
Center for Research and Advanced
Studies

Computer Science Department

Implementation of Cryptographic Algorithms for

High-speed and Constrained Devices

A dissertation submitted by

José Abraham Bernal Gutiérrez

For the degree of

Doctor in Computer Science

Advisors:

Dr. Francisco Rodŕıguez Henŕıquez
Dr. Cuauhtémoc Mancillas López

Mexico City April 2023

Centro de Investigación y de
Estudios Avanzados del IPN

Departamento de Computación

Implementación de algoritmos criptográficos para

dispositivos de alta velocidad y dispositivos

restringidos

Tesis que presenta

José Abraham Bernal Gutiérrez

para obtener el grado de

Doctor en Ciencias en Computación

Directores de tesis:

Dr. Francisco Rodŕıguez Henŕıquez
Dr. Cuauhtémoc Mancillas López

Ciudad de México Abril 2023

Acknowledgments

Agradezco al Consejo de Ciencia y Tecnoloǵıa (CONACYT) el apoyo brindado para
realizar mis estudios y aśı alcanzar el grado de doctor en ciencias en computación.

También agradezco al Centro de Investigación y de Estudios Avanzados del In-
stituto Politécnico Nacional (Cinvestav IPN) la oportunidad de ingresar al programa
de doctorado en el departamento de computación.

i

Resumen

Esta tesis presenta los trabajos desarrollados centrados en la criptograf́ıa simétrica
y la criptograf́ıa de clave pública. Hoy en d́ıa, el despliegue de muchos dispositivos
con diferentes capacidades da lugar a entornos heterogéneos. Estos entornos deben
garantizar la seguridad de los datos recogidos y procesados por los dispositivos en
el entorno desplegado. Para proteger los dispositivos en función de sus capacidades,
implementamos enfoques criptográficos en distintos proyectos que parten de la crip-
tograf́ıa simétrica y de la criptograf́ıa de clave pública. El alcance de esta tesis consiste
en implementar ambos tipos de criptograf́ıa en dispositivos con recursos limitados
como la memoria, la velocidad y la potencia y, por tanto, en dispositivos de alta
velocidad como las FPGA.

Al principio de este trabajo de tesis, presentamos implementaciones de criptograf́ıa
simétrica. Algunas arquitecturas mostradas participaron en el concurso LWC del
NIST para estandarizar la criptograf́ıa ligera para dispositivos con recursos limitados.
Por lo tanto, proponemos algunas implementaciones de algoritmos LWC en hardware
con un enfoque restringido en FPGAs y las arquitecturas que propusimos basadas en
sus algoritmos. Algunas arquitecturas e implementaciones propuestas han logrado
situarse entre los veinte primeros puestos de una evaluación comparativa realizada por
la Universidad George Mason. Por último, realizamos una implementación software
del algoritmo Speedy basado en hardware. Esta implementación utiliza una técnica
denominada “bitslice” que consiste en reordenar los bits de datos para que sean
procesados lo más rápido posible, mejorando la velocidad y el rendimiento frente a
las implementaciones software tradicionales, y consiguiendo un rendimiento aceptable
en microcontroladores como la familia ARM, que dispone de recursos limitados y una
pequeña cantidad de memoria disponible en comparación con los microprocesadores
convencionales.

En caṕıtulos posteriores, nos centramos en la criptograf́ıa de clave pública y pro-
ponemos dos multiplicadores aritméticos centrados en la criptograf́ıa de clave pública

iii

sobre dos enfoques matemáticos, el primero basado en el esquema RSA con RNS y
la implementación general del módulo multiplicador base para mejorar la velocidad
y explotar los DSPs disponibles en FPGAs con un enfoque en un multiplicador de
propósito general que acepta cualquier número primo de 512 bits. Esta propuesta
presenta algunos problemas debido a la generalización de la implementación. Puede
utilizar muchos dispositivos si se desea alcanzar altas velocidades; por otro lado,
puede utilizar menos y lograr una velocidad menor. El segundo multiplicador utiliza
los enteros para realizar las multiplicaciones necesarias en un esquema de criptograf́ıa
de curvas eĺıpticas ECC centrado en la curva ECC25519; esta segunda propuesta
utiliza tres algoritmos de multiplicación el primero es RNS, el método de multipli-
cación Karatsuba, y la multiplicación del método de la escuela. Comparamos las
tres propuestas y presentamos resultados interesantes cuando logramos paralelizar
simultáneamente algunas operaciones y procesar múltiples resultados intermedios con
arquitecturas dedicadas para conseguir alta velocidad con bajo consumo de recursos.

iv

Abstract

This thesis presents the studies that we have developed focused on symmetric cryp-
tography and public-key cryptography. Today, deploying many devices with different
capabilities gives rise to heterogeneous environments. These environments must
ensure the security of the data harvested and processed by the devices in the deployed
environment. To protect the data stored and harvested by the devices, we implement
cryptographic approaches into different focuses emanating from symmetric cryptogra-
phy and public-key cryptography. The scope of this thesis consists of implementing
both methods into devices with constrained resources such as memory, speed, and
power and, therefore, into high-speed devices like FPGAs.

At the beginning of this thesis work, we present symmetric cryptography implementa-
tions. Some of the architectures described participated in the NIST LWC contest in
standardizing Lightweight cryptography for constrained devices. Therefore, we made
some implementations of LWC algorithms on hardware with a constrained focus on
FPGAs and the architectures we proposed based on their algorithms. Some developed
architectures and implementations were ranked among the first twenty places in a
benchmarking performed by George Mason University. Finally, we present a software
implementation of the Speedy algorithm, designed for hardware performance, but
in software has a poor performance. This implementation uses a technique named
“bitslice” which consists of rearranging the data bits to be processed as fast as possible,
improving the speed and performance against traditional software implementations,
and achieving an acceptable performance on microcontrollers like the ARM family,
which has constrained resources and a small amount of memory available compare
with conventional microprocessors.

In the remaining chapters, we work on public-key cryptography and propose two arith-
metic multipliers for use in public-key cryptography on two mathematical approaches,
the first based on the RSA scheme with RNS and the general implementation of the
base multiplier module to improve the speed and exploit the digital signal processors

v

(DSPs) available in FPGAs with a focus on a general purpose multiplier which accepts
arbitrary 512 bits prime number. This approach has some issues due to the general-
ization of the implementation. It can use many devices if achieving high speeds is
desired; on the other hand, it can use fewer and achieves a lower rate. The second
multiplier uses the integers to perform the multiplications needed into a scheme
of elliptic curve cryptography ECC focused on the curve ECC25519; this second
proposal uses three multiplication algorithms: Residue Numeric system (RNS), the
Karatsuba multiplication method, and the schoolbook multiplication. We compared
the three proposals and presented exciting results when we could simultaneously
parallelize some operations and process multiple intermediate results with dedicated
architectures to achieve high speed with low resource consumption.

vi

Contents

1 Introduction 1

1.1 Motivation . 4

1.2 Problem statement . 4

1.3 Objectives . 5

1.4 State-of-the-art . 6

1.4.1 Security on constrained devices 8

1.4.2 Security on high-speed devices 11

1.5 Summary . 12

I Theoretical Background 13

2 Preliminaries 15

2.1 Mathematical Background . 15

2.2 Algebra . 15

2.2.1 Groups . 16

2.2.2 Rings . 16

2.2.3 Fields . 17

2.2.4 Extension of fields . 17

2.3 Integer arithmetic operations . 18

2.3.1 Addition and Subtraction . 20

2.3.2 Multiplication . 20

2.3.3 Modular reduction . 22

2.4 Greatest Common Divisor (GCD) . 24

2.5 Chinese Residue Theorem CRT . 25

2.6 Summary . 26

vii

CONTENTS CONTENTS

3 Cryptography 27

3.1 Advanced Encryption Standard (AES) 28

3.1.1 Byte Substitution layer . 32

3.1.2 ShiftRows . 32

3.1.3 MixColumns . 34

3.1.4 Add Round Key . 34

3.1.5 Key Schedule . 35

3.1.6 AES 128-bit Key schedule . 35

3.2 Block Cipher Modes of Operation . 36

3.2.1 Electronic Codebook (ECB) 36

3.2.2 Cipher Block Chaining Mode (CBC) 37

3.2.3 Counter Mode (CTR) . 39

3.3 Message Authentication Codes (MACs) 40

3.3.1 HMAC . 41

3.3.2 MAC from block ciphers . 43

3.3.3 MAC Verification . 44

3.4 Hash Functions . 44

3.5 Lightweight Cryptography . 44

3.5.1 Performance . 45

3.5.2 Lightweight primitives . 46

3.5.3 Lightweight Block ciphers . 46

3.5.4 Lightweight MACs . 46

3.6 Authenticated encryption with associated data 47

3.7 Hardware API for Lightweight Cryptography 48

3.8 Public Key Cryptography . 52

3.9 RSA . 53

3.9.1 RSA encryption scheme . 54

3.9.2 RSA signature scheme . 55

3.10 Elliptic curve scheme . 56

3.10.1 Groups . 56

3.10.2 Generalization of discrete logarithm problem 57

3.10.3 Elliptic curve groups . 57

3.10.4 Key generation in elliptic curves 58

3.10.5 Encryption scheme with elliptic curves 58

3.11 Summary . 59

viii

CONTENTS CONTENTS

4 Field Programmable Gate Array (FPGA) and Advance RISC Ma-
chine (ARM) technologies 61
4.1 Field Programmable Gate Arrays (FPGAs) 62

4.1.1 Logic elements . 62
4.2 Digital Signal Processor (DSP) . 67

4.2.1 DSP48E2 . 71
4.2.2 Xilinx FPGA Families . 73

4.3 Architecture of Xilinx 7 family . 75
4.3.1 Configurable Logic Block (CLB) 75
4.3.2 Look-Up Table (LUT) . 78

4.4 Advance RISC Machine (ARM) . 80
4.4.1 Register Set . 83

4.5 ST Microelectronics . 84
4.5.1 Memory protection unit . 88
4.5.2 General-purpose I/O (GPIO 88
4.5.3 Direct memory access (DMA) 88
4.5.4 Random number generator (RNG) 89
4.5.5 AES in hardware . 90

II Symmetric Key Cryptography 93

5 Lightweight authenticated encryption with associated data in hard-
ware 95
5.1 Authenticated Encryption with Associated Data 96
5.2 GMU LWC Interface . 97
5.3 Implemented Authenticated Ciphers 100

5.3.1 Preliminaries . 100
5.3.2 Hardware design principles . 100
5.3.3 LOTUS and LOCUS . 100
5.3.4 LOTUS . 102
5.3.5 LOCUS . 103
5.3.6 ESTATE . 106
5.3.7 COMET . 111
5.3.8 Oribatida . 114

5.4 Results . 116
5.4.1 Discussion of results . 121

5.5 Summary . 123

ix

CONTENTS CONTENTS

6 Speedy Block cipher on ARM with Bitslice 125
6.1 Speedy block cipher . 125

6.1.1 Speedy S-Box . 127
6.1.2 Speedy specification . 128
6.1.3 Round function . 129
6.1.4 Key schedule . 130

6.2 Bitslicing . 130
6.2.1 Substitution Box (SB) . 131
6.2.2 Shift Columns (SC) . 132
6.2.3 MixColumns (MC) . 132
6.2.4 AddRoundKey (AR) and AddRoundConstant (AC) 133

6.3 Results . 133
6.3.1 Differential Attack . 135

III Public Key Cryptography 137

7 A DSP-based FPGA design and implementation of a fast RNS
multiplier 139
7.1 Our Contributions . 140
7.2 Preliminaries . 141

7.2.1 Notation . 141
7.2.2 Montgomery reduction . 142
7.2.3 Residue Number System and Modular Arithmetic 143
7.2.4 RNS Montgomery modular reduction 147
7.2.5 FPGA and DSP technology 149

7.3 Related works . 152
7.4 Design of a DSP48 -based architecture for a field multiplier 153

7.4.1 Basic RNS multiplier with reduction 154
7.4.2 Multiplier array MulDM . 159
7.4.3 RNS addition with reduction 159
7.4.4 Addition tree . 160

7.5 Implementation . 161
7.5.1 Implementation of the modular reduction Algorithm 19 162
7.5.2 Montgomery Implementation 163

7.6 Results . 163
7.6.1 RNS word multiplier with reduction 164
7.6.2 Discussion and comparison . 166

x

CONTENTS CONTENTS

8 Hardware accelerator for the elliptic curve ECC25519 169
8.1 Karatsuba Proposal . 170
8.2 Schoolbook proposal . 176
8.3 RNS . 181
8.4 Results . 184
8.5 Summary . 187

IV Summary 189

9 Conclusions 191
9.1 Lightweight authenticated encryption with associated data 191
9.2 Speedy Block cipher on ARM-M4 with Bitslice 191
9.3 A DSP-based FPGA design and implementation of a fast RNS multiplier192
9.4 Hardware accelerator for the elliptic curve ECC25519 192

10 Future Work 193

xi

List of Figures

3.1 Communication between parties using symmetric cryptography over
an insecure channel . 28

3.2 General use of AES in encryption mode. 29
3.3 AES input array as an initial state. 30
3.4 Matrix representation for a state in AES. 30
3.5 AES encryption diagram . 31
3.6 Shift Rows (SR) input state. 33
3.7 Shift Rows (SR) output state. 34
3.8 Electronic codebook operation mode (ECB). 36
3.9 CBC block diagram for encryption and decryption. 38
3.10 Counter mode general diagram . 39
3.11 Message authentication codes general diagram and verification 40
3.12 HMAC diagram . 42
3.13 MAC implementation based on CBC operation mode 43
3.14 Architecture diagram for single pass core used in AEAD by GMU. . . 50

4.1 Two different four input LUTs . 63
4.2 LUT with register and XOR . 63
4.3 FPGA Island connection between CLBs 64
4.4 Nearest neighbor structure . 64
4.5 Logic blocks in an island fashion with connection block and switch

boxes in the same architecture . 65
4.6 Programmable connection block . 66
4.7 Hybrid structure of nearest neighbor and segmented structure 66
4.8 Hierarchical structure with a cluster of logic blocks 67
4.9 DSP48E1 architecture. 68
4.10 DSP pipeline configuration window. 70
4.11 DSP48E2 internal architecture . 72

xiii

LIST OF FIGURES LIST OF FIGURES

4.12 DSP interconnection . 73
4.13 Internal ALU found inside a DSP slice 74
4.14 CLB internal arrangement and interconnection matrix. 76
4.15 ASMBL architecture with components as columns. 77
4.16 CLBs and Slices with Carry inputs and outputs. 79
4.17 Slice M architecture. 80
4.18 ARM M4 general specs . 82
4.19 ARM general purpose registers. 83
4.20 ST Nucleo-144 board characteristics. 85
4.21 ST Nucleo-144 schematic with ST-Link. 86
4.22 STM32L4A6ZG ARM microcontroller internal architecture. 87
4.23 Random Number Generator (RNG) embedded in STM32L4A6ZG. . . 89
4.24 AES block diagram. 90

5.1 Top-level block diagram of LWC core (based on the scheme found at
[69]). Here, sw= external key width, w= external data width, ccsw=
internal key width and ccw= internal data width. 99

5.2 Block diagram for associated data processing and Tag generation for
LOCUS and LOTUS. 101

5.3 Block Diagram of LOTUS mode for encryption. 103
5.4 LOTUS/LOCUS hardware architecture. 104
5.5 Block Diagram of LOCUS mode for encryption. 105
5.6 tweGift-64 design implementation, for a 32-bit datapath. 106
5.7 ESTATE Deterministic Authenticated Cipher. 108
5.8 Architecture for ESTATE. 109
5.9 Block diagram for COMET. 112
5.10 COMET architecture for 8-bit and 32-bit. 113
5.11 Encryption version of Oribatida AEAD Algorithm (scheme based on

the found at [16]). 115
5.12 LWC architecture for Oribatida AEAD. 116

6.1 Latency of 15nm NanGate (image from Speedy paper [80] page 518,
figure 1) . 127

6.2 Speedy 6-bit Substitution Box architecture with two-level NAND trees
and input buffers (image from Speedy paper [80] page 522, figure 2) . 128

6.3 Speedy algorithm as block diagram (image from Speedy paper [80]
page 524) . 129

7.1 Simplified DSP48E1 architecture . 151

xiv

LIST OF FIGURES LIST OF FIGURES

7.2 Two-word schoolbook multiplication method 155
7.3 Proposed RNS component-wise multipliers 157
7.4 RNSModule components array . 159
7.5 Addition with reduction . 160
7.6 Addition tree . 161
7.7 General architecture performing the modular reduction of Algorithms 19

and 22 . 162

8.1 Karatsuba diamond adder . 171
8.2 Karatsuba diamond with DSPs . 172
8.3 Karatsuba diamond results . 172
8.4 Karatsuba diamond results from DSPs 173
8.5 Diamond of the second level of DSPs results 173
8.6 Last addition for Karatsuba diamond adder with carry 173
8.7 Karatsuba multiplier critical path . 175
8.8 Diamond proposal for schoolbook method 177
8.9 Diamond with DSPs . 178
8.10 Diamond of results from the first level of additions 178
8.11 Diamond results on the first level of additions on DSPs 179
8.12 Diamond results from the second level of additions 179
8.13 Carry addition for the inner diamond in schoolbook 179
8.14 Addition of the three inner diamonds to get the final result 180
8.15 Critical path schoolbook method . 180
8.16 Critical path RNS proposal . 183

xv

List of Algorithms

1 Addition of non-negative multi-precision integers 20
2 Subtraction of non-negative multi-precision integers 20
3 Multiplication of positive multi-precision integers 21
4 Karatsuba multiplication of positive multi-precision integers 22
5 Montgomery reduction Redc of multi-precision integers 23
6 Euclid extended gcd of positive integers 24
7 Chinese remainder . 26
8 AES algorithm with Nb as the number of bytes processed 29
9 Key generation in RSA. 54
10 Simple RSA encryption. 54
11 Simple RSA decryption. 55
12 Simple RSA signature. 55
13 Simple RSA signature verification. 55
14 Simple Key generation on elliptic curves. 58
15 Encryption “ElGamal” in elliptic curves. 59
16 Decryption “ElGamal” in elliptic curves. 59
17 ShiftColumns (SC) assembly code. 132
18 Montgomery Multiplication. 142
19 RNS Jeljeli Modular Reduction [64]. 147
20 RNS Montgomery Modular Reduction. 150
21 Basic RNS reduction module. 154
22 RNS Montgomery Modular Reduction in HW. 156

xvii

List of Tables

1.1 Classification and characteristics . 7
1.2 Layers, challenges, and requirements in security 10

3.1 Substitution Box represented with hex values. 33
3.2 NIST Lightweight Cryptography Standardization process timeline . . 47

4.1 Summary of the difference between characteristics of the DSP48E1
and DSP48E2 . 75

4.2 Comparative table of Xilinx 7-series resources 75

5.1 Valid segments in LWC API communication protocol. 98
5.2 Utilization of resources, throughput and TPA for implemented archi-

tectures on the xc7a12tcsg325-3 FPGA. 117
5.3 Overhead in resources for complete design (LWC+Cryptocore) com-

pared with Cryptocore alone. %usage is the percentage of utilization
of available resources on the xc7a12tcsg325-3 FPGA. 119

5.4 Comparison of our LWC implementations regarding to the existing
literature. 121

6.1 Speedy 6-bit Substitution Box . 129
6.2 Speedy bit-slice representation into the six registers as individual bits

with bij where i refers to the i− th block and j refers to the j − th bit
of the bock i . 131

6.3 Table with the results from [80] and our implementation, we only mea-
sure the clock cycles for the encryption process via the microcontroller
embedded instructions. 135

7.1 Comparative table for the three proposed RNS word multipliers with
reduction . 164

7.2 Total resources of both implementations 165

xix

LIST OF TABLES LIST OF TABLES

7.3 Comparative table with total memory required 166

8.1 Karatsuba multiplication with reduction, resources, and speed 185
8.2 SchoolBook multiplication with reduction, resources, and speed . . . 185
8.3 Adder with reduction, resources, and speed 186
8.4 Subtraction with reduction, resources, and speed 186

xx

Chapter 1

Introduction

Since the beginning of modern societies, security has been a necessary practice to
protect sensitive information; otherwise, if that information becomes discovered by
an opponent or adversary, it could compromise the security of a society, system, and
even the user’s health.

In ancient Rome, the emperor Julio Caesar put into practice a method to encrypt the
information he wanted to send to his generals by performing a shift on the alphabet
to send confidential information to them. If an opponent intercepts an encrypted
letter, she cannot decrypt it; the encryption used is Caesar method encryption.1 .”

Miniaturization and technological advances help developing new devices with compu-
tational power like those used in Wireless Sensor Networks (WSNs) and the Internet
of Things (IoT). These devices have embedded a small computer with constrained
resources as a primary processing system. Usually, these devices assist humans with
computational power embedded in everyday objects [122] like a cup, microwave,
refrigerator, Tv, Etc. Likewise, they communicate through a ubiquitous network to
recompile information from the environment. In this scenario, the user can perform
actions through an interface to modify the environment behavior, such as turning
on/off lights or using any other device to perform any action the user wants, depending
on the device’s capacities [116].

Ubiquitous computing involves a large-scale deployment of embedded devices in
different areas and scenarios like e-healthcare, farming, smart home, and smart cities.
Nevertheless, the security aspects in different applications as performance and low

1https://es.wikipedia.org/wiki/Cifrado C%C3%A9sar “reviewed on 25/10/21”

1

CHAPTER 1. INTRODUCTION

power consumption, are essential [100]. Therefore, it is necessary to help ubiquitous
computing to improve its security, and cryptography is the ideal science that protects
data and information against no authorized third parties [85, 126].

Cryptology is a general area that comprises two main sub-areas. The first one
is cryptography, which is in charge of protecting data and communications from third
parties, and cryptanalysis breaks the security of a cryptographic system and helps to
ensure that a cryptographic system is secure; the most relevant security aspects are

• Confidentiality: the information remains secret against third parties.

• Authentication: an authorized party can generate and access an information
source.

• Data Integrity: protect the information against third parties modifications.

Lightweight cryptography [103] becomes a subarea of cryptography, focusing on
algorithms oriented for devices with constrained resources to protect data streamed or
stored in these devices. One solution is using block ciphers since they show excellent
performance on embedded devices and provide confidentiality and data integrity in
the implemented devices [136, 128, 56].

When developing a new device or application, security is not prioritized in information
systems; data integrity or secure communication with other systems or devices is
not essential. Although therefore, developing co-processors to improve the device’s
security and secure the sensitive information it manipulates and stores inside itself is a
must. The developers must always be aware of the resources available and remember
that the application could need more resources than those available for cryptography
solutions.

The constrained resource devices used by Wireless Sensor Networks and the Internet
of Things; are deployed in hostile environments where an adversary can access them
and their data completely. In this scenario, the adversary can attack devices directly
to obtain their secret information. Those attacks are known as side-channel attacks,
which measure the power consumption of a device when it performs a cryptography
task, for example, the encryption of a block of data. Unfortunately, implementing
cryptographic algorithms does not warrant a countermeasure against these attacks. An
inadequate implementation and poor countermeasures allow attackers to get informa-
tion about the devices and sometimes complete access and control to confidential data.

2

CHAPTER 1. INTRODUCTION

Today there are more communication scenarios using devices with constrained re-
sources; these include tasks performed by applications that use devices such as
RFID tags, sensors, and wireless sensors, all of them over different applications like
healthcare, and the Internet of Things (IoT), among some high-speed devices like
regular processors and servers with a large number of resources available. Constrained
resource devices are typically present in these wireless environments, and the sensi-
tive data exchanged among them demands security services such as confidentiality,
integrity, and authentication. Unfortunately, public-key cryptography is not feasible
due to its highest hardware requirements and the computational power needed to
run the algorithms in this scope, and their use is focused on high-speed devices like
FPGAs due to their speed and specialized characteristics.

An efficient and high-performance way to provide some of the previously listed
services is by implementing an authenticated encryption algorithm with associated
data (AEAD), which reduces resources on constrained devices and improves the
versatility of high-speed implementations. However, the standard cryptographic algo-
rithms to provide these services are unsuitable for constrained resource devices due
to the same hardware and computational power requirements. Therefore, public-key
cryptography is present on almost all devices with no restrictions and can handle data
harvested from constrained devices, and due to the high speed achieved by high-speed
devices, public-key cryptography is used in this kind of scenario.

Hardware restrictions have several drawbacks regarding the area usage (resources
available) and power consumption that needs to be solved in constrained devices used
in wireless environments without any permanent power source, and it is not always
possible to ensure enough power is available.

These devices can use a battery (or another portable power source) with a lim-
ited amount of stored energy becomes a restriction to use traditional cryptography
algorithms to provide security services. Also, thinking in lightweight cryptogra-
phy, the developers must reduce the duty cycle of the implemented algorithms for
a limited amount of time to increase the power source lifetime available for other tasks.

The deployed devices are in heterogeneous places where the area used by the crypto-
graphic algorithms is constrained. Therefore, their footprint should be minimal to
perform all tasks with low power consumption to increase the time to perform the
device’s principal tasks online.

3

1.2. Problem statement

Constrained resources in ubiquitous environments need lightweight cryptography
primitives to offer security services as the device application requires. Additionally,
other tasks (such as the data exchange) would prioritize using the available resources
(storage if available, and other essential tasks), leaving limited resources available for
cryptographic primitives. On the other hand, high-speed devices can handle many
tasks thanks to their available sources, allowing them to keep running as long as
possible to perform critical tasks.

A lightweight cryptography primitive should use the lowest possible hardware re-
sources with low power consumption without adding more hardware complexity or
resource consumption, leaving most resources available for other critical tasks. On
the other hand, public-key cryptography and traditional symmetric-key cryptography
can take advantage of the resources available on high-speed devices to handle the data
encryption and other security services required or queried from constrained devices
and other sources.

1.1 Motivation

Recently, constrained devices in different applications have grown in ubiquitous
environments, and devices with computer capacity in reconfigurable hardware and
heterogeneous scenarios use sensors and actuators. However, most of the algorithms
developed with a lightweight focus, known as Lightweight cryptography (LWC), are
focused on being used in constrained resources devices. Therefore, the meaning
of “lightweight” is not always the same because they must cover several points, like
reducing power consumption and the area used by the cryptography hardware. On the
other hand, high-speed implementations are required to handle the communication
of large amounts of constrained devices and to provide some expensive security services.

1.2 Problem statement

The suitable cryptographic algorithms for lightweight applications mark a trend in
lightweight cryptography. They offer security to tiny electronic devices with computa-
tional power, like wireless sensor networks (WSN) and Internet Things (IoT) devices.
Moreover, this aims at applications where devices have a limited power source, like a
battery. Therefore, high-speed hardware always is needed to handle a large amount
of data and to provide security services to other devices.

4

1.3. Objectives

The area used by any device and its internal components to perform its tasks directly
affects the power consumption at run time because this represents the required power
by the device to perform any task in a time-lapse.

Consequently, if the total area of the design and the internal components is small
enough on area consumption, it shows a growing power consumption on the same tasks
because the implemented algorithm requires more run time to perform cryptography
tasks.

The works of [45, 88] show that some implementations could use a large amount of
area, and sometimes these implementations are more energy-efficient when running
lightweight algorithms. However, this trade-off implies no area restrictions and execu-
tion time due to the small number of plaintexts the crypto-core needs to process, i.e.,
power consumption is the primary goal.

On the other hand, other works focus on power efficiency, as shown in work re-
alized by [136], and some others aim for better performance regarding the area used
by the implemented algorithm.

1.3 Objectives

To implement lightweight cryptography (LWC) algorithms on various constrained
resource devices, focus on high-speed hardware and its characteristics to develop both
high-speed and low-speed hardware. Moreover, perform a performance analysis of
the implemented algorithms on the processors, micro-controllers, and FPGAs used.

• Implement public-key algorithms on high-speed devices focusing on key pair
generation and basic mathematical operations.

• Implement hardware-oriented algorithms using techniques to improve the algo-
rithm’s performance on embedded devices.

• Implement LWC algorithms by being aware of the resources focus on the
low-speed microcontrollers and FPGAs.

5

1.4. State-of-the-art

• Implement and design a lightweight and public-key cryptography crypto-processor
on FPGA.

• Test our proposals and implementations.

• Compare the performance of our implementations and proposals against others
from state-of-the-art.

1.4 State-of-the-art

Lightweight Cryptography provides security solutions to devices with constrained
resources1. In addition, the academic community develops research that includes
the implementation of cryptography standards, design, and analysis of cryptography
algorithms and protocols.

Its focus is on embedded devices like wireless sensor networks, RFID devices, and
IoT; the evolution of IoT implies the interconnection of many embedded devices,
usually with constrained resources and their interaction with the users [49, 48]. IoT
encompasses all the above because of its similarities to the embedded computer [62].

It focuses on embedded devices with constrained resources in wireless sensor networks,
RFID devices, and IoT. Those scenarios imply the interconnection of many embedded
devices, and their interaction with the users [49, 48]. Also, the constrained resources
devices encompass all the above scenarios due to their similarities to a traditional
computer [62].

As a general description, the Oxford English Dictionary defines the IoT as de-
velopment where daily objects have a network connection that allows sending and
receiving data to help users improve their daily activities2.

The target devices usually have restricted resources by their limited computing
power, RAM, ROM, and others. In addition, these devices have a microcontroller as
a central processing unit. Another kind of processor used is system-on-Chip which
has integrated all modules that conform a complete computer into an integrated
circuit. Another kind of processing unit used is the ARM microprocessors and Field

1http://nvlpubs.nist.gov/nistpubs/ir/2017/NIST.IR.8114.pdf (reviewed 25/Oct/2021)
2https://www.owasp.org/index.php/OWASP Internet of Things Project (reviewed

10/Nov/2021)

6

1.4. State-of-the-art

Programmable Gate Array (FPGA); the FPGAs consist of a logic block as a basic
reconfigurable unit consisting of LUT’s (lookup tables), Flip-Flops and multiplexers
[134, 57, 2, 95].

The main characteristics of constrained devices are their limited resources. In some
scenarios, they use batteries as a power source; they can acquire data from the
environment by using sensors and send the data obtained to other devices using
Wi-Fi, Ethernet, or Bluetooth communication;

Besides, they can perform actions in the environment, like turning on something or
activating any other device to perform actions in the environment. Shortly, there is a
list of some microcontrollers and microprocessors used in constrained devices.

• Microcontrollers of 8, 16, and 32 bits like AVR (Microchip), for example,
ATMega328P (Used by Arduino UNO platform) or the model ATM2560.

• The SoC Snapdragon 32-bit ARM of 28 nm is from the Nvidia Tegra family
with ARM and CUDA technologies like Tegra 3, TK1, and TX1.

• The 32-bit ARM processors are the most used in platforms of IoT; for example,
minicomputers and Raspberry Pi platforms.

The constrained devices classification shown in table 3 presents three classes with
general characteristics.

Speed Ram Rom Power

Class I 4 Mhz 1 KB 4 - 16 KB 1.5mA

Class II 4 - 8 Mhz 4 - 10 KB 48 - 128 KB 2 - 8 mA

Class III 13 - 180 Mhz 256 - 512 KB 4 - 32 MB 40 mA

Table 1.1: Classification and characteristics

Table 1.1 shows the three classes in the state-of-the-art, but it must be taken into
account that there is a fourth classification to the constrained devices which will not

7

1.4. State-of-the-art

have kind of mention in this work. The devices in class I have the most constrained
resources; all devices barely run a minimal operating system.

Devices with many more resources in the III class can run more sophisticated op-
erating systems and even Java virtual machines. Finally, the devices with enough
resources to perform “complex” tasks belonging to class II are the most commonly
used for sensor nodes and IoT[82].

The IoT uses microcontrollers and microprocessors in the second class; they are
an essential technology for the future for their capacity to get data from the environ-
ment without needing an electric network, for example, automobiles, smart homes,
industry, to monitoring e-Healthcare, and farming.

When a developer designs an IoT device, the are restrictions like reducing power
consumption when performing any task for longer battery life. In addition, the devices
must be low-cost, and characteristics directly impact the security offered on these
devices depending on the application1.

1.4.1 Security on constrained devices

As previously mentioned, IoT has become a vital part of human life; besides, it is not
well-defined or entirely secure. Today, all the proposed architectures must face many
problems and challenges in security, and the technologies used in IoT do not have an
acceptable security level.

Security in practice for constrained devices is essential because many attacks like
Distributed Deny of Service (DDoS) exist. Those direct attacks on these devices cause
serious security problems such as data alteration, privacy risks, and data modification.

The security challenges on constrained devices are due to their less complex na-
ture, and traditional security aims at gadgets with more resources. The current
cryptography implemented ranges from the implementation of block cipher algorithms
to the development of alternative solutions like authentication servers, key-servers2,
Some Lightweight algorithms like PRESENT, PHOTON, and SPONGENT included
in standards ISO (ISO/IEC 29192-5:2016) [9]. The following list shows some detected

1https://www.nist.gov/itl/applied-cybersecurity/iot-cybersecurity-considerations
2https://www.owasp.org/index.php/Guide to Cryptography

8

1.4. State-of-the-art

security problems on these systems [62]..

• Authentication: Used to identify users and devices over a heterogeneous net-
work that uses traditional cryptography like certificates or the Public-Key-
Infrastructure PKI on constrained resource devices difficult.

• Confidentiality: ensures that the information remains secret against third
parties; a block cipher ensures that the only one who owns the secret key can
access the data.

• Fault tolerance: if a node fails or gets jeopardized, the system must provide the
security services available to the other nodes or users, i.e., the whole system
remains running.

• Anonymity: users can hide their identity and the sensitive information they
want, i.e., any user remains anonymous while interacting with the system.

Previous items consider some vulnerabilities in Open Web Application Security
Project (OWASP). In addition, there is a section oriented to IoT 1 even though
there is a guide that emphasizes some security aspects to take into account for the
developers, manufacturing companies of IoT devices, and the public consumer 2.

Some lightweight cryptography primitives such as block ciphers, hash functions,
stream ciphers, and message authentication codes have been proposed during the past
decade. They offer some advantages in performance against traditional cryptography
standards; also, there are lightweight block cipher proposals with some benefits over
the National Institute of Standards and Technology (NIST) Advanced Encryption
Standard (AES) standard [46].

Just one algorithm cannot satisfy all security requirements, and weak points have
priority to ensure the security of the constrained device. Below is a list of some
options that offer one security aspect to implement as the application requires.

• Elliptic curves cryptography (ECC): Digital signatures to ensure the data comes
from a trusted party and the possibility to share a secret between two parties.

1https://wiki.owasp.org/index.php/OWASP Internet of Things Project#tab=IoT Vulnerabilities
2https://www.owasp.org/index.php/IoT Security Guidance

9

1.4. State-of-the-art

• Two-step authentication: offers user identification and authentication when
logging into the system.

• Maintenance log: provides security audits, non-repudiation, and intruder detec-
tion.

Table 1.2: Layers, challenges, and requirements in security

Layer Security challenges Security requirements

perception layer
Resource restrictions,

DoS vulnerable and interference

Lightweight encryption,
sensor data protection,

Key agreement

Network layer
Network congestion,

virus spread
DDoS attacks

Authentication and identity
encryption
anti DDoS

Secure communication

Support layer
Large data processing,

Data filtering
secure communication
secure computing

Application layer
Data privacy and leakage

Access control
Application challenges

Key agreement and authentication
Privacy protection

Security administration

Table1.2 shows a compilation of challenges for each layer and every security require-
ment for each one [1, 65, 121, 137].

The perception layer consists of hardware devices; the main problem in this layer is
the constrained resources, low computational power, and storage. It also must have
low power consumption while running any algorithm; this requires a high level of
encryption techniques or similar solutions with unfavorable performance impact in
practice.

Network layer: this layer faces congestion caused by lots of data traffic, and the IoT
cannot implement some secure communication mechanisms; on the other hand, it al-
ready has some others implemented like TLS/SSL, IP sec, anti-DDoS, and others [127].

Support layer: cloud computing and other use security applications at the sys-
tem architecture or application levels. Therefore, this layer uses the best encryption

10

1.4. State-of-the-art

algorithms, protocols, antivirus, and string security techniques.

Application layer: deals with data privacy, access control mechanisms, and data
leakage because data sharing is the most crucial characteristic in IoT environments
where the data is stored or shared between two or more parties.

1.4.2 Security on high-speed devices

As a difference against the constrained resource devices, traditional cryptography
focuses on high-speed implementations taking advantage of the resources available
on regular processors like Intel and AMD processors, using technologies like intrinsic
instruction sets and large-size registers embedded in the processors. Therefore public-
key cryptography requires basic mathematical operations to generate and create a
shared secret between two parties.

The mathematical operations required consist of additions and multiplications, and
these last operations require a large number of clock cycles to complete just one; this is
the reason why constrained devices are not suitable to handle public-key cryptography,
but high-speed devices can offer new ways to implement basic operations to perform
faster solutions on this area.

Many works focus on implementing just the basic operations to improve the per-
formance of public-key algorithms on hardware; some applications are RSA and
ECDH algorithms, and others are out of the scope of this thesis work. The paper [40]
presents the modular exponentiation using Intel’s AVX512 intrinsics set available on
some of the 10th series families and newer. Work [7] computes the reduction modulo
F using a multiplier based on the Karatsuba algorithm. One application of RSA is
presented in work [47], which implements an RSA Key generation protocol focusing
on a two-party setting. Also, they propose an approach for multiplying two large
integers. In the same scope, the Montgomery for reduction algorithm presented later
in this thesis focuses on ARM devices. This work given in [22] uses the mentioned
algorithm to implement isogeny-based cryptography on ARM architectures. Finally,
the work [31] presents a scheme of Homomorphic encryption proposal using real
numbers and uses the Residue Numeric System RNS shown later in this thesis work
to improve the performance of their implementation.

11

1.5. Summary

1.5 Summary

This chapter summarizes the challenges and activities carried out in this thesis; it
also offers the objectives and a brief state-of-the-art along with the problem state-
ment, which is the primary motivation for this thesis work. Furthermore, restricted
device types are classified based on their features, resources, and applications. Also,
it presents requirements of traditional cryptographic algorithms and some imple-
mentations and applications on high-speed devices like regular processors and FPGAs.

12

Part I

Theoretical Background

13

Chapter 2

Preliminaries

In this first part of this thesis works, the theoretical background needed to develop the
works presented in the following chapters presents a brief introduction to definitions
of the theories used to develop this thesis work focused on public-key cryptography
and symmetric key cryptography as well as the mathematical background needed to
understand the designs developed in the chapters 7 and 8.

2.1 Mathematical Background

This chapter shows the essential mathematical background to understand and develop
cryptography systems. Then, we use this knowledge to create general cryptography
systems in hardware and software.

Usually, using the integer ring Z is the mathematical basis of cryptography. Once
we can compute with integers is possible to build on top of them fields, elliptic
curves, and even more complex objects. To perform faster integer arithmetic is why
the hardware plays an important role when implementing arithmetic on computing
systems.

2.2 Algebra

Here we present some abstract algebra fundamentals to understand the Public-key
algorithms presented later in this thesis work.

15

2.2. Algebra

2.2.1 Groups

As presented in [34] chapter 2, section 2.1, a group gets defined by the following.

Given a set S, a composition law × of S into itself is a mapping from the Cartesian
product S × S → S, Common notations for the image of (x, y) under this mapping
are x× y, x · y or simply xy. When the law is commutative, i.e., when the images if
(x, y) and (y, x) under the composition law are the same ∀x, y ∈ S, it is customary
to denote it by “+”.

Another definition says: A group G is a set with a composition law × such that,

• × is associative, that is ∀x, y, z ∈ G we have (xy)z = x(yz)

• × has a unit element e, i.e., ∀x ∈ G we have xe = ex = x

• for every x ∈ G ∃ y, an inverse of x such that xy = yx = e.

Remarks

1. The group G is commutative or abelian, if the composition law is commutative.
As previously mentioned, the law often gets denoted by + or ⊕ and the unit
element by 0 for this case.

2. The unit of a group G is necessarily unique and is the inverse of an element x
that is denoted with x−1. if G is commutative the inverse of x gets denoted by
−x.

3. The order or cardinality of a group G is finite it its order is finite.

Example: Let x ∈ G. The set {xn | n ∈ Z} is the subgroup of G generated by x. It
is denoted by ⟨x⟩

2.2.2 Rings

Also, in the same book [34] section 2.1.2, chapter 2 present various definitions for
rings; here, we present some of them and an example.

A ring R is a set together with two composition laws + and × such that

• R is commutative respect to +

16

2.2. Algebra

• × is associative and has a unit element 1, which is different from 0 of the unit
+

• × is disruptive over +, that is ∀x, y, z ∈ R, x(y + z) = xy + xz and (y + z)x =
yx+ zx.

Remarks

1. The ring R is said to be commutative, if the law x is commutative.

2. A commutative ring R such that ∀x, y ∈ R, the equality xy = 0 implies that
x = 0 or y = 0 is called integral domain.

Example: the set Z of integers together with the usual addition and multiplication is
a ring. The set Z[X] of polynomials with coefficients in Z together with the addition
and multiplication of polynomials is a ring.

2.2.3 Fields

Once more, in the same book [34] in the same chapter 2 section 2.1.3, we found
different definitions of Fields, but we only present some of them here.

A field K is a commutative ring such that every nonzero element is invertible.

Example: the set of rational numbers Q with the usual addition and multipli-
cation law is a field. The quotient set Z/pZ with the induced integer addition and
multiplication is also a field for any prime number p.

2.2.4 Extension of fields

Usually, in cryptography, some operation becomes easier to implement using an
extension of fields, allowing the creation of more complex arithmetic. Some properties
of algebraic extensions of fields are presented from the book [34] chapter 2, section
2.2.1.

Definition: Let K and L be two fields, we can say that L is an extension field of K
if there exists a field homomorphism K into L. Such an extension field is denoted by
L/K.

Remark: as previously mentioned, a field homomorphism is always injective, so we

17

2.3. Integer arithmetic operations

shall identify K with the corresponding subfield of L when considering L/K.

Example: let R the field of real numbers with usual addition + and multipli-
cation ×. Therefore, R is an extension of Q. Consider the element

√
2 ∈ R and the

subset of R of elements with the form a+
√
2b with a, b ∈ Q. If we put for a+

√
2b

and a′ +
√
2b′

(a+
√
2b) + (a′ +

√
2b′) = a+ a′ +

√
2(b+ b′) (2.1)

and
(a+

√
2b)× (a′ +

√
2b′) = aa′ + 2bb′ +

√
2(ab′ + a′b), (2.2)

we can see that we obtain a field denoted by Q(
√
2), which is an extension of Q.

2.3 Integer arithmetic operations

As mentioned at the beginning of this chapter, Integer arithmetic is fundamental
and must perform as efficiently as possible. Although modern computers operate
with relatively large integers thanks to technologies like advanced vector extension
(AVX) [81, 35] instruction set, we can design reliable components in hardware to
perform the same operation presented here with better performance than software
implementations.

Modern computers have highly optimized operations for single-precision integers.
Therefore, they can perform the following functions from [34] chapter 10, section
10.1.3.

• Comparison of two singles return a boolean 0 or 1.

• Bitwise complement of a single u, that is u = b− 1− u.

• Bitwise conjunction, disjunction and exclusive disjunction of the singles u and
v, that is respectively u ∧ v, u ∨ v and u⊕ v used to denote XOR.

• The right and left shifts of t bits for a single u, denoted by u ≫ t and u ≪ t
respectively, corresponding to ⌊u/2t⌋ and u2t mod b.

Addition of two singles u and v results in a single w and a carry bit c equal to
0 or 1 so that the result is u+ v = kb+ w.

Subtraction of a single v from a single u, that is u− v, results in a single w and
a carry c. If u ≥ v then w = u− v and c = 0, otherwise w = b+ u− v > 0 and
c = −1, sometimes called borrow for its unsigned representation.

18

2.3. Integer arithmetic operations

• Multiplication of two singles u, v results in a double size result w = u× v.

• Division of a double size u by a single v, when the quotient q = ⌊u/v⌋ and the
remainder r = u mod v are both singles. This computes q and r simultaneously.

We must understand the basic facts of integers and computers to use large integers.
For example, let b ≥ 2 an integer is known as base and sometimes radix, and it is
possible to represent any integer u > 0 as the sum.

u = un−1b
n−1 + · · ·+ u1b+ u0 (2.3)

provided 0 ≤ ui < b and un−1 ̸= 0. We call this representation the base b of u and
is denoted by (u(n−1), . . . , u0)b. witch each ui as the digits of u. Finally the most
significant digit is denoted by un−1 and least significant by u, therefore, the length n
of (u(n−1), . . . , u0)b is denoted |u|b.

In any digital system like a computer, the base b is a power of 2 stored as an
internal sequence of 0 and 1, known as bits. So, also exists elementary operations on
bits like the following:

• complement of x denoted by x, if x = 0 then x = 1

• conjunction of x and y, x ∧ y the output is equal to 1 is both x, y equal 1.

• disjunction of x and y, x ∨ y the output equals 1 if any of both are equal to 1.

• exclusive disjunction of x and y, known as XOR. The operation x xor y equals
1 if and only if exactly one of the values x, y equals 1.

19

2.3. Integer arithmetic operations

2.3.1 Addition and Subtraction

In the book [34] chapter 10, section 10.2 presents the addition algorithm used to add
multi-precision integers; the same is presented here in the algorithm 1.

Algorithm 1 Addition of non-negative multi-precision integers

Require: Two n-word integers u = (un−1, . . . , u0)b and v = (vn−1, . . . , v0)b.
Ensure: The (n+ 1)-word integer w = (wn, . . . w0)b such that w = u+ v, wn being 0

or 1.
1: k ← 0 [k is the carry]
2: for i = 0 to n− 1 do
3: wi ← (ui + vi + k) mod b [0 ⩽ wi < b]
4: k ← ⌊(ui + vi + k)/b⌋ [k = 0 or 1]
5: end for
6: wn ← k
7: return (wn, . . . , w0)b

For the subtraction, we present the algorithm 2, just a simple change of sign in the
algorithm 1 to provide (u− v) instead (u+ v) equipped u ≥ v.

Algorithm 2 Subtraction of non-negative multi-precision integers

Require: Two n-word integers u = (un−1, . . . , u0)b and v = (vn−1, . . . , v0)b such that
u ≥ v.

Ensure: The n-word integer w = (wn−1, . . . w0)b such that w = u− v.
1: k ← 0 [k is the carry]
2: for i = 0 to n− 1 do
3: wi ← (ui − vi + k) mod b [0 ⩽ wi < b]
4: k ← ⌊(ui − vi + k)/b⌋ [k = 0 or − 1]
5: end for
6: wn ← k
7: return (wn−1, . . . , w0)b [if k = −1 then u < v]

2.3.2 Multiplication

The most critical process in any crypto-system is multiplication, the most time-
consuming part for many applications. Therefore the complexity parameter of a
multiplication algorithm is essential for any complete arithmetic system. In this
section, we present two multiplication algorithms Schoolbook method and Karatsuba.

20

2.3. Integer arithmetic operations

School book

The simplest method known for at least four millennia [34].

Algorithm 3 Multiplication of positive multi-precision integers

Require: An m-word integer u = (um−1, . . . , u0)b and an n-word integer v =
(vn−1, . . . , v0)b.

Ensure: The (m+ n)-word integer w = (wm+n−1, . . . , w0)b such that w = uv.
1: for i = 0 to n− 1 do
2: wi ← 0 [see remark 1]
3: end for
4: for i = 0 to n− 1 do
5: k ← 0
6: if vi = 0 then
7: wm+i ← 0 [optional test]
8: else
9: for j = 0 to m− 1 do
10: t← viuj + wi+j + k [0 ≤ t < b2]
11: wi+j ← t mod b [0 ≤ wi+j < b]
12: k ← ⌊t/b⌋ [0 ≤ k < b]
13: end for
14: wm+i ← k
15: end if
16: end for
17: return (wm+n−1, . . . , w0)b

Remarks:

1. The algorithm performs the following operations multiply and add

(wn+m−1, . . . , w0)b ← (un−1, . . . , u0)b × (vm−1, . . . , v0) + (wm−1, . . . , w0)b (2.4)

2. This method computes intermediate results uvi before adding them. In the
algorithm 3, we multiply and add simultaneously inside the j loop.

3. The optional test in line 7 is useless if the base b is small.

21

2.3. Integer arithmetic operations

Karatsuba

In 1960, Karatsuba proposed a method [71] in O(nlog2(3)), with log as the logarithm
base 2. The work [73] shows the technique of the so-called Karatsuba method. For
clarity, set R = bn, d = 2n, and u = (ud−1, . . . , u0) and v = (vd−1, . . . , v0) as two
d-word integers. The procedure involves splitting u and v into the least and most
significant parts.

uv = U1V1R
2 + ((U0 + U1)(V0 + V1)− U1V1 − U0V0)R + U0V0. (2.5)

A priori four multiplications are needed to compute uv, but multiplication by R is a
shift. So there are more additions, and only three multiplications are required. Which
are U1V1, (U1 + U0)(V1 + V0), U0V0. Therefore we can use a recursive approach to
reduce the size of the operands until they are small enough to use the school book
method. The algorithm 4 from [34] chapter 10 section 10.3.2. shows the procedure.

Algorithm 4 Karatsuba multiplication of positive multi-precision integers

Require: An n-word integer u = (un−1, . . . , u0)b and an m-word integer v =
(vm−1, . . . , v0)b the size d = max{m,n}, and a threshold d0.

Ensure: The (m+ n)-word integer w = (wm+n−1, . . . , w0)b such that w = uv.
1: if d ≤ d0 then
2: return uv [use algorithm 3]
3: end if
4: p← ⌊d/2⌋ and q ← ⌈d/2⌉
5: U0 ← (uq−1, . . . , u0)b and V0 ← (vq−1, . . . , v0)b
6: U1 ← (up+q−1, . . . , uq)b and V1 ← (vp+q−1, . . . , vq)b [pad with 0′s if necessary]
7: Us ← U0 + U1 and Vs ← V0 + V1

8: compute recursively U0V0, U1V1 and UsVs

9: return U1V1b
2q + (UsVs − U1V1 − U0V0)b

q + U0V0

2.3.3 Modular reduction

In many situations, it is necessary to compute the remainder of a euclidean division.
However, in practice, we use a prime number N, and the essential operation for
the prime field arithmetic is the reduction. The naive way to compute u mod N
consists in dividing u by N to obtain the remainder. In this chapter, we present
the Montgomery reduction algorithm, and Chapter 7 offers two methods focused on
hardware implementations.

22

2.3. Integer arithmetic operations

Montgomery reduction

Peter L. Montgomery introduced a way to represent elements of Z/NZ such that
arithmetic and multiplication become easy[89]. We have the following from [34]
chapter 10, section 10.4.2.

Definition: let R an integer greater than N and a co-prime with it. The Montgomery
representation of x ∈ [0, N − 1] is [x] = (xR) mod N . The Montgomery reduction of
u ∈ [0, RN − 1] is Redc(u) = (uR−1 mod N).

When R is a power of the radix b, there is an algorithm to reduce u. Let N ′ =
(−N−1) mod R and let k the unique integer in [0, N − 1] such that k ≡ uN ′ (mod R).
It becomes clear that (u+kN) is a multiple of R. Let t = (u+kN)/R. Remembering
that N,R are relative prime, implies that t ≡ uR−1 (mod N). Finally, 0 ≤ u < RN
shows that 0 ≤ t < 2N so that t or t−N is equal to the desired result Redc(u). The
algorithm 5 shows the entire process for multi-precision integers.

Algorithm 5 Montgomery reduction Redc of multi-precision integers

Require: An n-word integer N = (Nn−1, . . . , N0)b such that gcd(N, b) = 1, R = bn,
N ′ = (−N−1) mod N and a 2n-word integer u = (u2n−1, . . . , u0)b < RN .

Ensure: The n-word integer t = (tn−1, . . . , t0)b such that t = Redc(u) =
(uR−1) mod N .

1: (t2n−1, . . . , t0)b ← (u2n−1, . . . , u0)b
2: for i = 0 to n− 1 do
3: ki ← (tiN

′) mod b
4: t← t+ kiNbi

5: end for
6: t← t/R
7: if t ⩾ N then
8: t← t−N
9: end if
10: return t

Remarks

1. It is immediate that [x] = Redc((xR2) mod N) and Redc([x]) = x ∀x ∈
[0, N − 1]. Also, the value R2 mod N can be precomputed.

2. The algorithm 5 requires n2 + n multiplications to compute Montgomery reduc-
tion.

23

2.4. Greatest Common Divisor (GCD)

3. Classical reduction computes the reduction while processing each digit of u from
left to right. Montgomery reduction can operate in both senses left-to-right and
right-to-left.

4. In the case u ⩾ RN the algorithm 5 does not return t = uR−1 mod N but
t ≡ uR−1 (mod N).

2.4 Greatest Common Divisor (GCD)

As presented in [34] chapter 10 section 10.6.1, given two integers x and N , the
algorithm computes d = gcd(x,N) and the integers u and v such that xu+Nv = d.
In practice, this is the method to compute the inverse of an element in (Z/NZ)∗.
Therefore it is linked to the Chinese remainder theorem presented in the section 2.5.
The algorithm 6 offers the extended Euclid gcd procedure.

Remarks

Algorithm 6 Euclid extended gcd of positive integers

Require: Two positive integers x,N such that x < N .
Ensure: Integers (u, v, d) such that xu+Nv = d, with d = gcd(x,N).
1: A← N,B ← x, UA ← 0, UB ← 1
2: while B ̸= 0 do
3: q ← ⌊A/B⌋
4:

[
A
B

]
←
[
0 1
1 −q

] [
A
B

]
5:

[
UA

UB

]
←
[
0 1
1 −q

] [
UA

UB

]
6: end while
7: d← A, u← UA, and v ← (d− xu)/N
8: return (u, v, d)

• The use of the variables VA, VB from the equation 2.4 such that

VA = 1, VB = 0 and

[
VA

VB

]
←
[
0 1
1 −q

] [
VA

VB

]
(2.6)

we see that xUA +NVA and xUB +NVB always are equal respectively A and
B during the execution. Adding and updating these two variables during the
execution avoids the division in line 7.

24

2.5. Chinese Residue Theorem CRT

• Throughout the execution of the algorithm the |UA|, |UB in relation to (|VA|, |VB|) ≤
N/A in relation to (x/A).

• The necessary steps is ≈ O(lgN). But there exist better performance imple-
mentations in the state of the art if the algorithm has a careful implementation.

2.5 Chinese Residue Theorem CRT

To understand the Chinese residue theorem, we need the following theorem and
corollary from book [34] chapter 2 theorem 2.23 and corollary 2.24.

Theorem: Let I1, . . . , Ik a pairwise co-prime ideals of R. Then

R/
k∏

i=1

Ii ≃
k∏

i=1

R/Ii. (2.7)

Corollary: Let n1, . . . , nk a pairwise co-prime integers, such that gcd(ni, nj) = 1 for
i ̸= j. Also, for any integers xi ∃ an integer x such that

x ≡ x1 (mod n1)
x ≡ x2 (mod n2)

...
x ≡ xk (mod nk).

(2.8)

Therefore, x is unique modulo
∏k

i=1 ni.

Now, suppose one wants to know the solution of the system 2.8 where the n′
i are

pairwise co-prime integers and the xi’s fixed integers. The corollary above ensures
that there is a unique solution modulo N = n1n2 . . . nk. Such a solution is easy to find.
Let Ni = Nni. Since the ni’s are pairwise co-prime we have gcd(Ni, ni) = 1 ∀i. And
the computation of the extended gcd gives ai such that ai ≡ 1 (mod ni). Furthermore,
the solution is given by the following equation.

x = a1N1x1 + a2N2x2 + · · ·+ akNkxk. (2.9)

The following algorithm 7 from [34] chapter 10 section 10.6.4 performs efficiently and
computes x inductively. at each step, given an integer x such that x ≡ xi(mod ni)∀i ≤
j, it find x satisfying x ≡ xi(mod ni) ∀i ≤ j + 1.

25

2.6. Summary

Algorithm 7 Chinese remainder

Require: Pairwise co-prime integers n1, . . . , nk and integers xi for 1 ≤ i ≤ k.
Ensure: An integer x such that x ≡ xi(mod ni) ∀ 1 ≤ i ≤ k.
1: N ← n1 and x← x1

2: for i = 2 to k do
3: compute u, v such that uni + vN = 1 [use extended gcd algorithm]
4: x← unix+ vNxi

5: N ← Nni

6: x← x mod N
7: end for
8: return x

Remark

1. It is possible to generalize the algorithm 7 in a straightforward way to the
polynomial ring K[X] where K is a field.

2. The residue number system presented in chapter 7 is specially useful where the
computations modulo N are performed modulo several primes pi fitting a word
such that

∏
i pi > N2.

2.6 Summary

In this chapter, we presented a brief introduction to some basic concepts needed to
understand the research and development of this thesis work; therefore, we explain
the basic operations required for any modern crypto-system and some definitions
with remarks available.

The mathematical background comprises the basic definitions used in algebra, like
groups, rings, fields, etc. Therefore, the numbers used in practice are always integers
with their respective arithmetic operations and algorithms for each operation needed.

We encourage our readers to study the basic mathematical background more pro-
foundly to understand the complex algorithms presented in the later chapters of this
thesis.

26

Chapter 3

Cryptography

Cryptography is closely linked to electronic communications but is an old practice
with examples from older ages using hieroglyphics as a non-standard language in
ancient Egypt. Also, there are cases of many cultures of secret writing in ancient
Greece with (scytale) of Sparta, or the Caesar cipher, the cryptology as the main
tern splint in two branches:

• Cryptography is the science of hiding information.

• Cryptanalysis is the science and art focused on breaking cryptosystems.

The main focus of this chapter is cryptography and implementations based on sym-
metric algorithms in which two parties previously shared a secret and methods for
encryption and decryption to communicate secretly with each other. Usually, Bob
wants to communicate with Alice, sending a message using a key to (encrypt) the
message before it is shipped, and Alice uses the same Key to (decrypt) it and recovers
the message. This message is known as (Plaintext), and the encrypted message is
known as (Ciphertext). The shared Key distinguishes communicating parties from
any other who may be eavesdropping on their communication using a public channel
like the Internet. Figure 3.1 illustrates the steps previously mentioned.

The variables shown in the figure are:

• m is the plaintext.

• c is the ciphertext.

• k is the Key.

27

3.1. Advanced Encryption Standard (AES)

Bob ENCk()

Eva

DECk() Bob
m c

insecure channel (internet)

m

k k
c

Figure 3.1: Communication between parties using symmetric cryptography over an
insecure channel

In the rest of this chapter, we focus on using the symmetric cipher AES and a little
history of it and its characteristics. Then, present some modes of operation, and
finally, show the use of this cipher in other ways.

3.1 Advanced Encryption Standard (AES)

In 1997 the National Institute of Standards and Technology (NIST) launched a call
to develop a new cipher to replace Data Encryption Standard (DES) [104] with a
new standard named Advanced Encryption Standard (AES). The algorithm selection
for AES was open and administrated by NIST after three evaluation rounds, and the
scientific community discussed the advantages and disadvantages of the submitted
algorithms. Finally, in 2001 NIST declared the block cipher (Rijndael [37]) as the
new AES and published it in FIPS NUM 197 [42]; Vincent Rijmen and Joan Daemen,
both Belgian cryptographers designed the algorithm.

The call for proposal had the following mandatory requirements for all AES candidates:

• Block cipher with 128-bit block size.

• The key lengths support 128, 192, and 256 bits.

• Efficiency in software and hardware.

AES is a block cipher used to protect electronic data and can encrypt and decrypt
data, i.e., it converts the message or plaintext to an encrypted result called ciphertext,
and the decryption recovers the original message from ciphertext to plaintext. As
previously mentioned, AES quires a 128-bit input block and a secret key of 128, 192,

28

3.1. Advanced Encryption Standard (AES)

and 256-bit, producing a ciphertext of 128-bit length. With the first Key, the al-
gorithm can derivate the following Round Key used in the next round of the algorithm.

Figure 3.2 shows the AES algorithm as a black box, as can be seen; the inputs
are the plaintext m and the Key k. The Key can have three sizes; the output c is the
ciphertext. The right side of the figure also shows the decryption process in the same
way. In this case, the inputs are the ciphertext c and the Key k, and the output is
the plaintext m.

AES
m c

128 128

k

128,192,256

Figure 3.2: General use of AES in encryption mode.

Algorithm 8 AES algorithm with Nb as the number of bytes processed

Require: byte in[4×Nb], byte out[4×Nb], word w[Nb× (Nr + 1)], rounds Nr
Ensure: byte out[4×Nb]
1: byte-(state)[4, Nb]
2: (state)← in
3: ARK (state), w[0, Nb− 1]
4: for each r = 0 to r = Nr − 1 do
5: SB−(state)
6: SR−(state)
7: MC−(state)
8: ARK (state), w[round×Nb, (round+ 1)×Nb− 1]
9: end for
10: SB−(state)
11: SR−(state)
12: ARK−(state), w[Nr ×Nb, (Nr + 1)×Nb− 1]
13: out← (state)

29

3.1. Advanced Encryption Standard (AES)

b = b0 b1 b2 b3 b4 b5 b6 b7 b8 b9 b10 b11 b12 b13 b14 b15

Figure 3.3: AES input array as an initial state.

b =

b0 b4 b8 b12
b1 b5 b9 b13
b2 b6 b10 b14
b3 b7 b11 b15

Figure 3.4: Matrix representation for a state in AES.

The algorithm 8 shows the AES algorithm here, and we can see four steps or
transformations inside the loop. This loop can variate depending on the Key size,
and the functions are:

• AddRoundKey

• ByteSubstitution

• ShiftRows

• MixColumns

The AES algorithm uses different variables, and the following presents the description
of each of the four functions.

Figure 3.3 shows the state as a matrix of [4×Nb] bytes as an arrangement of bytes as
input. Furthermore, 3.4 shows a matrix of 4 times 4 bytes used in 128-bit encryption,
and here we describe each function in a general way.

Figure 3.5 shows a diagram of the AES steps in a general way with each transforma-
tion needed by the algorithm; as can be seen, the first step is the Key addition layer
in this state, and the input plaintext is XORed with the round Key 0. After that,
the result becomes an input to the Byte substitution layer, later the state goes to the
ShiftRows Layer and finally to the MixColumn Layer.

30

3.1. Advanced Encryption Standard (AES)

Plaintext
m

Key addition

Byte substitution

Shift Rows

Mix Colums

Diffusion

Key addition

Round 1

Byte substitution

Shift Rows

Mix Colums

Diffusion

Key addition

Round nr − 1

Byte substitution

Shift Rows

Key addition

c = AESk(m)

Round nr

Key k

Tranform 0
k0

Tranform 1
k1

Tranform nr − 1
knr−1

Tranform nr

knr

Figure 3.5: AES encryption diagram

31

3.1. Advanced Encryption Standard (AES)

These four steps repeat as needed for Nr - 1 time required by the algorithm and the
Key size. For the last round, there are three functions to perform the current state.
First is the Byte substitution, then the state goes to ShiftRows, and finally, Key
addition (add round key). In the last round, the omission of the Mix Column Layer
is a must, and in the Mix Column Layer, we explain why this step is omitted.

3.1.1 Byte Substitution layer

The first layer in each round is the Byte Substitution with 16 parallel S-boxes with a
byte width; all S-boxes are equal and have de same values. In each state, Byte Ai

gets replaced, i.e., replaced by another byte Bi:

S(Ai) = Bi (3.1)

The only nonlinear element of AES is the S-Box it holds that

ByteSub(A) +ByteSub(B) ̸= ByteSub(A+B) (3.2)

For states A and B. The S-box is a bijective mapping of 28 = 256 possible input
elements to a one-to-one mapped output element. Also, the S-Box has a reverse
feature needed in the decryption process. The S-box usually gets implemented as
a 256-bit lookup table with fixed entries as given in table 3.1, and the software
implementations use this kind of table.

Suppose an inputs byte to the S-Box as Ai = (0xFF), the output value is

SBox(0xFF) = (0x16) (3.3)

S-Box is bijective. It does not have fixed points and any input value Ai such that
S(Ai) = Ai, for example, S(0x00) = 0x63.

Comparing the AES software against hardware implementations, the focus of software
usually goes to using a lookup table. The hardware sometimes takes advantage of
realizing the S-Boxes as digital circuits which compute each value on-the-fly.

3.1.2 ShiftRows

This step makes a cyclic transformation to the current state; it shifts each row to a
fixed number of bytes. For example, it shifts three bytes to the second row, the third

32

3.1. Advanced Encryption Standard (AES)

0 1 2 3 4 5 6 7 8 9 a b c d e f

0 63 7c 77 7b f2 6b 6f c5 30 01 67 2b fe d7 ab 76
1 ca 82 c9 7d fa 59 47 f0 ad d4 a2 af 9c a4 72 c0
2 b7 fd 93 26 36 3f f7 cc 34 a5 e5 f1 71 d8 31 15
3 04 c7 23 c3 18 96 05 9a 07 12 80 e2 eb 27 b2 75
4 09 83 2c 1a 1b 6e 5a a0 52 3b d6 b3 29 e3 2f 84
5 53 d1 00 ed 20 fc b1 5b 6a cb be 39 4a 4c 58 cf
6 d0 ef aa fb 43 4d 33 85 45 f9 02 7f 50 3c 9f a8
7 51 a3 40 8f 92 9d 38 f5 bc b6 da 21 10 ff f3 d2
8 cd 0c 13 ec 5f 97 44 17 c4 a7 7e 3d 64 5d 19 73
9 60 81 4f dc 22 2a 90 88 46 ee b8 14 de 5e 0b db
a e0 32 3a 0a 49 06 24 5c c2 d3 ac 62 91 95 e4 79
b e7 c8 37 6d 8d d5 4e a9 6c 56 f4 ea 65 7a ae 08
c ba 78 25 2e 1c a6 b4 c6 e8 dd 74 1f 4b bd 8b 8a
d 70 3e b5 66 48 03 f6 0e 61 35 57 b9 86 c1 1d 9e
e e1 f8 98 11 69 d9 8e 94 9b 1e 87 e9 ce 55 28 df
f 8c a1 89 0d bf e6 42 68 41 99 2d 0f b0 54 bb 16

Table 3.1: Substitution Box represented with hex values.

row shifts two bytes, and the fourth row shifts only one byte. There are no changes
in the first row, and this transformation’s purpose is to increase the diffusion of AES.
In figure 3.6 the input state matrix is given as B = (B0, B1, ..., B15):

B0 B4 B8 B12

B1 B5 B9 B13

B2 B6 B10 B14

B3 B7 B11 B15

Figure 3.6: Shift Rows (SR) input state.

The output is the new state shown in figure 3.7.

33

3.1. Advanced Encryption Standard (AES)

B0 B4 B8 B12 no shift

B5 B9 B13 B1 ≫ 3

B10 B14 B2 B6 ≫ 2

B15 B3 B7 B11 ≫ 1

Figure 3.7: Shift Rows (SR) output state.

3.1.3 MixColumns

In this step, a linear transformation that mixes each column of the current input
state, every input byte influences the four output bytes, bringing high diffusion in
AES. Furthermore, the ShiftRows and MixColumns combination ensures that after
three rounds, each state byte depends on all 16 bytes of the plaintext. Therefore, we
denote B as the 16-byte input state and the output state as C:

MixColumns(B) = C, (3.4)

Where B is the output state from the ShiftRows step as in the figure 3.7, then each
4-byte individual column is a vector and gets multiplied by a fixed 4× 4 matrix. This
matrix has constant elements and performs the multiplication and addition of the
coefficients in GF (28). The following matrix shows how to perform MixColumns for
the second 4 bytes.

B4

B9

B14

B3

×

02 03 01 01
01 02 03 01
01 01 02 03
03 01 01 02

 =

C4

C5

C6

C7

Then we compute each output 4-byte array Ci by multiplying the 4-byte input array
column Bi, with the same constant matrix.

3.1.4 Add Round Key

This step uses the master Key and derives the subkeys needed by AES. This operation
combines two inputs performing an XOR equal to an addition in the Galois Field
GF (2), and the Key Schedule derivates the round Keys.

34

3.1. Advanced Encryption Standard (AES)

3.1.5 Key Schedule

Use the Master Key (Key provided by the user) and derives all necessary Sub-Keys
for the AES implementation. The Sub-Keys needed equals the number of rounds plus
one due to the Key used by the first round, as shown in figure 3.5. For example, for
a Key length of 128-bit, the rounds need nr = 10 and the 11 subkeys each of 128-bit
length.

3.1.6 AES 128-bit Key schedule

This implementation uses 11 subkeys stored on an array with elements W [0], ...,W [43],
and figure AESKeySchedule depicts the calculation for each Key.

The first step is to denote the original key as K0; this key gets copied into the
first elements of the array W ; now we can compute the next as follows, as shown in
the figure, the leftmost word of a subkey W [4i] where (i = 1, ..., 10) gets computed
by:

W [4i] = W [4(i− 1)] + g(W [4i− 1]). (3.5)

Denoting g() as a nonlinear function with 4-byte input and outputs and the three
left words of a subkey get computed as:

W [4i+ j] = W [4i+ j − 1] +W [4(i− 1) + j] (3.6)

where (i = 1, ..., 10) and j = 1, 2, 3. Furthermore, the g() function rotates its four
input bytes, performing a byte-wise substitution with the S-Box adding a (round
coefficient) RC. This coefficient of 8-bit width belongs to the Galois field GF (28) and
gets added to the leftmost byte in function g(). Each RC varies according to the
next rule:

RC[1] = x0 = (0x01),

RC[2] = x1 = (0x02),

RC[3] = x2 = (0x04),

...

RC[10] = x9 = (0x36).

Function g() adds non-linearity to the key schedule and removes symmetry in AES,
and these properties are necessary to thwart some attacks on block ciphers.

35

3.2. Block Cipher Modes of Operation

3.2 Block Cipher Modes of Operation

The previous section explains using a block cipher with only one block of plaintext,
but in practice, we want to encrypt large amounts of data, so we introduce some
modes of operation. [19] in this section.

• Electronic Code Book (ECB)

• Cipher Block Chaining (CBC)

• Galois Counter Mode (GCM)

This section focuses on the enlisted operation modes and describes them next.

3.2.1 Electronic Codebook (ECB)

The most straightforward way to encrypt a fixed-sized plaintext can encrypt or
decrypt only one block at once, let ek(xi) the encryption process of a plaintext xi

with key k and the decryption process as e−1(yi) with the ciphertext yi with Key k.
In this operation mode, the block cipher process each encryption individually. Figure
3.8 shows the encryption and decryption process with e() as the block cipher, b as
the block size, and xi, yi plaintext and ciphertext, respectively.

Encryption Decryption
xi yi

k k

xi

Figure 3.8: Electronic codebook operation mode (ECB).

Encryption : yi = ek(xi), i > 1

Decryption : xi = e−1
k (yi) = e−1

k (ek(xi)), i > 1

36

3.2. Block Cipher Modes of Operation

To verify the ECB mode:

e−1
k (yi) = e−1

k (ek(xi)) = xi (3.7)

Some advantages of ECB mode are the unnecessary synchronization between parties.
For example, if the receiver does not get all encrypted blocks due to transmission
problems, it is possible to decrypt received blocks, and the same happens with
problems caused by any other sources. Also, parallelizing those block ciphers working
on ECB mode is possible, e.g., while one encryption unit processes the first block,
the second process the next block, and the same for all encryption units.

3.2.2 Cipher Block Chaining Mode (CBC)

There are two main ideas behind the CBC design. First, the encryption of all blocks
makes them a chain such that ciphertext yi depends not only on plaintext xi, it
depends on all previous plaintexts, and the use of an Initialization Vector (IV) adds
randomness. As we know, yi results from encrypting the plaintext xi. This result is
feedback to the cipher input and XORed with the next block xi+1. The output from
the XOR is then encrypted, yielding the yi+1 ciphertext, and then this result is used
to encrypt the following plaintext xi+2.

The first ciphertext, y1, depends on plaintext x1, and the IV, the second cipher-
text, depends on the IV , x1 and x2. The third ciphertext depends on IV , x1, x2, x3,
and so on for all the other plaintexts left; the last ciphertext results from a function
of all plaintexts and the IV. Figure 3.9 shows the encryption process used in the CBC
operation mode in encryption/decryption.

37

3.2. Block Cipher Modes of Operation

ek(xi)

yi−1 yi−1

e−1
k (xi)

yi

k

xi

IV

yi−1 yi−1

IV

xi

k

Figure 3.9: CBC block diagram for encryption and decryption.

The expression e−1
k (yi) = xi ⊕ yi−1 illustrates the general decryption process for all

ciphertexts except the first y0 ciphertext also the right side of figure 3.9 illustrates
the complete decryption process. It begins with the decryption of the first ciphertext
y1, the plaintext result should be XORed with the IV to get the plaintext x1 i.e.,
x1 = IV ⊕ e−1

k (y1) and is described as:

Encryption(1st block) : y1 = ek(x1 ⊕ IV)

Encryption(general block) : yi = ek(xi ⊕ yi−1), i ≥ 2

Decryption(1st block) : x1 = e−1
k (y1)⊕ IV

Decryption(general block) : xi = e−1
k (yi)⊕ yi−1, i ≥ 2

We obtain to verify that the decryption reverses the encryption on the first block:

d(y1) = e−1
k (y1)⊕ IV = e−1

k (ek(x1 ⊕ IV))⊕ IV = (x1 ⊕ IV)⊕ IV = x1 (3.8)

For all subsequent blocks, we have:

d(yi) = e−1
k (yi)⊕ yi−1 = e−1

k (ek(xi ⊕ yi−1))⊕ yi−1 = (xi ⊕ yi−1)⊕ yi−1 = xi (3.9)

Therefore can choose a new IV every time we encrypt. If we encrypt a message with
the first IV and perform a second encryption of the same message with a different IV,
the two resulting ciphertexts look entirely unrelated.

38

3.2. Block Cipher Modes of Operation

3.2.3 Counter Mode (CTR)

Therefore exists the possibility to use a block cipher as a stream cipher; this is the
case of the Counter Mode, which computes the Keystream on the fly. Also, the
block cipher inputs are a counter with a different value every time the block cipher
computes a new Key. Figure 3.10 shows the encryption and decryption process of the
Counter Mode.

The user should not use the same input value in this operation mode. Otherwise, if
an attacker has access to one of the encrypted ciphertexts with the same inputs, it is
possible to compute the Keystream and immediately decrypt the other ciphertext. In
practice, the use of AES allows inputs of 128-bit. So, the user should first choose a
nonce (number used only once) with a length of 96 bits. The counter value uses the
remaining 32-bit with zeroes. The counter increments by one during encryption, but
the IV remains static. This example can encrypt up to 232 block without choosing a
new IV.

ek(IV ||ctr)

IV ctr

k

xi yi

Figure 3.10: Counter mode general diagram

The following functions describe the Counter Mode: the block cipher encryption e()
with size b, and xi as the input plaintext and yi the ciphertext both with length b,
the concatenation of the IV and the CTRi is denoted by (IV ∥ CTRi).

Encryption : yi = ek(IV ∥ CTRi)⊕ xi, i ≥ 1

Decryption : xi = ek(IV ∥ CTRi)⊕ yi, i ≥ 1

Alice can generate the public value of the concatenation (IV ∥ CTR1) and then send
it to Bob with the first ciphertext. The counter used in practice uses integer values

39

3.3. Message Authentication Codes (MACs)

but can have more complex values. Like ECB, this operation mode has the advantage
of parallelization with more encryption units deployed.

3.3 Message Authentication Codes (MACs)

The Message Authentication Code (MAC), also known as cryptographic checksums
or Keyed hash functions, is widely used in cryptography, these functions provide
security services such as message integrity and authentication, but they do not provide
non-repudiation. Therefore, MACs are much faster than digital signatures used in
public key cryptography [98].

The MACs create an authentication tag and append it to a message, which dif-
fers from digital signatures used in Public Key Cryptography. Instead, MACs use
Symmetric Key k to generate and verify the tag t.

m = MACk(x) (3.10)

Figure 3.11 illustrates the MAC calculation and verification. MAC is used in practice
because Alice and Bob want to detect manipulations of the message x in transit. For
this, both parties share a secret Key, k, and Bob computes the MAC as a function of
the message and sends both message and tag to Alice. Alice receives the message
and the tag t and proceeds to verify both with the MAC function using the same
steps by Bob.

MACk(x)

Bob

x

k

t

(x, t)

MACk(x)

Alice

x

k

t′

Verify : t = t′ ?

Figure 3.11: Message authentication codes general diagram and verification

The MAC verification will fail if there are any alterations in the message x; this is
the message integrity security service. Furthermore, Alice is now sure since Bob is

40

3.3. Message Authentication Codes (MACs)

the originator of the message and only he has the secret Key. If an adversary, Eva,
intercepts the message and makes changes, those changes rice on an invalid tag t′,
and the verification fails. The following list shows some properties of the MACs.

• Cryptographic checksum: generates a cryptographic tag t for a given message.

• Symmetric: parties share a secret key k to sign and verify the tag t and message
x.

• Arbitrary message size: MAC functions allow messages of arbitrary length.

• Fixed output: generate a fixed-size authentication tag.

• Message integrity: can detect any message manipulations.

• Message authentication: the receiving party knows the message’s origin.

In practice, the construction of MAC has two different ways, the first from block
ciphers and the second from hash functions. In addition, Transport Layer Security
(TLS) protocol in web applications to secure communications and IPsec protocol in
network applications.

All hash-based MACs always hash the Key k together with the message, allow-
ing various possible ways to perform HMAC, first one:

m = MACk(x) = h(k ∥ x) (3.11)

Also called the secret prefix MAC, and second:

m = MACk(x) = h(x ∥ k) (3.12)

Known as the secret suffix MAC, concatenation denoted by “∥” in both cases means
the concatenation of the message x and the key k. The following step is to process
the resultant string. Due to the properties of modern hash functions, both approaches
are cryptographic checksums.

3.3.1 HMAC

Figure 3.12 shows this scheme proposed in work [12]. The first step begins by
expending Key k with zeroes on the left so that the result k+ has b bits length as the
input block. Next, the expanded Key is XORed with the inner pad, which has the
bit pattern.

41

3.3. Message Authentication Codes (MACs)

Si x1 x2 xn−1 xn

k+ ipad

hIV

h(Si ∥ x)Soopad

k+

hIV HMACk(x)

Figure 3.12: HMAC diagram

ipad = 0x36, 0x36, ..., 0x36 (3.13)

The output from the XOR goes to the first hash function. Also, the message blocks
(x1, x2, ..., xn), the second hash process the padded Key k with the output of the first
Hash, and once again, the Key k gets expanded with zeroes and XORed with the
outer pad:

opad = 0x5C, 0x5C, ..., 0x5C (3.14)

The input for the outer Hash comes from the result of the XOR operation, and
the other is from the inner Hash. Finally, the output from the outer Hash is the
Message authentication code of message x, and the following formula shows the
general construction of the HMAC.

HMACk(x) = h[(k+ ⊕ opad) ∥ h[(k+ ⊕ ipad) ∥ x]]. (3.15)

The output length becomes more extensive than the b width. For example, the hash
function SHA-1 produces an output of 160-bit length and accepts an input width
of b = 512 − bit. Therefore, the message x can have an arbitrary length and get
processed by the inner hash function; meanwhile, the outer Hash has to process two
blocks, as shown in the figure 3.12; thus, the HMAC construction has overhead and
low speed.

42

3.3. Message Authentication Codes (MACs)

3.3.2 MAC from block ciphers

One widespread implementation of MAC using block cipher is the use of AES block
cipher, but it is possible to use any block cipher. Figure 3.13 shows the primary
setting for using a block cipher in a MAC application.

Enc

yi−1 y′i−1

Enc
m

y′i−1

k

x1 . . . xn

IV

yi−1 y′i−1

IV

m′

k

(m, (x1, . . . , xn))

m = yn = MACk(x)

V erify : m = m′ ?

Figure 3.13: MAC implementation based on CBC operation mode

The MAC generation starts by dividing the message x into blocks xi, with i = 1, ..., n,
a secret Key k and IV are needed, then proceed to process the first iteration of the
MAC algorithm as:

y1 = ek(x1 ⊕ IV) (3.16)

With IV as a random value, for all following message blocks, we use the actual xi

and the previous output yi−1 as input for the encryption algorithm:

yi = ek(xi ⊕ yi−1) (3.17)

Finally, when processing the last block, the MAC output is yn in the last round:

m = MACk(x) = yn (3.18)

Moreover, all (yi, . . . , yn−1) are internal values used to compute the final MAC.

43

3.5. Lightweight Cryptography

3.3.3 MAC Verification

To verify the MAC produced, the user needs to repeat the steps used to generate the
MAC. The verification compares the computed MAC m′ with the received MAC m.
If both are equal, m = m′ means the correct verification of the message; if m ̸= m′

means an alteration of the message or MAC value m during the transmission.

3.4 Hash Functions

Also known as a (digest), the HASH function is widely used in various protocols and
computes a digest from an input message; the digest has a fixed-length bit-string.
However, the digest produces a unique representation of a message like a fingerprint,
i.e., no other message has the same fingerprint. Therefore this kind of cryptographic
function has primary use in Message authentication Codes MACs and other protocols
of Public Key Cryptography.

Like any other function in cryptography, the HASH must fulfill specific security
characteristics like the three shown in the following list.

• Preimage Resistance: given an input hash, h is infeasible to find the message
x, h = H(x), i.e., given a fingerprint, we cannot make the inverse operation
x = H−1(h), this means the Hash is a one-way function.

• Second Preimage Resistance: given a message x1 and its hash h1 is infeasible
to find another message x2 such that their hashes are equal H(x1) = H(x2).

• Collision Resistance: it means that it should not be possible to find two different
messages, x1 and x2, with the same Hash, x1 ̸= x2 then h(x1) = h(x2), this is
the most challenging property to achieve.

3.5 Lightweight Cryptography

It is a subfield of cryptography that provides cryptographic solutions tailored for
constrained resource devices like RFID cards, wireless sensor networks, and smart
cards. However, shifting from desktop computers to small devices brings many new
challenges in security and privacy because it is difficult to apply conventional crypto-
graphic standards to constrained-resource devices.

44

3.5. Lightweight Cryptography

Many cryptography standards have a tradeoff between the security provided, perfor-
mance, and resources required and optimized for desktop and server environments.
These requirements make them complex and sometimes impossible to implement in
constrained resource devices. When they are suitable, they have poor performance.
There exists an extensive investigation made by the academic community focused on
lightweight cryptography, including efficient hardware implementations (chapter 5
presents some hardware implementations of NIST lightweight contest), software imple-
mentations, and implement efficient conventional cryptographic standards, therefore
the design and analysis of lightweight algorithms and protocols.

NIST begins the LWC project to evaluate the performance of current cryptography
algorithms approved by NIST on constrained resource devices to understand the need
for dedicated LWC standards.

LWC primarily focuses on the highly constrained devices found in RFID tags, wireless
sensor networks (WSNs), and the Internet of Things (IoT); those devices use 8-bit,
16-bit, and 32-bit microcontrollers. Each has an instruction set with small, simple
instructions; this results in using many clock cycles when executing a cryptography
algorithm.

3.5.1 Performance

Cryptography algorithms have a tradeoff between performance and resources required
for a determined security level. The performance measure considers the resources
required for hardware implementation, gate area, gate equivalents, or logic blocks.
In software, this directly affects the consumption of registers used, RAM, and ROM
memory.

The most relevant metrics in constrained devices are power and energy consumption,
and power has particular relevance in devices that harvest power from their surround-
ings, usually electromagnetic fields. Energy becomes essential to battery-operated
devices with a fixed amount of energy stored. Sometimes, the batteries are difficult
and impossible to recharge or replace.

Latency focuses on real-time applications, like automotive, where the response of
critical components like car control is required. The latency is the time required
since the input enters the circuit and gets an output, i.e., the time to process some data.

45

3.5. Lightweight Cryptography

Throughput is the production rate of new outputs, unlike conventional algorithms in
LWC ; this is not a goal, but moderate rates are still required.

3.5.2 Lightweight primitives

Several proposals for LWC primitives include block ciphers, hash functions, message
authentication codes, and stream ciphers. Although they differ from conventional
algorithms and focus only on LWC applications, this may constrain an attacker’s
power.

3.5.3 Lightweight Block ciphers

The block ciphers must achieve performance advantages over AES-128 when imple-
mented on constrained devices and achieve the following characteristics.

• Smaller block sizes: the block ciphers can use a smaller block size than
AES-128, for example, 64-bit or 80-bit. Also, a smaller block size limits the
maximum amount of plaintext block encryption.

• Smaller Key sizes: Present [20] use a small key size of 96 bits.

• Simpler rounds: the operations and components used in LWC usually become
simpler than those used in conventional block ciphers. For example, using
smaller to 8-bit S-boxes presents an advantage in saving the area used by the
implementation.

• Minimal implementations: several operation modes and protocols require
only the encryption function of a block cipher like the COmet [114] comet
presented in chapter 5 and only require the implementation of one operation
(encryption or decryption). This lead to implementing only the required func-
tions of a block cipher and may require fewer resources than the entire block
cipher implementation.

3.5.4 Lightweight MACs

As presented earlier in this chapter, a message authentication code MAC generates a
tag from a message and a secret Key. The Key and Tag both needed to verify the
authenticity and integrity of the message. The size of the tag has 64-bit for typical
applications.

46

3.6. Authenticated encryption with associated data

NIST has initiated the LWC standardization process to evaluate lightweight crypto-
graphic algorithms suitable for constrained environments. Next, table 3.2 shows the
timeline of the whole standardization process.

Date Event
July 2015 NIST first LWC workshop

October 2016 NIST second LWC workshop
March 2017 Publication of NIST IR8114 report on LWC [84]
April 2017 Profiles for LWC standardization process (draft)

August 2018
Federal Register Notice, Requirements, and evaluation

criteria for the LWC process
February 2019 Submission deadline
April 2019 Anouncement of the first-round candidates
August 2019 Anouncement of the second-round candidates

October 2019
Status report on the first round of LWC standardization

process NIST IR8268 [124]
November 2019 Third NIST LWC workshop
September 2020 Deadline for optional status updates
October 2020 Fourth LWC workshop (virtual)
March 2021 Announcement of the finalists

July 2021
Status report on the second round of the LWC standardization process,

NIST IR8369 [115]
May 2022 Fifth LWC workshop (virtual)

Table 3.2: NIST Lightweight Cryptography Standardization process timeline

3.6 Authenticated encryption with associated data

An authenticated cipher or an authenticated-encryption scheme encrypts and authen-
ticates messages using a public nonce and a Secret Key k. The sender and receiver
previously share the secret Key k. They can use different combinations of block
ciphers, stream ciphers, message authentication codes MACs, and Hash functions.

Also, an authenticated encryption with associated data (AEAD) algorithm has
four-byte strings and produces one-byte string output. The four inputs can have
variable lengths: plaintext, associated data, a fixed-length nonce, and a fixed-length
Secret Key.

47

3.7. Hardware API for Lightweight Cryptography

This scheme can recover plaintext from a valid ciphertext, i.e., the ciphertext corre-
sponds to the plaintext given associated data (AD), nonce, and Key, and only returns
the plaintext if the verification process of the ciphertext is valid. This algorithm
ensures two security services, confidentiality, and integrity of the messages. It expects
these algorithms to maintain security while the nonce remains unique (never used
more than once with the same key).

Therefore, AEAD algorithms should use a key of at least 128-bit length, a nonce of
at least 96-bit, and a tag of at least 64-bits. Also, a limit exists for only processing
inputs smaller than (250 − 1) bytes.

3.7 Hardware API for Lightweight Cryptography

The cryptographic engineering research group of George Mason University 1 created
a hardware Application Programming Interface (API) to help hardware developers
create a homogeneous interface for implementations for lightweight authenticated
ciphers, hash functions, and cores with both functionalities. The API meets all
requirements of all candidates submitted to the NIST LWC standardization contest.

A standard API for all hardware implementations aims to:

• Fair benchmarking between different implementations of the same algorithm.

• Compatibility between implementations of the same algorithm.

• Creation of a standard development package to simplify and accelerate the
design process.

Exists a previous attempt to standardize a hardware API [70] took place during the
SHA-3 contest [50, 58]. They used the interface proposed for the group from George
Mason University (GMU) [50, 58, 51]. This interface and protocol were adopted
later in the LWC contest. Also, in the subsequent Competition for Authenticated
Encryption: Security, Applicability, and Robustness contest (CAESAR), the API was
used, but the CAESAR committee made all decisions.

A recommended criterion is listed below in the requirements the API needs.

1https://cryptography.gmu.edu/athena/

48

https://cryptography.gmu.edu/athena/

3.7. Hardware API for Lightweight Cryptography

• Encryption/Decryption: This implementation must be into the core, and
only one can execute simultaneously. This requirement shows the ability to
share resources between decryption and encryption.

• Hash: The algorithm has this option. The developer has to implement two
versions of the LWC core performing encryption. Decryption and hashing. And
encryption and decryption only.

• Key Scheduling: The LWC core must have this implementation inside because
each variant of the scheduling unit has its requirements specific to each algorithm.

• Incomplete Blocks: The LWC core can handle incomplete blocks, whether
ciphertext, plaintext, associated data, or Hash messages.

• Padding: The hardware implementation has to deal with padding directly.

The API also has its maximum supported input sizes of Associated Data (AD),
plaintext, ciphertext, and hash message; the following lists the maximum sizes for
each.

• [216 − 1] default.

• [232 − 1] used for compatibility with CAESAR API.

• [250 − 1] minimum limit established by NIST for algorithms submitted to the
LWC standardization contest.

The core supports ciphertext sizes of at least 216−1 by default, and each implementer
can eliminate the size limits (with hard effort) on the:

1. Maximum clock frequency.

2. The total number of clock cycles for short messages.

3. Throughput for long messages.

The designers must meet all requirements presented in the specification of the
Hardware API for LWC (LWC HW implementers Guide [70]). Therefore the developer
must ensure his code is in Hardware Description Language (HDL), ensuring its
portability by various tools. Figure 3.141 shows the top-level block diagram of the
LWC core. This architecture helps the designers understand all inputs and outputs

49

3.7. Hardware API for Lightweight Cryptography

Figure 3.14: Architecture diagram for single pass core used in AEAD by GMU.
50

3.7. Hardware API for Lightweight Cryptography

the algorithm needs to implement. The diagram shows four units: Pre-processor,
CryptoCore, Header FIFO, and PostProcessor.
The preprocessor handles the following tasks:

• Parsing segment headers.

• Load Keys.

• Parsing input data directly to the CyrptoCore, also incomplete blocks.

• Keep track of the data left to process.

The PostProcessor handles:

1. Clears portion of the output (words) of ciphertext or plaintext with zeroes.

2. Set the header for output data blocks.

3. Set status block with the result of authentication.

4. Header FIFO: A FiFo of 4× w that stores all segment headers needed at the
output.

The official Athena API website1 has complete documentation for All features,
characteristics, and requirements presented here. Therefore extra information is
available to get a comprehensive understanding of the functionalities of this API, and
even there is extra documentation focused on implementation against side-channel
attacks focused on protected implementations.

1Image borrowed from LWC HW implementers Guide version 2.0
1https://cryptography.gmu.edu/athena/

51

https://cryptography.gmu.edu/athena/

3.8. Public Key Cryptography

3.8 Public Key Cryptography

As another application of cryptography, Public Key Cryptography focuses on provid-
ing different security services that Symmetric Key can not handle. The main goal is
to share a secret between two or more parties, even if they have never met, and if the
channel used is insecure, secure data transmission becomes available for all parties in
the channel [55].

The advantage of symmetric cryptography is its high efficiency, but it faces some
problems; the main problem here is the (key distribution problem), and it requires
a channel with both authentication and secret for the distribution of keys. The
second problem is (key management) because in a party with N participants, each
participant has to store different keying material with each other N entities, and each
of them has to maintain keying material with the other (N − 1) participants.

In contrast to Symmetric-key, Public-key cryptography requires the participants
to exchange authentic keying material but not necessarily secret. Each participant
chose a key pair (e, d) with e as the Public key and Private key d related to e (the
private key should remain secret). Both keys have the property that becomes infeasi-
ble to find the private key just from knowing the public key of someone.

Public-key cryptography offers the following security services:

• Confidentiality: Bob wants to communicate with Alice. First, Bob must
obtain Alice’s public Key eA and use it in an encryption function ENC from any
public-key encryption scheme. To compute the ciphertext c = ENCeA(m) and
transmits c to Alice, who uses the decryption function DEC and her private
Key dA to recover the plaintext m = DECdA(c). The presumption is that an
adversary with knowledge of eA but no dA cannot decrypt the ciphertext c.
This example shows no need for an established secret between parties. Also,
the only requirement is for Bob to obtain an authentic copy of eA. Otherwise,
Bob would encrypt the plaintext m using the Public Key of Eva eE pretending
to be Alice, and then Eve can recover the message encrypted by Bob.

• Non-repudiation: In this scenario, Bob uses a signature generation algorithm,
SIGN, and his private Key dB to compute a signature of a message m with
the signature algorithm s = SIGNdB(m). Alice will receive both the message
m and the signature s from Bob; now, Alice already has an authentic copy of
Bob’s public Key eB. She can use the same signature algorithm to verify the

52

3.9. RSA

signature s. She can assure from the message m and the Private Key dB that
Bob sent that message and his signature. Therefore, a third party can verify
the signature s and message m if Bob denies having signed the message m.

Unlike a handwritten signature, Bob’s signature s depends on the message m, which
prevents forging a signature only from s to a different message m′ and claims that
Bob’s signed message m′.

Using the previous services is how Public-key cryptography solves the three problems.
Symmetric-key cryptography can not solve Key distribution, Key management, and
non-repudiation. Therefore, all Public-key cryptography algorithms have lower per-
formance than Symmetric-Key cryptography algorithms.

Summarizing in Public-key cryptography, each party selects a Key pair so that
the problem of deriving the Private Key from the public Key becomes a challeng-
ing problem that is believed intractable. Public-key schemes use Numeric-theoretic
problems as a base for their security, and some schemes are:

1. RSA public-key encryption and signature, whose complex relays in the integer
factorization problem.

2. The discrete logarithm problem in elliptic curves cryptographic schemes.

3.9 RSA

It uses the algorithm presented in [55] the algorithm 9 to generate a Key pair. The
Public Key consists of a pair of integers (n, e) with the modulus (n) as a product of
two random primes (p, q) with the same length in bits, here the encryption exponent
e satisfies

1 < e < ϕ (3.19)

and

gcd(e, ϕ) = 1 (3.20)

with

ϕ = (p− 1)(q − 1) (3.21)

The private key d satisfies

1 < d < ϕ (3.22)

53

3.9. RSA

and

e× d ≡ 1(modulo ϕ). (3.23)

The security remains in the fact that determinate d given a public-key (e, n) has
difficulty in determinating the factors (p, q) from n.

Algorithm 9 Key generation in RSA.

Require: l as the length of the key pair.
Ensure: Key pair (d, e) and public parameter n.
1: Select two random primes p, q with same length (l/2).
2: Compute n, ϕ with n = p× q, and ϕ = (p− 1)(q − 1).
3: Randomly select e with 1 < e < ϕ, and gcd(e, ϕ) = 1 .
4: Compute d with 1 < d < ϕ, and ed ≡ 1(mod ϕ).
5: Return (e, d, n).

3.9.1 RSA encryption scheme

Both schemes of encryption and decryption use the following fact

med ≡ m(modulo n) (3.24)

for any integer m. Algorithms 10 and 11 in [55, 86] show Both basic Public-key
procedures of RSA encryption and decryption. The decryption scheme has the
following feature

cd ≡ (me)d ≡ m(modulo n) (3.25)

as shown in the equation above 3.25. The security of this scheme relies on the difficulty
of calculating the plaintext m from the ciphertext c = me modulo n from the public
parameters n and e. The challenge is to find the eth roots (modulo n), and suppose
it is as tricky as the integer factorization problem.

Algorithm 10 Simple RSA encryption.

Require: Plaintext m ∈ [0, n− 1] and Public Key pair (e, n).
Ensure: The c ciphertext.
1: Compute c = me modulo n.
2: Return c.

54

3.9. RSA

Algorithm 11 Simple RSA decryption.

Require: Ciphertext c, Public Key pair (e, n) and private key d.
Ensure: The m plaintext.
1: Compute m = cd modulo n.
2: Return m.

3.9.2 RSA signature scheme

In the signature and verification algorithms [55, 86] presented in 12 and 13, the sender
of a message m has to obtain the digest with a hash function h = H(m); here, h
serves as the fingerprint of message m. Now the signer can use his private Key d to
compute the eth root s of h modulo n; s = hd modulo n.

The signer can transmit the message m and the signature s to someone verify-
ing the signature. Nevertheless, first, the receiver has to calculate the hash h = H(m)
and obtains h′ = se modulo n from s, and he accepts the signature as valid for m
provided that h = h′. In this scheme, security relies on the capacity of a forger to
calculate eth roots modulo n without knowing the private Key d from the transceiver.

Algorithm 12 Simple RSA signature.

Require: plaintext m, Public Key pair (e, n) and private key d.
Ensure: The signature s.
1: Compute Hash h = H(m).
2: Compute signature s = hd modulo n.
3: Return s.

Algorithm 13 Simple RSA signature verification.

Require: Signature s, Public Key pair (e, n) and plaintext m.
Ensure: The signature accept or rejected.
1: Compute Hash h = H(m).
2: Compute h′ = se modulo n.
3: if h = h′ then
4: Valid signature.
5: else
6: Invalid signature.
7: end if

55

3.10. Elliptic curve scheme

The most expensive operation in RSA is modular exponentiation, i.e., calculate

me modulo n (3.26)

for encryption and
cd modulo n (3.27)

for decryption. For practical purposes, both encryption exponents are small, e.g.,
e = 3 or e = 216 + 1, and the private key d has the same length as n.

3.10 Elliptic curve scheme

To understand this topic, we present some concepts from group theory and introduce
their generalization. Therefore we look at elliptic curves as groups and present their
utilization in discrete logarithm implementations [55].

3.10.1 Groups

An abelian group (G, ·) comprises a set G with an operation binary called ∗ : G×G→
G satisfying the properties:

1. Associativity: a · (b · c) = (a · b) · c ∀ a, b, c ∈ G.

2. Identity: ∃ e ∈ G such that a · e = e · a = a, ∀ a ∈ G.

3. Inverses: for each a ∈ G,∃ a−1 ∈ G, named inverse of a such that a · a−1 =
a−1 · a = e.

4. Conmutativity: a · b = b · a ∀ a, b ∈ G.

In a group operation (+) addition or multiplication (·), the first operation, called
additive group, has an identity element known as 0, and the inverse of an element
a is called −a. For multiplication, the group is known as a multiplicative group. It
also has an identity element denoted by 1, and the inverse of an element a becomes
denoted by a−1. Finally, the group becomes a finite field G as a finite set, and the
number of elements in G is known as the order of G.

To illustrate, suppose a prime number p, and let Fp = 0, 1, 2, 3, ..., p− 1 as the
set of integers modulo p. Hence (Fp,+) with + as the addition of integers modulo p,
as a finite additive group of order p and with 0 as the identity element. Moreover,

56

3.10. Elliptic curve scheme

(F∗
p, ·) also, F∗

p denotes all the nonzero elements in Fp and the operation (·) as the
multiplication of integers modulo p, as the multiplicative group with order p− 1 and
1 as the identity element. Therefore the triplet (Fp,+, ·) is a finite field known as Fp.

A finite multiplicative group G of order n and g in G, the minor positive inte-
ger t such that gt = 1 known as the order of g, and always exists a t as a divisor
of n. The set ⟨g⟩ = gi : 0 ≤ i ≤ t− 1 for all powers of g is itself a group under the
same operation as G, known as a cyclic subgroup of G generated by g. For the
addition, the order of g ∈ G is the minor positive divisor t of n such that tg = 0,
and ⟨g⟩ = ig : 0 ≤ i ≤ t− 1. Hence, tg is an element acquired by adding t times g.
Therefore, G has a g element of order n, G is a cyclic group, and g is a generator of
G.

The problems based on Discrete Logarithm (DL), the parameters (p, q, g) as presented
at the beginning of the RSA section, the multiplicative group (F∗

p, ·) has an order of
p− 1 and is a cyclic group. Additionally, ⟨g⟩ is a cyclic subgroup with order q.

3.10.2 Generalization of discrete logarithm problem

Suppose a multiplicative cyclic group (G, ·) of order n and generator g. the domain
parameters g and n, the Private Key a random integer x from the interval [1, n− 1],
the Public Key y = gx. Then, the attacker has to obtain x given g, n, and y, known
as the discrete logarithm problem in G.

A Discrete Logarithm (DL) system needs fast algorithms to compute group op-
erations for efficiency. Also, this problem requires intractability [86].

If there are two cyclic groups with the same order n, they essentially are the same;
this means they have the same structure but can write the elements differently. Each
different kind of representation of group results in varying speeds in algorithms for
computing a group operation for solving the DL problem [55].

3.10.3 Elliptic curve groups

With p a prime number and Fp, the finite field in integers modulo p and E and elliptic
curve over Fp defined with the equation of the form

y2 = x3 + ax+ b, (3.28)

57

3.10. Elliptic curve scheme

where a, b ∈ Fp satisfying 4a3 + 27b2 ̸= 0(modulo p). The pair (x, y), with x, y ∈ Fp

as a point in the curve if (x, y) satisfies the equation above [34, 55]. The point at
infinity, denoted by∞, also is in the curve. Therefore, we denote all points on E with
E(Fp). As an example, the finite field F7 has an Elliptic curve E with the following
equation 3.29

y2 = x3 + 2x+ 4, (3.29)

then all the points of E are

E(F7) =∞, (0, 2), (0, 5), (1, 0), (2, 3), (2, 4), (3, 3), (3, 4), (6, 1), (, 6,).

Therefore, knowing the points is possible to perform arithmetic operations like addition,
subtraction, multiplications, and inversion in Fp with the respective coordinates
x1, y1, x2, y2, and with the use of ∞ as identity in the abelian group.

3.10.4 Key generation in elliptic curves

With an elliptic curve, defining E over a finite field Fp, and P a point in E(Fp), and
P has prime order n, this generates a cyclic subgroup E(Fp) generated by P

⟨P ⟩ =∞, P, 2P, 3P, ..., (n− 1)P . (3.30)

The public domain parameters are the prime p, the elliptic curve E equation, and
the point P of order n. In addition, the integer d is selected uniformly random from
the interval [1, n− 1] and used as the Private Key. Finally, it computes the Public
Key as Q = dP . Furthermore, the discrete logarithm problem relies on determining
d with the knowledge of the public parameters Q and the domain parameters E,P
as a point in the curve E, and the prime p. The algorithm 14 shows the Key pair
generation in a generic elliptic curve scheme.

Algorithm 14 Simple Key generation on elliptic curves.

Require: Domain parameters (P,E, p, n).
Ensure: Private and public Key (d,Q).
1: Uniformly random select d ∈R [1, n− 1].
2: Compute public key Q = d× P .
3: Return (d,Q).

3.10.5 Encryption scheme with elliptic curves

Algorithms 15 and 16 show the procedures used in encryption and decryption,
respectively [86, 34, 55]. For example, Bob wants to send a message to Alice. The

58

3.11. Summary

first step consists of representing the message m as a point M in the elliptic curve
E; then, the message gets encrypted by adding it to kQA with k, a selected random
integer, and QA as Alice’s Public Key. Now Bob transmits the points C1 ≡ kP and
C2 = M + kQA to Alice who use her Private Key dA to compute

dAC1 = dA(kP) = k(dAP) = kQA
) (3.31)

and recovers M = C2 − kQA. If an Eavesdropper Eve wants to recover the message
M needs to compute kQA from the domain parameters, QA and C1 = kP , we can
say that this problem is the analog to factorization problem in RSA.

Algorithm 15 Encryption “ElGamal” in elliptic curves.

Require: Domain parameters (P,E, p, n), public key Q and plaintext m.
Ensure: Ciphertext (C1, C2).
1: Convert m as the point M ∈ E(Fp).
2: Choose k ∈R [1, n− 1].
3: Compute C1 = kP and C2 = M + kQ.
4: Return (C1, C2).

Algorithm 16 Decryption “ElGamal” in elliptic curves.

Require: Domain parameters (P,E, p, n), private key d and ciphertext (C1, C2).
Ensure: Plaintext m.
1: Compute M = C2 − dC1.
2: Extract m from M .
3: Return m.

3.11 Summary

This chapter shows the two perspectives on cryptography, symmetric and public. Both
have advantages and disadvantages depending on the applications and the security
services required by the application’s environment. Therefore, in later chapters,
we use the theory presented here to develop new hardware applications from both
cryptography perspectives.

59

Chapter 4

Field Programmable Gate Array
(FPGA) and Advance RISC
Machine (ARM) technologies

In this chapter, the architecture of both FPGA (Field Programmable Gate Arrays)
and ARM (Advance RISC Machine) microcontrollers is presented; also their archi-
tecture, different kinds of devices used in the projects, and their characteristics,
architectures, resources as well as some particular components used by some of the
architectures designed by us.

The chapter has two parts; the first focuses on FPGA devices and families with
particular attention to their characteristics and internal components like DSPs (Digi-
tal Signal Processors). The second part consists of the general architecture of the
32-bit ARM microcontroller M4, its general purpose registers, and the crypto-core
with some of its characteristics like block cipher capability, HASH functions, and
MAC (Message Authentication Code) compatibility.

The technology behind reconfigurable hardware looks like a computer with its ar-
chitecture specialized in implementing any algorithm in a hardware fashion. The
main objective of reconfigurable hardware is the possibility of combining software’s
flexibility with the performance of hardware. These machines have several fixed
circuitry assigned as needed since the designed architecture could need more resources
or just a few as it may apply.

A difference between a general-purpose processor is the low performance the software

61

4.1. Field Programmable Gate Arrays (FPGAs)

can achieve because the microprocessors and microcontrollers have fixed circuitry
and data path that impact the performance. Usually have higher speeds but low
performance compared with the FPGAs; these devices can change their behavior
with the advantage of only loading a new design to the device.

Today, different applications use FPGA technology to deploy and develop proto-
types faster. In addition, they are also used as components in embedded systems in
industrial applications [106], video, image, and sound processing [110, 77, 99, 123],
security network and their infrastructure [68], and cryptography [67, 59, 78]. This
last topic is the main objective of this thesis work.

4.1 Field Programmable Gate Arrays (FPGAs)

In a general way, a Field Programmable Gate Array consists of a large number of
interconnections between the different resources inside the FPGA. Modern versions
of these devices have many embedded components like memory blocks, digital signal
processors, and more, but the capability to interconnect those devices is the primary
resource. They contain logic elements that perform logic and arithmetic operations,
and the interconnections route the connections among blocks to send and receive
data to process.

4.1.1 Logic elements

The truth table is the most common way to represent a circuit; they can model
almost any kind of circuit, whatever it could be. In addition, they can represent
digital systems relating the inputs with the outputs [108]. Those tables are Boolean
functions defined with the letter f as the relation of the possible outputs associated
with all possible inputs of a digital system [24]. We can say that these tables are the
heart of an FPGA.

The look-up tables (LUTs) implement truth tables in a hardware fashion; they
usually consist of N inputs and only one output, i.e., they present only 22

n
possible

boolean functions of N variable inputs. However, the FPGA can use more LUTs
connected as a cascade to implement functions with more than N inputs. For example,
the LUTs implemented in the Xilinx 7-family have six input LUTs [131], but in earlier
families like 6, 5, 4, and 3, the LUTs used to have only four available inputs. Figure
4.1 shows two ways used to implement a four input and one output LUTs.

62

4.1. Field Programmable Gate Arrays (FPGAs)

24 mem 24 × 1

ctrl

24

4
4

1-bit output SRAM 1-bit output

Figure 4.1: Two different four input LUTs

LUTs have internally grouped configurable logic blocks (CLBs) as shown in [33], and
their organization varies among all families and FPGA manufacturers. However, in
this thesis work, Xilinx is the only brand used, and the name used for their elementary
logic block is Slice. The logic blocks usually consist of multiple components like
multiplexers, extra logic components, registers, and carry inputs. Figure 4.2 shows
the diagram of a four-input LUT with XOR at the output and a flip-flop register.

4 in LUT FF

cin

D Q

Figure 4.2: LUT with register and XOR

The interconnection of each logic block to develop highly complex systems is a must
in the FPGA. Those components are configurable and usually have a matrix struc-
ture with multiple tracks vertically and horizontally. There are three ways used to
interconnect logic blocks, and figure 4.3 shows the island placement interconnection
on FPGAs

63

4.1. Field Programmable Gate Arrays (FPGAs)

CLB CLB CLB

CLB CLB CLB

CLB CLB CLB

Figure 4.3: FPGA Island connection between CLBs

Nearest neighbor: figure 4.4 shows the simplest structure used to interconnect the
logic blocks; a two-way connection with the nearest neighbor in each direction, north,
south, east, and west, and there is no kind of elements to bypass any logic block, each
signal go through each logic block. This last aspect directly impacts the performance
and increases the delay.

CLB CLB CLB

CLB CLB CLB

CLB CLB CLB

Figure 4.4: Nearest neighbor structure

Also, as each CLB interconnects with another in any direction imposes a limitation
on the capabilities to interact directly with other CLB in other neighborhoods; this
disadvantage allows them to interact with closer CLB in the same area directly.

Segmented: figure 4.5 shows the segmented structure; here, the component in-

64

4.1. Field Programmable Gate Arrays (FPGAs)

terconnections are:

CBox Switch Box

CLB
CBox

CBox Switch Box

CLB
CBox

CBox Switch Box

CLB
CBox

CBox Switch Box

CLB
CBox

CBox Switch Box

CLB
CBox

CBox Switch Box

CLB
CBox

CBox Switch Box

CLB
CBox

CBox Switch Box

CLB
CBox

CBox Switch Box

CLB
CBox

Figure 4.5: Logic blocks in an island fashion with connection block and switch boxes
in the same architecture

• Tracks: The buses have vertical and horizontal tracks connected directly
through connection blocks (CBs). The cross formed by vertical and horizontal
tracks consists of a switch box used to interconnect the CBs with them.

• Connection Blocks: They handle inputs and outputs from the logic blocks,
connecting each of them to several tracks. This kind of connection allows
selecting which link is active.

• Switch Boxes: This is a way to connect logic blocks between layout routes
between vertical and horizontal crossings. If a connection is needed, the pro-
gramming of switch boxes creates a new path to send/receive data between
logic blocks. Figure 4.6 shows a CLB with come programmable connections
used to interconnect the CLB with its neighbors, and some works focused on
switch box design are [43, 44].

65

4.1. Field Programmable Gate Arrays (FPGAs)

CLB

Programmable
connection

Figure 4.6: Programmable connection block

The segmented architecture offers excellent flexibility and performance, allowing the
connection of CLBs in this architecture requires all signals to go through switch
and connection boxes, increasing the delay in the circuit design. However, in some
scenarios, this has the advantage of allowing a direct connection between components.
Figure 4.7 shows the hybrid connection architecture.

CBox Switch Box

CLB
CBox

CBox Switch Box

CLB
CBox

CBox Switch Box

CLB
CBox

CBox Switch Box

CLB
CBox

Figure 4.7: Hybrid structure of nearest neighbor and segmented structure

Hierarchical

In some FPGA architectures, the logic blocks have a cluster arrangement hierarchically.
Therefore, the appropriate use of these blocks means an improvement in reducing
the delays and enhancing signal routing. Thus, the essential components of this kind
of architecture look like segmented architecture. Figure 4.8 shows the hierarchical
architecture with up to 64 Logic blocks. This requires fewer switches and has faster
logic compared with a segmented model. Some studies about this structure are
[79, 39].

66

4.2. Digital Signal Processor (DSP)

LB LB

LB LB

LB LB

LB LB

LB LB

LB LB

LB LB

LB LB

4x4 LBs 4x4 LBs

4x4 LBs 4x4 LBs

1x
1
(4)

L
ogic

B
lo
ck
s

2x
2
(16)

L
ogic

B
lo
ck
s

4x4 (64) Logic Blocks

Figure 4.8: Hierarchical structure with a cluster of logic blocks

4.2 Digital Signal Processor (DSP)

The Digital Signal Processor (DSP) is essential in modern FPGA architectures. These
devices can handle basic operations like arithmetic, logic, and also comparisons of
the inputs; thus, they can process single instruction multiple data in their internal

67

4.2. Digital Signal Processor (DSP)

architecture. We use two kinds of DSPs in the works presented in this thesis. The
first is the DSP48E1 [129] found in all Xilinx 7 families. Also, they have low power
consumption and scalable capability across families of FPGAs.

Figure 4.91 shows the DSP internal architecture. It has four input ports, A, B,
C, and D, and all of them have different bus sizes; for example, the A port has a
30-bit width while B has 18-bit width, so it is possible to can concatenate them to
use a port of 48-bit width. The D port has a 25-bit width, and the A port is used in
the pre-adder to add two operands. Finally, the C port has 48-bit width and goes
directly to the DSP’s Arithmetic Logic Unit (ALU). This component can perform
different operations using up to 48-bit width inputs.

UG369_c1_01_052109

*These signals are dedicated routing paths internal to the DSP48E1 column. They are not accessible via fabric routing resources.

X

17-Bit Shift

17-Bit Shift

0

Y

Z

1

0

0

48

48

4

48

BCIN* ACIN*

OPMODE

PCIN*

MULTSIGNIN*

PCOUT*

CARRYCASCOUT*

MULTSIGNOUT*

CREG/C Bypass/Mask

CARRYCASCIN*

CARRYIN

CARRYINSEL

A:B

ALUMODE

B

B

A

C

M

P

P
P

C

MULT
25 X 18

A

18

30

3

PATTERNDETECT

PATTERNBDETECT

CARRYOUT

4

7

48

48

30

18
P

P

5

D 25

25

INMODE

BCOUT* ACOUT*

18

30

4 1

3018

Dual B Register

Dual A, D,
and Pre-adder

Figure 4.9: DSP48E1 architecture.

Thus, the DSPs have another kind of input; these come directly from other DSPs,
making the tile arrangement of DSPs into the FPGA possible. In addition, each DSP
column has a dedicated interconnection network that allows each DSP to share data
using the ports ACIN, BCIN, CARRYIN, and PCIN to input data. Furthermore, the
ports ACOUT, BCOUT, CARRYCASCOUT, and PCOUT must send data from the
DSP interconnection network.

1Figure taken from Xilinx official documentation

68

4.2. Digital Signal Processor (DSP)

The DSP interconnection network allows the broadcast of an input or output to other
DSPs in the same network; this reduces the FPGA interconnection resources used.
Therefore the cascade interconnection is only available in the same column, and they
cannot connect to other columns directly.

The arithmetic portion of the DSP slice (DSP48E1) consists of a two’s comple-
ment multiplier of 25 × 18 bits preceded by a pre-adder of 25-bit. The pre-adder
output connects directly to the multiplier, and the output of the multiplier is con-
nected outright to one of three 48-bit data path multiplexers. Finally, the data on
the outcomes of those three multiplexers are connected to the ALU to perform any
operation required.

Here present some examples of some operations performed by the DSP slice. For
example, an addition operation, if the operands have up to 25-bit width, looks like
the following formula (A+D) = P , remembering that A has 30-bit width and D has
25-bit width, and they are connected directly to the internal pre-adder. To perform
the same process using other ports (C + CONCAT) = P with CONCAT port, the
concatenation of the A|B ports into a 48-bit width port and C a native 48-bit port,
the add ALU in the DSP slice performs the arithmetic addition.

Another essential operation for us is the multiplication performed by the inter-
nal multiplier. The asymmetric multiplier can complete only the following process
A × B = P . Therefore, the DSP slice can perform multiple operations using the
INMODE port. This port has a 6-bit and allows to DSP slice to perform up to 26

individual arithmetic logic operations.

Another advantage of these components is combining internal operations thanks
to the internal registers found in the DSP slice. The user can enable or disable de
registers to exploit the pipeline with up to 6 stages or only activate a few registers as
needed. Figure 4.10 shows the configuration windows that enable/disable the registers.

Some possible operations are:

(A×B) + C = P

(A+D)×B = P

69

4.2. Digital Signal Processor (DSP)

Figure 4.10: DSP pipeline configuration window.

(A+D)×B + C = P

The previous operations use the standard ports embedded in the DSP slice, and one
DSP can perform one or multiple individual or combined functions as required.

The operations using the dedicated interconnection networks are:

(ACIN ×B) + C = P

(A×BCIN) + C = P

(ACIN ×B) = P

Previous functions exploit the standard inputs connected directly to the FPGA
interconnection network. Using the dedicated DSP slice network, they can combine
both inputs to benefit the hybrid connection.

Therefore another embedded function in the DSP slice is the ability to achieve

70

4.2. Digital Signal Processor (DSP)

a 17-bit right shit directly on the output port P or in the input port PCIN. This
possibility allows faster data processing when multiplication over significant inputs.

The DSP slice has two possible outputs, the first goes directly to the FPGA in-
terconnection network, and the other possibility is to send the data through their
dedicated interconnection network to another DSP in the same column to perform
another arithmetic/logic operation.

4.2.1 DSP48E2

This DSP slice in the Xilinx 7 family UltraScale [132] series has these programable
logic devices that are also efficient for digital signal processing and can implement
fully parallel algorithms as their predecessors. They also have a high speed with a
smaller size in the circuit focus; this version enhances the applications’ speed and
efficiency beyond digital processing, such as dynamic bus shifters, memory address
generators, and memory-mapped I/O registers.

This enhanced DSP slice has the same standard inputs ad its predecessor, DSP48E1,
with the following differences:

• 18 x 27 two’s complement multiplier.

• Pre-adder grew to 27-bit wide.

It is possible to use a 48-bit accumulator with the possibility of up to 96-bit cascaded
cable to build large accumulators, adders, and counters.

Therefore, the ALU still has 48-bit inputs to perform the following bit-wise op-
erations: AND, OR, NOT, NAND, XOR, NOR, and XNOR. The pipeline still has
six stages with four columns of dedicated registers with the possible use in cascade to
send data to the next DSP slice in the same column.

There are some differences between the DSP48E2 and the DSP48E1 and enlisted
here:

1. the multiplier improved in the width of port A to 27-bit.

2. the A and D register now have 27-bit widths.

3. now is possible to select between A or B as input for the pre-adder

71

4.2. Digital Signal Processor (DSP)

Possible operations are:

• (A+D), or, (B +D)

• The pre-adder output can be squared.

• The ALU can now handle four inputs at the same time.

Both DSP slices use signed arithmetic, which sometimes reduces the ability to benefit
from the full use of the input width.

Figure 4.11 shows the internal components of this DSP slice and the buses used
internally. Also, figure 4.12 illustrates the DSP tile with block ram on the left side,
and this block RAM consists of two 18K bit individual blocks in the center showing
the CLBs interconnection network, and on the right side illustrates two DSP slices.

*These signals are dedicated routing paths internal to the DSP48E2 column. They are not accessible via general-purpose routing resources.

X

17-Bit Shift

17-Bit Shift

0

Y

Z

0

0
RND

48

48

4

48

BCIN* ACIN*

OPMODE

PCIN*

MULTSIGNIN*

PCOUT*

CARRYCASCOUT*

MULTSIGNOUT*

CREG/C Bypass/Mask

CARRYCASCIN*

CARRYIN

CARRYINSEL

A:B

ALUMODE

B

A

C

M

P
P

C

MULT
27 X 18

W

18

30

3

PATTERNDETECT

PATTERNBDETECT

CARRYOUT

XOR OUT

4

8

9

48

48

30

18

5

D 27

27

INMODE

BCOUT* ACOUT*

18

30

4 2

3018

Dual B Register

Dual A, D,

and Pre-adder

18
0

U

V

1

X16752-042617

Figure 4.11: DSP48E2 internal architecture

Other independent functions are:

• Multiply.

72

4.2. Digital Signal Processor (DSP)

C
L

B
s

\ I
n

te
rc

o
n

n
e

ct

36K Block RAM

18K Block RAM

18K Block RAM

DSP48E2 Slice

DSP48E2 Slice

X16751-042617

Figure 4.12: DSP interconnection

• Multiply and accumulate

• Multiply and add (A×B) + C

• Four-input adds are only available in the ALU.

• Barrel-shift.

• Comparator.

Figure 4.13 illustrates the three possible inputs for the ALU unit, and those inputs
come from the three Multiplexers (MUX) X, Y, and Z, respectively.

Both of the DSP slices presented here have a similar architecture with significant
changes (see table 4.1) that improve the performance of the designs made by the
user. Therefore, depending on the needs, the possibility of handling vast DSP slices
is solved by the DSP slice found in the ultra-scale family; this variant is presented
later in this chapter.

4.2.2 Xilinx FPGA Families

Xilinx has had different families of FPGAs since its foundation. In this section, we
use the Xilinx-7 family, usually with varying processes of fabrication and sub-brands,
and each has a fixed amount of resources depending on the sub-brand. The following
list shows the sub-brands and their general view of them.

Spartan 7: they are the cheapest option, with enough resources for connectiv-
ity and processing applications in industrial, automotive, and communications. It

73

4.2. Digital Signal Processor (DSP)

X
0

P

ALUMODE[3:0]

P[11:0], CARRYOUT[0]

P[23:12], CARRYOUT[1]

P[35:24], CARRYOUT[2]

P[47:36], CARRYOUT[3][47:0]

[47:0]

[47:36]

[35:24]

[23:12]

[11:0]

0

1

PCIN

P

C

Z

Y

A:B

C

0

Figure 4.13: Internal ALU found inside a DSP slice

has between 6-102k logic cells and has the lowest-power consumption and DSP slices,
and this family has up to 551 MHz of speed processing.

Artix-7: They have better performance than Spartan and greater processing band-
width and portability. It came with 740 DSP48E1 slices with DDR3 RAM Memory
support and had between 13k- 200k logic cells with 2x logic, 2.5x block RAM, and
5.7x more DSP slices than previous generation families. Chapter 6 of this thesis
work presents using an Artix-7 FPGA to implement some Lightweight cryptography
algorithms among the ATHENA tool.

Kintex-7: This type of FPGA has high DSP slice ratios and relies on other technolo-
gies like PCI express generation 3 and 10 Gigabit ethernet connectivity; this family
usually is focused on wireless and video solutions. Therefore has up to 478K logic
cells, and its DSP slice can achieve 629 MHz with 1920 DSP slices.

Virtex-7: This sub-brand of FPGA has the highest quantity of resources with
the highest speed available above the previous sub-brands. It is also optimized. They
have the same resources but with better performance; therefore, they can have up to
2 million logic cells, 85Mb Block RAM, and 3600 DSP slices. Table 4.2 shows the

74

4.3. Architecture of Xilinx 7 family

DSP48E1 DSP48E2
Multiplier 25 x 18 27 x 18
Pre-adder 25 bits 27 bits
D input 25 bits 27 bits

AD register 25 bits 27 bits
Pre-adder out

squaring
no yes

Four input add no yes

Table 4.1: Summary of the difference between characteristics of the DSP48E1 and
DSP48E2

Logic Cells DSPs Memory
Spartan-7 600-102400 10-160 180k-4320k
Artix-7 12800-215360 40-740 720k-13140k
Kintex-7 65600-477760 240-1920 4860k-34380k
Virtex-7 582720-1139200 1260-3360 28620k-67680k

Table 4.2: Comparative table of Xilinx 7-series resources

resources available for the different families presented above.

Chapter 7 presents some architectural designs used to multiply large numbers to
perform RNS multiplications, and chapter 8 shows a dedicated implementation of two
different multipliers focused in the elliptic curve 2255 − 19 using integer arithmetic
and comparing Schoolbook multiplier against Karatsuba multiplier [72].

4.3 Architecture of Xilinx 7 family

This section shows the general architecture of the FPGAs used in this thesis work
and their components. This topic is essential to understand because all our designs
have different requirements and goals.

4.3.1 Configurable Logic Block (CLB)

Xilinx FPGA older families have different kinds of CLB; it is essential when a designer
develops any new architecture, and understanding its characteristics allows one to

75

4.3. Architecture of Xilinx 7 family

exploit its capabilities. However, CLBs found in Xlinix-7 families [133] have the same
kind of CLB [130] presented here.

The primary logic sources are the CLBs to implement sequential and combina-
tion circuits; each CLB has a direct connection to the switch matrix allowing access
to the general routing matrix. Also, each CLB contains a pair of slices.

The LUT implemented in these CLBs allows the configuration as either a 6-input
LUT with one output or a two 5-input with individual output sharing the addresses
or logic inputs. In addition, there is the option to store the output of one of the
5-input Lut into a flip-flop directly, and figure 4.14 shows the general architecture of
the CLB.

Switch
Matrix

Slice(1)

COUTCOUT

CINCIN

Slice(0)

CLB

UG474_c1_01_071910

Figure 4.14: CLB internal arrangement and interconnection matrix.

Another important use of the LUT is the capability to use them as different kinds of
components with other options; the first option allows using them as a distributed
64-bit RAM or a 32-bit shift register or as two 16-bit shift registers. Modern tools can
use that logic, arithmetic, and memory features. A designer with enough experience
can instantiate them and configure them as required. Below present a list of the main
characteristics of a CLB.

• 6-bit look-up table (LUT).

76

4.3. Architecture of Xilinx 7 family

• Dual 5-input LUTS (optional).

• Shift register logic and distributed RAM capability.

• High-speed carry logic for arithmetic functions.

• Use of wide multiplexers for efficiency.

As mentioned, all 7-series families have scalable resources, providing a homogeneous
architecture. However, the amount of CLB differentiates all the Xilinx FPGA families.
Therefore, the device capacity is directly related to the number of logic cells supplied
with the equivalent of a classic 4-input LUT and one flip-flop.

Each family has its own CLB arrangement in the 7-series; the arrangement is in
a column fashion. They use a proprietary technology developed by Xilinx named
Advanced Silicon Modular Block (ASMBL) that allows FPGAs with a mix of features
to optimize the interconnections and use of the resources. Figure 4.15 shows the
component fount into each column across all the FPGA.

Column
Based

ASMBL
Architecture

Feature Options

Domain A Domain B Domain C

UG474_c2_24_071014

Applications Applications Applications

Logic (SLICEL)

Logic (SLICEM)

DSP

Memory

Clock Management Tile

Global Clock

High-performance I/O

High-range I/O

Integrated IP

Mixed Signal

Transceivers

Figure 4.15: ASMBL architecture with components as columns.

77

4.3. Architecture of Xilinx 7 family

The Stacked Silicon Interconnection (SSI) enables super logic regions SRLs. They
are another layer to combine communications between resources in a layer fashion,
allowing the creation of FPGAs with many interconnections between components.

CLBs

In the family presented here, each CLB has two slices, and each Slice has four 6-bit
LUTS and eight storage elements:

Slice0 at the bottom of the CLB in the left corner

Slice1 at the top of the CLB

The slices do not have a direct connection, and the organization of each Slice is a
column. For example, the figure 4.16 shows each Slice has its carry independent from
the other, and each Slice has:

• Four LUTs.

• Eight storage elements.

• Multiplexers used in wide functions.

• Carry logic.

As mentioned above, all listed aspects allow the Slices to provide arithmetic functions
and logic along with extra tasks such as storage, distributed RAM, and shift registers.
Figure 4.17 shows the memory architecture implemented by SLICEM, and figure
SLICEL shows all elements that are part of any SLICE architecture. Remember that
each CLB can contain two Slices of type SLICEL or a combination of both.

4.3.2 Look-Up Table (LUT)

As mentioned, the LUT in the 7-series family can use 6-bit look-up tables. Those
individual inputs A1 to A6, with the outputs O5 and O6, can implement up to four
function generators (A to D) in a single Slice. The following list presents some of the
capabilities of the LUTs.

• A 6-bit boolean function.

• Two 5-bit boolean functions with shared inputs between them.

78

4.3. Architecture of Xilinx 7 family

Slice1
X1Y1

COUTCOUT

CINCIN

Slice0
X0Y1

CLB

UG474_c2_01_092210

Slice1
X1Y0

COUTCOUT

Slice0
X0Y0

CLB

Slice1
X3Y1

COUTCOUT

CINCIN

Slice0
X2Y1

CLB

Slice1
X3Y0

COUTCOUT

Slice0
X2Y0

CLB

Figure 4.16: CLBs and Slices with Carry inputs and outputs.

• Up to two boolean functions with three or two inputs.

When designing a circuit, the number of inputs is an essential topic in the case of
LUTs, and they can change their signal propagation independent of the function
implemented. Usually, the outputs of a LUT are A, B, C, D, O6, or any of the
following multiplexers AMUX, BMUX, CMUX, DMUX, and the output O5 can
handle the output as required. In addition, three additional multiplexers, F7AMUX,
F7BMUX, and F7CMUX, can combine up to four single functions to provide functions
with up to eight inputs using a single Slice. If more than eight inputs are needed,
one multiplexer named F8MUX combines all LUTs in a Slice.

79

4.4. Advance RISC Machine (ARM)

A6:A1

D

COUT

D

DX

C

CX

B

BX

A

AX

O6

DI2

O5

DI1

MC31WEN

CK

DI1

MC31WEN

CK

DI1

MC31WEN

CK

DI1

MC31WEN

CK

DX
DMUX

D

DQ

C

CQ

CMUX

B

BQ

BMUX

A

AQ

AMUX

Reset Type

D

FF/LAT
INIT1
INIT0
SRHI
SRLO

SR

CE

CK

FF/LAT
INIT1
INIT0
SRHI
SRLO

FF/LAT
INIT1
INIT0
SRHI
SRLO

FF/LAT
INIT1
INIT0
SRHI
SRLO

D

SR

CE

CK

D

SR

CE

CK

D

SR

Q

CE

CK

CIN

0/1

WEN
WE

CK

Sync/Async

FF/LAT

A6:A1

O6
O5

C6:1

CX

D6:1

DI

A6:A1

O6
O5

B6:1

BX

A6:A1
W6:W1

W6:W1

W6:W1

W6:W1

O6
O5

A6:1

AX

SR

CE

CLK

CE
Q

CK SR

Q

Q

Q

SRHI
SRLO
INIT1
INIT0

D

CE
Q

CK SR

SRHI
SRLO
INIT1
INIT0

D

CE Q

CK SR

SRHI
SRLO
INIT1
INIT0

D

CE Q

CK SR

SRHI
SRLO
INIT1
INIT0

DI2

DI2

DI2

CI

BI

AI

Figure 4.17: Slice M architecture.

4.4 Advance RISC Machine (ARM)

Microprocessors and microcontrollers can execute any algorithm, usually using their
fixed data path and with some dedicated resources. Here the ARM microcontrollers

80

4.4. Advance RISC Machine (ARM)

are explained with some of their characteristics and resources used in later chapters
of this thesis work.

In 1985, the story Acron computers were looking to make their RISC-based processor,
remembering that (Reduced Instruction set computer) is a kind of computer architec-
ture design focused on using small instructions to reduce their execution time. So
in 1987, Acron RISC Machine launched this first processor using 3µm technology [125].

There are several families of ARM microprocessors, each with different characteristics,
depending on the scenario and the type of family recommended to perform tasks
[15]. For example, with simple 8-bit and 16-bit microcontrollers, a programmer
can know their architecture and benefit from this capacity with assembly and other
languages like C or C++. Also, ARM has 32-bit processors like the cortex-M0
and M0+. If the application needs more resources and performance, the cortex-A
family can run operating systems like Linux and windows for embedded systems.
When working at higher development levels, it is not necessary to work directly
with the processor resources like memory or registers; it is helpful to understand the
architecture when debugging code or to optimize functions at a low level like assembly.

ARM offers three leading families to use in System on Chip (SoC) presented in
the table Cortex families in this thesis. The use of cortex-M is a must because of the
lightweight cryptography contest presented in chapter 5 and shows the characteristics
of the microcontroller ARM-M4.

A processor is not enough to execute instructions; it needs an interface to access
memory and peripherals. Several components are inside a microcontroller, like a
CPU, a memory protection unit, a Digital Signal Processor (DSP), a Float-point
Unit, etc. Figure 4.18 shows the main features and the CPU used in the architecture
Cortex-M4, the CPU inside this microcontroller is an Arm-v7-M family processor.
This architecture can process data, and its instruction set adds extra addressing
modes, conditional execution, bit-processing, and full multiplication support.

Also, it can support 32-bit Simple Instruction Multiple Data (SIMD) to handle
intensive single-precision and floating-point tasks; therefore, the FPU can deliver
double-precision results. There are several manufacturers of microcontrollers, and
the following list shows them and some microcontrollers models. In this thesis work,
we used the ST Microelectronics brand.

• ST Microelectronics: ARM-M0, M3, M4, and M7

81

4.4. Advance RISC Machine (ARM)

Figure 4.18: ARM M4 general specs

• Microchip: ARM-M0+, M23

• NXP Semiconductors: ARM-M33

Each has its characteristics, but they share the same ARM architecture; the instruction
set varies depending on the architecture, and here present some of them.

• Thumb(-1): All the processor’s basic operations with 56 instructions; this set is
focused on process data and control I/O.

• Thumb(-2): is an expansion of the Thumb(-1) instruction set and adds more
instructions for data processing with a conditional branch that depends on
previous results and instructions exclusive to use when multiple requests to the
system.

• DSP extension instructions: include single instruction multiple data (SIMD)
instructions and Multiply-accumulate (MAC) principally used on multimedia
applications.

• Single-precision floating-point instructions.

• Double-precision and floating-point instructions: Enable 64-bit precision.

82

4.4. Advance RISC Machine (ARM)

4.4.1 Register Set

The register set used in the Cortex-M family has sixteen 32-bit general-purpose
registers and are as follows:

• R0-R7 are the lower registers.

• R8-R12 are the next group of general purpose registers.

• R13 is the stack pointer with two operation modes, MSP (main Stack Pointer)
and PSP (Process Stack Pointer). The update of this register is according to
the mode in which the core is working.

• R14, named Link Register (LR), contains the return address of a call to a
subroutine or function.

• R15 The program counter (PC) contains the address to the next instruction in
the program.

The last presented registers, R13-R15, have specific functionalities; those sixteen are
the ARM core registers (R0-R15). Figure 4.19 shows the register structure.

Figure 4.19: ARM general purpose registers.

83

4.5. ST Microelectronics

4.5 ST Microelectronics

Now present the board and ARM processor used in this thesis work. The processor is
an ARM Cortex-M4 from the ST Microelectronics brand; the model of the Cortex-M4
processor is STM32L4A6ZG [118] and embedded on a Nucleo-144 board [120]. Figure
4.20 shows the board and all hardware components, and its features of it are:

• USB port with OTG capability.

• Three user LEDs.

• Two user push buttons.

• Micro USB connector.

• On-board ST-LINK debugger programmer with USB capability.

Also, it has several jumpers to change the power input source and behavior, and it
contains Zio connectors compatible with Arduino boards.

The embedded ST-Link is a tool integrated into the Nucleo-144 board. It sup-
ports debugging and programming features located on the upper of the board. Figure
4.21 shows the connection between the microcontroller and the st-link board with
the LEDs, push buttons, and connectors connected directly to the I/O ports on the
microcontroller.

The microcontroller has a frequency of up to 80 MHz. In addition, it implements a
memory protection unit (MPU) that enhances security applications and embeds high-
speed memories (1 MB of flash memory and 320KB SRAM). The security capabilities
consider readout protection, write protection, proprietary code readout protection,
and firewall for flash memory and SRAM protection [117].

The features allow communication with different devices through the following stan-
dard interfaces.

• Four I2C.

• Three SPI.

• Three USART.

84

4.5. ST Microelectronics

CN1
ST-LINK Micro
USB connector

CN4
ST-LINK/
NUCLEO selector

LD1-LD3
User LEDs

B1
User button

CN11
ST P orpho
pin header

CN13
SMPS signal
connector

JP1
PWR-EXT

CN5
SWD
connector

JP5
IDD
measurement

U11
STM32
Microcontroller

LD7
USB over

CN7, CN10
Zio connectors

SB6
3.3V regulator
output

JP6
Power Source
selection

LD6
Power (Green
LED)

LD5
(Red LED) ST-Link/V2-1
Power Over
current alarm

LD4
(Red/Green
LED) COM

LD8
USB VBUS

CN14
User USB
connector

B2
Reset button

CN8, CN9
Zio connectors CN12

ST P orpho
pin header

Figure 4.20: ST Nucleo-144 board characteristics.

• Two serial audio interfaces (SAI).

• Two CAN.

• Camera interface.

• DMA controllers.

An important feature of stm32l4a6zg is the capability to use an embedded AES
(Advanced Encryption Standard) and HASH hardware accelerator. Figure 4.22 shows

85

4.5. ST Microelectronics

Embedded

ST-LINK/V2-1

STM32
Microcontroller

RESET

SW
D

ST
M

o
rp

h
o

 e
xt

en
si

o
n

 H
ea

d
er

ST
M

o
rp

h
o

 e
xt

en
si

o
n

 H
ea

d
er

Micro-B
USB

Connector

IO

USB
B2
RST

B1
USER

IO

Zi
o
C

o
n

n
ec

to
r

LED
LD1

ST-LINK Part

MCU Part

LED
LD2/3

Micro-AB or
Micro-B USB
Connector

Zi
o
C

o
n

n
ec

to
r

Ext
SMPS

IO

Figure 4.21: ST Nucleo-144 schematic with ST-Link.

the general architecture of the microcontroller embedded on the board Nucleo-144
and its characteristics.

86

4.5. ST Microelectronics

MSv38029V4

USB
OTG

Flash
up to
1 MB

Flexible static memory controller (FSMC):
SRAM, PSRAM, NOR Flash,

NAND Flash

GPIO PORT A

AHB/APB2

EXT IT. WKUP114 AF

PA[15:0]

TIM1 / PWM

3 compl. channels (TIM1_CH[1:3]N),
4 channels (TIM1_CH[1:4]),

ETR, BKIN, BKIN2 as AF

USART1RX, TX, CK,CTS,
RTS as AF

SPI1
MOSI, MISO,

SCK, NSS as AF

A
P

B
2

60
M

H
z

A
P

B
1

3
0

M
H

z

MOSI, MISO, SCK, NSS as AF

DAC1_OUT

ITF

WWDG

RTC_TS

OSC32_IN

OSC32_OUT

VDDA, VSSA

VDD, VSS, NRST

smcard

IrDA

16b

SDIO / MMC
D[7:0]

CMD, CK as AF

VBAT = 1.55 to 3.6 V

SCL, SDA, SMBA as AF

JTAG & SW

ARM Cortex-M4
80 MHz

FPU

NVICETM

MPU

TRACECLK

TRACED[3:0]

DMA2

A
R

T
A

C
C

E
L/

C
A

C
H

E

CLK, NE[4:1], NL, NBL[1:0],
A[25:0], D[15:0], NOE, NWE,
NWAIT, NCE3, INT3 as AF

RNG

DP

DM

SCL, SDA, INTN, ID, VBUS, SOF

F
IF

O

@ VDDA

BOR

Supply

supervision

PVD, PVM

Int

reset

XTAL 32 kHz

M AN A G T

RTC
F

C
LK

Standby

interface

IWDG

@VBAT

@ VDD

@VDD

AWU

Reset & clock
control

P
C

LK
x

VDD = 1.71 to 3.6 V

VSS

Voltage
regulator

3.3 to 1.2 V

VDD Power management

@ VDD

RTC_TAMPx
Backup register

A
H

B
 b

us
-m

at
rix

TIM15
2 channels,

1 compl. channel, BKIN as
AF

DAC1

DAC2

TIM6

TIM7

TIM2

TIM3

TIM4

TIM5

USART2

USART3

I2C1/SMBUS

D-BUS

A
P

B
1

80
 M

H
z

(m
ax

)

SRAM 256 KB

SRAM 64 KB

NJTRST, JTDI,

JTCK/SWCLK

JTDO/SWD, JTDO

I-BUS

S-BUS

DMA1

PB[15:0]

PC[15:0]

PD[15:0]

PE[15:0]

PF[15:0]

PG[15:0]

PH[15:0]

GPIO PORT B

GPIO PORT C

GPIO PORT D

GPIO PORT E

GPIO PORT F

GPIO PORT G

GPIO PORT H

TIM8 / PWM 16b

16b

TIM16 16b

TIM17 16b

3 compl. Channels (TIM1_CH[1:3]N),
4 channels (TIM1_CH[1:4]),

1 channel,
1 compl. channel, BKIN as AF

1 channel,
1 compl. channel, BKIN as AF

DAC2_OUT

16b

16b

SCL, SDA, SMBA as AF

SCL, SDA, SMBA as AF

MOSI, MISO, SCK, NSS as AF

TX, RX as AF

RX, TX, CTS, RTS as AF

RX, TX, CTS, RTS as AF

RX, TX, CK, CTS, RTS as AF

RX, TX, CK, CTS, RTS as AF

smcard

IrDA

smcard

IrDA

32b

16b

16b

32b

4 channels, ETR as AF

4 channels, ETR as AF

4 channels, ETR as AF

4 channels, ETR as AF

AHB/APB1

OSC_IN

OSC_OUT

H
C

LK
x

XTAL OSC

4- 48MHz

8 analog inputs common to the 3 ADCs

VREF+

U S AR T 2 M B p sTemperature sensor

ADC1

ADC2

ADC3

IFITF

@ VDDA

8 analog inputs common to the ADC1 & 2

8 analog inputs for ADC3

SAI1
MCLK_A, SD_A, FS_A, SCK_A, EXTCLK

MCLK_B, SD_B, FS_B, SCK_B as AF

SAI2
MCLK_A, SD_A, FS_A, SCK_A, EXTCLK

MCLK_B, SD_B, FS_B, SCK_B as AF

DFSDM
SDCKIN[7:0], SDDATIN[7:0],

SDCKOUT,SDTRIG as AF

Touch sensing controller8 Groups of 4 channels max as AF

OUT, INN, INP

LCD 8x40

LPUART1

SWPMI

LPTIM1

LPTIM2

SEGx, COMx as AF

RX, TX, CTS, RTS as AF

SWP

IN1, IN2, OUT, ETR as AF

IN1, OUT, ETR as AF

RC HSI

RC LSI

PLL 1&2&3

MSI

Quad SPI memory interface
D0[3:0], D1[3:0],
CLK0, CLK1, CS

@ VDDUSB

COMP1INP, INN, OUT

COMP2INP, INN, OUT

@ VDDA

RTC_OUT

VDDIO, VDDUSB

FI
FO

P
H

Y

A
H

B
1

80
 M

H
z

CRC

OUT, INN, INP

I2C2/SMBUS

I2C3/SMBUS

OpAmp1

SP3

SP2

UART5

UART4

LCD Booster

V
LC

D VLCD = 2.5V to 3.6V

A
P

B
2

 8
0

M
H

z

AHB2 80 MHz

OpAmp2

@VDDA

AES

Firewall

VREF Buffer

@ VDDA

@ VDD

HASH

Camera Interface

FI
FO HSYNC, VSYNC,

PIXCLK, D[13:0]

CHROM-ART
DMA2D FI

FO

PI[11:0] GPIO PORT I

TX, RX as AFbxCAN1

SCL, SDA, SMBA as AFI2C4/SMBUS

HSI48

bxCAN1 F
IF

O

CRS CRS_SYNC

VDD12 VDD12 = 1.0.5 to 1.32 V(1)

MS50054V1

USB
OTG

Flash
up to
1 MB

Flexible static memory controller (FSMC):
SRAM, PSRAM, NOR Flash,

NAND Flash

GPIO PORT A

AHB/APB2

EXT IT. WKUP114 AF

PA[15:0]

TIM1 / PWM

3 compl. channels (TIM1_CH[1:3]N),
4 channels (TIM1_CH[1:4]),

ETR, BKIN, BKIN2 as AF

USART1RX, TX, CK,CTS,
RTS as AF

SPI1
MOSI, MISO,

SCK, NSS as AF

A
P

B
2

60
M

H
z

A
P

B
1

3
0

M
H

z

MOSI, MISO, SCK, NSS as AF

DAC1_OUT1

ITF

WWDG

RTC_TS

OSC32_IN

OSC32_OUT

VDDA, VSSA

VDD, VSS, NRST

smcard

IrDA

16b

SDIO / MMC
D[7:0]

CMD, CK as AF

VBAT = 1.55 to 3.6 V

SCL, SDA, SMBA as AF

JTAG & SW

ARM Cortex-M4
80 MHz

FPU

NVICETM

MPU

TRACECLK

TRACED[3:0]

DMA2

A
R

T
A

C
C

E
L/

C
A

C
H

E

CLK, NE[4:1], NL, NBL[1:0],
A[25:0], D[15:0], NOE, NWE,
NWAIT, NCE3, INT3 as AF

RNG

DP

DM

SCL, SDA, INTN, ID, VBUS, SOF

F
IF

O

@ VDDA

BOR

Supply

supervision

PVD, PVM

Int

reset

XTAL 32 kHz

M AN A G T

RTC
F

C
LK

Standby

interface

IWDG

@VBAT

@ VDD

@VDD

AWU

Reset & clock
control

P
C

LK
x

VDD = 1.71 to 3.6 V

VSS

Voltage
regulator

3.3 to 1.2 V

VDD Power management

@ VDD

RTC_TAMPx
Backup register

A
H

B
 b

us
-m

at
rix

TIM15
2 channels,

1 compl. channel, BKIN as
AF

DAC1

TIM6

TIM7

TIM2

TIM3

TIM4

TIM5

USART2

USART3

I2C1/SMBUS

D-BUS

A
P

B
1

80
 M

H
z

(m
ax

)

SRAM 256 KB

SRAM 64 KB

NJTRST, JTDI,

JTCK/SWCLK

JTDO/SWD, JTDO

I-BUS

S-BUS

DMA1

PB[15:0]

PC[15:0]

PD[15:0]

PE[15:0]

PF[15:0]

PG[15:0]

PH[15:0]

GPIO PORT B

GPIO PORT C

GPIO PORT D

GPIO PORT E

GPIO PORT F

GPIO PORT G

GPIO PORT H

TIM8 / PWM 16b

16b

TIM16 16b

TIM17 16b

3 compl. Channels (TIM1_CH[1:3]N),
4 channels (TIM1_CH[1:4]),

1 channel,
1 compl. channel, BKIN as AF

1 channel,
1 compl. channel, BKIN as AF

16b

16b

SCL, SDA, SMBA as AF

SCL, SDA, SMBA as AF

MOSI, MISO, SCK, NSS as AF

TX, RX as AF

RX, TX, CTS, RTS as AF

RX, TX, CTS, RTS as AF

RX, TX, CK, CTS, RTS as AF

RX, TX, CK, CTS, RTS as AF

smcard

IrDA

smcard

IrDA

32b

16b

16b

32b

4 channels, ETR as AF

4 channels, ETR as AF

4 channels, ETR as AF

4 channels, ETR as AF

AHB/APB1

OSC_IN

OSC_OUT

H
C

LK
x

XTAL OSC

4- 48MHz

8 analog inputs common to the 3 ADCs

VREF+

U S AR T 2 M B p sTemperature sensor

ADC1

ADC2

ADC3

IFITF

@ VDDA

8 analog inputs common to the ADC1 & 2

8 analog inputs for ADC3

SAI1
MCLK_A, SD_A, FS_A, SCK_A, EXTCLK

MCLK_B, SD_B, FS_B, SCK_B as AF

SAI2
MCLK_A, SD_A, FS_A, SCK_A, EXTCLK

MCLK_B, SD_B, FS_B, SCK_B as AF

DFSDM
SDCKIN[7:0], SDDATIN[7:0],

SDCKOUT,SDTRIG as AF

Touch sensing controller8 Groups of 4 channels max as AF

OUT, INN, INP

LCD 8x40

LPUART1

SWPMI

LPTIM1

LPTIM2

SEGx, COMx as AF

RX, TX, CTS, RTS as AF

SWP

IN1, IN2, OUT, ETR as AF

IN1, OUT, ETR as AF

RC HSI

RC LSI

PLL 1&2&3

MSI

Quad SPI memory interface
D0[3:0], D1[3:0],
CLK0, CLK1, CS

@ VDDUSB

COMP1INP, INN, OUT

COMP2INP, INN, OUT

@ VDDA

RTC_OUT

VDDIO, VDDUSB

FI
FO

P
H

Y

A
H

B
1

80
 M

H
z

CRC

OUT, INN, INP

I2C2/SMBUS

I2C3/SMBUS

OpAmp1

SP3

SP2

UART5

UART4

LCD Booster

V
LC

D VLCD = 2.5V to 3.6V

A
P

B
2

 8
0

M
H

z

AHB2 80 MHz

OpAmp2

@VDDA

AES

Firewall

VREF Buffer

@ VDDA

@ VDD

HASH

Camera Interface

FI
FO HSYNC, VSYNC,

PIXCLK, D[13:0]

CHROM-ART
DMA2D FI

FO

PI[11:0] GPIO PORT I

TX, RX as AFbxCAN1

SCL, SDA, SMBA as AFI2C4/SMBUS

HSI48

bxCAN1 F
IF

O

CRS CRS_SYNC

VDD12 VDD12 = 1.0.5 to 1.32 V(1)

Figure 4.22: STM32L4A6ZG ARM microcontroller internal architecture.

87

4.5. ST Microelectronics

4.5.1 Memory protection unit

The MPU manages the memory access to prevent one task from accidentally corrupting
the memory resources or any resource used by any other job. That memory area can
protect up to eight regions, and the protection sizes are between 32 bytes and four
gigabytes of addressable memory. This unit is helpful where applications have code
that needs protection against misbehavior of other tasks; if the program accesses a
prohibited memory location, the MPU can detect it and take action; the MPU is
optional and bypassed if it is not needed.

4.5.2 General-purpose I/O (GPIO

The software allows the configuration of each GPIO and can alternate as output,
input, or a peripheral function; most pins share analog or digital processes. Depending
on the application, the user can use each GPIO as agreed on its application.

4.5.3 Direct memory access (DMA)

Provide high-speed data transfer between the memory and peripherals and moves
the data faster without CPU intervention allowing the CPU to focus its resources
on other operations. The microcontroller presented here has 14 channels, each
managing memory access requests from multiple peripherals simultaneously, with one
for immediate handling of the priority on each request. The following list shows the
DMA supported for this device.

• Configurable channels (14 in total).

• Independent hardware requests to each channel.

• Four priority levels are independently configurable via software and triggered
by themselves.

• Memory-to-memory and memory-to-peripheral, and peripheral;-to-peripheral
data transfer.

• Direct access to Flash memory, SRAM, and peripherals as source or destination.

88

4.5. ST Microelectronics

4.5.4 Random number generator (RNG)

This microcontroller can use a hardware implementation of a random number genera-
tor to generate a 32-bit length random number by an integrated analog circuit. This
generator continuously provides 32-bit samples of entropy based on noise from the
analog source. The following list shows some RNG features, and figure 4.23 shows its
architecture.

Analog entropy source delivers 32-bit random numbers processed with linear-feedback
shift registers (LFSR). Every 42 RNG cycle (dedicated clock) produces one 32-bit
random sample. As shown in figure 4.23, there are several components, like two
analog noise sources fed by an independent clock source. Then the data collected
goes to a sampling module; this module sends data to an LFSR for post-processing,
and after data goes to the data shift register, the data goes to a register with access
to the user.

T-RNGv1

RNG_SR

AHB
interface

status

RNG_CR

Analog
noise
source 1

Banked Registers

Sampling &
Normalization (x 2)

Analog noise source

2-bit

Analog
noise
source 2en_osc

32
-b

it
A

H
B

 B
us

rng_it

rng_hclk

rng_clk

AHB clock domain

RNG clock domain

Data shift reg

16-bit

8-bit LFSR (x2)

Post-processing logic 16-bit

Fault detection
Clock checker

A
larm

s

RNG_DRdata

control

Figure 4.23: Random Number Generator (RNG) embedded in STM32L4A6ZG.

89

4.5. ST Microelectronics

4.5.5 AES in hardware

As mentioned in the chapter 3, AES has implementations on software and hardware,
and this microcontroller has an AES hardware accelerator implemented in the same
architecture. This implementation allows the user to use the AES block cipher with
the performance of the hardware and with some operation modes directly implemented
in the same circuit [119] .

This accelerator encrypts and decrypts data using the AES algorithm defined in
Federal Information Processing Standards (FIPS) publication 197 [66]. This hardware
implementation allows operation modes like (ECB, CBC, and CTR) specified on
FIPS publication 800-38A [41], and others based on AES with two different key sizes,
128 and 256 bits. Therefore supports DMA transfers for incoming and outcoming
data with a single DMA channel for each data transfer, and the slave peripheral is
accessible through 32-bit word single access.

Figure 4.24 shows the architecture of the AES block cipher implemented in hardware.
It shows the dedicated registers to store the secret key, initialization vector, and data
input (plaintext of ciphertext). Also, there is a module to connect directly with a
DMA interface, and the AES core is on the right side of the figure.

MSv42154V1

aes_hclk

Banked registers

DOUT

KEY

IVI

DIN

AES

key

control

status

IV, counter

data in

data out

aes_it

32-bit
AHB bus

aes_in_dma

AES_CR

AES_KEYRx

AES_SR

AES_IVRx

AES_DINR

AES_DOUTR

AES
Core
(AEA)

swap

AHB
interface

IRQ
interface

Control Logic
DMA

interfaceaes_out_dma

32-bit
access

Save / RestoreAES_SUSPRx

Figure 4.24: AES block diagram.

The cryptographic core has the following components.

• AES algorithm.

90

4.5. ST Microelectronics

• Binary Galois field multiplier (GF2).

• Input key.

• An initialization vector (IV).

• Chaining algorithm logic (counter mode, feedback).

The core can work with a 128-bit length stored in four 32-bit registers and with a
Key size of 128-bit or 256-bit, as required the IV requires a 96-bit vector and a 32-bit
counter, and the core can perform the following operation modes.

• Electronic code book (ECB).

• Cipher block chaining (CBC).

• Counter (CTR).

• Galois counter mode(GCM).

• Galois message authentication code (GMAC).

• Counter with CBC-MAC (CCM).

Summary

This chapter shows two different technologies used in developing this thesis work
and the capabilities of each device. Meanwhile, the first part evolves FPGA’s
general characteristics with a brief explanation. The second half focuses on ARM
microcontrollers and their characteristics.

91

Part II

Symmetric Key Cryptography

93

Chapter 5

Lightweight authenticated
encryption with associated data in
hardware

In August 2018, the U.S. National Institute of Standards and Technology (NIST)
initiated a process to solicit nominations from any interested party for candidate
algorithms to be considered for lightweight cryptographic (LWC) standards suitable
for use in constrained environments, where the performance of current NIST crypto-
graphic standards exceeds the hardware limits of the devices to be protected. Fifty-six
candidates were qualified for the Round 1. For Round 2, 32 candidates were selected.

As a part of the evaluation criteria for the NIST LWC competition, each candi-
date is evaluated in several aspects, including security evaluation of the algorithms
against known attacks, side-channel and fault attack resistances, cost, performance,
third-party analysis, suitability for hardware and software implementations.

The Hardware API for Lightweight Cryptography by George Mason University
(GMU LWC) was established as the interface to perform the hardware evaluation
process. This chapter aims to contribute to the analysis of five candidates of NIST
LWC in terms of the established criteria of cost, performance, and suitability for
hardware implementations. In this way, these extensive evaluation processes open for
anyone who wants to participate guarantee that the proposed cryptographic solutions
are reliable for their use in constrained hardware environments, without degrading
the main security features that a typical cryptographic primitive should hold, i.e.,
high-security features with a low footprint.

95

5.1. Authenticated Encryption with Associated Data

To be part of these extensive evaluation processes, in the chapter 5 is presented the
hardware implementation for five NIST LWC candidates: COMET[114], ESTATE[29],
LOCUS[27] , LOTUS[27], and Oribatida[16]. All of these hardware implementations
were done in the FPGA Xilinx Artix-7 xc7a12tcsg325-3, with area restrictions, where
a medium-scale study of these five NIST LWC Round2 candidates is presented making
COMET to have more information than the other participants about it’s design and a
comparative against software implementation and a software with an AES in hardware.
The number of slices, FFs, LUTs, frequency, and throughput are the main aspects to
be presented in the chapter are compared to determine which is the best option, how
they were adapted to LWC conditions, the different datapath-size implemented for
some of these candidates, plus pros and cons among them. A extensive behavioral
benchmarking that guaranteed their correctness.

The contributions of this chapter can be summarize as: We provide the first imple-
mentations of five NIST LWC candidates that compliant the GMU LWC interface.
All our designs hold the restrictions on resources utilization in the official FPGA
benchmark. Our implementation compared with the ones published in the unique
existing work [105] are smaller as we present implementations with small datapaths
32 bits and 8 bits.

5.1 Authenticated Encryption with Associated Data

Privacy and authentications are requirements to establish secure communication. Pri-
vacy means that only authorized entities can understand the message. Authentication
guarantees that the entity sending a message is the expected by using a secret key
previously agreed, and ensures data integrity distinguishing any change in the message.

Block ciphers are cryptographic primitives used to provide privacy, and when they
are used in a mode of operation, they can provide privacy and authentication, as
well. NIST has recommended Electronic Codebook (ECB), Cipher Block Chaining
(CBC), Cipher Feedback (CFB), Output Feedback (OFB), and Counter (CTR) as
secure modes for encryption [60]. On the other hand, message authentication codes
(MACs) are modes of operations that provide authentication and data integrity. Two
widely known MACs are CBC-MAC [61] and PMAC [107].

Authenticated encryption algorithms offer privacy, authentications, and data in-

96

5.2. GMU LWC Interface

tegrity. The simple way to construct an AE is by implementing an Online Encryption
(OE) mode and a MAC independently.

Sometimes, the messages could include supplemental information that cannot be en-
crypted but must be authenticated; this supplemental information is called associated
data. Some examples of associated data are the header of a network packet, which
has to remain as plaintext, but its integrity should be preserved. A typical example is
the TCP/IP protocol, where there are several flags that indicate how the rest of the
content in the packet should be decoded and presented. In order to provide authen-
tication to these kind of data, an extended algorithm of authenticated encryption
was proposed to handle associated data; it is called Authenticated Encryption with
Associated Data (AEAD).

In recent years, AEAD algorithms have received particular attention after the call
submissions of Competition for Authenticated Encryption: Security, Applicability,
and Robustness (CAESAR) and the NIST LWC. According to NIST LWC, an AEAD
algorithm is defined by two operations: authenticated encryption and verified de-
cryption. Both operations need to input a public message number Npub(nonce), a
secret key K, and an associated data AD. Particularly for encryption, the plaintext
PT is an input, and the outputs are Npub, AD, ciphertext CT , and tag T . In
authenticated decryption, the specific inputs are CT and T ; the outputs are the PT
and the tag verification; a local T ′ is computed and checked if it is equal to the tag
provided in the input, and releases the messages if and only if T ′ = T . For authen-
ticated encryption and authenticated decryption AD, CT , and PT can be zero-length.

5.2 GMU LWC Interface

The Hardware API for Lightweight Cryptography (LWC) was proposed [69] to guar-
antee the fairness of benchmarking and compatibility among implementations of the
same algorithm by different designers. The interface defines two types of data, secret,
and public. The key input is the unique secret data; the public data are message
blocks, AD blocks, ciphertext blocks, and verification Tag. For the outputs, they are
all public, ciphertext, decrypted message, and the tag.

There are three possible sizes for the input/output buses 8, 16, 32 bits. This small
sizes-bus allows the implementation of the final AEAD core in low-end FPGA devices

97

5.2. GMU LWC Interface

and is compatible with more common processors and micro-controllers used in IoT
technology. The input/output data are handle by preprocessing and postprocessing
components that defines a communication protocol to communicate with the devel-
oped cores. All the signals names related to the key have sdi as a prefix; the signals
in the public bus have the prefix pdi, and the names signals in the output bus use the
prefix do.

The API has a component called CryptoCore. CryptoCore is the starting point
for hardware designers; in this part, the cryptographic implementation is inte-
grated into the LWC API. The block diagram of the LWC core is shown in Fig-
ure 5.1. The block Two-Pass FIFO and its input/output signals (denoted as
ai,ao,bi,bo,ci,co,di,do,ei,eo,fi,fo), plus hash and do last signals are optional as they
are used only when the implemented cipher is two passes, i.e., when the AEAD
authenticates the AD and the message before encrypts.

The communication protocol organizes the input blocks as segments; the valid seg-
ments are shown in Table 5.1. GMU LWC Interface also includes segments for hash
functions; however, this functionality is not used for the present implementations.

Encoding Segment

0001 Associated data (AD)
0100 Message blocks (PT)
0101 Decrypted message (CT)
1000 Tag (T)
1100 Key (K)
1101 Npub
0111 Hash message
1001 Hash value

Table 5.1: Valid segments in LWC API communication protocol.

The communication protocol does not accept all the possible combinations of seg-
ments; in general, all the ciphers receive the sequence of the segments as Npub, PT ,
CT as input and gives as output CT , T for encryption. In decryption, the input is
Npub, CT , T , and the output is PT . For double pass algorithms, it is necessary to
decrypt the message before performing the authentication, so the tag T needs to be
received before CT . We have done some modifications to allow the LWC interface to

98

5.2. GMU LWC Interface

sdi data

sdi valid
sdi ready

pdi data

pdi valid

pdi ready

key

key valid

key ready

bdi

bdi valid

bdi ready

bdi type

bdi eot

bdi eoi

bdi valid bytes

bdi pad loc

bdi size

decrypt in

hash in

key update

din

din valid

din ready

din

din valid

din ready

din

din valid

din ready

key

key valid

key ready

bdi

bdi valid

bdi ready

bdi type

bdi eot

bdi eoi

bdi valid bytes

bdi pad loc

bdi size

decrypt in

hash

key update

bdo

bdo valid

bdo ready

bdo type

bdo valid bytes

end of block

msg auth

msg auth valid

msg auth ready

cmd

cmd valid

cmd ready

din

din valid

din ready

do last

bdo

bdo valid

bdo ready

bdo type

bdo valid bytes

end of block

msg auth

msg auth valid

msg auth ready

bi

ao bo co do eo fo

ai ci di ei fi

CryptoCore

Two-Pass FIFO

Pre Processor Post Processor

Header FIFO

sdi data

sdi valid
sdi ready

pdi data

pdi valid

pdi ready

din

din valid

din ready

do last

ao = fdo data

bo = fdo valid

co = fdo ready

do = fdi data

eo = fdi valid

fo = fdi ready

ai = din

bi = din valid

ci = din ready

di = dout

ei = dout valid

fi = dout ready

sw

w

w w

ccw

ccsw

ccw w

4

ccw/8

ccw/8+1

ccw/8

ccw/8

4

fw fw

Figure 5.1: Top-level block diagram of LWC core (based on the scheme found at [69]).
Here, sw= external key width, w= external data width, ccsw= internal key width
and ccw= internal data width.

handle the order of segments as Npub, AD, T , CT for decryption.

When the last block of AD or message is incomplete, it is necessary to pad it.
For each authenticated cipher or hash function it is necessary to define their own
padding rule. To know when a block needs or not padding, the LWC interface provides
specific signals bdi valid bytes, bdi pad loc and bdi size. Similarly for the output, we
need to indicate to the LWC interface if the last block of CT or PT is incomplete
and for that it provides the signal bdo valid bytes.

99

5.3. Implemented Authenticated Ciphers

5.3 Implemented Authenticated Ciphers

This section summarizes each candidate, and then describes and analyzes their
respective hardware implementation.

5.3.1 Preliminaries

Along this manuscript, we refer the input message as message blocks or PT blocks.
When the input is an encrypted message we use encrypted message blocks or CT
blocks and AD blocks for associate data blocks. The term Npub and nonce are
equivalent in our descriptions. All the n-bit binary strings are considered as elements
of the field GF (2n) and the addition is defined as a logical XOR denoted as ⊕, and
the product as polynomial multiplication modulo and irreducible polynomial of degree
n. The circular shift bit-wise operation is defined as >> or << depending of the
direction.

5.3.2 Hardware design principles

For the next sections of this manuscript, we refer as CryptoCore to the particular
implementation of a candidate algorithm. The register-transfer level implementa-
tion design abstraction is used for all the implementations; our designs use only
synchronous registers and multiplexers. All the CryptoCore implementations were
adapted to the Hardware API LWC. The inputs and outputs are compatible with the
API. For each implementation in CryptoCore, a 32-bit datapath is presented, but
some also have an 8-bit datapath.

5.3.3 LOTUS and LOCUS

LOTUS and LOCUS are authenticated ciphers that provide Release Unverified Plain-
text (RUP) security. Both were presented in the NIST competition in [27] and then
published an extended version with detailed security analysis in [28]. LOTUS and
LOCUS are a construction based on a tweakable block cipher, in this case, tweGift-64.

100

5.3. Implemented Authenticated Ciphers

The main goal of its design is to provide high-performance capability and suit-
ability for low-end and memory-constrained devices. The high performance can
be reached with parallel implementations. The structure followed by LOTUS and
LOCUS is based on OTR [87] and OCB [107]. However, two in a row block ciphers are
used instead of just one. Such structures allow constructing a parallel authenticated
cipher.

For both AEAD, the initialization phase, the Associated Data processing (ADP), and
the tag generation (TAG) are the same. Figure 5.2 shows the graphical representation
for ADP and TAG. ADP is based on a variant of the hash layer of parallelizable MAC
(PMAC), for which it is possible to make the parallelization. TAG aims to provide
RUP security, and thus the checksum of all intermediate outputs and the output of
each AD block is used to calculate the checksum.

Ẽ1
KN ,2

∆N

A1

U1

V1

Ẽ2
KN ,2

∆N

A2

U2

V2

Ẽa
KN ,2/3

∆N

Aa

Ua

Va

..... V⊕

Ẽm+1
KN ,6

∆N

T

V⊕ ⊕W⊕ ⊕Mm

∆N

Figure 5.2: Block diagram for associated data processing and Tag generation for
LOCUS and LOTUS.

Both LOTUS-AEAD and LOCUS-AEAD in encryption mode defines as inputs an
encryption key K ∈ {0, 1}k, a nonce N ∈ {0, 1}k, an associated data AD ∈ {0, 1}∗,
and a message M ∈ {0, 1}∗, and outputs the ciphertext C ∈ {0, 1}|M |, and a tag
T ∈ {0, 1}n. With fixed n = 64, k = 128.

The dependent Keys and tweak schedules are an integral part of these AEAD
modes. The key and tweak change for each block cipher call. During the initialization

101

5.3. Implemented Authenticated Ciphers

phase, 0n is ciphered with K to obtain T ; K is XORed with N for generating the
nonce-dependent key KN ; the nonce-dependent masking key ∆N is computed by
cipher Y with KN . The dependent Keys are computed by α-multiplication, A · α,
where A ∈ F2128 , the multiplication is reduced using the irreducible polynomial
P (x) = x128 + x7 + x2 + x + 1. The tweak changes depending on the type of data
that is processing and is defined Twe ∈ {0, 1}τ where τ = 4.

The CrytoCore for LOTUS/LOCUS hardware implementation of 32-bit datapath
is shown in Figure 5.4. The main components are a tweGift-64, registers, and mul-
tiplexers. The register are Key mode, Key alpha, delta, Checksum, and regX1.
delta stores the nonce-dependent; Checksum stores the checksum of the output for
processed AD blocks and the intermediate outputs of the di-block; regX1 stores every
M2i block message XORed with delta, this is because, in the bus bdi, the message is
not more available when the output of the last cipher is. The control is not displayed,
but it is implemented by using a Finite State Machine FSM with 11 states.

The key schedule is the most expensive part of the mode, in area terms. Key mode
and Key alpha are registers of 128-bit length. The first one stores K, since it can be
used to encrypt several messages. It needs four clock cycles to be loaded entirely and
rotated with 32-bit. Key alpha implements the dependent keys when there is a new
key, and when the key is ready, the register is loaded by 32-bit each clock cycle, as
same as Key mode.

Also, Key alpha is updated with the value of the nonce-dependent key KN dur-
ing the initialization phase; later, it is updated with each dependent Keys, i.e., the
result of the α-multiplication. This task is done in 1 clock cycles because the result
is loaded in parallel. Finally, where there is a new message to process, and there is no
new key, the register is updated with the content of Key mode, and a parallel charge
also performs it.

5.3.4 LOTUS

Using a block cipher only in encryption mode, this kind of constructions are known
as inverse free. Particularly, LOTUS was inspired by OTR [87]; data is parsed into
2n-bit di-blocks. Figure 5.3 presents the block diagram of LOTUS mode, similar to a
two-round Feistel, but with two successive block ciphers in both layers.

102

5.3. Implemented Authenticated Ciphers

∆N

M2i−1

C2i

M2i

W2i−1

∆N

εiKN ,4

εiKN ,5

εiKN ,7

εiKN ,8

W2i

C2i−1

∆N

〈ℓ〉

C2c

M2c−1

W2c−2

∆N

εcKN ,12

εcKN ,13

εcKN ,14

εcKN ,15

W2c−1

C2c−1

M2c

Figure 5.3: Block Diagram of LOTUS mode for encryption.

The tweakable block cipher is instantiated four times for each two message blocks. A
new dependent Key is calculated for di-block, i.e., the same key for four block ciphers.
However, the tweak changes depending on the layer; the upper layer tweak is 0100,
and for the bottom layer, 1101. For the last di-blocks, the tweaks are 1100 and 1101,
respectively.

5.3.5 LOCUS

LOCUS was published along with LOTUS in [27] and [25]. It also uses tweGift-64 as
an underlying block cipher, but LOCUS requires the inverse function of tweGift-64.
Figure 5.5 presents the block diagram of LOCUS mode. In general, LOCUS in based
on OCB.

The message is parsed into n-bit blocks. For each block, a mask with the nonce-
dependent is applying, then it is encrypted by two successive tweGift-64 and masking
again. Similar to LOTUS, the intermediate outputs are used for calculating the
checksum. For the last message block, the input is the message length, and XORed
the output with the final message block. The key is updated by α−multiplication
before each block processing and tweak=4 and tweak= 5 for non-final and final blocks,

103

5.3. Implemented Authenticated Ciphers

delta

padd

mask

padd

len

regX1

key mode

key alpha α

gift tw

checksum

msg auth
==

bdi

bdi

bdi

bdi

key

key
in
tweak

start out

new key

clk
rst

mode

zeros

msg auth

bdo

Figure 5.4: LOTUS/LOCUS hardware architecture.

respectively.

Brief description of tweGift-64

Gift is a lightweight block cipher introduced in [10]. It is a Substitution-Permutation-
Network (SPN) with the option to handle 64-bit or 128-bit as block length. The
substitution layer is performed using a 4-bit S-box, the permutation layer is bit-wise,
and a key addition phase is performed at the end of each round. The key schedule is
linear, i.e., it is based on shift registers. The tweaked version of Gift called tweGift
was presented in [25], where a 4-bit tweak is injected in Gift and AES in order to
enhance the output space of the ciphers paying a small cost.

The datapath designed for tweGift-64 is shown in Figure 5.6. A serial implementation
was done with a 32-bit datapath to make the tweGift-64 core cheap in area. However,
although the design is focused toward low-end devices, we add some extra registers
that allow efficient processing of the tweGift-64 core. The core allows simultaneous
entry of the key and the message.

104

5.3. Implemented Authenticated Ciphers

Ẽ1
KN ,4

∆N

M1

X1

.....

Ẽ1
KN ,12

W1

∆N

C1

Ẽm−1
KN ,4

∆N

Mm−1

Xm−1

Ẽm−1
KN ,12

Wm−1

∆N

Cm−1

Ẽm
KN ,5

∆N

〈M〉

Xm

Ẽm
KN ,13

Wm

∆N

Cm

Mm

Figure 5.5: Block Diagram of LOCUS mode for encryption.

For encryption, the 32-bit input is divided in chops of 4-bit, an S-box is applied to
each chop. Its output is loaded into the status register of 64-bit implemented as
two registers of 32-bit in a row. Then, when both registers are loaded, the control
commands parallel loading of the value resulting from the permutation; then, the
information is shifted, and the output of the register is XORed with the corresponding
round key. This process is done for the 28 rounds stated in the cipher algorithm.

The core has two inputs to calculate the round key, a key 64-bit, and a tweak
4-bit. The input key is stored in the Key state register. The round key is extracted
from the 32 least significant bits of the K. In particular, our design has a copy of
these 32 bits; it allows that after the first block output, the core can admit a new M
and K.

The tweak is connected to tweExp component, and its output is stored in a shift reg-
ister of 16-bit length. tweExp performs the function of tweak ∈ {0, 1}τ → tweak ∈

105

5.3. Implemented Authenticated Ciphers

tweak expand reg16 bits

constants Permuteconstants

reg32

reg32

reg32

reg16

reg16

≫ 12

≫ 2

≫ 8

reg16

≫ 8

reg16

reg32 sbox reg32 reg32

Permutation

tweak

key

in

p0 p1

output

P

state reg

round key

Figure 5.6: tweGift-64 design implementation, for a 32-bit datapath.

{0, 1}16 and tweak= x3, x2, x1, x0 using a linear code described below:

S = (x3 ⊕ x2 ⊕ x1 ⊕ x0) (5.1)

TweExp = (S ⊕ x3, S ⊕ x2, S ⊕ x1, S ⊕ x0, x3, x2, x1, x0)

||(S ⊕ x3, S ⊕ x2, S ⊕ x1, S ⊕ x0, x3, x2, x1, x0), (5.2)

Finally, Gift algorithm uses round constants calculated by an affine LFSR.

5.3.6 ESTATE

ESTATE is a deterministic authenticated encryption (Mac-then-encrypt AE mode)
constructed using tweGift-128 and tweAES-128 as underling tweakable block ciphers.
It was presented in the NIST competition in the specification document [26] and
then published with security proofs in [29]. ESTATE follows the design of Sundae
cipher [8]. It combines the MAC algorithm FCBC⋆ based on classic mode cipher

106

5.3. Implemented Authenticated Ciphers

block chaining (CBC) and encryption algorithm based on output feedback (OFB).
The authentication tag T is generated by FOCB receiving as input the AD and M
blocks; then, the generated tag is used as IV of OFB mode to encrypt the message.
T depends on all the message blocks; we have to go through all message blocks to
authenticate the message and store each message block in external memory for the
encryption processing. The external memory is implemented as FIFO by the LWC
interface, and it is external to the CryptoCore design; hence it does not add additional
cost in area.

It is important to note the simplicity of the ESTATE algorithm, all the tweak-
able block ciphers calls use the same key, and it does not include multiplication by 2
or 22 as Sundae, that saves two inputs to the multiplexer in the input of the tweakable
block cipher. The tweak is a 4-bit value as in LOCUS and LOTUS. When the nonce
is processed and there are no message and AD blocks, tweak= 8; otherwise, tweak= 1.
For the AD and message blocks tweak= 0, except for the last blocks. Besides the
padding rule, if the block is complete tweak= 2, otherwise tweak= 3. For the last
message block, tweak= 4 if it is complete or tweak= 0 if it is not. For the special case,
when the message is empty, the tweak to process the last message change to tweak= 4
when it is complete and tweak= 5 when it is incomplete. Figure 5.7 illustrates the
operations performed by ESTATE when there are AD blocks and M blocks.

sESTATE is a variant of ESTATE that reduces the latency of the mode; it uses a
round-reduced variant of the tweakable block cipher to process the AD blocks except
the last. In this study, we only implement ESTATE since sESTATE uses almost the
same area, and latency reduction is not part of the scope of this chapter, where we
examine the area of different NIST LWC Round2 candidates.

We implement ESTATE using tweAES-128 and tweGift-128. We present two archi-
tectures using 32-bit and 8-bit datapaths for both underlying tweakable block ciphers.
In Figure 5.8 we show the implemented architecture for ESTATE.

In this case, the tweAES-128 block cipher was implemented with 32-bit datapath.
Because its output must be feedbacked, a FIFO to store the output is needed (labeled
as FIFOAES). The padding layer is implemented using four multiplexers with three
8-bit inputs, where the first one is the input value bdi from LWC interface, the second
one is the padding byte 01, and the last one is byte 00. When all the input values in
bdi are valid, the four multiplexers select the first value. For instance, if only the

107

5.3. Implemented Authenticated Ciphers

VN F 15
K E

2/3
K

A0 Aa−1

F 15
K F 15

K
.....

T E0
K

M1

E0
K

C1

..... E0
K

Mm

Cm

Mm−1

Cm−1

TV E
4/5
K

M0 Mm−1

F 15
K F 15

K
.....

Figure 5.7: ESTATE Deterministic Authenticated Cipher.

first byte in bdi is valid, only the first multiplexer selects its first input, the second
selects the padding byte 01, and the other two selects 00. After padding, the inputs
are XORed to the feedback from tweAES-128. As the authentication tag is computed
before start to encrypt, the component FIFOtg stores the tag and gives it as output
after all the encrypted message is computed.

Changes for Decryption: For authenticated decryption, it is necessary to decrypt
the message first and then compute the authentication tag. We modify the order of
segments to the following order: Npub, AD, T , PT/CT . For decryption, the first
step is to process AD blocks and store the value in FIFOAES in the register estateR.
Just after the last AD block is loaded, the tag for verification is loaded and stored
in FIFOtg. With the tag stored in FIFOtg, the message inputs from bdi port are
decrypted, and the output to the bdo port is taken as valid decrypted message, while
in parallel, all the outputs blocks are also stored in the external FIFO and later they
are used to compute the authentication tag. The verification process is done by the
component V erifytg, where such component is a comparator. It receives as inputs
the tag store in FIFOtg and the output from tweAES-128. The control unit is a
finite state machine. It generates all the control bits needed by the components in

108

5.3. Implemented Authenticated Ciphers

FiFoK

regAES

fifoAES

fifostate

tweAES − 128

veriftg

fifotg

key

bdi

bdi

x01

x00

data fifo

bdi

x01

x00

data fifo

bdi

x01

x00

data fifo

bdi

x01

x00

data fifo

bdi

in fifo

bdo

msg auth

bdi

Figure 5.8: Architecture for ESTATE.

the architecture.

The four implementations of ESTATE reported in section use the same architecture,
and the only change is the AES core, where it could be tweAES-128 with 8-bit
datapath or tweGift-128 either with 8-bit or 32-bit datapath.

Brief description of AES

The Advanced Encryption Standard (AES) [38] is the standard for encryption defined
by NIST in 2001. Its original name is Rijndael. It is a SPN computed in rounds, where
each round includes four transformations: SubstitutionBytes (S-box), ShiftRows,
MixColumns, and AddRoundKey. A key schedule function generates the round keys.
ESTATE used the tweaked version of AES with a key length of 128-bit, so then
rounds are executed; hence ten rounds keys are also computed. Our implementation
of tweAES-128 with 8-bit datapath is based on the implementation of AES presented

109

5.3. Implemented Authenticated Ciphers

in [94]. Such design needs a permuted input, and it gives a permuted output that was
done to save some multiplexers as the design was implemented for ASIC technology.

FPGAs multiplexes, from two to four inputs, can be implemented using only one
LUT per byte, so we modified the original architecture to avoid the permuted input
and output; this change in FPGAs is for free. For the 32-bit datapath architecture,
our design is based on the architecture presented in [109], which uses Tboxes to avoid
the matrix multiplication of MixColums, by combining SubstitutionBytes and Mix-
Columns in a large table. As we attempt to avoid BRAMs, we compute TBoxes using
four Sboxes (implemented using LUTs) and the matrix multiplication for MixColumns.

Below we explain the latency of our implementations of tweAES and tweGift-128.
All the implementations computes the round keys on-the-fly and have registers to
store the key or the actual value in the round. Such registers are called key state and
state, respectively.

• tweAES-8: The version of tweAES with 8-bit datapath uses eight clock cycles
to compute the AddRoundKey and SubstitutionBytes, ShiftRows takes one
clock cycle, and finally MixColums is performed in four clock cycles. So, the
latency per round is 21 clock cycles, and ten rounds take 210 clock cycles and
16 additional clock cycles to outputs the encrypted block, given a total latency
of 226 clock cycles. This architecture uses only one Sbox. As the last round
does not include the MixColumns transformation, to maintain the uniformity
of the design, the state register is disabled, avoiding compute the MixColums
in the 10-th round.

• tweAES-32: The computation of the round is column-wise, so each round takes
four clock cycles as the ShiftRows and MixColumns are performed in parallel,
just selecting the correct bytes from the state to compute the MixColums. Four
additional clock cycles are used to give the output. So, the total latency or
tweAES is 44 clock cycles. This implementation uses four Sboxes.

• tweGift-128: Both implementations 8-bit datapath and 32-bit datapath use the
same architecture; the only changes are that for 32 bits it uses 8 Sboxes (4-bit
Sbox) while for 8 bits only 2 Sboxes are used. The permutation step takes one
clock cycle for both cases and the computation of the round is five clocks cycles
and 17 clock cycles for 32-bit datapath an 8-bit datapath, respectively. Gift-128

110

5.3. Implemented Authenticated Ciphers

executes 40 rounds in 32 bits, so the total latency is 204 clock cycles, and 8 bits
is 696 clock cycles.

For tweAES the tweak is expanded from four bits to eight bits using the same linear
code as in tweGift-64; in the case of tweAES the tweak is injected, making a ⊕ with
the least significant bit of each byte in the top two rows of the state matrix. The
injection of the tweak is performed every two rounds.
For the tweGift-128, the tweak is expanded using the same linear code to a 32-bit
value; then, it is XORed to the bits in position 4 + 3 for i = 0, ..., 31 of the state
register. Such operation is applied every five rounds.

5.3.7 COMET

COMET was presented in [114], it is an authenticated encryption algorithm that
combines Counter encryption mode, and Beetle authenticated cipher [30] using AES
as underlying block cipher. Its basic operations are φ and ϱ, where φ is used to
update the AES key while ϱ combines the input AD or message blocks with feedback
from the AES cipher and generates the ciphertext blocks. ϱ(K) receives as input a
128-bit string and performs multiplication by 2 of the low half part of the input key
K = KH ||KL as ϱ(K) = KH ||2KL, the multiplication is reduced using the irreducible
polynomial P (x) = x64 + x4 + x3 + x+ 1. The function ϱ takes as input two 128-bit
strings and outputs two 128-bit strings, one is taken as the input of the block cipher,
and the other is taken as ciphertext if required.

Internally ϱ performs a shuffle of four 32-bit words of the feedback input, first

X is split as X
4−→ (X3, X2, X1, X0) and then shuffle as X ′ = X ′

1||X0||X2 ≫ 1||X3..
The value Xi is XORed to the padded input blocks and fed to the block cipher. The
input is truncated to the ciphertext generation’s input block length and XORed to the
X ′ value. The key is XORed with 6-bit constant words called control words. The first
is ctrlad = 000010, and it is XORed the key just after the nonce’s encryption. If the
last AD block is incomplete, then the key is XORed with ctrlp ad = 000100. Before the
first message block is processed the key is XORed with the value ctrlpt = 001000, and
then if the last message block is incomplete, the key is XORed with ctrlp pt = 010000.
Finally, when the tag is computed, the key is XORed with ctrltag = 100000. In Figure
5.9, COMET algorithm is illustrated.

COMET can be instantiated using three different block ciphers: AES, CHAM, and
Speck. In subsection, we present the implementation of COMET only with AES.

111

5.3. Implemented Authenticated Ciphers

Xi+1

Ai

E ̺E

Zi+1

ϕ

Xa−1

E ̺

Za−1

ϕ

Xa

E ̺

Za

Yi+1 Ya−1 Ya

Zi+2 Za

Aa−2 Aa−1

0000||ctrlad||0κ−5

ϕ

Y0

Z0

N

K

000||ctrlp ad||00κ−5

Xk+1

Mj

E ̺

Zk+1

ϕ

Xℓ−1

E ̺

Zℓ−1

ϕ

Xℓ

E ̺

Zℓ

Yk+1 Yℓ−1

Zk+2

Mm−2 Mm−1

00||ctrlpt||000κ−5

ϕ

Ya

Za

0||ctrlp pt||0000κ−5

Yℓ

Cj Cm−2 Cm−1

E

ctrltg||00000κ−5

ϕ

T

Zℓ+1

Figure 5.9: Block diagram for COMET.

We implement COMET using the architecture in Figure 5.10 for 8-bit datapath
and 32-bit datapath. Two dedicated components were developed to compute shuffle
and permute operations; the shuffle component computes and stores X ′, and stores
also its original input X as it is needed to compute the feedback input to the AES.
The permute component only computes the operation permute we have explained
above; it consists only of a 128-bit register capable of multiplying by 2 its 64 low
bits. The output bdo is selected by a multiplexer between tag produced directly by
the block cipher, plaintext, or ciphertext, which comes from the function φ. The
register mkey stores the secret key loaded from the LWC interface as many messages
can be encrypted with the same key, the key is updated only if the interface requests
it. The registers Y reg and Z reg are used to store the outputs of functions φ and
ϱ(K), respectively. The register adptct stores the data input, and the register ptctr
allows to compute the ciphertext or plaintext. Finally, the authentication is done by
the component isauth that is only a word-wise comparator; the word size can be 8 or
32 depending on the size of the datapath. The control signals are generated using a
finite state machine.

112

5.3. Implemented Authenticated Ciphers

mkey

zreg

y reg

adptct

ptctr

AES

permute

shuffle

is auth

bdi

ctrl

key

key upd

ctrl

bdi

msg auth
bdi
01
00

bdo

Figure 5.10: COMET architecture for 8-bit and 32-bit.

The data flow for encryption and decryption is the same; the order of the processing
of the blocks is the following: Npub, AD, PT/CT and T .

113

5.3. Implemented Authenticated Ciphers

5.3.8 Oribatida

Oribatida is an authenticated cipher based on a sponge function, and it uses a public
permutation simP based on block cipher Simon [11]. There are two Oribatida versions,
one with a permutation size of 192-bit and the other one with 256-bit [16]. In this
manuscript, we implement only the 256-bit size version; it is denoted as Oribatida-256.
Oribatida-256 manages a 128-bit message (M) and AD (A) blocks. The key and
nonce size are also of 128 bits. SimP performs 34 rounds twice (P’) or four times (P)
depending on which type of data is processing.

In Figure 5.11, the Oribatida mode of operation is shown, where the first chart
a) shows the nonce/AD stage. First, the nonce (N) and the key (K) are concatenated
and used as the starting values to generate the seed that helps to process the received
AD, i.e., U1 and V1. Then, there are a stages to process the respective a blocks Ai of
128-bit that form A, where the first a−1 are computed with P ′ and the last one is com-
puted with P . Every Ui output coming from P ′ or P is XORed with the respective Ai.

The last block Aa is padded if needed before being processed by P . For the second
chart b), M is encrypted. To obtain the ciphertext C, each 128-bit block of M
is XORed with Ua+j and Vj−1, i.e. Xa+j = Mj ⊕ Ua+j ⊕ Vj−1 (just the 64 LSB of
Vj−1) and then each Xa+j is used as input for P together with Ya+j = Va−j. The
last block Mm is padded before being processed by P and the Cm is just of the
size of Mm. With the last P for M , the tag T is computed by extracting the MSB
places of the output of P . An additional note should be done regarding to the do-
mains dN , dA, and dE, where each one is XORed against V0, Va and Va+m, respectively.

These domains help to indicate if A or M is padded or not. Regarding the pad for
the Aa and Mm, the remaining empty bytes are filled with the sequence with 0x80....
Also, in Figure 5.11 observe that each block of the ciphertext is masked using the
capacity part of the permutation, this allows Oribatida to offers RUP security.

Now, to be compliant with the LWC contest specifications, our implementation of
Oribatida-256 supports any M/A size. That means, A and M are conveyed in a
packet that can be authenticated and encrypted regardless of their size or if they are
not included in that packet. Fig. 5.12 describes the implemented architecture for
Oribatida-256; a sequential architecture was adopted to save area. Due to the nature
of this architecture, the current input block must be fully processed before processing
the next one. The blocks (N ||K), Aa, and Mm are XORed with a domain of 4-bit.
The domain is chosen depending on if A or M should be padded or not. Special

114

5.3. Implemented Authenticated Ciphers

P

A1

P’ P’ PN ||K

A2

Aa

U0

V0

X0

Y0

dN

U1

V1

X1

Y1

U2

V2

X2

Y2

Ua

Va

Xa

Ya

.....

Ua+1

Va+1

dA

PADn

a)

b)

P

M1

Xa

Ya

Ua+m

Va+1

Xa+1

Ya+1

P

C1 Vf

LSBs

P.....

Ua+1

Va+m

Cm Va+m−1

LSBsPADr MSB|Mm|

Xa+m

P

Ya+m

dE

MSBτ T

Mm

Figure 5.11: Encryption version of Oribatida AEAD Algorithm (scheme based on the
found at [16]).

attention deserves the decryption operation when Cm is processed, because here Mm

(plus pad) obtained from Cm is used as a new frame to obtain the respective T ′ with
an encryption operation, otherwise T ′ will not be computed correctly.

The input and output of the LWC interface work with 32-bit inputs. We imple-
ment a component to pre-process the input blocks labeled as acc/pad/tag for the A,
M , and T ; meanwhile, acc k 128 receives the four 32-bit key frames and constructs
K from these frames. The pad is XORed to Aa and Mm if necessary. On the other
hand, the output blocks are split into 32-bit blocks and sent to LWC interface by the
component split32.

The block simP-n computes the permutation-based on Simon, where it executes
P (for n=4) and P’ (for n=2) operations, it receives X and Y in a concatenated way
X——Y as input and generates U——V as output. Details about SimP-n can be
checked at [16]. The architecture uses three multiplexer components, two to select the

115

5.4. Results

input X——Y to simP-n, and the other selects the correct output, i.e., which value is
sent to the component split32. The verification tag is done using a 128-bit comparator
with two inputs, one comes from acc/pad/tag that contains the verification tag, and
the second input comes from the output U of the simP-n. The control unit is a finite
state machine; it generates the signals to follow the correct operation flow of the
Oribatida algorithm and generates the values of the domain depending on if there
are of not A and M blocks or if the last block of them is complete or not.

acc/pad/tag comparator

x‖y simP − n split128

u

v

w‖d

dom

lsb4

msb124

split32

padP

holdP

acc k 128

xh‖j

msb64lsb64

lsb64

lsb64

msb64

mh‖l

bdi msg auth

m

xj

u

x

q

x

q

bdo

xj

key

u

Figure 5.12: LWC architecture for Oribatida AEAD.

5.4 Results

In this section, we present the result of the implementation process of the developed
architectures. We use Xilinx Vivado version 2020.1 with the target FPGA Artix 7
xc7a12tcsg325-3, with 8,000 LUTs – 16,000 FFs – 40 18Kbit BRAMs – 40 DSPs –
150 I/O. All the utilized resources and times were obtained after place and route. In
Table 5.2, we show the area in LUTs, Flip Flops (FF), and slices; we add a column
for the number of clock cycles used to produce each block of ciphertext as we use

116

5.4. Results

it to compute the throughput. For each implemented AEAD, its datapath size is
appended to its name.

Mode LUT FF Slices Freq Clock cycles Throughput TPA
(MHz) per E/D (Mbps/LUT)

block

LOCUS 32 1846 1005 521 166.04 114 93.21 0.050
LOTUS 32 1525 908 454 132.45 114 74.36 0.049

ESTATE-AES 32 1359 733 420 202.02 88 293.85 0.216
ESTATE-AES 8 797 416 228 227.27 552 57.21 0.072
ESTATE-Gift 32 1055 869 324 233.97 408 73.40 0.070
ESTATE-Gift 8 821 558 248 259.74 1392 23.88 0.029

COMET 8 1052 1031 346 190.33 297 92.47 0.088
COMET 32 1737 1551 565 196.85 70 427.40 0.246

Oribatida-256 256 1432 1319 465 246.24 137 230.06 0.161

Table 5.2: Utilization of resources, throughput and TPA for implemented architectures
on the xc7a12tcsg325-3 FPGA.

Table 5.2 has a comparative abstract of the implementation results in terms of uti-
lization resources, throughput, and TPA. The utilization resources are in terms of
LUT, FFs, and slices. As these implementations aim to be feasibly implemented in
restricted devices, the best results are using fewer resources. The Throughput metric
is the rate of process one complete block message and is calculated by LUT/latency.
Finally, TPA is a metric very useful to evaluated the performance/area tradeoff, it is
computed by Throughput/Area.

The results in Table 5.2 show that COMET 32 is the fastest flowing by ESTATE-
AES 32. In comparing these two implementations, their frequency is very closed
as both use the same AES implementation. The throughput of COMET 32 is bet-
ter because it uses fewer clock cycles per block than ESTATE-AES 32, 70 vs. 88.
ESTATE-AES 32 is a double pass algorithm so that it uses two calls to AES per
input block, and it offers RUP security; hence it is more secure than COMET 32. In
terms of utilized resources, COMET 32 is more significant as it needs more additional
registers than ESTATE-AES 32.

The biggest design is LOCUS 32; despite it uses tweGift-64 as a core, the large

117

5.4. Results

multiplexers it needs for input and key of tweGift-64 make the area increase. The
same case is with LOTUS 32 as it also needs large multiplexers to feed tweGift-64.
Comparing with ESTATE-Gift 32, which uses Gift-128, LOCUS 32 and LOTUS 32
are both more significant than it, the main reason is that the definition of ESTATE
is straightforward as it uses the same key for all the block cipher calls and needs only
four inputs to the underlying tweakable block cipher.

For 8-bit datapath architectures, ESTATE-AES 8 is the smallest-even than ESTATE-
Gift 8, in the number of LUTs and FFs. Regarding the speed, ESTATE-Gift 8 is
faster, but as it needs more clock cycles per block, its throughput is lower than
ESTATE-AES 8, which is reflected in better TPA for ESTATE-AES 8. Particularly,
it is important to note an incrementation in area around 70% for ESTATE-AES
between the 8-bit and 32-bit datapath architecture; also, the throughput increased is
more than 500%. In ESTATE-Gift, the increase in area between the architecture of
8-bit datapath and the one with 32-bit datapath is around 28%, and the increase in
throughput is 307%. Oribatida-256 with permutation simP takes 137 clock cycles,
which is much more than AES implemented with 32-bit datapath almost like Gift128.
Oribatida-256 is smaller than LOCUS 32, LOTUS 32, and COMET 32, in the number
of LUTs but smaller in the number of FFs only for the last one.

The best in TPA is COMET 32 as its throughput is the best, its area is not too much
bigger than ESTATE-AES 32. The worst in TPA is ESTATE-Gift 8 as it requires
1392 clock cycles per block while ESTATE-AES 8 requires 552 clock cycles.

In Table 5.3, we show the real overhead introduced by the LWC interface, i.e, which
amount of the resources corresponds to the implementation of the AE algorithm and
which correspond to the LWC interface. To get such results, we implement the entity
CryptoCore as the top entity. The overhead is shown both in LUTs and FFs. For
all the presented cases, the number of FFs and LUTs are below 2,000, which is one
of the conditions for hardware components that the LWC contests suggest to use,
even with the inclusion of the overhead of the extra components that LWC uses to
complement CryptoCore for each evaluated solution. In summary, the overhead is
below 300 LUTs and 250 FFs if we consider the worst cases for each feature (ESTATE-
AES 32 with 294 LUTs and ESTATE-Gift 32 with 244 FFs). Along with the LUTs
and FFs for the complete design, we put the percentage of utilization of such resources.

We can see that our biggest design LOCUS occupy 23.07% and 6.28% of avail-
able LUTs and FFs and the smallest ESTATE-AES 8 9.96% and 2.60% of available

118

5.4. Results

LUTs and FFs. With this information we can see that the available resources to
develop an application using any of our designs as a security component is at least
around 74%.An example of an application could be a wireless transmitter, using
LOCUS to encrypt and authenticated the network packets. Almost 74% of resources
are left over to implement the rest of the components to achieve the functionality.

Complete design Mode only

Mode LWC+Cryptocore Cryptocore Overhead
LUT/%usage FF/%usage LUT FF LUT FF

LOCUS 1846/23.07 1005/6.28 1640 956 195 52
LOTUS 1525/18.77 908/5.67 1327 854 183 52

ESTATE-AES 32 1359/16.99 733/4.58 1065 505 294 228
ESTATE-AES 8 797/9.96 416/2.60 587 344 209 72
ESTATE-Gift 32 1055/13.19 869/5.43 788 625 267 244
ESTATE-Gift 8 821/10.26 558/3.49 535 479 286 79

COMET 8 1052/13.15 1031/6.44 803 951 249 80
COMET 32 1737/21.71 1551/9.69 1462 1451 275 100

Oribatida 1432/17.90 1319/8.24 1248 1172 184 147

Table 5.3: Overhead in resources for complete design (LWC+Cryptocore) compared
with Cryptocore alone. %usage is the percentage of utilization of available resources
on the xc7a12tcsg325-3 FPGA.

The more significant overhead in FFs is introduced to the ESTATE 32, as ESTATE
is a double pass cipher, it needs an extra FIFO to store the plaintext or decrypted
message. To communicate with such FIFO, 64 ports should be added to the LWC
core; however, there are not enough input/output ports available on the target FPGA
xc7a12tcsg325-3 (150); we implement a wrapper to convert 32-bit vectors to 16-bit
vectors, that change allowed us to fit the design in the target FPGA but increasing
the number of utilized FFs.

Table 4 shows the results obtained in our implementations against those previ-
ously reported in the literature. First, we need to clarify that these solutions are
different from those included in this manuscript. They were implemented using iter-
ated full path round strategy; in our study, only the implementation for Oribatida-256
follows such strategy. All the ciphers implemented in [20] are single pass, and they

119

5.4. Results

offer security compared with COMET but not as LOCUS, LOTUS, STATE, and
Oribatida-256, which provides RUP security as is expected, using a full datapath for
AES results in better throughput and more area. For example, our implementation
of COMET 32 is almost 1000 LUTs smaller than the one presented in [20] but nearly
four times slower. Gift-COFB in [20] is implemented with a 128-bit datapath while
our implementation of ESTATE-Gift 32 uses a 32-bit datapath, the reduction in area
is almost 50%, and the reduction in throughput is almost eight times as ESTATE is
a double pass cipher, i.e., it needs two block cipher calls per message block. As our
implementation needs more clock cycles to encrypt one 128-bit block, Gift-128 uses
40 rounds, and our 32-bit approach uses 204 clock cycles, 5 per round, and finally
408 per message block, causing a low throughput.

Despite the difference in the compared architectures, it may help to determine
if the solutions here tested to have a better performance against those obtained in
[20], by considering that this is a Contest that evaluates if a solution is better than
the others. At first sight with the LUTs parameter, the winner in this ranking is
ESTATE-AES 8 (ranked as 1, because it is the solution with the lower number of
LUTs, 797), followed by ESTATE-Gift 8 and COMET 8. Additionally, the number
of LUTs occupied by the solutions presented in [20] are larger than those shown in
this manuscript, with the notorious exception of SpoC (ranked as 5 for LUTs, with a
value of 1172), that is better than the following solutions here presented: LOCUS,
LOTUS, ESTATE-AES 32, COMET 32, and Oribatida-256 256 (ranked as 10, 8, 6,
9 and 7, respectively). The worst case is Schwaemm, with 4313 LUTs.

Now, comparing among all the solutions in terms of throughput, ASCON-AEAD
is the best because it has the largest throughput value (1683.2 Mbps), followed by
COMET-AES and Gift-COBF (2 and 3, respectively). About the solutions here
presented, COMET 32 is the first one with the best ranking (ranked as 5, with a value
of 427.40 Mbps), followed by ESTATE-AES 32, COMET-CHAM, and Oribatida-
256 256 (ranked as 6, 7, and 8, respectively). The worst case is ESTATE-Gift 8, with
a throughput of 23.88 Mbps.

Nonetheless, for a fair comparison among all the presented solutions, it is necessary to
consider the TPA that belongs to each candidate. For the sake of clarity, the content of
Table 4 is sorted by TPA, from the largest to the lowest value. Then, ASCON-AEAD
(0.887) and COMET-AES (0.584) have the best TPA record. However, reviewing
the number of LUT components for the last one exceeds 2,000 allowed units (see
column 2). From the solutions presented, COMET 32 arises as to the best candi-

120

5.4. Results

date (ranked as 4, with 0.246), followed by ESTATE-AES 32 and Oribatida-256 256.
The worst case is ESTATE-Gift 8, with a TPA of 0.029. Additionally, Gift-COFB
(0.329) is better than any solution in the group of the candidates evaluated in this
manuscript. ESTATE-AES 32 (0.216) and Oribatida (0.161) are better than SpoC
(0.132), COMET-CHAM (0.128) and Schwaemm (0.121).

Mode LUTs Ranking Freq Throughput Ranking TPA Ranking
- - LUTs (MHz) E/D Mbps Thr. Mbps/LUT TPA

ASCON-AEAD[105] 1898 11 263.00 1683.2 1 0.887 1

COMET-AES[105] 2753 14 251.00 1606.40 2 0.584 2

Gift-COFB[105] 1932 12 263.00 635.20 3 0.329 3

COMET 32 1737 9 196.85 427.40 5 0.246 4

ESTATE-AES 32 1359 6 202.02 293.85 6 0.216 5
Oribatida-256 256 1432 7 246.24 230.06 8 0.161 6

SpoC[105] 1172 5 268.00 154.50 9 0.132 7

COMET-CHAM[105] 2214 13 201.00 282.70 7 0.128 8

Schwaemm[105] 4313 15 106.00 521.80 4 0.121 9

COMET 8 1052 3 190.33 92.47 10 0.088 10
ESTATE-AES 8 797 1 227.27 57.21 14 0.072 11
ESTATE-Gift 32 1055 4 233.97 73.40 12 0.070 12

LOTUS 1530 8 132.013 74.11 11 0.048 13

LOCUS 1835 10 121.951 68.46 13 0.037 14
ESTATE-Gift 8 821 2 259.74 23.88 15 0.029 15

Table 5.4: Comparison of our LWC implementations regarding to the existing litera-
ture.

5.4.1 Discussion of results

By considering the results shown in Table 5.3 and Table 5.4, the designs here presented
are competitive when compared to those found at [105]. According to Table 5.3 when
the solutions are synthesized in FPGA xc7a12tcsg325-3 (8000 LUTs and 16000 FFs
available) with the use of the LWC CryptoCore, when considering the number of
LUTs, the biggest solution is LOCUS, with 23.07% of usage, being ESTATE-AES 8
the lowest one with 9.96%. If FFs are considered, Oribatida is the biggest with 8.24%,
and ESTATE-AES 8 is the lowest with 2.60%. Then, ESTATE-AES 8 has lower area

121

5.4. Results

usage in general terms, either with LUTs and FFs. Nevertheless, it is interesting to
see when the solution and the overhead are analyzed individually, LOCUS has a lower
overhead than ESTATE-AES 8 (195 LUTs, 52 FF vs 209 FFs, 72 FFs); meanwhile
with Oribatida just the number of LUTs are lower (209 vs. 184). It is important to
highlight that all the tested solutions in this manuscript are below 2000 LUTs and
2000 FFs, which is a recommendation to be followed when a new solution is proposed
and implemented.

By considering the number of LUTs presented in Table 5.4 for those solutions found at
[105], the third column helps us to choose just those solutions that can be a reference
to determine which percentage is used before comparing against to the solutions
presented in this manuscript. Just SpoC (ranked as 5) can be used as the best one
among those presented in [105], with 1172 LUTs (or 14.65% of usage resources), which
is better than LOCUS and Oribatida, but worse than ESTATE-AES 8. The worst
case in [105] is Schwaemm, with 4313 (or 53.91%), which is more than 50% of the
total amount of LUTs available. Unfortunately, the number of FFs and slices, plus an
analysis of overhead when using LWC CryptoCore from [105] are not available to deter-
mine the additional use of resource in the FPGA to make a more accurate comparison.

Now, by analyzing the throughput (sixth column) seen in Table 5.4, ASCON-
AEAD (first), COMET-AES (second), Gift-COMB (third), Schwaemm (fourth), and
COMET 32 (fifth) are the winners, but ASCON-AEAD, Gift-COFB and COMET 32
have a number of LUTs lower than 2000 (1898, 1932 and 1737, respectively). Then,
these solutions are suitable for the recommended restrictions, therefore COMET-
AES and Schwaemm are discarded as feasible solutions. If we compare ASCON-
AEAD against Gift-COFB, ASCON-AEAD is 2.6499 more efficient. Now if we
compare ASCON-AEAD against COMET 32, ASCON-AEAD is more efficient 3.9382
times.The worst solution is ESTATE-Gift 8, with 23.88 Mbps, even when in terms of
LUTs it is the second best solution (821).

Finally, by analyzing the TPA (eighth column) seen in Table 5.4 with the con-
sideration that the number of LUTs should be lower than 2000, ASCON-AEAD
(first), Gift-COMB (third) and COMET 32 (fifth) are the winners, being ASCON-
AEAD more efficient than Gift-COMB and COMET 32 with 1.5188 and 2.6960 times,
respectively. The worst solution is again ESTATE-Gift 8, with 0.029.

Regarding the potential scenarios to be applied, having in mind the restrictions
of 2000 LUTs and 2000 FFs, if the user needs high throughput, ASCON-AEA (first),

122

5.5. Summary

Gift-COFB (third), and and COMET 32 (fifth) are the best options, being the first
the best one. If the user needs lower area usage in terms of LUTs regardless of the
throughput, ESTATE-AES 8 (first), ESTATE-Gift 8 (second), and COMET 8 (third)
are the best choices, notwithstanding ESTATE-Gift 8 has the worst throughput
among all the evaluated solutions (0.029). Then, ESTATE-AES 8 and COMET 8
becomes in feasible solutions because they also have an acceptable tradeoff in terms
of TPA (0.072 and 0.088, respectively).

5.5 Summary

This chapter is another effort to help in the evaluation of the NIST LWC Contest
by implementing our architectures, with some of the existing candidate solutions
using the adopted LWC-API. This was done to have a fair comparison between im-
plementations. We have presented the implementation of some authenticated ciphers
which offer RUP security, and we show that they can be implemented using similar
resources as traditional authenticated ciphers. All the presented solutions fit into
the FPGA of reference xc7a12tcsg325-3 (8000 LUTs and 16000 FFs available), being
the largest tested solution LOCUS, with 23.07% of LUTs and Schwaemm with 53.91%.

The main goal regarding to the area usage has been covered because each implemented
solution has less than 2000 LUTs and 2000 FFs. For that reason, Schwaemm has been
discarded as feasible solution. The TPA for ESTATE-AES 32 (0.216) and Oribatida
(0.161) (which offers RUP security), plus COMET 32 (0.246) are competitive when
compared to those presented in [105]. Nevertheless, ASCON-AEAD (0.887) and
Gift-COFB (0.329) have better TPA, where their respective ratio is 1.5188 times
in favor of ASCON-AEAD. Taking COMET 32 as reference, the ratio against to
ASCON-AEAD is of 2.6960.

One of the goals of chapter was to find solutions that reduce the area usage as
low as possible, as shown in the cases of ESTATE-AES 8 (797 LUTs), ESTATE-
GIFT 8 (821 LUTs) and COMET 8 (1052 LUTs). Even when ESTATE-GIFT 8 has
low LUTs usage, their TPA is the worst among all the evaluated solutions (0.029).
Then, ESTATE-AES 8 (0.072) and COMET 8 (0.088) are considered as feasible
ones. Nonetheless, if the throughput is not relevant at all, ESTATE-GIFT 8 can be
considered as feasible.

123

5.5. Summary

The next steps in these efforts are the implementation of additional architectures
that help to reduce the area usage by trying the minimization of the TPA, i.e.,
few area usage with high throughput. Another future task will be the implementa-
tion of another set of lightweight solutions to determine the full features that they
have (LUTs, slices, FFs, Throughput, among others) to do more accurate comparisons.

124

Chapter 6

Speedy Block cipher on ARM with
Bitslice

This chapter briefly explains a short project developed during a quick research visit
to the Technology Innovation Institute (TII) in Abu Dhabi, United Arab Emirates.
The implementation consists of a hardware-based block cipher on a microcontroller
ARM Cortex-M4 with low speed and low performance. The project focuses on using
the internal registers on the microcontroller to reduce de memory access to enhance
the performance and speed of the cipher. Therefore, the use of the techniques to
process each block of data differently than the proposed by the authors of the block
cipher.

6.1 Speedy block cipher

Speedy [80] aims to achieve ultra-low latency as a dedicated integrated circuit, tai-
loring this cryptographic application to maximum hardware speed. The first step
was to analyze the logic gates and topology suited for ultra-low latency encryption.
This block cipher has different instantiations with different Key and block sizes and
varying rounds.

The authors propose using a 6-bit width S-box that aims to 64-bit high-end CPUs,
and they choose a less common multiple of 6 and 64 to set a default size of 192 bits
to block size and Key size, known as SPEEDY-r -192. Besides, they claim that it can
achieve 128-bit security when it iterates over r = 6 rounds and achieves complete
192-bit security when r = 7 rounds while offering a decent level of protection for
almost all applications when r = 5.

125

6.1. Speedy block cipher

The first stage of the development and design of this cipher begins with the re-
search of the behavior of the available Logic gates and their physical construction to
find the best components to achieve ultra-low latency. Next, they analyze different
logic gates, and their structure, and in table 1, section 2 of the Speedy paper [80],
they publish the results obtained from this experiment. That table shows the num-
ber of inputs of each gate labeled as Fan-In, the latency obtained by each gate in
picoseconds, and other results. Also, for this experiment, all gates use the library
Open Cell Library (OCL) with NanGates of 45nm.

In most hardware implementations, we aim to achieve the fastest possible circuit,
establishing a relation between the inputs and outputs. The authors demonstrate
two myths regarding the latency of logic circuits.

1. Myth: Each CMOS (Complementary Metal Oxide Semiconductor) standard
cell has a fixed delay, and it does not matter how many instantiations we have;
all have the same latency to a path.

Truth: The delay of a CMOS cell involves the transition in the time of the input
signals, which influence the previous cells and electrical environment.

2. Myth: Adding a gate to a circuit’s path without any other changes increases
the latency.

Truth: Adding a well-placed buffer or inverter (when applicable) to a path can
decrease the overall latency on a capacitive load.

To illustrate the previous two claims, we use figure 6.1 from the paper, which shows
on the left side an XOR gate and its output connected to eight XOR gates. On the
right, they add a buffer between the first XOR output and the inputs of the eight
XORs. Also, we can see the latency of each component individually and the total
latency calculation from the sum of all latencies.

On the figure’s left side (a), the total latency is l =29.169073 ps. On the other
hand, the right side has a latency of l =18.675571 ps despite the more considerable
path depth on the right side.

126

6.1. Speedy block cipher

(a) without buffering (b) with buffering

Figure 6.1: Latency of 15nm NanGate (image from Speedy paper [80] page 518, figure
1)

6.1.1 Speedy S-Box

After several tests and research, the authors present their 6-bit S-box in table 6.1.
In that table, we see the six bits denoted by the letter xi with i = 0, . . . , 5 as shown
in the figure 6.2, a couple of bits x0x1 indicate the row and values from 0 to 3 and
the four bits left denote the column, this way the substitution returns the output
value for each 6-bits. Also, figure 6.2 shows the S-box as a two-level NAND logic gate.
Each input uses a buffer and a NOT gate to slit the input signal xi to all NAND
gates. Therefore we show the following equations to calculate each output bit from
the S-box as yi.

y0 = (x3 ∧ ¬x5) ∨ (x3 ∧ x4 ∧ x2) ∨ (¬x3 ∧ x1 ∧ x0) ∨ (x5 ∧ x4 ∧ x1), (6.1)

y1 = (x5 ∧ x3 ∧ ¬x2) ∨ (¬x5 ∧ x3 ∧ ¬x4) ∨ (x5 ∧ x2 ∧ x0) ∨ (¬x3 ∧ ¬x0 ∧ x1), (6.2)

y2 = (¬x3 ∧ x0 ∧ x4) ∨ (x3 ∧ x0 ∧ x1) ∨ (¬x3 ∧ ¬x4 ∧ x2) ∨ (¬x0 ∧ ¬x2 ∧ ¬x5), (6.3)

y3 = (¬x0 ∧ x2 ∧ ¬x3) ∨ (x0 ∧ x2 ∧ x4) ∨ (x0 ∧ ¬x2 ∧ x5) ∨ (¬x0 ∧ x3 ∧ x1), (6.4)

y4 = (x0 ∧ ¬x3) ∨ (x0 ∧ ¬x4 ∧ ¬x2) ∨ (¬x0 ∧ x4 ∧ x5) ∨ (¬x4 ∧ ¬x2 ∧ x1), (6.5)

y5 = (x2 ∧ x5) ∨ (¬x2 ∧ ¬x1 ∧ x4) ∨ (x2 ∧ x1 ∧ x0) ∨ (¬x1 ∧ x0 ∧ x3). (6.6)

127

6.1. Speedy block cipher

Figure 6.2: Speedy 6-bit Substitution Box architecture with two-level NAND trees
and input buffers (image from Speedy paper [80] page 522, figure 2)

6.1.2 Speedy specification

Speedy-r-6ℓ comprises a block size of 6ℓ bits and r rounds; hence, we can see the inter-
nal state as a ℓ×6 rectangle array of bits denoted with x[i, j] with i as the rows and j as
the bit of the column of the state with x ≤ i < l and 0 ≤ j < 6, and all indexes begin
with zero, and the authors consider the zero-th bit or word as the most significant one.

For the initialization, the cipher receives a 6ℓ-bit plaintext and initializes the internal
state with the same order as the bits are received, i.e., first, fill x[0, 0], then x[0, 1],
and so on. Then applies the 1/round functions Rr (with 0 ≤ r < 1/) to the inter-
nal state, and each round function has the following four procedures: (2x)SubBox,
(2x)SiftColumns, MixColumns, AddRoundConstant, and AddRoundKey. Consider
x ∈ Fℓ×6

2 as input and y ∈ Fℓ×6
2 as the output with 0 ≤ i < ℓ and 0 ≤ j < 6 such that

the procedure gets defined as in the figure 6.3.

• SubBox (SB): apply the 6-bit S-box to each state row, as shown in figure 6.2,
with the values from table 6.1.

• SiftColums (SC): Each j-th column gets rotated vertically by j bits.

128

6.1. Speedy block cipher

x0x1 x2x3x4x5

.0 .1 .2 .3 .4 .5 .6 .7 .8 .9 .A .B .C .D .E .F
0. 08 00 09 03 38 10 29 13 0C 0D 04 07 30 01 20 23
1. 1A 12 18 32 3E 16 2C 36 1C 1D 14 37 34 05 24 27
2. 02 06 0B 0F 33 17 21 15 0A 1B 0E 1F 31 11 25 35
3. 22 26 2A 2E 3A 1E 28 3C 2B 3B 2F 3F 39 19 2D 3D

Table 6.1: Speedy 6-bit Substitution Box

Figure 6.3: Speedy algorithm as block diagram (image from Speedy paper [80] page
524)

• MixColumns (MC): Each state column gets multiplied by a cyclic binary matrix.

• AddRoundKey (Akr): the round key kr of 6ℓ-bits is XORed to the whole state.

• AddRoundConstant (ACr): Like the PRINCE algorithm from paper [21] all
round constants came from the number π − 3 = 0.141519 . . . and table 5 from
the Speedy paper [80] shows the first 100 × 64 bits constants, such that the
6ℓ-bit constant c0 gets XORed to the whole state. So they are considering that
c0 is the first constant from the table and so on for all values shown in the table.

6.1.3 Round function

With the procedures from above, this first sound gets defined as

Rr = Acr ◦MC ◦ SC ◦ SB ◦ SC ◦ SB ◦ Akr , (6.7)

And in the last round, the linear layer gets omitted and instead has an extra Key
addition.

R1/−1 = Ak1/ ◦ SB ◦ SC ◦ SB ◦ Ak1/−1
. (6.8)

129

6.2. Bitslicing

6.1.4 Key schedule

The cipher uses a 6ℓ-bit secret Key and initializes it as the zeroth round Key (k0),
then applies the permutation PB shown in table 6 page 526 from Speedy paper [80]
to compute the following round Key such that the in the next permutation, all the
bits change as

kr+1 = PB(kr) with kr+1[i′,j′] = kr[i,j], (6.9)

such that

(i′, j′) := P (i, j) with (6i′ + j′) ≡ (β · (6i+ j) + γ) mod 6ℓ, (6.10)

With i′ and j′ as the quotient of the division (β · (6i+ j)+γ) mod 6ℓ to 6 respectively.
Therefore the parameters β and γ depend on the block length of the cipher and the
condition of gcd(β, 6ℓ) = 1.

6.2 Bitslicing

Bit-slicing was introduced by [18] as a replacement for the lookup tables to enhance
the speed of the DES algorithm in software. This method consists of bit-slicing the
n-bit data to one on n registers, resulting in the possibility of processing multiple
blocks in parallel using bitwise instructions. Therefore this technique performs well
when using large registers.

For the Speedy software implementation, using an ARM-M4 (please refer to chapter
4 section 4.4) with 16 general-purpose registers of 32-bit, each allows processing
the 192-bits of the plaintext on six registers. The first step begins with relocating
the plaintext in a bit-slice fashion, as shown in table 6.2. Almost all procedures
operate efficiently with this relocation, but the S-Box procedure performs with the
combination of bitwise operations. Hence all steps on the algorithm perform in
parallel over all bits of the plaintext. And the implementation of the procedures
ShiftColumns and MixColumns become more accessible with the use of the barrel-shift
assembly instruction available in some ARM microcontrollers.

To rearrange the input bits of the block in a bit-slice fashion, the technique used by
[83] SWAPMOVE presented in the following procedure shows how to perform the

130

6.2. Bitslicing

bitslice conversion using bitwise operations.

SWAPMPOV E(A,B,M, n) :

T = (B ⊕ (A≪ n)) ∧M

A = A⊕ (T ≫ n)

(6.11)

Block 0 Block 1 Block 2 . . . Block 29 Block 30 Block 31
reg0 b00 b10 b20 . . . b290 b300 b310
reg1 b01 b11 b21 . . . b291 b301 b311
reg2 b02 b12 b22 . . . b292 b302 b312
reg3 b03 b13 b23 . . . b293 b303 b313
reg4 b04 b14 b24 . . . b294 b304 b314
reg5 b05 b15 b25 . . . b295 b305 b315

Table 6.2: Speedy bit-slice representation into the six registers as individual bits with
bij where i refers to the i− th block and j refers to the j − th bit of the bock i .

Therefore, this block cipher gets stored into five blocks of 6 bits when we use the
technique SWAPMOVE from the bit 0th to 29th, and we need to move one by one
the 30th and 31st bits at a time. The first step consists of fulfilling the registers with
32 bits each from the plaintext. The second step moves complete blocks from other
registers to the next register, i.e., the second block b1 of 6-bits precedes the block b0

in the same register, but this second step swaps this block with the first 6-bits in
the second register, and so on for the following complete blocks in the register, then
make the same for the following registers and blocks.

The third step moves the bits from incomplete blocks to a different register to
create new complete blocks and move those “empty” bits left in the registers to the
right of each. By the way, all empty places become full of blocks without moving any
of the blocks 30th and 31st. Finally, in the last step, we have each block in a column
way, then we can swap each bit to move each block as a column, as shown in figure 1
page 6 paper [76].

6.2.1 Substitution Box (SB)

It gets implemented by the combination of logical operators to reduce the memory
consumption of a lookup table. This focus allows processing the 32 blocks of 6 bits

131

6.2. Bitslicing

parallelly thanks to the bitslicing. Each function needed gets performed individually
and sequentially but with different equations because the microcontroller does not
have a NOT (¬) instruction. Still, it has an or-not (ORN) instruction with a ∧ ¬b,
and the equations from 6.1 to 6.6 need a conversion to use the ORN instruction
resulting in the following set of equations.

y0 = x3 ∧ (¬x5 ∨ (x4 ∧ x2) ∨ (x1 ∧ ((¬x3 ∧ x0) ∨ (x5 ∧ x4)))) (6.12)

y1 = x5 ∧ ((x3 ∧ ¬x2) ∨ (x2 ∧ x0) ∨ (¬x5 ∧ x3 ∧ ¬x4) ∨ (¬x3 ∧ ¬x0 ∧ x1)) (6.13)

y2 = x0 ∧ ((¬x3 ∧ x4) ∨ (x3 ∧ x1) ∨ (¬x3 ∧ ¬x4 ∧ x2) ∨ (¬x0 ∧ ¬x2 ∧ x5)) (6.14)

y3 = x2 ∧ ((¬x0 ∧ ¬x3) ∨ (x0 ∧ x4) ∨ (x0 ∧ ¬x2 ∧ x5) ∨ (¬x0 ∧ x3 ∧ x1)) (6.15)

y4 = (x0 ∧ ¬x3) ∨ (¬x0 ∧ x4 ∧ x5) ∨ ((¬x4 ∧ ¬x2) ∧ (x0 ∨ x1)) (6.16)

y5 = x2 ∧ (x5 ∨ (x1 ∧ x0)) ∨ (¬x1 ∧ ((¬x2 ∧ x4) ∨ (x0 ∧ x3))) (6.17)

6.2.2 Shift Columns (SC)

Due to the bit-slicing, all blocks are now in a column way such that all bits have a
representation of a transposition in the row direction. The implementation of this
procedure consists of the use of the assembly instruction ROR, which consists of the
rotation of n bits to the right of a register. Moreover, the instruction performs over
the 32 blocks in parallel, and the whole procedure needs only six instructions. The
algorithm 17 shows the algorithm in assembly to execute the Shift Columns.

Algorithm 17 ShiftColumns (SC) assembly code.

Require: Data output from SB procedure stored in general purpose registers.
Ensure: Shift Columns process stored in general purpose registers
1: “mov r0, r6;”
2: “mov r1, r12, ror #31;”
3: “mov r2, r8, ror #30;”
4: “mov r3, r9, ror #29;”
5: “mov r4, r10, ror #28;”
6: “mov r5, r11, ror #27;”

6.2.3 MixColumns (MC)

Like Shift Columns, the processing becomes parallel to all blocks, and each row
performs an XOR, as shown in the equation 6.18.

132

6.3. Results

y[i] = x[i]⊕ (x[i]≪ a0)⊕ (x[i]≪ a1)⊕ (x[i]≪ a2)

⊕(x[i]≪ a3)⊕ (x[i]≪ a4)⊕ (x[i]≪ a5)
(6.18)

Due to the modification of the value while the MC execution, the new values are
saved on different registers to avoid change from the importance of SC. MC uses the
XOR instruction and the barrel shifter simultaneously, and all the procedures use 36
EOR (XOR Barrel-Shifter) only.

6.2.4 AddRoundKey (AR) and AddRoundConstant (AC)

The conversion of both Round Keys and Round Constants to bit-slice following the
same vision becomes a must for the correct operation of the encryption process.
Therefore, this procedure allows for a reduction in advance with only an XOR on
both ARK and ARC and stores the values in memory. Since the process began, it
only accessed memory six times in the encryption.

6.3 Results

The team who implemented the Speedy algorithm in an ARM-M3 [76] used an Ar-
duinoDUE (AT91SAM3X8E) powered by an ARM Cortex-M3 with a clock speed of
84 MHz; it has 512KB of flash memory and 96KB of RAM. We use an ST Nucleo-144
development board with the characteristics presented in the chapter 4 section 4.5.
The board uses an ARM Cortex-M4 stm32l4a6zg with a frequency of 80 MHz.

Both implementations do not consider the Key scheduling, assuming that the pre-
computation of the Round Keys and the Round Constants stored in memory, as a
difference between the traditional ciphers, which encrypt blocks of 128-bits Speedy
encrypts 192-bits. Table 6.3 compares the reference C implementation of Speedy-7-192
and other results from different implementations of block ciphers in cycles per byte
(cpb), and all implementations use the ECB encryption mode.

Comparing the Speedy-6-192 against AES-128 and GIFT-128, the 75.2 cpb shows
that Speedy with the same security level is 1.6x faster than 120.4 cpb and 1.3x than
104.1 cpb of both ciphers, respectively for the reference code available in [80] for ARM.

Our implementations consist of the same techniques with different focuses. We

133

6.3. Results

write procedures to stay as long as possible in the microcontroller registers and write
some functions in combination with C language and assembly.

The functions SBox, MixColumns, and ShiftColumns are from the paper [76] with
some modifications taking into account only the code of those functions we used
barely. The difference is how we implemented the bitslice process to convert any
data from a regular to a bitslice representation; once this conversion finishes, the
encryption algorithm begins to run.

The first developed version is the adaptation of the reference code from the au-
thors, and it only has the compiler improvements.

The second implementation uses the ASM language only and is an “unrolled” version
of the algorithm. The plaintext is processed once the conversion to bitslice has
finished, and the Round Keys needed are stored in memory and loaded as required.
With the previous conversion of Round keys and Round constants to bitslice, the
algorithm access that data stored in memory.

The third version is a copy of the previous implementation with the difference
in the operation “XOR” used in the AddRoundKey and the AddRoundConstant in the
algorithm. Here it is possible to previously precompute an XOR between the round
Key K[1] and round constant Rc[0] to save some clock cycles during the encryption
process

K[i+ 1]⊕Rc[i] (6.19)

for i = {0, . . . , nr − 1} and nr as the rounds required for the encryption algorithm,
i.e., we perform this operation to reduce the memory access when the round Keys
and round constants are loaded. Performing this operation can reduce the memory
access and the memory needed to store data to store only the plaintext and the keys
and reduce the clock cycles required to encrypt one data block.

For the fourth implementation, the implemented code combines C language and
Assembly using parameters to send and receive data between functions. The shared
data is the Plaintext, Round constants, and the keys needed for the algorithm. We
seek to reduce memory access using the debugger tool. We look to stay as much as
possible with the microprocessor registers with the required data and only load the
data needed to perform the required operations.

During the execution, the program modifies the registers r0 to r3. In these reg-

134

6.3. Results

isters, the variable addresses get stored there. Therefore, moving the data stored in
these locations to other registers is mandatory before the C function ends. Then,
when a new process begins, we recover the data from the registers without memory
access.

The final implementation is a fusion between the third and fourth implementa-
tions with the advantage of executing the algorithm with a dynamic number of rounds.

All implementations do not have any Key scheduling because this function needs
to be stored in memory to get some improvements. In addition, the registers in
the microprocessor are 32-bit long, so there is no improvement to the regular Key
schedule, but a bitslice version has possibilities.

Table 6.3 shows the results from all our implementations, including the reference code
and results from work [76]

Implementation Speed (cpb) Block size
AES-128 [80] 120.4 128
GIFT-128 [80] 104.1 128

Speedy-7-192 (reference M3 [80]) 15,407 192
Speedy-5-192 (ARM M3 [80]) 65.7 192
Speedy-6-192 (ARM M3 [80]) 75.2 192
Speedy-7-192 (ARM M3 [80]) 85.1 192
Speedy-7-192 (reference M4) 358,306 cc 192

Speedy-6-192 (ASM unrolled our) 2562 cc 192
Speedy-6-192(ASM unrolled ARKARC our) 2338 cc 192

Speedy-6-192 (ASM Fun our) 2554 cc 192
Speedy-6-192 (ASM Fun ARKARC our) 2270 cc 192

Table 6.3: Table with the results from [80] and our implementation, we only mea-
sure the clock cycles for the encryption process via the microcontroller embedded
instructions.

6.3.1 Differential Attack

On the date we did this project, there was no known attack. However, recently in
[23], a differential attack against Speedy-7-192 successfully broke the security claim

135

6.3. Results

by the authors of [80] that the version mentioned above offers 192 bits of security.
Therefore, they introduce the attacks to the authors of Speedy, and now they are
awkward about it. Those kinds of attacks are out of the scope of this thesis work.
Still, they are critical in cryptography and valuable to verify the security of any new
or old proposal.

Source Code

The source code and projects are available in the following links:

https://os5.mycloud.com/action/share/9748f690-e15a-4f42-8aa6-08ff4553fbfe

https://github.com/JoseABernalG/Speedy-ARM4.git

Libraries and functions source files are located in the next address for each project,
for example,

Speedy/Core/Inc/Functions.h

And the C code is located in:

Speedy/Core/Src/Functions.c and main.c

list of all individual projects as presented in this report with the name given in
the code:

• Speedy (reference code from [80])

• Speedy ASM Unrolled

• Speedy Unrolled ASM ARKARC

• Speedy ASM Fun

• Speedy ASM Fun ARKARC

And all C codes have commentaries about each function created.

136

https://os5.mycloud.com/action/share/9748f690-e15a-4f42-8aa6-08ff4553fbfe
https://github.com/JoseABernalG/Speedy-ARM4.git

Part III

Public Key Cryptography

137

Chapter 7

A DSP-based FPGA design and
implementation of a fast RNS
multiplier

Modular multiplication is a fundamental operation for modern cryptography schemes.
It is essential for modular exponentiation in public key crypto-systems based on
discrete logarithms and for the RSA encryption scheme. Furthermore, prime field
multiplication is an important arithmetic operation for computing elliptic curve scalar
multiplications and bilinear pairings.

Several authors have proposed the Residue Number System (RNS) as an alternative
for computing modular arithmetic over large integer operands [13, 36, 92, 93, 102].
Based on the Chinese Remainder Theorem (CRT), RNS’s main attractiveness is
representing a large integer utilizing a set of smaller independent numbers. In this
way, one trades the computational cost of a single arithmetic operation over two
large operands by calculating independent smaller modular operations that can be
computed in parallel. This unique characteristic is especially relevant for hardware im-
plementations, where handling the large operands usually required for cryptographic
applications can become problematic. Across the years, RNS arithmetic has been used
in hardware implementations of RSA [52, 5, 113, 74, 96, 97], in elliptic-curve based
cryptography [6, 17, 3, 54, 111, 112] and also in pairing-based cryptography [135, 32].

Due to its high flexibility and speed capabilities, the target device for our im-
plementation is a Field Programmable Gate Array (FPGA) device. The enhanced
Digital Signal Processing (DSP48) slices and memory blocks present in the latest

139

7.1. Our Contributions

models of FPGA devices are used to develop an efficient hardware architecture for the
field multiplication operation. The architecture obtained is then compared with the
existing state-of-the-art solutions to measure the overall efficiency of our FPGA-based
solution. The designs presented in this chapter were modeled using VHDL and the
Xilinx Vivado tool for synthesis and place-and-route simulations.

Modern FPGA devices come equipped with specialized hard-core units (DSP48)
slices. For Xilinx, a DSP48 slice includes a 25× 18 multiplier and 27× 18, DSP48E1
and DSP48E21, respectively; an ALU unit that permits to perform arithmetic and
logical operations such as additions, subtractions and Boolean operations over 48-
bit operands. The operation output can be stored on an accumulator allowing it
to perform the traditional digital signal processing operations a = a + b · c. The
DSP resources enhance speed and efficiency. DSP48 slices enjoy a faster operating
frequency than the one associated with designs using the FPGA fabric of logical
components. Moreover, they are designed with a Pipeline for performance and lower
power. A configurable number of pipeline stages architecture, from 0 to 3, permits to
accommodate several operands simultaneously.

7.1 Our Contributions

This chapter presents two efficient pipeline architectures for Montgomery multipliers
based on the Residue Number System (RNS). One salient feature of our hardware
design is that it is DSP48 slice-based, using very few Look-up Table fabric resources
of the FPGA device, leaving the programmable logic for other tasks; also, the using of
DSP48 allows for obtaining a higher frequency clock compared to the one implemented
only with LUTs. To enhance the efficiency of the RNS Montgomery Multiplier, two
small multipliers with reduction designed specifically for DSP48E1 and DSP48E2 are
presented; these are in charge of computing the product of each residue multiplication.

In the context of the RNS arithmetic, we also perform a detailed study comparing the
merits of a Montgomery reduction procedure proposed in [74] versus the one adopted
in [64]. This paper proposes an improved Montgomery reduction algorithm in [74] to
be implemented in hardware DSP oriented. We conclude that the former is better
because implementing Jeljeli is more practical since it does not require a base change

1https://www.xilinx.com/support/documentation/user guides/ug579-ultrascale-dsp.pdf

140

7.2. Preliminaries

or handling the double bases. That is required at the cost of duplicating the initial
base and adding three words, and we print both the base and its RNS representation.
In addition, the tables and precomputes grow in the same way. Therefore it is possible
to reduce the data dependencies and lower the quantity cycles required to execute the
algorithm without the need for a control unit since it is possible to take advantage of
the pipeline of the DSPs used; in addition, since it is completely designed in DSP, the
working frequency is not reduced as much as long as there are not too many instances
of them.

The remainder of this chapter is organized as follows. In Section 7.2, we provide
the theoretical and technological preliminaries. We discuss the main related works
in Section 7.3. Section 7.4 we present an analysis of basic arithmetic modules for
implementing the multipliers regarding DPS resources and their interaction. The
implementation for both multipliers is presented in Section 7.5. The results are in
Section 7.6.

7.2 Preliminaries

7.2.1 Notation

The notation for this chapter is:

w: the size of a word given this design.

⟨a⟩m = a mod m, where am ∈ [0,m)

Base B={m1, . . . ,mn},where gcd(mi,mj) = 1 for i ̸= j.

Base B′={m′
1, . . . ,m

′
n},where gcd(m′

i,m
′
j) = 1 for i ̸= j.

|B| : size of a set B

M =
n∏

i=1

mi, M ′ =
n∏

i=1

m′
i, where gcd(M,M ′) = 1

141

7.2. Preliminaries

Mi = M/mi, M ′
i = M ′/m′

i.

{a}B = [⟨a⟩m1 , . . . , ⟨a⟩mn].

{a}B′ = [⟨a⟩m′
1
, . . . , ⟨a⟩m′

n
].

{a}BB′ = [{a}B, {a}B′].

Transpose aT :

{a}TB =

⟨a⟩m1

...
⟨a⟩mn

Single word Montgomery multiplication.
{a}m

⊗
M{b}m = {ab2−w}m

{a}B
⊗

M{y}B = {ab2−w}B
= [{ab2−w}m1 , . . . , {ab2−w}mn]

Algorithm 18 Montgomery Multiplication.

Require: x, y ∈ [0, p), p with gcd(R, p)= 1 and R > p
Ensure: (v = x · y ·R−1)p
1: c← x · y
2: c(−p)−1mod R
3: r ← x+ q · p
4: v ← r/R
5: if v ≥ p then
6: v ← v − p
7: end if

7.2.2 Montgomery reduction

Modular multiplication is a fundamental operation for public key infrastructure. The
efficient implementation of this operation is important since, to establish a shared
secret, the following operation has to be performed several times.

c = a · b mod p (7.1)

142

7.2. Preliminaries

where p is a prime number of 2w-bits. In this context, p is usually a large number,
the range of w in the order of hundreds to thousands of bits.

The main disadvantage of using Eq. 7.1 is that its implementation involves a division
that results in more expensive than simple multiplication. A popular alternative is
the well-known Montgomery Multiplication [90] algorithm shown in Algorithm 18.
The idea behind this is to perform the next operation.

v = x · y ·R−1mod p (7.2)

where p is a odd number, usually a prime and R = 2w has to satisfies gcd(R, p) = 1
and R > p. Choosing this setting, line 4 of the Algorithm 18 can be performed by a
simple shifting operation. In line 6, there is a final subtraction to fit the result less
than p. To multiply x and y, they are converted to Montgomery form xR mod p and
yR mod p, respectively.

Lets define MM(a, b) as the function of Montgomery Multiplication the Algorithm
18, x′ = MM(x,R2) = xR2R−1 mod p and y′ = MM(y,R2) = yR2R−1 mod p; then
let be z′ the result of multiplication of x′ and y′, z′ = MM(x′, y′) = (xR)(yR)R−1

mod p = xyR mod p; finally, for reverting the Montgomery form of z′ another call
to MM(), z = MM(z′, 1) = (xyR) · 1 · R−1 mod p. Montgomery algorithm results
inefficient when only one modular multiplication is needed. However, when modular
multiplication is often applied, this algorithm performs best.

7.2.3 Residue Number System and Modular Arithmetic

An element a ∈ Zp is represented in radix-r as the array a =
∑n−1

i=0 air
i, where r = 2w

and 0 ≤ ai < r, and we say that the operand a has a word length of n words. For the
sake of simplicity, we will only consider operands with an even word size. Particularly,
we are interested in the case n = 8 required for computing a 256 RNS multiplication
with reduction.

The Residue Number System based arithmetic relies on the ancient Chinese Remain-
der Theorem (CRT). It is defined as follows, Let B be a set of ℓ pairwise co-prime
integer moduli B = {m1,m2, . . . ,mℓ}, called an RNS-basis, and let M be defined as,
M =

∏i=ℓ
i=1 mi. Invoking the CRT, a number a ∈ ZM can be uniquely represented by

the ℓ-tuple a = (a1, a2, . . . , aℓ), where each ai is the residue of a modulo mi. In the

143

7.2. Preliminaries

remainder of this operation, the a mod m will be written as a = |a|m.

Let a and b be two k-bit integers with a, b < M , represented as the RNS tuples
a = (a1, a2, . . . , aℓ) and b = (b1, b2, . . . , bℓ). The RNS addition, subtraction, and
multiplication of these two RNS numbers denoted by ⊕, ⊖, and ⊗, respectively, can
be performed component-wise as

c = a⊕ b = (|a1 + b1|m1
, . . . , |aℓ + bℓ|mℓ

),

c = a⊖ b = (|a1 − b1|m1
, . . . , |aℓ − bℓ|mℓ

), (7.3)

d = a⊗ b = (|a1 · b1|m1
, . . . , |aℓ · bℓ|mℓ

).

In this way, the addition, subtraction, and multiplication of elements in ZM can be
performed using smaller computations modulo mi, which are independent and can be
performed concurrently. Hence, in a hardware platform with ℓ processing units, the
computational cost of computing any RNS arithmetic operation in Equation (7.3) is
approximately the same as a single operation modulo mi. Those processing units are
implemented using the DSP48 blocks available in virtually all contemporary FPGA
devices.

The moduli mi described above are usually selected as mi = 2w − µi, where the
µi values are chosen as small as possible and guarantee pairwise co-primality. If
µi < 2⌊w/2⌋, then the reduction modulo mi of Equation (7.3), can be efficiently
performed by repeating at most twice the operation di = ti mod 2w + µi · ⌊ti/2w⌋,
where ti = ai · bi. This ensures that di ∈ [0, 2w]. Since 2w > mi, one may need to
compute a final reduction at the cost of at most one subtraction operation. To assure
a constant-time implementation, this reduction should be carried out by executing
two unconditional reductions, followed by one conditional subtraction by mi (cf.
Algorithm 21).

RNS modular multiplication

Modular multiplication is often performed by first computing the integer multiplica-
tion d = a⊗ b, followed by a reduction modulo p so that it is guaranteed that the
final integer value lies in the range [1, p− 1].

In the following, we describe the reduction approach proposed in [13, 92] (see also its
hardware and as described in [64, 63]). This approach allows performing a modular

144

7.2. Preliminaries

reduction d mod p without leaving the RNS domain.

Let d be a large integer represented in RNS using a basis composed of ℓ one-word
moduli. Let us assume that d must be reduced modulo an n-word prime number p.
Then, a strategy to perform the modular reduction d mod p can be obtained from
a direct application of the RNS recovery formula based on the Chinese Reminder
Theorem (CRT) as.

d =

∣∣∣∣∣
ℓ∑

i=1

γi ·Mi

∣∣∣∣∣
M

=

(
ℓ∑

i=1

γi ·Mi

)
mod M,

where γi ≜
∣∣di ·M−1

i

∣∣
mi

. (7.4)

Note that the right-hand side of Equation (7.4) involves a costly reduction modulo
M. A way around this issue is to rewrite the value a as

d =
ℓ∑

i=1

γi ·Mi − α ·M , with γi ≜
∣∣ai ·M−1

i

∣∣
mi

. (7.5)

Where α is a positive integer, and by construction 0 ≤ d/M < 1. From Equation (7.5),
we can compute α as

α =

⌊
ℓ∑

i=1

γi
mi

⌋
(7.6)

Since γi < mi, we have that 0 ≤ α < ℓ. Using the fact that mi ≈ 2w, the ratio γi/mi

can be approximated by only considering the σ most significant bits of the quotient
γi/2

w as follows,

α̂ ≜

 ℓ∑
i=1

⌊ γi
2w−σ

⌋
2σ

+∆

 , (7.7)

where σ is an integer in the range [1, w] and 0 < ∆ < 1 is an error correcting
parameter.

145

7.2. Preliminaries

The integer part of the summation in Eq. (7.7) can be efficiently computed by con-
sidering the output carry c produced by adding the σ most significant bits of the
coefficients γi with i = 0, 1, . . . , ℓ. Notice that the output carry c is an integer in the
range [0, ℓ]. The cost of computing α̂ of Eq. (7.7) is that of adding ℓ σ-bit integers.
We now observe that the value

z =
ℓ∑

i=1

γi · |Mi|p − |α ·M |p , (7.8)

is congruent to d mod p, as desired. However, due to the approximated computation
of the constant α of Equation (7.6), in general z ≥ d. Fortunately, the estimated
valued α̂, gives a close enough approximation of α so that z ≈ d.

Exploiting the framework just described, Algorithm 19 computes the RNS vec-
tor z ≡ d mod p as defined in Eq. (7.8). At first and off-line, the RNS vector∣∣∣M−1

j

∣∣∣
bj
for j ∈ {1, . . . , ℓ}, as well as the tables of RNS vectors |Mi|p for i ∈ {1, . . . , ℓ}

and |α ·M |p for α ∈ {1, . . . , ℓ− 1}, are computed. The combined amount of memory
required by this RNS vector and two tables is 10 Kbits that is (rows × w × ℓ) for
each precomputed vector.

In the first loop (Steps 4-8), ℓ processing units concurrently compute ℓ copies of
the RNS vector γ described in Eq. (7.4). Although the computational cost of these
Steps is ℓ RNS multiplications, as long as all these products are computed in parallel,
their associated latency should be very close to the latency associated with one
RNS multiplication. The second loop of Algorithm 19 (Steps 10-15) completes the
computation of the RNS vector z. Step 11 performs ℓ and ℓ− 1 RNS multiplications
and additions, respectively. All these ℓ RNS multiplications can be computed in
parallel, but the additions must be performed sequentially using a binary tree adder.
Step 12 computes α by adding ℓ σ-bit integers.

In Step 13, the RNS vector z is obtained by performing one RNS multiplication and
one RNS subtraction. In summary, the latency associated with Algorithm 19 is the

146

7.2. Preliminaries

combined latency of three RNS multiplications plus one RNS subtraction plus the
addition of ℓ σ-bit numbers.

Algorithm 19 RNS Jeljeli Modular Reduction [64].

Require: The integer d given in ℓ-moduli RNS representation, the ℓ-moduli RNS-
basis B, and parameters r, σ, and ∆.

Ensure: RNS vector z, such that its integer representation is z ≡ d mod p.

1: precompute RNS vector
∣∣∣M−1

j

∣∣∣
bj
for j ∈ {1, . . . , ℓ}

2: precompute Table of RNS vectors |Mi|p for i ∈ {1, . . . , ℓ}
3: precompute Table of RNS vectors |α ·M |p for α ∈ {1, . . . , ℓ− 1}
4: for each block i do
5: for each thread j do

6: γi ←
∣∣∣∣∣dj · ∣∣∣M−1

j

∣∣∣
bj

∣∣∣∣∣
bj

7: end for
8: end for
9: for each thread i do
10: for each thread j do

11: zj ←
∣∣∣∣∣Σℓ

i=1γi ·
∣∣∣|Mi|p

∣∣∣
bj

∣∣∣∣∣
bj

12: α←
⌊
Σℓ

i=1

⌊
γi

2w−σ

⌋
2σ

+∆

⌋

13: zj ←
∣∣∣∣∣zj − ∣∣∣|α ·M |p∣∣∣bj

∣∣∣∣∣
bj

14: end for
15: end for
16: return z = (z1, . . . , zℓ)

7.2.4 RNS Montgomery modular reduction

Peter L. Montgomery proposed his famous modular reduction in 1985 [91], which can
be briefly described as follows. Let us define the Montgomery parameter R as R = rn,
where before n represents the number of words necessary to represent the prime

147

7.2. Preliminaries

modulus p in radix r = 2w. Hence, rn−1 < p < rn. The Montgomery representation ã
of an element a ∈ Zp is computed as ã = a ·R mod p.

Let us assume that the elements a, b ∈ Zp have Montgomery’s representation given as
ã and b̃, respectively. Let c′ be defined as c′ = ã · b̃. Then, the Montgomery product
of ã and b̃ is defined as c̃ = ã · b̃ ·R−1 mod p and can be computed as

c̃ =
c′ + (µ · c′ mod R) · p

R
≡ c′ ·R−1 mod p. (7.9)

the parameter µ given as µ = −p−1 mod R, can be pre-computed off-line. It can be
shown that when 0 ≤ c′ < p2, the result c̃ in Equation (7.9) is in the interval [0, 2p[.
Hence, at most, a single conditional subtraction is needed to obtain 0 ≤ c̃ < p.

It was first shown by Posch and Posch [101] that the Montgomery reduction of
Equation (7.9) could be adapted to the RNS representation set. Several ingenious
refinements were later introduced in [75], and many more recent papers have dis-
cussed other exciting aspects of this topic (See [4] for a comprehensive survey). In
the remainder of this section, an RNS Montgomery modular reduction especially
designed for hardware implementations, is presented.

The adaptation of the k-bit Montgomery reduction to RNS arithmetic requires han-
dling two distinct RNS-basis B = {m1,m2, . . .mℓ} and B′ = {m′

1,m
′
2, . . .m

′
ℓ} such

that gcd(M,M ′) = gcd(M, p) = 1, where ℓ = ⌈ k
w
⌉ = n, and M =

∏ℓ
i=1mi and

M ′ =
∏ℓ

i=1m
′
i. In addition, the Montgomery parameters of Equation (7.9) must be

represented using the two RNS bases B and B′. It is customary to choose R = M, so
that the modular operation in the second term of the numerator of R in Equation (7.9)
is automatically computed. Also, the parameter µ must be specified as an RNS vector
−p−1 mod R represented in base B. Notice that since R = M, one must perform an
RNS basis transformation from B to B′, so that the division by R of Equation (7.9)
can be computed. Since it is customary to return the result on the original basis, a
second RNS basis transformation from B′ to B must be computed.

The procedure to compute an RNS Montgomery modular reduction is presented
in Algorithm 22. It is noted that the multiplication dB by µ in Step 5, is carried

148

7.2. Preliminaries

out in base B. Because of the design choice R = M , the reduction modulo R is
implicitly applied to this computation. Thus, the product in this step is equivalent
to compute µ · d mod R of Equation (7.9). In Step 11, the equivalent to the value
d+ (µ · d mod R) · p from Equation (7.9) is computed. This operation is performed
in base B′ because its result is a multiple of R; thus, it would always be equal to zero
in base B.

Finally, in Step 12, a division by R is computed. This corresponds to the RNS repre-
sentation of d ·R−1 mod p in base B′. The reason why this computation is performed
in base B′, is because the value M−1 is not defined in base B. Thus, throughout the
algorithm, it becomes necessary to perform two base extensions, which consist of
transforming a number given in base B (resp. B′) into a number in base B′ (resp. B.)
The first base extension (Steps 6 to 10) is made to derive an approximation δ from the
value of γ in Step 5. This permits the computation of the value (d+(µ·d mod R)·p)/R
in base B′. The second base extension (Steps 14 to 16) is performed at the end of the al-
gorithm to obtain the RNS representation of the result computed in Step 12 in base B.

It can be seen that RNS Montgomery modular reduction requires that all the opera-
tions must be performed in both RNS-basis B and B′ to maintain compatibility with
the reduction algorithm.

7.2.5 FPGA and DSP technology

Nowadays, most FPGA devices are equipped with embedded hard cores known as
Digital Signal Processing (DSP48) slices or blocks. Due to its dedicated and advanced
architecture, DSP48 slices can perform multiple arithmetic and Boolean operations,
such as additions, subtractions, multiplications, logical shifts, and comparisons. The
DSP48 blocks have a dedicated column-organized interconnection network. This
feature helps to share data among all the DSP48 blocks and use them to take
advantage of their outstanding processing speed.

Figure 7.1 show a general schematic view of the internal DSP48 slice components.
DSP48 slices count with four and two input and out ports, respectively. One of the
output ports is directed to the Look-Up Table (LUT) FPGA fabric and other FPGA
components. The other output forty-eight-bit port called PCOUT is connected to
the DSP48 interconnection network. Besides, each input port has its own register,

149

7.2. Preliminaries

Algorithm 20 RNS Montgomery Modular Reduction.

Ensure: The RNS vectors dB and dB′ , the ℓ-moduli RNS-basis B and B′, a prime p.
Require: The RNS vectors zB and zB′ corresponds the integer representation of

z ≡ d mod p.
1: precompute RNS vectors |M−1

i |m′
i
, |M′−1

i |m′
i
, |M−1|m′

i
and |p|m′

i
for i ∈ {1, . . . , ℓ}.

2: precompute Matrices of vectors |Mi|m′
i
and |M′

i|mj
for i,j ∈ {1, . . . , ℓ}.

3: precompute Tables of RNS vectors |α · (−M)|m′
i
and |α · (−M′)|mi

for α, i ∈
{1, . . . , ℓ}.

4: for each processing unit i do

5: γi ←
∣∣∣dBi
· |pi|mi

∣∣∣
mi

6: θi ←
∣∣∣γi · |M−1

i |mi

∣∣∣
mi

7: end for

8: α←
⌊
Σℓ

j=1

⌊
θj

2w−σ

⌋
2σ

⌋
9: for each processing unit i do

10: δi ←
∣∣∣∣∣Σℓ

j=1

∣∣∣|Mi|m′
j
· θj
∣∣∣
m′

i

+
∣∣∣α(−M)

∣∣∣
m′

i

∣∣∣∣∣
m′

i

11: γi ←
∣∣∣dB′

i
+ (δi · |p|m′

i
)
∣∣∣
m′

i

12: zB′
i
←
∣∣∣γi · |M−1|m′

i

∣∣∣
m′

i

13: θi ←
∣∣∣zB′

i
· |M′−1

i |m′
i

∣∣∣
m′

i

14: end for

15: α←
⌊
Σℓ

j=1

⌊
θj

2w−σ

⌋
2σ

+ 0.5

⌋
16: for each processing unit i do

17: zBi
←
∣∣∣∣∣Σℓ

j=1

∣∣∣|M′
i|mj
· θj
∣∣∣
mi

+
∣∣∣α(−M′)

∣∣∣
mi

∣∣∣∣∣
mi

18: end for
19: return zB and zB′

and internal registers make up an inherent five-stage pipeline with others.

150

7.2. Preliminaries

X-Ref Target - Figure 1-1

48-Bit Accumulator/Logic Unit

Pattern Detector

25 x 18

Multiplier

Pre-adder

B

A

D

C

P

+ / –

X

=

+

–

Figure 7.1: Simplified DSP48E1 architecture

The DSP48 ALU has an internal adder that takes as input operands the input reg-
isters of the ports A and D. The internal 25 × 18-bit signed multiplier. The ALU
can be programmed for performing forty-eight-bit addition, subtraction, and logical
operations.

The DSP named DSP48 has a more advanced architecture that is only available in the
FPGA Xilinx family of devices ultrascale named DSP48E21. It has several differences
concerning the previous architecture. Some of the most significant architectural
changes are: The built-in multiplier can handle 27× 18 bit operands. Moreover, the
pre-adder unit also increased its operands to 27 bits. Hence, the input ports A and D
and associated registers also increased to 27 bits. It is now possible to perform up to
sixty-four different arithmetic and logical operations with up to four input operands.
These operations can be programmed using a 6-bit control word. We want to point
out that DSP48 blocks offer better performance than the LUT blocks available in the
FPGA fabric because LUTs work with an independent clock and often reach at least
500MHz whether internal registers are internally used or not.

1https://www.xilinx.com/support/documentation/user_guides/ug579-ultrascale-dsp.

pdf

151

https://www.xilinx.com/support/documentation/user_guides/ug579-ultrascale-dsp.pdf
https://www.xilinx.com/support/documentation/user_guides/ug579-ultrascale-dsp.pdf

7.3. Related works

Knowing these devices’ characteristics and capabilities is essential since this allows
us to take advantage of their internal architecture and functionalities. Thus, it is
possible to design circuits with adequate length input operands without creating more
complex circuits that impact the architecture’s performance to be designed.

For the problem addressed in this chapter, the input operands are of length w,
which coincides with the length of each segment of the RNS. Thus it is possible
to implement several DSPs with different word widths in both DSP architectures
presented in this section. According to the multiplier capabilities integrated into the
Xilinx FPGA’s family 7, the size of w = 34 bits was determined.

7.3 Related works

In this section, we present some related work to the main topic of this chapter.
Kawamura et al. introduced in [74] the “Cox-Rower” architecture. This architecture
allows the parallelization of “Rower” components used for computing RNS field
multiplication using Montgomery reduction. This architecture also counts with an
accumulator with modular reduction. The unit “Cox” is the evaluator of the factor k̂.
The components Cox and Rower can be seen as part of the datapath.

A hardware implementation was presented in [17], using similar ideas related to the
“Cox-Rower” architecture. The main difference lies in the quantity of required Rower
units. In [17] this number is reduced to n

2
. Also, the authors employ an extra 6-bit

“Cox” unit that permits to compute an extra RNS channel. The authors of [17] report
their results in several FPGA families such as the Xilinx “Spartan6, Virtex5 and
kintex7”. Their version of the “cox-rower” architecture requires both DSP48 slices
and also slices from the FPGA fabric. The main application of the multiplier designed
in [17] was to perform elliptic curve cryptography. The authors analyze different
design options to evaluate time-space tradeoffs. In the case of the paper by [96], the
proposed architecture is a variant of the “cox-rower” where each “Cox” unit is inside
the “Rower” component. The “Rower ” units are interconnected in a ring instead of
a communication bus.

In [53], the ALU unit was developed using exclusively DSP48 slices. The authors
decided to work with 16-bit operands. The accumulator required by the Cox-Rower

152

7.4. Design of a DSP48 -based architecture for a field multiplier

architecture was moved to the output of the first multiplier. Furthermore, the au-
thors employed a 10-stage pipeline and included a Montgomery ladder procedure for
performing the elliptic curve scalar multiplication.

We also included in our comparison analysis the RNS implementations in software
with applications to elliptic curve cryptography. In [4], several variants of the Mont-
gomery reduction algorithm are proposed along with its implementation in software.

7.4 Design of a DSP48 -based architecture for a

field multiplier

In this chapter, the proposed field multiplier DSP48 -based architecture implemented
component-wise RNS multiplier followed by RNS reduction using Algorithm 22 and
Algorithm 19. Both of these algorithms require RNS additions, subtractions, and
multiplications. For an n-word prime number, the size of the RNS basis for Algo-
rithms 22 and 19 is of 2n+ 3 and ≈ n+ 2, respectively. The former requires just
one basis, whereas the latter requires two different bases. Both algorithms require
the pre-computation of several RNS vectors and tables, which will be described in
the remainder of this section. These values were stored using the Flip-flop and LUT
blocks in the target FPGA devices.

Another important task is to add n products as efficiently as possible using a binary
addition tree.

Previous works, such as [17], have used the DSP48 blocks for performing the RNS
multiplication but the FPGA fabric for performing the field reduction.

In the remainder of this section, we will present the design of each one of these blocks,
keeping in mind the following goals.

• To achieve a latency fast enough to compete not only with other hardware
designs but also with recent CPU and GPU implementations.

153

7.4. Design of a DSP48 -based architecture for a field multiplier

• To exploit parallel or pipeline approaches or a combination of them.

• To provide a design primarily based on DSP48 blocks. This implies the usage
of 34× 34 bit multipliers.

7.4.1 Basic RNS multiplier with reduction

As discussed in §7.2.3, an RNS multiplication is performed component-wise using
one of the ℓ one-word modulus taken from the RNS basis B. Let us recall that the
word size is k bits. The basic operation procedure is presented in Algorithm 21.
Algorithm 21 requires three inputs, namely, the two one-word operands Ai and Bi,
along with the value µ corresponding to a modulus mi ∈ B of the form, mi = 2w−µi.
In the case that the word product Ai · Bi is larger than 2w then a fast reduction
process is performed as shown in Steps 4-6 of Algorithm 21.

Algorithm 21 Basic RNS reduction module.

Require: The RNS words Ai and Bi, the µi parameter of the RNS basis modulus
mi = 2w − µi.

Ensure: A w-bit product Ci = Ai ·Bi mod mi.
1: Ci ← Ai ·Bi

2: CLi ← Ci mod (2w − 1)
3: CHi ← Ci div 2w

4: Ci ← CL+ (CH · µi)
5: Ci ← Ci mod (2w − 1) + ((Ci div 2w) · µi)
6: Ci ← Ci mod (2w − 1) + ((Ci div 2w) · µi)
7: return Ci

As mentioned in §7.2.5, a DSP48 block comes equipped with a 25× 18 bit multiplier,
where its most significant bit is reserved for the sign of the operands. Since the
multiplications in our designs are modular, we decided to use the DSP48 multiplier
to perform 17× 17 symmetric products. Figure 7.2 depicts that using the schoolbook
method, a two-word product can be carried out using partial 17 × 17 symmetric
products to avoid the use of the asymmetric multiplier and the use of up to 24 bits
shifting.

154

7.4. Design of a DSP48 -based architecture for a field multiplier

Consequently, we define the word size of our architecture as w = 34. bits; in this way,
we try to maximize the size of each port a, b to 18 bits, using these sizes to get a
two’s complement result. Also, the multiplication result is sent via the PCOUT port,
and in the other DSP, apply a right shift of 17 bits to use the 17 most significant bits
in its operation, wherever it is easier to perform the reduction operation using the
internal interconnection network dedicated to DSP slices with a bus up to 48 bits of
length.

We tried to maximize the use of ports A and B of the DSP48 ; that is, if we used the
asymmetric multiplier, asymmetric shifts became a problem. That is why we chose
to use a 34-bit word, and we can use the DSP48 with a symmetric multiplier without
any major problem. It also has the advantage that the results can be sent through
the PCOUT port of the DSP48 , and therefore, it was easier to make the reduction
directly without the need to complete a 68-bit result. Another advantage is that the
sums carried out within the same DSP48 are kept within the size of the internal bus
of the DSP48 , which is 48 bits, which avoids having to complete the bus to make
more operations.

x B0

A0

B0A0 0

B0A1 17

B1

A1

B1A0 17

B1A1 34

Figure 7.2: Two-word schoolbook multiplication method

155

7.4. Design of a DSP48 -based architecture for a field multiplier

Algorithm 22 RNS Montgomery Modular Reduction in HW.

Ensure: The RNS vectors dB and dB′ , the ℓ-moduli RNS-basis B and B′, a prime p.
Require: The RNS vectors zB and zB′ corresponds the integer representation of

z ≡ d mod p.
1: Tables of RNS vectors |α · (−M)|m′

i
and |α · (−M′)|mi

for α, i ∈ {1, . . . , ℓ}.
2: RNS vectors PC1 ←

∣∣∣|P |mi
· |M−1

i |mi

∣∣∣
mi

, PC2 ←
∣∣∣|M−1|m′

i
· |M ′−1

i |m′
i

∣∣∣
m′

i

, PC3 ←∣∣∣|M−1|m′
i
· |M ′−1

i |m′
i
· P |m′

i

∣∣∣
m′

i

, PC4 ←
∣∣∣|M−1|m′

i
· |p|m′

i

∣∣∣
m′

i

, and |M−1|m′
i
.

3: for each processing unit i do

4: θi ←
∣∣∣dBi
· |PC1|mi

∣∣∣
mi

5: γi ←
∣∣∣dB′

i
· |PC2|m′

i

∣∣∣
m′

i

6: γ′
i ←

∣∣∣dB′
i
· |M−1|m′

i

∣∣∣
m′

i

7: end for

8: α←
⌊
Σℓ

j=1

⌊
θj

2w−σ

⌋
2σ

⌋
9: for each processing unit i do

10: δi ←
∣∣∣∣∣Σℓ

j=1

∣∣∣|Mi|m′
j
· θj
∣∣∣
m′

i

+
∣∣∣α(−M)

∣∣∣
m′

i

∣∣∣∣∣
m′

i

11: θj ←
∣∣∣γi + (|δi · PC3|m′

i
)
∣∣∣
m′

i

12: zB′
i
←
∣∣∣γ′

i + (|δi · PC4|m′
i
)
∣∣∣
m′

i

13: end for

14: α←
⌊
Σℓ

j=1

⌊
θj

2w−σ

⌋
2σ

+ 0.5

⌋
15: for each processing unit i do

16: zBi
←
∣∣∣∣∣Σℓ

j=1

∣∣∣|M′
i|mj
· θj
∣∣∣
mi

+
∣∣∣α(−M′)

∣∣∣
mi

∣∣∣∣∣
mi

17: end for
18: return zB and zB′

Two different design alternatives were studied from Algorithm 21. These designs are
depicted in Figure 7.3.

156

7.4. Design of a DSP48 -based architecture for a field multiplier

pw

b0 × a1

b1 × a0

b1 × a1 b0 × a0

Hh Hl L

Hh × pw Hl × µi + L

H L(add3)

H × µi + L

b1 × µi (a1 − 1)× µi b1 × a0 b0 × a1 b0 × a0

r = (b1 × (a1 − 1× µi)) + (b1 × µi) add2 add1

(add2 × µi) + r

H add3

(H × µi) + add3

µi 216

8 16

24 34 34

17 17 34

3434

3414

34

b1

µi

µi

25 17 25 17 17 17 17 34

8 34

8

25 18 35

14 34

34

a) b)

Figure 7.3: Proposed RNS component-wise multipliers

Figure 7.2 calculates two 34-bit words using the schoolbook method by dividing them
into four sub-operands extracted from the two-word operands A and B. All the
operations are performed concurrently, i.e., each DSP48 block computes in the first
clock cycle the operation Bi · Ai for i = 0, 1, and outputs its result to the following
DSP48 through the port PCOUT. This accumulates the product just computed with
a previous result. Moreover, the seventeen least significant bits of the DSP48 blocks
B0A0 and B1A0 must be stored because they become the thirty-four least significant
bits of the product A ·B.

Considering that a subsequent reduction by the element µi corresponding to the
modulus mi of the basis B must be performed, the next stage of this component
performs two reduction steps. First, sixty-eight bits are reduced from the schoolbook

157

7.4. Design of a DSP48 -based architecture for a field multiplier

multiplication of the first fifty-one bits. In the second step, the output is reduced
to thirty-four bits using the parameter µ to perform the reduction. This module is
performed by the combination of nine DSP48 blocks. Taking advantage of the internal
structure of the DSP48 block, a one-stage pipeline was designed for performing this
task.

The first design is shown in Figure 7.3.a follows more the pattern of a multiplier
with a diamond shape. This helps reduce the critical path and take better advantage
of the internal pipeline in the DSP48 blocks. In this design, the lower and higher
products A0B0 and A1B1 are added with the cross products A0B1 and A1B0. Besides
saving additions, this arrangement permits to work directly in the reduction phase
without worrying about the carry-out that will be processed during the first stage.
This design only requires eight DSP48 blocks.

The second design shown in Figure 7.3.b, is fully oriented to the most modern FPGA
devices in the Xilinx series “ultrascale”. This family of FPGA devices is equipped with
27× 18 bit multipliers. This permits the proposal of another RNS word multiplier
architecture that can achieve the desired result with fewer pipeline stages and a
shorter critical path. The design involves the manipulation of the components of the
operation, bi · ai mod µi. As can be seen from Figure 7.3.c, this approach yields a
five-level architecture.

The two RNS word multiplier designs shown in Figure 7.3 are referred to in the sequel
as RNSModule. RNSModule is the most basic component of our RNS multiplier
architecture. Because of design and technological reasons, we decided to adopt the
second design of Figure 7.3.b and dismiss the usage of the others. This selection
is because the limited DSP blocks in the Virtex-ultrascale series do not exceed 12k
DSP block. Also, we want to reduce the signal traffic into the FPGA to keep a high
frequency. Wherever we want to use a large complete multiplier, the DSP available is
not enough with the third design of the RNSModule.

158

7.4. Design of a DSP48 -based architecture for a field multiplier

7.4.2 Multiplier array MulDM

As mentioned, RNSModule is the basic module to achieve the RNS parallelism. Given
a basis B of cardinality ℓ,, replicating this module ℓ times to obtain an RNS product
suffices. Hence, the RNS product ci = a · b mod mi with i ∈ (0, . . . , ℓ − 1), can be
processed in parallel using the multiplier array named MulDM as shown in Figure 7.4.

RNSModule0 RNSModule1 RNSModule2 RNSModuleℓ−1

34 34 34 34 34 34 34 34

8 8 8 8

34 34 34 34
ℓ× w

ℓ× w

ℓ×#µ

ℓ× w

a

b

µ

clk

c

Figure 7.4: RNSModule components array

Each module of the array RSNModule is interconnected to a databus named a, b. This
bus distributes the one w-bit word operands ai and bi. Similarly, another databus
named µ provides all the reduction parameters µi corresponding to the modulus mi

that belong to the RNS basis B. This way, the array RSNModule can produce an
RNS product every six cycles. Since array RSNModule has been designed in the
pipeline, it admits a new set of operands every clock cycle.

7.4.3 RNS addition with reduction

A required operation for the Montgomery reduction Algorithm 22 is to operate
ai+ bi mod mi. This module is depicted in Figure 7.5. It consists of two stages; in the

159

7.4. Design of a DSP48 -based architecture for a field multiplier

add0 add1 add2 addn−1

red0 red1 red2 redn−1

34 34

8 35

34

µ0

34 34

8 35

34

µ1

34 34

8 35

34

µ2

34 34

8 35

34

µn−1

a0 b0 a1 b1 a2 b2 an−1 bn−1

Figure 7.5: Addition with reduction

first stage, a component-wise RNS addition with operands ai+ bi is performed. In the
second stage, a thirty-four-bit reduced result modulo µi is output. This component
was fully designed using DSP48 blocks and requires two clock cycles to perform one
RNS addition.

7.4.4 Addition tree

As mentioned before, the RNS reduction algorithms discussed in §7.2.3 require the
addition of the result of ℓ independent products. To perform this task and take ad-
vantage of the DSP48 block internal structure, we designed the addition tree shown in
Figure 7.6. In the first level, pairs of operands are added, requiring a total of ℓ

2
adder

modules. In the second level of the adder tree, three operands are added at once. This
is accomplished by taking advantage of the fact that the DSP48 blocks are equipped
with two outputs. One of the DSP48 outputs feeds the next DSP48 block using its
PCIN input. This allows for reducing the cost that would have been associated with
a pure binary adder tree.

Hence, for an RNS basis of cardinality ℓ, the adder tree of Figure 7.6 requires

160

7.5. Implementation

add0 add1 add2 addn−1

add20 add21 add2n−1

add30

34 34

48 48 48 48

48

48 48

48

34 34 34 34 34 34

a0 b0 a1 b1 a2 b2 an−1 bn−1

Figure 7.6: Addition tree

N = 1 + ⌈log3 ℓ
2
⌉ levels and a maximum of ⌈ ℓ

2
+ (N · log3(ℓ2 − 1))⌉ − 1 DSP48 blocks,

as an example, supose a base with ℓ = 19 then N = 4 and 16 DSP48 blocks will be
needed.

7.5 Implementation

Our implementation performed all the operations on DSP48 slices, leaving only the
control unit using LUTs. Two FPGA devices were targeted: a high-end Virtex-7
ultrascale+ (xcvu7p-flva2104-3-e). Moreover, this family has many DSP slices, includ-
ing the recent DSP48E2 model, equipped with a 27× 18 bit multiplier.

161

7.5. Implementation

In the remainder of this section, each of the two Montgomery reduction algorithms is
analyzed.

7.5.1 Implementation of the modular reduction Algorithm 19

In Figure 7.7, a general diagram presenting the main blocks of the architecture is
presented. Figure 7.7 shows the interconnection among the main modules and the
main modules are the multiplier arrangement MulDM, the Adder, and the array z,
which processes the for loop and the distributed memories.

d γ zetha

α mem

z = |z − α|µ

mul dm adder red

a

b
µ

M−1

µ µ µ

z

γ
Miµ µ z

zetha components

Figure 7.7: General architecture performing the modular reduction of Algorithms 19
and 22

Figure 7.7 implements Algorithm 19. In Figure 7.7, one first receive as input the
parameter d = ai · bi mod bi. Then, our implementation operates,
ai · bi mod (2w − bi) with i ∈ {0, . . . , ℓ− 1}.

162

7.6. Results

This way, the result in RNS representation d, is composed of ℓ 34-bit words. After
that, the multiplication of Step 5 of Algorithm 19 is performed, i.e., each 34-bit
word of each operand is processed by the module d MulDM. Since the block MulDM
performs the RNS multiplication of ℓ words in six clock cycles. once that the resulting
γj of Step 6 have been computed in component γ, it follows the computation of their
addition performed into α component. This produces the value α of step 12. This can
be processed concurrently with Step 11. Taking advantage of the non-dependency of
these steps, zetha can process all the required multiplications using the corresponding
value µi in 11 clock cycles. Here we have an array of ℓ components of zeta (shown
in a dashed box) that perform all the operations as a parallel matrix. This step is
performed as a matrix processing of ℓ rows internally composed of all components
shown in the dashed square in Figure 7.7 in an array of ℓ rows; each row processes
the γ multiplication for each one Mi then here it is necessary then once the result
outs from RNSModule to the adder tree the output from the adder is at least of w+1
bits then another reduction allows to deliver a w bits word for each row into the
matrix component named z.

In Step 12, an independent Adder component computed the parameter α in parallel.
Also, the pre-computed tables have been queried in such a way that when α is ready,
so are the pre-computed values ready to be subtracted in Step 13 with the value zj
for j = 0, 1, . . . , ℓ. The result is stored in a register considering that the operands are
processed from the least significant bits to the most significant bits. This process
takes ℓ clock cycles. Finally, the whole design takes sixty clock cycles to process the
RNS operation a · b mod p.

7.5.2 Montgomery Implementation

This Section describes the implementation of Algorithm 22. The hardware modules
are the ones presented in §7.4. The main design enforced in our implementation was
to try to exploit the pipeline available in the RNSModule module as much as possible.

7.6 Results

This section reports the results obtained from the hardware implementation of the
RNS field multiplier.

163

7.6. Results

7.6.1 RNS word multiplier with reduction

The most important component of our architecture is the RNS word multiplier with
reduction shown in Figure 7.3. We present the hardware performance of the three
designs proposed for performing the RNS word multipliers.

Proposal FPGA Freq
Time
ns

FF DSPs Pipeline

Mult a)
Kintex-7 159.49 Mhz 6.27 ns 125 7 1
Virtex-7 185.18 Mhz 5.4 ns 91 7 1

Mult b)
Kintex-7 307.62 Mhz 3.25 ns 32 8 6
Virtex-7 396.82 Mhz 2.52 ns 32 8 6

Mult c)
Kintex-7 303.03 Mhz 3.3 ns 16 11 5
Virtex-7 400 Mhz 2.5 ns 16 11 5

Table 7.1: Comparative table for the three proposed RNS word multipliers with
reduction

Table 7.1 reports the number of resources required by the three proposed designs
shown in Figure 7.3. Due to compatibility reasons, we have chosen the design of
Figure 7.3.b). This design option is compatible with most FPGA families of devices.
At the same time, this design achieves a maximum clock frequency similar to the
one associated with the design option of Figure 7.3.c). However, it requires one
extra clock cycle. In the case of the design of Figure 7.3.a), despite its relatively low
maximum clock frequency (around 160 MHz up to 186 MHz), it has a latency of just
one clock cycle. However, using this RNS word multiplier design implies a general
slowdown of the architecture. Because of that, it was not considered any further.

The implementation of 7.3c) yields the best performance. However, the ultrascale
family of FPGA devices ranks among the most expensive.

Table 7.2 presents the time and area complexity for both RNS reduction algorithms
studied in this chapter.

One can see that 5229, 3243, and 373 LUTs, slices, and DSP48 blocks are required,

164

7.6. Results

respectively. Let us recall that the RNS reduction Algorithm 19 requires just an
RNS basis of length 2n+ 3, where n is the size in 34-bit words of the prime modulus
p. Since we were dealing with 256-bit primes, the length of the RNS basis for this
scenario is of nine-teen moduli.

It can be seen that the resources required by the Montgomery reduction procedure
shown in Algorithm 22 are lesser than the ones required by Algorithm 19. 3,682, 3,673,
204 LUTs, and DSP48 slices are required in this case. The Montgomery reduction
algorithm has a smaller area complexity than Algorithm 19. Let us recall that in the
case of the Montgomery reduction procedure of Algorithm 19, one requires two RNS
bases, each one of length n+ 2 moduli. Since we were dealing with 512-bit primes,
the length of each of the two RNS bases for this scenario is seventeen moduli.

Jeljeli Montgomery
Frequency
(MHz)

149 156

Clock cycles 1 1
Latency 28 35

Total time
by product

187.88ns/
6.71ns

224.35ns/
6.41ns

Device Virtex7 Virtex7
Area (slices) 2354 3726

DSP 3968 2528
FF 8025 7570

Table 7.2: Total resources of both implementations

For a 256-bit multiplication, the amount of memory required by the pre-computed
values of Algorithm 22 can be outlined as follows. The pre-computed vectors and
Tables are,

|M |m′
i
, |M ′|mi

, |α(−M)|m′
i
, |α(−M ′)|mi

This amounts to something close to 10K bits, as shown in Table 7.3.
The clock cycle count and maximum clock frequency for the implementation of the
modular reduction Algorithms 22 and 19 for the targeted FPGA devices of the Xilinx

165

7.6. Results

word x size bits
|M−1

i | 8 x 34 272
|M ′−1

i |mi
8 x 34 272

|M−1|m′
i

8 x 34 272

|P |m′
i

8 x 34 272

|Mi|m′
j

(8 x 34) x 8 2176

|M ′
i |mj

(8 x 34) x 8 2176
|α(−M)|m′

i
(8 x 34) x 8 2176

|α(−M ′)|mi
(8 x 34) x 8 2176

Total 9792
||P |mi

· |M−1
i |mi

|mi
8 x 34 272

||M−1|m′
i
· |M ′−1

i |m′
i
|m′

i
8 x 34 272

||M−1|m′
i
· |M ′−1

i |m′
i
· P |m′

i
|m′

i
8 x 34 272

||M−1|m′
i
· P |m′

i
|m′

i
8 x 34 272

|M ′
i |mj

(8 x 34) x 8 8704
|Mi|m′

j
(8 x 34) x 8 8704

|α(−M)|m′
i

(8 x 34) x 8 8704

|α(−M ′)|mi
(8 x 34) x 8 8704

Total 9792

Table 7.3: Comparative table with total memory required

Kintex-7 and Virtex-7 families.

7.6.2 Discussion and comparison

Here we compare against related work. The reference work is [74], where the cox-
rower architecture was introduced. As mentioned, the rower units process the data
in parallel in this architecture. In contrast, the cox unit is an accumulator that
distributes the carries to the corresponding rower units.

• We compare against the work reported in [53]. This is mainly based on a
module called “inner Montogomery ALU”. They use an eight-stage pipeline.

166

7.6. Results

They implemented their ALU using different word sizes ranging from 15 to 17
bits, achieving a maximum frequency of 400 MHz using a 10-stage pipeline.

• In the work by [17], they used a similar ALU unit organized on a six-stage
pipeline. However, this design strongly influences the cox-rower architecture.

For a number ℓ co-primes, the number of DSPs used by the basic RNS is (rnsmod)
module. The levels that the adder will have is N = 1 + ⌈log3 ℓ

2
⌉, and the nńumber of

DSPs needed for the adder is stage add = ⌈ ℓ
2
+N × log3(

ℓ
2
)− 1)⌉ − 1.

the “mulDM” component consisting of two arrays of ℓ components with muldm =
(2× ℓ× rnsmod) and the array will need á z = ℓ× ((ℓ× rnsmod) + stage add+ 1).
And the final subtraction needs last sub = (ℓ× 2). Therefore, the DSPs needed are
total = z + stage add+muldm+ lastsub.

As an example, a 512-bit operand in RNS representation will need ell = ⌈512
34
⌉ = 16

34-bit words, assuming the basic multiplier design RNSModule its uses 8 DSPs (design
b)) and it will have rnsmod = 8, N = 1 + ⌈log3 ℓ

2
⌈= 4 levels of the inverted tree for

the sum that calculates to α.

It also needs an stage add = ⌈ ℓ
2
+ (N × log3(

ℓ
2
) − 1)⌉ − 1 = 27 DSPs needed to

carry out the sum, and the component “MulDM” that carries out the calculation of
the value d from γ is muldm = 2× ℓ× rnsmod = 560 DSPs, to process the matrix
from step 11 of the algorithm 19. The addition and reduction are carried out for each
row.

We have z = ℓ×(ℓ×rnsmod+stage add+1) = 10780 DSPs, finally, the final subtrac-
tion of step 12 is processed in last sub = ℓ× 2 = 70 DSPs. Now the total is obtained
by adding all the previous values; that is, total = z+stage add+muldm+ last sub =
11437 DSP48 needed to implement the Jeljeli reduction algorithm will be added.

167

Chapter 8

Hardware accelerator for the
elliptic curve ECC25519

This chapter shows a different focus on multiplier implementation as a further approx-
imation of how to improve the architecture proposed in chapter 7. This alternative
proposal explores two slopes; the first uses the schoolbook method for multiplicating
two large operands of 255 bits, and the second uses the Karatusba multiplication
method. In this work, we multiplicate two integers on 255 bit for the elliptic curve
ECC 25519 using the two methods mentioned above on a Xilinx FPGA and taking
advantage of the DSPs available in the FPGA. Therefore each design has a different
focus from the previous RNS proposal from chapter 7.

In the paper, [14], Daniel J. Bernstein introduces and analyzes the elliptic curve
Curve25519, in which each user has a 32-byte secret key and public key of the same
length. As a low-level view: the function of the curve is Fp restricted x-coordinate
scalar multiplication over E(Fp2), with p the prime number 2255 − 19 seen as the hex-
adecimal number 0x7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF
FFFFFFFFFFFFFFFFFFFFFFFFFFED and E the elliptic curve y2 =
x3 + 486662x2 + x. The paper also reports computer implementations from 2006 and
earlier processors. The design and implementation proposed by Bernstein focus on
designing and implementing an elliptic curve Diffie-Hellman, having special care in the
choices to obtain a better performance and avoiding the wrong decisions can destroy it.

We base our proposal on this vision, with the main difference in the implemen-
tation because we use an FPGA and (Digital Signal Processors) DSPs to perform the
multiplication only and later implement our design with a control circuit to achieve a

169

8.1. Karatsuba Proposal

Diffie-Hellman protocol entirely.

8.1 Karatsuba Proposal

This section shows a diamond adder proposal and a critical path for implementing the
Karatsuba algorithm presented in chapter 2 section 2.3.2. The design has dedicated
DSPs included in almost all modern FPGAs, and hereafter we give the required
equations:

For this case, we need R = bn, d = 2n with B = (Bd−1, ..., B0)b and A = (Ad−1, ..., A0)b
two integers consist of d words obtained when we divide the two integers B,A into
smaller words with a fixed length as required, for the Karatsuba design we use two
operands know as most significant word and less significant word, then we use the
following equation.

B × A = (B1 × A1)R
2 + ((B0 +B1)(A0 + A1)−B1A1 −B0A0)R +B0A0 (8.1)

With the Karatsuba equation 8.1 and the explanation from chapter 2 section 2.3.2, we
can divide the most and less significant words into smaller operands and later process
them using the schoolbook method presented in chapter 2 section 2.3.2. Hence, the
Karatuba design uses the multiplier embedded into the DSPs as a basis. Therefore
we can process the m× n individual multiplications in parallel with one clock cycle,
and figure 8.1 shows the results as a diamond array.

We only use one level of Karatsuba to process both integers of 255 bits. Furthermore,
we divided both inputs into two words of 128 bits, each denoted by BH , AH and
BL, AL. The diamond and its subindex reference the addition of the results from all
individual multiplications (BH × AH), (BL × AL). Additionally, the word size used
for this design has a length of w = 17 bits using a symmetric configuration of the
DSP, allowing inputs of 18× 18 bits with an output result of P = 36 bits.

The diamond has 15 levels, and we process them in parallel, exploiting the pos-
sibility of using the DSP adder option with two or three inputs simultaneously; Thus,
we get figure 8.2, which shows the same diamond but with the difference as each
“box” illustrates the processing of two or three inputs, and the operations performed
are shown in the following equations 8.2 and 8.3.

DSP2 + C + CONCAT (8.2)

170

8.1. Karatsuba Proposal

B0 × A7

B1 × A6

B2 × A7 B2 × A5 B0 × A5

B3 × A6 B3 × A4 B1 × A4

B4 × A7 B4 × A5 B4 × A3 B2 × A3 B0 × A3

B5 × A6 B5 × A4 B5 × A2 B3 × A2 B1 × A2

B6 × A7 B6 × A5 B6 × A3 B6 × A1 B4 × A1 B2 × A1 B0 × A1

B7 × A6 B7 × A4 B7 × A2 B7 × A0 B5 × A0 B3 × A0 B1 × A0

B7 × A7 B5 × A7 B3 × A7 B1 × A7 B0 × A6 B0 × A4 B0 × A2 B0 × A0

B6 × A6 B4 × A6 B2 × A6 B1 × A5 B1 × A3 B1 × A1

B7 × A5 B5 × A5 B3 × A5 B2 × A4 B2 × A2 B2 × A0

B6 × A4 B4 × A4 B3 × A3 B3 × A1

B7 × A3 B5 × A3 B4 × A2 B4 × A0

B6 × A2 B5 × A1

B7 × A1 B6 × A0

Figure 8.1: Karatsuba diamond adder

DSP3 = C + PCIN + CONCAT (8.3)

Figure 8.3 shows the results from all DSPs from figure 8.2; the label ri denotes each
result from the DSP used, which allows the use of the same approach to perform
another level of additions and reducing the additions required. As a result, the
diamond of results has fewer levels. To process the diamond of results, we propose
another diamond of DSPs shown in figure 8.4 with the same operations as the previous
diamonds. Still, for this case, we label the following DSP ′

2, DSP ′
3 as a new instance

to take advantage of the internal registers to store data and allow us to customize
the data path of the whole architecture.

Once the DSPs have made the additions, figure 8.5 shows the results labeled
with r′i; therefore, the figure has the previous results from the multiplications of the
words B0×A0 and B7×A7. In this fashion, only one addition is necessary to perform
the addition. Then, the alienation of the words gets illustrated in the figure, i.e., the

171

8.1. Karatsuba Proposal

DSP2

DSP3 DSP3 DSP3

DSP2 DSP2

DSP3 DSP3 DSP3

DSP2 DSP2 DSP2 DSP2

B7 × A7

DSP3 DSP3 DSP3 DSP3 DSP3 DSP3

B0 × A0

DSP2 DSP2 DSP2 DSP2

DSP2 DSP2

Figure 8.2: Karatsuba diamond with DSPs

r0

r4 r3 r2r5 r1

r10 r9 r8r12 r11 r7 r6

B7 × A7 r18 r17 r16 r15 r14 r13 B0 × A0

r22 r21 r20 r19

r24 r23

Figure 8.3: Karatsuba diamond results

172

8.1. Karatsuba Proposal

DSP
′
3

DSP
′
2 DSP

′
2DSP

′
2 DSP

′
2

r12 r6

B7 × A7 r18
DSP

′
2

DSP
′
3 DSP

′
3

DSP
′
2

r13 B0 × A0

Figure 8.4: Karatsuba diamond results from DSPs

results from the multiplications B0 × A0 get added with the less significant bits from
the result r6 with a left shift of w bits for each word in the diamond.

r
′
2r

′
3 r

′
1r

′
4 r

′
0

r12 r6

B7 × A7 r18 r
′
8 r

′
7 r

′
6 r

′
5

r13 B0 × A0

Figure 8.5: Diamond of the second level of DSPs results

Figure 8.6 shows the carry due to the previous additions in red boxes. Once more,
adding those carry becomes an easy task because all results because each word has a
fixed size of 34-bits, but in the additions, we use 48-bit length additions, so the carry
has upto 5 bits length, i.e., our additions has 39 bits length of whom 5-bits belong to
the carry.

The Karatsuba multiplier architecture proposed using DSPs shown in figure 8.7

r
′′
7 r

′′
6 r

′′
5 r

′′
4 r

′′
3 r

′′
2 r

′′
1 r

′′
0c

a
r
r
y

c
a
r
r
y

c
a
r
r
y

c
a
r
r
y

c
a
r
r
y

c
a
r
r
y

c
a
r
r
y

Figure 8.6: Last addition for Karatsuba diamond adder with carry

173

8.1. Karatsuba Proposal

shows all components developed to implement the algorithm. This way, we can
choose where to activate the required registers and the pipeline size. We perform the
multiplications of BH × AH and BL × AL in parallel, and the multiplier dedicated
has the arithmetic operations as follows: one single multiplication followed by five
levels of additions for the diamond as previously presented in this section.

The proposal performs the additions BH + BL and AH + AL in parallel in only
two levels in the first level, adds the words ad pairs, and in the second level, adds the
carry. Hence the results become available. The multiplication of both begins with a
dedicated multiplier to offer its pipeline for these components.

To perform the subtraction of (BH × AH) and (BL × AL) to get the result of the
middle of the final result, we added both results using a similar component as the
used in the additions of BH + BL and AH + AL but dedicated to performing the
required additions. The results show the basic operations needed to complete the
subtraction. This component performs the following equation 8.4:

((BH +BL)(AH + AL)− (BH × AH) + (BL × AL)) (8.4)

Once all results become available, the architecture adds the three intermediate results.
In this way, we use the diamond approach, which has three levels performing two
additions. For example, this component has the following three inputs.

(BH × AH) (8.5)

(BL × AL)((BH +BL)(AH + AL)− (BH × AH) + (BL × AL)) (8.6)

We already have the Karatsuba algorithm’s result; the last adder’s output gets divided
into two words of 256 bits each (remembering that |B| = |A| = 256 bits). The final
result has 512 bits, and to begin the reduction process, we deliver it divided into two
words. Therefore, the reduction uses DSPs only to perform the following procedure:

(B × A) mod 2255 − 19 (8.7)

We perform the reduction process by multiplying the upper 256 bits of the result
with the value in hexadecimal 0x13, as shown in the following equation 8.8

H × 0x13 (8.8)

174

8.1. Karatsuba Proposal

×
+

+
+

+
+

S
ch
o
ol
b
o
ok

m
u
lt
ip
li
ca
ti
on

w
it
h
d
ia
m
on

d
ad

d
er

×
+

+
+

+
+

S
c
h
o
o
lb

o
o
k

m
u
lt
ip

li
c
a
ti
o
n

w
it
h

d
ia
m

o
n
d

a
d
d
e
r

+
+

+
+

×
+

+
+

+
+

S
ch
o
ol
b
o
ok

m
u
lt
ip
li
ca
ti
on

w
it
h
d
ia
m
on

d
ad

d
er

+
+

−

+
+

(B
H
×

A
H
)
+
((
B

H
+
B

L
)(
A

H
+
A

L
)
−

(B
H
×

A
H
)
−

(B
L
×

A
L
))
+
(B

L
×

A
L
)

×
+

+
×

+

1s
t
re
d
u
ct
io
n

2n
d
re
d
u
ct
io
n

R
ed
u
ct
io
n

B
H

A
H

B
L

A
L

B
H

B
L

A
H

A
L

S

Figure 8.7: Karatsuba multiplier critical path

175

8.2. Schoolbook proposal

As previously performed at the beginning of the implementation, we shrink the word
H into n smaller words of w = 17 bits, each multiplied by 0x13 (19 decimal). Once
the result becomes available, we add it to each word of 17 bits from the lower 256 bits
from the Karatsuba multiplication. We show the complete procedure in the following
equation 8.9.

Ri = Li + (Hi × 0x13) (8.9)

The architecture in figure 8.7 shows that the multiplier outputs go directly to two
additions. The first addition performs Li+(Hi× 0x13), and in the following addition,
we add all carry results from the addition process. Finally, each carry gets added to
the word i+ 1.

Finally, in the second reduction process, the extra bits from the first reduction
and, once again, we perform the same procedure as in the first reduction process but
with only one addition rather than two as in the first reduction. The architecture
delivers the result via the signal |S| = 25 bits. Moreover, the architecture and its
components use DSPs only, leaving the LUTs from the FPGA available to perform
procedures less expensive furthermore, this architecture has 14 individual arithmetic
operations to perform a complete Karatsuba multiplication with reduction.

8.2 Schoolbook proposal

This multiplier becomes a simple way to multiply two integer operands. Also, each
component and designed architecture uses DSPs only. The basic multiplier merely
multiplies all small words of each operand, i.e., the first step consists of dividing
each operand into smaller words with B = A = 255-bits into words w = 17 bits,
splitting the operands results on 15 terms of 17-bit length for both operands B and
A. Then we multiply them with the advantage of the process of each multiplication
parallelly; hence there are 15× 15 = 225 DSPs deployed in parallel, performing each
multiplication in one clock cycle.

Once all multiplications have finished, each partial result becomes available to perform
the addition differently; we choose to complete the additions of all partial results
by stages using the diamond method. This method includes rearranging all partial
results as a diamond and performing fewer additions than the schoolbook method.
In our proposal, the diamond has 225 partial results, and there are many levels, and
the results need to handle high signal traffic.

176

8.2. Schoolbook proposal

We divide all 225 partial results into three smaller diamonds with 75 partial re-
sults, and each sees figure 8.8. The three smaller diamonds are processed in parallel
to achieve better performance by reducing the number of levels in the diamond. Each
diamond has ten levels of partial results, and the partial result from each has a 340-bit
length.

B3 × A14

B4 × A13

B1 × A14

B2 × A13

B3 × A12

B4 × A11

B0 × A13

B1 × A12

B2 × A11

B3 × A10

B4 × A9

B0 × A11

B1 × A10

B2 × A9

B3 × A8

B4 × A7

B0 × A9

B1 × A8

B2 × A7

B3 × A6

B4 × A5

B0 × A7

B1 × A6

B2 × A5

B3 × A4

B4 × A3

B0 × A5

B1 × A4

B2 × A3

B3 × A2

B4 × A1

B0 × A3

B1 × A2

B2 × A1

B3 × A0

B0 × A1

B1 × A0

B4 × A14 B2 × A14

B3 × A13

B4 × A12

B0 × A14

B1 × A13

B2 × A12

B3 × A11

B4 × A10

B0 × A12

B1 × A11

B2 × A10

B3 × A9

B4 × A8

B0 × A10

B1 × A9

B2 × A8

B3 × A7

B4 × A6

B0 × A8

B1 × A7

B2 × A6

B3 × A5

B4 × A4

B0 × A6

B1 × A5

B2 × A4

B3 × A3

B4 × A2

B0 × A4

B1 × A3

B2 × A2

B3 × A1

B4 × A0

B0 × A2

B1 × A1

B2 × A0

B0 × A0

Figure 8.8: Diamond proposal for schoolbook method

Take advantage of the adder implemented in the DSP with 48-bit inputs and up
to three input addition simultaneously. Figure 8.9 shows the configuration of each
DSP with DSP2,3, which can add two or three inputs of 48-bit in one clock cycle,
respectively. Here the subindex indicates the number of inputs to add by each
DSP. Therefore figure 8.9 shows the DSPs used to add two or three partial results.
The number of DSPs needed to perform all additions required by the first stage of
additions is equal to 13 DSPs configured to add three operands at a time and 17
DSPs configured to add two operands at a time.

177

8.2. Schoolbook proposal

DSP2

DSP2

DSP2

DSP2

DSP3

DSP2

DSP3

DSP2

DSP3

DSP2

DSP3

DSP2

DSP3

DSP2

DSP2 DSP2

B4 × A14

DSP3

DSP2

DSP3

DSP2

DSP3

DSP2

DSP3

DSP2

DSP3

DSP2

DSP3

DSP2

DSP3

DSP3

B0 × A0

Figure 8.9: Diamond with DSPs

Also, the two operands B4×A14, and B0×A0 remain untouched for later processing.
Meanwhile, figure 8.10 shows the resultant diamond. This diamond has all results
from each addition performed by each DSP from the figure 8.9. Each result becomes
arranged as another diamond with a label ri for each result.

r15

r13

r14

r11

r12

r9

r10

r7

r8

r5

r6

r3

r4

r1

r2 r0

B4 × A14 r29 r27

r28

r25

r26

r23

r24

r21

r22

r19

r20

r17

r18

r16 B0 × A0

Figure 8.10: Diamond of results from the first level of additions

Following the same structure again, another group of additions is performed by a
different set of DSPs presented in figure 8.11. The second level of additions has
the label DSP ′

2, and as previously mentioned, the subindex indicates the number of
operands to add. In this case, each DSP adds only two inputs, leaving the following
signals unmodified B4 × A14, B0 × A0, r0, r15, r16 and r29.

178

8.2. Schoolbook proposal

In the next clock cycle, the results of the additions become available, and figure 8.12
shows the last level of additions; each result is labeled with r′i to depict the previously
obtained results. Finally, the diamond has two “large operands” to add a third time
with all results as depicted in the figure.

r15
DSP

′
2 DSP

′
2 DSP

′
2 DSP

′
2 DSP

′
2 DSP

′
2 DSP

′
2

r0

B4 × A14 r29
DSP

′
2 DSP

′
2 DSP

′
2 DSP

′
2 DSP

′
2 DSP

′
2

r16 B0 × A0

Figure 8.11: Diamond results on the first level of additions on DSPs

Figure 8.13 shows each arithmetic carry available after the three sum levels. To
process each carry in parallel is necessary an extra addition to process each arithmetic
carry from r′′0 to r′′8 , and each will have at least one bit to four bits of length. The
sum inputs are the carry from the result r′′i and the word r′′i+1.

r15 r
′
6 r

′
5 r

′
4 r

′
3 r

′
2 r

′
1 r

′
0

r0

B4 × A14 r29 r
′
12 r

′
11 r

′
10 r

′
9 r

′
8 r

′
7

r16 B0 × A0

Figure 8.12: Diamond results from the second level of additions

To finish the additions stage, figure 8.14 shows the results from each diamond labeled
with Dij , for i = 1, 2, 3 and j = 0, ...9 and each intermediate result has w bits length.
As the figure shows, each Di,j becomes arranged to create a new diamond with the
results of the three smaller diamonds. The addition of all signals has 510 bits length;
therefore, it performs the additions in one clock cycle. Consequently, we can divide
the result into two large operands labeled (H,L) with H = L = 255 bits.

r
′′
9 r

′′
8 r

′′
7 r

′′
6 r

′′
5 r

′′
4 r

′′
3 r

′′
2 r

′′
1 r

′′
0c

a
r
r
y

c
a
r
r
y

c
a
r
r
y

c
a
r
r
y

c
a
r
r
y

c
a
r
r
y

c
a
r
r
y

c
a
r
r
y

c
a
r
r
y

Figure 8.13: Carry addition for the inner diamond in schoolbook

Figure 8.15 shows the architecture of the schoolbook multiplier. The architecture has
12 simple operations conducted in sequential boxes; the first box calculates all words,

179

8.2. Schoolbook proposal

i.e., all 15 x 15 individual multiplications of the operands (B,A) in parallel. Once all
results become available, the next step consists of sending those results to the three
diamonds to add all intermediate results in parallel.

D19 D18 D17 D16 D15

D29 D28 D27 D26 D25 D24 D23 D22 D21 D20

D39 D38 D37 D36 D35 D34 D33 D32 D31 D30 D14 D13 D12 D11 D10

Figure 8.14: Addition of the three inner diamonds to get the final result

Therefore, the figure shows a label with the legend “Diamond inner”. This diamond
represents the data path used in each smaller diamond processed in parallel. Once
the three diamonds finish, each result goes to the next stage of additions, which adds
the three intermediate results from the “Diamond inner” with only two additions.

A

B

× + + + + + + × + + × + S

a× b
Diamond inner

Diamond

r1 r2

Figure 8.15: Critical path schoolbook method

As the figure 8.15 shows the operations with the label “Diamond,” we use only six
levels of additions to process all the 225 individual results and get the result of
performing only the multiplication of B × A.

Finally, with the result of the multiplication of B × A, the next step consists in
performing a fast reduction to obtain a result of 255 bits rather than a 510 bits length
result. As shown in figure 8.15, the reduction operation has two stages. The first
stage has three functions: multiplication and two additions with the label “r1”.

This stage picks up the 510-bit result from the diamond divided as two inputs
of 255-bits; the two operands have the label Hi and Li to recognize which belongs to
the most significant part and the less significant part, respectively. The reduction
process consists of multiplying and adding both results. The first step divides both
operands (H,L) into smaller words, in this case, w = 17-bits, then begins the multi-
plication of the Hi words with the integer represented as 0x13 in hexadecimal. Once

180

8.3. RNS

multiplied, begins the process of adding each result to its corresponding lower word
Li; the operation presented in 8.9 describes the general process.

As previously mentioned, multiplying and adding returns a result with a carry
which needs another reduction to obtain the result. Finally, the second stage of
reduction r2 gets the most significant bits over the first 255-bits and divides them
by words, then multiply them by 0x13 again and adds them to each of the Li of the
second stage of the reduction. When the operation B ×A mod 2255 − 19 finishes, the
circuit delivers the result via the signal “S” with 255 bits of length.

8.3 RNS

Figure 8.16 shows the components used in an RNS architecture among all the
operations needed to perform the multiplication with a reduction in RNS. For example,
the multiplier designed for the RNS Jeljeli algorithm presented in chapter 7 algorithm
19. The figure has 31 individual operations. However, the sequence follows the next
steps even with that division level.

1. Compute the value of γ in step 6 of the algorithm. To compute this step, a
component specially designed to calculate dj = |bj × aj|µj

once done, proceed
to multiply the result with M−1

j with a reduction stage in this process. Figure
8.16 shows this component presented in the first row of the figure has two
multiplications and five sets of reduction denoted by the ri.

2. Once calculated γ begins processing the matrix from step 11 in the algorithm,
we can process all the matrix in parallel. Also, it has DSPs dedicated to having
the freedom to enable or disable the internal registers as required for the pipeline.
The component designed for this stage has one multiplication stage and five sets
of reduction at each row of the matrix needs. Therefore an inverted addition
tree with three steps. Once processed the data a signal label with zj has the
data vector, which needs a subtraction of α.

Therefore at the same time we process the matrix, step 12 of the algorithm gets
processed too. This step calculated the α needed to look up the table with the
pre-computation values to get the correct values necessary for the subtraction
in step 13 of the algorithm.

3. Finally in, step 13 executes the operation zj − α with its respective reduc-
tion, therefore, α aims at a memory address. The memory already has the

181

8.3. RNS

precomputed values for all possible α needed by the prime number, and each
query consumes only one clock cycle. When the subtraction “Last Sub” has
finished, the output from the component “+” has the result of the procedure
B × A mod P in the RNS domain.

The RNS architecture has 33 words for each operand and an RNS base with 33
co-prime numbers. Also, have a high resource consumption against the other two
implementations, with a lower work frequency and pipeline bigger than the other two
proposals. The reasons mentioned before are the main reason to dismiss the RNS
proposal and architecture. Therefore it does not achieve high speed, and the only
way to implement the architecture is to use FPGAs with a high quantity of resources,
which are prohibitive costs. The increased resources make it impossible to compare
the two previous architectures fairly.

182

8.3. RNS

A B

×
×

+
×

+
×

×
+

×
+

×
+

γ

a
×
b

r 1
r 2

(a
×

b)
2

r 3
r 4

r 5

γ M
i

×
×

+
×

+
×

+
+

+
+

+
+

+
×

+
×

+
z i

(a
×
b)

3

rm
1

rm
2

rm
3

a
d
d
er

1
a
d
d
er

2
a
d
d
er

3
rm

4
rm

5

γ

+
+

+
+

+
+

m
em

m
em

o
u
t

α
a
d
d
1

α
a
d
d
2

α
a
d
d
3

z i

m
em

o
u
t

−
+

Z
o
u
t

L
a
st

S
u
b

Figure 8.16: Critical path RNS proposal

183

8.4. Results

8.4 Results

We show the results from the proposed architectures and their implementation for
the Karatsuba and Schoolbook algorithms. The following tables show the resources
used for each component’s implementation in three different FPGAs that belong to
the Xilinx Virtex-7 family and its variants ultrascale and ultrascale+.

The main difference between the three FPGAs is the scope to use, i.e., Virtex-7
has high performance vs. the other families as Spartan because its oriented to
portable radars, networking, and ASIC (Application-Specific Integrated Circuit)
prototyping. The Virtex-7 ultrascale focus on enterprise industry applications, usually
used in large-scale processes, can emulate and implement ASIC designs, and performs
better than the Virtex-7 family. Finally, the Virtex-7 ultrascale+ brings the highest
clock speeds since it has dedicated routing between registers achieving higher clock
frequencies. This family focuses on high-performance computing.

The three FPGAs used are:

• Virtex-7 : xc7v585tffg1761-3 with the following specs

– 364200 LUTs.

– 1260 DSPs.

– 850 user I/O.

• Virtex-7 ultrascale : xcvu080-ffva2104-3-e with the following specs

– 445712 LUTs.

– 672 DSPs.

– 832 user I/O.

• Virtex-7 ultrascale+ : xcvu5p-flva2104-3-e with the following specs

– 600577 LUTs.

– 3474 DSPs.

– 832 user I/O.

Tables 8.1 and 8.2 show the resources used by the Karatsuba and Schoolbook algo-
rithms. We can see that both proposals have similar resource consumption, and both

184

8.4. Results

designs have a 0 Slices and LUTs consumption. Hence the main difference between
both architectures is the critical path from Karatsuba against the SchoolBook. We
can see this in figures 8.7 and 8.15, respectively.

Device DSPs FF LUTS Slices Freq Component
xc7v585tffg1761-3 VIRTEX-7 450 0 0 0 43.78 MHz Karatsuba

xcvu080-ffva2104-3-e VIRTEX-7
ultrascale

450 0 0 0 47.619 Karatsuba

xcvu5p-flva2104-3-e VIRTEX-7
ultrascale+

450 0 0 0 82.645 Karatsuba

Table 8.1: Karatsuba multiplication with reduction, resources, and speed

We have a 37 DSPs difference in consumption between both proposals. Karatuba
consumes fewer DSPs but achieves lower speed and has a critical path more consider-
able than the schoolbook architecture. This second proposal has a smaller critical
path and higher performance.

Device DSPs FF LUTS Slices
Freq
MHz

Component

xc7v585tffg1761-3 VIRTEX-7 487 0 0 0 90.909 SchoolBook
xcvu080-ffva2104-3-e VIRTEX-7

ultrascale
487 0 0 0 106.383 SchoolBook

xcvu5p-flva2104-3-e VIRTEX-7
ultrascale+

487 0 0 0 197.044 SchoolBook

Table 8.2: SchoolBook multiplication with reduction, resources, and speed

Comparing the three FPGAs, we can see that the Virtex-7 has a performance of
90 MHz for the SchoolBook implementation, but the Karatsuba architecture only
achieves almost half of the speed. On the other hand, in the Virtex-7 ultra-scale, we
can see that the performance is nearly the same and only gain a few MHz in clock
frequency for both implementations.

Finally, the Virtex-7 ultrascale+, which aims for high-performance computing, deliv-
ers almost twice the speed of a regular Virtex-7. In addition, the tables show that
the three architectures have the same resource consumption for the three FPGAs but
with different frequencies.

185

8.4. Results

Device DSPs FF LUTS Slices
Freq
MHz

Component

xc7v585tffg1761-3 VIRTEX-7 21 0 0 0 133.333 Adder
xcvu080-ffva2104-3-e VIRTEX-7

ultrascale
21 0 0 0 210.526 Adder

xcvu5p-flva2104-3-e VIRTEX-7
ultrascale+

21 0 0 0 322.581 Adder

Table 8.3: Adder with reduction, resources, and speed

Table 8.3 shows the required resources and speed achieved by the same three FPGAs,
but the component implemented is an adder with a modular reduction with two
registers. As shown in the table, this adder requires 21 DSPs and, in the Virtex-7,
achieves a speed of 133 MHz. The Virtex-7 ultra-scale delivers twice the speed, and
the Virtex-7 ultrascale+ delivers almost 3× of the speed of the regular Virtex-7.

The last component of this architecture is subtraction with modular reduction. Table
8.4 shows the results of the three implementations. It requires 12 DSPs and achieves
a 108 MHz clock frequency on the Virtex-7. Implementing the Virtex-7 ultrascale+
achieves more than twice the regular Virtex-7. Therefore, this component uses only
one LUT, also shown as a Slice by the Xilinx tool. The reason is to broadcast a carry
with a one-bit XOR gate to deliver the correct result.

Device DSPs FF LUTS Slices
Freq
MHz

Component

xc7v585tffg1761-3 VIRTEX-7 12 0 1 1 108.108 Subtraction
xcvu080-ffva2104-3-e VIRTEX-7

ultrascale
12 0 1 1 145.455 Subtraction

xcvu5p-flva2104-3-e VIRTEX-7
ultrascale+

12 0 1 1 216.216 Subtraction

Table 8.4: Subtraction with reduction, resources, and speed

The three architectures proposed and each component designed uses DSPs only, so
each delivers different clock speeds for the FPGAs. Furthermore, even when the
FPGAs belong to the same family Virtex-7, the manufacturing company implements
restrictions on the design and speed for each subcategory in the same family.

186

8.5. Summary

8.5 Summary

This chapter shows an alternative multiplier with reduction using three different
algorithms, therefore, shows extra essential components required to perform inte-
ger arithmetic with individual results for each proposal. The three architectures
demonstrated in this chapter fall short of a control unit.

187

Part IV

Summary

189

Chapter 9

Conclusions

This thesis shows the relationship between software and hardware and how a software
implementation can lead to different hardware architectures. Therefore, we show
that hardware-oriented proposals can execute faster on software with constrained
resources. As a result, both focuses can perform better in their environment, but they
can run into different architectures and perform as quickly as the target device runs.

The following conclusion comprehends each work of this thesis individually.

9.1 Lightweight authenticated encryption with as-

sociated data

The Lightweight algorithms implemented show that the standardization process and
the devices with constrained resources can offer various security services. However, in
some cases, the development of a dedicated architecture faces restrictions like resource
and power consumption due to the target embedded systems usually running with a
battery. Therefore, lightweight cryptography still has a lot of research to fulfill the
security needs of new lightweight applications and constrained devices.

9.2 Speedy Block cipher on ARM-M4 with Bitslice

Speedy implementation in software shows the possibility of using different techniques
to implement a hardware-oriented algorithm in software capable of running on
constrained devices. Also, with acceptable performance for encryption only, using
intrinsic instructions from the target device can enhance the performance. However,

191

9.4. Hardware accelerator for the elliptic curve ECC25519

a disadvantage of this solution is that the implementation only runs with devices that
share the same instruction set.

9.3 A DSP-based FPGA design and implementa-

tion of a fast RNS multiplier

The proposed architecture performs well when it uses a large amount of DPS, but
it focuses on a general-purpose multiplier, i.e., it can receive any prime number of
512 bits. Hence, the reduction process becomes large and inefficient when using some
primes. Therefore, the basic units used for the multiplication with reduction among
the inverted adder tree create a significant amount of data traffic into the FPGA,
reducing the speed or the implementation in hardware.

9.4 Hardware accelerator for the elliptic curve

ECC25519

The multipliers proposed for the ECC 2255-19 demonstrate when large amounts of
unique resources are available as multipliers and adders embedded in DSPs, allowing
the designer to combine both to create an architecture based on fundamentals with
a performance as good, even better than newer concepts. This result means that
depending on the target, the designer can select a traditional algorithm or more
recent proposals considering the device and its resources.

192

Chapter 10

Future Work

This section presents the future work available for each of our research works. The
following list shows the possible future research valuable to the cryptography area.

• Lightweight authenticated encryption with associated data:

– To find applications with reduced security needs for participant algorithms
from NIST lightweight standardization process from the second and final
rounds.

– Side channel attacks can help the implementers to design countermeasures
for the algorithms implemented, like constant time.

– The bitslice approach can enhance the performance of lightweight algo-
rithms.

• Speedy Block cipher on ARM-M4 with Bitslice:

– Research side channel attacks vulnerabilities to hardware proposal.

– To implement constant time to Speedy algorithm.

– Improve the Keyscheduling.

• A DSP-based FPGA design and implementation of a fast RNS multiplier:

– Search a basis from words smaller than 34 bits.

– Implement a “full size” multiplier into newer FPGAs to see their behavior.

– Implement countermeasures against side-channel attacks.

• Hardware accelerator for the elliptic curve ECC25519:

193

CHAPTER 10. FUTURE WORK

– Finalize the control unit for the multiplier.

– Implement a complete scheme like ECDSA.

– Implement countermeasures against side-channel attacks.

This future work can change with time, but this is future work with a high probability
of success.

194

Bibliography

[1] Vipindev Adat and B. B. Gupta. Security in Internet of Things: issues,
challenges, taxonomy, and architecture, 2017.

[2] I.F. Akyildiz, W. Su, Y. Sankarasubramaniam, and E. Cayirci. Wireless sensor
networks: a survey. Computer Networks, 38(4):393–422, 2002.

[3] Samuel Antão, Jean Claude Bajard, and Leonel Sousa. RNS-based elliptic curve
point multiplication for massive parallel architectures. Computer Journal, 2012.

[4] Jean Claude Bajard, Julien Eynard, and Nabil Merkiche. Montgomery re-
duction within the context of residue number system arithmetic. Journal of
Cryptographic Engineering, 2018.

[5] Jean Claude Bajard and Laurent Imbert. A full RNS implementation of RSA.
IEEE Transactions on Computers, 2004.

[6] Jean Claude Bajard and Nabil Merkiche. Double level montgomery cox-rower
architecture, new bounds. In Lecture Notes in Computer Science (including
subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinfor-
matics), 2015.

[7] Gustavo Banegas, Ricardo Custodio, and Daniel Panario. A new class of
irreducible pentanomials for polynomial based multipliers in binary fields.
Cryptology ePrint Archive, Paper 2018/554, 2018. https://eprint.iacr.

org/2018/554.

[8] Subhadeep Banik, Andrey Bogdanov, Atul Luykx, and Elmar Tischhauser. SUN-
DAE: small universal deterministic authenticated encryption for the internet of
things. IACR Trans. Symmetric Cryptol., 2018(3):1–35, 2018.

195

https://eprint.iacr.org/2018/554
https://eprint.iacr.org/2018/554

BIBLIOGRAPHY BIBLIOGRAPHY

[9] Subhadeep Banik, Sumit Kumar Pandey, Thomas Peyrin, Yu Sasaki, Siang Meng
Sim, and Yosuke Todo. Gift: A small present. Cryptographic Hardware and
Embedded Systems-CHES, pages 25–28, 2017.

[10] Subhadeep Banik, Sumit Kumar Pandey, Thomas Peyrin, Yu Sasaki, Siang Meng
Sim, and Yosuke Todo. GIFT: A small present - towards reaching the limit
of lightweight encryption. In Wieland Fischer and Naofumi Homma, editors,
Cryptographic Hardware and Embedded Systems - CHES 2017 - 19th Interna-
tional Conference, Taipei, Taiwan, September 25-28, 2017, Proceedings, volume
10529 of Lecture Notes in Computer Science, pages 321–345. Springer, 2017.

[11] Ray Beaulieu, Douglas Shors, Jason Smith, Stefan Treatman-Clark, Bryan
Weeks, and Louis Wingers. The SIMON and SPECK lightweight block ciphers.
In Proceedings of the 52nd Annual Design Automation Conference, pages 175:1–
175:6. ACM, 2015.

[12] Mihir Bellare, Ran Canetti, and Hugo Krawczyk. Keying hash functions for
message authentication. In Annual international cryptology conference, pages
1–15. Springer, 1996.

[13] Daniel Bernstein. Multidigit modular multiplication with the explicit chinese
remainder theorem, 2001.

[14] Daniel J Bernstein. Curve25519: new diffie-hellman speed records. In In-
ternational Workshop on Public Key Cryptography, pages 207–228. Springer,
2006.

[15] René Beuchat, Florian Depraz, Andrea Guerrieri, and Kashani Sahand. Fun-
damentals of System-on-Chip Design on Arm Cortex-M Microcontrollers. arm
Education Media, 2021.

[16] Arghya Bhattacharjee1, Eik List, Cuauhtemoc Mancillas López, and
Mridul Nandi. The Oribatida Family of Lightweight Authenticated Encryp-
tion Schemes, 2019. https://csrc.nist.gov/CSRC/media/Projects/

lightweight-cryptography/documents/round-2/spec-doc-rnd2/

oribatida-spec-round2.pdf.

[17] Karim Bigou and Arnaud Tisserand. Single base modular multiplication for
efficient hardware RNS implementations of ECC. In Lecture Notes in Computer
Science (including subseries Lecture Notes in Artificial Intelligence and Lecture
Notes in Bioinformatics), 2015.

196

https://csrc.nist.gov/CSRC/media/Projects/lightweight-cryptography/documents/round-2/spec-doc-rnd2/oribatida-spec-round2.pdf
https://csrc.nist.gov/CSRC/media/Projects/lightweight-cryptography/documents/round-2/spec-doc-rnd2/oribatida-spec-round2.pdf
https://csrc.nist.gov/CSRC/media/Projects/lightweight-cryptography/documents/round-2/spec-doc-rnd2/oribatida-spec-round2.pdf

BIBLIOGRAPHY BIBLIOGRAPHY

[18] Eli Biham. A fast new des implementation in software. In Eli Biham, editor,
Fast Software Encryption, pages 260–272, Berlin, Heidelberg, 1997. Springer
Berlin Heidelberg.

[19] Dobre Blazhevski, Adrijan Bozhinovski, Biljana Stojchevska, and Veno Pa-
chovski. Modes of operation of the aes algorithm. 2013.

[20] A Bogdanov, L R Knudsen, G Leander, C Paar, A Poschmann, M.J.B Robshaw,
Y Seurin, and C Vikkelsoe. PRESENT : An Ultra-Lightweight Block Cipher.
Springer Berlin Heidelberg, pages 450–466, 2007.

[21] Julia Borghoff, Anne Canteaut, Tim Güneysu, Elif Bilge Kavun, Miroslav
Knežević, Lars R. Knudsen, Gregor Leander, Ventzislav Nikov, Christof Paar,
Christian Rechberger, Peter Rombouts, Søren S. Thomsen, and Tolga Yalçın.
Prince - a low-latency block cipher for pervasive computing applications (full
version). Cryptology ePrint Archive, Paper 2012/529, 2012. https://eprint.
iacr.org/2012/529.

[22] Joppe W. Bos and Simon J. Friedberger. Faster modular arithmetic for isogeny
based crypto on embedded devices. Cryptology ePrint Archive, Paper 2018/792,
2018. https://eprint.iacr.org/2018/792.

[23] Christina Boura, Nicolas David, Rachelle Heim Boissier, and Maria Naya-
Plasencia. Better steady than speedy: Full break of speedy-7-192. Cryptology
ePrint Archive, Paper 2022/1351, 2022. https://eprint.iacr.org/2022/

1351.

[24] S. Brown. Fpga architectural research: a survey. IEEE Design & Test of
Computers, 13(4):9–15, 1996.

[25] Avik Chakraborti, Nilanjan Datta, Ashwin Jha, Cuauhtemoc Mancillas Lopez,
Mridul Nandi, and Yu Sasaki. Elastic-tweak: A framework for short tweak
tweakable block cipher. Cryptology ePrint Archive, Report 2019/440, 2019.
https://eprint.iacr.org/2019/440.

[26] Avik Chakraborti, Nilanjan Datta, Ashwin Jha, Cuauhtemoc Mancillas
Lopez, Mridul Nandi, and Yu Sasaki. Estate. Lightweight Cryptogra-
phy, Round 2 Candidates, 2019. https://csrc.nist.gov/CSRC/media/

Events/lightweight-cryptography-workshop-2019/documents/papers/

estate-authenticated-encryption-mode-lwc2019.pdf.

197

https://eprint.iacr.org/2012/529
https://eprint.iacr.org/2012/529
https://eprint.iacr.org/2018/792
https://eprint.iacr.org/2022/1351
https://eprint.iacr.org/2022/1351
https://eprint.iacr.org/2019/440
https://csrc.nist.gov/CSRC/media/Events/lightweight-cryptography-workshop-2019/documents/papers/estate-authenticated-encryption-mode-lwc2019.pdf
https://csrc.nist.gov/CSRC/media/Events/lightweight-cryptography-workshop-2019/documents/papers/estate-authenticated-encryption-mode-lwc2019.pdf
https://csrc.nist.gov/CSRC/media/Events/lightweight-cryptography-workshop-2019/documents/papers/estate-authenticated-encryption-mode-lwc2019.pdf

BIBLIOGRAPHY BIBLIOGRAPHY

[27] Avik Chakraborti, Nilanjan Datta, Ashwin Jha, Cuauhtemoc Man-
cillas Lopez, Mridul Nandi, and Yu Sasaki. Lotus-aead and locus-
aead. Lightweight Cryptography, Round 2 Candidates, 2019. https:

//csrc.nist.gov/CSRC/media/Projects/Lightweight-Cryptography/

documents/round-1/spec-doc/lotus-aead-and-locus-aead-spec.pdf.

[28] Avik Chakraborti, Nilanjan Datta, Ashwin Jha, Cuauhtemoc Mancillas-López,
Mridul Nandi, and Yu Sasaki. INT-RUP secure lightweight parallel AE modes.
IACR Trans. Symmetric Cryptol., 2019(4):81–118, 2019. https://dblp.org/
rec/journals/tosc/ChakrabortiDJMN19.bib.

[29] Avik Chakraborti, Nilanjan Datta, Ashwin Jha, Cuauhtemoc Mancillas-López,
Mridul Nandi, and Yu Sasaki. ESTATE: A lightweight and low energy authen-
ticated encryption mode. IACR Trans. Symmetric Cryptol., 2020(S1):350–389,
2020. https://dblp.org/rec/journals/tosc/ChakrabortiDJMN20.bib.

[30] Avik Chakraborti, Nilanjan Datta, Mridul Nandi, and Kan Yasuda. Beetle
family of lightweight and secure authenticated encryption ciphers. IACR
Transactions on Cryptographic Hardware and Embedded Systems, 2018(2):218–
241, 2018.

[31] Jung Hee Cheon, Kyoohyung Han, Andrey Kim, Miran Kim, and Yongsoo
Song. A full rns variant of approximate homomorphic encryption. Cryptology
ePrint Archive, Paper 2018/931, 2018. https://eprint.iacr.org/2018/931.

[32] Ray C.C. Cheung, Sylvain Duquesne, Junfeng Fan, Nicolas Guillermin, Ingrid
Verbauwhede, and Gavin Xiaoxu Yao. FPGA implementation of pairings using
residue number system and lazy reduction. In Lecture Notes in Computer
Science (including subseries Lecture Notes in Artificial Intelligence and Lecture
Notes in Bioinformatics), 2011.

[33] P. Chow, Soon Ong Seo, J. Rose, K. Chung, G. Paez-Monzon, and I. Rahardja.
The design of an sram-based field-programmable gate array. i. architecture.
IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 7(2):191–
197, 1999.

[34] Henri Cohen, Gerhard Frey, Roberto Avanzi, Christophe Doche, Tanja Lange,
Kim Nguyen, and Frederik Vercauteren. Handbook of elliptic and hyperelliptic
curve cryptography. CRC press, 2005.

198

https://csrc.nist.gov/CSRC/media/Projects/Lightweight-Cryptography/documents/round-1/spec-doc/lotus-aead-and-locus-aead-spec.pdf
https://csrc.nist.gov/CSRC/media/Projects/Lightweight-Cryptography/documents/round-1/spec-doc/lotus-aead-and-locus-aead-spec.pdf
https://csrc.nist.gov/CSRC/media/Projects/Lightweight-Cryptography/documents/round-1/spec-doc/lotus-aead-and-locus-aead-spec.pdf
https://dblp.org/rec/journals/tosc/ChakrabortiDJMN19.bib
https://dblp.org/rec/journals/tosc/ChakrabortiDJMN19.bib
https://dblp.org/rec/journals/tosc/ChakrabortiDJMN20.bib
https://eprint.iacr.org/2018/931

BIBLIOGRAPHY BIBLIOGRAPHY

[35] Marius Cornea. Intel avx-512 instructions and their use in the implementation
of math functions. Intel Corporation, pages 1–20, 2015.

[36] J. M. Couveignes. Computing a square root for the number field sieve. In
Lenstra H. W. Lenstra A. K., editor, The development of the number field sieve,
Lecture Notes in Mathematics, pages 90–97, 1993.

[37] Joan Daemen and Vincent Rijmen. Aes proposal: Rijndael. 1999.

[38] Joan Daemen and Vincent Rijmen. The Design of Rijndael: AES - The Advanced
Encryption Standard. Information Security and Cryptography. Springer, 2002.

[39] Zhibin Dai and D.K. Banerji. Routability prediction for field programmable
gate arrays with a routing hierarchy. In 16th International Conference on VLSI
Design, 2003. Proceedings., pages 85–90, 2003.

[40] Nir Drucker and Shay Gueron. Fast modular squaring with avx512ifma. Cryp-
tology ePrint Archive, Paper 2018/335, 2018. https://eprint.iacr.org/

2018/335.

[41] Morris Dworkin. Recommendations for block cipher modes of operation, meth-
ods and techniques, 2001.

[42] Morris J Dworkin, Elaine B Barker, James R Nechvatal, James Foti, Lawrence E
Bassham, E Roback, James F Dray Jr, et al. Advanced encryption standard
(aes). 2001.

[43] Hongbing Fan, Jiping Liu, Yu-Liang Wu, and Chak-Chung Cheung. On optimal
hyperuniversal and rearrangeable switch box designs. IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems, 22(12):1637–1649,
2003.

[44] Hongbing Fan, Jiping Liu, Yu-Liang Wu, and Chak-Chung Cheung. The exact
channel density and compound design for generic universal switch blocks. ACM
Trans. Des. Autom. Electron. Syst., 12(2):19–es, apr 2007.

[45] Martin Feldhofer and Christian Rechberger. A case against currently used hash
functions in rfid protocols. In On the move to meaningful internet systems 2006:
OTM 2006 workshops, pages 372–381. Springer, 2006.

[46] N Fips. Announcing the ADVANCED ENCRYPTION STANDARD (AES).
Byte, 2009(12):8–12, 2001.

199

https://eprint.iacr.org/2018/335
https://eprint.iacr.org/2018/335

BIBLIOGRAPHY BIBLIOGRAPHY

[47] Tore Kasper Frederiksen, Yehuda Lindell, Valery Osheter, and Benny Pinkas.
Fast distributed rsa key generation for semi-honest and malicious adversaries.
Cryptology ePrint Archive, Paper 2018/577, 2018. https://eprint.iacr.org/
2018/577.

[48] Konstantinos Fysarakis, George Hatzivasilis, Ioannis Askoxylakis, and Char-
alampos Manifavas. Rt-spdm: real-time security, privacy and dependability
management of heterogeneous systems. In International Conference on Human
Aspects of Information Security, Privacy, and Trust, pages 619–630. Springer,
2015.

[49] Konstantinos Fysarakis, George Hatzivasilis, Charalampos Manifavas, and Ioan-
nis Papaefstathiou. Rtvmf: A secure real-time vehicle management framework.
IEEE Pervasive Computing, 15(1):22–30, 2016.

[50] Kris Gaj, Ekawat Homsirikamol, and Marcin Rogawski. Fair and comprehensive
methodology for comparing hardware performance of fourteen round two sha-3
candidates using fpgas. In International Workshop on Cryptographic Hardware
and Embedded Systems, pages 264–278. Springer, 2010.

[51] Kris Gaj, Ekawat Homsirikamol, Marcin Rogawski, Rabia Shahid, and Ma-
lik Umar Sharif. Comprehensive evaluation of high-speed and medium-speed
implementations of five sha-3 finalists using xilinx and altera fpgas. Cryptology
ePrint Archive, Paper 2012/368, 2012. https://eprint.iacr.org/2012/368.

[52] Filippo Gandino, Fabrizio Lamberti, Gianluca Paravati, Jean Claude Bajard,
and Paolo Montuschi. An algorithmic and architectural study on montgomery
exponentiation in RNS. IEEE Transactions on Computers, 2012.

[53] Benôıt Gérard, Jean Gabriel Kammerer, and Nabil Merkiche. Contributions
to the Design of Residue Number System Architectures. In Proceedings -
Symposium on Computer Arithmetic, 2015.

[54] Nicolas Guillermin. A high speed coprocessor for elliptic curve scalar multipli-
cations over Fp. In Lecture Notes in Computer Science (including subseries
Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics),
2010.

[55] Darrel Hankerson, Alfred J Menezes, and Scott Vanstone. Guide to elliptic
curve cryptography. Springer Science & Business Media, 2006.

200

https://eprint.iacr.org/2018/577
https://eprint.iacr.org/2018/577
https://eprint.iacr.org/2012/368

BIBLIOGRAPHY BIBLIOGRAPHY

[56] George Hatzivasilis, Ioannis Papaefstathiou, Charalampos Manifavas, and Ioan-
nis Askoxylakis. Lightweight password hashing scheme for embedded systems.
In IFIP International Conference on Information Security Theory and Practice,
pages 260–270. Springer, 2015.

[57] Michael Healy, Thomas Newe, and Elfed Lewis. Wireless sensor node hardware:
A review. In Proceedings of IEEE Sensors, pages 621–624, 2008.

[58] Ekawat Homsirikamol, Marcin Rogawski, and Kris Gaj. Comparing hardware
performance of fourteen round two sha-3 candidates using fpgas. Cryptology
ePrint Archive, Paper 2010/445, 2010. https://eprint.iacr.org/2010/445.

[59] Malik Imran, Muhammad Rashid, and Imran Shafi. Lopez dahab based elliptic
crypto processor (ecp) over gf(2163) for low-area applications on fpga. In 2018
International Conference on Engineering and Emerging Technologies (ICEET),
pages 1–6, 2018.

[60] Dworkin Morris J. Sp 800-38a 2001 edition. recommendation for block ci-
pher modes of operation: Methods and techniques. Technical report, NIST,
Gaithersburg, MD, United States, 2001.

[61] Dworkin Morris J. Sp 800-38b. recommendation for block cipher modes of opera-
tion: The cmac mode for authentication. Technical report, NIST, Gaithersburg,
MD, United States, 2005.

[62] Shruti Jaiswal and Daya Gupta. Security Requirements for Internet of Things
(IoT), pages 419–427. Springer Singapore, Singapore, 2017.

[63] Hamza Jeljeli. Accélérateurs logiciels et matériels pour l’algèbre linéaire creuse
sur les corps finis. PhD thesis, Inria Nancy, Grand Est, LORIA ALGO De-
partment of Algorithms, Computation, Image and Geometry, available at:
https://hal.inria.fr/tel-01178931, 2015.

[64] Hamza Jeljeli. Accelerating iterative SpMV for the discrete logarithm problem
using GPUs. In Lecture Notes in Computer Science (including subseries Lecture
Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 2015.

[65] Qi Jing, Athanasios V. Vasilakos, Jiafu Wan, Jingwei Lu, and Dechao Qiu. Se-
curity of the internet of things: perspectives and challenges. Wireless Networks,
20(8):2481–2501, Nov 2014.

[66] Daemen Joan and Rijmen Vincent. The advanced encryption standard, 2001.

201

https://eprint.iacr.org/2010/445
https://hal.inria.fr/tel-01178931

BIBLIOGRAPHY BIBLIOGRAPHY

[67] Kimmo Järvinen. Optimized fpga-based elliptic curve cryptography proces-
sor for high-speed applications. Integration, 44(4):270–279, 2011. Hardware
Architectures for Algebra, Cryptology and Number Theory.

[68] Christoforos Kachris, Stephan Wong, and Stamatis Vassiliadis. Design and
performance evaluation of an adaptive fpga for network applications. Micro-
electronics Journal, 40(7):1103–1110, 2009. Mixed-Technology Testing Rapid
System Prototyping.

[69] Jens-Peter Kaps, William Diehl, Michael Tempelmeier, Ekawat Homsirikamol,
and Kris Gaj. Hardware api for lightweight cryptography. Tech. Report Oct
2019, 2019. https://cryptography.gmu.edu/athena/LWC/LWC_HW_API.pdf.

[70] Jens-Peter Kaps, William Diehl, Michael Tempelmeier, Ekawat Hom-
sirikamol, and Kris Gaj. Hardware api for lightweight cryptography. URL
https://cryptography. gmu. edu/athena/index. php, pages 1–26, 2019.

[71] Anatolii Karatsuba. Multiplication of multidigit numbers on automata. In
Soviet physics doklady, volume 7, pages 595–596, 1963.

[72] Anatolii Karatsuba and Yuri Ofman. Multiplication of Multidigit Numbers on
Automata. Soviet Physics-Doklady, 7:595–596, 1963.

[73] Anatolii Alexeevich Karatsuba. The complexity of computations. Proceedings
of the Steklov Institute of Mathematics-Interperiodica Translation, 211:169–183,
1995.

[74] Shinichi Kawamura, Masanobu Koike, Fumihiko Sano, and Atsushi Shimbo.
Cox-rower architecture for fast parallel montgomery multiplication. In Lecture
Notes in Computer Science (including subseries Lecture Notes in Artificial
Intelligence and Lecture Notes in Bioinformatics), 2000.

[75] Shinichi Kawamura, Yuichi Komano, Hideo Shimizu, and Tomoko Yonemura.
RNS montgomery reduction algorithms using quadratic residuosity. Journal of
Cryptographic Engineering, September 2018.

[76] Hyunjun Kim, Kyungbae Jang, Gyeongju Song, Minjoo Sim, Siwoo Eum,
Hyunji Kim, Hyeokdong Kwon, Wai-Kong Lee, and Hwajeong Seo. Speedy
on cortex–m3: Efficient software implementation of speedy on arm cortex–m3.
Cryptology ePrint Archive, Paper 2021/1212, 2021. https://eprint.iacr.

org/2021/1212.

202

https://cryptography.gmu.edu/athena/LWC/LWC_HW_API.pdf
https://eprint.iacr.org/2021/1212
https://eprint.iacr.org/2021/1212

BIBLIOGRAPHY BIBLIOGRAPHY

[77] Mateusz Komorkiewicz, Krzysztof Turek, Pawel Skruch, Tomasz Kryjak, and
Marek Gorgon. Fpga-based hardware-in-the-loop environment using video
injection concept for camera-based systems in automotive applications. In
2016 Conference on Design and Architectures for Signal and Image Processing
(DASIP), pages 183–190, 2016.

[78] Thanikodi Manoj Kumar, Kasarla Satish Reddy, Stefano Rinaldi, Bidare Di-
vakarachari Parameshachari, and Kavitha Arunachalam. A low area high
speed fpga implementation of aes architecture for cryptography application.
Electronics, 10(16), 2021.

[79] Yen-Tai Lai and Ping-Tsung Wang. Hierarchical interconnection structures
for field programmable gate arrays. IEEE Transactions on Very Large Scale
Integration (VLSI) Systems, 5(2):186–196, 1997.

[80] Gregor Leander, Thorben Moos, Amir Moradi, and Shahram Rasoolzadeh. The
speedy family of block ciphers - engineering an ultra low-latency cipher from
gate level for secure processor architectures. Cryptology ePrint Archive, Paper
2021/960, 2021. https://eprint.iacr.org/2021/960.

[81] Chris Lomont. Introduction to intel advanced vector extensions. Intel white
paper, 23, 2011.

[82] Javier Lopez, Rodrigo Roman, and Cristina Alcaraz. Analysis of Security
Threats , Requirements , Technologies and Standards in Wireless Sensor Net-
works. Foundations of Security Analysis and Design V, 5705:289–338, 2009.

[83] Lauren May, Lyta Penna, and Andrew Clark. An implementation of bitsliced des
on the pentium mmxtm processor. In E. P. Dawson, A. Clark, and Colin Boyd,
editors, Information Security and Privacy, pages 112–122, Berlin, Heidelberg,
2000. Springer Berlin Heidelberg.

[84] Kerry McKay, Lawrence Bassham, Meltem Sönmez Turan, and Nicky Mouha.
Reposrt on lightweight cryptography. 2017.

[85] Alfred J Menezes, Paul C Van Oorschot, and Scott A Vanstone. Handbook of
applied cryptography. CRC press, 1996.

[86] Alfred J Menezes, Paul C Van Oorschot, and Scott A Vanstone. Handbook of
applied cryptography. CRC press, 2018.

[87] Kazuhiko Minematsu. Aes-otr v3.1, cited September 2020.

203

https://eprint.iacr.org/2021/960

BIBLIOGRAPHY BIBLIOGRAPHY

[88] Bassam Jamil Mohd, Thaier Hayajneh, Zaid Abu Khalaf, Ahmad Yousef,
and Khalil Mustafa. Modeling and optimization of the lightweight hight block
cipher design with fpga implementation. Security and Communication Networks,
9(13):2200–2216, 2016.

[89] Peter L Montgomery. Modular multiplication without trial division. Mathemat-
ics of computation, 44(170):519–521, 1985.

[90] Peter L. Montgomery. Modular Multiplication Without Trial Division. Mathe-
matics of Computation, 1985.

[91] Peter L. Montgomery. Modular multiplication without trial division. Mathe-
matics of Computation, 44(170):519–521, April 1985.

[92] Peter L. Montgomery and Robert D. Silverman. An fft extension to the p− 1
factoring algorithm. Mathematics of Computation, 54(190):839–854, 1990.

[93] Peter Lawrence Montgomery. An FFT Extension of the Elliptic Curve Method
of Factorization. PhD thesis, University of California at Los Angeles, USA,
1992.

[94] Amir Moradi, Axel Poschmann, San Ling, Christof Paar, and Huaxiong Wang.
Pushing the limits: A very compact and a threshold implementation of AES.
In Kenneth G. Paterson, editor, Advances in Cryptology - EUROCRYPT 2011
- 30th Annual International Conference on the Theory and Applications of
Cryptographic Techniques, Tallinn, Estonia, May 15-19, 2011. Proceedings,
volume 6632 of Lecture Notes in Computer Science, pages 69–88. Springer,
2011.

[95] Ivan Müller, Edison Pignaton De Freitas, Altamiro Amadeu Susin, and Car-
los Eduardo Pereira. Namimote: A low-cost sensor node for wireless sensor
networks. In Lecture Notes in Computer Science (including subseries Lecture
Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), volume
7469 LNCS, pages 391–400, 2012.

[96] Hanae Nozaki, Masahiko Motoyama, Atsushi Shimbo, and Shinichi Kawamura.
Implementation of RSA algorithm based on RNS montgomery multiplication.
In Lecture Notes in Computer Science (including subseries Lecture Notes in
Artificial Intelligence and Lecture Notes in Bioinformatics), 2001.

204

BIBLIOGRAPHY BIBLIOGRAPHY

[97] Eduardo Ochoa-Jiménez, Luis Rivera-Zamarripa, Nareli Cruz Cortés, and
Francisco Rodŕıguez-Henŕıquez. Implementation of RSA signatures on GPU
and CPU architectures. IEEE Access, 8:9928–9941, 2020.

[98] Christof Paar and Jan Pelzl. Understanding cryptography: a textbook for
students and practitioners. Springer Science & Business Media, 2009.

[99] J. Britto Pari and D. Vaithiyanathan. An optimized fpga implementation of dct
architecture for image and video processing applications. In 2019 International
Conference on Wireless Communications Signal Processing and Networking
(WiSPNET), pages 186–191, 2019.

[100] Adrian Perrig, John Stankovic, and David Wagner. Security in wireless sensor
networks. Communications of the ACM, 47(6):53–57, 2004.

[101] K. C. Posch and R. Posch. Modulo reduction in residue number systems. IEEE
Transactions on Parallel and Distributed Systems, 6(5):449–454, May 1995.

[102] Karl C. Posch and Reinhard Posch. Modulo reduction in residue number
systems. IEEE Trans. Parallel Distrib. Syst., 6(5):449–454, 1995.

[103] Axel York Poschmann. Lightweight cryptography: cryptographic engineering
for a pervasive world. In PH. D. THESIS. Citeseer, 2009.

[104] FIPS Pub. Data encryption standard (des). FIPS PUB, pages 46–3, 1999.

[105] Behnaz Rezvani, Flora Coleman, Sachin Sachin, and William Diehl. Hardware
implementations of nist lightweight cryptographic candidates: A first look.
Cryptology ePrint Archive, Report 2019/824, 2019. https://eprint.iacr.

org/2019/824.

[106] Juan J. Rodŕıguez-Andina, Maŕıa D. Valdés-Peña, and Maŕıa J. Moure. Ad-
vanced features and industrial applications of fpgas—a review. IEEE Transac-
tions on Industrial Informatics, 11(4):853–864, 2015.

[107] Phillip Rogaway. Efficient instantiations of tweakable blockciphers and re-
finements to modes OCB and PMAC. In Pil Joong Lee, editor, Advances in
Cryptology - ASIACRYPT 2004, 10th International Conference on the Theory
and Application of Cryptology and Information Security, Jeju Island, Korea,
December 5-9, 2004, Proceedings, volume 3329 of Lecture Notes in Computer
Science, pages 16–31. Springer, 2004.

205

https://eprint.iacr.org/2019/824
https://eprint.iacr.org/2019/824

BIBLIOGRAPHY BIBLIOGRAPHY

[108] J. Rose, A. El Gamal, and A. Sangiovanni-Vincentelli. Architecture of field-
programmable gate arrays. Proceedings of the IEEE, 81(7):1013–1029, 1993.

[109] Gaël Rouvroy, François-Xavier Standaert, Jean-Jacques Quisquater, and Jean-
Didier Legat. Compact and efficient encryption/decryption module for FPGA
implementation of the AES rijndael very well suited for small embedded appli-
cations. In International Conference on Information Technology: Coding and
Computing (ITCC’04), Volume 2, April 5-7, 2004, Las Vegas, Nevada, USA,
pages 583–587. IEEE Computer Society, 2004.

[110] Shreekant Sajjanar, Suraj K. Mankani, Prasad R. Dongrekar, Naman S. Kumar,
Mohana, and H.V. Ravish Aradhya. Implementation of real time moving object
detection and tracking on fpga for video surveillance applications. In 2016 IEEE
Distributed Computing, VLSI, Electrical Circuits and Robotics (DISCOVER),
pages 289–295, 2016.

[111] D. M. Schinianakis, A. P. Kakarountas, and T. Stouraitis. A new approach
to Elliptic Curve Cryptography: An RNS architecture. In Proceedings of the
Mediterranean Electrotechnical Conference - MELECON, 2006.

[112] Dimitrios M. Schinianakis, Apostolos P. Fournaris, Harris E. Michail,
Atharoutas P. Kakarountas, and Thanos Stouraitis. An RNS implementa-
tion of an Fp elliptic curve point multiplier. IEEE Transactions on Circuits
and Systems I: Regular Papers, 2009.

[113] J. Schwemmlein, K. C. Posch, and R. Posch. RNS-modulo reduction upon a
restricted base value set and its applicability to RSA cryptography. Computers
and Security, 1998.

[114] Gueron Shay, Jha Ashwin, and Nandi Mridul. COMET : COunter Mode En-
cryption whith authentication Tag, 2019. https://csrc.nist.gov/Projects/
lightweight-cryptography/round-2-candidates.

[115] Meltem Sönmez Turan, Kerry McKay, Donghoon Chang, Çağdaş Çalık,
Lawrence Bassham, Jinkeon Kang, and John Kelsey. Status report on the
second round of the nist lightweight cryptography standardization process,
2021.

[116] Frank Stajano. Security for ubiquitous computing. In International Conference
on Information Security and Cryptology, pages 2–2. Springer, 2004.

206

https://csrc.nist.gov/Projects/lightweight-cryptography/round-2-candidates
https://csrc.nist.gov/Projects/lightweight-cryptography/round-2-candidates

BIBLIOGRAPHY BIBLIOGRAPHY

[117] STMicroelectronics. Rm0351 reference manual stm32l4x5 and stm32l4x6 ad-
vanced arm-based 32-bit mcus, 2022.

[118] STMicroelectronics. Stm32l4a6xg ultra-low-power arm cortex-m4 32-bit
mcu+fpu, 100dmips, 1mb flash, 320kb sram, usb otg fs, audio, aes+hash,
ext. smps, 2022.

[119] STMicroelectronics. Um1924 user manual stm32 crypto library, 2022.

[120] STMicroelectronics. Um2179 user manual stm32 nucleo-144 boards, 2022.

[121] Hui Suo, Jiafu Wan, Caifeng Zou, and Jianqi Liu. Security in the internet of
things: A review. In Proceedings - 2012 International Conference on Computer
Science and Electronics Engineering, ICCSEE 2012, volume 3, pages 648–651,
2012.

[122] Ruhma Tahir, Muhammad Younas Javed, and Ahmad Raza Cheema. Rabbit-
mac: Lightweight authenticated encryption in wireless sensor networks. In
Information and Automation, 2008. ICIA 2008. International Conference on,
pages 573–577. IEEE, 2008.

[123] Brunel Happi Tietche, Olivier Romain, Bruce Denby, and Francois De
Dieuleveult. Fpga-based simultaneous multichannel fm broadcast receiver
for audio indexing applications in consumer electronics scenarios. IEEE Trans-
actions on Consumer Electronics, 58(4):1153–1161, 2012.

[124] Meltem Sönmez Turan, Kerry A McKay, Çagdas Çalik, Donghoon Chang,
Lawrence Bassham, et al. Status report on the first round of the nist lightweight
cryptography standardization process. National Institute of Standards and
Technology, Gaithersburg, MD, NIST Interagency/Internal Rep.(NISTIR), 2019.

[125] Jim Vanderbauwhede and Jeremy Singer. Operating Systems Foundations with
Linux on the Raspberry Pi: Textbook. arm Education Media, 2019.

[126] Serge Vaudenay. A classical introduction to cryptography: Applications for
communications security. Springer Science & Business Media, 2006.

[127] Rolf H. Weber. Internet of Things – New security and privacy challenges.
Computer Law & Security Review, 26(1):23–30, 2010.

[128] Yang Xiao, Hsiao-Hwa Chen, Xiaojiang Du, and Mohsen Guizani. Stream-based
cipher feedback mode in wireless error channel. IEEE Transactions on Wireless
Communications, 8(2):622–626, 2009.

207

BIBLIOGRAPHY BIBLIOGRAPHY

[129] Inc. Xilinx. 7 series dsp48e1 slice, 2018.

[130] Inx. Xilinx. 7 series fpgas configurable logic block, 2016.

[131] Inx. Xilinx. Virtex-7 family overview, 2020.

[132] Inx. Xilinx. Ultrascale architecture dsp slice, 2021.

[133] Inx. Xilinx. 7 series fpgas configuration user guide, 2022.

[134] Xiaohui Xu. Study on security problems and key technologies of the internet of
things. In Proceedings - 2013 International Conference on Computational and
Information Sciences, ICCIS 2013, pages 407–410, 2013.

[135] Gavin Xiaoxu Yao, Junfeng Fan, Ray C.C. Cheung, and Ingrid Verbauwhede.
Faster pairing coprocessor architecture. In Lecture Notes in Computer Science
(including subseries Lecture Notes in Artificial Intelligence and Lecture Notes
in Bioinformatics), 2013.

[136] Xueying Zhang, Howard M Heys, and Cheng Li. Energy efficiency of encryption
schemes applied to wireless sensor networks. Security and Communication
Networks, 5(7):789–808, 2012.

[137] Kai Zhao and Lina Ge. A survey on the internet of things security. In Proceedings
- 9th International Conference on Computational Intelligence and Security, CIS
2013, pages 663–667, 2013.

208

	Introduction
	Motivation
	Problem statement
	Objectives
	State-of-the-art
	Security on constrained devices
	Security on high-speed devices

	Summary

	I Theoretical Background
	Preliminaries
	Mathematical Background
	Algebra
	Groups
	Rings
	Fields
	Extension of fields

	Integer arithmetic operations
	Addition and Subtraction
	Multiplication
	Modular reduction

	Greatest Common Divisor (GCD)
	Chinese Residue Theorem CRT
	Summary

	Cryptography
	Advanced Encryption Standard (AES)
	Byte Substitution layer
	ShiftRows
	MixColumns
	Add Round Key
	Key Schedule
	AES 128-bit Key schedule

	Block Cipher Modes of Operation
	Electronic Codebook (ECB)
	Cipher Block Chaining Mode (CBC)
	Counter Mode (CTR)

	Message Authentication Codes (MACs)
	HMAC
	MAC from block ciphers
	MAC Verification

	Hash Functions
	Lightweight Cryptography
	Performance
	Lightweight primitives
	Lightweight Block ciphers
	Lightweight MACs

	Authenticated encryption with associated data
	Hardware API for Lightweight Cryptography
	Public Key Cryptography
	RSA
	RSA encryption scheme
	RSA signature scheme

	Elliptic curve scheme
	Groups
	Generalization of discrete logarithm problem
	Elliptic curve groups
	Key generation in elliptic curves
	Encryption scheme with elliptic curves

	Summary

	Field Programmable Gate Array (FPGA) and Advance RISC Machine (ARM) technologies
	Field Programmable Gate Arrays (FPGAs)
	Logic elements

	Digital Signal Processor (DSP)
	DSP48E2
	Xilinx FPGA Families

	Architecture of Xilinx 7 family
	Configurable Logic Block (CLB)
	Look-Up Table (LUT)

	Advance RISC Machine (ARM)
	Register Set

	ST Microelectronics
	Memory protection unit
	General-purpose I/O (GPIO
	Direct memory access (DMA)
	Random number generator (RNG)
	AES in hardware

	II Symmetric Key Cryptography
	Lightweight authenticated encryption with associated data in hardware
	Authenticated Encryption with Associated Data
	GMU LWC Interface
	Implemented Authenticated Ciphers
	Preliminaries
	Hardware design principles
	LOTUS and LOCUS
	LOTUS
	LOCUS
	ESTATE
	COMET
	Oribatida

	Results
	Discussion of results

	Summary

	Speedy Block cipher on ARM with Bitslice
	Speedy block cipher
	Speedy S-Box
	Speedy specification
	Round function
	Key schedule

	Bitslicing
	Substitution Box (SB)
	Shift Columns (SC)
	MixColumns (MC)
	AddRoundKey (AR) and AddRoundConstant (AC)

	Results
	Differential Attack

	III Public Key Cryptography
	A DSP-based FPGA design and implementation of a fast RNS multiplier
	Our Contributions
	Preliminaries
	Notation
	Montgomery reduction
	Residue Number System and Modular Arithmetic
	RNS Montgomery modular reduction
	FPGA and DSP technology

	Related works
	Design of a DSP48 -based architecture for a field multiplier
	Basic RNS multiplier with reduction
	Multiplier array MulDM
	RNS addition with reduction
	Addition tree

	Implementation
	Implementation of the modular reduction Algorithm 19
	Montgomery Implementation

	Results
	RNS word multiplier with reduction
	Discussion and comparison

	Hardware accelerator for the elliptic curve ECC25519
	Karatsuba Proposal
	Schoolbook proposal
	RNS
	Results
	Summary

	IV Summary
	Conclusions
	Lightweight authenticated encryption with associated data
	Speedy Block cipher on ARM-M4 with Bitslice
	A DSP-based FPGA design and implementation of a fast RNS multiplier
	Hardware accelerator for the elliptic curve ECC25519

	Future Work

