiction.

Now, assume C = (x1, x2, x3, x1) is an oriented cycle. If Li is oriented, then (xj, xi,
Li, z) or (xk, xi,Li, z) is oriented with {i, j, k} = {1, 2, 3}. A contradiction, then
L1,L2 and L3 are not oriented. □

Proposition 4.22 Let G be a pyramid. Then, PD is a binomial complete intersection
if and only if (xi, xj,Lj, z) is an oriented path for some i, j ∈ {1, 2, 3} with i ̸= j.

Proof. Since G is a pyramid, ht(PD) = |E(D)| − |V(D)|+ 1 = 3 and the chordless
cycles in D are C = (x1, x2, x3, x1), C1 = (x2, x1,L1, z,L2, x2), C2 = (x3, x2,L2, z,L3,
x3) and C3 = (x3, x1,L1, z,L3, x3).

⇐) Without loss of generality, we can suppose L = (x1, x2,L2, z) is an oriented
path. Now, we take D1 the P-sum of the cycles C and C2 where P = C ∩ C2 is the
path (x2, x3). Thus, D is the L-sum of D1 and the cycle C1, since D1 ∩ C1 = L is
an oriented path. Therefore, by Theorem 4.6, PD is a binomial complete intersec-
tion.

⇒) By contradiction, suppose (xi, xj,Lj, z) is not oriented for each i, j ∈ {1, 2, 3}
with i ̸= j. We prove C is not oriented. By contradiction, assume C is oriented. By
Lemma 4.21, L1, L2, L3 are not oriented. Then, C is the unique oriented cycle in
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D. Also, C is contractible, since |ND(x) ∩ V(C)| ⩽ 1 for each x ∈ V(D) \ V(C).
By Lemmas 4.20 and 4.19, PD⧸C is a binomial complete intersection. But D⧸C is a
theta graph whose principal paths are not oriented. A contradiction by Proposition
4.16. Hence, C is not oriented. So, without loss of generality, we can assume y1 =
(x3, x2), y2 = (x3, x1), y3 = (x1, x2) ∈ E(C). Thus L+

1 ̸= ∅, L−
1 ̸= ∅, L−

2 ̸= ∅ and
L+

3 ̸= ∅, since each (xi, xj,Lj, z) is not oriented. Furthermore,

yC = y2 y3 − y1

yC1 = yL+
1

yL−
2
− y3 yL−

1
yL+

2

yC2 = y1 yL+
2

yL−
3
− yL−

2
yL+

3

yC3 = y2 yL+
1

yL−
3
− yL−

1
yL+

3
.

Thus, A1 = Mon(yC, yC1 , yC2 , yC3) \ {y1 yL+
2

yL−
3
}. Let B1 be a minimum binomial

set of generators of PD, then for each m1 ∈ A1 there is m′ ∈ Mon(B1) such that m′ |
m1. By Theorem 1.111, there is a cycle C′ such that yC′ = yα − yβ and yα | m′, then
yα | m1. We will prove yα = m1. First assume L1 ⊆ C′. If C′ ̸= C1 and C′ ̸= C3, then
C′ = (C1)′ or C′ = (C3)′ where (C1)′ = (x1,L1, z,L2, x2, y1, x3, y2, x1) or (C3)′ =
(x1,L1, z,L3, x3, y1, x2, y3, x1). Thus, yα ∈ A2 = Mon(y(C1)′ , y(C3)′) = {y2yL+

1
yL−

2
,

y1yL−
1

yL+
2

, y1yL+
1

yL−
3

, y3yL−
1

yL+
3
}. A contradiction, since yα | m1, m1 ∈ A1, L−

2 ̸= ∅

and L−
3 ̸= ∅. Hence C′ = C1 or C′ = C3 implies yα ∈ Mon(yC1 , yC3). Also,

yα | m1, then yα = m1, since m1 ∈ A1, L−
2 ̸= ∅ and L+

3 ̸= ∅. Now, assume
L1 ̸⊆ C′, then C′ ∈ {C, C2, (C2)′} where (C2)′ = (x2,L2, z,L3, x3, y2, x1, y3, x2). But
y(C2)′ = y2y3yL+

2
yL−

3
− yL−

2
yL+

3
, L−

2 ̸= ∅, L−
3 ̸= ∅, yα | m1 and m1 ∈ A1. Hence,

yα = m1. So m1 = m′, since yα | m′ and m′ | m1. Therefore, A1 ⊆ Mon(B1). Then,
|B1| ⩾ |A1|/2 > 3. A contradiction, since |B1| = ht(PD) = 3. □

In the following results, we use the notation of Figure 1.2.

Lemma 4.23 If G is a prism such that each path (xi, xj,Li, zj, zk) is not oriented
with j /∈ {i, k}, then the only possible oriented cycles are C1 = (x1, x2, x3, x1) and
C2 = (z1, z2, z3, z1). Furthermore, if yC1 = y1 − y2y3, yC2 = y′i1 − y′i2y′i3 where
{i1, i2, i3} = {1, 2, 3} and f = m1 − m′

1 is a binomial of PD, then {m1, m′
1} ∩ A = ∅

with A = {y2, y3, y′i2 , y′i3 , yL+
1

, yL−
1

, yL+
2

, yL−
2

, yL+
3

, yL−
3
}.

Proof. By contradiction, suppose C̃ is an oriented cycle of D with C̃ ̸= C1

and C̃ ̸= C2. Consequently, there is Lj such that Lj ⊆ C̃, implies there is L =

(xi, xj,Li, zj, zk) ⊆ C̃ with j /∈ {i, k}. A contradiction, since L is not oriented.

Now, we take f = m1 −m′
1 ∈ PD and by contradiction, suppose {m1, m′

1}∩A ̸= ∅.
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Without loss of generality, we can assume m1 ∈ A. By Corollary 1.112, there is a
cycle C such that yC = yα − yβ and yα | m1. Since yC1 = y1 − y2y3 and yC2 = yi1 −
yi2yi3 , we have that C1 and C2 are not oriented cycles. Hence, D has not oriented
cycles and C is not oriented. Thus, yα ̸= 1 implies m1 ̸= 1. First, assume m1 = yL+

i
or m1 = yL−

i
. We can suppose m1 = yL+

i
, then yα | yL+

i
. Thus, by 1) in Lemma 4.15,

Li ⊆ C and yα = yL+
i

, since yα ̸= 1. Consequently, L1 = (xi, xj,Lj, zj, zi′) ⊆ C or

L2 = (xi, xj, xk,Lk, zk, zj′) ⊆ C where {i, j, k} = {1, 2, 3}, i′ ̸= j and j′ ̸= k. Then,
L1 or L2 are oriented paths, since yC+ = yα = yL+

i
. A contradiction. Now, assume

m1 ∈ {y2, y3, y′i2 , y′i3}. Without loss of generality, we can assume m1 = y2, then
yα = y2, since yα | m1 and yα ̸= 1. So, C+ = {y2} and y3 /∈ V(C), since (C1)− =
{y2, y3}. Thus, L′ = (x1,L1, z1, zi) ⊆ C and E(L′) ⊆ C− for some i ∈ {2, 3}.
Hence, L̃ = (x2, x1,L1, z1, zi) is an oriented path, since E(L′) ⊆ C−, C+ = {y2}
and (C1)− = {y2, y3}. A contradiction. □

Proposition 4.24 Let G be a prism. Then, PD is a binomial complete intersection if
and only if at least one path (xi, xj,Lj, zj, zk) is oriented with i, j, k ∈ {1, 2, 3} and
j /∈ {i, k}.

Proof. The chordless cycles in D are C1 = (x1, x2, x3, x1), C2 = (z1, z2, z3, z1), C3 =
(x2, x1,L1, z1, z2,L2, x2), C4 = (x3, x2,L2, z2, z3,L3, x3) and C5 = (x3, x1,L1, z1, z3,
L3, x3).

⇐) Without loss of generality, we can suppose L = (x1, x2,L2, z2, zj) is an oriented
path of D with j ̸= 2. We take the following cases:

Case j = 1. We take D1 the P1-sum of C1 and C4; and D2 the P2-sum of D1 and C2

where P1 = (x2, x3) and P2 = (z2, z3). Hence, D is the L-sum of D2 and C3, since
L is an oriented path.

Case j = 3. We take D′
1 the Q1-sum of C2 and C3; and D′

2 the Q2-sum of C1 and C4

where Q1 = (z1, z2) and Q2 = (x2, x3). Hence, D is the L-sum of D′
1 and D′

2, since
L is an oriented path.

Therefore, in both cases (by Theorem 4.6), PD is a binomial complete intersec-
tion.

⇒) By contradiction, assume each path (xi, xj,Lj, zj, zk) is not oriented.

Case C1 or C2 is oriented. By Lemma 4.23, C = {C ⊆ D | C is an oriented cycle } ⊆
{C1, C2}. Thus, by Lemma 4.20, there is a minimum binomial generating set B such
that yC1 ∈ B or yC2 ∈ B. Without loss of generality, we can assume yC2 ∈ B. Then,
by Proposition 4.19, PD⧸C2 is a binomial complete intersection. So, by Proposition
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4.22, there is an oriented path (xi, xj,Lj, z) in D⧸C2 , since D⧸C2 is a pyramid. Thus,
there is k ∈ {1, 2, 3} \ {j} such that (xi, xj,Lj, zj, zk) is an oriented path in D, since
C2 is an oriented cycle. A contradiction.

Case C1 and C2 are not oriented. Thus, by Lemma 4.23, D has not oriented cycles.
We can assume V(yj1) = {xj2 , xj3} and V(y′j1) = {zj2 , zj3} for all {j1, j2, j3} =

{1, 2, 3}; furthermore yC1 = y1 − y2y3 and yC2 = y′r1
− y′r2

y′r3
. We take the cy-

cles Cij = (xi,Li, zi, zj,Lj, xj, xi). Without loss of generality, we can assume yk =
(xi, xj) ∈ E(D) where {i, j, k} = {1, 2, 3}, then yCij = ykyL+

j
yL−

i
− y′kyL−

j
yL+

i
if

y′k = (zi, zj) ∈ E(D) or yCij = yky′kyL+
j

yL−
i
− yL−

j
yL+

i
if y′k = (zj, zi) ∈ E(D). We

take a minimum binomial generating set B of PD. By Remark 1.114, we can assume
gcd(m′

1, m′
2) = 1 for each m′

1 − m′
2 ∈ B. Now, for each m1 ∈ A := Mon(yC1 , yC2 ,

yC1,2 , yC1,3 , yC2,3) there is m2 − m′
2 ∈ B such that m2 | m1. By Theorem 1.111, there

is a cycle C with yC = yα − yβ such that yα | m2 and yβ | m′
2. Then, yα | m1. Since

D has no oriented cycles, yα ̸= 1. If m1 ∈ A1 := {y1, y′r1
, y2y3, y′r2

y′r3
}, then by

Lemma 4.23, yα = m2 = m1. Now, if m1 ∈ A′
2 := {m ∈ A | m = yL−

j
yL+

i
}, then

gcd(yα, yL−
j
) ̸= 1 or gcd(yα, yL+

i
) ̸= 1, since yα ̸= 1. Thus, by 2) in Lemma 4.15,

yL−
i
| yα or yL+

i
| yα. So, by Lemma 4.23 and 2) in Lemma 4.15, yα = yL−

j
yL+

i
=

m2 = m1, since yα | m1 and yα | m2. Now, if m1 ∈ A′′
2 = {m ∈ A | m = ykyL−

j
yL+

i
or

m = y′kyL−
j

yL+
i

such that yk ̸= y1 or y′k ̸= y′r1
}. We prove that m1 = yα. By contra-

diction, suppose m1 ̸= yα. We can assume m1 = y′kyL−
j

yL+
i

. So, by Lemma 4.23

and 2) in Lemma 4.15, y′kyL−
j
| yα or y′kyL+

i
| yα or yL−

j
yL+

i
| yα, since yα | m1 and

y′k ̸= y′r1
. But yα ̸= m1 implies (zi, zk,Lk, xk, x′i) or (zj, zk,Lk, xk, x′i) or (zi, zk, zj) is

an oriented path contained in C (where i′ ̸= k). A contradiction, by hypothesis and
y′k ̸= y′r1

. Hence, yα = m1 implies m2 = m1.

If m2 ∈ A2 := A′
2 ∪A′′

2 and m′
2 ∈ A1 ∪A2, then we prove {m2, m′

2} = {ykyL−
j

yL+
i

,

y′kyL+
j

yL−
i
}. We have m2 = yα = yC+ and L−

j ∪ L+
i ⊆ C+, since m2 ∈ A2. So, by

1) in Lemma 4.15, Li ∪ Lj ⊆ C. Furthermore, L+
j ∪ L−

i ⊆ C−, since m2 = yC+ .

Then, yL+
j

yL−
i
| yβ, since yβ = yC− . Now, if yk /∈ E(C), then yi, yj ∈ E(C), since

xi ∈ V(Li) ⊆ V(C) and xj ∈ V(Lj) ⊆ V(C). Hence, yk ∈ E(C) or yi, yj ∈ E(C).
Similarly, y′k ∈ E(C) or y′iy

′
j ∈ E(C). Thus, if m2 ∈ A′

2, then yL−
j

yL+
i
= m2 = yα =

yC+ implies yky′iy
′
j | yβ or yky′k | yβ or y′kyiyj | yβ or yiyjy′iyj′ | yβ, since yβ = yC− . So,

m′
2 /∈ A1 ∪A2, since yβ | m′

2. A contradiction, then m2 ∈ A′′
2 . Thus, we can assume

m2 = ykyL−
j

yL+
i

. Consequently, y′kyL+
j

yL−
i
| yβ or y′iy

′
jyL+

j
yL−

i
| yβ, since yα = m2.

But m′
2 ∈ A1 ∪A2, then m′

2 = y′kyL+
j

yL−
i

, since yβ | m′
2.
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Now, we study two cases:

Case r1 ̸= 1 or y′1 = (z3, z2). Then, for each (i, j) ∈ {(1, 2), (2, 3), (1, 3)} there is
fij = mij − m′

ij ∈ B such that mij = yL−
j

yL+
i

or mij = ykyL−
j

yL+
i

or mij = y′kyL−
j

yL−
i

;

furthermore, if m′
ij ∈ A1 ∪ A2, then mij, m′

ij ∈ A′
2. So, |B′| = 3, where B′ =

{ f1,2, f2,3, f1,3}. Furthermore, A1 ⊆ Mon(B \ B′), then |B| ⩾ |B′|+ |A1|/2 = 3 +
2 = 5. But ht(PD) = 4. Therefore, PD is not a binomial complete intersection.

Case r1 = 1 and y′1 = (z2, z3). We have y1 = (x2, x3) and

yC1 = y1 − y2 y3; yC2 = y′1 − y′2 y′3
yC3 = y3 yL+

1
yL−

2
− y′3 yL−

1
yL+

2

yC4 = y1 yL+
3

yL−
2
− y′1 yL−

3
yL+

2

yC5 = y2 yL−
1

yL+
3
− y′2 yL+

1
yL−

3
.

In this case, A2 = A′
2 = Mon(yC3 , yC5) and A1 = Mon(yC1 , yC2). Assume |B| =

ht(PD) = 4, then B = {yC1 , yC2 , yC3 , yC5}, since A1 ∪A2 ⊆ Mon(B). Hence,

yC4 = g1yC1 + g2yC2 + g3yC3 + g5yC5 . (4.1)

Furthermore, yL−
1
̸= 1 and yL+

1
̸= 1, since (x2, y3, x1,L1, z1, y′2, z3) and (x3, y2, x1,L1,

z1, y′3, z2) are not oriented paths. If we evaluate yL+
1
= yL−

1
= 0, yL+

3
= yL−

3
=

yL+
2
= yL−

2
= 1, y1 = y2 = y3 = x and y′1 = y′2 = y′3 = 0, in the equation (4.1), then

we obtain that x = (x − x2) f1 with f1 ∈ k[x]. But degx
(
(x − x2) f1

)
⩾ 2. A contra-

diction, then |B| ⩾ ht(PD). Therefore, PD is not a binomial complete intersection.
□

Proposition 4.25 Let D be an oriented partial wheel with center z and rim C. If z is
neither a source nor a sink; or C = (x,L, x′,L′, x′′,L′′, x) where L,L′′ are oriented,
x, x′, x′′ ∈ ND(z), ND(z) ∩ V

(
(L′)◦

)
= ∅ and (z, x,L, x′) or (z, x,L′′, x′′) is an

oriented path, then PD is a binomial complete intersection.

Proof. We set C = (z1,L1, z2, . . . , zk−1,Lk−1, zk,Lk, zk+1 = z1) and Ci = (z, zi,Li,
zi+1, z) where ND(z) = {z1, . . . , zk} and Li is a path between zi and zi+1.

First, assume z is neither a source nor a sink, then without loss of generality, we
can suppose (z, z1), (zj, z) ∈ E(D). We take, H2 the P2-sum of C1 and C2, where
P2 = (z, z2); H3 the P3-sum of H2 and C3 where P3 = (z, z3), continuing with this
process, we obtain Hj−1 the Pj−1-sum of Hj−2 and Cj−1 where Pj−1 = (z, zj−1).
Now, we take H′

j+1 the Pj+1-sum of Cj and Cj+1 where Pj+1 = (z, zj+1); H′
j+2 the
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Pj+2-sum of H′
j+1 and Cj+2 where Pj+2 = (z, zj+2); continuing with this process

we obtain H′
k the Pk-sum of H′

k−1 and Ck where Pk = (z, zk). Then, D is the P-sum
of Hj−1 and H′

k, where P = (z1, z, zj). Hence, by Theorem 4.6, PD is a binomial
complete intersection.

Now, assume C = (x,L, x′,L′, x′′,L′′, x) where NG(z) ∩ V
(
(L′)◦

)
= ∅; x, x′, x′′ ∈

NG(z) and (z, x,L, x′) or (z, x,L′′, x′′) is an oriented path. Then, without loss of
generality, we can assume x = z1, x′ = zt, x′′ = zt+1 and L̃ := (z, x,L, x′) =
(z, z1,L, zt) is an oriented path, where L = (z1,L1, z2, . . . ,Lt−1, zt). We take H̃2
the P̃2-sum of C1 and C2, where P̃2 = (z, z2), H̃3 the P̃3-sum of H̃2 and C3 where
P̃3 = (z, z3); continuing with this process, we obtain H̃t−1 the P̃t−1-sum of H̃t−2
and Ct−1 where P̃t−1 = (z, zt−1). Now, we take H̃t+2 the P̃t+2-sum of Ct+1 and
Ct+2 where P̃t+2 = (z, zt+2); H̃t+3 the P̃t+3-sum of H̃t+2 and Ct+3 where P̃t+3 =
(z, zt+3). Continuing with this process, we obtain H̃k the P̃k-sum of H̃k−1 and Ck

where P̃k = (z, zk). Furthermore, we take D1 the L′′-sum of H̃k and C, since
H̃k ∩ C = L′′ is an oriented path. Hence, D is a L̃-sum of D1 and H̃t−1, since
D1 ∩ H̃t−1 = L̃ is an oriented path. Therefore, by Theorem 4.6, PD is a binomial
complete intersection. □

4.3 SPECIAL ORIENTED SUBGRAPHS

In this section D = (G,O) is an oriented graph. We prove that if PD is a binomial
complete intersection and we obtain D′ from D deleting a special path, then PD′

is also a binomial complete intersection (see Proposition 4.26). Furthermore, in
Proposition 4.33, we prove that if G has a theta with some conditions, then PD
is not a binomial complete intersection. These results are interesting because the
binomial complete intersection property is not closed under induced subgraphs
(see Example 4.35).

Proposition 4.26 Let P be a non-oriented path of D such that degG(x) = 2 for
each x ∈ V(P◦) and G′ = G \ V(P◦) is connected. If PD is a binomial complete
intersection, then PD′ is a binomial complete intersection with D′ = G′

O.

Proof. Since PD is a binomial complete intersection, there is a minimal binomial
generating set G = { f1, . . . , fs} of PD, where s = ht(PD) = m− n+ 1 and fi = mi −
m′

i for i = 1, . . . , s. Also, yP+ ̸= 1 and yP− ̸= 1, since P is not oriented. By Remark
1.114, we can assume gdc(mi, m′

i) = 1. We take G = { f1, . . . , fs′} ∪ { fs′+1, . . . , fs}
where { f1, . . . , fs′} = { fi ∈ G | gcd(yP , mim′

i) ̸= 1}. By 2) in Lemma 4.15, we
can assume fi = yP+ni − yP−n′

i for i = 1, . . . , s′ and gcd(yP , mim′
i) = 1 for j =
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s′ + 1, . . . , s. By 3) in Lemma 4.15, B′ = { f ∈ B | f ∈ PD′} = { fs′+1, . . . , fs} is a
binomial generating set of PD′ . Furthermore, ht(PD′) = (m − l)− (n − l + 1) + 1 =
m − n = s − 1, since D′ is connected. Then, s − s′ = |B′| ⩾ ht(PD′) = s − 1 implies
s′ ⩽ 1. Let x, x′ be the end vertices of P , then there is a path Q in D′ between x
and x′, since D′ is connected. Now, we take the cycle C = (P ,Q), then yC ∈ PD.
Consequently,

yC = yP+yQ− − yP−yQ+ =
s

∑
i=1

hi fi (4.2)

Evaluating yl+1 = · · · = ym = 1 in (4.2), we have yP+ − yP− = ∑s′
i=1 h̃i f ′i where

h̃i = hi |yl+1=···=ym=1 and f ′i = fi |yl+1=···=ym=1 for 1 ⩽ i ⩽ s′, since f j |yl+1=···=ym=1=
0 for s′ + 1 ⩽ j ⩽ s. This implies 1 ⩽ s′, since yP+ ̸= yP− . Therefore s′ = 1 and PD′

is a binomial complete intersection. □

Definition 4.27 We define the following set of edges:

A(D) := {y ∈ E(D) | y is contained in an oriented cycle of D}.

Lemma 4.28 Let L be a path between x and x′. If E(L+) ⊆ A(D) or E(L−) ⊆
A(D), then there is an oriented walk between x and x′.

Proof. Without loss of generality, we can assume E(L−) ⊆ A(D). So, if y =
(a, a′) ∈ E(L−), then there is an oriented cycle Cy such that y ∈ E(Cy). Thus, Ly :=
Cy − {y} is an oriented path from a′ to a. We set L = (x1, y1, x2, . . . , xs, ys, xs+1)
where x = x1 and x′ = xs+1. We take L′ = (x1,L1, x2, . . . , xs,Ls, xs+1), where
Li = yi if yi ∈ E(L+) or Li = Lyi if yi ∈ E(L−). Hence, L′ is an oriented walk
between x and x′. □

Lemma 4.29 If L is an oriented walk from z to z′, then there is an oriented path
from z to z′.

Proof. For each walk W = (xj1 , yi1 , xj2 , . . . , yir , xjr+1) we define int(W) = |{k | xjk =
xjk′ for some k′ ̸= k}|. We take an oriented walk L′ = (z = xj′1

, yi′1
, xj′2

, . . . , yi′s , x′js+1
= z′) from z to z′ such that int(L′) is minimal. We prove int(L′) = 0. By con-
tradiction, suppose int(L′) > 0, then there are k and k′ such that xj′k

= xj′
k′

. We
can assume k′ > k, then L′′ = (xj′1

, yi′1
, . . . , yi′k−1

, xj′k
= xj′

k′
, yi′

k′
, . . . , yi′s , xj′s+1

) is a
walk from z to z′ and int(L′′) <int(L′). A contradiction, since int(L′) is minimal.
Hence, int (L′) = 0 implies L′ is a path. □
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Remark 4.30 Assume 1 − u ∈ PD and y | u, where y ∈ E(D) and u ∈ Mon(R). By
Corollary 1.112, there are cycles C1, . . . , Cs such that 1 = u1 · · · us and u = u′

1 · · · u′
s

with yCi = ui − u′
i for 1 ⩽ i ⩽ s. Since y | u, there is j ∈ {1, . . . , s} such that

y | u′
j. Hence, y ∈ V(Cj) and Cj is an oriented cycle, since yCj = 1 − u′

j. Therefore
y ∈ A(D).

Definition 4.31 If f ∈ R = K[y1, . . . , ym] and A = {yi1 , . . . , yis} ⊆ {y1, . . . , ym},
then we define f |A := f |yi1

=···=yis=1.

Lemma 4.32 Let f = u − u′ be a binomial of PD. If f |A(D) ̸= 0, then u |A(D) ̸= 1
and u′ |A(D) ̸= 1.

Proof. By contradiction, suppose u |A(D)= 1 or u′ |A(D)= 1. Without loss of
generality, we can assume u |A(D)= 1. If u = 1, then by Remark 4.30, u′ |A(D)=

1. Thus, f |A(D)= 0. A contradiction, then u ̸= 1. Hence, u = yα1
i1
· · · yαs

is with
{yi1 , . . . , yis} ⊆ A(D). Thus, there are oriented cycles C1, . . . , Cs such that yij ∈
E(Cj) for each j = 1, . . . , s. Then, Lj = Cj − {yij} is an oriented path and yCj = 1−
yLj yij ∈ PD. Hence, 1 − (yi1yL1)

α1 · · · (yis yLs)
αs ∈ PD implies 1 − u′(yα1

L1
· · · yαs

Ls
) =(

1 − (yi1yL1)
α1 · · · (yis yLs)

αs
)
+ (yα1

L1
· · · yαs

Ls
)(u − u′) ∈ PD. So, if y | u′, then by

Remark 4.30, y ∈ A(D). Consequently, u′ |A(D)= 1 implies f |A(D)= u |A(D)

−u′ |A(D)= 1 − 1 = 0. A contradiction, therefore, u |A(D) ̸= 1 and u′ |A(D) ̸= 1. □

Proposition 4.33 Let θ be a theta of G with end vertices x and z such that degG(a) =
2 for each a ∈ V(θ) \ {x, z}. If D is connected and D has no oriented paths between
x and z, then PD is not a binomial complete intersection.

Proof. By contradiction, suppose there is a binomial generating set B of PD such
that |B| = ht(PD) = m − n + 1, since D is connected. We can assume L1,L2,L3
are the principal paths of θ. By hypothesis, L1,L2,L3 are not oriented. We take
D′ = D \ V(L◦

1). Then, D′ is connected, since D is connected and L2,L3 ⊆ D′.
Also, ht(PD′) = |E(D′)| − |V(D′)| + 1 = m − n = ht(PD) − 1, since |E(L◦

1)| =
|V(L◦

1)|+ 1. By 3) in Lemma 4.15, B′ = { f ∈ B | f ∈ PD′} is a generating set of PD′ .
So, |B′| ⩾ ht(PD′) = ht(PD)− 1 = |B| − 1 implies |B \ B′| ⩽ 1. We take the cycles
C2 = L1 ∪ L2 and C3 = L1 ∪ L3, then yCj = mj − m′

j ∈ PD where mj = yL+
1

yL−
j

and m′
j = yL−

1
yL+

j
for j = 2, 3. Hence, yCj = ∑gi∈B f j

i gi where f j
i ∈ k[y1, . . . , ym].

We take B1 = {gi ∈ B | gi |A(D)= 0} and B2 = B \ B1. By 1) in Lemma 4.15,

E(L1 ∪ L2 ∪ L3) ∩ A(D) = ∅. Thus, mj − m′
j = yCj = yCj |A(D)= ∑gi∈B2

f j
i |A(D)
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gi |A(D), since gi |A(D)= 0 if gi ∈ B1. So, for j = 2, 3, there is gij = mij − m′
ij

such
that hij | mj or h′ij

| m′
j where gij |A(D)= hij − h′ij

. By Lemma 4.32, hij ̸= 1 and
h′ij

̸= 1. Without loss of generality, we can suppose hij | mj. Since hij ̸= 1, there is
y ∈ E(D) such that y | hij implies y | mij and y | mj. By Theorem 1.111, there is a
cycle C such that y ∈ E(C) and yC+ | mij and yC− | m′

ij
. Furthermore, y | mj, then

y ∈ E(L1) ∪ E(Lj), since mj = yL+
1

yL−
j

. Without loss of generality, we can assume

y ∈ E(L1). Hence, by 1) in Lemma 4.15, L1 ⊆ C. Consequently, C = L1 ∪L, where
L is a path between x and z. Also, C+ = L+

1 ∪L− and C− = L−
1 ∪L+. By Lemmas

4.28 and 4.29, there is y′ ∈ E(D) \ A(D) such that y′ ∈ E(L−) ⊆ E(C+). Thus,
y′ | yC+ implies y′ | mij . Hence y′ | hij , since y′ /∈ A(D). Consequently, y′ | mj,
since hij | mj. But C = L ∪ L1, then y′ /∈ E(L1) implies y′ ̸ | yL+

1
. Thus, y′ | yL−

j
,

since mj = yL+
1

yL−
j

. Then, by 2) in Lemma 4.15, yL−
j
| yC+ and yL+

j
| yC− , since

y′ ∈ E(C+) ∩ E(L−
j ). So, yL−

j
| mij and yL+

1
| mij , since yC+ | mij , yL−

j
| yC+ and

L+
1 ⊆ C+. Thus, mj | mij , since mj = yL+

1
yL−

j
and E(L1) ∩ E(Lj) = ∅. Thus, by 2)

in Lemma 4.15, yL−
1

yL+
j
| m′

ij
, i.e. m′

j | m′
ij
. Consequently, gi2 = m2ℓ2 − m′

2ℓ
′
2 and

gi3 = m3ℓ3 −m′
3ℓ

′
3 where supp(ℓ2)∪ supp(ℓ3) ⊆ A(D), since hij | mj. Furthermore,

by 1) in Lemma 4.15,
(
E(L2) ∪ E(L3)

)
∩ A(D) = ∅. Hence, gi2 , gi3 ∈ B \ B′ and

gi2 ̸= gi3 . This is a contradiction, since |B \ B′| ⩽ 1. □

Remark 4.34 Not oriented path condition is indispensable in Proposition 4.26. In
Example 4.35, PD is a binomial complete intersection, but PD′ is not a binomial
complete intersection, where G′ = G \ V(L◦), L = L5 ∪ L6 and degG(x) = 2 for
each x ∈ V(L◦).

4.4 EXAMPLES

Example 4.35 Let D′ be the partial wheel of Figure 4.1 (b), whose rim is C =
(z1,L1, z2, . . . , z4,L4, z5 = z1) and center z such that NG′(z) = {z1, z2, z3, z4}. In
the Figure 4.1 (a), D = D′ ∪ L where L is the path L = (z3,L5, x′,L6, z4). The
cycles without chords of D are C, Ci = (z, zi,Li, zi+1, z) for 1 ⩽ i ⩽ 4, C5 =
(x′,L5, z3,L3, z4,L6, x′) and C′ = (x′,L6, z4,L4, z1,L1, z2,L2, z3,L5, x′) whose bi-
nomials are:

yC1 = y1 − y2 yL1
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yC2 = y3 − y2 yL2

yC3 = y3 − y4 yL3

yC4 = y1 − y4 yL4

yC5 = 1 − yL3 yL5 yL6

yC = yL2 yL4 − yL1 yL3

yC′ = yL1 − yL2 yL4 yL5 yL6 .

We have, yC4 ∈ (yC′ , yC1 , yC2 , yC3 , yC5) and yC ∈ (yC′ , yC5). Hence, by Proposition
1.113, G = {yC′ , yC1 , yC2 , yC3 , yC5} is a minimum binomial generating set of PD,
since ht(PD) = 5. Therefore, PD is a binomial complete intersection. Furthermore,
G ′ = {yC, yC1 , . . . , yC4} is a minimum binomial generating set of PD′ but ht(PD′) =
4. Therefore, PD′ is not a binomial complete intersection.

z1

z2

z3

z4

x′

z

y1

y2

y3

y4

L1

L2L3

L4

L5

L6

(a) D
z1

z2

z3

z4 z

y1

y2

y3

y4

L1

L2L3

L4
(b) D′

Figure 4.1. A graph D with the binomial complete intersection property and an
induced subgraph of D′ without this property
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NOTATION

(G,O), oriented graph, 10
(G,O, w), weighted oriented graph, 10
(xi, . . . xi+j), walk/path, 2
Ass(I), associated primes of I, 12
CG, set of basic 5-cycles of G, 6
Ck, cycle of length k, 2
D⧸C, contraction of a cycle C in D, 60
E(G), edge set of G, 1
G, finite simple graph, 1
G[A], induced subgraph by A in G, 1
Gz, graph with loops, 15
H1 ∩ H2, intersection of the subgraphs H1 and H2, 2
H1 ∪ H2, union of the subgraphs H1 and H2, 2
I(D), edge ideal of D, 13
I(G), edge ideal of G, 13
Kn, complete graph with n vertices, 1
Li(C), special subsets of a vertex cover C, 13
ND(x), neighbourhood of x in D, 10
N+

D (x), out-neighbourhood of x in D, 10
N−

D (x), in-neighbourhood of x in D, 10
NG(x), neighbourhood of x in G, 1
NG[x], closed neighbourhood of x in G, 1
PD, toric ideal of D, 17
P10, P13, P14, special well-covered graphs, 7
QG, matching with the property (P), 6
Q13, special well-covered graph, 7
R(Gz), edge ring of Gz, 15
S, homogeneous monomial subring of G, 15
SG, set of simplexes of G, 5
T10, special well-covered graph, 6
V(G), vertex set of G, 1
V+, set of vertices such that w(x) > 1, 10
WH, subset of V(D) \ V(H) with H a ⋆-semi-forest, 21
α(G), stable number of G, 3
χ(G), chromatic number of G, 2
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A(D), edges contained in oriented cycles, 69
C, vertex cover of a graph, 3
Li, principal paths of a Truemper configuration, 8
O(G), edge orientation of G, 10
ν(G), maximum cardinality of a matching of G, 4
ω(G), clique number of G, 2
ωS, canonical module of S, 16
G, complement of G, 2
τ(G), cover number of G, 3
c, k-colouring function of G, 2
degG(x), degree of x in G, 1
depth(M), depth of M, 12
f |A, evaluation of f in A, 70
supp(g), support of g, 60
w(x), weight of x, 10
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SCQ graph, 6
Q-ring graph, 57
Q-sum, 55
⋆-property, 27

of a -simplex, 39
of an induced 5-cycle, 27

⋆-semi-forest, 20
generating, 22

τ-reduction
⌈n

2 ⌉-τ-reduction, 50
strong, 51

k-colouring function, 2

adjacent vertices, 1

binomial complete intersection, 17
bipartite graph, 2

chordal graph, 2
chorded-theta subgraph, 9
chromatic number, 2
CIO graph, 18
clique

number, 2
sum, 9

closed neighbourhood, 1
complement of a graph, 2
complete graph, 1
cone, 58
cover number, 3
cycle

5-cycle basic, 5
k-cycle, 2
contractible, 60
contraction of, 60
even/odd, 2

degree, 1

edge ideal
of a graph, 13
of an oriented graph, 13

edge orientation, 10
edge ring, 15
edge set, 1

finite simple graph, 1

girth of a graph, 2
Gorenstein, 12

ideal, 11
associated prime, 12
depth of, 12
finitely generated, 11
generator set, 11

minimal, 11
grade, 12
primary, 11
prime, 11

height of, 11
principal, 11
radical, 11
toric, 17
unmixed, 12

incident vertex, 1
induced cycle, 2
induced subgraph, 1

by a subset, 1
irredundant primary decomposition, 11
isolated vertex, 1

König graph, 4

matching, 4
minimal vertex cover, 3

neighbourhood, 1, 10
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in, 10
out, 10

neighbours, 1

odd cycle condition, 2
oriented

k-cycle, 10
path, 10
walk, 10

oriented graph, 10
oriented subgraph, 10

partial wheel, 8
θ-partial wheel, 8
center of, 8
rim of, 8

path, 2
length of, 2

pendant, 7
perfect graph, 2
perfect matching, 4
primary decomposition, 11
principal paths, 8
principal representation, 52
prism, 8
property (P), 4
pyramid, 8

radical, 11
reduction

τ-reduction, 4
rooted oriented tree (ROT), 20

root of, 20

simplex, 5
1-simplex, 39
2-simplex, 39
k-simplex, 5

simplicial
graph, 5
vertex, 5

sink, 10

source, 10
stable

number, 3
set, 3

Strong perfect graph theorem, the, 3
subgraph, 1
subintersection, 55

theta, 8
theta-ring graph, 9
toric ideal, 17
transversal triangle, 9
Truemper configuration, 8

underlying graph, 10
unicycle oriented graph, 20
unmixed graph, 3

vertex cover, 3
strong, 13

vertex set, 1
vertex-weight, 10
very well-covered graph, 5

walk, 2
weight, 10
weighted oriented graph, 10
well-covered graph, 3
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