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Resumen

En esta disertación presentamos una construcción matemática rigurosa de ciertas teorías

cuánticas de campo p-ádicas, cuyas amplitudes de N puntos están dadas por los valores

esperados de productos de operadores de vértice. Mostramos que este tipo de amplitudes

admiten un desarrollo en serie donde cada término es una función zeta local de Igusa. El

primer término de esta serie es una versión regularizada de la amplitud de cuerda abierta

p-ádica de Koba-Nielsen. En la década de 1980 los físicos obtuvieron amplitudes de cuer-

das abiertas p-ádicas de Koba-Nielsen mediante cálculos formales. El objetivo central de

este trabajo es proporcionar un marco matemático para comprender dichos cálculos. Esta

tesis está basada en la publicación: A.R. Fuquen-Tibatá, H. García-Compeán and W.A.

Zúñiga-Galindo, Euclidean quantum �eld formulation of p-adic open string amplitudes, Nu-

clear Physics B. 975 (2022), 115684.
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Abstract

In this dissertation we present a rigorous mathematical construction of certain p-adic quan-

tum �eld theories, whose N -point amplitudes are the expectation of products of vertex oper-

ators. We show that this type of amplitudes admit a series expansion where each term is an

Igusa local zeta function. The �rst term in this series is a regularized version of the p-adic

Koba-Nielsen open string amplitude. In the 1980s physicists obtained p-adic Koba-Nielsen

open string amplitudes by formal calculations. The central goal of this work is to provide a

mathematical framework to understand such calculations. This dissertation is based on the

publication: A.R. Fuquen-Tibatá, H. García-Compeán and W.A. Zúñiga-Galindo, Euclidean

quantum �eld formulation of p-adic open string amplitudes, Nuclear Physics B. 975 (2022),

115684.
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Introduction

In this thesis we provide a mathematical construction of a class of quantum �eld theories

whose amplitudes are expectations of products of vertex operators. Using this approach, we

carry out a rigorous mathematical derivation of the N -point Koba-Nielsen amplitudes.

String amplitudes were introduced by Veneziano in 1968 [53], further generalizations were

obtained by Virasoro [54], Koba and Nielsen [43], among others. In the 80s, Freund, Witten

and Volovich, studied string amplitudes at the tree-level over di�erent number �elds, and

suggested the existence of connections between these amplitudes (see e.g. [14] and [56]). In

this framework the connections with number theory, speci�cally with local zeta functions,

occur naturally (see [4]-[6] and [9]-[12]).

p-Adic string theories have been studied over the time with some periodic �uctuations in

their interest (see [14], [19], [39], [55]). Recently, a considerable amount of work has been

developed on this topic in the context of the anti-de Sitter/conformal �eld theory (AdS/CFT)

correspondence [20], [34], [33], [36]. String theory with a p-adic worldsheet was proposed

and studied for the �rst time in [23]. Later, this theory was formally known as p-adic string

theory. p-Adic strings are related to ordinary strings at least in two di�erent ways. First,

connections through the adelic relations [24], and second, through the limit when p tends to

1 in the tree-level p-adic string amplitudes [28], [29].

The tree-level string amplitudes (without loops) were explicitly computed in the case of p-

adic string worldsheet in [14] and [22]. Since the 80s, it has been of interest the construction
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of �eld theories whose correlators are the p-adic tree-level string amplitudes (or p-adic Koba-

Nielsen amplitudes). Spokoiny [51], Zhang [58], (see also [49]) constructed formally quantum

�eld theories whose amplitudes are expectation values of products of vertex operators. In [57]

Zabrodin established that the tree-level string amplitudes may be obtained starting with a

discrete �eld theory on a Bruhat-Tits tree. These ideas were used by Ghoshal and Kawano

in the study of p-adic strings in constant B-�elds [30].

The naive Euclidean version of the p-adic N -point amplitudes is presented in [30], [51]

and [58] by

A(N) (k) =

〈
N∏
j=1

∫
Qp

dxj e
kj ·φ(xj)

〉
D

=
1

Z0

∫
Dφe−S(φ)


∫
QN

p

dNx e

N∑
j=1

kj ·φ(xj)

 (0.1)

where ⟨·⟩D denotes the expected value with respect to the weighted measure Dφe−S(φ),∫
Qp
dxj ekj ·φ(xj) is the tachyonic vertex operator of the j-th tachyon with momentum

kj = (k1,j, . . . , kD,j) and �eld φ(xj) = (φ1 (xj) , . . . , φD (xj)), the product kj ·φ (xj) denotes

the standard Euclidean scalar product, Z0 =
∫
Dφe−S(φ) is the normalization constant, and

the action S is given by

S (φ) =
T0
2

N∑
j=1

∫
Qp

∫
Qp

{
φj (xj)− φj (yj)

|xj − yj|p

}2

dxjdyj. (0.2)

However, the measure Dφ appearing in (0.1) is given formally (there was no a mathematical

construction for this). This yields in a non-rigorous formulation of the amplitudes A(N) (k).

For this reason a new construction of the amplitudes is given. Note that in (0.1) the �elds

φ are functions not distributions, thus we construct a Gaussian probability measure which

is denoted by PD in the suitable space of functions LD
R (Qp) known as the D-dimensional

Lizorkin space of second kind [2, Chapter 7]. In Archimedean and non-Archimedean cases free

quantum �elds correspond to Gaussian probability measures on suitable in�nite dimensional
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spaces. The reader may consult [31, Section 6.2] for the classical case, and [7, Section

5.5], [59], [60] for the p-adic case. Thus, in this case the measure PD corresponds to a free

quantum �eld.

Since the functions in LD
R (Qp) have compact support, the exponential becomes 1 outside

the ball containing the support and the integral over QN
p in the right-hand side of (0.1) is

divergent, then it is necessary to introduce a cut-o� and de�ne the amplitude by a limit

process as follows.

With the aid of the measure PD we de�ne

A(N)
R (k) =

1

Z0

∫
BN

R


∫

LD
R (Qp)

e

N∑
j=1

kj ·φ(xj)

dPD (φ)


N∏
ν=1

dxν , (0.3)

where BN
R denotes a N -dimensional ball of radius pR and Z0 =

∫
LD
R (Qp)

dPD (φ). The N -point

amplitude is de�ned as A(N) (k) = lim
R→∞

A(N)
R (k).

Notice that the integral over LD
R (Qp) can be rewritten as a product of integrals over LR (Qp)

(the one-dimensional Lizorkin space). Using the solution φL,m of the motion equation

DφL,m = JL,m (see [2, Theorem 10.2.2]), where JL,m ∈ LR (Qp) is conveniently taken, the

change of variable φ = φL,m + φ̃ in (0.3) is performed to obtain

A(N)
R (k) =

1

Z0

∫
BN

R

∏
1≤i<j≤N

|xj − xi|
2(p−1)
p ln p

ki·kj

p


∫

LD
R (Qp)

e

N∑
j=1

kj ·φ̃(xj)

dP̃D (φ̃)


N∏
ν=1

dxν , (0.4)

where P̃D is the measure associated to φ̃. Notice that in the classical quantum �eld theory

(QFT) k is considered as a coupling constant. However, in our case we do not have this

assumption and therefore there is no a classical perturbative expansion for (0.4). Recalling

the classical normalization

x1 = 0, xN−1 = 1, xN = ∞

3



and the series expansion of the exponential function around zero, we show that (0.4) possesses

a series expansion of the form

A(N)
R (k) =

C0

Z0

∞∑
r=0

∫
BN−3

R

N−2∏
j=2

|xj|
2(p−1)
p ln p

k1·kj

p |1− xj|
2(p−1)
p ln p

kN−1·kj

p ×

∏
2≤i<j≤N−2

|xj − xi|
2(p−1)
p ln p

ki·kj

p Gr(k,x)
N−2∏
ν=2

dxν ,

(0.5)

where C0 and G0(k,x) are constants. Since Gr(k,x) is a locally constant function in x, the

product 1BN−3
R

(x) Gr(k,x) is a test function in x depending on k, for r ≥ 1. Each term in

the series (0.5)

Z
(N)
Gr,R

(k) :=
C0

Z0

∫
QN−3

p

N−2∏
j=2

|xj|
2(p−1)
p ln p

k1·kj

p |1− xj|
2(p−1)
p ln p

kN−1·kj

p ×

∏
2≤i<j≤N−2

|xj − xi|
2(p−1)
p ln p

ki·kj

p 1BN−3
R

(x)Gr(k,x)
N−2∏
ν=2

dxν ,

is a particular case of a multivariate Igusa zeta function for each r. In [11]-[12] (see also [26])

it was established that all the integrals Z(N)
Gr,R

(k) are holomorphic functions in a common

domain and if Gr(k,x) = 1,

lim
R→∞

Z
(N)
R (k) =

C0

Z0

∫
QN−3

p

N−2∏
j=2

|xj|
2(p−1)
p ln p

k1·kj

p |1− xj|
2(p−1)
p ln p

kN−1·kj

p ×

∏
2≤i<j≤N−2

|xj − xi|
2(p−1)
p ln p

ki·kj

p

N−2∏
ν=2

dxν .

(0.6)

Equation (0.6) coincides up to a multiplicative constant with Z(N) (k) introduced in [11] as

a p-adic Koba-Nielsen string amplitude (see also [12]). Using this fact we show that the �rst

term in the series (0.5) is a regularized version of the p-adic Koba-Nielsen amplitude for open

strings.
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This thesis is structured as follows. Chapter 1 summarizes some results on p-adic analysis,

local zeta functions and white noise calculus. In Chapter 2 we present some facts in quantum

�eld theory and string theory. In Chapter 3 it is constructed the probability measure PD.

We propose a de�nition for the N -point amplitudes in De�nition 3 from which we obtain the

Koba-Nielsen amplitudes. For this purpose, a change of variables is given and using some

results in white noise calculus and the series expansion of the exponential function we show

that it is possible to obtain a series expansion for the amplitude whose �rst term converges to

the p-adic Koba-Nielsen amplitude for open strings. This result is summarized in Theorem

4.
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Chapter 1

Mathematical preliminaries

In this chapter we review some basic facts about p-adic analysis, local zeta functions and

white noise calculus. For an in-depth discussion about p-adic analysis we refer the reader

to consult [2], [52], [55] and references therein. From now on, we denote p as a �xed prime

number.

1.1 p-Adic numbers

Given x a nonzero rational number, we can represent x as pγ a
b
where a and b are coprime

integers with p. We de�ne γ = ordp(x), to be the p-adic order of x. We also set ordp(0) := ∞.

The p-adic norm in Q is de�ned by

|x|p =

 0 if x = 0

p−ordp(x) if x ̸= 0.

Note that for every x and y, rational numbers, |x+ y|p ≤ max{|x|p , |y|p} i.e. the norm |·|p

is non-Archimedean.
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The metric space (Qp, |·|p) is given by the completion of (Q, |·|p) and is called the �eld of

p-adic numbers.

The p-adic numbers satisfying |x|p ≤ 1 are called p-adic integers and the set containing this

numbers is denoted by Zp. The group of units (p-adic numbers x with |x|p = 1) is denoted

by Z×
p .

Any nonzero p-adic number x has a representation as a power series in the form

x = pordp(x)
∞∑
i=0

xip
i,

where xi ∈ {0, . . . , p− 1} and x0 ̸= 0. Using this expansion, we de�ne the fractional part of

x ∈ Qp, denoted by {x}p, as the part of the series containig negative exponents. Note that

if x ∈ Zp, there are no negative exponents in the expansion, consequently {x}p = 0.

We extend the p-adic norm to QN
p by

∥x∥p = max
1≤i≤N

|xi|p , for x = (x1, . . . , xN) ∈ QN
p .

We de�ne ord(x) = min
1≤i≤N

{ord(xi)}, then ∥x∥p = p−ord(x). With this norm, QN
p becomes

an ultrametric space. In addition, every x ∈ QN
p \{0} can be represented uniquely as

x = pord(x)v(x), where ∥v(x)∥p = 1.

For r ∈ Z, BN
r (a) =

{
x ∈ QN

p ; ∥x− a∥p ≤ pr
}
denotes the ball of radius pr with center

a = (a1, . . . , aN) ∈ QN
p , in the case when the center is 0 we use the notation BN

r := BN
r (0).

Note that BN
r (a) = Br(a1) × · · · × Br(aN), where Br(ai) := {x ∈ Qp; |x− ai|p ≤ pr} is

the one-dimensional ball of radius pr with center ai ∈ Qp, this implies that the product

topology of QN
p is equal to the topology induced by the norm ∥·∥p. We also denote by

SN
r (a) =

{
x ∈ QN

p ; ||x− a||p = pr
}
the sphere of radius pr with center a ∈ QN

p and SN
r the

sphere with center 0. Notice that S1
0 = Z×

p but
(
Z×

p

)N ⊊ SN
0 .

7



As a result of the ultrametricity, balls and spheres are simultaneously open and closed subsets

in QN
p . In addition, two balls in QN

p are either disjoint or one is contained in the other. As a

consequence, the topological space
(
QN

p , ∥·∥p
)
is a totally disconnected space, i.e. the only

connected subsets of QN
p are the empty set and the points. A subset of QN

p is compact if

and only if it is closed and bounded in QN
p (see e.g. [2, Section 1.8] or [55, Section 1.3]). The

balls and spheres are compact subsets. Therefore
(
QN

p , ∥·∥p
)
is a locally compact topological

space.

Since (QN
p ,+) is a locally compact topological group, there exists a Haar measure dNx,

which is invariant under translations, i.e. dN(x + a) = dNx. If we normalize this measure

by the condition
∫
ZN
p
dx = 1, then dNx is unique see e.g. [2, Section 4.3]. From now on, if

we have an integral over QN
p , d

Nx stands for the normalized Haar measure on (QN
p , ∥·∥p).

A complex-valuated function φ : QN
p → C is called locally constant if for any x ∈ QN

p , there

exists l(x) ∈ Z such that:

φ(y) = φ(x); y ∈ BN
l(x)(x).

A Bruhat-Schwartz or test function φ : QN
p → C is a locally constant function with compact

support. Since φ has compact support, there exists l ∈ Z such that for any x ∈ QN
p ,

φ(x+ x′) = φ(x) for any x′ ∈ BN
l (x). (1.1)

Any test function can be represented by a linear combination, with complex coe�cients, of

characteristic functions of balls. The C-vector space of Bruhat-Schwartz functions is denoted

by D := D(QN
p ). We denote by DR := DR(QN

p ) the R-vector space of Bruhat-Schwartz

functions.

For φ ∈ D(QN
p ), the largest number l = l(φ) satisfying (1.1) is called the exponent of local

8



constancy (or the parameter of constancy) of φ.

Notation 1. We will use Ω
(
p−r ∥x− a∥p

)
to denote the characteristic function of the ball

BN
r (a). For more general sets, we will use the notation 1A for the characteristic function of

a set A. We denote

∆k (x) = Ω
(
p−k ∥x∥p

)
, k ∈ Z

and

δk (x) = pkNΩ
(
pk ∥x∥p

)
, k ∈ Z.

Note that the functions ∆k and δk are Bruhat-Schwartz functions.

We denote by Dl
m(QN

p ) the �nite-dimensional subspace of D(QN
p ) having supports in the ball

BN
m and with parameters of constancy greater than or equal to l. We now de�ne a topology

on D as follows. We say that a sequence {φj}j∈N of functions in D converges to zero if the

two following conditions hold:

(1) there are two �xed integers k0 and m0 such that φj ∈ Dk0
m0
, for each j ∈ N.

(2) φj → 0 uniformly.

D endowed with the above topology becomes a topological vector space.

Given ρ ∈ [1,∞), we denote by Lρ := Lρ
(
QN

p

)
:= Lρ

(
QN

p , d
Nx
)
, the C-vector space of all

complex-valued and Borel measurable functions g satisfying

∫
QN

p

|g (x)|ρ dNx <∞.

The corresponding R-vector spaces are denoted as Lρ
R := Lρ

R
(
QN

p

)
= Lρ

R
(
QN

p , d
Nx
)
. For

9



g ∈ Lρ, we de�ne

∥g∥ρ =

{∫
QN

p

∥g (x)∥ρ dNx

} 1
ρ

,

as the norm of the function g. For ρ = ∞, g ∈ L∞ (QN
p

)
if

∥g∥∞ := ess sup
x∈QN

p

|g (x)| <∞,

where ess sup denotes the essential supremum of |g(x)|.

For x ∈ Qp we set χp(x) = exp(2πi{x}p). The map χp(·) is a continuous map from

(Qp,+) into S (the unit circle considered as a multiplicative group) satisfying χp(x0 + x1) =

χp(x0)χp(x1), x0, x1 ∈ Qp, then χp (x) is an additive character on Qp, it is called the standard

additive character of (Qp,+).

Given x = (x1, . . . , xN) ∈ QN
p and ξ = (ξ1, . . . , ξN) ∈ QN

p , we de�ne

x · ξ = x1ξ1 + · · ·+ xNξN .

The Fourier transform of φ ∈ D(QN
p ) is de�ned by

(Fφ)(ξ) =
∫
QN

p

χp(ξ · x)φ(x)dNx for ξ ∈ QN
p .

The Fourier transform is a linear isomorphism from D(QN
p ) onto itself, satisfying

(F(Fφ))(ξ) = φ(−ξ), (1.2)

in addition if φ ∈ Dl
m, φ̂ (ξ) ∈ D−m

−l

(
QN

p

)
(see e.g. [2, Lemma 4.8.3]). As an example, we see

that F (∆k) (x) = δk (x) for k ∈ Z, x ∈ QN
p .

We will also use the notation Fx→κφ and φ̂ for the Fourier transform of φ.

10



The Fourier transform has an extension to L2 and it is unitary on L2 i.e. ||f ||2 = ||f̂ ||2 for

f ∈ L2. Moreover (1.2) is also valid in L2 (see e.g. [52, Chapter III, Section 2]).

The C-vector space D′ := D′ (QN
p

)
of all continuous linear functionals on D(QN

p ) is called

the Bruhat-Schwartz space of distributions. Every linear functional on D is continuous, i.e.

D′ agrees with the algebraic dual of D (see e.g. [55, Chapter 1, VI.3, Lemma]). We denote

by D′
R := D′

R
(
QN

p

)
the dual space of DR.

We endow D′ with the weak topology, i.e. a sequence {Tj}j∈N in D′ converges to T if

lim
j→∞

Tj (φ) = T (φ) for any φ ∈ D. The map

D′ ×D → C

(T, φ) 7→ T (φ)

is a bilinear form that is continuous in T and φ separately. We call this map the pairing

between D′ and D. From now on it is used the notation (T, φ) instead of T (φ).

Every f in L1
loc de�nes a distribution f ∈ D′ (QN

p

)
by the formula

(f, φ) = ∫
QN

p

f (x)φ (x) dNx.

Such distributions are called regular distributions.

Remark 1. i. For f ∈ L2
R, (f, φ) = ⟨f, φ⟩, where ⟨·, ·⟩ denotes the scalar product in L2

R.

ii. The distributions generated by the functions δk converge to the distribution δ in D′ (QN
p

)
.

In fact, given φ ∈ D, for all k ≥ −l (φ)

11



(δk, φ) =

∫
QN

p

pNkΩ
(
pk ∥x∥p

)
φ (x) dNx

= φ (0) pNk

∫
BN

−k

dNx

= φ (0) = (δ, φ) .

The Fourier transform F [T ] of a distribution T ∈ D′ (QN
p

)
is de�ned by

(F [T ] , φ) = (T,F [φ]) for all φ ∈ D(QN
p ).

F [T ] is a linear and continuous isomorphism from D′ (QN
p

)
onto D′ (QN

p

)
. Furthermore,

T = F [F [T ] (−ξ)].

The Vladimirov operator D : D (Qp) → L2 (Qp) is de�ned by

Dθ (x) =
p2

p+ 1

∫
Qp

θ (x)− θ (y)

|x− y|2p
dy =

p2

p+ 1

∫
Qp

θ (x)− θ (x− z)

|z|2p
dz

= F−1
ξ→x

[
|ξ|p Fx→ξθ

]
.

D is written as

Dθ (x) = f−1 (x) ∗ φ (x) = − p2

p+ 1
|x|−2

p ∗ θ (x) , for θ ∈ D (Qp) , (1.3)

where the function f−1 (x) = − p2

p+1
|x|−2

p determines a distribution from D′ (see [55, Chapter

2, Section IX.1]) this function is known as the Riesz kernel.

It is worthwhile to mention that Vladimirov operator does not leave invariant the space

D (Qp). In order to introduce its inverse operator it is necessary to restrict its domain to an
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invariant subspace. One space holding this condition is the Lizorkin space

L := L (Qp) =

{
φ ∈ D (Qp) ;

∫
Qp

φ (x) dx = 0

}
,

which is a natural de�nition domain for this operator. This is a complete space with the

topology inherited from D (Qp) and is dense in Lρ (Qp), 1 < ρ < ∞ (see [2, Theorem 7.4.3]

for more details).

Noting that the set F (L (Qp)) of Fourier transforms of functions in L (Qp) coincides with

the set {φ̂ ∈ D (Qp) ; φ̂ (0) = 0} we obtain a C-vector space isomorphism between L and

F (L (Qp)).

We denote by L′ = L′ (Qp) the topological dual of the space L (Qp), this space is called

p-adic Lizorkin space of distributions of second kind.

If L⊥ (Qp) denotes the subspace of functionals in D′ (Qp) orthogonal to L (Qp), we have the

characterization

L′ (Qp) = D′ (Qp) /L⊥ (Qp)

[2, Theorem 7.3.4].

We de�ne the inverse of D as the operator

D−1 : L (Qp) → L (Qp)

θ 7→ D−1θ,

where D−1θ (x) = F−1
ξ→x

[
|ξ|−1

p Fx→ξθ
]
. Since (Fx→ξθ) (0) = 0, we have D−1θ (x) ∈ L (Qp).

Consider the equation

Dψ (x) = θ (x) for θ ∈ L (Qp) , (1.4)
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this equation has a unique solution ψ ∈ L (Qp) ( [55, Chapter 2, Section IX.2]). Setting

(f1, θ) = −(p− 1)

p ln p

∫
Qp

θ (x) ln |x|p dx, for θ ∈ L (Qp) , (1.5)

we have

f̂1 (ξ) =
1

|ξ|p
in L′ (Qp)

and

ψ (x) = D−1θ (x) = f1 (x) ∗ θ (x) ,

is the solution of equation (1.4) see [2, Theorem 9.2.6].

1.2 Local zeta functions

We review some well-known results about local zeta functions. For an in-depth discussion of

classical aspects see [18], [41], [46] or [47].

De�nition 1. Let f(x) be a nonconstant polynomial in Qp[x1, . . . , xN ] and let ϕ be a test

function. The Igusa local zeta function attached to the pair (f, ϕ) is

Zϕ(s, f) =

∫
QN

p \f−1(0)

ϕ(x) |f(x)|sp d
Nx,

for s ∈ C and Re(s) > 0. In the case ϕ = ∆0 (x), we use the notation Z(s, f) instead of

Zϕ(s, f).

Using the fact that for Re(s) > 0 the function ϕ(x) |f(x)|sp is continuous with compact

support, and the Haar measure of any compact set is �nite, we obtain that the integral

Zϕ(s, f) converges for Re(s) > 0. Moreover, for every nonconstant polynomial

f(x) ∈ Qp[x1, . . . , xN ] and any test function ϕ(x1, . . . , xN), the local zeta function Zϕ(s, f)

attached to (f, ϕ) has a meromorphic extension to the whole complex plane as a rational
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function in p−s (see [41, Theorem 5.4.1]).

The generalization of the Igusa zeta function was introduced by F. Loeser in [47] and is

called multivariate local zeta function.

De�nition 2. Let f1, . . . , fl be nonconstant polynomials in Qp[x1, . . . , xN ] \ Qp and

ϕ(x1, . . . , xN) a test function. The multivariate Igusa zeta function attached to (f1, . . . , fl, ϕ)

is de�ned as the integral

Zϕ(s1, . . . , sl, f1, . . . , fl) =

∫
QN

p \
⋃l

i=1 f
−1
i (0)

ϕ(x)
l∏

i=1

|fi(x)|sip d
Nx,

for (s1, . . . , sl) ∈ Cl and Re(si) > 0, for i = 1, . . . , l.

Theorem 1. (F. Loeser, [47, Theorem 1.1.4])

The multivariate zeta function Zϕ(s1, . . . , sl, f1, . . . , fl) attached to (f1, . . . , fl, ϕ) admits a

meromorphic extension to Cl as a rational function in the p−si, i = 1, . . . , l, more precisely,

Zϕ(s1, . . . , sl, f1, . . . , fl) =
Pϕ(s1, . . . , sl)∏

j∈T

(
1− p

−Nj
0−

l∑
i=1

Nj
i si

) , (1.6)

where T is a �nite set, the N0, Ni are nonnegative integers, and Pϕ(s1, . . . , sl) is a polynomial

in the variables p−si.

1.3 Basic aspects of white noise calculus

In this section we summarize some important facts about white noise. For a deeper discussion

we refer the reader to [37], [40], [44] or [48].

A seminorm ∥·∥ on a vector space V over R (resp. C) is Hilbertian if it comes from some

nonnegative, symmetric bilinear (resp. Hermitian sesquilinear) form ⟨·, ·⟩ on V × V .
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A countably Hilbert space is a locally convex space V admitting a countable set of compatible

Hilbertian norms {|·|n}n∈N such that if {ξn, n ∈ N} is a sequence in V which converges to

zero for a norm |·|n and is a Cauchy sequence concerning to the norm |·|m , n,m ∈ Z, then

it goes to zero concerning to |·|m.

Suppose that these norms obey |·|n ≤ |·|m for n ≤ m, denote by Vn the completion of V

under |·|n , n ∈ N, there is a continuous linear operator Tm
n , which maps the space Vm onto

an everywhere dense set of Vn.

A countably Hilbert space V is called nuclear, if for any n there is an m ≥ n such that the

operator Tm
n is nuclear, i.e. has the form

Tm
n v =

∞∑
k=1

λk⟨v, vk⟩mwk, v ∈ Vm

where {vk}k∈N and {wk}k∈N are orthonormal systems of vectors in the spaces Vm and Vn

respectively, λk > 0 and
∞∑
k=1

λk <∞.

Let H be a real separable (in�nite dimensional) Hilbert space and let V be a real nuclear

space densely and continuously embedded in H. By using the representation theorem to

identify H with its dual space H∗, we get the triple

V ⊂ H ⊂ V ∗,

such a triple is called a Gel'fand triple [45, Chapter 2]. Note that H is dense in V ∗ with the

weak topology of V ∗. Let (·, ·) denote the pairing between V ∗ and V and let |·| be the norm

of H. Then |ξ|2 = (ξ, ξ) for ξ ∈ V .

We choose any �xed elements φ1, . . . , φn ∈ V . To each element T ∈ V ∗ corresponds the

point ((T, φ1) , . . . , (T, φn)) in the n-dimensional space Rn. The elements φ1, . . . , φn ∈ V
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de�ne a mapping

T 7→ ((T, φ1) , . . . , (T, φn)) ,

from V ∗ into Rn. Let A be a given set in Rn, and consider the set Z of all linear functionals

T such that

((T, φ1) , . . . , (T, φn)) ∈ A.

We call Z the cylinder set de�ned by the elements φ1, . . . , φn and the set A ⊂ Rn.

We consider V ∗ equipped with the weak topology. B denotes the Borel σ-algebra on V ∗ i.e.

the σ-algebra generated by the weak topology of V ∗.

Theorem 2. (Bochner-Minlos, [37, Theorem 1.1]) Let V be a nuclear space and C a function

on V with the following properties:

i. C is continuous on V .

ii. C is positive de�nite i.e.

n∑
i,j=1

C(fi − fj)zizj ≥ 0, f1, . . . , fn ∈ V, z1, . . . , zn ∈ C.

iii. C (0) = 1.

Then, there exists a unique probability measure µC on (V ∗,B(V ∗)) whose characteristic

functional is equal to C, so, for all f ∈ V ,

∫
V ∗
ei⟨W,f⟩ dµC(W ) = C(f). (1.7)

As an example, consider the function C on V given by:

C (ξ) := exp

(
−1

2
|ξ|2
)
, (1.8)
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then C is a characteristic functional on V and there exists a probability space (V ∗,B, µ)

where µ is a Gaussian measure satisfying

∫
V ∗
ei⟨W,f⟩ dµ(W ) = exp

(
−1

2
|f |2
)

for all f ∈ V . We call (V ∗,B, µ) the Gaussian space associated with (V, |·|).

For 1 ≤ ρ < ∞, we set (Lρ
C) := (Lρ(V ∗), µ;C) to denote the complex vector space of

measurable functions Ψ : V ∗ → C satisfying

∥ Ψ∥ρ
(Lρ

C)
=
∫
V ∗

|Ψ(W )|ρ dµ(W ) <∞.

The space (Lρ
R) := (Lρ(V ∗), µ;R) is de�ned in a similar way.

Given a complex-valued polynomial P on Rn, n ∈ N and ξ1, . . . , ξn in V , we construct the

V ∗-functional Pξ by

Pξ (T ) = P ((T, ξ1) , . . . , (T, ξn)) , T ∈ V ∗.

This functional belongs to (Lρ
C) for all ρ ∈ [1,∞) [37, Proposition 1.6]. Denote the random

variable T → (T, ξ) by Tξ. The mapping ξ 7→ Tξ is called the (canonical) coordinate process

over V . For ξ ∈ V , α ∈ C and using the random variable Tξ it is possible to de�ne the

functionals exp (αTξ) on V ∗ and with aid of (1.7) and (1.8) these exponentials belong to the

space (Lρ
C) [37, Proposition 1.7].
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Chapter 2

Quantum �eld theory and string theory:

basic facts

In this chapter, we summarize some facts on quantum �eld theory (QFT) and string theory

that we required in this work. For an in-depth presentation, we refer the reader to con-

sult [16], [32], [42] and the references given there.

2.1 Quantum �eld theory

Historically, quantum �eld theory (QFT) has been developed as quantum mechanics for

in�nite degrees of freedom. It is obtained after quantizing the classical �elds. A general

theory of classical �elds consists of a spacetime M , a space of �elds H and a Lagrangian

density L which is a density on M for each point of H.

In the case of scalar �elds, H is compose by �elds φi : M → R and the Lagrangian
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L = L (φ1, φ2, . . .) with φi ∈ H is used to de�ne the action

S =

∫
M

L (φ1, φ2, . . .)

which is a functional acting on the �elds. The equations of motion of the system can be

derived from the action and the physically relevant �elds are the critical points of this action.

Looking for these critical points we �nd equations that are linear partial di�erential equations

(PDEs) in the case of electromagnetic �elds and nonlinear PDEs in the case of gravitational

�elds.

For example, consider a scalar �eld φ : M → R de�ned over Minkowski's spacetime

M = R1,3, with the convention ∇µ = ∂µ, we take the Lagrangian

L (φ, ∂µφ) =
1

2
(∂µφ) (∂

µφ)− 1

2
m2φ2,

where m is a constant (mass), ∂µ = ηµν∂ν and ηµν is the Minkowski metric tensor

[ηµν ] =



−1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1


,

then

∂L

∂φ
= −m2φ,

∂L

∂ (∂µφ)
= ∂µφ.

The Euler�Lagrange equations applied to this situation yield to the dynamical �eld equation
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−m2φ− ∂µ (∂
µφ) = 0.

This equation can be written as

(
□+m2

)
φ = 0,

where □ = ∂µ∂
µ = −∂20 + ∂21 + ∂22 + ∂23 is the Lambertian operator. Thus, the extreme

�elds for the above Lagrangian satisfy the linear second-order hyperbolic PDE known as the

Klein�Gordon equation.

The quantization of the �elds could be obtained using canonical quantization or by path

integral quantization. In the canonical quantization the observables (�elds) are represented

by operators in a Hilbert space H, from which the quantum states of the system arise. In the

case of classical free �elds (Klein-Gordon, Dirac, Maxwell) the Lagrangians of these �elds are

quadratic and the corresponding Euler�Lagrange equations are linear PDEs. The Fourier

transform can be used to diagonalize the quadratic form in the Lagrangian and thus decouple

the Euler�Lagrange equations.

In the case of the Klein�Gordon equation corresponding to scalar bosons each Fourier mode

is a harmonic oscillator whose quantization is known. Hence, we obtain a family of pairs

of operators, one creates particles with a given momentum and the other destroys particles

with that same momentum. From the so-called vacuum state (which is annihilated by all

the operators that destroy particles) and the operators that create particles it is possible to

construct states with a �nite number of particles. Taking all possible linear combinations

of these states we obtain a vector space with an inner product whose completion yields a

Hilbert space. This is the space on which the operators that create and destroy particles

act.
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The path integral quantization was �rst devised by Feynman and developed by Dirac. In

this method the �elds are not considered operators but functions, like in classical theory.

Feynman's path integral method for the quantization of �elds starts from a functional integral

of the form

Z =

∫
eiS(φ)Dφ. (2.1)

It is called the partition function and is taken over the in�nite-dimensional space of all �elds,

where

S (φ) =

∫
M

L (φ (x)) dNx

is the action, L is the Lagrangian density of the system and Dφ is a heuristic measure in

the space of all �elds. Here the quantization is given from the integral.

In general, physicists take the measure Dφ in a formal way which means that there is no

mathematical construction for the measure. Starting from such a partition function one

constructs the quantization of the system by writing the Wightman correlation functions.

Given the correlation functions, we reconstruct the Hilbert space, the quantum �elds, and the

entire QFT satisfying the Wightman axioms (see Wightman's reconstruction Theorem [16,

Chapter 6]).

The k-point Wightman correlation functions are de�ned by

⟨φ (x1) · · ·φ (xk)⟩D =
1

Z

∫
φ (x1) · · ·φ (xk) e

iS(φ)Dφ

where ⟨·⟩D denotes the expected value with respect to the weighted measure Dφe−S(φ).

Euclidean QFT can be obtained after a suitable rotation of the type φ 7→
√
−1φ and the

correlation functions are called the Schwinger k-point functions.
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2.2 String theory

To understand the structure of matter, we need to know the dynamics of smaller components.

The particles that do not show any substructure are known as elementary particles. In

QFT, those are described as points in space. In string theory, particles are not described as

points but as strings. We show some aspects of string theory, for more details reader can

consult [9], [17], [32] and references therein.

The string is a 1-dimensional object. There exist open strings which have di�erent endpoints

and closed strings which do not have start or endpoints, they are like loops. As the strings

propagate in spacetime it sweeps out a worldsheet, an underlying Riemannian or pseudo-

Riemannian spacetime surface.

The theory is de�ned for a dynamical embedding map X : Σg,b,N → M , where Σg,b,N (the

worldsheet) is a compact and oriented Riemann surface with a possible nonempty bound-

ary characterized by the genus g, its number of boundaries b and N marked points. The

worldsheet Σg,b,N has local coordinates σ = (σ0, σ1), where σ0 is an evolution parameter and

σ1 the position along the string. Under a Wick rotation σ2 =
√
−1σ0, the metric written

in terms of coordinates (σ2, σ1) becomes a metric with Euclidean signature. The intrinsic

metric of the worldsheet is denoted by hab.

The string may oscillate in the target space M, it has an in�nite number of quantum modes

of oscillation characterized by a mass and a spin. In the bosonic string the spectrum consists

of a tachyonic mode, this is the most simple mode and the one with less square mass. Here

we consider M to be the �at Minkowskian space with metric ηµν .

In bosonic string theory the simplest invariant action is given by

S =
T

2

∫
Σ

d2σ
√
hhabηµν∂aX

µ∂bX
ν , (2.2)

where T =
1

2πα′ is the string tension, α′ = l2s with ls the string length,
√
h is the square
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root of the absolute value of the determinant of hab and hab is the inverse of hab. The

action (2.2) is equivalent to the Nambu-Goto action (see [32, Chapter 2]). Classically (2.2)

describes the propagation of a string in the Minkowski space. This action has worldsheet

reparametrization invariance. A standard and convenient choice is a parametrization of the

worldsheet such that hab = ηabe
ϕ where ηab is the metric of a �at worldsheet with Lorentzian

signature (−,+, . . . ,+) and eϕ is an unknown conformal factor. This parametrization is

possible at least locally and (2.2) reduces to the free �eld action

S = −T
2

∫
d2σηµνη

ab∂aX
µ∂bX

ν . (2.3)

While the strings are extended they can overlap in space at the same time and interactions

occur. The perturbative scattering amplitudes of N -particles are de�ned as the correlation

function of N vertex operators VΛi
(ki), i = 1, . . . , N . The squared of these amplitudes gives

the probability of having a con�guration of certain outgoing states given a set of incoming

states. The vertex operators are functionals of the embedding �elds and their derivatives.

They are given by

VΛ (k) =

∫
d2σ

√
hWΛ (σ) e

ik·X(σ), (2.4)

where WΛ (σ) represents a functional of X and its derivatives associated to the species of

�eld in the string spectrum, X (σ) = (x1, . . . , xN) and k = (k1, . . . , kN) are the position and

momentum vectors in the target space M , and k ·X (σ) is the Minkowskian inner product.

In the case in which the external particles are tachyons we have Λ = t and WΛ (σ) = 1. In

the case of gauge �elds WA(σ) = ϵµ∂tX
µ here ϵµ is the polarization vector. For graviton

WG(σ) = ϵµνh
ab∂aX

µ∂bX
ν where ϵµν is the polarization tensor.
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In the case of bosonic closed strings we consider g = 0 and for open strings g = 0 and b = 1

i.e. we work in the 2-sphere and the disk. In the open string case, the vertex operators

are inserted on the boundary of the disk, using symmetry we can �x three points on the

boundary which could be 0, 1 and ∞. The open string action (2.3) determines Neumann

boundary conditions given by

ηµν∂σX
ν |∂Σ = 0,

where ∂σ is the normal derivative of ∂Σ. These conditions are in general complex valued

because of the Wick rotation. We are concerned in the case when the string worldsheet Σ

is a disk, which corresponds to the open string. The disk is transformed into the upper half

plane whose boundary is the real line, via a conformal transformation. In these variables the

Neumann boundary conditions are [50]

ηµν(∂ − ∂)Xν |z=z = 0 (2.5)

where z is the complex worldsheet coordinate with Im z ≥ 0, ∂ = ∂/∂z and ∂ = ∂/∂z.

The expected value ⟨Xµ (z)Xν (z′)⟩ is the propagator which speci�es the probability am-

plitude for a particle traveling from one place to another in a given period of time. This

propagator restricted to the boundary conditions (2.5) gives

⟨Xµ (τ)Xν (τ ′)⟩ = −α′ηµν log |τ − τ ′| , τ, τ ′ ∈ R. (2.6)

The correlators in the path integral formalism can be computed as Gaussian integrals. Con-

sider the integrals

∫
DX exp

(∫
d2z (X∆X + iJX)

)
∼ exp

(
1

2

∫
dzdz′J (z)G (z, z′) J (z′)

)
, (2.7)
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here ∆ is a di�erential operator, J is an arbitrary source and G (z, z′) is the inverse operator

or Green's function, that satis�es ∆G (z, z′) = δ (z − z′) (the symbol ∼ indicates that there

is some proportional factor not relevant to the analysis).

We use this result to obtain the scattering amplitudes by choosing the appropriate source

J . In the special case when J (τ) =
N∑
l=1

δ (τ − τl)kl, we obtain the scattering amplitudes

integrating the expected values of the vertex operators (2.4) over the entire boundary of the

worldsheet, which is just integrating (2.7) over the real variable τ . With the aid of (2.6) and

(2.7)

∫
dNτ⟨V (k1, τ1) · · ·V (kN , τN)⟩ =

∫
dNτ

∫
DX exp (−S + i (k1X1 + · · ·+ kNXN))

=

∫
dNτ exp

(
1

2

∫
dτdτ ′J (τ) (−α′ηµν log |τ − τ ′|) J (τ ′)

)
=

∫
dNτ exp

(
1

2

∫
dτdτ ′

N∑
l=1

δ (τ − τl)kl (−α′ηµν log |τ − τ ′|)

N∑
m=1

δ (τ − τm)km

)

=

∫
dNτ

∏
l,m

|τl − τm|α
′kl

µη
µνkm

ν ,

where dNτ = dτ1 · · · dτN . Fixing α′ = 1, the order of the external momenta ki and the three

points τ1 = 0, τN−1 = 1 and τN = ∞ we obtain the Koba-Nielsen amplitude

Ã
(N)
R (k) =

∫
0<τ2<···<τN−2<1

dτ2 · · · dτN−2

N−2∏
j=2

|τj|k1kj |1− τj|kN−1kj

∏
2≤i<j≤N−2

|τj − τi|kikj .

The four-point amplitude is known as Veneziano's amplitude

Ã
(4)
R (k) =

∫ 1

0

dx|x|k1k2|1− x|k3k2 .
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A generalization of this amplitude [21] is given by

A
(4)
R (k) =

∫
R
dx|x|k1k2|1− x|k3k2 . (2.8)

For N -points the generalization gives

A
(N)
R (k)

∫
RN−3

dx2 · · · dxN−2

N−2∏
j=2

|xj|k1kj |1− xj|kN−1kj

∏
2≤i<j≤N−2

|xj − xi|kikj . (2.9)

This is the Koba-Nielsen open string amplitude of N -points (see [11], [32] for more details).

2.2.1 p-Adic string amplitudes

The p-adic string theory started around 1987. In this year Volovich [56] considered model-

ing spacetime coordinates, string worldsheet coordinates and string amplitudes with p-adic

values. Freund and Witten [24] proposed and studied string theory with p-adic worldsheet.

Brekke, Freund, Olson and Witten [14] and Frampton and Okada [22] worked out N -point

amplitudes in explicit form and investigated how these can be obtained from an e�ective

Lagrangian p-adic string worldsheet, the tree-level string amplitudes (without loops).

We denote by K a local �eld of characteristic zero (e.g. R,C,Qp). The Koba-Nielsen open

string amplitudes for N -points over K are formally de�ned as

A
(N)
K (k) :=

∫
KN−3

N−2∏
j=2

|xj|
k1kj

K |1− xj|
kN−1kj

K

∏
2≤i<j≤N−2

|xj − xi|
kikj

K

N−2∏
ν=2

dxν , (2.10)

where k = (k1, . . . ,kN) and ki = (k1,i, . . . , kD,i) ∈ RD, is the momentum vector of the

i-th tachyon for i = 1, . . . , N (N ≥ 4), |·|K is the norm in K and the product kikj is the

Minkowski product. These vectors obey

N∑
i=1

ki = 0, kiki = 2 for i = 1, . . . , N.
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The parameter D is an arbitrary positive integer. Typically, D is taken to be 26 for bosonic

strings. In the case when K = Qp equation (2.10) is called the tree-level p-adic open string

N -point amplitude. In [11] the authors studied these amplitudes and showed that it is

possible regularize them by

A
(N)
K (k) = Z

(N)
K (s)|sij=kikj

where Z(N)
K (s) denotes the meromorphic continuation of the Koba-Nielsen local zeta function

Z
(N)
K (s) :=

∫
KN−3

N−2∏
j=2

|xj|
s1j
K |1− xj|

s(N−1)j

K

∏
2≤i<j≤N−2

|xj − xi|
sij
K

N−2∏
ν=2

dxν (2.11)

in which s1j, s(N−1)j for 2 ≤ j ≤ N − 1 and sij for 2 ≤ i < j ≤ N − 2 are complex numbers,

s := (sij) ∈ CD.
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Chapter 3

Euclidean quantum �eld formulation of

p-adic open string amplitudes

In this chapter we work in the real Lizorkin space LR (Qp) which is the space obtained by re-

stricting the Lizorkin space to the functions taking real values i.e. the space

L
(
QN

p

)
∩ DR

(
QN

p

)
.

We set k := (k1, . . . ,kN), where kj = (k1,j, . . . , kD,j) ∈ RD is the momentum of a tachyon,

j = 1, . . . , N . The dimension D ≥ 1 is �xed along this chapter. We also set

φ(·) = (φ1(·), . . . , φD(·)) ∈ (DR (Qp))
D .

For a, b ∈ RD, a · b denotes the standard scalar product in RD. The space of �elds is the

D-dimensional space LD
R
(
QN

p

)
.

The naive Euclidean version of the p-adic N -point amplitudes is given by

A(N) (k) =
1

Z0

∫
Dφe−S(φ)

∫
QN

p

dNx e

N∑
j=1

kj ·φ(xj)

(3.1)
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where Dφ is a measure in the space of �elds which is constructed in the next section,

Z0 =
∫
Dφe−S(φ) is constant, dNx =

N∏
ν=1

dxν and the action is S (φ) = T0

2

D∑
j=1

Sj (φj), with

Sj (φj) =

∫
Qp

∫
Qp

{
φj (xj)− φj (yj)

|xj − yj|p

}2

dxjdyj.

Since there exists l ∈ Z such that φj (xj) = 0 for |xj|p > pl, it follows that the integral

∫
QN

p

dNx e

N∑
j=1

kj ·φ(xj)

is divergent. To overcome this problem, it is necessary to introduce a cut-o� and set

A(N)
R (k) =

1

Z0

∫
Dφe−S(φ)

∫
BN

R

dNxe

N∑
j=1

kj ·φ(xj)

where R is a positive integer and BN
R =

{
x ∈ QN

p ; ∥x∥p ≤ pR
}
.

We now construct the measure for the space of �elds. For this purpose, we express the action

in terms of an operator. For φj ∈ DR (Qp),

Sj (φj) =

∫
Qp

∫
Qp

{
φj (xj)− φj (yj)

|xj − yj|p

}2

dxjdyj

=2

∫
Qp

∫
Qp

φj (xj) (φj (xj)− φj (yj))

|xj − yj|2p
dyjdxj

=
2 (p+ 1)

p2

∫
Qp

φj (xj)Dφj (xj) dxj.

Then,

S (φ) =
T0 (p+ 1)

p2

D∑
j=1

∫
Qp

φj (xj)Dφj (xj) dxj.
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This expression involving the Vladimirov operator gives us an idea about how to construct

the measure.

Gaussian processes and free quantum �elds

We use the Bochner-Minlos theorem to construct the measure over the �elds. For this, we

give a characteristic functional satisfying the conditions in Theorem 2. We de�ne the bilinear

form B by

B : LR (Qp)× LR (Qp) → R

(φ, θ) 7→ ⟨φ,D−1θ⟩

where ⟨·, ·⟩ denotes the scalar product in L2 (Qp) .

Lemma 1. B is a positive, continuous bilinear form from LR (Qp)× LR (Qp) into R.

Proof. Notice that for φ ∈ LR (Qp), we have

B (φ, φ) =
〈
φ,D−1φ

〉
=

〈
F−1φ,

Fφ
|ξ|p

〉
=

∫
Qp

|φ̂(ξ)|2

|ξ|p
dξ ≥ 0.

Then B (φ, φ) = 0 implies that φ is zero almost everywhere. Since φ is continuous, φ = 0.

Let (φn, θn) ∈ LR (Qp)×LR (Qp) be two sequences such that φn → 0 and θn → 0 in LR (Qp).

We recall that the topology of LR (Qp) agrees with the topology of DR (Qp). Now,

B (θn, φn) =

∫
Qp

θ̂n (ξ) φ̂n (ξ)

|ξ|p
dξ =

∫
Zp

θ̂n (ξ) φ̂n (ξ)

|ξ|p
dξ +

∫
Qp∖Zp

θ̂n (ξ) φ̂n (ξ)

|ξ|p
dξ. (3.2)
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We denote

I1 (θn, φn) =

∫
Zp

θ̂n (ξ) φ̂n (ξ)

|ξ|p
dξ,

I2 (θn, φn) =

∫
Qp∖Zp

θ̂n (ξ) φ̂n (ξ)

|ξ|p
dξ.

Since θn ∈ DR (Qp), there exist two integers m0, l0, independent of n, such that

supp θ̂n ⊂ pl0Zp and θ̂n (ξ) |ξ0+pm0Zp= θ̂n (ξ0) (3.3)

for each n ∈ N. Without loss of generality, we may assume that m0 is a positive integer.

From (3.3), θ̂n (ξ) |pm0Zp= θ̂n (0) = 0 for each n ∈ N, and

|I1 (φn, θn)| ≤ ∥φ̂n∥∞
∫

p−m0<|ξ|p≤1

∣∣∣θ̂n (ξ)∣∣∣
|ξ|p

dξ ≤ ∥φn∥1∥θ̂n∥∞
∫

p−m0<|ξ|p≤1

1

|ξ|p
dξ

≤ C1∥φn∥1∥θn∥1.

For the second integral,

|I2(φn, θn)| ≤ ∥φ̂n∥∞
∫

|ξ|p>1

∣∣∣θ̂n (ξ)∣∣∣
|ξ|p

dξ ≤ ∥φ̂n∥∞
∫

|ξ|p>1

∣∣∣θ̂n (ξ)∣∣∣ dξ
≤ ∥φn∥1∥θ̂n∥1.

Therefore, replacing the inequalities for Ij(φn, θn), j = 1, 2 in (3.2)

B (φn, θn) ≤ C1∥φn∥1∥θn∥1 + ∥φn∥1∥θ̂n∥1.

The continuity of B follows from the fact that φn → 0 and θn → 0 uniformly which imply
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that ∥φn∥1 → 0, ∥θn∥1 → 0, and ∥θ̂n∥1 → 0 as n tends to in�nity. The convergence of θ̂n

follows from ∥∥∥θ̂n∥∥∥
1
=

∫
pl0Zp

∣∣∣θ̂n (ξ)∣∣∣ dξ ≤ p−l0
∥∥∥θ̂n∥∥∥

∞
≤ p−l0 ∥θn∥1 .

We recall that D (Qp) is a nuclear space cf. [15, Section 4]. Since any subspace of a nuclear

space is also nuclear, LR (Qp) is a nuclear space that is dense and continuously embedded in

L2
R (Qp) cf. [2, Theorem 7.4.4]. Consequently, we have the following Gel'fand triple:

LR (Qp) ↪→ L2
R (Qp) ↪→ L′

R (Qp)

(see [45, Chapter 2]). We denote by B := B (L′
R (Qp)) the σ-algebra generated by the cylinder

subsets of L′
R (Qp) .

Consider the mapping

C : LR (Qp) → C

f 7→ e−
1
2
B(f,f).

This functional is a continuous, positive de�nite mapping cf. Lemma 1 and C (0) = 1.

Therefore C de�nes a characteristic functional in LR (Qp). By Bochner-Minlos theorem (see

Theorem 2), there exists a unique probability measure P called the canonical Gaussian

measure on (L′
R (Qp) ,B) given by its characteristic functional as

∫
L′
R(Qp)

e
√
−1(W,f)dP (W ) = e−

1
2
B(f,f), f ∈ LR (Qp) , (3.4)

where (·, ·) is the pairing between L′
R (Qp) and LR (Qp). The measure P corresponds to a free

quantum �eld on L′
R (Qp). This identi�cation is well-known in the Archimedean and non-

Archimedean settings (see [31, Section 6.2] and [7, Section 5.5]). We have just constructed a
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measure in the space LR (Qp). However, our �elds are in the D-dimensional space LD
R (Qp),

we de�ne the measure in this space naturally by taking the product measure.

3.1 N-point amplitudes

We denote by

PD (φ) :=
D⊗
j=1

P (φj) ,

the product probability measure on the product σ-algebra BN . We set

LD
R (Qp) = LR (Qp)× · · · × LR (Qp) , D-times.

The probability measure
1LD

R (Qp) (φ) dPD (φ)

Z0

, (3.5)

where Z0 =
∫
LD
R (Qp)

dPD (φ) represents a free quantum �eld in LD
R (Qp).

Intuitively, the N -point amplitudes are the expectation values of products of vertex opera-

tors, with respect to the measure (3.5) this is written as

〈
N∏
j=1

∫
Qp

dxje
kj ·φ(xj)

〉
PD

=
1

Z0

∫
LD
R (Qp)

∫
QN

p

dNxe

N∑
j=1

kj ·φ(xj)

dPD (φ) . (3.6)

In the right hand side of (3.6) each φ (xj) needs to be a function, for this reason, the factor

1LD
R (Qp) is completely necessary in (3.5). Due to the divergence of the second integral in the

right-hand side of (3.6), we de�ne the N -point amplitudes as follows.

De�nition 3. For a positive integer R, we de�ne

A(N)
R (k) :=

1

Z0

∫
BN

R


∫

LD
R (Qp)

e

N∑
j=1

kj ·φ(xj)

dPD (φ)


N∏
ν=1

dxν .
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The p-adic N-point amplitud is de�ned by A(N) (k) = lim
R→∞

A(N)
R (k).

We show that the ansatz proposed in the above de�nition allows us to obtain a regularized

version of the p-adic Koba-Nielsen open string amplitude as the �rst term in the series

expansion of A(N) (k). This results are given in Theorems 3 and 4.

Using that
N∑
j=1

kj ·φ (xj) =
N∑
j=1

D∑
l=1

kl,jφl (xj) ,

we have

A(N)
R (k) =

1

Z0

∫
BN

R


∫

LD
R (Qp)

e

N∑
j=1

D∑
l=1

kl,jφl(xj)
D∏

n=1

dP (φn)


N∏
ν=1

dxν

=

∫
BN

R


D∏
l=1

1

Z
1/D
0

∫
LR(Qp)

e

N∑
j=1

kl,jφl(xj)

dP (φl)


N∏
ν=1

dxν . (3.7)

Fixing l, we denote
N∑
j=1

kl,jφl (xj) :=
N∑
j=1

vjφ (xj) . (3.8)

Notice that in (3.8) vj ∈ R and φ ∈ LR (Qp). Each term of the product in (3.7) is denoted

by

Ã(N)
R (x,v) :=

1

Z
1/D
0

∫
LR(Qp)

e

N∑
j=1

vjφ(xj)

dP (φ) , (3.9)

where x = (x1, . . . , xN) ∈ QN
p , v = (v1, . . . , vN) ∈ RN . Using the Dirac distribution δ

centered at xj we write

N∑
j=1

vjφ (xj) =
N∑
j=1

vj (δ (x− xj) , φ (x)) .

Lemma 2. With the above notation, Ã(N)
R (x,v) < ∞ for any R,N,x,v. Furthermore, for

R,N,v �xed, Ã(N)
R (x,v) is a continuous function in x.
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Proof. Recall that ∫
L′
R(Qp)

e(W,θ)dP (W ) <∞, (3.10)

for any θ ∈ LR (Qp), where (W, θ) denotes the pairing between the space of distributions

L′
R (Qp) and the Lizorkin space LR (Qp) (cf. [37, Theorem 1.7]). Using that

N∑
j=1

|vj| |φ (xj)| δ (x− xj) ∈ L′
R (Qp), for any φ ∈ LR (Qp) and �xing θ ∈ LR (Qp) such

that θ (xj) > 1, for j = 1, . . . , N , we have

N∑
j=1

vjφ (xj) ≤
N∑
j=1

|vj| |φ (xj)| ≤
N∑
j=1

|vj| |φ (xj)| θ (xj)

=

(
N∑
j=1

|vj| |φ (xj)| δ (x− xj) , θ (x)

)
,

thus

∫
LR(Qp)

e

N∑
j=1

vjφ(xj)

dP (φ) ≤
∫

LR(Qp)

e

N∑
j=1

|vj ||φ(xj)|
dP (φ)

≤
∫

LR(Qp)

e

(
N∑

j=1
|vj ||φ(xj)|δ(x−xj),θ(x)

)
dP (φ)

≤
∫

L′
R(Qp)

e(W,θ)dP (W ) <∞.

Finally, the continuity in x follows from the dominated convergence theorem and the fact

that ∫
L′
R(Qp)

1LR(Qp) (φ) e

N∑
j=1

vjφ(xj)

dP (φ) ≤
∫

L′
R(Qp)

e(W,θ)dP (W ) .
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Corollary 1. For R �xed, A(N)
R (k) <∞ for any k. Furthermore,

A(N)
R (k) =

1

Z0

∫
BN

R


∫

LD
R (Qp)

e

N∑
j=1

kj ·φ(xj)

dPD (φ)


N∏
ν=1

dxν

=
1

Z0

∫
LD
R (Qp)


∫
BN

R

e

N∑
j=1

kj ·φ(xj)
N∏
ν=1

dxν

 dPD (φ) .

Proof. By Lemma 2, for R,N,k given,

x 7→
D∏
l=1

∫
LR(Qp)

e

N∑
j=1

kl,jφl(xj)

dP (φl) =

∫
LD
R (Qp)

e

N∑
j=1

D∑
l=1

kl,jφl(xj)
D∏

n=1

dP (φn) <∞

is a well-de�ned and continuous function. Now, the announced formula is a consequence of

Fubini's theorem.

We set

δn (x) =


pn |x|p ≤ p−n

0 |x|p > p−n,

for a positive integer n. In the space of distributions we have the convergence δn (x) → δ (x)

when n goes to in�nity (see Remark 1). Consider the approximation for Ã(N)
R (x,v) given

by

Ã(N)
R (x,v; I) :=

1

Z
1/D
0

∫
LR(Qp)

e

N∑
j=1

vj(δI(x−xj),φ(x))

dP (φ) , (3.11)

where I is a positive integer.

Lemma 3. With the above notation

lim
I→∞

Ã(N)
R (x,v; I) = Ã(N)

R (x,v) .
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Proof. The proof is similar to the one given for Lemma 2. We show that

1LR(Qp) (φ) e

N∑
j=1

vj(δI(x−xj),φ(x))

≤ 1L′R(Qp) (W ) e(W,θ), (3.12)

where W is a distribution depending on xj, vj, for j = 1, . . . , N , but independent of I and

θ ∈ LR (Qp) is a �xed positive function. Then the result follows by using (3.10) and the

dominated convergence theorem. Notice that

∣∣∣∣∣
N∑
j=1

vj (δI (x− xj) , φ (x))

∣∣∣∣∣ =
∣∣∣∣∣∣∣pI

N∑
j=1

vj

∫
xj+pIZp

φ (y) dy

∣∣∣∣∣∣∣ ≤ pI
N∑
j=1

|vj|
∫

xj+pIZp

|φ (y)| dy.

Let lφ be the index of local constancy of φ and Iφ = max {I, lφ}, then pIφZp is a subgroup

of pIZp and

Gj :=
(
xj + pIZp

)
/pIφZp

is a �nite set such that xj + pIZp =
⊔

x̃∈Gj

(
x̃+ pIφZp

)
(disjoint union). Considering

θ ∈ LR (Qp) such that θ (x̃) ≥ 1 for x̃ ∈ Gj, we have

pI
N∑
j=1

|vj|
∫

xj+pIZp

|φ (y)| dy =pI
N∑
j=1

∑
x̃∈Gj

|vj|
∫

x̃+pIφZp

|φ (y)| dy

=pI−Iφ

N∑
j=1

∑
x̃∈Gj

|vj| |φ (x̃)|

≤
N∑
j=1

∑
x̃∈Gj

|vj| |φ (x̃)|

≤
N∑
j=1

∑
x̃∈Gj

|vj| |φ (x̃)| θ (x̃)

=
N∑
j=1

∑
x̃∈Gj

|vj| (|φ (x̃)| δ (x− x̃) , θ (x)) .

Thus (3.12) holds.
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For L ≥ 1 and m ∈ Q×
p we de�ne,

JL,m (x) =
N∑
j=1

vjδL (x− xj)−
N∑
j=1

vj |m|−1
p Ω

(
|x|p
|m|p

)
∗ δL (x− xj) .

Lemma 4. With the above notation, the following sentences hold true:

i. JL,m (x) ∈ LR (Qp) for any L ≥ 1, m ∈ Q×
p .

ii. JL,m (x) → JL (x) :=
N∑
j=1

vjδL (x− xj) in L
ρ (Qp), 1 < ρ <∞ when |m|p → ∞.

iii. JL,m (x) → JL (x) in L′
R (Qp) when |m|p → ∞.

iv. The equation DφL,m = JL,m has a unique solution φL,m ∈ LR (Qp) given by

φL,m = f1 ∗ JL,m, where f1 is de�ned in (1.5).

v. φL,m → f1 ∗ JL in L′
R (Qp) as |m|p → ∞.

vi. f1 ∗ JL = 1−p
p ln p

N∑
j=1

vj ln |x− xj|p, if |x− xj|p > p−L for j = 1, . . . , N .

Proof. i. Denote by ∆m (ξ) = Ω
(
|mξ|p

)
, m ∈ Q×

p , the characteristic function of the ball

Blogp|m|−1
p
. Then

ĴL,m (ξ) =
N∑
j=1

vjχp (ξ · xj)∆L (ξ) (1−∆m (ξ)) ,

where ∆L (ξ) = Ω
(
p−L |ξ|p

)
, which implies that ĴL,m is a test function satisfying

ĴL,m (0) = 0 for |m|p > 1.

ii. Notice that

JL,m (x)−
N∑
j=1

vjδL (x− xj) = −
N∑
j=1

vj |m|−1
p Ω

(
|x|p
|m|p

)
∗ δL (x− xj) .

Since |m|−1
p Ω

(
|m|−1

p |x|p
)

∈ L1 (Qp) and δL (x) ∈ Lρ, 1 < ρ < ∞ it follows that
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Ω
(

|x|p
|m|p

)
∗ δL (x− xj) → 0 as |m|p → ∞ in Lρ, 1 < ρ <∞ [2, Lemma 7.4.2].

iii. Take θ ∈ LR (Qp), by the Cauchy�Schwarz inequality,

∣∣∣∣∣
∫
Qp

JL,m (x) θ (x) dx−
∫
Qp

JL (x) θ (x) dx

∣∣∣∣∣ =
∣∣∣∣∣
∫
Qp

θ (x) (JL,m (x)− JL (x)) dx

∣∣∣∣∣
≤ ∥θ∥2∥JL,m − JL∥2.

From item ii., ∥JL,m − JL∥2 → 0 as |m|p → ∞ and the convergence holds.

iv. This was proved in [2, Theorem 9.2.6], see also [55, Chapter 2, Section IX.2].

v. It follows from item iii. using the continuity of the convolution.

vi. If |x− xj|p > p−L for any j = 1, . . . , N ,

f1 ∗ JL (x) =
1− p

p ln p

N∑
j=1

vj ln |x|p ∗ δL (x− xj)

=
1− p

p ln p

N∑
j=1

vjp
L

∫
x−xj+pLZp

ln |z|p dz (3.13)

=
1− p

p ln p

N∑
j=1

vj ln |x− xj|p . (3.14)

Let φL,m be the function given in iv. Lemma 4. We use the measurable mapping

LR (Qp) → LR (Qp)

φ 7→ φ̃− φL,m,
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as a change of variable in (3.11). There exist a measure P̃L,m such that

Ã(N)
R (x,v; I) =

1

Z
1/D
0

∫
LR(Qp)

e

N∑
j=1

vj(δI(x−xj),φ̃−φL,m)
dP̃L,m (φ̃)

=
1

Z
1/D
0

e

N∑
j=1

vj(δI(x−xj),−φL,m)
∫

LR(Qp)

e

N∑
j=1

vj(δI(x−xj),φ̃)

dP̃L,m (φ̃) . (3.15)

We proceed to compute the limits |m|p → ∞, L→ ∞, I → ∞ in (3.15) to obtain a formula

for A(N)
R (k).

Lemma 5. The exponential term in (3.15) satis�es

lim
I→∞

lim
L→∞

lim
|m|p→∞

e

N∑
j=1

vj(δI(x−xj),−φL,m)
= e

p−1
p ln p

N∑
j=1

N∑
i=1,i ̸=j

vjvi ln|xj−xi|p
.

Proof. With the aid of formula (3.14) and using the continuity of the pairing and the conti-

nuity of the convolution we obtain

N∑
j=1

vj (δI (x− xj) ,−φL,m) →
N∑
j=1

vj

(
δI (x− xj) ,

p− 1

p ln p

N∑
i=1

vi ln |x− xi|p

)
,

for any xj with |x− xj|p > p−L, this convergence is given in L′
R (Qp) as |m|p → ∞, it follows

that

e

N∑
j=1

vj(δI(x−xj),−φL,m)

→ e

N∑
j=1

vj

(
δI(x−xj),

p−1
p ln p

N∑
i=1

vi ln|x−xi|p

)

as |m|p → ∞. Since ln |x|p is locally constant in Q×
p , and lim

t→−∞
et = 0, we have for I

su�ciently large that

(
δI (x− xj) ,

p− 1

p ln p

N∑
i=1

vi ln |x− xi|p

)
=
p− 1

p ln p

N∑
i=1

vi ln |xj − xi|p
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if xj ̸= xi, and −∞ otherwise. Therefore,

e

N∑
j=1

vj

(
δI(x−xj),

p−1
p ln p

N∑
i=1

vi ln|x−xi|p

)
= e

p−1
p ln p

N∑
j=1

N∑
i=1,i̸=j

vjvi ln|xj−xi|p

for I su�ciently large.

For the limit of the integral in (3.15), we proceed as follows. Using (3.4) and the change of

variable W = W̃ − φL,m, we have

∫
L′
R(Qp)

e
√
−1(W̃−φL,m,g)dP̃L,m

(
W̃
)
= e−

1
2
B(g,g),

i.e. ∫
L′
R(Qp)

e
√
−1(W̃ ,g)dP̃L,m

(
W̃
)
= e

√
−1(φL,m,g)− 1

2
B(g,g) =: CL,m (g) . (3.16)

By Lemma 4 we have

lim
L→∞

lim
|m|p→∞

CL,m (g) = e

√
−1

(
p−1
p ln p

N∑
j=1

vj ln|x−xj |p,g
)
− 1

2
B(g,g)

=: C (g) .

We denote by P̃ the measure obtained from the Bochner-Minlos theorem applied to C (g).

Recall that

C(h) =
∫

L′
R(Qp)

e
√
−1(W,h)dP (W ) =

∫
R

e
√
−1xdPh (x)

where Ph (x) is the measure of the half-space (W,h) ≤ x in L′
R (Qp) (see e.g. [27, Chapter

IV, Section 4.1]). If C(hn) → C(h̃), and Phn (R) ≤ 1 for all n, then Phn ⇒ Ph̃, here C(h̃) is

the characteristic function of Ph̃ (see e.g. [8, Theorem 7.8.11]). The arrow "⇒" means that

∫
R

l(x)dPhn (x) →
∫
R

l(x)dPh̃ (x) for any bounded continuous function l(x). (3.17)
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From this we conclude that

P̃L,m ⇒ P̃ when |m|p → ∞, and L→ ∞.

If l(x) ∈ L1 (R,Phn) for any n and l(x) ∈ L1
(
R,Ph̃

)
, using the fact that the bounded con-

tinuous functions are dense in both L1 (R,Phn) and L
1
(
R,Ph̃

)
(see [3, Proposition 1.3.22]),

we assume in (3.17) that l(x) is an integrable function.

Then, we have the following result.

Lemma 6. The following equalities are satis�ed

lim
L→∞

lim
|m|p→∞

∫
LR(Qp)

e

N∑
j=1

vj(δI(x−xj),φ̃)

dP̃L,m (φ̃) =

∫
LR(Qp)

e

N∑
j=1

vj(δI(x−xj),φ̃)

dP̃ (φ̃) ,

and

lim
I→∞

∫
LR(Qp)

e

N∑
j=1

vj(δI(x−xj),φ̃)

dP̃ (φ̃) =

∫
LR(Qp)

e

N∑
j=1

vj φ̃(xj)

dP̃ (φ̃) .

Applying Lemmas 3, 5 and 6 to (3.15) we have

lim
I→∞

lim
L→∞

lim
|m|p→∞,

Ã(N)
R (x,v; I) = Ã(N)

R (x,v)

=
1

Z
1/D
0

e
p−1
p ln p

N∑
j=1

N∑
i=1,i ̸=j

vjvi ln|xj−xi|p
∫

LR(Qp)

e

N∑
j=1

vj φ̃(xj)

dP̃ (φ̃) .

Using this formula and the de�nition of A(N)
R (k), we establish the following result.

Proposition 1. The amplitude A(N)
R (k) satis�es

A(N)
R (k) =

1

Z0

∫
BN

R

∏
1≤i<j≤N

|xj − xi|
2(p−1)
p ln p

ki·kj

p

∫
LD
R (Qp)

e

N∑
j=1

kj ·φ̃(xj)

dP̃D (φ̃)
N∏
ν=1

dxν. (3.18)
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We assume that the insertion points x1, . . . , xN , with N ≥ 4 belong to the p-adic projective

line, and then by using the Möbius group, we choose the normalization

x1 = 0, xN−1 = 1, xN = ∞. (3.19)

In our framework, the convention xN = ∞means that the N -point amplitudes do not depend

on xN . Replacing (3.19) in (3.18) A(N)
R (k) takes the form

A(N)
R (k) =

C0

Z0

∫
BN−3

R

N−2∏
j=2

|xj|
2(p−1)
p ln p

k1·kj

p |1− xj|
2(p−1)
p ln p

kN−1·kj

p ×

∏
2≤i<j≤N−2

|xj − xi|
2(p−1)
p ln p

ki·kj

p

∫
LD
R (Qp)

e

N−2∑
j=2

kj ·φ̃(xj)

dP̃D (φ̃)
N−2∏
ν=2

dxν ,

where the momenta vectors satisfy
N∑
i=1

ki = 0 and

C0 =

∫
LD
R (Qp)

ek1·φ̃(0)+kN−1·φ̃(1)dP̃D (φ̃) .

De�ne the function

Θ(k,x) := Θ (k, x2, . . . , xN−2) =

∫
LD
R (Qp)

e

N−2∑
j=2

kj ·φ̃(xj)

dP̃D (φ̃) .

We consider the expansion in series for the exponential function around zero

e

N−2∑
j=2

kj ·φ̃(xj)

= lim
M→∞

M∑
r=0

(
N−2∑
j=2

kj · φ̃ (xj)

)r

r!

= lim
M ′→∞

M ′∑
r=0

Fr (k, φ̃ (x2) , . . . , φ̃ (xN−2)) ,
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where Fr (k, φ̃ (x2) , . . . , φ̃ (xN−2)) is a homogeneous polynomial of degree r in the variables

kl,j, l = 1, . . . , D, j = 2, . . . , N − 2, whose coe�cients are polynomials in

φ̃ (x2) , . . . , φ̃ (xN−2). Since

M ′∑
r=0

|Fr (k, φ̃ (x2) , . . . , φ̃ (xN−2))| ≤ e

N−2∑
j=2

D∑
l=1
|kl,j||φ̃l(xj)|

∈ L1
(
LD

R (Qp) , P̃D

)
,

by the dominated convergence theorem and Corollary 1, we have

Θ(k,x) =

∫
LD
R (Qp)

{
lim

M ′→∞

M ′∑
r=0

Fr (k, φ̃ (x2) , . . . , φ̃ (xN−2))

}
dP̃D (φ)

= lim
M ′→∞

M ′∑
r=0

∫
LD
R (Qp)

Fr (k, φ̃ (x2) , . . . , φ̃ (xN−2)) dP̃D (φ̃)

=

∫
LD
R (Qp)

dP̃D (φ̃) +
∞∑
r=1

∫
LD
R (Qp)

Fr (k, φ̃ (x2) , . . . , φ̃ (xN−2)) dP̃D (φ̃) .

The functions Fr (k, φ̃ (x2) , . . . , φ̃ (xN−2)) are integrable continuous functions in x for k

�xed, we conclude that

Gr(k,x) :=

∫
LD
R (Qp)

Fr (k, φ̃ (x2) , . . . , φ̃ (xN−2)) dP̃D (φ̃)

is a continuous function in x. Therefore Θ(k,x) is expanded as a series

Θ(k,x) = C +
∞∑
r=1

Gr(k,x).

where each term is a continuous function in x. Using the formula given in Proposition 1 and

Fubini's theorem, we obtain the following result.

45



Theorem 3. The amplitude A(N)
R (k) admits the following expansion in the momenta:

A(N)
R (k) =

CC0

Z0

∫
BN−3

R

N−2∏
j=2

|xj|
2(p−1)
p ln p

k1·kj

p |1− xj|
2(p−1)
p ln p

kN−1·kj

p ×

∏
2≤i<j≤N−2

|xj − xi|
2(p−1)
p ln p

ki·kj

p

N−2∏
ν=2

dxν +

C0

Z0

∞∑
r=1

∫
BN−3

R

N−2∏
j=2

|xj|
2(p−1)
p ln p

k1·kj

p |1− xj|
2(p−1)
p ln p

kN−1·kj

p ×

∏
2≤i<j≤N−2

|xj − xi|
2(p−1)
p ln p

ki·kj

p Gr(k,x)
N−2∏
ν=2

dxν.

To continue the study of the amplitudes A(N)
R (k), we introduce the following notation:

A
(N)
R (k) =

CC0

Z0

∫
BN−3

R

N−2∏
j=2

|xj|
2(p−1)
p ln p

k1·kj

p |1− xj|
2(p−1)
p ln p

kN−1·kj

p ×

∏
2≤i<j≤N−2

|xj − xi|
2(p−1)
p ln p

ki·kj

p

N−2∏
ν=2

dxν ,

Z
(N)
Gr,R

(k) =
C0

Z0

∫
QN−3

p

N−2∏
j=2

|xj|
2(p−1)
p ln p

k1·kj

p |1− xj|
2(p−1)
p ln p

kN−1·kj

p ×

∏
2≤i<j≤N−2

|xj − xi|
2(p−1)
p ln p

ki·kj

p 1BN−3
R

(x)Gr(k,x)
N−2∏
ν=2

dxν .

Notice that 1BN−3
R

(x)Gr(k,x) is a continuous function in x with support contained in BN−3
R .
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3.2 Regularization of p-adic open string amplitudes

3.2.1 The p-adic Koba-Nielsen local zeta functions

Take N ≥ 4 and sij ∈ C satisfying sij = sji for 1 ≤ i < j ≤ N − 1. The p-adic Koba-Nielsen

local zeta function (or p-adic open string N -point zeta function) is de�ned as

Z(N) (s) =

∫
QN−3

p ∖Λ

N−2∏
j=2

|xj|s1jp |1− xj|s(N−1)j

p

∏
2≤i<j≤N−2

|xj − xi|sijp

N−2∏
ν=2

dxν , (3.20)

where s = (sij) ∈ CD0 , D0 denotes the total number of possible subsets {i, j} and

Λ :=

{
(x2, . . . , xN−2) ∈ QN−3

p ;
N−2∏
j=2

xj (1− xj)
∏

2≤i<j≤N−2

(xj − xi) = 0

}
.

These functions were introduced in [11] (see also [12]). The functions Z(N) (s) are holomor-

phic in a certain domain of CD0 and admit analytic extension to CD0 as rational functions

in the

p−sij , i, j ∈ {1, . . . , N − 1} ,

which are denoted also as Z(N) (s) see [11, Theorem 1], [12, Theorem 6.1].

If ϕ (x2, . . . , xN−2) is a locally constant function with compact support, then

Z
(N)
ϕ (s) =∫

QN−3
p ∖Λ

ϕ (x2, . . . , xN−2)
N−2∏
j=2

|xj|s1jp |1− xj|s(N−1)j

p

∏
2≤i<j≤N−2

|xj − xi|sijp

N−2∏
ν=2

dxν ,

with Re(sij) > 0, for any i, j, is a multivariate Igusa local zeta function. These functions

admit an analytic extension as rational functions in the variables p−sij , [47]. If we take ϕ to

be the characteristic function of BN−3
R , the ball centered at the origin with radius pR, the
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dominated convergence theorem and [11, Theorem 1], imply that

lim
R→∞

Z
(N)
R (s) := lim

R→∞

∫
BN−3

R ∖Λ

N−2∏
j=2

|xj|s1jp |1− xj|s(N−1)j

p

∏
2≤i<j≤N−2

|xj − xi|sijp

N−2∏
ν=2

dxν (3.21)

= Z(N) (s) ,

for any s in the natural domain of Z(N) (s).

In [14], Brekke, Freund, Olson and Witten worked out the N -point amplitudes in explicit

form and investigated how these are obtained from an e�ective Lagrangian. The tree-level

p-adic open string amplitudes for N -points are de�ned as

A
(N)
M (k) = (3.22)∫

QN−3
p

N−2∏
j=2

|xj|k1kj

p |1− xj|kN−1kj

p

∏
2≤i<j≤N−2

|xj − xi|kikj

p

N−2∏
ν=2

dxν ,

where the momentum vectors obey

N∑
i=1

ki = 0, kiki = 2 for i = 1, . . . , N,

see Section 2.2.1, Chapter 2.

In [11], [12], the p-adic integrals Z(N)(s) are used as regularizations of the amplitudes

A
(N)
M (k). More precisely, the amplitude A(N)

M (k) can be rede�ned as

A
(N)
M (k) = Z(N)(s) |sij=kikj

with i ∈ {1, . . . , N − 1} , j ∈ J or i, j ∈ J,

where J = {2, . . . , N − 2}. Then the amplitudes A(N)
M (k) are well-de�ned rational functions

in the p−kikj , i, j ∈ {1, . . . , N − 1}, which agree with integrals (3.22) when they converge.

Remark 2. In [11], [12], the local zeta functions Z(N)(s) were used to regularize Koba-
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Nielsen amplitudes A
(N)
M (k), when the momenta k belongs to the Minkowski space. Here, we

use the functions Z(N)(s) to regularize Koba-Nielsen amplitudes A(N) (k) when the momenta

k belongs to the Euclidean space. This is possible because Z(N)(s) is a rational function in

the p−sij .

Remark 3. We denote by Z
(N)
· (s) the distribution ϕ 7→ Z

(N)
ϕ (s). Then the mapping

CD0 → D′(QN−3
p )

s 7→ Z
(N)
· (s)

(3.23)

is a meromorphic function of s. By using the fact that D(QN−3
p ) is dense in the space of

continuous functions with compact support Cc(QN−3
p ), the functional ϕ 7→ Z

(N)
ϕ (s) has a

unique extension to Cc(QN−3
p ). Furthermore, if s0 is a pole of Z

(N)
ϕ (s), by using Gel'fand-

Shilov method of analytic continuation (see e.g. [41, pp. 65-67]), we have

Z
(N)
ϕ (s) =

∑
k∈ZD0

ck (ϕ) (s − s0)
k ,

where the cks are distributions from D′(QN−3
p ). The density of D(QN−3

p ) in Cc(QN−3
p ) implies

that ck ̸= 0 in D′(QN−3
p ) if and only if ck ̸= 0 in C ′

c(QN−3
p ), the strong dual space of Cc(QN−3

p )

and consequently the mapping

CD0 → C ′
c(QN−3

p )

s 7→ Z
(N)
· (s)

is a meromorphic function in s having the same poles of the mapping (3.23).

Notice that by (3.21) we have

Z0

CC0

lim
R→∞

A
(N)
R (k) = lim

R→∞

(
Z

(N)
R (s) |

sij=
2(p−1)
p ln p

ki·kj

)
= Z(N) (s) |

sij=
2(p−1)
p ln p

ki·kj
.
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Since Z(N) (s) is a holomorphic function in a certain domain of CD0 , we conclude that

lim
R→∞

A
(N)
R (k) exists for k belonging to a nonempty subset of CD0 .

By Remark 3, we may assume that 1BN−3
R

(x)Gr(k,x) =: ϕ is a test function in x, and then

Z
(N)
Gr,R

(k) = C0

Z0
Z

(N)
ϕ (s) |

sij=
2(p−1)
p ln p

ki·kj
is a multivariate local zeta function. Furthermore,

|Z(N)
Gr,R

(k)| ≤C0

Z0

∫
QN−3

p

N−2∏
j=2

|xj|
2(p−1)
p ln p

k1·kj

p |1− xj|
2(p−1)
p ln p

kN−1·kj

p ×

∏
2≤i<j≤N−2

|xj − xi|
2(p−1)
p ln p

ki·kj

p |Gr(k,x)|
N−2∏
ν=2

dxν ,

which implies that
∣∣∣Z(N)

Gr,R
(k)
∣∣∣ ≤ C0 Cr(k,R)

Z0
Z(N) (k), where

Cr (k, R) = sup
x∈BN−3

R

|Gr(k,x)| .

Since Z(N) (k) converges in a nonempty open set, we conclude that all the Z(N)
Gr,R

(k)s converge

in the open set where Z(N) (k) converges.

In conclusion, we obtain the following result.

Theorem 4. The functions A(N)
R (k) possess the following representation:

A(N)
R (k) = A

(N)
R (k) +

∞∑
r=1

Z
(N)
Gr,R

(k),

for R �xed, where A
(N)
R (k) and all the Z

(N)
Gr,R

(k)s are multivariate Igusa's local zeta functions,

all of them converging in a common nonempty open set. Furthermore,

lim
R→∞

A
(N)
R (k) =

CC0

Z0

Z(N) (k) ,

which is the p-adic Koba-Nielsen open string amplitude.
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3.2.2 φ4-Theories

Consider the family of φ4-interacting quantum �eld theories:

1LD
R (Qp) (φ) e

−λEint(φ)dPD (φ)

Z
, for λ > 0,

where

Eint(φ) =
D∑
j=1

∫
Qp

φ4
j(x)dx, and Z =

∫
LD
R (Qp)

e−λEint(φ)dPD (φ) .

The amplitudes of such theories are de�ned as

A(N)
R (k, λ) =

1

Z

∫
BN−3

R


∫

LD
R (Qp)

e

N−2∑
j=2

kj ·φ(xj)−λEint(φ)

dPD (φ)


N−2∏
ν=2

dxν .

These amplitudes admit expansions of the type given in Proposition 3, where the functions

Gr(k,x) are replaced by continuous functions in x depending on k and λ. The behavior of

these quantum �eld theories is completely di�erent from the standard ones due to the fact

that we are computing the correlation functions for a very particular class of observables,

which are products of vertex operators.
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Conclusions

In this thesis we provide a mathematical construction of a class of quantum �eld theories

whose amplitudes are expectations of products of vertex operators. The following results

were obtained.

1. A measure PD (φ) is constructed in the Lizorkin space LD (Qp) using the Bochner-

Minlos theorem.

2. With the aid of the measure PD (φ) the string amplitudes A(N) (k) are de�ned by a

limit process A(N) (k) = lim
R→∞

A(N)
R (k).

3. The functions A(N)
R (k) in the limit are �nite for any k and admit a series representation

in the form

A(N)
R (k) = A

(N)
R (k) +

∞∑
r=1

Z
(N)
Gr,R

(k).

The functions Z(N)
Gr,R

(k) are multivariate local Zeta functions bounded by the Koba-

Nielsen open string amplitude Z(N)(k), and Z
(N)
Gr,R

(k) are well de�ned in a common

subset of CD.

4. The sequence
{
A

(N)
R

}
R∈N

converges to the Koba-Nielsen amplitude when R → ∞.
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