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Variables and Parameters

A Antagonistic bacteria normalized concentration (dimensionless).

R Resistant bacteria normalized concentration (dimensionless).

S Sensitive bacteria normalized concentration (dimensionless).

m Metabolite concentration (dimensionless).

u Antagonistic substance concentration (dimensionless).

DA Antagonistic bacteria diffusion coefficient (mm2/min).

DR Resistant bacteria diffusion coefficient (mm2/min).

DS Sensitive bacteria diffusion coefficient (mm2/min).

Dm Metabolite diffusion coefficient (mm2/min).

Du Antagonistic substance diffusion coefficient (mm2/min).

∇2A Antagonistic bacteria Laplacian (dimensionless).

∇2R Resistant bacteria Laplacian (dimensionless).

∇2S Sensitive bacteria Laplacian (dimensionless).

∇2m Metabolite Laplacian (dimensionless).

∇2u Antagonistic substance Laplacian (dimensionless).

rA Antagonistic bacteria intrinsic growth rate
(
min−1

)
.

rR Resistant bacteria intrinsic growth rate
(
min−1

)
.

rS Sensitive bacteria intrinsic growth rate
(
min−1

)
.



iii

rm Metabolite intrinsic growth rate
(
min−1

)
.

ru Antagonistic substance intrinsic growth rate
(
min−1

)
.

KA Concentration of metabolite needed to reduce rA down to rA(1− d/2)

(dimensionless).

KR Concentration of antagonistic substance needed to reduce rR down to

rR(1− d/2) (dimensionless).

KS Concentration of metabolite needed to reduce rS down in half (dimensionless).

Ku Half saturation constant of antagonistic substance (dimensionless).

nA Hill coefficient for antagonistic bacteria (dimensionless).

nR Hill coefficient for resistant bacteria (dimensionless).

nS Hill coefficient for sensitive bacteria (dimensionless).

nu Hill coefficient for antagonistic substance (dimensionless).

d Boundary for Hill equations, it prevents rA and rR to reach zero (dimensionless).

αAR Local competition effect of resistant bacteria over antagonistic bacteria

(dimensionless).

αAS Local competition effect of sensitive bacteria over antagonistic bacteria

(dimensionless).

αRA Local competition effect of antagonistic bacteria over resistant bacteria

(dimensionless).

αRS Local competition effect of sensitive bacteria over resistant bacteria

(dimensionless).

αSA Local competition effect of antagonistic bacteria over sensitive bacteria

(dimensionless).

αSR Local competition effect of resistant bacteria over sensitive bacteria

(dimensionless).

γm Metabolite decay rate
(
min−1

)
.

γu Antagonistic substance decay rate
(
min−1

)
.



Resumen

Se ha demostrado que las interacciones bióticas juegan un papel importante en la formación

de comunidades bacterianas. Varios estudios han encontrado que bacterias resistentes ayu-

dan a las cepas sensibles a sobrevivir en presencia de bacterias antagónicas, un fenómeno

conocido como facilitación. Los mecanismos responsables aun no han sido identificados, pero

la transferencia horizontal de genes parece ser la ráız de varias de estas observaciones. En un

trabajo reciente, se encontró evidencia de un mecanismo no genético diferente con un resul-

tado similar. En este proyecto, investigamos la viabilidad de este nuevo mecanismo utilizando

un modelo matemático de reacción-difusión. Nuestros hallazgos lo validan, siempre que las

bacterias sufran cambios metabólicos drásticos en altas densidades de población. Es impor-

tante tener en cuenta que este estudio considera colonias bacterianas bidimensionales que

crecen sobre un sustrato sólido, lo que limita la validez de nuestra conclusión a comunidades

bacterianas que crecen en condiciones similares.



Abstract

Biotic interactions have been shown to play an important role in the formation of bacterial

communities. Various studies have found that resistant bacteria help sensitive strains survive

antagonistic bacteria, a phenomenon known as facilitation. The mechanisms responsible have

not been clearly identified, but horizontal gene transfer appears to be at the root of several

such observations. In a recent work, evidence was found for a different non-genetic mechanism

that achieves a similar result. In the current project, we investigate the feasibility of this new

mechanism using a reaction-diffusion mathematical model. Our findings validate it, as long

as bacteria undergo drastic metabolic changes at high population densities. Take note that

the current study considers 2-dimensional bacterial colonies growing on a solid substrate,

which limits the validity of our conclusion to bacterial communities growing under similar

conditions.
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Introduction

Bacteria have inhabited Earth for billions of years and can be found even in the most inhos-

pitable places (DeLong and Pace, 2001; Horner-Devine et al., 2003). However, their ability

to survive almost everywhere is not their only interesting feature. Bacterial interactions are

of great importance, allowing the existence of complex communities, where several species

can thrive either by competing for or sharing resources (Stubbendieck and Straight, 2016;

Qian and Akçay, 2020; Friedman and Gore, 2017). Although these interactions occur at a

microscopic range, they can have a huge impact at a much bigger scale (Cordero and Datta,

2016). One reason for this is that bacteria have established strong relationships with every

other living organism on Earth, often in the form of parasite-host associations. Diverse com-

munities of bacteria live in and on other life forms, and their niches come in different sizes

(Stubbendieck et al., 2016; Currie, 2001). The disturbance of such communities not only

affects the community itself, but it can also affect the health of the host. Another reason is

that bacterial communities lacking a host also play key roles for life to happen (Stubbendieck

et al., 2016; Turnbaugh et al., 2007). They are in charge of processes that can only be per-

formed by them. For instance, the decomposition of dead organisms by bacteria liberates

nutrients, and nitrogen fixation converts molecular oxygen in ammonia and other nitrogenous

compounds making them available for other life forms (Horner-Devine et al., 2003; Koeppel

et al., 2008; Falkowski et al., 2008).

Previous studies of microorganisms focused primarily on physiology and bacterial growth

in pure culture, rather than on interactions and community formation (DeLong and Pace,

2001; Zwietering et al., 1990; Pipe and Grimson, 2008; Tittsler and Sandholzer, 1936; Kim

and Gadd, 2008). However, interest in the importance of bacterial communities has been

increasing recently (Stubbendieck et al., 2016; Turnbaugh et al., 2007; Jeanson et al., 2015;

Friedman and Gore, 2017; Horner-Devine et al., 2003; Kennedy and Volz, 1985; Petrof et al.,

2013; Qian and Akçay, 2020; Cordero and Datta, 2016). In this area, two main issues arise:

1) what contributes to bacterial biodiversity? (Knope et al., 2020; Czárán et al., 2002; Re-

ichenbach et al., 2007; Cerritos et al., 2010; Stubbendieck et al., 2016; Horner-Devine et al.,



2 Introduction

2003; Ratzke et al., 2020), and 2) what promotes the formation of spatial pattern structures

within these communities? (Matsushita et al., 1999; Stubbendieck et al., 2016; Mimura et al.,

2000; Kerr et al., 2002; Blanchard and Lu, 2015; Hol et al., 2015; Tekwa et al., 2015; Cordero

and Datta, 2016; Pipe and Grimson, 2008; Pérez-Gutiérrez et al., 2013; Zapién-Campos et al.,

2015) Answering these questions has proven to be a nontrivial task. For instance, interac-

tions can go as far as meters, but at the same time, two non motile bacteria might not ever

interact regardless of how close they are to each other (Stubbendieck et al., 2016; Turnbaugh

et al., 2007). This means that it is difficult to determine both the extent and the composi-

tion of a given community. As a result, abiotic interactions have been far more studied than

biotic interactions (Hall et al., 2008; Retter et al., 2021; Kim et al., 2010; Biggs et al., 2011;

Rahman et al., 2021; Giovannoni and Vergin, 2012), and studies developed to understand

interactions between individuals are mostly performed with lab modified bacteria strains,

rather than with wild-type (Frean and Abraham, 2001; Kerr et al., 2002; Kirkup and Riley,

2004). These studies are of great importance as a first approach. However, recent studies

performed using wild-type strains have shown that interactions can be much more complex

and diverse than those observed with lab modified species (Gallardo-Navarro and Santillán,

2019; Pérez-Gutiérrez et al., 2013).

An example of this is the collection of culturable thermoresistant bacteria isolated by

Cerritos et al. (2010) from the Churince lagoon in Cuatro Ciénegas, Mexico. The collection

included 78 different strains, collected from several sampling sites within the lagoon, and

more than 6000 antagonistic interactions were later scored by Pérez-Gutiérrez et al. (2013).

Two important findings were reported. On the one hand, the communities found in the

Churince lagoon present a hierarchical food web-like structure, with four different behaviors:

1) top antagonists that antagonize (inhibit the growth and/or kill) but are not antagonized

by other bacteria, 2) intermediate antagonists that are both antagonized and antagonize

other bacteria, 3) sensitive bacteria that are antagonized but don’t antagonize other bacte-

ria, and 4) resistant bacteria that neither antagonize nor are antagonized by any other strain.

On the other hand, although the lagoon presents homogeneous and stable physicochemical

conditions, communities from different sampling sites separated by tens of meters differ in

structure, suggesting that biotic factors such as antagonistic interactions play a role in main-

taining spatial heterogeneity among bacterial communities (Stubbendieck et al., 2016). This

contradicts the assumption that in microbial ecology, “everything is everywhere, the system

selects”, meaning that it is the environment the one that determines microbial communities

(O’Malley, 2007).
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As highly social organisms, bacteria form complex communities characterized by high

biodiversity (Stubbendieck et al., 2016). These communities assemble influenced by both

abiotic and biotic interactions, i.e. the response to environmental stimuli (presence of nu-

trients, pH, physical space, among others), and to the presence of neighboring cells of the

same and of other species, respectively (Stubbendieck et al., 2016; De Vrieze et al., 2017;

Venturelli et al., 2018; Oña and Kost, 2022; Pacheco and Segrè, 2019). Given that bacterial

communities are almost never of only two species, and studying wild-type bacteria in the

lab can be very difficult because of the little knowledge there is on nutrient requirements,

to fully understand a species, it is imperative to consider its ecological context Richards

et al. (2018); Stubbendieck et al. (2016); Stubbendieck and Straight (2016); Turnbaugh et al.

(2007). Moreover, biodiversity is promoted by competition and spatial structure, which is

why studying communities and not individual species will provide more information into

what mechanisms are involved in complex bacterial dynamics (Cordero and Datta, 2016).

Bacterial communities are not homogeneous (Stubbendieck et al., 2016). Nutrient dis-

tribution, pH and temperature gradients, among other things, build micro-environments

that locally (in a small vicinity) modify the community (Friedman and Gore, 2017). Micro-

environments produce cell aggregates in which distance between cells is short enough so that

diffusible metabolites reach neighboring cells (Cordero and Datta, 2016; Stubbendieck et al.,

2016). Closeness to one another also promotes competition between individual cells, based

on their metabolic and physiological needs (Stubbendieck et al., 2016). These local interac-

tions generate spatial heterogeneity depending on who is next to whom (Friedman and Gore,

2017). Otherwise, in a well-mixed environment one species will outcompete (Cordero and

Datta, 2016; Horner-Devine et al., 2003). Nonetheless, this alone does not maintain biodiver-

sity. An example of this is the rock-paper-scissors dynamics described by Kerr et al. (2002),

Frean and Abraham (2001) and Reichenbach et al. (2007) that presents cyclic competition.

Consider three different bacterial species A,B and C with the following characteristics: A

kills B; B outgrows C; and C outgrows A. When processes like dispersal, movement and in-

teractions occur at a small spatial scale, competing species can coexist (Friedman and Gore,

2017; Kerr et al., 2002). However, when they occur at a large spatial scale, e.g. mobility ex-

ceeds a threshold, coexistence is lost and only one species survives (Reichenbach et al., 2007).

Mathematical modeling has been used as a tool to explore what mechanisms within bac-

terial interactions allow the formation of such diverse communities (Bomze, 1983; Pipe and

Grimson, 2008; Martins and Gjini, 2020; Zapién-Campos et al., 2015; Aguirre-von Wobeser

et al., 2015; Kerr et al., 2002; Mimura et al., 2000; Reichenbach et al., 2007). Results ob-
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tained by Zapién-Campos et al. (2015) using the antagonism matrix of Pérez-Gutiérrez et al.

(2013)via a cellular automaton model, suggest that co-existence of different bacterial species

is possible when resistant bacteria impede physical interactions between antagonistic and

sensitive strains. Their simulations also showed that such co-existence depends highly on

spatial structure. When the effect of flows were simulated by randomly rearranging all bac-

teria, resistant bacteria were no longer able to protect sensitive strains leading to their death.

Nonetheless, experiments performed by Gallardo-Navarro and Santillán (2019) showed that

acting as a physical barrier is not the only mechanism that promotes biodiversity. They chose

a sensitive, a resistant and an antagonistic strain from the collection isolated from the Chur-

ince lagoon by Cerritos et al. (2010). Although they did not observe the latter mechanism,

several findings were made: 1) when an antagonistic colony was faced with any other colony

(including a colony of the same strain), its growth was slowed, 2) when a colony of resistant

bacteria was faced with an antagonistic colony its growth was slowed as well, but this did not

happen when faced with a colony of the sensitive strain, 3) when a sensitive colony was faced

with an antagonistic colony its growth stopped, however when faced with a resistant colony

its growth was not affected, and 4) in the presence of resistant bacteria, sensitive bacteria

were more likely to survive antagonism than when they were cultured only with antagonistic

bacteria.

The study of bacterial communities is of great importance. It can help us understand how

biodiversity and stability are accomplished, what characteristics define these communities

well-being, and how disruptions affect both stability and biodiversity (Petrof et al., 2013; Qian

and Akçay, 2020). Moreover, it can help us deal with emerging issues like antibiotic resistance.

The work of Gallardo-Navarro and Santillán (2019) showed evidence of a mechanism different

from the physical barrier described by Pérez-Gutiérrez et al. (2013), participating in the

assembly of complex bacterial communities where sensitive bacteria coexist with antagonistic

bacteria, and also that this coexistence is favored by resistant bacteria. However, neither their

experiments or their mathematical model explicitly describe said mechanism. To explore

and contribute to the answers to these and to many other related questions, we developed

a mathematical model considering a small community of three different species of bacteria:

an antagonistic, a sensitive, and a resistant strain, that we believe is a particular case of

the rock-paper-scissors dynamics. We propose that antagonistic bacteria sense neighboring

bacteria through either the presence or the increase in the concentration of a metabolic by-

product, and they respond by secreting a harmful substance. This antagonistic substance kills

sensitive bacteria but is countered by the resistant strain. Our model is a system of PDEs,

in order to emphasize the importance of spatial distribution in community assembly and in
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maintaining biodiversity. We included local interactions using Lotka-Volterra competitive

equations and we used Hill functions to simulate antagonistic interactions. We evaluated the

feasibility of the proposed mechanism while discussing three different scenarios. In the first

scenario we assume the metabolic by-product is common to all three strains, and an increase

in its concentrations triggers the production and release of the antagonistic substance; in

scenario number two, we assume the metabolite is only released by the resistant and the

sensitive strains and its presence is what triggers a response by antagonistic bacteria; finally,

we consider the possibility that when bacteria population reaches a certain density, they

modify their metabolism and no longer participate in growth, migration, cell division or

metabolite secretion.



Chapter 1

Hypothesis

In small bacterial communities in solid media, antagonistic bacteria sense de proximity of

other bacteria via a common metabolite that diffuses in the media. As a response, an-

tagonistic bacteria produce and secrete an antagonistic substance that also diffuses in the

media in order to reduce competition, while paying a metabolic cost. Sensitive bacteria are

killed and their growth is inhibited by the toxicity of said antagonistic substance, while re-

sistant bacteria are able to counteract its effects, albeit at a metabolic cost. The presence

of resistant bacteria induces de production of antagonistic substance affecting the growth

of antagonistic bacteria. This indirectly increases the likelihood of sensitive bacteria locally

outcompeting antagonistic bacteria. Our hypothesis is that the mechanisms described above

are mathematically consistent with experimental observations.



Chapter 2

Objectives

2.1 General Objective

To investigate how antagonistic interactions impact the assemble of small artificial bacterial

communities via a mathematical model.

2.2 Specific Objectives

� To study the mechanisms described by Gallardo-Navarro and Santillán (2019) using a

mathematical tool in an artificial community of resistant-antagonistic-sensitive bacteria

in a two-dimensional environment.

� To study the role of competition and antagonistic interactions mediated by diffusible

substances in shaping the structure of small artificial bacterial communities.



Chapter 3

Methodology

Gallardo-Navarro and Santillán (2019) reported that the presence of resistant bacteria helps

sensitive bacteria to survive when they are present in an artificial community of wild-type

bacteria that included antagonistic, sensitive, and resistant strains. They also proposed the

following mechanism of interaction between the three strains: Antagonistic bacteria sense

the presence of other bacteria via a common metabolite that diffuses in the medium, and in

response they produce an antagonistic substance with the concomitant metabolic cost. The

toxicity of the antagonistic substance inhibits the growth and kills sensitive bacteria, whilst

resistant bacteria are able to counteract its effect at the expense of a metabolic cost. We

developed a mathematical model to test the mechanism.

3.1 Mathematical Model Development

The following mathematical model uses reaction-diffusion equations to study the spatio-

temporal dynamics of three different bacterial strain populations: one antagonist (A), one

resistant (R) and one sensitive (S). Our model also accounts for the dynamics of a common

metabolite (m), product of bacterial metabolism, and an antagonistic substance (u), pro-

duced by the antagonist strain:
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∂A

∂t
= DA∇2A+ rA

(
d

KnA

A

KnA

A +mnA
+ (1− d)

)
(1−A− αARR− αASS)A, (3.1)

∂R

∂t
= DR∇2R+ rR

(
d

KnR

R

KnR

R + unR
+ (1− d)

)
(1−R− αRAA− αRSS)R, (3.2)

∂S

∂t
= DS∇2S + rS

(
KnS

S

KnS

S + unS

)
(1− S − αSAA− αSRR)S, (3.3)

∂m

∂t
= Dm∇2m+ rm (A+ S +R)− γmm, (3.4)

∂u

∂t
= Du∇2u+ ru

(
mnu

Knu
u +mnu

)
A− γuu. (3.5)

All model equations indicate the concentration of the species in a determined point in space

and a specific moment of time, normalized to the corresponding carrying capacity of the

system in the case of bacterial species. The first term in the right hand side is the diffusion

term and Di is the corresponding diffusion coefficient, with i = A,R, S,m or u indicating the

species it belongs to. The following term(s) indicate the species growth (or production) and

death (or decay) rates, where ri is the growth/production rate for i = A,R, S,m or u; and

γm, γu are the decay rates for the metabolite and the antagonistic substances, respectively.

In this model, local bacterial interactions are simulated via Lotka-Volterra competition equa-

tions, where αij indicates the effect of species j over species i for i, j = A,R or S.

Equation (3.1) models the dynamics of the antagonist strain (A), whose growth rate (rA)

is regulated by a decreasing Hill-like function of the concentration of metabolite (m). This

reduction stands for the metabolic cost associated to the synthesis and release of the an-

tagonistic substance, in response to the presence of m. Notice the growth rate reduction is

bounded by parameter d. This means that the growth of the antagonist strain is not totally

stopped when it synthesizes the antagonistic substance as observed by Gallardo-Navarro and

Santillán (2019). KA is the concentration of m needed to reduce rA down to rA (1− d/2),

and nA is a Hill coefficient.

Equation (3.2) corresponds to the dynamics of the resistant strain (R). Its growth rate

(rR) is also regulated by a decreasing Hill-like function of the antagonistic substance (u).

This represents the ability of R to resist u which comes with a metabolic cost as well. KR

accounts for the concentration of u needed to reduce rR down to rR (1− d/2), and nR is a

Hill coefficient. Analogous to the case of A, the presence of u is not enough to stop R’s

growth completely (Gallardo-Navarro and Santillán, 2019), hence the presence of parameter

d.
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Equation (3.3) represents the dynamics of the sensitive strain (S). Its growth rate (rS) is

regulated by a decreasing Hill function of the antagonistic substance (u). Given that u kills

and prevents S from growing, the strain growth rate can become zero (Gallardo-Navarro and

Santillán, 2019). KS is the concentration of u needed to reduce rS in half, and nS is a Hill

coefficient.

Equation (3.4) stands for the dynamics of the metabolite (m). Metabolite production

(rm) is proportional to the total bacterial concentration, considering all strains; whereas de-

cay is assumed exponential, with constant rate γm.

Finally, equation (3.5) denotes the dynamics of the antagonistic substance (u). An in-

crease in the local concentration of m initiates the production of u, which is represented by

an increasing Hill function of m with maximum rate ru. Ku is the half saturation constant

and nu is a Hill coefficient. As in m, decay for u is assumed exponential, with constant rate

γu.

3.2 Numerical Solution of the model PDE system

We implemented the finite element method to numerically solve the model PDEs system.

In particular, we considered rectangular or square flat areas corresponding to the surface on

which bacterial populations grow. In the case in which we use the model to simulate Petri

dish experiments, the modeled surface corresponds to a section of the agar surface that is

sufficiently far away from the dish walls.

We constructed a mesh with square sub-domains within the simulated surface. To numer-

ically solve model equations in such meshes, we discretized the Laplacian using a fourth order

9-point stencil as described in (LeVeque, 2007). Given that the simulated areas are assumed

to be far away from the walls of the dish, we used Dirichlet boundary conditions. This led

us to calculate the Laplacian considering three different types of sub-domains provided their

location on the grid and the number of adjacent compartments: interior, edges or vertices.

The following equations were used to compute the Laplacian on interior, left side edge, and

upper-left vertex compartments of the mesh, respectively. Analogous equations were used to

calculate the Laplacian in compartments located in the right, upper and lower sides edges

and for compartments in the upper-right, lower-left and lower-right vertices of the mesh.
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∇2Fi,j =
1

6∆x2
[4Fi−1,j + 4Fi+1,j + 4Fi,j−1 + 4Fi,j+1

+ Fi−1,j−1 + Fi−1,j+1 + Fi+1,j−1 + Fi+1,j+1 − 20Fij],

∇2Fi,j ≈ 1

6∆x2
[4Fi−1,j + 4Fi+1,j + 4Fi,j+1 + Fi−1,j+1 + Fi+1,j+1 − 20Fij],

∇2Fi,j ≈ 1

6∆x2
[4Fi+1,j + 4Fi,j+1 + Fi+1,j+1 − 20Fij].

In the previous equations, Fi,j represents the average value of function F in the compart-

ment with coordinates i, j, ∇2Fi,j denotes the Laplacian of F in the same compartment, and

∆x represents the length of the mesh-compartment side. Its value was set to (∆x ≈ 0.1mm)

was chosen by empirically testing the numerical convergence of the algorithm.

Taking into account the above considerations we implemented Euler’s algorithm in Python

to solve the model of PDEs in the discretized surface. The time period corresponding to

one algorithm iteration (∆t = 0.01 or 0.005min) was also chosen by empirically testing the

algorithm numerical convergence. All simulations were repeated five independent times, and

mean and standard deviation were calculated. Pseudo code is as following:

1. Set initial values for A, S and R; m and u are initialized with zero in all compartments

of the mesh.

2. Calculate the Laplacian of each variable in every compartment of the lattice. The

resulting value, when multiplied by the corresponding diffusion coefficient and the time

step ∆t, determines the change of the variable in each compartment due to diffusion in

one iteration.

3. Compute the production and/or degradation of all model variables in each lattice com-

partment based on the differential-equation terms. These values multiplied by ∆t

represent the quantity of each variable that is added or removed in each compartment

due to the reaction terms of the equations in one iteration.

4. Update the values of all variables by taking into account the changes caused by the

reaction and diffusion terms of their respective equations.

5. Iterate to step two.

The Python code is available for interested readers in the repository located at https:

//github.com/lsanchezg89/facilitationbacterialcommunity.git.

https://github.com/lsanchezg89/facilitationbacterialcommunity.git
https://github.com/lsanchezg89/facilitationbacterialcommunity.git
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Model parameter values were estimated by solving the inverse problem, using experiments

performed by Gallardo-Navarro and Santillán (2019). In order to reduce the number of free

parameters, we broke down the model into simpler equations resembling their experiments.

3.3 Intrinsic growth rate estimation

To estimate the intrinsic growth rate we used data obtained by Gallardo-Navarro and San-

tillán (2019) where they estimated bacterial concentration from optical densities as a function

of time from experiments of bacteria growing in marine liquid medium. We normalized the

reported data to the highest concentration of each bacterial strain, and then we fitted the

results to the following logistic function normalized to the corresponding carrying capacity

by means of algorithm curve fit implemented in Python’s library SciPy.Optimize:

x =

(
1 +

(
1

x0

− 1

)
e−rt

)−1

. (3.6)

The best-fitting r value can be interpreted as the intrinsic growth rate of the corresponding

bacterial strain.

3.4 Single colony simulations

We simulated experiments performed by Gallardo-Navarro and Santillán (2019) in which sin-

gle colonies were inoculated in Petri dishes with marine medium plus 2% agar, and their radii

were monitored over a period of 6 days. The area of the Petri dish in which the colonies grow

was simulated with a 45 compartments length square grid. Initial bacteria concentration was

chosen randomly from a normal distribution with mean of 0.2 and standard deviation of 0.02

for each compartment within a circle-like area of 4 compartment-long radius, and zero else-

where (see Fig. 3.1A). The initial values of the variables corresponding to the concentrations

of other bacterial populations and metabolites m and u were set to zero everywhere. As men-

tioned in section 3.2, we chose Dirichlet boundary conditions, provided that the simulated

area is far away from the walls of the dish. We recorded data at the end of each simulated

minute for 6 days.

To measure the radius of each colony, we first used a filter to eliminate concentrations of

all bacterial strains bellow 0.01, and counted the number of compartments along the radius

that contained bacteria for each simulated minute. As a result of the discretization described

in section 3.2, we obtained step-like functions of time (see Fig. 3.1B). To smoothen them
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Figure 3.1: A. Illustration of initial-condition selection for single-colony simulations. B. Illustration of
the radius measurement results in single-colony simulations (solid line). Stair vertices used for
interpolation are emphasized (solid red points).

we took the vertices of the steps and completed the missing values by means of algorithm

interp1d from Python’s library SciPy.Interpolate. All simulations were performed five

times and average and standard deviation were calculated.

3.5 Confronted colonies simulations

To study neighboring-colony dynamics under our hypothesis, we simulated the experiments

where two bacterial-culture drops of 1µL each, were inoculated with a separation of 15mm

in a Petri dish with marine medium plus 2% agar. Over a period of 6 days, the external (in

the direction opposite to the other colony) and internal (in the direction of the other colony)

radii were measured periodically, and the differences between them were calculated.

In the simulations, the surface of the Petri dish was represented with a rectangular grid of

90×144 compartments. Each drop was simulated as a circle-like area of 4 compartment-long

radius and the separation between them was of 53 compartments. Initial bacteria concen-

tration was chosen randomly for each compartment within the circle-like area from a normal

distribution with mean of 0.2 and standard deviation of 0.02. Bacterial concentration in all

compartments outside the circle-like area were set to zero. The initial values of the variables

corresponding to the concentrations of other bacterial populations and metabolites m and

u were set to zero everywhere. Once again, Dirichlet boundary conditions were chosen and
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data was recorded for each simulated minute over a period of time equivalent to 10 days. We

measured the external and internal radii of each colony (see Fig. 3.2) in the same way as

described in section 3.4.

Internal radii

External radii

Figure 3.2: Illustration of the initial-condition selection, and of the internal and external radii measurement,
for confronted-colonies simulations.

Metabolite and antagonistic substance concentration profiles were obtained by recording

the concentration (either m or u) at the end of each simulated day along the row of the

mesh where the external and internal radii lie. All simulations were performed five times and

average and standard deviation were calculated.

3.6 Artificial communities simulations

To study the dynamics within an artificially created bacterial community under our hypoth-

esis, we simulated the two experiments conducted by Gallardo-Navarro and Santillán (2019).

The first experiment consisted in bacterial communities artificially created by mixing a fixed

amount of sensitive bacteria with different amounts of antagonists, 10, 25, 50, 75, 100 and

200% of the initial concentration of sensitive bacteria. 5µL of the mixture were inoculated

in a Petri dish with marine medium plus 2% agar, and incubated for 4 days. The second one

consisted in adding to the mixture previously described a fixed amount (500%) of resistant

bacteria. For both experiments the final area-fraction occupied by S was determined as a

function of the initial antagonist concentration.

For the simulations, the area of the petri dish in which bacterial population grows was

represented with a 60 compartment length square grid. Initial sensitive bacteria concentra-

tion was chosen randomly for each compartment of the grid from a normal distribution with

mean of 0.2 and standard deviation of 0.02. Initial antagonistic bacteria concentration was

chosen randomly from a normal distribution with mean value varying as in the experiments,
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and standard deviation of 10% of its value for each compartment of the grid. Once again

simulations used Dirichlet boundary conditions. For the second set of simulations, initial

resistant bacteria concentration in each compartment was also chosen from a normal dis-

tribution with mean of 1.0 and standard deviation of 0.1. We determined the number of

compartments occupied by S, and divided by the total number of compartments at the end

of each simulated day and up to 20 days. All simulations were performed five times and

average and standard deviation were calculated.
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Results and Discussion

Gallardo-Navarro and Santillán (2019) performed experiments with an artificial community

of wild-type bacteria (an antagonistic, a sensitive, and a resistant strain) and found that the

presence of resistant bacteria aids the sensitive ones in surviving. They also demonstrated

that the previously proposed mechanism of resistant bacteria spatially isolating the sensitive

from the antagonistic ones does not work for the strains they worked with, and instead

proposed the following:

� By sensing an increase in the concentration of a common metabolite that diffuses in

the medium, antagonistic bacteria detect the presence of other bacteria.

� In response, antagonists begin the production and secretion of an antagonistic substance

in order to reduce competition, at the expense of metabolic cost.

� This antagonistic substance kills as well as inhibits the growth of sensitive bacteria.

� Resistant bacteria can counteract the effect of the antagonistic substance, albeit at a

metabolic cost.

� Resistant bacteria slow the growth of antagonistic bacteria by inciting them to produce

more antagonistic substance. This indirectly benefits sensitive bacteria.

Gallardo-Navarro and Santillán (2019) provided some indirect evidence to support their

proposed mechanisms, but it was insufficient. In this work, we have developed a reaction-

diffusion PDE model that incorporates all of the interactions proposed by Gallardo-Navarro

and Santillán (2019) with two objectives in mind. On the one hand, we seek to establish

whether the aforementioned mechanisms are sufficient to explain the observed behavior or



17

whether modifications are required. On the other hand, we want to investigate further im-

plications for population dynamics that may arise from such mechanisms.

In order to accomplish the first goal, we looked for parameter values that would allow

the model to reproduce, one by one, the various experimental sets from Gallardo-Navarro

and Santillán (2019). One benefit of working step-by-step is that we can deal with fewer pa-

rameters at once because in each case we can use a reduced model version. Nevertheless, we

discovered that the current is a nontrivial multi-objective optimization problem, in the sense

that no one parameter setting enables the model to fit all of the experiments. Hence, in or-

der to obtain a reasonable fit to the various experimental data sets, we ultimately fine-tuned

all parameter values, which explains why the accuracy of individual fits may not be very good.

Parameter A R S m u

D (mm2/min) 1.7× 10−7 5.1× 10−8 1.02× 10−7 0.34 0.1615

r
(
min−1

)
0.0078 0.0047 0.0086 0.2 0.2

K 1.0× 10−8 1.0× 10−28 1.0× 10−14 NA 1.0× 10−12

n 3.5 3.0 3.5 NA 3.5

γ
(
min−1

)
NA NA NA 0.01 0.01

d 0.25 0.25 NA NA NA

Table 4.1: Model parameter values for single-colony and confronted-colonies simulations.

We began by fitting the time evolution of normalized populations of bacterial growth

from experiments performed by Gallardo-Navarro and Santillán (2019) for the three bacte-

rial strains (antagonistic, sensitive and resistant) in liquid medium, to the logistic model.

Representative growth plots for each strain are presented in Figs. 4.1A-C. These fits allowed

us to determine growth rate constants for all of the strains (rA, rS and rR) tabulated in

Table 4.1. Notice that both the antagonistic and sensitive strains present a much higher

growth rate than the resistant strain, consistent with prior observations (Gallardo-Navarro

and Santillán, 2019).

We later simulated single colony experiments on solid medium performed by Gallardo-

Navarro and Santillán (2019). Using the growth rates previously calculated, we empirically

estimated diffusion coefficients for each of the bacterial strains (DA, DR and DS) to fit the
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Figure 4.1: Experimental growth curves (Gallardo-Navarro and Santillán, 2019) and best fit to logistic-
model equations for the antagonistic (A.), sensitive (B.) and resistant (C.) strains. D. Com-
parison of the simulations of single colonies growing on agar (solid lines) and the corresponding
reported experimental results (points). Error bars indicate standard deviation.

reported time evolution of the colony radii. Values are recorded in Table 4.1. Both antagonis-

tic and sensitive bacteria show a higher diffusion coefficient than resistant bacteria, which we

attributed to the fact that the sensitive and antagonistic strains chosen by Gallardo-Navarro

and Santillán (2019) were motile strains, whilst the resistant was not. Notice that our model

is only able to recover qualitatively the experimentally observed bacterial growth rather than

quantitatively (See Fig. 4.1D).We think that this is because on the one hand, in contrast to

Brownian movement, bacterial movement on agar plates corresponds to swarming (Harshey,

1994, 2003; Daniels et al., 2004; McCarter, 2004; Zorzano et al., 2005). Therefore, model-

ing it using traditional diffusion is not the most accurate approach. On the other hand, it

might be that at the beginning, bacteria present a higher intrinsic growth rate due to a low

population density, and as the population density increases, there is a decrease of the intrin-

sic growth rate as a means to maintain the colony fitness (Smith et al., 2014; Kaul et al.,

2016; Goswami et al., 2017; Dressler et al., 2019; Pires et al., 2022). Despite this drawback,

we believe that the results obtained are sufficiently accurate for the goals of the current study.
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We further simulated experiments of confronting two antagonistic colonies, an antagonist

and a resistant, and an antagonist and a sensitive colony (Gallardo-Navarro and Santillán,

2019). It is worth mentioning that we did not perform simulations where two sensitive

colonies, two resistant colonies, or a resistant and a sensitive colony were faced. The reason

for this was that since neither the sensitive nor the resistant strain produce substance u, their

growth would not be affected in either situation, which is consistent with experimental ob-

servations (Gallardo-Navarro and Santillán, 2019). We used the previously obtained growth

rates and diffusion coefficients, and solved the differential equations as described in section

3.2. We estimated the diffusion coefficient of the antagonistic substance (Du) using reported

diffusion coefficients of chemoattractants in agar (Ahmed et al., 2010; Diao et al., 2006; Cheng

et al., 2007) (see Table 4.1). Given that all bacterial strains chosen by Gallardo-Navarro and

Santillán (2019) were aerobic, we chose a slightly higher value for Dm, considering carbon

dioxide as a potential common metabolite (see Table 4.1). All Hill and Hill-like function

parameters in Eqns. 3.1 to 3.5, e.g. KA, KR, KS, Ku, nA, nR, nS, nu, and d, were taken

as free parameters and were empirically estimated to fit data reported by Gallardo-Navarro

and Santillán (2019). Values for rm and ru, were chosen equal for simplicity, as well as γm

and γu. For each simulated situation we measured the external and internal radii over time

(see section 3.5). Figs. 4.2A-C show de differences between both radii for each colony as a

function of time. The resulting parameter values are listed in Table 4.1.

Both A vs R and A vs S qualitatively recover the experimentally observed differences be-

tween external and internal radii of the resistant and the sensitive colony, Figs. 4.2B and C,

respectively. This means that near the antagonistic colony, both resistant an sensitive bacte-

ria grow slower, albeit for different reasons. While sensitive bacteria die or stop growing as a

result of the toxicity of the antagonistic substance, resistant bacteria reduce their growth rate

due to the cost of resisting the antagonistic substance. Experimental data however suggests

that these differences do not grow indefinitely unlike what our simulations show. This might

be related to the fact that the model was not able to reproduce the two-phase growth in the

single colony experiments and keeps a somewhat steady growth. KR, KS and Ku in Table

4.1 have very small values to induce an early response of the mechanisms, which means that

Hill and Hill-like functions reach the saturation point faster as the edges of the colonies are

closer together and reach areas where there is higher concentration of either u or m.

Observe that our model was unable to obtain any differences between external and inter-

nal growth in the antagonistic colony for either of the three simulated experiments, that is, it
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Figure 4.2: Comparison of the simulations of confronted-colonies experiments with the reported experimen-
tal results, A vs A (A.), A vs R (B.) and A vs S (C.). ∆Radius is defined as the difference
between the external and internal radii of the colony. Error bars indicate standard deviation.

was unable to reproduce the metabolic cost of producing substance u. This occurs because,

according to the model, antagonistic bacteria on the periphery of a given colony not only

react to the metabolite from bacteria in a nearby colony, but also to that from bacteria within

the same colony. As we observed the metabolite concentration profiles (Figs. 4.3A-C), we

realized that regardless of the values chosen for the parameters involved, between the two

colonies, m was always lower than m in the center of the colony. This could mean that

either the threshold is too high that the mechanism never turns on; or that the mechanism

of production and release of the antagonistic substance turns on in every cell of the colony

rather than only in cells closer to the other colony. Moreover, once the threshold is exceeded,

the mechanism stays on indefinitely in cells located in the center of the colony where there

is higher bacterial density (see Figs. 4.4A-C).

We tried several parameter combinations but, because of the above described phenomenon,

we could not get a significant difference in the concentration of m in the internal and external

radii of antagonistic colonies; which is required for differentiated production of the antago-
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Figure 4.3: Metabolite m profile concentrations for confronted-colonies simulations, A vs A (A.), A vs R
(B.) and A vs S (C.). Crosses along the x-axis indicate the center of the colony and the color
indicates the strain it belongs to (antagonistic red, resistant blue and sensitive green).

nistic substance and concomitant growth rate affectation. The shortcoming mentioned above

led us to conclude that the mechanisms proposed by Gallardo-Navarro and Santillán (2019)

are insufficient to explain the dynamic behaviors they observed for the particular set of bac-

teria chosen for their experiments. Taking this into account, we proposed two alternative

model amendments that might account for the reported behaviors: 1) only sensitive and

resistant bacteria produce the metabolite sensed by antagonistic bacteria, and 2) all three

strains produce metabolite m. However, high population density within the colony triggers

metabolic changes in bacterial cells, resulting in little to no participation in several functions

like replication, production of metabolite m, or production of the antagonistic substance.

The first alternative represents the most obvious way to solve the problem of bacteria in

the periphery of antagonistic colonies responding to other bacteria within the same colony.

However, we know beforehand that this model version will not be able to reproduce the

observed growth rate decrease of two facing antagonistic colonies. To account for the fact

that antagonistic bacteria do not produce metabolitem, the PDE form is modified as follows:
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Figure 4.4: Antagonistic substance u profile concentrations for confronted-colonies simulations, A vs A
(A.), A vs R (B.) and A vs S (C.). Crosses along the x-axis indicate the center of the colony
and the color indicates the strain it belongs to (antagonistic red, resistant blue and sensitive
green).

∂m

∂t
= Dm∇2m+ rm (S +R)− γmm. (4.1)

While maintaining the same parameter values (see Table 4.1), we simulated the confronted

colonies experiments performed by Gallardo-Navarro and Santillán (2019). Results can be

observed in Figs. 4.5 to 4.7. Simulations corresponding to two facing antagonistic colonies

were not carried out for the above explained reasons.

Figs. 4.5A and B show the differences between external and internal radii for all three

strains as a function of time. Our model was able to qualitatively recover the behavior

observed by Gallardo-Navarro and Santillán (2019). Notice that in A vs S the effect of sub-

stance u over strain S is higher than what it costs A to produce it; however, A vs R shows

that the metabolic cost of producing substance u is higher than the cost for R to counteract
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Figure 4.5: Comparison of the simulations of confronted-colonies experiments with the reported experimen-
tal results, A vs R (A.) and A vs S (B.). ∆Radius is defined as the difference between the
external and internal radii of the colony. Error bars indicate standard deviation.

it. This last appreciation is not in agreement with experimental observations, where both

metabolic costs produced seemingly the same effect.
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Figure 4.6: Metabolite m profile concentrations for confronted-colonies simulations, A vs R (A.) and A vs
S (B.). Crosses along the x-axis indicate the center of the colony and the color indicates the
strain it belongs to (antagonistic red, resistant blue and sensitive green).

Under the new assumption, substance u concentration profiles (Figs. 4.7A and B) show a

slightly inclination towards the right, direction in which the sensitive or the resistant colony

is located. This happens because it is the presence of metabolite m the responsible for acti-

vating the production of substance u, and m is solely secreted by either strain S or R (Figs.

4.6A and B). This proves that unlike in the original model, the mechanism responsible of

producing substance u is not active in every bacteria present in the antagonistic colony, but

rather in those closer to the source of metabolite m, even when the growth of A is affected

by the metabolic cost of producing substance u. Metabolite m concentration profiles on
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A vs S are asymmetrical which is evidence of the effect of substance u on the growth of

strain S. This is imperceptible in A vs R which we attribute to the resistant strain grow-

ing slower than the sensitive strain, and hence it is further apart from the antagonistic colony.
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Figure 4.7: Antagonistic substance u profile concentrations for confronted-colonies simulations, A vs R
(A.) and A vs S (B.). Crosses along the x-axis indicate the center of the colony and the color
indicates the strain it belongs to (antagonistic red, resistant blue and sensitive green).

Lastly, we simulated artificial bacterial communities experiments performed by Gallardo-

Navarro and Santillán (2019) to study local, close range interactions, first between antagonists

and sensitive bacteria, followed by a community built with all three strains as described in

section 3.6. Gallardo-Navarro and Santillán (2019) reported that antagonistic and sensitive

bacteria presented competitive exclusion, whereas resistant and sensitive bacteria, and re-

sistant and antagonistic bacteria presented competitive coexistence. Given that our model

is normalized by the corresponding carrying capacity, we took αAS, αSA, αRS, αSR, αRA

and αAR (i.e. Lotka-Volterra competition parameters) as free parameters, and empirically

changed their values provided that 0 < αRj, αiR < 1.0 for i, j = A or S and αAS, αSA > 1.0,

which indicate competitive coexistence and competitive exclusion, respectively. Selected val-

ues are listed in Fig. 4.2. The PDE model was solved as described in section 3.6. At the end

of the simulated period of time we calculated the area of the simulated mesh occupied by S

and plotted it as a function of the initial population of A. The outcomes are presented in Fig.

4.8. Observe that the curve presents a displacement to the right in the presence of resistant

bacteria, which means that resistant bacteria aid sensitive bacteria in surviving antagonistic

bacteria as reported by Gallardo-Navarro and Santillán (2019). Nonetheless, we were unable

to obtain results where either S or A drive the other to extinction, or the more drastic effect

of the toxicity of substance u on the well being of sensitive bacteria, which is inconsistent

with previous observations (Gallardo-Navarro and Santillán, 2019).
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Parameter Value

αAS 2.0

αSA 1.65

αAR 0.5

αRA 0.6

αSR 0.6

αRS 0.4

Table 4.2: Model parameter values for
close-range interactions in arti-
ficial communities simulations.
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Figure 4.8: Plots of final area-fraction occupied by
the sensitive strain as a function of the
initial population of antagonistic bacte-
ria in artificial communities. The re-
ported experimental results are repre-
sented with points, whereas the simula-
tion results are plotted with solid lines.
Orange points/lines correspond to the
experiments in which no resistant bacte-
ria are added to the initial mixture, while
purple points/lines correspond to the ex-
periments with added resistant bacteria.
Error bars indicate standard deviation.

To summarize, assuming that antagonistic bacteria do not produce the metabolite they

detect allows the model to qualitatively reproduce many of the experimental results. How-

ever, we believe that the outcomes are unsatisfactory, not to mention the model inability

to explain antagonistic-bacteria growth-rate decrease in the presence of other antagonistic

bacteria. This lead us to analyze a second modification to the original model. Consider that

natural selection has established ways of modifying bacteria metabolism to reduce metabolic

cost under specific circumstances and when necessary (Stubbendieck et al., 2016; Granato

et al., 2019). For example, when bacterial populations reach a high density, bacteria re-

duce their metabolism and cease participating in processes such as growth, cell division, and

metabolite secretion (Horner-Devine et al., 2003; Yeor-Davidi et al., 2020; Bocci et al., 2018;

Wolfsberg et al., 2018; Tronnolone et al., 2018; Cole et al., 2015). Instead, they begin to

act as a group. This behavior benefits the species by making it less vulnerable, and it is

also thought to be the key to antibiotic resistance (Petrof et al., 2013; Yeor-Davidi et al.,

2020). To incorporate this into the model, we established all bacteria population above 0.9

as high population density, and fixed their current state. This means that the population

stays the same as of that moment, and does not interact in any way with bacteria in adjacent

compartments. Aside from this consideration, the PDE model remained the same.
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Parameter A R S m u

D (mm2/min) 8.5× 10−9 5.1× 10−9 8.5× 10−9 0.51 0.085

r
(
min−1

)
0.0078 0.0047 0.0086 0.2 0.2

K 0.004 3.5× 10−15 0.5× 10−9 NA 0.8

n 3.0 3.5 3.0 NA 3.5

γ
(
min−1

)
NA NA NA 0.01 0.01

d 0.45 0.45 NA NA NA

Table 4.3: Model parameter values for single-colony and confronted-colonies simulations.

Parameter values estimated for this simulations required additional fine-tuning in order

to reproduce Gallardo-Navarro and Santillán (2019) experiments under the new set of as-

sumptions. New parameter values are listed in Table 4.3. We began by simulating the single

colony experiments (Fig. 4.9). As with previous assumptions, both antagonistic and sensitive

bacteria show a higher differential coefficient than resistant bacteria, consistent with previous

observations (Gallardo-Navarro and Santillán, 2019). Notice that once again, our model can

only qualitatively emulate the experimental growth curves, since no amendments were made

in this regard.
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Figure 4.9: Comparison of the simulations of single colonies growing on agar (solid lines) and the corre-
sponding reported experimental results (points). Error bars indicate standard deviation.

We then simulated the neighboring colony experiments by solving the PDE system as

described in section 3.2. The outcomes are contrasted in Figs. 4.10 to 4.12 with experimen-

tal data. As shown in Figs. 4.10A-C, the model is capable of qualitatively reproducing the
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experimentally observed behavior in all three situations. That is, all three bacterial strains

grow at a slower rate when faced with an antagonistic colony. In spite of this, our model

could not induce an early response in any of the bacterial strains as opposed to the previously

described models or the experimental data (Gallardo-Navarro and Santillán, 2019). Observe

that we only recorded data for 7 simulated days when facing an antagonistic with a sensitive

colony, this due to the fact that after 7 simulated days, the sensitive colony had outgrown

the mesh and we could no longer measure the external radius.
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Figure 4.10: Comparison of the simulations of confronted-colonies experiments with the reported experi-
mental results, A vs A (A.), A vs R (B.) and A vs S (C.). ∆Radius is defined as the difference
between the external and internal radii of the colony. Error bars indicate standard deviation.

Metabolite profiles (Figs. 4.11A-C) show a higher accumulation of metabolite m between

the two colonies than in any other place, which translates in an increased production of

substance u in the direction of the facing colony as observed in substance u profiles (Figs.

4.12A-C) and also accounts for the concomitant metabolic cost evidenced in Fig. 4.10A. As in

the first amended model, there is not a generalized production of antagonistic substance, and

it is only produced among bacteria located where there is higher accumulation of metabolite

m.
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Figure 4.11: Metabolite m profile concentrations for confronted-colonies simulations, A vs A (A.), A vs R
(B.) and A vs S (C.). Crosses along the x-axis indicate the center of the colony and the color
indicates the strain it belongs to (antagonistic red, resistant blue and sensitive green).

We also simulated the artificial bacterial communities experiments performed by Gallardo-

Navarro and Santillán (2019). Data was recorded for 10 simulated days in communities with-

out resistant bacteria, and for 14 simulated days in communities with resistant bacteria as in

both cases, the system had already reached a steady state (not shown). Results are plotted

in Fig. 4.13 and the re-estimated values for parameters indicating close range competition

(αij with i, j = A, S or R) are listed in Table 4.4. Observe that the model qualitatively

recovers the reported behavior (Gallardo-Navarro and Santillán, 2019). In the presence of

resistant bacteria there is a displacement of the curve to the right, which indicates that re-

sistant bacteria aid sensitive bacteria to survive in the presence of antagonists. Unlike what

was observed in the previous scenario, it is possible to recreate the situations where either

antagonists or sensitive bacteria drive the other to extinction.
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Figure 4.12: Antagonistic substance u profile concentrations for confronted-colonies simulations, A vs A
(A.), A vs R (B.) and A vs S (C.). Crosses along the x-axis indicate the center of the colony
and the color indicates the strain it belongs to (antagonistic red, resistant blue and sensitive
green).
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Parameter Value

αAS 2.0

αSA 1.7

αAR 0.37

αRA 0.65

αSR 0.44

αRS 0.65

Table 4.4: Model parameter values for
close-range interactions in arti-
ficial communities simulations.
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Figure 4.13: Plots of final area-fraction occupied by
the sensitive strain as a function of the
initial population of antagonistic bac-
teria in artificial communities. The re-
ported experimental results are repre-
sented with points, whereas the simula-
tion results are plotted with solid lines.
Orange points/lines correspond to the
experiments in which no resistant bac-
teria are added to the initial mixture,
while purple points/lines correspond to
the experiments with added resistant
bacteria. Error bars indicate standard
deviation.



Chapter 5

Concluding Remarks

We studied the dynamics of competition and antagonistic interactions mediated by diffusive

agents of an artificial community of bacteria growing on solid medium. The purpose of this

project was to determine whether a specific antagonism mechanisms could explain how re-

sistant bacteria increase the likelihood of survival of sensitive bacteria when in a community

with antagonistic bacteria (Gallardo-Navarro and Santillán, 2019).

We developed a mathematical model describing a community of three bacterial strains:

a sensitive, a resistant, and an antagonistic strain to explore the antagonism mechanisms

proposed by Gallardo-Navarro and Santillán (2019). Antagonistic bacteria detect the prox-

imity of other bacteria by sensing an increase in the concentration of a common metabolite

that diffuses in the medium. In response, antagonistic bacteria produce an antagonistic sub-

stance, albeit at a metabolic cost. Said antagonistic substance kills and impedes the growth

of sensitive bacteria. By incurring a metabolic cost, resistant bacteria are able to counteract

the effects of the antagonistic substance. Moreover, the presence of resistant bacteria limits

the growth of antagonistic bacteria, benefiting sensitive bacteria.

Our results suggested that although the mechanisms proposed by Gallardo-Navarro and

Santillán (2019) are able to explain the toxic effect of the antagonistic substance over the

growth and well being of sensitive bacteria, and the metabolic cost resistant bacteria have to

pay in order to counteract the toxicity, they are insufficient to reproduce the metabolic cost

of producing the antagonistic substance. In this regard we proposed two alternative model

amendments:

1. Only sensitive and resistant bacteria produce the metabolite.

2. Due to high population density within the colony, bacteria undergo metabolic changes
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and no longer participate in functions such as replication, migration and metabolite or

antagonistic substance production.

The first alternative could explain the majority of the experimental results from Gallardo-

Navarro and Santillán (2019), but it was insufficient as well because it could not reproduce the

concomitant metabolic cost of producing the antagonistic substance. The second alternative

provided a better explanation to the behavior observed by Gallardo-Navarro and Santillán

(2019). Based on these findings, we hypothesize that the mechanisms described above can

explain how the presence of resistant bacteria may help sensitive bacteria survive, but only

when bacteria undergo significant phenotypic changes at high population densities. Note

that the current study considers 2-dimensional bacterial communities growing on a solid sub-

strate, which limits the validity of the previous conclusion to bacterial communities growing

under similar conditions.

Resistant bacteria increasing the likelihood of survival of sensitive bacteria in the presence

of antagonistic bacteria is not unheard of Aguilar-salinas and Olmedo-álvarez (2022); Iven

et al. (2023). The mechanisms responsible have not been clearly identified, but horizontal

gene transfer appears to be at the root of several such observations. Interestingly, the current

study supports the existence of a different non-genetic mechanism that achieves a similar

result (at least for bacteria growing on solid substrate), and emphasizes the importance of

spatial distribution on microbial population dynamics. Our results along with previously

reported observations suggest that bacteria have developed more than one mechanism that

grants sensitive bacteria the possibility of surviving in complex communities, despite the

various antagonistic interactions surrounding them, a phenomenon denominated facilitation

(Iven et al., 2023). It is worth mentioning that the mechanisms here proposed are just one

of many attempts of understanding what underlies biodiversity in bacterial communities and

could be use as a tool to suggest future experimental studies.
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Perspectives

In this project we were interested in studying facilitation (the phenomenon by which a bac-

terial strain aids another to survive in the presence of antagonism) among a small artificial

community of bacteria as an indirect result of purely antagonistic interactions via a math-

ematical model. Our findings suggest that this is possible as long as bacteria undergo sig-

nificant metabolic changes. Determining whether the emerging properties we observed are

general enough to arise in conditions different than those explored in this project would be the

next step. In this regard we propose two different approaches using mathematical modeling.

On the one hand, increasing the size of the community while maintaining the two-dimensional

condition. Here, we used an artificial community of three bacterial strains (an antagonistic,

a sensitive and a resistant strain), however, bacterial communities are biodiverse, hence es-

tablishing if the mechanisms discussed in this work produce comparable behaviors as those

observed experimentally would provide insight in a perspective different than horizontal gene

transfer. On the other hand, studying the same community in a three-dimensional space.

Considering a third dimension where bacterial aggregates and metabolite diffusion behaves

differently than in two-dimensions, and therefore exploring if the antagonistic mechanisms we

proposed are robust enough to hold at least theoretically, could be used as a tool to suggest

experimental projects as well.
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